vfs: make the string hashes salt the hash
[deliverable/linux.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
f6041567 40#include <linux/list_lru.h>
df4c0e36
AR
41#include <linux/kasan.h>
42
07f3f05c 43#include "internal.h"
b2dba1af 44#include "mount.h"
1da177e4 45
789680d1
NP
46/*
47 * Usage:
873feea0 48 * dcache->d_inode->i_lock protects:
946e51f2 49 * - i_dentry, d_u.d_alias, d_inode of aliases
ceb5bdc2
NP
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
19156840 54 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
55 * - the dcache lru lists and counters
56 * d_lock protects:
57 * - d_flags
58 * - d_name
59 * - d_lru
b7ab39f6 60 * - d_count
da502956 61 * - d_unhashed()
2fd6b7f5
NP
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
946e51f2 64 * - d_u.d_alias, d_inode
789680d1
NP
65 *
66 * Ordering:
873feea0 67 * dentry->d_inode->i_lock
b5c84bf6 68 * dentry->d_lock
19156840 69 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2
NP
70 * dcache_hash_bucket lock
71 * s_anon lock
789680d1 72 *
da502956
NP
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
75 * ...
76 * dentry->d_parent->d_lock
77 * dentry->d_lock
78 *
79 * If no ancestor relationship:
789680d1
NP
80 * if (dentry1 < dentry2)
81 * dentry1->d_lock
82 * dentry2->d_lock
83 */
fa3536cc 84int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
85EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86
74c3cbe3 87__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 88
949854d0 89EXPORT_SYMBOL(rename_lock);
1da177e4 90
e18b890b 91static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 92
1da177e4
LT
93/*
94 * This is the single most critical data structure when it comes
95 * to the dcache: the hashtable for lookups. Somebody should try
96 * to make this good - I've just made it work.
97 *
98 * This hash-function tries to avoid losing too many bits of hash
99 * information, yet avoid using a prime hash-size or similar.
100 */
1da177e4 101
fa3536cc
ED
102static unsigned int d_hash_mask __read_mostly;
103static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 104
b07ad996 105static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 106
8387ff25 107static inline struct hlist_bl_head *d_hash(unsigned int hash)
ceb5bdc2 108{
99d263d4 109 return dentry_hashtable + hash_32(hash, d_hash_shift);
ceb5bdc2
NP
110}
111
94bdd655
AV
112#define IN_LOOKUP_SHIFT 10
113static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
114
115static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
116 unsigned int hash)
117{
118 hash += (unsigned long) parent / L1_CACHE_BYTES;
119 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
120}
121
122
1da177e4
LT
123/* Statistics gathering. */
124struct dentry_stat_t dentry_stat = {
125 .age_limit = 45,
126};
127
3942c07c 128static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 129static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
130
131#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
132
133/*
134 * Here we resort to our own counters instead of using generic per-cpu counters
135 * for consistency with what the vfs inode code does. We are expected to harvest
136 * better code and performance by having our own specialized counters.
137 *
138 * Please note that the loop is done over all possible CPUs, not over all online
139 * CPUs. The reason for this is that we don't want to play games with CPUs going
140 * on and off. If one of them goes off, we will just keep their counters.
141 *
142 * glommer: See cffbc8a for details, and if you ever intend to change this,
143 * please update all vfs counters to match.
144 */
3942c07c 145static long get_nr_dentry(void)
3e880fb5
NP
146{
147 int i;
3942c07c 148 long sum = 0;
3e880fb5
NP
149 for_each_possible_cpu(i)
150 sum += per_cpu(nr_dentry, i);
151 return sum < 0 ? 0 : sum;
152}
153
62d36c77
DC
154static long get_nr_dentry_unused(void)
155{
156 int i;
157 long sum = 0;
158 for_each_possible_cpu(i)
159 sum += per_cpu(nr_dentry_unused, i);
160 return sum < 0 ? 0 : sum;
161}
162
1f7e0616 163int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
312d3ca8
CH
164 size_t *lenp, loff_t *ppos)
165{
3e880fb5 166 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 167 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 168 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
169}
170#endif
171
5483f18e
LT
172/*
173 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
174 * The strings are both count bytes long, and count is non-zero.
175 */
e419b4cc
LT
176#ifdef CONFIG_DCACHE_WORD_ACCESS
177
178#include <asm/word-at-a-time.h>
179/*
180 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
181 * aligned allocation for this particular component. We don't
182 * strictly need the load_unaligned_zeropad() safety, but it
183 * doesn't hurt either.
184 *
185 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
186 * need the careful unaligned handling.
187 */
94753db5 188static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 189{
bfcfaa77 190 unsigned long a,b,mask;
bfcfaa77
LT
191
192 for (;;) {
12f8ad4b 193 a = *(unsigned long *)cs;
e419b4cc 194 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
195 if (tcount < sizeof(unsigned long))
196 break;
197 if (unlikely(a != b))
198 return 1;
199 cs += sizeof(unsigned long);
200 ct += sizeof(unsigned long);
201 tcount -= sizeof(unsigned long);
202 if (!tcount)
203 return 0;
204 }
a5c21dce 205 mask = bytemask_from_count(tcount);
bfcfaa77 206 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
207}
208
bfcfaa77 209#else
e419b4cc 210
94753db5 211static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 212{
5483f18e
LT
213 do {
214 if (*cs != *ct)
215 return 1;
216 cs++;
217 ct++;
218 tcount--;
219 } while (tcount);
220 return 0;
221}
222
e419b4cc
LT
223#endif
224
94753db5
LT
225static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
226{
6326c71f 227 const unsigned char *cs;
94753db5
LT
228 /*
229 * Be careful about RCU walk racing with rename:
230 * use ACCESS_ONCE to fetch the name pointer.
231 *
232 * NOTE! Even if a rename will mean that the length
233 * was not loaded atomically, we don't care. The
234 * RCU walk will check the sequence count eventually,
235 * and catch it. And we won't overrun the buffer,
236 * because we're reading the name pointer atomically,
237 * and a dentry name is guaranteed to be properly
238 * terminated with a NUL byte.
239 *
240 * End result: even if 'len' is wrong, we'll exit
241 * early because the data cannot match (there can
242 * be no NUL in the ct/tcount data)
243 */
6326c71f
LT
244 cs = ACCESS_ONCE(dentry->d_name.name);
245 smp_read_barrier_depends();
246 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
247}
248
8d85b484
AV
249struct external_name {
250 union {
251 atomic_t count;
252 struct rcu_head head;
253 } u;
254 unsigned char name[];
255};
256
257static inline struct external_name *external_name(struct dentry *dentry)
258{
259 return container_of(dentry->d_name.name, struct external_name, name[0]);
260}
261
9c82ab9c 262static void __d_free(struct rcu_head *head)
1da177e4 263{
9c82ab9c
CH
264 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
265
8d85b484
AV
266 kmem_cache_free(dentry_cache, dentry);
267}
268
269static void __d_free_external(struct rcu_head *head)
270{
271 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
8d85b484 272 kfree(external_name(dentry));
1da177e4
LT
273 kmem_cache_free(dentry_cache, dentry);
274}
275
810bb172
AV
276static inline int dname_external(const struct dentry *dentry)
277{
278 return dentry->d_name.name != dentry->d_iname;
279}
280
4bf46a27
DH
281static inline void __d_set_inode_and_type(struct dentry *dentry,
282 struct inode *inode,
283 unsigned type_flags)
284{
285 unsigned flags;
286
287 dentry->d_inode = inode;
4bf46a27
DH
288 flags = READ_ONCE(dentry->d_flags);
289 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
290 flags |= type_flags;
291 WRITE_ONCE(dentry->d_flags, flags);
292}
293
4bf46a27
DH
294static inline void __d_clear_type_and_inode(struct dentry *dentry)
295{
296 unsigned flags = READ_ONCE(dentry->d_flags);
297
298 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
299 WRITE_ONCE(dentry->d_flags, flags);
4bf46a27
DH
300 dentry->d_inode = NULL;
301}
302
b4f0354e
AV
303static void dentry_free(struct dentry *dentry)
304{
946e51f2 305 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
8d85b484
AV
306 if (unlikely(dname_external(dentry))) {
307 struct external_name *p = external_name(dentry);
308 if (likely(atomic_dec_and_test(&p->u.count))) {
309 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
310 return;
311 }
312 }
b4f0354e
AV
313 /* if dentry was never visible to RCU, immediate free is OK */
314 if (!(dentry->d_flags & DCACHE_RCUACCESS))
315 __d_free(&dentry->d_u.d_rcu);
316 else
317 call_rcu(&dentry->d_u.d_rcu, __d_free);
318}
319
31e6b01f 320/**
a7c6f571 321 * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups
ff5fdb61 322 * @dentry: the target dentry
31e6b01f
NP
323 * After this call, in-progress rcu-walk path lookup will fail. This
324 * should be called after unhashing, and after changing d_inode (if
325 * the dentry has not already been unhashed).
326 */
a7c6f571 327static inline void dentry_rcuwalk_invalidate(struct dentry *dentry)
31e6b01f 328{
a7c6f571
PZ
329 lockdep_assert_held(&dentry->d_lock);
330 /* Go through am invalidation barrier */
331 write_seqcount_invalidate(&dentry->d_seq);
31e6b01f
NP
332}
333
1da177e4
LT
334/*
335 * Release the dentry's inode, using the filesystem
31e6b01f
NP
336 * d_iput() operation if defined. Dentry has no refcount
337 * and is unhashed.
1da177e4 338 */
858119e1 339static void dentry_iput(struct dentry * dentry)
31f3e0b3 340 __releases(dentry->d_lock)
873feea0 341 __releases(dentry->d_inode->i_lock)
1da177e4
LT
342{
343 struct inode *inode = dentry->d_inode;
344 if (inode) {
4bf46a27 345 __d_clear_type_and_inode(dentry);
946e51f2 346 hlist_del_init(&dentry->d_u.d_alias);
1da177e4 347 spin_unlock(&dentry->d_lock);
873feea0 348 spin_unlock(&inode->i_lock);
f805fbda
LT
349 if (!inode->i_nlink)
350 fsnotify_inoderemove(inode);
1da177e4
LT
351 if (dentry->d_op && dentry->d_op->d_iput)
352 dentry->d_op->d_iput(dentry, inode);
353 else
354 iput(inode);
355 } else {
356 spin_unlock(&dentry->d_lock);
1da177e4
LT
357 }
358}
359
31e6b01f
NP
360/*
361 * Release the dentry's inode, using the filesystem
362 * d_iput() operation if defined. dentry remains in-use.
363 */
364static void dentry_unlink_inode(struct dentry * dentry)
365 __releases(dentry->d_lock)
873feea0 366 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
367{
368 struct inode *inode = dentry->d_inode;
a528aca7
AV
369
370 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 371 __d_clear_type_and_inode(dentry);
946e51f2 372 hlist_del_init(&dentry->d_u.d_alias);
a528aca7 373 raw_write_seqcount_end(&dentry->d_seq);
31e6b01f 374 spin_unlock(&dentry->d_lock);
873feea0 375 spin_unlock(&inode->i_lock);
31e6b01f
NP
376 if (!inode->i_nlink)
377 fsnotify_inoderemove(inode);
378 if (dentry->d_op && dentry->d_op->d_iput)
379 dentry->d_op->d_iput(dentry, inode);
380 else
381 iput(inode);
382}
383
89dc77bc
LT
384/*
385 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
386 * is in use - which includes both the "real" per-superblock
387 * LRU list _and_ the DCACHE_SHRINK_LIST use.
388 *
389 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
390 * on the shrink list (ie not on the superblock LRU list).
391 *
392 * The per-cpu "nr_dentry_unused" counters are updated with
393 * the DCACHE_LRU_LIST bit.
394 *
395 * These helper functions make sure we always follow the
396 * rules. d_lock must be held by the caller.
397 */
398#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
399static void d_lru_add(struct dentry *dentry)
400{
401 D_FLAG_VERIFY(dentry, 0);
402 dentry->d_flags |= DCACHE_LRU_LIST;
403 this_cpu_inc(nr_dentry_unused);
404 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
405}
406
407static void d_lru_del(struct dentry *dentry)
408{
409 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
410 dentry->d_flags &= ~DCACHE_LRU_LIST;
411 this_cpu_dec(nr_dentry_unused);
412 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
413}
414
415static void d_shrink_del(struct dentry *dentry)
416{
417 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
418 list_del_init(&dentry->d_lru);
419 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
420 this_cpu_dec(nr_dentry_unused);
421}
422
423static void d_shrink_add(struct dentry *dentry, struct list_head *list)
424{
425 D_FLAG_VERIFY(dentry, 0);
426 list_add(&dentry->d_lru, list);
427 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
428 this_cpu_inc(nr_dentry_unused);
429}
430
431/*
432 * These can only be called under the global LRU lock, ie during the
433 * callback for freeing the LRU list. "isolate" removes it from the
434 * LRU lists entirely, while shrink_move moves it to the indicated
435 * private list.
436 */
3f97b163 437static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
89dc77bc
LT
438{
439 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
440 dentry->d_flags &= ~DCACHE_LRU_LIST;
441 this_cpu_dec(nr_dentry_unused);
3f97b163 442 list_lru_isolate(lru, &dentry->d_lru);
89dc77bc
LT
443}
444
3f97b163
VD
445static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
446 struct list_head *list)
89dc77bc
LT
447{
448 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
449 dentry->d_flags |= DCACHE_SHRINK_LIST;
3f97b163 450 list_lru_isolate_move(lru, &dentry->d_lru, list);
89dc77bc
LT
451}
452
da3bbdd4 453/*
f6041567 454 * dentry_lru_(add|del)_list) must be called with d_lock held.
da3bbdd4
KM
455 */
456static void dentry_lru_add(struct dentry *dentry)
457{
89dc77bc
LT
458 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
459 d_lru_add(dentry);
da3bbdd4
KM
460}
461
789680d1
NP
462/**
463 * d_drop - drop a dentry
464 * @dentry: dentry to drop
465 *
466 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
467 * be found through a VFS lookup any more. Note that this is different from
468 * deleting the dentry - d_delete will try to mark the dentry negative if
469 * possible, giving a successful _negative_ lookup, while d_drop will
470 * just make the cache lookup fail.
471 *
472 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
473 * reason (NFS timeouts or autofs deletes).
474 *
475 * __d_drop requires dentry->d_lock.
476 */
477void __d_drop(struct dentry *dentry)
478{
dea3667b 479 if (!d_unhashed(dentry)) {
b61625d2 480 struct hlist_bl_head *b;
7632e465
BF
481 /*
482 * Hashed dentries are normally on the dentry hashtable,
483 * with the exception of those newly allocated by
484 * d_obtain_alias, which are always IS_ROOT:
485 */
486 if (unlikely(IS_ROOT(dentry)))
b61625d2
AV
487 b = &dentry->d_sb->s_anon;
488 else
8387ff25 489 b = d_hash(dentry->d_name.hash);
b61625d2
AV
490
491 hlist_bl_lock(b);
492 __hlist_bl_del(&dentry->d_hash);
493 dentry->d_hash.pprev = NULL;
494 hlist_bl_unlock(b);
a7c6f571 495 dentry_rcuwalk_invalidate(dentry);
789680d1
NP
496 }
497}
498EXPORT_SYMBOL(__d_drop);
499
500void d_drop(struct dentry *dentry)
501{
789680d1
NP
502 spin_lock(&dentry->d_lock);
503 __d_drop(dentry);
504 spin_unlock(&dentry->d_lock);
789680d1
NP
505}
506EXPORT_SYMBOL(d_drop);
507
e55fd011 508static void __dentry_kill(struct dentry *dentry)
77812a1e 509{
41edf278
AV
510 struct dentry *parent = NULL;
511 bool can_free = true;
41edf278 512 if (!IS_ROOT(dentry))
77812a1e 513 parent = dentry->d_parent;
31e6b01f 514
0d98439e
LT
515 /*
516 * The dentry is now unrecoverably dead to the world.
517 */
518 lockref_mark_dead(&dentry->d_lockref);
519
f0023bc6 520 /*
f0023bc6
SW
521 * inform the fs via d_prune that this dentry is about to be
522 * unhashed and destroyed.
523 */
29266201 524 if (dentry->d_flags & DCACHE_OP_PRUNE)
61572bb1
YZ
525 dentry->d_op->d_prune(dentry);
526
01b60351
AV
527 if (dentry->d_flags & DCACHE_LRU_LIST) {
528 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
529 d_lru_del(dentry);
01b60351 530 }
77812a1e
NP
531 /* if it was on the hash then remove it */
532 __d_drop(dentry);
ca5358ef 533 __list_del_entry(&dentry->d_child);
03b3b889
AV
534 /*
535 * Inform d_walk() that we are no longer attached to the
536 * dentry tree
537 */
538 dentry->d_flags |= DCACHE_DENTRY_KILLED;
539 if (parent)
540 spin_unlock(&parent->d_lock);
541 dentry_iput(dentry);
542 /*
543 * dentry_iput drops the locks, at which point nobody (except
544 * transient RCU lookups) can reach this dentry.
545 */
360f5479 546 BUG_ON(dentry->d_lockref.count > 0);
03b3b889
AV
547 this_cpu_dec(nr_dentry);
548 if (dentry->d_op && dentry->d_op->d_release)
549 dentry->d_op->d_release(dentry);
550
41edf278
AV
551 spin_lock(&dentry->d_lock);
552 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
553 dentry->d_flags |= DCACHE_MAY_FREE;
554 can_free = false;
555 }
556 spin_unlock(&dentry->d_lock);
41edf278
AV
557 if (likely(can_free))
558 dentry_free(dentry);
e55fd011
AV
559}
560
561/*
562 * Finish off a dentry we've decided to kill.
563 * dentry->d_lock must be held, returns with it unlocked.
564 * If ref is non-zero, then decrement the refcount too.
565 * Returns dentry requiring refcount drop, or NULL if we're done.
566 */
8cbf74da 567static struct dentry *dentry_kill(struct dentry *dentry)
e55fd011
AV
568 __releases(dentry->d_lock)
569{
570 struct inode *inode = dentry->d_inode;
571 struct dentry *parent = NULL;
572
573 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
574 goto failed;
575
576 if (!IS_ROOT(dentry)) {
577 parent = dentry->d_parent;
578 if (unlikely(!spin_trylock(&parent->d_lock))) {
579 if (inode)
580 spin_unlock(&inode->i_lock);
581 goto failed;
582 }
583 }
584
585 __dentry_kill(dentry);
03b3b889 586 return parent;
e55fd011
AV
587
588failed:
8cbf74da
AV
589 spin_unlock(&dentry->d_lock);
590 cpu_relax();
e55fd011 591 return dentry; /* try again with same dentry */
77812a1e
NP
592}
593
046b961b
AV
594static inline struct dentry *lock_parent(struct dentry *dentry)
595{
596 struct dentry *parent = dentry->d_parent;
597 if (IS_ROOT(dentry))
598 return NULL;
360f5479 599 if (unlikely(dentry->d_lockref.count < 0))
c2338f2d 600 return NULL;
046b961b
AV
601 if (likely(spin_trylock(&parent->d_lock)))
602 return parent;
046b961b 603 rcu_read_lock();
c2338f2d 604 spin_unlock(&dentry->d_lock);
046b961b
AV
605again:
606 parent = ACCESS_ONCE(dentry->d_parent);
607 spin_lock(&parent->d_lock);
608 /*
609 * We can't blindly lock dentry until we are sure
610 * that we won't violate the locking order.
611 * Any changes of dentry->d_parent must have
612 * been done with parent->d_lock held, so
613 * spin_lock() above is enough of a barrier
614 * for checking if it's still our child.
615 */
616 if (unlikely(parent != dentry->d_parent)) {
617 spin_unlock(&parent->d_lock);
618 goto again;
619 }
620 rcu_read_unlock();
621 if (parent != dentry)
9f12600f 622 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
046b961b
AV
623 else
624 parent = NULL;
625 return parent;
626}
627
360f5479
LT
628/*
629 * Try to do a lockless dput(), and return whether that was successful.
630 *
631 * If unsuccessful, we return false, having already taken the dentry lock.
632 *
633 * The caller needs to hold the RCU read lock, so that the dentry is
634 * guaranteed to stay around even if the refcount goes down to zero!
635 */
636static inline bool fast_dput(struct dentry *dentry)
637{
638 int ret;
639 unsigned int d_flags;
640
641 /*
642 * If we have a d_op->d_delete() operation, we sould not
75a6f82a 643 * let the dentry count go to zero, so use "put_or_lock".
360f5479
LT
644 */
645 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
646 return lockref_put_or_lock(&dentry->d_lockref);
647
648 /*
649 * .. otherwise, we can try to just decrement the
650 * lockref optimistically.
651 */
652 ret = lockref_put_return(&dentry->d_lockref);
653
654 /*
655 * If the lockref_put_return() failed due to the lock being held
656 * by somebody else, the fast path has failed. We will need to
657 * get the lock, and then check the count again.
658 */
659 if (unlikely(ret < 0)) {
660 spin_lock(&dentry->d_lock);
661 if (dentry->d_lockref.count > 1) {
662 dentry->d_lockref.count--;
663 spin_unlock(&dentry->d_lock);
664 return 1;
665 }
666 return 0;
667 }
668
669 /*
670 * If we weren't the last ref, we're done.
671 */
672 if (ret)
673 return 1;
674
675 /*
676 * Careful, careful. The reference count went down
677 * to zero, but we don't hold the dentry lock, so
678 * somebody else could get it again, and do another
679 * dput(), and we need to not race with that.
680 *
681 * However, there is a very special and common case
682 * where we don't care, because there is nothing to
683 * do: the dentry is still hashed, it does not have
684 * a 'delete' op, and it's referenced and already on
685 * the LRU list.
686 *
687 * NOTE! Since we aren't locked, these values are
688 * not "stable". However, it is sufficient that at
689 * some point after we dropped the reference the
690 * dentry was hashed and the flags had the proper
691 * value. Other dentry users may have re-gotten
692 * a reference to the dentry and change that, but
693 * our work is done - we can leave the dentry
694 * around with a zero refcount.
695 */
696 smp_rmb();
697 d_flags = ACCESS_ONCE(dentry->d_flags);
75a6f82a 698 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
360f5479
LT
699
700 /* Nothing to do? Dropping the reference was all we needed? */
701 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
702 return 1;
703
704 /*
705 * Not the fast normal case? Get the lock. We've already decremented
706 * the refcount, but we'll need to re-check the situation after
707 * getting the lock.
708 */
709 spin_lock(&dentry->d_lock);
710
711 /*
712 * Did somebody else grab a reference to it in the meantime, and
713 * we're no longer the last user after all? Alternatively, somebody
714 * else could have killed it and marked it dead. Either way, we
715 * don't need to do anything else.
716 */
717 if (dentry->d_lockref.count) {
718 spin_unlock(&dentry->d_lock);
719 return 1;
720 }
721
722 /*
723 * Re-get the reference we optimistically dropped. We hold the
724 * lock, and we just tested that it was zero, so we can just
725 * set it to 1.
726 */
727 dentry->d_lockref.count = 1;
728 return 0;
729}
730
731
1da177e4
LT
732/*
733 * This is dput
734 *
735 * This is complicated by the fact that we do not want to put
736 * dentries that are no longer on any hash chain on the unused
737 * list: we'd much rather just get rid of them immediately.
738 *
739 * However, that implies that we have to traverse the dentry
740 * tree upwards to the parents which might _also_ now be
741 * scheduled for deletion (it may have been only waiting for
742 * its last child to go away).
743 *
744 * This tail recursion is done by hand as we don't want to depend
745 * on the compiler to always get this right (gcc generally doesn't).
746 * Real recursion would eat up our stack space.
747 */
748
749/*
750 * dput - release a dentry
751 * @dentry: dentry to release
752 *
753 * Release a dentry. This will drop the usage count and if appropriate
754 * call the dentry unlink method as well as removing it from the queues and
755 * releasing its resources. If the parent dentries were scheduled for release
756 * they too may now get deleted.
1da177e4 757 */
1da177e4
LT
758void dput(struct dentry *dentry)
759{
8aab6a27 760 if (unlikely(!dentry))
1da177e4
LT
761 return;
762
763repeat:
360f5479
LT
764 rcu_read_lock();
765 if (likely(fast_dput(dentry))) {
766 rcu_read_unlock();
1da177e4 767 return;
360f5479
LT
768 }
769
770 /* Slow case: now with the dentry lock held */
771 rcu_read_unlock();
1da177e4 772
85c7f810
AV
773 WARN_ON(d_in_lookup(dentry));
774
8aab6a27
LT
775 /* Unreachable? Get rid of it */
776 if (unlikely(d_unhashed(dentry)))
777 goto kill_it;
778
75a6f82a
AV
779 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
780 goto kill_it;
781
8aab6a27 782 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
1da177e4 783 if (dentry->d_op->d_delete(dentry))
61f3dee4 784 goto kill_it;
1da177e4 785 }
265ac902 786
358eec18
LT
787 if (!(dentry->d_flags & DCACHE_REFERENCED))
788 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 789 dentry_lru_add(dentry);
265ac902 790
98474236 791 dentry->d_lockref.count--;
61f3dee4 792 spin_unlock(&dentry->d_lock);
1da177e4
LT
793 return;
794
d52b9086 795kill_it:
8cbf74da 796 dentry = dentry_kill(dentry);
d52b9086
MS
797 if (dentry)
798 goto repeat;
1da177e4 799}
ec4f8605 800EXPORT_SYMBOL(dput);
1da177e4 801
1da177e4 802
b5c84bf6 803/* This must be called with d_lock held */
dc0474be 804static inline void __dget_dlock(struct dentry *dentry)
23044507 805{
98474236 806 dentry->d_lockref.count++;
23044507
NP
807}
808
dc0474be 809static inline void __dget(struct dentry *dentry)
1da177e4 810{
98474236 811 lockref_get(&dentry->d_lockref);
1da177e4
LT
812}
813
b7ab39f6
NP
814struct dentry *dget_parent(struct dentry *dentry)
815{
df3d0bbc 816 int gotref;
b7ab39f6
NP
817 struct dentry *ret;
818
df3d0bbc
WL
819 /*
820 * Do optimistic parent lookup without any
821 * locking.
822 */
823 rcu_read_lock();
824 ret = ACCESS_ONCE(dentry->d_parent);
825 gotref = lockref_get_not_zero(&ret->d_lockref);
826 rcu_read_unlock();
827 if (likely(gotref)) {
828 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
829 return ret;
830 dput(ret);
831 }
832
b7ab39f6 833repeat:
a734eb45
NP
834 /*
835 * Don't need rcu_dereference because we re-check it was correct under
836 * the lock.
837 */
838 rcu_read_lock();
b7ab39f6 839 ret = dentry->d_parent;
a734eb45
NP
840 spin_lock(&ret->d_lock);
841 if (unlikely(ret != dentry->d_parent)) {
842 spin_unlock(&ret->d_lock);
843 rcu_read_unlock();
b7ab39f6
NP
844 goto repeat;
845 }
a734eb45 846 rcu_read_unlock();
98474236
WL
847 BUG_ON(!ret->d_lockref.count);
848 ret->d_lockref.count++;
b7ab39f6 849 spin_unlock(&ret->d_lock);
b7ab39f6
NP
850 return ret;
851}
852EXPORT_SYMBOL(dget_parent);
853
1da177e4
LT
854/**
855 * d_find_alias - grab a hashed alias of inode
856 * @inode: inode in question
1da177e4
LT
857 *
858 * If inode has a hashed alias, or is a directory and has any alias,
859 * acquire the reference to alias and return it. Otherwise return NULL.
860 * Notice that if inode is a directory there can be only one alias and
861 * it can be unhashed only if it has no children, or if it is the root
3ccb354d
EB
862 * of a filesystem, or if the directory was renamed and d_revalidate
863 * was the first vfs operation to notice.
1da177e4 864 *
21c0d8fd 865 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
52ed46f0 866 * any other hashed alias over that one.
1da177e4 867 */
52ed46f0 868static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 869{
da502956 870 struct dentry *alias, *discon_alias;
1da177e4 871
da502956
NP
872again:
873 discon_alias = NULL;
946e51f2 874 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
da502956 875 spin_lock(&alias->d_lock);
1da177e4 876 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 877 if (IS_ROOT(alias) &&
da502956 878 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 879 discon_alias = alias;
52ed46f0 880 } else {
dc0474be 881 __dget_dlock(alias);
da502956
NP
882 spin_unlock(&alias->d_lock);
883 return alias;
884 }
885 }
886 spin_unlock(&alias->d_lock);
887 }
888 if (discon_alias) {
889 alias = discon_alias;
890 spin_lock(&alias->d_lock);
891 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
8d80d7da
BF
892 __dget_dlock(alias);
893 spin_unlock(&alias->d_lock);
894 return alias;
1da177e4 895 }
da502956
NP
896 spin_unlock(&alias->d_lock);
897 goto again;
1da177e4 898 }
da502956 899 return NULL;
1da177e4
LT
900}
901
da502956 902struct dentry *d_find_alias(struct inode *inode)
1da177e4 903{
214fda1f
DH
904 struct dentry *de = NULL;
905
b3d9b7a3 906 if (!hlist_empty(&inode->i_dentry)) {
873feea0 907 spin_lock(&inode->i_lock);
52ed46f0 908 de = __d_find_alias(inode);
873feea0 909 spin_unlock(&inode->i_lock);
214fda1f 910 }
1da177e4
LT
911 return de;
912}
ec4f8605 913EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
914
915/*
916 * Try to kill dentries associated with this inode.
917 * WARNING: you must own a reference to inode.
918 */
919void d_prune_aliases(struct inode *inode)
920{
0cdca3f9 921 struct dentry *dentry;
1da177e4 922restart:
873feea0 923 spin_lock(&inode->i_lock);
946e51f2 924 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1da177e4 925 spin_lock(&dentry->d_lock);
98474236 926 if (!dentry->d_lockref.count) {
29355c39
AV
927 struct dentry *parent = lock_parent(dentry);
928 if (likely(!dentry->d_lockref.count)) {
929 __dentry_kill(dentry);
4a7795d3 930 dput(parent);
29355c39
AV
931 goto restart;
932 }
933 if (parent)
934 spin_unlock(&parent->d_lock);
1da177e4
LT
935 }
936 spin_unlock(&dentry->d_lock);
937 }
873feea0 938 spin_unlock(&inode->i_lock);
1da177e4 939}
ec4f8605 940EXPORT_SYMBOL(d_prune_aliases);
1da177e4 941
3049cfe2 942static void shrink_dentry_list(struct list_head *list)
1da177e4 943{
5c47e6d0 944 struct dentry *dentry, *parent;
da3bbdd4 945
60942f2f 946 while (!list_empty(list)) {
ff2fde99 947 struct inode *inode;
60942f2f 948 dentry = list_entry(list->prev, struct dentry, d_lru);
ec33679d 949 spin_lock(&dentry->d_lock);
046b961b
AV
950 parent = lock_parent(dentry);
951
dd1f6b2e
DC
952 /*
953 * The dispose list is isolated and dentries are not accounted
954 * to the LRU here, so we can simply remove it from the list
955 * here regardless of whether it is referenced or not.
956 */
89dc77bc 957 d_shrink_del(dentry);
dd1f6b2e 958
1da177e4
LT
959 /*
960 * We found an inuse dentry which was not removed from
dd1f6b2e 961 * the LRU because of laziness during lookup. Do not free it.
1da177e4 962 */
360f5479 963 if (dentry->d_lockref.count > 0) {
da3bbdd4 964 spin_unlock(&dentry->d_lock);
046b961b
AV
965 if (parent)
966 spin_unlock(&parent->d_lock);
1da177e4
LT
967 continue;
968 }
77812a1e 969
64fd72e0
AV
970
971 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
972 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
973 spin_unlock(&dentry->d_lock);
046b961b
AV
974 if (parent)
975 spin_unlock(&parent->d_lock);
64fd72e0
AV
976 if (can_free)
977 dentry_free(dentry);
978 continue;
979 }
980
ff2fde99
AV
981 inode = dentry->d_inode;
982 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
89dc77bc 983 d_shrink_add(dentry, list);
dd1f6b2e 984 spin_unlock(&dentry->d_lock);
046b961b
AV
985 if (parent)
986 spin_unlock(&parent->d_lock);
5c47e6d0 987 continue;
dd1f6b2e 988 }
ff2fde99 989
ff2fde99 990 __dentry_kill(dentry);
046b961b 991
5c47e6d0
AV
992 /*
993 * We need to prune ancestors too. This is necessary to prevent
994 * quadratic behavior of shrink_dcache_parent(), but is also
995 * expected to be beneficial in reducing dentry cache
996 * fragmentation.
997 */
998 dentry = parent;
b2b80195
AV
999 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1000 parent = lock_parent(dentry);
1001 if (dentry->d_lockref.count != 1) {
1002 dentry->d_lockref.count--;
1003 spin_unlock(&dentry->d_lock);
1004 if (parent)
1005 spin_unlock(&parent->d_lock);
1006 break;
1007 }
1008 inode = dentry->d_inode; /* can't be NULL */
1009 if (unlikely(!spin_trylock(&inode->i_lock))) {
1010 spin_unlock(&dentry->d_lock);
1011 if (parent)
1012 spin_unlock(&parent->d_lock);
1013 cpu_relax();
1014 continue;
1015 }
1016 __dentry_kill(dentry);
1017 dentry = parent;
1018 }
da3bbdd4 1019 }
3049cfe2
CH
1020}
1021
3f97b163
VD
1022static enum lru_status dentry_lru_isolate(struct list_head *item,
1023 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
f6041567
DC
1024{
1025 struct list_head *freeable = arg;
1026 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1027
1028
1029 /*
1030 * we are inverting the lru lock/dentry->d_lock here,
1031 * so use a trylock. If we fail to get the lock, just skip
1032 * it
1033 */
1034 if (!spin_trylock(&dentry->d_lock))
1035 return LRU_SKIP;
1036
1037 /*
1038 * Referenced dentries are still in use. If they have active
1039 * counts, just remove them from the LRU. Otherwise give them
1040 * another pass through the LRU.
1041 */
1042 if (dentry->d_lockref.count) {
3f97b163 1043 d_lru_isolate(lru, dentry);
f6041567
DC
1044 spin_unlock(&dentry->d_lock);
1045 return LRU_REMOVED;
1046 }
1047
1048 if (dentry->d_flags & DCACHE_REFERENCED) {
1049 dentry->d_flags &= ~DCACHE_REFERENCED;
1050 spin_unlock(&dentry->d_lock);
1051
1052 /*
1053 * The list move itself will be made by the common LRU code. At
1054 * this point, we've dropped the dentry->d_lock but keep the
1055 * lru lock. This is safe to do, since every list movement is
1056 * protected by the lru lock even if both locks are held.
1057 *
1058 * This is guaranteed by the fact that all LRU management
1059 * functions are intermediated by the LRU API calls like
1060 * list_lru_add and list_lru_del. List movement in this file
1061 * only ever occur through this functions or through callbacks
1062 * like this one, that are called from the LRU API.
1063 *
1064 * The only exceptions to this are functions like
1065 * shrink_dentry_list, and code that first checks for the
1066 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1067 * operating only with stack provided lists after they are
1068 * properly isolated from the main list. It is thus, always a
1069 * local access.
1070 */
1071 return LRU_ROTATE;
1072 }
1073
3f97b163 1074 d_lru_shrink_move(lru, dentry, freeable);
f6041567
DC
1075 spin_unlock(&dentry->d_lock);
1076
1077 return LRU_REMOVED;
1078}
1079
3049cfe2 1080/**
b48f03b3
DC
1081 * prune_dcache_sb - shrink the dcache
1082 * @sb: superblock
503c358c 1083 * @sc: shrink control, passed to list_lru_shrink_walk()
b48f03b3 1084 *
503c358c
VD
1085 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1086 * is done when we need more memory and called from the superblock shrinker
b48f03b3 1087 * function.
3049cfe2 1088 *
b48f03b3
DC
1089 * This function may fail to free any resources if all the dentries are in
1090 * use.
3049cfe2 1091 */
503c358c 1092long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
3049cfe2 1093{
f6041567
DC
1094 LIST_HEAD(dispose);
1095 long freed;
3049cfe2 1096
503c358c
VD
1097 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1098 dentry_lru_isolate, &dispose);
f6041567 1099 shrink_dentry_list(&dispose);
0a234c6d 1100 return freed;
da3bbdd4 1101}
23044507 1102
4e717f5c 1103static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
3f97b163 1104 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
dd1f6b2e 1105{
4e717f5c
GC
1106 struct list_head *freeable = arg;
1107 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 1108
4e717f5c
GC
1109 /*
1110 * we are inverting the lru lock/dentry->d_lock here,
1111 * so use a trylock. If we fail to get the lock, just skip
1112 * it
1113 */
1114 if (!spin_trylock(&dentry->d_lock))
1115 return LRU_SKIP;
1116
3f97b163 1117 d_lru_shrink_move(lru, dentry, freeable);
4e717f5c 1118 spin_unlock(&dentry->d_lock);
ec33679d 1119
4e717f5c 1120 return LRU_REMOVED;
da3bbdd4
KM
1121}
1122
4e717f5c 1123
1da177e4
LT
1124/**
1125 * shrink_dcache_sb - shrink dcache for a superblock
1126 * @sb: superblock
1127 *
3049cfe2
CH
1128 * Shrink the dcache for the specified super block. This is used to free
1129 * the dcache before unmounting a file system.
1da177e4 1130 */
3049cfe2 1131void shrink_dcache_sb(struct super_block *sb)
1da177e4 1132{
4e717f5c
GC
1133 long freed;
1134
1135 do {
1136 LIST_HEAD(dispose);
1137
1138 freed = list_lru_walk(&sb->s_dentry_lru,
1139 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
3049cfe2 1140
4e717f5c
GC
1141 this_cpu_sub(nr_dentry_unused, freed);
1142 shrink_dentry_list(&dispose);
1143 } while (freed > 0);
1da177e4 1144}
ec4f8605 1145EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1146
db14fc3a
MS
1147/**
1148 * enum d_walk_ret - action to talke during tree walk
1149 * @D_WALK_CONTINUE: contrinue walk
1150 * @D_WALK_QUIT: quit walk
1151 * @D_WALK_NORETRY: quit when retry is needed
1152 * @D_WALK_SKIP: skip this dentry and its children
1153 */
1154enum d_walk_ret {
1155 D_WALK_CONTINUE,
1156 D_WALK_QUIT,
1157 D_WALK_NORETRY,
1158 D_WALK_SKIP,
1159};
c826cb7d 1160
1da177e4 1161/**
db14fc3a
MS
1162 * d_walk - walk the dentry tree
1163 * @parent: start of walk
1164 * @data: data passed to @enter() and @finish()
1165 * @enter: callback when first entering the dentry
1166 * @finish: callback when successfully finished the walk
1da177e4 1167 *
db14fc3a 1168 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1169 */
db14fc3a
MS
1170static void d_walk(struct dentry *parent, void *data,
1171 enum d_walk_ret (*enter)(void *, struct dentry *),
1172 void (*finish)(void *))
1da177e4 1173{
949854d0 1174 struct dentry *this_parent;
1da177e4 1175 struct list_head *next;
48f5ec21 1176 unsigned seq = 0;
db14fc3a
MS
1177 enum d_walk_ret ret;
1178 bool retry = true;
949854d0 1179
58db63d0 1180again:
48f5ec21 1181 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1182 this_parent = parent;
2fd6b7f5 1183 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1184
1185 ret = enter(data, this_parent);
1186 switch (ret) {
1187 case D_WALK_CONTINUE:
1188 break;
1189 case D_WALK_QUIT:
1190 case D_WALK_SKIP:
1191 goto out_unlock;
1192 case D_WALK_NORETRY:
1193 retry = false;
1194 break;
1195 }
1da177e4
LT
1196repeat:
1197 next = this_parent->d_subdirs.next;
1198resume:
1199 while (next != &this_parent->d_subdirs) {
1200 struct list_head *tmp = next;
946e51f2 1201 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1da177e4 1202 next = tmp->next;
2fd6b7f5
NP
1203
1204 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1205
1206 ret = enter(data, dentry);
1207 switch (ret) {
1208 case D_WALK_CONTINUE:
1209 break;
1210 case D_WALK_QUIT:
2fd6b7f5 1211 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1212 goto out_unlock;
1213 case D_WALK_NORETRY:
1214 retry = false;
1215 break;
1216 case D_WALK_SKIP:
1217 spin_unlock(&dentry->d_lock);
1218 continue;
2fd6b7f5 1219 }
db14fc3a 1220
1da177e4 1221 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1222 spin_unlock(&this_parent->d_lock);
1223 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1224 this_parent = dentry;
2fd6b7f5 1225 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1226 goto repeat;
1227 }
2fd6b7f5 1228 spin_unlock(&dentry->d_lock);
1da177e4
LT
1229 }
1230 /*
1231 * All done at this level ... ascend and resume the search.
1232 */
ca5358ef
AV
1233 rcu_read_lock();
1234ascend:
1da177e4 1235 if (this_parent != parent) {
c826cb7d 1236 struct dentry *child = this_parent;
31dec132
AV
1237 this_parent = child->d_parent;
1238
31dec132
AV
1239 spin_unlock(&child->d_lock);
1240 spin_lock(&this_parent->d_lock);
1241
ca5358ef
AV
1242 /* might go back up the wrong parent if we have had a rename. */
1243 if (need_seqretry(&rename_lock, seq))
949854d0 1244 goto rename_retry;
2159184e
AV
1245 /* go into the first sibling still alive */
1246 do {
1247 next = child->d_child.next;
ca5358ef
AV
1248 if (next == &this_parent->d_subdirs)
1249 goto ascend;
1250 child = list_entry(next, struct dentry, d_child);
2159184e 1251 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
31dec132 1252 rcu_read_unlock();
1da177e4
LT
1253 goto resume;
1254 }
ca5358ef 1255 if (need_seqretry(&rename_lock, seq))
949854d0 1256 goto rename_retry;
ca5358ef 1257 rcu_read_unlock();
db14fc3a
MS
1258 if (finish)
1259 finish(data);
1260
1261out_unlock:
1262 spin_unlock(&this_parent->d_lock);
48f5ec21 1263 done_seqretry(&rename_lock, seq);
db14fc3a 1264 return;
58db63d0
NP
1265
1266rename_retry:
ca5358ef
AV
1267 spin_unlock(&this_parent->d_lock);
1268 rcu_read_unlock();
1269 BUG_ON(seq & 1);
db14fc3a
MS
1270 if (!retry)
1271 return;
48f5ec21 1272 seq = 1;
58db63d0 1273 goto again;
1da177e4 1274}
db14fc3a
MS
1275
1276/*
1277 * Search for at least 1 mount point in the dentry's subdirs.
1278 * We descend to the next level whenever the d_subdirs
1279 * list is non-empty and continue searching.
1280 */
1281
db14fc3a
MS
1282static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1283{
1284 int *ret = data;
1285 if (d_mountpoint(dentry)) {
1286 *ret = 1;
1287 return D_WALK_QUIT;
1288 }
1289 return D_WALK_CONTINUE;
1290}
1291
69c88dc7
RD
1292/**
1293 * have_submounts - check for mounts over a dentry
1294 * @parent: dentry to check.
1295 *
1296 * Return true if the parent or its subdirectories contain
1297 * a mount point
1298 */
db14fc3a
MS
1299int have_submounts(struct dentry *parent)
1300{
1301 int ret = 0;
1302
1303 d_walk(parent, &ret, check_mount, NULL);
1304
1305 return ret;
1306}
ec4f8605 1307EXPORT_SYMBOL(have_submounts);
1da177e4 1308
eed81007
MS
1309/*
1310 * Called by mount code to set a mountpoint and check if the mountpoint is
1311 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1312 * subtree can become unreachable).
1313 *
1ffe46d1 1314 * Only one of d_invalidate() and d_set_mounted() must succeed. For
eed81007
MS
1315 * this reason take rename_lock and d_lock on dentry and ancestors.
1316 */
1317int d_set_mounted(struct dentry *dentry)
1318{
1319 struct dentry *p;
1320 int ret = -ENOENT;
1321 write_seqlock(&rename_lock);
1322 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1ffe46d1 1323 /* Need exclusion wrt. d_invalidate() */
eed81007
MS
1324 spin_lock(&p->d_lock);
1325 if (unlikely(d_unhashed(p))) {
1326 spin_unlock(&p->d_lock);
1327 goto out;
1328 }
1329 spin_unlock(&p->d_lock);
1330 }
1331 spin_lock(&dentry->d_lock);
1332 if (!d_unlinked(dentry)) {
1333 dentry->d_flags |= DCACHE_MOUNTED;
1334 ret = 0;
1335 }
1336 spin_unlock(&dentry->d_lock);
1337out:
1338 write_sequnlock(&rename_lock);
1339 return ret;
1340}
1341
1da177e4 1342/*
fd517909 1343 * Search the dentry child list of the specified parent,
1da177e4
LT
1344 * and move any unused dentries to the end of the unused
1345 * list for prune_dcache(). We descend to the next level
1346 * whenever the d_subdirs list is non-empty and continue
1347 * searching.
1348 *
1349 * It returns zero iff there are no unused children,
1350 * otherwise it returns the number of children moved to
1351 * the end of the unused list. This may not be the total
1352 * number of unused children, because select_parent can
1353 * drop the lock and return early due to latency
1354 * constraints.
1355 */
1da177e4 1356
db14fc3a
MS
1357struct select_data {
1358 struct dentry *start;
1359 struct list_head dispose;
1360 int found;
1361};
23044507 1362
db14fc3a
MS
1363static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1364{
1365 struct select_data *data = _data;
1366 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1367
db14fc3a
MS
1368 if (data->start == dentry)
1369 goto out;
2fd6b7f5 1370
fe91522a 1371 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1372 data->found++;
fe91522a
AV
1373 } else {
1374 if (dentry->d_flags & DCACHE_LRU_LIST)
1375 d_lru_del(dentry);
1376 if (!dentry->d_lockref.count) {
1377 d_shrink_add(dentry, &data->dispose);
1378 data->found++;
1379 }
1da177e4 1380 }
db14fc3a
MS
1381 /*
1382 * We can return to the caller if we have found some (this
1383 * ensures forward progress). We'll be coming back to find
1384 * the rest.
1385 */
fe91522a
AV
1386 if (!list_empty(&data->dispose))
1387 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1388out:
db14fc3a 1389 return ret;
1da177e4
LT
1390}
1391
1392/**
1393 * shrink_dcache_parent - prune dcache
1394 * @parent: parent of entries to prune
1395 *
1396 * Prune the dcache to remove unused children of the parent dentry.
1397 */
db14fc3a 1398void shrink_dcache_parent(struct dentry *parent)
1da177e4 1399{
db14fc3a
MS
1400 for (;;) {
1401 struct select_data data;
1da177e4 1402
db14fc3a
MS
1403 INIT_LIST_HEAD(&data.dispose);
1404 data.start = parent;
1405 data.found = 0;
1406
1407 d_walk(parent, &data, select_collect, NULL);
1408 if (!data.found)
1409 break;
1410
1411 shrink_dentry_list(&data.dispose);
421348f1
GT
1412 cond_resched();
1413 }
1da177e4 1414}
ec4f8605 1415EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1416
9c8c10e2 1417static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1418{
9c8c10e2
AV
1419 /* it has busy descendents; complain about those instead */
1420 if (!list_empty(&dentry->d_subdirs))
1421 return D_WALK_CONTINUE;
42c32608 1422
9c8c10e2
AV
1423 /* root with refcount 1 is fine */
1424 if (dentry == _data && dentry->d_lockref.count == 1)
1425 return D_WALK_CONTINUE;
1426
1427 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1428 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1429 dentry,
1430 dentry->d_inode ?
1431 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1432 dentry,
42c32608
AV
1433 dentry->d_lockref.count,
1434 dentry->d_sb->s_type->name,
1435 dentry->d_sb->s_id);
9c8c10e2
AV
1436 WARN_ON(1);
1437 return D_WALK_CONTINUE;
1438}
1439
1440static void do_one_tree(struct dentry *dentry)
1441{
1442 shrink_dcache_parent(dentry);
1443 d_walk(dentry, dentry, umount_check, NULL);
1444 d_drop(dentry);
1445 dput(dentry);
42c32608
AV
1446}
1447
1448/*
1449 * destroy the dentries attached to a superblock on unmounting
1450 */
1451void shrink_dcache_for_umount(struct super_block *sb)
1452{
1453 struct dentry *dentry;
1454
9c8c10e2 1455 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1456
1457 dentry = sb->s_root;
1458 sb->s_root = NULL;
9c8c10e2 1459 do_one_tree(dentry);
42c32608
AV
1460
1461 while (!hlist_bl_empty(&sb->s_anon)) {
9c8c10e2
AV
1462 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1463 do_one_tree(dentry);
42c32608
AV
1464 }
1465}
1466
8ed936b5
EB
1467struct detach_data {
1468 struct select_data select;
1469 struct dentry *mountpoint;
1470};
1471static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
848ac114 1472{
8ed936b5 1473 struct detach_data *data = _data;
848ac114
MS
1474
1475 if (d_mountpoint(dentry)) {
8ed936b5
EB
1476 __dget_dlock(dentry);
1477 data->mountpoint = dentry;
848ac114
MS
1478 return D_WALK_QUIT;
1479 }
1480
8ed936b5 1481 return select_collect(&data->select, dentry);
848ac114
MS
1482}
1483
1484static void check_and_drop(void *_data)
1485{
8ed936b5 1486 struct detach_data *data = _data;
848ac114 1487
8ed936b5
EB
1488 if (!data->mountpoint && !data->select.found)
1489 __d_drop(data->select.start);
848ac114
MS
1490}
1491
1492/**
1ffe46d1
EB
1493 * d_invalidate - detach submounts, prune dcache, and drop
1494 * @dentry: dentry to invalidate (aka detach, prune and drop)
1495 *
1ffe46d1 1496 * no dcache lock.
848ac114 1497 *
8ed936b5
EB
1498 * The final d_drop is done as an atomic operation relative to
1499 * rename_lock ensuring there are no races with d_set_mounted. This
1500 * ensures there are no unhashed dentries on the path to a mountpoint.
848ac114 1501 */
5542aa2f 1502void d_invalidate(struct dentry *dentry)
848ac114 1503{
1ffe46d1
EB
1504 /*
1505 * If it's already been dropped, return OK.
1506 */
1507 spin_lock(&dentry->d_lock);
1508 if (d_unhashed(dentry)) {
1509 spin_unlock(&dentry->d_lock);
5542aa2f 1510 return;
1ffe46d1
EB
1511 }
1512 spin_unlock(&dentry->d_lock);
1513
848ac114
MS
1514 /* Negative dentries can be dropped without further checks */
1515 if (!dentry->d_inode) {
1516 d_drop(dentry);
5542aa2f 1517 return;
848ac114
MS
1518 }
1519
1520 for (;;) {
8ed936b5 1521 struct detach_data data;
848ac114 1522
8ed936b5
EB
1523 data.mountpoint = NULL;
1524 INIT_LIST_HEAD(&data.select.dispose);
1525 data.select.start = dentry;
1526 data.select.found = 0;
1527
1528 d_walk(dentry, &data, detach_and_collect, check_and_drop);
848ac114 1529
8ed936b5
EB
1530 if (data.select.found)
1531 shrink_dentry_list(&data.select.dispose);
848ac114 1532
8ed936b5
EB
1533 if (data.mountpoint) {
1534 detach_mounts(data.mountpoint);
1535 dput(data.mountpoint);
1536 }
848ac114 1537
8ed936b5 1538 if (!data.mountpoint && !data.select.found)
848ac114
MS
1539 break;
1540
1541 cond_resched();
1542 }
848ac114 1543}
1ffe46d1 1544EXPORT_SYMBOL(d_invalidate);
848ac114 1545
1da177e4 1546/**
a4464dbc
AV
1547 * __d_alloc - allocate a dcache entry
1548 * @sb: filesystem it will belong to
1da177e4
LT
1549 * @name: qstr of the name
1550 *
1551 * Allocates a dentry. It returns %NULL if there is insufficient memory
1552 * available. On a success the dentry is returned. The name passed in is
1553 * copied and the copy passed in may be reused after this call.
1554 */
1555
a4464dbc 1556struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1557{
1558 struct dentry *dentry;
1559 char *dname;
1560
e12ba74d 1561 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1562 if (!dentry)
1563 return NULL;
1564
6326c71f
LT
1565 /*
1566 * We guarantee that the inline name is always NUL-terminated.
1567 * This way the memcpy() done by the name switching in rename
1568 * will still always have a NUL at the end, even if we might
1569 * be overwriting an internal NUL character
1570 */
1571 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
798434bd
AV
1572 if (unlikely(!name)) {
1573 static const struct qstr anon = QSTR_INIT("/", 1);
1574 name = &anon;
1575 dname = dentry->d_iname;
1576 } else if (name->len > DNAME_INLINE_LEN-1) {
8d85b484 1577 size_t size = offsetof(struct external_name, name[1]);
5d097056
VD
1578 struct external_name *p = kmalloc(size + name->len,
1579 GFP_KERNEL_ACCOUNT);
8d85b484 1580 if (!p) {
1da177e4
LT
1581 kmem_cache_free(dentry_cache, dentry);
1582 return NULL;
1583 }
8d85b484
AV
1584 atomic_set(&p->u.count, 1);
1585 dname = p->name;
df4c0e36
AR
1586 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1587 kasan_unpoison_shadow(dname,
1588 round_up(name->len + 1, sizeof(unsigned long)));
1da177e4
LT
1589 } else {
1590 dname = dentry->d_iname;
1591 }
1da177e4
LT
1592
1593 dentry->d_name.len = name->len;
1594 dentry->d_name.hash = name->hash;
1595 memcpy(dname, name->name, name->len);
1596 dname[name->len] = 0;
1597
6326c71f
LT
1598 /* Make sure we always see the terminating NUL character */
1599 smp_wmb();
1600 dentry->d_name.name = dname;
1601
98474236 1602 dentry->d_lockref.count = 1;
dea3667b 1603 dentry->d_flags = 0;
1da177e4 1604 spin_lock_init(&dentry->d_lock);
31e6b01f 1605 seqcount_init(&dentry->d_seq);
1da177e4 1606 dentry->d_inode = NULL;
a4464dbc
AV
1607 dentry->d_parent = dentry;
1608 dentry->d_sb = sb;
1da177e4
LT
1609 dentry->d_op = NULL;
1610 dentry->d_fsdata = NULL;
ceb5bdc2 1611 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1612 INIT_LIST_HEAD(&dentry->d_lru);
1613 INIT_LIST_HEAD(&dentry->d_subdirs);
946e51f2
AV
1614 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1615 INIT_LIST_HEAD(&dentry->d_child);
a4464dbc 1616 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1617
3e880fb5 1618 this_cpu_inc(nr_dentry);
312d3ca8 1619
1da177e4
LT
1620 return dentry;
1621}
a4464dbc
AV
1622
1623/**
1624 * d_alloc - allocate a dcache entry
1625 * @parent: parent of entry to allocate
1626 * @name: qstr of the name
1627 *
1628 * Allocates a dentry. It returns %NULL if there is insufficient memory
1629 * available. On a success the dentry is returned. The name passed in is
1630 * copied and the copy passed in may be reused after this call.
1631 */
1632struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1633{
1634 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1635 if (!dentry)
1636 return NULL;
3d56c25e 1637 dentry->d_flags |= DCACHE_RCUACCESS;
a4464dbc
AV
1638 spin_lock(&parent->d_lock);
1639 /*
1640 * don't need child lock because it is not subject
1641 * to concurrency here
1642 */
1643 __dget_dlock(parent);
1644 dentry->d_parent = parent;
946e51f2 1645 list_add(&dentry->d_child, &parent->d_subdirs);
a4464dbc
AV
1646 spin_unlock(&parent->d_lock);
1647
1648 return dentry;
1649}
ec4f8605 1650EXPORT_SYMBOL(d_alloc);
1da177e4 1651
e1a24bb0
BF
1652/**
1653 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1654 * @sb: the superblock
1655 * @name: qstr of the name
1656 *
1657 * For a filesystem that just pins its dentries in memory and never
1658 * performs lookups at all, return an unhashed IS_ROOT dentry.
1659 */
4b936885
NP
1660struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1661{
e1a24bb0 1662 return __d_alloc(sb, name);
4b936885
NP
1663}
1664EXPORT_SYMBOL(d_alloc_pseudo);
1665
1da177e4
LT
1666struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1667{
1668 struct qstr q;
1669
1670 q.name = name;
8387ff25 1671 q.hash_len = hashlen_string(parent, name);
1da177e4
LT
1672 return d_alloc(parent, &q);
1673}
ef26ca97 1674EXPORT_SYMBOL(d_alloc_name);
1da177e4 1675
fb045adb
NP
1676void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1677{
6f7f7caa
LT
1678 WARN_ON_ONCE(dentry->d_op);
1679 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1680 DCACHE_OP_COMPARE |
1681 DCACHE_OP_REVALIDATE |
ecf3d1f1 1682 DCACHE_OP_WEAK_REVALIDATE |
4bacc9c9 1683 DCACHE_OP_DELETE |
d101a125
MS
1684 DCACHE_OP_SELECT_INODE |
1685 DCACHE_OP_REAL));
fb045adb
NP
1686 dentry->d_op = op;
1687 if (!op)
1688 return;
1689 if (op->d_hash)
1690 dentry->d_flags |= DCACHE_OP_HASH;
1691 if (op->d_compare)
1692 dentry->d_flags |= DCACHE_OP_COMPARE;
1693 if (op->d_revalidate)
1694 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1695 if (op->d_weak_revalidate)
1696 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1697 if (op->d_delete)
1698 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1699 if (op->d_prune)
1700 dentry->d_flags |= DCACHE_OP_PRUNE;
4bacc9c9
DH
1701 if (op->d_select_inode)
1702 dentry->d_flags |= DCACHE_OP_SELECT_INODE;
d101a125
MS
1703 if (op->d_real)
1704 dentry->d_flags |= DCACHE_OP_REAL;
fb045adb
NP
1705
1706}
1707EXPORT_SYMBOL(d_set_d_op);
1708
df1a085a
DH
1709
1710/*
1711 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1712 * @dentry - The dentry to mark
1713 *
1714 * Mark a dentry as falling through to the lower layer (as set with
1715 * d_pin_lower()). This flag may be recorded on the medium.
1716 */
1717void d_set_fallthru(struct dentry *dentry)
1718{
1719 spin_lock(&dentry->d_lock);
1720 dentry->d_flags |= DCACHE_FALLTHRU;
1721 spin_unlock(&dentry->d_lock);
1722}
1723EXPORT_SYMBOL(d_set_fallthru);
1724
b18825a7
DH
1725static unsigned d_flags_for_inode(struct inode *inode)
1726{
44bdb5e5 1727 unsigned add_flags = DCACHE_REGULAR_TYPE;
b18825a7
DH
1728
1729 if (!inode)
1730 return DCACHE_MISS_TYPE;
1731
1732 if (S_ISDIR(inode->i_mode)) {
1733 add_flags = DCACHE_DIRECTORY_TYPE;
1734 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1735 if (unlikely(!inode->i_op->lookup))
1736 add_flags = DCACHE_AUTODIR_TYPE;
1737 else
1738 inode->i_opflags |= IOP_LOOKUP;
1739 }
44bdb5e5
DH
1740 goto type_determined;
1741 }
1742
1743 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
6b255391 1744 if (unlikely(inode->i_op->get_link)) {
b18825a7 1745 add_flags = DCACHE_SYMLINK_TYPE;
44bdb5e5
DH
1746 goto type_determined;
1747 }
1748 inode->i_opflags |= IOP_NOFOLLOW;
b18825a7
DH
1749 }
1750
44bdb5e5
DH
1751 if (unlikely(!S_ISREG(inode->i_mode)))
1752 add_flags = DCACHE_SPECIAL_TYPE;
1753
1754type_determined:
b18825a7
DH
1755 if (unlikely(IS_AUTOMOUNT(inode)))
1756 add_flags |= DCACHE_NEED_AUTOMOUNT;
1757 return add_flags;
1758}
1759
360da900
OH
1760static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1761{
b18825a7 1762 unsigned add_flags = d_flags_for_inode(inode);
85c7f810 1763 WARN_ON(d_in_lookup(dentry));
b18825a7 1764
b23fb0a6 1765 spin_lock(&dentry->d_lock);
de689f5e 1766 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
a528aca7 1767 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 1768 __d_set_inode_and_type(dentry, inode, add_flags);
a528aca7 1769 raw_write_seqcount_end(&dentry->d_seq);
de689f5e 1770 __fsnotify_d_instantiate(dentry);
b23fb0a6 1771 spin_unlock(&dentry->d_lock);
360da900
OH
1772}
1773
1da177e4
LT
1774/**
1775 * d_instantiate - fill in inode information for a dentry
1776 * @entry: dentry to complete
1777 * @inode: inode to attach to this dentry
1778 *
1779 * Fill in inode information in the entry.
1780 *
1781 * This turns negative dentries into productive full members
1782 * of society.
1783 *
1784 * NOTE! This assumes that the inode count has been incremented
1785 * (or otherwise set) by the caller to indicate that it is now
1786 * in use by the dcache.
1787 */
1788
1789void d_instantiate(struct dentry *entry, struct inode * inode)
1790{
946e51f2 1791 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
de689f5e 1792 if (inode) {
b9680917 1793 security_d_instantiate(entry, inode);
873feea0 1794 spin_lock(&inode->i_lock);
de689f5e 1795 __d_instantiate(entry, inode);
873feea0 1796 spin_unlock(&inode->i_lock);
de689f5e 1797 }
1da177e4 1798}
ec4f8605 1799EXPORT_SYMBOL(d_instantiate);
1da177e4 1800
b70a80e7
MS
1801/**
1802 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1803 * @entry: dentry to complete
1804 * @inode: inode to attach to this dentry
1805 *
1806 * Fill in inode information in the entry. If a directory alias is found, then
1807 * return an error (and drop inode). Together with d_materialise_unique() this
1808 * guarantees that a directory inode may never have more than one alias.
1809 */
1810int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1811{
946e51f2 1812 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
b70a80e7 1813
b9680917 1814 security_d_instantiate(entry, inode);
b70a80e7
MS
1815 spin_lock(&inode->i_lock);
1816 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1817 spin_unlock(&inode->i_lock);
1818 iput(inode);
1819 return -EBUSY;
1820 }
1821 __d_instantiate(entry, inode);
1822 spin_unlock(&inode->i_lock);
b70a80e7
MS
1823
1824 return 0;
1825}
1826EXPORT_SYMBOL(d_instantiate_no_diralias);
1827
adc0e91a
AV
1828struct dentry *d_make_root(struct inode *root_inode)
1829{
1830 struct dentry *res = NULL;
1831
1832 if (root_inode) {
798434bd 1833 res = __d_alloc(root_inode->i_sb, NULL);
adc0e91a
AV
1834 if (res)
1835 d_instantiate(res, root_inode);
1836 else
1837 iput(root_inode);
1838 }
1839 return res;
1840}
1841EXPORT_SYMBOL(d_make_root);
1842
d891eedb
BF
1843static struct dentry * __d_find_any_alias(struct inode *inode)
1844{
1845 struct dentry *alias;
1846
b3d9b7a3 1847 if (hlist_empty(&inode->i_dentry))
d891eedb 1848 return NULL;
946e51f2 1849 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
d891eedb
BF
1850 __dget(alias);
1851 return alias;
1852}
1853
46f72b34
SW
1854/**
1855 * d_find_any_alias - find any alias for a given inode
1856 * @inode: inode to find an alias for
1857 *
1858 * If any aliases exist for the given inode, take and return a
1859 * reference for one of them. If no aliases exist, return %NULL.
1860 */
1861struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1862{
1863 struct dentry *de;
1864
1865 spin_lock(&inode->i_lock);
1866 de = __d_find_any_alias(inode);
1867 spin_unlock(&inode->i_lock);
1868 return de;
1869}
46f72b34 1870EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1871
49c7dd28 1872static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
4ea3ada2 1873{
9308a612
CH
1874 struct dentry *tmp;
1875 struct dentry *res;
b18825a7 1876 unsigned add_flags;
4ea3ada2
CH
1877
1878 if (!inode)
44003728 1879 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1880 if (IS_ERR(inode))
1881 return ERR_CAST(inode);
1882
d891eedb 1883 res = d_find_any_alias(inode);
9308a612
CH
1884 if (res)
1885 goto out_iput;
1886
798434bd 1887 tmp = __d_alloc(inode->i_sb, NULL);
9308a612
CH
1888 if (!tmp) {
1889 res = ERR_PTR(-ENOMEM);
1890 goto out_iput;
4ea3ada2 1891 }
b5c84bf6 1892
b9680917 1893 security_d_instantiate(tmp, inode);
873feea0 1894 spin_lock(&inode->i_lock);
d891eedb 1895 res = __d_find_any_alias(inode);
9308a612 1896 if (res) {
873feea0 1897 spin_unlock(&inode->i_lock);
9308a612
CH
1898 dput(tmp);
1899 goto out_iput;
1900 }
1901
1902 /* attach a disconnected dentry */
1a0a397e
BF
1903 add_flags = d_flags_for_inode(inode);
1904
1905 if (disconnected)
1906 add_flags |= DCACHE_DISCONNECTED;
b18825a7 1907
9308a612 1908 spin_lock(&tmp->d_lock);
4bf46a27 1909 __d_set_inode_and_type(tmp, inode, add_flags);
946e51f2 1910 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1879fd6a 1911 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1912 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1913 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1914 spin_unlock(&tmp->d_lock);
873feea0 1915 spin_unlock(&inode->i_lock);
9308a612 1916
9308a612
CH
1917 return tmp;
1918
1919 out_iput:
1920 iput(inode);
1921 return res;
4ea3ada2 1922}
1a0a397e
BF
1923
1924/**
1925 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1926 * @inode: inode to allocate the dentry for
1927 *
1928 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1929 * similar open by handle operations. The returned dentry may be anonymous,
1930 * or may have a full name (if the inode was already in the cache).
1931 *
1932 * When called on a directory inode, we must ensure that the inode only ever
1933 * has one dentry. If a dentry is found, that is returned instead of
1934 * allocating a new one.
1935 *
1936 * On successful return, the reference to the inode has been transferred
1937 * to the dentry. In case of an error the reference on the inode is released.
1938 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1939 * be passed in and the error will be propagated to the return value,
1940 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1941 */
1942struct dentry *d_obtain_alias(struct inode *inode)
1943{
1944 return __d_obtain_alias(inode, 1);
1945}
adc48720 1946EXPORT_SYMBOL(d_obtain_alias);
1da177e4 1947
1a0a397e
BF
1948/**
1949 * d_obtain_root - find or allocate a dentry for a given inode
1950 * @inode: inode to allocate the dentry for
1951 *
1952 * Obtain an IS_ROOT dentry for the root of a filesystem.
1953 *
1954 * We must ensure that directory inodes only ever have one dentry. If a
1955 * dentry is found, that is returned instead of allocating a new one.
1956 *
1957 * On successful return, the reference to the inode has been transferred
1958 * to the dentry. In case of an error the reference on the inode is
1959 * released. A %NULL or IS_ERR inode may be passed in and will be the
1960 * error will be propagate to the return value, with a %NULL @inode
1961 * replaced by ERR_PTR(-ESTALE).
1962 */
1963struct dentry *d_obtain_root(struct inode *inode)
1964{
1965 return __d_obtain_alias(inode, 0);
1966}
1967EXPORT_SYMBOL(d_obtain_root);
1968
9403540c
BN
1969/**
1970 * d_add_ci - lookup or allocate new dentry with case-exact name
1971 * @inode: the inode case-insensitive lookup has found
1972 * @dentry: the negative dentry that was passed to the parent's lookup func
1973 * @name: the case-exact name to be associated with the returned dentry
1974 *
1975 * This is to avoid filling the dcache with case-insensitive names to the
1976 * same inode, only the actual correct case is stored in the dcache for
1977 * case-insensitive filesystems.
1978 *
1979 * For a case-insensitive lookup match and if the the case-exact dentry
1980 * already exists in in the dcache, use it and return it.
1981 *
1982 * If no entry exists with the exact case name, allocate new dentry with
1983 * the exact case, and return the spliced entry.
1984 */
e45b590b 1985struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1986 struct qstr *name)
1987{
d9171b93 1988 struct dentry *found, *res;
9403540c 1989
b6520c81
CH
1990 /*
1991 * First check if a dentry matching the name already exists,
1992 * if not go ahead and create it now.
1993 */
9403540c 1994 found = d_hash_and_lookup(dentry->d_parent, name);
d9171b93
AV
1995 if (found) {
1996 iput(inode);
1997 return found;
1998 }
1999 if (d_in_lookup(dentry)) {
2000 found = d_alloc_parallel(dentry->d_parent, name,
2001 dentry->d_wait);
2002 if (IS_ERR(found) || !d_in_lookup(found)) {
2003 iput(inode);
2004 return found;
9403540c 2005 }
d9171b93
AV
2006 } else {
2007 found = d_alloc(dentry->d_parent, name);
2008 if (!found) {
2009 iput(inode);
2010 return ERR_PTR(-ENOMEM);
2011 }
2012 }
2013 res = d_splice_alias(inode, found);
2014 if (res) {
2015 dput(found);
2016 return res;
9403540c 2017 }
4f522a24 2018 return found;
9403540c 2019}
ec4f8605 2020EXPORT_SYMBOL(d_add_ci);
1da177e4 2021
12f8ad4b
LT
2022/*
2023 * Do the slow-case of the dentry name compare.
2024 *
2025 * Unlike the dentry_cmp() function, we need to atomically
da53be12 2026 * load the name and length information, so that the
12f8ad4b
LT
2027 * filesystem can rely on them, and can use the 'name' and
2028 * 'len' information without worrying about walking off the
2029 * end of memory etc.
2030 *
2031 * Thus the read_seqcount_retry() and the "duplicate" info
2032 * in arguments (the low-level filesystem should not look
2033 * at the dentry inode or name contents directly, since
2034 * rename can change them while we're in RCU mode).
2035 */
2036enum slow_d_compare {
2037 D_COMP_OK,
2038 D_COMP_NOMATCH,
2039 D_COMP_SEQRETRY,
2040};
2041
2042static noinline enum slow_d_compare slow_dentry_cmp(
2043 const struct dentry *parent,
12f8ad4b
LT
2044 struct dentry *dentry,
2045 unsigned int seq,
2046 const struct qstr *name)
2047{
2048 int tlen = dentry->d_name.len;
2049 const char *tname = dentry->d_name.name;
12f8ad4b
LT
2050
2051 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2052 cpu_relax();
2053 return D_COMP_SEQRETRY;
2054 }
da53be12 2055 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
12f8ad4b
LT
2056 return D_COMP_NOMATCH;
2057 return D_COMP_OK;
2058}
2059
31e6b01f
NP
2060/**
2061 * __d_lookup_rcu - search for a dentry (racy, store-free)
2062 * @parent: parent dentry
2063 * @name: qstr of name we wish to find
1f1e6e52 2064 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2065 * Returns: dentry, or NULL
2066 *
2067 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2068 * resolution (store-free path walking) design described in
2069 * Documentation/filesystems/path-lookup.txt.
2070 *
2071 * This is not to be used outside core vfs.
2072 *
2073 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2074 * held, and rcu_read_lock held. The returned dentry must not be stored into
2075 * without taking d_lock and checking d_seq sequence count against @seq
2076 * returned here.
2077 *
15570086 2078 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2079 * function.
2080 *
2081 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2082 * the returned dentry, so long as its parent's seqlock is checked after the
2083 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2084 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2085 *
2086 * NOTE! The caller *has* to check the resulting dentry against the sequence
2087 * number we've returned before using any of the resulting dentry state!
31e6b01f 2088 */
8966be90
LT
2089struct dentry *__d_lookup_rcu(const struct dentry *parent,
2090 const struct qstr *name,
da53be12 2091 unsigned *seqp)
31e6b01f 2092{
26fe5750 2093 u64 hashlen = name->hash_len;
31e6b01f 2094 const unsigned char *str = name->name;
8387ff25 2095 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
ceb5bdc2 2096 struct hlist_bl_node *node;
31e6b01f
NP
2097 struct dentry *dentry;
2098
2099 /*
2100 * Note: There is significant duplication with __d_lookup_rcu which is
2101 * required to prevent single threaded performance regressions
2102 * especially on architectures where smp_rmb (in seqcounts) are costly.
2103 * Keep the two functions in sync.
2104 */
2105
2106 /*
2107 * The hash list is protected using RCU.
2108 *
2109 * Carefully use d_seq when comparing a candidate dentry, to avoid
2110 * races with d_move().
2111 *
2112 * It is possible that concurrent renames can mess up our list
2113 * walk here and result in missing our dentry, resulting in the
2114 * false-negative result. d_lookup() protects against concurrent
2115 * renames using rename_lock seqlock.
2116 *
b0a4bb83 2117 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2118 */
b07ad996 2119 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2120 unsigned seq;
31e6b01f 2121
31e6b01f 2122seqretry:
12f8ad4b
LT
2123 /*
2124 * The dentry sequence count protects us from concurrent
da53be12 2125 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2126 *
2127 * The caller must perform a seqcount check in order
da53be12 2128 * to do anything useful with the returned dentry.
12f8ad4b
LT
2129 *
2130 * NOTE! We do a "raw" seqcount_begin here. That means that
2131 * we don't wait for the sequence count to stabilize if it
2132 * is in the middle of a sequence change. If we do the slow
2133 * dentry compare, we will do seqretries until it is stable,
2134 * and if we end up with a successful lookup, we actually
2135 * want to exit RCU lookup anyway.
2136 */
2137 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2138 if (dentry->d_parent != parent)
2139 continue;
2e321806
LT
2140 if (d_unhashed(dentry))
2141 continue;
12f8ad4b 2142
830c0f0e 2143 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
26fe5750
LT
2144 if (dentry->d_name.hash != hashlen_hash(hashlen))
2145 continue;
da53be12
LT
2146 *seqp = seq;
2147 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
12f8ad4b
LT
2148 case D_COMP_OK:
2149 return dentry;
2150 case D_COMP_NOMATCH:
31e6b01f 2151 continue;
12f8ad4b
LT
2152 default:
2153 goto seqretry;
2154 }
31e6b01f 2155 }
12f8ad4b 2156
26fe5750 2157 if (dentry->d_name.hash_len != hashlen)
ee983e89 2158 continue;
da53be12 2159 *seqp = seq;
26fe5750 2160 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
12f8ad4b 2161 return dentry;
31e6b01f
NP
2162 }
2163 return NULL;
2164}
2165
1da177e4
LT
2166/**
2167 * d_lookup - search for a dentry
2168 * @parent: parent dentry
2169 * @name: qstr of name we wish to find
b04f784e 2170 * Returns: dentry, or NULL
1da177e4 2171 *
b04f784e
NP
2172 * d_lookup searches the children of the parent dentry for the name in
2173 * question. If the dentry is found its reference count is incremented and the
2174 * dentry is returned. The caller must use dput to free the entry when it has
2175 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2176 */
da2d8455 2177struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2178{
31e6b01f 2179 struct dentry *dentry;
949854d0 2180 unsigned seq;
1da177e4 2181
b8314f93
DY
2182 do {
2183 seq = read_seqbegin(&rename_lock);
2184 dentry = __d_lookup(parent, name);
2185 if (dentry)
1da177e4
LT
2186 break;
2187 } while (read_seqretry(&rename_lock, seq));
2188 return dentry;
2189}
ec4f8605 2190EXPORT_SYMBOL(d_lookup);
1da177e4 2191
31e6b01f 2192/**
b04f784e
NP
2193 * __d_lookup - search for a dentry (racy)
2194 * @parent: parent dentry
2195 * @name: qstr of name we wish to find
2196 * Returns: dentry, or NULL
2197 *
2198 * __d_lookup is like d_lookup, however it may (rarely) return a
2199 * false-negative result due to unrelated rename activity.
2200 *
2201 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2202 * however it must be used carefully, eg. with a following d_lookup in
2203 * the case of failure.
2204 *
2205 * __d_lookup callers must be commented.
2206 */
a713ca2a 2207struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4
LT
2208{
2209 unsigned int len = name->len;
2210 unsigned int hash = name->hash;
2211 const unsigned char *str = name->name;
8387ff25 2212 struct hlist_bl_head *b = d_hash(hash);
ceb5bdc2 2213 struct hlist_bl_node *node;
31e6b01f 2214 struct dentry *found = NULL;
665a7583 2215 struct dentry *dentry;
1da177e4 2216
31e6b01f
NP
2217 /*
2218 * Note: There is significant duplication with __d_lookup_rcu which is
2219 * required to prevent single threaded performance regressions
2220 * especially on architectures where smp_rmb (in seqcounts) are costly.
2221 * Keep the two functions in sync.
2222 */
2223
b04f784e
NP
2224 /*
2225 * The hash list is protected using RCU.
2226 *
2227 * Take d_lock when comparing a candidate dentry, to avoid races
2228 * with d_move().
2229 *
2230 * It is possible that concurrent renames can mess up our list
2231 * walk here and result in missing our dentry, resulting in the
2232 * false-negative result. d_lookup() protects against concurrent
2233 * renames using rename_lock seqlock.
2234 *
b0a4bb83 2235 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2236 */
1da177e4
LT
2237 rcu_read_lock();
2238
b07ad996 2239 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2240
1da177e4
LT
2241 if (dentry->d_name.hash != hash)
2242 continue;
1da177e4
LT
2243
2244 spin_lock(&dentry->d_lock);
1da177e4
LT
2245 if (dentry->d_parent != parent)
2246 goto next;
d0185c08
LT
2247 if (d_unhashed(dentry))
2248 goto next;
2249
1da177e4
LT
2250 /*
2251 * It is safe to compare names since d_move() cannot
2252 * change the qstr (protected by d_lock).
2253 */
fb045adb 2254 if (parent->d_flags & DCACHE_OP_COMPARE) {
12f8ad4b
LT
2255 int tlen = dentry->d_name.len;
2256 const char *tname = dentry->d_name.name;
da53be12 2257 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1da177e4
LT
2258 goto next;
2259 } else {
ee983e89
LT
2260 if (dentry->d_name.len != len)
2261 goto next;
12f8ad4b 2262 if (dentry_cmp(dentry, str, len))
1da177e4
LT
2263 goto next;
2264 }
2265
98474236 2266 dentry->d_lockref.count++;
d0185c08 2267 found = dentry;
1da177e4
LT
2268 spin_unlock(&dentry->d_lock);
2269 break;
2270next:
2271 spin_unlock(&dentry->d_lock);
2272 }
2273 rcu_read_unlock();
2274
2275 return found;
2276}
2277
3e7e241f
EB
2278/**
2279 * d_hash_and_lookup - hash the qstr then search for a dentry
2280 * @dir: Directory to search in
2281 * @name: qstr of name we wish to find
2282 *
4f522a24 2283 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2284 */
2285struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2286{
3e7e241f
EB
2287 /*
2288 * Check for a fs-specific hash function. Note that we must
2289 * calculate the standard hash first, as the d_op->d_hash()
2290 * routine may choose to leave the hash value unchanged.
2291 */
8387ff25 2292 name->hash = full_name_hash(dir, name->name, name->len);
fb045adb 2293 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2294 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2295 if (unlikely(err < 0))
2296 return ERR_PTR(err);
3e7e241f 2297 }
4f522a24 2298 return d_lookup(dir, name);
3e7e241f 2299}
4f522a24 2300EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2301
1da177e4
LT
2302/*
2303 * When a file is deleted, we have two options:
2304 * - turn this dentry into a negative dentry
2305 * - unhash this dentry and free it.
2306 *
2307 * Usually, we want to just turn this into
2308 * a negative dentry, but if anybody else is
2309 * currently using the dentry or the inode
2310 * we can't do that and we fall back on removing
2311 * it from the hash queues and waiting for
2312 * it to be deleted later when it has no users
2313 */
2314
2315/**
2316 * d_delete - delete a dentry
2317 * @dentry: The dentry to delete
2318 *
2319 * Turn the dentry into a negative dentry if possible, otherwise
2320 * remove it from the hash queues so it can be deleted later
2321 */
2322
2323void d_delete(struct dentry * dentry)
2324{
873feea0 2325 struct inode *inode;
7a91bf7f 2326 int isdir = 0;
1da177e4
LT
2327 /*
2328 * Are we the only user?
2329 */
357f8e65 2330again:
1da177e4 2331 spin_lock(&dentry->d_lock);
873feea0
NP
2332 inode = dentry->d_inode;
2333 isdir = S_ISDIR(inode->i_mode);
98474236 2334 if (dentry->d_lockref.count == 1) {
1fe0c023 2335 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2336 spin_unlock(&dentry->d_lock);
2337 cpu_relax();
2338 goto again;
2339 }
13e3c5e5 2340 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2341 dentry_unlink_inode(dentry);
7a91bf7f 2342 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2343 return;
2344 }
2345
2346 if (!d_unhashed(dentry))
2347 __d_drop(dentry);
2348
2349 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2350
2351 fsnotify_nameremove(dentry, isdir);
1da177e4 2352}
ec4f8605 2353EXPORT_SYMBOL(d_delete);
1da177e4 2354
b07ad996 2355static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2356{
ceb5bdc2 2357 BUG_ON(!d_unhashed(entry));
1879fd6a 2358 hlist_bl_lock(b);
b07ad996 2359 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2360 hlist_bl_unlock(b);
1da177e4
LT
2361}
2362
770bfad8
DH
2363static void _d_rehash(struct dentry * entry)
2364{
8387ff25 2365 __d_rehash(entry, d_hash(entry->d_name.hash));
770bfad8
DH
2366}
2367
1da177e4
LT
2368/**
2369 * d_rehash - add an entry back to the hash
2370 * @entry: dentry to add to the hash
2371 *
2372 * Adds a dentry to the hash according to its name.
2373 */
2374
2375void d_rehash(struct dentry * entry)
2376{
1da177e4 2377 spin_lock(&entry->d_lock);
770bfad8 2378 _d_rehash(entry);
1da177e4 2379 spin_unlock(&entry->d_lock);
1da177e4 2380}
ec4f8605 2381EXPORT_SYMBOL(d_rehash);
1da177e4 2382
84e710da
AV
2383static inline unsigned start_dir_add(struct inode *dir)
2384{
2385
2386 for (;;) {
2387 unsigned n = dir->i_dir_seq;
2388 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2389 return n;
2390 cpu_relax();
2391 }
2392}
2393
2394static inline void end_dir_add(struct inode *dir, unsigned n)
2395{
2396 smp_store_release(&dir->i_dir_seq, n + 2);
2397}
2398
d9171b93
AV
2399static void d_wait_lookup(struct dentry *dentry)
2400{
2401 if (d_in_lookup(dentry)) {
2402 DECLARE_WAITQUEUE(wait, current);
2403 add_wait_queue(dentry->d_wait, &wait);
2404 do {
2405 set_current_state(TASK_UNINTERRUPTIBLE);
2406 spin_unlock(&dentry->d_lock);
2407 schedule();
2408 spin_lock(&dentry->d_lock);
2409 } while (d_in_lookup(dentry));
2410 }
2411}
2412
94bdd655 2413struct dentry *d_alloc_parallel(struct dentry *parent,
d9171b93
AV
2414 const struct qstr *name,
2415 wait_queue_head_t *wq)
94bdd655
AV
2416{
2417 unsigned int len = name->len;
2418 unsigned int hash = name->hash;
2419 const unsigned char *str = name->name;
2420 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2421 struct hlist_bl_node *node;
2422 struct dentry *new = d_alloc(parent, name);
2423 struct dentry *dentry;
2424 unsigned seq, r_seq, d_seq;
2425
2426 if (unlikely(!new))
2427 return ERR_PTR(-ENOMEM);
2428
2429retry:
2430 rcu_read_lock();
2431 seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1;
2432 r_seq = read_seqbegin(&rename_lock);
2433 dentry = __d_lookup_rcu(parent, name, &d_seq);
2434 if (unlikely(dentry)) {
2435 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2436 rcu_read_unlock();
2437 goto retry;
2438 }
2439 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2440 rcu_read_unlock();
2441 dput(dentry);
2442 goto retry;
2443 }
2444 rcu_read_unlock();
2445 dput(new);
2446 return dentry;
2447 }
2448 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2449 rcu_read_unlock();
2450 goto retry;
2451 }
2452 hlist_bl_lock(b);
2453 if (unlikely(parent->d_inode->i_dir_seq != seq)) {
2454 hlist_bl_unlock(b);
2455 rcu_read_unlock();
2456 goto retry;
2457 }
2458 rcu_read_unlock();
2459 /*
2460 * No changes for the parent since the beginning of d_lookup().
2461 * Since all removals from the chain happen with hlist_bl_lock(),
2462 * any potential in-lookup matches are going to stay here until
2463 * we unlock the chain. All fields are stable in everything
2464 * we encounter.
2465 */
2466 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2467 if (dentry->d_name.hash != hash)
2468 continue;
2469 if (dentry->d_parent != parent)
2470 continue;
2471 if (d_unhashed(dentry))
2472 continue;
2473 if (parent->d_flags & DCACHE_OP_COMPARE) {
2474 int tlen = dentry->d_name.len;
2475 const char *tname = dentry->d_name.name;
2476 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2477 continue;
2478 } else {
2479 if (dentry->d_name.len != len)
2480 continue;
2481 if (dentry_cmp(dentry, str, len))
2482 continue;
2483 }
2484 dget(dentry);
2485 hlist_bl_unlock(b);
d9171b93
AV
2486 /* somebody is doing lookup for it right now; wait for it */
2487 spin_lock(&dentry->d_lock);
2488 d_wait_lookup(dentry);
2489 /*
2490 * it's not in-lookup anymore; in principle we should repeat
2491 * everything from dcache lookup, but it's likely to be what
2492 * d_lookup() would've found anyway. If it is, just return it;
2493 * otherwise we really have to repeat the whole thing.
2494 */
2495 if (unlikely(dentry->d_name.hash != hash))
2496 goto mismatch;
2497 if (unlikely(dentry->d_parent != parent))
2498 goto mismatch;
2499 if (unlikely(d_unhashed(dentry)))
2500 goto mismatch;
2501 if (parent->d_flags & DCACHE_OP_COMPARE) {
2502 int tlen = dentry->d_name.len;
2503 const char *tname = dentry->d_name.name;
2504 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2505 goto mismatch;
2506 } else {
2507 if (unlikely(dentry->d_name.len != len))
2508 goto mismatch;
2509 if (unlikely(dentry_cmp(dentry, str, len)))
2510 goto mismatch;
2511 }
2512 /* OK, it *is* a hashed match; return it */
2513 spin_unlock(&dentry->d_lock);
94bdd655
AV
2514 dput(new);
2515 return dentry;
2516 }
2517 /* we can't take ->d_lock here; it's OK, though. */
2518 new->d_flags |= DCACHE_PAR_LOOKUP;
d9171b93 2519 new->d_wait = wq;
94bdd655
AV
2520 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2521 hlist_bl_unlock(b);
2522 return new;
d9171b93
AV
2523mismatch:
2524 spin_unlock(&dentry->d_lock);
2525 dput(dentry);
2526 goto retry;
94bdd655
AV
2527}
2528EXPORT_SYMBOL(d_alloc_parallel);
2529
85c7f810
AV
2530void __d_lookup_done(struct dentry *dentry)
2531{
94bdd655
AV
2532 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2533 dentry->d_name.hash);
2534 hlist_bl_lock(b);
85c7f810 2535 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
94bdd655 2536 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
d9171b93
AV
2537 wake_up_all(dentry->d_wait);
2538 dentry->d_wait = NULL;
94bdd655
AV
2539 hlist_bl_unlock(b);
2540 INIT_HLIST_NODE(&dentry->d_u.d_alias);
d9171b93 2541 INIT_LIST_HEAD(&dentry->d_lru);
85c7f810
AV
2542}
2543EXPORT_SYMBOL(__d_lookup_done);
ed782b5a
AV
2544
2545/* inode->i_lock held if inode is non-NULL */
2546
2547static inline void __d_add(struct dentry *dentry, struct inode *inode)
2548{
84e710da
AV
2549 struct inode *dir = NULL;
2550 unsigned n;
0568d705 2551 spin_lock(&dentry->d_lock);
84e710da
AV
2552 if (unlikely(d_in_lookup(dentry))) {
2553 dir = dentry->d_parent->d_inode;
2554 n = start_dir_add(dir);
85c7f810 2555 __d_lookup_done(dentry);
84e710da 2556 }
ed782b5a 2557 if (inode) {
0568d705
AV
2558 unsigned add_flags = d_flags_for_inode(inode);
2559 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2560 raw_write_seqcount_begin(&dentry->d_seq);
2561 __d_set_inode_and_type(dentry, inode, add_flags);
2562 raw_write_seqcount_end(&dentry->d_seq);
2563 __fsnotify_d_instantiate(dentry);
ed782b5a 2564 }
0568d705 2565 _d_rehash(dentry);
84e710da
AV
2566 if (dir)
2567 end_dir_add(dir, n);
0568d705
AV
2568 spin_unlock(&dentry->d_lock);
2569 if (inode)
2570 spin_unlock(&inode->i_lock);
ed782b5a
AV
2571}
2572
34d0d19d
AV
2573/**
2574 * d_add - add dentry to hash queues
2575 * @entry: dentry to add
2576 * @inode: The inode to attach to this dentry
2577 *
2578 * This adds the entry to the hash queues and initializes @inode.
2579 * The entry was actually filled in earlier during d_alloc().
2580 */
2581
2582void d_add(struct dentry *entry, struct inode *inode)
2583{
b9680917
AV
2584 if (inode) {
2585 security_d_instantiate(entry, inode);
ed782b5a 2586 spin_lock(&inode->i_lock);
b9680917 2587 }
ed782b5a 2588 __d_add(entry, inode);
34d0d19d
AV
2589}
2590EXPORT_SYMBOL(d_add);
2591
668d0cd5
AV
2592/**
2593 * d_exact_alias - find and hash an exact unhashed alias
2594 * @entry: dentry to add
2595 * @inode: The inode to go with this dentry
2596 *
2597 * If an unhashed dentry with the same name/parent and desired
2598 * inode already exists, hash and return it. Otherwise, return
2599 * NULL.
2600 *
2601 * Parent directory should be locked.
2602 */
2603struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2604{
2605 struct dentry *alias;
2606 int len = entry->d_name.len;
2607 const char *name = entry->d_name.name;
2608 unsigned int hash = entry->d_name.hash;
2609
2610 spin_lock(&inode->i_lock);
2611 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2612 /*
2613 * Don't need alias->d_lock here, because aliases with
2614 * d_parent == entry->d_parent are not subject to name or
2615 * parent changes, because the parent inode i_mutex is held.
2616 */
2617 if (alias->d_name.hash != hash)
2618 continue;
2619 if (alias->d_parent != entry->d_parent)
2620 continue;
2621 if (alias->d_name.len != len)
2622 continue;
2623 if (dentry_cmp(alias, name, len))
2624 continue;
2625 spin_lock(&alias->d_lock);
2626 if (!d_unhashed(alias)) {
2627 spin_unlock(&alias->d_lock);
2628 alias = NULL;
2629 } else {
2630 __dget_dlock(alias);
2631 _d_rehash(alias);
2632 spin_unlock(&alias->d_lock);
2633 }
2634 spin_unlock(&inode->i_lock);
2635 return alias;
2636 }
2637 spin_unlock(&inode->i_lock);
2638 return NULL;
2639}
2640EXPORT_SYMBOL(d_exact_alias);
2641
fb2d5b86
NP
2642/**
2643 * dentry_update_name_case - update case insensitive dentry with a new name
2644 * @dentry: dentry to be updated
2645 * @name: new name
2646 *
2647 * Update a case insensitive dentry with new case of name.
2648 *
2649 * dentry must have been returned by d_lookup with name @name. Old and new
2650 * name lengths must match (ie. no d_compare which allows mismatched name
2651 * lengths).
2652 *
2653 * Parent inode i_mutex must be held over d_lookup and into this call (to
2654 * keep renames and concurrent inserts, and readdir(2) away).
2655 */
2656void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2657{
5955102c 2658 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
fb2d5b86
NP
2659 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2660
fb2d5b86 2661 spin_lock(&dentry->d_lock);
31e6b01f 2662 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2663 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2664 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2665 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2666}
2667EXPORT_SYMBOL(dentry_update_name_case);
2668
8d85b484 2669static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2670{
8d85b484
AV
2671 if (unlikely(dname_external(target))) {
2672 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2673 /*
2674 * Both external: swap the pointers
2675 */
9a8d5bb4 2676 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2677 } else {
2678 /*
2679 * dentry:internal, target:external. Steal target's
2680 * storage and make target internal.
2681 */
321bcf92
BF
2682 memcpy(target->d_iname, dentry->d_name.name,
2683 dentry->d_name.len + 1);
1da177e4
LT
2684 dentry->d_name.name = target->d_name.name;
2685 target->d_name.name = target->d_iname;
2686 }
2687 } else {
8d85b484 2688 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2689 /*
2690 * dentry:external, target:internal. Give dentry's
2691 * storage to target and make dentry internal
2692 */
2693 memcpy(dentry->d_iname, target->d_name.name,
2694 target->d_name.len + 1);
2695 target->d_name.name = dentry->d_name.name;
2696 dentry->d_name.name = dentry->d_iname;
2697 } else {
2698 /*
da1ce067 2699 * Both are internal.
1da177e4 2700 */
da1ce067
MS
2701 unsigned int i;
2702 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
08d4f772
MP
2703 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2704 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
da1ce067
MS
2705 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2706 swap(((long *) &dentry->d_iname)[i],
2707 ((long *) &target->d_iname)[i]);
2708 }
1da177e4
LT
2709 }
2710 }
a28ddb87 2711 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2712}
2713
8d85b484
AV
2714static void copy_name(struct dentry *dentry, struct dentry *target)
2715{
2716 struct external_name *old_name = NULL;
2717 if (unlikely(dname_external(dentry)))
2718 old_name = external_name(dentry);
2719 if (unlikely(dname_external(target))) {
2720 atomic_inc(&external_name(target)->u.count);
2721 dentry->d_name = target->d_name;
2722 } else {
2723 memcpy(dentry->d_iname, target->d_name.name,
2724 target->d_name.len + 1);
2725 dentry->d_name.name = dentry->d_iname;
2726 dentry->d_name.hash_len = target->d_name.hash_len;
2727 }
2728 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2729 kfree_rcu(old_name, u.head);
2730}
2731
2fd6b7f5
NP
2732static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2733{
2734 /*
2735 * XXXX: do we really need to take target->d_lock?
2736 */
2737 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2738 spin_lock(&target->d_parent->d_lock);
2739 else {
2740 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2741 spin_lock(&dentry->d_parent->d_lock);
2742 spin_lock_nested(&target->d_parent->d_lock,
2743 DENTRY_D_LOCK_NESTED);
2744 } else {
2745 spin_lock(&target->d_parent->d_lock);
2746 spin_lock_nested(&dentry->d_parent->d_lock,
2747 DENTRY_D_LOCK_NESTED);
2748 }
2749 }
2750 if (target < dentry) {
2751 spin_lock_nested(&target->d_lock, 2);
2752 spin_lock_nested(&dentry->d_lock, 3);
2753 } else {
2754 spin_lock_nested(&dentry->d_lock, 2);
2755 spin_lock_nested(&target->d_lock, 3);
2756 }
2757}
2758
986c0194 2759static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2fd6b7f5
NP
2760{
2761 if (target->d_parent != dentry->d_parent)
2762 spin_unlock(&dentry->d_parent->d_lock);
2763 if (target->d_parent != target)
2764 spin_unlock(&target->d_parent->d_lock);
986c0194
AV
2765 spin_unlock(&target->d_lock);
2766 spin_unlock(&dentry->d_lock);
2fd6b7f5
NP
2767}
2768
1da177e4 2769/*
2fd6b7f5
NP
2770 * When switching names, the actual string doesn't strictly have to
2771 * be preserved in the target - because we're dropping the target
2772 * anyway. As such, we can just do a simple memcpy() to copy over
d2fa4a84
ME
2773 * the new name before we switch, unless we are going to rehash
2774 * it. Note that if we *do* unhash the target, we are not allowed
2775 * to rehash it without giving it a new name/hash key - whether
2776 * we swap or overwrite the names here, resulting name won't match
2777 * the reality in filesystem; it's only there for d_path() purposes.
2778 * Note that all of this is happening under rename_lock, so the
2779 * any hash lookup seeing it in the middle of manipulations will
2780 * be discarded anyway. So we do not care what happens to the hash
2781 * key in that case.
1da177e4 2782 */
9eaef27b 2783/*
18367501 2784 * __d_move - move a dentry
1da177e4
LT
2785 * @dentry: entry to move
2786 * @target: new dentry
da1ce067 2787 * @exchange: exchange the two dentries
1da177e4
LT
2788 *
2789 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2790 * dcache entries should not be moved in this way. Caller must hold
2791 * rename_lock, the i_mutex of the source and target directories,
2792 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2793 */
da1ce067
MS
2794static void __d_move(struct dentry *dentry, struct dentry *target,
2795 bool exchange)
1da177e4 2796{
84e710da
AV
2797 struct inode *dir = NULL;
2798 unsigned n;
1da177e4
LT
2799 if (!dentry->d_inode)
2800 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2801
2fd6b7f5
NP
2802 BUG_ON(d_ancestor(dentry, target));
2803 BUG_ON(d_ancestor(target, dentry));
2804
2fd6b7f5 2805 dentry_lock_for_move(dentry, target);
84e710da
AV
2806 if (unlikely(d_in_lookup(target))) {
2807 dir = target->d_parent->d_inode;
2808 n = start_dir_add(dir);
85c7f810 2809 __d_lookup_done(target);
84e710da 2810 }
1da177e4 2811
31e6b01f 2812 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2813 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2814
ceb5bdc2
NP
2815 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2816
2817 /*
2818 * Move the dentry to the target hash queue. Don't bother checking
2819 * for the same hash queue because of how unlikely it is.
2820 */
2821 __d_drop(dentry);
8387ff25 2822 __d_rehash(dentry, d_hash(target->d_name.hash));
1da177e4 2823
da1ce067
MS
2824 /*
2825 * Unhash the target (d_delete() is not usable here). If exchanging
2826 * the two dentries, then rehash onto the other's hash queue.
2827 */
1da177e4 2828 __d_drop(target);
da1ce067 2829 if (exchange) {
8387ff25 2830 __d_rehash(target, d_hash(dentry->d_name.hash));
da1ce067 2831 }
1da177e4 2832
1da177e4 2833 /* Switch the names.. */
8d85b484
AV
2834 if (exchange)
2835 swap_names(dentry, target);
2836 else
2837 copy_name(dentry, target);
1da177e4 2838
63cf427a 2839 /* ... and switch them in the tree */
1da177e4 2840 if (IS_ROOT(dentry)) {
63cf427a 2841 /* splicing a tree */
3d56c25e 2842 dentry->d_flags |= DCACHE_RCUACCESS;
1da177e4
LT
2843 dentry->d_parent = target->d_parent;
2844 target->d_parent = target;
946e51f2
AV
2845 list_del_init(&target->d_child);
2846 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
1da177e4 2847 } else {
63cf427a 2848 /* swapping two dentries */
9a8d5bb4 2849 swap(dentry->d_parent, target->d_parent);
946e51f2
AV
2850 list_move(&target->d_child, &target->d_parent->d_subdirs);
2851 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
63cf427a
AV
2852 if (exchange)
2853 fsnotify_d_move(target);
2854 fsnotify_d_move(dentry);
1da177e4
LT
2855 }
2856
31e6b01f
NP
2857 write_seqcount_end(&target->d_seq);
2858 write_seqcount_end(&dentry->d_seq);
2859
84e710da
AV
2860 if (dir)
2861 end_dir_add(dir, n);
986c0194 2862 dentry_unlock_for_move(dentry, target);
18367501
AV
2863}
2864
2865/*
2866 * d_move - move a dentry
2867 * @dentry: entry to move
2868 * @target: new dentry
2869 *
2870 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2871 * dcache entries should not be moved in this way. See the locking
2872 * requirements for __d_move.
18367501
AV
2873 */
2874void d_move(struct dentry *dentry, struct dentry *target)
2875{
2876 write_seqlock(&rename_lock);
da1ce067 2877 __d_move(dentry, target, false);
1da177e4 2878 write_sequnlock(&rename_lock);
9eaef27b 2879}
ec4f8605 2880EXPORT_SYMBOL(d_move);
1da177e4 2881
da1ce067
MS
2882/*
2883 * d_exchange - exchange two dentries
2884 * @dentry1: first dentry
2885 * @dentry2: second dentry
2886 */
2887void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2888{
2889 write_seqlock(&rename_lock);
2890
2891 WARN_ON(!dentry1->d_inode);
2892 WARN_ON(!dentry2->d_inode);
2893 WARN_ON(IS_ROOT(dentry1));
2894 WARN_ON(IS_ROOT(dentry2));
2895
2896 __d_move(dentry1, dentry2, true);
2897
2898 write_sequnlock(&rename_lock);
2899}
2900
e2761a11
OH
2901/**
2902 * d_ancestor - search for an ancestor
2903 * @p1: ancestor dentry
2904 * @p2: child dentry
2905 *
2906 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2907 * an ancestor of p2, else NULL.
9eaef27b 2908 */
e2761a11 2909struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2910{
2911 struct dentry *p;
2912
871c0067 2913 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2914 if (p->d_parent == p1)
e2761a11 2915 return p;
9eaef27b 2916 }
e2761a11 2917 return NULL;
9eaef27b
TM
2918}
2919
2920/*
2921 * This helper attempts to cope with remotely renamed directories
2922 *
2923 * It assumes that the caller is already holding
a03e283b 2924 * dentry->d_parent->d_inode->i_mutex, and rename_lock
9eaef27b
TM
2925 *
2926 * Note: If ever the locking in lock_rename() changes, then please
2927 * remember to update this too...
9eaef27b 2928 */
b5ae6b15 2929static int __d_unalias(struct inode *inode,
873feea0 2930 struct dentry *dentry, struct dentry *alias)
9eaef27b 2931{
9902af79
AV
2932 struct mutex *m1 = NULL;
2933 struct rw_semaphore *m2 = NULL;
3d330dc1 2934 int ret = -ESTALE;
9eaef27b
TM
2935
2936 /* If alias and dentry share a parent, then no extra locks required */
2937 if (alias->d_parent == dentry->d_parent)
2938 goto out_unalias;
2939
9eaef27b 2940 /* See lock_rename() */
9eaef27b
TM
2941 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2942 goto out_err;
2943 m1 = &dentry->d_sb->s_vfs_rename_mutex;
9902af79 2944 if (!inode_trylock_shared(alias->d_parent->d_inode))
9eaef27b 2945 goto out_err;
9902af79 2946 m2 = &alias->d_parent->d_inode->i_rwsem;
9eaef27b 2947out_unalias:
8ed936b5 2948 __d_move(alias, dentry, false);
b5ae6b15 2949 ret = 0;
9eaef27b 2950out_err:
9eaef27b 2951 if (m2)
9902af79 2952 up_read(m2);
9eaef27b
TM
2953 if (m1)
2954 mutex_unlock(m1);
2955 return ret;
2956}
2957
3f70bd51
BF
2958/**
2959 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2960 * @inode: the inode which may have a disconnected dentry
2961 * @dentry: a negative dentry which we want to point to the inode.
2962 *
da093a9b
BF
2963 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2964 * place of the given dentry and return it, else simply d_add the inode
2965 * to the dentry and return NULL.
3f70bd51 2966 *
908790fa
BF
2967 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2968 * we should error out: directories can't have multiple aliases.
2969 *
3f70bd51
BF
2970 * This is needed in the lookup routine of any filesystem that is exportable
2971 * (via knfsd) so that we can build dcache paths to directories effectively.
2972 *
2973 * If a dentry was found and moved, then it is returned. Otherwise NULL
2974 * is returned. This matches the expected return value of ->lookup.
2975 *
2976 * Cluster filesystems may call this function with a negative, hashed dentry.
2977 * In that case, we know that the inode will be a regular file, and also this
2978 * will only occur during atomic_open. So we need to check for the dentry
2979 * being already hashed only in the final case.
2980 */
2981struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2982{
3f70bd51
BF
2983 if (IS_ERR(inode))
2984 return ERR_CAST(inode);
2985
770bfad8
DH
2986 BUG_ON(!d_unhashed(dentry));
2987
de689f5e 2988 if (!inode)
b5ae6b15 2989 goto out;
de689f5e 2990
b9680917 2991 security_d_instantiate(dentry, inode);
873feea0 2992 spin_lock(&inode->i_lock);
9eaef27b 2993 if (S_ISDIR(inode->i_mode)) {
b5ae6b15
AV
2994 struct dentry *new = __d_find_any_alias(inode);
2995 if (unlikely(new)) {
a03e283b
EB
2996 /* The reference to new ensures it remains an alias */
2997 spin_unlock(&inode->i_lock);
18367501 2998 write_seqlock(&rename_lock);
b5ae6b15
AV
2999 if (unlikely(d_ancestor(new, dentry))) {
3000 write_sequnlock(&rename_lock);
b5ae6b15
AV
3001 dput(new);
3002 new = ERR_PTR(-ELOOP);
3003 pr_warn_ratelimited(
3004 "VFS: Lookup of '%s' in %s %s"
3005 " would have caused loop\n",
3006 dentry->d_name.name,
3007 inode->i_sb->s_type->name,
3008 inode->i_sb->s_id);
3009 } else if (!IS_ROOT(new)) {
3010 int err = __d_unalias(inode, dentry, new);
18367501 3011 write_sequnlock(&rename_lock);
b5ae6b15
AV
3012 if (err) {
3013 dput(new);
3014 new = ERR_PTR(err);
3015 }
18367501 3016 } else {
b5ae6b15
AV
3017 __d_move(new, dentry, false);
3018 write_sequnlock(&rename_lock);
dd179946 3019 }
b5ae6b15
AV
3020 iput(inode);
3021 return new;
9eaef27b 3022 }
770bfad8 3023 }
b5ae6b15 3024out:
ed782b5a 3025 __d_add(dentry, inode);
b5ae6b15 3026 return NULL;
770bfad8 3027}
b5ae6b15 3028EXPORT_SYMBOL(d_splice_alias);
770bfad8 3029
cdd16d02 3030static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
3031{
3032 *buflen -= namelen;
3033 if (*buflen < 0)
3034 return -ENAMETOOLONG;
3035 *buffer -= namelen;
3036 memcpy(*buffer, str, namelen);
3037 return 0;
3038}
3039
232d2d60
WL
3040/**
3041 * prepend_name - prepend a pathname in front of current buffer pointer
18129977
WL
3042 * @buffer: buffer pointer
3043 * @buflen: allocated length of the buffer
3044 * @name: name string and length qstr structure
232d2d60
WL
3045 *
3046 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
3047 * make sure that either the old or the new name pointer and length are
3048 * fetched. However, there may be mismatch between length and pointer.
3049 * The length cannot be trusted, we need to copy it byte-by-byte until
3050 * the length is reached or a null byte is found. It also prepends "/" at
3051 * the beginning of the name. The sequence number check at the caller will
3052 * retry it again when a d_move() does happen. So any garbage in the buffer
3053 * due to mismatched pointer and length will be discarded.
6d13f694
AV
3054 *
3055 * Data dependency barrier is needed to make sure that we see that terminating
3056 * NUL. Alpha strikes again, film at 11...
232d2d60 3057 */
cdd16d02
MS
3058static int prepend_name(char **buffer, int *buflen, struct qstr *name)
3059{
232d2d60
WL
3060 const char *dname = ACCESS_ONCE(name->name);
3061 u32 dlen = ACCESS_ONCE(name->len);
3062 char *p;
3063
6d13f694
AV
3064 smp_read_barrier_depends();
3065
232d2d60 3066 *buflen -= dlen + 1;
e825196d
AV
3067 if (*buflen < 0)
3068 return -ENAMETOOLONG;
232d2d60
WL
3069 p = *buffer -= dlen + 1;
3070 *p++ = '/';
3071 while (dlen--) {
3072 char c = *dname++;
3073 if (!c)
3074 break;
3075 *p++ = c;
3076 }
3077 return 0;
cdd16d02
MS
3078}
3079
1da177e4 3080/**
208898c1 3081 * prepend_path - Prepend path string to a buffer
9d1bc601 3082 * @path: the dentry/vfsmount to report
02125a82 3083 * @root: root vfsmnt/dentry
f2eb6575
MS
3084 * @buffer: pointer to the end of the buffer
3085 * @buflen: pointer to buffer length
552ce544 3086 *
18129977
WL
3087 * The function will first try to write out the pathname without taking any
3088 * lock other than the RCU read lock to make sure that dentries won't go away.
3089 * It only checks the sequence number of the global rename_lock as any change
3090 * in the dentry's d_seq will be preceded by changes in the rename_lock
3091 * sequence number. If the sequence number had been changed, it will restart
3092 * the whole pathname back-tracing sequence again by taking the rename_lock.
3093 * In this case, there is no need to take the RCU read lock as the recursive
3094 * parent pointer references will keep the dentry chain alive as long as no
3095 * rename operation is performed.
1da177e4 3096 */
02125a82
AV
3097static int prepend_path(const struct path *path,
3098 const struct path *root,
f2eb6575 3099 char **buffer, int *buflen)
1da177e4 3100{
ede4cebc
AV
3101 struct dentry *dentry;
3102 struct vfsmount *vfsmnt;
3103 struct mount *mnt;
f2eb6575 3104 int error = 0;
48a066e7 3105 unsigned seq, m_seq = 0;
232d2d60
WL
3106 char *bptr;
3107 int blen;
6092d048 3108
48f5ec21 3109 rcu_read_lock();
48a066e7
AV
3110restart_mnt:
3111 read_seqbegin_or_lock(&mount_lock, &m_seq);
3112 seq = 0;
4ec6c2ae 3113 rcu_read_lock();
232d2d60
WL
3114restart:
3115 bptr = *buffer;
3116 blen = *buflen;
48a066e7 3117 error = 0;
ede4cebc
AV
3118 dentry = path->dentry;
3119 vfsmnt = path->mnt;
3120 mnt = real_mount(vfsmnt);
232d2d60 3121 read_seqbegin_or_lock(&rename_lock, &seq);
f2eb6575 3122 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
3123 struct dentry * parent;
3124
1da177e4 3125 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
48a066e7 3126 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
cde93be4
EB
3127 /* Escaped? */
3128 if (dentry != vfsmnt->mnt_root) {
3129 bptr = *buffer;
3130 blen = *buflen;
3131 error = 3;
3132 break;
3133 }
552ce544 3134 /* Global root? */
48a066e7
AV
3135 if (mnt != parent) {
3136 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
3137 mnt = parent;
232d2d60
WL
3138 vfsmnt = &mnt->mnt;
3139 continue;
3140 }
232d2d60
WL
3141 if (!error)
3142 error = is_mounted(vfsmnt) ? 1 : 2;
3143 break;
1da177e4
LT
3144 }
3145 parent = dentry->d_parent;
3146 prefetch(parent);
232d2d60 3147 error = prepend_name(&bptr, &blen, &dentry->d_name);
f2eb6575
MS
3148 if (error)
3149 break;
3150
1da177e4
LT
3151 dentry = parent;
3152 }
48f5ec21
AV
3153 if (!(seq & 1))
3154 rcu_read_unlock();
3155 if (need_seqretry(&rename_lock, seq)) {
3156 seq = 1;
232d2d60 3157 goto restart;
48f5ec21
AV
3158 }
3159 done_seqretry(&rename_lock, seq);
4ec6c2ae
LZ
3160
3161 if (!(m_seq & 1))
3162 rcu_read_unlock();
48a066e7
AV
3163 if (need_seqretry(&mount_lock, m_seq)) {
3164 m_seq = 1;
3165 goto restart_mnt;
3166 }
3167 done_seqretry(&mount_lock, m_seq);
1da177e4 3168
232d2d60
WL
3169 if (error >= 0 && bptr == *buffer) {
3170 if (--blen < 0)
3171 error = -ENAMETOOLONG;
3172 else
3173 *--bptr = '/';
3174 }
3175 *buffer = bptr;
3176 *buflen = blen;
7ea600b5 3177 return error;
f2eb6575 3178}
be285c71 3179
f2eb6575
MS
3180/**
3181 * __d_path - return the path of a dentry
3182 * @path: the dentry/vfsmount to report
02125a82 3183 * @root: root vfsmnt/dentry
cd956a1c 3184 * @buf: buffer to return value in
f2eb6575
MS
3185 * @buflen: buffer length
3186 *
ffd1f4ed 3187 * Convert a dentry into an ASCII path name.
f2eb6575
MS
3188 *
3189 * Returns a pointer into the buffer or an error code if the
3190 * path was too long.
3191 *
be148247 3192 * "buflen" should be positive.
f2eb6575 3193 *
02125a82 3194 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 3195 */
02125a82
AV
3196char *__d_path(const struct path *path,
3197 const struct path *root,
f2eb6575
MS
3198 char *buf, int buflen)
3199{
3200 char *res = buf + buflen;
3201 int error;
3202
3203 prepend(&res, &buflen, "\0", 1);
f2eb6575 3204 error = prepend_path(path, root, &res, &buflen);
be148247 3205
02125a82
AV
3206 if (error < 0)
3207 return ERR_PTR(error);
3208 if (error > 0)
3209 return NULL;
3210 return res;
3211}
3212
3213char *d_absolute_path(const struct path *path,
3214 char *buf, int buflen)
3215{
3216 struct path root = {};
3217 char *res = buf + buflen;
3218 int error;
3219
3220 prepend(&res, &buflen, "\0", 1);
02125a82 3221 error = prepend_path(path, &root, &res, &buflen);
02125a82
AV
3222
3223 if (error > 1)
3224 error = -EINVAL;
3225 if (error < 0)
f2eb6575 3226 return ERR_PTR(error);
f2eb6575 3227 return res;
1da177e4
LT
3228}
3229
ffd1f4ed
MS
3230/*
3231 * same as __d_path but appends "(deleted)" for unlinked files.
3232 */
02125a82
AV
3233static int path_with_deleted(const struct path *path,
3234 const struct path *root,
3235 char **buf, int *buflen)
ffd1f4ed
MS
3236{
3237 prepend(buf, buflen, "\0", 1);
3238 if (d_unlinked(path->dentry)) {
3239 int error = prepend(buf, buflen, " (deleted)", 10);
3240 if (error)
3241 return error;
3242 }
3243
3244 return prepend_path(path, root, buf, buflen);
3245}
3246
8df9d1a4
MS
3247static int prepend_unreachable(char **buffer, int *buflen)
3248{
3249 return prepend(buffer, buflen, "(unreachable)", 13);
3250}
3251
68f0d9d9
LT
3252static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3253{
3254 unsigned seq;
3255
3256 do {
3257 seq = read_seqcount_begin(&fs->seq);
3258 *root = fs->root;
3259 } while (read_seqcount_retry(&fs->seq, seq));
3260}
3261
a03a8a70
JB
3262/**
3263 * d_path - return the path of a dentry
cf28b486 3264 * @path: path to report
a03a8a70
JB
3265 * @buf: buffer to return value in
3266 * @buflen: buffer length
3267 *
3268 * Convert a dentry into an ASCII path name. If the entry has been deleted
3269 * the string " (deleted)" is appended. Note that this is ambiguous.
3270 *
52afeefb
AV
3271 * Returns a pointer into the buffer or an error code if the path was
3272 * too long. Note: Callers should use the returned pointer, not the passed
3273 * in buffer, to use the name! The implementation often starts at an offset
3274 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 3275 *
31f3e0b3 3276 * "buflen" should be positive.
a03a8a70 3277 */
20d4fdc1 3278char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 3279{
ffd1f4ed 3280 char *res = buf + buflen;
6ac08c39 3281 struct path root;
ffd1f4ed 3282 int error;
1da177e4 3283
c23fbb6b
ED
3284 /*
3285 * We have various synthetic filesystems that never get mounted. On
3286 * these filesystems dentries are never used for lookup purposes, and
3287 * thus don't need to be hashed. They also don't need a name until a
3288 * user wants to identify the object in /proc/pid/fd/. The little hack
3289 * below allows us to generate a name for these objects on demand:
f48cfddc
EB
3290 *
3291 * Some pseudo inodes are mountable. When they are mounted
3292 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3293 * and instead have d_path return the mounted path.
c23fbb6b 3294 */
f48cfddc
EB
3295 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3296 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
cf28b486 3297 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 3298
68f0d9d9
LT
3299 rcu_read_lock();
3300 get_fs_root_rcu(current->fs, &root);
02125a82 3301 error = path_with_deleted(path, &root, &res, &buflen);
68f0d9d9
LT
3302 rcu_read_unlock();
3303
02125a82 3304 if (error < 0)
ffd1f4ed 3305 res = ERR_PTR(error);
1da177e4
LT
3306 return res;
3307}
ec4f8605 3308EXPORT_SYMBOL(d_path);
1da177e4 3309
c23fbb6b
ED
3310/*
3311 * Helper function for dentry_operations.d_dname() members
3312 */
3313char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3314 const char *fmt, ...)
3315{
3316 va_list args;
3317 char temp[64];
3318 int sz;
3319
3320 va_start(args, fmt);
3321 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3322 va_end(args);
3323
3324 if (sz > sizeof(temp) || sz > buflen)
3325 return ERR_PTR(-ENAMETOOLONG);
3326
3327 buffer += buflen - sz;
3328 return memcpy(buffer, temp, sz);
3329}
3330
118b2302
AV
3331char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3332{
3333 char *end = buffer + buflen;
3334 /* these dentries are never renamed, so d_lock is not needed */
3335 if (prepend(&end, &buflen, " (deleted)", 11) ||
232d2d60 3336 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
118b2302
AV
3337 prepend(&end, &buflen, "/", 1))
3338 end = ERR_PTR(-ENAMETOOLONG);
232d2d60 3339 return end;
118b2302 3340}
31bbe16f 3341EXPORT_SYMBOL(simple_dname);
118b2302 3342
6092d048
RP
3343/*
3344 * Write full pathname from the root of the filesystem into the buffer.
3345 */
f6500801 3346static char *__dentry_path(struct dentry *d, char *buf, int buflen)
6092d048 3347{
f6500801 3348 struct dentry *dentry;
232d2d60
WL
3349 char *end, *retval;
3350 int len, seq = 0;
3351 int error = 0;
6092d048 3352
f6500801
AV
3353 if (buflen < 2)
3354 goto Elong;
3355
48f5ec21 3356 rcu_read_lock();
232d2d60 3357restart:
f6500801 3358 dentry = d;
232d2d60
WL
3359 end = buf + buflen;
3360 len = buflen;
3361 prepend(&end, &len, "\0", 1);
6092d048
RP
3362 /* Get '/' right */
3363 retval = end-1;
3364 *retval = '/';
232d2d60 3365 read_seqbegin_or_lock(&rename_lock, &seq);
cdd16d02
MS
3366 while (!IS_ROOT(dentry)) {
3367 struct dentry *parent = dentry->d_parent;
6092d048 3368
6092d048 3369 prefetch(parent);
232d2d60
WL
3370 error = prepend_name(&end, &len, &dentry->d_name);
3371 if (error)
3372 break;
6092d048
RP
3373
3374 retval = end;
3375 dentry = parent;
3376 }
48f5ec21
AV
3377 if (!(seq & 1))
3378 rcu_read_unlock();
3379 if (need_seqretry(&rename_lock, seq)) {
3380 seq = 1;
232d2d60 3381 goto restart;
48f5ec21
AV
3382 }
3383 done_seqretry(&rename_lock, seq);
232d2d60
WL
3384 if (error)
3385 goto Elong;
c103135c
AV
3386 return retval;
3387Elong:
3388 return ERR_PTR(-ENAMETOOLONG);
3389}
ec2447c2
NP
3390
3391char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3392{
232d2d60 3393 return __dentry_path(dentry, buf, buflen);
ec2447c2
NP
3394}
3395EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
3396
3397char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3398{
3399 char *p = NULL;
3400 char *retval;
3401
c103135c
AV
3402 if (d_unlinked(dentry)) {
3403 p = buf + buflen;
3404 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3405 goto Elong;
3406 buflen++;
3407 }
3408 retval = __dentry_path(dentry, buf, buflen);
c103135c
AV
3409 if (!IS_ERR(retval) && p)
3410 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
3411 return retval;
3412Elong:
6092d048
RP
3413 return ERR_PTR(-ENAMETOOLONG);
3414}
3415
8b19e341
LT
3416static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3417 struct path *pwd)
5762482f 3418{
8b19e341
LT
3419 unsigned seq;
3420
3421 do {
3422 seq = read_seqcount_begin(&fs->seq);
3423 *root = fs->root;
3424 *pwd = fs->pwd;
3425 } while (read_seqcount_retry(&fs->seq, seq));
5762482f
LT
3426}
3427
1da177e4
LT
3428/*
3429 * NOTE! The user-level library version returns a
3430 * character pointer. The kernel system call just
3431 * returns the length of the buffer filled (which
3432 * includes the ending '\0' character), or a negative
3433 * error value. So libc would do something like
3434 *
3435 * char *getcwd(char * buf, size_t size)
3436 * {
3437 * int retval;
3438 *
3439 * retval = sys_getcwd(buf, size);
3440 * if (retval >= 0)
3441 * return buf;
3442 * errno = -retval;
3443 * return NULL;
3444 * }
3445 */
3cdad428 3446SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 3447{
552ce544 3448 int error;
6ac08c39 3449 struct path pwd, root;
3272c544 3450 char *page = __getname();
1da177e4
LT
3451
3452 if (!page)
3453 return -ENOMEM;
3454
8b19e341
LT
3455 rcu_read_lock();
3456 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
1da177e4 3457
552ce544 3458 error = -ENOENT;
f3da392e 3459 if (!d_unlinked(pwd.dentry)) {
552ce544 3460 unsigned long len;
3272c544
LT
3461 char *cwd = page + PATH_MAX;
3462 int buflen = PATH_MAX;
1da177e4 3463
8df9d1a4 3464 prepend(&cwd, &buflen, "\0", 1);
02125a82 3465 error = prepend_path(&pwd, &root, &cwd, &buflen);
ff812d72 3466 rcu_read_unlock();
552ce544 3467
02125a82 3468 if (error < 0)
552ce544
LT
3469 goto out;
3470
8df9d1a4 3471 /* Unreachable from current root */
02125a82 3472 if (error > 0) {
8df9d1a4
MS
3473 error = prepend_unreachable(&cwd, &buflen);
3474 if (error)
3475 goto out;
3476 }
3477
552ce544 3478 error = -ERANGE;
3272c544 3479 len = PATH_MAX + page - cwd;
552ce544
LT
3480 if (len <= size) {
3481 error = len;
3482 if (copy_to_user(buf, cwd, len))
3483 error = -EFAULT;
3484 }
949854d0 3485 } else {
ff812d72 3486 rcu_read_unlock();
949854d0 3487 }
1da177e4
LT
3488
3489out:
3272c544 3490 __putname(page);
1da177e4
LT
3491 return error;
3492}
3493
3494/*
3495 * Test whether new_dentry is a subdirectory of old_dentry.
3496 *
3497 * Trivially implemented using the dcache structure
3498 */
3499
3500/**
3501 * is_subdir - is new dentry a subdirectory of old_dentry
3502 * @new_dentry: new dentry
3503 * @old_dentry: old dentry
3504 *
a6e5787f
YB
3505 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3506 * Returns false otherwise.
1da177e4
LT
3507 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3508 */
3509
a6e5787f 3510bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4 3511{
a6e5787f 3512 bool result;
949854d0 3513 unsigned seq;
1da177e4 3514
e2761a11 3515 if (new_dentry == old_dentry)
a6e5787f 3516 return true;
e2761a11 3517
e2761a11 3518 do {
1da177e4 3519 /* for restarting inner loop in case of seq retry */
1da177e4 3520 seq = read_seqbegin(&rename_lock);
949854d0
NP
3521 /*
3522 * Need rcu_readlock to protect against the d_parent trashing
3523 * due to d_move
3524 */
3525 rcu_read_lock();
e2761a11 3526 if (d_ancestor(old_dentry, new_dentry))
a6e5787f 3527 result = true;
e2761a11 3528 else
a6e5787f 3529 result = false;
949854d0 3530 rcu_read_unlock();
1da177e4 3531 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3532
3533 return result;
3534}
3535
db14fc3a 3536static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3537{
db14fc3a
MS
3538 struct dentry *root = data;
3539 if (dentry != root) {
3540 if (d_unhashed(dentry) || !dentry->d_inode)
3541 return D_WALK_SKIP;
1da177e4 3542
01ddc4ed
MS
3543 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3544 dentry->d_flags |= DCACHE_GENOCIDE;
3545 dentry->d_lockref.count--;
3546 }
1da177e4 3547 }
db14fc3a
MS
3548 return D_WALK_CONTINUE;
3549}
58db63d0 3550
db14fc3a
MS
3551void d_genocide(struct dentry *parent)
3552{
3553 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3554}
3555
60545d0d 3556void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3557{
60545d0d
AV
3558 inode_dec_link_count(inode);
3559 BUG_ON(dentry->d_name.name != dentry->d_iname ||
946e51f2 3560 !hlist_unhashed(&dentry->d_u.d_alias) ||
60545d0d
AV
3561 !d_unlinked(dentry));
3562 spin_lock(&dentry->d_parent->d_lock);
3563 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3564 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3565 (unsigned long long)inode->i_ino);
3566 spin_unlock(&dentry->d_lock);
3567 spin_unlock(&dentry->d_parent->d_lock);
3568 d_instantiate(dentry, inode);
1da177e4 3569}
60545d0d 3570EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3571
3572static __initdata unsigned long dhash_entries;
3573static int __init set_dhash_entries(char *str)
3574{
3575 if (!str)
3576 return 0;
3577 dhash_entries = simple_strtoul(str, &str, 0);
3578 return 1;
3579}
3580__setup("dhash_entries=", set_dhash_entries);
3581
3582static void __init dcache_init_early(void)
3583{
074b8517 3584 unsigned int loop;
1da177e4
LT
3585
3586 /* If hashes are distributed across NUMA nodes, defer
3587 * hash allocation until vmalloc space is available.
3588 */
3589 if (hashdist)
3590 return;
3591
3592 dentry_hashtable =
3593 alloc_large_system_hash("Dentry cache",
b07ad996 3594 sizeof(struct hlist_bl_head),
1da177e4
LT
3595 dhash_entries,
3596 13,
3597 HASH_EARLY,
3598 &d_hash_shift,
3599 &d_hash_mask,
31fe62b9 3600 0,
1da177e4
LT
3601 0);
3602
074b8517 3603 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3604 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3605}
3606
74bf17cf 3607static void __init dcache_init(void)
1da177e4 3608{
074b8517 3609 unsigned int loop;
1da177e4
LT
3610
3611 /*
3612 * A constructor could be added for stable state like the lists,
3613 * but it is probably not worth it because of the cache nature
3614 * of the dcache.
3615 */
0a31bd5f 3616 dentry_cache = KMEM_CACHE(dentry,
5d097056 3617 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
1da177e4
LT
3618
3619 /* Hash may have been set up in dcache_init_early */
3620 if (!hashdist)
3621 return;
3622
3623 dentry_hashtable =
3624 alloc_large_system_hash("Dentry cache",
b07ad996 3625 sizeof(struct hlist_bl_head),
1da177e4
LT
3626 dhash_entries,
3627 13,
3628 0,
3629 &d_hash_shift,
3630 &d_hash_mask,
31fe62b9 3631 0,
1da177e4
LT
3632 0);
3633
074b8517 3634 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3635 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3636}
3637
3638/* SLAB cache for __getname() consumers */
e18b890b 3639struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3640EXPORT_SYMBOL(names_cachep);
1da177e4 3641
1da177e4
LT
3642EXPORT_SYMBOL(d_genocide);
3643
1da177e4
LT
3644void __init vfs_caches_init_early(void)
3645{
3646 dcache_init_early();
3647 inode_init_early();
3648}
3649
4248b0da 3650void __init vfs_caches_init(void)
1da177e4 3651{
1da177e4 3652 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3653 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3654
74bf17cf
DC
3655 dcache_init();
3656 inode_init();
4248b0da
MG
3657 files_init();
3658 files_maxfiles_init();
74bf17cf 3659 mnt_init();
1da177e4
LT
3660 bdev_cache_init();
3661 chrdev_init();
3662}
This page took 1.156851 seconds and 5 git commands to generate.