ceph: resync headers with userland
[deliverable/linux.git] / fs / ceph / messenger.c
CommitLineData
31b8006e
SW
1#include "ceph_debug.h"
2
3#include <linux/crc32c.h>
4#include <linux/ctype.h>
5#include <linux/highmem.h>
6#include <linux/inet.h>
7#include <linux/kthread.h>
8#include <linux/net.h>
5a0e3ad6 9#include <linux/slab.h>
31b8006e
SW
10#include <linux/socket.h>
11#include <linux/string.h>
12#include <net/tcp.h>
13
14#include "super.h"
15#include "messenger.h"
63f2d211 16#include "decode.h"
58bb3b37 17#include "pagelist.h"
31b8006e
SW
18
19/*
20 * Ceph uses the messenger to exchange ceph_msg messages with other
21 * hosts in the system. The messenger provides ordered and reliable
22 * delivery. We tolerate TCP disconnects by reconnecting (with
23 * exponential backoff) in the case of a fault (disconnection, bad
24 * crc, protocol error). Acks allow sent messages to be discarded by
25 * the sender.
26 */
27
28/* static tag bytes (protocol control messages) */
29static char tag_msg = CEPH_MSGR_TAG_MSG;
30static char tag_ack = CEPH_MSGR_TAG_ACK;
31static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
32
a6a5349d
SW
33#ifdef CONFIG_LOCKDEP
34static struct lock_class_key socket_class;
35#endif
36
31b8006e
SW
37
38static void queue_con(struct ceph_connection *con);
39static void con_work(struct work_struct *);
40static void ceph_fault(struct ceph_connection *con);
41
31b8006e
SW
42/*
43 * nicely render a sockaddr as a string.
44 */
45#define MAX_ADDR_STR 20
46static char addr_str[MAX_ADDR_STR][40];
47static DEFINE_SPINLOCK(addr_str_lock);
48static int last_addr_str;
49
50const char *pr_addr(const struct sockaddr_storage *ss)
51{
52 int i;
53 char *s;
54 struct sockaddr_in *in4 = (void *)ss;
55 unsigned char *quad = (void *)&in4->sin_addr.s_addr;
56 struct sockaddr_in6 *in6 = (void *)ss;
57
58 spin_lock(&addr_str_lock);
59 i = last_addr_str++;
60 if (last_addr_str == MAX_ADDR_STR)
61 last_addr_str = 0;
62 spin_unlock(&addr_str_lock);
63 s = addr_str[i];
64
65 switch (ss->ss_family) {
66 case AF_INET:
67 sprintf(s, "%u.%u.%u.%u:%u",
68 (unsigned int)quad[0],
69 (unsigned int)quad[1],
70 (unsigned int)quad[2],
71 (unsigned int)quad[3],
72 (unsigned int)ntohs(in4->sin_port));
73 break;
74
75 case AF_INET6:
76 sprintf(s, "%04x:%04x:%04x:%04x:%04x:%04x:%04x:%04x:%u",
77 in6->sin6_addr.s6_addr16[0],
78 in6->sin6_addr.s6_addr16[1],
79 in6->sin6_addr.s6_addr16[2],
80 in6->sin6_addr.s6_addr16[3],
81 in6->sin6_addr.s6_addr16[4],
82 in6->sin6_addr.s6_addr16[5],
83 in6->sin6_addr.s6_addr16[6],
84 in6->sin6_addr.s6_addr16[7],
85 (unsigned int)ntohs(in6->sin6_port));
86 break;
87
88 default:
89 sprintf(s, "(unknown sockaddr family %d)", (int)ss->ss_family);
90 }
91
92 return s;
93}
94
63f2d211
SW
95static void encode_my_addr(struct ceph_messenger *msgr)
96{
97 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
98 ceph_encode_addr(&msgr->my_enc_addr);
99}
100
31b8006e
SW
101/*
102 * work queue for all reading and writing to/from the socket.
103 */
104struct workqueue_struct *ceph_msgr_wq;
105
106int __init ceph_msgr_init(void)
107{
108 ceph_msgr_wq = create_workqueue("ceph-msgr");
109 if (IS_ERR(ceph_msgr_wq)) {
110 int ret = PTR_ERR(ceph_msgr_wq);
111 pr_err("msgr_init failed to create workqueue: %d\n", ret);
112 ceph_msgr_wq = NULL;
113 return ret;
114 }
115 return 0;
116}
117
118void ceph_msgr_exit(void)
119{
120 destroy_workqueue(ceph_msgr_wq);
121}
122
123/*
124 * socket callback functions
125 */
126
127/* data available on socket, or listen socket received a connect */
128static void ceph_data_ready(struct sock *sk, int count_unused)
129{
130 struct ceph_connection *con =
131 (struct ceph_connection *)sk->sk_user_data;
132 if (sk->sk_state != TCP_CLOSE_WAIT) {
133 dout("ceph_data_ready on %p state = %lu, queueing work\n",
134 con, con->state);
135 queue_con(con);
136 }
137}
138
139/* socket has buffer space for writing */
140static void ceph_write_space(struct sock *sk)
141{
142 struct ceph_connection *con =
143 (struct ceph_connection *)sk->sk_user_data;
144
145 /* only queue to workqueue if there is data we want to write. */
146 if (test_bit(WRITE_PENDING, &con->state)) {
147 dout("ceph_write_space %p queueing write work\n", con);
148 queue_con(con);
149 } else {
150 dout("ceph_write_space %p nothing to write\n", con);
151 }
152
153 /* since we have our own write_space, clear the SOCK_NOSPACE flag */
154 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
155}
156
157/* socket's state has changed */
158static void ceph_state_change(struct sock *sk)
159{
160 struct ceph_connection *con =
161 (struct ceph_connection *)sk->sk_user_data;
162
163 dout("ceph_state_change %p state = %lu sk_state = %u\n",
164 con, con->state, sk->sk_state);
165
166 if (test_bit(CLOSED, &con->state))
167 return;
168
169 switch (sk->sk_state) {
170 case TCP_CLOSE:
171 dout("ceph_state_change TCP_CLOSE\n");
172 case TCP_CLOSE_WAIT:
173 dout("ceph_state_change TCP_CLOSE_WAIT\n");
174 if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
175 if (test_bit(CONNECTING, &con->state))
176 con->error_msg = "connection failed";
177 else
178 con->error_msg = "socket closed";
179 queue_con(con);
180 }
181 break;
182 case TCP_ESTABLISHED:
183 dout("ceph_state_change TCP_ESTABLISHED\n");
184 queue_con(con);
185 break;
186 }
187}
188
189/*
190 * set up socket callbacks
191 */
192static void set_sock_callbacks(struct socket *sock,
193 struct ceph_connection *con)
194{
195 struct sock *sk = sock->sk;
196 sk->sk_user_data = (void *)con;
197 sk->sk_data_ready = ceph_data_ready;
198 sk->sk_write_space = ceph_write_space;
199 sk->sk_state_change = ceph_state_change;
200}
201
202
203/*
204 * socket helpers
205 */
206
207/*
208 * initiate connection to a remote socket.
209 */
210static struct socket *ceph_tcp_connect(struct ceph_connection *con)
211{
212 struct sockaddr *paddr = (struct sockaddr *)&con->peer_addr.in_addr;
213 struct socket *sock;
214 int ret;
215
216 BUG_ON(con->sock);
217 ret = sock_create_kern(AF_INET, SOCK_STREAM, IPPROTO_TCP, &sock);
218 if (ret)
219 return ERR_PTR(ret);
220 con->sock = sock;
221 sock->sk->sk_allocation = GFP_NOFS;
222
a6a5349d
SW
223#ifdef CONFIG_LOCKDEP
224 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
225#endif
226
31b8006e
SW
227 set_sock_callbacks(sock, con);
228
229 dout("connect %s\n", pr_addr(&con->peer_addr.in_addr));
230
231 ret = sock->ops->connect(sock, paddr, sizeof(*paddr), O_NONBLOCK);
232 if (ret == -EINPROGRESS) {
233 dout("connect %s EINPROGRESS sk_state = %u\n",
234 pr_addr(&con->peer_addr.in_addr),
235 sock->sk->sk_state);
236 ret = 0;
237 }
238 if (ret < 0) {
239 pr_err("connect %s error %d\n",
240 pr_addr(&con->peer_addr.in_addr), ret);
241 sock_release(sock);
242 con->sock = NULL;
243 con->error_msg = "connect error";
244 }
245
246 if (ret < 0)
247 return ERR_PTR(ret);
248 return sock;
249}
250
251static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
252{
253 struct kvec iov = {buf, len};
254 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
255
256 return kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
257}
258
259/*
260 * write something. @more is true if caller will be sending more data
261 * shortly.
262 */
263static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
264 size_t kvlen, size_t len, int more)
265{
266 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
267
268 if (more)
269 msg.msg_flags |= MSG_MORE;
270 else
271 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
272
273 return kernel_sendmsg(sock, &msg, iov, kvlen, len);
274}
275
276
277/*
278 * Shutdown/close the socket for the given connection.
279 */
280static int con_close_socket(struct ceph_connection *con)
281{
282 int rc;
283
284 dout("con_close_socket on %p sock %p\n", con, con->sock);
285 if (!con->sock)
286 return 0;
287 set_bit(SOCK_CLOSED, &con->state);
288 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
289 sock_release(con->sock);
290 con->sock = NULL;
291 clear_bit(SOCK_CLOSED, &con->state);
292 return rc;
293}
294
295/*
296 * Reset a connection. Discard all incoming and outgoing messages
297 * and clear *_seq state.
298 */
299static void ceph_msg_remove(struct ceph_msg *msg)
300{
301 list_del_init(&msg->list_head);
302 ceph_msg_put(msg);
303}
304static void ceph_msg_remove_list(struct list_head *head)
305{
306 while (!list_empty(head)) {
307 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
308 list_head);
309 ceph_msg_remove(msg);
310 }
311}
312
313static void reset_connection(struct ceph_connection *con)
314{
315 /* reset connection, out_queue, msg_ and connect_seq */
316 /* discard existing out_queue and msg_seq */
31b8006e
SW
317 ceph_msg_remove_list(&con->out_queue);
318 ceph_msg_remove_list(&con->out_sent);
319
cf3e5c40
SW
320 if (con->in_msg) {
321 ceph_msg_put(con->in_msg);
322 con->in_msg = NULL;
323 }
324
31b8006e
SW
325 con->connect_seq = 0;
326 con->out_seq = 0;
c86a2930
SW
327 if (con->out_msg) {
328 ceph_msg_put(con->out_msg);
329 con->out_msg = NULL;
330 }
6f2bc3ff 331 con->out_keepalive_pending = false;
31b8006e 332 con->in_seq = 0;
0e0d5e0c 333 con->in_seq_acked = 0;
31b8006e
SW
334}
335
336/*
337 * mark a peer down. drop any open connections.
338 */
339void ceph_con_close(struct ceph_connection *con)
340{
341 dout("con_close %p peer %s\n", con, pr_addr(&con->peer_addr.in_addr));
342 set_bit(CLOSED, &con->state); /* in case there's queued work */
343 clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
1679f876
SW
344 clear_bit(LOSSYTX, &con->state); /* so we retry next connect */
345 clear_bit(KEEPALIVE_PENDING, &con->state);
346 clear_bit(WRITE_PENDING, &con->state);
ec302645 347 mutex_lock(&con->mutex);
31b8006e 348 reset_connection(con);
6f2bc3ff 349 con->peer_global_seq = 0;
91e45ce3 350 cancel_delayed_work(&con->work);
ec302645 351 mutex_unlock(&con->mutex);
31b8006e
SW
352 queue_con(con);
353}
354
31b8006e
SW
355/*
356 * Reopen a closed connection, with a new peer address.
357 */
358void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
359{
360 dout("con_open %p %s\n", con, pr_addr(&addr->in_addr));
361 set_bit(OPENING, &con->state);
362 clear_bit(CLOSED, &con->state);
363 memcpy(&con->peer_addr, addr, sizeof(*addr));
03c677e1 364 con->delay = 0; /* reset backoff memory */
31b8006e
SW
365 queue_con(con);
366}
367
87b315a5
SW
368/*
369 * return true if this connection ever successfully opened
370 */
371bool ceph_con_opened(struct ceph_connection *con)
372{
373 return con->connect_seq > 0;
374}
375
31b8006e
SW
376/*
377 * generic get/put
378 */
379struct ceph_connection *ceph_con_get(struct ceph_connection *con)
380{
381 dout("con_get %p nref = %d -> %d\n", con,
382 atomic_read(&con->nref), atomic_read(&con->nref) + 1);
383 if (atomic_inc_not_zero(&con->nref))
384 return con;
385 return NULL;
386}
387
388void ceph_con_put(struct ceph_connection *con)
389{
390 dout("con_put %p nref = %d -> %d\n", con,
391 atomic_read(&con->nref), atomic_read(&con->nref) - 1);
392 BUG_ON(atomic_read(&con->nref) == 0);
393 if (atomic_dec_and_test(&con->nref)) {
71ececda 394 BUG_ON(con->sock);
31b8006e
SW
395 kfree(con);
396 }
397}
398
399/*
400 * initialize a new connection.
401 */
402void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
403{
404 dout("con_init %p\n", con);
405 memset(con, 0, sizeof(*con));
406 atomic_set(&con->nref, 1);
407 con->msgr = msgr;
ec302645 408 mutex_init(&con->mutex);
31b8006e
SW
409 INIT_LIST_HEAD(&con->out_queue);
410 INIT_LIST_HEAD(&con->out_sent);
411 INIT_DELAYED_WORK(&con->work, con_work);
412}
413
414
415/*
416 * We maintain a global counter to order connection attempts. Get
417 * a unique seq greater than @gt.
418 */
419static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
420{
421 u32 ret;
422
423 spin_lock(&msgr->global_seq_lock);
424 if (msgr->global_seq < gt)
425 msgr->global_seq = gt;
426 ret = ++msgr->global_seq;
427 spin_unlock(&msgr->global_seq_lock);
428 return ret;
429}
430
431
432/*
433 * Prepare footer for currently outgoing message, and finish things
434 * off. Assumes out_kvec* are already valid.. we just add on to the end.
435 */
436static void prepare_write_message_footer(struct ceph_connection *con, int v)
437{
438 struct ceph_msg *m = con->out_msg;
439
440 dout("prepare_write_message_footer %p\n", con);
441 con->out_kvec_is_msg = true;
442 con->out_kvec[v].iov_base = &m->footer;
443 con->out_kvec[v].iov_len = sizeof(m->footer);
444 con->out_kvec_bytes += sizeof(m->footer);
445 con->out_kvec_left++;
446 con->out_more = m->more_to_follow;
c86a2930 447 con->out_msg_done = true;
31b8006e
SW
448}
449
450/*
451 * Prepare headers for the next outgoing message.
452 */
453static void prepare_write_message(struct ceph_connection *con)
454{
455 struct ceph_msg *m;
456 int v = 0;
457
458 con->out_kvec_bytes = 0;
459 con->out_kvec_is_msg = true;
c86a2930 460 con->out_msg_done = false;
31b8006e
SW
461
462 /* Sneak an ack in there first? If we can get it into the same
463 * TCP packet that's a good thing. */
464 if (con->in_seq > con->in_seq_acked) {
465 con->in_seq_acked = con->in_seq;
466 con->out_kvec[v].iov_base = &tag_ack;
467 con->out_kvec[v++].iov_len = 1;
468 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
469 con->out_kvec[v].iov_base = &con->out_temp_ack;
470 con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack);
471 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
472 }
473
31b8006e
SW
474 m = list_first_entry(&con->out_queue,
475 struct ceph_msg, list_head);
c86a2930 476 con->out_msg = m;
b3d1dbbd 477 if (test_bit(LOSSYTX, &con->state)) {
6c5d1a49
SW
478 list_del_init(&m->list_head);
479 } else {
b3d1dbbd
SW
480 /* put message on sent list */
481 ceph_msg_get(m);
482 list_move_tail(&m->list_head, &con->out_sent);
b3d1dbbd 483 }
31b8006e 484
e84346b7
SW
485 /*
486 * only assign outgoing seq # if we haven't sent this message
487 * yet. if it is requeued, resend with it's original seq.
488 */
489 if (m->needs_out_seq) {
490 m->hdr.seq = cpu_to_le64(++con->out_seq);
491 m->needs_out_seq = false;
492 }
31b8006e
SW
493
494 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
495 m, con->out_seq, le16_to_cpu(m->hdr.type),
496 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
497 le32_to_cpu(m->hdr.data_len),
498 m->nr_pages);
499 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
500
501 /* tag + hdr + front + middle */
502 con->out_kvec[v].iov_base = &tag_msg;
503 con->out_kvec[v++].iov_len = 1;
504 con->out_kvec[v].iov_base = &m->hdr;
505 con->out_kvec[v++].iov_len = sizeof(m->hdr);
506 con->out_kvec[v++] = m->front;
507 if (m->middle)
508 con->out_kvec[v++] = m->middle->vec;
509 con->out_kvec_left = v;
510 con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len +
511 (m->middle ? m->middle->vec.iov_len : 0);
512 con->out_kvec_cur = con->out_kvec;
513
514 /* fill in crc (except data pages), footer */
515 con->out_msg->hdr.crc =
516 cpu_to_le32(crc32c(0, (void *)&m->hdr,
517 sizeof(m->hdr) - sizeof(m->hdr.crc)));
518 con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
519 con->out_msg->footer.front_crc =
520 cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
521 if (m->middle)
522 con->out_msg->footer.middle_crc =
523 cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
524 m->middle->vec.iov_len));
525 else
526 con->out_msg->footer.middle_crc = 0;
527 con->out_msg->footer.data_crc = 0;
528 dout("prepare_write_message front_crc %u data_crc %u\n",
529 le32_to_cpu(con->out_msg->footer.front_crc),
530 le32_to_cpu(con->out_msg->footer.middle_crc));
531
532 /* is there a data payload? */
533 if (le32_to_cpu(m->hdr.data_len) > 0) {
534 /* initialize page iterator */
535 con->out_msg_pos.page = 0;
536 con->out_msg_pos.page_pos =
537 le16_to_cpu(m->hdr.data_off) & ~PAGE_MASK;
538 con->out_msg_pos.data_pos = 0;
539 con->out_msg_pos.did_page_crc = 0;
540 con->out_more = 1; /* data + footer will follow */
541 } else {
542 /* no, queue up footer too and be done */
543 prepare_write_message_footer(con, v);
544 }
545
546 set_bit(WRITE_PENDING, &con->state);
547}
548
549/*
550 * Prepare an ack.
551 */
552static void prepare_write_ack(struct ceph_connection *con)
553{
554 dout("prepare_write_ack %p %llu -> %llu\n", con,
555 con->in_seq_acked, con->in_seq);
556 con->in_seq_acked = con->in_seq;
557
558 con->out_kvec[0].iov_base = &tag_ack;
559 con->out_kvec[0].iov_len = 1;
560 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
561 con->out_kvec[1].iov_base = &con->out_temp_ack;
562 con->out_kvec[1].iov_len = sizeof(con->out_temp_ack);
563 con->out_kvec_left = 2;
564 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
565 con->out_kvec_cur = con->out_kvec;
566 con->out_more = 1; /* more will follow.. eventually.. */
567 set_bit(WRITE_PENDING, &con->state);
568}
569
570/*
571 * Prepare to write keepalive byte.
572 */
573static void prepare_write_keepalive(struct ceph_connection *con)
574{
575 dout("prepare_write_keepalive %p\n", con);
576 con->out_kvec[0].iov_base = &tag_keepalive;
577 con->out_kvec[0].iov_len = 1;
578 con->out_kvec_left = 1;
579 con->out_kvec_bytes = 1;
580 con->out_kvec_cur = con->out_kvec;
581 set_bit(WRITE_PENDING, &con->state);
582}
583
584/*
585 * Connection negotiation.
586 */
587
4e7a5dcd
SW
588static void prepare_connect_authorizer(struct ceph_connection *con)
589{
590 void *auth_buf;
591 int auth_len = 0;
592 int auth_protocol = 0;
593
ec302645 594 mutex_unlock(&con->mutex);
4e7a5dcd
SW
595 if (con->ops->get_authorizer)
596 con->ops->get_authorizer(con, &auth_buf, &auth_len,
597 &auth_protocol, &con->auth_reply_buf,
598 &con->auth_reply_buf_len,
599 con->auth_retry);
ec302645 600 mutex_lock(&con->mutex);
4e7a5dcd
SW
601
602 con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
603 con->out_connect.authorizer_len = cpu_to_le32(auth_len);
604
605 con->out_kvec[con->out_kvec_left].iov_base = auth_buf;
606 con->out_kvec[con->out_kvec_left].iov_len = auth_len;
607 con->out_kvec_left++;
608 con->out_kvec_bytes += auth_len;
609}
610
31b8006e
SW
611/*
612 * We connected to a peer and are saying hello.
613 */
eed0ef2c
SW
614static void prepare_write_banner(struct ceph_messenger *msgr,
615 struct ceph_connection *con)
31b8006e
SW
616{
617 int len = strlen(CEPH_BANNER);
eed0ef2c
SW
618
619 con->out_kvec[0].iov_base = CEPH_BANNER;
620 con->out_kvec[0].iov_len = len;
621 con->out_kvec[1].iov_base = &msgr->my_enc_addr;
622 con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr);
623 con->out_kvec_left = 2;
624 con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr);
625 con->out_kvec_cur = con->out_kvec;
626 con->out_more = 0;
627 set_bit(WRITE_PENDING, &con->state);
628}
629
630static void prepare_write_connect(struct ceph_messenger *msgr,
631 struct ceph_connection *con,
632 int after_banner)
633{
31b8006e
SW
634 unsigned global_seq = get_global_seq(con->msgr, 0);
635 int proto;
636
637 switch (con->peer_name.type) {
638 case CEPH_ENTITY_TYPE_MON:
639 proto = CEPH_MONC_PROTOCOL;
640 break;
641 case CEPH_ENTITY_TYPE_OSD:
642 proto = CEPH_OSDC_PROTOCOL;
643 break;
644 case CEPH_ENTITY_TYPE_MDS:
645 proto = CEPH_MDSC_PROTOCOL;
646 break;
647 default:
648 BUG();
649 }
650
651 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
652 con->connect_seq, global_seq, proto);
4e7a5dcd 653
dbad185d 654 con->out_connect.features = CEPH_FEATURE_SUPPORTED_CLIENT;
31b8006e
SW
655 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
656 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
657 con->out_connect.global_seq = cpu_to_le32(global_seq);
658 con->out_connect.protocol_version = cpu_to_le32(proto);
659 con->out_connect.flags = 0;
31b8006e 660
eed0ef2c
SW
661 if (!after_banner) {
662 con->out_kvec_left = 0;
663 con->out_kvec_bytes = 0;
664 }
665 con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect;
666 con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect);
667 con->out_kvec_left++;
668 con->out_kvec_bytes += sizeof(con->out_connect);
31b8006e
SW
669 con->out_kvec_cur = con->out_kvec;
670 con->out_more = 0;
671 set_bit(WRITE_PENDING, &con->state);
4e7a5dcd
SW
672
673 prepare_connect_authorizer(con);
31b8006e
SW
674}
675
676
677/*
678 * write as much of pending kvecs to the socket as we can.
679 * 1 -> done
680 * 0 -> socket full, but more to do
681 * <0 -> error
682 */
683static int write_partial_kvec(struct ceph_connection *con)
684{
685 int ret;
686
687 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
688 while (con->out_kvec_bytes > 0) {
689 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
690 con->out_kvec_left, con->out_kvec_bytes,
691 con->out_more);
692 if (ret <= 0)
693 goto out;
694 con->out_kvec_bytes -= ret;
695 if (con->out_kvec_bytes == 0)
696 break; /* done */
697 while (ret > 0) {
698 if (ret >= con->out_kvec_cur->iov_len) {
699 ret -= con->out_kvec_cur->iov_len;
700 con->out_kvec_cur++;
701 con->out_kvec_left--;
702 } else {
703 con->out_kvec_cur->iov_len -= ret;
704 con->out_kvec_cur->iov_base += ret;
705 ret = 0;
706 break;
707 }
708 }
709 }
710 con->out_kvec_left = 0;
711 con->out_kvec_is_msg = false;
712 ret = 1;
713out:
714 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
715 con->out_kvec_bytes, con->out_kvec_left, ret);
716 return ret; /* done! */
717}
718
719/*
720 * Write as much message data payload as we can. If we finish, queue
721 * up the footer.
722 * 1 -> done, footer is now queued in out_kvec[].
723 * 0 -> socket full, but more to do
724 * <0 -> error
725 */
726static int write_partial_msg_pages(struct ceph_connection *con)
727{
728 struct ceph_msg *msg = con->out_msg;
729 unsigned data_len = le32_to_cpu(msg->hdr.data_len);
730 size_t len;
731 int crc = con->msgr->nocrc;
732 int ret;
733
734 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
735 con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
736 con->out_msg_pos.page_pos);
737
738 while (con->out_msg_pos.page < con->out_msg->nr_pages) {
739 struct page *page = NULL;
740 void *kaddr = NULL;
741
742 /*
743 * if we are calculating the data crc (the default), we need
744 * to map the page. if our pages[] has been revoked, use the
745 * zero page.
746 */
747 if (msg->pages) {
748 page = msg->pages[con->out_msg_pos.page];
749 if (crc)
750 kaddr = kmap(page);
58bb3b37
SW
751 } else if (msg->pagelist) {
752 page = list_first_entry(&msg->pagelist->head,
753 struct page, lru);
754 if (crc)
755 kaddr = kmap(page);
31b8006e
SW
756 } else {
757 page = con->msgr->zero_page;
758 if (crc)
759 kaddr = page_address(con->msgr->zero_page);
760 }
761 len = min((int)(PAGE_SIZE - con->out_msg_pos.page_pos),
762 (int)(data_len - con->out_msg_pos.data_pos));
763 if (crc && !con->out_msg_pos.did_page_crc) {
764 void *base = kaddr + con->out_msg_pos.page_pos;
765 u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
766
767 BUG_ON(kaddr == NULL);
768 con->out_msg->footer.data_crc =
769 cpu_to_le32(crc32c(tmpcrc, base, len));
770 con->out_msg_pos.did_page_crc = 1;
771 }
772
773 ret = kernel_sendpage(con->sock, page,
774 con->out_msg_pos.page_pos, len,
775 MSG_DONTWAIT | MSG_NOSIGNAL |
776 MSG_MORE);
777
58bb3b37 778 if (crc && (msg->pages || msg->pagelist))
31b8006e
SW
779 kunmap(page);
780
781 if (ret <= 0)
782 goto out;
783
784 con->out_msg_pos.data_pos += ret;
785 con->out_msg_pos.page_pos += ret;
786 if (ret == len) {
787 con->out_msg_pos.page_pos = 0;
788 con->out_msg_pos.page++;
789 con->out_msg_pos.did_page_crc = 0;
58bb3b37
SW
790 if (msg->pagelist)
791 list_move_tail(&page->lru,
792 &msg->pagelist->head);
31b8006e
SW
793 }
794 }
795
796 dout("write_partial_msg_pages %p msg %p done\n", con, msg);
797
798 /* prepare and queue up footer, too */
799 if (!crc)
800 con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
801 con->out_kvec_bytes = 0;
802 con->out_kvec_left = 0;
803 con->out_kvec_cur = con->out_kvec;
804 prepare_write_message_footer(con, 0);
805 ret = 1;
806out:
807 return ret;
808}
809
810/*
811 * write some zeros
812 */
813static int write_partial_skip(struct ceph_connection *con)
814{
815 int ret;
816
817 while (con->out_skip > 0) {
818 struct kvec iov = {
819 .iov_base = page_address(con->msgr->zero_page),
820 .iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
821 };
822
823 ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
824 if (ret <= 0)
825 goto out;
826 con->out_skip -= ret;
827 }
828 ret = 1;
829out:
830 return ret;
831}
832
833/*
834 * Prepare to read connection handshake, or an ack.
835 */
eed0ef2c
SW
836static void prepare_read_banner(struct ceph_connection *con)
837{
838 dout("prepare_read_banner %p\n", con);
839 con->in_base_pos = 0;
840}
841
31b8006e
SW
842static void prepare_read_connect(struct ceph_connection *con)
843{
844 dout("prepare_read_connect %p\n", con);
845 con->in_base_pos = 0;
846}
847
848static void prepare_read_ack(struct ceph_connection *con)
849{
850 dout("prepare_read_ack %p\n", con);
851 con->in_base_pos = 0;
852}
853
854static void prepare_read_tag(struct ceph_connection *con)
855{
856 dout("prepare_read_tag %p\n", con);
857 con->in_base_pos = 0;
858 con->in_tag = CEPH_MSGR_TAG_READY;
859}
860
861/*
862 * Prepare to read a message.
863 */
864static int prepare_read_message(struct ceph_connection *con)
865{
866 dout("prepare_read_message %p\n", con);
867 BUG_ON(con->in_msg != NULL);
868 con->in_base_pos = 0;
869 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
870 return 0;
871}
872
873
874static int read_partial(struct ceph_connection *con,
875 int *to, int size, void *object)
876{
877 *to += size;
878 while (con->in_base_pos < *to) {
879 int left = *to - con->in_base_pos;
880 int have = size - left;
881 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
882 if (ret <= 0)
883 return ret;
884 con->in_base_pos += ret;
885 }
886 return 1;
887}
888
889
890/*
891 * Read all or part of the connect-side handshake on a new connection
892 */
eed0ef2c 893static int read_partial_banner(struct ceph_connection *con)
31b8006e
SW
894{
895 int ret, to = 0;
896
eed0ef2c 897 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
31b8006e
SW
898
899 /* peer's banner */
900 ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
901 if (ret <= 0)
902 goto out;
903 ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
904 &con->actual_peer_addr);
905 if (ret <= 0)
906 goto out;
907 ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
908 &con->peer_addr_for_me);
909 if (ret <= 0)
910 goto out;
eed0ef2c
SW
911out:
912 return ret;
913}
914
915static int read_partial_connect(struct ceph_connection *con)
916{
917 int ret, to = 0;
918
919 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
920
31b8006e
SW
921 ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
922 if (ret <= 0)
923 goto out;
4e7a5dcd
SW
924 ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
925 con->auth_reply_buf);
926 if (ret <= 0)
927 goto out;
31b8006e 928
4e7a5dcd
SW
929 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
930 con, (int)con->in_reply.tag,
931 le32_to_cpu(con->in_reply.connect_seq),
31b8006e
SW
932 le32_to_cpu(con->in_reply.global_seq));
933out:
934 return ret;
eed0ef2c 935
31b8006e
SW
936}
937
938/*
939 * Verify the hello banner looks okay.
940 */
941static int verify_hello(struct ceph_connection *con)
942{
943 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
13e38c8a 944 pr_err("connect to %s got bad banner\n",
31b8006e
SW
945 pr_addr(&con->peer_addr.in_addr));
946 con->error_msg = "protocol error, bad banner";
947 return -1;
948 }
949 return 0;
950}
951
952static bool addr_is_blank(struct sockaddr_storage *ss)
953{
954 switch (ss->ss_family) {
955 case AF_INET:
956 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
957 case AF_INET6:
958 return
959 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
960 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
961 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
962 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
963 }
964 return false;
965}
966
967static int addr_port(struct sockaddr_storage *ss)
968{
969 switch (ss->ss_family) {
970 case AF_INET:
f28bcfbe 971 return ntohs(((struct sockaddr_in *)ss)->sin_port);
31b8006e 972 case AF_INET6:
f28bcfbe 973 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
31b8006e
SW
974 }
975 return 0;
976}
977
978static void addr_set_port(struct sockaddr_storage *ss, int p)
979{
980 switch (ss->ss_family) {
981 case AF_INET:
982 ((struct sockaddr_in *)ss)->sin_port = htons(p);
983 case AF_INET6:
984 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
985 }
986}
987
988/*
989 * Parse an ip[:port] list into an addr array. Use the default
990 * monitor port if a port isn't specified.
991 */
992int ceph_parse_ips(const char *c, const char *end,
993 struct ceph_entity_addr *addr,
994 int max_count, int *count)
995{
996 int i;
997 const char *p = c;
998
999 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1000 for (i = 0; i < max_count; i++) {
1001 const char *ipend;
1002 struct sockaddr_storage *ss = &addr[i].in_addr;
1003 struct sockaddr_in *in4 = (void *)ss;
1004 struct sockaddr_in6 *in6 = (void *)ss;
1005 int port;
1006
1007 memset(ss, 0, sizeof(*ss));
1008 if (in4_pton(p, end - p, (u8 *)&in4->sin_addr.s_addr,
1009 ',', &ipend)) {
1010 ss->ss_family = AF_INET;
1011 } else if (in6_pton(p, end - p, (u8 *)&in6->sin6_addr.s6_addr,
1012 ',', &ipend)) {
1013 ss->ss_family = AF_INET6;
1014 } else {
1015 goto bad;
1016 }
1017 p = ipend;
1018
1019 /* port? */
1020 if (p < end && *p == ':') {
1021 port = 0;
1022 p++;
1023 while (p < end && *p >= '0' && *p <= '9') {
1024 port = (port * 10) + (*p - '0');
1025 p++;
1026 }
1027 if (port > 65535 || port == 0)
1028 goto bad;
1029 } else {
1030 port = CEPH_MON_PORT;
1031 }
1032
1033 addr_set_port(ss, port);
1034
1035 dout("parse_ips got %s\n", pr_addr(ss));
1036
1037 if (p == end)
1038 break;
1039 if (*p != ',')
1040 goto bad;
1041 p++;
1042 }
1043
1044 if (p != end)
1045 goto bad;
1046
1047 if (count)
1048 *count = i + 1;
1049 return 0;
1050
1051bad:
1052 pr_err("parse_ips bad ip '%s'\n", c);
1053 return -EINVAL;
1054}
1055
eed0ef2c 1056static int process_banner(struct ceph_connection *con)
31b8006e 1057{
eed0ef2c 1058 dout("process_banner on %p\n", con);
31b8006e
SW
1059
1060 if (verify_hello(con) < 0)
1061 return -1;
1062
63f2d211
SW
1063 ceph_decode_addr(&con->actual_peer_addr);
1064 ceph_decode_addr(&con->peer_addr_for_me);
1065
31b8006e
SW
1066 /*
1067 * Make sure the other end is who we wanted. note that the other
1068 * end may not yet know their ip address, so if it's 0.0.0.0, give
1069 * them the benefit of the doubt.
1070 */
103e2d3a
SW
1071 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1072 sizeof(con->peer_addr)) != 0 &&
31b8006e
SW
1073 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1074 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
103e2d3a
SW
1075 pr_warning("wrong peer, want %s/%lld, got %s/%lld\n",
1076 pr_addr(&con->peer_addr.in_addr),
1077 le64_to_cpu(con->peer_addr.nonce),
1078 pr_addr(&con->actual_peer_addr.in_addr),
1079 le64_to_cpu(con->actual_peer_addr.nonce));
58bb3b37 1080 con->error_msg = "wrong peer at address";
31b8006e
SW
1081 return -1;
1082 }
1083
1084 /*
1085 * did we learn our address?
1086 */
1087 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1088 int port = addr_port(&con->msgr->inst.addr.in_addr);
1089
1090 memcpy(&con->msgr->inst.addr.in_addr,
1091 &con->peer_addr_for_me.in_addr,
1092 sizeof(con->peer_addr_for_me.in_addr));
1093 addr_set_port(&con->msgr->inst.addr.in_addr, port);
63f2d211 1094 encode_my_addr(con->msgr);
eed0ef2c 1095 dout("process_banner learned my addr is %s\n",
31b8006e
SW
1096 pr_addr(&con->msgr->inst.addr.in_addr));
1097 }
1098
eed0ef2c
SW
1099 set_bit(NEGOTIATING, &con->state);
1100 prepare_read_connect(con);
1101 return 0;
1102}
1103
04a419f9
SW
1104static void fail_protocol(struct ceph_connection *con)
1105{
1106 reset_connection(con);
1107 set_bit(CLOSED, &con->state); /* in case there's queued work */
1108
1109 mutex_unlock(&con->mutex);
1110 if (con->ops->bad_proto)
1111 con->ops->bad_proto(con);
1112 mutex_lock(&con->mutex);
1113}
1114
eed0ef2c
SW
1115static int process_connect(struct ceph_connection *con)
1116{
dbad185d
SW
1117 u64 sup_feat = CEPH_FEATURE_SUPPORTED_CLIENT;
1118 u64 req_feat = CEPH_FEATURE_REQUIRED_CLIENT;
04a419f9
SW
1119 u64 server_feat = le64_to_cpu(con->in_reply.features);
1120
eed0ef2c
SW
1121 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1122
31b8006e 1123 switch (con->in_reply.tag) {
04a419f9
SW
1124 case CEPH_MSGR_TAG_FEATURES:
1125 pr_err("%s%lld %s feature set mismatch,"
1126 " my %llx < server's %llx, missing %llx\n",
1127 ENTITY_NAME(con->peer_name),
1128 pr_addr(&con->peer_addr.in_addr),
1129 sup_feat, server_feat, server_feat & ~sup_feat);
1130 con->error_msg = "missing required protocol features";
1131 fail_protocol(con);
1132 return -1;
1133
31b8006e 1134 case CEPH_MSGR_TAG_BADPROTOVER:
31b8006e
SW
1135 pr_err("%s%lld %s protocol version mismatch,"
1136 " my %d != server's %d\n",
1137 ENTITY_NAME(con->peer_name),
1138 pr_addr(&con->peer_addr.in_addr),
1139 le32_to_cpu(con->out_connect.protocol_version),
1140 le32_to_cpu(con->in_reply.protocol_version));
1141 con->error_msg = "protocol version mismatch";
04a419f9 1142 fail_protocol(con);
31b8006e
SW
1143 return -1;
1144
4e7a5dcd
SW
1145 case CEPH_MSGR_TAG_BADAUTHORIZER:
1146 con->auth_retry++;
1147 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1148 con->auth_retry);
1149 if (con->auth_retry == 2) {
1150 con->error_msg = "connect authorization failure";
1151 reset_connection(con);
1152 set_bit(CLOSED, &con->state);
1153 return -1;
1154 }
1155 con->auth_retry = 1;
1156 prepare_write_connect(con->msgr, con, 0);
63733a0f 1157 prepare_read_connect(con);
4e7a5dcd 1158 break;
31b8006e
SW
1159
1160 case CEPH_MSGR_TAG_RESETSESSION:
1161 /*
1162 * If we connected with a large connect_seq but the peer
1163 * has no record of a session with us (no connection, or
1164 * connect_seq == 0), they will send RESETSESION to indicate
1165 * that they must have reset their session, and may have
1166 * dropped messages.
1167 */
1168 dout("process_connect got RESET peer seq %u\n",
1169 le32_to_cpu(con->in_connect.connect_seq));
1170 pr_err("%s%lld %s connection reset\n",
1171 ENTITY_NAME(con->peer_name),
1172 pr_addr(&con->peer_addr.in_addr));
1173 reset_connection(con);
eed0ef2c 1174 prepare_write_connect(con->msgr, con, 0);
31b8006e
SW
1175 prepare_read_connect(con);
1176
1177 /* Tell ceph about it. */
ec302645 1178 mutex_unlock(&con->mutex);
31b8006e
SW
1179 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1180 if (con->ops->peer_reset)
1181 con->ops->peer_reset(con);
ec302645 1182 mutex_lock(&con->mutex);
31b8006e
SW
1183 break;
1184
1185 case CEPH_MSGR_TAG_RETRY_SESSION:
1186 /*
1187 * If we sent a smaller connect_seq than the peer has, try
1188 * again with a larger value.
1189 */
1190 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1191 le32_to_cpu(con->out_connect.connect_seq),
1192 le32_to_cpu(con->in_connect.connect_seq));
1193 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
eed0ef2c 1194 prepare_write_connect(con->msgr, con, 0);
31b8006e
SW
1195 prepare_read_connect(con);
1196 break;
1197
1198 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1199 /*
1200 * If we sent a smaller global_seq than the peer has, try
1201 * again with a larger value.
1202 */
eed0ef2c 1203 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
31b8006e
SW
1204 con->peer_global_seq,
1205 le32_to_cpu(con->in_connect.global_seq));
1206 get_global_seq(con->msgr,
1207 le32_to_cpu(con->in_connect.global_seq));
eed0ef2c 1208 prepare_write_connect(con->msgr, con, 0);
31b8006e
SW
1209 prepare_read_connect(con);
1210 break;
1211
1212 case CEPH_MSGR_TAG_READY:
04a419f9
SW
1213 if (req_feat & ~server_feat) {
1214 pr_err("%s%lld %s protocol feature mismatch,"
1215 " my required %llx > server's %llx, need %llx\n",
1216 ENTITY_NAME(con->peer_name),
1217 pr_addr(&con->peer_addr.in_addr),
1218 req_feat, server_feat, req_feat & ~server_feat);
1219 con->error_msg = "missing required protocol features";
1220 fail_protocol(con);
1221 return -1;
1222 }
31b8006e 1223 clear_bit(CONNECTING, &con->state);
31b8006e
SW
1224 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1225 con->connect_seq++;
1226 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1227 con->peer_global_seq,
1228 le32_to_cpu(con->in_reply.connect_seq),
1229 con->connect_seq);
1230 WARN_ON(con->connect_seq !=
1231 le32_to_cpu(con->in_reply.connect_seq));
92ac41d0
SW
1232
1233 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1234 set_bit(LOSSYTX, &con->state);
1235
31b8006e
SW
1236 prepare_read_tag(con);
1237 break;
1238
1239 case CEPH_MSGR_TAG_WAIT:
1240 /*
1241 * If there is a connection race (we are opening
1242 * connections to each other), one of us may just have
1243 * to WAIT. This shouldn't happen if we are the
1244 * client.
1245 */
1246 pr_err("process_connect peer connecting WAIT\n");
1247
1248 default:
1249 pr_err("connect protocol error, will retry\n");
1250 con->error_msg = "protocol error, garbage tag during connect";
1251 return -1;
1252 }
1253 return 0;
1254}
1255
1256
1257/*
1258 * read (part of) an ack
1259 */
1260static int read_partial_ack(struct ceph_connection *con)
1261{
1262 int to = 0;
1263
1264 return read_partial(con, &to, sizeof(con->in_temp_ack),
1265 &con->in_temp_ack);
1266}
1267
1268
1269/*
1270 * We can finally discard anything that's been acked.
1271 */
1272static void process_ack(struct ceph_connection *con)
1273{
1274 struct ceph_msg *m;
1275 u64 ack = le64_to_cpu(con->in_temp_ack);
1276 u64 seq;
1277
31b8006e
SW
1278 while (!list_empty(&con->out_sent)) {
1279 m = list_first_entry(&con->out_sent, struct ceph_msg,
1280 list_head);
1281 seq = le64_to_cpu(m->hdr.seq);
1282 if (seq > ack)
1283 break;
1284 dout("got ack for seq %llu type %d at %p\n", seq,
1285 le16_to_cpu(m->hdr.type), m);
1286 ceph_msg_remove(m);
1287 }
31b8006e
SW
1288 prepare_read_tag(con);
1289}
1290
1291
1292
1293
2450418c
YS
1294static int read_partial_message_section(struct ceph_connection *con,
1295 struct kvec *section, unsigned int sec_len,
1296 u32 *crc)
1297{
1298 int left;
1299 int ret;
1300
1301 BUG_ON(!section);
1302
1303 while (section->iov_len < sec_len) {
1304 BUG_ON(section->iov_base == NULL);
1305 left = sec_len - section->iov_len;
1306 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1307 section->iov_len, left);
1308 if (ret <= 0)
1309 return ret;
1310 section->iov_len += ret;
1311 if (section->iov_len == sec_len)
1312 *crc = crc32c(0, section->iov_base,
1313 section->iov_len);
1314 }
31b8006e 1315
2450418c
YS
1316 return 1;
1317}
31b8006e 1318
2450418c
YS
1319static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1320 struct ceph_msg_header *hdr,
1321 int *skip);
31b8006e
SW
1322/*
1323 * read (part of) a message.
1324 */
1325static int read_partial_message(struct ceph_connection *con)
1326{
1327 struct ceph_msg *m = con->in_msg;
1328 void *p;
1329 int ret;
9d7f0f13 1330 int to, left;
31b8006e
SW
1331 unsigned front_len, middle_len, data_len, data_off;
1332 int datacrc = con->msgr->nocrc;
2450418c 1333 int skip;
ae18756b 1334 u64 seq;
31b8006e
SW
1335
1336 dout("read_partial_message con %p msg %p\n", con, m);
1337
1338 /* header */
1339 while (con->in_base_pos < sizeof(con->in_hdr)) {
1340 left = sizeof(con->in_hdr) - con->in_base_pos;
1341 ret = ceph_tcp_recvmsg(con->sock,
1342 (char *)&con->in_hdr + con->in_base_pos,
1343 left);
1344 if (ret <= 0)
1345 return ret;
1346 con->in_base_pos += ret;
1347 if (con->in_base_pos == sizeof(con->in_hdr)) {
1348 u32 crc = crc32c(0, (void *)&con->in_hdr,
1349 sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
1350 if (crc != le32_to_cpu(con->in_hdr.crc)) {
1351 pr_err("read_partial_message bad hdr "
1352 " crc %u != expected %u\n",
1353 crc, con->in_hdr.crc);
1354 return -EBADMSG;
1355 }
1356 }
1357 }
31b8006e
SW
1358 front_len = le32_to_cpu(con->in_hdr.front_len);
1359 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1360 return -EIO;
1361 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1362 if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1363 return -EIO;
1364 data_len = le32_to_cpu(con->in_hdr.data_len);
1365 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1366 return -EIO;
9d7f0f13 1367 data_off = le16_to_cpu(con->in_hdr.data_off);
31b8006e 1368
ae18756b
SW
1369 /* verify seq# */
1370 seq = le64_to_cpu(con->in_hdr.seq);
1371 if ((s64)seq - (s64)con->in_seq < 1) {
1372 pr_info("skipping %s%lld %s seq %lld, expected %lld\n",
1373 ENTITY_NAME(con->peer_name),
1374 pr_addr(&con->peer_addr.in_addr),
1375 seq, con->in_seq + 1);
1376 con->in_base_pos = -front_len - middle_len - data_len -
1377 sizeof(m->footer);
1378 con->in_tag = CEPH_MSGR_TAG_READY;
1379 con->in_seq++;
1380 return 0;
1381 } else if ((s64)seq - (s64)con->in_seq > 1) {
1382 pr_err("read_partial_message bad seq %lld expected %lld\n",
1383 seq, con->in_seq + 1);
1384 con->error_msg = "bad message sequence # for incoming message";
1385 return -EBADMSG;
1386 }
1387
31b8006e
SW
1388 /* allocate message? */
1389 if (!con->in_msg) {
1390 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1391 con->in_hdr.front_len, con->in_hdr.data_len);
2450418c
YS
1392 con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1393 if (skip) {
31b8006e 1394 /* skip this message */
a79832f2 1395 dout("alloc_msg said skip message\n");
31b8006e
SW
1396 con->in_base_pos = -front_len - middle_len - data_len -
1397 sizeof(m->footer);
1398 con->in_tag = CEPH_MSGR_TAG_READY;
684be25c 1399 con->in_seq++;
31b8006e
SW
1400 return 0;
1401 }
a79832f2 1402 if (!con->in_msg) {
5b3a4db3
SW
1403 con->error_msg =
1404 "error allocating memory for incoming message";
a79832f2 1405 return -ENOMEM;
31b8006e
SW
1406 }
1407 m = con->in_msg;
1408 m->front.iov_len = 0; /* haven't read it yet */
2450418c
YS
1409 if (m->middle)
1410 m->middle->vec.iov_len = 0;
9d7f0f13
YS
1411
1412 con->in_msg_pos.page = 0;
1413 con->in_msg_pos.page_pos = data_off & ~PAGE_MASK;
1414 con->in_msg_pos.data_pos = 0;
31b8006e
SW
1415 }
1416
1417 /* front */
2450418c
YS
1418 ret = read_partial_message_section(con, &m->front, front_len,
1419 &con->in_front_crc);
1420 if (ret <= 0)
1421 return ret;
31b8006e
SW
1422
1423 /* middle */
2450418c
YS
1424 if (m->middle) {
1425 ret = read_partial_message_section(con, &m->middle->vec, middle_len,
1426 &con->in_middle_crc);
31b8006e
SW
1427 if (ret <= 0)
1428 return ret;
31b8006e
SW
1429 }
1430
1431 /* (page) data */
31b8006e
SW
1432 while (con->in_msg_pos.data_pos < data_len) {
1433 left = min((int)(data_len - con->in_msg_pos.data_pos),
1434 (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1435 BUG_ON(m->pages == NULL);
1436 p = kmap(m->pages[con->in_msg_pos.page]);
1437 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1438 left);
1439 if (ret > 0 && datacrc)
1440 con->in_data_crc =
1441 crc32c(con->in_data_crc,
1442 p + con->in_msg_pos.page_pos, ret);
1443 kunmap(m->pages[con->in_msg_pos.page]);
1444 if (ret <= 0)
1445 return ret;
1446 con->in_msg_pos.data_pos += ret;
1447 con->in_msg_pos.page_pos += ret;
1448 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1449 con->in_msg_pos.page_pos = 0;
1450 con->in_msg_pos.page++;
1451 }
1452 }
1453
31b8006e
SW
1454 /* footer */
1455 to = sizeof(m->hdr) + sizeof(m->footer);
1456 while (con->in_base_pos < to) {
1457 left = to - con->in_base_pos;
1458 ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
1459 (con->in_base_pos - sizeof(m->hdr)),
1460 left);
1461 if (ret <= 0)
1462 return ret;
1463 con->in_base_pos += ret;
1464 }
1465 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1466 m, front_len, m->footer.front_crc, middle_len,
1467 m->footer.middle_crc, data_len, m->footer.data_crc);
1468
1469 /* crc ok? */
1470 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1471 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1472 m, con->in_front_crc, m->footer.front_crc);
1473 return -EBADMSG;
1474 }
1475 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1476 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1477 m, con->in_middle_crc, m->footer.middle_crc);
1478 return -EBADMSG;
1479 }
1480 if (datacrc &&
1481 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1482 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1483 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1484 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1485 return -EBADMSG;
1486 }
1487
1488 return 1; /* done! */
1489}
1490
1491/*
1492 * Process message. This happens in the worker thread. The callback should
1493 * be careful not to do anything that waits on other incoming messages or it
1494 * may deadlock.
1495 */
1496static void process_message(struct ceph_connection *con)
1497{
5e095e8b 1498 struct ceph_msg *msg;
31b8006e 1499
5e095e8b 1500 msg = con->in_msg;
31b8006e
SW
1501 con->in_msg = NULL;
1502
1503 /* if first message, set peer_name */
1504 if (con->peer_name.type == 0)
dbad185d 1505 con->peer_name = msg->hdr.src;
31b8006e 1506
31b8006e 1507 con->in_seq++;
ec302645 1508 mutex_unlock(&con->mutex);
31b8006e
SW
1509
1510 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1511 msg, le64_to_cpu(msg->hdr.seq),
dbad185d 1512 ENTITY_NAME(msg->hdr.src),
31b8006e
SW
1513 le16_to_cpu(msg->hdr.type),
1514 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1515 le32_to_cpu(msg->hdr.front_len),
1516 le32_to_cpu(msg->hdr.data_len),
1517 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1518 con->ops->dispatch(con, msg);
ec302645
SW
1519
1520 mutex_lock(&con->mutex);
31b8006e
SW
1521 prepare_read_tag(con);
1522}
1523
1524
1525/*
1526 * Write something to the socket. Called in a worker thread when the
1527 * socket appears to be writeable and we have something ready to send.
1528 */
1529static int try_write(struct ceph_connection *con)
1530{
1531 struct ceph_messenger *msgr = con->msgr;
1532 int ret = 1;
1533
1534 dout("try_write start %p state %lu nref %d\n", con, con->state,
1535 atomic_read(&con->nref));
1536
31b8006e
SW
1537more:
1538 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1539
1540 /* open the socket first? */
1541 if (con->sock == NULL) {
1542 /*
1543 * if we were STANDBY and are reconnecting _this_
1544 * connection, bump connect_seq now. Always bump
1545 * global_seq.
1546 */
1547 if (test_and_clear_bit(STANDBY, &con->state))
1548 con->connect_seq++;
1549
eed0ef2c
SW
1550 prepare_write_banner(msgr, con);
1551 prepare_write_connect(msgr, con, 1);
1552 prepare_read_banner(con);
31b8006e 1553 set_bit(CONNECTING, &con->state);
eed0ef2c 1554 clear_bit(NEGOTIATING, &con->state);
31b8006e 1555
cf3e5c40 1556 BUG_ON(con->in_msg);
31b8006e
SW
1557 con->in_tag = CEPH_MSGR_TAG_READY;
1558 dout("try_write initiating connect on %p new state %lu\n",
1559 con, con->state);
1560 con->sock = ceph_tcp_connect(con);
1561 if (IS_ERR(con->sock)) {
1562 con->sock = NULL;
1563 con->error_msg = "connect error";
1564 ret = -1;
1565 goto out;
1566 }
1567 }
1568
1569more_kvec:
1570 /* kvec data queued? */
1571 if (con->out_skip) {
1572 ret = write_partial_skip(con);
1573 if (ret <= 0)
1574 goto done;
1575 if (ret < 0) {
1576 dout("try_write write_partial_skip err %d\n", ret);
1577 goto done;
1578 }
1579 }
1580 if (con->out_kvec_left) {
1581 ret = write_partial_kvec(con);
1582 if (ret <= 0)
1583 goto done;
31b8006e
SW
1584 }
1585
1586 /* msg pages? */
1587 if (con->out_msg) {
c86a2930
SW
1588 if (con->out_msg_done) {
1589 ceph_msg_put(con->out_msg);
1590 con->out_msg = NULL; /* we're done with this one */
1591 goto do_next;
1592 }
1593
31b8006e
SW
1594 ret = write_partial_msg_pages(con);
1595 if (ret == 1)
1596 goto more_kvec; /* we need to send the footer, too! */
1597 if (ret == 0)
1598 goto done;
1599 if (ret < 0) {
1600 dout("try_write write_partial_msg_pages err %d\n",
1601 ret);
1602 goto done;
1603 }
1604 }
1605
c86a2930 1606do_next:
31b8006e
SW
1607 if (!test_bit(CONNECTING, &con->state)) {
1608 /* is anything else pending? */
1609 if (!list_empty(&con->out_queue)) {
1610 prepare_write_message(con);
1611 goto more;
1612 }
1613 if (con->in_seq > con->in_seq_acked) {
1614 prepare_write_ack(con);
1615 goto more;
1616 }
1617 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1618 prepare_write_keepalive(con);
1619 goto more;
1620 }
1621 }
1622
1623 /* Nothing to do! */
1624 clear_bit(WRITE_PENDING, &con->state);
1625 dout("try_write nothing else to write.\n");
1626done:
1627 ret = 0;
1628out:
31b8006e
SW
1629 dout("try_write done on %p\n", con);
1630 return ret;
1631}
1632
1633
1634
1635/*
1636 * Read what we can from the socket.
1637 */
1638static int try_read(struct ceph_connection *con)
1639{
31b8006e
SW
1640 int ret = -1;
1641
1642 if (!con->sock)
1643 return 0;
1644
1645 if (test_bit(STANDBY, &con->state))
1646 return 0;
1647
1648 dout("try_read start on %p\n", con);
ec302645 1649
31b8006e
SW
1650more:
1651 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1652 con->in_base_pos);
1653 if (test_bit(CONNECTING, &con->state)) {
eed0ef2c
SW
1654 if (!test_bit(NEGOTIATING, &con->state)) {
1655 dout("try_read connecting\n");
1656 ret = read_partial_banner(con);
1657 if (ret <= 0)
1658 goto done;
1659 if (process_banner(con) < 0) {
1660 ret = -1;
1661 goto out;
1662 }
1663 }
31b8006e
SW
1664 ret = read_partial_connect(con);
1665 if (ret <= 0)
1666 goto done;
1667 if (process_connect(con) < 0) {
1668 ret = -1;
1669 goto out;
1670 }
1671 goto more;
1672 }
1673
1674 if (con->in_base_pos < 0) {
1675 /*
1676 * skipping + discarding content.
1677 *
1678 * FIXME: there must be a better way to do this!
1679 */
1680 static char buf[1024];
1681 int skip = min(1024, -con->in_base_pos);
1682 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
1683 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
1684 if (ret <= 0)
1685 goto done;
1686 con->in_base_pos += ret;
1687 if (con->in_base_pos)
1688 goto more;
1689 }
1690 if (con->in_tag == CEPH_MSGR_TAG_READY) {
1691 /*
1692 * what's next?
1693 */
1694 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
1695 if (ret <= 0)
1696 goto done;
1697 dout("try_read got tag %d\n", (int)con->in_tag);
1698 switch (con->in_tag) {
1699 case CEPH_MSGR_TAG_MSG:
1700 prepare_read_message(con);
1701 break;
1702 case CEPH_MSGR_TAG_ACK:
1703 prepare_read_ack(con);
1704 break;
1705 case CEPH_MSGR_TAG_CLOSE:
1706 set_bit(CLOSED, &con->state); /* fixme */
1707 goto done;
1708 default:
1709 goto bad_tag;
1710 }
1711 }
1712 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
1713 ret = read_partial_message(con);
1714 if (ret <= 0) {
1715 switch (ret) {
1716 case -EBADMSG:
1717 con->error_msg = "bad crc";
1718 ret = -EIO;
1719 goto out;
1720 case -EIO:
1721 con->error_msg = "io error";
1722 goto out;
1723 default:
1724 goto done;
1725 }
1726 }
1727 if (con->in_tag == CEPH_MSGR_TAG_READY)
1728 goto more;
1729 process_message(con);
1730 goto more;
1731 }
1732 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
1733 ret = read_partial_ack(con);
1734 if (ret <= 0)
1735 goto done;
1736 process_ack(con);
1737 goto more;
1738 }
1739
1740done:
1741 ret = 0;
1742out:
1743 dout("try_read done on %p\n", con);
1744 return ret;
1745
1746bad_tag:
1747 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
1748 con->error_msg = "protocol error, garbage tag";
1749 ret = -1;
1750 goto out;
1751}
1752
1753
1754/*
1755 * Atomically queue work on a connection. Bump @con reference to
1756 * avoid races with connection teardown.
1757 *
1758 * There is some trickery going on with QUEUED and BUSY because we
1759 * only want a _single_ thread operating on each connection at any
1760 * point in time, but we want to use all available CPUs.
1761 *
1762 * The worker thread only proceeds if it can atomically set BUSY. It
1763 * clears QUEUED and does it's thing. When it thinks it's done, it
1764 * clears BUSY, then rechecks QUEUED.. if it's set again, it loops
1765 * (tries again to set BUSY).
1766 *
1767 * To queue work, we first set QUEUED, _then_ if BUSY isn't set, we
1768 * try to queue work. If that fails (work is already queued, or BUSY)
1769 * we give up (work also already being done or is queued) but leave QUEUED
1770 * set so that the worker thread will loop if necessary.
1771 */
1772static void queue_con(struct ceph_connection *con)
1773{
1774 if (test_bit(DEAD, &con->state)) {
1775 dout("queue_con %p ignoring: DEAD\n",
1776 con);
1777 return;
1778 }
1779
1780 if (!con->ops->get(con)) {
1781 dout("queue_con %p ref count 0\n", con);
1782 return;
1783 }
1784
1785 set_bit(QUEUED, &con->state);
1786 if (test_bit(BUSY, &con->state)) {
1787 dout("queue_con %p - already BUSY\n", con);
1788 con->ops->put(con);
1789 } else if (!queue_work(ceph_msgr_wq, &con->work.work)) {
1790 dout("queue_con %p - already queued\n", con);
1791 con->ops->put(con);
1792 } else {
1793 dout("queue_con %p\n", con);
1794 }
1795}
1796
1797/*
1798 * Do some work on a connection. Drop a connection ref when we're done.
1799 */
1800static void con_work(struct work_struct *work)
1801{
1802 struct ceph_connection *con = container_of(work, struct ceph_connection,
1803 work.work);
1804 int backoff = 0;
1805
1806more:
1807 if (test_and_set_bit(BUSY, &con->state) != 0) {
1808 dout("con_work %p BUSY already set\n", con);
1809 goto out;
1810 }
1811 dout("con_work %p start, clearing QUEUED\n", con);
1812 clear_bit(QUEUED, &con->state);
1813
9dd4658d
SW
1814 mutex_lock(&con->mutex);
1815
31b8006e
SW
1816 if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
1817 dout("con_work CLOSED\n");
1818 con_close_socket(con);
1819 goto done;
1820 }
1821 if (test_and_clear_bit(OPENING, &con->state)) {
1822 /* reopen w/ new peer */
1823 dout("con_work OPENING\n");
1824 con_close_socket(con);
1825 }
1826
1827 if (test_and_clear_bit(SOCK_CLOSED, &con->state) ||
1828 try_read(con) < 0 ||
1829 try_write(con) < 0) {
9dd4658d 1830 mutex_unlock(&con->mutex);
31b8006e
SW
1831 backoff = 1;
1832 ceph_fault(con); /* error/fault path */
9dd4658d 1833 goto done_unlocked;
31b8006e
SW
1834 }
1835
1836done:
9dd4658d
SW
1837 mutex_unlock(&con->mutex);
1838
1839done_unlocked:
31b8006e
SW
1840 clear_bit(BUSY, &con->state);
1841 dout("con->state=%lu\n", con->state);
1842 if (test_bit(QUEUED, &con->state)) {
e2663ab6 1843 if (!backoff || test_bit(OPENING, &con->state)) {
31b8006e
SW
1844 dout("con_work %p QUEUED reset, looping\n", con);
1845 goto more;
1846 }
1847 dout("con_work %p QUEUED reset, but just faulted\n", con);
1848 clear_bit(QUEUED, &con->state);
1849 }
1850 dout("con_work %p done\n", con);
1851
1852out:
1853 con->ops->put(con);
1854}
1855
1856
1857/*
1858 * Generic error/fault handler. A retry mechanism is used with
1859 * exponential backoff
1860 */
1861static void ceph_fault(struct ceph_connection *con)
1862{
1863 pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1864 pr_addr(&con->peer_addr.in_addr), con->error_msg);
1865 dout("fault %p state %lu to peer %s\n",
1866 con, con->state, pr_addr(&con->peer_addr.in_addr));
1867
1868 if (test_bit(LOSSYTX, &con->state)) {
1869 dout("fault on LOSSYTX channel\n");
1870 goto out;
1871 }
1872
ec302645 1873 mutex_lock(&con->mutex);
91e45ce3
SW
1874 if (test_bit(CLOSED, &con->state))
1875 goto out_unlock;
ec302645 1876
31b8006e 1877 con_close_socket(con);
5e095e8b
SW
1878
1879 if (con->in_msg) {
1880 ceph_msg_put(con->in_msg);
1881 con->in_msg = NULL;
1882 }
31b8006e 1883
e80a52d1
SW
1884 /* Requeue anything that hasn't been acked */
1885 list_splice_init(&con->out_sent, &con->out_queue);
9bd2e6f8 1886
31b8006e
SW
1887 /* If there are no messages in the queue, place the connection
1888 * in a STANDBY state (i.e., don't try to reconnect just yet). */
31b8006e
SW
1889 if (list_empty(&con->out_queue) && !con->out_keepalive_pending) {
1890 dout("fault setting STANDBY\n");
1891 set_bit(STANDBY, &con->state);
e80a52d1
SW
1892 } else {
1893 /* retry after a delay. */
1894 if (con->delay == 0)
1895 con->delay = BASE_DELAY_INTERVAL;
1896 else if (con->delay < MAX_DELAY_INTERVAL)
1897 con->delay *= 2;
1898 dout("fault queueing %p delay %lu\n", con, con->delay);
1899 con->ops->get(con);
1900 if (queue_delayed_work(ceph_msgr_wq, &con->work,
1901 round_jiffies_relative(con->delay)) == 0)
1902 con->ops->put(con);
31b8006e
SW
1903 }
1904
91e45ce3
SW
1905out_unlock:
1906 mutex_unlock(&con->mutex);
31b8006e 1907out:
161fd65a
SW
1908 /*
1909 * in case we faulted due to authentication, invalidate our
1910 * current tickets so that we can get new ones.
1911 */
1912 if (con->auth_retry && con->ops->invalidate_authorizer) {
1913 dout("calling invalidate_authorizer()\n");
1914 con->ops->invalidate_authorizer(con);
1915 }
1916
31b8006e
SW
1917 if (con->ops->fault)
1918 con->ops->fault(con);
1919}
1920
1921
1922
1923/*
1924 * create a new messenger instance
1925 */
1926struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr)
1927{
1928 struct ceph_messenger *msgr;
1929
1930 msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
1931 if (msgr == NULL)
1932 return ERR_PTR(-ENOMEM);
1933
1934 spin_lock_init(&msgr->global_seq_lock);
1935
1936 /* the zero page is needed if a request is "canceled" while the message
1937 * is being written over the socket */
31459fe4 1938 msgr->zero_page = __page_cache_alloc(GFP_KERNEL | __GFP_ZERO);
31b8006e
SW
1939 if (!msgr->zero_page) {
1940 kfree(msgr);
1941 return ERR_PTR(-ENOMEM);
1942 }
1943 kmap(msgr->zero_page);
1944
1945 if (myaddr)
1946 msgr->inst.addr = *myaddr;
1947
1948 /* select a random nonce */
ac8839d7 1949 msgr->inst.addr.type = 0;
103e2d3a 1950 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
63f2d211 1951 encode_my_addr(msgr);
31b8006e
SW
1952
1953 dout("messenger_create %p\n", msgr);
1954 return msgr;
1955}
1956
1957void ceph_messenger_destroy(struct ceph_messenger *msgr)
1958{
1959 dout("destroy %p\n", msgr);
1960 kunmap(msgr->zero_page);
1961 __free_page(msgr->zero_page);
1962 kfree(msgr);
1963 dout("destroyed messenger %p\n", msgr);
1964}
1965
1966/*
1967 * Queue up an outgoing message on the given connection.
1968 */
1969void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1970{
1971 if (test_bit(CLOSED, &con->state)) {
1972 dout("con_send %p closed, dropping %p\n", con, msg);
1973 ceph_msg_put(msg);
1974 return;
1975 }
1976
1977 /* set src+dst */
dbad185d 1978 msg->hdr.src = con->msgr->inst.name;
31b8006e 1979
3ca02ef9
SW
1980 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
1981
e84346b7
SW
1982 msg->needs_out_seq = true;
1983
31b8006e 1984 /* queue */
ec302645 1985 mutex_lock(&con->mutex);
31b8006e
SW
1986 BUG_ON(!list_empty(&msg->list_head));
1987 list_add_tail(&msg->list_head, &con->out_queue);
1988 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1989 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1990 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1991 le32_to_cpu(msg->hdr.front_len),
1992 le32_to_cpu(msg->hdr.middle_len),
1993 le32_to_cpu(msg->hdr.data_len));
ec302645 1994 mutex_unlock(&con->mutex);
31b8006e
SW
1995
1996 /* if there wasn't anything waiting to send before, queue
1997 * new work */
1998 if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
1999 queue_con(con);
2000}
2001
2002/*
2003 * Revoke a message that was previously queued for send
2004 */
2005void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2006{
ec302645 2007 mutex_lock(&con->mutex);
31b8006e
SW
2008 if (!list_empty(&msg->list_head)) {
2009 dout("con_revoke %p msg %p\n", con, msg);
2010 list_del_init(&msg->list_head);
2011 ceph_msg_put(msg);
2012 msg->hdr.seq = 0;
c86a2930
SW
2013 if (con->out_msg == msg) {
2014 ceph_msg_put(con->out_msg);
31b8006e 2015 con->out_msg = NULL;
c86a2930 2016 }
31b8006e
SW
2017 if (con->out_kvec_is_msg) {
2018 con->out_skip = con->out_kvec_bytes;
2019 con->out_kvec_is_msg = false;
2020 }
2021 } else {
2022 dout("con_revoke %p msg %p - not queued (sent?)\n", con, msg);
2023 }
ec302645 2024 mutex_unlock(&con->mutex);
31b8006e
SW
2025}
2026
350b1c32 2027/*
0d59ab81 2028 * Revoke a message that we may be reading data into
350b1c32 2029 */
0d59ab81 2030void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
350b1c32
SW
2031{
2032 mutex_lock(&con->mutex);
0d59ab81
YS
2033 if (con->in_msg && con->in_msg == msg) {
2034 unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
2035 unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
350b1c32
SW
2036 unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2037
2038 /* skip rest of message */
0d59ab81 2039 dout("con_revoke_pages %p msg %p revoked\n", con, msg);
350b1c32
SW
2040 con->in_base_pos = con->in_base_pos -
2041 sizeof(struct ceph_msg_header) -
0d59ab81
YS
2042 front_len -
2043 middle_len -
2044 data_len -
350b1c32 2045 sizeof(struct ceph_msg_footer);
350b1c32
SW
2046 ceph_msg_put(con->in_msg);
2047 con->in_msg = NULL;
2048 con->in_tag = CEPH_MSGR_TAG_READY;
684be25c 2049 con->in_seq++;
350b1c32
SW
2050 } else {
2051 dout("con_revoke_pages %p msg %p pages %p no-op\n",
0d59ab81 2052 con, con->in_msg, msg);
350b1c32
SW
2053 }
2054 mutex_unlock(&con->mutex);
2055}
2056
31b8006e
SW
2057/*
2058 * Queue a keepalive byte to ensure the tcp connection is alive.
2059 */
2060void ceph_con_keepalive(struct ceph_connection *con)
2061{
2062 if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2063 test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2064 queue_con(con);
2065}
2066
2067
2068/*
2069 * construct a new message with given type, size
2070 * the new msg has a ref count of 1.
2071 */
bb257664 2072struct ceph_msg *ceph_msg_new(int type, int front_len)
31b8006e
SW
2073{
2074 struct ceph_msg *m;
2075
2076 m = kmalloc(sizeof(*m), GFP_NOFS);
2077 if (m == NULL)
2078 goto out;
c2e552e7 2079 kref_init(&m->kref);
31b8006e
SW
2080 INIT_LIST_HEAD(&m->list_head);
2081
45c6ceb5 2082 m->hdr.tid = 0;
31b8006e 2083 m->hdr.type = cpu_to_le16(type);
45c6ceb5
SW
2084 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2085 m->hdr.version = 0;
31b8006e
SW
2086 m->hdr.front_len = cpu_to_le32(front_len);
2087 m->hdr.middle_len = 0;
bb257664
SW
2088 m->hdr.data_len = 0;
2089 m->hdr.data_off = 0;
45c6ceb5 2090 m->hdr.reserved = 0;
31b8006e
SW
2091 m->footer.front_crc = 0;
2092 m->footer.middle_crc = 0;
2093 m->footer.data_crc = 0;
45c6ceb5 2094 m->footer.flags = 0;
31b8006e
SW
2095 m->front_max = front_len;
2096 m->front_is_vmalloc = false;
2097 m->more_to_follow = false;
2098 m->pool = NULL;
2099
2100 /* front */
2101 if (front_len) {
2102 if (front_len > PAGE_CACHE_SIZE) {
2103 m->front.iov_base = __vmalloc(front_len, GFP_NOFS,
2104 PAGE_KERNEL);
2105 m->front_is_vmalloc = true;
2106 } else {
2107 m->front.iov_base = kmalloc(front_len, GFP_NOFS);
2108 }
2109 if (m->front.iov_base == NULL) {
2110 pr_err("msg_new can't allocate %d bytes\n",
2111 front_len);
2112 goto out2;
2113 }
2114 } else {
2115 m->front.iov_base = NULL;
2116 }
2117 m->front.iov_len = front_len;
2118
2119 /* middle */
2120 m->middle = NULL;
2121
2122 /* data */
bb257664
SW
2123 m->nr_pages = 0;
2124 m->pages = NULL;
58bb3b37 2125 m->pagelist = NULL;
31b8006e 2126
bb257664 2127 dout("ceph_msg_new %p front %d\n", m, front_len);
31b8006e
SW
2128 return m;
2129
2130out2:
2131 ceph_msg_put(m);
2132out:
bb257664 2133 pr_err("msg_new can't create type %d front %d\n", type, front_len);
a79832f2 2134 return NULL;
31b8006e
SW
2135}
2136
31b8006e
SW
2137/*
2138 * Allocate "middle" portion of a message, if it is needed and wasn't
2139 * allocated by alloc_msg. This allows us to read a small fixed-size
2140 * per-type header in the front and then gracefully fail (i.e.,
2141 * propagate the error to the caller based on info in the front) when
2142 * the middle is too large.
2143 */
2450418c 2144static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
31b8006e
SW
2145{
2146 int type = le16_to_cpu(msg->hdr.type);
2147 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2148
2149 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2150 ceph_msg_type_name(type), middle_len);
2151 BUG_ON(!middle_len);
2152 BUG_ON(msg->middle);
2153
b6c1d5b8 2154 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
31b8006e
SW
2155 if (!msg->middle)
2156 return -ENOMEM;
2157 return 0;
2158}
2159
2450418c
YS
2160/*
2161 * Generic message allocator, for incoming messages.
2162 */
2163static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2164 struct ceph_msg_header *hdr,
2165 int *skip)
2166{
2167 int type = le16_to_cpu(hdr->type);
2168 int front_len = le32_to_cpu(hdr->front_len);
2169 int middle_len = le32_to_cpu(hdr->middle_len);
2170 struct ceph_msg *msg = NULL;
2171 int ret;
2172
2173 if (con->ops->alloc_msg) {
0547a9b3 2174 mutex_unlock(&con->mutex);
2450418c 2175 msg = con->ops->alloc_msg(con, hdr, skip);
0547a9b3 2176 mutex_lock(&con->mutex);
a79832f2 2177 if (!msg || *skip)
2450418c
YS
2178 return NULL;
2179 }
2180 if (!msg) {
2181 *skip = 0;
bb257664 2182 msg = ceph_msg_new(type, front_len);
2450418c
YS
2183 if (!msg) {
2184 pr_err("unable to allocate msg type %d len %d\n",
2185 type, front_len);
a79832f2 2186 return NULL;
2450418c
YS
2187 }
2188 }
9d7f0f13 2189 memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2450418c 2190
bb257664 2191 if (middle_len && !msg->middle) {
2450418c 2192 ret = ceph_alloc_middle(con, msg);
2450418c
YS
2193 if (ret < 0) {
2194 ceph_msg_put(msg);
a79832f2 2195 return NULL;
2450418c
YS
2196 }
2197 }
9d7f0f13 2198
2450418c
YS
2199 return msg;
2200}
2201
31b8006e
SW
2202
2203/*
2204 * Free a generically kmalloc'd message.
2205 */
2206void ceph_msg_kfree(struct ceph_msg *m)
2207{
2208 dout("msg_kfree %p\n", m);
2209 if (m->front_is_vmalloc)
2210 vfree(m->front.iov_base);
2211 else
2212 kfree(m->front.iov_base);
2213 kfree(m);
2214}
2215
2216/*
2217 * Drop a msg ref. Destroy as needed.
2218 */
c2e552e7
SW
2219void ceph_msg_last_put(struct kref *kref)
2220{
2221 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
31b8006e 2222
c2e552e7
SW
2223 dout("ceph_msg_put last one on %p\n", m);
2224 WARN_ON(!list_empty(&m->list_head));
2225
2226 /* drop middle, data, if any */
2227 if (m->middle) {
2228 ceph_buffer_put(m->middle);
2229 m->middle = NULL;
31b8006e 2230 }
c2e552e7
SW
2231 m->nr_pages = 0;
2232 m->pages = NULL;
2233
58bb3b37
SW
2234 if (m->pagelist) {
2235 ceph_pagelist_release(m->pagelist);
2236 kfree(m->pagelist);
2237 m->pagelist = NULL;
2238 }
2239
c2e552e7
SW
2240 if (m->pool)
2241 ceph_msgpool_put(m->pool, m);
2242 else
2243 ceph_msg_kfree(m);
31b8006e 2244}
9ec7cab1
SW
2245
2246void ceph_msg_dump(struct ceph_msg *msg)
2247{
2248 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2249 msg->front_max, msg->nr_pages);
2250 print_hex_dump(KERN_DEBUG, "header: ",
2251 DUMP_PREFIX_OFFSET, 16, 1,
2252 &msg->hdr, sizeof(msg->hdr), true);
2253 print_hex_dump(KERN_DEBUG, " front: ",
2254 DUMP_PREFIX_OFFSET, 16, 1,
2255 msg->front.iov_base, msg->front.iov_len, true);
2256 if (msg->middle)
2257 print_hex_dump(KERN_DEBUG, "middle: ",
2258 DUMP_PREFIX_OFFSET, 16, 1,
2259 msg->middle->vec.iov_base,
2260 msg->middle->vec.iov_len, true);
2261 print_hex_dump(KERN_DEBUG, "footer: ",
2262 DUMP_PREFIX_OFFSET, 16, 1,
2263 &msg->footer, sizeof(msg->footer), true);
2264}
This page took 0.14219 seconds and 5 git commands to generate.