Btrfs: don't use threaded IO completion helpers for metadata writes
[deliverable/linux.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
163e783e 29#include <linux/crc32c.h>
5a0e3ad6 30#include <linux/slab.h>
784b4e29 31#include <linux/migrate.h>
7a36ddec 32#include <linux/ratelimit.h>
7e75bf3f 33#include <asm/unaligned.h>
4b4e25f2 34#include "compat.h"
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
8b712842 41#include "async-thread.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
eb60ceac 47
d1310b2e 48static struct extent_io_ops btree_extent_io_ops;
8b712842 49static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 50static void free_fs_root(struct btrfs_root *root);
acce952b 51static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
52 int read_only);
53static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
54static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 struct btrfs_root *root);
57static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
58static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59static int btrfs_destroy_marked_extents(struct btrfs_root *root,
60 struct extent_io_tree *dirty_pages,
61 int mark);
62static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
63 struct extent_io_tree *pinned_extents);
64static int btrfs_cleanup_transaction(struct btrfs_root *root);
ce9adaa5 65
d352ac68
CM
66/*
67 * end_io_wq structs are used to do processing in task context when an IO is
68 * complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
ce9adaa5
CM
71struct end_io_wq {
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
76 int error;
22c59948 77 int metadata;
ce9adaa5 78 struct list_head list;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
d352ac68
CM
82/*
83 * async submit bios are used to offload expensive checksumming
84 * onto the worker threads. They checksum file and metadata bios
85 * just before they are sent down the IO stack.
86 */
44b8bd7e
CM
87struct async_submit_bio {
88 struct inode *inode;
89 struct bio *bio;
90 struct list_head list;
4a69a410
CM
91 extent_submit_bio_hook_t *submit_bio_start;
92 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
93 int rw;
94 int mirror_num;
c8b97818 95 unsigned long bio_flags;
eaf25d93
CM
96 /*
97 * bio_offset is optional, can be used if the pages in the bio
98 * can't tell us where in the file the bio should go
99 */
100 u64 bio_offset;
8b712842 101 struct btrfs_work work;
44b8bd7e
CM
102};
103
85d4e461
CM
104/*
105 * Lockdep class keys for extent_buffer->lock's in this root. For a given
106 * eb, the lockdep key is determined by the btrfs_root it belongs to and
107 * the level the eb occupies in the tree.
108 *
109 * Different roots are used for different purposes and may nest inside each
110 * other and they require separate keysets. As lockdep keys should be
111 * static, assign keysets according to the purpose of the root as indicated
112 * by btrfs_root->objectid. This ensures that all special purpose roots
113 * have separate keysets.
4008c04a 114 *
85d4e461
CM
115 * Lock-nesting across peer nodes is always done with the immediate parent
116 * node locked thus preventing deadlock. As lockdep doesn't know this, use
117 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 118 *
85d4e461
CM
119 * The key is set by the readpage_end_io_hook after the buffer has passed
120 * csum validation but before the pages are unlocked. It is also set by
121 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 122 *
85d4e461
CM
123 * We also add a check to make sure the highest level of the tree is the
124 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
125 * needs update as well.
4008c04a
CM
126 */
127#ifdef CONFIG_DEBUG_LOCK_ALLOC
128# if BTRFS_MAX_LEVEL != 8
129# error
130# endif
85d4e461
CM
131
132static struct btrfs_lockdep_keyset {
133 u64 id; /* root objectid */
134 const char *name_stem; /* lock name stem */
135 char names[BTRFS_MAX_LEVEL + 1][20];
136 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
137} btrfs_lockdep_keysets[] = {
138 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
139 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
140 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
141 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
142 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
143 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
144 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
145 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
146 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
147 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
148 { .id = 0, .name_stem = "tree" },
4008c04a 149};
85d4e461
CM
150
151void __init btrfs_init_lockdep(void)
152{
153 int i, j;
154
155 /* initialize lockdep class names */
156 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
157 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
158
159 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
160 snprintf(ks->names[j], sizeof(ks->names[j]),
161 "btrfs-%s-%02d", ks->name_stem, j);
162 }
163}
164
165void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
166 int level)
167{
168 struct btrfs_lockdep_keyset *ks;
169
170 BUG_ON(level >= ARRAY_SIZE(ks->keys));
171
172 /* find the matching keyset, id 0 is the default entry */
173 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
174 if (ks->id == objectid)
175 break;
176
177 lockdep_set_class_and_name(&eb->lock,
178 &ks->keys[level], ks->names[level]);
179}
180
4008c04a
CM
181#endif
182
d352ac68
CM
183/*
184 * extents on the btree inode are pretty simple, there's one extent
185 * that covers the entire device
186 */
b2950863 187static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 188 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 189 int create)
7eccb903 190{
5f39d397
CM
191 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
192 struct extent_map *em;
193 int ret;
194
890871be 195 read_lock(&em_tree->lock);
d1310b2e 196 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
197 if (em) {
198 em->bdev =
199 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 200 read_unlock(&em_tree->lock);
5f39d397 201 goto out;
a061fc8d 202 }
890871be 203 read_unlock(&em_tree->lock);
7b13b7b1 204
172ddd60 205 em = alloc_extent_map();
5f39d397
CM
206 if (!em) {
207 em = ERR_PTR(-ENOMEM);
208 goto out;
209 }
210 em->start = 0;
0afbaf8c 211 em->len = (u64)-1;
c8b97818 212 em->block_len = (u64)-1;
5f39d397 213 em->block_start = 0;
a061fc8d 214 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 215
890871be 216 write_lock(&em_tree->lock);
5f39d397
CM
217 ret = add_extent_mapping(em_tree, em);
218 if (ret == -EEXIST) {
0afbaf8c
CM
219 u64 failed_start = em->start;
220 u64 failed_len = em->len;
221
5f39d397 222 free_extent_map(em);
7b13b7b1 223 em = lookup_extent_mapping(em_tree, start, len);
0afbaf8c 224 if (em) {
7b13b7b1 225 ret = 0;
0afbaf8c
CM
226 } else {
227 em = lookup_extent_mapping(em_tree, failed_start,
228 failed_len);
7b13b7b1 229 ret = -EIO;
0afbaf8c 230 }
5f39d397 231 } else if (ret) {
7b13b7b1
CM
232 free_extent_map(em);
233 em = NULL;
5f39d397 234 }
890871be 235 write_unlock(&em_tree->lock);
7b13b7b1
CM
236
237 if (ret)
238 em = ERR_PTR(ret);
5f39d397
CM
239out:
240 return em;
7eccb903
CM
241}
242
19c00ddc
CM
243u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
244{
163e783e 245 return crc32c(seed, data, len);
19c00ddc
CM
246}
247
248void btrfs_csum_final(u32 crc, char *result)
249{
7e75bf3f 250 put_unaligned_le32(~crc, result);
19c00ddc
CM
251}
252
d352ac68
CM
253/*
254 * compute the csum for a btree block, and either verify it or write it
255 * into the csum field of the block.
256 */
19c00ddc
CM
257static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
258 int verify)
259{
6c41761f 260 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 261 char *result = NULL;
19c00ddc
CM
262 unsigned long len;
263 unsigned long cur_len;
264 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
265 char *kaddr;
266 unsigned long map_start;
267 unsigned long map_len;
268 int err;
269 u32 crc = ~(u32)0;
607d432d 270 unsigned long inline_result;
19c00ddc
CM
271
272 len = buf->len - offset;
d397712b 273 while (len > 0) {
19c00ddc 274 err = map_private_extent_buffer(buf, offset, 32,
a6591715 275 &kaddr, &map_start, &map_len);
d397712b 276 if (err)
19c00ddc 277 return 1;
19c00ddc
CM
278 cur_len = min(len, map_len - (offset - map_start));
279 crc = btrfs_csum_data(root, kaddr + offset - map_start,
280 crc, cur_len);
281 len -= cur_len;
282 offset += cur_len;
19c00ddc 283 }
607d432d
JB
284 if (csum_size > sizeof(inline_result)) {
285 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
286 if (!result)
287 return 1;
288 } else {
289 result = (char *)&inline_result;
290 }
291
19c00ddc
CM
292 btrfs_csum_final(crc, result);
293
294 if (verify) {
607d432d 295 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
296 u32 val;
297 u32 found = 0;
607d432d 298 memcpy(&found, result, csum_size);
e4204ded 299
607d432d 300 read_extent_buffer(buf, &val, 0, csum_size);
7a36ddec 301 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
193f284d
CM
302 "failed on %llu wanted %X found %X "
303 "level %d\n",
304 root->fs_info->sb->s_id,
305 (unsigned long long)buf->start, val, found,
306 btrfs_header_level(buf));
607d432d
JB
307 if (result != (char *)&inline_result)
308 kfree(result);
19c00ddc
CM
309 return 1;
310 }
311 } else {
607d432d 312 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 313 }
607d432d
JB
314 if (result != (char *)&inline_result)
315 kfree(result);
19c00ddc
CM
316 return 0;
317}
318
d352ac68
CM
319/*
320 * we can't consider a given block up to date unless the transid of the
321 * block matches the transid in the parent node's pointer. This is how we
322 * detect blocks that either didn't get written at all or got written
323 * in the wrong place.
324 */
1259ab75
CM
325static int verify_parent_transid(struct extent_io_tree *io_tree,
326 struct extent_buffer *eb, u64 parent_transid)
327{
2ac55d41 328 struct extent_state *cached_state = NULL;
1259ab75
CM
329 int ret;
330
331 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
332 return 0;
333
2ac55d41
JB
334 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
335 0, &cached_state, GFP_NOFS);
0b32f4bb 336 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
337 btrfs_header_generation(eb) == parent_transid) {
338 ret = 0;
339 goto out;
340 }
7a36ddec 341 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d
CM
342 "found %llu\n",
343 (unsigned long long)eb->start,
344 (unsigned long long)parent_transid,
345 (unsigned long long)btrfs_header_generation(eb));
1259ab75 346 ret = 1;
0b32f4bb 347 clear_extent_buffer_uptodate(eb);
33958dc6 348out:
2ac55d41
JB
349 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
350 &cached_state, GFP_NOFS);
1259ab75 351 return ret;
1259ab75
CM
352}
353
d352ac68
CM
354/*
355 * helper to read a given tree block, doing retries as required when
356 * the checksums don't match and we have alternate mirrors to try.
357 */
f188591e
CM
358static int btree_read_extent_buffer_pages(struct btrfs_root *root,
359 struct extent_buffer *eb,
ca7a79ad 360 u64 start, u64 parent_transid)
f188591e
CM
361{
362 struct extent_io_tree *io_tree;
363 int ret;
364 int num_copies = 0;
365 int mirror_num = 0;
366
a826d6dc 367 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
368 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
369 while (1) {
bb82ab88
AJ
370 ret = read_extent_buffer_pages(io_tree, eb, start,
371 WAIT_COMPLETE,
f188591e 372 btree_get_extent, mirror_num);
727011e0 373 if (!ret && !verify_parent_transid(io_tree, eb, parent_transid))
f188591e 374 return ret;
d397712b 375
a826d6dc
JB
376 /*
377 * This buffer's crc is fine, but its contents are corrupted, so
378 * there is no reason to read the other copies, they won't be
379 * any less wrong.
380 */
381 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
382 return ret;
383
f188591e
CM
384 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
385 eb->start, eb->len);
4235298e 386 if (num_copies == 1)
f188591e 387 return ret;
4235298e 388
f188591e 389 mirror_num++;
4235298e 390 if (mirror_num > num_copies)
f188591e 391 return ret;
f188591e 392 }
f188591e
CM
393 return -EIO;
394}
19c00ddc 395
d352ac68 396/*
d397712b
CM
397 * checksum a dirty tree block before IO. This has extra checks to make sure
398 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 399 */
d397712b 400
b2950863 401static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 402{
d1310b2e 403 struct extent_io_tree *tree;
35ebb934 404 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
19c00ddc 405 u64 found_start;
19c00ddc 406 struct extent_buffer *eb;
f188591e 407
d1310b2e 408 tree = &BTRFS_I(page->mapping->host)->io_tree;
19c00ddc 409
4f2de97a
JB
410 eb = (struct extent_buffer *)page->private;
411 if (page != eb->pages[0])
412 return 0;
784b4e29 413
19c00ddc
CM
414 found_start = btrfs_header_bytenr(eb);
415 if (found_start != start) {
55c69072 416 WARN_ON(1);
4f2de97a 417 return 0;
55c69072 418 }
727011e0 419 if (eb->pages[0] != page) {
55c69072 420 WARN_ON(1);
4f2de97a 421 return 0;
55c69072
CM
422 }
423 if (!PageUptodate(page)) {
55c69072 424 WARN_ON(1);
4f2de97a 425 return 0;
19c00ddc 426 }
19c00ddc 427 csum_tree_block(root, eb, 0);
19c00ddc
CM
428 return 0;
429}
430
2b82032c
YZ
431static int check_tree_block_fsid(struct btrfs_root *root,
432 struct extent_buffer *eb)
433{
434 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
435 u8 fsid[BTRFS_UUID_SIZE];
436 int ret = 1;
437
438 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
439 BTRFS_FSID_SIZE);
440 while (fs_devices) {
441 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
442 ret = 0;
443 break;
444 }
445 fs_devices = fs_devices->seed;
446 }
447 return ret;
448}
449
a826d6dc
JB
450#define CORRUPT(reason, eb, root, slot) \
451 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
452 "root=%llu, slot=%d\n", reason, \
453 (unsigned long long)btrfs_header_bytenr(eb), \
454 (unsigned long long)root->objectid, slot)
455
456static noinline int check_leaf(struct btrfs_root *root,
457 struct extent_buffer *leaf)
458{
459 struct btrfs_key key;
460 struct btrfs_key leaf_key;
461 u32 nritems = btrfs_header_nritems(leaf);
462 int slot;
463
464 if (nritems == 0)
465 return 0;
466
467 /* Check the 0 item */
468 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
469 BTRFS_LEAF_DATA_SIZE(root)) {
470 CORRUPT("invalid item offset size pair", leaf, root, 0);
471 return -EIO;
472 }
473
474 /*
475 * Check to make sure each items keys are in the correct order and their
476 * offsets make sense. We only have to loop through nritems-1 because
477 * we check the current slot against the next slot, which verifies the
478 * next slot's offset+size makes sense and that the current's slot
479 * offset is correct.
480 */
481 for (slot = 0; slot < nritems - 1; slot++) {
482 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
483 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
484
485 /* Make sure the keys are in the right order */
486 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
487 CORRUPT("bad key order", leaf, root, slot);
488 return -EIO;
489 }
490
491 /*
492 * Make sure the offset and ends are right, remember that the
493 * item data starts at the end of the leaf and grows towards the
494 * front.
495 */
496 if (btrfs_item_offset_nr(leaf, slot) !=
497 btrfs_item_end_nr(leaf, slot + 1)) {
498 CORRUPT("slot offset bad", leaf, root, slot);
499 return -EIO;
500 }
501
502 /*
503 * Check to make sure that we don't point outside of the leaf,
504 * just incase all the items are consistent to eachother, but
505 * all point outside of the leaf.
506 */
507 if (btrfs_item_end_nr(leaf, slot) >
508 BTRFS_LEAF_DATA_SIZE(root)) {
509 CORRUPT("slot end outside of leaf", leaf, root, slot);
510 return -EIO;
511 }
512 }
513
514 return 0;
515}
516
727011e0
CM
517struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
518 struct page *page, int max_walk)
519{
520 struct extent_buffer *eb;
521 u64 start = page_offset(page);
522 u64 target = start;
523 u64 min_start;
524
525 if (start < max_walk)
526 min_start = 0;
527 else
528 min_start = start - max_walk;
529
530 while (start >= min_start) {
531 eb = find_extent_buffer(tree, start, 0);
532 if (eb) {
533 /*
534 * we found an extent buffer and it contains our page
535 * horray!
536 */
537 if (eb->start <= target &&
538 eb->start + eb->len > target)
539 return eb;
540
541 /* we found an extent buffer that wasn't for us */
542 free_extent_buffer(eb);
543 return NULL;
544 }
545 if (start == 0)
546 break;
547 start -= PAGE_CACHE_SIZE;
548 }
549 return NULL;
550}
551
b2950863 552static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
ce9adaa5
CM
553 struct extent_state *state)
554{
555 struct extent_io_tree *tree;
556 u64 found_start;
557 int found_level;
ce9adaa5
CM
558 struct extent_buffer *eb;
559 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 560 int ret = 0;
727011e0 561 int reads_done;
ce9adaa5 562
ce9adaa5
CM
563 if (!page->private)
564 goto out;
d397712b 565
727011e0 566 tree = &BTRFS_I(page->mapping->host)->io_tree;
4f2de97a 567 eb = (struct extent_buffer *)page->private;
d397712b 568
0b32f4bb
JB
569 /* the pending IO might have been the only thing that kept this buffer
570 * in memory. Make sure we have a ref for all this other checks
571 */
572 extent_buffer_get(eb);
573
574 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
575 if (!reads_done)
576 goto err;
f188591e 577
ce9adaa5 578 found_start = btrfs_header_bytenr(eb);
727011e0 579 if (found_start != eb->start) {
7a36ddec 580 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
193f284d
CM
581 "%llu %llu\n",
582 (unsigned long long)found_start,
583 (unsigned long long)eb->start);
f188591e 584 ret = -EIO;
ce9adaa5
CM
585 goto err;
586 }
2b82032c 587 if (check_tree_block_fsid(root, eb)) {
7a36ddec 588 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
193f284d 589 (unsigned long long)eb->start);
1259ab75
CM
590 ret = -EIO;
591 goto err;
592 }
ce9adaa5
CM
593 found_level = btrfs_header_level(eb);
594
85d4e461
CM
595 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
596 eb, found_level);
4008c04a 597
ce9adaa5 598 ret = csum_tree_block(root, eb, 1);
a826d6dc 599 if (ret) {
f188591e 600 ret = -EIO;
a826d6dc
JB
601 goto err;
602 }
603
604 /*
605 * If this is a leaf block and it is corrupt, set the corrupt bit so
606 * that we don't try and read the other copies of this block, just
607 * return -EIO.
608 */
609 if (found_level == 0 && check_leaf(root, eb)) {
610 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
611 ret = -EIO;
612 }
ce9adaa5 613
0b32f4bb
JB
614 if (!ret)
615 set_extent_buffer_uptodate(eb);
ce9adaa5 616err:
4bb31e92
AJ
617 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
618 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
619 btree_readahead_hook(root, eb, eb->start, ret);
620 }
621
0b32f4bb
JB
622 if (ret)
623 clear_extent_buffer_uptodate(eb);
624 free_extent_buffer(eb);
ce9adaa5 625out:
f188591e 626 return ret;
ce9adaa5
CM
627}
628
4bb31e92
AJ
629static int btree_io_failed_hook(struct bio *failed_bio,
630 struct page *page, u64 start, u64 end,
32240a91 631 int mirror_num, struct extent_state *state)
4bb31e92 632{
4bb31e92
AJ
633 struct extent_buffer *eb;
634 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
635
4f2de97a
JB
636 eb = (struct extent_buffer *)page->private;
637 if (page != eb->pages[0])
638 return -EIO;
4bb31e92
AJ
639
640 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
641 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
642 btree_readahead_hook(root, eb, eb->start, -EIO);
643 }
4bb31e92
AJ
644 return -EIO; /* we fixed nothing */
645}
646
ce9adaa5 647static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
648{
649 struct end_io_wq *end_io_wq = bio->bi_private;
650 struct btrfs_fs_info *fs_info;
ce9adaa5 651
ce9adaa5 652 fs_info = end_io_wq->info;
ce9adaa5 653 end_io_wq->error = err;
8b712842
CM
654 end_io_wq->work.func = end_workqueue_fn;
655 end_io_wq->work.flags = 0;
d20f7043 656
7b6d91da 657 if (bio->bi_rw & REQ_WRITE) {
0cb59c99 658 if (end_io_wq->metadata == 1)
cad321ad
CM
659 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
660 &end_io_wq->work);
0cb59c99
JB
661 else if (end_io_wq->metadata == 2)
662 btrfs_queue_worker(&fs_info->endio_freespace_worker,
663 &end_io_wq->work);
cad321ad
CM
664 else
665 btrfs_queue_worker(&fs_info->endio_write_workers,
666 &end_io_wq->work);
d20f7043
CM
667 } else {
668 if (end_io_wq->metadata)
669 btrfs_queue_worker(&fs_info->endio_meta_workers,
670 &end_io_wq->work);
671 else
672 btrfs_queue_worker(&fs_info->endio_workers,
673 &end_io_wq->work);
674 }
ce9adaa5
CM
675}
676
0cb59c99
JB
677/*
678 * For the metadata arg you want
679 *
680 * 0 - if data
681 * 1 - if normal metadta
682 * 2 - if writing to the free space cache area
683 */
22c59948
CM
684int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
685 int metadata)
0b86a832 686{
ce9adaa5 687 struct end_io_wq *end_io_wq;
ce9adaa5
CM
688 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
689 if (!end_io_wq)
690 return -ENOMEM;
691
692 end_io_wq->private = bio->bi_private;
693 end_io_wq->end_io = bio->bi_end_io;
22c59948 694 end_io_wq->info = info;
ce9adaa5
CM
695 end_io_wq->error = 0;
696 end_io_wq->bio = bio;
22c59948 697 end_io_wq->metadata = metadata;
ce9adaa5
CM
698
699 bio->bi_private = end_io_wq;
700 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
701 return 0;
702}
703
b64a2851 704unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 705{
4854ddd0
CM
706 unsigned long limit = min_t(unsigned long,
707 info->workers.max_workers,
708 info->fs_devices->open_devices);
709 return 256 * limit;
710}
0986fe9e 711
4a69a410
CM
712static void run_one_async_start(struct btrfs_work *work)
713{
4a69a410
CM
714 struct async_submit_bio *async;
715
716 async = container_of(work, struct async_submit_bio, work);
4a69a410 717 async->submit_bio_start(async->inode, async->rw, async->bio,
eaf25d93
CM
718 async->mirror_num, async->bio_flags,
719 async->bio_offset);
4a69a410
CM
720}
721
722static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
723{
724 struct btrfs_fs_info *fs_info;
725 struct async_submit_bio *async;
4854ddd0 726 int limit;
8b712842
CM
727
728 async = container_of(work, struct async_submit_bio, work);
729 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 730
b64a2851 731 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
732 limit = limit * 2 / 3;
733
8b712842 734 atomic_dec(&fs_info->nr_async_submits);
0986fe9e 735
b64a2851
CM
736 if (atomic_read(&fs_info->nr_async_submits) < limit &&
737 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
738 wake_up(&fs_info->async_submit_wait);
739
4a69a410 740 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
741 async->mirror_num, async->bio_flags,
742 async->bio_offset);
4a69a410
CM
743}
744
745static void run_one_async_free(struct btrfs_work *work)
746{
747 struct async_submit_bio *async;
748
749 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
750 kfree(async);
751}
752
44b8bd7e
CM
753int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
754 int rw, struct bio *bio, int mirror_num,
c8b97818 755 unsigned long bio_flags,
eaf25d93 756 u64 bio_offset,
4a69a410
CM
757 extent_submit_bio_hook_t *submit_bio_start,
758 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
759{
760 struct async_submit_bio *async;
761
762 async = kmalloc(sizeof(*async), GFP_NOFS);
763 if (!async)
764 return -ENOMEM;
765
766 async->inode = inode;
767 async->rw = rw;
768 async->bio = bio;
769 async->mirror_num = mirror_num;
4a69a410
CM
770 async->submit_bio_start = submit_bio_start;
771 async->submit_bio_done = submit_bio_done;
772
773 async->work.func = run_one_async_start;
774 async->work.ordered_func = run_one_async_done;
775 async->work.ordered_free = run_one_async_free;
776
8b712842 777 async->work.flags = 0;
c8b97818 778 async->bio_flags = bio_flags;
eaf25d93 779 async->bio_offset = bio_offset;
8c8bee1d 780
cb03c743 781 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 782
7b6d91da 783 if (rw & REQ_SYNC)
d313d7a3
CM
784 btrfs_set_work_high_prio(&async->work);
785
8b712842 786 btrfs_queue_worker(&fs_info->workers, &async->work);
9473f16c 787
d397712b 788 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
789 atomic_read(&fs_info->nr_async_submits)) {
790 wait_event(fs_info->async_submit_wait,
791 (atomic_read(&fs_info->nr_async_submits) == 0));
792 }
793
44b8bd7e
CM
794 return 0;
795}
796
ce3ed71a
CM
797static int btree_csum_one_bio(struct bio *bio)
798{
799 struct bio_vec *bvec = bio->bi_io_vec;
800 int bio_index = 0;
801 struct btrfs_root *root;
802
803 WARN_ON(bio->bi_vcnt <= 0);
d397712b 804 while (bio_index < bio->bi_vcnt) {
ce3ed71a
CM
805 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
806 csum_dirty_buffer(root, bvec->bv_page);
807 bio_index++;
808 bvec++;
809 }
810 return 0;
811}
812
4a69a410
CM
813static int __btree_submit_bio_start(struct inode *inode, int rw,
814 struct bio *bio, int mirror_num,
eaf25d93
CM
815 unsigned long bio_flags,
816 u64 bio_offset)
22c59948 817{
8b712842
CM
818 /*
819 * when we're called for a write, we're already in the async
5443be45 820 * submission context. Just jump into btrfs_map_bio
8b712842 821 */
4a69a410
CM
822 btree_csum_one_bio(bio);
823 return 0;
824}
22c59948 825
4a69a410 826static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
827 int mirror_num, unsigned long bio_flags,
828 u64 bio_offset)
4a69a410 829{
8b712842 830 /*
4a69a410
CM
831 * when we're called for a write, we're already in the async
832 * submission context. Just jump into btrfs_map_bio
8b712842 833 */
8b712842 834 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
0b86a832
CM
835}
836
44b8bd7e 837static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
838 int mirror_num, unsigned long bio_flags,
839 u64 bio_offset)
44b8bd7e 840{
cad321ad
CM
841 int ret;
842
7b6d91da 843 if (!(rw & REQ_WRITE)) {
f3f266ab 844
4a69a410
CM
845 /*
846 * called for a read, do the setup so that checksum validation
847 * can happen in the async kernel threads
848 */
f3f266ab
CM
849 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
850 bio, 1);
851 BUG_ON(ret);
4a69a410 852 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
6f3577bd 853 mirror_num, 0);
44b8bd7e 854 }
d313d7a3 855
cad321ad
CM
856 /*
857 * kthread helpers are used to submit writes so that checksumming
858 * can happen in parallel across all CPUs
859 */
44b8bd7e 860 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
c8b97818 861 inode, rw, bio, mirror_num, 0,
eaf25d93 862 bio_offset,
4a69a410
CM
863 __btree_submit_bio_start,
864 __btree_submit_bio_done);
44b8bd7e
CM
865}
866
3dd1462e 867#ifdef CONFIG_MIGRATION
784b4e29 868static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
869 struct page *newpage, struct page *page,
870 enum migrate_mode mode)
784b4e29
CM
871{
872 /*
873 * we can't safely write a btree page from here,
874 * we haven't done the locking hook
875 */
876 if (PageDirty(page))
877 return -EAGAIN;
878 /*
879 * Buffers may be managed in a filesystem specific way.
880 * We must have no buffers or drop them.
881 */
882 if (page_has_private(page) &&
883 !try_to_release_page(page, GFP_KERNEL))
884 return -EAGAIN;
a6bc32b8 885 return migrate_page(mapping, newpage, page, mode);
784b4e29 886}
3dd1462e 887#endif
784b4e29 888
0da5468f
CM
889
890static int btree_writepages(struct address_space *mapping,
891 struct writeback_control *wbc)
892{
d1310b2e
CM
893 struct extent_io_tree *tree;
894 tree = &BTRFS_I(mapping->host)->io_tree;
d8d5f3e1 895 if (wbc->sync_mode == WB_SYNC_NONE) {
b9473439 896 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
793955bc 897 u64 num_dirty;
24ab9cd8 898 unsigned long thresh = 32 * 1024 * 1024;
448d640b
CM
899
900 if (wbc->for_kupdate)
901 return 0;
902
b9473439
CM
903 /* this is a bit racy, but that's ok */
904 num_dirty = root->fs_info->dirty_metadata_bytes;
d397712b 905 if (num_dirty < thresh)
793955bc 906 return 0;
793955bc 907 }
0b32f4bb 908 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
909}
910
b2950863 911static int btree_readpage(struct file *file, struct page *page)
5f39d397 912{
d1310b2e
CM
913 struct extent_io_tree *tree;
914 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 915 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 916}
22b0ebda 917
70dec807 918static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 919{
98509cfc 920 if (PageWriteback(page) || PageDirty(page))
d397712b 921 return 0;
0c4e538b
DS
922 /*
923 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
924 * slab allocation from alloc_extent_state down the callchain where
925 * it'd hit a BUG_ON as those flags are not allowed.
926 */
927 gfp_flags &= ~GFP_SLAB_BUG_MASK;
928
3083ee2e 929 return try_release_extent_buffer(page, gfp_flags);
d98237b3
CM
930}
931
5f39d397 932static void btree_invalidatepage(struct page *page, unsigned long offset)
d98237b3 933{
d1310b2e
CM
934 struct extent_io_tree *tree;
935 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
936 extent_invalidatepage(tree, page, offset);
937 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 938 if (PagePrivate(page)) {
d397712b
CM
939 printk(KERN_WARNING "btrfs warning page private not zero "
940 "on page %llu\n", (unsigned long long)page_offset(page));
9ad6b7bc
CM
941 ClearPagePrivate(page);
942 set_page_private(page, 0);
943 page_cache_release(page);
944 }
d98237b3
CM
945}
946
0b32f4bb
JB
947static int btree_set_page_dirty(struct page *page)
948{
949 struct extent_buffer *eb;
950
951 BUG_ON(!PagePrivate(page));
952 eb = (struct extent_buffer *)page->private;
953 BUG_ON(!eb);
954 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
955 BUG_ON(!atomic_read(&eb->refs));
956 btrfs_assert_tree_locked(eb);
957 return __set_page_dirty_nobuffers(page);
958}
959
7f09410b 960static const struct address_space_operations btree_aops = {
d98237b3 961 .readpage = btree_readpage,
0da5468f 962 .writepages = btree_writepages,
5f39d397
CM
963 .releasepage = btree_releasepage,
964 .invalidatepage = btree_invalidatepage,
5a92bc88 965#ifdef CONFIG_MIGRATION
784b4e29 966 .migratepage = btree_migratepage,
5a92bc88 967#endif
0b32f4bb 968 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
969};
970
ca7a79ad
CM
971int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
972 u64 parent_transid)
090d1875 973{
5f39d397
CM
974 struct extent_buffer *buf = NULL;
975 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 976 int ret = 0;
090d1875 977
db94535d 978 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 979 if (!buf)
090d1875 980 return 0;
d1310b2e 981 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 982 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 983 free_extent_buffer(buf);
de428b63 984 return ret;
090d1875
CM
985}
986
ab0fff03
AJ
987int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
988 int mirror_num, struct extent_buffer **eb)
989{
990 struct extent_buffer *buf = NULL;
991 struct inode *btree_inode = root->fs_info->btree_inode;
992 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
993 int ret;
994
995 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
996 if (!buf)
997 return 0;
998
999 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1000
1001 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1002 btree_get_extent, mirror_num);
1003 if (ret) {
1004 free_extent_buffer(buf);
1005 return ret;
1006 }
1007
1008 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1009 free_extent_buffer(buf);
1010 return -EIO;
0b32f4bb 1011 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1012 *eb = buf;
1013 } else {
1014 free_extent_buffer(buf);
1015 }
1016 return 0;
1017}
1018
0999df54
CM
1019struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1020 u64 bytenr, u32 blocksize)
1021{
1022 struct inode *btree_inode = root->fs_info->btree_inode;
1023 struct extent_buffer *eb;
1024 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
f09d1f60 1025 bytenr, blocksize);
0999df54
CM
1026 return eb;
1027}
1028
1029struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1030 u64 bytenr, u32 blocksize)
1031{
1032 struct inode *btree_inode = root->fs_info->btree_inode;
1033 struct extent_buffer *eb;
1034
1035 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
727011e0 1036 bytenr, blocksize);
0999df54
CM
1037 return eb;
1038}
1039
1040
e02119d5
CM
1041int btrfs_write_tree_block(struct extent_buffer *buf)
1042{
727011e0 1043 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1044 buf->start + buf->len - 1);
e02119d5
CM
1045}
1046
1047int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1048{
727011e0 1049 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1050 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1051}
1052
0999df54 1053struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1054 u32 blocksize, u64 parent_transid)
0999df54
CM
1055{
1056 struct extent_buffer *buf = NULL;
0999df54
CM
1057 int ret;
1058
0999df54
CM
1059 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1060 if (!buf)
1061 return NULL;
0999df54 1062
ca7a79ad 1063 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
5f39d397 1064 return buf;
ce9adaa5 1065
eb60ceac
CM
1066}
1067
e089f05c 1068int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5f39d397 1069 struct extent_buffer *buf)
ed2ff2cb 1070{
55c69072 1071 if (btrfs_header_generation(buf) ==
925baedd 1072 root->fs_info->running_transaction->transid) {
b9447ef8 1073 btrfs_assert_tree_locked(buf);
b4ce94de 1074
b9473439
CM
1075 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1076 spin_lock(&root->fs_info->delalloc_lock);
1077 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1078 root->fs_info->dirty_metadata_bytes -= buf->len;
1079 else
1080 WARN_ON(1);
1081 spin_unlock(&root->fs_info->delalloc_lock);
1082 }
b4ce94de 1083
b9473439
CM
1084 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1085 btrfs_set_lock_blocking(buf);
0b32f4bb 1086 clear_extent_buffer_dirty(buf);
925baedd 1087 }
5f39d397
CM
1088 return 0;
1089}
1090
db94535d 1091static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
87ee04eb 1092 u32 stripesize, struct btrfs_root *root,
9f5fae2f 1093 struct btrfs_fs_info *fs_info,
e20d96d6 1094 u64 objectid)
d97e63b6 1095{
cfaa7295 1096 root->node = NULL;
a28ec197 1097 root->commit_root = NULL;
db94535d
CM
1098 root->sectorsize = sectorsize;
1099 root->nodesize = nodesize;
1100 root->leafsize = leafsize;
87ee04eb 1101 root->stripesize = stripesize;
123abc88 1102 root->ref_cows = 0;
0b86a832 1103 root->track_dirty = 0;
c71bf099 1104 root->in_radix = 0;
d68fc57b
YZ
1105 root->orphan_item_inserted = 0;
1106 root->orphan_cleanup_state = 0;
0b86a832 1107
0f7d52f4
CM
1108 root->objectid = objectid;
1109 root->last_trans = 0;
13a8a7c8 1110 root->highest_objectid = 0;
58176a96 1111 root->name = NULL;
6bef4d31 1112 root->inode_tree = RB_ROOT;
16cdcec7 1113 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1114 root->block_rsv = NULL;
d68fc57b 1115 root->orphan_block_rsv = NULL;
0b86a832
CM
1116
1117 INIT_LIST_HEAD(&root->dirty_list);
7b128766 1118 INIT_LIST_HEAD(&root->orphan_list);
5d4f98a2 1119 INIT_LIST_HEAD(&root->root_list);
d68fc57b 1120 spin_lock_init(&root->orphan_lock);
5d4f98a2 1121 spin_lock_init(&root->inode_lock);
f0486c68 1122 spin_lock_init(&root->accounting_lock);
a2135011 1123 mutex_init(&root->objectid_mutex);
e02119d5 1124 mutex_init(&root->log_mutex);
7237f183
YZ
1125 init_waitqueue_head(&root->log_writer_wait);
1126 init_waitqueue_head(&root->log_commit_wait[0]);
1127 init_waitqueue_head(&root->log_commit_wait[1]);
1128 atomic_set(&root->log_commit[0], 0);
1129 atomic_set(&root->log_commit[1], 0);
1130 atomic_set(&root->log_writers, 0);
1131 root->log_batch = 0;
1132 root->log_transid = 0;
257c62e1 1133 root->last_log_commit = 0;
d0c803c4 1134 extent_io_tree_init(&root->dirty_log_pages,
f993c883 1135 fs_info->btree_inode->i_mapping);
017e5369 1136
3768f368
CM
1137 memset(&root->root_key, 0, sizeof(root->root_key));
1138 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1139 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1140 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
3f157a2f 1141 root->defrag_trans_start = fs_info->generation;
58176a96 1142 init_completion(&root->kobj_unregister);
6702ed49 1143 root->defrag_running = 0;
4d775673 1144 root->root_key.objectid = objectid;
0ee5dc67 1145 root->anon_dev = 0;
3768f368
CM
1146 return 0;
1147}
1148
db94535d 1149static int find_and_setup_root(struct btrfs_root *tree_root,
9f5fae2f
CM
1150 struct btrfs_fs_info *fs_info,
1151 u64 objectid,
e20d96d6 1152 struct btrfs_root *root)
3768f368
CM
1153{
1154 int ret;
db94535d 1155 u32 blocksize;
84234f3a 1156 u64 generation;
3768f368 1157
db94535d 1158 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1159 tree_root->sectorsize, tree_root->stripesize,
1160 root, fs_info, objectid);
3768f368
CM
1161 ret = btrfs_find_last_root(tree_root, objectid,
1162 &root->root_item, &root->root_key);
4df27c4d
YZ
1163 if (ret > 0)
1164 return -ENOENT;
3768f368
CM
1165 BUG_ON(ret);
1166
84234f3a 1167 generation = btrfs_root_generation(&root->root_item);
db94535d 1168 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
af31f5e5 1169 root->commit_root = NULL;
db94535d 1170 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1171 blocksize, generation);
68433b73
CM
1172 if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1173 free_extent_buffer(root->node);
af31f5e5 1174 root->node = NULL;
68433b73
CM
1175 return -EIO;
1176 }
4df27c4d 1177 root->commit_root = btrfs_root_node(root);
d97e63b6
CM
1178 return 0;
1179}
1180
f84a8bd6 1181static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1182{
1183 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1184 if (root)
1185 root->fs_info = fs_info;
1186 return root;
1187}
1188
7237f183
YZ
1189static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1190 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1191{
1192 struct btrfs_root *root;
1193 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1194 struct extent_buffer *leaf;
e02119d5 1195
6f07e42e 1196 root = btrfs_alloc_root(fs_info);
e02119d5 1197 if (!root)
7237f183 1198 return ERR_PTR(-ENOMEM);
e02119d5
CM
1199
1200 __setup_root(tree_root->nodesize, tree_root->leafsize,
1201 tree_root->sectorsize, tree_root->stripesize,
1202 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1203
1204 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1205 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1206 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1207 /*
1208 * log trees do not get reference counted because they go away
1209 * before a real commit is actually done. They do store pointers
1210 * to file data extents, and those reference counts still get
1211 * updated (along with back refs to the log tree).
1212 */
e02119d5
CM
1213 root->ref_cows = 0;
1214
5d4f98a2 1215 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0
AJ
1216 BTRFS_TREE_LOG_OBJECTID, NULL,
1217 0, 0, 0, 0);
7237f183
YZ
1218 if (IS_ERR(leaf)) {
1219 kfree(root);
1220 return ERR_CAST(leaf);
1221 }
e02119d5 1222
5d4f98a2
YZ
1223 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1224 btrfs_set_header_bytenr(leaf, leaf->start);
1225 btrfs_set_header_generation(leaf, trans->transid);
1226 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1227 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1228 root->node = leaf;
e02119d5
CM
1229
1230 write_extent_buffer(root->node, root->fs_info->fsid,
1231 (unsigned long)btrfs_header_fsid(root->node),
1232 BTRFS_FSID_SIZE);
1233 btrfs_mark_buffer_dirty(root->node);
1234 btrfs_tree_unlock(root->node);
7237f183
YZ
1235 return root;
1236}
1237
1238int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1239 struct btrfs_fs_info *fs_info)
1240{
1241 struct btrfs_root *log_root;
1242
1243 log_root = alloc_log_tree(trans, fs_info);
1244 if (IS_ERR(log_root))
1245 return PTR_ERR(log_root);
1246 WARN_ON(fs_info->log_root_tree);
1247 fs_info->log_root_tree = log_root;
1248 return 0;
1249}
1250
1251int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1252 struct btrfs_root *root)
1253{
1254 struct btrfs_root *log_root;
1255 struct btrfs_inode_item *inode_item;
1256
1257 log_root = alloc_log_tree(trans, root->fs_info);
1258 if (IS_ERR(log_root))
1259 return PTR_ERR(log_root);
1260
1261 log_root->last_trans = trans->transid;
1262 log_root->root_key.offset = root->root_key.objectid;
1263
1264 inode_item = &log_root->root_item.inode;
1265 inode_item->generation = cpu_to_le64(1);
1266 inode_item->size = cpu_to_le64(3);
1267 inode_item->nlink = cpu_to_le32(1);
1268 inode_item->nbytes = cpu_to_le64(root->leafsize);
1269 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1270
5d4f98a2 1271 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1272
1273 WARN_ON(root->log_root);
1274 root->log_root = log_root;
1275 root->log_transid = 0;
257c62e1 1276 root->last_log_commit = 0;
e02119d5
CM
1277 return 0;
1278}
1279
1280struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1281 struct btrfs_key *location)
1282{
1283 struct btrfs_root *root;
1284 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1285 struct btrfs_path *path;
5f39d397 1286 struct extent_buffer *l;
84234f3a 1287 u64 generation;
db94535d 1288 u32 blocksize;
0f7d52f4
CM
1289 int ret = 0;
1290
6f07e42e 1291 root = btrfs_alloc_root(fs_info);
0cf6c620 1292 if (!root)
0f7d52f4 1293 return ERR_PTR(-ENOMEM);
0f7d52f4 1294 if (location->offset == (u64)-1) {
db94535d 1295 ret = find_and_setup_root(tree_root, fs_info,
0f7d52f4
CM
1296 location->objectid, root);
1297 if (ret) {
0f7d52f4
CM
1298 kfree(root);
1299 return ERR_PTR(ret);
1300 }
13a8a7c8 1301 goto out;
0f7d52f4
CM
1302 }
1303
db94535d 1304 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1305 tree_root->sectorsize, tree_root->stripesize,
1306 root, fs_info, location->objectid);
0f7d52f4
CM
1307
1308 path = btrfs_alloc_path();
db5b493a
TI
1309 if (!path) {
1310 kfree(root);
1311 return ERR_PTR(-ENOMEM);
1312 }
0f7d52f4 1313 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
13a8a7c8
YZ
1314 if (ret == 0) {
1315 l = path->nodes[0];
1316 read_extent_buffer(l, &root->root_item,
1317 btrfs_item_ptr_offset(l, path->slots[0]),
1318 sizeof(root->root_item));
1319 memcpy(&root->root_key, location, sizeof(*location));
0f7d52f4 1320 }
0f7d52f4
CM
1321 btrfs_free_path(path);
1322 if (ret) {
5e540f77 1323 kfree(root);
13a8a7c8
YZ
1324 if (ret > 0)
1325 ret = -ENOENT;
0f7d52f4
CM
1326 return ERR_PTR(ret);
1327 }
13a8a7c8 1328
84234f3a 1329 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1330 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1331 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1332 blocksize, generation);
5d4f98a2 1333 root->commit_root = btrfs_root_node(root);
0f7d52f4 1334 BUG_ON(!root->node);
13a8a7c8 1335out:
08fe4db1 1336 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1337 root->ref_cows = 1;
08fe4db1
LZ
1338 btrfs_check_and_init_root_item(&root->root_item);
1339 }
13a8a7c8 1340
5eda7b5e
CM
1341 return root;
1342}
1343
edbd8d4e
CM
1344struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1345 struct btrfs_key *location)
5eda7b5e
CM
1346{
1347 struct btrfs_root *root;
1348 int ret;
1349
edbd8d4e
CM
1350 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1351 return fs_info->tree_root;
1352 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1353 return fs_info->extent_root;
8f18cf13
CM
1354 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1355 return fs_info->chunk_root;
1356 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1357 return fs_info->dev_root;
0403e47e
YZ
1358 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1359 return fs_info->csum_root;
4df27c4d
YZ
1360again:
1361 spin_lock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1362 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1363 (unsigned long)location->objectid);
4df27c4d 1364 spin_unlock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1365 if (root)
1366 return root;
1367
e02119d5 1368 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
5eda7b5e
CM
1369 if (IS_ERR(root))
1370 return root;
3394e160 1371
581bb050 1372 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
581bb050
LZ
1373 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1374 GFP_NOFS);
35a30d7c
DS
1375 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1376 ret = -ENOMEM;
581bb050 1377 goto fail;
35a30d7c 1378 }
581bb050
LZ
1379
1380 btrfs_init_free_ino_ctl(root);
1381 mutex_init(&root->fs_commit_mutex);
1382 spin_lock_init(&root->cache_lock);
1383 init_waitqueue_head(&root->cache_wait);
1384
0ee5dc67 1385 ret = get_anon_bdev(&root->anon_dev);
ac08aedf
CM
1386 if (ret)
1387 goto fail;
3394e160 1388
d68fc57b
YZ
1389 if (btrfs_root_refs(&root->root_item) == 0) {
1390 ret = -ENOENT;
1391 goto fail;
1392 }
1393
1394 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1395 if (ret < 0)
1396 goto fail;
1397 if (ret == 0)
1398 root->orphan_item_inserted = 1;
1399
4df27c4d
YZ
1400 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1401 if (ret)
1402 goto fail;
1403
1404 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
1405 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1406 (unsigned long)root->root_key.objectid,
0f7d52f4 1407 root);
d68fc57b 1408 if (ret == 0)
4df27c4d 1409 root->in_radix = 1;
d68fc57b 1410
4df27c4d
YZ
1411 spin_unlock(&fs_info->fs_roots_radix_lock);
1412 radix_tree_preload_end();
0f7d52f4 1413 if (ret) {
4df27c4d
YZ
1414 if (ret == -EEXIST) {
1415 free_fs_root(root);
1416 goto again;
1417 }
1418 goto fail;
0f7d52f4 1419 }
4df27c4d
YZ
1420
1421 ret = btrfs_find_dead_roots(fs_info->tree_root,
1422 root->root_key.objectid);
1423 WARN_ON(ret);
edbd8d4e 1424 return root;
4df27c4d
YZ
1425fail:
1426 free_fs_root(root);
1427 return ERR_PTR(ret);
edbd8d4e
CM
1428}
1429
04160088
CM
1430static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1431{
1432 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1433 int ret = 0;
04160088
CM
1434 struct btrfs_device *device;
1435 struct backing_dev_info *bdi;
b7967db7 1436
1f78160c
XG
1437 rcu_read_lock();
1438 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1439 if (!device->bdev)
1440 continue;
04160088
CM
1441 bdi = blk_get_backing_dev_info(device->bdev);
1442 if (bdi && bdi_congested(bdi, bdi_bits)) {
1443 ret = 1;
1444 break;
1445 }
1446 }
1f78160c 1447 rcu_read_unlock();
04160088
CM
1448 return ret;
1449}
1450
ad081f14
JA
1451/*
1452 * If this fails, caller must call bdi_destroy() to get rid of the
1453 * bdi again.
1454 */
04160088
CM
1455static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1456{
ad081f14
JA
1457 int err;
1458
1459 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1460 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1461 if (err)
1462 return err;
1463
4575c9cc 1464 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1465 bdi->congested_fn = btrfs_congested_fn;
1466 bdi->congested_data = info;
1467 return 0;
1468}
1469
8b712842
CM
1470/*
1471 * called by the kthread helper functions to finally call the bio end_io
1472 * functions. This is where read checksum verification actually happens
1473 */
1474static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1475{
ce9adaa5 1476 struct bio *bio;
8b712842
CM
1477 struct end_io_wq *end_io_wq;
1478 struct btrfs_fs_info *fs_info;
ce9adaa5 1479 int error;
ce9adaa5 1480
8b712842
CM
1481 end_io_wq = container_of(work, struct end_io_wq, work);
1482 bio = end_io_wq->bio;
1483 fs_info = end_io_wq->info;
ce9adaa5 1484
8b712842
CM
1485 error = end_io_wq->error;
1486 bio->bi_private = end_io_wq->private;
1487 bio->bi_end_io = end_io_wq->end_io;
1488 kfree(end_io_wq);
8b712842 1489 bio_endio(bio, error);
44b8bd7e
CM
1490}
1491
a74a4b97
CM
1492static int cleaner_kthread(void *arg)
1493{
1494 struct btrfs_root *root = arg;
1495
1496 do {
a74a4b97 1497 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
76dda93c
YZ
1498
1499 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1500 mutex_trylock(&root->fs_info->cleaner_mutex)) {
24bbcf04 1501 btrfs_run_delayed_iputs(root);
76dda93c
YZ
1502 btrfs_clean_old_snapshots(root);
1503 mutex_unlock(&root->fs_info->cleaner_mutex);
4cb5300b 1504 btrfs_run_defrag_inodes(root->fs_info);
76dda93c 1505 }
a74a4b97 1506
a0acae0e 1507 if (!try_to_freeze()) {
a74a4b97 1508 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1509 if (!kthread_should_stop())
1510 schedule();
a74a4b97
CM
1511 __set_current_state(TASK_RUNNING);
1512 }
1513 } while (!kthread_should_stop());
1514 return 0;
1515}
1516
1517static int transaction_kthread(void *arg)
1518{
1519 struct btrfs_root *root = arg;
1520 struct btrfs_trans_handle *trans;
1521 struct btrfs_transaction *cur;
8929ecfa 1522 u64 transid;
a74a4b97
CM
1523 unsigned long now;
1524 unsigned long delay;
1525 int ret;
1526
1527 do {
a74a4b97
CM
1528 delay = HZ * 30;
1529 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1530 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1531
a4abeea4 1532 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1533 cur = root->fs_info->running_transaction;
1534 if (!cur) {
a4abeea4 1535 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1536 goto sleep;
1537 }
31153d81 1538
a74a4b97 1539 now = get_seconds();
8929ecfa
YZ
1540 if (!cur->blocked &&
1541 (now < cur->start_time || now - cur->start_time < 30)) {
a4abeea4 1542 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1543 delay = HZ * 5;
1544 goto sleep;
1545 }
8929ecfa 1546 transid = cur->transid;
a4abeea4 1547 spin_unlock(&root->fs_info->trans_lock);
56bec294 1548
7a7eaa40 1549 trans = btrfs_join_transaction(root);
3612b495 1550 BUG_ON(IS_ERR(trans));
8929ecfa
YZ
1551 if (transid == trans->transid) {
1552 ret = btrfs_commit_transaction(trans, root);
1553 BUG_ON(ret);
1554 } else {
1555 btrfs_end_transaction(trans, root);
1556 }
a74a4b97
CM
1557sleep:
1558 wake_up_process(root->fs_info->cleaner_kthread);
1559 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1560
a0acae0e 1561 if (!try_to_freeze()) {
a74a4b97 1562 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1563 if (!kthread_should_stop() &&
1564 !btrfs_transaction_blocked(root->fs_info))
1565 schedule_timeout(delay);
a74a4b97
CM
1566 __set_current_state(TASK_RUNNING);
1567 }
1568 } while (!kthread_should_stop());
1569 return 0;
1570}
1571
af31f5e5
CM
1572/*
1573 * this will find the highest generation in the array of
1574 * root backups. The index of the highest array is returned,
1575 * or -1 if we can't find anything.
1576 *
1577 * We check to make sure the array is valid by comparing the
1578 * generation of the latest root in the array with the generation
1579 * in the super block. If they don't match we pitch it.
1580 */
1581static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1582{
1583 u64 cur;
1584 int newest_index = -1;
1585 struct btrfs_root_backup *root_backup;
1586 int i;
1587
1588 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1589 root_backup = info->super_copy->super_roots + i;
1590 cur = btrfs_backup_tree_root_gen(root_backup);
1591 if (cur == newest_gen)
1592 newest_index = i;
1593 }
1594
1595 /* check to see if we actually wrapped around */
1596 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1597 root_backup = info->super_copy->super_roots;
1598 cur = btrfs_backup_tree_root_gen(root_backup);
1599 if (cur == newest_gen)
1600 newest_index = 0;
1601 }
1602 return newest_index;
1603}
1604
1605
1606/*
1607 * find the oldest backup so we know where to store new entries
1608 * in the backup array. This will set the backup_root_index
1609 * field in the fs_info struct
1610 */
1611static void find_oldest_super_backup(struct btrfs_fs_info *info,
1612 u64 newest_gen)
1613{
1614 int newest_index = -1;
1615
1616 newest_index = find_newest_super_backup(info, newest_gen);
1617 /* if there was garbage in there, just move along */
1618 if (newest_index == -1) {
1619 info->backup_root_index = 0;
1620 } else {
1621 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1622 }
1623}
1624
1625/*
1626 * copy all the root pointers into the super backup array.
1627 * this will bump the backup pointer by one when it is
1628 * done
1629 */
1630static void backup_super_roots(struct btrfs_fs_info *info)
1631{
1632 int next_backup;
1633 struct btrfs_root_backup *root_backup;
1634 int last_backup;
1635
1636 next_backup = info->backup_root_index;
1637 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1638 BTRFS_NUM_BACKUP_ROOTS;
1639
1640 /*
1641 * just overwrite the last backup if we're at the same generation
1642 * this happens only at umount
1643 */
1644 root_backup = info->super_for_commit->super_roots + last_backup;
1645 if (btrfs_backup_tree_root_gen(root_backup) ==
1646 btrfs_header_generation(info->tree_root->node))
1647 next_backup = last_backup;
1648
1649 root_backup = info->super_for_commit->super_roots + next_backup;
1650
1651 /*
1652 * make sure all of our padding and empty slots get zero filled
1653 * regardless of which ones we use today
1654 */
1655 memset(root_backup, 0, sizeof(*root_backup));
1656
1657 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1658
1659 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1660 btrfs_set_backup_tree_root_gen(root_backup,
1661 btrfs_header_generation(info->tree_root->node));
1662
1663 btrfs_set_backup_tree_root_level(root_backup,
1664 btrfs_header_level(info->tree_root->node));
1665
1666 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1667 btrfs_set_backup_chunk_root_gen(root_backup,
1668 btrfs_header_generation(info->chunk_root->node));
1669 btrfs_set_backup_chunk_root_level(root_backup,
1670 btrfs_header_level(info->chunk_root->node));
1671
1672 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1673 btrfs_set_backup_extent_root_gen(root_backup,
1674 btrfs_header_generation(info->extent_root->node));
1675 btrfs_set_backup_extent_root_level(root_backup,
1676 btrfs_header_level(info->extent_root->node));
1677
7c7e82a7
CM
1678 /*
1679 * we might commit during log recovery, which happens before we set
1680 * the fs_root. Make sure it is valid before we fill it in.
1681 */
1682 if (info->fs_root && info->fs_root->node) {
1683 btrfs_set_backup_fs_root(root_backup,
1684 info->fs_root->node->start);
1685 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1686 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1687 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1688 btrfs_header_level(info->fs_root->node));
7c7e82a7 1689 }
af31f5e5
CM
1690
1691 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1692 btrfs_set_backup_dev_root_gen(root_backup,
1693 btrfs_header_generation(info->dev_root->node));
1694 btrfs_set_backup_dev_root_level(root_backup,
1695 btrfs_header_level(info->dev_root->node));
1696
1697 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1698 btrfs_set_backup_csum_root_gen(root_backup,
1699 btrfs_header_generation(info->csum_root->node));
1700 btrfs_set_backup_csum_root_level(root_backup,
1701 btrfs_header_level(info->csum_root->node));
1702
1703 btrfs_set_backup_total_bytes(root_backup,
1704 btrfs_super_total_bytes(info->super_copy));
1705 btrfs_set_backup_bytes_used(root_backup,
1706 btrfs_super_bytes_used(info->super_copy));
1707 btrfs_set_backup_num_devices(root_backup,
1708 btrfs_super_num_devices(info->super_copy));
1709
1710 /*
1711 * if we don't copy this out to the super_copy, it won't get remembered
1712 * for the next commit
1713 */
1714 memcpy(&info->super_copy->super_roots,
1715 &info->super_for_commit->super_roots,
1716 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1717}
1718
1719/*
1720 * this copies info out of the root backup array and back into
1721 * the in-memory super block. It is meant to help iterate through
1722 * the array, so you send it the number of backups you've already
1723 * tried and the last backup index you used.
1724 *
1725 * this returns -1 when it has tried all the backups
1726 */
1727static noinline int next_root_backup(struct btrfs_fs_info *info,
1728 struct btrfs_super_block *super,
1729 int *num_backups_tried, int *backup_index)
1730{
1731 struct btrfs_root_backup *root_backup;
1732 int newest = *backup_index;
1733
1734 if (*num_backups_tried == 0) {
1735 u64 gen = btrfs_super_generation(super);
1736
1737 newest = find_newest_super_backup(info, gen);
1738 if (newest == -1)
1739 return -1;
1740
1741 *backup_index = newest;
1742 *num_backups_tried = 1;
1743 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1744 /* we've tried all the backups, all done */
1745 return -1;
1746 } else {
1747 /* jump to the next oldest backup */
1748 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1749 BTRFS_NUM_BACKUP_ROOTS;
1750 *backup_index = newest;
1751 *num_backups_tried += 1;
1752 }
1753 root_backup = super->super_roots + newest;
1754
1755 btrfs_set_super_generation(super,
1756 btrfs_backup_tree_root_gen(root_backup));
1757 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1758 btrfs_set_super_root_level(super,
1759 btrfs_backup_tree_root_level(root_backup));
1760 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1761
1762 /*
1763 * fixme: the total bytes and num_devices need to match or we should
1764 * need a fsck
1765 */
1766 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1767 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1768 return 0;
1769}
1770
1771/* helper to cleanup tree roots */
1772static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1773{
1774 free_extent_buffer(info->tree_root->node);
1775 free_extent_buffer(info->tree_root->commit_root);
1776 free_extent_buffer(info->dev_root->node);
1777 free_extent_buffer(info->dev_root->commit_root);
1778 free_extent_buffer(info->extent_root->node);
1779 free_extent_buffer(info->extent_root->commit_root);
1780 free_extent_buffer(info->csum_root->node);
1781 free_extent_buffer(info->csum_root->commit_root);
1782
1783 info->tree_root->node = NULL;
1784 info->tree_root->commit_root = NULL;
1785 info->dev_root->node = NULL;
1786 info->dev_root->commit_root = NULL;
1787 info->extent_root->node = NULL;
1788 info->extent_root->commit_root = NULL;
1789 info->csum_root->node = NULL;
1790 info->csum_root->commit_root = NULL;
1791
1792 if (chunk_root) {
1793 free_extent_buffer(info->chunk_root->node);
1794 free_extent_buffer(info->chunk_root->commit_root);
1795 info->chunk_root->node = NULL;
1796 info->chunk_root->commit_root = NULL;
1797 }
1798}
1799
1800
ad2b2c80
AV
1801int open_ctree(struct super_block *sb,
1802 struct btrfs_fs_devices *fs_devices,
1803 char *options)
2e635a27 1804{
db94535d
CM
1805 u32 sectorsize;
1806 u32 nodesize;
1807 u32 leafsize;
1808 u32 blocksize;
87ee04eb 1809 u32 stripesize;
84234f3a 1810 u64 generation;
f2b636e8 1811 u64 features;
3de4586c 1812 struct btrfs_key location;
a061fc8d 1813 struct buffer_head *bh;
4d34b278 1814 struct btrfs_super_block *disk_super;
815745cf 1815 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 1816 struct btrfs_root *tree_root;
4d34b278
ID
1817 struct btrfs_root *extent_root;
1818 struct btrfs_root *csum_root;
1819 struct btrfs_root *chunk_root;
1820 struct btrfs_root *dev_root;
e02119d5 1821 struct btrfs_root *log_tree_root;
eb60ceac 1822 int ret;
e58ca020 1823 int err = -EINVAL;
af31f5e5
CM
1824 int num_backups_tried = 0;
1825 int backup_index = 0;
4543df7e 1826
f84a8bd6 1827 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e
AV
1828 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1829 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1830 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1831 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
8790d502 1832
f84a8bd6
AV
1833 if (!tree_root || !extent_root || !csum_root ||
1834 !chunk_root || !dev_root) {
39279cc3
CM
1835 err = -ENOMEM;
1836 goto fail;
1837 }
76dda93c
YZ
1838
1839 ret = init_srcu_struct(&fs_info->subvol_srcu);
1840 if (ret) {
1841 err = ret;
1842 goto fail;
1843 }
1844
1845 ret = setup_bdi(fs_info, &fs_info->bdi);
1846 if (ret) {
1847 err = ret;
1848 goto fail_srcu;
1849 }
1850
1851 fs_info->btree_inode = new_inode(sb);
1852 if (!fs_info->btree_inode) {
1853 err = -ENOMEM;
1854 goto fail_bdi;
1855 }
1856
a6591715 1857 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 1858
76dda93c 1859 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
8fd17795 1860 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 1861 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 1862 INIT_LIST_HEAD(&fs_info->delayed_iputs);
19c00ddc 1863 INIT_LIST_HEAD(&fs_info->hashers);
ea8c2819 1864 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
5a3f23d5 1865 INIT_LIST_HEAD(&fs_info->ordered_operations);
11833d66 1866 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1832a6d5 1867 spin_lock_init(&fs_info->delalloc_lock);
a4abeea4 1868 spin_lock_init(&fs_info->trans_lock);
31153d81 1869 spin_lock_init(&fs_info->ref_cache_lock);
76dda93c 1870 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 1871 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 1872 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 1873 spin_lock_init(&fs_info->free_chunk_lock);
7585717f 1874 mutex_init(&fs_info->reloc_mutex);
19c00ddc 1875
58176a96 1876 init_completion(&fs_info->kobj_unregister);
0b86a832 1877 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 1878 INIT_LIST_HEAD(&fs_info->space_info);
0b86a832 1879 btrfs_mapping_init(&fs_info->mapping_tree);
f0486c68
YZ
1880 btrfs_init_block_rsv(&fs_info->global_block_rsv);
1881 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1882 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1883 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1884 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
6d668dda 1885 btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
cb03c743 1886 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 1887 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 1888 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 1889 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 1890 atomic_set(&fs_info->defrag_running, 0);
e20d96d6 1891 fs_info->sb = sb;
6f568d35 1892 fs_info->max_inline = 8192 * 1024;
9ed74f2d 1893 fs_info->metadata_ratio = 0;
4cb5300b 1894 fs_info->defrag_inodes = RB_ROOT;
a4abeea4 1895 fs_info->trans_no_join = 0;
2bf64758 1896 fs_info->free_chunk_space = 0;
c8b97818 1897
90519d66
AJ
1898 /* readahead state */
1899 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1900 spin_lock_init(&fs_info->reada_lock);
c8b97818 1901
b34b086c
CM
1902 fs_info->thread_pool_size = min_t(unsigned long,
1903 num_online_cpus() + 2, 8);
0afbaf8c 1904
3eaa2885
CM
1905 INIT_LIST_HEAD(&fs_info->ordered_extents);
1906 spin_lock_init(&fs_info->ordered_extent_lock);
16cdcec7
MX
1907 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1908 GFP_NOFS);
1909 if (!fs_info->delayed_root) {
1910 err = -ENOMEM;
1911 goto fail_iput;
1912 }
1913 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 1914
a2de733c
AJ
1915 mutex_init(&fs_info->scrub_lock);
1916 atomic_set(&fs_info->scrubs_running, 0);
1917 atomic_set(&fs_info->scrub_pause_req, 0);
1918 atomic_set(&fs_info->scrubs_paused, 0);
1919 atomic_set(&fs_info->scrub_cancel_req, 0);
1920 init_waitqueue_head(&fs_info->scrub_pause_wait);
1921 init_rwsem(&fs_info->scrub_super_lock);
1922 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
1923#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1924 fs_info->check_integrity_print_mask = 0;
1925#endif
a2de733c 1926
c9e9f97b
ID
1927 spin_lock_init(&fs_info->balance_lock);
1928 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
1929 atomic_set(&fs_info->balance_running, 0);
1930 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 1931 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 1932 fs_info->balance_ctl = NULL;
837d5b6e 1933 init_waitqueue_head(&fs_info->balance_wait_q);
a2de733c 1934
a061fc8d
CM
1935 sb->s_blocksize = 4096;
1936 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 1937 sb->s_bdi = &fs_info->bdi;
a061fc8d 1938
76dda93c 1939 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 1940 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
1941 /*
1942 * we set the i_size on the btree inode to the max possible int.
1943 * the real end of the address space is determined by all of
1944 * the devices in the system
1945 */
1946 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 1947 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
1948 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1949
5d4f98a2 1950 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 1951 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 1952 fs_info->btree_inode->i_mapping);
0b32f4bb 1953 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
a8067e02 1954 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
1955
1956 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 1957
76dda93c
YZ
1958 BTRFS_I(fs_info->btree_inode)->root = tree_root;
1959 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1960 sizeof(struct btrfs_key));
1961 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
c65ddb52 1962 insert_inode_hash(fs_info->btree_inode);
76dda93c 1963
0f9dd46c 1964 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 1965 fs_info->block_group_cache_tree = RB_ROOT;
0f9dd46c 1966
11833d66 1967 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 1968 fs_info->btree_inode->i_mapping);
11833d66 1969 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 1970 fs_info->btree_inode->i_mapping);
11833d66 1971 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 1972 fs_info->do_barriers = 1;
e18e4809 1973
39279cc3 1974
5a3f23d5 1975 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 1976 mutex_init(&fs_info->tree_log_mutex);
925baedd 1977 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
1978 mutex_init(&fs_info->transaction_kthread_mutex);
1979 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 1980 mutex_init(&fs_info->volume_mutex);
276e680d 1981 init_rwsem(&fs_info->extent_commit_sem);
c71bf099 1982 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 1983 init_rwsem(&fs_info->subvol_sem);
fa9c0d79
CM
1984
1985 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1986 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1987
e6dcd2dc 1988 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 1989 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 1990 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 1991 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 1992
0b86a832 1993 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 1994 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 1995
a512bbf8 1996 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
1997 if (!bh) {
1998 err = -EINVAL;
16cdcec7 1999 goto fail_alloc;
20b45077 2000 }
39279cc3 2001
6c41761f
DS
2002 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2003 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2004 sizeof(*fs_info->super_for_commit));
a061fc8d 2005 brelse(bh);
5f39d397 2006
6c41761f 2007 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2008
6c41761f 2009 disk_super = fs_info->super_copy;
0f7d52f4 2010 if (!btrfs_super_root(disk_super))
16cdcec7 2011 goto fail_alloc;
0f7d52f4 2012
acce952b 2013 /* check FS state, whether FS is broken. */
2014 fs_info->fs_state |= btrfs_super_flags(disk_super);
2015
2016 btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2017
af31f5e5
CM
2018 /*
2019 * run through our array of backup supers and setup
2020 * our ring pointer to the oldest one
2021 */
2022 generation = btrfs_super_generation(disk_super);
2023 find_oldest_super_backup(fs_info, generation);
2024
75e7cb7f
LB
2025 /*
2026 * In the long term, we'll store the compression type in the super
2027 * block, and it'll be used for per file compression control.
2028 */
2029 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2030
2b82032c
YZ
2031 ret = btrfs_parse_options(tree_root, options);
2032 if (ret) {
2033 err = ret;
16cdcec7 2034 goto fail_alloc;
2b82032c 2035 }
dfe25020 2036
f2b636e8
JB
2037 features = btrfs_super_incompat_flags(disk_super) &
2038 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2039 if (features) {
2040 printk(KERN_ERR "BTRFS: couldn't mount because of "
2041 "unsupported optional features (%Lx).\n",
21380931 2042 (unsigned long long)features);
f2b636e8 2043 err = -EINVAL;
16cdcec7 2044 goto fail_alloc;
f2b636e8
JB
2045 }
2046
727011e0
CM
2047 if (btrfs_super_leafsize(disk_super) !=
2048 btrfs_super_nodesize(disk_super)) {
2049 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2050 "blocksizes don't match. node %d leaf %d\n",
2051 btrfs_super_nodesize(disk_super),
2052 btrfs_super_leafsize(disk_super));
2053 err = -EINVAL;
2054 goto fail_alloc;
2055 }
2056 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2057 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2058 "blocksize (%d) was too large\n",
2059 btrfs_super_leafsize(disk_super));
2060 err = -EINVAL;
2061 goto fail_alloc;
2062 }
2063
5d4f98a2 2064 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae
LZ
2065 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2066 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
2067 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0
CM
2068
2069 /*
2070 * flag our filesystem as having big metadata blocks if
2071 * they are bigger than the page size
2072 */
2073 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2074 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2075 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2076 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2077 }
2078
a6fa6fae 2079 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2080
f2b636e8
JB
2081 features = btrfs_super_compat_ro_flags(disk_super) &
2082 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2083 if (!(sb->s_flags & MS_RDONLY) && features) {
2084 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2085 "unsupported option features (%Lx).\n",
21380931 2086 (unsigned long long)features);
f2b636e8 2087 err = -EINVAL;
16cdcec7 2088 goto fail_alloc;
f2b636e8 2089 }
61d92c32
CM
2090
2091 btrfs_init_workers(&fs_info->generic_worker,
2092 "genwork", 1, NULL);
2093
5443be45 2094 btrfs_init_workers(&fs_info->workers, "worker",
61d92c32
CM
2095 fs_info->thread_pool_size,
2096 &fs_info->generic_worker);
c8b97818 2097
771ed689 2098 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
61d92c32
CM
2099 fs_info->thread_pool_size,
2100 &fs_info->generic_worker);
771ed689 2101
5443be45 2102 btrfs_init_workers(&fs_info->submit_workers, "submit",
b720d209 2103 min_t(u64, fs_devices->num_devices,
61d92c32
CM
2104 fs_info->thread_pool_size),
2105 &fs_info->generic_worker);
61b49440 2106
bab39bf9
JB
2107 btrfs_init_workers(&fs_info->caching_workers, "cache",
2108 2, &fs_info->generic_worker);
2109
61b49440
CM
2110 /* a higher idle thresh on the submit workers makes it much more
2111 * likely that bios will be send down in a sane order to the
2112 * devices
2113 */
2114 fs_info->submit_workers.idle_thresh = 64;
53863232 2115
771ed689 2116 fs_info->workers.idle_thresh = 16;
4a69a410 2117 fs_info->workers.ordered = 1;
61b49440 2118
771ed689
CM
2119 fs_info->delalloc_workers.idle_thresh = 2;
2120 fs_info->delalloc_workers.ordered = 1;
2121
61d92c32
CM
2122 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2123 &fs_info->generic_worker);
5443be45 2124 btrfs_init_workers(&fs_info->endio_workers, "endio",
61d92c32
CM
2125 fs_info->thread_pool_size,
2126 &fs_info->generic_worker);
d20f7043 2127 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
61d92c32
CM
2128 fs_info->thread_pool_size,
2129 &fs_info->generic_worker);
cad321ad 2130 btrfs_init_workers(&fs_info->endio_meta_write_workers,
61d92c32
CM
2131 "endio-meta-write", fs_info->thread_pool_size,
2132 &fs_info->generic_worker);
5443be45 2133 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
61d92c32
CM
2134 fs_info->thread_pool_size,
2135 &fs_info->generic_worker);
0cb59c99
JB
2136 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2137 1, &fs_info->generic_worker);
16cdcec7
MX
2138 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2139 fs_info->thread_pool_size,
2140 &fs_info->generic_worker);
90519d66
AJ
2141 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2142 fs_info->thread_pool_size,
2143 &fs_info->generic_worker);
61b49440
CM
2144
2145 /*
2146 * endios are largely parallel and should have a very
2147 * low idle thresh
2148 */
2149 fs_info->endio_workers.idle_thresh = 4;
b51912c9
CM
2150 fs_info->endio_meta_workers.idle_thresh = 4;
2151
9042846b
CM
2152 fs_info->endio_write_workers.idle_thresh = 2;
2153 fs_info->endio_meta_write_workers.idle_thresh = 2;
90519d66 2154 fs_info->readahead_workers.idle_thresh = 2;
9042846b 2155
0dc3b84a
JB
2156 /*
2157 * btrfs_start_workers can really only fail because of ENOMEM so just
2158 * return -ENOMEM if any of these fail.
2159 */
2160 ret = btrfs_start_workers(&fs_info->workers);
2161 ret |= btrfs_start_workers(&fs_info->generic_worker);
2162 ret |= btrfs_start_workers(&fs_info->submit_workers);
2163 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2164 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2165 ret |= btrfs_start_workers(&fs_info->endio_workers);
2166 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2167 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2168 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2169 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2170 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2171 ret |= btrfs_start_workers(&fs_info->caching_workers);
2172 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2173 if (ret) {
2174 ret = -ENOMEM;
2175 goto fail_sb_buffer;
2176 }
4543df7e 2177
4575c9cc 2178 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2179 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2180 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2181
db94535d
CM
2182 nodesize = btrfs_super_nodesize(disk_super);
2183 leafsize = btrfs_super_leafsize(disk_super);
2184 sectorsize = btrfs_super_sectorsize(disk_super);
87ee04eb 2185 stripesize = btrfs_super_stripesize(disk_super);
db94535d
CM
2186 tree_root->nodesize = nodesize;
2187 tree_root->leafsize = leafsize;
2188 tree_root->sectorsize = sectorsize;
87ee04eb 2189 tree_root->stripesize = stripesize;
a061fc8d
CM
2190
2191 sb->s_blocksize = sectorsize;
2192 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2193
39279cc3
CM
2194 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2195 sizeof(disk_super->magic))) {
d397712b 2196 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2197 goto fail_sb_buffer;
2198 }
19c00ddc 2199
941b2ddf
KM
2200 if (sectorsize < PAGE_SIZE) {
2201 printk(KERN_WARNING "btrfs: Incompatible sector size "
2202 "found on %s\n", sb->s_id);
2203 goto fail_sb_buffer;
2204 }
2205
925baedd 2206 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2207 ret = btrfs_read_sys_array(tree_root);
925baedd 2208 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2209 if (ret) {
d397712b
CM
2210 printk(KERN_WARNING "btrfs: failed to read the system "
2211 "array on %s\n", sb->s_id);
5d4f98a2 2212 goto fail_sb_buffer;
84eed90f 2213 }
0b86a832
CM
2214
2215 blocksize = btrfs_level_size(tree_root,
2216 btrfs_super_chunk_root_level(disk_super));
84234f3a 2217 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2218
2219 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2220 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2221
2222 chunk_root->node = read_tree_block(chunk_root,
2223 btrfs_super_chunk_root(disk_super),
84234f3a 2224 blocksize, generation);
0b86a832 2225 BUG_ON(!chunk_root->node);
83121942
DW
2226 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2227 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2228 sb->s_id);
af31f5e5 2229 goto fail_tree_roots;
83121942 2230 }
5d4f98a2
YZ
2231 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2232 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2233
e17cade2 2234 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
d397712b
CM
2235 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2236 BTRFS_UUID_SIZE);
e17cade2 2237
0b86a832 2238 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2239 if (ret) {
d397712b
CM
2240 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2241 sb->s_id);
af31f5e5 2242 goto fail_tree_roots;
2b82032c 2243 }
0b86a832 2244
dfe25020
CM
2245 btrfs_close_extra_devices(fs_devices);
2246
a6b0d5c8
CM
2247 if (!fs_devices->latest_bdev) {
2248 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2249 sb->s_id);
2250 goto fail_tree_roots;
2251 }
2252
af31f5e5 2253retry_root_backup:
db94535d
CM
2254 blocksize = btrfs_level_size(tree_root,
2255 btrfs_super_root_level(disk_super));
84234f3a 2256 generation = btrfs_super_generation(disk_super);
0b86a832 2257
e20d96d6 2258 tree_root->node = read_tree_block(tree_root,
db94535d 2259 btrfs_super_root(disk_super),
84234f3a 2260 blocksize, generation);
af31f5e5
CM
2261 if (!tree_root->node ||
2262 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
83121942
DW
2263 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2264 sb->s_id);
af31f5e5
CM
2265
2266 goto recovery_tree_root;
83121942 2267 }
af31f5e5 2268
5d4f98a2
YZ
2269 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2270 tree_root->commit_root = btrfs_root_node(tree_root);
db94535d
CM
2271
2272 ret = find_and_setup_root(tree_root, fs_info,
e20d96d6 2273 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
0b86a832 2274 if (ret)
af31f5e5 2275 goto recovery_tree_root;
0b86a832
CM
2276 extent_root->track_dirty = 1;
2277
2278 ret = find_and_setup_root(tree_root, fs_info,
2279 BTRFS_DEV_TREE_OBJECTID, dev_root);
0b86a832 2280 if (ret)
af31f5e5 2281 goto recovery_tree_root;
5d4f98a2 2282 dev_root->track_dirty = 1;
3768f368 2283
d20f7043
CM
2284 ret = find_and_setup_root(tree_root, fs_info,
2285 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2286 if (ret)
af31f5e5 2287 goto recovery_tree_root;
d20f7043
CM
2288
2289 csum_root->track_dirty = 1;
2290
8929ecfa
YZ
2291 fs_info->generation = generation;
2292 fs_info->last_trans_committed = generation;
8929ecfa 2293
c59021f8 2294 ret = btrfs_init_space_info(fs_info);
2295 if (ret) {
2296 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2297 goto fail_block_groups;
2298 }
2299
1b1d1f66
JB
2300 ret = btrfs_read_block_groups(extent_root);
2301 if (ret) {
2302 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2303 goto fail_block_groups;
2304 }
9078a3e1 2305
a74a4b97
CM
2306 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2307 "btrfs-cleaner");
57506d50 2308 if (IS_ERR(fs_info->cleaner_kthread))
1b1d1f66 2309 goto fail_block_groups;
a74a4b97
CM
2310
2311 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2312 tree_root,
2313 "btrfs-transaction");
57506d50 2314 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2315 goto fail_cleaner;
a74a4b97 2316
c289811c
CM
2317 if (!btrfs_test_opt(tree_root, SSD) &&
2318 !btrfs_test_opt(tree_root, NOSSD) &&
2319 !fs_info->fs_devices->rotating) {
2320 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2321 "mode\n");
2322 btrfs_set_opt(fs_info->mount_opt, SSD);
2323 }
2324
21adbd5c
SB
2325#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2326 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2327 ret = btrfsic_mount(tree_root, fs_devices,
2328 btrfs_test_opt(tree_root,
2329 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2330 1 : 0,
2331 fs_info->check_integrity_print_mask);
2332 if (ret)
2333 printk(KERN_WARNING "btrfs: failed to initialize"
2334 " integrity check module %s\n", sb->s_id);
2335 }
2336#endif
2337
acce952b 2338 /* do not make disk changes in broken FS */
2339 if (btrfs_super_log_root(disk_super) != 0 &&
2340 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
e02119d5
CM
2341 u64 bytenr = btrfs_super_log_root(disk_super);
2342
7c2ca468 2343 if (fs_devices->rw_devices == 0) {
d397712b
CM
2344 printk(KERN_WARNING "Btrfs log replay required "
2345 "on RO media\n");
7c2ca468
CM
2346 err = -EIO;
2347 goto fail_trans_kthread;
2348 }
e02119d5
CM
2349 blocksize =
2350 btrfs_level_size(tree_root,
2351 btrfs_super_log_root_level(disk_super));
d18a2c44 2352
6f07e42e 2353 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2354 if (!log_tree_root) {
2355 err = -ENOMEM;
2356 goto fail_trans_kthread;
2357 }
e02119d5
CM
2358
2359 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2360 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2361
2362 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2363 blocksize,
2364 generation + 1);
e02119d5
CM
2365 ret = btrfs_recover_log_trees(log_tree_root);
2366 BUG_ON(ret);
e556ce2c
YZ
2367
2368 if (sb->s_flags & MS_RDONLY) {
2369 ret = btrfs_commit_super(tree_root);
2370 BUG_ON(ret);
2371 }
e02119d5 2372 }
1a40e23b 2373
76dda93c
YZ
2374 ret = btrfs_find_orphan_roots(tree_root);
2375 BUG_ON(ret);
2376
7c2ca468 2377 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b
YZ
2378 ret = btrfs_cleanup_fs_roots(fs_info);
2379 BUG_ON(ret);
2380
5d4f98a2 2381 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2382 if (ret < 0) {
2383 printk(KERN_WARNING
2384 "btrfs: failed to recover relocation\n");
2385 err = -EINVAL;
2386 goto fail_trans_kthread;
2387 }
7c2ca468 2388 }
1a40e23b 2389
3de4586c
CM
2390 location.objectid = BTRFS_FS_TREE_OBJECTID;
2391 location.type = BTRFS_ROOT_ITEM_KEY;
2392 location.offset = (u64)-1;
2393
3de4586c
CM
2394 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2395 if (!fs_info->fs_root)
7c2ca468 2396 goto fail_trans_kthread;
3140c9a3
DC
2397 if (IS_ERR(fs_info->fs_root)) {
2398 err = PTR_ERR(fs_info->fs_root);
2399 goto fail_trans_kthread;
2400 }
c289811c 2401
e3acc2a6
JB
2402 if (!(sb->s_flags & MS_RDONLY)) {
2403 down_read(&fs_info->cleanup_work_sem);
66b4ffd1
JB
2404 err = btrfs_orphan_cleanup(fs_info->fs_root);
2405 if (!err)
2406 err = btrfs_orphan_cleanup(fs_info->tree_root);
e3acc2a6 2407 up_read(&fs_info->cleanup_work_sem);
59641015
ID
2408
2409 if (!err)
2410 err = btrfs_recover_balance(fs_info->tree_root);
2411
66b4ffd1
JB
2412 if (err) {
2413 close_ctree(tree_root);
ad2b2c80 2414 return err;
66b4ffd1 2415 }
e3acc2a6
JB
2416 }
2417
ad2b2c80 2418 return 0;
39279cc3 2419
7c2ca468
CM
2420fail_trans_kthread:
2421 kthread_stop(fs_info->transaction_kthread);
3f157a2f 2422fail_cleaner:
a74a4b97 2423 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2424
2425 /*
2426 * make sure we're done with the btree inode before we stop our
2427 * kthreads
2428 */
2429 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2430 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2431
1b1d1f66
JB
2432fail_block_groups:
2433 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2434
2435fail_tree_roots:
2436 free_root_pointers(fs_info, 1);
2437
39279cc3 2438fail_sb_buffer:
61d92c32 2439 btrfs_stop_workers(&fs_info->generic_worker);
306c8b68 2440 btrfs_stop_workers(&fs_info->readahead_workers);
247e743c 2441 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 2442 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
2443 btrfs_stop_workers(&fs_info->workers);
2444 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 2445 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 2446 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 2447 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 2448 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 2449 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 2450 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 2451 btrfs_stop_workers(&fs_info->caching_workers);
16cdcec7 2452fail_alloc:
4543df7e 2453fail_iput:
586e46e2
ID
2454 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2455
7c2ca468 2456 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4543df7e 2457 iput(fs_info->btree_inode);
ad081f14 2458fail_bdi:
7e662854 2459 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
2460fail_srcu:
2461 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 2462fail:
586e46e2 2463 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 2464 return err;
af31f5e5
CM
2465
2466recovery_tree_root:
af31f5e5
CM
2467 if (!btrfs_test_opt(tree_root, RECOVERY))
2468 goto fail_tree_roots;
2469
2470 free_root_pointers(fs_info, 0);
2471
2472 /* don't use the log in recovery mode, it won't be valid */
2473 btrfs_set_super_log_root(disk_super, 0);
2474
2475 /* we can't trust the free space cache either */
2476 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2477
2478 ret = next_root_backup(fs_info, fs_info->super_copy,
2479 &num_backups_tried, &backup_index);
2480 if (ret == -1)
2481 goto fail_block_groups;
2482 goto retry_root_backup;
eb60ceac
CM
2483}
2484
f2984462
CM
2485static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2486{
2487 char b[BDEVNAME_SIZE];
2488
2489 if (uptodate) {
2490 set_buffer_uptodate(bh);
2491 } else {
7a36ddec 2492 printk_ratelimited(KERN_WARNING "lost page write due to "
f2984462
CM
2493 "I/O error on %s\n",
2494 bdevname(bh->b_bdev, b));
1259ab75
CM
2495 /* note, we dont' set_buffer_write_io_error because we have
2496 * our own ways of dealing with the IO errors
2497 */
f2984462
CM
2498 clear_buffer_uptodate(bh);
2499 }
2500 unlock_buffer(bh);
2501 put_bh(bh);
2502}
2503
a512bbf8
YZ
2504struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2505{
2506 struct buffer_head *bh;
2507 struct buffer_head *latest = NULL;
2508 struct btrfs_super_block *super;
2509 int i;
2510 u64 transid = 0;
2511 u64 bytenr;
2512
2513 /* we would like to check all the supers, but that would make
2514 * a btrfs mount succeed after a mkfs from a different FS.
2515 * So, we need to add a special mount option to scan for
2516 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2517 */
2518 for (i = 0; i < 1; i++) {
2519 bytenr = btrfs_sb_offset(i);
2520 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2521 break;
2522 bh = __bread(bdev, bytenr / 4096, 4096);
2523 if (!bh)
2524 continue;
2525
2526 super = (struct btrfs_super_block *)bh->b_data;
2527 if (btrfs_super_bytenr(super) != bytenr ||
2528 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2529 sizeof(super->magic))) {
2530 brelse(bh);
2531 continue;
2532 }
2533
2534 if (!latest || btrfs_super_generation(super) > transid) {
2535 brelse(latest);
2536 latest = bh;
2537 transid = btrfs_super_generation(super);
2538 } else {
2539 brelse(bh);
2540 }
2541 }
2542 return latest;
2543}
2544
4eedeb75
HH
2545/*
2546 * this should be called twice, once with wait == 0 and
2547 * once with wait == 1. When wait == 0 is done, all the buffer heads
2548 * we write are pinned.
2549 *
2550 * They are released when wait == 1 is done.
2551 * max_mirrors must be the same for both runs, and it indicates how
2552 * many supers on this one device should be written.
2553 *
2554 * max_mirrors == 0 means to write them all.
2555 */
a512bbf8
YZ
2556static int write_dev_supers(struct btrfs_device *device,
2557 struct btrfs_super_block *sb,
2558 int do_barriers, int wait, int max_mirrors)
2559{
2560 struct buffer_head *bh;
2561 int i;
2562 int ret;
2563 int errors = 0;
2564 u32 crc;
2565 u64 bytenr;
a512bbf8
YZ
2566
2567 if (max_mirrors == 0)
2568 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2569
a512bbf8
YZ
2570 for (i = 0; i < max_mirrors; i++) {
2571 bytenr = btrfs_sb_offset(i);
2572 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2573 break;
2574
2575 if (wait) {
2576 bh = __find_get_block(device->bdev, bytenr / 4096,
2577 BTRFS_SUPER_INFO_SIZE);
2578 BUG_ON(!bh);
a512bbf8 2579 wait_on_buffer(bh);
4eedeb75
HH
2580 if (!buffer_uptodate(bh))
2581 errors++;
2582
2583 /* drop our reference */
2584 brelse(bh);
2585
2586 /* drop the reference from the wait == 0 run */
2587 brelse(bh);
2588 continue;
a512bbf8
YZ
2589 } else {
2590 btrfs_set_super_bytenr(sb, bytenr);
2591
2592 crc = ~(u32)0;
2593 crc = btrfs_csum_data(NULL, (char *)sb +
2594 BTRFS_CSUM_SIZE, crc,
2595 BTRFS_SUPER_INFO_SIZE -
2596 BTRFS_CSUM_SIZE);
2597 btrfs_csum_final(crc, sb->csum);
2598
4eedeb75
HH
2599 /*
2600 * one reference for us, and we leave it for the
2601 * caller
2602 */
a512bbf8
YZ
2603 bh = __getblk(device->bdev, bytenr / 4096,
2604 BTRFS_SUPER_INFO_SIZE);
2605 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2606
4eedeb75 2607 /* one reference for submit_bh */
a512bbf8 2608 get_bh(bh);
4eedeb75
HH
2609
2610 set_buffer_uptodate(bh);
a512bbf8
YZ
2611 lock_buffer(bh);
2612 bh->b_end_io = btrfs_end_buffer_write_sync;
2613 }
2614
387125fc
CM
2615 /*
2616 * we fua the first super. The others we allow
2617 * to go down lazy.
2618 */
21adbd5c 2619 ret = btrfsic_submit_bh(WRITE_FUA, bh);
4eedeb75 2620 if (ret)
a512bbf8 2621 errors++;
a512bbf8
YZ
2622 }
2623 return errors < i ? 0 : -1;
2624}
2625
387125fc
CM
2626/*
2627 * endio for the write_dev_flush, this will wake anyone waiting
2628 * for the barrier when it is done
2629 */
2630static void btrfs_end_empty_barrier(struct bio *bio, int err)
2631{
2632 if (err) {
2633 if (err == -EOPNOTSUPP)
2634 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2635 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2636 }
2637 if (bio->bi_private)
2638 complete(bio->bi_private);
2639 bio_put(bio);
2640}
2641
2642/*
2643 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2644 * sent down. With wait == 1, it waits for the previous flush.
2645 *
2646 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2647 * capable
2648 */
2649static int write_dev_flush(struct btrfs_device *device, int wait)
2650{
2651 struct bio *bio;
2652 int ret = 0;
2653
2654 if (device->nobarriers)
2655 return 0;
2656
2657 if (wait) {
2658 bio = device->flush_bio;
2659 if (!bio)
2660 return 0;
2661
2662 wait_for_completion(&device->flush_wait);
2663
2664 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2665 printk("btrfs: disabling barriers on dev %s\n",
2666 device->name);
2667 device->nobarriers = 1;
2668 }
2669 if (!bio_flagged(bio, BIO_UPTODATE)) {
2670 ret = -EIO;
2671 }
2672
2673 /* drop the reference from the wait == 0 run */
2674 bio_put(bio);
2675 device->flush_bio = NULL;
2676
2677 return ret;
2678 }
2679
2680 /*
2681 * one reference for us, and we leave it for the
2682 * caller
2683 */
2684 device->flush_bio = NULL;;
2685 bio = bio_alloc(GFP_NOFS, 0);
2686 if (!bio)
2687 return -ENOMEM;
2688
2689 bio->bi_end_io = btrfs_end_empty_barrier;
2690 bio->bi_bdev = device->bdev;
2691 init_completion(&device->flush_wait);
2692 bio->bi_private = &device->flush_wait;
2693 device->flush_bio = bio;
2694
2695 bio_get(bio);
21adbd5c 2696 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
2697
2698 return 0;
2699}
2700
2701/*
2702 * send an empty flush down to each device in parallel,
2703 * then wait for them
2704 */
2705static int barrier_all_devices(struct btrfs_fs_info *info)
2706{
2707 struct list_head *head;
2708 struct btrfs_device *dev;
2709 int errors = 0;
2710 int ret;
2711
2712 /* send down all the barriers */
2713 head = &info->fs_devices->devices;
2714 list_for_each_entry_rcu(dev, head, dev_list) {
2715 if (!dev->bdev) {
2716 errors++;
2717 continue;
2718 }
2719 if (!dev->in_fs_metadata || !dev->writeable)
2720 continue;
2721
2722 ret = write_dev_flush(dev, 0);
2723 if (ret)
2724 errors++;
2725 }
2726
2727 /* wait for all the barriers */
2728 list_for_each_entry_rcu(dev, head, dev_list) {
2729 if (!dev->bdev) {
2730 errors++;
2731 continue;
2732 }
2733 if (!dev->in_fs_metadata || !dev->writeable)
2734 continue;
2735
2736 ret = write_dev_flush(dev, 1);
2737 if (ret)
2738 errors++;
2739 }
2740 if (errors)
2741 return -EIO;
2742 return 0;
2743}
2744
a512bbf8 2745int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 2746{
e5e9a520 2747 struct list_head *head;
f2984462 2748 struct btrfs_device *dev;
a061fc8d 2749 struct btrfs_super_block *sb;
f2984462 2750 struct btrfs_dev_item *dev_item;
f2984462
CM
2751 int ret;
2752 int do_barriers;
a236aed1
CM
2753 int max_errors;
2754 int total_errors = 0;
a061fc8d 2755 u64 flags;
f2984462 2756
6c41761f 2757 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
f2984462 2758 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 2759 backup_super_roots(root->fs_info);
f2984462 2760
6c41761f 2761 sb = root->fs_info->super_for_commit;
a061fc8d 2762 dev_item = &sb->dev_item;
e5e9a520 2763
174ba509 2764 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 2765 head = &root->fs_info->fs_devices->devices;
387125fc
CM
2766
2767 if (do_barriers)
2768 barrier_all_devices(root->fs_info);
2769
1f78160c 2770 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2771 if (!dev->bdev) {
2772 total_errors++;
2773 continue;
2774 }
2b82032c 2775 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2776 continue;
2777
2b82032c 2778 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
2779 btrfs_set_stack_device_type(dev_item, dev->type);
2780 btrfs_set_stack_device_id(dev_item, dev->devid);
2781 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2782 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2783 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2784 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2785 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2786 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 2787 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 2788
a061fc8d
CM
2789 flags = btrfs_super_flags(sb);
2790 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2791
a512bbf8 2792 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
2793 if (ret)
2794 total_errors++;
f2984462 2795 }
a236aed1 2796 if (total_errors > max_errors) {
d397712b
CM
2797 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2798 total_errors);
a236aed1
CM
2799 BUG();
2800 }
f2984462 2801
a512bbf8 2802 total_errors = 0;
1f78160c 2803 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2804 if (!dev->bdev)
2805 continue;
2b82032c 2806 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2807 continue;
2808
a512bbf8
YZ
2809 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2810 if (ret)
2811 total_errors++;
f2984462 2812 }
174ba509 2813 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 2814 if (total_errors > max_errors) {
d397712b
CM
2815 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2816 total_errors);
a236aed1
CM
2817 BUG();
2818 }
f2984462
CM
2819 return 0;
2820}
2821
a512bbf8
YZ
2822int write_ctree_super(struct btrfs_trans_handle *trans,
2823 struct btrfs_root *root, int max_mirrors)
eb60ceac 2824{
e66f709b 2825 int ret;
5f39d397 2826
a512bbf8 2827 ret = write_all_supers(root, max_mirrors);
5f39d397 2828 return ret;
cfaa7295
CM
2829}
2830
5eda7b5e 2831int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2619ba1f 2832{
4df27c4d 2833 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
2834 radix_tree_delete(&fs_info->fs_roots_radix,
2835 (unsigned long)root->root_key.objectid);
4df27c4d 2836 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
2837
2838 if (btrfs_root_refs(&root->root_item) == 0)
2839 synchronize_srcu(&fs_info->subvol_srcu);
2840
581bb050
LZ
2841 __btrfs_remove_free_space_cache(root->free_ino_pinned);
2842 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d
YZ
2843 free_fs_root(root);
2844 return 0;
2845}
2846
2847static void free_fs_root(struct btrfs_root *root)
2848{
82d5902d 2849 iput(root->cache_inode);
4df27c4d 2850 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
2851 if (root->anon_dev)
2852 free_anon_bdev(root->anon_dev);
4df27c4d
YZ
2853 free_extent_buffer(root->node);
2854 free_extent_buffer(root->commit_root);
581bb050
LZ
2855 kfree(root->free_ino_ctl);
2856 kfree(root->free_ino_pinned);
d397712b 2857 kfree(root->name);
2619ba1f 2858 kfree(root);
2619ba1f
CM
2859}
2860
35b7e476 2861static int del_fs_roots(struct btrfs_fs_info *fs_info)
0f7d52f4
CM
2862{
2863 int ret;
2864 struct btrfs_root *gang[8];
2865 int i;
2866
76dda93c
YZ
2867 while (!list_empty(&fs_info->dead_roots)) {
2868 gang[0] = list_entry(fs_info->dead_roots.next,
2869 struct btrfs_root, root_list);
2870 list_del(&gang[0]->root_list);
2871
2872 if (gang[0]->in_radix) {
2873 btrfs_free_fs_root(fs_info, gang[0]);
2874 } else {
2875 free_extent_buffer(gang[0]->node);
2876 free_extent_buffer(gang[0]->commit_root);
2877 kfree(gang[0]);
2878 }
2879 }
2880
d397712b 2881 while (1) {
0f7d52f4
CM
2882 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2883 (void **)gang, 0,
2884 ARRAY_SIZE(gang));
2885 if (!ret)
2886 break;
2619ba1f 2887 for (i = 0; i < ret; i++)
5eda7b5e 2888 btrfs_free_fs_root(fs_info, gang[i]);
0f7d52f4
CM
2889 }
2890 return 0;
2891}
b4100d64 2892
c146afad 2893int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 2894{
c146afad
YZ
2895 u64 root_objectid = 0;
2896 struct btrfs_root *gang[8];
2897 int i;
3768f368 2898 int ret;
e089f05c 2899
c146afad
YZ
2900 while (1) {
2901 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2902 (void **)gang, root_objectid,
2903 ARRAY_SIZE(gang));
2904 if (!ret)
2905 break;
5d4f98a2
YZ
2906
2907 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 2908 for (i = 0; i < ret; i++) {
66b4ffd1
JB
2909 int err;
2910
c146afad 2911 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
2912 err = btrfs_orphan_cleanup(gang[i]);
2913 if (err)
2914 return err;
c146afad
YZ
2915 }
2916 root_objectid++;
2917 }
2918 return 0;
2919}
a2135011 2920
c146afad
YZ
2921int btrfs_commit_super(struct btrfs_root *root)
2922{
2923 struct btrfs_trans_handle *trans;
2924 int ret;
a74a4b97 2925
c146afad 2926 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 2927 btrfs_run_delayed_iputs(root);
a74a4b97 2928 btrfs_clean_old_snapshots(root);
c146afad 2929 mutex_unlock(&root->fs_info->cleaner_mutex);
c71bf099
YZ
2930
2931 /* wait until ongoing cleanup work done */
2932 down_write(&root->fs_info->cleanup_work_sem);
2933 up_write(&root->fs_info->cleanup_work_sem);
2934
7a7eaa40 2935 trans = btrfs_join_transaction(root);
3612b495
TI
2936 if (IS_ERR(trans))
2937 return PTR_ERR(trans);
54aa1f4d 2938 ret = btrfs_commit_transaction(trans, root);
c146afad
YZ
2939 BUG_ON(ret);
2940 /* run commit again to drop the original snapshot */
7a7eaa40 2941 trans = btrfs_join_transaction(root);
3612b495
TI
2942 if (IS_ERR(trans))
2943 return PTR_ERR(trans);
79154b1b
CM
2944 btrfs_commit_transaction(trans, root);
2945 ret = btrfs_write_and_wait_transaction(NULL, root);
3768f368 2946 BUG_ON(ret);
d6bfde87 2947
a512bbf8 2948 ret = write_ctree_super(NULL, root, 0);
c146afad
YZ
2949 return ret;
2950}
2951
2952int close_ctree(struct btrfs_root *root)
2953{
2954 struct btrfs_fs_info *fs_info = root->fs_info;
2955 int ret;
2956
2957 fs_info->closing = 1;
2958 smp_mb();
2959
837d5b6e
ID
2960 /* pause restriper - we want to resume on mount */
2961 btrfs_pause_balance(root->fs_info);
2962
a2de733c 2963 btrfs_scrub_cancel(root);
4cb5300b
CM
2964
2965 /* wait for any defraggers to finish */
2966 wait_event(fs_info->transaction_wait,
2967 (atomic_read(&fs_info->defrag_running) == 0));
2968
2969 /* clear out the rbtree of defraggable inodes */
e3029d9f 2970 btrfs_run_defrag_inodes(fs_info);
4cb5300b 2971
acce952b 2972 /*
2973 * Here come 2 situations when btrfs is broken to flip readonly:
2974 *
2975 * 1. when btrfs flips readonly somewhere else before
2976 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
2977 * and btrfs will skip to write sb directly to keep
2978 * ERROR state on disk.
2979 *
2980 * 2. when btrfs flips readonly just in btrfs_commit_super,
ae0e47f0 2981 * and in such case, btrfs cannot write sb via btrfs_commit_super,
acce952b 2982 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
2983 * btrfs will cleanup all FS resources first and write sb then.
2984 */
c146afad 2985 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 2986 ret = btrfs_commit_super(root);
2987 if (ret)
2988 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2989 }
2990
2991 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
2992 ret = btrfs_error_commit_super(root);
d397712b
CM
2993 if (ret)
2994 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
c146afad 2995 }
0f7d52f4 2996
300e4f8a
JB
2997 btrfs_put_block_group_cache(fs_info);
2998
e3029d9f
AV
2999 kthread_stop(fs_info->transaction_kthread);
3000 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3001
f25784b3
YZ
3002 fs_info->closing = 2;
3003 smp_mb();
3004
b0c68f8b 3005 if (fs_info->delalloc_bytes) {
d397712b 3006 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
21380931 3007 (unsigned long long)fs_info->delalloc_bytes);
b0c68f8b 3008 }
31153d81 3009 if (fs_info->total_ref_cache_size) {
d397712b
CM
3010 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3011 (unsigned long long)fs_info->total_ref_cache_size);
31153d81 3012 }
bcc63abb 3013
5d4f98a2
YZ
3014 free_extent_buffer(fs_info->extent_root->node);
3015 free_extent_buffer(fs_info->extent_root->commit_root);
3016 free_extent_buffer(fs_info->tree_root->node);
3017 free_extent_buffer(fs_info->tree_root->commit_root);
e3029d9f
AV
3018 free_extent_buffer(fs_info->chunk_root->node);
3019 free_extent_buffer(fs_info->chunk_root->commit_root);
3020 free_extent_buffer(fs_info->dev_root->node);
3021 free_extent_buffer(fs_info->dev_root->commit_root);
3022 free_extent_buffer(fs_info->csum_root->node);
3023 free_extent_buffer(fs_info->csum_root->commit_root);
d20f7043 3024
e3029d9f 3025 btrfs_free_block_groups(fs_info);
d10c5f31 3026
c146afad 3027 del_fs_roots(fs_info);
d10c5f31 3028
c146afad 3029 iput(fs_info->btree_inode);
9ad6b7bc 3030
61d92c32 3031 btrfs_stop_workers(&fs_info->generic_worker);
247e743c 3032 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 3033 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
3034 btrfs_stop_workers(&fs_info->workers);
3035 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 3036 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 3037 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 3038 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 3039 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 3040 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 3041 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 3042 btrfs_stop_workers(&fs_info->caching_workers);
90519d66 3043 btrfs_stop_workers(&fs_info->readahead_workers);
d6bfde87 3044
21adbd5c
SB
3045#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3046 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3047 btrfsic_unmount(root, fs_info->fs_devices);
3048#endif
3049
dfe25020 3050 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3051 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3052
04160088 3053 bdi_destroy(&fs_info->bdi);
76dda93c 3054 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3055
eb60ceac
CM
3056 return 0;
3057}
3058
1259ab75 3059int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
5f39d397 3060{
1259ab75 3061 int ret;
727011e0 3062 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3063
0b32f4bb 3064 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3065 if (!ret)
3066 return ret;
3067
3068 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3069 parent_transid);
3070 return !ret;
5f39d397
CM
3071}
3072
3073int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3074{
0b32f4bb 3075 return set_extent_buffer_uptodate(buf);
5f39d397 3076}
6702ed49 3077
5f39d397
CM
3078void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3079{
727011e0 3080 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
5f39d397 3081 u64 transid = btrfs_header_generation(buf);
b9473439 3082 int was_dirty;
b4ce94de 3083
b9447ef8 3084 btrfs_assert_tree_locked(buf);
ccd467d6 3085 if (transid != root->fs_info->generation) {
d397712b
CM
3086 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3087 "found %llu running %llu\n",
db94535d 3088 (unsigned long long)buf->start,
d397712b
CM
3089 (unsigned long long)transid,
3090 (unsigned long long)root->fs_info->generation);
ccd467d6
CM
3091 WARN_ON(1);
3092 }
0b32f4bb 3093 was_dirty = set_extent_buffer_dirty(buf);
b9473439
CM
3094 if (!was_dirty) {
3095 spin_lock(&root->fs_info->delalloc_lock);
3096 root->fs_info->dirty_metadata_bytes += buf->len;
3097 spin_unlock(&root->fs_info->delalloc_lock);
3098 }
eb60ceac
CM
3099}
3100
d3c2fdcf 3101void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
16cdcec7
MX
3102{
3103 /*
3104 * looks as though older kernels can get into trouble with
3105 * this code, they end up stuck in balance_dirty_pages forever
3106 */
3107 u64 num_dirty;
3108 unsigned long thresh = 32 * 1024 * 1024;
3109
3110 if (current->flags & PF_MEMALLOC)
3111 return;
3112
3113 btrfs_balance_delayed_items(root);
3114
3115 num_dirty = root->fs_info->dirty_metadata_bytes;
3116
3117 if (num_dirty > thresh) {
3118 balance_dirty_pages_ratelimited_nr(
3119 root->fs_info->btree_inode->i_mapping, 1);
3120 }
3121 return;
3122}
3123
3124void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
35b7e476 3125{
188de649
CM
3126 /*
3127 * looks as though older kernels can get into trouble with
3128 * this code, they end up stuck in balance_dirty_pages forever
3129 */
d6bfde87 3130 u64 num_dirty;
771ed689 3131 unsigned long thresh = 32 * 1024 * 1024;
d6bfde87 3132
6933c02e 3133 if (current->flags & PF_MEMALLOC)
d6bfde87
CM
3134 return;
3135
585ad2c3
CM
3136 num_dirty = root->fs_info->dirty_metadata_bytes;
3137
d6bfde87
CM
3138 if (num_dirty > thresh) {
3139 balance_dirty_pages_ratelimited_nr(
d7fc640e 3140 root->fs_info->btree_inode->i_mapping, 1);
d6bfde87 3141 }
188de649 3142 return;
35b7e476 3143}
6b80053d 3144
ca7a79ad 3145int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3146{
727011e0 3147 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3148 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3149}
0da5468f 3150
01d658f2
CM
3151static int btree_lock_page_hook(struct page *page, void *data,
3152 void (*flush_fn)(void *))
4bef0848
CM
3153{
3154 struct inode *inode = page->mapping->host;
b9473439 3155 struct btrfs_root *root = BTRFS_I(inode)->root;
4bef0848 3156 struct extent_buffer *eb;
4bef0848 3157
4f2de97a
JB
3158 /*
3159 * We culled this eb but the page is still hanging out on the mapping,
3160 * carry on.
3161 */
3162 if (!PagePrivate(page))
4bef0848
CM
3163 goto out;
3164
4f2de97a
JB
3165 eb = (struct extent_buffer *)page->private;
3166 if (!eb) {
3167 WARN_ON(1);
3168 goto out;
3169 }
3170 if (page != eb->pages[0])
4bef0848
CM
3171 goto out;
3172
01d658f2
CM
3173 if (!btrfs_try_tree_write_lock(eb)) {
3174 flush_fn(data);
3175 btrfs_tree_lock(eb);
3176 }
4bef0848 3177 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
b9473439
CM
3178
3179 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3180 spin_lock(&root->fs_info->delalloc_lock);
3181 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3182 root->fs_info->dirty_metadata_bytes -= eb->len;
3183 else
3184 WARN_ON(1);
3185 spin_unlock(&root->fs_info->delalloc_lock);
3186 }
3187
4bef0848 3188 btrfs_tree_unlock(eb);
4bef0848 3189out:
01d658f2
CM
3190 if (!trylock_page(page)) {
3191 flush_fn(data);
3192 lock_page(page);
3193 }
4bef0848
CM
3194 return 0;
3195}
3196
acce952b 3197static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3198 int read_only)
3199{
3200 if (read_only)
3201 return;
3202
3203 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3204 printk(KERN_WARNING "warning: mount fs with errors, "
3205 "running btrfsck is recommended\n");
3206}
3207
3208int btrfs_error_commit_super(struct btrfs_root *root)
3209{
3210 int ret;
3211
3212 mutex_lock(&root->fs_info->cleaner_mutex);
3213 btrfs_run_delayed_iputs(root);
3214 mutex_unlock(&root->fs_info->cleaner_mutex);
3215
3216 down_write(&root->fs_info->cleanup_work_sem);
3217 up_write(&root->fs_info->cleanup_work_sem);
3218
3219 /* cleanup FS via transaction */
3220 btrfs_cleanup_transaction(root);
3221
3222 ret = write_ctree_super(NULL, root, 0);
3223
3224 return ret;
3225}
3226
3227static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
3228{
3229 struct btrfs_inode *btrfs_inode;
3230 struct list_head splice;
3231
3232 INIT_LIST_HEAD(&splice);
3233
3234 mutex_lock(&root->fs_info->ordered_operations_mutex);
3235 spin_lock(&root->fs_info->ordered_extent_lock);
3236
3237 list_splice_init(&root->fs_info->ordered_operations, &splice);
3238 while (!list_empty(&splice)) {
3239 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3240 ordered_operations);
3241
3242 list_del_init(&btrfs_inode->ordered_operations);
3243
3244 btrfs_invalidate_inodes(btrfs_inode->root);
3245 }
3246
3247 spin_unlock(&root->fs_info->ordered_extent_lock);
3248 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3249
3250 return 0;
3251}
3252
3253static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
3254{
3255 struct list_head splice;
3256 struct btrfs_ordered_extent *ordered;
3257 struct inode *inode;
3258
3259 INIT_LIST_HEAD(&splice);
3260
3261 spin_lock(&root->fs_info->ordered_extent_lock);
3262
3263 list_splice_init(&root->fs_info->ordered_extents, &splice);
3264 while (!list_empty(&splice)) {
3265 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3266 root_extent_list);
3267
3268 list_del_init(&ordered->root_extent_list);
3269 atomic_inc(&ordered->refs);
3270
3271 /* the inode may be getting freed (in sys_unlink path). */
3272 inode = igrab(ordered->inode);
3273
3274 spin_unlock(&root->fs_info->ordered_extent_lock);
3275 if (inode)
3276 iput(inode);
3277
3278 atomic_set(&ordered->refs, 1);
3279 btrfs_put_ordered_extent(ordered);
3280
3281 spin_lock(&root->fs_info->ordered_extent_lock);
3282 }
3283
3284 spin_unlock(&root->fs_info->ordered_extent_lock);
3285
3286 return 0;
3287}
3288
3289static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3290 struct btrfs_root *root)
3291{
3292 struct rb_node *node;
3293 struct btrfs_delayed_ref_root *delayed_refs;
3294 struct btrfs_delayed_ref_node *ref;
3295 int ret = 0;
3296
3297 delayed_refs = &trans->delayed_refs;
3298
3299 spin_lock(&delayed_refs->lock);
3300 if (delayed_refs->num_entries == 0) {
cfece4db 3301 spin_unlock(&delayed_refs->lock);
acce952b 3302 printk(KERN_INFO "delayed_refs has NO entry\n");
3303 return ret;
3304 }
3305
3306 node = rb_first(&delayed_refs->root);
3307 while (node) {
3308 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3309 node = rb_next(node);
3310
3311 ref->in_tree = 0;
3312 rb_erase(&ref->rb_node, &delayed_refs->root);
3313 delayed_refs->num_entries--;
3314
3315 atomic_set(&ref->refs, 1);
3316 if (btrfs_delayed_ref_is_head(ref)) {
3317 struct btrfs_delayed_ref_head *head;
3318
3319 head = btrfs_delayed_node_to_head(ref);
3320 mutex_lock(&head->mutex);
3321 kfree(head->extent_op);
3322 delayed_refs->num_heads--;
3323 if (list_empty(&head->cluster))
3324 delayed_refs->num_heads_ready--;
3325 list_del_init(&head->cluster);
3326 mutex_unlock(&head->mutex);
3327 }
3328
3329 spin_unlock(&delayed_refs->lock);
3330 btrfs_put_delayed_ref(ref);
3331
3332 cond_resched();
3333 spin_lock(&delayed_refs->lock);
3334 }
3335
3336 spin_unlock(&delayed_refs->lock);
3337
3338 return ret;
3339}
3340
3341static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3342{
3343 struct btrfs_pending_snapshot *snapshot;
3344 struct list_head splice;
3345
3346 INIT_LIST_HEAD(&splice);
3347
3348 list_splice_init(&t->pending_snapshots, &splice);
3349
3350 while (!list_empty(&splice)) {
3351 snapshot = list_entry(splice.next,
3352 struct btrfs_pending_snapshot,
3353 list);
3354
3355 list_del_init(&snapshot->list);
3356
3357 kfree(snapshot);
3358 }
3359
3360 return 0;
3361}
3362
3363static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3364{
3365 struct btrfs_inode *btrfs_inode;
3366 struct list_head splice;
3367
3368 INIT_LIST_HEAD(&splice);
3369
acce952b 3370 spin_lock(&root->fs_info->delalloc_lock);
5be76758 3371 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
acce952b 3372
3373 while (!list_empty(&splice)) {
3374 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3375 delalloc_inodes);
3376
3377 list_del_init(&btrfs_inode->delalloc_inodes);
3378
3379 btrfs_invalidate_inodes(btrfs_inode->root);
3380 }
3381
3382 spin_unlock(&root->fs_info->delalloc_lock);
3383
3384 return 0;
3385}
3386
3387static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3388 struct extent_io_tree *dirty_pages,
3389 int mark)
3390{
3391 int ret;
3392 struct page *page;
3393 struct inode *btree_inode = root->fs_info->btree_inode;
3394 struct extent_buffer *eb;
3395 u64 start = 0;
3396 u64 end;
3397 u64 offset;
3398 unsigned long index;
3399
3400 while (1) {
3401 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3402 mark);
3403 if (ret)
3404 break;
3405
3406 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3407 while (start <= end) {
3408 index = start >> PAGE_CACHE_SHIFT;
3409 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3410 page = find_get_page(btree_inode->i_mapping, index);
3411 if (!page)
3412 continue;
3413 offset = page_offset(page);
3414
3415 spin_lock(&dirty_pages->buffer_lock);
3416 eb = radix_tree_lookup(
3417 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3418 offset >> PAGE_CACHE_SHIFT);
3419 spin_unlock(&dirty_pages->buffer_lock);
3420 if (eb) {
3421 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3422 &eb->bflags);
3423 atomic_set(&eb->refs, 1);
3424 }
3425 if (PageWriteback(page))
3426 end_page_writeback(page);
3427
3428 lock_page(page);
3429 if (PageDirty(page)) {
3430 clear_page_dirty_for_io(page);
3431 spin_lock_irq(&page->mapping->tree_lock);
3432 radix_tree_tag_clear(&page->mapping->page_tree,
3433 page_index(page),
3434 PAGECACHE_TAG_DIRTY);
3435 spin_unlock_irq(&page->mapping->tree_lock);
3436 }
3437
3438 page->mapping->a_ops->invalidatepage(page, 0);
3439 unlock_page(page);
3440 }
3441 }
3442
3443 return ret;
3444}
3445
3446static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3447 struct extent_io_tree *pinned_extents)
3448{
3449 struct extent_io_tree *unpin;
3450 u64 start;
3451 u64 end;
3452 int ret;
3453
3454 unpin = pinned_extents;
3455 while (1) {
3456 ret = find_first_extent_bit(unpin, 0, &start, &end,
3457 EXTENT_DIRTY);
3458 if (ret)
3459 break;
3460
3461 /* opt_discard */
5378e607
LD
3462 if (btrfs_test_opt(root, DISCARD))
3463 ret = btrfs_error_discard_extent(root, start,
3464 end + 1 - start,
3465 NULL);
acce952b 3466
3467 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3468 btrfs_error_unpin_extent_range(root, start, end);
3469 cond_resched();
3470 }
3471
3472 return 0;
3473}
3474
3475static int btrfs_cleanup_transaction(struct btrfs_root *root)
3476{
3477 struct btrfs_transaction *t;
3478 LIST_HEAD(list);
3479
3480 WARN_ON(1);
3481
acce952b 3482 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3483
a4abeea4 3484 spin_lock(&root->fs_info->trans_lock);
acce952b 3485 list_splice_init(&root->fs_info->trans_list, &list);
a4abeea4
JB
3486 root->fs_info->trans_no_join = 1;
3487 spin_unlock(&root->fs_info->trans_lock);
3488
acce952b 3489 while (!list_empty(&list)) {
3490 t = list_entry(list.next, struct btrfs_transaction, list);
3491 if (!t)
3492 break;
3493
3494 btrfs_destroy_ordered_operations(root);
3495
3496 btrfs_destroy_ordered_extents(root);
3497
3498 btrfs_destroy_delayed_refs(t, root);
3499
3500 btrfs_block_rsv_release(root,
3501 &root->fs_info->trans_block_rsv,
3502 t->dirty_pages.dirty_bytes);
3503
3504 /* FIXME: cleanup wait for commit */
3505 t->in_commit = 1;
3506 t->blocked = 1;
3507 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3508 wake_up(&root->fs_info->transaction_blocked_wait);
3509
3510 t->blocked = 0;
3511 if (waitqueue_active(&root->fs_info->transaction_wait))
3512 wake_up(&root->fs_info->transaction_wait);
acce952b 3513
acce952b 3514 t->commit_done = 1;
3515 if (waitqueue_active(&t->commit_wait))
3516 wake_up(&t->commit_wait);
acce952b 3517
3518 btrfs_destroy_pending_snapshots(t);
3519
3520 btrfs_destroy_delalloc_inodes(root);
3521
a4abeea4 3522 spin_lock(&root->fs_info->trans_lock);
acce952b 3523 root->fs_info->running_transaction = NULL;
a4abeea4 3524 spin_unlock(&root->fs_info->trans_lock);
acce952b 3525
3526 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3527 EXTENT_DIRTY);
3528
3529 btrfs_destroy_pinned_extent(root,
3530 root->fs_info->pinned_extents);
3531
13c5a93e 3532 atomic_set(&t->use_count, 0);
acce952b 3533 list_del_init(&t->list);
3534 memset(t, 0, sizeof(*t));
3535 kmem_cache_free(btrfs_transaction_cachep, t);
3536 }
3537
a4abeea4
JB
3538 spin_lock(&root->fs_info->trans_lock);
3539 root->fs_info->trans_no_join = 0;
3540 spin_unlock(&root->fs_info->trans_lock);
acce952b 3541 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 3542
3543 return 0;
3544}
3545
d1310b2e 3546static struct extent_io_ops btree_extent_io_ops = {
4bef0848 3547 .write_cache_pages_lock_hook = btree_lock_page_hook,
ce9adaa5 3548 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 3549 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 3550 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
3551 /* note we're sharing with inode.c for the merge bio hook */
3552 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 3553};
This page took 0.460395 seconds and 5 git commands to generate.