btrfs: new define for the inline extent data start
[deliverable/linux.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
5a0e3ad6 29#include <linux/slab.h>
784b4e29 30#include <linux/migrate.h>
7a36ddec 31#include <linux/ratelimit.h>
6463fe58 32#include <linux/uuid.h>
803b2f54 33#include <linux/semaphore.h>
7e75bf3f 34#include <asm/unaligned.h>
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
0b947aff 37#include "hash.h"
e089f05c 38#include "transaction.h"
0f7d52f4 39#include "btrfs_inode.h"
0b86a832 40#include "volumes.h"
db94535d 41#include "print-tree.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
8dabb742 48#include "dev-replace.h"
53b381b3 49#include "raid56.h"
5ac1d209 50#include "sysfs.h"
fcebe456 51#include "qgroup.h"
eb60ceac 52
de0022b9
JB
53#ifdef CONFIG_X86
54#include <asm/cpufeature.h>
55#endif
56
d1310b2e 57static struct extent_io_ops btree_extent_io_ops;
8b712842 58static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 59static void free_fs_root(struct btrfs_root *root);
fcd1f065 60static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 61 int read_only);
143bede5 62static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 63static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 struct btrfs_root *root);
143bede5 65static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 66static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 struct extent_io_tree *dirty_pages,
68 int mark);
69static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 struct extent_io_tree *pinned_extents);
48a3b636
ES
71static int btrfs_cleanup_transaction(struct btrfs_root *root);
72static void btrfs_error_commit_super(struct btrfs_root *root);
ce9adaa5 73
d352ac68 74/*
97eb6b69
DS
75 * btrfs_end_io_wq structs are used to do processing in task context when an IO
76 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
77 * by writes to insert metadata for new file extents after IO is complete.
78 */
97eb6b69 79struct btrfs_end_io_wq {
ce9adaa5
CM
80 struct bio *bio;
81 bio_end_io_t *end_io;
82 void *private;
83 struct btrfs_fs_info *info;
84 int error;
bfebd8b5 85 enum btrfs_wq_endio_type metadata;
ce9adaa5 86 struct list_head list;
8b712842 87 struct btrfs_work work;
ce9adaa5 88};
0da5468f 89
97eb6b69
DS
90static struct kmem_cache *btrfs_end_io_wq_cache;
91
92int __init btrfs_end_io_wq_init(void)
93{
94 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
95 sizeof(struct btrfs_end_io_wq),
96 0,
97 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
98 NULL);
99 if (!btrfs_end_io_wq_cache)
100 return -ENOMEM;
101 return 0;
102}
103
104void btrfs_end_io_wq_exit(void)
105{
106 if (btrfs_end_io_wq_cache)
107 kmem_cache_destroy(btrfs_end_io_wq_cache);
108}
109
d352ac68
CM
110/*
111 * async submit bios are used to offload expensive checksumming
112 * onto the worker threads. They checksum file and metadata bios
113 * just before they are sent down the IO stack.
114 */
44b8bd7e
CM
115struct async_submit_bio {
116 struct inode *inode;
117 struct bio *bio;
118 struct list_head list;
4a69a410
CM
119 extent_submit_bio_hook_t *submit_bio_start;
120 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
121 int rw;
122 int mirror_num;
c8b97818 123 unsigned long bio_flags;
eaf25d93
CM
124 /*
125 * bio_offset is optional, can be used if the pages in the bio
126 * can't tell us where in the file the bio should go
127 */
128 u64 bio_offset;
8b712842 129 struct btrfs_work work;
79787eaa 130 int error;
44b8bd7e
CM
131};
132
85d4e461
CM
133/*
134 * Lockdep class keys for extent_buffer->lock's in this root. For a given
135 * eb, the lockdep key is determined by the btrfs_root it belongs to and
136 * the level the eb occupies in the tree.
137 *
138 * Different roots are used for different purposes and may nest inside each
139 * other and they require separate keysets. As lockdep keys should be
140 * static, assign keysets according to the purpose of the root as indicated
141 * by btrfs_root->objectid. This ensures that all special purpose roots
142 * have separate keysets.
4008c04a 143 *
85d4e461
CM
144 * Lock-nesting across peer nodes is always done with the immediate parent
145 * node locked thus preventing deadlock. As lockdep doesn't know this, use
146 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 147 *
85d4e461
CM
148 * The key is set by the readpage_end_io_hook after the buffer has passed
149 * csum validation but before the pages are unlocked. It is also set by
150 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 151 *
85d4e461
CM
152 * We also add a check to make sure the highest level of the tree is the
153 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
154 * needs update as well.
4008c04a
CM
155 */
156#ifdef CONFIG_DEBUG_LOCK_ALLOC
157# if BTRFS_MAX_LEVEL != 8
158# error
159# endif
85d4e461
CM
160
161static struct btrfs_lockdep_keyset {
162 u64 id; /* root objectid */
163 const char *name_stem; /* lock name stem */
164 char names[BTRFS_MAX_LEVEL + 1][20];
165 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
166} btrfs_lockdep_keysets[] = {
167 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
168 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
169 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
170 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
171 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
172 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 173 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
174 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
175 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
176 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 177 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
85d4e461 178 { .id = 0, .name_stem = "tree" },
4008c04a 179};
85d4e461
CM
180
181void __init btrfs_init_lockdep(void)
182{
183 int i, j;
184
185 /* initialize lockdep class names */
186 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
187 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
188
189 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
190 snprintf(ks->names[j], sizeof(ks->names[j]),
191 "btrfs-%s-%02d", ks->name_stem, j);
192 }
193}
194
195void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
196 int level)
197{
198 struct btrfs_lockdep_keyset *ks;
199
200 BUG_ON(level >= ARRAY_SIZE(ks->keys));
201
202 /* find the matching keyset, id 0 is the default entry */
203 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
204 if (ks->id == objectid)
205 break;
206
207 lockdep_set_class_and_name(&eb->lock,
208 &ks->keys[level], ks->names[level]);
209}
210
4008c04a
CM
211#endif
212
d352ac68
CM
213/*
214 * extents on the btree inode are pretty simple, there's one extent
215 * that covers the entire device
216 */
b2950863 217static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 218 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 219 int create)
7eccb903 220{
5f39d397
CM
221 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
222 struct extent_map *em;
223 int ret;
224
890871be 225 read_lock(&em_tree->lock);
d1310b2e 226 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
227 if (em) {
228 em->bdev =
229 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 230 read_unlock(&em_tree->lock);
5f39d397 231 goto out;
a061fc8d 232 }
890871be 233 read_unlock(&em_tree->lock);
7b13b7b1 234
172ddd60 235 em = alloc_extent_map();
5f39d397
CM
236 if (!em) {
237 em = ERR_PTR(-ENOMEM);
238 goto out;
239 }
240 em->start = 0;
0afbaf8c 241 em->len = (u64)-1;
c8b97818 242 em->block_len = (u64)-1;
5f39d397 243 em->block_start = 0;
a061fc8d 244 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 245
890871be 246 write_lock(&em_tree->lock);
09a2a8f9 247 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
248 if (ret == -EEXIST) {
249 free_extent_map(em);
7b13b7b1 250 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 251 if (!em)
0433f20d 252 em = ERR_PTR(-EIO);
5f39d397 253 } else if (ret) {
7b13b7b1 254 free_extent_map(em);
0433f20d 255 em = ERR_PTR(ret);
5f39d397 256 }
890871be 257 write_unlock(&em_tree->lock);
7b13b7b1 258
5f39d397
CM
259out:
260 return em;
7eccb903
CM
261}
262
b0496686 263u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 264{
0b947aff 265 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
266}
267
268void btrfs_csum_final(u32 crc, char *result)
269{
7e75bf3f 270 put_unaligned_le32(~crc, result);
19c00ddc
CM
271}
272
d352ac68
CM
273/*
274 * compute the csum for a btree block, and either verify it or write it
275 * into the csum field of the block.
276 */
19c00ddc
CM
277static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
278 int verify)
279{
6c41761f 280 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 281 char *result = NULL;
19c00ddc
CM
282 unsigned long len;
283 unsigned long cur_len;
284 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
285 char *kaddr;
286 unsigned long map_start;
287 unsigned long map_len;
288 int err;
289 u32 crc = ~(u32)0;
607d432d 290 unsigned long inline_result;
19c00ddc
CM
291
292 len = buf->len - offset;
d397712b 293 while (len > 0) {
19c00ddc 294 err = map_private_extent_buffer(buf, offset, 32,
a6591715 295 &kaddr, &map_start, &map_len);
d397712b 296 if (err)
19c00ddc 297 return 1;
19c00ddc 298 cur_len = min(len, map_len - (offset - map_start));
b0496686 299 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
300 crc, cur_len);
301 len -= cur_len;
302 offset += cur_len;
19c00ddc 303 }
607d432d
JB
304 if (csum_size > sizeof(inline_result)) {
305 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
306 if (!result)
307 return 1;
308 } else {
309 result = (char *)&inline_result;
310 }
311
19c00ddc
CM
312 btrfs_csum_final(crc, result);
313
314 if (verify) {
607d432d 315 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
316 u32 val;
317 u32 found = 0;
607d432d 318 memcpy(&found, result, csum_size);
e4204ded 319
607d432d 320 read_extent_buffer(buf, &val, 0, csum_size);
efe120a0
FH
321 printk_ratelimited(KERN_INFO
322 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
323 "level %d\n",
324 root->fs_info->sb->s_id, buf->start,
325 val, found, btrfs_header_level(buf));
607d432d
JB
326 if (result != (char *)&inline_result)
327 kfree(result);
19c00ddc
CM
328 return 1;
329 }
330 } else {
607d432d 331 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 332 }
607d432d
JB
333 if (result != (char *)&inline_result)
334 kfree(result);
19c00ddc
CM
335 return 0;
336}
337
d352ac68
CM
338/*
339 * we can't consider a given block up to date unless the transid of the
340 * block matches the transid in the parent node's pointer. This is how we
341 * detect blocks that either didn't get written at all or got written
342 * in the wrong place.
343 */
1259ab75 344static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
345 struct extent_buffer *eb, u64 parent_transid,
346 int atomic)
1259ab75 347{
2ac55d41 348 struct extent_state *cached_state = NULL;
1259ab75 349 int ret;
2755a0de 350 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
351
352 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
353 return 0;
354
b9fab919
CM
355 if (atomic)
356 return -EAGAIN;
357
a26e8c9f
JB
358 if (need_lock) {
359 btrfs_tree_read_lock(eb);
360 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
361 }
362
2ac55d41 363 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 364 0, &cached_state);
0b32f4bb 365 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
366 btrfs_header_generation(eb) == parent_transid) {
367 ret = 0;
368 goto out;
369 }
29549aec
WS
370 printk_ratelimited(KERN_INFO "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
371 eb->fs_info->sb->s_id, eb->start,
372 parent_transid, btrfs_header_generation(eb));
1259ab75 373 ret = 1;
a26e8c9f
JB
374
375 /*
376 * Things reading via commit roots that don't have normal protection,
377 * like send, can have a really old block in cache that may point at a
378 * block that has been free'd and re-allocated. So don't clear uptodate
379 * if we find an eb that is under IO (dirty/writeback) because we could
380 * end up reading in the stale data and then writing it back out and
381 * making everybody very sad.
382 */
383 if (!extent_buffer_under_io(eb))
384 clear_extent_buffer_uptodate(eb);
33958dc6 385out:
2ac55d41
JB
386 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
387 &cached_state, GFP_NOFS);
472b909f
JB
388 if (need_lock)
389 btrfs_tree_read_unlock_blocking(eb);
1259ab75 390 return ret;
1259ab75
CM
391}
392
1104a885
DS
393/*
394 * Return 0 if the superblock checksum type matches the checksum value of that
395 * algorithm. Pass the raw disk superblock data.
396 */
397static int btrfs_check_super_csum(char *raw_disk_sb)
398{
399 struct btrfs_super_block *disk_sb =
400 (struct btrfs_super_block *)raw_disk_sb;
401 u16 csum_type = btrfs_super_csum_type(disk_sb);
402 int ret = 0;
403
404 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
405 u32 crc = ~(u32)0;
406 const int csum_size = sizeof(crc);
407 char result[csum_size];
408
409 /*
410 * The super_block structure does not span the whole
411 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
412 * is filled with zeros and is included in the checkum.
413 */
414 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
415 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
416 btrfs_csum_final(crc, result);
417
418 if (memcmp(raw_disk_sb, result, csum_size))
419 ret = 1;
667e7d94
CM
420
421 if (ret && btrfs_super_generation(disk_sb) < 10) {
efe120a0
FH
422 printk(KERN_WARNING
423 "BTRFS: super block crcs don't match, older mkfs detected\n");
667e7d94
CM
424 ret = 0;
425 }
1104a885
DS
426 }
427
428 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
efe120a0 429 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
1104a885
DS
430 csum_type);
431 ret = 1;
432 }
433
434 return ret;
435}
436
d352ac68
CM
437/*
438 * helper to read a given tree block, doing retries as required when
439 * the checksums don't match and we have alternate mirrors to try.
440 */
f188591e
CM
441static int btree_read_extent_buffer_pages(struct btrfs_root *root,
442 struct extent_buffer *eb,
ca7a79ad 443 u64 start, u64 parent_transid)
f188591e
CM
444{
445 struct extent_io_tree *io_tree;
ea466794 446 int failed = 0;
f188591e
CM
447 int ret;
448 int num_copies = 0;
449 int mirror_num = 0;
ea466794 450 int failed_mirror = 0;
f188591e 451
a826d6dc 452 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
453 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
454 while (1) {
bb82ab88
AJ
455 ret = read_extent_buffer_pages(io_tree, eb, start,
456 WAIT_COMPLETE,
f188591e 457 btree_get_extent, mirror_num);
256dd1bb
SB
458 if (!ret) {
459 if (!verify_parent_transid(io_tree, eb,
b9fab919 460 parent_transid, 0))
256dd1bb
SB
461 break;
462 else
463 ret = -EIO;
464 }
d397712b 465
a826d6dc
JB
466 /*
467 * This buffer's crc is fine, but its contents are corrupted, so
468 * there is no reason to read the other copies, they won't be
469 * any less wrong.
470 */
471 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
472 break;
473
5d964051 474 num_copies = btrfs_num_copies(root->fs_info,
f188591e 475 eb->start, eb->len);
4235298e 476 if (num_copies == 1)
ea466794 477 break;
4235298e 478
5cf1ab56
JB
479 if (!failed_mirror) {
480 failed = 1;
481 failed_mirror = eb->read_mirror;
482 }
483
f188591e 484 mirror_num++;
ea466794
JB
485 if (mirror_num == failed_mirror)
486 mirror_num++;
487
4235298e 488 if (mirror_num > num_copies)
ea466794 489 break;
f188591e 490 }
ea466794 491
c0901581 492 if (failed && !ret && failed_mirror)
ea466794
JB
493 repair_eb_io_failure(root, eb, failed_mirror);
494
495 return ret;
f188591e 496}
19c00ddc 497
d352ac68 498/*
d397712b
CM
499 * checksum a dirty tree block before IO. This has extra checks to make sure
500 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 501 */
d397712b 502
b2950863 503static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 504{
4eee4fa4 505 u64 start = page_offset(page);
19c00ddc 506 u64 found_start;
19c00ddc 507 struct extent_buffer *eb;
f188591e 508
4f2de97a
JB
509 eb = (struct extent_buffer *)page->private;
510 if (page != eb->pages[0])
511 return 0;
19c00ddc 512 found_start = btrfs_header_bytenr(eb);
fae7f21c 513 if (WARN_ON(found_start != start || !PageUptodate(page)))
4f2de97a 514 return 0;
19c00ddc 515 csum_tree_block(root, eb, 0);
19c00ddc
CM
516 return 0;
517}
518
2b82032c
YZ
519static int check_tree_block_fsid(struct btrfs_root *root,
520 struct extent_buffer *eb)
521{
522 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
523 u8 fsid[BTRFS_UUID_SIZE];
524 int ret = 1;
525
0a4e5586 526 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
527 while (fs_devices) {
528 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
529 ret = 0;
530 break;
531 }
532 fs_devices = fs_devices->seed;
533 }
534 return ret;
535}
536
a826d6dc 537#define CORRUPT(reason, eb, root, slot) \
efe120a0
FH
538 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
539 "root=%llu, slot=%d", reason, \
c1c9ff7c 540 btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
541
542static noinline int check_leaf(struct btrfs_root *root,
543 struct extent_buffer *leaf)
544{
545 struct btrfs_key key;
546 struct btrfs_key leaf_key;
547 u32 nritems = btrfs_header_nritems(leaf);
548 int slot;
549
550 if (nritems == 0)
551 return 0;
552
553 /* Check the 0 item */
554 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
555 BTRFS_LEAF_DATA_SIZE(root)) {
556 CORRUPT("invalid item offset size pair", leaf, root, 0);
557 return -EIO;
558 }
559
560 /*
561 * Check to make sure each items keys are in the correct order and their
562 * offsets make sense. We only have to loop through nritems-1 because
563 * we check the current slot against the next slot, which verifies the
564 * next slot's offset+size makes sense and that the current's slot
565 * offset is correct.
566 */
567 for (slot = 0; slot < nritems - 1; slot++) {
568 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
569 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
570
571 /* Make sure the keys are in the right order */
572 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
573 CORRUPT("bad key order", leaf, root, slot);
574 return -EIO;
575 }
576
577 /*
578 * Make sure the offset and ends are right, remember that the
579 * item data starts at the end of the leaf and grows towards the
580 * front.
581 */
582 if (btrfs_item_offset_nr(leaf, slot) !=
583 btrfs_item_end_nr(leaf, slot + 1)) {
584 CORRUPT("slot offset bad", leaf, root, slot);
585 return -EIO;
586 }
587
588 /*
589 * Check to make sure that we don't point outside of the leaf,
590 * just incase all the items are consistent to eachother, but
591 * all point outside of the leaf.
592 */
593 if (btrfs_item_end_nr(leaf, slot) >
594 BTRFS_LEAF_DATA_SIZE(root)) {
595 CORRUPT("slot end outside of leaf", leaf, root, slot);
596 return -EIO;
597 }
598 }
599
600 return 0;
601}
602
facc8a22
MX
603static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
604 u64 phy_offset, struct page *page,
605 u64 start, u64 end, int mirror)
ce9adaa5 606{
ce9adaa5
CM
607 u64 found_start;
608 int found_level;
ce9adaa5
CM
609 struct extent_buffer *eb;
610 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 611 int ret = 0;
727011e0 612 int reads_done;
ce9adaa5 613
ce9adaa5
CM
614 if (!page->private)
615 goto out;
d397712b 616
4f2de97a 617 eb = (struct extent_buffer *)page->private;
d397712b 618
0b32f4bb
JB
619 /* the pending IO might have been the only thing that kept this buffer
620 * in memory. Make sure we have a ref for all this other checks
621 */
622 extent_buffer_get(eb);
623
624 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
625 if (!reads_done)
626 goto err;
f188591e 627
5cf1ab56 628 eb->read_mirror = mirror;
ea466794
JB
629 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
630 ret = -EIO;
631 goto err;
632 }
633
ce9adaa5 634 found_start = btrfs_header_bytenr(eb);
727011e0 635 if (found_start != eb->start) {
29549aec 636 printk_ratelimited(KERN_INFO "BTRFS (device %s): bad tree block start "
193f284d 637 "%llu %llu\n",
29549aec 638 eb->fs_info->sb->s_id, found_start, eb->start);
f188591e 639 ret = -EIO;
ce9adaa5
CM
640 goto err;
641 }
2b82032c 642 if (check_tree_block_fsid(root, eb)) {
29549aec
WS
643 printk_ratelimited(KERN_INFO "BTRFS (device %s): bad fsid on block %llu\n",
644 eb->fs_info->sb->s_id, eb->start);
1259ab75
CM
645 ret = -EIO;
646 goto err;
647 }
ce9adaa5 648 found_level = btrfs_header_level(eb);
1c24c3ce 649 if (found_level >= BTRFS_MAX_LEVEL) {
efe120a0 650 btrfs_info(root->fs_info, "bad tree block level %d",
1c24c3ce
JB
651 (int)btrfs_header_level(eb));
652 ret = -EIO;
653 goto err;
654 }
ce9adaa5 655
85d4e461
CM
656 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
657 eb, found_level);
4008c04a 658
ce9adaa5 659 ret = csum_tree_block(root, eb, 1);
a826d6dc 660 if (ret) {
f188591e 661 ret = -EIO;
a826d6dc
JB
662 goto err;
663 }
664
665 /*
666 * If this is a leaf block and it is corrupt, set the corrupt bit so
667 * that we don't try and read the other copies of this block, just
668 * return -EIO.
669 */
670 if (found_level == 0 && check_leaf(root, eb)) {
671 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
672 ret = -EIO;
673 }
ce9adaa5 674
0b32f4bb
JB
675 if (!ret)
676 set_extent_buffer_uptodate(eb);
ce9adaa5 677err:
79fb65a1
JB
678 if (reads_done &&
679 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 680 btree_readahead_hook(root, eb, eb->start, ret);
4bb31e92 681
53b381b3
DW
682 if (ret) {
683 /*
684 * our io error hook is going to dec the io pages
685 * again, we have to make sure it has something
686 * to decrement
687 */
688 atomic_inc(&eb->io_pages);
0b32f4bb 689 clear_extent_buffer_uptodate(eb);
53b381b3 690 }
0b32f4bb 691 free_extent_buffer(eb);
ce9adaa5 692out:
f188591e 693 return ret;
ce9adaa5
CM
694}
695
ea466794 696static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 697{
4bb31e92
AJ
698 struct extent_buffer *eb;
699 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
700
4f2de97a 701 eb = (struct extent_buffer *)page->private;
ea466794 702 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 703 eb->read_mirror = failed_mirror;
53b381b3 704 atomic_dec(&eb->io_pages);
ea466794 705 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 706 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
707 return -EIO; /* we fixed nothing */
708}
709
ce9adaa5 710static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5 711{
97eb6b69 712 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 713 struct btrfs_fs_info *fs_info;
9e0af237
LB
714 struct btrfs_workqueue *wq;
715 btrfs_work_func_t func;
ce9adaa5 716
ce9adaa5 717 fs_info = end_io_wq->info;
ce9adaa5 718 end_io_wq->error = err;
d20f7043 719
7b6d91da 720 if (bio->bi_rw & REQ_WRITE) {
9e0af237
LB
721 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
722 wq = fs_info->endio_meta_write_workers;
723 func = btrfs_endio_meta_write_helper;
724 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
725 wq = fs_info->endio_freespace_worker;
726 func = btrfs_freespace_write_helper;
727 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
728 wq = fs_info->endio_raid56_workers;
729 func = btrfs_endio_raid56_helper;
730 } else {
731 wq = fs_info->endio_write_workers;
732 func = btrfs_endio_write_helper;
733 }
d20f7043 734 } else {
8b110e39
MX
735 if (unlikely(end_io_wq->metadata ==
736 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
737 wq = fs_info->endio_repair_workers;
738 func = btrfs_endio_repair_helper;
739 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
740 wq = fs_info->endio_raid56_workers;
741 func = btrfs_endio_raid56_helper;
742 } else if (end_io_wq->metadata) {
743 wq = fs_info->endio_meta_workers;
744 func = btrfs_endio_meta_helper;
745 } else {
746 wq = fs_info->endio_workers;
747 func = btrfs_endio_helper;
748 }
d20f7043 749 }
9e0af237
LB
750
751 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
752 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
753}
754
22c59948 755int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 756 enum btrfs_wq_endio_type metadata)
0b86a832 757{
97eb6b69 758 struct btrfs_end_io_wq *end_io_wq;
8b110e39 759
97eb6b69 760 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5
CM
761 if (!end_io_wq)
762 return -ENOMEM;
763
764 end_io_wq->private = bio->bi_private;
765 end_io_wq->end_io = bio->bi_end_io;
22c59948 766 end_io_wq->info = info;
ce9adaa5
CM
767 end_io_wq->error = 0;
768 end_io_wq->bio = bio;
22c59948 769 end_io_wq->metadata = metadata;
ce9adaa5
CM
770
771 bio->bi_private = end_io_wq;
772 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
773 return 0;
774}
775
b64a2851 776unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 777{
4854ddd0 778 unsigned long limit = min_t(unsigned long,
5cdc7ad3 779 info->thread_pool_size,
4854ddd0
CM
780 info->fs_devices->open_devices);
781 return 256 * limit;
782}
0986fe9e 783
4a69a410
CM
784static void run_one_async_start(struct btrfs_work *work)
785{
4a69a410 786 struct async_submit_bio *async;
79787eaa 787 int ret;
4a69a410
CM
788
789 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
790 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
791 async->mirror_num, async->bio_flags,
792 async->bio_offset);
793 if (ret)
794 async->error = ret;
4a69a410
CM
795}
796
797static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
798{
799 struct btrfs_fs_info *fs_info;
800 struct async_submit_bio *async;
4854ddd0 801 int limit;
8b712842
CM
802
803 async = container_of(work, struct async_submit_bio, work);
804 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 805
b64a2851 806 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
807 limit = limit * 2 / 3;
808
66657b31 809 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 810 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
811 wake_up(&fs_info->async_submit_wait);
812
79787eaa
JM
813 /* If an error occured we just want to clean up the bio and move on */
814 if (async->error) {
815 bio_endio(async->bio, async->error);
816 return;
817 }
818
4a69a410 819 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
820 async->mirror_num, async->bio_flags,
821 async->bio_offset);
4a69a410
CM
822}
823
824static void run_one_async_free(struct btrfs_work *work)
825{
826 struct async_submit_bio *async;
827
828 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
829 kfree(async);
830}
831
44b8bd7e
CM
832int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
833 int rw, struct bio *bio, int mirror_num,
c8b97818 834 unsigned long bio_flags,
eaf25d93 835 u64 bio_offset,
4a69a410
CM
836 extent_submit_bio_hook_t *submit_bio_start,
837 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
838{
839 struct async_submit_bio *async;
840
841 async = kmalloc(sizeof(*async), GFP_NOFS);
842 if (!async)
843 return -ENOMEM;
844
845 async->inode = inode;
846 async->rw = rw;
847 async->bio = bio;
848 async->mirror_num = mirror_num;
4a69a410
CM
849 async->submit_bio_start = submit_bio_start;
850 async->submit_bio_done = submit_bio_done;
851
9e0af237 852 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 853 run_one_async_done, run_one_async_free);
4a69a410 854
c8b97818 855 async->bio_flags = bio_flags;
eaf25d93 856 async->bio_offset = bio_offset;
8c8bee1d 857
79787eaa
JM
858 async->error = 0;
859
cb03c743 860 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 861
7b6d91da 862 if (rw & REQ_SYNC)
5cdc7ad3 863 btrfs_set_work_high_priority(&async->work);
d313d7a3 864
5cdc7ad3 865 btrfs_queue_work(fs_info->workers, &async->work);
9473f16c 866
d397712b 867 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
868 atomic_read(&fs_info->nr_async_submits)) {
869 wait_event(fs_info->async_submit_wait,
870 (atomic_read(&fs_info->nr_async_submits) == 0));
871 }
872
44b8bd7e
CM
873 return 0;
874}
875
ce3ed71a
CM
876static int btree_csum_one_bio(struct bio *bio)
877{
2c30c71b 878 struct bio_vec *bvec;
ce3ed71a 879 struct btrfs_root *root;
2c30c71b 880 int i, ret = 0;
ce3ed71a 881
2c30c71b 882 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 883 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
79787eaa
JM
884 ret = csum_dirty_buffer(root, bvec->bv_page);
885 if (ret)
886 break;
ce3ed71a 887 }
2c30c71b 888
79787eaa 889 return ret;
ce3ed71a
CM
890}
891
4a69a410
CM
892static int __btree_submit_bio_start(struct inode *inode, int rw,
893 struct bio *bio, int mirror_num,
eaf25d93
CM
894 unsigned long bio_flags,
895 u64 bio_offset)
22c59948 896{
8b712842
CM
897 /*
898 * when we're called for a write, we're already in the async
5443be45 899 * submission context. Just jump into btrfs_map_bio
8b712842 900 */
79787eaa 901 return btree_csum_one_bio(bio);
4a69a410 902}
22c59948 903
4a69a410 904static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
905 int mirror_num, unsigned long bio_flags,
906 u64 bio_offset)
4a69a410 907{
61891923
SB
908 int ret;
909
8b712842 910 /*
4a69a410
CM
911 * when we're called for a write, we're already in the async
912 * submission context. Just jump into btrfs_map_bio
8b712842 913 */
61891923
SB
914 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
915 if (ret)
916 bio_endio(bio, ret);
917 return ret;
0b86a832
CM
918}
919
de0022b9
JB
920static int check_async_write(struct inode *inode, unsigned long bio_flags)
921{
922 if (bio_flags & EXTENT_BIO_TREE_LOG)
923 return 0;
924#ifdef CONFIG_X86
925 if (cpu_has_xmm4_2)
926 return 0;
927#endif
928 return 1;
929}
930
44b8bd7e 931static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
932 int mirror_num, unsigned long bio_flags,
933 u64 bio_offset)
44b8bd7e 934{
de0022b9 935 int async = check_async_write(inode, bio_flags);
cad321ad
CM
936 int ret;
937
7b6d91da 938 if (!(rw & REQ_WRITE)) {
4a69a410
CM
939 /*
940 * called for a read, do the setup so that checksum validation
941 * can happen in the async kernel threads
942 */
f3f266ab 943 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
bfebd8b5 944 bio, BTRFS_WQ_ENDIO_METADATA);
1d4284bd 945 if (ret)
61891923
SB
946 goto out_w_error;
947 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
948 mirror_num, 0);
de0022b9
JB
949 } else if (!async) {
950 ret = btree_csum_one_bio(bio);
951 if (ret)
61891923
SB
952 goto out_w_error;
953 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
954 mirror_num, 0);
955 } else {
956 /*
957 * kthread helpers are used to submit writes so that
958 * checksumming can happen in parallel across all CPUs
959 */
960 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
961 inode, rw, bio, mirror_num, 0,
962 bio_offset,
963 __btree_submit_bio_start,
964 __btree_submit_bio_done);
44b8bd7e 965 }
d313d7a3 966
61891923
SB
967 if (ret) {
968out_w_error:
969 bio_endio(bio, ret);
970 }
971 return ret;
44b8bd7e
CM
972}
973
3dd1462e 974#ifdef CONFIG_MIGRATION
784b4e29 975static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
976 struct page *newpage, struct page *page,
977 enum migrate_mode mode)
784b4e29
CM
978{
979 /*
980 * we can't safely write a btree page from here,
981 * we haven't done the locking hook
982 */
983 if (PageDirty(page))
984 return -EAGAIN;
985 /*
986 * Buffers may be managed in a filesystem specific way.
987 * We must have no buffers or drop them.
988 */
989 if (page_has_private(page) &&
990 !try_to_release_page(page, GFP_KERNEL))
991 return -EAGAIN;
a6bc32b8 992 return migrate_page(mapping, newpage, page, mode);
784b4e29 993}
3dd1462e 994#endif
784b4e29 995
0da5468f
CM
996
997static int btree_writepages(struct address_space *mapping,
998 struct writeback_control *wbc)
999{
e2d84521
MX
1000 struct btrfs_fs_info *fs_info;
1001 int ret;
1002
d8d5f3e1 1003 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
1004
1005 if (wbc->for_kupdate)
1006 return 0;
1007
e2d84521 1008 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 1009 /* this is a bit racy, but that's ok */
e2d84521
MX
1010 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1011 BTRFS_DIRTY_METADATA_THRESH);
1012 if (ret < 0)
793955bc 1013 return 0;
793955bc 1014 }
0b32f4bb 1015 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
1016}
1017
b2950863 1018static int btree_readpage(struct file *file, struct page *page)
5f39d397 1019{
d1310b2e
CM
1020 struct extent_io_tree *tree;
1021 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 1022 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 1023}
22b0ebda 1024
70dec807 1025static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1026{
98509cfc 1027 if (PageWriteback(page) || PageDirty(page))
d397712b 1028 return 0;
0c4e538b 1029
f7a52a40 1030 return try_release_extent_buffer(page);
d98237b3
CM
1031}
1032
d47992f8
LC
1033static void btree_invalidatepage(struct page *page, unsigned int offset,
1034 unsigned int length)
d98237b3 1035{
d1310b2e
CM
1036 struct extent_io_tree *tree;
1037 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1038 extent_invalidatepage(tree, page, offset);
1039 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1040 if (PagePrivate(page)) {
efe120a0
FH
1041 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1042 "page private not zero on page %llu",
1043 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1044 ClearPagePrivate(page);
1045 set_page_private(page, 0);
1046 page_cache_release(page);
1047 }
d98237b3
CM
1048}
1049
0b32f4bb
JB
1050static int btree_set_page_dirty(struct page *page)
1051{
bb146eb2 1052#ifdef DEBUG
0b32f4bb
JB
1053 struct extent_buffer *eb;
1054
1055 BUG_ON(!PagePrivate(page));
1056 eb = (struct extent_buffer *)page->private;
1057 BUG_ON(!eb);
1058 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1059 BUG_ON(!atomic_read(&eb->refs));
1060 btrfs_assert_tree_locked(eb);
bb146eb2 1061#endif
0b32f4bb
JB
1062 return __set_page_dirty_nobuffers(page);
1063}
1064
7f09410b 1065static const struct address_space_operations btree_aops = {
d98237b3 1066 .readpage = btree_readpage,
0da5468f 1067 .writepages = btree_writepages,
5f39d397
CM
1068 .releasepage = btree_releasepage,
1069 .invalidatepage = btree_invalidatepage,
5a92bc88 1070#ifdef CONFIG_MIGRATION
784b4e29 1071 .migratepage = btree_migratepage,
5a92bc88 1072#endif
0b32f4bb 1073 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1074};
1075
ca7a79ad
CM
1076int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1077 u64 parent_transid)
090d1875 1078{
5f39d397
CM
1079 struct extent_buffer *buf = NULL;
1080 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1081 int ret = 0;
090d1875 1082
db94535d 1083 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1084 if (!buf)
090d1875 1085 return 0;
d1310b2e 1086 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1087 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1088 free_extent_buffer(buf);
de428b63 1089 return ret;
090d1875
CM
1090}
1091
ab0fff03
AJ
1092int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1093 int mirror_num, struct extent_buffer **eb)
1094{
1095 struct extent_buffer *buf = NULL;
1096 struct inode *btree_inode = root->fs_info->btree_inode;
1097 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1098 int ret;
1099
1100 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1101 if (!buf)
1102 return 0;
1103
1104 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1105
1106 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1107 btree_get_extent, mirror_num);
1108 if (ret) {
1109 free_extent_buffer(buf);
1110 return ret;
1111 }
1112
1113 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1114 free_extent_buffer(buf);
1115 return -EIO;
0b32f4bb 1116 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1117 *eb = buf;
1118 } else {
1119 free_extent_buffer(buf);
1120 }
1121 return 0;
1122}
1123
0999df54
CM
1124struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1125 u64 bytenr, u32 blocksize)
1126{
f28491e0 1127 return find_extent_buffer(root->fs_info, bytenr);
0999df54
CM
1128}
1129
1130struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1131 u64 bytenr, u32 blocksize)
1132{
faa2dbf0
JB
1133#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1134 if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
1135 return alloc_test_extent_buffer(root->fs_info, bytenr,
1136 blocksize);
1137#endif
f28491e0 1138 return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
0999df54
CM
1139}
1140
1141
e02119d5
CM
1142int btrfs_write_tree_block(struct extent_buffer *buf)
1143{
727011e0 1144 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1145 buf->start + buf->len - 1);
e02119d5
CM
1146}
1147
1148int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1149{
727011e0 1150 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1151 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1152}
1153
0999df54 1154struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1155 u32 blocksize, u64 parent_transid)
0999df54
CM
1156{
1157 struct extent_buffer *buf = NULL;
0999df54
CM
1158 int ret;
1159
0999df54
CM
1160 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1161 if (!buf)
1162 return NULL;
0999df54 1163
ca7a79ad 1164 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
0f0fe8f7
FDBM
1165 if (ret) {
1166 free_extent_buffer(buf);
1167 return NULL;
1168 }
5f39d397 1169 return buf;
ce9adaa5 1170
eb60ceac
CM
1171}
1172
d5c13f92
JM
1173void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1174 struct extent_buffer *buf)
ed2ff2cb 1175{
e2d84521
MX
1176 struct btrfs_fs_info *fs_info = root->fs_info;
1177
55c69072 1178 if (btrfs_header_generation(buf) ==
e2d84521 1179 fs_info->running_transaction->transid) {
b9447ef8 1180 btrfs_assert_tree_locked(buf);
b4ce94de 1181
b9473439 1182 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1183 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1184 -buf->len,
1185 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1186 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1187 btrfs_set_lock_blocking(buf);
1188 clear_extent_buffer_dirty(buf);
1189 }
925baedd 1190 }
5f39d397
CM
1191}
1192
8257b2dc
MX
1193static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1194{
1195 struct btrfs_subvolume_writers *writers;
1196 int ret;
1197
1198 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1199 if (!writers)
1200 return ERR_PTR(-ENOMEM);
1201
1202 ret = percpu_counter_init(&writers->counter, 0);
1203 if (ret < 0) {
1204 kfree(writers);
1205 return ERR_PTR(ret);
1206 }
1207
1208 init_waitqueue_head(&writers->wait);
1209 return writers;
1210}
1211
1212static void
1213btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1214{
1215 percpu_counter_destroy(&writers->counter);
1216 kfree(writers);
1217}
1218
707e8a07
DS
1219static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1220 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1221 u64 objectid)
d97e63b6 1222{
cfaa7295 1223 root->node = NULL;
a28ec197 1224 root->commit_root = NULL;
db94535d
CM
1225 root->sectorsize = sectorsize;
1226 root->nodesize = nodesize;
87ee04eb 1227 root->stripesize = stripesize;
27cdeb70 1228 root->state = 0;
d68fc57b 1229 root->orphan_cleanup_state = 0;
0b86a832 1230
0f7d52f4
CM
1231 root->objectid = objectid;
1232 root->last_trans = 0;
13a8a7c8 1233 root->highest_objectid = 0;
eb73c1b7 1234 root->nr_delalloc_inodes = 0;
199c2a9c 1235 root->nr_ordered_extents = 0;
58176a96 1236 root->name = NULL;
6bef4d31 1237 root->inode_tree = RB_ROOT;
16cdcec7 1238 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1239 root->block_rsv = NULL;
d68fc57b 1240 root->orphan_block_rsv = NULL;
0b86a832
CM
1241
1242 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1243 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1244 INIT_LIST_HEAD(&root->delalloc_inodes);
1245 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1246 INIT_LIST_HEAD(&root->ordered_extents);
1247 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1248 INIT_LIST_HEAD(&root->logged_list[0]);
1249 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1250 spin_lock_init(&root->orphan_lock);
5d4f98a2 1251 spin_lock_init(&root->inode_lock);
eb73c1b7 1252 spin_lock_init(&root->delalloc_lock);
199c2a9c 1253 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1254 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1255 spin_lock_init(&root->log_extents_lock[0]);
1256 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1257 mutex_init(&root->objectid_mutex);
e02119d5 1258 mutex_init(&root->log_mutex);
31f3d255 1259 mutex_init(&root->ordered_extent_mutex);
573bfb72 1260 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1261 init_waitqueue_head(&root->log_writer_wait);
1262 init_waitqueue_head(&root->log_commit_wait[0]);
1263 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1264 INIT_LIST_HEAD(&root->log_ctxs[0]);
1265 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1266 atomic_set(&root->log_commit[0], 0);
1267 atomic_set(&root->log_commit[1], 0);
1268 atomic_set(&root->log_writers, 0);
2ecb7923 1269 atomic_set(&root->log_batch, 0);
8a35d95f 1270 atomic_set(&root->orphan_inodes, 0);
b0feb9d9 1271 atomic_set(&root->refs, 1);
8257b2dc 1272 atomic_set(&root->will_be_snapshoted, 0);
7237f183 1273 root->log_transid = 0;
d1433deb 1274 root->log_transid_committed = -1;
257c62e1 1275 root->last_log_commit = 0;
06ea65a3
JB
1276 if (fs_info)
1277 extent_io_tree_init(&root->dirty_log_pages,
1278 fs_info->btree_inode->i_mapping);
017e5369 1279
3768f368
CM
1280 memset(&root->root_key, 0, sizeof(root->root_key));
1281 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1282 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1283 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
06ea65a3
JB
1284 if (fs_info)
1285 root->defrag_trans_start = fs_info->generation;
1286 else
1287 root->defrag_trans_start = 0;
58176a96 1288 init_completion(&root->kobj_unregister);
4d775673 1289 root->root_key.objectid = objectid;
0ee5dc67 1290 root->anon_dev = 0;
8ea05e3a 1291
5f3ab90a 1292 spin_lock_init(&root->root_item_lock);
3768f368
CM
1293}
1294
f84a8bd6 1295static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1296{
1297 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1298 if (root)
1299 root->fs_info = fs_info;
1300 return root;
1301}
1302
06ea65a3
JB
1303#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1304/* Should only be used by the testing infrastructure */
1305struct btrfs_root *btrfs_alloc_dummy_root(void)
1306{
1307 struct btrfs_root *root;
1308
1309 root = btrfs_alloc_root(NULL);
1310 if (!root)
1311 return ERR_PTR(-ENOMEM);
707e8a07 1312 __setup_root(4096, 4096, 4096, root, NULL, 1);
27cdeb70 1313 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
faa2dbf0 1314 root->alloc_bytenr = 0;
06ea65a3
JB
1315
1316 return root;
1317}
1318#endif
1319
20897f5c
AJ
1320struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1321 struct btrfs_fs_info *fs_info,
1322 u64 objectid)
1323{
1324 struct extent_buffer *leaf;
1325 struct btrfs_root *tree_root = fs_info->tree_root;
1326 struct btrfs_root *root;
1327 struct btrfs_key key;
1328 int ret = 0;
6463fe58 1329 uuid_le uuid;
20897f5c
AJ
1330
1331 root = btrfs_alloc_root(fs_info);
1332 if (!root)
1333 return ERR_PTR(-ENOMEM);
1334
707e8a07
DS
1335 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1336 tree_root->stripesize, root, fs_info, objectid);
20897f5c
AJ
1337 root->root_key.objectid = objectid;
1338 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1339 root->root_key.offset = 0;
1340
707e8a07 1341 leaf = btrfs_alloc_free_block(trans, root, root->nodesize,
20897f5c
AJ
1342 0, objectid, NULL, 0, 0, 0);
1343 if (IS_ERR(leaf)) {
1344 ret = PTR_ERR(leaf);
1dd05682 1345 leaf = NULL;
20897f5c
AJ
1346 goto fail;
1347 }
1348
20897f5c
AJ
1349 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1350 btrfs_set_header_bytenr(leaf, leaf->start);
1351 btrfs_set_header_generation(leaf, trans->transid);
1352 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1353 btrfs_set_header_owner(leaf, objectid);
1354 root->node = leaf;
1355
0a4e5586 1356 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
20897f5c
AJ
1357 BTRFS_FSID_SIZE);
1358 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
b308bc2f 1359 btrfs_header_chunk_tree_uuid(leaf),
20897f5c
AJ
1360 BTRFS_UUID_SIZE);
1361 btrfs_mark_buffer_dirty(leaf);
1362
1363 root->commit_root = btrfs_root_node(root);
27cdeb70 1364 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1365
1366 root->root_item.flags = 0;
1367 root->root_item.byte_limit = 0;
1368 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1369 btrfs_set_root_generation(&root->root_item, trans->transid);
1370 btrfs_set_root_level(&root->root_item, 0);
1371 btrfs_set_root_refs(&root->root_item, 1);
1372 btrfs_set_root_used(&root->root_item, leaf->len);
1373 btrfs_set_root_last_snapshot(&root->root_item, 0);
1374 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1375 uuid_le_gen(&uuid);
1376 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1377 root->root_item.drop_level = 0;
1378
1379 key.objectid = objectid;
1380 key.type = BTRFS_ROOT_ITEM_KEY;
1381 key.offset = 0;
1382 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1383 if (ret)
1384 goto fail;
1385
1386 btrfs_tree_unlock(leaf);
1387
1dd05682
TI
1388 return root;
1389
20897f5c 1390fail:
1dd05682
TI
1391 if (leaf) {
1392 btrfs_tree_unlock(leaf);
59885b39 1393 free_extent_buffer(root->commit_root);
1dd05682
TI
1394 free_extent_buffer(leaf);
1395 }
1396 kfree(root);
20897f5c 1397
1dd05682 1398 return ERR_PTR(ret);
20897f5c
AJ
1399}
1400
7237f183
YZ
1401static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1402 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1403{
1404 struct btrfs_root *root;
1405 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1406 struct extent_buffer *leaf;
e02119d5 1407
6f07e42e 1408 root = btrfs_alloc_root(fs_info);
e02119d5 1409 if (!root)
7237f183 1410 return ERR_PTR(-ENOMEM);
e02119d5 1411
707e8a07
DS
1412 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1413 tree_root->stripesize, root, fs_info,
1414 BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1415
1416 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1417 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1418 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1419
7237f183 1420 /*
27cdeb70
MX
1421 * DON'T set REF_COWS for log trees
1422 *
7237f183
YZ
1423 * log trees do not get reference counted because they go away
1424 * before a real commit is actually done. They do store pointers
1425 * to file data extents, and those reference counts still get
1426 * updated (along with back refs to the log tree).
1427 */
e02119d5 1428
707e8a07 1429 leaf = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
66d7e7f0 1430 BTRFS_TREE_LOG_OBJECTID, NULL,
5581a51a 1431 0, 0, 0);
7237f183
YZ
1432 if (IS_ERR(leaf)) {
1433 kfree(root);
1434 return ERR_CAST(leaf);
1435 }
e02119d5 1436
5d4f98a2
YZ
1437 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1438 btrfs_set_header_bytenr(leaf, leaf->start);
1439 btrfs_set_header_generation(leaf, trans->transid);
1440 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1441 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1442 root->node = leaf;
e02119d5
CM
1443
1444 write_extent_buffer(root->node, root->fs_info->fsid,
0a4e5586 1445 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e02119d5
CM
1446 btrfs_mark_buffer_dirty(root->node);
1447 btrfs_tree_unlock(root->node);
7237f183
YZ
1448 return root;
1449}
1450
1451int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1452 struct btrfs_fs_info *fs_info)
1453{
1454 struct btrfs_root *log_root;
1455
1456 log_root = alloc_log_tree(trans, fs_info);
1457 if (IS_ERR(log_root))
1458 return PTR_ERR(log_root);
1459 WARN_ON(fs_info->log_root_tree);
1460 fs_info->log_root_tree = log_root;
1461 return 0;
1462}
1463
1464int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1465 struct btrfs_root *root)
1466{
1467 struct btrfs_root *log_root;
1468 struct btrfs_inode_item *inode_item;
1469
1470 log_root = alloc_log_tree(trans, root->fs_info);
1471 if (IS_ERR(log_root))
1472 return PTR_ERR(log_root);
1473
1474 log_root->last_trans = trans->transid;
1475 log_root->root_key.offset = root->root_key.objectid;
1476
1477 inode_item = &log_root->root_item.inode;
3cae210f
QW
1478 btrfs_set_stack_inode_generation(inode_item, 1);
1479 btrfs_set_stack_inode_size(inode_item, 3);
1480 btrfs_set_stack_inode_nlink(inode_item, 1);
707e8a07 1481 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
3cae210f 1482 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1483
5d4f98a2 1484 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1485
1486 WARN_ON(root->log_root);
1487 root->log_root = log_root;
1488 root->log_transid = 0;
d1433deb 1489 root->log_transid_committed = -1;
257c62e1 1490 root->last_log_commit = 0;
e02119d5
CM
1491 return 0;
1492}
1493
35a3621b
SB
1494static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1495 struct btrfs_key *key)
e02119d5
CM
1496{
1497 struct btrfs_root *root;
1498 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1499 struct btrfs_path *path;
84234f3a 1500 u64 generation;
db94535d 1501 u32 blocksize;
cb517eab 1502 int ret;
0f7d52f4 1503
cb517eab
MX
1504 path = btrfs_alloc_path();
1505 if (!path)
0f7d52f4 1506 return ERR_PTR(-ENOMEM);
cb517eab
MX
1507
1508 root = btrfs_alloc_root(fs_info);
1509 if (!root) {
1510 ret = -ENOMEM;
1511 goto alloc_fail;
0f7d52f4
CM
1512 }
1513
707e8a07
DS
1514 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1515 tree_root->stripesize, root, fs_info, key->objectid);
0f7d52f4 1516
cb517eab
MX
1517 ret = btrfs_find_root(tree_root, key, path,
1518 &root->root_item, &root->root_key);
0f7d52f4 1519 if (ret) {
13a8a7c8
YZ
1520 if (ret > 0)
1521 ret = -ENOENT;
cb517eab 1522 goto find_fail;
0f7d52f4 1523 }
13a8a7c8 1524
84234f3a 1525 generation = btrfs_root_generation(&root->root_item);
707e8a07 1526 blocksize = root->nodesize;
db94535d 1527 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1528 blocksize, generation);
cb517eab
MX
1529 if (!root->node) {
1530 ret = -ENOMEM;
1531 goto find_fail;
1532 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1533 ret = -EIO;
1534 goto read_fail;
416bc658 1535 }
5d4f98a2 1536 root->commit_root = btrfs_root_node(root);
13a8a7c8 1537out:
cb517eab
MX
1538 btrfs_free_path(path);
1539 return root;
1540
1541read_fail:
1542 free_extent_buffer(root->node);
1543find_fail:
1544 kfree(root);
1545alloc_fail:
1546 root = ERR_PTR(ret);
1547 goto out;
1548}
1549
1550struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1551 struct btrfs_key *location)
1552{
1553 struct btrfs_root *root;
1554
1555 root = btrfs_read_tree_root(tree_root, location);
1556 if (IS_ERR(root))
1557 return root;
1558
1559 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1560 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1561 btrfs_check_and_init_root_item(&root->root_item);
1562 }
13a8a7c8 1563
5eda7b5e
CM
1564 return root;
1565}
1566
cb517eab
MX
1567int btrfs_init_fs_root(struct btrfs_root *root)
1568{
1569 int ret;
8257b2dc 1570 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1571
1572 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1573 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1574 GFP_NOFS);
1575 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1576 ret = -ENOMEM;
1577 goto fail;
1578 }
1579
8257b2dc
MX
1580 writers = btrfs_alloc_subvolume_writers();
1581 if (IS_ERR(writers)) {
1582 ret = PTR_ERR(writers);
1583 goto fail;
1584 }
1585 root->subv_writers = writers;
1586
cb517eab 1587 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1588 spin_lock_init(&root->ino_cache_lock);
1589 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1590
1591 ret = get_anon_bdev(&root->anon_dev);
1592 if (ret)
8257b2dc 1593 goto free_writers;
cb517eab 1594 return 0;
8257b2dc
MX
1595
1596free_writers:
1597 btrfs_free_subvolume_writers(root->subv_writers);
cb517eab
MX
1598fail:
1599 kfree(root->free_ino_ctl);
1600 kfree(root->free_ino_pinned);
1601 return ret;
1602}
1603
171170c1
ST
1604static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1605 u64 root_id)
cb517eab
MX
1606{
1607 struct btrfs_root *root;
1608
1609 spin_lock(&fs_info->fs_roots_radix_lock);
1610 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1611 (unsigned long)root_id);
1612 spin_unlock(&fs_info->fs_roots_radix_lock);
1613 return root;
1614}
1615
1616int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1617 struct btrfs_root *root)
1618{
1619 int ret;
1620
1621 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1622 if (ret)
1623 return ret;
1624
1625 spin_lock(&fs_info->fs_roots_radix_lock);
1626 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1627 (unsigned long)root->root_key.objectid,
1628 root);
1629 if (ret == 0)
27cdeb70 1630 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1631 spin_unlock(&fs_info->fs_roots_radix_lock);
1632 radix_tree_preload_end();
1633
1634 return ret;
1635}
1636
c00869f1
MX
1637struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1638 struct btrfs_key *location,
1639 bool check_ref)
5eda7b5e
CM
1640{
1641 struct btrfs_root *root;
1642 int ret;
1643
edbd8d4e
CM
1644 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1645 return fs_info->tree_root;
1646 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1647 return fs_info->extent_root;
8f18cf13
CM
1648 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1649 return fs_info->chunk_root;
1650 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1651 return fs_info->dev_root;
0403e47e
YZ
1652 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1653 return fs_info->csum_root;
bcef60f2
AJ
1654 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1655 return fs_info->quota_root ? fs_info->quota_root :
1656 ERR_PTR(-ENOENT);
f7a81ea4
SB
1657 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1658 return fs_info->uuid_root ? fs_info->uuid_root :
1659 ERR_PTR(-ENOENT);
4df27c4d 1660again:
cb517eab 1661 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1662 if (root) {
c00869f1 1663 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1664 return ERR_PTR(-ENOENT);
5eda7b5e 1665 return root;
48475471 1666 }
5eda7b5e 1667
cb517eab 1668 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1669 if (IS_ERR(root))
1670 return root;
3394e160 1671
c00869f1 1672 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1673 ret = -ENOENT;
581bb050 1674 goto fail;
35a30d7c 1675 }
581bb050 1676
cb517eab 1677 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1678 if (ret)
1679 goto fail;
3394e160 1680
3f870c28
KN
1681 ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1682 location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
d68fc57b
YZ
1683 if (ret < 0)
1684 goto fail;
1685 if (ret == 0)
27cdeb70 1686 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1687
cb517eab 1688 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1689 if (ret) {
4df27c4d
YZ
1690 if (ret == -EEXIST) {
1691 free_fs_root(root);
1692 goto again;
1693 }
1694 goto fail;
0f7d52f4 1695 }
edbd8d4e 1696 return root;
4df27c4d
YZ
1697fail:
1698 free_fs_root(root);
1699 return ERR_PTR(ret);
edbd8d4e
CM
1700}
1701
04160088
CM
1702static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1703{
1704 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1705 int ret = 0;
04160088
CM
1706 struct btrfs_device *device;
1707 struct backing_dev_info *bdi;
b7967db7 1708
1f78160c
XG
1709 rcu_read_lock();
1710 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1711 if (!device->bdev)
1712 continue;
04160088
CM
1713 bdi = blk_get_backing_dev_info(device->bdev);
1714 if (bdi && bdi_congested(bdi, bdi_bits)) {
1715 ret = 1;
1716 break;
1717 }
1718 }
1f78160c 1719 rcu_read_unlock();
04160088
CM
1720 return ret;
1721}
1722
04160088
CM
1723static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1724{
ad081f14
JA
1725 int err;
1726
1727 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1728 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1729 if (err)
1730 return err;
1731
4575c9cc 1732 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1733 bdi->congested_fn = btrfs_congested_fn;
1734 bdi->congested_data = info;
1735 return 0;
1736}
1737
8b712842
CM
1738/*
1739 * called by the kthread helper functions to finally call the bio end_io
1740 * functions. This is where read checksum verification actually happens
1741 */
1742static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1743{
ce9adaa5 1744 struct bio *bio;
97eb6b69 1745 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1746 int error;
ce9adaa5 1747
97eb6b69 1748 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1749 bio = end_io_wq->bio;
ce9adaa5 1750
8b712842
CM
1751 error = end_io_wq->error;
1752 bio->bi_private = end_io_wq->private;
1753 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1754 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
bc1e79ac 1755 bio_endio_nodec(bio, error);
44b8bd7e
CM
1756}
1757
a74a4b97
CM
1758static int cleaner_kthread(void *arg)
1759{
1760 struct btrfs_root *root = arg;
d0278245 1761 int again;
a74a4b97
CM
1762
1763 do {
d0278245 1764 again = 0;
a74a4b97 1765
d0278245 1766 /* Make the cleaner go to sleep early. */
babbf170 1767 if (btrfs_need_cleaner_sleep(root))
d0278245
MX
1768 goto sleep;
1769
1770 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1771 goto sleep;
1772
dc7f370c
MX
1773 /*
1774 * Avoid the problem that we change the status of the fs
1775 * during the above check and trylock.
1776 */
babbf170 1777 if (btrfs_need_cleaner_sleep(root)) {
dc7f370c
MX
1778 mutex_unlock(&root->fs_info->cleaner_mutex);
1779 goto sleep;
76dda93c 1780 }
a74a4b97 1781
d0278245 1782 btrfs_run_delayed_iputs(root);
47ab2a6c 1783 btrfs_delete_unused_bgs(root->fs_info);
d0278245
MX
1784 again = btrfs_clean_one_deleted_snapshot(root);
1785 mutex_unlock(&root->fs_info->cleaner_mutex);
1786
1787 /*
05323cd1
MX
1788 * The defragger has dealt with the R/O remount and umount,
1789 * needn't do anything special here.
d0278245
MX
1790 */
1791 btrfs_run_defrag_inodes(root->fs_info);
1792sleep:
9d1a2a3a 1793 if (!try_to_freeze() && !again) {
a74a4b97 1794 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1795 if (!kthread_should_stop())
1796 schedule();
a74a4b97
CM
1797 __set_current_state(TASK_RUNNING);
1798 }
1799 } while (!kthread_should_stop());
1800 return 0;
1801}
1802
1803static int transaction_kthread(void *arg)
1804{
1805 struct btrfs_root *root = arg;
1806 struct btrfs_trans_handle *trans;
1807 struct btrfs_transaction *cur;
8929ecfa 1808 u64 transid;
a74a4b97
CM
1809 unsigned long now;
1810 unsigned long delay;
914b2007 1811 bool cannot_commit;
a74a4b97
CM
1812
1813 do {
914b2007 1814 cannot_commit = false;
8b87dc17 1815 delay = HZ * root->fs_info->commit_interval;
a74a4b97
CM
1816 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1817
a4abeea4 1818 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1819 cur = root->fs_info->running_transaction;
1820 if (!cur) {
a4abeea4 1821 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1822 goto sleep;
1823 }
31153d81 1824
a74a4b97 1825 now = get_seconds();
4a9d8bde 1826 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17
DS
1827 (now < cur->start_time ||
1828 now - cur->start_time < root->fs_info->commit_interval)) {
a4abeea4 1829 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1830 delay = HZ * 5;
1831 goto sleep;
1832 }
8929ecfa 1833 transid = cur->transid;
a4abeea4 1834 spin_unlock(&root->fs_info->trans_lock);
56bec294 1835
79787eaa 1836 /* If the file system is aborted, this will always fail. */
354aa0fb 1837 trans = btrfs_attach_transaction(root);
914b2007 1838 if (IS_ERR(trans)) {
354aa0fb
MX
1839 if (PTR_ERR(trans) != -ENOENT)
1840 cannot_commit = true;
79787eaa 1841 goto sleep;
914b2007 1842 }
8929ecfa 1843 if (transid == trans->transid) {
79787eaa 1844 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1845 } else {
1846 btrfs_end_transaction(trans, root);
1847 }
a74a4b97
CM
1848sleep:
1849 wake_up_process(root->fs_info->cleaner_kthread);
1850 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1851
4e121c06
JB
1852 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1853 &root->fs_info->fs_state)))
1854 btrfs_cleanup_transaction(root);
a0acae0e 1855 if (!try_to_freeze()) {
a74a4b97 1856 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1857 if (!kthread_should_stop() &&
914b2007
JK
1858 (!btrfs_transaction_blocked(root->fs_info) ||
1859 cannot_commit))
8929ecfa 1860 schedule_timeout(delay);
a74a4b97
CM
1861 __set_current_state(TASK_RUNNING);
1862 }
1863 } while (!kthread_should_stop());
1864 return 0;
1865}
1866
af31f5e5
CM
1867/*
1868 * this will find the highest generation in the array of
1869 * root backups. The index of the highest array is returned,
1870 * or -1 if we can't find anything.
1871 *
1872 * We check to make sure the array is valid by comparing the
1873 * generation of the latest root in the array with the generation
1874 * in the super block. If they don't match we pitch it.
1875 */
1876static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1877{
1878 u64 cur;
1879 int newest_index = -1;
1880 struct btrfs_root_backup *root_backup;
1881 int i;
1882
1883 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1884 root_backup = info->super_copy->super_roots + i;
1885 cur = btrfs_backup_tree_root_gen(root_backup);
1886 if (cur == newest_gen)
1887 newest_index = i;
1888 }
1889
1890 /* check to see if we actually wrapped around */
1891 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1892 root_backup = info->super_copy->super_roots;
1893 cur = btrfs_backup_tree_root_gen(root_backup);
1894 if (cur == newest_gen)
1895 newest_index = 0;
1896 }
1897 return newest_index;
1898}
1899
1900
1901/*
1902 * find the oldest backup so we know where to store new entries
1903 * in the backup array. This will set the backup_root_index
1904 * field in the fs_info struct
1905 */
1906static void find_oldest_super_backup(struct btrfs_fs_info *info,
1907 u64 newest_gen)
1908{
1909 int newest_index = -1;
1910
1911 newest_index = find_newest_super_backup(info, newest_gen);
1912 /* if there was garbage in there, just move along */
1913 if (newest_index == -1) {
1914 info->backup_root_index = 0;
1915 } else {
1916 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1917 }
1918}
1919
1920/*
1921 * copy all the root pointers into the super backup array.
1922 * this will bump the backup pointer by one when it is
1923 * done
1924 */
1925static void backup_super_roots(struct btrfs_fs_info *info)
1926{
1927 int next_backup;
1928 struct btrfs_root_backup *root_backup;
1929 int last_backup;
1930
1931 next_backup = info->backup_root_index;
1932 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1933 BTRFS_NUM_BACKUP_ROOTS;
1934
1935 /*
1936 * just overwrite the last backup if we're at the same generation
1937 * this happens only at umount
1938 */
1939 root_backup = info->super_for_commit->super_roots + last_backup;
1940 if (btrfs_backup_tree_root_gen(root_backup) ==
1941 btrfs_header_generation(info->tree_root->node))
1942 next_backup = last_backup;
1943
1944 root_backup = info->super_for_commit->super_roots + next_backup;
1945
1946 /*
1947 * make sure all of our padding and empty slots get zero filled
1948 * regardless of which ones we use today
1949 */
1950 memset(root_backup, 0, sizeof(*root_backup));
1951
1952 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1953
1954 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1955 btrfs_set_backup_tree_root_gen(root_backup,
1956 btrfs_header_generation(info->tree_root->node));
1957
1958 btrfs_set_backup_tree_root_level(root_backup,
1959 btrfs_header_level(info->tree_root->node));
1960
1961 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1962 btrfs_set_backup_chunk_root_gen(root_backup,
1963 btrfs_header_generation(info->chunk_root->node));
1964 btrfs_set_backup_chunk_root_level(root_backup,
1965 btrfs_header_level(info->chunk_root->node));
1966
1967 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1968 btrfs_set_backup_extent_root_gen(root_backup,
1969 btrfs_header_generation(info->extent_root->node));
1970 btrfs_set_backup_extent_root_level(root_backup,
1971 btrfs_header_level(info->extent_root->node));
1972
7c7e82a7
CM
1973 /*
1974 * we might commit during log recovery, which happens before we set
1975 * the fs_root. Make sure it is valid before we fill it in.
1976 */
1977 if (info->fs_root && info->fs_root->node) {
1978 btrfs_set_backup_fs_root(root_backup,
1979 info->fs_root->node->start);
1980 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1981 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1982 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1983 btrfs_header_level(info->fs_root->node));
7c7e82a7 1984 }
af31f5e5
CM
1985
1986 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1987 btrfs_set_backup_dev_root_gen(root_backup,
1988 btrfs_header_generation(info->dev_root->node));
1989 btrfs_set_backup_dev_root_level(root_backup,
1990 btrfs_header_level(info->dev_root->node));
1991
1992 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1993 btrfs_set_backup_csum_root_gen(root_backup,
1994 btrfs_header_generation(info->csum_root->node));
1995 btrfs_set_backup_csum_root_level(root_backup,
1996 btrfs_header_level(info->csum_root->node));
1997
1998 btrfs_set_backup_total_bytes(root_backup,
1999 btrfs_super_total_bytes(info->super_copy));
2000 btrfs_set_backup_bytes_used(root_backup,
2001 btrfs_super_bytes_used(info->super_copy));
2002 btrfs_set_backup_num_devices(root_backup,
2003 btrfs_super_num_devices(info->super_copy));
2004
2005 /*
2006 * if we don't copy this out to the super_copy, it won't get remembered
2007 * for the next commit
2008 */
2009 memcpy(&info->super_copy->super_roots,
2010 &info->super_for_commit->super_roots,
2011 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2012}
2013
2014/*
2015 * this copies info out of the root backup array and back into
2016 * the in-memory super block. It is meant to help iterate through
2017 * the array, so you send it the number of backups you've already
2018 * tried and the last backup index you used.
2019 *
2020 * this returns -1 when it has tried all the backups
2021 */
2022static noinline int next_root_backup(struct btrfs_fs_info *info,
2023 struct btrfs_super_block *super,
2024 int *num_backups_tried, int *backup_index)
2025{
2026 struct btrfs_root_backup *root_backup;
2027 int newest = *backup_index;
2028
2029 if (*num_backups_tried == 0) {
2030 u64 gen = btrfs_super_generation(super);
2031
2032 newest = find_newest_super_backup(info, gen);
2033 if (newest == -1)
2034 return -1;
2035
2036 *backup_index = newest;
2037 *num_backups_tried = 1;
2038 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2039 /* we've tried all the backups, all done */
2040 return -1;
2041 } else {
2042 /* jump to the next oldest backup */
2043 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2044 BTRFS_NUM_BACKUP_ROOTS;
2045 *backup_index = newest;
2046 *num_backups_tried += 1;
2047 }
2048 root_backup = super->super_roots + newest;
2049
2050 btrfs_set_super_generation(super,
2051 btrfs_backup_tree_root_gen(root_backup));
2052 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2053 btrfs_set_super_root_level(super,
2054 btrfs_backup_tree_root_level(root_backup));
2055 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2056
2057 /*
2058 * fixme: the total bytes and num_devices need to match or we should
2059 * need a fsck
2060 */
2061 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2062 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2063 return 0;
2064}
2065
7abadb64
LB
2066/* helper to cleanup workers */
2067static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2068{
dc6e3209 2069 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2070 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2071 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86
QW
2072 btrfs_destroy_workqueue(fs_info->endio_workers);
2073 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2074 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2075 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2076 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2077 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2078 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2079 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2080 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2081 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2082 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2083 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2084 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2085 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2086 btrfs_destroy_workqueue(fs_info->extent_workers);
7abadb64
LB
2087}
2088
2e9f5954
R
2089static void free_root_extent_buffers(struct btrfs_root *root)
2090{
2091 if (root) {
2092 free_extent_buffer(root->node);
2093 free_extent_buffer(root->commit_root);
2094 root->node = NULL;
2095 root->commit_root = NULL;
2096 }
2097}
2098
af31f5e5
CM
2099/* helper to cleanup tree roots */
2100static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2101{
2e9f5954 2102 free_root_extent_buffers(info->tree_root);
655b09fe 2103
2e9f5954
R
2104 free_root_extent_buffers(info->dev_root);
2105 free_root_extent_buffers(info->extent_root);
2106 free_root_extent_buffers(info->csum_root);
2107 free_root_extent_buffers(info->quota_root);
2108 free_root_extent_buffers(info->uuid_root);
2109 if (chunk_root)
2110 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2111}
2112
faa2dbf0 2113void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2114{
2115 int ret;
2116 struct btrfs_root *gang[8];
2117 int i;
2118
2119 while (!list_empty(&fs_info->dead_roots)) {
2120 gang[0] = list_entry(fs_info->dead_roots.next,
2121 struct btrfs_root, root_list);
2122 list_del(&gang[0]->root_list);
2123
27cdeb70 2124 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2125 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2126 } else {
2127 free_extent_buffer(gang[0]->node);
2128 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2129 btrfs_put_fs_root(gang[0]);
171f6537
JB
2130 }
2131 }
2132
2133 while (1) {
2134 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2135 (void **)gang, 0,
2136 ARRAY_SIZE(gang));
2137 if (!ret)
2138 break;
2139 for (i = 0; i < ret; i++)
cb517eab 2140 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2141 }
1a4319cc
LB
2142
2143 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2144 btrfs_free_log_root_tree(NULL, fs_info);
2145 btrfs_destroy_pinned_extent(fs_info->tree_root,
2146 fs_info->pinned_extents);
2147 }
171f6537 2148}
af31f5e5 2149
ad2b2c80
AV
2150int open_ctree(struct super_block *sb,
2151 struct btrfs_fs_devices *fs_devices,
2152 char *options)
2e635a27 2153{
db94535d
CM
2154 u32 sectorsize;
2155 u32 nodesize;
db94535d 2156 u32 blocksize;
87ee04eb 2157 u32 stripesize;
84234f3a 2158 u64 generation;
f2b636e8 2159 u64 features;
3de4586c 2160 struct btrfs_key location;
a061fc8d 2161 struct buffer_head *bh;
4d34b278 2162 struct btrfs_super_block *disk_super;
815745cf 2163 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2164 struct btrfs_root *tree_root;
4d34b278
ID
2165 struct btrfs_root *extent_root;
2166 struct btrfs_root *csum_root;
2167 struct btrfs_root *chunk_root;
2168 struct btrfs_root *dev_root;
bcef60f2 2169 struct btrfs_root *quota_root;
f7a81ea4 2170 struct btrfs_root *uuid_root;
e02119d5 2171 struct btrfs_root *log_tree_root;
eb60ceac 2172 int ret;
e58ca020 2173 int err = -EINVAL;
af31f5e5
CM
2174 int num_backups_tried = 0;
2175 int backup_index = 0;
5cdc7ad3
QW
2176 int max_active;
2177 int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
70f80175
SB
2178 bool create_uuid_tree;
2179 bool check_uuid_tree;
4543df7e 2180
f84a8bd6 2181 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e 2182 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
cb517eab 2183 if (!tree_root || !chunk_root) {
39279cc3
CM
2184 err = -ENOMEM;
2185 goto fail;
2186 }
76dda93c
YZ
2187
2188 ret = init_srcu_struct(&fs_info->subvol_srcu);
2189 if (ret) {
2190 err = ret;
2191 goto fail;
2192 }
2193
2194 ret = setup_bdi(fs_info, &fs_info->bdi);
2195 if (ret) {
2196 err = ret;
2197 goto fail_srcu;
2198 }
2199
e2d84521
MX
2200 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2201 if (ret) {
2202 err = ret;
2203 goto fail_bdi;
2204 }
2205 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2206 (1 + ilog2(nr_cpu_ids));
2207
963d678b
MX
2208 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2209 if (ret) {
2210 err = ret;
2211 goto fail_dirty_metadata_bytes;
2212 }
2213
c404e0dc
MX
2214 ret = percpu_counter_init(&fs_info->bio_counter, 0);
2215 if (ret) {
2216 err = ret;
2217 goto fail_delalloc_bytes;
2218 }
2219
76dda93c
YZ
2220 fs_info->btree_inode = new_inode(sb);
2221 if (!fs_info->btree_inode) {
2222 err = -ENOMEM;
c404e0dc 2223 goto fail_bio_counter;
76dda93c
YZ
2224 }
2225
a6591715 2226 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2227
76dda93c 2228 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2229 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2230 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2231 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2232 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2233 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2234 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2235 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2236 spin_lock_init(&fs_info->trans_lock);
76dda93c 2237 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2238 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2239 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2240 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2241 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2242 spin_lock_init(&fs_info->super_lock);
fcebe456 2243 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2244 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2245 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2246 rwlock_init(&fs_info->tree_mod_log_lock);
7585717f 2247 mutex_init(&fs_info->reloc_mutex);
573bfb72 2248 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2249 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2250
58176a96 2251 init_completion(&fs_info->kobj_unregister);
0b86a832 2252 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2253 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2254 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2255 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2256 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2257 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2258 BTRFS_BLOCK_RSV_GLOBAL);
2259 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2260 BTRFS_BLOCK_RSV_DELALLOC);
2261 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2262 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2263 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2264 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2265 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2266 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2267 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2268 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2269 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2270 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2271 atomic_set(&fs_info->qgroup_op_seq, 0);
fc36ed7e 2272 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2273 fs_info->sb = sb;
95ac567a 2274 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2275 fs_info->metadata_ratio = 0;
4cb5300b 2276 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2277 fs_info->free_chunk_space = 0;
f29021b2 2278 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2279 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
0a2b2a84 2280 fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
90519d66
AJ
2281 /* readahead state */
2282 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2283 spin_lock_init(&fs_info->reada_lock);
c8b97818 2284
b34b086c
CM
2285 fs_info->thread_pool_size = min_t(unsigned long,
2286 num_online_cpus() + 2, 8);
0afbaf8c 2287
199c2a9c
MX
2288 INIT_LIST_HEAD(&fs_info->ordered_roots);
2289 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7
MX
2290 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2291 GFP_NOFS);
2292 if (!fs_info->delayed_root) {
2293 err = -ENOMEM;
2294 goto fail_iput;
2295 }
2296 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2297
a2de733c
AJ
2298 mutex_init(&fs_info->scrub_lock);
2299 atomic_set(&fs_info->scrubs_running, 0);
2300 atomic_set(&fs_info->scrub_pause_req, 0);
2301 atomic_set(&fs_info->scrubs_paused, 0);
2302 atomic_set(&fs_info->scrub_cancel_req, 0);
c404e0dc 2303 init_waitqueue_head(&fs_info->replace_wait);
a2de733c 2304 init_waitqueue_head(&fs_info->scrub_pause_wait);
a2de733c 2305 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2306#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2307 fs_info->check_integrity_print_mask = 0;
2308#endif
a2de733c 2309
c9e9f97b
ID
2310 spin_lock_init(&fs_info->balance_lock);
2311 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2312 atomic_set(&fs_info->balance_running, 0);
2313 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2314 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2315 fs_info->balance_ctl = NULL;
837d5b6e 2316 init_waitqueue_head(&fs_info->balance_wait_q);
21c7e756 2317 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2318
a061fc8d
CM
2319 sb->s_blocksize = 4096;
2320 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2321 sb->s_bdi = &fs_info->bdi;
a061fc8d 2322
76dda93c 2323 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2324 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2325 /*
2326 * we set the i_size on the btree inode to the max possible int.
2327 * the real end of the address space is determined by all of
2328 * the devices in the system
2329 */
2330 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2331 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2332 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2333
5d4f98a2 2334 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2335 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2336 fs_info->btree_inode->i_mapping);
0b32f4bb 2337 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
a8067e02 2338 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2339
2340 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2341
76dda93c
YZ
2342 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2343 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2344 sizeof(struct btrfs_key));
72ac3c0d
JB
2345 set_bit(BTRFS_INODE_DUMMY,
2346 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
778ba82b 2347 btrfs_insert_inode_hash(fs_info->btree_inode);
76dda93c 2348
0f9dd46c 2349 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2350 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2351 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2352
11833d66 2353 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2354 fs_info->btree_inode->i_mapping);
11833d66 2355 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2356 fs_info->btree_inode->i_mapping);
11833d66 2357 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2358 fs_info->do_barriers = 1;
e18e4809 2359
39279cc3 2360
5a3f23d5 2361 mutex_init(&fs_info->ordered_operations_mutex);
9ffba8cd 2362 mutex_init(&fs_info->ordered_extent_flush_mutex);
e02119d5 2363 mutex_init(&fs_info->tree_log_mutex);
925baedd 2364 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2365 mutex_init(&fs_info->transaction_kthread_mutex);
2366 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2367 mutex_init(&fs_info->volume_mutex);
9e351cc8 2368 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2369 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2370 init_rwsem(&fs_info->subvol_sem);
803b2f54 2371 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
e922e087
SB
2372 fs_info->dev_replace.lock_owner = 0;
2373 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2374 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2375 mutex_init(&fs_info->dev_replace.lock_management_lock);
2376 mutex_init(&fs_info->dev_replace.lock);
fa9c0d79 2377
416ac51d 2378 spin_lock_init(&fs_info->qgroup_lock);
f2f6ed3d 2379 mutex_init(&fs_info->qgroup_ioctl_lock);
416ac51d 2380 fs_info->qgroup_tree = RB_ROOT;
fcebe456 2381 fs_info->qgroup_op_tree = RB_ROOT;
416ac51d
AJ
2382 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2383 fs_info->qgroup_seq = 1;
2384 fs_info->quota_enabled = 0;
2385 fs_info->pending_quota_state = 0;
1e8f9158 2386 fs_info->qgroup_ulist = NULL;
2f232036 2387 mutex_init(&fs_info->qgroup_rescan_lock);
416ac51d 2388
fa9c0d79
CM
2389 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2390 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2391
e6dcd2dc 2392 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2393 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2394 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2395 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2396
53b381b3
DW
2397 ret = btrfs_alloc_stripe_hash_table(fs_info);
2398 if (ret) {
83c8266a 2399 err = ret;
53b381b3
DW
2400 goto fail_alloc;
2401 }
2402
707e8a07 2403 __setup_root(4096, 4096, 4096, tree_root,
2c90e5d6 2404 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2405
3c4bb26b 2406 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2407
2408 /*
2409 * Read super block and check the signature bytes only
2410 */
a512bbf8 2411 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2412 if (!bh) {
2413 err = -EINVAL;
16cdcec7 2414 goto fail_alloc;
20b45077 2415 }
39279cc3 2416
1104a885
DS
2417 /*
2418 * We want to check superblock checksum, the type is stored inside.
2419 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2420 */
2421 if (btrfs_check_super_csum(bh->b_data)) {
efe120a0 2422 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
1104a885
DS
2423 err = -EINVAL;
2424 goto fail_alloc;
2425 }
2426
2427 /*
2428 * super_copy is zeroed at allocation time and we never touch the
2429 * following bytes up to INFO_SIZE, the checksum is calculated from
2430 * the whole block of INFO_SIZE
2431 */
6c41761f
DS
2432 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2433 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2434 sizeof(*fs_info->super_for_commit));
a061fc8d 2435 brelse(bh);
5f39d397 2436
6c41761f 2437 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2438
1104a885
DS
2439 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2440 if (ret) {
efe120a0 2441 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
1104a885
DS
2442 err = -EINVAL;
2443 goto fail_alloc;
2444 }
2445
6c41761f 2446 disk_super = fs_info->super_copy;
0f7d52f4 2447 if (!btrfs_super_root(disk_super))
16cdcec7 2448 goto fail_alloc;
0f7d52f4 2449
acce952b 2450 /* check FS state, whether FS is broken. */
87533c47
MX
2451 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2452 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2453
af31f5e5
CM
2454 /*
2455 * run through our array of backup supers and setup
2456 * our ring pointer to the oldest one
2457 */
2458 generation = btrfs_super_generation(disk_super);
2459 find_oldest_super_backup(fs_info, generation);
2460
75e7cb7f
LB
2461 /*
2462 * In the long term, we'll store the compression type in the super
2463 * block, and it'll be used for per file compression control.
2464 */
2465 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2466
2b82032c
YZ
2467 ret = btrfs_parse_options(tree_root, options);
2468 if (ret) {
2469 err = ret;
16cdcec7 2470 goto fail_alloc;
2b82032c 2471 }
dfe25020 2472
f2b636e8
JB
2473 features = btrfs_super_incompat_flags(disk_super) &
2474 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2475 if (features) {
2476 printk(KERN_ERR "BTRFS: couldn't mount because of "
2477 "unsupported optional features (%Lx).\n",
c1c9ff7c 2478 features);
f2b636e8 2479 err = -EINVAL;
16cdcec7 2480 goto fail_alloc;
f2b636e8
JB
2481 }
2482
707e8a07
DS
2483 /*
2484 * Leafsize and nodesize were always equal, this is only a sanity check.
2485 */
2486 if (le32_to_cpu(disk_super->__unused_leafsize) !=
727011e0
CM
2487 btrfs_super_nodesize(disk_super)) {
2488 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2489 "blocksizes don't match. node %d leaf %d\n",
2490 btrfs_super_nodesize(disk_super),
707e8a07 2491 le32_to_cpu(disk_super->__unused_leafsize));
727011e0
CM
2492 err = -EINVAL;
2493 goto fail_alloc;
2494 }
707e8a07 2495 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
727011e0
CM
2496 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2497 "blocksize (%d) was too large\n",
707e8a07 2498 btrfs_super_nodesize(disk_super));
727011e0
CM
2499 err = -EINVAL;
2500 goto fail_alloc;
2501 }
2502
5d4f98a2 2503 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2504 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2505 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2506 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2507
3173a18f 2508 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
efe120a0 2509 printk(KERN_ERR "BTRFS: has skinny extents\n");
3173a18f 2510
727011e0
CM
2511 /*
2512 * flag our filesystem as having big metadata blocks if
2513 * they are bigger than the page size
2514 */
707e8a07 2515 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
727011e0 2516 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
efe120a0 2517 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
727011e0
CM
2518 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2519 }
2520
bc3f116f 2521 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f
CM
2522 sectorsize = btrfs_super_sectorsize(disk_super);
2523 stripesize = btrfs_super_stripesize(disk_super);
707e8a07 2524 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2525 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2526
2527 /*
2528 * mixed block groups end up with duplicate but slightly offset
2529 * extent buffers for the same range. It leads to corruptions
2530 */
2531 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2532 (sectorsize != nodesize)) {
efe120a0 2533 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
bc3f116f
CM
2534 "are not allowed for mixed block groups on %s\n",
2535 sb->s_id);
2536 goto fail_alloc;
2537 }
2538
ceda0864
MX
2539 /*
2540 * Needn't use the lock because there is no other task which will
2541 * update the flag.
2542 */
a6fa6fae 2543 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2544
f2b636e8
JB
2545 features = btrfs_super_compat_ro_flags(disk_super) &
2546 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2547 if (!(sb->s_flags & MS_RDONLY) && features) {
2548 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2549 "unsupported option features (%Lx).\n",
c1c9ff7c 2550 features);
f2b636e8 2551 err = -EINVAL;
16cdcec7 2552 goto fail_alloc;
f2b636e8 2553 }
61d92c32 2554
5cdc7ad3 2555 max_active = fs_info->thread_pool_size;
61d92c32 2556
5cdc7ad3
QW
2557 fs_info->workers =
2558 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2559 max_active, 16);
c8b97818 2560
afe3d242
QW
2561 fs_info->delalloc_workers =
2562 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
771ed689 2563
a44903ab
QW
2564 fs_info->flush_workers =
2565 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
8ccf6f19 2566
e66f0bb1
QW
2567 fs_info->caching_workers =
2568 btrfs_alloc_workqueue("cache", flags, max_active, 0);
61b49440 2569
a8c93d4e
QW
2570 /*
2571 * a higher idle thresh on the submit workers makes it much more
61b49440
CM
2572 * likely that bios will be send down in a sane order to the
2573 * devices
2574 */
a8c93d4e
QW
2575 fs_info->submit_workers =
2576 btrfs_alloc_workqueue("submit", flags,
2577 min_t(u64, fs_devices->num_devices,
2578 max_active), 64);
53863232 2579
dc6e3209
QW
2580 fs_info->fixup_workers =
2581 btrfs_alloc_workqueue("fixup", flags, 1, 0);
61b49440
CM
2582
2583 /*
2584 * endios are largely parallel and should have a very
2585 * low idle thresh
2586 */
fccb5d86
QW
2587 fs_info->endio_workers =
2588 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2589 fs_info->endio_meta_workers =
2590 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2591 fs_info->endio_meta_write_workers =
2592 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2593 fs_info->endio_raid56_workers =
2594 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
8b110e39
MX
2595 fs_info->endio_repair_workers =
2596 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
d05a33ac
QW
2597 fs_info->rmw_workers =
2598 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
fccb5d86
QW
2599 fs_info->endio_write_workers =
2600 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2601 fs_info->endio_freespace_worker =
2602 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
5b3bc44e
QW
2603 fs_info->delayed_workers =
2604 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
736cfa15
QW
2605 fs_info->readahead_workers =
2606 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
fc97fab0
QW
2607 fs_info->qgroup_rescan_workers =
2608 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
a79b7d4b
CM
2609 fs_info->extent_workers =
2610 btrfs_alloc_workqueue("extent-refs", flags,
2611 min_t(u64, fs_devices->num_devices,
2612 max_active), 8);
61b49440 2613
a8c93d4e 2614 if (!(fs_info->workers && fs_info->delalloc_workers &&
fccb5d86
QW
2615 fs_info->submit_workers && fs_info->flush_workers &&
2616 fs_info->endio_workers && fs_info->endio_meta_workers &&
2617 fs_info->endio_meta_write_workers &&
8b110e39 2618 fs_info->endio_repair_workers &&
fccb5d86 2619 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
e66f0bb1 2620 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
dc6e3209 2621 fs_info->caching_workers && fs_info->readahead_workers &&
fc97fab0 2622 fs_info->fixup_workers && fs_info->delayed_workers &&
56094eec 2623 fs_info->extent_workers &&
fc97fab0 2624 fs_info->qgroup_rescan_workers)) {
fed425c7 2625 err = -ENOMEM;
0dc3b84a
JB
2626 goto fail_sb_buffer;
2627 }
4543df7e 2628
4575c9cc 2629 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2630 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2631 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2632
db94535d 2633 tree_root->nodesize = nodesize;
db94535d 2634 tree_root->sectorsize = sectorsize;
87ee04eb 2635 tree_root->stripesize = stripesize;
a061fc8d
CM
2636
2637 sb->s_blocksize = sectorsize;
2638 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2639
3cae210f 2640 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
efe120a0 2641 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2642 goto fail_sb_buffer;
2643 }
19c00ddc 2644
8d082fb7 2645 if (sectorsize != PAGE_SIZE) {
efe120a0 2646 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
8d082fb7 2647 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2648 goto fail_sb_buffer;
2649 }
2650
925baedd 2651 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2652 ret = btrfs_read_sys_array(tree_root);
925baedd 2653 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2654 if (ret) {
efe120a0 2655 printk(KERN_WARNING "BTRFS: failed to read the system "
d397712b 2656 "array on %s\n", sb->s_id);
5d4f98a2 2657 goto fail_sb_buffer;
84eed90f 2658 }
0b86a832 2659
707e8a07 2660 blocksize = tree_root->nodesize;
84234f3a 2661 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832 2662
707e8a07
DS
2663 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2664 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832
CM
2665
2666 chunk_root->node = read_tree_block(chunk_root,
2667 btrfs_super_chunk_root(disk_super),
84234f3a 2668 blocksize, generation);
416bc658
JB
2669 if (!chunk_root->node ||
2670 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
efe120a0 2671 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
83121942 2672 sb->s_id);
af31f5e5 2673 goto fail_tree_roots;
83121942 2674 }
5d4f98a2
YZ
2675 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2676 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2677
e17cade2 2678 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2679 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2680
0b86a832 2681 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2682 if (ret) {
efe120a0 2683 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
d397712b 2684 sb->s_id);
af31f5e5 2685 goto fail_tree_roots;
2b82032c 2686 }
0b86a832 2687
8dabb742
SB
2688 /*
2689 * keep the device that is marked to be the target device for the
2690 * dev_replace procedure
2691 */
2692 btrfs_close_extra_devices(fs_info, fs_devices, 0);
dfe25020 2693
a6b0d5c8 2694 if (!fs_devices->latest_bdev) {
efe120a0 2695 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
a6b0d5c8
CM
2696 sb->s_id);
2697 goto fail_tree_roots;
2698 }
2699
af31f5e5 2700retry_root_backup:
707e8a07 2701 blocksize = tree_root->nodesize;
84234f3a 2702 generation = btrfs_super_generation(disk_super);
0b86a832 2703
e20d96d6 2704 tree_root->node = read_tree_block(tree_root,
db94535d 2705 btrfs_super_root(disk_super),
84234f3a 2706 blocksize, generation);
af31f5e5
CM
2707 if (!tree_root->node ||
2708 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
efe120a0 2709 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
83121942 2710 sb->s_id);
af31f5e5
CM
2711
2712 goto recovery_tree_root;
83121942 2713 }
af31f5e5 2714
5d4f98a2
YZ
2715 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2716 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2717 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2718
cb517eab
MX
2719 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2720 location.type = BTRFS_ROOT_ITEM_KEY;
2721 location.offset = 0;
2722
2723 extent_root = btrfs_read_tree_root(tree_root, &location);
2724 if (IS_ERR(extent_root)) {
2725 ret = PTR_ERR(extent_root);
af31f5e5 2726 goto recovery_tree_root;
cb517eab 2727 }
27cdeb70 2728 set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
cb517eab 2729 fs_info->extent_root = extent_root;
0b86a832 2730
cb517eab
MX
2731 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2732 dev_root = btrfs_read_tree_root(tree_root, &location);
2733 if (IS_ERR(dev_root)) {
2734 ret = PTR_ERR(dev_root);
af31f5e5 2735 goto recovery_tree_root;
cb517eab 2736 }
27cdeb70 2737 set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
cb517eab
MX
2738 fs_info->dev_root = dev_root;
2739 btrfs_init_devices_late(fs_info);
3768f368 2740
cb517eab
MX
2741 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2742 csum_root = btrfs_read_tree_root(tree_root, &location);
2743 if (IS_ERR(csum_root)) {
2744 ret = PTR_ERR(csum_root);
af31f5e5 2745 goto recovery_tree_root;
cb517eab 2746 }
27cdeb70 2747 set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
cb517eab 2748 fs_info->csum_root = csum_root;
d20f7043 2749
cb517eab
MX
2750 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2751 quota_root = btrfs_read_tree_root(tree_root, &location);
2752 if (!IS_ERR(quota_root)) {
27cdeb70 2753 set_bit(BTRFS_ROOT_TRACK_DIRTY, &quota_root->state);
bcef60f2
AJ
2754 fs_info->quota_enabled = 1;
2755 fs_info->pending_quota_state = 1;
cb517eab 2756 fs_info->quota_root = quota_root;
bcef60f2
AJ
2757 }
2758
f7a81ea4
SB
2759 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2760 uuid_root = btrfs_read_tree_root(tree_root, &location);
2761 if (IS_ERR(uuid_root)) {
2762 ret = PTR_ERR(uuid_root);
2763 if (ret != -ENOENT)
2764 goto recovery_tree_root;
2765 create_uuid_tree = true;
70f80175 2766 check_uuid_tree = false;
f7a81ea4 2767 } else {
27cdeb70 2768 set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
f7a81ea4 2769 fs_info->uuid_root = uuid_root;
70f80175
SB
2770 create_uuid_tree = false;
2771 check_uuid_tree =
2772 generation != btrfs_super_uuid_tree_generation(disk_super);
f7a81ea4
SB
2773 }
2774
8929ecfa
YZ
2775 fs_info->generation = generation;
2776 fs_info->last_trans_committed = generation;
8929ecfa 2777
68310a5e
ID
2778 ret = btrfs_recover_balance(fs_info);
2779 if (ret) {
efe120a0 2780 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
68310a5e
ID
2781 goto fail_block_groups;
2782 }
2783
733f4fbb
SB
2784 ret = btrfs_init_dev_stats(fs_info);
2785 if (ret) {
efe120a0 2786 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
733f4fbb
SB
2787 ret);
2788 goto fail_block_groups;
2789 }
2790
8dabb742
SB
2791 ret = btrfs_init_dev_replace(fs_info);
2792 if (ret) {
efe120a0 2793 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
8dabb742
SB
2794 goto fail_block_groups;
2795 }
2796
2797 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2798
5ac1d209 2799 ret = btrfs_sysfs_add_one(fs_info);
c59021f8 2800 if (ret) {
efe120a0 2801 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
c59021f8 2802 goto fail_block_groups;
2803 }
2804
c59021f8 2805 ret = btrfs_init_space_info(fs_info);
2806 if (ret) {
efe120a0 2807 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2365dd3c 2808 goto fail_sysfs;
c59021f8 2809 }
2810
1b1d1f66
JB
2811 ret = btrfs_read_block_groups(extent_root);
2812 if (ret) {
efe120a0 2813 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2365dd3c 2814 goto fail_sysfs;
1b1d1f66 2815 }
5af3e8cc
SB
2816 fs_info->num_tolerated_disk_barrier_failures =
2817 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
2818 if (fs_info->fs_devices->missing_devices >
2819 fs_info->num_tolerated_disk_barrier_failures &&
2820 !(sb->s_flags & MS_RDONLY)) {
efe120a0
FH
2821 printk(KERN_WARNING "BTRFS: "
2822 "too many missing devices, writeable mount is not allowed\n");
2365dd3c 2823 goto fail_sysfs;
292fd7fc 2824 }
9078a3e1 2825
a74a4b97
CM
2826 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2827 "btrfs-cleaner");
57506d50 2828 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 2829 goto fail_sysfs;
a74a4b97
CM
2830
2831 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2832 tree_root,
2833 "btrfs-transaction");
57506d50 2834 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2835 goto fail_cleaner;
a74a4b97 2836
c289811c
CM
2837 if (!btrfs_test_opt(tree_root, SSD) &&
2838 !btrfs_test_opt(tree_root, NOSSD) &&
2839 !fs_info->fs_devices->rotating) {
efe120a0 2840 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
c289811c
CM
2841 "mode\n");
2842 btrfs_set_opt(fs_info->mount_opt, SSD);
2843 }
2844
3818aea2
QW
2845 /* Set the real inode map cache flag */
2846 if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2847 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2848
21adbd5c
SB
2849#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2850 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2851 ret = btrfsic_mount(tree_root, fs_devices,
2852 btrfs_test_opt(tree_root,
2853 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2854 1 : 0,
2855 fs_info->check_integrity_print_mask);
2856 if (ret)
efe120a0 2857 printk(KERN_WARNING "BTRFS: failed to initialize"
21adbd5c
SB
2858 " integrity check module %s\n", sb->s_id);
2859 }
2860#endif
bcef60f2
AJ
2861 ret = btrfs_read_qgroup_config(fs_info);
2862 if (ret)
2863 goto fail_trans_kthread;
21adbd5c 2864
acce952b 2865 /* do not make disk changes in broken FS */
68ce9682 2866 if (btrfs_super_log_root(disk_super) != 0) {
e02119d5
CM
2867 u64 bytenr = btrfs_super_log_root(disk_super);
2868
7c2ca468 2869 if (fs_devices->rw_devices == 0) {
efe120a0 2870 printk(KERN_WARNING "BTRFS: log replay required "
d397712b 2871 "on RO media\n");
7c2ca468 2872 err = -EIO;
bcef60f2 2873 goto fail_qgroup;
7c2ca468 2874 }
707e8a07 2875 blocksize = tree_root->nodesize;
d18a2c44 2876
6f07e42e 2877 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2878 if (!log_tree_root) {
2879 err = -ENOMEM;
bcef60f2 2880 goto fail_qgroup;
676e4c86 2881 }
e02119d5 2882
707e8a07 2883 __setup_root(nodesize, sectorsize, stripesize,
e02119d5
CM
2884 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2885
2886 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2887 blocksize,
2888 generation + 1);
416bc658
JB
2889 if (!log_tree_root->node ||
2890 !extent_buffer_uptodate(log_tree_root->node)) {
efe120a0 2891 printk(KERN_ERR "BTRFS: failed to read log tree\n");
416bc658
JB
2892 free_extent_buffer(log_tree_root->node);
2893 kfree(log_tree_root);
28c16cbb 2894 goto fail_qgroup;
416bc658 2895 }
79787eaa 2896 /* returns with log_tree_root freed on success */
e02119d5 2897 ret = btrfs_recover_log_trees(log_tree_root);
79787eaa
JM
2898 if (ret) {
2899 btrfs_error(tree_root->fs_info, ret,
2900 "Failed to recover log tree");
2901 free_extent_buffer(log_tree_root->node);
2902 kfree(log_tree_root);
28c16cbb 2903 goto fail_qgroup;
79787eaa 2904 }
e556ce2c
YZ
2905
2906 if (sb->s_flags & MS_RDONLY) {
79787eaa
JM
2907 ret = btrfs_commit_super(tree_root);
2908 if (ret)
28c16cbb 2909 goto fail_qgroup;
e556ce2c 2910 }
e02119d5 2911 }
1a40e23b 2912
76dda93c 2913 ret = btrfs_find_orphan_roots(tree_root);
79787eaa 2914 if (ret)
28c16cbb 2915 goto fail_qgroup;
76dda93c 2916
7c2ca468 2917 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2918 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 2919 if (ret)
28c16cbb 2920 goto fail_qgroup;
d68fc57b 2921
5f316481 2922 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 2923 ret = btrfs_recover_relocation(tree_root);
5f316481 2924 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843
MX
2925 if (ret < 0) {
2926 printk(KERN_WARNING
efe120a0 2927 "BTRFS: failed to recover relocation\n");
d7ce5843 2928 err = -EINVAL;
bcef60f2 2929 goto fail_qgroup;
d7ce5843 2930 }
7c2ca468 2931 }
1a40e23b 2932
3de4586c
CM
2933 location.objectid = BTRFS_FS_TREE_OBJECTID;
2934 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 2935 location.offset = 0;
3de4586c 2936
3de4586c 2937 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
2938 if (IS_ERR(fs_info->fs_root)) {
2939 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2940 goto fail_qgroup;
3140c9a3 2941 }
c289811c 2942
2b6ba629
ID
2943 if (sb->s_flags & MS_RDONLY)
2944 return 0;
59641015 2945
2b6ba629
ID
2946 down_read(&fs_info->cleanup_work_sem);
2947 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2948 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2949 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
2950 close_ctree(tree_root);
2951 return ret;
2952 }
2953 up_read(&fs_info->cleanup_work_sem);
59641015 2954
2b6ba629
ID
2955 ret = btrfs_resume_balance_async(fs_info);
2956 if (ret) {
efe120a0 2957 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2b6ba629
ID
2958 close_ctree(tree_root);
2959 return ret;
e3acc2a6
JB
2960 }
2961
8dabb742
SB
2962 ret = btrfs_resume_dev_replace_async(fs_info);
2963 if (ret) {
efe120a0 2964 pr_warn("BTRFS: failed to resume dev_replace\n");
8dabb742
SB
2965 close_ctree(tree_root);
2966 return ret;
2967 }
2968
b382a324
JS
2969 btrfs_qgroup_rescan_resume(fs_info);
2970
f7a81ea4 2971 if (create_uuid_tree) {
efe120a0 2972 pr_info("BTRFS: creating UUID tree\n");
f7a81ea4
SB
2973 ret = btrfs_create_uuid_tree(fs_info);
2974 if (ret) {
efe120a0 2975 pr_warn("BTRFS: failed to create the UUID tree %d\n",
f7a81ea4
SB
2976 ret);
2977 close_ctree(tree_root);
2978 return ret;
2979 }
f420ee1e
SB
2980 } else if (check_uuid_tree ||
2981 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
efe120a0 2982 pr_info("BTRFS: checking UUID tree\n");
70f80175
SB
2983 ret = btrfs_check_uuid_tree(fs_info);
2984 if (ret) {
efe120a0 2985 pr_warn("BTRFS: failed to check the UUID tree %d\n",
70f80175
SB
2986 ret);
2987 close_ctree(tree_root);
2988 return ret;
2989 }
2990 } else {
2991 fs_info->update_uuid_tree_gen = 1;
f7a81ea4
SB
2992 }
2993
47ab2a6c
JB
2994 fs_info->open = 1;
2995
ad2b2c80 2996 return 0;
39279cc3 2997
bcef60f2
AJ
2998fail_qgroup:
2999 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3000fail_trans_kthread:
3001 kthread_stop(fs_info->transaction_kthread);
54067ae9 3002 btrfs_cleanup_transaction(fs_info->tree_root);
faa2dbf0 3003 btrfs_free_fs_roots(fs_info);
3f157a2f 3004fail_cleaner:
a74a4b97 3005 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3006
3007 /*
3008 * make sure we're done with the btree inode before we stop our
3009 * kthreads
3010 */
3011 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3012
2365dd3c
AJ
3013fail_sysfs:
3014 btrfs_sysfs_remove_one(fs_info);
3015
1b1d1f66 3016fail_block_groups:
54067ae9 3017 btrfs_put_block_group_cache(fs_info);
1b1d1f66 3018 btrfs_free_block_groups(fs_info);
af31f5e5
CM
3019
3020fail_tree_roots:
3021 free_root_pointers(fs_info, 1);
2b8195bb 3022 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3023
39279cc3 3024fail_sb_buffer:
7abadb64 3025 btrfs_stop_all_workers(fs_info);
16cdcec7 3026fail_alloc:
4543df7e 3027fail_iput:
586e46e2
ID
3028 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3029
4543df7e 3030 iput(fs_info->btree_inode);
c404e0dc
MX
3031fail_bio_counter:
3032 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
3033fail_delalloc_bytes:
3034 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3035fail_dirty_metadata_bytes:
3036 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 3037fail_bdi:
7e662854 3038 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
3039fail_srcu:
3040 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3041fail:
53b381b3 3042 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3043 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3044 return err;
af31f5e5
CM
3045
3046recovery_tree_root:
af31f5e5
CM
3047 if (!btrfs_test_opt(tree_root, RECOVERY))
3048 goto fail_tree_roots;
3049
3050 free_root_pointers(fs_info, 0);
3051
3052 /* don't use the log in recovery mode, it won't be valid */
3053 btrfs_set_super_log_root(disk_super, 0);
3054
3055 /* we can't trust the free space cache either */
3056 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3057
3058 ret = next_root_backup(fs_info, fs_info->super_copy,
3059 &num_backups_tried, &backup_index);
3060 if (ret == -1)
3061 goto fail_block_groups;
3062 goto retry_root_backup;
eb60ceac
CM
3063}
3064
f2984462
CM
3065static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3066{
f2984462
CM
3067 if (uptodate) {
3068 set_buffer_uptodate(bh);
3069 } else {
442a4f63
SB
3070 struct btrfs_device *device = (struct btrfs_device *)
3071 bh->b_private;
3072
efe120a0 3073 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
606686ee
JB
3074 "I/O error on %s\n",
3075 rcu_str_deref(device->name));
1259ab75
CM
3076 /* note, we dont' set_buffer_write_io_error because we have
3077 * our own ways of dealing with the IO errors
3078 */
f2984462 3079 clear_buffer_uptodate(bh);
442a4f63 3080 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3081 }
3082 unlock_buffer(bh);
3083 put_bh(bh);
3084}
3085
a512bbf8
YZ
3086struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3087{
3088 struct buffer_head *bh;
3089 struct buffer_head *latest = NULL;
3090 struct btrfs_super_block *super;
3091 int i;
3092 u64 transid = 0;
3093 u64 bytenr;
3094
3095 /* we would like to check all the supers, but that would make
3096 * a btrfs mount succeed after a mkfs from a different FS.
3097 * So, we need to add a special mount option to scan for
3098 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3099 */
3100 for (i = 0; i < 1; i++) {
3101 bytenr = btrfs_sb_offset(i);
8068a47e
AJ
3102 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3103 i_size_read(bdev->bd_inode))
a512bbf8 3104 break;
8068a47e
AJ
3105 bh = __bread(bdev, bytenr / 4096,
3106 BTRFS_SUPER_INFO_SIZE);
a512bbf8
YZ
3107 if (!bh)
3108 continue;
3109
3110 super = (struct btrfs_super_block *)bh->b_data;
3111 if (btrfs_super_bytenr(super) != bytenr ||
3cae210f 3112 btrfs_super_magic(super) != BTRFS_MAGIC) {
a512bbf8
YZ
3113 brelse(bh);
3114 continue;
3115 }
3116
3117 if (!latest || btrfs_super_generation(super) > transid) {
3118 brelse(latest);
3119 latest = bh;
3120 transid = btrfs_super_generation(super);
3121 } else {
3122 brelse(bh);
3123 }
3124 }
3125 return latest;
3126}
3127
4eedeb75
HH
3128/*
3129 * this should be called twice, once with wait == 0 and
3130 * once with wait == 1. When wait == 0 is done, all the buffer heads
3131 * we write are pinned.
3132 *
3133 * They are released when wait == 1 is done.
3134 * max_mirrors must be the same for both runs, and it indicates how
3135 * many supers on this one device should be written.
3136 *
3137 * max_mirrors == 0 means to write them all.
3138 */
a512bbf8
YZ
3139static int write_dev_supers(struct btrfs_device *device,
3140 struct btrfs_super_block *sb,
3141 int do_barriers, int wait, int max_mirrors)
3142{
3143 struct buffer_head *bh;
3144 int i;
3145 int ret;
3146 int errors = 0;
3147 u32 crc;
3148 u64 bytenr;
a512bbf8
YZ
3149
3150 if (max_mirrors == 0)
3151 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3152
a512bbf8
YZ
3153 for (i = 0; i < max_mirrors; i++) {
3154 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3155 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3156 device->commit_total_bytes)
a512bbf8
YZ
3157 break;
3158
3159 if (wait) {
3160 bh = __find_get_block(device->bdev, bytenr / 4096,
3161 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3162 if (!bh) {
3163 errors++;
3164 continue;
3165 }
a512bbf8 3166 wait_on_buffer(bh);
4eedeb75
HH
3167 if (!buffer_uptodate(bh))
3168 errors++;
3169
3170 /* drop our reference */
3171 brelse(bh);
3172
3173 /* drop the reference from the wait == 0 run */
3174 brelse(bh);
3175 continue;
a512bbf8
YZ
3176 } else {
3177 btrfs_set_super_bytenr(sb, bytenr);
3178
3179 crc = ~(u32)0;
b0496686 3180 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3181 BTRFS_CSUM_SIZE, crc,
3182 BTRFS_SUPER_INFO_SIZE -
3183 BTRFS_CSUM_SIZE);
3184 btrfs_csum_final(crc, sb->csum);
3185
4eedeb75
HH
3186 /*
3187 * one reference for us, and we leave it for the
3188 * caller
3189 */
a512bbf8
YZ
3190 bh = __getblk(device->bdev, bytenr / 4096,
3191 BTRFS_SUPER_INFO_SIZE);
634554dc 3192 if (!bh) {
efe120a0 3193 printk(KERN_ERR "BTRFS: couldn't get super "
634554dc
JB
3194 "buffer head for bytenr %Lu\n", bytenr);
3195 errors++;
3196 continue;
3197 }
3198
a512bbf8
YZ
3199 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3200
4eedeb75 3201 /* one reference for submit_bh */
a512bbf8 3202 get_bh(bh);
4eedeb75
HH
3203
3204 set_buffer_uptodate(bh);
a512bbf8
YZ
3205 lock_buffer(bh);
3206 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3207 bh->b_private = device;
a512bbf8
YZ
3208 }
3209
387125fc
CM
3210 /*
3211 * we fua the first super. The others we allow
3212 * to go down lazy.
3213 */
e8117c26
WS
3214 if (i == 0)
3215 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3216 else
3217 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
4eedeb75 3218 if (ret)
a512bbf8 3219 errors++;
a512bbf8
YZ
3220 }
3221 return errors < i ? 0 : -1;
3222}
3223
387125fc
CM
3224/*
3225 * endio for the write_dev_flush, this will wake anyone waiting
3226 * for the barrier when it is done
3227 */
3228static void btrfs_end_empty_barrier(struct bio *bio, int err)
3229{
3230 if (err) {
3231 if (err == -EOPNOTSUPP)
3232 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3233 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3234 }
3235 if (bio->bi_private)
3236 complete(bio->bi_private);
3237 bio_put(bio);
3238}
3239
3240/*
3241 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3242 * sent down. With wait == 1, it waits for the previous flush.
3243 *
3244 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3245 * capable
3246 */
3247static int write_dev_flush(struct btrfs_device *device, int wait)
3248{
3249 struct bio *bio;
3250 int ret = 0;
3251
3252 if (device->nobarriers)
3253 return 0;
3254
3255 if (wait) {
3256 bio = device->flush_bio;
3257 if (!bio)
3258 return 0;
3259
3260 wait_for_completion(&device->flush_wait);
3261
3262 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
efe120a0 3263 printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
606686ee 3264 rcu_str_deref(device->name));
387125fc 3265 device->nobarriers = 1;
5af3e8cc 3266 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
387125fc 3267 ret = -EIO;
5af3e8cc
SB
3268 btrfs_dev_stat_inc_and_print(device,
3269 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3270 }
3271
3272 /* drop the reference from the wait == 0 run */
3273 bio_put(bio);
3274 device->flush_bio = NULL;
3275
3276 return ret;
3277 }
3278
3279 /*
3280 * one reference for us, and we leave it for the
3281 * caller
3282 */
9c017abc 3283 device->flush_bio = NULL;
9be3395b 3284 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3285 if (!bio)
3286 return -ENOMEM;
3287
3288 bio->bi_end_io = btrfs_end_empty_barrier;
3289 bio->bi_bdev = device->bdev;
3290 init_completion(&device->flush_wait);
3291 bio->bi_private = &device->flush_wait;
3292 device->flush_bio = bio;
3293
3294 bio_get(bio);
21adbd5c 3295 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
3296
3297 return 0;
3298}
3299
3300/*
3301 * send an empty flush down to each device in parallel,
3302 * then wait for them
3303 */
3304static int barrier_all_devices(struct btrfs_fs_info *info)
3305{
3306 struct list_head *head;
3307 struct btrfs_device *dev;
5af3e8cc
SB
3308 int errors_send = 0;
3309 int errors_wait = 0;
387125fc
CM
3310 int ret;
3311
3312 /* send down all the barriers */
3313 head = &info->fs_devices->devices;
3314 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3315 if (dev->missing)
3316 continue;
387125fc 3317 if (!dev->bdev) {
5af3e8cc 3318 errors_send++;
387125fc
CM
3319 continue;
3320 }
3321 if (!dev->in_fs_metadata || !dev->writeable)
3322 continue;
3323
3324 ret = write_dev_flush(dev, 0);
3325 if (ret)
5af3e8cc 3326 errors_send++;
387125fc
CM
3327 }
3328
3329 /* wait for all the barriers */
3330 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3331 if (dev->missing)
3332 continue;
387125fc 3333 if (!dev->bdev) {
5af3e8cc 3334 errors_wait++;
387125fc
CM
3335 continue;
3336 }
3337 if (!dev->in_fs_metadata || !dev->writeable)
3338 continue;
3339
3340 ret = write_dev_flush(dev, 1);
3341 if (ret)
5af3e8cc 3342 errors_wait++;
387125fc 3343 }
5af3e8cc
SB
3344 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3345 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3346 return -EIO;
3347 return 0;
3348}
3349
5af3e8cc
SB
3350int btrfs_calc_num_tolerated_disk_barrier_failures(
3351 struct btrfs_fs_info *fs_info)
3352{
3353 struct btrfs_ioctl_space_info space;
3354 struct btrfs_space_info *sinfo;
3355 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3356 BTRFS_BLOCK_GROUP_SYSTEM,
3357 BTRFS_BLOCK_GROUP_METADATA,
3358 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3359 int num_types = 4;
3360 int i;
3361 int c;
3362 int num_tolerated_disk_barrier_failures =
3363 (int)fs_info->fs_devices->num_devices;
3364
3365 for (i = 0; i < num_types; i++) {
3366 struct btrfs_space_info *tmp;
3367
3368 sinfo = NULL;
3369 rcu_read_lock();
3370 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3371 if (tmp->flags == types[i]) {
3372 sinfo = tmp;
3373 break;
3374 }
3375 }
3376 rcu_read_unlock();
3377
3378 if (!sinfo)
3379 continue;
3380
3381 down_read(&sinfo->groups_sem);
3382 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3383 if (!list_empty(&sinfo->block_groups[c])) {
3384 u64 flags;
3385
3386 btrfs_get_block_group_info(
3387 &sinfo->block_groups[c], &space);
3388 if (space.total_bytes == 0 ||
3389 space.used_bytes == 0)
3390 continue;
3391 flags = space.flags;
3392 /*
3393 * return
3394 * 0: if dup, single or RAID0 is configured for
3395 * any of metadata, system or data, else
3396 * 1: if RAID5 is configured, or if RAID1 or
3397 * RAID10 is configured and only two mirrors
3398 * are used, else
3399 * 2: if RAID6 is configured, else
3400 * num_mirrors - 1: if RAID1 or RAID10 is
3401 * configured and more than
3402 * 2 mirrors are used.
3403 */
3404 if (num_tolerated_disk_barrier_failures > 0 &&
3405 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3406 BTRFS_BLOCK_GROUP_RAID0)) ||
3407 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3408 == 0)))
3409 num_tolerated_disk_barrier_failures = 0;
53b381b3
DW
3410 else if (num_tolerated_disk_barrier_failures > 1) {
3411 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3412 BTRFS_BLOCK_GROUP_RAID5 |
3413 BTRFS_BLOCK_GROUP_RAID10)) {
3414 num_tolerated_disk_barrier_failures = 1;
3415 } else if (flags &
15b0a89d 3416 BTRFS_BLOCK_GROUP_RAID6) {
53b381b3
DW
3417 num_tolerated_disk_barrier_failures = 2;
3418 }
3419 }
5af3e8cc
SB
3420 }
3421 }
3422 up_read(&sinfo->groups_sem);
3423 }
3424
3425 return num_tolerated_disk_barrier_failures;
3426}
3427
48a3b636 3428static int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3429{
e5e9a520 3430 struct list_head *head;
f2984462 3431 struct btrfs_device *dev;
a061fc8d 3432 struct btrfs_super_block *sb;
f2984462 3433 struct btrfs_dev_item *dev_item;
f2984462
CM
3434 int ret;
3435 int do_barriers;
a236aed1
CM
3436 int max_errors;
3437 int total_errors = 0;
a061fc8d 3438 u64 flags;
f2984462
CM
3439
3440 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 3441 backup_super_roots(root->fs_info);
f2984462 3442
6c41761f 3443 sb = root->fs_info->super_for_commit;
a061fc8d 3444 dev_item = &sb->dev_item;
e5e9a520 3445
174ba509 3446 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3447 head = &root->fs_info->fs_devices->devices;
d7306801 3448 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
387125fc 3449
5af3e8cc
SB
3450 if (do_barriers) {
3451 ret = barrier_all_devices(root->fs_info);
3452 if (ret) {
3453 mutex_unlock(
3454 &root->fs_info->fs_devices->device_list_mutex);
3455 btrfs_error(root->fs_info, ret,
3456 "errors while submitting device barriers.");
3457 return ret;
3458 }
3459 }
387125fc 3460
1f78160c 3461 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3462 if (!dev->bdev) {
3463 total_errors++;
3464 continue;
3465 }
2b82032c 3466 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3467 continue;
3468
2b82032c 3469 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3470 btrfs_set_stack_device_type(dev_item, dev->type);
3471 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3472 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3473 dev->commit_total_bytes);
ce7213c7
MX
3474 btrfs_set_stack_device_bytes_used(dev_item,
3475 dev->commit_bytes_used);
a061fc8d
CM
3476 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3477 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3478 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3479 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3480 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3481
a061fc8d
CM
3482 flags = btrfs_super_flags(sb);
3483 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3484
a512bbf8 3485 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3486 if (ret)
3487 total_errors++;
f2984462 3488 }
a236aed1 3489 if (total_errors > max_errors) {
efe120a0 3490 btrfs_err(root->fs_info, "%d errors while writing supers",
d397712b 3491 total_errors);
a724b436 3492 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
79787eaa 3493
9d565ba4
SB
3494 /* FUA is masked off if unsupported and can't be the reason */
3495 btrfs_error(root->fs_info, -EIO,
3496 "%d errors while writing supers", total_errors);
3497 return -EIO;
a236aed1 3498 }
f2984462 3499
a512bbf8 3500 total_errors = 0;
1f78160c 3501 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3502 if (!dev->bdev)
3503 continue;
2b82032c 3504 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3505 continue;
3506
a512bbf8
YZ
3507 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3508 if (ret)
3509 total_errors++;
f2984462 3510 }
174ba509 3511 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3512 if (total_errors > max_errors) {
79787eaa
JM
3513 btrfs_error(root->fs_info, -EIO,
3514 "%d errors while writing supers", total_errors);
3515 return -EIO;
a236aed1 3516 }
f2984462
CM
3517 return 0;
3518}
3519
a512bbf8
YZ
3520int write_ctree_super(struct btrfs_trans_handle *trans,
3521 struct btrfs_root *root, int max_mirrors)
eb60ceac 3522{
f570e757 3523 return write_all_supers(root, max_mirrors);
cfaa7295
CM
3524}
3525
cb517eab
MX
3526/* Drop a fs root from the radix tree and free it. */
3527void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3528 struct btrfs_root *root)
2619ba1f 3529{
4df27c4d 3530 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3531 radix_tree_delete(&fs_info->fs_roots_radix,
3532 (unsigned long)root->root_key.objectid);
4df27c4d 3533 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3534
3535 if (btrfs_root_refs(&root->root_item) == 0)
3536 synchronize_srcu(&fs_info->subvol_srcu);
3537
1a4319cc 3538 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3321719e 3539 btrfs_free_log(NULL, root);
3321719e 3540
faa2dbf0
JB
3541 if (root->free_ino_pinned)
3542 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3543 if (root->free_ino_ctl)
3544 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3545 free_fs_root(root);
4df27c4d
YZ
3546}
3547
3548static void free_fs_root(struct btrfs_root *root)
3549{
57cdc8db 3550 iput(root->ino_cache_inode);
4df27c4d 3551 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1cb048f5
FDBM
3552 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3553 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3554 if (root->anon_dev)
3555 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3556 if (root->subv_writers)
3557 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3558 free_extent_buffer(root->node);
3559 free_extent_buffer(root->commit_root);
581bb050
LZ
3560 kfree(root->free_ino_ctl);
3561 kfree(root->free_ino_pinned);
d397712b 3562 kfree(root->name);
b0feb9d9 3563 btrfs_put_fs_root(root);
2619ba1f
CM
3564}
3565
cb517eab
MX
3566void btrfs_free_fs_root(struct btrfs_root *root)
3567{
3568 free_fs_root(root);
2619ba1f
CM
3569}
3570
c146afad 3571int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3572{
c146afad
YZ
3573 u64 root_objectid = 0;
3574 struct btrfs_root *gang[8];
65d33fd7
QW
3575 int i = 0;
3576 int err = 0;
3577 unsigned int ret = 0;
3578 int index;
e089f05c 3579
c146afad 3580 while (1) {
65d33fd7 3581 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3582 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3583 (void **)gang, root_objectid,
3584 ARRAY_SIZE(gang));
65d33fd7
QW
3585 if (!ret) {
3586 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3587 break;
65d33fd7 3588 }
5d4f98a2 3589 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3590
c146afad 3591 for (i = 0; i < ret; i++) {
65d33fd7
QW
3592 /* Avoid to grab roots in dead_roots */
3593 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3594 gang[i] = NULL;
3595 continue;
3596 }
3597 /* grab all the search result for later use */
3598 gang[i] = btrfs_grab_fs_root(gang[i]);
3599 }
3600 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3601
65d33fd7
QW
3602 for (i = 0; i < ret; i++) {
3603 if (!gang[i])
3604 continue;
c146afad 3605 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3606 err = btrfs_orphan_cleanup(gang[i]);
3607 if (err)
65d33fd7
QW
3608 break;
3609 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3610 }
3611 root_objectid++;
3612 }
65d33fd7
QW
3613
3614 /* release the uncleaned roots due to error */
3615 for (; i < ret; i++) {
3616 if (gang[i])
3617 btrfs_put_fs_root(gang[i]);
3618 }
3619 return err;
c146afad 3620}
a2135011 3621
c146afad
YZ
3622int btrfs_commit_super(struct btrfs_root *root)
3623{
3624 struct btrfs_trans_handle *trans;
a74a4b97 3625
c146afad 3626 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3627 btrfs_run_delayed_iputs(root);
c146afad 3628 mutex_unlock(&root->fs_info->cleaner_mutex);
9d1a2a3a 3629 wake_up_process(root->fs_info->cleaner_kthread);
c71bf099
YZ
3630
3631 /* wait until ongoing cleanup work done */
3632 down_write(&root->fs_info->cleanup_work_sem);
3633 up_write(&root->fs_info->cleanup_work_sem);
3634
7a7eaa40 3635 trans = btrfs_join_transaction(root);
3612b495
TI
3636 if (IS_ERR(trans))
3637 return PTR_ERR(trans);
d52c1bcc 3638 return btrfs_commit_transaction(trans, root);
c146afad
YZ
3639}
3640
3abdbd78 3641void close_ctree(struct btrfs_root *root)
c146afad
YZ
3642{
3643 struct btrfs_fs_info *fs_info = root->fs_info;
3644 int ret;
3645
3646 fs_info->closing = 1;
3647 smp_mb();
3648
803b2f54
SB
3649 /* wait for the uuid_scan task to finish */
3650 down(&fs_info->uuid_tree_rescan_sem);
3651 /* avoid complains from lockdep et al., set sem back to initial state */
3652 up(&fs_info->uuid_tree_rescan_sem);
3653
837d5b6e 3654 /* pause restriper - we want to resume on mount */
aa1b8cd4 3655 btrfs_pause_balance(fs_info);
837d5b6e 3656
8dabb742
SB
3657 btrfs_dev_replace_suspend_for_unmount(fs_info);
3658
aa1b8cd4 3659 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3660
3661 /* wait for any defraggers to finish */
3662 wait_event(fs_info->transaction_wait,
3663 (atomic_read(&fs_info->defrag_running) == 0));
3664
3665 /* clear out the rbtree of defraggable inodes */
26176e7c 3666 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3667
21c7e756
MX
3668 cancel_work_sync(&fs_info->async_reclaim_work);
3669
c146afad 3670 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3671 ret = btrfs_commit_super(root);
3672 if (ret)
efe120a0 3673 btrfs_err(root->fs_info, "commit super ret %d", ret);
acce952b 3674 }
3675
87533c47 3676 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3677 btrfs_error_commit_super(root);
0f7d52f4 3678
e3029d9f
AV
3679 kthread_stop(fs_info->transaction_kthread);
3680 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3681
f25784b3
YZ
3682 fs_info->closing = 2;
3683 smp_mb();
3684
bcef60f2
AJ
3685 btrfs_free_qgroup_config(root->fs_info);
3686
963d678b 3687 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
efe120a0 3688 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
963d678b 3689 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3690 }
bcc63abb 3691
5ac1d209
JM
3692 btrfs_sysfs_remove_one(fs_info);
3693
faa2dbf0 3694 btrfs_free_fs_roots(fs_info);
d10c5f31 3695
1a4319cc
LB
3696 btrfs_put_block_group_cache(fs_info);
3697
2b1360da
JB
3698 btrfs_free_block_groups(fs_info);
3699
de348ee0
WS
3700 /*
3701 * we must make sure there is not any read request to
3702 * submit after we stopping all workers.
3703 */
3704 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3705 btrfs_stop_all_workers(fs_info);
3706
47ab2a6c 3707 fs_info->open = 0;
13e6c37b 3708 free_root_pointers(fs_info, 1);
9ad6b7bc 3709
13e6c37b 3710 iput(fs_info->btree_inode);
d6bfde87 3711
21adbd5c
SB
3712#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3713 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3714 btrfsic_unmount(root, fs_info->fs_devices);
3715#endif
3716
dfe25020 3717 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3718 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3719
e2d84521 3720 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3721 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 3722 percpu_counter_destroy(&fs_info->bio_counter);
04160088 3723 bdi_destroy(&fs_info->bdi);
76dda93c 3724 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3725
53b381b3
DW
3726 btrfs_free_stripe_hash_table(fs_info);
3727
1cb048f5
FDBM
3728 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3729 root->orphan_block_rsv = NULL;
eb60ceac
CM
3730}
3731
b9fab919
CM
3732int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3733 int atomic)
5f39d397 3734{
1259ab75 3735 int ret;
727011e0 3736 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3737
0b32f4bb 3738 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3739 if (!ret)
3740 return ret;
3741
3742 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3743 parent_transid, atomic);
3744 if (ret == -EAGAIN)
3745 return ret;
1259ab75 3746 return !ret;
5f39d397
CM
3747}
3748
3749int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3750{
0b32f4bb 3751 return set_extent_buffer_uptodate(buf);
5f39d397 3752}
6702ed49 3753
5f39d397
CM
3754void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3755{
06ea65a3 3756 struct btrfs_root *root;
5f39d397 3757 u64 transid = btrfs_header_generation(buf);
b9473439 3758 int was_dirty;
b4ce94de 3759
06ea65a3
JB
3760#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3761 /*
3762 * This is a fast path so only do this check if we have sanity tests
3763 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3764 * outside of the sanity tests.
3765 */
3766 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3767 return;
3768#endif
3769 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
b9447ef8 3770 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3771 if (transid != root->fs_info->generation)
3772 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3773 "found %llu running %llu\n",
c1c9ff7c 3774 buf->start, transid, root->fs_info->generation);
0b32f4bb 3775 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
3776 if (!was_dirty)
3777 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3778 buf->len,
3779 root->fs_info->dirty_metadata_batch);
1f21ef0a
FM
3780#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3781 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3782 btrfs_print_leaf(root, buf);
3783 ASSERT(0);
3784 }
3785#endif
eb60ceac
CM
3786}
3787
b53d3f5d
LB
3788static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3789 int flush_delayed)
16cdcec7
MX
3790{
3791 /*
3792 * looks as though older kernels can get into trouble with
3793 * this code, they end up stuck in balance_dirty_pages forever
3794 */
e2d84521 3795 int ret;
16cdcec7
MX
3796
3797 if (current->flags & PF_MEMALLOC)
3798 return;
3799
b53d3f5d
LB
3800 if (flush_delayed)
3801 btrfs_balance_delayed_items(root);
16cdcec7 3802
e2d84521
MX
3803 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3804 BTRFS_DIRTY_METADATA_THRESH);
3805 if (ret > 0) {
d0e1d66b
NJ
3806 balance_dirty_pages_ratelimited(
3807 root->fs_info->btree_inode->i_mapping);
16cdcec7
MX
3808 }
3809 return;
3810}
3811
b53d3f5d 3812void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 3813{
b53d3f5d
LB
3814 __btrfs_btree_balance_dirty(root, 1);
3815}
585ad2c3 3816
b53d3f5d
LB
3817void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3818{
3819 __btrfs_btree_balance_dirty(root, 0);
35b7e476 3820}
6b80053d 3821
ca7a79ad 3822int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3823{
727011e0 3824 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3825 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3826}
0da5468f 3827
fcd1f065 3828static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3829 int read_only)
3830{
1104a885
DS
3831 /*
3832 * Placeholder for checks
3833 */
fcd1f065 3834 return 0;
acce952b 3835}
3836
48a3b636 3837static void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 3838{
acce952b 3839 mutex_lock(&root->fs_info->cleaner_mutex);
3840 btrfs_run_delayed_iputs(root);
3841 mutex_unlock(&root->fs_info->cleaner_mutex);
3842
3843 down_write(&root->fs_info->cleanup_work_sem);
3844 up_write(&root->fs_info->cleanup_work_sem);
3845
3846 /* cleanup FS via transaction */
3847 btrfs_cleanup_transaction(root);
acce952b 3848}
3849
143bede5 3850static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3851{
acce952b 3852 struct btrfs_ordered_extent *ordered;
acce952b 3853
199c2a9c 3854 spin_lock(&root->ordered_extent_lock);
779880ef
JB
3855 /*
3856 * This will just short circuit the ordered completion stuff which will
3857 * make sure the ordered extent gets properly cleaned up.
3858 */
199c2a9c 3859 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
3860 root_extent_list)
3861 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
3862 spin_unlock(&root->ordered_extent_lock);
3863}
3864
3865static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3866{
3867 struct btrfs_root *root;
3868 struct list_head splice;
3869
3870 INIT_LIST_HEAD(&splice);
3871
3872 spin_lock(&fs_info->ordered_root_lock);
3873 list_splice_init(&fs_info->ordered_roots, &splice);
3874 while (!list_empty(&splice)) {
3875 root = list_first_entry(&splice, struct btrfs_root,
3876 ordered_root);
1de2cfde
JB
3877 list_move_tail(&root->ordered_root,
3878 &fs_info->ordered_roots);
199c2a9c 3879
2a85d9ca 3880 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
3881 btrfs_destroy_ordered_extents(root);
3882
2a85d9ca
LB
3883 cond_resched();
3884 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
3885 }
3886 spin_unlock(&fs_info->ordered_root_lock);
acce952b 3887}
3888
35a3621b
SB
3889static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3890 struct btrfs_root *root)
acce952b 3891{
3892 struct rb_node *node;
3893 struct btrfs_delayed_ref_root *delayed_refs;
3894 struct btrfs_delayed_ref_node *ref;
3895 int ret = 0;
3896
3897 delayed_refs = &trans->delayed_refs;
3898
3899 spin_lock(&delayed_refs->lock);
d7df2c79 3900 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 3901 spin_unlock(&delayed_refs->lock);
efe120a0 3902 btrfs_info(root->fs_info, "delayed_refs has NO entry");
acce952b 3903 return ret;
3904 }
3905
d7df2c79
JB
3906 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3907 struct btrfs_delayed_ref_head *head;
e78417d1 3908 bool pin_bytes = false;
acce952b 3909
d7df2c79
JB
3910 head = rb_entry(node, struct btrfs_delayed_ref_head,
3911 href_node);
3912 if (!mutex_trylock(&head->mutex)) {
3913 atomic_inc(&head->node.refs);
3914 spin_unlock(&delayed_refs->lock);
eb12db69 3915
d7df2c79 3916 mutex_lock(&head->mutex);
e78417d1 3917 mutex_unlock(&head->mutex);
d7df2c79
JB
3918 btrfs_put_delayed_ref(&head->node);
3919 spin_lock(&delayed_refs->lock);
3920 continue;
3921 }
3922 spin_lock(&head->lock);
3923 while ((node = rb_first(&head->ref_root)) != NULL) {
3924 ref = rb_entry(node, struct btrfs_delayed_ref_node,
3925 rb_node);
3926 ref->in_tree = 0;
3927 rb_erase(&ref->rb_node, &head->ref_root);
3928 atomic_dec(&delayed_refs->num_entries);
3929 btrfs_put_delayed_ref(ref);
e78417d1 3930 }
d7df2c79
JB
3931 if (head->must_insert_reserved)
3932 pin_bytes = true;
3933 btrfs_free_delayed_extent_op(head->extent_op);
3934 delayed_refs->num_heads--;
3935 if (head->processing == 0)
3936 delayed_refs->num_heads_ready--;
3937 atomic_dec(&delayed_refs->num_entries);
3938 head->node.in_tree = 0;
3939 rb_erase(&head->href_node, &delayed_refs->href_root);
3940 spin_unlock(&head->lock);
3941 spin_unlock(&delayed_refs->lock);
3942 mutex_unlock(&head->mutex);
acce952b 3943
d7df2c79
JB
3944 if (pin_bytes)
3945 btrfs_pin_extent(root, head->node.bytenr,
3946 head->node.num_bytes, 1);
3947 btrfs_put_delayed_ref(&head->node);
acce952b 3948 cond_resched();
3949 spin_lock(&delayed_refs->lock);
3950 }
3951
3952 spin_unlock(&delayed_refs->lock);
3953
3954 return ret;
3955}
3956
143bede5 3957static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 3958{
3959 struct btrfs_inode *btrfs_inode;
3960 struct list_head splice;
3961
3962 INIT_LIST_HEAD(&splice);
3963
eb73c1b7
MX
3964 spin_lock(&root->delalloc_lock);
3965 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 3966
3967 while (!list_empty(&splice)) {
eb73c1b7
MX
3968 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3969 delalloc_inodes);
acce952b 3970
3971 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
3972 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3973 &btrfs_inode->runtime_flags);
eb73c1b7 3974 spin_unlock(&root->delalloc_lock);
acce952b 3975
3976 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 3977
eb73c1b7 3978 spin_lock(&root->delalloc_lock);
acce952b 3979 }
3980
eb73c1b7
MX
3981 spin_unlock(&root->delalloc_lock);
3982}
3983
3984static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3985{
3986 struct btrfs_root *root;
3987 struct list_head splice;
3988
3989 INIT_LIST_HEAD(&splice);
3990
3991 spin_lock(&fs_info->delalloc_root_lock);
3992 list_splice_init(&fs_info->delalloc_roots, &splice);
3993 while (!list_empty(&splice)) {
3994 root = list_first_entry(&splice, struct btrfs_root,
3995 delalloc_root);
3996 list_del_init(&root->delalloc_root);
3997 root = btrfs_grab_fs_root(root);
3998 BUG_ON(!root);
3999 spin_unlock(&fs_info->delalloc_root_lock);
4000
4001 btrfs_destroy_delalloc_inodes(root);
4002 btrfs_put_fs_root(root);
4003
4004 spin_lock(&fs_info->delalloc_root_lock);
4005 }
4006 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4007}
4008
4009static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4010 struct extent_io_tree *dirty_pages,
4011 int mark)
4012{
4013 int ret;
acce952b 4014 struct extent_buffer *eb;
4015 u64 start = 0;
4016 u64 end;
acce952b 4017
4018 while (1) {
4019 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4020 mark, NULL);
acce952b 4021 if (ret)
4022 break;
4023
4024 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4025 while (start <= end) {
fd8b2b61 4026 eb = btrfs_find_tree_block(root, start,
707e8a07
DS
4027 root->nodesize);
4028 start += root->nodesize;
fd8b2b61 4029 if (!eb)
acce952b 4030 continue;
fd8b2b61 4031 wait_on_extent_buffer_writeback(eb);
acce952b 4032
fd8b2b61
JB
4033 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4034 &eb->bflags))
4035 clear_extent_buffer_dirty(eb);
4036 free_extent_buffer_stale(eb);
acce952b 4037 }
4038 }
4039
4040 return ret;
4041}
4042
4043static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4044 struct extent_io_tree *pinned_extents)
4045{
4046 struct extent_io_tree *unpin;
4047 u64 start;
4048 u64 end;
4049 int ret;
ed0eaa14 4050 bool loop = true;
acce952b 4051
4052 unpin = pinned_extents;
ed0eaa14 4053again:
acce952b 4054 while (1) {
4055 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4056 EXTENT_DIRTY, NULL);
acce952b 4057 if (ret)
4058 break;
4059
4060 /* opt_discard */
5378e607
LD
4061 if (btrfs_test_opt(root, DISCARD))
4062 ret = btrfs_error_discard_extent(root, start,
4063 end + 1 - start,
4064 NULL);
acce952b 4065
4066 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4067 btrfs_error_unpin_extent_range(root, start, end);
4068 cond_resched();
4069 }
4070
ed0eaa14
LB
4071 if (loop) {
4072 if (unpin == &root->fs_info->freed_extents[0])
4073 unpin = &root->fs_info->freed_extents[1];
4074 else
4075 unpin = &root->fs_info->freed_extents[0];
4076 loop = false;
4077 goto again;
4078 }
4079
acce952b 4080 return 0;
4081}
4082
49b25e05
JM
4083void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4084 struct btrfs_root *root)
4085{
4086 btrfs_destroy_delayed_refs(cur_trans, root);
49b25e05 4087
4a9d8bde 4088 cur_trans->state = TRANS_STATE_COMMIT_START;
d7096fc3 4089 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05 4090
4a9d8bde 4091 cur_trans->state = TRANS_STATE_UNBLOCKED;
d7096fc3 4092 wake_up(&root->fs_info->transaction_wait);
49b25e05 4093
67cde344
MX
4094 btrfs_destroy_delayed_inodes(root);
4095 btrfs_assert_delayed_root_empty(root);
49b25e05 4096
49b25e05
JM
4097 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4098 EXTENT_DIRTY);
6e841e32
LB
4099 btrfs_destroy_pinned_extent(root,
4100 root->fs_info->pinned_extents);
49b25e05 4101
4a9d8bde
MX
4102 cur_trans->state =TRANS_STATE_COMPLETED;
4103 wake_up(&cur_trans->commit_wait);
4104
49b25e05
JM
4105 /*
4106 memset(cur_trans, 0, sizeof(*cur_trans));
4107 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4108 */
4109}
4110
48a3b636 4111static int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 4112{
4113 struct btrfs_transaction *t;
acce952b 4114
acce952b 4115 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4116
a4abeea4 4117 spin_lock(&root->fs_info->trans_lock);
724e2315
JB
4118 while (!list_empty(&root->fs_info->trans_list)) {
4119 t = list_first_entry(&root->fs_info->trans_list,
4120 struct btrfs_transaction, list);
4121 if (t->state >= TRANS_STATE_COMMIT_START) {
4122 atomic_inc(&t->use_count);
4123 spin_unlock(&root->fs_info->trans_lock);
4124 btrfs_wait_for_commit(root, t->transid);
4125 btrfs_put_transaction(t);
4126 spin_lock(&root->fs_info->trans_lock);
4127 continue;
4128 }
4129 if (t == root->fs_info->running_transaction) {
4130 t->state = TRANS_STATE_COMMIT_DOING;
4131 spin_unlock(&root->fs_info->trans_lock);
4132 /*
4133 * We wait for 0 num_writers since we don't hold a trans
4134 * handle open currently for this transaction.
4135 */
4136 wait_event(t->writer_wait,
4137 atomic_read(&t->num_writers) == 0);
4138 } else {
4139 spin_unlock(&root->fs_info->trans_lock);
4140 }
4141 btrfs_cleanup_one_transaction(t, root);
4a9d8bde 4142
724e2315
JB
4143 spin_lock(&root->fs_info->trans_lock);
4144 if (t == root->fs_info->running_transaction)
4145 root->fs_info->running_transaction = NULL;
acce952b 4146 list_del_init(&t->list);
724e2315 4147 spin_unlock(&root->fs_info->trans_lock);
acce952b 4148
724e2315
JB
4149 btrfs_put_transaction(t);
4150 trace_btrfs_transaction_commit(root);
4151 spin_lock(&root->fs_info->trans_lock);
4152 }
4153 spin_unlock(&root->fs_info->trans_lock);
4154 btrfs_destroy_all_ordered_extents(root->fs_info);
4155 btrfs_destroy_delayed_inodes(root);
4156 btrfs_assert_delayed_root_empty(root);
4157 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4158 btrfs_destroy_all_delalloc_inodes(root->fs_info);
acce952b 4159 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 4160
4161 return 0;
4162}
4163
d1310b2e 4164static struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4165 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4166 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4167 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4168 /* note we're sharing with inode.c for the merge bio hook */
4169 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4170};
This page took 1.027231 seconds and 5 git commands to generate.