ext4 crypto: release crypto resource on module exit
[deliverable/linux.git] / fs / ext4 / crypto.c
CommitLineData
b30ab0e0
MH
1/*
2 * linux/fs/ext4/crypto.c
3 *
4 * Copyright (C) 2015, Google, Inc.
5 *
6 * This contains encryption functions for ext4
7 *
8 * Written by Michael Halcrow, 2014.
9 *
10 * Filename encryption additions
11 * Uday Savagaonkar, 2014
12 * Encryption policy handling additions
13 * Ildar Muslukhov, 2014
14 *
15 * This has not yet undergone a rigorous security audit.
16 *
17 * The usage of AES-XTS should conform to recommendations in NIST
18 * Special Publication 800-38E and IEEE P1619/D16.
19 */
20
21#include <crypto/hash.h>
22#include <crypto/sha.h>
23#include <keys/user-type.h>
24#include <keys/encrypted-type.h>
25#include <linux/crypto.h>
26#include <linux/ecryptfs.h>
27#include <linux/gfp.h>
28#include <linux/kernel.h>
29#include <linux/key.h>
30#include <linux/list.h>
31#include <linux/mempool.h>
32#include <linux/module.h>
33#include <linux/mutex.h>
34#include <linux/random.h>
35#include <linux/scatterlist.h>
36#include <linux/spinlock_types.h>
37
38#include "ext4_extents.h"
39#include "xattr.h"
40
41/* Encryption added and removed here! (L: */
42
43static unsigned int num_prealloc_crypto_pages = 32;
44static unsigned int num_prealloc_crypto_ctxs = 128;
45
46module_param(num_prealloc_crypto_pages, uint, 0444);
47MODULE_PARM_DESC(num_prealloc_crypto_pages,
48 "Number of crypto pages to preallocate");
49module_param(num_prealloc_crypto_ctxs, uint, 0444);
50MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
51 "Number of crypto contexts to preallocate");
52
53static mempool_t *ext4_bounce_page_pool;
54
55static LIST_HEAD(ext4_free_crypto_ctxs);
56static DEFINE_SPINLOCK(ext4_crypto_ctx_lock);
57
8ee03714
TT
58static struct kmem_cache *ext4_crypto_ctx_cachep;
59struct kmem_cache *ext4_crypt_info_cachep;
60
b30ab0e0
MH
61/**
62 * ext4_release_crypto_ctx() - Releases an encryption context
63 * @ctx: The encryption context to release.
64 *
65 * If the encryption context was allocated from the pre-allocated pool, returns
66 * it to that pool. Else, frees it.
67 *
68 * If there's a bounce page in the context, this frees that.
69 */
70void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx)
71{
72 unsigned long flags;
73
614def70 74 if (ctx->flags & EXT4_WRITE_PATH_FL && ctx->w.bounce_page) {
b30ab0e0 75 if (ctx->flags & EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL)
614def70 76 __free_page(ctx->w.bounce_page);
b30ab0e0 77 else
614def70 78 mempool_free(ctx->w.bounce_page, ext4_bounce_page_pool);
b30ab0e0 79 }
614def70
TT
80 ctx->w.bounce_page = NULL;
81 ctx->w.control_page = NULL;
b30ab0e0 82 if (ctx->flags & EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL) {
8ee03714 83 kmem_cache_free(ext4_crypto_ctx_cachep, ctx);
b30ab0e0
MH
84 } else {
85 spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
86 list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
87 spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
88 }
89}
90
b30ab0e0
MH
91/**
92 * ext4_get_crypto_ctx() - Gets an encryption context
93 * @inode: The inode for which we are doing the crypto
94 *
95 * Allocates and initializes an encryption context.
96 *
97 * Return: An allocated and initialized encryption context on success; error
98 * value or NULL otherwise.
99 */
100struct ext4_crypto_ctx *ext4_get_crypto_ctx(struct inode *inode)
101{
102 struct ext4_crypto_ctx *ctx = NULL;
103 int res = 0;
104 unsigned long flags;
b7236e21 105 struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info;
b30ab0e0 106
abdd438b
TT
107 if (ci == NULL)
108 return ERR_PTR(-ENOKEY);
b30ab0e0
MH
109
110 /*
111 * We first try getting the ctx from a free list because in
112 * the common case the ctx will have an allocated and
113 * initialized crypto tfm, so it's probably a worthwhile
114 * optimization. For the bounce page, we first try getting it
115 * from the kernel allocator because that's just about as fast
116 * as getting it from a list and because a cache of free pages
117 * should generally be a "last resort" option for a filesystem
118 * to be able to do its job.
119 */
120 spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
121 ctx = list_first_entry_or_null(&ext4_free_crypto_ctxs,
122 struct ext4_crypto_ctx, free_list);
123 if (ctx)
124 list_del(&ctx->free_list);
125 spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
126 if (!ctx) {
8ee03714
TT
127 ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, GFP_NOFS);
128 if (!ctx) {
129 res = -ENOMEM;
b30ab0e0
MH
130 goto out;
131 }
132 ctx->flags |= EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
133 } else {
134 ctx->flags &= ~EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
135 }
614def70 136 ctx->flags &= ~EXT4_WRITE_PATH_FL;
b30ab0e0 137
b30ab0e0
MH
138out:
139 if (res) {
140 if (!IS_ERR_OR_NULL(ctx))
141 ext4_release_crypto_ctx(ctx);
142 ctx = ERR_PTR(res);
143 }
144 return ctx;
145}
146
147struct workqueue_struct *ext4_read_workqueue;
148static DEFINE_MUTEX(crypto_init);
149
150/**
151 * ext4_exit_crypto() - Shutdown the ext4 encryption system
152 */
153void ext4_exit_crypto(void)
154{
155 struct ext4_crypto_ctx *pos, *n;
156
c936e1ec 157 list_for_each_entry_safe(pos, n, &ext4_free_crypto_ctxs, free_list)
8ee03714 158 kmem_cache_free(ext4_crypto_ctx_cachep, pos);
b30ab0e0
MH
159 INIT_LIST_HEAD(&ext4_free_crypto_ctxs);
160 if (ext4_bounce_page_pool)
161 mempool_destroy(ext4_bounce_page_pool);
162 ext4_bounce_page_pool = NULL;
163 if (ext4_read_workqueue)
164 destroy_workqueue(ext4_read_workqueue);
165 ext4_read_workqueue = NULL;
8ee03714
TT
166 if (ext4_crypto_ctx_cachep)
167 kmem_cache_destroy(ext4_crypto_ctx_cachep);
168 ext4_crypto_ctx_cachep = NULL;
169 if (ext4_crypt_info_cachep)
170 kmem_cache_destroy(ext4_crypt_info_cachep);
171 ext4_crypt_info_cachep = NULL;
b30ab0e0
MH
172}
173
174/**
175 * ext4_init_crypto() - Set up for ext4 encryption.
176 *
177 * We only call this when we start accessing encrypted files, since it
178 * results in memory getting allocated that wouldn't otherwise be used.
179 *
180 * Return: Zero on success, non-zero otherwise.
181 */
182int ext4_init_crypto(void)
183{
8ee03714 184 int i, res = -ENOMEM;
b30ab0e0
MH
185
186 mutex_lock(&crypto_init);
187 if (ext4_read_workqueue)
188 goto already_initialized;
189 ext4_read_workqueue = alloc_workqueue("ext4_crypto", WQ_HIGHPRI, 0);
8ee03714
TT
190 if (!ext4_read_workqueue)
191 goto fail;
192
193 ext4_crypto_ctx_cachep = KMEM_CACHE(ext4_crypto_ctx,
194 SLAB_RECLAIM_ACCOUNT);
195 if (!ext4_crypto_ctx_cachep)
196 goto fail;
197
198 ext4_crypt_info_cachep = KMEM_CACHE(ext4_crypt_info,
199 SLAB_RECLAIM_ACCOUNT);
200 if (!ext4_crypt_info_cachep)
b30ab0e0 201 goto fail;
b30ab0e0
MH
202
203 for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
204 struct ext4_crypto_ctx *ctx;
205
8ee03714
TT
206 ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, GFP_NOFS);
207 if (!ctx) {
208 res = -ENOMEM;
b30ab0e0
MH
209 goto fail;
210 }
211 list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
212 }
213
214 ext4_bounce_page_pool =
215 mempool_create_page_pool(num_prealloc_crypto_pages, 0);
216 if (!ext4_bounce_page_pool) {
217 res = -ENOMEM;
218 goto fail;
219 }
220already_initialized:
221 mutex_unlock(&crypto_init);
222 return 0;
223fail:
224 ext4_exit_crypto();
225 mutex_unlock(&crypto_init);
226 return res;
227}
228
229void ext4_restore_control_page(struct page *data_page)
230{
231 struct ext4_crypto_ctx *ctx =
232 (struct ext4_crypto_ctx *)page_private(data_page);
233
234 set_page_private(data_page, (unsigned long)NULL);
235 ClearPagePrivate(data_page);
236 unlock_page(data_page);
237 ext4_release_crypto_ctx(ctx);
238}
239
240/**
241 * ext4_crypt_complete() - The completion callback for page encryption
242 * @req: The asynchronous encryption request context
243 * @res: The result of the encryption operation
244 */
245static void ext4_crypt_complete(struct crypto_async_request *req, int res)
246{
247 struct ext4_completion_result *ecr = req->data;
248
249 if (res == -EINPROGRESS)
250 return;
251 ecr->res = res;
252 complete(&ecr->completion);
253}
254
255typedef enum {
256 EXT4_DECRYPT = 0,
257 EXT4_ENCRYPT,
258} ext4_direction_t;
259
260static int ext4_page_crypto(struct ext4_crypto_ctx *ctx,
261 struct inode *inode,
262 ext4_direction_t rw,
263 pgoff_t index,
264 struct page *src_page,
265 struct page *dest_page)
266
267{
268 u8 xts_tweak[EXT4_XTS_TWEAK_SIZE];
269 struct ablkcipher_request *req = NULL;
270 DECLARE_EXT4_COMPLETION_RESULT(ecr);
271 struct scatterlist dst, src;
c936e1ec
TT
272 struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info;
273 struct crypto_ablkcipher *tfm = ci->ci_ctfm;
b30ab0e0
MH
274 int res = 0;
275
c936e1ec 276 req = ablkcipher_request_alloc(tfm, GFP_NOFS);
b30ab0e0
MH
277 if (!req) {
278 printk_ratelimited(KERN_ERR
279 "%s: crypto_request_alloc() failed\n",
280 __func__);
281 return -ENOMEM;
282 }
283 ablkcipher_request_set_callback(
284 req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
285 ext4_crypt_complete, &ecr);
286
287 BUILD_BUG_ON(EXT4_XTS_TWEAK_SIZE < sizeof(index));
288 memcpy(xts_tweak, &index, sizeof(index));
289 memset(&xts_tweak[sizeof(index)], 0,
290 EXT4_XTS_TWEAK_SIZE - sizeof(index));
291
292 sg_init_table(&dst, 1);
293 sg_set_page(&dst, dest_page, PAGE_CACHE_SIZE, 0);
294 sg_init_table(&src, 1);
295 sg_set_page(&src, src_page, PAGE_CACHE_SIZE, 0);
296 ablkcipher_request_set_crypt(req, &src, &dst, PAGE_CACHE_SIZE,
297 xts_tweak);
298 if (rw == EXT4_DECRYPT)
299 res = crypto_ablkcipher_decrypt(req);
300 else
301 res = crypto_ablkcipher_encrypt(req);
302 if (res == -EINPROGRESS || res == -EBUSY) {
303 BUG_ON(req->base.data != &ecr);
304 wait_for_completion(&ecr.completion);
305 res = ecr.res;
306 }
307 ablkcipher_request_free(req);
308 if (res) {
309 printk_ratelimited(
310 KERN_ERR
311 "%s: crypto_ablkcipher_encrypt() returned %d\n",
312 __func__, res);
313 return res;
314 }
315 return 0;
316}
317
95ea68b4
TT
318static struct page *alloc_bounce_page(struct ext4_crypto_ctx *ctx)
319{
320 struct page *ciphertext_page = alloc_page(GFP_NOFS);
321
322 if (!ciphertext_page) {
323 /* This is a potential bottleneck, but at least we'll have
324 * forward progress. */
325 ciphertext_page = mempool_alloc(ext4_bounce_page_pool,
326 GFP_NOFS);
327 if (ciphertext_page == NULL)
328 return ERR_PTR(-ENOMEM);
329 ctx->flags &= ~EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
330 } else {
331 ctx->flags |= EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
332 }
333 ctx->flags |= EXT4_WRITE_PATH_FL;
334 ctx->w.bounce_page = ciphertext_page;
335 return ciphertext_page;
336}
337
b30ab0e0
MH
338/**
339 * ext4_encrypt() - Encrypts a page
340 * @inode: The inode for which the encryption should take place
341 * @plaintext_page: The page to encrypt. Must be locked.
342 *
343 * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
344 * encryption context.
345 *
346 * Called on the page write path. The caller must call
347 * ext4_restore_control_page() on the returned ciphertext page to
348 * release the bounce buffer and the encryption context.
349 *
350 * Return: An allocated page with the encrypted content on success. Else, an
351 * error value or NULL.
352 */
353struct page *ext4_encrypt(struct inode *inode,
354 struct page *plaintext_page)
355{
356 struct ext4_crypto_ctx *ctx;
357 struct page *ciphertext_page = NULL;
358 int err;
359
360 BUG_ON(!PageLocked(plaintext_page));
361
362 ctx = ext4_get_crypto_ctx(inode);
363 if (IS_ERR(ctx))
364 return (struct page *) ctx;
365
366 /* The encryption operation will require a bounce page. */
95ea68b4
TT
367 ciphertext_page = alloc_bounce_page(ctx);
368 if (IS_ERR(ciphertext_page))
369 goto errout;
614def70 370 ctx->w.control_page = plaintext_page;
b30ab0e0
MH
371 err = ext4_page_crypto(ctx, inode, EXT4_ENCRYPT, plaintext_page->index,
372 plaintext_page, ciphertext_page);
373 if (err) {
95ea68b4
TT
374 ciphertext_page = ERR_PTR(err);
375 errout:
b30ab0e0 376 ext4_release_crypto_ctx(ctx);
95ea68b4 377 return ciphertext_page;
b30ab0e0
MH
378 }
379 SetPagePrivate(ciphertext_page);
380 set_page_private(ciphertext_page, (unsigned long)ctx);
381 lock_page(ciphertext_page);
382 return ciphertext_page;
383}
384
385/**
386 * ext4_decrypt() - Decrypts a page in-place
387 * @ctx: The encryption context.
388 * @page: The page to decrypt. Must be locked.
389 *
390 * Decrypts page in-place using the ctx encryption context.
391 *
392 * Called from the read completion callback.
393 *
394 * Return: Zero on success, non-zero otherwise.
395 */
396int ext4_decrypt(struct ext4_crypto_ctx *ctx, struct page *page)
397{
398 BUG_ON(!PageLocked(page));
399
400 return ext4_page_crypto(ctx, page->mapping->host,
401 EXT4_DECRYPT, page->index, page, page);
402}
403
404/*
405 * Convenience function which takes care of allocating and
406 * deallocating the encryption context
407 */
408int ext4_decrypt_one(struct inode *inode, struct page *page)
409{
410 int ret;
411
412 struct ext4_crypto_ctx *ctx = ext4_get_crypto_ctx(inode);
413
414 if (!ctx)
415 return -ENOMEM;
416 ret = ext4_decrypt(ctx, page);
417 ext4_release_crypto_ctx(ctx);
418 return ret;
419}
420
421int ext4_encrypted_zeroout(struct inode *inode, struct ext4_extent *ex)
422{
423 struct ext4_crypto_ctx *ctx;
424 struct page *ciphertext_page = NULL;
425 struct bio *bio;
426 ext4_lblk_t lblk = ex->ee_block;
427 ext4_fsblk_t pblk = ext4_ext_pblock(ex);
428 unsigned int len = ext4_ext_get_actual_len(ex);
429 int err = 0;
430
431 BUG_ON(inode->i_sb->s_blocksize != PAGE_CACHE_SIZE);
432
433 ctx = ext4_get_crypto_ctx(inode);
434 if (IS_ERR(ctx))
435 return PTR_ERR(ctx);
436
95ea68b4
TT
437 ciphertext_page = alloc_bounce_page(ctx);
438 if (IS_ERR(ciphertext_page)) {
439 err = PTR_ERR(ciphertext_page);
440 goto errout;
b30ab0e0 441 }
b30ab0e0
MH
442
443 while (len--) {
444 err = ext4_page_crypto(ctx, inode, EXT4_ENCRYPT, lblk,
445 ZERO_PAGE(0), ciphertext_page);
446 if (err)
447 goto errout;
448
449 bio = bio_alloc(GFP_KERNEL, 1);
450 if (!bio) {
451 err = -ENOMEM;
452 goto errout;
453 }
454 bio->bi_bdev = inode->i_sb->s_bdev;
455 bio->bi_iter.bi_sector = pblk;
456 err = bio_add_page(bio, ciphertext_page,
457 inode->i_sb->s_blocksize, 0);
458 if (err) {
459 bio_put(bio);
460 goto errout;
461 }
462 err = submit_bio_wait(WRITE, bio);
95ea68b4 463 bio_put(bio);
b30ab0e0
MH
464 if (err)
465 goto errout;
466 }
467 err = 0;
468errout:
469 ext4_release_crypto_ctx(ctx);
470 return err;
471}
472
473bool ext4_valid_contents_enc_mode(uint32_t mode)
474{
475 return (mode == EXT4_ENCRYPTION_MODE_AES_256_XTS);
476}
477
478/**
479 * ext4_validate_encryption_key_size() - Validate the encryption key size
480 * @mode: The key mode.
481 * @size: The key size to validate.
482 *
483 * Return: The validated key size for @mode. Zero if invalid.
484 */
485uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size)
486{
487 if (size == ext4_encryption_key_size(mode))
488 return size;
489 return 0;
490}
This page took 0.060664 seconds and 5 git commands to generate.