Merge tag 'hwmon-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck...
[deliverable/linux.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
f6041567 40#include <linux/list_lru.h>
07f3f05c 41#include "internal.h"
b2dba1af 42#include "mount.h"
1da177e4 43
789680d1
NP
44/*
45 * Usage:
873feea0
NP
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
19156840 52 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
53 * - the dcache lru lists and counters
54 * d_lock protects:
55 * - d_flags
56 * - d_name
57 * - d_lru
b7ab39f6 58 * - d_count
da502956 59 * - d_unhashed()
2fd6b7f5
NP
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
b23fb0a6 62 * - d_alias, d_inode
789680d1
NP
63 *
64 * Ordering:
873feea0 65 * dentry->d_inode->i_lock
b5c84bf6 66 * dentry->d_lock
19156840 67 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2
NP
68 * dcache_hash_bucket lock
69 * s_anon lock
789680d1 70 *
da502956
NP
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
73 * ...
74 * dentry->d_parent->d_lock
75 * dentry->d_lock
76 *
77 * If no ancestor relationship:
789680d1
NP
78 * if (dentry1 < dentry2)
79 * dentry1->d_lock
80 * dentry2->d_lock
81 */
fa3536cc 82int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
83EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84
74c3cbe3 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 86
949854d0 87EXPORT_SYMBOL(rename_lock);
1da177e4 88
e18b890b 89static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 90
232d2d60
WL
91/**
92 * read_seqbegin_or_lock - begin a sequence number check or locking block
18129977
WL
93 * @lock: sequence lock
94 * @seq : sequence number to be checked
232d2d60
WL
95 *
96 * First try it once optimistically without taking the lock. If that fails,
97 * take the lock. The sequence number is also used as a marker for deciding
98 * whether to be a reader (even) or writer (odd).
99 * N.B. seq must be initialized to an even number to begin with.
100 */
101static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq)
102{
48f5ec21 103 if (!(*seq & 1)) /* Even */
232d2d60 104 *seq = read_seqbegin(lock);
48f5ec21 105 else /* Odd */
18129977 106 read_seqlock_excl(lock);
232d2d60
WL
107}
108
48f5ec21 109static inline int need_seqretry(seqlock_t *lock, int seq)
232d2d60 110{
48f5ec21
AV
111 return !(seq & 1) && read_seqretry(lock, seq);
112}
113
114static inline void done_seqretry(seqlock_t *lock, int seq)
115{
116 if (seq & 1)
18129977 117 read_sequnlock_excl(lock);
232d2d60
WL
118}
119
1da177e4
LT
120/*
121 * This is the single most critical data structure when it comes
122 * to the dcache: the hashtable for lookups. Somebody should try
123 * to make this good - I've just made it work.
124 *
125 * This hash-function tries to avoid losing too many bits of hash
126 * information, yet avoid using a prime hash-size or similar.
127 */
128#define D_HASHBITS d_hash_shift
129#define D_HASHMASK d_hash_mask
130
fa3536cc
ED
131static unsigned int d_hash_mask __read_mostly;
132static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 133
b07ad996 134static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 135
8966be90 136static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
6d7d1a0d 137 unsigned int hash)
ceb5bdc2 138{
6d7d1a0d
LT
139 hash += (unsigned long) parent / L1_CACHE_BYTES;
140 hash = hash + (hash >> D_HASHBITS);
ceb5bdc2
NP
141 return dentry_hashtable + (hash & D_HASHMASK);
142}
143
1da177e4
LT
144/* Statistics gathering. */
145struct dentry_stat_t dentry_stat = {
146 .age_limit = 45,
147};
148
3942c07c 149static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 150static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
151
152#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
153
154/*
155 * Here we resort to our own counters instead of using generic per-cpu counters
156 * for consistency with what the vfs inode code does. We are expected to harvest
157 * better code and performance by having our own specialized counters.
158 *
159 * Please note that the loop is done over all possible CPUs, not over all online
160 * CPUs. The reason for this is that we don't want to play games with CPUs going
161 * on and off. If one of them goes off, we will just keep their counters.
162 *
163 * glommer: See cffbc8a for details, and if you ever intend to change this,
164 * please update all vfs counters to match.
165 */
3942c07c 166static long get_nr_dentry(void)
3e880fb5
NP
167{
168 int i;
3942c07c 169 long sum = 0;
3e880fb5
NP
170 for_each_possible_cpu(i)
171 sum += per_cpu(nr_dentry, i);
172 return sum < 0 ? 0 : sum;
173}
174
62d36c77
DC
175static long get_nr_dentry_unused(void)
176{
177 int i;
178 long sum = 0;
179 for_each_possible_cpu(i)
180 sum += per_cpu(nr_dentry_unused, i);
181 return sum < 0 ? 0 : sum;
182}
183
312d3ca8
CH
184int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
185 size_t *lenp, loff_t *ppos)
186{
3e880fb5 187 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 188 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 189 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
190}
191#endif
192
5483f18e
LT
193/*
194 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
195 * The strings are both count bytes long, and count is non-zero.
196 */
e419b4cc
LT
197#ifdef CONFIG_DCACHE_WORD_ACCESS
198
199#include <asm/word-at-a-time.h>
200/*
201 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
202 * aligned allocation for this particular component. We don't
203 * strictly need the load_unaligned_zeropad() safety, but it
204 * doesn't hurt either.
205 *
206 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
207 * need the careful unaligned handling.
208 */
94753db5 209static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 210{
bfcfaa77 211 unsigned long a,b,mask;
bfcfaa77
LT
212
213 for (;;) {
12f8ad4b 214 a = *(unsigned long *)cs;
e419b4cc 215 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
216 if (tcount < sizeof(unsigned long))
217 break;
218 if (unlikely(a != b))
219 return 1;
220 cs += sizeof(unsigned long);
221 ct += sizeof(unsigned long);
222 tcount -= sizeof(unsigned long);
223 if (!tcount)
224 return 0;
225 }
226 mask = ~(~0ul << tcount*8);
227 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
228}
229
bfcfaa77 230#else
e419b4cc 231
94753db5 232static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 233{
5483f18e
LT
234 do {
235 if (*cs != *ct)
236 return 1;
237 cs++;
238 ct++;
239 tcount--;
240 } while (tcount);
241 return 0;
242}
243
e419b4cc
LT
244#endif
245
94753db5
LT
246static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
247{
6326c71f 248 const unsigned char *cs;
94753db5
LT
249 /*
250 * Be careful about RCU walk racing with rename:
251 * use ACCESS_ONCE to fetch the name pointer.
252 *
253 * NOTE! Even if a rename will mean that the length
254 * was not loaded atomically, we don't care. The
255 * RCU walk will check the sequence count eventually,
256 * and catch it. And we won't overrun the buffer,
257 * because we're reading the name pointer atomically,
258 * and a dentry name is guaranteed to be properly
259 * terminated with a NUL byte.
260 *
261 * End result: even if 'len' is wrong, we'll exit
262 * early because the data cannot match (there can
263 * be no NUL in the ct/tcount data)
264 */
6326c71f
LT
265 cs = ACCESS_ONCE(dentry->d_name.name);
266 smp_read_barrier_depends();
267 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
268}
269
9c82ab9c 270static void __d_free(struct rcu_head *head)
1da177e4 271{
9c82ab9c
CH
272 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
273
b3d9b7a3 274 WARN_ON(!hlist_unhashed(&dentry->d_alias));
1da177e4
LT
275 if (dname_external(dentry))
276 kfree(dentry->d_name.name);
277 kmem_cache_free(dentry_cache, dentry);
278}
279
280/*
b5c84bf6 281 * no locks, please.
1da177e4
LT
282 */
283static void d_free(struct dentry *dentry)
284{
0d98439e 285 BUG_ON((int)dentry->d_lockref.count > 0);
3e880fb5 286 this_cpu_dec(nr_dentry);
1da177e4
LT
287 if (dentry->d_op && dentry->d_op->d_release)
288 dentry->d_op->d_release(dentry);
312d3ca8 289
dea3667b
LT
290 /* if dentry was never visible to RCU, immediate free is OK */
291 if (!(dentry->d_flags & DCACHE_RCUACCESS))
9c82ab9c 292 __d_free(&dentry->d_u.d_rcu);
b3423415 293 else
9c82ab9c 294 call_rcu(&dentry->d_u.d_rcu, __d_free);
1da177e4
LT
295}
296
31e6b01f
NP
297/**
298 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 299 * @dentry: the target dentry
31e6b01f
NP
300 * After this call, in-progress rcu-walk path lookup will fail. This
301 * should be called after unhashing, and after changing d_inode (if
302 * the dentry has not already been unhashed).
303 */
304static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
305{
306 assert_spin_locked(&dentry->d_lock);
307 /* Go through a barrier */
308 write_seqcount_barrier(&dentry->d_seq);
309}
310
1da177e4
LT
311/*
312 * Release the dentry's inode, using the filesystem
31e6b01f
NP
313 * d_iput() operation if defined. Dentry has no refcount
314 * and is unhashed.
1da177e4 315 */
858119e1 316static void dentry_iput(struct dentry * dentry)
31f3e0b3 317 __releases(dentry->d_lock)
873feea0 318 __releases(dentry->d_inode->i_lock)
1da177e4
LT
319{
320 struct inode *inode = dentry->d_inode;
321 if (inode) {
322 dentry->d_inode = NULL;
b3d9b7a3 323 hlist_del_init(&dentry->d_alias);
1da177e4 324 spin_unlock(&dentry->d_lock);
873feea0 325 spin_unlock(&inode->i_lock);
f805fbda
LT
326 if (!inode->i_nlink)
327 fsnotify_inoderemove(inode);
1da177e4
LT
328 if (dentry->d_op && dentry->d_op->d_iput)
329 dentry->d_op->d_iput(dentry, inode);
330 else
331 iput(inode);
332 } else {
333 spin_unlock(&dentry->d_lock);
1da177e4
LT
334 }
335}
336
31e6b01f
NP
337/*
338 * Release the dentry's inode, using the filesystem
339 * d_iput() operation if defined. dentry remains in-use.
340 */
341static void dentry_unlink_inode(struct dentry * dentry)
342 __releases(dentry->d_lock)
873feea0 343 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
344{
345 struct inode *inode = dentry->d_inode;
346 dentry->d_inode = NULL;
b3d9b7a3 347 hlist_del_init(&dentry->d_alias);
31e6b01f
NP
348 dentry_rcuwalk_barrier(dentry);
349 spin_unlock(&dentry->d_lock);
873feea0 350 spin_unlock(&inode->i_lock);
31e6b01f
NP
351 if (!inode->i_nlink)
352 fsnotify_inoderemove(inode);
353 if (dentry->d_op && dentry->d_op->d_iput)
354 dentry->d_op->d_iput(dentry, inode);
355 else
356 iput(inode);
357}
358
da3bbdd4 359/*
f6041567 360 * dentry_lru_(add|del)_list) must be called with d_lock held.
da3bbdd4
KM
361 */
362static void dentry_lru_add(struct dentry *dentry)
363{
8aab6a27 364 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) {
f6041567
DC
365 if (list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru))
366 this_cpu_inc(nr_dentry_unused);
8aab6a27 367 dentry->d_flags |= DCACHE_LRU_LIST;
a4633357 368 }
da3bbdd4
KM
369}
370
f0023bc6
SW
371/*
372 * Remove a dentry with references from the LRU.
dd1f6b2e
DC
373 *
374 * If we are on the shrink list, then we can get to try_prune_one_dentry() and
375 * lose our last reference through the parent walk. In this case, we need to
376 * remove ourselves from the shrink list, not the LRU.
f0023bc6 377 */
da3bbdd4
KM
378static void dentry_lru_del(struct dentry *dentry)
379{
dd1f6b2e
DC
380 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
381 list_del_init(&dentry->d_lru);
382 dentry->d_flags &= ~DCACHE_SHRINK_LIST;
383 return;
da3bbdd4 384 }
da3bbdd4 385
f6041567 386 if (list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru))
dd1f6b2e 387 this_cpu_dec(nr_dentry_unused);
f6041567 388 dentry->d_flags &= ~DCACHE_LRU_LIST;
da3bbdd4
KM
389}
390
d52b9086
MS
391/**
392 * d_kill - kill dentry and return parent
393 * @dentry: dentry to kill
ff5fdb61 394 * @parent: parent dentry
d52b9086 395 *
31f3e0b3 396 * The dentry must already be unhashed and removed from the LRU.
d52b9086
MS
397 *
398 * If this is the root of the dentry tree, return NULL.
23044507 399 *
b5c84bf6
NP
400 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
401 * d_kill.
d52b9086 402 */
2fd6b7f5 403static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
31f3e0b3 404 __releases(dentry->d_lock)
2fd6b7f5 405 __releases(parent->d_lock)
873feea0 406 __releases(dentry->d_inode->i_lock)
d52b9086 407{
d52b9086 408 list_del(&dentry->d_u.d_child);
c83ce989
TM
409 /*
410 * Inform try_to_ascend() that we are no longer attached to the
411 * dentry tree
412 */
b161dfa6 413 dentry->d_flags |= DCACHE_DENTRY_KILLED;
2fd6b7f5
NP
414 if (parent)
415 spin_unlock(&parent->d_lock);
d52b9086 416 dentry_iput(dentry);
b7ab39f6
NP
417 /*
418 * dentry_iput drops the locks, at which point nobody (except
419 * transient RCU lookups) can reach this dentry.
420 */
d52b9086 421 d_free(dentry);
871c0067 422 return parent;
d52b9086
MS
423}
424
c6627c60
DH
425/*
426 * Unhash a dentry without inserting an RCU walk barrier or checking that
427 * dentry->d_lock is locked. The caller must take care of that, if
428 * appropriate.
429 */
430static void __d_shrink(struct dentry *dentry)
431{
432 if (!d_unhashed(dentry)) {
433 struct hlist_bl_head *b;
434 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
435 b = &dentry->d_sb->s_anon;
436 else
437 b = d_hash(dentry->d_parent, dentry->d_name.hash);
438
439 hlist_bl_lock(b);
440 __hlist_bl_del(&dentry->d_hash);
441 dentry->d_hash.pprev = NULL;
442 hlist_bl_unlock(b);
443 }
444}
445
789680d1
NP
446/**
447 * d_drop - drop a dentry
448 * @dentry: dentry to drop
449 *
450 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
451 * be found through a VFS lookup any more. Note that this is different from
452 * deleting the dentry - d_delete will try to mark the dentry negative if
453 * possible, giving a successful _negative_ lookup, while d_drop will
454 * just make the cache lookup fail.
455 *
456 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
457 * reason (NFS timeouts or autofs deletes).
458 *
459 * __d_drop requires dentry->d_lock.
460 */
461void __d_drop(struct dentry *dentry)
462{
dea3667b 463 if (!d_unhashed(dentry)) {
c6627c60 464 __d_shrink(dentry);
dea3667b 465 dentry_rcuwalk_barrier(dentry);
789680d1
NP
466 }
467}
468EXPORT_SYMBOL(__d_drop);
469
470void d_drop(struct dentry *dentry)
471{
789680d1
NP
472 spin_lock(&dentry->d_lock);
473 __d_drop(dentry);
474 spin_unlock(&dentry->d_lock);
789680d1
NP
475}
476EXPORT_SYMBOL(d_drop);
477
77812a1e
NP
478/*
479 * Finish off a dentry we've decided to kill.
480 * dentry->d_lock must be held, returns with it unlocked.
481 * If ref is non-zero, then decrement the refcount too.
482 * Returns dentry requiring refcount drop, or NULL if we're done.
483 */
dd1f6b2e
DC
484static inline struct dentry *
485dentry_kill(struct dentry *dentry, int unlock_on_failure)
77812a1e
NP
486 __releases(dentry->d_lock)
487{
873feea0 488 struct inode *inode;
77812a1e
NP
489 struct dentry *parent;
490
873feea0
NP
491 inode = dentry->d_inode;
492 if (inode && !spin_trylock(&inode->i_lock)) {
77812a1e 493relock:
dd1f6b2e
DC
494 if (unlock_on_failure) {
495 spin_unlock(&dentry->d_lock);
496 cpu_relax();
497 }
77812a1e
NP
498 return dentry; /* try again with same dentry */
499 }
500 if (IS_ROOT(dentry))
501 parent = NULL;
502 else
503 parent = dentry->d_parent;
504 if (parent && !spin_trylock(&parent->d_lock)) {
873feea0
NP
505 if (inode)
506 spin_unlock(&inode->i_lock);
77812a1e
NP
507 goto relock;
508 }
31e6b01f 509
0d98439e
LT
510 /*
511 * The dentry is now unrecoverably dead to the world.
512 */
513 lockref_mark_dead(&dentry->d_lockref);
514
f0023bc6 515 /*
f0023bc6
SW
516 * inform the fs via d_prune that this dentry is about to be
517 * unhashed and destroyed.
518 */
590fb51f 519 if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
61572bb1
YZ
520 dentry->d_op->d_prune(dentry);
521
522 dentry_lru_del(dentry);
77812a1e
NP
523 /* if it was on the hash then remove it */
524 __d_drop(dentry);
525 return d_kill(dentry, parent);
526}
527
1da177e4
LT
528/*
529 * This is dput
530 *
531 * This is complicated by the fact that we do not want to put
532 * dentries that are no longer on any hash chain on the unused
533 * list: we'd much rather just get rid of them immediately.
534 *
535 * However, that implies that we have to traverse the dentry
536 * tree upwards to the parents which might _also_ now be
537 * scheduled for deletion (it may have been only waiting for
538 * its last child to go away).
539 *
540 * This tail recursion is done by hand as we don't want to depend
541 * on the compiler to always get this right (gcc generally doesn't).
542 * Real recursion would eat up our stack space.
543 */
544
545/*
546 * dput - release a dentry
547 * @dentry: dentry to release
548 *
549 * Release a dentry. This will drop the usage count and if appropriate
550 * call the dentry unlink method as well as removing it from the queues and
551 * releasing its resources. If the parent dentries were scheduled for release
552 * they too may now get deleted.
1da177e4 553 */
1da177e4
LT
554void dput(struct dentry *dentry)
555{
8aab6a27 556 if (unlikely(!dentry))
1da177e4
LT
557 return;
558
559repeat:
98474236 560 if (lockref_put_or_lock(&dentry->d_lockref))
1da177e4 561 return;
1da177e4 562
8aab6a27
LT
563 /* Unreachable? Get rid of it */
564 if (unlikely(d_unhashed(dentry)))
565 goto kill_it;
566
567 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
1da177e4 568 if (dentry->d_op->d_delete(dentry))
61f3dee4 569 goto kill_it;
1da177e4 570 }
265ac902 571
39e3c955 572 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 573 dentry_lru_add(dentry);
265ac902 574
98474236 575 dentry->d_lockref.count--;
61f3dee4 576 spin_unlock(&dentry->d_lock);
1da177e4
LT
577 return;
578
d52b9086 579kill_it:
dd1f6b2e 580 dentry = dentry_kill(dentry, 1);
d52b9086
MS
581 if (dentry)
582 goto repeat;
1da177e4 583}
ec4f8605 584EXPORT_SYMBOL(dput);
1da177e4
LT
585
586/**
587 * d_invalidate - invalidate a dentry
588 * @dentry: dentry to invalidate
589 *
590 * Try to invalidate the dentry if it turns out to be
591 * possible. If there are other dentries that can be
592 * reached through this one we can't delete it and we
593 * return -EBUSY. On success we return 0.
594 *
595 * no dcache lock.
596 */
597
598int d_invalidate(struct dentry * dentry)
599{
600 /*
601 * If it's already been dropped, return OK.
602 */
da502956 603 spin_lock(&dentry->d_lock);
1da177e4 604 if (d_unhashed(dentry)) {
da502956 605 spin_unlock(&dentry->d_lock);
1da177e4
LT
606 return 0;
607 }
608 /*
609 * Check whether to do a partial shrink_dcache
610 * to get rid of unused child entries.
611 */
612 if (!list_empty(&dentry->d_subdirs)) {
da502956 613 spin_unlock(&dentry->d_lock);
1da177e4 614 shrink_dcache_parent(dentry);
da502956 615 spin_lock(&dentry->d_lock);
1da177e4
LT
616 }
617
618 /*
619 * Somebody else still using it?
620 *
621 * If it's a directory, we can't drop it
622 * for fear of somebody re-populating it
623 * with children (even though dropping it
624 * would make it unreachable from the root,
625 * we might still populate it if it was a
626 * working directory or similar).
50e69630
AV
627 * We also need to leave mountpoints alone,
628 * directory or not.
1da177e4 629 */
98474236 630 if (dentry->d_lockref.count > 1 && dentry->d_inode) {
50e69630 631 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
1da177e4 632 spin_unlock(&dentry->d_lock);
1da177e4
LT
633 return -EBUSY;
634 }
635 }
636
637 __d_drop(dentry);
638 spin_unlock(&dentry->d_lock);
1da177e4
LT
639 return 0;
640}
ec4f8605 641EXPORT_SYMBOL(d_invalidate);
1da177e4 642
b5c84bf6 643/* This must be called with d_lock held */
dc0474be 644static inline void __dget_dlock(struct dentry *dentry)
23044507 645{
98474236 646 dentry->d_lockref.count++;
23044507
NP
647}
648
dc0474be 649static inline void __dget(struct dentry *dentry)
1da177e4 650{
98474236 651 lockref_get(&dentry->d_lockref);
1da177e4
LT
652}
653
b7ab39f6
NP
654struct dentry *dget_parent(struct dentry *dentry)
655{
df3d0bbc 656 int gotref;
b7ab39f6
NP
657 struct dentry *ret;
658
df3d0bbc
WL
659 /*
660 * Do optimistic parent lookup without any
661 * locking.
662 */
663 rcu_read_lock();
664 ret = ACCESS_ONCE(dentry->d_parent);
665 gotref = lockref_get_not_zero(&ret->d_lockref);
666 rcu_read_unlock();
667 if (likely(gotref)) {
668 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
669 return ret;
670 dput(ret);
671 }
672
b7ab39f6 673repeat:
a734eb45
NP
674 /*
675 * Don't need rcu_dereference because we re-check it was correct under
676 * the lock.
677 */
678 rcu_read_lock();
b7ab39f6 679 ret = dentry->d_parent;
a734eb45
NP
680 spin_lock(&ret->d_lock);
681 if (unlikely(ret != dentry->d_parent)) {
682 spin_unlock(&ret->d_lock);
683 rcu_read_unlock();
b7ab39f6
NP
684 goto repeat;
685 }
a734eb45 686 rcu_read_unlock();
98474236
WL
687 BUG_ON(!ret->d_lockref.count);
688 ret->d_lockref.count++;
b7ab39f6 689 spin_unlock(&ret->d_lock);
b7ab39f6
NP
690 return ret;
691}
692EXPORT_SYMBOL(dget_parent);
693
1da177e4
LT
694/**
695 * d_find_alias - grab a hashed alias of inode
696 * @inode: inode in question
32ba9c3f
LT
697 * @want_discon: flag, used by d_splice_alias, to request
698 * that only a DISCONNECTED alias be returned.
1da177e4
LT
699 *
700 * If inode has a hashed alias, or is a directory and has any alias,
701 * acquire the reference to alias and return it. Otherwise return NULL.
702 * Notice that if inode is a directory there can be only one alias and
703 * it can be unhashed only if it has no children, or if it is the root
704 * of a filesystem.
705 *
21c0d8fd 706 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
32ba9c3f
LT
707 * any other hashed alias over that one unless @want_discon is set,
708 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 709 */
32ba9c3f 710static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 711{
da502956 712 struct dentry *alias, *discon_alias;
1da177e4 713
da502956
NP
714again:
715 discon_alias = NULL;
b67bfe0d 716 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
da502956 717 spin_lock(&alias->d_lock);
1da177e4 718 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 719 if (IS_ROOT(alias) &&
da502956 720 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 721 discon_alias = alias;
32ba9c3f 722 } else if (!want_discon) {
dc0474be 723 __dget_dlock(alias);
da502956
NP
724 spin_unlock(&alias->d_lock);
725 return alias;
726 }
727 }
728 spin_unlock(&alias->d_lock);
729 }
730 if (discon_alias) {
731 alias = discon_alias;
732 spin_lock(&alias->d_lock);
733 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
734 if (IS_ROOT(alias) &&
735 (alias->d_flags & DCACHE_DISCONNECTED)) {
dc0474be 736 __dget_dlock(alias);
da502956 737 spin_unlock(&alias->d_lock);
1da177e4
LT
738 return alias;
739 }
740 }
da502956
NP
741 spin_unlock(&alias->d_lock);
742 goto again;
1da177e4 743 }
da502956 744 return NULL;
1da177e4
LT
745}
746
da502956 747struct dentry *d_find_alias(struct inode *inode)
1da177e4 748{
214fda1f
DH
749 struct dentry *de = NULL;
750
b3d9b7a3 751 if (!hlist_empty(&inode->i_dentry)) {
873feea0 752 spin_lock(&inode->i_lock);
32ba9c3f 753 de = __d_find_alias(inode, 0);
873feea0 754 spin_unlock(&inode->i_lock);
214fda1f 755 }
1da177e4
LT
756 return de;
757}
ec4f8605 758EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
759
760/*
761 * Try to kill dentries associated with this inode.
762 * WARNING: you must own a reference to inode.
763 */
764void d_prune_aliases(struct inode *inode)
765{
0cdca3f9 766 struct dentry *dentry;
1da177e4 767restart:
873feea0 768 spin_lock(&inode->i_lock);
b67bfe0d 769 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 770 spin_lock(&dentry->d_lock);
98474236 771 if (!dentry->d_lockref.count) {
590fb51f
YZ
772 /*
773 * inform the fs via d_prune that this dentry
774 * is about to be unhashed and destroyed.
775 */
776 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
777 !d_unhashed(dentry))
778 dentry->d_op->d_prune(dentry);
779
dc0474be 780 __dget_dlock(dentry);
1da177e4
LT
781 __d_drop(dentry);
782 spin_unlock(&dentry->d_lock);
873feea0 783 spin_unlock(&inode->i_lock);
1da177e4
LT
784 dput(dentry);
785 goto restart;
786 }
787 spin_unlock(&dentry->d_lock);
788 }
873feea0 789 spin_unlock(&inode->i_lock);
1da177e4 790}
ec4f8605 791EXPORT_SYMBOL(d_prune_aliases);
1da177e4
LT
792
793/*
77812a1e
NP
794 * Try to throw away a dentry - free the inode, dput the parent.
795 * Requires dentry->d_lock is held, and dentry->d_count == 0.
796 * Releases dentry->d_lock.
d702ccb3 797 *
77812a1e 798 * This may fail if locks cannot be acquired no problem, just try again.
1da177e4 799 */
dd1f6b2e 800static struct dentry * try_prune_one_dentry(struct dentry *dentry)
31f3e0b3 801 __releases(dentry->d_lock)
1da177e4 802{
77812a1e 803 struct dentry *parent;
d52b9086 804
dd1f6b2e 805 parent = dentry_kill(dentry, 0);
d52b9086 806 /*
77812a1e
NP
807 * If dentry_kill returns NULL, we have nothing more to do.
808 * if it returns the same dentry, trylocks failed. In either
809 * case, just loop again.
810 *
811 * Otherwise, we need to prune ancestors too. This is necessary
812 * to prevent quadratic behavior of shrink_dcache_parent(), but
813 * is also expected to be beneficial in reducing dentry cache
814 * fragmentation.
d52b9086 815 */
77812a1e 816 if (!parent)
dd1f6b2e 817 return NULL;
77812a1e 818 if (parent == dentry)
dd1f6b2e 819 return dentry;
77812a1e
NP
820
821 /* Prune ancestors. */
822 dentry = parent;
d52b9086 823 while (dentry) {
98474236 824 if (lockref_put_or_lock(&dentry->d_lockref))
dd1f6b2e
DC
825 return NULL;
826 dentry = dentry_kill(dentry, 1);
d52b9086 827 }
dd1f6b2e 828 return NULL;
1da177e4
LT
829}
830
3049cfe2 831static void shrink_dentry_list(struct list_head *list)
1da177e4 832{
da3bbdd4 833 struct dentry *dentry;
da3bbdd4 834
ec33679d
NP
835 rcu_read_lock();
836 for (;;) {
ec33679d
NP
837 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
838 if (&dentry->d_lru == list)
839 break; /* empty */
840 spin_lock(&dentry->d_lock);
841 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
842 spin_unlock(&dentry->d_lock);
23044507
NP
843 continue;
844 }
845
dd1f6b2e
DC
846 /*
847 * The dispose list is isolated and dentries are not accounted
848 * to the LRU here, so we can simply remove it from the list
849 * here regardless of whether it is referenced or not.
850 */
851 list_del_init(&dentry->d_lru);
852 dentry->d_flags &= ~DCACHE_SHRINK_LIST;
853
1da177e4
LT
854 /*
855 * We found an inuse dentry which was not removed from
dd1f6b2e 856 * the LRU because of laziness during lookup. Do not free it.
1da177e4 857 */
98474236 858 if (dentry->d_lockref.count) {
da3bbdd4 859 spin_unlock(&dentry->d_lock);
1da177e4
LT
860 continue;
861 }
ec33679d 862 rcu_read_unlock();
77812a1e 863
dd1f6b2e 864 dentry = try_prune_one_dentry(dentry);
77812a1e 865
ec33679d 866 rcu_read_lock();
dd1f6b2e
DC
867 if (dentry) {
868 dentry->d_flags |= DCACHE_SHRINK_LIST;
869 list_add(&dentry->d_lru, list);
870 spin_unlock(&dentry->d_lock);
871 }
da3bbdd4 872 }
ec33679d 873 rcu_read_unlock();
3049cfe2
CH
874}
875
f6041567
DC
876static enum lru_status
877dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
878{
879 struct list_head *freeable = arg;
880 struct dentry *dentry = container_of(item, struct dentry, d_lru);
881
882
883 /*
884 * we are inverting the lru lock/dentry->d_lock here,
885 * so use a trylock. If we fail to get the lock, just skip
886 * it
887 */
888 if (!spin_trylock(&dentry->d_lock))
889 return LRU_SKIP;
890
891 /*
892 * Referenced dentries are still in use. If they have active
893 * counts, just remove them from the LRU. Otherwise give them
894 * another pass through the LRU.
895 */
896 if (dentry->d_lockref.count) {
897 list_del_init(&dentry->d_lru);
898 spin_unlock(&dentry->d_lock);
899 return LRU_REMOVED;
900 }
901
902 if (dentry->d_flags & DCACHE_REFERENCED) {
903 dentry->d_flags &= ~DCACHE_REFERENCED;
904 spin_unlock(&dentry->d_lock);
905
906 /*
907 * The list move itself will be made by the common LRU code. At
908 * this point, we've dropped the dentry->d_lock but keep the
909 * lru lock. This is safe to do, since every list movement is
910 * protected by the lru lock even if both locks are held.
911 *
912 * This is guaranteed by the fact that all LRU management
913 * functions are intermediated by the LRU API calls like
914 * list_lru_add and list_lru_del. List movement in this file
915 * only ever occur through this functions or through callbacks
916 * like this one, that are called from the LRU API.
917 *
918 * The only exceptions to this are functions like
919 * shrink_dentry_list, and code that first checks for the
920 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
921 * operating only with stack provided lists after they are
922 * properly isolated from the main list. It is thus, always a
923 * local access.
924 */
925 return LRU_ROTATE;
926 }
927
928 dentry->d_flags |= DCACHE_SHRINK_LIST;
929 list_move_tail(&dentry->d_lru, freeable);
930 this_cpu_dec(nr_dentry_unused);
931 spin_unlock(&dentry->d_lock);
932
933 return LRU_REMOVED;
934}
935
3049cfe2 936/**
b48f03b3
DC
937 * prune_dcache_sb - shrink the dcache
938 * @sb: superblock
f6041567 939 * @nr_to_scan : number of entries to try to free
9b17c623 940 * @nid: which node to scan for freeable entities
b48f03b3 941 *
f6041567 942 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
b48f03b3
DC
943 * done when we need more memory an called from the superblock shrinker
944 * function.
3049cfe2 945 *
b48f03b3
DC
946 * This function may fail to free any resources if all the dentries are in
947 * use.
3049cfe2 948 */
9b17c623
DC
949long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
950 int nid)
3049cfe2 951{
f6041567
DC
952 LIST_HEAD(dispose);
953 long freed;
3049cfe2 954
9b17c623
DC
955 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
956 &dispose, &nr_to_scan);
f6041567 957 shrink_dentry_list(&dispose);
0a234c6d 958 return freed;
da3bbdd4 959}
23044507 960
4e717f5c
GC
961static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
962 spinlock_t *lru_lock, void *arg)
dd1f6b2e 963{
4e717f5c
GC
964 struct list_head *freeable = arg;
965 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 966
4e717f5c
GC
967 /*
968 * we are inverting the lru lock/dentry->d_lock here,
969 * so use a trylock. If we fail to get the lock, just skip
970 * it
971 */
972 if (!spin_trylock(&dentry->d_lock))
973 return LRU_SKIP;
974
975 dentry->d_flags |= DCACHE_SHRINK_LIST;
976 list_move_tail(&dentry->d_lru, freeable);
977 this_cpu_dec(nr_dentry_unused);
978 spin_unlock(&dentry->d_lock);
ec33679d 979
4e717f5c 980 return LRU_REMOVED;
da3bbdd4
KM
981}
982
4e717f5c 983
1da177e4
LT
984/**
985 * shrink_dcache_sb - shrink dcache for a superblock
986 * @sb: superblock
987 *
3049cfe2
CH
988 * Shrink the dcache for the specified super block. This is used to free
989 * the dcache before unmounting a file system.
1da177e4 990 */
3049cfe2 991void shrink_dcache_sb(struct super_block *sb)
1da177e4 992{
4e717f5c
GC
993 long freed;
994
995 do {
996 LIST_HEAD(dispose);
997
998 freed = list_lru_walk(&sb->s_dentry_lru,
999 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
3049cfe2 1000
4e717f5c
GC
1001 this_cpu_sub(nr_dentry_unused, freed);
1002 shrink_dentry_list(&dispose);
1003 } while (freed > 0);
1da177e4 1004}
ec4f8605 1005EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1006
c636ebdb
DH
1007/*
1008 * destroy a single subtree of dentries for unmount
1009 * - see the comments on shrink_dcache_for_umount() for a description of the
1010 * locking
1011 */
1012static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
1013{
1014 struct dentry *parent;
1015
1016 BUG_ON(!IS_ROOT(dentry));
1017
c636ebdb
DH
1018 for (;;) {
1019 /* descend to the first leaf in the current subtree */
43c1c9cd 1020 while (!list_empty(&dentry->d_subdirs))
c636ebdb
DH
1021 dentry = list_entry(dentry->d_subdirs.next,
1022 struct dentry, d_u.d_child);
c636ebdb
DH
1023
1024 /* consume the dentries from this leaf up through its parents
1025 * until we find one with children or run out altogether */
1026 do {
1027 struct inode *inode;
1028
f0023bc6 1029 /*
61572bb1 1030 * inform the fs that this dentry is about to be
f0023bc6
SW
1031 * unhashed and destroyed.
1032 */
590fb51f
YZ
1033 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
1034 !d_unhashed(dentry))
61572bb1
YZ
1035 dentry->d_op->d_prune(dentry);
1036
1037 dentry_lru_del(dentry);
43c1c9cd
DH
1038 __d_shrink(dentry);
1039
98474236 1040 if (dentry->d_lockref.count != 0) {
c636ebdb
DH
1041 printk(KERN_ERR
1042 "BUG: Dentry %p{i=%lx,n=%s}"
1043 " still in use (%d)"
1044 " [unmount of %s %s]\n",
1045 dentry,
1046 dentry->d_inode ?
1047 dentry->d_inode->i_ino : 0UL,
1048 dentry->d_name.name,
98474236 1049 dentry->d_lockref.count,
c636ebdb
DH
1050 dentry->d_sb->s_type->name,
1051 dentry->d_sb->s_id);
1052 BUG();
1053 }
1054
2fd6b7f5 1055 if (IS_ROOT(dentry)) {
c636ebdb 1056 parent = NULL;
2fd6b7f5
NP
1057 list_del(&dentry->d_u.d_child);
1058 } else {
871c0067 1059 parent = dentry->d_parent;
98474236 1060 parent->d_lockref.count--;
2fd6b7f5 1061 list_del(&dentry->d_u.d_child);
871c0067 1062 }
c636ebdb 1063
c636ebdb
DH
1064 inode = dentry->d_inode;
1065 if (inode) {
1066 dentry->d_inode = NULL;
b3d9b7a3 1067 hlist_del_init(&dentry->d_alias);
c636ebdb
DH
1068 if (dentry->d_op && dentry->d_op->d_iput)
1069 dentry->d_op->d_iput(dentry, inode);
1070 else
1071 iput(inode);
1072 }
1073
1074 d_free(dentry);
1075
1076 /* finished when we fall off the top of the tree,
1077 * otherwise we ascend to the parent and move to the
1078 * next sibling if there is one */
1079 if (!parent)
312d3ca8 1080 return;
c636ebdb 1081 dentry = parent;
c636ebdb
DH
1082 } while (list_empty(&dentry->d_subdirs));
1083
1084 dentry = list_entry(dentry->d_subdirs.next,
1085 struct dentry, d_u.d_child);
1086 }
1087}
1088
1089/*
1090 * destroy the dentries attached to a superblock on unmounting
b5c84bf6 1091 * - we don't need to use dentry->d_lock because:
c636ebdb
DH
1092 * - the superblock is detached from all mountings and open files, so the
1093 * dentry trees will not be rearranged by the VFS
1094 * - s_umount is write-locked, so the memory pressure shrinker will ignore
1095 * any dentries belonging to this superblock that it comes across
1096 * - the filesystem itself is no longer permitted to rearrange the dentries
1097 * in this superblock
1098 */
1099void shrink_dcache_for_umount(struct super_block *sb)
1100{
1101 struct dentry *dentry;
1102
1103 if (down_read_trylock(&sb->s_umount))
1104 BUG();
1105
1106 dentry = sb->s_root;
1107 sb->s_root = NULL;
98474236 1108 dentry->d_lockref.count--;
c636ebdb
DH
1109 shrink_dcache_for_umount_subtree(dentry);
1110
ceb5bdc2
NP
1111 while (!hlist_bl_empty(&sb->s_anon)) {
1112 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
c636ebdb
DH
1113 shrink_dcache_for_umount_subtree(dentry);
1114 }
1115}
1116
c826cb7d
LT
1117/*
1118 * This tries to ascend one level of parenthood, but
1119 * we can race with renaming, so we need to re-check
1120 * the parenthood after dropping the lock and check
1121 * that the sequence number still matches.
1122 */
48f5ec21 1123static struct dentry *try_to_ascend(struct dentry *old, unsigned seq)
c826cb7d
LT
1124{
1125 struct dentry *new = old->d_parent;
1126
1127 rcu_read_lock();
1128 spin_unlock(&old->d_lock);
1129 spin_lock(&new->d_lock);
1130
1131 /*
1132 * might go back up the wrong parent if we have had a rename
1133 * or deletion
1134 */
1135 if (new != old->d_parent ||
b161dfa6 1136 (old->d_flags & DCACHE_DENTRY_KILLED) ||
48f5ec21 1137 need_seqretry(&rename_lock, seq)) {
c826cb7d
LT
1138 spin_unlock(&new->d_lock);
1139 new = NULL;
1140 }
1141 rcu_read_unlock();
1142 return new;
1143}
1144
db14fc3a
MS
1145/**
1146 * enum d_walk_ret - action to talke during tree walk
1147 * @D_WALK_CONTINUE: contrinue walk
1148 * @D_WALK_QUIT: quit walk
1149 * @D_WALK_NORETRY: quit when retry is needed
1150 * @D_WALK_SKIP: skip this dentry and its children
1151 */
1152enum d_walk_ret {
1153 D_WALK_CONTINUE,
1154 D_WALK_QUIT,
1155 D_WALK_NORETRY,
1156 D_WALK_SKIP,
1157};
c826cb7d 1158
1da177e4 1159/**
db14fc3a
MS
1160 * d_walk - walk the dentry tree
1161 * @parent: start of walk
1162 * @data: data passed to @enter() and @finish()
1163 * @enter: callback when first entering the dentry
1164 * @finish: callback when successfully finished the walk
1da177e4 1165 *
db14fc3a 1166 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1167 */
db14fc3a
MS
1168static void d_walk(struct dentry *parent, void *data,
1169 enum d_walk_ret (*enter)(void *, struct dentry *),
1170 void (*finish)(void *))
1da177e4 1171{
949854d0 1172 struct dentry *this_parent;
1da177e4 1173 struct list_head *next;
48f5ec21 1174 unsigned seq = 0;
db14fc3a
MS
1175 enum d_walk_ret ret;
1176 bool retry = true;
949854d0 1177
58db63d0 1178again:
48f5ec21 1179 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1180 this_parent = parent;
2fd6b7f5 1181 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1182
1183 ret = enter(data, this_parent);
1184 switch (ret) {
1185 case D_WALK_CONTINUE:
1186 break;
1187 case D_WALK_QUIT:
1188 case D_WALK_SKIP:
1189 goto out_unlock;
1190 case D_WALK_NORETRY:
1191 retry = false;
1192 break;
1193 }
1da177e4
LT
1194repeat:
1195 next = this_parent->d_subdirs.next;
1196resume:
1197 while (next != &this_parent->d_subdirs) {
1198 struct list_head *tmp = next;
5160ee6f 1199 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1200 next = tmp->next;
2fd6b7f5
NP
1201
1202 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1203
1204 ret = enter(data, dentry);
1205 switch (ret) {
1206 case D_WALK_CONTINUE:
1207 break;
1208 case D_WALK_QUIT:
2fd6b7f5 1209 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1210 goto out_unlock;
1211 case D_WALK_NORETRY:
1212 retry = false;
1213 break;
1214 case D_WALK_SKIP:
1215 spin_unlock(&dentry->d_lock);
1216 continue;
2fd6b7f5 1217 }
db14fc3a 1218
1da177e4 1219 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1220 spin_unlock(&this_parent->d_lock);
1221 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1222 this_parent = dentry;
2fd6b7f5 1223 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1224 goto repeat;
1225 }
2fd6b7f5 1226 spin_unlock(&dentry->d_lock);
1da177e4
LT
1227 }
1228 /*
1229 * All done at this level ... ascend and resume the search.
1230 */
1231 if (this_parent != parent) {
c826cb7d 1232 struct dentry *child = this_parent;
48f5ec21 1233 this_parent = try_to_ascend(this_parent, seq);
c826cb7d 1234 if (!this_parent)
949854d0 1235 goto rename_retry;
949854d0 1236 next = child->d_u.d_child.next;
1da177e4
LT
1237 goto resume;
1238 }
48f5ec21 1239 if (need_seqretry(&rename_lock, seq)) {
db14fc3a 1240 spin_unlock(&this_parent->d_lock);
949854d0 1241 goto rename_retry;
db14fc3a
MS
1242 }
1243 if (finish)
1244 finish(data);
1245
1246out_unlock:
1247 spin_unlock(&this_parent->d_lock);
48f5ec21 1248 done_seqretry(&rename_lock, seq);
db14fc3a 1249 return;
58db63d0
NP
1250
1251rename_retry:
db14fc3a
MS
1252 if (!retry)
1253 return;
48f5ec21 1254 seq = 1;
58db63d0 1255 goto again;
1da177e4 1256}
db14fc3a
MS
1257
1258/*
1259 * Search for at least 1 mount point in the dentry's subdirs.
1260 * We descend to the next level whenever the d_subdirs
1261 * list is non-empty and continue searching.
1262 */
1263
1264/**
1265 * have_submounts - check for mounts over a dentry
1266 * @parent: dentry to check.
1267 *
1268 * Return true if the parent or its subdirectories contain
1269 * a mount point
1270 */
1271
1272static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1273{
1274 int *ret = data;
1275 if (d_mountpoint(dentry)) {
1276 *ret = 1;
1277 return D_WALK_QUIT;
1278 }
1279 return D_WALK_CONTINUE;
1280}
1281
1282int have_submounts(struct dentry *parent)
1283{
1284 int ret = 0;
1285
1286 d_walk(parent, &ret, check_mount, NULL);
1287
1288 return ret;
1289}
ec4f8605 1290EXPORT_SYMBOL(have_submounts);
1da177e4 1291
eed81007
MS
1292/*
1293 * Called by mount code to set a mountpoint and check if the mountpoint is
1294 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1295 * subtree can become unreachable).
1296 *
1297 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For
1298 * this reason take rename_lock and d_lock on dentry and ancestors.
1299 */
1300int d_set_mounted(struct dentry *dentry)
1301{
1302 struct dentry *p;
1303 int ret = -ENOENT;
1304 write_seqlock(&rename_lock);
1305 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1306 /* Need exclusion wrt. check_submounts_and_drop() */
1307 spin_lock(&p->d_lock);
1308 if (unlikely(d_unhashed(p))) {
1309 spin_unlock(&p->d_lock);
1310 goto out;
1311 }
1312 spin_unlock(&p->d_lock);
1313 }
1314 spin_lock(&dentry->d_lock);
1315 if (!d_unlinked(dentry)) {
1316 dentry->d_flags |= DCACHE_MOUNTED;
1317 ret = 0;
1318 }
1319 spin_unlock(&dentry->d_lock);
1320out:
1321 write_sequnlock(&rename_lock);
1322 return ret;
1323}
1324
1da177e4 1325/*
fd517909 1326 * Search the dentry child list of the specified parent,
1da177e4
LT
1327 * and move any unused dentries to the end of the unused
1328 * list for prune_dcache(). We descend to the next level
1329 * whenever the d_subdirs list is non-empty and continue
1330 * searching.
1331 *
1332 * It returns zero iff there are no unused children,
1333 * otherwise it returns the number of children moved to
1334 * the end of the unused list. This may not be the total
1335 * number of unused children, because select_parent can
1336 * drop the lock and return early due to latency
1337 * constraints.
1338 */
1da177e4 1339
db14fc3a
MS
1340struct select_data {
1341 struct dentry *start;
1342 struct list_head dispose;
1343 int found;
1344};
23044507 1345
db14fc3a
MS
1346static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1347{
1348 struct select_data *data = _data;
1349 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1350
db14fc3a
MS
1351 if (data->start == dentry)
1352 goto out;
2fd6b7f5 1353
1da177e4 1354 /*
db14fc3a
MS
1355 * move only zero ref count dentries to the dispose list.
1356 *
1357 * Those which are presently on the shrink list, being processed
1358 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1359 * loop in shrink_dcache_parent() might not make any progress
1360 * and loop forever.
1da177e4 1361 */
db14fc3a
MS
1362 if (dentry->d_lockref.count) {
1363 dentry_lru_del(dentry);
1364 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
f6041567
DC
1365 dentry_lru_del(dentry);
1366 list_add_tail(&dentry->d_lru, &data->dispose);
db14fc3a
MS
1367 dentry->d_flags |= DCACHE_SHRINK_LIST;
1368 data->found++;
1369 ret = D_WALK_NORETRY;
1da177e4 1370 }
db14fc3a
MS
1371 /*
1372 * We can return to the caller if we have found some (this
1373 * ensures forward progress). We'll be coming back to find
1374 * the rest.
1375 */
1376 if (data->found && need_resched())
1377 ret = D_WALK_QUIT;
1da177e4 1378out:
db14fc3a 1379 return ret;
1da177e4
LT
1380}
1381
1382/**
1383 * shrink_dcache_parent - prune dcache
1384 * @parent: parent of entries to prune
1385 *
1386 * Prune the dcache to remove unused children of the parent dentry.
1387 */
db14fc3a 1388void shrink_dcache_parent(struct dentry *parent)
1da177e4 1389{
db14fc3a
MS
1390 for (;;) {
1391 struct select_data data;
1da177e4 1392
db14fc3a
MS
1393 INIT_LIST_HEAD(&data.dispose);
1394 data.start = parent;
1395 data.found = 0;
1396
1397 d_walk(parent, &data, select_collect, NULL);
1398 if (!data.found)
1399 break;
1400
1401 shrink_dentry_list(&data.dispose);
421348f1
GT
1402 cond_resched();
1403 }
1da177e4 1404}
ec4f8605 1405EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1406
848ac114
MS
1407static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry)
1408{
1409 struct select_data *data = _data;
1410
1411 if (d_mountpoint(dentry)) {
1412 data->found = -EBUSY;
1413 return D_WALK_QUIT;
1414 }
1415
1416 return select_collect(_data, dentry);
1417}
1418
1419static void check_and_drop(void *_data)
1420{
1421 struct select_data *data = _data;
1422
1423 if (d_mountpoint(data->start))
1424 data->found = -EBUSY;
1425 if (!data->found)
1426 __d_drop(data->start);
1427}
1428
1429/**
1430 * check_submounts_and_drop - prune dcache, check for submounts and drop
1431 *
1432 * All done as a single atomic operation relative to has_unlinked_ancestor().
1433 * Returns 0 if successfully unhashed @parent. If there were submounts then
1434 * return -EBUSY.
1435 *
1436 * @dentry: dentry to prune and drop
1437 */
1438int check_submounts_and_drop(struct dentry *dentry)
1439{
1440 int ret = 0;
1441
1442 /* Negative dentries can be dropped without further checks */
1443 if (!dentry->d_inode) {
1444 d_drop(dentry);
1445 goto out;
1446 }
1447
1448 for (;;) {
1449 struct select_data data;
1450
1451 INIT_LIST_HEAD(&data.dispose);
1452 data.start = dentry;
1453 data.found = 0;
1454
1455 d_walk(dentry, &data, check_and_collect, check_and_drop);
1456 ret = data.found;
1457
1458 if (!list_empty(&data.dispose))
1459 shrink_dentry_list(&data.dispose);
1460
1461 if (ret <= 0)
1462 break;
1463
1464 cond_resched();
1465 }
1466
1467out:
1468 return ret;
1469}
1470EXPORT_SYMBOL(check_submounts_and_drop);
1471
1da177e4 1472/**
a4464dbc
AV
1473 * __d_alloc - allocate a dcache entry
1474 * @sb: filesystem it will belong to
1da177e4
LT
1475 * @name: qstr of the name
1476 *
1477 * Allocates a dentry. It returns %NULL if there is insufficient memory
1478 * available. On a success the dentry is returned. The name passed in is
1479 * copied and the copy passed in may be reused after this call.
1480 */
1481
a4464dbc 1482struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1483{
1484 struct dentry *dentry;
1485 char *dname;
1486
e12ba74d 1487 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1488 if (!dentry)
1489 return NULL;
1490
6326c71f
LT
1491 /*
1492 * We guarantee that the inline name is always NUL-terminated.
1493 * This way the memcpy() done by the name switching in rename
1494 * will still always have a NUL at the end, even if we might
1495 * be overwriting an internal NUL character
1496 */
1497 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1da177e4
LT
1498 if (name->len > DNAME_INLINE_LEN-1) {
1499 dname = kmalloc(name->len + 1, GFP_KERNEL);
1500 if (!dname) {
1501 kmem_cache_free(dentry_cache, dentry);
1502 return NULL;
1503 }
1504 } else {
1505 dname = dentry->d_iname;
1506 }
1da177e4
LT
1507
1508 dentry->d_name.len = name->len;
1509 dentry->d_name.hash = name->hash;
1510 memcpy(dname, name->name, name->len);
1511 dname[name->len] = 0;
1512
6326c71f
LT
1513 /* Make sure we always see the terminating NUL character */
1514 smp_wmb();
1515 dentry->d_name.name = dname;
1516
98474236 1517 dentry->d_lockref.count = 1;
dea3667b 1518 dentry->d_flags = 0;
1da177e4 1519 spin_lock_init(&dentry->d_lock);
31e6b01f 1520 seqcount_init(&dentry->d_seq);
1da177e4 1521 dentry->d_inode = NULL;
a4464dbc
AV
1522 dentry->d_parent = dentry;
1523 dentry->d_sb = sb;
1da177e4
LT
1524 dentry->d_op = NULL;
1525 dentry->d_fsdata = NULL;
ceb5bdc2 1526 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1527 INIT_LIST_HEAD(&dentry->d_lru);
1528 INIT_LIST_HEAD(&dentry->d_subdirs);
b3d9b7a3 1529 INIT_HLIST_NODE(&dentry->d_alias);
2fd6b7f5 1530 INIT_LIST_HEAD(&dentry->d_u.d_child);
a4464dbc 1531 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1532
3e880fb5 1533 this_cpu_inc(nr_dentry);
312d3ca8 1534
1da177e4
LT
1535 return dentry;
1536}
a4464dbc
AV
1537
1538/**
1539 * d_alloc - allocate a dcache entry
1540 * @parent: parent of entry to allocate
1541 * @name: qstr of the name
1542 *
1543 * Allocates a dentry. It returns %NULL if there is insufficient memory
1544 * available. On a success the dentry is returned. The name passed in is
1545 * copied and the copy passed in may be reused after this call.
1546 */
1547struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1548{
1549 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1550 if (!dentry)
1551 return NULL;
1552
1553 spin_lock(&parent->d_lock);
1554 /*
1555 * don't need child lock because it is not subject
1556 * to concurrency here
1557 */
1558 __dget_dlock(parent);
1559 dentry->d_parent = parent;
1560 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1561 spin_unlock(&parent->d_lock);
1562
1563 return dentry;
1564}
ec4f8605 1565EXPORT_SYMBOL(d_alloc);
1da177e4 1566
4b936885
NP
1567struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1568{
a4464dbc
AV
1569 struct dentry *dentry = __d_alloc(sb, name);
1570 if (dentry)
4b936885 1571 dentry->d_flags |= DCACHE_DISCONNECTED;
4b936885
NP
1572 return dentry;
1573}
1574EXPORT_SYMBOL(d_alloc_pseudo);
1575
1da177e4
LT
1576struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1577{
1578 struct qstr q;
1579
1580 q.name = name;
1581 q.len = strlen(name);
1582 q.hash = full_name_hash(q.name, q.len);
1583 return d_alloc(parent, &q);
1584}
ef26ca97 1585EXPORT_SYMBOL(d_alloc_name);
1da177e4 1586
fb045adb
NP
1587void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1588{
6f7f7caa
LT
1589 WARN_ON_ONCE(dentry->d_op);
1590 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1591 DCACHE_OP_COMPARE |
1592 DCACHE_OP_REVALIDATE |
ecf3d1f1 1593 DCACHE_OP_WEAK_REVALIDATE |
fb045adb
NP
1594 DCACHE_OP_DELETE ));
1595 dentry->d_op = op;
1596 if (!op)
1597 return;
1598 if (op->d_hash)
1599 dentry->d_flags |= DCACHE_OP_HASH;
1600 if (op->d_compare)
1601 dentry->d_flags |= DCACHE_OP_COMPARE;
1602 if (op->d_revalidate)
1603 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1604 if (op->d_weak_revalidate)
1605 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1606 if (op->d_delete)
1607 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1608 if (op->d_prune)
1609 dentry->d_flags |= DCACHE_OP_PRUNE;
fb045adb
NP
1610
1611}
1612EXPORT_SYMBOL(d_set_d_op);
1613
360da900
OH
1614static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1615{
b23fb0a6 1616 spin_lock(&dentry->d_lock);
9875cf80
DH
1617 if (inode) {
1618 if (unlikely(IS_AUTOMOUNT(inode)))
1619 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
b3d9b7a3 1620 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
9875cf80 1621 }
360da900 1622 dentry->d_inode = inode;
31e6b01f 1623 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1624 spin_unlock(&dentry->d_lock);
360da900
OH
1625 fsnotify_d_instantiate(dentry, inode);
1626}
1627
1da177e4
LT
1628/**
1629 * d_instantiate - fill in inode information for a dentry
1630 * @entry: dentry to complete
1631 * @inode: inode to attach to this dentry
1632 *
1633 * Fill in inode information in the entry.
1634 *
1635 * This turns negative dentries into productive full members
1636 * of society.
1637 *
1638 * NOTE! This assumes that the inode count has been incremented
1639 * (or otherwise set) by the caller to indicate that it is now
1640 * in use by the dcache.
1641 */
1642
1643void d_instantiate(struct dentry *entry, struct inode * inode)
1644{
b3d9b7a3 1645 BUG_ON(!hlist_unhashed(&entry->d_alias));
873feea0
NP
1646 if (inode)
1647 spin_lock(&inode->i_lock);
360da900 1648 __d_instantiate(entry, inode);
873feea0
NP
1649 if (inode)
1650 spin_unlock(&inode->i_lock);
1da177e4
LT
1651 security_d_instantiate(entry, inode);
1652}
ec4f8605 1653EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1654
1655/**
1656 * d_instantiate_unique - instantiate a non-aliased dentry
1657 * @entry: dentry to instantiate
1658 * @inode: inode to attach to this dentry
1659 *
1660 * Fill in inode information in the entry. On success, it returns NULL.
1661 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1662 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1663 *
1664 * Note that in order to avoid conflicts with rename() etc, the caller
1665 * had better be holding the parent directory semaphore.
e866cfa9
OD
1666 *
1667 * This also assumes that the inode count has been incremented
1668 * (or otherwise set) by the caller to indicate that it is now
1669 * in use by the dcache.
1da177e4 1670 */
770bfad8
DH
1671static struct dentry *__d_instantiate_unique(struct dentry *entry,
1672 struct inode *inode)
1da177e4
LT
1673{
1674 struct dentry *alias;
1675 int len = entry->d_name.len;
1676 const char *name = entry->d_name.name;
1677 unsigned int hash = entry->d_name.hash;
1678
770bfad8 1679 if (!inode) {
360da900 1680 __d_instantiate(entry, NULL);
770bfad8
DH
1681 return NULL;
1682 }
1683
b67bfe0d 1684 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
9abca360
NP
1685 /*
1686 * Don't need alias->d_lock here, because aliases with
1687 * d_parent == entry->d_parent are not subject to name or
1688 * parent changes, because the parent inode i_mutex is held.
1689 */
12f8ad4b 1690 if (alias->d_name.hash != hash)
1da177e4
LT
1691 continue;
1692 if (alias->d_parent != entry->d_parent)
1693 continue;
ee983e89
LT
1694 if (alias->d_name.len != len)
1695 continue;
12f8ad4b 1696 if (dentry_cmp(alias, name, len))
1da177e4 1697 continue;
dc0474be 1698 __dget(alias);
1da177e4
LT
1699 return alias;
1700 }
770bfad8 1701
360da900 1702 __d_instantiate(entry, inode);
1da177e4
LT
1703 return NULL;
1704}
770bfad8
DH
1705
1706struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1707{
1708 struct dentry *result;
1709
b3d9b7a3 1710 BUG_ON(!hlist_unhashed(&entry->d_alias));
770bfad8 1711
873feea0
NP
1712 if (inode)
1713 spin_lock(&inode->i_lock);
770bfad8 1714 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1715 if (inode)
1716 spin_unlock(&inode->i_lock);
770bfad8
DH
1717
1718 if (!result) {
1719 security_d_instantiate(entry, inode);
1720 return NULL;
1721 }
1722
1723 BUG_ON(!d_unhashed(result));
1724 iput(inode);
1725 return result;
1726}
1727
1da177e4
LT
1728EXPORT_SYMBOL(d_instantiate_unique);
1729
adc0e91a
AV
1730struct dentry *d_make_root(struct inode *root_inode)
1731{
1732 struct dentry *res = NULL;
1733
1734 if (root_inode) {
26fe5750 1735 static const struct qstr name = QSTR_INIT("/", 1);
adc0e91a
AV
1736
1737 res = __d_alloc(root_inode->i_sb, &name);
1738 if (res)
1739 d_instantiate(res, root_inode);
1740 else
1741 iput(root_inode);
1742 }
1743 return res;
1744}
1745EXPORT_SYMBOL(d_make_root);
1746
d891eedb
BF
1747static struct dentry * __d_find_any_alias(struct inode *inode)
1748{
1749 struct dentry *alias;
1750
b3d9b7a3 1751 if (hlist_empty(&inode->i_dentry))
d891eedb 1752 return NULL;
b3d9b7a3 1753 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
d891eedb
BF
1754 __dget(alias);
1755 return alias;
1756}
1757
46f72b34
SW
1758/**
1759 * d_find_any_alias - find any alias for a given inode
1760 * @inode: inode to find an alias for
1761 *
1762 * If any aliases exist for the given inode, take and return a
1763 * reference for one of them. If no aliases exist, return %NULL.
1764 */
1765struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1766{
1767 struct dentry *de;
1768
1769 spin_lock(&inode->i_lock);
1770 de = __d_find_any_alias(inode);
1771 spin_unlock(&inode->i_lock);
1772 return de;
1773}
46f72b34 1774EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1775
4ea3ada2
CH
1776/**
1777 * d_obtain_alias - find or allocate a dentry for a given inode
1778 * @inode: inode to allocate the dentry for
1779 *
1780 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1781 * similar open by handle operations. The returned dentry may be anonymous,
1782 * or may have a full name (if the inode was already in the cache).
1783 *
1784 * When called on a directory inode, we must ensure that the inode only ever
1785 * has one dentry. If a dentry is found, that is returned instead of
1786 * allocating a new one.
1787 *
1788 * On successful return, the reference to the inode has been transferred
44003728
CH
1789 * to the dentry. In case of an error the reference on the inode is released.
1790 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1791 * be passed in and will be the error will be propagate to the return value,
1792 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1793 */
1794struct dentry *d_obtain_alias(struct inode *inode)
1795{
b911a6bd 1796 static const struct qstr anonstring = QSTR_INIT("/", 1);
9308a612
CH
1797 struct dentry *tmp;
1798 struct dentry *res;
4ea3ada2
CH
1799
1800 if (!inode)
44003728 1801 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1802 if (IS_ERR(inode))
1803 return ERR_CAST(inode);
1804
d891eedb 1805 res = d_find_any_alias(inode);
9308a612
CH
1806 if (res)
1807 goto out_iput;
1808
a4464dbc 1809 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1810 if (!tmp) {
1811 res = ERR_PTR(-ENOMEM);
1812 goto out_iput;
4ea3ada2 1813 }
b5c84bf6 1814
873feea0 1815 spin_lock(&inode->i_lock);
d891eedb 1816 res = __d_find_any_alias(inode);
9308a612 1817 if (res) {
873feea0 1818 spin_unlock(&inode->i_lock);
9308a612
CH
1819 dput(tmp);
1820 goto out_iput;
1821 }
1822
1823 /* attach a disconnected dentry */
1824 spin_lock(&tmp->d_lock);
9308a612
CH
1825 tmp->d_inode = inode;
1826 tmp->d_flags |= DCACHE_DISCONNECTED;
b3d9b7a3 1827 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1828 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1829 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1830 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1831 spin_unlock(&tmp->d_lock);
873feea0 1832 spin_unlock(&inode->i_lock);
24ff6663 1833 security_d_instantiate(tmp, inode);
9308a612 1834
9308a612
CH
1835 return tmp;
1836
1837 out_iput:
24ff6663
JB
1838 if (res && !IS_ERR(res))
1839 security_d_instantiate(res, inode);
9308a612
CH
1840 iput(inode);
1841 return res;
4ea3ada2 1842}
adc48720 1843EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1844
1845/**
1846 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1847 * @inode: the inode which may have a disconnected dentry
1848 * @dentry: a negative dentry which we want to point to the inode.
1849 *
1850 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1851 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1852 * and return it, else simply d_add the inode to the dentry and return NULL.
1853 *
1854 * This is needed in the lookup routine of any filesystem that is exportable
1855 * (via knfsd) so that we can build dcache paths to directories effectively.
1856 *
1857 * If a dentry was found and moved, then it is returned. Otherwise NULL
1858 * is returned. This matches the expected return value of ->lookup.
1859 *
6d4ade98
SW
1860 * Cluster filesystems may call this function with a negative, hashed dentry.
1861 * In that case, we know that the inode will be a regular file, and also this
1862 * will only occur during atomic_open. So we need to check for the dentry
1863 * being already hashed only in the final case.
1da177e4
LT
1864 */
1865struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1866{
1867 struct dentry *new = NULL;
1868
a9049376
AV
1869 if (IS_ERR(inode))
1870 return ERR_CAST(inode);
1871
21c0d8fd 1872 if (inode && S_ISDIR(inode->i_mode)) {
873feea0 1873 spin_lock(&inode->i_lock);
32ba9c3f 1874 new = __d_find_alias(inode, 1);
1da177e4 1875 if (new) {
32ba9c3f 1876 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
873feea0 1877 spin_unlock(&inode->i_lock);
1da177e4 1878 security_d_instantiate(new, inode);
1da177e4
LT
1879 d_move(new, dentry);
1880 iput(inode);
1881 } else {
873feea0 1882 /* already taking inode->i_lock, so d_add() by hand */
360da900 1883 __d_instantiate(dentry, inode);
873feea0 1884 spin_unlock(&inode->i_lock);
1da177e4
LT
1885 security_d_instantiate(dentry, inode);
1886 d_rehash(dentry);
1887 }
6d4ade98
SW
1888 } else {
1889 d_instantiate(dentry, inode);
1890 if (d_unhashed(dentry))
1891 d_rehash(dentry);
1892 }
1da177e4
LT
1893 return new;
1894}
ec4f8605 1895EXPORT_SYMBOL(d_splice_alias);
1da177e4 1896
9403540c
BN
1897/**
1898 * d_add_ci - lookup or allocate new dentry with case-exact name
1899 * @inode: the inode case-insensitive lookup has found
1900 * @dentry: the negative dentry that was passed to the parent's lookup func
1901 * @name: the case-exact name to be associated with the returned dentry
1902 *
1903 * This is to avoid filling the dcache with case-insensitive names to the
1904 * same inode, only the actual correct case is stored in the dcache for
1905 * case-insensitive filesystems.
1906 *
1907 * For a case-insensitive lookup match and if the the case-exact dentry
1908 * already exists in in the dcache, use it and return it.
1909 *
1910 * If no entry exists with the exact case name, allocate new dentry with
1911 * the exact case, and return the spliced entry.
1912 */
e45b590b 1913struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1914 struct qstr *name)
1915{
9403540c
BN
1916 struct dentry *found;
1917 struct dentry *new;
1918
b6520c81
CH
1919 /*
1920 * First check if a dentry matching the name already exists,
1921 * if not go ahead and create it now.
1922 */
9403540c 1923 found = d_hash_and_lookup(dentry->d_parent, name);
4f522a24
AV
1924 if (unlikely(IS_ERR(found)))
1925 goto err_out;
9403540c
BN
1926 if (!found) {
1927 new = d_alloc(dentry->d_parent, name);
1928 if (!new) {
4f522a24 1929 found = ERR_PTR(-ENOMEM);
9403540c
BN
1930 goto err_out;
1931 }
b6520c81 1932
9403540c
BN
1933 found = d_splice_alias(inode, new);
1934 if (found) {
1935 dput(new);
1936 return found;
1937 }
1938 return new;
1939 }
b6520c81
CH
1940
1941 /*
1942 * If a matching dentry exists, and it's not negative use it.
1943 *
1944 * Decrement the reference count to balance the iget() done
1945 * earlier on.
1946 */
9403540c
BN
1947 if (found->d_inode) {
1948 if (unlikely(found->d_inode != inode)) {
1949 /* This can't happen because bad inodes are unhashed. */
1950 BUG_ON(!is_bad_inode(inode));
1951 BUG_ON(!is_bad_inode(found->d_inode));
1952 }
9403540c
BN
1953 iput(inode);
1954 return found;
1955 }
b6520c81 1956
9403540c 1957 /*
9403540c 1958 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1959 * already has a dentry.
9403540c 1960 */
4513d899
AV
1961 new = d_splice_alias(inode, found);
1962 if (new) {
1963 dput(found);
1964 found = new;
9403540c 1965 }
4513d899 1966 return found;
9403540c
BN
1967
1968err_out:
1969 iput(inode);
4f522a24 1970 return found;
9403540c 1971}
ec4f8605 1972EXPORT_SYMBOL(d_add_ci);
1da177e4 1973
12f8ad4b
LT
1974/*
1975 * Do the slow-case of the dentry name compare.
1976 *
1977 * Unlike the dentry_cmp() function, we need to atomically
da53be12 1978 * load the name and length information, so that the
12f8ad4b
LT
1979 * filesystem can rely on them, and can use the 'name' and
1980 * 'len' information without worrying about walking off the
1981 * end of memory etc.
1982 *
1983 * Thus the read_seqcount_retry() and the "duplicate" info
1984 * in arguments (the low-level filesystem should not look
1985 * at the dentry inode or name contents directly, since
1986 * rename can change them while we're in RCU mode).
1987 */
1988enum slow_d_compare {
1989 D_COMP_OK,
1990 D_COMP_NOMATCH,
1991 D_COMP_SEQRETRY,
1992};
1993
1994static noinline enum slow_d_compare slow_dentry_cmp(
1995 const struct dentry *parent,
12f8ad4b
LT
1996 struct dentry *dentry,
1997 unsigned int seq,
1998 const struct qstr *name)
1999{
2000 int tlen = dentry->d_name.len;
2001 const char *tname = dentry->d_name.name;
12f8ad4b
LT
2002
2003 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2004 cpu_relax();
2005 return D_COMP_SEQRETRY;
2006 }
da53be12 2007 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
12f8ad4b
LT
2008 return D_COMP_NOMATCH;
2009 return D_COMP_OK;
2010}
2011
31e6b01f
NP
2012/**
2013 * __d_lookup_rcu - search for a dentry (racy, store-free)
2014 * @parent: parent dentry
2015 * @name: qstr of name we wish to find
1f1e6e52 2016 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2017 * Returns: dentry, or NULL
2018 *
2019 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2020 * resolution (store-free path walking) design described in
2021 * Documentation/filesystems/path-lookup.txt.
2022 *
2023 * This is not to be used outside core vfs.
2024 *
2025 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2026 * held, and rcu_read_lock held. The returned dentry must not be stored into
2027 * without taking d_lock and checking d_seq sequence count against @seq
2028 * returned here.
2029 *
15570086 2030 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2031 * function.
2032 *
2033 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2034 * the returned dentry, so long as its parent's seqlock is checked after the
2035 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2036 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2037 *
2038 * NOTE! The caller *has* to check the resulting dentry against the sequence
2039 * number we've returned before using any of the resulting dentry state!
31e6b01f 2040 */
8966be90
LT
2041struct dentry *__d_lookup_rcu(const struct dentry *parent,
2042 const struct qstr *name,
da53be12 2043 unsigned *seqp)
31e6b01f 2044{
26fe5750 2045 u64 hashlen = name->hash_len;
31e6b01f 2046 const unsigned char *str = name->name;
26fe5750 2047 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
ceb5bdc2 2048 struct hlist_bl_node *node;
31e6b01f
NP
2049 struct dentry *dentry;
2050
2051 /*
2052 * Note: There is significant duplication with __d_lookup_rcu which is
2053 * required to prevent single threaded performance regressions
2054 * especially on architectures where smp_rmb (in seqcounts) are costly.
2055 * Keep the two functions in sync.
2056 */
2057
2058 /*
2059 * The hash list is protected using RCU.
2060 *
2061 * Carefully use d_seq when comparing a candidate dentry, to avoid
2062 * races with d_move().
2063 *
2064 * It is possible that concurrent renames can mess up our list
2065 * walk here and result in missing our dentry, resulting in the
2066 * false-negative result. d_lookup() protects against concurrent
2067 * renames using rename_lock seqlock.
2068 *
b0a4bb83 2069 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2070 */
b07ad996 2071 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2072 unsigned seq;
31e6b01f 2073
31e6b01f 2074seqretry:
12f8ad4b
LT
2075 /*
2076 * The dentry sequence count protects us from concurrent
da53be12 2077 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2078 *
2079 * The caller must perform a seqcount check in order
da53be12 2080 * to do anything useful with the returned dentry.
12f8ad4b
LT
2081 *
2082 * NOTE! We do a "raw" seqcount_begin here. That means that
2083 * we don't wait for the sequence count to stabilize if it
2084 * is in the middle of a sequence change. If we do the slow
2085 * dentry compare, we will do seqretries until it is stable,
2086 * and if we end up with a successful lookup, we actually
2087 * want to exit RCU lookup anyway.
2088 */
2089 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2090 if (dentry->d_parent != parent)
2091 continue;
2e321806
LT
2092 if (d_unhashed(dentry))
2093 continue;
12f8ad4b 2094
830c0f0e 2095 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
26fe5750
LT
2096 if (dentry->d_name.hash != hashlen_hash(hashlen))
2097 continue;
da53be12
LT
2098 *seqp = seq;
2099 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
12f8ad4b
LT
2100 case D_COMP_OK:
2101 return dentry;
2102 case D_COMP_NOMATCH:
31e6b01f 2103 continue;
12f8ad4b
LT
2104 default:
2105 goto seqretry;
2106 }
31e6b01f 2107 }
12f8ad4b 2108
26fe5750 2109 if (dentry->d_name.hash_len != hashlen)
ee983e89 2110 continue;
da53be12 2111 *seqp = seq;
26fe5750 2112 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
12f8ad4b 2113 return dentry;
31e6b01f
NP
2114 }
2115 return NULL;
2116}
2117
1da177e4
LT
2118/**
2119 * d_lookup - search for a dentry
2120 * @parent: parent dentry
2121 * @name: qstr of name we wish to find
b04f784e 2122 * Returns: dentry, or NULL
1da177e4 2123 *
b04f784e
NP
2124 * d_lookup searches the children of the parent dentry for the name in
2125 * question. If the dentry is found its reference count is incremented and the
2126 * dentry is returned. The caller must use dput to free the entry when it has
2127 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2128 */
da2d8455 2129struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2130{
31e6b01f 2131 struct dentry *dentry;
949854d0 2132 unsigned seq;
1da177e4
LT
2133
2134 do {
2135 seq = read_seqbegin(&rename_lock);
2136 dentry = __d_lookup(parent, name);
2137 if (dentry)
2138 break;
2139 } while (read_seqretry(&rename_lock, seq));
2140 return dentry;
2141}
ec4f8605 2142EXPORT_SYMBOL(d_lookup);
1da177e4 2143
31e6b01f 2144/**
b04f784e
NP
2145 * __d_lookup - search for a dentry (racy)
2146 * @parent: parent dentry
2147 * @name: qstr of name we wish to find
2148 * Returns: dentry, or NULL
2149 *
2150 * __d_lookup is like d_lookup, however it may (rarely) return a
2151 * false-negative result due to unrelated rename activity.
2152 *
2153 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2154 * however it must be used carefully, eg. with a following d_lookup in
2155 * the case of failure.
2156 *
2157 * __d_lookup callers must be commented.
2158 */
a713ca2a 2159struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4
LT
2160{
2161 unsigned int len = name->len;
2162 unsigned int hash = name->hash;
2163 const unsigned char *str = name->name;
b07ad996 2164 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 2165 struct hlist_bl_node *node;
31e6b01f 2166 struct dentry *found = NULL;
665a7583 2167 struct dentry *dentry;
1da177e4 2168
31e6b01f
NP
2169 /*
2170 * Note: There is significant duplication with __d_lookup_rcu which is
2171 * required to prevent single threaded performance regressions
2172 * especially on architectures where smp_rmb (in seqcounts) are costly.
2173 * Keep the two functions in sync.
2174 */
2175
b04f784e
NP
2176 /*
2177 * The hash list is protected using RCU.
2178 *
2179 * Take d_lock when comparing a candidate dentry, to avoid races
2180 * with d_move().
2181 *
2182 * It is possible that concurrent renames can mess up our list
2183 * walk here and result in missing our dentry, resulting in the
2184 * false-negative result. d_lookup() protects against concurrent
2185 * renames using rename_lock seqlock.
2186 *
b0a4bb83 2187 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2188 */
1da177e4
LT
2189 rcu_read_lock();
2190
b07ad996 2191 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2192
1da177e4
LT
2193 if (dentry->d_name.hash != hash)
2194 continue;
1da177e4
LT
2195
2196 spin_lock(&dentry->d_lock);
1da177e4
LT
2197 if (dentry->d_parent != parent)
2198 goto next;
d0185c08
LT
2199 if (d_unhashed(dentry))
2200 goto next;
2201
1da177e4
LT
2202 /*
2203 * It is safe to compare names since d_move() cannot
2204 * change the qstr (protected by d_lock).
2205 */
fb045adb 2206 if (parent->d_flags & DCACHE_OP_COMPARE) {
12f8ad4b
LT
2207 int tlen = dentry->d_name.len;
2208 const char *tname = dentry->d_name.name;
da53be12 2209 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1da177e4
LT
2210 goto next;
2211 } else {
ee983e89
LT
2212 if (dentry->d_name.len != len)
2213 goto next;
12f8ad4b 2214 if (dentry_cmp(dentry, str, len))
1da177e4
LT
2215 goto next;
2216 }
2217
98474236 2218 dentry->d_lockref.count++;
d0185c08 2219 found = dentry;
1da177e4
LT
2220 spin_unlock(&dentry->d_lock);
2221 break;
2222next:
2223 spin_unlock(&dentry->d_lock);
2224 }
2225 rcu_read_unlock();
2226
2227 return found;
2228}
2229
3e7e241f
EB
2230/**
2231 * d_hash_and_lookup - hash the qstr then search for a dentry
2232 * @dir: Directory to search in
2233 * @name: qstr of name we wish to find
2234 *
4f522a24 2235 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2236 */
2237struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2238{
3e7e241f
EB
2239 /*
2240 * Check for a fs-specific hash function. Note that we must
2241 * calculate the standard hash first, as the d_op->d_hash()
2242 * routine may choose to leave the hash value unchanged.
2243 */
2244 name->hash = full_name_hash(name->name, name->len);
fb045adb 2245 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2246 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2247 if (unlikely(err < 0))
2248 return ERR_PTR(err);
3e7e241f 2249 }
4f522a24 2250 return d_lookup(dir, name);
3e7e241f 2251}
4f522a24 2252EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2253
1da177e4 2254/**
786a5e15 2255 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 2256 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 2257 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
2258 *
2259 * An insecure source has sent us a dentry, here we verify it and dget() it.
2260 * This is used by ncpfs in its readdir implementation.
2261 * Zero is returned in the dentry is invalid.
786a5e15
NP
2262 *
2263 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 2264 */
d3a23e16 2265int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 2266{
786a5e15 2267 struct dentry *child;
d3a23e16 2268
2fd6b7f5 2269 spin_lock(&dparent->d_lock);
786a5e15
NP
2270 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2271 if (dentry == child) {
2fd6b7f5 2272 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 2273 __dget_dlock(dentry);
2fd6b7f5
NP
2274 spin_unlock(&dentry->d_lock);
2275 spin_unlock(&dparent->d_lock);
1da177e4
LT
2276 return 1;
2277 }
2278 }
2fd6b7f5 2279 spin_unlock(&dparent->d_lock);
786a5e15 2280
1da177e4
LT
2281 return 0;
2282}
ec4f8605 2283EXPORT_SYMBOL(d_validate);
1da177e4
LT
2284
2285/*
2286 * When a file is deleted, we have two options:
2287 * - turn this dentry into a negative dentry
2288 * - unhash this dentry and free it.
2289 *
2290 * Usually, we want to just turn this into
2291 * a negative dentry, but if anybody else is
2292 * currently using the dentry or the inode
2293 * we can't do that and we fall back on removing
2294 * it from the hash queues and waiting for
2295 * it to be deleted later when it has no users
2296 */
2297
2298/**
2299 * d_delete - delete a dentry
2300 * @dentry: The dentry to delete
2301 *
2302 * Turn the dentry into a negative dentry if possible, otherwise
2303 * remove it from the hash queues so it can be deleted later
2304 */
2305
2306void d_delete(struct dentry * dentry)
2307{
873feea0 2308 struct inode *inode;
7a91bf7f 2309 int isdir = 0;
1da177e4
LT
2310 /*
2311 * Are we the only user?
2312 */
357f8e65 2313again:
1da177e4 2314 spin_lock(&dentry->d_lock);
873feea0
NP
2315 inode = dentry->d_inode;
2316 isdir = S_ISDIR(inode->i_mode);
98474236 2317 if (dentry->d_lockref.count == 1) {
1fe0c023 2318 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2319 spin_unlock(&dentry->d_lock);
2320 cpu_relax();
2321 goto again;
2322 }
13e3c5e5 2323 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2324 dentry_unlink_inode(dentry);
7a91bf7f 2325 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2326 return;
2327 }
2328
2329 if (!d_unhashed(dentry))
2330 __d_drop(dentry);
2331
2332 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2333
2334 fsnotify_nameremove(dentry, isdir);
1da177e4 2335}
ec4f8605 2336EXPORT_SYMBOL(d_delete);
1da177e4 2337
b07ad996 2338static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2339{
ceb5bdc2 2340 BUG_ON(!d_unhashed(entry));
1879fd6a 2341 hlist_bl_lock(b);
dea3667b 2342 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2343 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2344 hlist_bl_unlock(b);
1da177e4
LT
2345}
2346
770bfad8
DH
2347static void _d_rehash(struct dentry * entry)
2348{
2349 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2350}
2351
1da177e4
LT
2352/**
2353 * d_rehash - add an entry back to the hash
2354 * @entry: dentry to add to the hash
2355 *
2356 * Adds a dentry to the hash according to its name.
2357 */
2358
2359void d_rehash(struct dentry * entry)
2360{
1da177e4 2361 spin_lock(&entry->d_lock);
770bfad8 2362 _d_rehash(entry);
1da177e4 2363 spin_unlock(&entry->d_lock);
1da177e4 2364}
ec4f8605 2365EXPORT_SYMBOL(d_rehash);
1da177e4 2366
fb2d5b86
NP
2367/**
2368 * dentry_update_name_case - update case insensitive dentry with a new name
2369 * @dentry: dentry to be updated
2370 * @name: new name
2371 *
2372 * Update a case insensitive dentry with new case of name.
2373 *
2374 * dentry must have been returned by d_lookup with name @name. Old and new
2375 * name lengths must match (ie. no d_compare which allows mismatched name
2376 * lengths).
2377 *
2378 * Parent inode i_mutex must be held over d_lookup and into this call (to
2379 * keep renames and concurrent inserts, and readdir(2) away).
2380 */
2381void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2382{
7ebfa57f 2383 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2384 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2385
fb2d5b86 2386 spin_lock(&dentry->d_lock);
31e6b01f 2387 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2388 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2389 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2390 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2391}
2392EXPORT_SYMBOL(dentry_update_name_case);
2393
1da177e4
LT
2394static void switch_names(struct dentry *dentry, struct dentry *target)
2395{
2396 if (dname_external(target)) {
2397 if (dname_external(dentry)) {
2398 /*
2399 * Both external: swap the pointers
2400 */
9a8d5bb4 2401 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2402 } else {
2403 /*
2404 * dentry:internal, target:external. Steal target's
2405 * storage and make target internal.
2406 */
321bcf92
BF
2407 memcpy(target->d_iname, dentry->d_name.name,
2408 dentry->d_name.len + 1);
1da177e4
LT
2409 dentry->d_name.name = target->d_name.name;
2410 target->d_name.name = target->d_iname;
2411 }
2412 } else {
2413 if (dname_external(dentry)) {
2414 /*
2415 * dentry:external, target:internal. Give dentry's
2416 * storage to target and make dentry internal
2417 */
2418 memcpy(dentry->d_iname, target->d_name.name,
2419 target->d_name.len + 1);
2420 target->d_name.name = dentry->d_name.name;
2421 dentry->d_name.name = dentry->d_iname;
2422 } else {
2423 /*
2424 * Both are internal. Just copy target to dentry
2425 */
2426 memcpy(dentry->d_iname, target->d_name.name,
2427 target->d_name.len + 1);
dc711ca3
AV
2428 dentry->d_name.len = target->d_name.len;
2429 return;
1da177e4
LT
2430 }
2431 }
9a8d5bb4 2432 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2433}
2434
2fd6b7f5
NP
2435static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2436{
2437 /*
2438 * XXXX: do we really need to take target->d_lock?
2439 */
2440 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2441 spin_lock(&target->d_parent->d_lock);
2442 else {
2443 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2444 spin_lock(&dentry->d_parent->d_lock);
2445 spin_lock_nested(&target->d_parent->d_lock,
2446 DENTRY_D_LOCK_NESTED);
2447 } else {
2448 spin_lock(&target->d_parent->d_lock);
2449 spin_lock_nested(&dentry->d_parent->d_lock,
2450 DENTRY_D_LOCK_NESTED);
2451 }
2452 }
2453 if (target < dentry) {
2454 spin_lock_nested(&target->d_lock, 2);
2455 spin_lock_nested(&dentry->d_lock, 3);
2456 } else {
2457 spin_lock_nested(&dentry->d_lock, 2);
2458 spin_lock_nested(&target->d_lock, 3);
2459 }
2460}
2461
2462static void dentry_unlock_parents_for_move(struct dentry *dentry,
2463 struct dentry *target)
2464{
2465 if (target->d_parent != dentry->d_parent)
2466 spin_unlock(&dentry->d_parent->d_lock);
2467 if (target->d_parent != target)
2468 spin_unlock(&target->d_parent->d_lock);
2469}
2470
1da177e4 2471/*
2fd6b7f5
NP
2472 * When switching names, the actual string doesn't strictly have to
2473 * be preserved in the target - because we're dropping the target
2474 * anyway. As such, we can just do a simple memcpy() to copy over
2475 * the new name before we switch.
2476 *
2477 * Note that we have to be a lot more careful about getting the hash
2478 * switched - we have to switch the hash value properly even if it
2479 * then no longer matches the actual (corrupted) string of the target.
2480 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2481 */
9eaef27b 2482/*
18367501 2483 * __d_move - move a dentry
1da177e4
LT
2484 * @dentry: entry to move
2485 * @target: new dentry
2486 *
2487 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2488 * dcache entries should not be moved in this way. Caller must hold
2489 * rename_lock, the i_mutex of the source and target directories,
2490 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2491 */
18367501 2492static void __d_move(struct dentry * dentry, struct dentry * target)
1da177e4 2493{
1da177e4
LT
2494 if (!dentry->d_inode)
2495 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2496
2fd6b7f5
NP
2497 BUG_ON(d_ancestor(dentry, target));
2498 BUG_ON(d_ancestor(target, dentry));
2499
2fd6b7f5 2500 dentry_lock_for_move(dentry, target);
1da177e4 2501
31e6b01f
NP
2502 write_seqcount_begin(&dentry->d_seq);
2503 write_seqcount_begin(&target->d_seq);
2504
ceb5bdc2
NP
2505 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2506
2507 /*
2508 * Move the dentry to the target hash queue. Don't bother checking
2509 * for the same hash queue because of how unlikely it is.
2510 */
2511 __d_drop(dentry);
789680d1 2512 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4
LT
2513
2514 /* Unhash the target: dput() will then get rid of it */
2515 __d_drop(target);
2516
5160ee6f
ED
2517 list_del(&dentry->d_u.d_child);
2518 list_del(&target->d_u.d_child);
1da177e4
LT
2519
2520 /* Switch the names.. */
2521 switch_names(dentry, target);
9a8d5bb4 2522 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2523
2524 /* ... and switch the parents */
2525 if (IS_ROOT(dentry)) {
2526 dentry->d_parent = target->d_parent;
2527 target->d_parent = target;
5160ee6f 2528 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2529 } else {
9a8d5bb4 2530 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2531
2532 /* And add them back to the (new) parent lists */
5160ee6f 2533 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2534 }
2535
5160ee6f 2536 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5 2537
31e6b01f
NP
2538 write_seqcount_end(&target->d_seq);
2539 write_seqcount_end(&dentry->d_seq);
2540
2fd6b7f5 2541 dentry_unlock_parents_for_move(dentry, target);
1da177e4 2542 spin_unlock(&target->d_lock);
c32ccd87 2543 fsnotify_d_move(dentry);
1da177e4 2544 spin_unlock(&dentry->d_lock);
18367501
AV
2545}
2546
2547/*
2548 * d_move - move a dentry
2549 * @dentry: entry to move
2550 * @target: new dentry
2551 *
2552 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2553 * dcache entries should not be moved in this way. See the locking
2554 * requirements for __d_move.
18367501
AV
2555 */
2556void d_move(struct dentry *dentry, struct dentry *target)
2557{
2558 write_seqlock(&rename_lock);
2559 __d_move(dentry, target);
1da177e4 2560 write_sequnlock(&rename_lock);
9eaef27b 2561}
ec4f8605 2562EXPORT_SYMBOL(d_move);
1da177e4 2563
e2761a11
OH
2564/**
2565 * d_ancestor - search for an ancestor
2566 * @p1: ancestor dentry
2567 * @p2: child dentry
2568 *
2569 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2570 * an ancestor of p2, else NULL.
9eaef27b 2571 */
e2761a11 2572struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2573{
2574 struct dentry *p;
2575
871c0067 2576 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2577 if (p->d_parent == p1)
e2761a11 2578 return p;
9eaef27b 2579 }
e2761a11 2580 return NULL;
9eaef27b
TM
2581}
2582
2583/*
2584 * This helper attempts to cope with remotely renamed directories
2585 *
2586 * It assumes that the caller is already holding
18367501 2587 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2588 *
2589 * Note: If ever the locking in lock_rename() changes, then please
2590 * remember to update this too...
9eaef27b 2591 */
873feea0
NP
2592static struct dentry *__d_unalias(struct inode *inode,
2593 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2594{
2595 struct mutex *m1 = NULL, *m2 = NULL;
ee3efa91 2596 struct dentry *ret = ERR_PTR(-EBUSY);
9eaef27b
TM
2597
2598 /* If alias and dentry share a parent, then no extra locks required */
2599 if (alias->d_parent == dentry->d_parent)
2600 goto out_unalias;
2601
9eaef27b 2602 /* See lock_rename() */
9eaef27b
TM
2603 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2604 goto out_err;
2605 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2606 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2607 goto out_err;
2608 m2 = &alias->d_parent->d_inode->i_mutex;
2609out_unalias:
ee3efa91
AV
2610 if (likely(!d_mountpoint(alias))) {
2611 __d_move(alias, dentry);
2612 ret = alias;
2613 }
9eaef27b 2614out_err:
873feea0 2615 spin_unlock(&inode->i_lock);
9eaef27b
TM
2616 if (m2)
2617 mutex_unlock(m2);
2618 if (m1)
2619 mutex_unlock(m1);
2620 return ret;
2621}
2622
770bfad8
DH
2623/*
2624 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2625 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2626 * returns with anon->d_lock held!
770bfad8
DH
2627 */
2628static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2629{
740da42e 2630 struct dentry *dparent;
770bfad8 2631
2fd6b7f5 2632 dentry_lock_for_move(anon, dentry);
770bfad8 2633
31e6b01f
NP
2634 write_seqcount_begin(&dentry->d_seq);
2635 write_seqcount_begin(&anon->d_seq);
2636
770bfad8 2637 dparent = dentry->d_parent;
770bfad8 2638
2fd6b7f5
NP
2639 switch_names(dentry, anon);
2640 swap(dentry->d_name.hash, anon->d_name.hash);
2641
740da42e
AV
2642 dentry->d_parent = dentry;
2643 list_del_init(&dentry->d_u.d_child);
2644 anon->d_parent = dparent;
9ed53b12 2645 list_move(&anon->d_u.d_child, &dparent->d_subdirs);
770bfad8 2646
31e6b01f
NP
2647 write_seqcount_end(&dentry->d_seq);
2648 write_seqcount_end(&anon->d_seq);
2649
2fd6b7f5
NP
2650 dentry_unlock_parents_for_move(anon, dentry);
2651 spin_unlock(&dentry->d_lock);
2652
2653 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2654 anon->d_flags &= ~DCACHE_DISCONNECTED;
2655}
2656
2657/**
2658 * d_materialise_unique - introduce an inode into the tree
2659 * @dentry: candidate dentry
2660 * @inode: inode to bind to the dentry, to which aliases may be attached
2661 *
2662 * Introduces an dentry into the tree, substituting an extant disconnected
c46c8877
JL
2663 * root directory alias in its place if there is one. Caller must hold the
2664 * i_mutex of the parent directory.
770bfad8
DH
2665 */
2666struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2667{
9eaef27b 2668 struct dentry *actual;
770bfad8
DH
2669
2670 BUG_ON(!d_unhashed(dentry));
2671
770bfad8
DH
2672 if (!inode) {
2673 actual = dentry;
360da900 2674 __d_instantiate(dentry, NULL);
357f8e65
NP
2675 d_rehash(actual);
2676 goto out_nolock;
770bfad8
DH
2677 }
2678
873feea0 2679 spin_lock(&inode->i_lock);
357f8e65 2680
9eaef27b
TM
2681 if (S_ISDIR(inode->i_mode)) {
2682 struct dentry *alias;
2683
2684 /* Does an aliased dentry already exist? */
32ba9c3f 2685 alias = __d_find_alias(inode, 0);
9eaef27b
TM
2686 if (alias) {
2687 actual = alias;
18367501
AV
2688 write_seqlock(&rename_lock);
2689
2690 if (d_ancestor(alias, dentry)) {
2691 /* Check for loops */
2692 actual = ERR_PTR(-ELOOP);
b18dafc8 2693 spin_unlock(&inode->i_lock);
18367501
AV
2694 } else if (IS_ROOT(alias)) {
2695 /* Is this an anonymous mountpoint that we
2696 * could splice into our tree? */
9eaef27b 2697 __d_materialise_dentry(dentry, alias);
18367501 2698 write_sequnlock(&rename_lock);
9eaef27b
TM
2699 __d_drop(alias);
2700 goto found;
18367501
AV
2701 } else {
2702 /* Nope, but we must(!) avoid directory
b18dafc8 2703 * aliasing. This drops inode->i_lock */
18367501 2704 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2705 }
18367501 2706 write_sequnlock(&rename_lock);
dd179946
DH
2707 if (IS_ERR(actual)) {
2708 if (PTR_ERR(actual) == -ELOOP)
2709 pr_warn_ratelimited(
2710 "VFS: Lookup of '%s' in %s %s"
2711 " would have caused loop\n",
2712 dentry->d_name.name,
2713 inode->i_sb->s_type->name,
2714 inode->i_sb->s_id);
9eaef27b 2715 dput(alias);
dd179946 2716 }
9eaef27b
TM
2717 goto out_nolock;
2718 }
770bfad8
DH
2719 }
2720
2721 /* Add a unique reference */
2722 actual = __d_instantiate_unique(dentry, inode);
2723 if (!actual)
2724 actual = dentry;
357f8e65
NP
2725 else
2726 BUG_ON(!d_unhashed(actual));
770bfad8 2727
770bfad8
DH
2728 spin_lock(&actual->d_lock);
2729found:
2730 _d_rehash(actual);
2731 spin_unlock(&actual->d_lock);
873feea0 2732 spin_unlock(&inode->i_lock);
9eaef27b 2733out_nolock:
770bfad8
DH
2734 if (actual == dentry) {
2735 security_d_instantiate(dentry, inode);
2736 return NULL;
2737 }
2738
2739 iput(inode);
2740 return actual;
770bfad8 2741}
ec4f8605 2742EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2743
cdd16d02 2744static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2745{
2746 *buflen -= namelen;
2747 if (*buflen < 0)
2748 return -ENAMETOOLONG;
2749 *buffer -= namelen;
2750 memcpy(*buffer, str, namelen);
2751 return 0;
2752}
2753
232d2d60
WL
2754/**
2755 * prepend_name - prepend a pathname in front of current buffer pointer
18129977
WL
2756 * @buffer: buffer pointer
2757 * @buflen: allocated length of the buffer
2758 * @name: name string and length qstr structure
232d2d60
WL
2759 *
2760 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2761 * make sure that either the old or the new name pointer and length are
2762 * fetched. However, there may be mismatch between length and pointer.
2763 * The length cannot be trusted, we need to copy it byte-by-byte until
2764 * the length is reached or a null byte is found. It also prepends "/" at
2765 * the beginning of the name. The sequence number check at the caller will
2766 * retry it again when a d_move() does happen. So any garbage in the buffer
2767 * due to mismatched pointer and length will be discarded.
2768 */
cdd16d02
MS
2769static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2770{
232d2d60
WL
2771 const char *dname = ACCESS_ONCE(name->name);
2772 u32 dlen = ACCESS_ONCE(name->len);
2773 char *p;
2774
2775 if (*buflen < dlen + 1)
2776 return -ENAMETOOLONG;
2777 *buflen -= dlen + 1;
2778 p = *buffer -= dlen + 1;
2779 *p++ = '/';
2780 while (dlen--) {
2781 char c = *dname++;
2782 if (!c)
2783 break;
2784 *p++ = c;
2785 }
2786 return 0;
cdd16d02
MS
2787}
2788
1da177e4 2789/**
208898c1 2790 * prepend_path - Prepend path string to a buffer
9d1bc601 2791 * @path: the dentry/vfsmount to report
02125a82 2792 * @root: root vfsmnt/dentry
f2eb6575
MS
2793 * @buffer: pointer to the end of the buffer
2794 * @buflen: pointer to buffer length
552ce544 2795 *
18129977
WL
2796 * The function will first try to write out the pathname without taking any
2797 * lock other than the RCU read lock to make sure that dentries won't go away.
2798 * It only checks the sequence number of the global rename_lock as any change
2799 * in the dentry's d_seq will be preceded by changes in the rename_lock
2800 * sequence number. If the sequence number had been changed, it will restart
2801 * the whole pathname back-tracing sequence again by taking the rename_lock.
2802 * In this case, there is no need to take the RCU read lock as the recursive
2803 * parent pointer references will keep the dentry chain alive as long as no
2804 * rename operation is performed.
1da177e4 2805 */
02125a82
AV
2806static int prepend_path(const struct path *path,
2807 const struct path *root,
f2eb6575 2808 char **buffer, int *buflen)
1da177e4 2809{
9d1bc601
MS
2810 struct dentry *dentry = path->dentry;
2811 struct vfsmount *vfsmnt = path->mnt;
0714a533 2812 struct mount *mnt = real_mount(vfsmnt);
f2eb6575 2813 int error = 0;
232d2d60
WL
2814 unsigned seq = 0;
2815 char *bptr;
2816 int blen;
6092d048 2817
48f5ec21 2818 rcu_read_lock();
232d2d60
WL
2819restart:
2820 bptr = *buffer;
2821 blen = *buflen;
2822 read_seqbegin_or_lock(&rename_lock, &seq);
f2eb6575 2823 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2824 struct dentry * parent;
2825
1da177e4 2826 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
552ce544 2827 /* Global root? */
232d2d60
WL
2828 if (mnt_has_parent(mnt)) {
2829 dentry = mnt->mnt_mountpoint;
2830 mnt = mnt->mnt_parent;
2831 vfsmnt = &mnt->mnt;
2832 continue;
2833 }
2834 /*
2835 * Filesystems needing to implement special "root names"
2836 * should do so with ->d_dname()
2837 */
2838 if (IS_ROOT(dentry) &&
2839 (dentry->d_name.len != 1 ||
2840 dentry->d_name.name[0] != '/')) {
2841 WARN(1, "Root dentry has weird name <%.*s>\n",
2842 (int) dentry->d_name.len,
2843 dentry->d_name.name);
2844 }
2845 if (!error)
2846 error = is_mounted(vfsmnt) ? 1 : 2;
2847 break;
1da177e4
LT
2848 }
2849 parent = dentry->d_parent;
2850 prefetch(parent);
232d2d60 2851 error = prepend_name(&bptr, &blen, &dentry->d_name);
f2eb6575
MS
2852 if (error)
2853 break;
2854
1da177e4
LT
2855 dentry = parent;
2856 }
48f5ec21
AV
2857 if (!(seq & 1))
2858 rcu_read_unlock();
2859 if (need_seqretry(&rename_lock, seq)) {
2860 seq = 1;
232d2d60 2861 goto restart;
48f5ec21
AV
2862 }
2863 done_seqretry(&rename_lock, seq);
1da177e4 2864
232d2d60
WL
2865 if (error >= 0 && bptr == *buffer) {
2866 if (--blen < 0)
2867 error = -ENAMETOOLONG;
2868 else
2869 *--bptr = '/';
2870 }
2871 *buffer = bptr;
2872 *buflen = blen;
7ea600b5 2873 return error;
f2eb6575 2874}
be285c71 2875
f2eb6575
MS
2876/**
2877 * __d_path - return the path of a dentry
2878 * @path: the dentry/vfsmount to report
02125a82 2879 * @root: root vfsmnt/dentry
cd956a1c 2880 * @buf: buffer to return value in
f2eb6575
MS
2881 * @buflen: buffer length
2882 *
ffd1f4ed 2883 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2884 *
2885 * Returns a pointer into the buffer or an error code if the
2886 * path was too long.
2887 *
be148247 2888 * "buflen" should be positive.
f2eb6575 2889 *
02125a82 2890 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 2891 */
02125a82
AV
2892char *__d_path(const struct path *path,
2893 const struct path *root,
f2eb6575
MS
2894 char *buf, int buflen)
2895{
2896 char *res = buf + buflen;
2897 int error;
2898
2899 prepend(&res, &buflen, "\0", 1);
7ea600b5 2900 br_read_lock(&vfsmount_lock);
f2eb6575 2901 error = prepend_path(path, root, &res, &buflen);
7ea600b5 2902 br_read_unlock(&vfsmount_lock);
be148247 2903
02125a82
AV
2904 if (error < 0)
2905 return ERR_PTR(error);
2906 if (error > 0)
2907 return NULL;
2908 return res;
2909}
2910
2911char *d_absolute_path(const struct path *path,
2912 char *buf, int buflen)
2913{
2914 struct path root = {};
2915 char *res = buf + buflen;
2916 int error;
2917
2918 prepend(&res, &buflen, "\0", 1);
7ea600b5 2919 br_read_lock(&vfsmount_lock);
02125a82 2920 error = prepend_path(path, &root, &res, &buflen);
7ea600b5 2921 br_read_unlock(&vfsmount_lock);
02125a82
AV
2922
2923 if (error > 1)
2924 error = -EINVAL;
2925 if (error < 0)
f2eb6575 2926 return ERR_PTR(error);
f2eb6575 2927 return res;
1da177e4
LT
2928}
2929
ffd1f4ed
MS
2930/*
2931 * same as __d_path but appends "(deleted)" for unlinked files.
2932 */
02125a82
AV
2933static int path_with_deleted(const struct path *path,
2934 const struct path *root,
2935 char **buf, int *buflen)
ffd1f4ed
MS
2936{
2937 prepend(buf, buflen, "\0", 1);
2938 if (d_unlinked(path->dentry)) {
2939 int error = prepend(buf, buflen, " (deleted)", 10);
2940 if (error)
2941 return error;
2942 }
2943
2944 return prepend_path(path, root, buf, buflen);
2945}
2946
8df9d1a4
MS
2947static int prepend_unreachable(char **buffer, int *buflen)
2948{
2949 return prepend(buffer, buflen, "(unreachable)", 13);
2950}
2951
68f0d9d9
LT
2952static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
2953{
2954 unsigned seq;
2955
2956 do {
2957 seq = read_seqcount_begin(&fs->seq);
2958 *root = fs->root;
2959 } while (read_seqcount_retry(&fs->seq, seq));
2960}
2961
a03a8a70
JB
2962/**
2963 * d_path - return the path of a dentry
cf28b486 2964 * @path: path to report
a03a8a70
JB
2965 * @buf: buffer to return value in
2966 * @buflen: buffer length
2967 *
2968 * Convert a dentry into an ASCII path name. If the entry has been deleted
2969 * the string " (deleted)" is appended. Note that this is ambiguous.
2970 *
52afeefb
AV
2971 * Returns a pointer into the buffer or an error code if the path was
2972 * too long. Note: Callers should use the returned pointer, not the passed
2973 * in buffer, to use the name! The implementation often starts at an offset
2974 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 2975 *
31f3e0b3 2976 * "buflen" should be positive.
a03a8a70 2977 */
20d4fdc1 2978char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 2979{
ffd1f4ed 2980 char *res = buf + buflen;
6ac08c39 2981 struct path root;
ffd1f4ed 2982 int error;
1da177e4 2983
c23fbb6b
ED
2984 /*
2985 * We have various synthetic filesystems that never get mounted. On
2986 * these filesystems dentries are never used for lookup purposes, and
2987 * thus don't need to be hashed. They also don't need a name until a
2988 * user wants to identify the object in /proc/pid/fd/. The little hack
2989 * below allows us to generate a name for these objects on demand:
2990 */
cf28b486
JB
2991 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2992 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 2993
68f0d9d9
LT
2994 rcu_read_lock();
2995 get_fs_root_rcu(current->fs, &root);
7ea600b5 2996 br_read_lock(&vfsmount_lock);
02125a82 2997 error = path_with_deleted(path, &root, &res, &buflen);
7ea600b5 2998 br_read_unlock(&vfsmount_lock);
68f0d9d9
LT
2999 rcu_read_unlock();
3000
02125a82 3001 if (error < 0)
ffd1f4ed 3002 res = ERR_PTR(error);
1da177e4
LT
3003 return res;
3004}
ec4f8605 3005EXPORT_SYMBOL(d_path);
1da177e4 3006
c23fbb6b
ED
3007/*
3008 * Helper function for dentry_operations.d_dname() members
3009 */
3010char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3011 const char *fmt, ...)
3012{
3013 va_list args;
3014 char temp[64];
3015 int sz;
3016
3017 va_start(args, fmt);
3018 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3019 va_end(args);
3020
3021 if (sz > sizeof(temp) || sz > buflen)
3022 return ERR_PTR(-ENAMETOOLONG);
3023
3024 buffer += buflen - sz;
3025 return memcpy(buffer, temp, sz);
3026}
3027
118b2302
AV
3028char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3029{
3030 char *end = buffer + buflen;
3031 /* these dentries are never renamed, so d_lock is not needed */
3032 if (prepend(&end, &buflen, " (deleted)", 11) ||
232d2d60 3033 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
118b2302
AV
3034 prepend(&end, &buflen, "/", 1))
3035 end = ERR_PTR(-ENAMETOOLONG);
232d2d60 3036 return end;
118b2302
AV
3037}
3038
6092d048
RP
3039/*
3040 * Write full pathname from the root of the filesystem into the buffer.
3041 */
ec2447c2 3042static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
6092d048 3043{
232d2d60
WL
3044 char *end, *retval;
3045 int len, seq = 0;
3046 int error = 0;
6092d048 3047
48f5ec21 3048 rcu_read_lock();
232d2d60
WL
3049restart:
3050 end = buf + buflen;
3051 len = buflen;
3052 prepend(&end, &len, "\0", 1);
6092d048
RP
3053 if (buflen < 1)
3054 goto Elong;
3055 /* Get '/' right */
3056 retval = end-1;
3057 *retval = '/';
232d2d60 3058 read_seqbegin_or_lock(&rename_lock, &seq);
cdd16d02
MS
3059 while (!IS_ROOT(dentry)) {
3060 struct dentry *parent = dentry->d_parent;
9abca360 3061 int error;
6092d048 3062
6092d048 3063 prefetch(parent);
232d2d60
WL
3064 error = prepend_name(&end, &len, &dentry->d_name);
3065 if (error)
3066 break;
6092d048
RP
3067
3068 retval = end;
3069 dentry = parent;
3070 }
48f5ec21
AV
3071 if (!(seq & 1))
3072 rcu_read_unlock();
3073 if (need_seqretry(&rename_lock, seq)) {
3074 seq = 1;
232d2d60 3075 goto restart;
48f5ec21
AV
3076 }
3077 done_seqretry(&rename_lock, seq);
232d2d60
WL
3078 if (error)
3079 goto Elong;
c103135c
AV
3080 return retval;
3081Elong:
3082 return ERR_PTR(-ENAMETOOLONG);
3083}
ec2447c2
NP
3084
3085char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3086{
232d2d60 3087 return __dentry_path(dentry, buf, buflen);
ec2447c2
NP
3088}
3089EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
3090
3091char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3092{
3093 char *p = NULL;
3094 char *retval;
3095
c103135c
AV
3096 if (d_unlinked(dentry)) {
3097 p = buf + buflen;
3098 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3099 goto Elong;
3100 buflen++;
3101 }
3102 retval = __dentry_path(dentry, buf, buflen);
c103135c
AV
3103 if (!IS_ERR(retval) && p)
3104 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
3105 return retval;
3106Elong:
6092d048
RP
3107 return ERR_PTR(-ENAMETOOLONG);
3108}
3109
8b19e341
LT
3110static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3111 struct path *pwd)
5762482f 3112{
8b19e341
LT
3113 unsigned seq;
3114
3115 do {
3116 seq = read_seqcount_begin(&fs->seq);
3117 *root = fs->root;
3118 *pwd = fs->pwd;
3119 } while (read_seqcount_retry(&fs->seq, seq));
5762482f
LT
3120}
3121
1da177e4
LT
3122/*
3123 * NOTE! The user-level library version returns a
3124 * character pointer. The kernel system call just
3125 * returns the length of the buffer filled (which
3126 * includes the ending '\0' character), or a negative
3127 * error value. So libc would do something like
3128 *
3129 * char *getcwd(char * buf, size_t size)
3130 * {
3131 * int retval;
3132 *
3133 * retval = sys_getcwd(buf, size);
3134 * if (retval >= 0)
3135 * return buf;
3136 * errno = -retval;
3137 * return NULL;
3138 * }
3139 */
3cdad428 3140SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 3141{
552ce544 3142 int error;
6ac08c39 3143 struct path pwd, root;
3272c544 3144 char *page = __getname();
1da177e4
LT
3145
3146 if (!page)
3147 return -ENOMEM;
3148
8b19e341
LT
3149 rcu_read_lock();
3150 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
1da177e4 3151
552ce544 3152 error = -ENOENT;
7ea600b5 3153 br_read_lock(&vfsmount_lock);
f3da392e 3154 if (!d_unlinked(pwd.dentry)) {
552ce544 3155 unsigned long len;
3272c544
LT
3156 char *cwd = page + PATH_MAX;
3157 int buflen = PATH_MAX;
1da177e4 3158
8df9d1a4 3159 prepend(&cwd, &buflen, "\0", 1);
02125a82 3160 error = prepend_path(&pwd, &root, &cwd, &buflen);
7ea600b5 3161 br_read_unlock(&vfsmount_lock);
ff812d72 3162 rcu_read_unlock();
552ce544 3163
02125a82 3164 if (error < 0)
552ce544
LT
3165 goto out;
3166
8df9d1a4 3167 /* Unreachable from current root */
02125a82 3168 if (error > 0) {
8df9d1a4
MS
3169 error = prepend_unreachable(&cwd, &buflen);
3170 if (error)
3171 goto out;
3172 }
3173
552ce544 3174 error = -ERANGE;
3272c544 3175 len = PATH_MAX + page - cwd;
552ce544
LT
3176 if (len <= size) {
3177 error = len;
3178 if (copy_to_user(buf, cwd, len))
3179 error = -EFAULT;
3180 }
949854d0 3181 } else {
7ea600b5 3182 br_read_unlock(&vfsmount_lock);
ff812d72 3183 rcu_read_unlock();
949854d0 3184 }
1da177e4
LT
3185
3186out:
3272c544 3187 __putname(page);
1da177e4
LT
3188 return error;
3189}
3190
3191/*
3192 * Test whether new_dentry is a subdirectory of old_dentry.
3193 *
3194 * Trivially implemented using the dcache structure
3195 */
3196
3197/**
3198 * is_subdir - is new dentry a subdirectory of old_dentry
3199 * @new_dentry: new dentry
3200 * @old_dentry: old dentry
3201 *
3202 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3203 * Returns 0 otherwise.
3204 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3205 */
3206
e2761a11 3207int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
3208{
3209 int result;
949854d0 3210 unsigned seq;
1da177e4 3211
e2761a11
OH
3212 if (new_dentry == old_dentry)
3213 return 1;
3214
e2761a11 3215 do {
1da177e4 3216 /* for restarting inner loop in case of seq retry */
1da177e4 3217 seq = read_seqbegin(&rename_lock);
949854d0
NP
3218 /*
3219 * Need rcu_readlock to protect against the d_parent trashing
3220 * due to d_move
3221 */
3222 rcu_read_lock();
e2761a11 3223 if (d_ancestor(old_dentry, new_dentry))
1da177e4 3224 result = 1;
e2761a11
OH
3225 else
3226 result = 0;
949854d0 3227 rcu_read_unlock();
1da177e4 3228 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3229
3230 return result;
3231}
3232
db14fc3a 3233static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3234{
db14fc3a
MS
3235 struct dentry *root = data;
3236 if (dentry != root) {
3237 if (d_unhashed(dentry) || !dentry->d_inode)
3238 return D_WALK_SKIP;
1da177e4 3239
01ddc4ed
MS
3240 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3241 dentry->d_flags |= DCACHE_GENOCIDE;
3242 dentry->d_lockref.count--;
3243 }
1da177e4 3244 }
db14fc3a
MS
3245 return D_WALK_CONTINUE;
3246}
58db63d0 3247
db14fc3a
MS
3248void d_genocide(struct dentry *parent)
3249{
3250 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3251}
3252
60545d0d 3253void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3254{
60545d0d
AV
3255 inode_dec_link_count(inode);
3256 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3257 !hlist_unhashed(&dentry->d_alias) ||
3258 !d_unlinked(dentry));
3259 spin_lock(&dentry->d_parent->d_lock);
3260 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3261 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3262 (unsigned long long)inode->i_ino);
3263 spin_unlock(&dentry->d_lock);
3264 spin_unlock(&dentry->d_parent->d_lock);
3265 d_instantiate(dentry, inode);
1da177e4 3266}
60545d0d 3267EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3268
3269static __initdata unsigned long dhash_entries;
3270static int __init set_dhash_entries(char *str)
3271{
3272 if (!str)
3273 return 0;
3274 dhash_entries = simple_strtoul(str, &str, 0);
3275 return 1;
3276}
3277__setup("dhash_entries=", set_dhash_entries);
3278
3279static void __init dcache_init_early(void)
3280{
074b8517 3281 unsigned int loop;
1da177e4
LT
3282
3283 /* If hashes are distributed across NUMA nodes, defer
3284 * hash allocation until vmalloc space is available.
3285 */
3286 if (hashdist)
3287 return;
3288
3289 dentry_hashtable =
3290 alloc_large_system_hash("Dentry cache",
b07ad996 3291 sizeof(struct hlist_bl_head),
1da177e4
LT
3292 dhash_entries,
3293 13,
3294 HASH_EARLY,
3295 &d_hash_shift,
3296 &d_hash_mask,
31fe62b9 3297 0,
1da177e4
LT
3298 0);
3299
074b8517 3300 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3301 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3302}
3303
74bf17cf 3304static void __init dcache_init(void)
1da177e4 3305{
074b8517 3306 unsigned int loop;
1da177e4
LT
3307
3308 /*
3309 * A constructor could be added for stable state like the lists,
3310 * but it is probably not worth it because of the cache nature
3311 * of the dcache.
3312 */
0a31bd5f
CL
3313 dentry_cache = KMEM_CACHE(dentry,
3314 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
3315
3316 /* Hash may have been set up in dcache_init_early */
3317 if (!hashdist)
3318 return;
3319
3320 dentry_hashtable =
3321 alloc_large_system_hash("Dentry cache",
b07ad996 3322 sizeof(struct hlist_bl_head),
1da177e4
LT
3323 dhash_entries,
3324 13,
3325 0,
3326 &d_hash_shift,
3327 &d_hash_mask,
31fe62b9 3328 0,
1da177e4
LT
3329 0);
3330
074b8517 3331 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3332 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3333}
3334
3335/* SLAB cache for __getname() consumers */
e18b890b 3336struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3337EXPORT_SYMBOL(names_cachep);
1da177e4 3338
1da177e4
LT
3339EXPORT_SYMBOL(d_genocide);
3340
1da177e4
LT
3341void __init vfs_caches_init_early(void)
3342{
3343 dcache_init_early();
3344 inode_init_early();
3345}
3346
3347void __init vfs_caches_init(unsigned long mempages)
3348{
3349 unsigned long reserve;
3350
3351 /* Base hash sizes on available memory, with a reserve equal to
3352 150% of current kernel size */
3353
3354 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3355 mempages -= reserve;
3356
3357 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3358 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3359
74bf17cf
DC
3360 dcache_init();
3361 inode_init();
1da177e4 3362 files_init(mempages);
74bf17cf 3363 mnt_init();
1da177e4
LT
3364 bdev_cache_init();
3365 chrdev_init();
3366}
This page took 1.234794 seconds and 5 git commands to generate.