dio: take updating ->result into do_direct_IO()
[deliverable/linux.git] / fs / direct-io.c
CommitLineData
1da177e4
LT
1/*
2 * fs/direct-io.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * O_DIRECT
7 *
e1f8e874 8 * 04Jul2002 Andrew Morton
1da177e4
LT
9 * Initial version
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
e1f8e874 12 * 29Oct2002 Andrew Morton
1da177e4
LT
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
20 */
21
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/types.h>
25#include <linux/fs.h>
26#include <linux/mm.h>
27#include <linux/slab.h>
28#include <linux/highmem.h>
29#include <linux/pagemap.h>
98c4d57d 30#include <linux/task_io_accounting_ops.h>
1da177e4
LT
31#include <linux/bio.h>
32#include <linux/wait.h>
33#include <linux/err.h>
34#include <linux/blkdev.h>
35#include <linux/buffer_head.h>
36#include <linux/rwsem.h>
37#include <linux/uio.h>
60063497 38#include <linux/atomic.h>
65dd2aa9 39#include <linux/prefetch.h>
a27bb332 40#include <linux/aio.h>
1da177e4
LT
41
42/*
43 * How many user pages to map in one call to get_user_pages(). This determines
cde1ecb3 44 * the size of a structure in the slab cache
1da177e4
LT
45 */
46#define DIO_PAGES 64
47
48/*
49 * This code generally works in units of "dio_blocks". A dio_block is
50 * somewhere between the hard sector size and the filesystem block size. it
51 * is determined on a per-invocation basis. When talking to the filesystem
52 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
53 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
54 * to bio_block quantities by shifting left by blkfactor.
55 *
56 * If blkfactor is zero then the user's request was aligned to the filesystem's
57 * blocksize.
1da177e4
LT
58 */
59
eb28be2b
AK
60/* dio_state only used in the submission path */
61
62struct dio_submit {
1da177e4 63 struct bio *bio; /* bio under assembly */
1da177e4
LT
64 unsigned blkbits; /* doesn't change */
65 unsigned blkfactor; /* When we're using an alignment which
66 is finer than the filesystem's soft
67 blocksize, this specifies how much
68 finer. blkfactor=2 means 1/4-block
69 alignment. Does not change */
70 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
71 been performed at the start of a
72 write */
73 int pages_in_io; /* approximate total IO pages */
74 size_t size; /* total request size (doesn't change)*/
75 sector_t block_in_file; /* Current offset into the underlying
76 file in dio_block units. */
77 unsigned blocks_available; /* At block_in_file. changes */
0dc2bc49 78 int reap_counter; /* rate limit reaping */
1da177e4
LT
79 sector_t final_block_in_request;/* doesn't change */
80 unsigned first_block_in_page; /* doesn't change, Used only once */
81 int boundary; /* prev block is at a boundary */
1d8fa7a2 82 get_block_t *get_block; /* block mapping function */
facd07b0 83 dio_submit_t *submit_io; /* IO submition function */
eb28be2b 84
facd07b0 85 loff_t logical_offset_in_bio; /* current first logical block in bio */
1da177e4
LT
86 sector_t final_block_in_bio; /* current final block in bio + 1 */
87 sector_t next_block_for_io; /* next block to be put under IO,
88 in dio_blocks units */
1da177e4
LT
89
90 /*
91 * Deferred addition of a page to the dio. These variables are
92 * private to dio_send_cur_page(), submit_page_section() and
93 * dio_bio_add_page().
94 */
95 struct page *cur_page; /* The page */
96 unsigned cur_page_offset; /* Offset into it, in bytes */
97 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
98 sector_t cur_page_block; /* Where it starts */
facd07b0 99 loff_t cur_page_fs_offset; /* Offset in file */
1da177e4
LT
100
101 /*
102 * Page fetching state. These variables belong to dio_refill_pages().
103 */
104 int curr_page; /* changes */
105 int total_pages; /* doesn't change */
106 unsigned long curr_user_address;/* changes */
107
108 /*
109 * Page queue. These variables belong to dio_refill_pages() and
110 * dio_get_page().
111 */
1da177e4
LT
112 unsigned head; /* next page to process */
113 unsigned tail; /* last valid page + 1 */
eb28be2b
AK
114};
115
116/* dio_state communicated between submission path and end_io */
117struct dio {
118 int flags; /* doesn't change */
eb28be2b 119 int rw;
0dc2bc49 120 struct inode *inode;
eb28be2b
AK
121 loff_t i_size; /* i_size when submitted */
122 dio_iodone_t *end_io; /* IO completion function */
eb28be2b 123
18772641 124 void *private; /* copy from map_bh.b_private */
eb28be2b
AK
125
126 /* BIO completion state */
127 spinlock_t bio_lock; /* protects BIO fields below */
0dc2bc49
AK
128 int page_errors; /* errno from get_user_pages() */
129 int is_async; /* is IO async ? */
7b7a8665 130 bool defer_completion; /* defer AIO completion to workqueue? */
0dc2bc49 131 int io_error; /* IO error in completion path */
eb28be2b
AK
132 unsigned long refcount; /* direct_io_worker() and bios */
133 struct bio *bio_list; /* singly linked via bi_private */
134 struct task_struct *waiter; /* waiting task (NULL if none) */
135
136 /* AIO related stuff */
137 struct kiocb *iocb; /* kiocb */
eb28be2b
AK
138 ssize_t result; /* IO result */
139
23aee091
JM
140 /*
141 * pages[] (and any fields placed after it) are not zeroed out at
142 * allocation time. Don't add new fields after pages[] unless you
143 * wish that they not be zeroed.
144 */
7b7a8665
CH
145 union {
146 struct page *pages[DIO_PAGES]; /* page buffer */
147 struct work_struct complete_work;/* deferred AIO completion */
148 };
6e8267f5
AK
149} ____cacheline_aligned_in_smp;
150
151static struct kmem_cache *dio_cache __read_mostly;
1da177e4
LT
152
153/*
154 * How many pages are in the queue?
155 */
eb28be2b 156static inline unsigned dio_pages_present(struct dio_submit *sdio)
1da177e4 157{
eb28be2b 158 return sdio->tail - sdio->head;
1da177e4
LT
159}
160
161/*
162 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
163 */
ba253fbf 164static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
1da177e4
LT
165{
166 int ret;
167 int nr_pages;
168
eb28be2b 169 nr_pages = min(sdio->total_pages - sdio->curr_page, DIO_PAGES);
f5dd33c4 170 ret = get_user_pages_fast(
eb28be2b 171 sdio->curr_user_address, /* Where from? */
1da177e4
LT
172 nr_pages, /* How many pages? */
173 dio->rw == READ, /* Write to memory? */
f5dd33c4 174 &dio->pages[0]); /* Put results here */
1da177e4 175
eb28be2b 176 if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
557ed1fa 177 struct page *page = ZERO_PAGE(0);
1da177e4
LT
178 /*
179 * A memory fault, but the filesystem has some outstanding
180 * mapped blocks. We need to use those blocks up to avoid
181 * leaking stale data in the file.
182 */
183 if (dio->page_errors == 0)
184 dio->page_errors = ret;
b5810039
NP
185 page_cache_get(page);
186 dio->pages[0] = page;
eb28be2b
AK
187 sdio->head = 0;
188 sdio->tail = 1;
1da177e4
LT
189 ret = 0;
190 goto out;
191 }
192
193 if (ret >= 0) {
eb28be2b
AK
194 sdio->curr_user_address += ret * PAGE_SIZE;
195 sdio->curr_page += ret;
196 sdio->head = 0;
197 sdio->tail = ret;
1da177e4
LT
198 ret = 0;
199 }
200out:
201 return ret;
202}
203
204/*
205 * Get another userspace page. Returns an ERR_PTR on error. Pages are
206 * buffered inside the dio so that we can call get_user_pages() against a
207 * decent number of pages, less frequently. To provide nicer use of the
208 * L1 cache.
209 */
ba253fbf
AK
210static inline struct page *dio_get_page(struct dio *dio,
211 struct dio_submit *sdio)
1da177e4 212{
eb28be2b 213 if (dio_pages_present(sdio) == 0) {
1da177e4
LT
214 int ret;
215
eb28be2b 216 ret = dio_refill_pages(dio, sdio);
1da177e4
LT
217 if (ret)
218 return ERR_PTR(ret);
eb28be2b 219 BUG_ON(dio_pages_present(sdio) == 0);
1da177e4 220 }
eb28be2b 221 return dio->pages[sdio->head++];
1da177e4
LT
222}
223
6d544bb4
ZB
224/**
225 * dio_complete() - called when all DIO BIO I/O has been completed
226 * @offset: the byte offset in the file of the completed operation
227 *
7b7a8665
CH
228 * This drops i_dio_count, lets interested parties know that a DIO operation
229 * has completed, and calculates the resulting return code for the operation.
6d544bb4
ZB
230 *
231 * It lets the filesystem know if it registered an interest earlier via
232 * get_block. Pass the private field of the map buffer_head so that
233 * filesystems can use it to hold additional state between get_block calls and
234 * dio_complete.
1da177e4 235 */
7b7a8665
CH
236static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret,
237 bool is_async)
1da177e4 238{
6d544bb4
ZB
239 ssize_t transferred = 0;
240
8459d86a
ZB
241 /*
242 * AIO submission can race with bio completion to get here while
243 * expecting to have the last io completed by bio completion.
244 * In that case -EIOCBQUEUED is in fact not an error we want
245 * to preserve through this call.
246 */
247 if (ret == -EIOCBQUEUED)
248 ret = 0;
249
6d544bb4
ZB
250 if (dio->result) {
251 transferred = dio->result;
252
253 /* Check for short read case */
254 if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
255 transferred = dio->i_size - offset;
256 }
257
6d544bb4
ZB
258 if (ret == 0)
259 ret = dio->page_errors;
260 if (ret == 0)
261 ret = dio->io_error;
262 if (ret == 0)
263 ret = transferred;
264
7b7a8665
CH
265 if (dio->end_io && dio->result)
266 dio->end_io(dio->iocb, offset, transferred, dio->private);
267
268 inode_dio_done(dio->inode);
02afc27f
CH
269 if (is_async) {
270 if (dio->rw & WRITE) {
271 int err;
272
273 err = generic_write_sync(dio->iocb->ki_filp, offset,
274 transferred);
275 if (err < 0 && ret > 0)
276 ret = err;
277 }
278
7b7a8665 279 aio_complete(dio->iocb, ret, 0);
02afc27f 280 }
40e2e973 281
7b7a8665 282 kmem_cache_free(dio_cache, dio);
6d544bb4 283 return ret;
1da177e4
LT
284}
285
7b7a8665
CH
286static void dio_aio_complete_work(struct work_struct *work)
287{
288 struct dio *dio = container_of(work, struct dio, complete_work);
289
290 dio_complete(dio, dio->iocb->ki_pos, 0, true);
291}
292
1da177e4 293static int dio_bio_complete(struct dio *dio, struct bio *bio);
7b7a8665 294
1da177e4
LT
295/*
296 * Asynchronous IO callback.
297 */
6712ecf8 298static void dio_bio_end_aio(struct bio *bio, int error)
1da177e4
LT
299{
300 struct dio *dio = bio->bi_private;
5eb6c7a2
ZB
301 unsigned long remaining;
302 unsigned long flags;
1da177e4 303
1da177e4
LT
304 /* cleanup the bio */
305 dio_bio_complete(dio, bio);
0273201e 306
5eb6c7a2
ZB
307 spin_lock_irqsave(&dio->bio_lock, flags);
308 remaining = --dio->refcount;
309 if (remaining == 1 && dio->waiter)
20258b2b 310 wake_up_process(dio->waiter);
5eb6c7a2 311 spin_unlock_irqrestore(&dio->bio_lock, flags);
20258b2b 312
8459d86a 313 if (remaining == 0) {
7b7a8665
CH
314 if (dio->result && dio->defer_completion) {
315 INIT_WORK(&dio->complete_work, dio_aio_complete_work);
316 queue_work(dio->inode->i_sb->s_dio_done_wq,
317 &dio->complete_work);
318 } else {
319 dio_complete(dio, dio->iocb->ki_pos, 0, true);
320 }
8459d86a 321 }
1da177e4
LT
322}
323
324/*
325 * The BIO completion handler simply queues the BIO up for the process-context
326 * handler.
327 *
328 * During I/O bi_private points at the dio. After I/O, bi_private is used to
329 * implement a singly-linked list of completed BIOs, at dio->bio_list.
330 */
6712ecf8 331static void dio_bio_end_io(struct bio *bio, int error)
1da177e4
LT
332{
333 struct dio *dio = bio->bi_private;
334 unsigned long flags;
335
1da177e4
LT
336 spin_lock_irqsave(&dio->bio_lock, flags);
337 bio->bi_private = dio->bio_list;
338 dio->bio_list = bio;
5eb6c7a2 339 if (--dio->refcount == 1 && dio->waiter)
1da177e4
LT
340 wake_up_process(dio->waiter);
341 spin_unlock_irqrestore(&dio->bio_lock, flags);
1da177e4
LT
342}
343
facd07b0
JB
344/**
345 * dio_end_io - handle the end io action for the given bio
346 * @bio: The direct io bio thats being completed
347 * @error: Error if there was one
348 *
349 * This is meant to be called by any filesystem that uses their own dio_submit_t
350 * so that the DIO specific endio actions are dealt with after the filesystem
351 * has done it's completion work.
352 */
353void dio_end_io(struct bio *bio, int error)
354{
355 struct dio *dio = bio->bi_private;
356
357 if (dio->is_async)
358 dio_bio_end_aio(bio, error);
359 else
360 dio_bio_end_io(bio, error);
361}
362EXPORT_SYMBOL_GPL(dio_end_io);
363
ba253fbf 364static inline void
eb28be2b
AK
365dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
366 struct block_device *bdev,
367 sector_t first_sector, int nr_vecs)
1da177e4
LT
368{
369 struct bio *bio;
370
20d9600c
DD
371 /*
372 * bio_alloc() is guaranteed to return a bio when called with
373 * __GFP_WAIT and we request a valid number of vectors.
374 */
1da177e4 375 bio = bio_alloc(GFP_KERNEL, nr_vecs);
1da177e4
LT
376
377 bio->bi_bdev = bdev;
4f024f37 378 bio->bi_iter.bi_sector = first_sector;
1da177e4
LT
379 if (dio->is_async)
380 bio->bi_end_io = dio_bio_end_aio;
381 else
382 bio->bi_end_io = dio_bio_end_io;
383
eb28be2b
AK
384 sdio->bio = bio;
385 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
1da177e4
LT
386}
387
388/*
389 * In the AIO read case we speculatively dirty the pages before starting IO.
390 * During IO completion, any of these pages which happen to have been written
391 * back will be redirtied by bio_check_pages_dirty().
0273201e
ZB
392 *
393 * bios hold a dio reference between submit_bio and ->end_io.
1da177e4 394 */
ba253fbf 395static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
1da177e4 396{
eb28be2b 397 struct bio *bio = sdio->bio;
5eb6c7a2 398 unsigned long flags;
1da177e4
LT
399
400 bio->bi_private = dio;
5eb6c7a2
ZB
401
402 spin_lock_irqsave(&dio->bio_lock, flags);
403 dio->refcount++;
404 spin_unlock_irqrestore(&dio->bio_lock, flags);
405
1da177e4
LT
406 if (dio->is_async && dio->rw == READ)
407 bio_set_pages_dirty(bio);
5eb6c7a2 408
eb28be2b
AK
409 if (sdio->submit_io)
410 sdio->submit_io(dio->rw, bio, dio->inode,
411 sdio->logical_offset_in_bio);
facd07b0
JB
412 else
413 submit_bio(dio->rw, bio);
1da177e4 414
eb28be2b
AK
415 sdio->bio = NULL;
416 sdio->boundary = 0;
417 sdio->logical_offset_in_bio = 0;
1da177e4
LT
418}
419
420/*
421 * Release any resources in case of a failure
422 */
ba253fbf 423static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
1da177e4 424{
eb28be2b
AK
425 while (dio_pages_present(sdio))
426 page_cache_release(dio_get_page(dio, sdio));
1da177e4
LT
427}
428
429/*
0273201e
ZB
430 * Wait for the next BIO to complete. Remove it and return it. NULL is
431 * returned once all BIOs have been completed. This must only be called once
432 * all bios have been issued so that dio->refcount can only decrease. This
433 * requires that that the caller hold a reference on the dio.
1da177e4
LT
434 */
435static struct bio *dio_await_one(struct dio *dio)
436{
437 unsigned long flags;
0273201e 438 struct bio *bio = NULL;
1da177e4
LT
439
440 spin_lock_irqsave(&dio->bio_lock, flags);
5eb6c7a2
ZB
441
442 /*
443 * Wait as long as the list is empty and there are bios in flight. bio
444 * completion drops the count, maybe adds to the list, and wakes while
445 * holding the bio_lock so we don't need set_current_state()'s barrier
446 * and can call it after testing our condition.
447 */
448 while (dio->refcount > 1 && dio->bio_list == NULL) {
449 __set_current_state(TASK_UNINTERRUPTIBLE);
450 dio->waiter = current;
451 spin_unlock_irqrestore(&dio->bio_lock, flags);
452 io_schedule();
453 /* wake up sets us TASK_RUNNING */
454 spin_lock_irqsave(&dio->bio_lock, flags);
455 dio->waiter = NULL;
1da177e4 456 }
0273201e
ZB
457 if (dio->bio_list) {
458 bio = dio->bio_list;
459 dio->bio_list = bio->bi_private;
460 }
1da177e4
LT
461 spin_unlock_irqrestore(&dio->bio_lock, flags);
462 return bio;
463}
464
465/*
466 * Process one completed BIO. No locks are held.
467 */
468static int dio_bio_complete(struct dio *dio, struct bio *bio)
469{
470 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
cb34e057
KO
471 struct bio_vec *bvec;
472 unsigned i;
1da177e4
LT
473
474 if (!uptodate)
174e27c6 475 dio->io_error = -EIO;
1da177e4
LT
476
477 if (dio->is_async && dio->rw == READ) {
478 bio_check_pages_dirty(bio); /* transfers ownership */
479 } else {
cb34e057
KO
480 bio_for_each_segment_all(bvec, bio, i) {
481 struct page *page = bvec->bv_page;
1da177e4
LT
482
483 if (dio->rw == READ && !PageCompound(page))
484 set_page_dirty_lock(page);
485 page_cache_release(page);
486 }
487 bio_put(bio);
488 }
1da177e4
LT
489 return uptodate ? 0 : -EIO;
490}
491
492/*
0273201e
ZB
493 * Wait on and process all in-flight BIOs. This must only be called once
494 * all bios have been issued so that the refcount can only decrease.
495 * This just waits for all bios to make it through dio_bio_complete. IO
beb7dd86 496 * errors are propagated through dio->io_error and should be propagated via
0273201e 497 * dio_complete().
1da177e4 498 */
6d544bb4 499static void dio_await_completion(struct dio *dio)
1da177e4 500{
0273201e
ZB
501 struct bio *bio;
502 do {
503 bio = dio_await_one(dio);
504 if (bio)
505 dio_bio_complete(dio, bio);
506 } while (bio);
1da177e4
LT
507}
508
509/*
510 * A really large O_DIRECT read or write can generate a lot of BIOs. So
511 * to keep the memory consumption sane we periodically reap any completed BIOs
512 * during the BIO generation phase.
513 *
514 * This also helps to limit the peak amount of pinned userspace memory.
515 */
ba253fbf 516static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
1da177e4
LT
517{
518 int ret = 0;
519
eb28be2b 520 if (sdio->reap_counter++ >= 64) {
1da177e4
LT
521 while (dio->bio_list) {
522 unsigned long flags;
523 struct bio *bio;
524 int ret2;
525
526 spin_lock_irqsave(&dio->bio_lock, flags);
527 bio = dio->bio_list;
528 dio->bio_list = bio->bi_private;
529 spin_unlock_irqrestore(&dio->bio_lock, flags);
530 ret2 = dio_bio_complete(dio, bio);
531 if (ret == 0)
532 ret = ret2;
533 }
eb28be2b 534 sdio->reap_counter = 0;
1da177e4
LT
535 }
536 return ret;
537}
538
7b7a8665
CH
539/*
540 * Create workqueue for deferred direct IO completions. We allocate the
541 * workqueue when it's first needed. This avoids creating workqueue for
542 * filesystems that don't need it and also allows us to create the workqueue
543 * late enough so the we can include s_id in the name of the workqueue.
544 */
545static int sb_init_dio_done_wq(struct super_block *sb)
546{
45150c43 547 struct workqueue_struct *old;
7b7a8665
CH
548 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
549 WQ_MEM_RECLAIM, 0,
550 sb->s_id);
551 if (!wq)
552 return -ENOMEM;
553 /*
554 * This has to be atomic as more DIOs can race to create the workqueue
555 */
45150c43 556 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
7b7a8665 557 /* Someone created workqueue before us? Free ours... */
45150c43 558 if (old)
7b7a8665
CH
559 destroy_workqueue(wq);
560 return 0;
561}
562
563static int dio_set_defer_completion(struct dio *dio)
564{
565 struct super_block *sb = dio->inode->i_sb;
566
567 if (dio->defer_completion)
568 return 0;
569 dio->defer_completion = true;
570 if (!sb->s_dio_done_wq)
571 return sb_init_dio_done_wq(sb);
572 return 0;
573}
574
1da177e4
LT
575/*
576 * Call into the fs to map some more disk blocks. We record the current number
eb28be2b 577 * of available blocks at sdio->blocks_available. These are in units of the
1da177e4
LT
578 * fs blocksize, (1 << inode->i_blkbits).
579 *
580 * The fs is allowed to map lots of blocks at once. If it wants to do that,
581 * it uses the passed inode-relative block number as the file offset, as usual.
582 *
1d8fa7a2 583 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
1da177e4
LT
584 * has remaining to do. The fs should not map more than this number of blocks.
585 *
586 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
587 * indicate how much contiguous disk space has been made available at
588 * bh->b_blocknr.
589 *
590 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
591 * This isn't very efficient...
592 *
593 * In the case of filesystem holes: the fs may return an arbitrarily-large
594 * hole by returning an appropriate value in b_size and by clearing
595 * buffer_mapped(). However the direct-io code will only process holes one
1d8fa7a2 596 * block at a time - it will repeatedly call get_block() as it walks the hole.
1da177e4 597 */
18772641
AK
598static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
599 struct buffer_head *map_bh)
1da177e4
LT
600{
601 int ret;
1da177e4 602 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
ae55e1aa 603 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
1da177e4 604 unsigned long fs_count; /* Number of filesystem-sized blocks */
1da177e4 605 int create;
ab73857e 606 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
1da177e4
LT
607
608 /*
609 * If there was a memory error and we've overwritten all the
610 * mapped blocks then we can now return that memory error
611 */
612 ret = dio->page_errors;
613 if (ret == 0) {
eb28be2b
AK
614 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
615 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
ae55e1aa
TM
616 fs_endblk = (sdio->final_block_in_request - 1) >>
617 sdio->blkfactor;
618 fs_count = fs_endblk - fs_startblk + 1;
1da177e4 619
3c674e74 620 map_bh->b_state = 0;
ab73857e 621 map_bh->b_size = fs_count << i_blkbits;
3c674e74 622
5fe878ae
CH
623 /*
624 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
625 * forbid block creations: only overwrites are permitted.
626 * We will return early to the caller once we see an
627 * unmapped buffer head returned, and the caller will fall
628 * back to buffered I/O.
629 *
630 * Otherwise the decision is left to the get_blocks method,
631 * which may decide to handle it or also return an unmapped
632 * buffer head.
633 */
b31dc66a 634 create = dio->rw & WRITE;
5fe878ae 635 if (dio->flags & DIO_SKIP_HOLES) {
eb28be2b
AK
636 if (sdio->block_in_file < (i_size_read(dio->inode) >>
637 sdio->blkbits))
1da177e4 638 create = 0;
1da177e4 639 }
3c674e74 640
eb28be2b 641 ret = (*sdio->get_block)(dio->inode, fs_startblk,
1da177e4 642 map_bh, create);
18772641
AK
643
644 /* Store for completion */
645 dio->private = map_bh->b_private;
7b7a8665
CH
646
647 if (ret == 0 && buffer_defer_completion(map_bh))
648 ret = dio_set_defer_completion(dio);
1da177e4
LT
649 }
650 return ret;
651}
652
653/*
654 * There is no bio. Make one now.
655 */
ba253fbf
AK
656static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
657 sector_t start_sector, struct buffer_head *map_bh)
1da177e4
LT
658{
659 sector_t sector;
660 int ret, nr_pages;
661
eb28be2b 662 ret = dio_bio_reap(dio, sdio);
1da177e4
LT
663 if (ret)
664 goto out;
eb28be2b 665 sector = start_sector << (sdio->blkbits - 9);
18772641 666 nr_pages = min(sdio->pages_in_io, bio_get_nr_vecs(map_bh->b_bdev));
1da177e4 667 BUG_ON(nr_pages <= 0);
18772641 668 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
eb28be2b 669 sdio->boundary = 0;
1da177e4
LT
670out:
671 return ret;
672}
673
674/*
675 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
676 * that was successful then update final_block_in_bio and take a ref against
677 * the just-added page.
678 *
679 * Return zero on success. Non-zero means the caller needs to start a new BIO.
680 */
ba253fbf 681static inline int dio_bio_add_page(struct dio_submit *sdio)
1da177e4
LT
682{
683 int ret;
684
eb28be2b
AK
685 ret = bio_add_page(sdio->bio, sdio->cur_page,
686 sdio->cur_page_len, sdio->cur_page_offset);
687 if (ret == sdio->cur_page_len) {
1da177e4
LT
688 /*
689 * Decrement count only, if we are done with this page
690 */
eb28be2b
AK
691 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
692 sdio->pages_in_io--;
693 page_cache_get(sdio->cur_page);
694 sdio->final_block_in_bio = sdio->cur_page_block +
695 (sdio->cur_page_len >> sdio->blkbits);
1da177e4
LT
696 ret = 0;
697 } else {
698 ret = 1;
699 }
700 return ret;
701}
702
703/*
704 * Put cur_page under IO. The section of cur_page which is described by
705 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
706 * starts on-disk at cur_page_block.
707 *
708 * We take a ref against the page here (on behalf of its presence in the bio).
709 *
710 * The caller of this function is responsible for removing cur_page from the
711 * dio, and for dropping the refcount which came from that presence.
712 */
ba253fbf
AK
713static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
714 struct buffer_head *map_bh)
1da177e4
LT
715{
716 int ret = 0;
717
eb28be2b
AK
718 if (sdio->bio) {
719 loff_t cur_offset = sdio->cur_page_fs_offset;
720 loff_t bio_next_offset = sdio->logical_offset_in_bio +
4f024f37 721 sdio->bio->bi_iter.bi_size;
c2c6ca41 722
1da177e4 723 /*
c2c6ca41
JB
724 * See whether this new request is contiguous with the old.
725 *
f0940cee
NK
726 * Btrfs cannot handle having logically non-contiguous requests
727 * submitted. For example if you have
c2c6ca41
JB
728 *
729 * Logical: [0-4095][HOLE][8192-12287]
f0940cee 730 * Physical: [0-4095] [4096-8191]
c2c6ca41
JB
731 *
732 * We cannot submit those pages together as one BIO. So if our
733 * current logical offset in the file does not equal what would
734 * be the next logical offset in the bio, submit the bio we
735 * have.
1da177e4 736 */
eb28be2b 737 if (sdio->final_block_in_bio != sdio->cur_page_block ||
c2c6ca41 738 cur_offset != bio_next_offset)
eb28be2b 739 dio_bio_submit(dio, sdio);
1da177e4
LT
740 }
741
eb28be2b 742 if (sdio->bio == NULL) {
18772641 743 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
1da177e4
LT
744 if (ret)
745 goto out;
746 }
747
eb28be2b
AK
748 if (dio_bio_add_page(sdio) != 0) {
749 dio_bio_submit(dio, sdio);
18772641 750 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
1da177e4 751 if (ret == 0) {
eb28be2b 752 ret = dio_bio_add_page(sdio);
1da177e4
LT
753 BUG_ON(ret != 0);
754 }
755 }
756out:
757 return ret;
758}
759
760/*
761 * An autonomous function to put a chunk of a page under deferred IO.
762 *
763 * The caller doesn't actually know (or care) whether this piece of page is in
764 * a BIO, or is under IO or whatever. We just take care of all possible
765 * situations here. The separation between the logic of do_direct_IO() and
766 * that of submit_page_section() is important for clarity. Please don't break.
767 *
768 * The chunk of page starts on-disk at blocknr.
769 *
770 * We perform deferred IO, by recording the last-submitted page inside our
771 * private part of the dio structure. If possible, we just expand the IO
772 * across that page here.
773 *
774 * If that doesn't work out then we put the old page into the bio and add this
775 * page to the dio instead.
776 */
ba253fbf 777static inline int
eb28be2b 778submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
18772641
AK
779 unsigned offset, unsigned len, sector_t blocknr,
780 struct buffer_head *map_bh)
1da177e4
LT
781{
782 int ret = 0;
783
98c4d57d
AM
784 if (dio->rw & WRITE) {
785 /*
786 * Read accounting is performed in submit_bio()
787 */
788 task_io_account_write(len);
789 }
790
1da177e4
LT
791 /*
792 * Can we just grow the current page's presence in the dio?
793 */
eb28be2b
AK
794 if (sdio->cur_page == page &&
795 sdio->cur_page_offset + sdio->cur_page_len == offset &&
796 sdio->cur_page_block +
797 (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
798 sdio->cur_page_len += len;
1da177e4
LT
799 goto out;
800 }
801
802 /*
803 * If there's a deferred page already there then send it.
804 */
eb28be2b 805 if (sdio->cur_page) {
18772641 806 ret = dio_send_cur_page(dio, sdio, map_bh);
eb28be2b
AK
807 page_cache_release(sdio->cur_page);
808 sdio->cur_page = NULL;
1da177e4 809 if (ret)
b1058b98 810 return ret;
1da177e4
LT
811 }
812
813 page_cache_get(page); /* It is in dio */
eb28be2b
AK
814 sdio->cur_page = page;
815 sdio->cur_page_offset = offset;
816 sdio->cur_page_len = len;
817 sdio->cur_page_block = blocknr;
818 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
1da177e4 819out:
b1058b98
JK
820 /*
821 * If sdio->boundary then we want to schedule the IO now to
822 * avoid metadata seeks.
823 */
824 if (sdio->boundary) {
825 ret = dio_send_cur_page(dio, sdio, map_bh);
826 dio_bio_submit(dio, sdio);
827 page_cache_release(sdio->cur_page);
828 sdio->cur_page = NULL;
829 }
1da177e4
LT
830 return ret;
831}
832
833/*
834 * Clean any dirty buffers in the blockdev mapping which alias newly-created
835 * file blocks. Only called for S_ISREG files - blockdevs do not set
836 * buffer_new
837 */
18772641 838static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
1da177e4
LT
839{
840 unsigned i;
841 unsigned nblocks;
842
18772641 843 nblocks = map_bh->b_size >> dio->inode->i_blkbits;
1da177e4
LT
844
845 for (i = 0; i < nblocks; i++) {
18772641
AK
846 unmap_underlying_metadata(map_bh->b_bdev,
847 map_bh->b_blocknr + i);
1da177e4
LT
848 }
849}
850
851/*
852 * If we are not writing the entire block and get_block() allocated
853 * the block for us, we need to fill-in the unused portion of the
854 * block with zeros. This happens only if user-buffer, fileoffset or
855 * io length is not filesystem block-size multiple.
856 *
857 * `end' is zero if we're doing the start of the IO, 1 at the end of the
858 * IO.
859 */
ba253fbf
AK
860static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
861 int end, struct buffer_head *map_bh)
1da177e4
LT
862{
863 unsigned dio_blocks_per_fs_block;
864 unsigned this_chunk_blocks; /* In dio_blocks */
865 unsigned this_chunk_bytes;
866 struct page *page;
867
eb28be2b 868 sdio->start_zero_done = 1;
18772641 869 if (!sdio->blkfactor || !buffer_new(map_bh))
1da177e4
LT
870 return;
871
eb28be2b
AK
872 dio_blocks_per_fs_block = 1 << sdio->blkfactor;
873 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
1da177e4
LT
874
875 if (!this_chunk_blocks)
876 return;
877
878 /*
879 * We need to zero out part of an fs block. It is either at the
880 * beginning or the end of the fs block.
881 */
882 if (end)
883 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
884
eb28be2b 885 this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
1da177e4 886
557ed1fa 887 page = ZERO_PAGE(0);
eb28be2b 888 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
18772641 889 sdio->next_block_for_io, map_bh))
1da177e4
LT
890 return;
891
eb28be2b 892 sdio->next_block_for_io += this_chunk_blocks;
1da177e4
LT
893}
894
895/*
896 * Walk the user pages, and the file, mapping blocks to disk and generating
897 * a sequence of (page,offset,len,block) mappings. These mappings are injected
898 * into submit_page_section(), which takes care of the next stage of submission
899 *
900 * Direct IO against a blockdev is different from a file. Because we can
901 * happily perform page-sized but 512-byte aligned IOs. It is important that
902 * blockdev IO be able to have fine alignment and large sizes.
903 *
1d8fa7a2 904 * So what we do is to permit the ->get_block function to populate bh.b_size
1da177e4
LT
905 * with the size of IO which is permitted at this offset and this i_blkbits.
906 *
907 * For best results, the blockdev should be set up with 512-byte i_blkbits and
1d8fa7a2 908 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
1da177e4
LT
909 * fine alignment but still allows this function to work in PAGE_SIZE units.
910 */
18772641
AK
911static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
912 struct buffer_head *map_bh)
1da177e4 913{
eb28be2b 914 const unsigned blkbits = sdio->blkbits;
1da177e4
LT
915 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
916 struct page *page;
917 unsigned block_in_page;
1da177e4
LT
918 int ret = 0;
919
920 /* The I/O can start at any block offset within the first page */
eb28be2b 921 block_in_page = sdio->first_block_in_page;
1da177e4 922
eb28be2b
AK
923 while (sdio->block_in_file < sdio->final_block_in_request) {
924 page = dio_get_page(dio, sdio);
1da177e4
LT
925 if (IS_ERR(page)) {
926 ret = PTR_ERR(page);
927 goto out;
928 }
929
930 while (block_in_page < blocks_per_page) {
931 unsigned offset_in_page = block_in_page << blkbits;
932 unsigned this_chunk_bytes; /* # of bytes mapped */
933 unsigned this_chunk_blocks; /* # of blocks */
934 unsigned u;
935
eb28be2b 936 if (sdio->blocks_available == 0) {
1da177e4
LT
937 /*
938 * Need to go and map some more disk
939 */
940 unsigned long blkmask;
941 unsigned long dio_remainder;
942
18772641 943 ret = get_more_blocks(dio, sdio, map_bh);
1da177e4
LT
944 if (ret) {
945 page_cache_release(page);
946 goto out;
947 }
948 if (!buffer_mapped(map_bh))
949 goto do_holes;
950
eb28be2b
AK
951 sdio->blocks_available =
952 map_bh->b_size >> sdio->blkbits;
953 sdio->next_block_for_io =
954 map_bh->b_blocknr << sdio->blkfactor;
1da177e4 955 if (buffer_new(map_bh))
18772641 956 clean_blockdev_aliases(dio, map_bh);
1da177e4 957
eb28be2b 958 if (!sdio->blkfactor)
1da177e4
LT
959 goto do_holes;
960
eb28be2b
AK
961 blkmask = (1 << sdio->blkfactor) - 1;
962 dio_remainder = (sdio->block_in_file & blkmask);
1da177e4
LT
963
964 /*
965 * If we are at the start of IO and that IO
966 * starts partway into a fs-block,
967 * dio_remainder will be non-zero. If the IO
968 * is a read then we can simply advance the IO
969 * cursor to the first block which is to be
970 * read. But if the IO is a write and the
971 * block was newly allocated we cannot do that;
972 * the start of the fs block must be zeroed out
973 * on-disk
974 */
975 if (!buffer_new(map_bh))
eb28be2b
AK
976 sdio->next_block_for_io += dio_remainder;
977 sdio->blocks_available -= dio_remainder;
1da177e4
LT
978 }
979do_holes:
980 /* Handle holes */
981 if (!buffer_mapped(map_bh)) {
35dc8161 982 loff_t i_size_aligned;
1da177e4
LT
983
984 /* AKPM: eargh, -ENOTBLK is a hack */
b31dc66a 985 if (dio->rw & WRITE) {
1da177e4
LT
986 page_cache_release(page);
987 return -ENOTBLK;
988 }
989
35dc8161
JM
990 /*
991 * Be sure to account for a partial block as the
992 * last block in the file
993 */
994 i_size_aligned = ALIGN(i_size_read(dio->inode),
995 1 << blkbits);
eb28be2b 996 if (sdio->block_in_file >=
35dc8161 997 i_size_aligned >> blkbits) {
1da177e4
LT
998 /* We hit eof */
999 page_cache_release(page);
1000 goto out;
1001 }
eebd2aa3
CL
1002 zero_user(page, block_in_page << blkbits,
1003 1 << blkbits);
eb28be2b 1004 sdio->block_in_file++;
1da177e4 1005 block_in_page++;
3320c60b 1006 dio->result += 1 << blkbits;
1da177e4
LT
1007 goto next_block;
1008 }
1009
1010 /*
1011 * If we're performing IO which has an alignment which
1012 * is finer than the underlying fs, go check to see if
1013 * we must zero out the start of this block.
1014 */
eb28be2b 1015 if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
18772641 1016 dio_zero_block(dio, sdio, 0, map_bh);
1da177e4
LT
1017
1018 /*
1019 * Work out, in this_chunk_blocks, how much disk we
1020 * can add to this page
1021 */
eb28be2b 1022 this_chunk_blocks = sdio->blocks_available;
1da177e4
LT
1023 u = (PAGE_SIZE - offset_in_page) >> blkbits;
1024 if (this_chunk_blocks > u)
1025 this_chunk_blocks = u;
eb28be2b 1026 u = sdio->final_block_in_request - sdio->block_in_file;
1da177e4
LT
1027 if (this_chunk_blocks > u)
1028 this_chunk_blocks = u;
1029 this_chunk_bytes = this_chunk_blocks << blkbits;
1030 BUG_ON(this_chunk_bytes == 0);
1031
092c8d46
JK
1032 if (this_chunk_blocks == sdio->blocks_available)
1033 sdio->boundary = buffer_boundary(map_bh);
eb28be2b
AK
1034 ret = submit_page_section(dio, sdio, page,
1035 offset_in_page,
1036 this_chunk_bytes,
18772641
AK
1037 sdio->next_block_for_io,
1038 map_bh);
1da177e4
LT
1039 if (ret) {
1040 page_cache_release(page);
1041 goto out;
1042 }
eb28be2b 1043 sdio->next_block_for_io += this_chunk_blocks;
1da177e4 1044
eb28be2b 1045 sdio->block_in_file += this_chunk_blocks;
1da177e4 1046 block_in_page += this_chunk_blocks;
eb28be2b 1047 sdio->blocks_available -= this_chunk_blocks;
3320c60b 1048 dio->result += this_chunk_blocks << blkbits;
1da177e4 1049next_block:
eb28be2b
AK
1050 BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1051 if (sdio->block_in_file == sdio->final_block_in_request)
1da177e4
LT
1052 break;
1053 }
1054
1055 /* Drop the ref which was taken in get_user_pages() */
1056 page_cache_release(page);
1057 block_in_page = 0;
1058 }
1059out:
1060 return ret;
1061}
1062
847cc637 1063static inline int drop_refcount(struct dio *dio)
1da177e4 1064{
847cc637 1065 int ret2;
5eb6c7a2 1066 unsigned long flags;
1da177e4 1067
8459d86a
ZB
1068 /*
1069 * Sync will always be dropping the final ref and completing the
5eb6c7a2
ZB
1070 * operation. AIO can if it was a broken operation described above or
1071 * in fact if all the bios race to complete before we get here. In
1072 * that case dio_complete() translates the EIOCBQUEUED into the proper
1073 * return code that the caller will hand to aio_complete().
1074 *
1075 * This is managed by the bio_lock instead of being an atomic_t so that
1076 * completion paths can drop their ref and use the remaining count to
1077 * decide to wake the submission path atomically.
8459d86a 1078 */
5eb6c7a2
ZB
1079 spin_lock_irqsave(&dio->bio_lock, flags);
1080 ret2 = --dio->refcount;
1081 spin_unlock_irqrestore(&dio->bio_lock, flags);
847cc637 1082 return ret2;
1da177e4
LT
1083}
1084
eafdc7d1
CH
1085/*
1086 * This is a library function for use by filesystem drivers.
1087 *
1088 * The locking rules are governed by the flags parameter:
1089 * - if the flags value contains DIO_LOCKING we use a fancy locking
1090 * scheme for dumb filesystems.
1091 * For writes this function is called under i_mutex and returns with
1092 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1093 * taken and dropped again before returning.
eafdc7d1
CH
1094 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1095 * internal locking but rather rely on the filesystem to synchronize
1096 * direct I/O reads/writes versus each other and truncate.
df2d6f26
CH
1097 *
1098 * To help with locking against truncate we incremented the i_dio_count
1099 * counter before starting direct I/O, and decrement it once we are done.
1100 * Truncate can wait for it to reach zero to provide exclusion. It is
1101 * expected that filesystem provide exclusion between new direct I/O
1102 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1103 * but other filesystems need to take care of this on their own.
ba253fbf
AK
1104 *
1105 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1106 * is always inlined. Otherwise gcc is unable to split the structure into
1107 * individual fields and will generate much worse code. This is important
1108 * for the whole file.
eafdc7d1 1109 */
65dd2aa9
AK
1110static inline ssize_t
1111do_blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
31b14039
AV
1112 struct block_device *bdev, struct iov_iter *iter, loff_t offset,
1113 get_block_t get_block, dio_iodone_t end_io,
facd07b0 1114 dio_submit_t submit_io, int flags)
1da177e4
LT
1115{
1116 int seg;
ab73857e
LT
1117 unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
1118 unsigned blkbits = i_blkbits;
1da177e4
LT
1119 unsigned blocksize_mask = (1 << blkbits) - 1;
1120 ssize_t retval = -EINVAL;
886a3911 1121 loff_t end = offset + iov_iter_count(iter);
1da177e4 1122 struct dio *dio;
eb28be2b 1123 struct dio_submit sdio = { 0, };
847cc637
AK
1124 unsigned long user_addr;
1125 size_t bytes;
1126 struct buffer_head map_bh = { 0, };
647d1e4c 1127 struct blk_plug plug;
886a3911 1128 unsigned long align = offset | iov_iter_alignment(iter);
1da177e4
LT
1129
1130 if (rw & WRITE)
721a9602 1131 rw = WRITE_ODIRECT;
1da177e4 1132
65dd2aa9
AK
1133 /*
1134 * Avoid references to bdev if not absolutely needed to give
1135 * the early prefetch in the caller enough time.
1136 */
1da177e4 1137
886a3911 1138 if (align & blocksize_mask) {
1da177e4 1139 if (bdev)
65dd2aa9 1140 blkbits = blksize_bits(bdev_logical_block_size(bdev));
1da177e4 1141 blocksize_mask = (1 << blkbits) - 1;
886a3911 1142 if (align & blocksize_mask)
1da177e4
LT
1143 goto out;
1144 }
1145
f9b5570d 1146 /* watch out for a 0 len io from a tricksy fs */
886a3911 1147 if (rw == READ && !iov_iter_count(iter))
f9b5570d
CH
1148 return 0;
1149
6e8267f5 1150 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1da177e4
LT
1151 retval = -ENOMEM;
1152 if (!dio)
1153 goto out;
23aee091
JM
1154 /*
1155 * Believe it or not, zeroing out the page array caused a .5%
1156 * performance regression in a database benchmark. So, we take
1157 * care to only zero out what's needed.
1158 */
1159 memset(dio, 0, offsetof(struct dio, pages));
1da177e4 1160
5fe878ae
CH
1161 dio->flags = flags;
1162 if (dio->flags & DIO_LOCKING) {
f9b5570d 1163 if (rw == READ) {
5fe878ae
CH
1164 struct address_space *mapping =
1165 iocb->ki_filp->f_mapping;
1da177e4 1166
5fe878ae
CH
1167 /* will be released by direct_io_worker */
1168 mutex_lock(&inode->i_mutex);
1da177e4
LT
1169
1170 retval = filemap_write_and_wait_range(mapping, offset,
1171 end - 1);
1172 if (retval) {
5fe878ae 1173 mutex_unlock(&inode->i_mutex);
6e8267f5 1174 kmem_cache_free(dio_cache, dio);
1da177e4
LT
1175 goto out;
1176 }
1da177e4 1177 }
1da177e4
LT
1178 }
1179
1180 /*
60392573
CH
1181 * For file extending writes updating i_size before data writeouts
1182 * complete can expose uninitialized blocks in dumb filesystems.
1183 * In that case we need to wait for I/O completion even if asked
1184 * for an asynchronous write.
1da177e4 1185 */
60392573
CH
1186 if (is_sync_kiocb(iocb))
1187 dio->is_async = false;
1188 else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
1189 (rw & WRITE) && end > i_size_read(inode))
1190 dio->is_async = false;
1191 else
1192 dio->is_async = true;
1193
847cc637
AK
1194 dio->inode = inode;
1195 dio->rw = rw;
02afc27f
CH
1196
1197 /*
1198 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1199 * so that we can call ->fsync.
1200 */
1201 if (dio->is_async && (rw & WRITE) &&
1202 ((iocb->ki_filp->f_flags & O_DSYNC) ||
1203 IS_SYNC(iocb->ki_filp->f_mapping->host))) {
1204 retval = dio_set_defer_completion(dio);
1205 if (retval) {
1206 /*
1207 * We grab i_mutex only for reads so we don't have
1208 * to release it here
1209 */
1210 kmem_cache_free(dio_cache, dio);
1211 goto out;
1212 }
1213 }
1214
1215 /*
1216 * Will be decremented at I/O completion time.
1217 */
1218 atomic_inc(&inode->i_dio_count);
1219
1220 retval = 0;
847cc637 1221 sdio.blkbits = blkbits;
ab73857e 1222 sdio.blkfactor = i_blkbits - blkbits;
847cc637
AK
1223 sdio.block_in_file = offset >> blkbits;
1224
1225 sdio.get_block = get_block;
1226 dio->end_io = end_io;
1227 sdio.submit_io = submit_io;
1228 sdio.final_block_in_bio = -1;
1229 sdio.next_block_for_io = -1;
1230
1231 dio->iocb = iocb;
1232 dio->i_size = i_size_read(inode);
1233
1234 spin_lock_init(&dio->bio_lock);
1235 dio->refcount = 1;
1236
1237 /*
1238 * In case of non-aligned buffers, we may need 2 more
1239 * pages since we need to zero out first and last block.
1240 */
1241 if (unlikely(sdio.blkfactor))
1242 sdio.pages_in_io = 2;
1243
31b14039
AV
1244 for (seg = 0; seg < iter->nr_segs; seg++) {
1245 user_addr = (unsigned long)iter->iov[seg].iov_base;
847cc637 1246 sdio.pages_in_io +=
31b14039 1247 ((user_addr + iter->iov[seg].iov_len + PAGE_SIZE-1) /
847cc637
AK
1248 PAGE_SIZE - user_addr / PAGE_SIZE);
1249 }
1250
647d1e4c
FW
1251 blk_start_plug(&plug);
1252
31b14039
AV
1253 for (seg = 0; seg < iter->nr_segs; seg++) {
1254 user_addr = (unsigned long)iter->iov[seg].iov_base;
1255 sdio.size += bytes = iter->iov[seg].iov_len;
847cc637
AK
1256
1257 /* Index into the first page of the first block */
1258 sdio.first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
1259 sdio.final_block_in_request = sdio.block_in_file +
1260 (bytes >> blkbits);
1261 /* Page fetching state */
1262 sdio.head = 0;
1263 sdio.tail = 0;
1264 sdio.curr_page = 0;
1265
1266 sdio.total_pages = 0;
1267 if (user_addr & (PAGE_SIZE-1)) {
1268 sdio.total_pages++;
1269 bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
1270 }
1271 sdio.total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1272 sdio.curr_user_address = user_addr;
1273
1274 retval = do_direct_IO(dio, &sdio, &map_bh);
1275
847cc637
AK
1276 if (retval) {
1277 dio_cleanup(dio, &sdio);
1278 break;
1279 }
1280 } /* end iovec loop */
1281
1282 if (retval == -ENOTBLK) {
1283 /*
1284 * The remaining part of the request will be
1285 * be handled by buffered I/O when we return
1286 */
1287 retval = 0;
1288 }
1289 /*
1290 * There may be some unwritten disk at the end of a part-written
1291 * fs-block-sized block. Go zero that now.
1292 */
1293 dio_zero_block(dio, &sdio, 1, &map_bh);
1294
1295 if (sdio.cur_page) {
1296 ssize_t ret2;
1297
1298 ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1299 if (retval == 0)
1300 retval = ret2;
1301 page_cache_release(sdio.cur_page);
1302 sdio.cur_page = NULL;
1303 }
1304 if (sdio.bio)
1305 dio_bio_submit(dio, &sdio);
1306
647d1e4c
FW
1307 blk_finish_plug(&plug);
1308
847cc637
AK
1309 /*
1310 * It is possible that, we return short IO due to end of file.
1311 * In that case, we need to release all the pages we got hold on.
1312 */
1313 dio_cleanup(dio, &sdio);
1314
1315 /*
1316 * All block lookups have been performed. For READ requests
1317 * we can let i_mutex go now that its achieved its purpose
1318 * of protecting us from looking up uninitialized blocks.
1319 */
1320 if (rw == READ && (dio->flags & DIO_LOCKING))
1321 mutex_unlock(&dio->inode->i_mutex);
1322
1323 /*
1324 * The only time we want to leave bios in flight is when a successful
1325 * partial aio read or full aio write have been setup. In that case
1326 * bio completion will call aio_complete. The only time it's safe to
1327 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1328 * This had *better* be the only place that raises -EIOCBQUEUED.
1329 */
1330 BUG_ON(retval == -EIOCBQUEUED);
1331 if (dio->is_async && retval == 0 && dio->result &&
d187663e 1332 ((rw == READ) || (dio->result == sdio.size)))
847cc637
AK
1333 retval = -EIOCBQUEUED;
1334
1335 if (retval != -EIOCBQUEUED)
1336 dio_await_completion(dio);
1337
1338 if (drop_refcount(dio) == 0) {
1339 retval = dio_complete(dio, offset, retval, false);
847cc637
AK
1340 } else
1341 BUG_ON(retval != -EIOCBQUEUED);
1da177e4 1342
7bb46a67 1343out:
1344 return retval;
1345}
65dd2aa9
AK
1346
1347ssize_t
1348__blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
31b14039
AV
1349 struct block_device *bdev, struct iov_iter *iter, loff_t offset,
1350 get_block_t get_block, dio_iodone_t end_io,
65dd2aa9
AK
1351 dio_submit_t submit_io, int flags)
1352{
1353 /*
1354 * The block device state is needed in the end to finally
1355 * submit everything. Since it's likely to be cache cold
1356 * prefetch it here as first thing to hide some of the
1357 * latency.
1358 *
1359 * Attempt to prefetch the pieces we likely need later.
1360 */
1361 prefetch(&bdev->bd_disk->part_tbl);
1362 prefetch(bdev->bd_queue);
1363 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1364
31b14039
AV
1365 return do_blockdev_direct_IO(rw, iocb, inode, bdev, iter, offset,
1366 get_block, end_io, submit_io, flags);
65dd2aa9
AK
1367}
1368
1da177e4 1369EXPORT_SYMBOL(__blockdev_direct_IO);
6e8267f5
AK
1370
1371static __init int dio_init(void)
1372{
1373 dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1374 return 0;
1375}
1376module_init(dio_init)
This page took 0.731485 seconds and 5 git commands to generate.