writeback: add lockdep annotation to inode_to_wb()
[deliverable/linux.git] / fs / fs-writeback.c
CommitLineData
1da177e4
LT
1/*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
e1f8e874 11 * 10Apr2002 Andrew Morton
1da177e4
LT
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16#include <linux/kernel.h>
630d9c47 17#include <linux/export.h>
1da177e4 18#include <linux/spinlock.h>
5a0e3ad6 19#include <linux/slab.h>
1da177e4
LT
20#include <linux/sched.h>
21#include <linux/fs.h>
22#include <linux/mm.h>
bc31b86a 23#include <linux/pagemap.h>
03ba3782 24#include <linux/kthread.h>
1da177e4
LT
25#include <linux/writeback.h>
26#include <linux/blkdev.h>
27#include <linux/backing-dev.h>
455b2864 28#include <linux/tracepoint.h>
719ea2fb 29#include <linux/device.h>
21c6321f 30#include <linux/memcontrol.h>
07f3f05c 31#include "internal.h"
1da177e4 32
bc31b86a
WF
33/*
34 * 4MB minimal write chunk size
35 */
36#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
37
cc395d7f
TH
38struct wb_completion {
39 atomic_t cnt;
40};
41
c4a77a6c
JA
42/*
43 * Passed into wb_writeback(), essentially a subset of writeback_control
44 */
83ba7b07 45struct wb_writeback_work {
c4a77a6c
JA
46 long nr_pages;
47 struct super_block *sb;
0dc83bd3 48 unsigned long *older_than_this;
c4a77a6c 49 enum writeback_sync_modes sync_mode;
6e6938b6 50 unsigned int tagged_writepages:1;
52957fe1
HS
51 unsigned int for_kupdate:1;
52 unsigned int range_cyclic:1;
53 unsigned int for_background:1;
7747bd4b 54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
ac7b19a3 55 unsigned int auto_free:1; /* free on completion */
98754bf7
TH
56 unsigned int single_wait:1;
57 unsigned int single_done:1;
0e175a18 58 enum wb_reason reason; /* why was writeback initiated? */
c4a77a6c 59
8010c3b6 60 struct list_head list; /* pending work list */
cc395d7f 61 struct wb_completion *done; /* set if the caller waits */
03ba3782
JA
62};
63
cc395d7f
TH
64/*
65 * If one wants to wait for one or more wb_writeback_works, each work's
66 * ->done should be set to a wb_completion defined using the following
67 * macro. Once all work items are issued with wb_queue_work(), the caller
68 * can wait for the completion of all using wb_wait_for_completion(). Work
69 * items which are waited upon aren't freed automatically on completion.
70 */
71#define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
72 struct wb_completion cmpl = { \
73 .cnt = ATOMIC_INIT(1), \
74 }
75
76
a2f48706
TT
77/*
78 * If an inode is constantly having its pages dirtied, but then the
79 * updates stop dirtytime_expire_interval seconds in the past, it's
80 * possible for the worst case time between when an inode has its
81 * timestamps updated and when they finally get written out to be two
82 * dirtytime_expire_intervals. We set the default to 12 hours (in
83 * seconds), which means most of the time inodes will have their
84 * timestamps written to disk after 12 hours, but in the worst case a
85 * few inodes might not their timestamps updated for 24 hours.
86 */
87unsigned int dirtytime_expire_interval = 12 * 60 * 60;
88
7ccf19a8
NP
89static inline struct inode *wb_inode(struct list_head *head)
90{
91 return list_entry(head, struct inode, i_wb_list);
92}
93
15eb77a0
WF
94/*
95 * Include the creation of the trace points after defining the
96 * wb_writeback_work structure and inline functions so that the definition
97 * remains local to this file.
98 */
99#define CREATE_TRACE_POINTS
100#include <trace/events/writeback.h>
101
774016b2
SW
102EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
103
d6c10f1f
TH
104static bool wb_io_lists_populated(struct bdi_writeback *wb)
105{
106 if (wb_has_dirty_io(wb)) {
107 return false;
108 } else {
109 set_bit(WB_has_dirty_io, &wb->state);
95a46c65 110 WARN_ON_ONCE(!wb->avg_write_bandwidth);
766a9d6e
TH
111 atomic_long_add(wb->avg_write_bandwidth,
112 &wb->bdi->tot_write_bandwidth);
d6c10f1f
TH
113 return true;
114 }
115}
116
117static void wb_io_lists_depopulated(struct bdi_writeback *wb)
118{
119 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
766a9d6e 120 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
d6c10f1f 121 clear_bit(WB_has_dirty_io, &wb->state);
95a46c65
TH
122 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
123 &wb->bdi->tot_write_bandwidth) < 0);
766a9d6e 124 }
d6c10f1f
TH
125}
126
127/**
128 * inode_wb_list_move_locked - move an inode onto a bdi_writeback IO list
129 * @inode: inode to be moved
130 * @wb: target bdi_writeback
131 * @head: one of @wb->b_{dirty|io|more_io}
132 *
133 * Move @inode->i_wb_list to @list of @wb and set %WB_has_dirty_io.
134 * Returns %true if @inode is the first occupant of the !dirty_time IO
135 * lists; otherwise, %false.
136 */
137static bool inode_wb_list_move_locked(struct inode *inode,
138 struct bdi_writeback *wb,
139 struct list_head *head)
140{
141 assert_spin_locked(&wb->list_lock);
142
143 list_move(&inode->i_wb_list, head);
144
145 /* dirty_time doesn't count as dirty_io until expiration */
146 if (head != &wb->b_dirty_time)
147 return wb_io_lists_populated(wb);
148
149 wb_io_lists_depopulated(wb);
150 return false;
151}
152
153/**
154 * inode_wb_list_del_locked - remove an inode from its bdi_writeback IO list
155 * @inode: inode to be removed
156 * @wb: bdi_writeback @inode is being removed from
157 *
158 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
159 * clear %WB_has_dirty_io if all are empty afterwards.
160 */
161static void inode_wb_list_del_locked(struct inode *inode,
162 struct bdi_writeback *wb)
163{
164 assert_spin_locked(&wb->list_lock);
165
166 list_del_init(&inode->i_wb_list);
167 wb_io_lists_depopulated(wb);
168}
169
f0054bb1 170static void wb_wakeup(struct bdi_writeback *wb)
5acda9d1 171{
f0054bb1
TH
172 spin_lock_bh(&wb->work_lock);
173 if (test_bit(WB_registered, &wb->state))
174 mod_delayed_work(bdi_wq, &wb->dwork, 0);
175 spin_unlock_bh(&wb->work_lock);
5acda9d1
JK
176}
177
f0054bb1
TH
178static void wb_queue_work(struct bdi_writeback *wb,
179 struct wb_writeback_work *work)
6585027a 180{
f0054bb1 181 trace_writeback_queue(wb->bdi, work);
6585027a 182
f0054bb1 183 spin_lock_bh(&wb->work_lock);
98754bf7
TH
184 if (!test_bit(WB_registered, &wb->state)) {
185 if (work->single_wait)
186 work->single_done = 1;
5acda9d1 187 goto out_unlock;
98754bf7 188 }
cc395d7f
TH
189 if (work->done)
190 atomic_inc(&work->done->cnt);
f0054bb1
TH
191 list_add_tail(&work->list, &wb->work_list);
192 mod_delayed_work(bdi_wq, &wb->dwork, 0);
5acda9d1 193out_unlock:
f0054bb1 194 spin_unlock_bh(&wb->work_lock);
1da177e4
LT
195}
196
cc395d7f
TH
197/**
198 * wb_wait_for_completion - wait for completion of bdi_writeback_works
199 * @bdi: bdi work items were issued to
200 * @done: target wb_completion
201 *
202 * Wait for one or more work items issued to @bdi with their ->done field
203 * set to @done, which should have been defined with
204 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
205 * work items are completed. Work items which are waited upon aren't freed
206 * automatically on completion.
207 */
208static void wb_wait_for_completion(struct backing_dev_info *bdi,
209 struct wb_completion *done)
210{
211 atomic_dec(&done->cnt); /* put down the initial count */
212 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
213}
214
703c2708
TH
215#ifdef CONFIG_CGROUP_WRITEBACK
216
2a814908
TH
217/* parameters for foreign inode detection, see wb_detach_inode() */
218#define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
219#define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
220#define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
221#define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
222
223#define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
224#define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
225 /* each slot's duration is 2s / 16 */
226#define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
227 /* if foreign slots >= 8, switch */
228#define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
229 /* one round can affect upto 5 slots */
230
21c6321f
TH
231void __inode_attach_wb(struct inode *inode, struct page *page)
232{
233 struct backing_dev_info *bdi = inode_to_bdi(inode);
234 struct bdi_writeback *wb = NULL;
235
236 if (inode_cgwb_enabled(inode)) {
237 struct cgroup_subsys_state *memcg_css;
238
239 if (page) {
240 memcg_css = mem_cgroup_css_from_page(page);
241 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
242 } else {
243 /* must pin memcg_css, see wb_get_create() */
244 memcg_css = task_get_css(current, memory_cgrp_id);
245 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
246 css_put(memcg_css);
247 }
248 }
249
250 if (!wb)
251 wb = &bdi->wb;
252
253 /*
254 * There may be multiple instances of this function racing to
255 * update the same inode. Use cmpxchg() to tell the winner.
256 */
257 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
258 wb_put(wb);
259}
260
87e1d789
TH
261/**
262 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
263 * @inode: inode of interest with i_lock held
264 *
265 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
266 * held on entry and is released on return. The returned wb is guaranteed
267 * to stay @inode's associated wb until its list_lock is released.
268 */
269static struct bdi_writeback *
270locked_inode_to_wb_and_lock_list(struct inode *inode)
271 __releases(&inode->i_lock)
272 __acquires(&wb->list_lock)
273{
274 while (true) {
275 struct bdi_writeback *wb = inode_to_wb(inode);
276
277 /*
278 * inode_to_wb() association is protected by both
279 * @inode->i_lock and @wb->list_lock but list_lock nests
280 * outside i_lock. Drop i_lock and verify that the
281 * association hasn't changed after acquiring list_lock.
282 */
283 wb_get(wb);
284 spin_unlock(&inode->i_lock);
285 spin_lock(&wb->list_lock);
286 wb_put(wb); /* not gonna deref it anymore */
287
aaa2cacf
TH
288 /* i_wb may have changed inbetween, can't use inode_to_wb() */
289 if (likely(wb == inode->i_wb))
87e1d789
TH
290 return wb; /* @inode already has ref */
291
292 spin_unlock(&wb->list_lock);
293 cpu_relax();
294 spin_lock(&inode->i_lock);
295 }
296}
297
298/**
299 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
300 * @inode: inode of interest
301 *
302 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
303 * on entry.
304 */
305static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
306 __acquires(&wb->list_lock)
307{
308 spin_lock(&inode->i_lock);
309 return locked_inode_to_wb_and_lock_list(inode);
310}
311
682aa8e1
TH
312struct inode_switch_wbs_context {
313 struct inode *inode;
314 struct bdi_writeback *new_wb;
315
316 struct rcu_head rcu_head;
317 struct work_struct work;
318};
319
320static void inode_switch_wbs_work_fn(struct work_struct *work)
321{
322 struct inode_switch_wbs_context *isw =
323 container_of(work, struct inode_switch_wbs_context, work);
324 struct inode *inode = isw->inode;
325 struct bdi_writeback *new_wb = isw->new_wb;
326
327 /*
328 * By the time control reaches here, RCU grace period has passed
329 * since I_WB_SWITCH assertion and all wb stat update transactions
330 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
331 * synchronizing against mapping->tree_lock.
332 */
333 spin_lock(&inode->i_lock);
334
335 inode->i_wb_frn_winner = 0;
336 inode->i_wb_frn_avg_time = 0;
337 inode->i_wb_frn_history = 0;
338
339 /*
340 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
341 * ensures that the new wb is visible if they see !I_WB_SWITCH.
342 */
343 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
344
345 spin_unlock(&inode->i_lock);
346
347 iput(inode);
348 wb_put(new_wb);
349 kfree(isw);
350}
351
352static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
353{
354 struct inode_switch_wbs_context *isw = container_of(rcu_head,
355 struct inode_switch_wbs_context, rcu_head);
356
357 /* needs to grab bh-unsafe locks, bounce to work item */
358 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
359 schedule_work(&isw->work);
360}
361
362/**
363 * inode_switch_wbs - change the wb association of an inode
364 * @inode: target inode
365 * @new_wb_id: ID of the new wb
366 *
367 * Switch @inode's wb association to the wb identified by @new_wb_id. The
368 * switching is performed asynchronously and may fail silently.
369 */
370static void inode_switch_wbs(struct inode *inode, int new_wb_id)
371{
372 struct backing_dev_info *bdi = inode_to_bdi(inode);
373 struct cgroup_subsys_state *memcg_css;
374 struct inode_switch_wbs_context *isw;
375
376 /* noop if seems to be already in progress */
377 if (inode->i_state & I_WB_SWITCH)
378 return;
379
380 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
381 if (!isw)
382 return;
383
384 /* find and pin the new wb */
385 rcu_read_lock();
386 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
387 if (memcg_css)
388 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
389 rcu_read_unlock();
390 if (!isw->new_wb)
391 goto out_free;
392
393 /* while holding I_WB_SWITCH, no one else can update the association */
394 spin_lock(&inode->i_lock);
395 if (inode->i_state & (I_WB_SWITCH | I_FREEING) ||
396 inode_to_wb(inode) == isw->new_wb) {
397 spin_unlock(&inode->i_lock);
398 goto out_free;
399 }
400 inode->i_state |= I_WB_SWITCH;
401 spin_unlock(&inode->i_lock);
402
403 ihold(inode);
404 isw->inode = inode;
405
406 /*
407 * In addition to synchronizing among switchers, I_WB_SWITCH tells
408 * the RCU protected stat update paths to grab the mapping's
409 * tree_lock so that stat transfer can synchronize against them.
410 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
411 */
412 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
413 return;
414
415out_free:
416 if (isw->new_wb)
417 wb_put(isw->new_wb);
418 kfree(isw);
419}
420
b16b1deb
TH
421/**
422 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
423 * @wbc: writeback_control of interest
424 * @inode: target inode
425 *
426 * @inode is locked and about to be written back under the control of @wbc.
427 * Record @inode's writeback context into @wbc and unlock the i_lock. On
428 * writeback completion, wbc_detach_inode() should be called. This is used
429 * to track the cgroup writeback context.
430 */
431void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
432 struct inode *inode)
433{
434 wbc->wb = inode_to_wb(inode);
2a814908
TH
435 wbc->inode = inode;
436
437 wbc->wb_id = wbc->wb->memcg_css->id;
438 wbc->wb_lcand_id = inode->i_wb_frn_winner;
439 wbc->wb_tcand_id = 0;
440 wbc->wb_bytes = 0;
441 wbc->wb_lcand_bytes = 0;
442 wbc->wb_tcand_bytes = 0;
443
b16b1deb
TH
444 wb_get(wbc->wb);
445 spin_unlock(&inode->i_lock);
446}
447
448/**
2a814908
TH
449 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
450 * @wbc: writeback_control of the just finished writeback
b16b1deb
TH
451 *
452 * To be called after a writeback attempt of an inode finishes and undoes
453 * wbc_attach_and_unlock_inode(). Can be called under any context.
2a814908
TH
454 *
455 * As concurrent write sharing of an inode is expected to be very rare and
456 * memcg only tracks page ownership on first-use basis severely confining
457 * the usefulness of such sharing, cgroup writeback tracks ownership
458 * per-inode. While the support for concurrent write sharing of an inode
459 * is deemed unnecessary, an inode being written to by different cgroups at
460 * different points in time is a lot more common, and, more importantly,
461 * charging only by first-use can too readily lead to grossly incorrect
462 * behaviors (single foreign page can lead to gigabytes of writeback to be
463 * incorrectly attributed).
464 *
465 * To resolve this issue, cgroup writeback detects the majority dirtier of
466 * an inode and transfers the ownership to it. To avoid unnnecessary
467 * oscillation, the detection mechanism keeps track of history and gives
468 * out the switch verdict only if the foreign usage pattern is stable over
469 * a certain amount of time and/or writeback attempts.
470 *
471 * On each writeback attempt, @wbc tries to detect the majority writer
472 * using Boyer-Moore majority vote algorithm. In addition to the byte
473 * count from the majority voting, it also counts the bytes written for the
474 * current wb and the last round's winner wb (max of last round's current
475 * wb, the winner from two rounds ago, and the last round's majority
476 * candidate). Keeping track of the historical winner helps the algorithm
477 * to semi-reliably detect the most active writer even when it's not the
478 * absolute majority.
479 *
480 * Once the winner of the round is determined, whether the winner is
481 * foreign or not and how much IO time the round consumed is recorded in
482 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
483 * over a certain threshold, the switch verdict is given.
b16b1deb
TH
484 */
485void wbc_detach_inode(struct writeback_control *wbc)
486{
2a814908
TH
487 struct bdi_writeback *wb = wbc->wb;
488 struct inode *inode = wbc->inode;
489 u16 history = inode->i_wb_frn_history;
490 unsigned long avg_time = inode->i_wb_frn_avg_time;
491 unsigned long max_bytes, max_time;
492 int max_id;
493
494 /* pick the winner of this round */
495 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
496 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
497 max_id = wbc->wb_id;
498 max_bytes = wbc->wb_bytes;
499 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
500 max_id = wbc->wb_lcand_id;
501 max_bytes = wbc->wb_lcand_bytes;
502 } else {
503 max_id = wbc->wb_tcand_id;
504 max_bytes = wbc->wb_tcand_bytes;
505 }
506
507 /*
508 * Calculate the amount of IO time the winner consumed and fold it
509 * into the running average kept per inode. If the consumed IO
510 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
511 * deciding whether to switch or not. This is to prevent one-off
512 * small dirtiers from skewing the verdict.
513 */
514 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
515 wb->avg_write_bandwidth);
516 if (avg_time)
517 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
518 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
519 else
520 avg_time = max_time; /* immediate catch up on first run */
521
522 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
523 int slots;
524
525 /*
526 * The switch verdict is reached if foreign wb's consume
527 * more than a certain proportion of IO time in a
528 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
529 * history mask where each bit represents one sixteenth of
530 * the period. Determine the number of slots to shift into
531 * history from @max_time.
532 */
533 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
534 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
535 history <<= slots;
536 if (wbc->wb_id != max_id)
537 history |= (1U << slots) - 1;
538
539 /*
540 * Switch if the current wb isn't the consistent winner.
541 * If there are multiple closely competing dirtiers, the
542 * inode may switch across them repeatedly over time, which
543 * is okay. The main goal is avoiding keeping an inode on
544 * the wrong wb for an extended period of time.
545 */
682aa8e1
TH
546 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
547 inode_switch_wbs(inode, max_id);
2a814908
TH
548 }
549
550 /*
551 * Multiple instances of this function may race to update the
552 * following fields but we don't mind occassional inaccuracies.
553 */
554 inode->i_wb_frn_winner = max_id;
555 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
556 inode->i_wb_frn_history = history;
557
b16b1deb
TH
558 wb_put(wbc->wb);
559 wbc->wb = NULL;
560}
561
2a814908
TH
562/**
563 * wbc_account_io - account IO issued during writeback
564 * @wbc: writeback_control of the writeback in progress
565 * @page: page being written out
566 * @bytes: number of bytes being written out
567 *
568 * @bytes from @page are about to written out during the writeback
569 * controlled by @wbc. Keep the book for foreign inode detection. See
570 * wbc_detach_inode().
571 */
572void wbc_account_io(struct writeback_control *wbc, struct page *page,
573 size_t bytes)
574{
575 int id;
576
577 /*
578 * pageout() path doesn't attach @wbc to the inode being written
579 * out. This is intentional as we don't want the function to block
580 * behind a slow cgroup. Ultimately, we want pageout() to kick off
581 * regular writeback instead of writing things out itself.
582 */
583 if (!wbc->wb)
584 return;
585
586 rcu_read_lock();
587 id = mem_cgroup_css_from_page(page)->id;
588 rcu_read_unlock();
589
590 if (id == wbc->wb_id) {
591 wbc->wb_bytes += bytes;
592 return;
593 }
594
595 if (id == wbc->wb_lcand_id)
596 wbc->wb_lcand_bytes += bytes;
597
598 /* Boyer-Moore majority vote algorithm */
599 if (!wbc->wb_tcand_bytes)
600 wbc->wb_tcand_id = id;
601 if (id == wbc->wb_tcand_id)
602 wbc->wb_tcand_bytes += bytes;
603 else
604 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
605}
606
703c2708
TH
607/**
608 * inode_congested - test whether an inode is congested
609 * @inode: inode to test for congestion
610 * @cong_bits: mask of WB_[a]sync_congested bits to test
611 *
612 * Tests whether @inode is congested. @cong_bits is the mask of congestion
613 * bits to test and the return value is the mask of set bits.
614 *
615 * If cgroup writeback is enabled for @inode, the congestion state is
616 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
617 * associated with @inode is congested; otherwise, the root wb's congestion
618 * state is used.
619 */
620int inode_congested(struct inode *inode, int cong_bits)
621{
5cb8b824
TH
622 /*
623 * Once set, ->i_wb never becomes NULL while the inode is alive.
624 * Start transaction iff ->i_wb is visible.
625 */
aaa2cacf 626 if (inode && inode_to_wb_is_valid(inode)) {
5cb8b824
TH
627 struct bdi_writeback *wb;
628 bool locked, congested;
629
630 wb = unlocked_inode_to_wb_begin(inode, &locked);
631 congested = wb_congested(wb, cong_bits);
632 unlocked_inode_to_wb_end(inode, locked);
633 return congested;
703c2708
TH
634 }
635
636 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
637}
638EXPORT_SYMBOL_GPL(inode_congested);
639
98754bf7
TH
640/**
641 * wb_wait_for_single_work - wait for completion of a single bdi_writeback_work
642 * @bdi: bdi the work item was issued to
643 * @work: work item to wait for
644 *
645 * Wait for the completion of @work which was issued to one of @bdi's
646 * bdi_writeback's. The caller must have set @work->single_wait before
647 * issuing it. This wait operates independently fo
648 * wb_wait_for_completion() and also disables automatic freeing of @work.
649 */
650static void wb_wait_for_single_work(struct backing_dev_info *bdi,
651 struct wb_writeback_work *work)
652{
653 if (WARN_ON_ONCE(!work->single_wait))
654 return;
655
656 wait_event(bdi->wb_waitq, work->single_done);
657
658 /*
659 * Paired with smp_wmb() in wb_do_writeback() and ensures that all
660 * modifications to @work prior to assertion of ->single_done is
661 * visible to the caller once this function returns.
662 */
663 smp_rmb();
664}
665
f2b65121
TH
666/**
667 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
668 * @wb: target bdi_writeback to split @nr_pages to
669 * @nr_pages: number of pages to write for the whole bdi
670 *
671 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
672 * relation to the total write bandwidth of all wb's w/ dirty inodes on
673 * @wb->bdi.
674 */
675static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
676{
677 unsigned long this_bw = wb->avg_write_bandwidth;
678 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
679
680 if (nr_pages == LONG_MAX)
681 return LONG_MAX;
682
683 /*
684 * This may be called on clean wb's and proportional distribution
685 * may not make sense, just use the original @nr_pages in those
686 * cases. In general, we wanna err on the side of writing more.
687 */
688 if (!tot_bw || this_bw >= tot_bw)
689 return nr_pages;
690 else
691 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
692}
693
db125360
TH
694/**
695 * wb_clone_and_queue_work - clone a wb_writeback_work and issue it to a wb
696 * @wb: target bdi_writeback
697 * @base_work: source wb_writeback_work
698 *
699 * Try to make a clone of @base_work and issue it to @wb. If cloning
700 * succeeds, %true is returned; otherwise, @base_work is issued directly
701 * and %false is returned. In the latter case, the caller is required to
702 * wait for @base_work's completion using wb_wait_for_single_work().
703 *
704 * A clone is auto-freed on completion. @base_work never is.
705 */
706static bool wb_clone_and_queue_work(struct bdi_writeback *wb,
707 struct wb_writeback_work *base_work)
708{
709 struct wb_writeback_work *work;
710
711 work = kmalloc(sizeof(*work), GFP_ATOMIC);
712 if (work) {
713 *work = *base_work;
714 work->auto_free = 1;
715 work->single_wait = 0;
716 } else {
717 work = base_work;
718 work->auto_free = 0;
719 work->single_wait = 1;
720 }
721 work->single_done = 0;
722 wb_queue_work(wb, work);
723 return work != base_work;
724}
725
726/**
727 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
728 * @bdi: target backing_dev_info
729 * @base_work: wb_writeback_work to issue
730 * @skip_if_busy: skip wb's which already have writeback in progress
731 *
732 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
733 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
734 * distributed to the busy wbs according to each wb's proportion in the
735 * total active write bandwidth of @bdi.
736 */
737static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
738 struct wb_writeback_work *base_work,
739 bool skip_if_busy)
740{
741 long nr_pages = base_work->nr_pages;
742 int next_blkcg_id = 0;
743 struct bdi_writeback *wb;
744 struct wb_iter iter;
745
746 might_sleep();
747
748 if (!bdi_has_dirty_io(bdi))
749 return;
750restart:
751 rcu_read_lock();
752 bdi_for_each_wb(wb, bdi, &iter, next_blkcg_id) {
753 if (!wb_has_dirty_io(wb) ||
754 (skip_if_busy && writeback_in_progress(wb)))
755 continue;
756
757 base_work->nr_pages = wb_split_bdi_pages(wb, nr_pages);
758 if (!wb_clone_and_queue_work(wb, base_work)) {
759 next_blkcg_id = wb->blkcg_css->id + 1;
760 rcu_read_unlock();
761 wb_wait_for_single_work(bdi, base_work);
762 goto restart;
763 }
764 }
765 rcu_read_unlock();
766}
767
f2b65121
TH
768#else /* CONFIG_CGROUP_WRITEBACK */
769
87e1d789
TH
770static struct bdi_writeback *
771locked_inode_to_wb_and_lock_list(struct inode *inode)
772 __releases(&inode->i_lock)
773 __acquires(&wb->list_lock)
774{
775 struct bdi_writeback *wb = inode_to_wb(inode);
776
777 spin_unlock(&inode->i_lock);
778 spin_lock(&wb->list_lock);
779 return wb;
780}
781
782static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
783 __acquires(&wb->list_lock)
784{
785 struct bdi_writeback *wb = inode_to_wb(inode);
786
787 spin_lock(&wb->list_lock);
788 return wb;
789}
790
f2b65121
TH
791static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
792{
793 return nr_pages;
794}
795
db125360
TH
796static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
797 struct wb_writeback_work *base_work,
798 bool skip_if_busy)
799{
800 might_sleep();
801
802 if (bdi_has_dirty_io(bdi) &&
803 (!skip_if_busy || !writeback_in_progress(&bdi->wb))) {
804 base_work->auto_free = 0;
805 base_work->single_wait = 0;
806 base_work->single_done = 0;
807 wb_queue_work(&bdi->wb, base_work);
808 }
809}
810
703c2708
TH
811#endif /* CONFIG_CGROUP_WRITEBACK */
812
c00ddad3
TH
813void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
814 bool range_cyclic, enum wb_reason reason)
b6e51316 815{
c00ddad3
TH
816 struct wb_writeback_work *work;
817
818 if (!wb_has_dirty_io(wb))
819 return;
820
821 /*
822 * This is WB_SYNC_NONE writeback, so if allocation fails just
823 * wakeup the thread for old dirty data writeback
824 */
825 work = kzalloc(sizeof(*work), GFP_ATOMIC);
826 if (!work) {
827 trace_writeback_nowork(wb->bdi);
828 wb_wakeup(wb);
829 return;
830 }
831
832 work->sync_mode = WB_SYNC_NONE;
833 work->nr_pages = nr_pages;
834 work->range_cyclic = range_cyclic;
835 work->reason = reason;
ac7b19a3 836 work->auto_free = 1;
c00ddad3
TH
837
838 wb_queue_work(wb, work);
c5444198 839}
d3ddec76 840
c5444198 841/**
9ecf4866
TH
842 * wb_start_background_writeback - start background writeback
843 * @wb: bdi_writback to write from
c5444198
CH
844 *
845 * Description:
6585027a 846 * This makes sure WB_SYNC_NONE background writeback happens. When
9ecf4866 847 * this function returns, it is only guaranteed that for given wb
6585027a
JK
848 * some IO is happening if we are over background dirty threshold.
849 * Caller need not hold sb s_umount semaphore.
c5444198 850 */
9ecf4866 851void wb_start_background_writeback(struct bdi_writeback *wb)
c5444198 852{
6585027a
JK
853 /*
854 * We just wake up the flusher thread. It will perform background
855 * writeback as soon as there is no other work to do.
856 */
9ecf4866
TH
857 trace_writeback_wake_background(wb->bdi);
858 wb_wakeup(wb);
1da177e4
LT
859}
860
a66979ab
DC
861/*
862 * Remove the inode from the writeback list it is on.
863 */
864void inode_wb_list_del(struct inode *inode)
865{
87e1d789 866 struct bdi_writeback *wb;
f758eeab 867
87e1d789 868 wb = inode_to_wb_and_lock_list(inode);
d6c10f1f 869 inode_wb_list_del_locked(inode, wb);
52ebea74 870 spin_unlock(&wb->list_lock);
a66979ab
DC
871}
872
6610a0bc
AM
873/*
874 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
875 * furthest end of its superblock's dirty-inode list.
876 *
877 * Before stamping the inode's ->dirtied_when, we check to see whether it is
66f3b8e2 878 * already the most-recently-dirtied inode on the b_dirty list. If that is
6610a0bc
AM
879 * the case then the inode must have been redirtied while it was being written
880 * out and we don't reset its dirtied_when.
881 */
f758eeab 882static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
6610a0bc 883{
03ba3782 884 if (!list_empty(&wb->b_dirty)) {
66f3b8e2 885 struct inode *tail;
6610a0bc 886
7ccf19a8 887 tail = wb_inode(wb->b_dirty.next);
66f3b8e2 888 if (time_before(inode->dirtied_when, tail->dirtied_when))
6610a0bc
AM
889 inode->dirtied_when = jiffies;
890 }
d6c10f1f 891 inode_wb_list_move_locked(inode, wb, &wb->b_dirty);
6610a0bc
AM
892}
893
c986d1e2 894/*
66f3b8e2 895 * requeue inode for re-scanning after bdi->b_io list is exhausted.
c986d1e2 896 */
f758eeab 897static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
c986d1e2 898{
d6c10f1f 899 inode_wb_list_move_locked(inode, wb, &wb->b_more_io);
c986d1e2
AM
900}
901
1c0eeaf5
JE
902static void inode_sync_complete(struct inode *inode)
903{
365b94ae 904 inode->i_state &= ~I_SYNC;
4eff96dd
JK
905 /* If inode is clean an unused, put it into LRU now... */
906 inode_add_lru(inode);
365b94ae 907 /* Waiters must see I_SYNC cleared before being woken up */
1c0eeaf5
JE
908 smp_mb();
909 wake_up_bit(&inode->i_state, __I_SYNC);
910}
911
d2caa3c5
JL
912static bool inode_dirtied_after(struct inode *inode, unsigned long t)
913{
914 bool ret = time_after(inode->dirtied_when, t);
915#ifndef CONFIG_64BIT
916 /*
917 * For inodes being constantly redirtied, dirtied_when can get stuck.
918 * It _appears_ to be in the future, but is actually in distant past.
919 * This test is necessary to prevent such wrapped-around relative times
5b0830cb 920 * from permanently stopping the whole bdi writeback.
d2caa3c5
JL
921 */
922 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
923#endif
924 return ret;
925}
926
0ae45f63
TT
927#define EXPIRE_DIRTY_ATIME 0x0001
928
2c136579 929/*
0e2f2b23 930 * Move expired (dirtied before work->older_than_this) dirty inodes from
697e6fed 931 * @delaying_queue to @dispatch_queue.
2c136579 932 */
e84d0a4f 933static int move_expired_inodes(struct list_head *delaying_queue,
2c136579 934 struct list_head *dispatch_queue,
0ae45f63 935 int flags,
ad4e38dd 936 struct wb_writeback_work *work)
2c136579 937{
0ae45f63
TT
938 unsigned long *older_than_this = NULL;
939 unsigned long expire_time;
5c03449d
SL
940 LIST_HEAD(tmp);
941 struct list_head *pos, *node;
cf137307 942 struct super_block *sb = NULL;
5c03449d 943 struct inode *inode;
cf137307 944 int do_sb_sort = 0;
e84d0a4f 945 int moved = 0;
5c03449d 946
0ae45f63
TT
947 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
948 older_than_this = work->older_than_this;
a2f48706
TT
949 else if (!work->for_sync) {
950 expire_time = jiffies - (dirtytime_expire_interval * HZ);
0ae45f63
TT
951 older_than_this = &expire_time;
952 }
2c136579 953 while (!list_empty(delaying_queue)) {
7ccf19a8 954 inode = wb_inode(delaying_queue->prev);
0ae45f63
TT
955 if (older_than_this &&
956 inode_dirtied_after(inode, *older_than_this))
2c136579 957 break;
a8855990
JK
958 list_move(&inode->i_wb_list, &tmp);
959 moved++;
0ae45f63
TT
960 if (flags & EXPIRE_DIRTY_ATIME)
961 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
a8855990
JK
962 if (sb_is_blkdev_sb(inode->i_sb))
963 continue;
cf137307
JA
964 if (sb && sb != inode->i_sb)
965 do_sb_sort = 1;
966 sb = inode->i_sb;
5c03449d
SL
967 }
968
cf137307
JA
969 /* just one sb in list, splice to dispatch_queue and we're done */
970 if (!do_sb_sort) {
971 list_splice(&tmp, dispatch_queue);
e84d0a4f 972 goto out;
cf137307
JA
973 }
974
5c03449d
SL
975 /* Move inodes from one superblock together */
976 while (!list_empty(&tmp)) {
7ccf19a8 977 sb = wb_inode(tmp.prev)->i_sb;
5c03449d 978 list_for_each_prev_safe(pos, node, &tmp) {
7ccf19a8 979 inode = wb_inode(pos);
5c03449d 980 if (inode->i_sb == sb)
7ccf19a8 981 list_move(&inode->i_wb_list, dispatch_queue);
5c03449d 982 }
2c136579 983 }
e84d0a4f
WF
984out:
985 return moved;
2c136579
FW
986}
987
988/*
989 * Queue all expired dirty inodes for io, eldest first.
4ea879b9
WF
990 * Before
991 * newly dirtied b_dirty b_io b_more_io
992 * =============> gf edc BA
993 * After
994 * newly dirtied b_dirty b_io b_more_io
995 * =============> g fBAedc
996 * |
997 * +--> dequeue for IO
2c136579 998 */
ad4e38dd 999static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
66f3b8e2 1000{
e84d0a4f 1001 int moved;
0ae45f63 1002
f758eeab 1003 assert_spin_locked(&wb->list_lock);
4ea879b9 1004 list_splice_init(&wb->b_more_io, &wb->b_io);
0ae45f63
TT
1005 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1006 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1007 EXPIRE_DIRTY_ATIME, work);
d6c10f1f
TH
1008 if (moved)
1009 wb_io_lists_populated(wb);
ad4e38dd 1010 trace_writeback_queue_io(wb, work, moved);
66f3b8e2
JA
1011}
1012
a9185b41 1013static int write_inode(struct inode *inode, struct writeback_control *wbc)
08d8e974 1014{
9fb0a7da
TH
1015 int ret;
1016
1017 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1018 trace_writeback_write_inode_start(inode, wbc);
1019 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1020 trace_writeback_write_inode(inode, wbc);
1021 return ret;
1022 }
03ba3782 1023 return 0;
08d8e974 1024}
08d8e974 1025
1da177e4 1026/*
169ebd90
JK
1027 * Wait for writeback on an inode to complete. Called with i_lock held.
1028 * Caller must make sure inode cannot go away when we drop i_lock.
01c03194 1029 */
169ebd90
JK
1030static void __inode_wait_for_writeback(struct inode *inode)
1031 __releases(inode->i_lock)
1032 __acquires(inode->i_lock)
01c03194
CH
1033{
1034 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1035 wait_queue_head_t *wqh;
1036
1037 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
250df6ed
DC
1038 while (inode->i_state & I_SYNC) {
1039 spin_unlock(&inode->i_lock);
74316201
N
1040 __wait_on_bit(wqh, &wq, bit_wait,
1041 TASK_UNINTERRUPTIBLE);
250df6ed 1042 spin_lock(&inode->i_lock);
58a9d3d8 1043 }
01c03194
CH
1044}
1045
169ebd90
JK
1046/*
1047 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1048 */
1049void inode_wait_for_writeback(struct inode *inode)
1050{
1051 spin_lock(&inode->i_lock);
1052 __inode_wait_for_writeback(inode);
1053 spin_unlock(&inode->i_lock);
1054}
1055
1056/*
1057 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1058 * held and drops it. It is aimed for callers not holding any inode reference
1059 * so once i_lock is dropped, inode can go away.
1060 */
1061static void inode_sleep_on_writeback(struct inode *inode)
1062 __releases(inode->i_lock)
1063{
1064 DEFINE_WAIT(wait);
1065 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1066 int sleep;
1067
1068 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1069 sleep = inode->i_state & I_SYNC;
1070 spin_unlock(&inode->i_lock);
1071 if (sleep)
1072 schedule();
1073 finish_wait(wqh, &wait);
1074}
1075
ccb26b5a
JK
1076/*
1077 * Find proper writeback list for the inode depending on its current state and
1078 * possibly also change of its state while we were doing writeback. Here we
1079 * handle things such as livelock prevention or fairness of writeback among
1080 * inodes. This function can be called only by flusher thread - noone else
1081 * processes all inodes in writeback lists and requeueing inodes behind flusher
1082 * thread's back can have unexpected consequences.
1083 */
1084static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1085 struct writeback_control *wbc)
1086{
1087 if (inode->i_state & I_FREEING)
1088 return;
1089
1090 /*
1091 * Sync livelock prevention. Each inode is tagged and synced in one
1092 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1093 * the dirty time to prevent enqueue and sync it again.
1094 */
1095 if ((inode->i_state & I_DIRTY) &&
1096 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1097 inode->dirtied_when = jiffies;
1098
4f8ad655
JK
1099 if (wbc->pages_skipped) {
1100 /*
1101 * writeback is not making progress due to locked
1102 * buffers. Skip this inode for now.
1103 */
1104 redirty_tail(inode, wb);
1105 return;
1106 }
1107
ccb26b5a
JK
1108 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1109 /*
1110 * We didn't write back all the pages. nfs_writepages()
1111 * sometimes bales out without doing anything.
1112 */
1113 if (wbc->nr_to_write <= 0) {
1114 /* Slice used up. Queue for next turn. */
1115 requeue_io(inode, wb);
1116 } else {
1117 /*
1118 * Writeback blocked by something other than
1119 * congestion. Delay the inode for some time to
1120 * avoid spinning on the CPU (100% iowait)
1121 * retrying writeback of the dirty page/inode
1122 * that cannot be performed immediately.
1123 */
1124 redirty_tail(inode, wb);
1125 }
1126 } else if (inode->i_state & I_DIRTY) {
1127 /*
1128 * Filesystems can dirty the inode during writeback operations,
1129 * such as delayed allocation during submission or metadata
1130 * updates after data IO completion.
1131 */
1132 redirty_tail(inode, wb);
0ae45f63 1133 } else if (inode->i_state & I_DIRTY_TIME) {
a2f48706 1134 inode->dirtied_when = jiffies;
d6c10f1f 1135 inode_wb_list_move_locked(inode, wb, &wb->b_dirty_time);
ccb26b5a
JK
1136 } else {
1137 /* The inode is clean. Remove from writeback lists. */
d6c10f1f 1138 inode_wb_list_del_locked(inode, wb);
ccb26b5a
JK
1139 }
1140}
1141
01c03194 1142/*
4f8ad655
JK
1143 * Write out an inode and its dirty pages. Do not update the writeback list
1144 * linkage. That is left to the caller. The caller is also responsible for
1145 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1da177e4
LT
1146 */
1147static int
cd8ed2a4 1148__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4 1149{
1da177e4 1150 struct address_space *mapping = inode->i_mapping;
251d6a47 1151 long nr_to_write = wbc->nr_to_write;
01c03194 1152 unsigned dirty;
1da177e4
LT
1153 int ret;
1154
4f8ad655 1155 WARN_ON(!(inode->i_state & I_SYNC));
1da177e4 1156
9fb0a7da
TH
1157 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1158
1da177e4
LT
1159 ret = do_writepages(mapping, wbc);
1160
26821ed4
CH
1161 /*
1162 * Make sure to wait on the data before writing out the metadata.
1163 * This is important for filesystems that modify metadata on data
7747bd4b
DC
1164 * I/O completion. We don't do it for sync(2) writeback because it has a
1165 * separate, external IO completion path and ->sync_fs for guaranteeing
1166 * inode metadata is written back correctly.
26821ed4 1167 */
7747bd4b 1168 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
26821ed4 1169 int err = filemap_fdatawait(mapping);
1da177e4
LT
1170 if (ret == 0)
1171 ret = err;
1172 }
1173
5547e8aa
DM
1174 /*
1175 * Some filesystems may redirty the inode during the writeback
1176 * due to delalloc, clear dirty metadata flags right before
1177 * write_inode()
1178 */
250df6ed 1179 spin_lock(&inode->i_lock);
9c6ac78e 1180
5547e8aa 1181 dirty = inode->i_state & I_DIRTY;
a2f48706
TT
1182 if (inode->i_state & I_DIRTY_TIME) {
1183 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1184 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1185 unlikely(time_after(jiffies,
1186 (inode->dirtied_time_when +
1187 dirtytime_expire_interval * HZ)))) {
1188 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1189 trace_writeback_lazytime(inode);
1190 }
1191 } else
1192 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
0ae45f63 1193 inode->i_state &= ~dirty;
9c6ac78e
TH
1194
1195 /*
1196 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1197 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1198 * either they see the I_DIRTY bits cleared or we see the dirtied
1199 * inode.
1200 *
1201 * I_DIRTY_PAGES is always cleared together above even if @mapping
1202 * still has dirty pages. The flag is reinstated after smp_mb() if
1203 * necessary. This guarantees that either __mark_inode_dirty()
1204 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1205 */
1206 smp_mb();
1207
1208 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1209 inode->i_state |= I_DIRTY_PAGES;
1210
250df6ed 1211 spin_unlock(&inode->i_lock);
9c6ac78e 1212
0ae45f63
TT
1213 if (dirty & I_DIRTY_TIME)
1214 mark_inode_dirty_sync(inode);
26821ed4 1215 /* Don't write the inode if only I_DIRTY_PAGES was set */
0ae45f63 1216 if (dirty & ~I_DIRTY_PAGES) {
a9185b41 1217 int err = write_inode(inode, wbc);
1da177e4
LT
1218 if (ret == 0)
1219 ret = err;
1220 }
4f8ad655
JK
1221 trace_writeback_single_inode(inode, wbc, nr_to_write);
1222 return ret;
1223}
1224
1225/*
1226 * Write out an inode's dirty pages. Either the caller has an active reference
1227 * on the inode or the inode has I_WILL_FREE set.
1228 *
1229 * This function is designed to be called for writing back one inode which
1230 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1231 * and does more profound writeback list handling in writeback_sb_inodes().
1232 */
1233static int
1234writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
1235 struct writeback_control *wbc)
1236{
1237 int ret = 0;
1238
1239 spin_lock(&inode->i_lock);
1240 if (!atomic_read(&inode->i_count))
1241 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1242 else
1243 WARN_ON(inode->i_state & I_WILL_FREE);
1244
1245 if (inode->i_state & I_SYNC) {
1246 if (wbc->sync_mode != WB_SYNC_ALL)
1247 goto out;
1248 /*
169ebd90
JK
1249 * It's a data-integrity sync. We must wait. Since callers hold
1250 * inode reference or inode has I_WILL_FREE set, it cannot go
1251 * away under us.
4f8ad655 1252 */
169ebd90 1253 __inode_wait_for_writeback(inode);
4f8ad655
JK
1254 }
1255 WARN_ON(inode->i_state & I_SYNC);
1256 /*
f9b0e058
JK
1257 * Skip inode if it is clean and we have no outstanding writeback in
1258 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1259 * function since flusher thread may be doing for example sync in
1260 * parallel and if we move the inode, it could get skipped. So here we
1261 * make sure inode is on some writeback list and leave it there unless
1262 * we have completely cleaned the inode.
4f8ad655 1263 */
0ae45f63 1264 if (!(inode->i_state & I_DIRTY_ALL) &&
f9b0e058
JK
1265 (wbc->sync_mode != WB_SYNC_ALL ||
1266 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
4f8ad655
JK
1267 goto out;
1268 inode->i_state |= I_SYNC;
b16b1deb 1269 wbc_attach_and_unlock_inode(wbc, inode);
4f8ad655 1270
cd8ed2a4 1271 ret = __writeback_single_inode(inode, wbc);
1da177e4 1272
b16b1deb 1273 wbc_detach_inode(wbc);
f758eeab 1274 spin_lock(&wb->list_lock);
250df6ed 1275 spin_lock(&inode->i_lock);
4f8ad655
JK
1276 /*
1277 * If inode is clean, remove it from writeback lists. Otherwise don't
1278 * touch it. See comment above for explanation.
1279 */
0ae45f63 1280 if (!(inode->i_state & I_DIRTY_ALL))
d6c10f1f 1281 inode_wb_list_del_locked(inode, wb);
4f8ad655 1282 spin_unlock(&wb->list_lock);
1c0eeaf5 1283 inode_sync_complete(inode);
4f8ad655
JK
1284out:
1285 spin_unlock(&inode->i_lock);
1da177e4
LT
1286 return ret;
1287}
1288
a88a341a 1289static long writeback_chunk_size(struct bdi_writeback *wb,
1a12d8bd 1290 struct wb_writeback_work *work)
d46db3d5
WF
1291{
1292 long pages;
1293
1294 /*
1295 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1296 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1297 * here avoids calling into writeback_inodes_wb() more than once.
1298 *
1299 * The intended call sequence for WB_SYNC_ALL writeback is:
1300 *
1301 * wb_writeback()
1302 * writeback_sb_inodes() <== called only once
1303 * write_cache_pages() <== called once for each inode
1304 * (quickly) tag currently dirty pages
1305 * (maybe slowly) sync all tagged pages
1306 */
1307 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1308 pages = LONG_MAX;
1a12d8bd 1309 else {
a88a341a 1310 pages = min(wb->avg_write_bandwidth / 2,
dcc25ae7 1311 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1a12d8bd
WF
1312 pages = min(pages, work->nr_pages);
1313 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1314 MIN_WRITEBACK_PAGES);
1315 }
d46db3d5
WF
1316
1317 return pages;
1318}
1319
f11c9c5c
ES
1320/*
1321 * Write a portion of b_io inodes which belong to @sb.
edadfb10 1322 *
d46db3d5 1323 * Return the number of pages and/or inodes written.
f11c9c5c 1324 */
d46db3d5
WF
1325static long writeback_sb_inodes(struct super_block *sb,
1326 struct bdi_writeback *wb,
1327 struct wb_writeback_work *work)
1da177e4 1328{
d46db3d5
WF
1329 struct writeback_control wbc = {
1330 .sync_mode = work->sync_mode,
1331 .tagged_writepages = work->tagged_writepages,
1332 .for_kupdate = work->for_kupdate,
1333 .for_background = work->for_background,
7747bd4b 1334 .for_sync = work->for_sync,
d46db3d5
WF
1335 .range_cyclic = work->range_cyclic,
1336 .range_start = 0,
1337 .range_end = LLONG_MAX,
1338 };
1339 unsigned long start_time = jiffies;
1340 long write_chunk;
1341 long wrote = 0; /* count both pages and inodes */
1342
03ba3782 1343 while (!list_empty(&wb->b_io)) {
7ccf19a8 1344 struct inode *inode = wb_inode(wb->b_io.prev);
edadfb10
CH
1345
1346 if (inode->i_sb != sb) {
d46db3d5 1347 if (work->sb) {
edadfb10
CH
1348 /*
1349 * We only want to write back data for this
1350 * superblock, move all inodes not belonging
1351 * to it back onto the dirty list.
1352 */
f758eeab 1353 redirty_tail(inode, wb);
edadfb10
CH
1354 continue;
1355 }
1356
1357 /*
1358 * The inode belongs to a different superblock.
1359 * Bounce back to the caller to unpin this and
1360 * pin the next superblock.
1361 */
d46db3d5 1362 break;
edadfb10
CH
1363 }
1364
9843b76a 1365 /*
331cbdee
WL
1366 * Don't bother with new inodes or inodes being freed, first
1367 * kind does not need periodic writeout yet, and for the latter
9843b76a
CH
1368 * kind writeout is handled by the freer.
1369 */
250df6ed 1370 spin_lock(&inode->i_lock);
9843b76a 1371 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
250df6ed 1372 spin_unlock(&inode->i_lock);
fcc5c222 1373 redirty_tail(inode, wb);
7ef0d737
NP
1374 continue;
1375 }
cc1676d9
JK
1376 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1377 /*
1378 * If this inode is locked for writeback and we are not
1379 * doing writeback-for-data-integrity, move it to
1380 * b_more_io so that writeback can proceed with the
1381 * other inodes on s_io.
1382 *
1383 * We'll have another go at writing back this inode
1384 * when we completed a full scan of b_io.
1385 */
1386 spin_unlock(&inode->i_lock);
1387 requeue_io(inode, wb);
1388 trace_writeback_sb_inodes_requeue(inode);
1389 continue;
1390 }
f0d07b7f
JK
1391 spin_unlock(&wb->list_lock);
1392
4f8ad655
JK
1393 /*
1394 * We already requeued the inode if it had I_SYNC set and we
1395 * are doing WB_SYNC_NONE writeback. So this catches only the
1396 * WB_SYNC_ALL case.
1397 */
169ebd90
JK
1398 if (inode->i_state & I_SYNC) {
1399 /* Wait for I_SYNC. This function drops i_lock... */
1400 inode_sleep_on_writeback(inode);
1401 /* Inode may be gone, start again */
ead188f9 1402 spin_lock(&wb->list_lock);
169ebd90
JK
1403 continue;
1404 }
4f8ad655 1405 inode->i_state |= I_SYNC;
b16b1deb 1406 wbc_attach_and_unlock_inode(&wbc, inode);
169ebd90 1407
a88a341a 1408 write_chunk = writeback_chunk_size(wb, work);
d46db3d5
WF
1409 wbc.nr_to_write = write_chunk;
1410 wbc.pages_skipped = 0;
250df6ed 1411
169ebd90
JK
1412 /*
1413 * We use I_SYNC to pin the inode in memory. While it is set
1414 * evict_inode() will wait so the inode cannot be freed.
1415 */
cd8ed2a4 1416 __writeback_single_inode(inode, &wbc);
250df6ed 1417
b16b1deb 1418 wbc_detach_inode(&wbc);
d46db3d5
WF
1419 work->nr_pages -= write_chunk - wbc.nr_to_write;
1420 wrote += write_chunk - wbc.nr_to_write;
4f8ad655
JK
1421 spin_lock(&wb->list_lock);
1422 spin_lock(&inode->i_lock);
0ae45f63 1423 if (!(inode->i_state & I_DIRTY_ALL))
d46db3d5 1424 wrote++;
4f8ad655
JK
1425 requeue_inode(inode, wb, &wbc);
1426 inode_sync_complete(inode);
0f1b1fd8 1427 spin_unlock(&inode->i_lock);
169ebd90 1428 cond_resched_lock(&wb->list_lock);
d46db3d5
WF
1429 /*
1430 * bail out to wb_writeback() often enough to check
1431 * background threshold and other termination conditions.
1432 */
1433 if (wrote) {
1434 if (time_is_before_jiffies(start_time + HZ / 10UL))
1435 break;
1436 if (work->nr_pages <= 0)
1437 break;
8bc3be27 1438 }
1da177e4 1439 }
d46db3d5 1440 return wrote;
f11c9c5c
ES
1441}
1442
d46db3d5
WF
1443static long __writeback_inodes_wb(struct bdi_writeback *wb,
1444 struct wb_writeback_work *work)
f11c9c5c 1445{
d46db3d5
WF
1446 unsigned long start_time = jiffies;
1447 long wrote = 0;
38f21977 1448
f11c9c5c 1449 while (!list_empty(&wb->b_io)) {
7ccf19a8 1450 struct inode *inode = wb_inode(wb->b_io.prev);
f11c9c5c 1451 struct super_block *sb = inode->i_sb;
9ecc2738 1452
eb6ef3df 1453 if (!trylock_super(sb)) {
0e995816 1454 /*
eb6ef3df 1455 * trylock_super() may fail consistently due to
0e995816
WF
1456 * s_umount being grabbed by someone else. Don't use
1457 * requeue_io() to avoid busy retrying the inode/sb.
1458 */
1459 redirty_tail(inode, wb);
edadfb10 1460 continue;
f11c9c5c 1461 }
d46db3d5 1462 wrote += writeback_sb_inodes(sb, wb, work);
eb6ef3df 1463 up_read(&sb->s_umount);
f11c9c5c 1464
d46db3d5
WF
1465 /* refer to the same tests at the end of writeback_sb_inodes */
1466 if (wrote) {
1467 if (time_is_before_jiffies(start_time + HZ / 10UL))
1468 break;
1469 if (work->nr_pages <= 0)
1470 break;
1471 }
f11c9c5c 1472 }
66f3b8e2 1473 /* Leave any unwritten inodes on b_io */
d46db3d5 1474 return wrote;
66f3b8e2
JA
1475}
1476
7d9f073b 1477static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
0e175a18 1478 enum wb_reason reason)
edadfb10 1479{
d46db3d5
WF
1480 struct wb_writeback_work work = {
1481 .nr_pages = nr_pages,
1482 .sync_mode = WB_SYNC_NONE,
1483 .range_cyclic = 1,
0e175a18 1484 .reason = reason,
d46db3d5 1485 };
edadfb10 1486
f758eeab 1487 spin_lock(&wb->list_lock);
424b351f 1488 if (list_empty(&wb->b_io))
ad4e38dd 1489 queue_io(wb, &work);
d46db3d5 1490 __writeback_inodes_wb(wb, &work);
f758eeab 1491 spin_unlock(&wb->list_lock);
edadfb10 1492
d46db3d5
WF
1493 return nr_pages - work.nr_pages;
1494}
03ba3782 1495
03ba3782
JA
1496/*
1497 * Explicit flushing or periodic writeback of "old" data.
66f3b8e2 1498 *
03ba3782
JA
1499 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1500 * dirtying-time in the inode's address_space. So this periodic writeback code
1501 * just walks the superblock inode list, writing back any inodes which are
1502 * older than a specific point in time.
66f3b8e2 1503 *
03ba3782
JA
1504 * Try to run once per dirty_writeback_interval. But if a writeback event
1505 * takes longer than a dirty_writeback_interval interval, then leave a
1506 * one-second gap.
66f3b8e2 1507 *
03ba3782
JA
1508 * older_than_this takes precedence over nr_to_write. So we'll only write back
1509 * all dirty pages if they are all attached to "old" mappings.
66f3b8e2 1510 */
c4a77a6c 1511static long wb_writeback(struct bdi_writeback *wb,
83ba7b07 1512 struct wb_writeback_work *work)
66f3b8e2 1513{
e98be2d5 1514 unsigned long wb_start = jiffies;
d46db3d5 1515 long nr_pages = work->nr_pages;
0dc83bd3 1516 unsigned long oldest_jif;
a5989bdc 1517 struct inode *inode;
d46db3d5 1518 long progress;
66f3b8e2 1519
0dc83bd3
JK
1520 oldest_jif = jiffies;
1521 work->older_than_this = &oldest_jif;
38f21977 1522
e8dfc305 1523 spin_lock(&wb->list_lock);
03ba3782
JA
1524 for (;;) {
1525 /*
d3ddec76 1526 * Stop writeback when nr_pages has been consumed
03ba3782 1527 */
83ba7b07 1528 if (work->nr_pages <= 0)
03ba3782 1529 break;
66f3b8e2 1530
aa373cf5
JK
1531 /*
1532 * Background writeout and kupdate-style writeback may
1533 * run forever. Stop them if there is other work to do
1534 * so that e.g. sync can proceed. They'll be restarted
1535 * after the other works are all done.
1536 */
1537 if ((work->for_background || work->for_kupdate) &&
f0054bb1 1538 !list_empty(&wb->work_list))
aa373cf5
JK
1539 break;
1540
38f21977 1541 /*
d3ddec76
WF
1542 * For background writeout, stop when we are below the
1543 * background dirty threshold
38f21977 1544 */
aa661bbe 1545 if (work->for_background && !wb_over_bg_thresh(wb))
03ba3782 1546 break;
38f21977 1547
1bc36b64
JK
1548 /*
1549 * Kupdate and background works are special and we want to
1550 * include all inodes that need writing. Livelock avoidance is
1551 * handled by these works yielding to any other work so we are
1552 * safe.
1553 */
ba9aa839 1554 if (work->for_kupdate) {
0dc83bd3 1555 oldest_jif = jiffies -
ba9aa839 1556 msecs_to_jiffies(dirty_expire_interval * 10);
1bc36b64 1557 } else if (work->for_background)
0dc83bd3 1558 oldest_jif = jiffies;
028c2dd1 1559
d46db3d5 1560 trace_writeback_start(wb->bdi, work);
e8dfc305 1561 if (list_empty(&wb->b_io))
ad4e38dd 1562 queue_io(wb, work);
83ba7b07 1563 if (work->sb)
d46db3d5 1564 progress = writeback_sb_inodes(work->sb, wb, work);
edadfb10 1565 else
d46db3d5
WF
1566 progress = __writeback_inodes_wb(wb, work);
1567 trace_writeback_written(wb->bdi, work);
028c2dd1 1568
e98be2d5 1569 wb_update_bandwidth(wb, wb_start);
03ba3782
JA
1570
1571 /*
e6fb6da2
WF
1572 * Did we write something? Try for more
1573 *
1574 * Dirty inodes are moved to b_io for writeback in batches.
1575 * The completion of the current batch does not necessarily
1576 * mean the overall work is done. So we keep looping as long
1577 * as made some progress on cleaning pages or inodes.
03ba3782 1578 */
d46db3d5 1579 if (progress)
71fd05a8
JA
1580 continue;
1581 /*
e6fb6da2 1582 * No more inodes for IO, bail
71fd05a8 1583 */
b7a2441f 1584 if (list_empty(&wb->b_more_io))
03ba3782 1585 break;
71fd05a8
JA
1586 /*
1587 * Nothing written. Wait for some inode to
1588 * become available for writeback. Otherwise
1589 * we'll just busyloop.
1590 */
71fd05a8 1591 if (!list_empty(&wb->b_more_io)) {
d46db3d5 1592 trace_writeback_wait(wb->bdi, work);
7ccf19a8 1593 inode = wb_inode(wb->b_more_io.prev);
250df6ed 1594 spin_lock(&inode->i_lock);
f0d07b7f 1595 spin_unlock(&wb->list_lock);
169ebd90
JK
1596 /* This function drops i_lock... */
1597 inode_sleep_on_writeback(inode);
f0d07b7f 1598 spin_lock(&wb->list_lock);
03ba3782
JA
1599 }
1600 }
e8dfc305 1601 spin_unlock(&wb->list_lock);
03ba3782 1602
d46db3d5 1603 return nr_pages - work->nr_pages;
03ba3782
JA
1604}
1605
1606/*
83ba7b07 1607 * Return the next wb_writeback_work struct that hasn't been processed yet.
03ba3782 1608 */
f0054bb1 1609static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
03ba3782 1610{
83ba7b07 1611 struct wb_writeback_work *work = NULL;
03ba3782 1612
f0054bb1
TH
1613 spin_lock_bh(&wb->work_lock);
1614 if (!list_empty(&wb->work_list)) {
1615 work = list_entry(wb->work_list.next,
83ba7b07
CH
1616 struct wb_writeback_work, list);
1617 list_del_init(&work->list);
03ba3782 1618 }
f0054bb1 1619 spin_unlock_bh(&wb->work_lock);
83ba7b07 1620 return work;
03ba3782
JA
1621}
1622
cdf01dd5
LT
1623/*
1624 * Add in the number of potentially dirty inodes, because each inode
1625 * write can dirty pagecache in the underlying blockdev.
1626 */
1627static unsigned long get_nr_dirty_pages(void)
1628{
1629 return global_page_state(NR_FILE_DIRTY) +
1630 global_page_state(NR_UNSTABLE_NFS) +
1631 get_nr_dirty_inodes();
1632}
1633
6585027a
JK
1634static long wb_check_background_flush(struct bdi_writeback *wb)
1635{
aa661bbe 1636 if (wb_over_bg_thresh(wb)) {
6585027a
JK
1637
1638 struct wb_writeback_work work = {
1639 .nr_pages = LONG_MAX,
1640 .sync_mode = WB_SYNC_NONE,
1641 .for_background = 1,
1642 .range_cyclic = 1,
0e175a18 1643 .reason = WB_REASON_BACKGROUND,
6585027a
JK
1644 };
1645
1646 return wb_writeback(wb, &work);
1647 }
1648
1649 return 0;
1650}
1651
03ba3782
JA
1652static long wb_check_old_data_flush(struct bdi_writeback *wb)
1653{
1654 unsigned long expired;
1655 long nr_pages;
1656
69b62d01
JA
1657 /*
1658 * When set to zero, disable periodic writeback
1659 */
1660 if (!dirty_writeback_interval)
1661 return 0;
1662
03ba3782
JA
1663 expired = wb->last_old_flush +
1664 msecs_to_jiffies(dirty_writeback_interval * 10);
1665 if (time_before(jiffies, expired))
1666 return 0;
1667
1668 wb->last_old_flush = jiffies;
cdf01dd5 1669 nr_pages = get_nr_dirty_pages();
03ba3782 1670
c4a77a6c 1671 if (nr_pages) {
83ba7b07 1672 struct wb_writeback_work work = {
c4a77a6c
JA
1673 .nr_pages = nr_pages,
1674 .sync_mode = WB_SYNC_NONE,
1675 .for_kupdate = 1,
1676 .range_cyclic = 1,
0e175a18 1677 .reason = WB_REASON_PERIODIC,
c4a77a6c
JA
1678 };
1679
83ba7b07 1680 return wb_writeback(wb, &work);
c4a77a6c 1681 }
03ba3782
JA
1682
1683 return 0;
1684}
1685
1686/*
1687 * Retrieve work items and do the writeback they describe
1688 */
25d130ba 1689static long wb_do_writeback(struct bdi_writeback *wb)
03ba3782 1690{
83ba7b07 1691 struct wb_writeback_work *work;
c4a77a6c 1692 long wrote = 0;
03ba3782 1693
4452226e 1694 set_bit(WB_writeback_running, &wb->state);
f0054bb1 1695 while ((work = get_next_work_item(wb)) != NULL) {
cc395d7f 1696 struct wb_completion *done = work->done;
98754bf7 1697 bool need_wake_up = false;
03ba3782 1698
f0054bb1 1699 trace_writeback_exec(wb->bdi, work);
455b2864 1700
83ba7b07 1701 wrote += wb_writeback(wb, work);
03ba3782 1702
98754bf7
TH
1703 if (work->single_wait) {
1704 WARN_ON_ONCE(work->auto_free);
1705 /* paired w/ rmb in wb_wait_for_single_work() */
1706 smp_wmb();
1707 work->single_done = 1;
1708 need_wake_up = true;
1709 } else if (work->auto_free) {
83ba7b07 1710 kfree(work);
98754bf7
TH
1711 }
1712
cc395d7f 1713 if (done && atomic_dec_and_test(&done->cnt))
98754bf7
TH
1714 need_wake_up = true;
1715
1716 if (need_wake_up)
cc395d7f 1717 wake_up_all(&wb->bdi->wb_waitq);
03ba3782
JA
1718 }
1719
1720 /*
1721 * Check for periodic writeback, kupdated() style
1722 */
1723 wrote += wb_check_old_data_flush(wb);
6585027a 1724 wrote += wb_check_background_flush(wb);
4452226e 1725 clear_bit(WB_writeback_running, &wb->state);
03ba3782
JA
1726
1727 return wrote;
1728}
1729
1730/*
1731 * Handle writeback of dirty data for the device backed by this bdi. Also
839a8e86 1732 * reschedules periodically and does kupdated style flushing.
03ba3782 1733 */
f0054bb1 1734void wb_workfn(struct work_struct *work)
03ba3782 1735{
839a8e86
TH
1736 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1737 struct bdi_writeback, dwork);
03ba3782
JA
1738 long pages_written;
1739
f0054bb1 1740 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
766f9164 1741 current->flags |= PF_SWAPWRITE;
455b2864 1742
839a8e86 1743 if (likely(!current_is_workqueue_rescuer() ||
4452226e 1744 !test_bit(WB_registered, &wb->state))) {
6467716a 1745 /*
f0054bb1 1746 * The normal path. Keep writing back @wb until its
839a8e86 1747 * work_list is empty. Note that this path is also taken
f0054bb1 1748 * if @wb is shutting down even when we're running off the
839a8e86 1749 * rescuer as work_list needs to be drained.
6467716a 1750 */
839a8e86 1751 do {
25d130ba 1752 pages_written = wb_do_writeback(wb);
839a8e86 1753 trace_writeback_pages_written(pages_written);
f0054bb1 1754 } while (!list_empty(&wb->work_list));
839a8e86
TH
1755 } else {
1756 /*
1757 * bdi_wq can't get enough workers and we're running off
1758 * the emergency worker. Don't hog it. Hopefully, 1024 is
1759 * enough for efficient IO.
1760 */
f0054bb1 1761 pages_written = writeback_inodes_wb(wb, 1024,
839a8e86 1762 WB_REASON_FORKER_THREAD);
455b2864 1763 trace_writeback_pages_written(pages_written);
03ba3782
JA
1764 }
1765
f0054bb1 1766 if (!list_empty(&wb->work_list))
6ca738d6
DB
1767 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1768 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
f0054bb1 1769 wb_wakeup_delayed(wb);
455b2864 1770
839a8e86 1771 current->flags &= ~PF_SWAPWRITE;
03ba3782
JA
1772}
1773
1774/*
b8c2f347
CH
1775 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1776 * the whole world.
03ba3782 1777 */
0e175a18 1778void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
03ba3782 1779{
b8c2f347 1780 struct backing_dev_info *bdi;
03ba3782 1781
47df3dde
JK
1782 if (!nr_pages)
1783 nr_pages = get_nr_dirty_pages();
03ba3782 1784
b8c2f347 1785 rcu_read_lock();
f2b65121
TH
1786 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1787 struct bdi_writeback *wb;
1788 struct wb_iter iter;
1789
1790 if (!bdi_has_dirty_io(bdi))
1791 continue;
1792
1793 bdi_for_each_wb(wb, bdi, &iter, 0)
1794 wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1795 false, reason);
1796 }
cfc4ba53 1797 rcu_read_unlock();
1da177e4
LT
1798}
1799
a2f48706
TT
1800/*
1801 * Wake up bdi's periodically to make sure dirtytime inodes gets
1802 * written back periodically. We deliberately do *not* check the
1803 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1804 * kernel to be constantly waking up once there are any dirtytime
1805 * inodes on the system. So instead we define a separate delayed work
1806 * function which gets called much more rarely. (By default, only
1807 * once every 12 hours.)
1808 *
1809 * If there is any other write activity going on in the file system,
1810 * this function won't be necessary. But if the only thing that has
1811 * happened on the file system is a dirtytime inode caused by an atime
1812 * update, we need this infrastructure below to make sure that inode
1813 * eventually gets pushed out to disk.
1814 */
1815static void wakeup_dirtytime_writeback(struct work_struct *w);
1816static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1817
1818static void wakeup_dirtytime_writeback(struct work_struct *w)
1819{
1820 struct backing_dev_info *bdi;
1821
1822 rcu_read_lock();
1823 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
001fe6f6
TH
1824 struct bdi_writeback *wb;
1825 struct wb_iter iter;
1826
1827 bdi_for_each_wb(wb, bdi, &iter, 0)
1828 if (!list_empty(&bdi->wb.b_dirty_time))
1829 wb_wakeup(&bdi->wb);
a2f48706
TT
1830 }
1831 rcu_read_unlock();
1832 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1833}
1834
1835static int __init start_dirtytime_writeback(void)
1836{
1837 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1838 return 0;
1839}
1840__initcall(start_dirtytime_writeback);
1841
1efff914
TT
1842int dirtytime_interval_handler(struct ctl_table *table, int write,
1843 void __user *buffer, size_t *lenp, loff_t *ppos)
1844{
1845 int ret;
1846
1847 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1848 if (ret == 0 && write)
1849 mod_delayed_work(system_wq, &dirtytime_work, 0);
1850 return ret;
1851}
1852
03ba3782
JA
1853static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1854{
1855 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1856 struct dentry *dentry;
1857 const char *name = "?";
1858
1859 dentry = d_find_alias(inode);
1860 if (dentry) {
1861 spin_lock(&dentry->d_lock);
1862 name = (const char *) dentry->d_name.name;
1863 }
1864 printk(KERN_DEBUG
1865 "%s(%d): dirtied inode %lu (%s) on %s\n",
1866 current->comm, task_pid_nr(current), inode->i_ino,
1867 name, inode->i_sb->s_id);
1868 if (dentry) {
1869 spin_unlock(&dentry->d_lock);
1870 dput(dentry);
1871 }
1872 }
1873}
1874
1875/**
1876 * __mark_inode_dirty - internal function
1877 * @inode: inode to mark
1878 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1879 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1880 * mark_inode_dirty_sync.
1da177e4 1881 *
03ba3782
JA
1882 * Put the inode on the super block's dirty list.
1883 *
1884 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1885 * dirty list only if it is hashed or if it refers to a blockdev.
1886 * If it was not hashed, it will never be added to the dirty list
1887 * even if it is later hashed, as it will have been marked dirty already.
1888 *
1889 * In short, make sure you hash any inodes _before_ you start marking
1890 * them dirty.
1da177e4 1891 *
03ba3782
JA
1892 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1893 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1894 * the kernel-internal blockdev inode represents the dirtying time of the
1895 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1896 * page->mapping->host, so the page-dirtying time is recorded in the internal
1897 * blockdev inode.
1da177e4 1898 */
0ae45f63 1899#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
03ba3782 1900void __mark_inode_dirty(struct inode *inode, int flags)
1da177e4 1901{
03ba3782 1902 struct super_block *sb = inode->i_sb;
0ae45f63
TT
1903 int dirtytime;
1904
1905 trace_writeback_mark_inode_dirty(inode, flags);
1da177e4 1906
03ba3782
JA
1907 /*
1908 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1909 * dirty the inode itself
1910 */
0ae45f63 1911 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
9fb0a7da
TH
1912 trace_writeback_dirty_inode_start(inode, flags);
1913
03ba3782 1914 if (sb->s_op->dirty_inode)
aa385729 1915 sb->s_op->dirty_inode(inode, flags);
9fb0a7da
TH
1916
1917 trace_writeback_dirty_inode(inode, flags);
03ba3782 1918 }
0ae45f63
TT
1919 if (flags & I_DIRTY_INODE)
1920 flags &= ~I_DIRTY_TIME;
1921 dirtytime = flags & I_DIRTY_TIME;
03ba3782
JA
1922
1923 /*
9c6ac78e
TH
1924 * Paired with smp_mb() in __writeback_single_inode() for the
1925 * following lockless i_state test. See there for details.
03ba3782
JA
1926 */
1927 smp_mb();
1928
0ae45f63
TT
1929 if (((inode->i_state & flags) == flags) ||
1930 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
03ba3782
JA
1931 return;
1932
1933 if (unlikely(block_dump))
1934 block_dump___mark_inode_dirty(inode);
1935
250df6ed 1936 spin_lock(&inode->i_lock);
0ae45f63
TT
1937 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
1938 goto out_unlock_inode;
03ba3782
JA
1939 if ((inode->i_state & flags) != flags) {
1940 const int was_dirty = inode->i_state & I_DIRTY;
1941
52ebea74
TH
1942 inode_attach_wb(inode, NULL);
1943
0ae45f63
TT
1944 if (flags & I_DIRTY_INODE)
1945 inode->i_state &= ~I_DIRTY_TIME;
03ba3782
JA
1946 inode->i_state |= flags;
1947
1948 /*
1949 * If the inode is being synced, just update its dirty state.
1950 * The unlocker will place the inode on the appropriate
1951 * superblock list, based upon its state.
1952 */
1953 if (inode->i_state & I_SYNC)
250df6ed 1954 goto out_unlock_inode;
03ba3782
JA
1955
1956 /*
1957 * Only add valid (hashed) inodes to the superblock's
1958 * dirty list. Add blockdev inodes as well.
1959 */
1960 if (!S_ISBLK(inode->i_mode)) {
1d3382cb 1961 if (inode_unhashed(inode))
250df6ed 1962 goto out_unlock_inode;
03ba3782 1963 }
a4ffdde6 1964 if (inode->i_state & I_FREEING)
250df6ed 1965 goto out_unlock_inode;
03ba3782
JA
1966
1967 /*
1968 * If the inode was already on b_dirty/b_io/b_more_io, don't
1969 * reposition it (that would break b_dirty time-ordering).
1970 */
1971 if (!was_dirty) {
87e1d789 1972 struct bdi_writeback *wb;
d6c10f1f 1973 struct list_head *dirty_list;
a66979ab 1974 bool wakeup_bdi = false;
253c34e9 1975
87e1d789 1976 wb = locked_inode_to_wb_and_lock_list(inode);
253c34e9 1977
0747259d
TH
1978 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
1979 !test_bit(WB_registered, &wb->state),
1980 "bdi-%s not registered\n", wb->bdi->name);
03ba3782
JA
1981
1982 inode->dirtied_when = jiffies;
a2f48706
TT
1983 if (dirtytime)
1984 inode->dirtied_time_when = jiffies;
d6c10f1f 1985
a2f48706 1986 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
0747259d 1987 dirty_list = &wb->b_dirty;
a2f48706 1988 else
0747259d 1989 dirty_list = &wb->b_dirty_time;
d6c10f1f 1990
0747259d 1991 wakeup_bdi = inode_wb_list_move_locked(inode, wb,
d6c10f1f
TH
1992 dirty_list);
1993
0747259d 1994 spin_unlock(&wb->list_lock);
0ae45f63 1995 trace_writeback_dirty_inode_enqueue(inode);
a66979ab 1996
d6c10f1f
TH
1997 /*
1998 * If this is the first dirty inode for this bdi,
1999 * we have to wake-up the corresponding bdi thread
2000 * to make sure background write-back happens
2001 * later.
2002 */
0747259d
TH
2003 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2004 wb_wakeup_delayed(wb);
a66979ab 2005 return;
1da177e4 2006 }
1da177e4 2007 }
250df6ed
DC
2008out_unlock_inode:
2009 spin_unlock(&inode->i_lock);
253c34e9 2010
03ba3782
JA
2011}
2012EXPORT_SYMBOL(__mark_inode_dirty);
2013
b6e51316 2014static void wait_sb_inodes(struct super_block *sb)
03ba3782
JA
2015{
2016 struct inode *inode, *old_inode = NULL;
2017
2018 /*
2019 * We need to be protected against the filesystem going from
2020 * r/o to r/w or vice versa.
2021 */
b6e51316 2022 WARN_ON(!rwsem_is_locked(&sb->s_umount));
03ba3782 2023
55fa6091 2024 spin_lock(&inode_sb_list_lock);
03ba3782
JA
2025
2026 /*
2027 * Data integrity sync. Must wait for all pages under writeback,
2028 * because there may have been pages dirtied before our sync
2029 * call, but which had writeout started before we write it out.
2030 * In which case, the inode may not be on the dirty list, but
2031 * we still have to wait for that writeout.
2032 */
b6e51316 2033 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
250df6ed 2034 struct address_space *mapping = inode->i_mapping;
03ba3782 2035
250df6ed
DC
2036 spin_lock(&inode->i_lock);
2037 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
2038 (mapping->nrpages == 0)) {
2039 spin_unlock(&inode->i_lock);
03ba3782 2040 continue;
250df6ed 2041 }
03ba3782 2042 __iget(inode);
250df6ed 2043 spin_unlock(&inode->i_lock);
55fa6091
DC
2044 spin_unlock(&inode_sb_list_lock);
2045
03ba3782 2046 /*
55fa6091
DC
2047 * We hold a reference to 'inode' so it couldn't have been
2048 * removed from s_inodes list while we dropped the
2049 * inode_sb_list_lock. We cannot iput the inode now as we can
2050 * be holding the last reference and we cannot iput it under
2051 * inode_sb_list_lock. So we keep the reference and iput it
2052 * later.
03ba3782
JA
2053 */
2054 iput(old_inode);
2055 old_inode = inode;
2056
2057 filemap_fdatawait(mapping);
2058
2059 cond_resched();
2060
55fa6091 2061 spin_lock(&inode_sb_list_lock);
03ba3782 2062 }
55fa6091 2063 spin_unlock(&inode_sb_list_lock);
03ba3782 2064 iput(old_inode);
1da177e4
LT
2065}
2066
f30a7d0c
TH
2067static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2068 enum wb_reason reason, bool skip_if_busy)
1da177e4 2069{
cc395d7f 2070 DEFINE_WB_COMPLETION_ONSTACK(done);
83ba7b07 2071 struct wb_writeback_work work = {
6e6938b6
WF
2072 .sb = sb,
2073 .sync_mode = WB_SYNC_NONE,
2074 .tagged_writepages = 1,
2075 .done = &done,
2076 .nr_pages = nr,
0e175a18 2077 .reason = reason,
3c4d7165 2078 };
e7972912 2079 struct backing_dev_info *bdi = sb->s_bdi;
d8a8559c 2080
e7972912 2081 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
6eedc701 2082 return;
cf37e972 2083 WARN_ON(!rwsem_is_locked(&sb->s_umount));
f30a7d0c 2084
db125360 2085 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
cc395d7f 2086 wb_wait_for_completion(bdi, &done);
e913fc82 2087}
f30a7d0c
TH
2088
2089/**
2090 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2091 * @sb: the superblock
2092 * @nr: the number of pages to write
2093 * @reason: reason why some writeback work initiated
2094 *
2095 * Start writeback on some inodes on this super_block. No guarantees are made
2096 * on how many (if any) will be written, and this function does not wait
2097 * for IO completion of submitted IO.
2098 */
2099void writeback_inodes_sb_nr(struct super_block *sb,
2100 unsigned long nr,
2101 enum wb_reason reason)
2102{
2103 __writeback_inodes_sb_nr(sb, nr, reason, false);
2104}
3259f8be
CM
2105EXPORT_SYMBOL(writeback_inodes_sb_nr);
2106
2107/**
2108 * writeback_inodes_sb - writeback dirty inodes from given super_block
2109 * @sb: the superblock
786228ab 2110 * @reason: reason why some writeback work was initiated
3259f8be
CM
2111 *
2112 * Start writeback on some inodes on this super_block. No guarantees are made
2113 * on how many (if any) will be written, and this function does not wait
2114 * for IO completion of submitted IO.
2115 */
0e175a18 2116void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2117{
0e175a18 2118 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2119}
0e3c9a22 2120EXPORT_SYMBOL(writeback_inodes_sb);
e913fc82 2121
17bd55d0 2122/**
10ee27a0 2123 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
17bd55d0 2124 * @sb: the superblock
10ee27a0
MX
2125 * @nr: the number of pages to write
2126 * @reason: the reason of writeback
17bd55d0 2127 *
10ee27a0 2128 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
17bd55d0
ES
2129 * Returns 1 if writeback was started, 0 if not.
2130 */
f30a7d0c
TH
2131bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2132 enum wb_reason reason)
17bd55d0 2133{
10ee27a0 2134 if (!down_read_trylock(&sb->s_umount))
f30a7d0c 2135 return false;
10ee27a0 2136
f30a7d0c 2137 __writeback_inodes_sb_nr(sb, nr, reason, true);
10ee27a0 2138 up_read(&sb->s_umount);
f30a7d0c 2139 return true;
17bd55d0 2140}
10ee27a0 2141EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
17bd55d0 2142
3259f8be 2143/**
10ee27a0 2144 * try_to_writeback_inodes_sb - try to start writeback if none underway
3259f8be 2145 * @sb: the superblock
786228ab 2146 * @reason: reason why some writeback work was initiated
3259f8be 2147 *
10ee27a0 2148 * Implement by try_to_writeback_inodes_sb_nr()
3259f8be
CM
2149 * Returns 1 if writeback was started, 0 if not.
2150 */
f30a7d0c 2151bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2152{
10ee27a0 2153 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2154}
10ee27a0 2155EXPORT_SYMBOL(try_to_writeback_inodes_sb);
3259f8be 2156
d8a8559c
JA
2157/**
2158 * sync_inodes_sb - sync sb inode pages
0dc83bd3 2159 * @sb: the superblock
d8a8559c
JA
2160 *
2161 * This function writes and waits on any dirty inode belonging to this
0dc83bd3 2162 * super_block.
d8a8559c 2163 */
0dc83bd3 2164void sync_inodes_sb(struct super_block *sb)
d8a8559c 2165{
cc395d7f 2166 DEFINE_WB_COMPLETION_ONSTACK(done);
83ba7b07 2167 struct wb_writeback_work work = {
3c4d7165
CH
2168 .sb = sb,
2169 .sync_mode = WB_SYNC_ALL,
2170 .nr_pages = LONG_MAX,
2171 .range_cyclic = 0,
83ba7b07 2172 .done = &done,
0e175a18 2173 .reason = WB_REASON_SYNC,
7747bd4b 2174 .for_sync = 1,
3c4d7165 2175 };
e7972912 2176 struct backing_dev_info *bdi = sb->s_bdi;
3c4d7165 2177
6eedc701 2178 /* Nothing to do? */
e7972912 2179 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
6eedc701 2180 return;
cf37e972
CH
2181 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2182
db125360 2183 bdi_split_work_to_wbs(bdi, &work, false);
cc395d7f 2184 wb_wait_for_completion(bdi, &done);
83ba7b07 2185
b6e51316 2186 wait_sb_inodes(sb);
1da177e4 2187}
d8a8559c 2188EXPORT_SYMBOL(sync_inodes_sb);
1da177e4 2189
1da177e4 2190/**
7f04c26d
AA
2191 * write_inode_now - write an inode to disk
2192 * @inode: inode to write to disk
2193 * @sync: whether the write should be synchronous or not
2194 *
2195 * This function commits an inode to disk immediately if it is dirty. This is
2196 * primarily needed by knfsd.
1da177e4 2197 *
7f04c26d 2198 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 2199 */
1da177e4
LT
2200int write_inode_now(struct inode *inode, int sync)
2201{
f758eeab 2202 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1da177e4
LT
2203 struct writeback_control wbc = {
2204 .nr_to_write = LONG_MAX,
18914b18 2205 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
2206 .range_start = 0,
2207 .range_end = LLONG_MAX,
1da177e4
LT
2208 };
2209
2210 if (!mapping_cap_writeback_dirty(inode->i_mapping))
49364ce2 2211 wbc.nr_to_write = 0;
1da177e4
LT
2212
2213 might_sleep();
4f8ad655 2214 return writeback_single_inode(inode, wb, &wbc);
1da177e4
LT
2215}
2216EXPORT_SYMBOL(write_inode_now);
2217
2218/**
2219 * sync_inode - write an inode and its pages to disk.
2220 * @inode: the inode to sync
2221 * @wbc: controls the writeback mode
2222 *
2223 * sync_inode() will write an inode and its pages to disk. It will also
2224 * correctly update the inode on its superblock's dirty inode lists and will
2225 * update inode->i_state.
2226 *
2227 * The caller must have a ref on the inode.
2228 */
2229int sync_inode(struct inode *inode, struct writeback_control *wbc)
2230{
4f8ad655 2231 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1da177e4
LT
2232}
2233EXPORT_SYMBOL(sync_inode);
c3765016
CH
2234
2235/**
c691b9d9 2236 * sync_inode_metadata - write an inode to disk
c3765016
CH
2237 * @inode: the inode to sync
2238 * @wait: wait for I/O to complete.
2239 *
c691b9d9 2240 * Write an inode to disk and adjust its dirty state after completion.
c3765016
CH
2241 *
2242 * Note: only writes the actual inode, no associated data or other metadata.
2243 */
2244int sync_inode_metadata(struct inode *inode, int wait)
2245{
2246 struct writeback_control wbc = {
2247 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2248 .nr_to_write = 0, /* metadata-only */
2249 };
2250
2251 return sync_inode(inode, &wbc);
2252}
2253EXPORT_SYMBOL(sync_inode_metadata);
This page took 0.835371 seconds and 5 git commands to generate.