fuse: rcu-delay freeing fuse_conn
[deliverable/linux.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
f6041567 40#include <linux/list_lru.h>
07f3f05c 41#include "internal.h"
b2dba1af 42#include "mount.h"
1da177e4 43
789680d1
NP
44/*
45 * Usage:
873feea0
NP
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
19156840 52 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
53 * - the dcache lru lists and counters
54 * d_lock protects:
55 * - d_flags
56 * - d_name
57 * - d_lru
b7ab39f6 58 * - d_count
da502956 59 * - d_unhashed()
2fd6b7f5
NP
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
b23fb0a6 62 * - d_alias, d_inode
789680d1
NP
63 *
64 * Ordering:
873feea0 65 * dentry->d_inode->i_lock
b5c84bf6 66 * dentry->d_lock
19156840 67 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2
NP
68 * dcache_hash_bucket lock
69 * s_anon lock
789680d1 70 *
da502956
NP
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
73 * ...
74 * dentry->d_parent->d_lock
75 * dentry->d_lock
76 *
77 * If no ancestor relationship:
789680d1
NP
78 * if (dentry1 < dentry2)
79 * dentry1->d_lock
80 * dentry2->d_lock
81 */
fa3536cc 82int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
83EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84
74c3cbe3 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 86
949854d0 87EXPORT_SYMBOL(rename_lock);
1da177e4 88
e18b890b 89static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 90
232d2d60
WL
91/**
92 * read_seqbegin_or_lock - begin a sequence number check or locking block
18129977
WL
93 * @lock: sequence lock
94 * @seq : sequence number to be checked
232d2d60
WL
95 *
96 * First try it once optimistically without taking the lock. If that fails,
97 * take the lock. The sequence number is also used as a marker for deciding
98 * whether to be a reader (even) or writer (odd).
99 * N.B. seq must be initialized to an even number to begin with.
100 */
101static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq)
102{
48f5ec21 103 if (!(*seq & 1)) /* Even */
232d2d60 104 *seq = read_seqbegin(lock);
48f5ec21 105 else /* Odd */
18129977 106 read_seqlock_excl(lock);
232d2d60
WL
107}
108
48f5ec21 109static inline int need_seqretry(seqlock_t *lock, int seq)
232d2d60 110{
48f5ec21
AV
111 return !(seq & 1) && read_seqretry(lock, seq);
112}
113
114static inline void done_seqretry(seqlock_t *lock, int seq)
115{
116 if (seq & 1)
18129977 117 read_sequnlock_excl(lock);
232d2d60
WL
118}
119
1da177e4
LT
120/*
121 * This is the single most critical data structure when it comes
122 * to the dcache: the hashtable for lookups. Somebody should try
123 * to make this good - I've just made it work.
124 *
125 * This hash-function tries to avoid losing too many bits of hash
126 * information, yet avoid using a prime hash-size or similar.
127 */
128#define D_HASHBITS d_hash_shift
129#define D_HASHMASK d_hash_mask
130
fa3536cc
ED
131static unsigned int d_hash_mask __read_mostly;
132static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 133
b07ad996 134static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 135
8966be90 136static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
6d7d1a0d 137 unsigned int hash)
ceb5bdc2 138{
6d7d1a0d
LT
139 hash += (unsigned long) parent / L1_CACHE_BYTES;
140 hash = hash + (hash >> D_HASHBITS);
ceb5bdc2
NP
141 return dentry_hashtable + (hash & D_HASHMASK);
142}
143
1da177e4
LT
144/* Statistics gathering. */
145struct dentry_stat_t dentry_stat = {
146 .age_limit = 45,
147};
148
3942c07c 149static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 150static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
151
152#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
153
154/*
155 * Here we resort to our own counters instead of using generic per-cpu counters
156 * for consistency with what the vfs inode code does. We are expected to harvest
157 * better code and performance by having our own specialized counters.
158 *
159 * Please note that the loop is done over all possible CPUs, not over all online
160 * CPUs. The reason for this is that we don't want to play games with CPUs going
161 * on and off. If one of them goes off, we will just keep their counters.
162 *
163 * glommer: See cffbc8a for details, and if you ever intend to change this,
164 * please update all vfs counters to match.
165 */
3942c07c 166static long get_nr_dentry(void)
3e880fb5
NP
167{
168 int i;
3942c07c 169 long sum = 0;
3e880fb5
NP
170 for_each_possible_cpu(i)
171 sum += per_cpu(nr_dentry, i);
172 return sum < 0 ? 0 : sum;
173}
174
62d36c77
DC
175static long get_nr_dentry_unused(void)
176{
177 int i;
178 long sum = 0;
179 for_each_possible_cpu(i)
180 sum += per_cpu(nr_dentry_unused, i);
181 return sum < 0 ? 0 : sum;
182}
183
312d3ca8
CH
184int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
185 size_t *lenp, loff_t *ppos)
186{
3e880fb5 187 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 188 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 189 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
190}
191#endif
192
5483f18e
LT
193/*
194 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
195 * The strings are both count bytes long, and count is non-zero.
196 */
e419b4cc
LT
197#ifdef CONFIG_DCACHE_WORD_ACCESS
198
199#include <asm/word-at-a-time.h>
200/*
201 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
202 * aligned allocation for this particular component. We don't
203 * strictly need the load_unaligned_zeropad() safety, but it
204 * doesn't hurt either.
205 *
206 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
207 * need the careful unaligned handling.
208 */
94753db5 209static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 210{
bfcfaa77 211 unsigned long a,b,mask;
bfcfaa77
LT
212
213 for (;;) {
12f8ad4b 214 a = *(unsigned long *)cs;
e419b4cc 215 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
216 if (tcount < sizeof(unsigned long))
217 break;
218 if (unlikely(a != b))
219 return 1;
220 cs += sizeof(unsigned long);
221 ct += sizeof(unsigned long);
222 tcount -= sizeof(unsigned long);
223 if (!tcount)
224 return 0;
225 }
226 mask = ~(~0ul << tcount*8);
227 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
228}
229
bfcfaa77 230#else
e419b4cc 231
94753db5 232static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 233{
5483f18e
LT
234 do {
235 if (*cs != *ct)
236 return 1;
237 cs++;
238 ct++;
239 tcount--;
240 } while (tcount);
241 return 0;
242}
243
e419b4cc
LT
244#endif
245
94753db5
LT
246static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
247{
6326c71f 248 const unsigned char *cs;
94753db5
LT
249 /*
250 * Be careful about RCU walk racing with rename:
251 * use ACCESS_ONCE to fetch the name pointer.
252 *
253 * NOTE! Even if a rename will mean that the length
254 * was not loaded atomically, we don't care. The
255 * RCU walk will check the sequence count eventually,
256 * and catch it. And we won't overrun the buffer,
257 * because we're reading the name pointer atomically,
258 * and a dentry name is guaranteed to be properly
259 * terminated with a NUL byte.
260 *
261 * End result: even if 'len' is wrong, we'll exit
262 * early because the data cannot match (there can
263 * be no NUL in the ct/tcount data)
264 */
6326c71f
LT
265 cs = ACCESS_ONCE(dentry->d_name.name);
266 smp_read_barrier_depends();
267 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
268}
269
9c82ab9c 270static void __d_free(struct rcu_head *head)
1da177e4 271{
9c82ab9c
CH
272 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
273
b3d9b7a3 274 WARN_ON(!hlist_unhashed(&dentry->d_alias));
1da177e4
LT
275 if (dname_external(dentry))
276 kfree(dentry->d_name.name);
277 kmem_cache_free(dentry_cache, dentry);
278}
279
280/*
b5c84bf6 281 * no locks, please.
1da177e4
LT
282 */
283static void d_free(struct dentry *dentry)
284{
0d98439e 285 BUG_ON((int)dentry->d_lockref.count > 0);
3e880fb5 286 this_cpu_dec(nr_dentry);
1da177e4
LT
287 if (dentry->d_op && dentry->d_op->d_release)
288 dentry->d_op->d_release(dentry);
312d3ca8 289
dea3667b
LT
290 /* if dentry was never visible to RCU, immediate free is OK */
291 if (!(dentry->d_flags & DCACHE_RCUACCESS))
9c82ab9c 292 __d_free(&dentry->d_u.d_rcu);
b3423415 293 else
9c82ab9c 294 call_rcu(&dentry->d_u.d_rcu, __d_free);
1da177e4
LT
295}
296
31e6b01f
NP
297/**
298 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 299 * @dentry: the target dentry
31e6b01f
NP
300 * After this call, in-progress rcu-walk path lookup will fail. This
301 * should be called after unhashing, and after changing d_inode (if
302 * the dentry has not already been unhashed).
303 */
304static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
305{
306 assert_spin_locked(&dentry->d_lock);
307 /* Go through a barrier */
308 write_seqcount_barrier(&dentry->d_seq);
309}
310
1da177e4
LT
311/*
312 * Release the dentry's inode, using the filesystem
31e6b01f
NP
313 * d_iput() operation if defined. Dentry has no refcount
314 * and is unhashed.
1da177e4 315 */
858119e1 316static void dentry_iput(struct dentry * dentry)
31f3e0b3 317 __releases(dentry->d_lock)
873feea0 318 __releases(dentry->d_inode->i_lock)
1da177e4
LT
319{
320 struct inode *inode = dentry->d_inode;
321 if (inode) {
322 dentry->d_inode = NULL;
b3d9b7a3 323 hlist_del_init(&dentry->d_alias);
1da177e4 324 spin_unlock(&dentry->d_lock);
873feea0 325 spin_unlock(&inode->i_lock);
f805fbda
LT
326 if (!inode->i_nlink)
327 fsnotify_inoderemove(inode);
1da177e4
LT
328 if (dentry->d_op && dentry->d_op->d_iput)
329 dentry->d_op->d_iput(dentry, inode);
330 else
331 iput(inode);
332 } else {
333 spin_unlock(&dentry->d_lock);
1da177e4
LT
334 }
335}
336
31e6b01f
NP
337/*
338 * Release the dentry's inode, using the filesystem
339 * d_iput() operation if defined. dentry remains in-use.
340 */
341static void dentry_unlink_inode(struct dentry * dentry)
342 __releases(dentry->d_lock)
873feea0 343 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
344{
345 struct inode *inode = dentry->d_inode;
346 dentry->d_inode = NULL;
b3d9b7a3 347 hlist_del_init(&dentry->d_alias);
31e6b01f
NP
348 dentry_rcuwalk_barrier(dentry);
349 spin_unlock(&dentry->d_lock);
873feea0 350 spin_unlock(&inode->i_lock);
31e6b01f
NP
351 if (!inode->i_nlink)
352 fsnotify_inoderemove(inode);
353 if (dentry->d_op && dentry->d_op->d_iput)
354 dentry->d_op->d_iput(dentry, inode);
355 else
356 iput(inode);
357}
358
89dc77bc
LT
359/*
360 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
361 * is in use - which includes both the "real" per-superblock
362 * LRU list _and_ the DCACHE_SHRINK_LIST use.
363 *
364 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
365 * on the shrink list (ie not on the superblock LRU list).
366 *
367 * The per-cpu "nr_dentry_unused" counters are updated with
368 * the DCACHE_LRU_LIST bit.
369 *
370 * These helper functions make sure we always follow the
371 * rules. d_lock must be held by the caller.
372 */
373#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
374static void d_lru_add(struct dentry *dentry)
375{
376 D_FLAG_VERIFY(dentry, 0);
377 dentry->d_flags |= DCACHE_LRU_LIST;
378 this_cpu_inc(nr_dentry_unused);
379 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
380}
381
382static void d_lru_del(struct dentry *dentry)
383{
384 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
385 dentry->d_flags &= ~DCACHE_LRU_LIST;
386 this_cpu_dec(nr_dentry_unused);
387 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
388}
389
390static void d_shrink_del(struct dentry *dentry)
391{
392 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
393 list_del_init(&dentry->d_lru);
394 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
395 this_cpu_dec(nr_dentry_unused);
396}
397
398static void d_shrink_add(struct dentry *dentry, struct list_head *list)
399{
400 D_FLAG_VERIFY(dentry, 0);
401 list_add(&dentry->d_lru, list);
402 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
403 this_cpu_inc(nr_dentry_unused);
404}
405
406/*
407 * These can only be called under the global LRU lock, ie during the
408 * callback for freeing the LRU list. "isolate" removes it from the
409 * LRU lists entirely, while shrink_move moves it to the indicated
410 * private list.
411 */
412static void d_lru_isolate(struct dentry *dentry)
413{
414 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
415 dentry->d_flags &= ~DCACHE_LRU_LIST;
416 this_cpu_dec(nr_dentry_unused);
417 list_del_init(&dentry->d_lru);
418}
419
420static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
421{
422 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
423 dentry->d_flags |= DCACHE_SHRINK_LIST;
424 list_move_tail(&dentry->d_lru, list);
425}
426
da3bbdd4 427/*
f6041567 428 * dentry_lru_(add|del)_list) must be called with d_lock held.
da3bbdd4
KM
429 */
430static void dentry_lru_add(struct dentry *dentry)
431{
89dc77bc
LT
432 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
433 d_lru_add(dentry);
da3bbdd4
KM
434}
435
f0023bc6
SW
436/*
437 * Remove a dentry with references from the LRU.
dd1f6b2e
DC
438 *
439 * If we are on the shrink list, then we can get to try_prune_one_dentry() and
440 * lose our last reference through the parent walk. In this case, we need to
441 * remove ourselves from the shrink list, not the LRU.
f0023bc6 442 */
da3bbdd4
KM
443static void dentry_lru_del(struct dentry *dentry)
444{
89dc77bc
LT
445 if (dentry->d_flags & DCACHE_LRU_LIST) {
446 if (dentry->d_flags & DCACHE_SHRINK_LIST)
447 return d_shrink_del(dentry);
448 d_lru_del(dentry);
da3bbdd4 449 }
da3bbdd4
KM
450}
451
d52b9086
MS
452/**
453 * d_kill - kill dentry and return parent
454 * @dentry: dentry to kill
ff5fdb61 455 * @parent: parent dentry
d52b9086 456 *
31f3e0b3 457 * The dentry must already be unhashed and removed from the LRU.
d52b9086
MS
458 *
459 * If this is the root of the dentry tree, return NULL.
23044507 460 *
b5c84bf6
NP
461 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
462 * d_kill.
d52b9086 463 */
2fd6b7f5 464static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
31f3e0b3 465 __releases(dentry->d_lock)
2fd6b7f5 466 __releases(parent->d_lock)
873feea0 467 __releases(dentry->d_inode->i_lock)
d52b9086 468{
d52b9086 469 list_del(&dentry->d_u.d_child);
c83ce989
TM
470 /*
471 * Inform try_to_ascend() that we are no longer attached to the
472 * dentry tree
473 */
b161dfa6 474 dentry->d_flags |= DCACHE_DENTRY_KILLED;
2fd6b7f5
NP
475 if (parent)
476 spin_unlock(&parent->d_lock);
d52b9086 477 dentry_iput(dentry);
b7ab39f6
NP
478 /*
479 * dentry_iput drops the locks, at which point nobody (except
480 * transient RCU lookups) can reach this dentry.
481 */
d52b9086 482 d_free(dentry);
871c0067 483 return parent;
d52b9086
MS
484}
485
c6627c60
DH
486/*
487 * Unhash a dentry without inserting an RCU walk barrier or checking that
488 * dentry->d_lock is locked. The caller must take care of that, if
489 * appropriate.
490 */
491static void __d_shrink(struct dentry *dentry)
492{
493 if (!d_unhashed(dentry)) {
494 struct hlist_bl_head *b;
495 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
496 b = &dentry->d_sb->s_anon;
497 else
498 b = d_hash(dentry->d_parent, dentry->d_name.hash);
499
500 hlist_bl_lock(b);
501 __hlist_bl_del(&dentry->d_hash);
502 dentry->d_hash.pprev = NULL;
503 hlist_bl_unlock(b);
504 }
505}
506
789680d1
NP
507/**
508 * d_drop - drop a dentry
509 * @dentry: dentry to drop
510 *
511 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
512 * be found through a VFS lookup any more. Note that this is different from
513 * deleting the dentry - d_delete will try to mark the dentry negative if
514 * possible, giving a successful _negative_ lookup, while d_drop will
515 * just make the cache lookup fail.
516 *
517 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
518 * reason (NFS timeouts or autofs deletes).
519 *
520 * __d_drop requires dentry->d_lock.
521 */
522void __d_drop(struct dentry *dentry)
523{
dea3667b 524 if (!d_unhashed(dentry)) {
c6627c60 525 __d_shrink(dentry);
dea3667b 526 dentry_rcuwalk_barrier(dentry);
789680d1
NP
527 }
528}
529EXPORT_SYMBOL(__d_drop);
530
531void d_drop(struct dentry *dentry)
532{
789680d1
NP
533 spin_lock(&dentry->d_lock);
534 __d_drop(dentry);
535 spin_unlock(&dentry->d_lock);
789680d1
NP
536}
537EXPORT_SYMBOL(d_drop);
538
77812a1e
NP
539/*
540 * Finish off a dentry we've decided to kill.
541 * dentry->d_lock must be held, returns with it unlocked.
542 * If ref is non-zero, then decrement the refcount too.
543 * Returns dentry requiring refcount drop, or NULL if we're done.
544 */
dd1f6b2e
DC
545static inline struct dentry *
546dentry_kill(struct dentry *dentry, int unlock_on_failure)
77812a1e
NP
547 __releases(dentry->d_lock)
548{
873feea0 549 struct inode *inode;
77812a1e
NP
550 struct dentry *parent;
551
873feea0
NP
552 inode = dentry->d_inode;
553 if (inode && !spin_trylock(&inode->i_lock)) {
77812a1e 554relock:
dd1f6b2e
DC
555 if (unlock_on_failure) {
556 spin_unlock(&dentry->d_lock);
557 cpu_relax();
558 }
77812a1e
NP
559 return dentry; /* try again with same dentry */
560 }
561 if (IS_ROOT(dentry))
562 parent = NULL;
563 else
564 parent = dentry->d_parent;
565 if (parent && !spin_trylock(&parent->d_lock)) {
873feea0
NP
566 if (inode)
567 spin_unlock(&inode->i_lock);
77812a1e
NP
568 goto relock;
569 }
31e6b01f 570
0d98439e
LT
571 /*
572 * The dentry is now unrecoverably dead to the world.
573 */
574 lockref_mark_dead(&dentry->d_lockref);
575
f0023bc6 576 /*
f0023bc6
SW
577 * inform the fs via d_prune that this dentry is about to be
578 * unhashed and destroyed.
579 */
590fb51f 580 if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
61572bb1
YZ
581 dentry->d_op->d_prune(dentry);
582
583 dentry_lru_del(dentry);
77812a1e
NP
584 /* if it was on the hash then remove it */
585 __d_drop(dentry);
586 return d_kill(dentry, parent);
587}
588
1da177e4
LT
589/*
590 * This is dput
591 *
592 * This is complicated by the fact that we do not want to put
593 * dentries that are no longer on any hash chain on the unused
594 * list: we'd much rather just get rid of them immediately.
595 *
596 * However, that implies that we have to traverse the dentry
597 * tree upwards to the parents which might _also_ now be
598 * scheduled for deletion (it may have been only waiting for
599 * its last child to go away).
600 *
601 * This tail recursion is done by hand as we don't want to depend
602 * on the compiler to always get this right (gcc generally doesn't).
603 * Real recursion would eat up our stack space.
604 */
605
606/*
607 * dput - release a dentry
608 * @dentry: dentry to release
609 *
610 * Release a dentry. This will drop the usage count and if appropriate
611 * call the dentry unlink method as well as removing it from the queues and
612 * releasing its resources. If the parent dentries were scheduled for release
613 * they too may now get deleted.
1da177e4 614 */
1da177e4
LT
615void dput(struct dentry *dentry)
616{
8aab6a27 617 if (unlikely(!dentry))
1da177e4
LT
618 return;
619
620repeat:
98474236 621 if (lockref_put_or_lock(&dentry->d_lockref))
1da177e4 622 return;
1da177e4 623
8aab6a27
LT
624 /* Unreachable? Get rid of it */
625 if (unlikely(d_unhashed(dentry)))
626 goto kill_it;
627
628 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
1da177e4 629 if (dentry->d_op->d_delete(dentry))
61f3dee4 630 goto kill_it;
1da177e4 631 }
265ac902 632
39e3c955 633 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 634 dentry_lru_add(dentry);
265ac902 635
98474236 636 dentry->d_lockref.count--;
61f3dee4 637 spin_unlock(&dentry->d_lock);
1da177e4
LT
638 return;
639
d52b9086 640kill_it:
dd1f6b2e 641 dentry = dentry_kill(dentry, 1);
d52b9086
MS
642 if (dentry)
643 goto repeat;
1da177e4 644}
ec4f8605 645EXPORT_SYMBOL(dput);
1da177e4
LT
646
647/**
648 * d_invalidate - invalidate a dentry
649 * @dentry: dentry to invalidate
650 *
651 * Try to invalidate the dentry if it turns out to be
652 * possible. If there are other dentries that can be
653 * reached through this one we can't delete it and we
654 * return -EBUSY. On success we return 0.
655 *
656 * no dcache lock.
657 */
658
659int d_invalidate(struct dentry * dentry)
660{
661 /*
662 * If it's already been dropped, return OK.
663 */
da502956 664 spin_lock(&dentry->d_lock);
1da177e4 665 if (d_unhashed(dentry)) {
da502956 666 spin_unlock(&dentry->d_lock);
1da177e4
LT
667 return 0;
668 }
669 /*
670 * Check whether to do a partial shrink_dcache
671 * to get rid of unused child entries.
672 */
673 if (!list_empty(&dentry->d_subdirs)) {
da502956 674 spin_unlock(&dentry->d_lock);
1da177e4 675 shrink_dcache_parent(dentry);
da502956 676 spin_lock(&dentry->d_lock);
1da177e4
LT
677 }
678
679 /*
680 * Somebody else still using it?
681 *
682 * If it's a directory, we can't drop it
683 * for fear of somebody re-populating it
684 * with children (even though dropping it
685 * would make it unreachable from the root,
686 * we might still populate it if it was a
687 * working directory or similar).
50e69630
AV
688 * We also need to leave mountpoints alone,
689 * directory or not.
1da177e4 690 */
98474236 691 if (dentry->d_lockref.count > 1 && dentry->d_inode) {
50e69630 692 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
1da177e4 693 spin_unlock(&dentry->d_lock);
1da177e4
LT
694 return -EBUSY;
695 }
696 }
697
698 __d_drop(dentry);
699 spin_unlock(&dentry->d_lock);
1da177e4
LT
700 return 0;
701}
ec4f8605 702EXPORT_SYMBOL(d_invalidate);
1da177e4 703
b5c84bf6 704/* This must be called with d_lock held */
dc0474be 705static inline void __dget_dlock(struct dentry *dentry)
23044507 706{
98474236 707 dentry->d_lockref.count++;
23044507
NP
708}
709
dc0474be 710static inline void __dget(struct dentry *dentry)
1da177e4 711{
98474236 712 lockref_get(&dentry->d_lockref);
1da177e4
LT
713}
714
b7ab39f6
NP
715struct dentry *dget_parent(struct dentry *dentry)
716{
df3d0bbc 717 int gotref;
b7ab39f6
NP
718 struct dentry *ret;
719
df3d0bbc
WL
720 /*
721 * Do optimistic parent lookup without any
722 * locking.
723 */
724 rcu_read_lock();
725 ret = ACCESS_ONCE(dentry->d_parent);
726 gotref = lockref_get_not_zero(&ret->d_lockref);
727 rcu_read_unlock();
728 if (likely(gotref)) {
729 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
730 return ret;
731 dput(ret);
732 }
733
b7ab39f6 734repeat:
a734eb45
NP
735 /*
736 * Don't need rcu_dereference because we re-check it was correct under
737 * the lock.
738 */
739 rcu_read_lock();
b7ab39f6 740 ret = dentry->d_parent;
a734eb45
NP
741 spin_lock(&ret->d_lock);
742 if (unlikely(ret != dentry->d_parent)) {
743 spin_unlock(&ret->d_lock);
744 rcu_read_unlock();
b7ab39f6
NP
745 goto repeat;
746 }
a734eb45 747 rcu_read_unlock();
98474236
WL
748 BUG_ON(!ret->d_lockref.count);
749 ret->d_lockref.count++;
b7ab39f6 750 spin_unlock(&ret->d_lock);
b7ab39f6
NP
751 return ret;
752}
753EXPORT_SYMBOL(dget_parent);
754
1da177e4
LT
755/**
756 * d_find_alias - grab a hashed alias of inode
757 * @inode: inode in question
32ba9c3f
LT
758 * @want_discon: flag, used by d_splice_alias, to request
759 * that only a DISCONNECTED alias be returned.
1da177e4
LT
760 *
761 * If inode has a hashed alias, or is a directory and has any alias,
762 * acquire the reference to alias and return it. Otherwise return NULL.
763 * Notice that if inode is a directory there can be only one alias and
764 * it can be unhashed only if it has no children, or if it is the root
765 * of a filesystem.
766 *
21c0d8fd 767 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
32ba9c3f
LT
768 * any other hashed alias over that one unless @want_discon is set,
769 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 770 */
32ba9c3f 771static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 772{
da502956 773 struct dentry *alias, *discon_alias;
1da177e4 774
da502956
NP
775again:
776 discon_alias = NULL;
b67bfe0d 777 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
da502956 778 spin_lock(&alias->d_lock);
1da177e4 779 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 780 if (IS_ROOT(alias) &&
da502956 781 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 782 discon_alias = alias;
32ba9c3f 783 } else if (!want_discon) {
dc0474be 784 __dget_dlock(alias);
da502956
NP
785 spin_unlock(&alias->d_lock);
786 return alias;
787 }
788 }
789 spin_unlock(&alias->d_lock);
790 }
791 if (discon_alias) {
792 alias = discon_alias;
793 spin_lock(&alias->d_lock);
794 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
795 if (IS_ROOT(alias) &&
796 (alias->d_flags & DCACHE_DISCONNECTED)) {
dc0474be 797 __dget_dlock(alias);
da502956 798 spin_unlock(&alias->d_lock);
1da177e4
LT
799 return alias;
800 }
801 }
da502956
NP
802 spin_unlock(&alias->d_lock);
803 goto again;
1da177e4 804 }
da502956 805 return NULL;
1da177e4
LT
806}
807
da502956 808struct dentry *d_find_alias(struct inode *inode)
1da177e4 809{
214fda1f
DH
810 struct dentry *de = NULL;
811
b3d9b7a3 812 if (!hlist_empty(&inode->i_dentry)) {
873feea0 813 spin_lock(&inode->i_lock);
32ba9c3f 814 de = __d_find_alias(inode, 0);
873feea0 815 spin_unlock(&inode->i_lock);
214fda1f 816 }
1da177e4
LT
817 return de;
818}
ec4f8605 819EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
820
821/*
822 * Try to kill dentries associated with this inode.
823 * WARNING: you must own a reference to inode.
824 */
825void d_prune_aliases(struct inode *inode)
826{
0cdca3f9 827 struct dentry *dentry;
1da177e4 828restart:
873feea0 829 spin_lock(&inode->i_lock);
b67bfe0d 830 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 831 spin_lock(&dentry->d_lock);
98474236 832 if (!dentry->d_lockref.count) {
590fb51f
YZ
833 /*
834 * inform the fs via d_prune that this dentry
835 * is about to be unhashed and destroyed.
836 */
837 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
838 !d_unhashed(dentry))
839 dentry->d_op->d_prune(dentry);
840
dc0474be 841 __dget_dlock(dentry);
1da177e4
LT
842 __d_drop(dentry);
843 spin_unlock(&dentry->d_lock);
873feea0 844 spin_unlock(&inode->i_lock);
1da177e4
LT
845 dput(dentry);
846 goto restart;
847 }
848 spin_unlock(&dentry->d_lock);
849 }
873feea0 850 spin_unlock(&inode->i_lock);
1da177e4 851}
ec4f8605 852EXPORT_SYMBOL(d_prune_aliases);
1da177e4
LT
853
854/*
77812a1e
NP
855 * Try to throw away a dentry - free the inode, dput the parent.
856 * Requires dentry->d_lock is held, and dentry->d_count == 0.
857 * Releases dentry->d_lock.
d702ccb3 858 *
77812a1e 859 * This may fail if locks cannot be acquired no problem, just try again.
1da177e4 860 */
dd1f6b2e 861static struct dentry * try_prune_one_dentry(struct dentry *dentry)
31f3e0b3 862 __releases(dentry->d_lock)
1da177e4 863{
77812a1e 864 struct dentry *parent;
d52b9086 865
dd1f6b2e 866 parent = dentry_kill(dentry, 0);
d52b9086 867 /*
77812a1e
NP
868 * If dentry_kill returns NULL, we have nothing more to do.
869 * if it returns the same dentry, trylocks failed. In either
870 * case, just loop again.
871 *
872 * Otherwise, we need to prune ancestors too. This is necessary
873 * to prevent quadratic behavior of shrink_dcache_parent(), but
874 * is also expected to be beneficial in reducing dentry cache
875 * fragmentation.
d52b9086 876 */
77812a1e 877 if (!parent)
dd1f6b2e 878 return NULL;
77812a1e 879 if (parent == dentry)
dd1f6b2e 880 return dentry;
77812a1e
NP
881
882 /* Prune ancestors. */
883 dentry = parent;
d52b9086 884 while (dentry) {
98474236 885 if (lockref_put_or_lock(&dentry->d_lockref))
dd1f6b2e
DC
886 return NULL;
887 dentry = dentry_kill(dentry, 1);
d52b9086 888 }
dd1f6b2e 889 return NULL;
1da177e4
LT
890}
891
3049cfe2 892static void shrink_dentry_list(struct list_head *list)
1da177e4 893{
da3bbdd4 894 struct dentry *dentry;
da3bbdd4 895
ec33679d
NP
896 rcu_read_lock();
897 for (;;) {
ec33679d
NP
898 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
899 if (&dentry->d_lru == list)
900 break; /* empty */
89dc77bc
LT
901
902 /*
903 * Get the dentry lock, and re-verify that the dentry is
904 * this on the shrinking list. If it is, we know that
905 * DCACHE_SHRINK_LIST and DCACHE_LRU_LIST are set.
906 */
ec33679d
NP
907 spin_lock(&dentry->d_lock);
908 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
909 spin_unlock(&dentry->d_lock);
23044507
NP
910 continue;
911 }
912
dd1f6b2e
DC
913 /*
914 * The dispose list is isolated and dentries are not accounted
915 * to the LRU here, so we can simply remove it from the list
916 * here regardless of whether it is referenced or not.
917 */
89dc77bc 918 d_shrink_del(dentry);
dd1f6b2e 919
1da177e4
LT
920 /*
921 * We found an inuse dentry which was not removed from
dd1f6b2e 922 * the LRU because of laziness during lookup. Do not free it.
1da177e4 923 */
98474236 924 if (dentry->d_lockref.count) {
da3bbdd4 925 spin_unlock(&dentry->d_lock);
1da177e4
LT
926 continue;
927 }
ec33679d 928 rcu_read_unlock();
77812a1e 929
89dc77bc
LT
930 /*
931 * If 'try_to_prune()' returns a dentry, it will
932 * be the same one we passed in, and d_lock will
933 * have been held the whole time, so it will not
934 * have been added to any other lists. We failed
935 * to get the inode lock.
936 *
937 * We just add it back to the shrink list.
938 */
dd1f6b2e 939 dentry = try_prune_one_dentry(dentry);
77812a1e 940
ec33679d 941 rcu_read_lock();
dd1f6b2e 942 if (dentry) {
89dc77bc 943 d_shrink_add(dentry, list);
dd1f6b2e
DC
944 spin_unlock(&dentry->d_lock);
945 }
da3bbdd4 946 }
ec33679d 947 rcu_read_unlock();
3049cfe2
CH
948}
949
f6041567
DC
950static enum lru_status
951dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
952{
953 struct list_head *freeable = arg;
954 struct dentry *dentry = container_of(item, struct dentry, d_lru);
955
956
957 /*
958 * we are inverting the lru lock/dentry->d_lock here,
959 * so use a trylock. If we fail to get the lock, just skip
960 * it
961 */
962 if (!spin_trylock(&dentry->d_lock))
963 return LRU_SKIP;
964
965 /*
966 * Referenced dentries are still in use. If they have active
967 * counts, just remove them from the LRU. Otherwise give them
968 * another pass through the LRU.
969 */
970 if (dentry->d_lockref.count) {
89dc77bc 971 d_lru_isolate(dentry);
f6041567
DC
972 spin_unlock(&dentry->d_lock);
973 return LRU_REMOVED;
974 }
975
976 if (dentry->d_flags & DCACHE_REFERENCED) {
977 dentry->d_flags &= ~DCACHE_REFERENCED;
978 spin_unlock(&dentry->d_lock);
979
980 /*
981 * The list move itself will be made by the common LRU code. At
982 * this point, we've dropped the dentry->d_lock but keep the
983 * lru lock. This is safe to do, since every list movement is
984 * protected by the lru lock even if both locks are held.
985 *
986 * This is guaranteed by the fact that all LRU management
987 * functions are intermediated by the LRU API calls like
988 * list_lru_add and list_lru_del. List movement in this file
989 * only ever occur through this functions or through callbacks
990 * like this one, that are called from the LRU API.
991 *
992 * The only exceptions to this are functions like
993 * shrink_dentry_list, and code that first checks for the
994 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
995 * operating only with stack provided lists after they are
996 * properly isolated from the main list. It is thus, always a
997 * local access.
998 */
999 return LRU_ROTATE;
1000 }
1001
89dc77bc 1002 d_lru_shrink_move(dentry, freeable);
f6041567
DC
1003 spin_unlock(&dentry->d_lock);
1004
1005 return LRU_REMOVED;
1006}
1007
3049cfe2 1008/**
b48f03b3
DC
1009 * prune_dcache_sb - shrink the dcache
1010 * @sb: superblock
f6041567 1011 * @nr_to_scan : number of entries to try to free
9b17c623 1012 * @nid: which node to scan for freeable entities
b48f03b3 1013 *
f6041567 1014 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
b48f03b3
DC
1015 * done when we need more memory an called from the superblock shrinker
1016 * function.
3049cfe2 1017 *
b48f03b3
DC
1018 * This function may fail to free any resources if all the dentries are in
1019 * use.
3049cfe2 1020 */
9b17c623
DC
1021long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
1022 int nid)
3049cfe2 1023{
f6041567
DC
1024 LIST_HEAD(dispose);
1025 long freed;
3049cfe2 1026
9b17c623
DC
1027 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
1028 &dispose, &nr_to_scan);
f6041567 1029 shrink_dentry_list(&dispose);
0a234c6d 1030 return freed;
da3bbdd4 1031}
23044507 1032
4e717f5c
GC
1033static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1034 spinlock_t *lru_lock, void *arg)
dd1f6b2e 1035{
4e717f5c
GC
1036 struct list_head *freeable = arg;
1037 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 1038
4e717f5c
GC
1039 /*
1040 * we are inverting the lru lock/dentry->d_lock here,
1041 * so use a trylock. If we fail to get the lock, just skip
1042 * it
1043 */
1044 if (!spin_trylock(&dentry->d_lock))
1045 return LRU_SKIP;
1046
89dc77bc 1047 d_lru_shrink_move(dentry, freeable);
4e717f5c 1048 spin_unlock(&dentry->d_lock);
ec33679d 1049
4e717f5c 1050 return LRU_REMOVED;
da3bbdd4
KM
1051}
1052
4e717f5c 1053
1da177e4
LT
1054/**
1055 * shrink_dcache_sb - shrink dcache for a superblock
1056 * @sb: superblock
1057 *
3049cfe2
CH
1058 * Shrink the dcache for the specified super block. This is used to free
1059 * the dcache before unmounting a file system.
1da177e4 1060 */
3049cfe2 1061void shrink_dcache_sb(struct super_block *sb)
1da177e4 1062{
4e717f5c
GC
1063 long freed;
1064
1065 do {
1066 LIST_HEAD(dispose);
1067
1068 freed = list_lru_walk(&sb->s_dentry_lru,
1069 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
3049cfe2 1070
4e717f5c
GC
1071 this_cpu_sub(nr_dentry_unused, freed);
1072 shrink_dentry_list(&dispose);
1073 } while (freed > 0);
1da177e4 1074}
ec4f8605 1075EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1076
c636ebdb
DH
1077/*
1078 * destroy a single subtree of dentries for unmount
1079 * - see the comments on shrink_dcache_for_umount() for a description of the
1080 * locking
1081 */
1082static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
1083{
1084 struct dentry *parent;
1085
1086 BUG_ON(!IS_ROOT(dentry));
1087
c636ebdb
DH
1088 for (;;) {
1089 /* descend to the first leaf in the current subtree */
43c1c9cd 1090 while (!list_empty(&dentry->d_subdirs))
c636ebdb
DH
1091 dentry = list_entry(dentry->d_subdirs.next,
1092 struct dentry, d_u.d_child);
c636ebdb
DH
1093
1094 /* consume the dentries from this leaf up through its parents
1095 * until we find one with children or run out altogether */
1096 do {
1097 struct inode *inode;
1098
f0023bc6 1099 /*
61572bb1 1100 * inform the fs that this dentry is about to be
f0023bc6
SW
1101 * unhashed and destroyed.
1102 */
590fb51f
YZ
1103 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
1104 !d_unhashed(dentry))
61572bb1
YZ
1105 dentry->d_op->d_prune(dentry);
1106
1107 dentry_lru_del(dentry);
43c1c9cd
DH
1108 __d_shrink(dentry);
1109
98474236 1110 if (dentry->d_lockref.count != 0) {
c636ebdb
DH
1111 printk(KERN_ERR
1112 "BUG: Dentry %p{i=%lx,n=%s}"
1113 " still in use (%d)"
1114 " [unmount of %s %s]\n",
1115 dentry,
1116 dentry->d_inode ?
1117 dentry->d_inode->i_ino : 0UL,
1118 dentry->d_name.name,
98474236 1119 dentry->d_lockref.count,
c636ebdb
DH
1120 dentry->d_sb->s_type->name,
1121 dentry->d_sb->s_id);
1122 BUG();
1123 }
1124
2fd6b7f5 1125 if (IS_ROOT(dentry)) {
c636ebdb 1126 parent = NULL;
2fd6b7f5
NP
1127 list_del(&dentry->d_u.d_child);
1128 } else {
871c0067 1129 parent = dentry->d_parent;
98474236 1130 parent->d_lockref.count--;
2fd6b7f5 1131 list_del(&dentry->d_u.d_child);
871c0067 1132 }
c636ebdb 1133
c636ebdb
DH
1134 inode = dentry->d_inode;
1135 if (inode) {
1136 dentry->d_inode = NULL;
b3d9b7a3 1137 hlist_del_init(&dentry->d_alias);
c636ebdb
DH
1138 if (dentry->d_op && dentry->d_op->d_iput)
1139 dentry->d_op->d_iput(dentry, inode);
1140 else
1141 iput(inode);
1142 }
1143
1144 d_free(dentry);
1145
1146 /* finished when we fall off the top of the tree,
1147 * otherwise we ascend to the parent and move to the
1148 * next sibling if there is one */
1149 if (!parent)
312d3ca8 1150 return;
c636ebdb 1151 dentry = parent;
c636ebdb
DH
1152 } while (list_empty(&dentry->d_subdirs));
1153
1154 dentry = list_entry(dentry->d_subdirs.next,
1155 struct dentry, d_u.d_child);
1156 }
1157}
1158
1159/*
1160 * destroy the dentries attached to a superblock on unmounting
b5c84bf6 1161 * - we don't need to use dentry->d_lock because:
c636ebdb
DH
1162 * - the superblock is detached from all mountings and open files, so the
1163 * dentry trees will not be rearranged by the VFS
1164 * - s_umount is write-locked, so the memory pressure shrinker will ignore
1165 * any dentries belonging to this superblock that it comes across
1166 * - the filesystem itself is no longer permitted to rearrange the dentries
1167 * in this superblock
1168 */
1169void shrink_dcache_for_umount(struct super_block *sb)
1170{
1171 struct dentry *dentry;
1172
1173 if (down_read_trylock(&sb->s_umount))
1174 BUG();
1175
1176 dentry = sb->s_root;
1177 sb->s_root = NULL;
98474236 1178 dentry->d_lockref.count--;
c636ebdb
DH
1179 shrink_dcache_for_umount_subtree(dentry);
1180
ceb5bdc2
NP
1181 while (!hlist_bl_empty(&sb->s_anon)) {
1182 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
c636ebdb
DH
1183 shrink_dcache_for_umount_subtree(dentry);
1184 }
1185}
1186
c826cb7d
LT
1187/*
1188 * This tries to ascend one level of parenthood, but
1189 * we can race with renaming, so we need to re-check
1190 * the parenthood after dropping the lock and check
1191 * that the sequence number still matches.
1192 */
48f5ec21 1193static struct dentry *try_to_ascend(struct dentry *old, unsigned seq)
c826cb7d
LT
1194{
1195 struct dentry *new = old->d_parent;
1196
1197 rcu_read_lock();
1198 spin_unlock(&old->d_lock);
1199 spin_lock(&new->d_lock);
1200
1201 /*
1202 * might go back up the wrong parent if we have had a rename
1203 * or deletion
1204 */
1205 if (new != old->d_parent ||
b161dfa6 1206 (old->d_flags & DCACHE_DENTRY_KILLED) ||
48f5ec21 1207 need_seqretry(&rename_lock, seq)) {
c826cb7d
LT
1208 spin_unlock(&new->d_lock);
1209 new = NULL;
1210 }
1211 rcu_read_unlock();
1212 return new;
1213}
1214
db14fc3a
MS
1215/**
1216 * enum d_walk_ret - action to talke during tree walk
1217 * @D_WALK_CONTINUE: contrinue walk
1218 * @D_WALK_QUIT: quit walk
1219 * @D_WALK_NORETRY: quit when retry is needed
1220 * @D_WALK_SKIP: skip this dentry and its children
1221 */
1222enum d_walk_ret {
1223 D_WALK_CONTINUE,
1224 D_WALK_QUIT,
1225 D_WALK_NORETRY,
1226 D_WALK_SKIP,
1227};
c826cb7d 1228
1da177e4 1229/**
db14fc3a
MS
1230 * d_walk - walk the dentry tree
1231 * @parent: start of walk
1232 * @data: data passed to @enter() and @finish()
1233 * @enter: callback when first entering the dentry
1234 * @finish: callback when successfully finished the walk
1da177e4 1235 *
db14fc3a 1236 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1237 */
db14fc3a
MS
1238static void d_walk(struct dentry *parent, void *data,
1239 enum d_walk_ret (*enter)(void *, struct dentry *),
1240 void (*finish)(void *))
1da177e4 1241{
949854d0 1242 struct dentry *this_parent;
1da177e4 1243 struct list_head *next;
48f5ec21 1244 unsigned seq = 0;
db14fc3a
MS
1245 enum d_walk_ret ret;
1246 bool retry = true;
949854d0 1247
58db63d0 1248again:
48f5ec21 1249 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1250 this_parent = parent;
2fd6b7f5 1251 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1252
1253 ret = enter(data, this_parent);
1254 switch (ret) {
1255 case D_WALK_CONTINUE:
1256 break;
1257 case D_WALK_QUIT:
1258 case D_WALK_SKIP:
1259 goto out_unlock;
1260 case D_WALK_NORETRY:
1261 retry = false;
1262 break;
1263 }
1da177e4
LT
1264repeat:
1265 next = this_parent->d_subdirs.next;
1266resume:
1267 while (next != &this_parent->d_subdirs) {
1268 struct list_head *tmp = next;
5160ee6f 1269 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1270 next = tmp->next;
2fd6b7f5
NP
1271
1272 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1273
1274 ret = enter(data, dentry);
1275 switch (ret) {
1276 case D_WALK_CONTINUE:
1277 break;
1278 case D_WALK_QUIT:
2fd6b7f5 1279 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1280 goto out_unlock;
1281 case D_WALK_NORETRY:
1282 retry = false;
1283 break;
1284 case D_WALK_SKIP:
1285 spin_unlock(&dentry->d_lock);
1286 continue;
2fd6b7f5 1287 }
db14fc3a 1288
1da177e4 1289 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1290 spin_unlock(&this_parent->d_lock);
1291 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1292 this_parent = dentry;
2fd6b7f5 1293 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1294 goto repeat;
1295 }
2fd6b7f5 1296 spin_unlock(&dentry->d_lock);
1da177e4
LT
1297 }
1298 /*
1299 * All done at this level ... ascend and resume the search.
1300 */
1301 if (this_parent != parent) {
c826cb7d 1302 struct dentry *child = this_parent;
48f5ec21 1303 this_parent = try_to_ascend(this_parent, seq);
c826cb7d 1304 if (!this_parent)
949854d0 1305 goto rename_retry;
949854d0 1306 next = child->d_u.d_child.next;
1da177e4
LT
1307 goto resume;
1308 }
48f5ec21 1309 if (need_seqretry(&rename_lock, seq)) {
db14fc3a 1310 spin_unlock(&this_parent->d_lock);
949854d0 1311 goto rename_retry;
db14fc3a
MS
1312 }
1313 if (finish)
1314 finish(data);
1315
1316out_unlock:
1317 spin_unlock(&this_parent->d_lock);
48f5ec21 1318 done_seqretry(&rename_lock, seq);
db14fc3a 1319 return;
58db63d0
NP
1320
1321rename_retry:
db14fc3a
MS
1322 if (!retry)
1323 return;
48f5ec21 1324 seq = 1;
58db63d0 1325 goto again;
1da177e4 1326}
db14fc3a
MS
1327
1328/*
1329 * Search for at least 1 mount point in the dentry's subdirs.
1330 * We descend to the next level whenever the d_subdirs
1331 * list is non-empty and continue searching.
1332 */
1333
1334/**
1335 * have_submounts - check for mounts over a dentry
1336 * @parent: dentry to check.
1337 *
1338 * Return true if the parent or its subdirectories contain
1339 * a mount point
1340 */
1341
1342static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1343{
1344 int *ret = data;
1345 if (d_mountpoint(dentry)) {
1346 *ret = 1;
1347 return D_WALK_QUIT;
1348 }
1349 return D_WALK_CONTINUE;
1350}
1351
1352int have_submounts(struct dentry *parent)
1353{
1354 int ret = 0;
1355
1356 d_walk(parent, &ret, check_mount, NULL);
1357
1358 return ret;
1359}
ec4f8605 1360EXPORT_SYMBOL(have_submounts);
1da177e4 1361
eed81007
MS
1362/*
1363 * Called by mount code to set a mountpoint and check if the mountpoint is
1364 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1365 * subtree can become unreachable).
1366 *
1367 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For
1368 * this reason take rename_lock and d_lock on dentry and ancestors.
1369 */
1370int d_set_mounted(struct dentry *dentry)
1371{
1372 struct dentry *p;
1373 int ret = -ENOENT;
1374 write_seqlock(&rename_lock);
1375 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1376 /* Need exclusion wrt. check_submounts_and_drop() */
1377 spin_lock(&p->d_lock);
1378 if (unlikely(d_unhashed(p))) {
1379 spin_unlock(&p->d_lock);
1380 goto out;
1381 }
1382 spin_unlock(&p->d_lock);
1383 }
1384 spin_lock(&dentry->d_lock);
1385 if (!d_unlinked(dentry)) {
1386 dentry->d_flags |= DCACHE_MOUNTED;
1387 ret = 0;
1388 }
1389 spin_unlock(&dentry->d_lock);
1390out:
1391 write_sequnlock(&rename_lock);
1392 return ret;
1393}
1394
1da177e4 1395/*
fd517909 1396 * Search the dentry child list of the specified parent,
1da177e4
LT
1397 * and move any unused dentries to the end of the unused
1398 * list for prune_dcache(). We descend to the next level
1399 * whenever the d_subdirs list is non-empty and continue
1400 * searching.
1401 *
1402 * It returns zero iff there are no unused children,
1403 * otherwise it returns the number of children moved to
1404 * the end of the unused list. This may not be the total
1405 * number of unused children, because select_parent can
1406 * drop the lock and return early due to latency
1407 * constraints.
1408 */
1da177e4 1409
db14fc3a
MS
1410struct select_data {
1411 struct dentry *start;
1412 struct list_head dispose;
1413 int found;
1414};
23044507 1415
db14fc3a
MS
1416static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1417{
1418 struct select_data *data = _data;
1419 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1420
db14fc3a
MS
1421 if (data->start == dentry)
1422 goto out;
2fd6b7f5 1423
1da177e4 1424 /*
db14fc3a
MS
1425 * move only zero ref count dentries to the dispose list.
1426 *
1427 * Those which are presently on the shrink list, being processed
1428 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1429 * loop in shrink_dcache_parent() might not make any progress
1430 * and loop forever.
1da177e4 1431 */
db14fc3a
MS
1432 if (dentry->d_lockref.count) {
1433 dentry_lru_del(dentry);
1434 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
89dc77bc
LT
1435 /*
1436 * We can't use d_lru_shrink_move() because we
1437 * need to get the global LRU lock and do the
05a8252b 1438 * LRU accounting.
89dc77bc
LT
1439 */
1440 d_lru_del(dentry);
1441 d_shrink_add(dentry, &data->dispose);
db14fc3a
MS
1442 data->found++;
1443 ret = D_WALK_NORETRY;
1da177e4 1444 }
db14fc3a
MS
1445 /*
1446 * We can return to the caller if we have found some (this
1447 * ensures forward progress). We'll be coming back to find
1448 * the rest.
1449 */
1450 if (data->found && need_resched())
1451 ret = D_WALK_QUIT;
1da177e4 1452out:
db14fc3a 1453 return ret;
1da177e4
LT
1454}
1455
1456/**
1457 * shrink_dcache_parent - prune dcache
1458 * @parent: parent of entries to prune
1459 *
1460 * Prune the dcache to remove unused children of the parent dentry.
1461 */
db14fc3a 1462void shrink_dcache_parent(struct dentry *parent)
1da177e4 1463{
db14fc3a
MS
1464 for (;;) {
1465 struct select_data data;
1da177e4 1466
db14fc3a
MS
1467 INIT_LIST_HEAD(&data.dispose);
1468 data.start = parent;
1469 data.found = 0;
1470
1471 d_walk(parent, &data, select_collect, NULL);
1472 if (!data.found)
1473 break;
1474
1475 shrink_dentry_list(&data.dispose);
421348f1
GT
1476 cond_resched();
1477 }
1da177e4 1478}
ec4f8605 1479EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1480
848ac114
MS
1481static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry)
1482{
1483 struct select_data *data = _data;
1484
1485 if (d_mountpoint(dentry)) {
1486 data->found = -EBUSY;
1487 return D_WALK_QUIT;
1488 }
1489
1490 return select_collect(_data, dentry);
1491}
1492
1493static void check_and_drop(void *_data)
1494{
1495 struct select_data *data = _data;
1496
1497 if (d_mountpoint(data->start))
1498 data->found = -EBUSY;
1499 if (!data->found)
1500 __d_drop(data->start);
1501}
1502
1503/**
1504 * check_submounts_and_drop - prune dcache, check for submounts and drop
1505 *
1506 * All done as a single atomic operation relative to has_unlinked_ancestor().
1507 * Returns 0 if successfully unhashed @parent. If there were submounts then
1508 * return -EBUSY.
1509 *
1510 * @dentry: dentry to prune and drop
1511 */
1512int check_submounts_and_drop(struct dentry *dentry)
1513{
1514 int ret = 0;
1515
1516 /* Negative dentries can be dropped without further checks */
1517 if (!dentry->d_inode) {
1518 d_drop(dentry);
1519 goto out;
1520 }
1521
1522 for (;;) {
1523 struct select_data data;
1524
1525 INIT_LIST_HEAD(&data.dispose);
1526 data.start = dentry;
1527 data.found = 0;
1528
1529 d_walk(dentry, &data, check_and_collect, check_and_drop);
1530 ret = data.found;
1531
1532 if (!list_empty(&data.dispose))
1533 shrink_dentry_list(&data.dispose);
1534
1535 if (ret <= 0)
1536 break;
1537
1538 cond_resched();
1539 }
1540
1541out:
1542 return ret;
1543}
1544EXPORT_SYMBOL(check_submounts_and_drop);
1545
1da177e4 1546/**
a4464dbc
AV
1547 * __d_alloc - allocate a dcache entry
1548 * @sb: filesystem it will belong to
1da177e4
LT
1549 * @name: qstr of the name
1550 *
1551 * Allocates a dentry. It returns %NULL if there is insufficient memory
1552 * available. On a success the dentry is returned. The name passed in is
1553 * copied and the copy passed in may be reused after this call.
1554 */
1555
a4464dbc 1556struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1557{
1558 struct dentry *dentry;
1559 char *dname;
1560
e12ba74d 1561 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1562 if (!dentry)
1563 return NULL;
1564
6326c71f
LT
1565 /*
1566 * We guarantee that the inline name is always NUL-terminated.
1567 * This way the memcpy() done by the name switching in rename
1568 * will still always have a NUL at the end, even if we might
1569 * be overwriting an internal NUL character
1570 */
1571 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1da177e4
LT
1572 if (name->len > DNAME_INLINE_LEN-1) {
1573 dname = kmalloc(name->len + 1, GFP_KERNEL);
1574 if (!dname) {
1575 kmem_cache_free(dentry_cache, dentry);
1576 return NULL;
1577 }
1578 } else {
1579 dname = dentry->d_iname;
1580 }
1da177e4
LT
1581
1582 dentry->d_name.len = name->len;
1583 dentry->d_name.hash = name->hash;
1584 memcpy(dname, name->name, name->len);
1585 dname[name->len] = 0;
1586
6326c71f
LT
1587 /* Make sure we always see the terminating NUL character */
1588 smp_wmb();
1589 dentry->d_name.name = dname;
1590
98474236 1591 dentry->d_lockref.count = 1;
dea3667b 1592 dentry->d_flags = 0;
1da177e4 1593 spin_lock_init(&dentry->d_lock);
31e6b01f 1594 seqcount_init(&dentry->d_seq);
1da177e4 1595 dentry->d_inode = NULL;
a4464dbc
AV
1596 dentry->d_parent = dentry;
1597 dentry->d_sb = sb;
1da177e4
LT
1598 dentry->d_op = NULL;
1599 dentry->d_fsdata = NULL;
ceb5bdc2 1600 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1601 INIT_LIST_HEAD(&dentry->d_lru);
1602 INIT_LIST_HEAD(&dentry->d_subdirs);
b3d9b7a3 1603 INIT_HLIST_NODE(&dentry->d_alias);
2fd6b7f5 1604 INIT_LIST_HEAD(&dentry->d_u.d_child);
a4464dbc 1605 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1606
3e880fb5 1607 this_cpu_inc(nr_dentry);
312d3ca8 1608
1da177e4
LT
1609 return dentry;
1610}
a4464dbc
AV
1611
1612/**
1613 * d_alloc - allocate a dcache entry
1614 * @parent: parent of entry to allocate
1615 * @name: qstr of the name
1616 *
1617 * Allocates a dentry. It returns %NULL if there is insufficient memory
1618 * available. On a success the dentry is returned. The name passed in is
1619 * copied and the copy passed in may be reused after this call.
1620 */
1621struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1622{
1623 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1624 if (!dentry)
1625 return NULL;
1626
1627 spin_lock(&parent->d_lock);
1628 /*
1629 * don't need child lock because it is not subject
1630 * to concurrency here
1631 */
1632 __dget_dlock(parent);
1633 dentry->d_parent = parent;
1634 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1635 spin_unlock(&parent->d_lock);
1636
1637 return dentry;
1638}
ec4f8605 1639EXPORT_SYMBOL(d_alloc);
1da177e4 1640
4b936885
NP
1641struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1642{
a4464dbc
AV
1643 struct dentry *dentry = __d_alloc(sb, name);
1644 if (dentry)
4b936885 1645 dentry->d_flags |= DCACHE_DISCONNECTED;
4b936885
NP
1646 return dentry;
1647}
1648EXPORT_SYMBOL(d_alloc_pseudo);
1649
1da177e4
LT
1650struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1651{
1652 struct qstr q;
1653
1654 q.name = name;
1655 q.len = strlen(name);
1656 q.hash = full_name_hash(q.name, q.len);
1657 return d_alloc(parent, &q);
1658}
ef26ca97 1659EXPORT_SYMBOL(d_alloc_name);
1da177e4 1660
fb045adb
NP
1661void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1662{
6f7f7caa
LT
1663 WARN_ON_ONCE(dentry->d_op);
1664 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1665 DCACHE_OP_COMPARE |
1666 DCACHE_OP_REVALIDATE |
ecf3d1f1 1667 DCACHE_OP_WEAK_REVALIDATE |
fb045adb
NP
1668 DCACHE_OP_DELETE ));
1669 dentry->d_op = op;
1670 if (!op)
1671 return;
1672 if (op->d_hash)
1673 dentry->d_flags |= DCACHE_OP_HASH;
1674 if (op->d_compare)
1675 dentry->d_flags |= DCACHE_OP_COMPARE;
1676 if (op->d_revalidate)
1677 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1678 if (op->d_weak_revalidate)
1679 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1680 if (op->d_delete)
1681 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1682 if (op->d_prune)
1683 dentry->d_flags |= DCACHE_OP_PRUNE;
fb045adb
NP
1684
1685}
1686EXPORT_SYMBOL(d_set_d_op);
1687
360da900
OH
1688static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1689{
b23fb0a6 1690 spin_lock(&dentry->d_lock);
9875cf80
DH
1691 if (inode) {
1692 if (unlikely(IS_AUTOMOUNT(inode)))
1693 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
b3d9b7a3 1694 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
9875cf80 1695 }
360da900 1696 dentry->d_inode = inode;
31e6b01f 1697 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1698 spin_unlock(&dentry->d_lock);
360da900
OH
1699 fsnotify_d_instantiate(dentry, inode);
1700}
1701
1da177e4
LT
1702/**
1703 * d_instantiate - fill in inode information for a dentry
1704 * @entry: dentry to complete
1705 * @inode: inode to attach to this dentry
1706 *
1707 * Fill in inode information in the entry.
1708 *
1709 * This turns negative dentries into productive full members
1710 * of society.
1711 *
1712 * NOTE! This assumes that the inode count has been incremented
1713 * (or otherwise set) by the caller to indicate that it is now
1714 * in use by the dcache.
1715 */
1716
1717void d_instantiate(struct dentry *entry, struct inode * inode)
1718{
b3d9b7a3 1719 BUG_ON(!hlist_unhashed(&entry->d_alias));
873feea0
NP
1720 if (inode)
1721 spin_lock(&inode->i_lock);
360da900 1722 __d_instantiate(entry, inode);
873feea0
NP
1723 if (inode)
1724 spin_unlock(&inode->i_lock);
1da177e4
LT
1725 security_d_instantiate(entry, inode);
1726}
ec4f8605 1727EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1728
1729/**
1730 * d_instantiate_unique - instantiate a non-aliased dentry
1731 * @entry: dentry to instantiate
1732 * @inode: inode to attach to this dentry
1733 *
1734 * Fill in inode information in the entry. On success, it returns NULL.
1735 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1736 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1737 *
1738 * Note that in order to avoid conflicts with rename() etc, the caller
1739 * had better be holding the parent directory semaphore.
e866cfa9
OD
1740 *
1741 * This also assumes that the inode count has been incremented
1742 * (or otherwise set) by the caller to indicate that it is now
1743 * in use by the dcache.
1da177e4 1744 */
770bfad8
DH
1745static struct dentry *__d_instantiate_unique(struct dentry *entry,
1746 struct inode *inode)
1da177e4
LT
1747{
1748 struct dentry *alias;
1749 int len = entry->d_name.len;
1750 const char *name = entry->d_name.name;
1751 unsigned int hash = entry->d_name.hash;
1752
770bfad8 1753 if (!inode) {
360da900 1754 __d_instantiate(entry, NULL);
770bfad8
DH
1755 return NULL;
1756 }
1757
b67bfe0d 1758 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
9abca360
NP
1759 /*
1760 * Don't need alias->d_lock here, because aliases with
1761 * d_parent == entry->d_parent are not subject to name or
1762 * parent changes, because the parent inode i_mutex is held.
1763 */
12f8ad4b 1764 if (alias->d_name.hash != hash)
1da177e4
LT
1765 continue;
1766 if (alias->d_parent != entry->d_parent)
1767 continue;
ee983e89
LT
1768 if (alias->d_name.len != len)
1769 continue;
12f8ad4b 1770 if (dentry_cmp(alias, name, len))
1da177e4 1771 continue;
dc0474be 1772 __dget(alias);
1da177e4
LT
1773 return alias;
1774 }
770bfad8 1775
360da900 1776 __d_instantiate(entry, inode);
1da177e4
LT
1777 return NULL;
1778}
770bfad8
DH
1779
1780struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1781{
1782 struct dentry *result;
1783
b3d9b7a3 1784 BUG_ON(!hlist_unhashed(&entry->d_alias));
770bfad8 1785
873feea0
NP
1786 if (inode)
1787 spin_lock(&inode->i_lock);
770bfad8 1788 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1789 if (inode)
1790 spin_unlock(&inode->i_lock);
770bfad8
DH
1791
1792 if (!result) {
1793 security_d_instantiate(entry, inode);
1794 return NULL;
1795 }
1796
1797 BUG_ON(!d_unhashed(result));
1798 iput(inode);
1799 return result;
1800}
1801
1da177e4
LT
1802EXPORT_SYMBOL(d_instantiate_unique);
1803
b70a80e7
MS
1804/**
1805 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1806 * @entry: dentry to complete
1807 * @inode: inode to attach to this dentry
1808 *
1809 * Fill in inode information in the entry. If a directory alias is found, then
1810 * return an error (and drop inode). Together with d_materialise_unique() this
1811 * guarantees that a directory inode may never have more than one alias.
1812 */
1813int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1814{
1815 BUG_ON(!hlist_unhashed(&entry->d_alias));
1816
1817 spin_lock(&inode->i_lock);
1818 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1819 spin_unlock(&inode->i_lock);
1820 iput(inode);
1821 return -EBUSY;
1822 }
1823 __d_instantiate(entry, inode);
1824 spin_unlock(&inode->i_lock);
1825 security_d_instantiate(entry, inode);
1826
1827 return 0;
1828}
1829EXPORT_SYMBOL(d_instantiate_no_diralias);
1830
adc0e91a
AV
1831struct dentry *d_make_root(struct inode *root_inode)
1832{
1833 struct dentry *res = NULL;
1834
1835 if (root_inode) {
26fe5750 1836 static const struct qstr name = QSTR_INIT("/", 1);
adc0e91a
AV
1837
1838 res = __d_alloc(root_inode->i_sb, &name);
1839 if (res)
1840 d_instantiate(res, root_inode);
1841 else
1842 iput(root_inode);
1843 }
1844 return res;
1845}
1846EXPORT_SYMBOL(d_make_root);
1847
d891eedb
BF
1848static struct dentry * __d_find_any_alias(struct inode *inode)
1849{
1850 struct dentry *alias;
1851
b3d9b7a3 1852 if (hlist_empty(&inode->i_dentry))
d891eedb 1853 return NULL;
b3d9b7a3 1854 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
d891eedb
BF
1855 __dget(alias);
1856 return alias;
1857}
1858
46f72b34
SW
1859/**
1860 * d_find_any_alias - find any alias for a given inode
1861 * @inode: inode to find an alias for
1862 *
1863 * If any aliases exist for the given inode, take and return a
1864 * reference for one of them. If no aliases exist, return %NULL.
1865 */
1866struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1867{
1868 struct dentry *de;
1869
1870 spin_lock(&inode->i_lock);
1871 de = __d_find_any_alias(inode);
1872 spin_unlock(&inode->i_lock);
1873 return de;
1874}
46f72b34 1875EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1876
4ea3ada2
CH
1877/**
1878 * d_obtain_alias - find or allocate a dentry for a given inode
1879 * @inode: inode to allocate the dentry for
1880 *
1881 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1882 * similar open by handle operations. The returned dentry may be anonymous,
1883 * or may have a full name (if the inode was already in the cache).
1884 *
1885 * When called on a directory inode, we must ensure that the inode only ever
1886 * has one dentry. If a dentry is found, that is returned instead of
1887 * allocating a new one.
1888 *
1889 * On successful return, the reference to the inode has been transferred
44003728
CH
1890 * to the dentry. In case of an error the reference on the inode is released.
1891 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1892 * be passed in and will be the error will be propagate to the return value,
1893 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1894 */
1895struct dentry *d_obtain_alias(struct inode *inode)
1896{
b911a6bd 1897 static const struct qstr anonstring = QSTR_INIT("/", 1);
9308a612
CH
1898 struct dentry *tmp;
1899 struct dentry *res;
4ea3ada2
CH
1900
1901 if (!inode)
44003728 1902 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1903 if (IS_ERR(inode))
1904 return ERR_CAST(inode);
1905
d891eedb 1906 res = d_find_any_alias(inode);
9308a612
CH
1907 if (res)
1908 goto out_iput;
1909
a4464dbc 1910 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1911 if (!tmp) {
1912 res = ERR_PTR(-ENOMEM);
1913 goto out_iput;
4ea3ada2 1914 }
b5c84bf6 1915
873feea0 1916 spin_lock(&inode->i_lock);
d891eedb 1917 res = __d_find_any_alias(inode);
9308a612 1918 if (res) {
873feea0 1919 spin_unlock(&inode->i_lock);
9308a612
CH
1920 dput(tmp);
1921 goto out_iput;
1922 }
1923
1924 /* attach a disconnected dentry */
1925 spin_lock(&tmp->d_lock);
9308a612
CH
1926 tmp->d_inode = inode;
1927 tmp->d_flags |= DCACHE_DISCONNECTED;
b3d9b7a3 1928 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1929 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1930 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1931 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1932 spin_unlock(&tmp->d_lock);
873feea0 1933 spin_unlock(&inode->i_lock);
24ff6663 1934 security_d_instantiate(tmp, inode);
9308a612 1935
9308a612
CH
1936 return tmp;
1937
1938 out_iput:
24ff6663
JB
1939 if (res && !IS_ERR(res))
1940 security_d_instantiate(res, inode);
9308a612
CH
1941 iput(inode);
1942 return res;
4ea3ada2 1943}
adc48720 1944EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1945
1946/**
1947 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1948 * @inode: the inode which may have a disconnected dentry
1949 * @dentry: a negative dentry which we want to point to the inode.
1950 *
1951 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1952 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1953 * and return it, else simply d_add the inode to the dentry and return NULL.
1954 *
1955 * This is needed in the lookup routine of any filesystem that is exportable
1956 * (via knfsd) so that we can build dcache paths to directories effectively.
1957 *
1958 * If a dentry was found and moved, then it is returned. Otherwise NULL
1959 * is returned. This matches the expected return value of ->lookup.
1960 *
6d4ade98
SW
1961 * Cluster filesystems may call this function with a negative, hashed dentry.
1962 * In that case, we know that the inode will be a regular file, and also this
1963 * will only occur during atomic_open. So we need to check for the dentry
1964 * being already hashed only in the final case.
1da177e4
LT
1965 */
1966struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1967{
1968 struct dentry *new = NULL;
1969
a9049376
AV
1970 if (IS_ERR(inode))
1971 return ERR_CAST(inode);
1972
21c0d8fd 1973 if (inode && S_ISDIR(inode->i_mode)) {
873feea0 1974 spin_lock(&inode->i_lock);
32ba9c3f 1975 new = __d_find_alias(inode, 1);
1da177e4 1976 if (new) {
32ba9c3f 1977 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
873feea0 1978 spin_unlock(&inode->i_lock);
1da177e4 1979 security_d_instantiate(new, inode);
1da177e4
LT
1980 d_move(new, dentry);
1981 iput(inode);
1982 } else {
873feea0 1983 /* already taking inode->i_lock, so d_add() by hand */
360da900 1984 __d_instantiate(dentry, inode);
873feea0 1985 spin_unlock(&inode->i_lock);
1da177e4
LT
1986 security_d_instantiate(dentry, inode);
1987 d_rehash(dentry);
1988 }
6d4ade98
SW
1989 } else {
1990 d_instantiate(dentry, inode);
1991 if (d_unhashed(dentry))
1992 d_rehash(dentry);
1993 }
1da177e4
LT
1994 return new;
1995}
ec4f8605 1996EXPORT_SYMBOL(d_splice_alias);
1da177e4 1997
9403540c
BN
1998/**
1999 * d_add_ci - lookup or allocate new dentry with case-exact name
2000 * @inode: the inode case-insensitive lookup has found
2001 * @dentry: the negative dentry that was passed to the parent's lookup func
2002 * @name: the case-exact name to be associated with the returned dentry
2003 *
2004 * This is to avoid filling the dcache with case-insensitive names to the
2005 * same inode, only the actual correct case is stored in the dcache for
2006 * case-insensitive filesystems.
2007 *
2008 * For a case-insensitive lookup match and if the the case-exact dentry
2009 * already exists in in the dcache, use it and return it.
2010 *
2011 * If no entry exists with the exact case name, allocate new dentry with
2012 * the exact case, and return the spliced entry.
2013 */
e45b590b 2014struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
2015 struct qstr *name)
2016{
9403540c
BN
2017 struct dentry *found;
2018 struct dentry *new;
2019
b6520c81
CH
2020 /*
2021 * First check if a dentry matching the name already exists,
2022 * if not go ahead and create it now.
2023 */
9403540c 2024 found = d_hash_and_lookup(dentry->d_parent, name);
4f522a24
AV
2025 if (unlikely(IS_ERR(found)))
2026 goto err_out;
9403540c
BN
2027 if (!found) {
2028 new = d_alloc(dentry->d_parent, name);
2029 if (!new) {
4f522a24 2030 found = ERR_PTR(-ENOMEM);
9403540c
BN
2031 goto err_out;
2032 }
b6520c81 2033
9403540c
BN
2034 found = d_splice_alias(inode, new);
2035 if (found) {
2036 dput(new);
2037 return found;
2038 }
2039 return new;
2040 }
b6520c81
CH
2041
2042 /*
2043 * If a matching dentry exists, and it's not negative use it.
2044 *
2045 * Decrement the reference count to balance the iget() done
2046 * earlier on.
2047 */
9403540c
BN
2048 if (found->d_inode) {
2049 if (unlikely(found->d_inode != inode)) {
2050 /* This can't happen because bad inodes are unhashed. */
2051 BUG_ON(!is_bad_inode(inode));
2052 BUG_ON(!is_bad_inode(found->d_inode));
2053 }
9403540c
BN
2054 iput(inode);
2055 return found;
2056 }
b6520c81 2057
9403540c 2058 /*
9403540c 2059 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 2060 * already has a dentry.
9403540c 2061 */
4513d899
AV
2062 new = d_splice_alias(inode, found);
2063 if (new) {
2064 dput(found);
2065 found = new;
9403540c 2066 }
4513d899 2067 return found;
9403540c
BN
2068
2069err_out:
2070 iput(inode);
4f522a24 2071 return found;
9403540c 2072}
ec4f8605 2073EXPORT_SYMBOL(d_add_ci);
1da177e4 2074
12f8ad4b
LT
2075/*
2076 * Do the slow-case of the dentry name compare.
2077 *
2078 * Unlike the dentry_cmp() function, we need to atomically
da53be12 2079 * load the name and length information, so that the
12f8ad4b
LT
2080 * filesystem can rely on them, and can use the 'name' and
2081 * 'len' information without worrying about walking off the
2082 * end of memory etc.
2083 *
2084 * Thus the read_seqcount_retry() and the "duplicate" info
2085 * in arguments (the low-level filesystem should not look
2086 * at the dentry inode or name contents directly, since
2087 * rename can change them while we're in RCU mode).
2088 */
2089enum slow_d_compare {
2090 D_COMP_OK,
2091 D_COMP_NOMATCH,
2092 D_COMP_SEQRETRY,
2093};
2094
2095static noinline enum slow_d_compare slow_dentry_cmp(
2096 const struct dentry *parent,
12f8ad4b
LT
2097 struct dentry *dentry,
2098 unsigned int seq,
2099 const struct qstr *name)
2100{
2101 int tlen = dentry->d_name.len;
2102 const char *tname = dentry->d_name.name;
12f8ad4b
LT
2103
2104 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2105 cpu_relax();
2106 return D_COMP_SEQRETRY;
2107 }
da53be12 2108 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
12f8ad4b
LT
2109 return D_COMP_NOMATCH;
2110 return D_COMP_OK;
2111}
2112
31e6b01f
NP
2113/**
2114 * __d_lookup_rcu - search for a dentry (racy, store-free)
2115 * @parent: parent dentry
2116 * @name: qstr of name we wish to find
1f1e6e52 2117 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2118 * Returns: dentry, or NULL
2119 *
2120 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2121 * resolution (store-free path walking) design described in
2122 * Documentation/filesystems/path-lookup.txt.
2123 *
2124 * This is not to be used outside core vfs.
2125 *
2126 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2127 * held, and rcu_read_lock held. The returned dentry must not be stored into
2128 * without taking d_lock and checking d_seq sequence count against @seq
2129 * returned here.
2130 *
15570086 2131 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2132 * function.
2133 *
2134 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2135 * the returned dentry, so long as its parent's seqlock is checked after the
2136 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2137 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2138 *
2139 * NOTE! The caller *has* to check the resulting dentry against the sequence
2140 * number we've returned before using any of the resulting dentry state!
31e6b01f 2141 */
8966be90
LT
2142struct dentry *__d_lookup_rcu(const struct dentry *parent,
2143 const struct qstr *name,
da53be12 2144 unsigned *seqp)
31e6b01f 2145{
26fe5750 2146 u64 hashlen = name->hash_len;
31e6b01f 2147 const unsigned char *str = name->name;
26fe5750 2148 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
ceb5bdc2 2149 struct hlist_bl_node *node;
31e6b01f
NP
2150 struct dentry *dentry;
2151
2152 /*
2153 * Note: There is significant duplication with __d_lookup_rcu which is
2154 * required to prevent single threaded performance regressions
2155 * especially on architectures where smp_rmb (in seqcounts) are costly.
2156 * Keep the two functions in sync.
2157 */
2158
2159 /*
2160 * The hash list is protected using RCU.
2161 *
2162 * Carefully use d_seq when comparing a candidate dentry, to avoid
2163 * races with d_move().
2164 *
2165 * It is possible that concurrent renames can mess up our list
2166 * walk here and result in missing our dentry, resulting in the
2167 * false-negative result. d_lookup() protects against concurrent
2168 * renames using rename_lock seqlock.
2169 *
b0a4bb83 2170 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2171 */
b07ad996 2172 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2173 unsigned seq;
31e6b01f 2174
31e6b01f 2175seqretry:
12f8ad4b
LT
2176 /*
2177 * The dentry sequence count protects us from concurrent
da53be12 2178 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2179 *
2180 * The caller must perform a seqcount check in order
da53be12 2181 * to do anything useful with the returned dentry.
12f8ad4b
LT
2182 *
2183 * NOTE! We do a "raw" seqcount_begin here. That means that
2184 * we don't wait for the sequence count to stabilize if it
2185 * is in the middle of a sequence change. If we do the slow
2186 * dentry compare, we will do seqretries until it is stable,
2187 * and if we end up with a successful lookup, we actually
2188 * want to exit RCU lookup anyway.
2189 */
2190 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2191 if (dentry->d_parent != parent)
2192 continue;
2e321806
LT
2193 if (d_unhashed(dentry))
2194 continue;
12f8ad4b 2195
830c0f0e 2196 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
26fe5750
LT
2197 if (dentry->d_name.hash != hashlen_hash(hashlen))
2198 continue;
da53be12
LT
2199 *seqp = seq;
2200 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
12f8ad4b
LT
2201 case D_COMP_OK:
2202 return dentry;
2203 case D_COMP_NOMATCH:
31e6b01f 2204 continue;
12f8ad4b
LT
2205 default:
2206 goto seqretry;
2207 }
31e6b01f 2208 }
12f8ad4b 2209
26fe5750 2210 if (dentry->d_name.hash_len != hashlen)
ee983e89 2211 continue;
da53be12 2212 *seqp = seq;
26fe5750 2213 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
12f8ad4b 2214 return dentry;
31e6b01f
NP
2215 }
2216 return NULL;
2217}
2218
1da177e4
LT
2219/**
2220 * d_lookup - search for a dentry
2221 * @parent: parent dentry
2222 * @name: qstr of name we wish to find
b04f784e 2223 * Returns: dentry, or NULL
1da177e4 2224 *
b04f784e
NP
2225 * d_lookup searches the children of the parent dentry for the name in
2226 * question. If the dentry is found its reference count is incremented and the
2227 * dentry is returned. The caller must use dput to free the entry when it has
2228 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2229 */
da2d8455 2230struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2231{
31e6b01f 2232 struct dentry *dentry;
949854d0 2233 unsigned seq;
1da177e4
LT
2234
2235 do {
2236 seq = read_seqbegin(&rename_lock);
2237 dentry = __d_lookup(parent, name);
2238 if (dentry)
2239 break;
2240 } while (read_seqretry(&rename_lock, seq));
2241 return dentry;
2242}
ec4f8605 2243EXPORT_SYMBOL(d_lookup);
1da177e4 2244
31e6b01f 2245/**
b04f784e
NP
2246 * __d_lookup - search for a dentry (racy)
2247 * @parent: parent dentry
2248 * @name: qstr of name we wish to find
2249 * Returns: dentry, or NULL
2250 *
2251 * __d_lookup is like d_lookup, however it may (rarely) return a
2252 * false-negative result due to unrelated rename activity.
2253 *
2254 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2255 * however it must be used carefully, eg. with a following d_lookup in
2256 * the case of failure.
2257 *
2258 * __d_lookup callers must be commented.
2259 */
a713ca2a 2260struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4
LT
2261{
2262 unsigned int len = name->len;
2263 unsigned int hash = name->hash;
2264 const unsigned char *str = name->name;
b07ad996 2265 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 2266 struct hlist_bl_node *node;
31e6b01f 2267 struct dentry *found = NULL;
665a7583 2268 struct dentry *dentry;
1da177e4 2269
31e6b01f
NP
2270 /*
2271 * Note: There is significant duplication with __d_lookup_rcu which is
2272 * required to prevent single threaded performance regressions
2273 * especially on architectures where smp_rmb (in seqcounts) are costly.
2274 * Keep the two functions in sync.
2275 */
2276
b04f784e
NP
2277 /*
2278 * The hash list is protected using RCU.
2279 *
2280 * Take d_lock when comparing a candidate dentry, to avoid races
2281 * with d_move().
2282 *
2283 * It is possible that concurrent renames can mess up our list
2284 * walk here and result in missing our dentry, resulting in the
2285 * false-negative result. d_lookup() protects against concurrent
2286 * renames using rename_lock seqlock.
2287 *
b0a4bb83 2288 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2289 */
1da177e4
LT
2290 rcu_read_lock();
2291
b07ad996 2292 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2293
1da177e4
LT
2294 if (dentry->d_name.hash != hash)
2295 continue;
1da177e4
LT
2296
2297 spin_lock(&dentry->d_lock);
1da177e4
LT
2298 if (dentry->d_parent != parent)
2299 goto next;
d0185c08
LT
2300 if (d_unhashed(dentry))
2301 goto next;
2302
1da177e4
LT
2303 /*
2304 * It is safe to compare names since d_move() cannot
2305 * change the qstr (protected by d_lock).
2306 */
fb045adb 2307 if (parent->d_flags & DCACHE_OP_COMPARE) {
12f8ad4b
LT
2308 int tlen = dentry->d_name.len;
2309 const char *tname = dentry->d_name.name;
da53be12 2310 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1da177e4
LT
2311 goto next;
2312 } else {
ee983e89
LT
2313 if (dentry->d_name.len != len)
2314 goto next;
12f8ad4b 2315 if (dentry_cmp(dentry, str, len))
1da177e4
LT
2316 goto next;
2317 }
2318
98474236 2319 dentry->d_lockref.count++;
d0185c08 2320 found = dentry;
1da177e4
LT
2321 spin_unlock(&dentry->d_lock);
2322 break;
2323next:
2324 spin_unlock(&dentry->d_lock);
2325 }
2326 rcu_read_unlock();
2327
2328 return found;
2329}
2330
3e7e241f
EB
2331/**
2332 * d_hash_and_lookup - hash the qstr then search for a dentry
2333 * @dir: Directory to search in
2334 * @name: qstr of name we wish to find
2335 *
4f522a24 2336 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2337 */
2338struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2339{
3e7e241f
EB
2340 /*
2341 * Check for a fs-specific hash function. Note that we must
2342 * calculate the standard hash first, as the d_op->d_hash()
2343 * routine may choose to leave the hash value unchanged.
2344 */
2345 name->hash = full_name_hash(name->name, name->len);
fb045adb 2346 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2347 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2348 if (unlikely(err < 0))
2349 return ERR_PTR(err);
3e7e241f 2350 }
4f522a24 2351 return d_lookup(dir, name);
3e7e241f 2352}
4f522a24 2353EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2354
1da177e4 2355/**
786a5e15 2356 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 2357 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 2358 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
2359 *
2360 * An insecure source has sent us a dentry, here we verify it and dget() it.
2361 * This is used by ncpfs in its readdir implementation.
2362 * Zero is returned in the dentry is invalid.
786a5e15
NP
2363 *
2364 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 2365 */
d3a23e16 2366int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 2367{
786a5e15 2368 struct dentry *child;
d3a23e16 2369
2fd6b7f5 2370 spin_lock(&dparent->d_lock);
786a5e15
NP
2371 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2372 if (dentry == child) {
2fd6b7f5 2373 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 2374 __dget_dlock(dentry);
2fd6b7f5
NP
2375 spin_unlock(&dentry->d_lock);
2376 spin_unlock(&dparent->d_lock);
1da177e4
LT
2377 return 1;
2378 }
2379 }
2fd6b7f5 2380 spin_unlock(&dparent->d_lock);
786a5e15 2381
1da177e4
LT
2382 return 0;
2383}
ec4f8605 2384EXPORT_SYMBOL(d_validate);
1da177e4
LT
2385
2386/*
2387 * When a file is deleted, we have two options:
2388 * - turn this dentry into a negative dentry
2389 * - unhash this dentry and free it.
2390 *
2391 * Usually, we want to just turn this into
2392 * a negative dentry, but if anybody else is
2393 * currently using the dentry or the inode
2394 * we can't do that and we fall back on removing
2395 * it from the hash queues and waiting for
2396 * it to be deleted later when it has no users
2397 */
2398
2399/**
2400 * d_delete - delete a dentry
2401 * @dentry: The dentry to delete
2402 *
2403 * Turn the dentry into a negative dentry if possible, otherwise
2404 * remove it from the hash queues so it can be deleted later
2405 */
2406
2407void d_delete(struct dentry * dentry)
2408{
873feea0 2409 struct inode *inode;
7a91bf7f 2410 int isdir = 0;
1da177e4
LT
2411 /*
2412 * Are we the only user?
2413 */
357f8e65 2414again:
1da177e4 2415 spin_lock(&dentry->d_lock);
873feea0
NP
2416 inode = dentry->d_inode;
2417 isdir = S_ISDIR(inode->i_mode);
98474236 2418 if (dentry->d_lockref.count == 1) {
1fe0c023 2419 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2420 spin_unlock(&dentry->d_lock);
2421 cpu_relax();
2422 goto again;
2423 }
13e3c5e5 2424 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2425 dentry_unlink_inode(dentry);
7a91bf7f 2426 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2427 return;
2428 }
2429
2430 if (!d_unhashed(dentry))
2431 __d_drop(dentry);
2432
2433 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2434
2435 fsnotify_nameremove(dentry, isdir);
1da177e4 2436}
ec4f8605 2437EXPORT_SYMBOL(d_delete);
1da177e4 2438
b07ad996 2439static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2440{
ceb5bdc2 2441 BUG_ON(!d_unhashed(entry));
1879fd6a 2442 hlist_bl_lock(b);
dea3667b 2443 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2444 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2445 hlist_bl_unlock(b);
1da177e4
LT
2446}
2447
770bfad8
DH
2448static void _d_rehash(struct dentry * entry)
2449{
2450 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2451}
2452
1da177e4
LT
2453/**
2454 * d_rehash - add an entry back to the hash
2455 * @entry: dentry to add to the hash
2456 *
2457 * Adds a dentry to the hash according to its name.
2458 */
2459
2460void d_rehash(struct dentry * entry)
2461{
1da177e4 2462 spin_lock(&entry->d_lock);
770bfad8 2463 _d_rehash(entry);
1da177e4 2464 spin_unlock(&entry->d_lock);
1da177e4 2465}
ec4f8605 2466EXPORT_SYMBOL(d_rehash);
1da177e4 2467
fb2d5b86
NP
2468/**
2469 * dentry_update_name_case - update case insensitive dentry with a new name
2470 * @dentry: dentry to be updated
2471 * @name: new name
2472 *
2473 * Update a case insensitive dentry with new case of name.
2474 *
2475 * dentry must have been returned by d_lookup with name @name. Old and new
2476 * name lengths must match (ie. no d_compare which allows mismatched name
2477 * lengths).
2478 *
2479 * Parent inode i_mutex must be held over d_lookup and into this call (to
2480 * keep renames and concurrent inserts, and readdir(2) away).
2481 */
2482void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2483{
7ebfa57f 2484 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2485 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2486
fb2d5b86 2487 spin_lock(&dentry->d_lock);
31e6b01f 2488 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2489 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2490 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2491 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2492}
2493EXPORT_SYMBOL(dentry_update_name_case);
2494
1da177e4
LT
2495static void switch_names(struct dentry *dentry, struct dentry *target)
2496{
2497 if (dname_external(target)) {
2498 if (dname_external(dentry)) {
2499 /*
2500 * Both external: swap the pointers
2501 */
9a8d5bb4 2502 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2503 } else {
2504 /*
2505 * dentry:internal, target:external. Steal target's
2506 * storage and make target internal.
2507 */
321bcf92
BF
2508 memcpy(target->d_iname, dentry->d_name.name,
2509 dentry->d_name.len + 1);
1da177e4
LT
2510 dentry->d_name.name = target->d_name.name;
2511 target->d_name.name = target->d_iname;
2512 }
2513 } else {
2514 if (dname_external(dentry)) {
2515 /*
2516 * dentry:external, target:internal. Give dentry's
2517 * storage to target and make dentry internal
2518 */
2519 memcpy(dentry->d_iname, target->d_name.name,
2520 target->d_name.len + 1);
2521 target->d_name.name = dentry->d_name.name;
2522 dentry->d_name.name = dentry->d_iname;
2523 } else {
2524 /*
2525 * Both are internal. Just copy target to dentry
2526 */
2527 memcpy(dentry->d_iname, target->d_name.name,
2528 target->d_name.len + 1);
dc711ca3
AV
2529 dentry->d_name.len = target->d_name.len;
2530 return;
1da177e4
LT
2531 }
2532 }
9a8d5bb4 2533 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2534}
2535
2fd6b7f5
NP
2536static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2537{
2538 /*
2539 * XXXX: do we really need to take target->d_lock?
2540 */
2541 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2542 spin_lock(&target->d_parent->d_lock);
2543 else {
2544 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2545 spin_lock(&dentry->d_parent->d_lock);
2546 spin_lock_nested(&target->d_parent->d_lock,
2547 DENTRY_D_LOCK_NESTED);
2548 } else {
2549 spin_lock(&target->d_parent->d_lock);
2550 spin_lock_nested(&dentry->d_parent->d_lock,
2551 DENTRY_D_LOCK_NESTED);
2552 }
2553 }
2554 if (target < dentry) {
2555 spin_lock_nested(&target->d_lock, 2);
2556 spin_lock_nested(&dentry->d_lock, 3);
2557 } else {
2558 spin_lock_nested(&dentry->d_lock, 2);
2559 spin_lock_nested(&target->d_lock, 3);
2560 }
2561}
2562
2563static void dentry_unlock_parents_for_move(struct dentry *dentry,
2564 struct dentry *target)
2565{
2566 if (target->d_parent != dentry->d_parent)
2567 spin_unlock(&dentry->d_parent->d_lock);
2568 if (target->d_parent != target)
2569 spin_unlock(&target->d_parent->d_lock);
2570}
2571
1da177e4 2572/*
2fd6b7f5
NP
2573 * When switching names, the actual string doesn't strictly have to
2574 * be preserved in the target - because we're dropping the target
2575 * anyway. As such, we can just do a simple memcpy() to copy over
2576 * the new name before we switch.
2577 *
2578 * Note that we have to be a lot more careful about getting the hash
2579 * switched - we have to switch the hash value properly even if it
2580 * then no longer matches the actual (corrupted) string of the target.
2581 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2582 */
9eaef27b 2583/*
18367501 2584 * __d_move - move a dentry
1da177e4
LT
2585 * @dentry: entry to move
2586 * @target: new dentry
2587 *
2588 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2589 * dcache entries should not be moved in this way. Caller must hold
2590 * rename_lock, the i_mutex of the source and target directories,
2591 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2592 */
18367501 2593static void __d_move(struct dentry * dentry, struct dentry * target)
1da177e4 2594{
1da177e4
LT
2595 if (!dentry->d_inode)
2596 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2597
2fd6b7f5
NP
2598 BUG_ON(d_ancestor(dentry, target));
2599 BUG_ON(d_ancestor(target, dentry));
2600
2fd6b7f5 2601 dentry_lock_for_move(dentry, target);
1da177e4 2602
31e6b01f
NP
2603 write_seqcount_begin(&dentry->d_seq);
2604 write_seqcount_begin(&target->d_seq);
2605
ceb5bdc2
NP
2606 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2607
2608 /*
2609 * Move the dentry to the target hash queue. Don't bother checking
2610 * for the same hash queue because of how unlikely it is.
2611 */
2612 __d_drop(dentry);
789680d1 2613 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4
LT
2614
2615 /* Unhash the target: dput() will then get rid of it */
2616 __d_drop(target);
2617
5160ee6f
ED
2618 list_del(&dentry->d_u.d_child);
2619 list_del(&target->d_u.d_child);
1da177e4
LT
2620
2621 /* Switch the names.. */
2622 switch_names(dentry, target);
9a8d5bb4 2623 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2624
2625 /* ... and switch the parents */
2626 if (IS_ROOT(dentry)) {
2627 dentry->d_parent = target->d_parent;
2628 target->d_parent = target;
5160ee6f 2629 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2630 } else {
9a8d5bb4 2631 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2632
2633 /* And add them back to the (new) parent lists */
5160ee6f 2634 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2635 }
2636
5160ee6f 2637 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5 2638
31e6b01f
NP
2639 write_seqcount_end(&target->d_seq);
2640 write_seqcount_end(&dentry->d_seq);
2641
2fd6b7f5 2642 dentry_unlock_parents_for_move(dentry, target);
1da177e4 2643 spin_unlock(&target->d_lock);
c32ccd87 2644 fsnotify_d_move(dentry);
1da177e4 2645 spin_unlock(&dentry->d_lock);
18367501
AV
2646}
2647
2648/*
2649 * d_move - move a dentry
2650 * @dentry: entry to move
2651 * @target: new dentry
2652 *
2653 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2654 * dcache entries should not be moved in this way. See the locking
2655 * requirements for __d_move.
18367501
AV
2656 */
2657void d_move(struct dentry *dentry, struct dentry *target)
2658{
2659 write_seqlock(&rename_lock);
2660 __d_move(dentry, target);
1da177e4 2661 write_sequnlock(&rename_lock);
9eaef27b 2662}
ec4f8605 2663EXPORT_SYMBOL(d_move);
1da177e4 2664
e2761a11
OH
2665/**
2666 * d_ancestor - search for an ancestor
2667 * @p1: ancestor dentry
2668 * @p2: child dentry
2669 *
2670 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2671 * an ancestor of p2, else NULL.
9eaef27b 2672 */
e2761a11 2673struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2674{
2675 struct dentry *p;
2676
871c0067 2677 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2678 if (p->d_parent == p1)
e2761a11 2679 return p;
9eaef27b 2680 }
e2761a11 2681 return NULL;
9eaef27b
TM
2682}
2683
2684/*
2685 * This helper attempts to cope with remotely renamed directories
2686 *
2687 * It assumes that the caller is already holding
18367501 2688 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2689 *
2690 * Note: If ever the locking in lock_rename() changes, then please
2691 * remember to update this too...
9eaef27b 2692 */
873feea0
NP
2693static struct dentry *__d_unalias(struct inode *inode,
2694 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2695{
2696 struct mutex *m1 = NULL, *m2 = NULL;
ee3efa91 2697 struct dentry *ret = ERR_PTR(-EBUSY);
9eaef27b
TM
2698
2699 /* If alias and dentry share a parent, then no extra locks required */
2700 if (alias->d_parent == dentry->d_parent)
2701 goto out_unalias;
2702
9eaef27b 2703 /* See lock_rename() */
9eaef27b
TM
2704 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2705 goto out_err;
2706 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2707 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2708 goto out_err;
2709 m2 = &alias->d_parent->d_inode->i_mutex;
2710out_unalias:
ee3efa91
AV
2711 if (likely(!d_mountpoint(alias))) {
2712 __d_move(alias, dentry);
2713 ret = alias;
2714 }
9eaef27b 2715out_err:
873feea0 2716 spin_unlock(&inode->i_lock);
9eaef27b
TM
2717 if (m2)
2718 mutex_unlock(m2);
2719 if (m1)
2720 mutex_unlock(m1);
2721 return ret;
2722}
2723
770bfad8
DH
2724/*
2725 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2726 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2727 * returns with anon->d_lock held!
770bfad8
DH
2728 */
2729static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2730{
740da42e 2731 struct dentry *dparent;
770bfad8 2732
2fd6b7f5 2733 dentry_lock_for_move(anon, dentry);
770bfad8 2734
31e6b01f
NP
2735 write_seqcount_begin(&dentry->d_seq);
2736 write_seqcount_begin(&anon->d_seq);
2737
770bfad8 2738 dparent = dentry->d_parent;
770bfad8 2739
2fd6b7f5
NP
2740 switch_names(dentry, anon);
2741 swap(dentry->d_name.hash, anon->d_name.hash);
2742
740da42e
AV
2743 dentry->d_parent = dentry;
2744 list_del_init(&dentry->d_u.d_child);
2745 anon->d_parent = dparent;
9ed53b12 2746 list_move(&anon->d_u.d_child, &dparent->d_subdirs);
770bfad8 2747
31e6b01f
NP
2748 write_seqcount_end(&dentry->d_seq);
2749 write_seqcount_end(&anon->d_seq);
2750
2fd6b7f5
NP
2751 dentry_unlock_parents_for_move(anon, dentry);
2752 spin_unlock(&dentry->d_lock);
2753
2754 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2755 anon->d_flags &= ~DCACHE_DISCONNECTED;
2756}
2757
2758/**
2759 * d_materialise_unique - introduce an inode into the tree
2760 * @dentry: candidate dentry
2761 * @inode: inode to bind to the dentry, to which aliases may be attached
2762 *
2763 * Introduces an dentry into the tree, substituting an extant disconnected
c46c8877
JL
2764 * root directory alias in its place if there is one. Caller must hold the
2765 * i_mutex of the parent directory.
770bfad8
DH
2766 */
2767struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2768{
9eaef27b 2769 struct dentry *actual;
770bfad8
DH
2770
2771 BUG_ON(!d_unhashed(dentry));
2772
770bfad8
DH
2773 if (!inode) {
2774 actual = dentry;
360da900 2775 __d_instantiate(dentry, NULL);
357f8e65
NP
2776 d_rehash(actual);
2777 goto out_nolock;
770bfad8
DH
2778 }
2779
873feea0 2780 spin_lock(&inode->i_lock);
357f8e65 2781
9eaef27b
TM
2782 if (S_ISDIR(inode->i_mode)) {
2783 struct dentry *alias;
2784
2785 /* Does an aliased dentry already exist? */
32ba9c3f 2786 alias = __d_find_alias(inode, 0);
9eaef27b
TM
2787 if (alias) {
2788 actual = alias;
18367501
AV
2789 write_seqlock(&rename_lock);
2790
2791 if (d_ancestor(alias, dentry)) {
2792 /* Check for loops */
2793 actual = ERR_PTR(-ELOOP);
b18dafc8 2794 spin_unlock(&inode->i_lock);
18367501
AV
2795 } else if (IS_ROOT(alias)) {
2796 /* Is this an anonymous mountpoint that we
2797 * could splice into our tree? */
9eaef27b 2798 __d_materialise_dentry(dentry, alias);
18367501 2799 write_sequnlock(&rename_lock);
9eaef27b
TM
2800 __d_drop(alias);
2801 goto found;
18367501
AV
2802 } else {
2803 /* Nope, but we must(!) avoid directory
b18dafc8 2804 * aliasing. This drops inode->i_lock */
18367501 2805 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2806 }
18367501 2807 write_sequnlock(&rename_lock);
dd179946
DH
2808 if (IS_ERR(actual)) {
2809 if (PTR_ERR(actual) == -ELOOP)
2810 pr_warn_ratelimited(
2811 "VFS: Lookup of '%s' in %s %s"
2812 " would have caused loop\n",
2813 dentry->d_name.name,
2814 inode->i_sb->s_type->name,
2815 inode->i_sb->s_id);
9eaef27b 2816 dput(alias);
dd179946 2817 }
9eaef27b
TM
2818 goto out_nolock;
2819 }
770bfad8
DH
2820 }
2821
2822 /* Add a unique reference */
2823 actual = __d_instantiate_unique(dentry, inode);
2824 if (!actual)
2825 actual = dentry;
357f8e65
NP
2826 else
2827 BUG_ON(!d_unhashed(actual));
770bfad8 2828
770bfad8
DH
2829 spin_lock(&actual->d_lock);
2830found:
2831 _d_rehash(actual);
2832 spin_unlock(&actual->d_lock);
873feea0 2833 spin_unlock(&inode->i_lock);
9eaef27b 2834out_nolock:
770bfad8
DH
2835 if (actual == dentry) {
2836 security_d_instantiate(dentry, inode);
2837 return NULL;
2838 }
2839
2840 iput(inode);
2841 return actual;
770bfad8 2842}
ec4f8605 2843EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2844
cdd16d02 2845static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2846{
2847 *buflen -= namelen;
2848 if (*buflen < 0)
2849 return -ENAMETOOLONG;
2850 *buffer -= namelen;
2851 memcpy(*buffer, str, namelen);
2852 return 0;
2853}
2854
232d2d60
WL
2855/**
2856 * prepend_name - prepend a pathname in front of current buffer pointer
18129977
WL
2857 * @buffer: buffer pointer
2858 * @buflen: allocated length of the buffer
2859 * @name: name string and length qstr structure
232d2d60
WL
2860 *
2861 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2862 * make sure that either the old or the new name pointer and length are
2863 * fetched. However, there may be mismatch between length and pointer.
2864 * The length cannot be trusted, we need to copy it byte-by-byte until
2865 * the length is reached or a null byte is found. It also prepends "/" at
2866 * the beginning of the name. The sequence number check at the caller will
2867 * retry it again when a d_move() does happen. So any garbage in the buffer
2868 * due to mismatched pointer and length will be discarded.
2869 */
cdd16d02
MS
2870static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2871{
232d2d60
WL
2872 const char *dname = ACCESS_ONCE(name->name);
2873 u32 dlen = ACCESS_ONCE(name->len);
2874 char *p;
2875
2876 if (*buflen < dlen + 1)
2877 return -ENAMETOOLONG;
2878 *buflen -= dlen + 1;
2879 p = *buffer -= dlen + 1;
2880 *p++ = '/';
2881 while (dlen--) {
2882 char c = *dname++;
2883 if (!c)
2884 break;
2885 *p++ = c;
2886 }
2887 return 0;
cdd16d02
MS
2888}
2889
1da177e4 2890/**
208898c1 2891 * prepend_path - Prepend path string to a buffer
9d1bc601 2892 * @path: the dentry/vfsmount to report
02125a82 2893 * @root: root vfsmnt/dentry
f2eb6575
MS
2894 * @buffer: pointer to the end of the buffer
2895 * @buflen: pointer to buffer length
552ce544 2896 *
18129977
WL
2897 * The function will first try to write out the pathname without taking any
2898 * lock other than the RCU read lock to make sure that dentries won't go away.
2899 * It only checks the sequence number of the global rename_lock as any change
2900 * in the dentry's d_seq will be preceded by changes in the rename_lock
2901 * sequence number. If the sequence number had been changed, it will restart
2902 * the whole pathname back-tracing sequence again by taking the rename_lock.
2903 * In this case, there is no need to take the RCU read lock as the recursive
2904 * parent pointer references will keep the dentry chain alive as long as no
2905 * rename operation is performed.
1da177e4 2906 */
02125a82
AV
2907static int prepend_path(const struct path *path,
2908 const struct path *root,
f2eb6575 2909 char **buffer, int *buflen)
1da177e4 2910{
9d1bc601
MS
2911 struct dentry *dentry = path->dentry;
2912 struct vfsmount *vfsmnt = path->mnt;
0714a533 2913 struct mount *mnt = real_mount(vfsmnt);
f2eb6575 2914 int error = 0;
232d2d60
WL
2915 unsigned seq = 0;
2916 char *bptr;
2917 int blen;
6092d048 2918
94e92a6e 2919 br_read_lock(&vfsmount_lock);
48f5ec21 2920 rcu_read_lock();
232d2d60
WL
2921restart:
2922 bptr = *buffer;
2923 blen = *buflen;
2924 read_seqbegin_or_lock(&rename_lock, &seq);
f2eb6575 2925 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2926 struct dentry * parent;
2927
1da177e4 2928 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
552ce544 2929 /* Global root? */
232d2d60
WL
2930 if (mnt_has_parent(mnt)) {
2931 dentry = mnt->mnt_mountpoint;
2932 mnt = mnt->mnt_parent;
2933 vfsmnt = &mnt->mnt;
2934 continue;
2935 }
2936 /*
2937 * Filesystems needing to implement special "root names"
2938 * should do so with ->d_dname()
2939 */
2940 if (IS_ROOT(dentry) &&
2941 (dentry->d_name.len != 1 ||
2942 dentry->d_name.name[0] != '/')) {
2943 WARN(1, "Root dentry has weird name <%.*s>\n",
2944 (int) dentry->d_name.len,
2945 dentry->d_name.name);
2946 }
2947 if (!error)
2948 error = is_mounted(vfsmnt) ? 1 : 2;
2949 break;
1da177e4
LT
2950 }
2951 parent = dentry->d_parent;
2952 prefetch(parent);
232d2d60 2953 error = prepend_name(&bptr, &blen, &dentry->d_name);
f2eb6575
MS
2954 if (error)
2955 break;
2956
1da177e4
LT
2957 dentry = parent;
2958 }
48f5ec21
AV
2959 if (!(seq & 1))
2960 rcu_read_unlock();
2961 if (need_seqretry(&rename_lock, seq)) {
2962 seq = 1;
232d2d60 2963 goto restart;
48f5ec21
AV
2964 }
2965 done_seqretry(&rename_lock, seq);
94e92a6e 2966 br_read_unlock(&vfsmount_lock);
1da177e4 2967
232d2d60
WL
2968 if (error >= 0 && bptr == *buffer) {
2969 if (--blen < 0)
2970 error = -ENAMETOOLONG;
2971 else
2972 *--bptr = '/';
2973 }
2974 *buffer = bptr;
2975 *buflen = blen;
7ea600b5 2976 return error;
f2eb6575 2977}
be285c71 2978
f2eb6575
MS
2979/**
2980 * __d_path - return the path of a dentry
2981 * @path: the dentry/vfsmount to report
02125a82 2982 * @root: root vfsmnt/dentry
cd956a1c 2983 * @buf: buffer to return value in
f2eb6575
MS
2984 * @buflen: buffer length
2985 *
ffd1f4ed 2986 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2987 *
2988 * Returns a pointer into the buffer or an error code if the
2989 * path was too long.
2990 *
be148247 2991 * "buflen" should be positive.
f2eb6575 2992 *
02125a82 2993 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 2994 */
02125a82
AV
2995char *__d_path(const struct path *path,
2996 const struct path *root,
f2eb6575
MS
2997 char *buf, int buflen)
2998{
2999 char *res = buf + buflen;
3000 int error;
3001
3002 prepend(&res, &buflen, "\0", 1);
f2eb6575 3003 error = prepend_path(path, root, &res, &buflen);
be148247 3004
02125a82
AV
3005 if (error < 0)
3006 return ERR_PTR(error);
3007 if (error > 0)
3008 return NULL;
3009 return res;
3010}
3011
3012char *d_absolute_path(const struct path *path,
3013 char *buf, int buflen)
3014{
3015 struct path root = {};
3016 char *res = buf + buflen;
3017 int error;
3018
3019 prepend(&res, &buflen, "\0", 1);
02125a82 3020 error = prepend_path(path, &root, &res, &buflen);
02125a82
AV
3021
3022 if (error > 1)
3023 error = -EINVAL;
3024 if (error < 0)
f2eb6575 3025 return ERR_PTR(error);
f2eb6575 3026 return res;
1da177e4
LT
3027}
3028
ffd1f4ed
MS
3029/*
3030 * same as __d_path but appends "(deleted)" for unlinked files.
3031 */
02125a82
AV
3032static int path_with_deleted(const struct path *path,
3033 const struct path *root,
3034 char **buf, int *buflen)
ffd1f4ed
MS
3035{
3036 prepend(buf, buflen, "\0", 1);
3037 if (d_unlinked(path->dentry)) {
3038 int error = prepend(buf, buflen, " (deleted)", 10);
3039 if (error)
3040 return error;
3041 }
3042
3043 return prepend_path(path, root, buf, buflen);
3044}
3045
8df9d1a4
MS
3046static int prepend_unreachable(char **buffer, int *buflen)
3047{
3048 return prepend(buffer, buflen, "(unreachable)", 13);
3049}
3050
68f0d9d9
LT
3051static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3052{
3053 unsigned seq;
3054
3055 do {
3056 seq = read_seqcount_begin(&fs->seq);
3057 *root = fs->root;
3058 } while (read_seqcount_retry(&fs->seq, seq));
3059}
3060
a03a8a70
JB
3061/**
3062 * d_path - return the path of a dentry
cf28b486 3063 * @path: path to report
a03a8a70
JB
3064 * @buf: buffer to return value in
3065 * @buflen: buffer length
3066 *
3067 * Convert a dentry into an ASCII path name. If the entry has been deleted
3068 * the string " (deleted)" is appended. Note that this is ambiguous.
3069 *
52afeefb
AV
3070 * Returns a pointer into the buffer or an error code if the path was
3071 * too long. Note: Callers should use the returned pointer, not the passed
3072 * in buffer, to use the name! The implementation often starts at an offset
3073 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 3074 *
31f3e0b3 3075 * "buflen" should be positive.
a03a8a70 3076 */
20d4fdc1 3077char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 3078{
ffd1f4ed 3079 char *res = buf + buflen;
6ac08c39 3080 struct path root;
ffd1f4ed 3081 int error;
1da177e4 3082
c23fbb6b
ED
3083 /*
3084 * We have various synthetic filesystems that never get mounted. On
3085 * these filesystems dentries are never used for lookup purposes, and
3086 * thus don't need to be hashed. They also don't need a name until a
3087 * user wants to identify the object in /proc/pid/fd/. The little hack
3088 * below allows us to generate a name for these objects on demand:
3089 */
cf28b486
JB
3090 if (path->dentry->d_op && path->dentry->d_op->d_dname)
3091 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 3092
68f0d9d9
LT
3093 rcu_read_lock();
3094 get_fs_root_rcu(current->fs, &root);
02125a82 3095 error = path_with_deleted(path, &root, &res, &buflen);
68f0d9d9
LT
3096 rcu_read_unlock();
3097
02125a82 3098 if (error < 0)
ffd1f4ed 3099 res = ERR_PTR(error);
1da177e4
LT
3100 return res;
3101}
ec4f8605 3102EXPORT_SYMBOL(d_path);
1da177e4 3103
c23fbb6b
ED
3104/*
3105 * Helper function for dentry_operations.d_dname() members
3106 */
3107char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3108 const char *fmt, ...)
3109{
3110 va_list args;
3111 char temp[64];
3112 int sz;
3113
3114 va_start(args, fmt);
3115 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3116 va_end(args);
3117
3118 if (sz > sizeof(temp) || sz > buflen)
3119 return ERR_PTR(-ENAMETOOLONG);
3120
3121 buffer += buflen - sz;
3122 return memcpy(buffer, temp, sz);
3123}
3124
118b2302
AV
3125char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3126{
3127 char *end = buffer + buflen;
3128 /* these dentries are never renamed, so d_lock is not needed */
3129 if (prepend(&end, &buflen, " (deleted)", 11) ||
232d2d60 3130 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
118b2302
AV
3131 prepend(&end, &buflen, "/", 1))
3132 end = ERR_PTR(-ENAMETOOLONG);
232d2d60 3133 return end;
118b2302
AV
3134}
3135
6092d048
RP
3136/*
3137 * Write full pathname from the root of the filesystem into the buffer.
3138 */
ec2447c2 3139static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
6092d048 3140{
232d2d60
WL
3141 char *end, *retval;
3142 int len, seq = 0;
3143 int error = 0;
6092d048 3144
48f5ec21 3145 rcu_read_lock();
232d2d60
WL
3146restart:
3147 end = buf + buflen;
3148 len = buflen;
3149 prepend(&end, &len, "\0", 1);
6092d048
RP
3150 if (buflen < 1)
3151 goto Elong;
3152 /* Get '/' right */
3153 retval = end-1;
3154 *retval = '/';
232d2d60 3155 read_seqbegin_or_lock(&rename_lock, &seq);
cdd16d02
MS
3156 while (!IS_ROOT(dentry)) {
3157 struct dentry *parent = dentry->d_parent;
9abca360 3158 int error;
6092d048 3159
6092d048 3160 prefetch(parent);
232d2d60
WL
3161 error = prepend_name(&end, &len, &dentry->d_name);
3162 if (error)
3163 break;
6092d048
RP
3164
3165 retval = end;
3166 dentry = parent;
3167 }
48f5ec21
AV
3168 if (!(seq & 1))
3169 rcu_read_unlock();
3170 if (need_seqretry(&rename_lock, seq)) {
3171 seq = 1;
232d2d60 3172 goto restart;
48f5ec21
AV
3173 }
3174 done_seqretry(&rename_lock, seq);
232d2d60
WL
3175 if (error)
3176 goto Elong;
c103135c
AV
3177 return retval;
3178Elong:
3179 return ERR_PTR(-ENAMETOOLONG);
3180}
ec2447c2
NP
3181
3182char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3183{
232d2d60 3184 return __dentry_path(dentry, buf, buflen);
ec2447c2
NP
3185}
3186EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
3187
3188char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3189{
3190 char *p = NULL;
3191 char *retval;
3192
c103135c
AV
3193 if (d_unlinked(dentry)) {
3194 p = buf + buflen;
3195 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3196 goto Elong;
3197 buflen++;
3198 }
3199 retval = __dentry_path(dentry, buf, buflen);
c103135c
AV
3200 if (!IS_ERR(retval) && p)
3201 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
3202 return retval;
3203Elong:
6092d048
RP
3204 return ERR_PTR(-ENAMETOOLONG);
3205}
3206
8b19e341
LT
3207static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3208 struct path *pwd)
5762482f 3209{
8b19e341
LT
3210 unsigned seq;
3211
3212 do {
3213 seq = read_seqcount_begin(&fs->seq);
3214 *root = fs->root;
3215 *pwd = fs->pwd;
3216 } while (read_seqcount_retry(&fs->seq, seq));
5762482f
LT
3217}
3218
1da177e4
LT
3219/*
3220 * NOTE! The user-level library version returns a
3221 * character pointer. The kernel system call just
3222 * returns the length of the buffer filled (which
3223 * includes the ending '\0' character), or a negative
3224 * error value. So libc would do something like
3225 *
3226 * char *getcwd(char * buf, size_t size)
3227 * {
3228 * int retval;
3229 *
3230 * retval = sys_getcwd(buf, size);
3231 * if (retval >= 0)
3232 * return buf;
3233 * errno = -retval;
3234 * return NULL;
3235 * }
3236 */
3cdad428 3237SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 3238{
552ce544 3239 int error;
6ac08c39 3240 struct path pwd, root;
3272c544 3241 char *page = __getname();
1da177e4
LT
3242
3243 if (!page)
3244 return -ENOMEM;
3245
8b19e341
LT
3246 rcu_read_lock();
3247 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
1da177e4 3248
552ce544 3249 error = -ENOENT;
f3da392e 3250 if (!d_unlinked(pwd.dentry)) {
552ce544 3251 unsigned long len;
3272c544
LT
3252 char *cwd = page + PATH_MAX;
3253 int buflen = PATH_MAX;
1da177e4 3254
8df9d1a4 3255 prepend(&cwd, &buflen, "\0", 1);
02125a82 3256 error = prepend_path(&pwd, &root, &cwd, &buflen);
ff812d72 3257 rcu_read_unlock();
552ce544 3258
02125a82 3259 if (error < 0)
552ce544
LT
3260 goto out;
3261
8df9d1a4 3262 /* Unreachable from current root */
02125a82 3263 if (error > 0) {
8df9d1a4
MS
3264 error = prepend_unreachable(&cwd, &buflen);
3265 if (error)
3266 goto out;
3267 }
3268
552ce544 3269 error = -ERANGE;
3272c544 3270 len = PATH_MAX + page - cwd;
552ce544
LT
3271 if (len <= size) {
3272 error = len;
3273 if (copy_to_user(buf, cwd, len))
3274 error = -EFAULT;
3275 }
949854d0 3276 } else {
ff812d72 3277 rcu_read_unlock();
949854d0 3278 }
1da177e4
LT
3279
3280out:
3272c544 3281 __putname(page);
1da177e4
LT
3282 return error;
3283}
3284
3285/*
3286 * Test whether new_dentry is a subdirectory of old_dentry.
3287 *
3288 * Trivially implemented using the dcache structure
3289 */
3290
3291/**
3292 * is_subdir - is new dentry a subdirectory of old_dentry
3293 * @new_dentry: new dentry
3294 * @old_dentry: old dentry
3295 *
3296 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3297 * Returns 0 otherwise.
3298 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3299 */
3300
e2761a11 3301int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
3302{
3303 int result;
949854d0 3304 unsigned seq;
1da177e4 3305
e2761a11
OH
3306 if (new_dentry == old_dentry)
3307 return 1;
3308
e2761a11 3309 do {
1da177e4 3310 /* for restarting inner loop in case of seq retry */
1da177e4 3311 seq = read_seqbegin(&rename_lock);
949854d0
NP
3312 /*
3313 * Need rcu_readlock to protect against the d_parent trashing
3314 * due to d_move
3315 */
3316 rcu_read_lock();
e2761a11 3317 if (d_ancestor(old_dentry, new_dentry))
1da177e4 3318 result = 1;
e2761a11
OH
3319 else
3320 result = 0;
949854d0 3321 rcu_read_unlock();
1da177e4 3322 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3323
3324 return result;
3325}
3326
db14fc3a 3327static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3328{
db14fc3a
MS
3329 struct dentry *root = data;
3330 if (dentry != root) {
3331 if (d_unhashed(dentry) || !dentry->d_inode)
3332 return D_WALK_SKIP;
1da177e4 3333
01ddc4ed
MS
3334 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3335 dentry->d_flags |= DCACHE_GENOCIDE;
3336 dentry->d_lockref.count--;
3337 }
1da177e4 3338 }
db14fc3a
MS
3339 return D_WALK_CONTINUE;
3340}
58db63d0 3341
db14fc3a
MS
3342void d_genocide(struct dentry *parent)
3343{
3344 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3345}
3346
60545d0d 3347void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3348{
60545d0d
AV
3349 inode_dec_link_count(inode);
3350 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3351 !hlist_unhashed(&dentry->d_alias) ||
3352 !d_unlinked(dentry));
3353 spin_lock(&dentry->d_parent->d_lock);
3354 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3355 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3356 (unsigned long long)inode->i_ino);
3357 spin_unlock(&dentry->d_lock);
3358 spin_unlock(&dentry->d_parent->d_lock);
3359 d_instantiate(dentry, inode);
1da177e4 3360}
60545d0d 3361EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3362
3363static __initdata unsigned long dhash_entries;
3364static int __init set_dhash_entries(char *str)
3365{
3366 if (!str)
3367 return 0;
3368 dhash_entries = simple_strtoul(str, &str, 0);
3369 return 1;
3370}
3371__setup("dhash_entries=", set_dhash_entries);
3372
3373static void __init dcache_init_early(void)
3374{
074b8517 3375 unsigned int loop;
1da177e4
LT
3376
3377 /* If hashes are distributed across NUMA nodes, defer
3378 * hash allocation until vmalloc space is available.
3379 */
3380 if (hashdist)
3381 return;
3382
3383 dentry_hashtable =
3384 alloc_large_system_hash("Dentry cache",
b07ad996 3385 sizeof(struct hlist_bl_head),
1da177e4
LT
3386 dhash_entries,
3387 13,
3388 HASH_EARLY,
3389 &d_hash_shift,
3390 &d_hash_mask,
31fe62b9 3391 0,
1da177e4
LT
3392 0);
3393
074b8517 3394 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3395 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3396}
3397
74bf17cf 3398static void __init dcache_init(void)
1da177e4 3399{
074b8517 3400 unsigned int loop;
1da177e4
LT
3401
3402 /*
3403 * A constructor could be added for stable state like the lists,
3404 * but it is probably not worth it because of the cache nature
3405 * of the dcache.
3406 */
0a31bd5f
CL
3407 dentry_cache = KMEM_CACHE(dentry,
3408 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
3409
3410 /* Hash may have been set up in dcache_init_early */
3411 if (!hashdist)
3412 return;
3413
3414 dentry_hashtable =
3415 alloc_large_system_hash("Dentry cache",
b07ad996 3416 sizeof(struct hlist_bl_head),
1da177e4
LT
3417 dhash_entries,
3418 13,
3419 0,
3420 &d_hash_shift,
3421 &d_hash_mask,
31fe62b9 3422 0,
1da177e4
LT
3423 0);
3424
074b8517 3425 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3426 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3427}
3428
3429/* SLAB cache for __getname() consumers */
e18b890b 3430struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3431EXPORT_SYMBOL(names_cachep);
1da177e4 3432
1da177e4
LT
3433EXPORT_SYMBOL(d_genocide);
3434
1da177e4
LT
3435void __init vfs_caches_init_early(void)
3436{
3437 dcache_init_early();
3438 inode_init_early();
3439}
3440
3441void __init vfs_caches_init(unsigned long mempages)
3442{
3443 unsigned long reserve;
3444
3445 /* Base hash sizes on available memory, with a reserve equal to
3446 150% of current kernel size */
3447
3448 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3449 mempages -= reserve;
3450
3451 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3452 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3453
74bf17cf
DC
3454 dcache_init();
3455 inode_init();
1da177e4 3456 files_init(mempages);
74bf17cf 3457 mnt_init();
1da177e4
LT
3458 bdev_cache_init();
3459 chrdev_init();
3460}
This page took 0.988182 seconds and 5 git commands to generate.