Linux 3.6-rc3
[deliverable/linux.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
1da177e4
LT
15#include <linux/namei.h>
16#include <linux/security.h>
73cd49ec 17#include <linux/idr.h>
d10577a8
AV
18#include <linux/acct.h> /* acct_auto_close_mnt */
19#include <linux/ramfs.h> /* init_rootfs */
20#include <linux/fs_struct.h> /* get_fs_root et.al. */
21#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22#include <linux/uaccess.h>
07b20889 23#include "pnode.h"
948730b0 24#include "internal.h"
1da177e4 25
13f14b4d
ED
26#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
27#define HASH_SIZE (1UL << HASH_SHIFT)
28
5addc5dd 29static int event;
73cd49ec 30static DEFINE_IDA(mnt_id_ida);
719f5d7f 31static DEFINE_IDA(mnt_group_ida);
99b7db7b 32static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
33static int mnt_id_start = 0;
34static int mnt_group_start = 1;
1da177e4 35
fa3536cc 36static struct list_head *mount_hashtable __read_mostly;
e18b890b 37static struct kmem_cache *mnt_cache __read_mostly;
390c6843 38static struct rw_semaphore namespace_sem;
1da177e4 39
f87fd4c2 40/* /sys/fs */
00d26666
GKH
41struct kobject *fs_kobj;
42EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 43
99b7db7b
NP
44/*
45 * vfsmount lock may be taken for read to prevent changes to the
46 * vfsmount hash, ie. during mountpoint lookups or walking back
47 * up the tree.
48 *
49 * It should be taken for write in all cases where the vfsmount
50 * tree or hash is modified or when a vfsmount structure is modified.
51 */
52DEFINE_BRLOCK(vfsmount_lock);
53
1da177e4
LT
54static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
55{
b58fed8b
RP
56 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
57 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
58 tmp = tmp + (tmp >> HASH_SHIFT);
59 return tmp & (HASH_SIZE - 1);
1da177e4
LT
60}
61
3d733633
DH
62#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
63
99b7db7b
NP
64/*
65 * allocation is serialized by namespace_sem, but we need the spinlock to
66 * serialize with freeing.
67 */
b105e270 68static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
69{
70 int res;
71
72retry:
73 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 74 spin_lock(&mnt_id_lock);
15169fe7 75 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 76 if (!res)
15169fe7 77 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 78 spin_unlock(&mnt_id_lock);
73cd49ec
MS
79 if (res == -EAGAIN)
80 goto retry;
81
82 return res;
83}
84
b105e270 85static void mnt_free_id(struct mount *mnt)
73cd49ec 86{
15169fe7 87 int id = mnt->mnt_id;
99b7db7b 88 spin_lock(&mnt_id_lock);
f21f6220
AV
89 ida_remove(&mnt_id_ida, id);
90 if (mnt_id_start > id)
91 mnt_id_start = id;
99b7db7b 92 spin_unlock(&mnt_id_lock);
73cd49ec
MS
93}
94
719f5d7f
MS
95/*
96 * Allocate a new peer group ID
97 *
98 * mnt_group_ida is protected by namespace_sem
99 */
4b8b21f4 100static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 101{
f21f6220
AV
102 int res;
103
719f5d7f
MS
104 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
105 return -ENOMEM;
106
f21f6220
AV
107 res = ida_get_new_above(&mnt_group_ida,
108 mnt_group_start,
15169fe7 109 &mnt->mnt_group_id);
f21f6220 110 if (!res)
15169fe7 111 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
112
113 return res;
719f5d7f
MS
114}
115
116/*
117 * Release a peer group ID
118 */
4b8b21f4 119void mnt_release_group_id(struct mount *mnt)
719f5d7f 120{
15169fe7 121 int id = mnt->mnt_group_id;
f21f6220
AV
122 ida_remove(&mnt_group_ida, id);
123 if (mnt_group_start > id)
124 mnt_group_start = id;
15169fe7 125 mnt->mnt_group_id = 0;
719f5d7f
MS
126}
127
b3e19d92
NP
128/*
129 * vfsmount lock must be held for read
130 */
83adc753 131static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
132{
133#ifdef CONFIG_SMP
68e8a9fe 134 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
135#else
136 preempt_disable();
68e8a9fe 137 mnt->mnt_count += n;
b3e19d92
NP
138 preempt_enable();
139#endif
140}
141
b3e19d92
NP
142/*
143 * vfsmount lock must be held for write
144 */
83adc753 145unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
146{
147#ifdef CONFIG_SMP
f03c6599 148 unsigned int count = 0;
b3e19d92
NP
149 int cpu;
150
151 for_each_possible_cpu(cpu) {
68e8a9fe 152 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
153 }
154
155 return count;
156#else
68e8a9fe 157 return mnt->mnt_count;
b3e19d92
NP
158#endif
159}
160
b105e270 161static struct mount *alloc_vfsmnt(const char *name)
1da177e4 162{
c63181e6
AV
163 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
164 if (mnt) {
73cd49ec
MS
165 int err;
166
c63181e6 167 err = mnt_alloc_id(mnt);
88b38782
LZ
168 if (err)
169 goto out_free_cache;
170
171 if (name) {
c63181e6
AV
172 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
173 if (!mnt->mnt_devname)
88b38782 174 goto out_free_id;
73cd49ec
MS
175 }
176
b3e19d92 177#ifdef CONFIG_SMP
c63181e6
AV
178 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
179 if (!mnt->mnt_pcp)
b3e19d92
NP
180 goto out_free_devname;
181
c63181e6 182 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 183#else
c63181e6
AV
184 mnt->mnt_count = 1;
185 mnt->mnt_writers = 0;
b3e19d92
NP
186#endif
187
c63181e6
AV
188 INIT_LIST_HEAD(&mnt->mnt_hash);
189 INIT_LIST_HEAD(&mnt->mnt_child);
190 INIT_LIST_HEAD(&mnt->mnt_mounts);
191 INIT_LIST_HEAD(&mnt->mnt_list);
192 INIT_LIST_HEAD(&mnt->mnt_expire);
193 INIT_LIST_HEAD(&mnt->mnt_share);
194 INIT_LIST_HEAD(&mnt->mnt_slave_list);
195 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
196#ifdef CONFIG_FSNOTIFY
197 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 198#endif
1da177e4 199 }
c63181e6 200 return mnt;
88b38782 201
d3ef3d73 202#ifdef CONFIG_SMP
203out_free_devname:
c63181e6 204 kfree(mnt->mnt_devname);
d3ef3d73 205#endif
88b38782 206out_free_id:
c63181e6 207 mnt_free_id(mnt);
88b38782 208out_free_cache:
c63181e6 209 kmem_cache_free(mnt_cache, mnt);
88b38782 210 return NULL;
1da177e4
LT
211}
212
3d733633
DH
213/*
214 * Most r/o checks on a fs are for operations that take
215 * discrete amounts of time, like a write() or unlink().
216 * We must keep track of when those operations start
217 * (for permission checks) and when they end, so that
218 * we can determine when writes are able to occur to
219 * a filesystem.
220 */
221/*
222 * __mnt_is_readonly: check whether a mount is read-only
223 * @mnt: the mount to check for its write status
224 *
225 * This shouldn't be used directly ouside of the VFS.
226 * It does not guarantee that the filesystem will stay
227 * r/w, just that it is right *now*. This can not and
228 * should not be used in place of IS_RDONLY(inode).
229 * mnt_want/drop_write() will _keep_ the filesystem
230 * r/w.
231 */
232int __mnt_is_readonly(struct vfsmount *mnt)
233{
2e4b7fcd
DH
234 if (mnt->mnt_flags & MNT_READONLY)
235 return 1;
236 if (mnt->mnt_sb->s_flags & MS_RDONLY)
237 return 1;
238 return 0;
3d733633
DH
239}
240EXPORT_SYMBOL_GPL(__mnt_is_readonly);
241
83adc753 242static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 243{
244#ifdef CONFIG_SMP
68e8a9fe 245 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 246#else
68e8a9fe 247 mnt->mnt_writers++;
d3ef3d73 248#endif
249}
3d733633 250
83adc753 251static inline void mnt_dec_writers(struct mount *mnt)
3d733633 252{
d3ef3d73 253#ifdef CONFIG_SMP
68e8a9fe 254 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 255#else
68e8a9fe 256 mnt->mnt_writers--;
d3ef3d73 257#endif
3d733633 258}
3d733633 259
83adc753 260static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 261{
d3ef3d73 262#ifdef CONFIG_SMP
263 unsigned int count = 0;
3d733633 264 int cpu;
3d733633
DH
265
266 for_each_possible_cpu(cpu) {
68e8a9fe 267 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 268 }
3d733633 269
d3ef3d73 270 return count;
271#else
272 return mnt->mnt_writers;
273#endif
3d733633
DH
274}
275
4ed5e82f
MS
276static int mnt_is_readonly(struct vfsmount *mnt)
277{
278 if (mnt->mnt_sb->s_readonly_remount)
279 return 1;
280 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
281 smp_rmb();
282 return __mnt_is_readonly(mnt);
283}
284
8366025e 285/*
eb04c282
JK
286 * Most r/o & frozen checks on a fs are for operations that take discrete
287 * amounts of time, like a write() or unlink(). We must keep track of when
288 * those operations start (for permission checks) and when they end, so that we
289 * can determine when writes are able to occur to a filesystem.
8366025e
DH
290 */
291/**
eb04c282 292 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 293 * @m: the mount on which to take a write
8366025e 294 *
eb04c282
JK
295 * This tells the low-level filesystem that a write is about to be performed to
296 * it, and makes sure that writes are allowed (mnt it read-write) before
297 * returning success. This operation does not protect against filesystem being
298 * frozen. When the write operation is finished, __mnt_drop_write() must be
299 * called. This is effectively a refcount.
8366025e 300 */
eb04c282 301int __mnt_want_write(struct vfsmount *m)
8366025e 302{
83adc753 303 struct mount *mnt = real_mount(m);
3d733633 304 int ret = 0;
3d733633 305
d3ef3d73 306 preempt_disable();
c6653a83 307 mnt_inc_writers(mnt);
d3ef3d73 308 /*
c6653a83 309 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 310 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
311 * incremented count after it has set MNT_WRITE_HOLD.
312 */
313 smp_mb();
83adc753 314 while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
d3ef3d73 315 cpu_relax();
316 /*
317 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
318 * be set to match its requirements. So we must not load that until
319 * MNT_WRITE_HOLD is cleared.
320 */
321 smp_rmb();
4ed5e82f 322 if (mnt_is_readonly(m)) {
c6653a83 323 mnt_dec_writers(mnt);
3d733633 324 ret = -EROFS;
3d733633 325 }
d3ef3d73 326 preempt_enable();
eb04c282
JK
327
328 return ret;
329}
330
331/**
332 * mnt_want_write - get write access to a mount
333 * @m: the mount on which to take a write
334 *
335 * This tells the low-level filesystem that a write is about to be performed to
336 * it, and makes sure that writes are allowed (mount is read-write, filesystem
337 * is not frozen) before returning success. When the write operation is
338 * finished, mnt_drop_write() must be called. This is effectively a refcount.
339 */
340int mnt_want_write(struct vfsmount *m)
341{
342 int ret;
343
344 sb_start_write(m->mnt_sb);
345 ret = __mnt_want_write(m);
346 if (ret)
347 sb_end_write(m->mnt_sb);
3d733633 348 return ret;
8366025e
DH
349}
350EXPORT_SYMBOL_GPL(mnt_want_write);
351
96029c4e 352/**
353 * mnt_clone_write - get write access to a mount
354 * @mnt: the mount on which to take a write
355 *
356 * This is effectively like mnt_want_write, except
357 * it must only be used to take an extra write reference
358 * on a mountpoint that we already know has a write reference
359 * on it. This allows some optimisation.
360 *
361 * After finished, mnt_drop_write must be called as usual to
362 * drop the reference.
363 */
364int mnt_clone_write(struct vfsmount *mnt)
365{
366 /* superblock may be r/o */
367 if (__mnt_is_readonly(mnt))
368 return -EROFS;
369 preempt_disable();
83adc753 370 mnt_inc_writers(real_mount(mnt));
96029c4e 371 preempt_enable();
372 return 0;
373}
374EXPORT_SYMBOL_GPL(mnt_clone_write);
375
376/**
eb04c282 377 * __mnt_want_write_file - get write access to a file's mount
96029c4e 378 * @file: the file who's mount on which to take a write
379 *
eb04c282 380 * This is like __mnt_want_write, but it takes a file and can
96029c4e 381 * do some optimisations if the file is open for write already
382 */
eb04c282 383int __mnt_want_write_file(struct file *file)
96029c4e 384{
2d8dd38a 385 struct inode *inode = file->f_dentry->d_inode;
eb04c282 386
2d8dd38a 387 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
eb04c282 388 return __mnt_want_write(file->f_path.mnt);
96029c4e 389 else
390 return mnt_clone_write(file->f_path.mnt);
391}
eb04c282
JK
392
393/**
394 * mnt_want_write_file - get write access to a file's mount
395 * @file: the file who's mount on which to take a write
396 *
397 * This is like mnt_want_write, but it takes a file and can
398 * do some optimisations if the file is open for write already
399 */
400int mnt_want_write_file(struct file *file)
401{
402 int ret;
403
404 sb_start_write(file->f_path.mnt->mnt_sb);
405 ret = __mnt_want_write_file(file);
406 if (ret)
407 sb_end_write(file->f_path.mnt->mnt_sb);
408 return ret;
409}
96029c4e 410EXPORT_SYMBOL_GPL(mnt_want_write_file);
411
8366025e 412/**
eb04c282 413 * __mnt_drop_write - give up write access to a mount
8366025e
DH
414 * @mnt: the mount on which to give up write access
415 *
416 * Tells the low-level filesystem that we are done
417 * performing writes to it. Must be matched with
eb04c282 418 * __mnt_want_write() call above.
8366025e 419 */
eb04c282 420void __mnt_drop_write(struct vfsmount *mnt)
8366025e 421{
d3ef3d73 422 preempt_disable();
83adc753 423 mnt_dec_writers(real_mount(mnt));
d3ef3d73 424 preempt_enable();
8366025e 425}
eb04c282
JK
426
427/**
428 * mnt_drop_write - give up write access to a mount
429 * @mnt: the mount on which to give up write access
430 *
431 * Tells the low-level filesystem that we are done performing writes to it and
432 * also allows filesystem to be frozen again. Must be matched with
433 * mnt_want_write() call above.
434 */
435void mnt_drop_write(struct vfsmount *mnt)
436{
437 __mnt_drop_write(mnt);
438 sb_end_write(mnt->mnt_sb);
439}
8366025e
DH
440EXPORT_SYMBOL_GPL(mnt_drop_write);
441
eb04c282
JK
442void __mnt_drop_write_file(struct file *file)
443{
444 __mnt_drop_write(file->f_path.mnt);
445}
446
2a79f17e
AV
447void mnt_drop_write_file(struct file *file)
448{
449 mnt_drop_write(file->f_path.mnt);
450}
451EXPORT_SYMBOL(mnt_drop_write_file);
452
83adc753 453static int mnt_make_readonly(struct mount *mnt)
8366025e 454{
3d733633
DH
455 int ret = 0;
456
962830df 457 br_write_lock(&vfsmount_lock);
83adc753 458 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 459 /*
d3ef3d73 460 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
461 * should be visible before we do.
3d733633 462 */
d3ef3d73 463 smp_mb();
464
3d733633 465 /*
d3ef3d73 466 * With writers on hold, if this value is zero, then there are
467 * definitely no active writers (although held writers may subsequently
468 * increment the count, they'll have to wait, and decrement it after
469 * seeing MNT_READONLY).
470 *
471 * It is OK to have counter incremented on one CPU and decremented on
472 * another: the sum will add up correctly. The danger would be when we
473 * sum up each counter, if we read a counter before it is incremented,
474 * but then read another CPU's count which it has been subsequently
475 * decremented from -- we would see more decrements than we should.
476 * MNT_WRITE_HOLD protects against this scenario, because
477 * mnt_want_write first increments count, then smp_mb, then spins on
478 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
479 * we're counting up here.
3d733633 480 */
c6653a83 481 if (mnt_get_writers(mnt) > 0)
d3ef3d73 482 ret = -EBUSY;
483 else
83adc753 484 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 485 /*
486 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
487 * that become unheld will see MNT_READONLY.
488 */
489 smp_wmb();
83adc753 490 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
962830df 491 br_write_unlock(&vfsmount_lock);
3d733633 492 return ret;
8366025e 493}
8366025e 494
83adc753 495static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 496{
962830df 497 br_write_lock(&vfsmount_lock);
83adc753 498 mnt->mnt.mnt_flags &= ~MNT_READONLY;
962830df 499 br_write_unlock(&vfsmount_lock);
2e4b7fcd
DH
500}
501
4ed5e82f
MS
502int sb_prepare_remount_readonly(struct super_block *sb)
503{
504 struct mount *mnt;
505 int err = 0;
506
8e8b8796
MS
507 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
508 if (atomic_long_read(&sb->s_remove_count))
509 return -EBUSY;
510
962830df 511 br_write_lock(&vfsmount_lock);
4ed5e82f
MS
512 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
513 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
514 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
515 smp_mb();
516 if (mnt_get_writers(mnt) > 0) {
517 err = -EBUSY;
518 break;
519 }
520 }
521 }
8e8b8796
MS
522 if (!err && atomic_long_read(&sb->s_remove_count))
523 err = -EBUSY;
524
4ed5e82f
MS
525 if (!err) {
526 sb->s_readonly_remount = 1;
527 smp_wmb();
528 }
529 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
530 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
531 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
532 }
962830df 533 br_write_unlock(&vfsmount_lock);
4ed5e82f
MS
534
535 return err;
536}
537
b105e270 538static void free_vfsmnt(struct mount *mnt)
1da177e4 539{
52ba1621 540 kfree(mnt->mnt_devname);
73cd49ec 541 mnt_free_id(mnt);
d3ef3d73 542#ifdef CONFIG_SMP
68e8a9fe 543 free_percpu(mnt->mnt_pcp);
d3ef3d73 544#endif
b105e270 545 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
546}
547
548/*
a05964f3
RP
549 * find the first or last mount at @dentry on vfsmount @mnt depending on
550 * @dir. If @dir is set return the first mount else return the last mount.
99b7db7b 551 * vfsmount_lock must be held for read or write.
1da177e4 552 */
c7105365 553struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
a05964f3 554 int dir)
1da177e4 555{
b58fed8b
RP
556 struct list_head *head = mount_hashtable + hash(mnt, dentry);
557 struct list_head *tmp = head;
c7105365 558 struct mount *p, *found = NULL;
1da177e4 559
1da177e4 560 for (;;) {
a05964f3 561 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
562 p = NULL;
563 if (tmp == head)
564 break;
1b8e5564 565 p = list_entry(tmp, struct mount, mnt_hash);
a73324da 566 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
a05964f3 567 found = p;
1da177e4
LT
568 break;
569 }
570 }
1da177e4
LT
571 return found;
572}
573
a05964f3 574/*
f015f126
DH
575 * lookup_mnt - Return the first child mount mounted at path
576 *
577 * "First" means first mounted chronologically. If you create the
578 * following mounts:
579 *
580 * mount /dev/sda1 /mnt
581 * mount /dev/sda2 /mnt
582 * mount /dev/sda3 /mnt
583 *
584 * Then lookup_mnt() on the base /mnt dentry in the root mount will
585 * return successively the root dentry and vfsmount of /dev/sda1, then
586 * /dev/sda2, then /dev/sda3, then NULL.
587 *
588 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 589 */
1c755af4 590struct vfsmount *lookup_mnt(struct path *path)
a05964f3 591{
c7105365 592 struct mount *child_mnt;
99b7db7b 593
962830df 594 br_read_lock(&vfsmount_lock);
c7105365
AV
595 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
596 if (child_mnt) {
597 mnt_add_count(child_mnt, 1);
962830df 598 br_read_unlock(&vfsmount_lock);
c7105365
AV
599 return &child_mnt->mnt;
600 } else {
962830df 601 br_read_unlock(&vfsmount_lock);
c7105365
AV
602 return NULL;
603 }
a05964f3
RP
604}
605
143c8c91 606static inline int check_mnt(struct mount *mnt)
1da177e4 607{
6b3286ed 608 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
609}
610
99b7db7b
NP
611/*
612 * vfsmount lock must be held for write
613 */
6b3286ed 614static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
615{
616 if (ns) {
617 ns->event = ++event;
618 wake_up_interruptible(&ns->poll);
619 }
620}
621
99b7db7b
NP
622/*
623 * vfsmount lock must be held for write
624 */
6b3286ed 625static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
626{
627 if (ns && ns->event != event) {
628 ns->event = event;
629 wake_up_interruptible(&ns->poll);
630 }
631}
632
5f57cbcc
NP
633/*
634 * Clear dentry's mounted state if it has no remaining mounts.
635 * vfsmount_lock must be held for write.
636 */
aa0a4cf0 637static void dentry_reset_mounted(struct dentry *dentry)
5f57cbcc
NP
638{
639 unsigned u;
640
641 for (u = 0; u < HASH_SIZE; u++) {
d5e50f74 642 struct mount *p;
5f57cbcc 643
1b8e5564 644 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
a73324da 645 if (p->mnt_mountpoint == dentry)
5f57cbcc
NP
646 return;
647 }
648 }
649 spin_lock(&dentry->d_lock);
650 dentry->d_flags &= ~DCACHE_MOUNTED;
651 spin_unlock(&dentry->d_lock);
652}
653
99b7db7b
NP
654/*
655 * vfsmount lock must be held for write
656 */
419148da
AV
657static void detach_mnt(struct mount *mnt, struct path *old_path)
658{
a73324da 659 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
660 old_path->mnt = &mnt->mnt_parent->mnt;
661 mnt->mnt_parent = mnt;
a73324da 662 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 663 list_del_init(&mnt->mnt_child);
1b8e5564 664 list_del_init(&mnt->mnt_hash);
aa0a4cf0 665 dentry_reset_mounted(old_path->dentry);
1da177e4
LT
666}
667
99b7db7b
NP
668/*
669 * vfsmount lock must be held for write
670 */
14cf1fa8 671void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
44d964d6 672 struct mount *child_mnt)
b90fa9ae 673{
3a2393d7 674 mnt_add_count(mnt, 1); /* essentially, that's mntget */
a73324da 675 child_mnt->mnt_mountpoint = dget(dentry);
3a2393d7 676 child_mnt->mnt_parent = mnt;
5f57cbcc
NP
677 spin_lock(&dentry->d_lock);
678 dentry->d_flags |= DCACHE_MOUNTED;
679 spin_unlock(&dentry->d_lock);
b90fa9ae
RP
680}
681
99b7db7b
NP
682/*
683 * vfsmount lock must be held for write
684 */
419148da 685static void attach_mnt(struct mount *mnt, struct path *path)
1da177e4 686{
14cf1fa8 687 mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
1b8e5564 688 list_add_tail(&mnt->mnt_hash, mount_hashtable +
1a390689 689 hash(path->mnt, path->dentry));
6b41d536 690 list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
b90fa9ae
RP
691}
692
693/*
99b7db7b 694 * vfsmount lock must be held for write
b90fa9ae 695 */
4b2619a5 696static void commit_tree(struct mount *mnt)
b90fa9ae 697{
0714a533 698 struct mount *parent = mnt->mnt_parent;
83adc753 699 struct mount *m;
b90fa9ae 700 LIST_HEAD(head);
143c8c91 701 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 702
0714a533 703 BUG_ON(parent == mnt);
b90fa9ae 704
1a4eeaf2 705 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 706 list_for_each_entry(m, &head, mnt_list)
143c8c91 707 m->mnt_ns = n;
f03c6599 708
b90fa9ae
RP
709 list_splice(&head, n->list.prev);
710
1b8e5564 711 list_add_tail(&mnt->mnt_hash, mount_hashtable +
a73324da 712 hash(&parent->mnt, mnt->mnt_mountpoint));
6b41d536 713 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 714 touch_mnt_namespace(n);
1da177e4
LT
715}
716
909b0a88 717static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 718{
6b41d536
AV
719 struct list_head *next = p->mnt_mounts.next;
720 if (next == &p->mnt_mounts) {
1da177e4 721 while (1) {
909b0a88 722 if (p == root)
1da177e4 723 return NULL;
6b41d536
AV
724 next = p->mnt_child.next;
725 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 726 break;
0714a533 727 p = p->mnt_parent;
1da177e4
LT
728 }
729 }
6b41d536 730 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
731}
732
315fc83e 733static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 734{
6b41d536
AV
735 struct list_head *prev = p->mnt_mounts.prev;
736 while (prev != &p->mnt_mounts) {
737 p = list_entry(prev, struct mount, mnt_child);
738 prev = p->mnt_mounts.prev;
9676f0c6
RP
739 }
740 return p;
741}
742
9d412a43
AV
743struct vfsmount *
744vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
745{
b105e270 746 struct mount *mnt;
9d412a43
AV
747 struct dentry *root;
748
749 if (!type)
750 return ERR_PTR(-ENODEV);
751
752 mnt = alloc_vfsmnt(name);
753 if (!mnt)
754 return ERR_PTR(-ENOMEM);
755
756 if (flags & MS_KERNMOUNT)
b105e270 757 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
758
759 root = mount_fs(type, flags, name, data);
760 if (IS_ERR(root)) {
761 free_vfsmnt(mnt);
762 return ERR_CAST(root);
763 }
764
b105e270
AV
765 mnt->mnt.mnt_root = root;
766 mnt->mnt.mnt_sb = root->d_sb;
a73324da 767 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 768 mnt->mnt_parent = mnt;
962830df 769 br_write_lock(&vfsmount_lock);
39f7c4db 770 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
962830df 771 br_write_unlock(&vfsmount_lock);
b105e270 772 return &mnt->mnt;
9d412a43
AV
773}
774EXPORT_SYMBOL_GPL(vfs_kern_mount);
775
87129cc0 776static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 777 int flag)
1da177e4 778{
87129cc0 779 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
780 struct mount *mnt;
781 int err;
1da177e4 782
be34d1a3
DH
783 mnt = alloc_vfsmnt(old->mnt_devname);
784 if (!mnt)
785 return ERR_PTR(-ENOMEM);
719f5d7f 786
be34d1a3
DH
787 if (flag & (CL_SLAVE | CL_PRIVATE))
788 mnt->mnt_group_id = 0; /* not a peer of original */
789 else
790 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 791
be34d1a3
DH
792 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
793 err = mnt_alloc_group_id(mnt);
794 if (err)
795 goto out_free;
1da177e4 796 }
be34d1a3
DH
797
798 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
799 atomic_inc(&sb->s_active);
800 mnt->mnt.mnt_sb = sb;
801 mnt->mnt.mnt_root = dget(root);
802 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
803 mnt->mnt_parent = mnt;
804 br_write_lock(&vfsmount_lock);
805 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
806 br_write_unlock(&vfsmount_lock);
807
808 if (flag & CL_SLAVE) {
809 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
810 mnt->mnt_master = old;
811 CLEAR_MNT_SHARED(mnt);
812 } else if (!(flag & CL_PRIVATE)) {
813 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
814 list_add(&mnt->mnt_share, &old->mnt_share);
815 if (IS_MNT_SLAVE(old))
816 list_add(&mnt->mnt_slave, &old->mnt_slave);
817 mnt->mnt_master = old->mnt_master;
818 }
819 if (flag & CL_MAKE_SHARED)
820 set_mnt_shared(mnt);
821
822 /* stick the duplicate mount on the same expiry list
823 * as the original if that was on one */
824 if (flag & CL_EXPIRE) {
825 if (!list_empty(&old->mnt_expire))
826 list_add(&mnt->mnt_expire, &old->mnt_expire);
827 }
828
cb338d06 829 return mnt;
719f5d7f
MS
830
831 out_free:
832 free_vfsmnt(mnt);
be34d1a3 833 return ERR_PTR(err);
1da177e4
LT
834}
835
83adc753 836static inline void mntfree(struct mount *mnt)
1da177e4 837{
83adc753
AV
838 struct vfsmount *m = &mnt->mnt;
839 struct super_block *sb = m->mnt_sb;
b3e19d92 840
3d733633
DH
841 /*
842 * This probably indicates that somebody messed
843 * up a mnt_want/drop_write() pair. If this
844 * happens, the filesystem was probably unable
845 * to make r/w->r/o transitions.
846 */
d3ef3d73 847 /*
b3e19d92
NP
848 * The locking used to deal with mnt_count decrement provides barriers,
849 * so mnt_get_writers() below is safe.
d3ef3d73 850 */
c6653a83 851 WARN_ON(mnt_get_writers(mnt));
83adc753
AV
852 fsnotify_vfsmount_delete(m);
853 dput(m->mnt_root);
854 free_vfsmnt(mnt);
1da177e4
LT
855 deactivate_super(sb);
856}
857
900148dc 858static void mntput_no_expire(struct mount *mnt)
b3e19d92 859{
b3e19d92 860put_again:
f03c6599 861#ifdef CONFIG_SMP
962830df 862 br_read_lock(&vfsmount_lock);
f7a99c5b
AV
863 if (likely(mnt->mnt_ns)) {
864 /* shouldn't be the last one */
aa9c0e07 865 mnt_add_count(mnt, -1);
962830df 866 br_read_unlock(&vfsmount_lock);
f03c6599 867 return;
b3e19d92 868 }
962830df 869 br_read_unlock(&vfsmount_lock);
b3e19d92 870
962830df 871 br_write_lock(&vfsmount_lock);
aa9c0e07 872 mnt_add_count(mnt, -1);
b3e19d92 873 if (mnt_get_count(mnt)) {
962830df 874 br_write_unlock(&vfsmount_lock);
99b7db7b
NP
875 return;
876 }
b3e19d92 877#else
aa9c0e07 878 mnt_add_count(mnt, -1);
b3e19d92 879 if (likely(mnt_get_count(mnt)))
99b7db7b 880 return;
962830df 881 br_write_lock(&vfsmount_lock);
f03c6599 882#endif
863d684f
AV
883 if (unlikely(mnt->mnt_pinned)) {
884 mnt_add_count(mnt, mnt->mnt_pinned + 1);
885 mnt->mnt_pinned = 0;
962830df 886 br_write_unlock(&vfsmount_lock);
900148dc 887 acct_auto_close_mnt(&mnt->mnt);
b3e19d92 888 goto put_again;
7b7b1ace 889 }
962830df 890
39f7c4db 891 list_del(&mnt->mnt_instance);
962830df 892 br_write_unlock(&vfsmount_lock);
b3e19d92
NP
893 mntfree(mnt);
894}
b3e19d92
NP
895
896void mntput(struct vfsmount *mnt)
897{
898 if (mnt) {
863d684f 899 struct mount *m = real_mount(mnt);
b3e19d92 900 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
901 if (unlikely(m->mnt_expiry_mark))
902 m->mnt_expiry_mark = 0;
903 mntput_no_expire(m);
b3e19d92
NP
904 }
905}
906EXPORT_SYMBOL(mntput);
907
908struct vfsmount *mntget(struct vfsmount *mnt)
909{
910 if (mnt)
83adc753 911 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
912 return mnt;
913}
914EXPORT_SYMBOL(mntget);
915
7b7b1ace
AV
916void mnt_pin(struct vfsmount *mnt)
917{
962830df 918 br_write_lock(&vfsmount_lock);
863d684f 919 real_mount(mnt)->mnt_pinned++;
962830df 920 br_write_unlock(&vfsmount_lock);
7b7b1ace 921}
7b7b1ace
AV
922EXPORT_SYMBOL(mnt_pin);
923
863d684f 924void mnt_unpin(struct vfsmount *m)
7b7b1ace 925{
863d684f 926 struct mount *mnt = real_mount(m);
962830df 927 br_write_lock(&vfsmount_lock);
7b7b1ace 928 if (mnt->mnt_pinned) {
863d684f 929 mnt_add_count(mnt, 1);
7b7b1ace
AV
930 mnt->mnt_pinned--;
931 }
962830df 932 br_write_unlock(&vfsmount_lock);
7b7b1ace 933}
7b7b1ace 934EXPORT_SYMBOL(mnt_unpin);
1da177e4 935
b3b304a2
MS
936static inline void mangle(struct seq_file *m, const char *s)
937{
938 seq_escape(m, s, " \t\n\\");
939}
940
941/*
942 * Simple .show_options callback for filesystems which don't want to
943 * implement more complex mount option showing.
944 *
945 * See also save_mount_options().
946 */
34c80b1d 947int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 948{
2a32cebd
AV
949 const char *options;
950
951 rcu_read_lock();
34c80b1d 952 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
953
954 if (options != NULL && options[0]) {
955 seq_putc(m, ',');
956 mangle(m, options);
957 }
2a32cebd 958 rcu_read_unlock();
b3b304a2
MS
959
960 return 0;
961}
962EXPORT_SYMBOL(generic_show_options);
963
964/*
965 * If filesystem uses generic_show_options(), this function should be
966 * called from the fill_super() callback.
967 *
968 * The .remount_fs callback usually needs to be handled in a special
969 * way, to make sure, that previous options are not overwritten if the
970 * remount fails.
971 *
972 * Also note, that if the filesystem's .remount_fs function doesn't
973 * reset all options to their default value, but changes only newly
974 * given options, then the displayed options will not reflect reality
975 * any more.
976 */
977void save_mount_options(struct super_block *sb, char *options)
978{
2a32cebd
AV
979 BUG_ON(sb->s_options);
980 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
981}
982EXPORT_SYMBOL(save_mount_options);
983
2a32cebd
AV
984void replace_mount_options(struct super_block *sb, char *options)
985{
986 char *old = sb->s_options;
987 rcu_assign_pointer(sb->s_options, options);
988 if (old) {
989 synchronize_rcu();
990 kfree(old);
991 }
992}
993EXPORT_SYMBOL(replace_mount_options);
994
a1a2c409 995#ifdef CONFIG_PROC_FS
0226f492 996/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
997static void *m_start(struct seq_file *m, loff_t *pos)
998{
6ce6e24e 999 struct proc_mounts *p = proc_mounts(m);
1da177e4 1000
390c6843 1001 down_read(&namespace_sem);
a1a2c409 1002 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
1003}
1004
1005static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1006{
6ce6e24e 1007 struct proc_mounts *p = proc_mounts(m);
b0765fb8 1008
a1a2c409 1009 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
1010}
1011
1012static void m_stop(struct seq_file *m, void *v)
1013{
390c6843 1014 up_read(&namespace_sem);
1da177e4
LT
1015}
1016
0226f492 1017static int m_show(struct seq_file *m, void *v)
2d4d4864 1018{
6ce6e24e 1019 struct proc_mounts *p = proc_mounts(m);
1a4eeaf2 1020 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1021 return p->show(m, &r->mnt);
1da177e4
LT
1022}
1023
a1a2c409 1024const struct seq_operations mounts_op = {
1da177e4
LT
1025 .start = m_start,
1026 .next = m_next,
1027 .stop = m_stop,
0226f492 1028 .show = m_show,
b4629fe2 1029};
a1a2c409 1030#endif /* CONFIG_PROC_FS */
b4629fe2 1031
1da177e4
LT
1032/**
1033 * may_umount_tree - check if a mount tree is busy
1034 * @mnt: root of mount tree
1035 *
1036 * This is called to check if a tree of mounts has any
1037 * open files, pwds, chroots or sub mounts that are
1038 * busy.
1039 */
909b0a88 1040int may_umount_tree(struct vfsmount *m)
1da177e4 1041{
909b0a88 1042 struct mount *mnt = real_mount(m);
36341f64
RP
1043 int actual_refs = 0;
1044 int minimum_refs = 0;
315fc83e 1045 struct mount *p;
909b0a88 1046 BUG_ON(!m);
1da177e4 1047
b3e19d92 1048 /* write lock needed for mnt_get_count */
962830df 1049 br_write_lock(&vfsmount_lock);
909b0a88 1050 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1051 actual_refs += mnt_get_count(p);
1da177e4 1052 minimum_refs += 2;
1da177e4 1053 }
962830df 1054 br_write_unlock(&vfsmount_lock);
1da177e4
LT
1055
1056 if (actual_refs > minimum_refs)
e3474a8e 1057 return 0;
1da177e4 1058
e3474a8e 1059 return 1;
1da177e4
LT
1060}
1061
1062EXPORT_SYMBOL(may_umount_tree);
1063
1064/**
1065 * may_umount - check if a mount point is busy
1066 * @mnt: root of mount
1067 *
1068 * This is called to check if a mount point has any
1069 * open files, pwds, chroots or sub mounts. If the
1070 * mount has sub mounts this will return busy
1071 * regardless of whether the sub mounts are busy.
1072 *
1073 * Doesn't take quota and stuff into account. IOW, in some cases it will
1074 * give false negatives. The main reason why it's here is that we need
1075 * a non-destructive way to look for easily umountable filesystems.
1076 */
1077int may_umount(struct vfsmount *mnt)
1078{
e3474a8e 1079 int ret = 1;
8ad08d8a 1080 down_read(&namespace_sem);
962830df 1081 br_write_lock(&vfsmount_lock);
1ab59738 1082 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1083 ret = 0;
962830df 1084 br_write_unlock(&vfsmount_lock);
8ad08d8a 1085 up_read(&namespace_sem);
a05964f3 1086 return ret;
1da177e4
LT
1087}
1088
1089EXPORT_SYMBOL(may_umount);
1090
b90fa9ae 1091void release_mounts(struct list_head *head)
70fbcdf4 1092{
d5e50f74 1093 struct mount *mnt;
bf066c7d 1094 while (!list_empty(head)) {
1b8e5564
AV
1095 mnt = list_first_entry(head, struct mount, mnt_hash);
1096 list_del_init(&mnt->mnt_hash);
676da58d 1097 if (mnt_has_parent(mnt)) {
70fbcdf4 1098 struct dentry *dentry;
863d684f 1099 struct mount *m;
99b7db7b 1100
962830df 1101 br_write_lock(&vfsmount_lock);
a73324da 1102 dentry = mnt->mnt_mountpoint;
863d684f 1103 m = mnt->mnt_parent;
a73324da 1104 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 1105 mnt->mnt_parent = mnt;
7c4b93d8 1106 m->mnt_ghosts--;
962830df 1107 br_write_unlock(&vfsmount_lock);
70fbcdf4 1108 dput(dentry);
863d684f 1109 mntput(&m->mnt);
70fbcdf4 1110 }
d5e50f74 1111 mntput(&mnt->mnt);
70fbcdf4
RP
1112 }
1113}
1114
99b7db7b
NP
1115/*
1116 * vfsmount lock must be held for write
1117 * namespace_sem must be held for write
1118 */
761d5c38 1119void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1da177e4 1120{
7b8a53fd 1121 LIST_HEAD(tmp_list);
315fc83e 1122 struct mount *p;
1da177e4 1123
909b0a88 1124 for (p = mnt; p; p = next_mnt(p, mnt))
1b8e5564 1125 list_move(&p->mnt_hash, &tmp_list);
1da177e4 1126
a05964f3 1127 if (propagate)
7b8a53fd 1128 propagate_umount(&tmp_list);
a05964f3 1129
1b8e5564 1130 list_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1131 list_del_init(&p->mnt_expire);
1a4eeaf2 1132 list_del_init(&p->mnt_list);
143c8c91
AV
1133 __touch_mnt_namespace(p->mnt_ns);
1134 p->mnt_ns = NULL;
6b41d536 1135 list_del_init(&p->mnt_child);
676da58d 1136 if (mnt_has_parent(p)) {
863d684f 1137 p->mnt_parent->mnt_ghosts++;
a73324da 1138 dentry_reset_mounted(p->mnt_mountpoint);
7c4b93d8 1139 }
0f0afb1d 1140 change_mnt_propagation(p, MS_PRIVATE);
1da177e4 1141 }
7b8a53fd 1142 list_splice(&tmp_list, kill);
1da177e4
LT
1143}
1144
692afc31 1145static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
c35038be 1146
1ab59738 1147static int do_umount(struct mount *mnt, int flags)
1da177e4 1148{
1ab59738 1149 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4 1150 int retval;
70fbcdf4 1151 LIST_HEAD(umount_list);
1da177e4 1152
1ab59738 1153 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1154 if (retval)
1155 return retval;
1156
1157 /*
1158 * Allow userspace to request a mountpoint be expired rather than
1159 * unmounting unconditionally. Unmount only happens if:
1160 * (1) the mark is already set (the mark is cleared by mntput())
1161 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1162 */
1163 if (flags & MNT_EXPIRE) {
1ab59738 1164 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1165 flags & (MNT_FORCE | MNT_DETACH))
1166 return -EINVAL;
1167
b3e19d92
NP
1168 /*
1169 * probably don't strictly need the lock here if we examined
1170 * all race cases, but it's a slowpath.
1171 */
962830df 1172 br_write_lock(&vfsmount_lock);
83adc753 1173 if (mnt_get_count(mnt) != 2) {
962830df 1174 br_write_unlock(&vfsmount_lock);
1da177e4 1175 return -EBUSY;
b3e19d92 1176 }
962830df 1177 br_write_unlock(&vfsmount_lock);
1da177e4 1178
863d684f 1179 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1180 return -EAGAIN;
1181 }
1182
1183 /*
1184 * If we may have to abort operations to get out of this
1185 * mount, and they will themselves hold resources we must
1186 * allow the fs to do things. In the Unix tradition of
1187 * 'Gee thats tricky lets do it in userspace' the umount_begin
1188 * might fail to complete on the first run through as other tasks
1189 * must return, and the like. Thats for the mount program to worry
1190 * about for the moment.
1191 */
1192
42faad99 1193 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1194 sb->s_op->umount_begin(sb);
42faad99 1195 }
1da177e4
LT
1196
1197 /*
1198 * No sense to grab the lock for this test, but test itself looks
1199 * somewhat bogus. Suggestions for better replacement?
1200 * Ho-hum... In principle, we might treat that as umount + switch
1201 * to rootfs. GC would eventually take care of the old vfsmount.
1202 * Actually it makes sense, especially if rootfs would contain a
1203 * /reboot - static binary that would close all descriptors and
1204 * call reboot(9). Then init(8) could umount root and exec /reboot.
1205 */
1ab59738 1206 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1207 /*
1208 * Special case for "unmounting" root ...
1209 * we just try to remount it readonly.
1210 */
1211 down_write(&sb->s_umount);
4aa98cf7 1212 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1213 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1214 up_write(&sb->s_umount);
1215 return retval;
1216 }
1217
390c6843 1218 down_write(&namespace_sem);
962830df 1219 br_write_lock(&vfsmount_lock);
5addc5dd 1220 event++;
1da177e4 1221
c35038be 1222 if (!(flags & MNT_DETACH))
1ab59738 1223 shrink_submounts(mnt, &umount_list);
c35038be 1224
1da177e4 1225 retval = -EBUSY;
a05964f3 1226 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1a4eeaf2 1227 if (!list_empty(&mnt->mnt_list))
1ab59738 1228 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
1229 retval = 0;
1230 }
962830df 1231 br_write_unlock(&vfsmount_lock);
390c6843 1232 up_write(&namespace_sem);
70fbcdf4 1233 release_mounts(&umount_list);
1da177e4
LT
1234 return retval;
1235}
1236
1237/*
1238 * Now umount can handle mount points as well as block devices.
1239 * This is important for filesystems which use unnamed block devices.
1240 *
1241 * We now support a flag for forced unmount like the other 'big iron'
1242 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1243 */
1244
bdc480e3 1245SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1246{
2d8f3038 1247 struct path path;
900148dc 1248 struct mount *mnt;
1da177e4 1249 int retval;
db1f05bb 1250 int lookup_flags = 0;
1da177e4 1251
db1f05bb
MS
1252 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1253 return -EINVAL;
1254
1255 if (!(flags & UMOUNT_NOFOLLOW))
1256 lookup_flags |= LOOKUP_FOLLOW;
1257
1258 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1259 if (retval)
1260 goto out;
900148dc 1261 mnt = real_mount(path.mnt);
1da177e4 1262 retval = -EINVAL;
2d8f3038 1263 if (path.dentry != path.mnt->mnt_root)
1da177e4 1264 goto dput_and_out;
143c8c91 1265 if (!check_mnt(mnt))
1da177e4
LT
1266 goto dput_and_out;
1267
1268 retval = -EPERM;
1269 if (!capable(CAP_SYS_ADMIN))
1270 goto dput_and_out;
1271
900148dc 1272 retval = do_umount(mnt, flags);
1da177e4 1273dput_and_out:
429731b1 1274 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1275 dput(path.dentry);
900148dc 1276 mntput_no_expire(mnt);
1da177e4
LT
1277out:
1278 return retval;
1279}
1280
1281#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1282
1283/*
b58fed8b 1284 * The 2.0 compatible umount. No flags.
1da177e4 1285 */
bdc480e3 1286SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1287{
b58fed8b 1288 return sys_umount(name, 0);
1da177e4
LT
1289}
1290
1291#endif
1292
2d92ab3c 1293static int mount_is_safe(struct path *path)
1da177e4
LT
1294{
1295 if (capable(CAP_SYS_ADMIN))
1296 return 0;
1297 return -EPERM;
1298#ifdef notyet
2d92ab3c 1299 if (S_ISLNK(path->dentry->d_inode->i_mode))
1da177e4 1300 return -EPERM;
2d92ab3c 1301 if (path->dentry->d_inode->i_mode & S_ISVTX) {
da9592ed 1302 if (current_uid() != path->dentry->d_inode->i_uid)
1da177e4
LT
1303 return -EPERM;
1304 }
2d92ab3c 1305 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1da177e4
LT
1306 return -EPERM;
1307 return 0;
1308#endif
1309}
1310
87129cc0 1311struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1312 int flag)
1da177e4 1313{
a73324da 1314 struct mount *res, *p, *q, *r;
1a390689 1315 struct path path;
1da177e4 1316
fc7be130 1317 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
be34d1a3 1318 return ERR_PTR(-EINVAL);
9676f0c6 1319
36341f64 1320 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1321 if (IS_ERR(q))
1322 return q;
1323
a73324da 1324 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1325
1326 p = mnt;
6b41d536 1327 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1328 struct mount *s;
7ec02ef1 1329 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1330 continue;
1331
909b0a88 1332 for (s = r; s; s = next_mnt(s, r)) {
fc7be130 1333 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
9676f0c6
RP
1334 s = skip_mnt_tree(s);
1335 continue;
1336 }
0714a533
AV
1337 while (p != s->mnt_parent) {
1338 p = p->mnt_parent;
1339 q = q->mnt_parent;
1da177e4 1340 }
87129cc0 1341 p = s;
cb338d06 1342 path.mnt = &q->mnt;
a73324da 1343 path.dentry = p->mnt_mountpoint;
87129cc0 1344 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1345 if (IS_ERR(q))
1346 goto out;
962830df 1347 br_write_lock(&vfsmount_lock);
1a4eeaf2 1348 list_add_tail(&q->mnt_list, &res->mnt_list);
cb338d06 1349 attach_mnt(q, &path);
962830df 1350 br_write_unlock(&vfsmount_lock);
1da177e4
LT
1351 }
1352 }
1353 return res;
be34d1a3 1354out:
1da177e4 1355 if (res) {
70fbcdf4 1356 LIST_HEAD(umount_list);
962830df 1357 br_write_lock(&vfsmount_lock);
761d5c38 1358 umount_tree(res, 0, &umount_list);
962830df 1359 br_write_unlock(&vfsmount_lock);
70fbcdf4 1360 release_mounts(&umount_list);
1da177e4 1361 }
be34d1a3 1362 return q;
1da177e4
LT
1363}
1364
be34d1a3
DH
1365/* Caller should check returned pointer for errors */
1366
589ff870 1367struct vfsmount *collect_mounts(struct path *path)
8aec0809 1368{
cb338d06 1369 struct mount *tree;
1a60a280 1370 down_write(&namespace_sem);
87129cc0
AV
1371 tree = copy_tree(real_mount(path->mnt), path->dentry,
1372 CL_COPY_ALL | CL_PRIVATE);
1a60a280 1373 up_write(&namespace_sem);
be34d1a3
DH
1374 if (IS_ERR(tree))
1375 return NULL;
1376 return &tree->mnt;
8aec0809
AV
1377}
1378
1379void drop_collected_mounts(struct vfsmount *mnt)
1380{
1381 LIST_HEAD(umount_list);
1a60a280 1382 down_write(&namespace_sem);
962830df 1383 br_write_lock(&vfsmount_lock);
761d5c38 1384 umount_tree(real_mount(mnt), 0, &umount_list);
962830df 1385 br_write_unlock(&vfsmount_lock);
1a60a280 1386 up_write(&namespace_sem);
8aec0809
AV
1387 release_mounts(&umount_list);
1388}
1389
1f707137
AV
1390int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1391 struct vfsmount *root)
1392{
1a4eeaf2 1393 struct mount *mnt;
1f707137
AV
1394 int res = f(root, arg);
1395 if (res)
1396 return res;
1a4eeaf2
AV
1397 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1398 res = f(&mnt->mnt, arg);
1f707137
AV
1399 if (res)
1400 return res;
1401 }
1402 return 0;
1403}
1404
4b8b21f4 1405static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1406{
315fc83e 1407 struct mount *p;
719f5d7f 1408
909b0a88 1409 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1410 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1411 mnt_release_group_id(p);
719f5d7f
MS
1412 }
1413}
1414
4b8b21f4 1415static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1416{
315fc83e 1417 struct mount *p;
719f5d7f 1418
909b0a88 1419 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1420 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1421 int err = mnt_alloc_group_id(p);
719f5d7f 1422 if (err) {
4b8b21f4 1423 cleanup_group_ids(mnt, p);
719f5d7f
MS
1424 return err;
1425 }
1426 }
1427 }
1428
1429 return 0;
1430}
1431
b90fa9ae
RP
1432/*
1433 * @source_mnt : mount tree to be attached
21444403
RP
1434 * @nd : place the mount tree @source_mnt is attached
1435 * @parent_nd : if non-null, detach the source_mnt from its parent and
1436 * store the parent mount and mountpoint dentry.
1437 * (done when source_mnt is moved)
b90fa9ae
RP
1438 *
1439 * NOTE: in the table below explains the semantics when a source mount
1440 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1441 * ---------------------------------------------------------------------------
1442 * | BIND MOUNT OPERATION |
1443 * |**************************************************************************
1444 * | source-->| shared | private | slave | unbindable |
1445 * | dest | | | | |
1446 * | | | | | | |
1447 * | v | | | | |
1448 * |**************************************************************************
1449 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1450 * | | | | | |
1451 * |non-shared| shared (+) | private | slave (*) | invalid |
1452 * ***************************************************************************
b90fa9ae
RP
1453 * A bind operation clones the source mount and mounts the clone on the
1454 * destination mount.
1455 *
1456 * (++) the cloned mount is propagated to all the mounts in the propagation
1457 * tree of the destination mount and the cloned mount is added to
1458 * the peer group of the source mount.
1459 * (+) the cloned mount is created under the destination mount and is marked
1460 * as shared. The cloned mount is added to the peer group of the source
1461 * mount.
5afe0022
RP
1462 * (+++) the mount is propagated to all the mounts in the propagation tree
1463 * of the destination mount and the cloned mount is made slave
1464 * of the same master as that of the source mount. The cloned mount
1465 * is marked as 'shared and slave'.
1466 * (*) the cloned mount is made a slave of the same master as that of the
1467 * source mount.
1468 *
9676f0c6
RP
1469 * ---------------------------------------------------------------------------
1470 * | MOVE MOUNT OPERATION |
1471 * |**************************************************************************
1472 * | source-->| shared | private | slave | unbindable |
1473 * | dest | | | | |
1474 * | | | | | | |
1475 * | v | | | | |
1476 * |**************************************************************************
1477 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1478 * | | | | | |
1479 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1480 * ***************************************************************************
5afe0022
RP
1481 *
1482 * (+) the mount is moved to the destination. And is then propagated to
1483 * all the mounts in the propagation tree of the destination mount.
21444403 1484 * (+*) the mount is moved to the destination.
5afe0022
RP
1485 * (+++) the mount is moved to the destination and is then propagated to
1486 * all the mounts belonging to the destination mount's propagation tree.
1487 * the mount is marked as 'shared and slave'.
1488 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1489 *
1490 * if the source mount is a tree, the operations explained above is
1491 * applied to each mount in the tree.
1492 * Must be called without spinlocks held, since this function can sleep
1493 * in allocations.
1494 */
0fb54e50 1495static int attach_recursive_mnt(struct mount *source_mnt,
1a390689 1496 struct path *path, struct path *parent_path)
b90fa9ae
RP
1497{
1498 LIST_HEAD(tree_list);
a8d56d8e 1499 struct mount *dest_mnt = real_mount(path->mnt);
1a390689 1500 struct dentry *dest_dentry = path->dentry;
315fc83e 1501 struct mount *child, *p;
719f5d7f 1502 int err;
b90fa9ae 1503
fc7be130 1504 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1505 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1506 if (err)
1507 goto out;
1508 }
a8d56d8e 1509 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
719f5d7f
MS
1510 if (err)
1511 goto out_cleanup_ids;
b90fa9ae 1512
962830df 1513 br_write_lock(&vfsmount_lock);
df1a1ad2 1514
fc7be130 1515 if (IS_MNT_SHARED(dest_mnt)) {
909b0a88 1516 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1517 set_mnt_shared(p);
b90fa9ae 1518 }
1a390689 1519 if (parent_path) {
0fb54e50
AV
1520 detach_mnt(source_mnt, parent_path);
1521 attach_mnt(source_mnt, path);
143c8c91 1522 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1523 } else {
14cf1fa8 1524 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
0fb54e50 1525 commit_tree(source_mnt);
21444403 1526 }
b90fa9ae 1527
1b8e5564
AV
1528 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1529 list_del_init(&child->mnt_hash);
4b2619a5 1530 commit_tree(child);
b90fa9ae 1531 }
962830df 1532 br_write_unlock(&vfsmount_lock);
99b7db7b 1533
b90fa9ae 1534 return 0;
719f5d7f
MS
1535
1536 out_cleanup_ids:
fc7be130 1537 if (IS_MNT_SHARED(dest_mnt))
0fb54e50 1538 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1539 out:
1540 return err;
b90fa9ae
RP
1541}
1542
b12cea91
AV
1543static int lock_mount(struct path *path)
1544{
1545 struct vfsmount *mnt;
1546retry:
1547 mutex_lock(&path->dentry->d_inode->i_mutex);
1548 if (unlikely(cant_mount(path->dentry))) {
1549 mutex_unlock(&path->dentry->d_inode->i_mutex);
1550 return -ENOENT;
1551 }
1552 down_write(&namespace_sem);
1553 mnt = lookup_mnt(path);
1554 if (likely(!mnt))
1555 return 0;
1556 up_write(&namespace_sem);
1557 mutex_unlock(&path->dentry->d_inode->i_mutex);
1558 path_put(path);
1559 path->mnt = mnt;
1560 path->dentry = dget(mnt->mnt_root);
1561 goto retry;
1562}
1563
1564static void unlock_mount(struct path *path)
1565{
1566 up_write(&namespace_sem);
1567 mutex_unlock(&path->dentry->d_inode->i_mutex);
1568}
1569
95bc5f25 1570static int graft_tree(struct mount *mnt, struct path *path)
1da177e4 1571{
95bc5f25 1572 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1573 return -EINVAL;
1574
8c3ee42e 1575 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
95bc5f25 1576 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1577 return -ENOTDIR;
1578
b12cea91
AV
1579 if (d_unlinked(path->dentry))
1580 return -ENOENT;
1da177e4 1581
95bc5f25 1582 return attach_recursive_mnt(mnt, path, NULL);
1da177e4
LT
1583}
1584
7a2e8a8f
VA
1585/*
1586 * Sanity check the flags to change_mnt_propagation.
1587 */
1588
1589static int flags_to_propagation_type(int flags)
1590{
7c6e984d 1591 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1592
1593 /* Fail if any non-propagation flags are set */
1594 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1595 return 0;
1596 /* Only one propagation flag should be set */
1597 if (!is_power_of_2(type))
1598 return 0;
1599 return type;
1600}
1601
07b20889
RP
1602/*
1603 * recursively change the type of the mountpoint.
1604 */
0a0d8a46 1605static int do_change_type(struct path *path, int flag)
07b20889 1606{
315fc83e 1607 struct mount *m;
4b8b21f4 1608 struct mount *mnt = real_mount(path->mnt);
07b20889 1609 int recurse = flag & MS_REC;
7a2e8a8f 1610 int type;
719f5d7f 1611 int err = 0;
07b20889 1612
ee6f9582
MS
1613 if (!capable(CAP_SYS_ADMIN))
1614 return -EPERM;
1615
2d92ab3c 1616 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1617 return -EINVAL;
1618
7a2e8a8f
VA
1619 type = flags_to_propagation_type(flag);
1620 if (!type)
1621 return -EINVAL;
1622
07b20889 1623 down_write(&namespace_sem);
719f5d7f
MS
1624 if (type == MS_SHARED) {
1625 err = invent_group_ids(mnt, recurse);
1626 if (err)
1627 goto out_unlock;
1628 }
1629
962830df 1630 br_write_lock(&vfsmount_lock);
909b0a88 1631 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1632 change_mnt_propagation(m, type);
962830df 1633 br_write_unlock(&vfsmount_lock);
719f5d7f
MS
1634
1635 out_unlock:
07b20889 1636 up_write(&namespace_sem);
719f5d7f 1637 return err;
07b20889
RP
1638}
1639
1da177e4
LT
1640/*
1641 * do loopback mount.
1642 */
0a0d8a46 1643static int do_loopback(struct path *path, char *old_name,
2dafe1c4 1644 int recurse)
1da177e4 1645{
b12cea91 1646 LIST_HEAD(umount_list);
2d92ab3c 1647 struct path old_path;
87129cc0 1648 struct mount *mnt = NULL, *old;
2d92ab3c 1649 int err = mount_is_safe(path);
1da177e4
LT
1650 if (err)
1651 return err;
1652 if (!old_name || !*old_name)
1653 return -EINVAL;
815d405c 1654 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1655 if (err)
1656 return err;
1657
b12cea91
AV
1658 err = lock_mount(path);
1659 if (err)
1660 goto out;
1661
87129cc0
AV
1662 old = real_mount(old_path.mnt);
1663
1da177e4 1664 err = -EINVAL;
fc7be130 1665 if (IS_MNT_UNBINDABLE(old))
b12cea91 1666 goto out2;
9676f0c6 1667
143c8c91 1668 if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
b12cea91 1669 goto out2;
1da177e4 1670
ccd48bc7 1671 if (recurse)
87129cc0 1672 mnt = copy_tree(old, old_path.dentry, 0);
ccd48bc7 1673 else
87129cc0 1674 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 1675
be34d1a3
DH
1676 if (IS_ERR(mnt)) {
1677 err = PTR_ERR(mnt);
1678 goto out;
1679 }
ccd48bc7 1680
95bc5f25 1681 err = graft_tree(mnt, path);
ccd48bc7 1682 if (err) {
962830df 1683 br_write_lock(&vfsmount_lock);
761d5c38 1684 umount_tree(mnt, 0, &umount_list);
962830df 1685 br_write_unlock(&vfsmount_lock);
5b83d2c5 1686 }
b12cea91
AV
1687out2:
1688 unlock_mount(path);
1689 release_mounts(&umount_list);
ccd48bc7 1690out:
2d92ab3c 1691 path_put(&old_path);
1da177e4
LT
1692 return err;
1693}
1694
2e4b7fcd
DH
1695static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1696{
1697 int error = 0;
1698 int readonly_request = 0;
1699
1700 if (ms_flags & MS_RDONLY)
1701 readonly_request = 1;
1702 if (readonly_request == __mnt_is_readonly(mnt))
1703 return 0;
1704
1705 if (readonly_request)
83adc753 1706 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 1707 else
83adc753 1708 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
1709 return error;
1710}
1711
1da177e4
LT
1712/*
1713 * change filesystem flags. dir should be a physical root of filesystem.
1714 * If you've mounted a non-root directory somewhere and want to do remount
1715 * on it - tough luck.
1716 */
0a0d8a46 1717static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1718 void *data)
1719{
1720 int err;
2d92ab3c 1721 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 1722 struct mount *mnt = real_mount(path->mnt);
1da177e4
LT
1723
1724 if (!capable(CAP_SYS_ADMIN))
1725 return -EPERM;
1726
143c8c91 1727 if (!check_mnt(mnt))
1da177e4
LT
1728 return -EINVAL;
1729
2d92ab3c 1730 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1731 return -EINVAL;
1732
ff36fe2c
EP
1733 err = security_sb_remount(sb, data);
1734 if (err)
1735 return err;
1736
1da177e4 1737 down_write(&sb->s_umount);
2e4b7fcd 1738 if (flags & MS_BIND)
2d92ab3c 1739 err = change_mount_flags(path->mnt, flags);
4aa98cf7 1740 else
2e4b7fcd 1741 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1742 if (!err) {
962830df 1743 br_write_lock(&vfsmount_lock);
143c8c91
AV
1744 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1745 mnt->mnt.mnt_flags = mnt_flags;
962830df 1746 br_write_unlock(&vfsmount_lock);
7b43a79f 1747 }
1da177e4 1748 up_write(&sb->s_umount);
0e55a7cc 1749 if (!err) {
962830df 1750 br_write_lock(&vfsmount_lock);
143c8c91 1751 touch_mnt_namespace(mnt->mnt_ns);
962830df 1752 br_write_unlock(&vfsmount_lock);
0e55a7cc 1753 }
1da177e4
LT
1754 return err;
1755}
1756
cbbe362c 1757static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 1758{
315fc83e 1759 struct mount *p;
909b0a88 1760 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 1761 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
1762 return 1;
1763 }
1764 return 0;
1765}
1766
0a0d8a46 1767static int do_move_mount(struct path *path, char *old_name)
1da177e4 1768{
2d92ab3c 1769 struct path old_path, parent_path;
676da58d 1770 struct mount *p;
0fb54e50 1771 struct mount *old;
1da177e4
LT
1772 int err = 0;
1773 if (!capable(CAP_SYS_ADMIN))
1774 return -EPERM;
1775 if (!old_name || !*old_name)
1776 return -EINVAL;
2d92ab3c 1777 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1778 if (err)
1779 return err;
1780
b12cea91 1781 err = lock_mount(path);
cc53ce53
DH
1782 if (err < 0)
1783 goto out;
1784
143c8c91 1785 old = real_mount(old_path.mnt);
fc7be130 1786 p = real_mount(path->mnt);
143c8c91 1787
1da177e4 1788 err = -EINVAL;
fc7be130 1789 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
1790 goto out1;
1791
f3da392e 1792 if (d_unlinked(path->dentry))
21444403 1793 goto out1;
1da177e4
LT
1794
1795 err = -EINVAL;
2d92ab3c 1796 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1797 goto out1;
1da177e4 1798
676da58d 1799 if (!mnt_has_parent(old))
21444403 1800 goto out1;
1da177e4 1801
2d92ab3c
AV
1802 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1803 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1804 goto out1;
1805 /*
1806 * Don't move a mount residing in a shared parent.
1807 */
fc7be130 1808 if (IS_MNT_SHARED(old->mnt_parent))
21444403 1809 goto out1;
9676f0c6
RP
1810 /*
1811 * Don't move a mount tree containing unbindable mounts to a destination
1812 * mount which is shared.
1813 */
fc7be130 1814 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 1815 goto out1;
1da177e4 1816 err = -ELOOP;
fc7be130 1817 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 1818 if (p == old)
21444403 1819 goto out1;
1da177e4 1820
0fb54e50 1821 err = attach_recursive_mnt(old, path, &parent_path);
4ac91378 1822 if (err)
21444403 1823 goto out1;
1da177e4
LT
1824
1825 /* if the mount is moved, it should no longer be expire
1826 * automatically */
6776db3d 1827 list_del_init(&old->mnt_expire);
1da177e4 1828out1:
b12cea91 1829 unlock_mount(path);
1da177e4 1830out:
1da177e4 1831 if (!err)
1a390689 1832 path_put(&parent_path);
2d92ab3c 1833 path_put(&old_path);
1da177e4
LT
1834 return err;
1835}
1836
9d412a43
AV
1837static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1838{
1839 int err;
1840 const char *subtype = strchr(fstype, '.');
1841 if (subtype) {
1842 subtype++;
1843 err = -EINVAL;
1844 if (!subtype[0])
1845 goto err;
1846 } else
1847 subtype = "";
1848
1849 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1850 err = -ENOMEM;
1851 if (!mnt->mnt_sb->s_subtype)
1852 goto err;
1853 return mnt;
1854
1855 err:
1856 mntput(mnt);
1857 return ERR_PTR(err);
1858}
1859
79e801a9 1860static struct vfsmount *
9d412a43
AV
1861do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1862{
1863 struct file_system_type *type = get_fs_type(fstype);
1864 struct vfsmount *mnt;
1865 if (!type)
1866 return ERR_PTR(-ENODEV);
1867 mnt = vfs_kern_mount(type, flags, name, data);
1868 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1869 !mnt->mnt_sb->s_subtype)
1870 mnt = fs_set_subtype(mnt, fstype);
1871 put_filesystem(type);
1872 return mnt;
1873}
9d412a43
AV
1874
1875/*
1876 * add a mount into a namespace's mount tree
1877 */
95bc5f25 1878static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43
AV
1879{
1880 int err;
1881
1882 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1883
b12cea91
AV
1884 err = lock_mount(path);
1885 if (err)
1886 return err;
9d412a43
AV
1887
1888 err = -EINVAL;
143c8c91 1889 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(real_mount(path->mnt)))
9d412a43
AV
1890 goto unlock;
1891
1892 /* Refuse the same filesystem on the same mount point */
1893 err = -EBUSY;
95bc5f25 1894 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
1895 path->mnt->mnt_root == path->dentry)
1896 goto unlock;
1897
1898 err = -EINVAL;
95bc5f25 1899 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
1900 goto unlock;
1901
95bc5f25 1902 newmnt->mnt.mnt_flags = mnt_flags;
9d412a43
AV
1903 err = graft_tree(newmnt, path);
1904
1905unlock:
b12cea91 1906 unlock_mount(path);
9d412a43
AV
1907 return err;
1908}
b1e75df4 1909
1da177e4
LT
1910/*
1911 * create a new mount for userspace and request it to be added into the
1912 * namespace's tree
1913 */
0a0d8a46 1914static int do_new_mount(struct path *path, char *type, int flags,
1da177e4
LT
1915 int mnt_flags, char *name, void *data)
1916{
1917 struct vfsmount *mnt;
15f9a3f3 1918 int err;
1da177e4 1919
eca6f534 1920 if (!type)
1da177e4
LT
1921 return -EINVAL;
1922
1923 /* we need capabilities... */
1924 if (!capable(CAP_SYS_ADMIN))
1925 return -EPERM;
1926
1927 mnt = do_kern_mount(type, flags, name, data);
1928 if (IS_ERR(mnt))
1929 return PTR_ERR(mnt);
1930
95bc5f25 1931 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
1932 if (err)
1933 mntput(mnt);
1934 return err;
1da177e4
LT
1935}
1936
19a167af
AV
1937int finish_automount(struct vfsmount *m, struct path *path)
1938{
6776db3d 1939 struct mount *mnt = real_mount(m);
19a167af
AV
1940 int err;
1941 /* The new mount record should have at least 2 refs to prevent it being
1942 * expired before we get a chance to add it
1943 */
6776db3d 1944 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
1945
1946 if (m->mnt_sb == path->mnt->mnt_sb &&
1947 m->mnt_root == path->dentry) {
b1e75df4
AV
1948 err = -ELOOP;
1949 goto fail;
19a167af
AV
1950 }
1951
95bc5f25 1952 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
1953 if (!err)
1954 return 0;
1955fail:
1956 /* remove m from any expiration list it may be on */
6776db3d 1957 if (!list_empty(&mnt->mnt_expire)) {
b1e75df4 1958 down_write(&namespace_sem);
962830df 1959 br_write_lock(&vfsmount_lock);
6776db3d 1960 list_del_init(&mnt->mnt_expire);
962830df 1961 br_write_unlock(&vfsmount_lock);
b1e75df4 1962 up_write(&namespace_sem);
19a167af 1963 }
b1e75df4
AV
1964 mntput(m);
1965 mntput(m);
19a167af
AV
1966 return err;
1967}
1968
ea5b778a
DH
1969/**
1970 * mnt_set_expiry - Put a mount on an expiration list
1971 * @mnt: The mount to list.
1972 * @expiry_list: The list to add the mount to.
1973 */
1974void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
1975{
1976 down_write(&namespace_sem);
962830df 1977 br_write_lock(&vfsmount_lock);
ea5b778a 1978
6776db3d 1979 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 1980
962830df 1981 br_write_unlock(&vfsmount_lock);
ea5b778a
DH
1982 up_write(&namespace_sem);
1983}
1984EXPORT_SYMBOL(mnt_set_expiry);
1985
1da177e4
LT
1986/*
1987 * process a list of expirable mountpoints with the intent of discarding any
1988 * mountpoints that aren't in use and haven't been touched since last we came
1989 * here
1990 */
1991void mark_mounts_for_expiry(struct list_head *mounts)
1992{
761d5c38 1993 struct mount *mnt, *next;
1da177e4 1994 LIST_HEAD(graveyard);
bcc5c7d2 1995 LIST_HEAD(umounts);
1da177e4
LT
1996
1997 if (list_empty(mounts))
1998 return;
1999
bcc5c7d2 2000 down_write(&namespace_sem);
962830df 2001 br_write_lock(&vfsmount_lock);
1da177e4
LT
2002
2003 /* extract from the expiration list every vfsmount that matches the
2004 * following criteria:
2005 * - only referenced by its parent vfsmount
2006 * - still marked for expiry (marked on the last call here; marks are
2007 * cleared by mntput())
2008 */
6776db3d 2009 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2010 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2011 propagate_mount_busy(mnt, 1))
1da177e4 2012 continue;
6776db3d 2013 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2014 }
bcc5c7d2 2015 while (!list_empty(&graveyard)) {
6776db3d 2016 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2017 touch_mnt_namespace(mnt->mnt_ns);
bcc5c7d2
AV
2018 umount_tree(mnt, 1, &umounts);
2019 }
962830df 2020 br_write_unlock(&vfsmount_lock);
bcc5c7d2
AV
2021 up_write(&namespace_sem);
2022
2023 release_mounts(&umounts);
5528f911
TM
2024}
2025
2026EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2027
2028/*
2029 * Ripoff of 'select_parent()'
2030 *
2031 * search the list of submounts for a given mountpoint, and move any
2032 * shrinkable submounts to the 'graveyard' list.
2033 */
692afc31 2034static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2035{
692afc31 2036 struct mount *this_parent = parent;
5528f911
TM
2037 struct list_head *next;
2038 int found = 0;
2039
2040repeat:
6b41d536 2041 next = this_parent->mnt_mounts.next;
5528f911 2042resume:
6b41d536 2043 while (next != &this_parent->mnt_mounts) {
5528f911 2044 struct list_head *tmp = next;
6b41d536 2045 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2046
2047 next = tmp->next;
692afc31 2048 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2049 continue;
5528f911
TM
2050 /*
2051 * Descend a level if the d_mounts list is non-empty.
2052 */
6b41d536 2053 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2054 this_parent = mnt;
2055 goto repeat;
2056 }
1da177e4 2057
1ab59738 2058 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2059 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2060 found++;
2061 }
1da177e4 2062 }
5528f911
TM
2063 /*
2064 * All done at this level ... ascend and resume the search
2065 */
2066 if (this_parent != parent) {
6b41d536 2067 next = this_parent->mnt_child.next;
0714a533 2068 this_parent = this_parent->mnt_parent;
5528f911
TM
2069 goto resume;
2070 }
2071 return found;
2072}
2073
2074/*
2075 * process a list of expirable mountpoints with the intent of discarding any
2076 * submounts of a specific parent mountpoint
99b7db7b
NP
2077 *
2078 * vfsmount_lock must be held for write
5528f911 2079 */
692afc31 2080static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
5528f911
TM
2081{
2082 LIST_HEAD(graveyard);
761d5c38 2083 struct mount *m;
5528f911 2084
5528f911 2085 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2086 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2087 while (!list_empty(&graveyard)) {
761d5c38 2088 m = list_first_entry(&graveyard, struct mount,
6776db3d 2089 mnt_expire);
143c8c91 2090 touch_mnt_namespace(m->mnt_ns);
afef80b3 2091 umount_tree(m, 1, umounts);
bcc5c7d2
AV
2092 }
2093 }
1da177e4
LT
2094}
2095
1da177e4
LT
2096/*
2097 * Some copy_from_user() implementations do not return the exact number of
2098 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2099 * Note that this function differs from copy_from_user() in that it will oops
2100 * on bad values of `to', rather than returning a short copy.
2101 */
b58fed8b
RP
2102static long exact_copy_from_user(void *to, const void __user * from,
2103 unsigned long n)
1da177e4
LT
2104{
2105 char *t = to;
2106 const char __user *f = from;
2107 char c;
2108
2109 if (!access_ok(VERIFY_READ, from, n))
2110 return n;
2111
2112 while (n) {
2113 if (__get_user(c, f)) {
2114 memset(t, 0, n);
2115 break;
2116 }
2117 *t++ = c;
2118 f++;
2119 n--;
2120 }
2121 return n;
2122}
2123
b58fed8b 2124int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2125{
2126 int i;
2127 unsigned long page;
2128 unsigned long size;
b58fed8b 2129
1da177e4
LT
2130 *where = 0;
2131 if (!data)
2132 return 0;
2133
2134 if (!(page = __get_free_page(GFP_KERNEL)))
2135 return -ENOMEM;
2136
2137 /* We only care that *some* data at the address the user
2138 * gave us is valid. Just in case, we'll zero
2139 * the remainder of the page.
2140 */
2141 /* copy_from_user cannot cross TASK_SIZE ! */
2142 size = TASK_SIZE - (unsigned long)data;
2143 if (size > PAGE_SIZE)
2144 size = PAGE_SIZE;
2145
2146 i = size - exact_copy_from_user((void *)page, data, size);
2147 if (!i) {
b58fed8b 2148 free_page(page);
1da177e4
LT
2149 return -EFAULT;
2150 }
2151 if (i != PAGE_SIZE)
2152 memset((char *)page + i, 0, PAGE_SIZE - i);
2153 *where = page;
2154 return 0;
2155}
2156
eca6f534
VN
2157int copy_mount_string(const void __user *data, char **where)
2158{
2159 char *tmp;
2160
2161 if (!data) {
2162 *where = NULL;
2163 return 0;
2164 }
2165
2166 tmp = strndup_user(data, PAGE_SIZE);
2167 if (IS_ERR(tmp))
2168 return PTR_ERR(tmp);
2169
2170 *where = tmp;
2171 return 0;
2172}
2173
1da177e4
LT
2174/*
2175 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2176 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2177 *
2178 * data is a (void *) that can point to any structure up to
2179 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2180 * information (or be NULL).
2181 *
2182 * Pre-0.97 versions of mount() didn't have a flags word.
2183 * When the flags word was introduced its top half was required
2184 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2185 * Therefore, if this magic number is present, it carries no information
2186 * and must be discarded.
2187 */
b58fed8b 2188long do_mount(char *dev_name, char *dir_name, char *type_page,
1da177e4
LT
2189 unsigned long flags, void *data_page)
2190{
2d92ab3c 2191 struct path path;
1da177e4
LT
2192 int retval = 0;
2193 int mnt_flags = 0;
2194
2195 /* Discard magic */
2196 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2197 flags &= ~MS_MGC_MSK;
2198
2199 /* Basic sanity checks */
2200
2201 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2202 return -EINVAL;
1da177e4
LT
2203
2204 if (data_page)
2205 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2206
a27ab9f2
TH
2207 /* ... and get the mountpoint */
2208 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2209 if (retval)
2210 return retval;
2211
2212 retval = security_sb_mount(dev_name, &path,
2213 type_page, flags, data_page);
2214 if (retval)
2215 goto dput_out;
2216
613cbe3d
AK
2217 /* Default to relatime unless overriden */
2218 if (!(flags & MS_NOATIME))
2219 mnt_flags |= MNT_RELATIME;
0a1c01c9 2220
1da177e4
LT
2221 /* Separate the per-mountpoint flags */
2222 if (flags & MS_NOSUID)
2223 mnt_flags |= MNT_NOSUID;
2224 if (flags & MS_NODEV)
2225 mnt_flags |= MNT_NODEV;
2226 if (flags & MS_NOEXEC)
2227 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2228 if (flags & MS_NOATIME)
2229 mnt_flags |= MNT_NOATIME;
2230 if (flags & MS_NODIRATIME)
2231 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2232 if (flags & MS_STRICTATIME)
2233 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2234 if (flags & MS_RDONLY)
2235 mnt_flags |= MNT_READONLY;
fc33a7bb 2236
7a4dec53 2237 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2238 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2239 MS_STRICTATIME);
1da177e4 2240
1da177e4 2241 if (flags & MS_REMOUNT)
2d92ab3c 2242 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2243 data_page);
2244 else if (flags & MS_BIND)
2d92ab3c 2245 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2246 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2247 retval = do_change_type(&path, flags);
1da177e4 2248 else if (flags & MS_MOVE)
2d92ab3c 2249 retval = do_move_mount(&path, dev_name);
1da177e4 2250 else
2d92ab3c 2251 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2252 dev_name, data_page);
2253dput_out:
2d92ab3c 2254 path_put(&path);
1da177e4
LT
2255 return retval;
2256}
2257
cf8d2c11
TM
2258static struct mnt_namespace *alloc_mnt_ns(void)
2259{
2260 struct mnt_namespace *new_ns;
2261
2262 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2263 if (!new_ns)
2264 return ERR_PTR(-ENOMEM);
2265 atomic_set(&new_ns->count, 1);
2266 new_ns->root = NULL;
2267 INIT_LIST_HEAD(&new_ns->list);
2268 init_waitqueue_head(&new_ns->poll);
2269 new_ns->event = 0;
2270 return new_ns;
2271}
2272
741a2951
JD
2273/*
2274 * Allocate a new namespace structure and populate it with contents
2275 * copied from the namespace of the passed in task structure.
2276 */
e3222c4e 2277static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
6b3286ed 2278 struct fs_struct *fs)
1da177e4 2279{
6b3286ed 2280 struct mnt_namespace *new_ns;
7f2da1e7 2281 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2282 struct mount *p, *q;
be08d6d2 2283 struct mount *old = mnt_ns->root;
cb338d06 2284 struct mount *new;
1da177e4 2285
cf8d2c11
TM
2286 new_ns = alloc_mnt_ns();
2287 if (IS_ERR(new_ns))
2288 return new_ns;
1da177e4 2289
390c6843 2290 down_write(&namespace_sem);
1da177e4 2291 /* First pass: copy the tree topology */
909b0a88 2292 new = copy_tree(old, old->mnt.mnt_root, CL_COPY_ALL | CL_EXPIRE);
be34d1a3 2293 if (IS_ERR(new)) {
390c6843 2294 up_write(&namespace_sem);
1da177e4 2295 kfree(new_ns);
be34d1a3 2296 return ERR_CAST(new);
1da177e4 2297 }
be08d6d2 2298 new_ns->root = new;
962830df 2299 br_write_lock(&vfsmount_lock);
1a4eeaf2 2300 list_add_tail(&new_ns->list, &new->mnt_list);
962830df 2301 br_write_unlock(&vfsmount_lock);
1da177e4
LT
2302
2303 /*
2304 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2305 * as belonging to new namespace. We have already acquired a private
2306 * fs_struct, so tsk->fs->lock is not needed.
2307 */
909b0a88 2308 p = old;
cb338d06 2309 q = new;
1da177e4 2310 while (p) {
143c8c91 2311 q->mnt_ns = new_ns;
1da177e4 2312 if (fs) {
315fc83e
AV
2313 if (&p->mnt == fs->root.mnt) {
2314 fs->root.mnt = mntget(&q->mnt);
315fc83e 2315 rootmnt = &p->mnt;
1da177e4 2316 }
315fc83e
AV
2317 if (&p->mnt == fs->pwd.mnt) {
2318 fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2319 pwdmnt = &p->mnt;
1da177e4 2320 }
1da177e4 2321 }
909b0a88
AV
2322 p = next_mnt(p, old);
2323 q = next_mnt(q, new);
1da177e4 2324 }
390c6843 2325 up_write(&namespace_sem);
1da177e4 2326
1da177e4 2327 if (rootmnt)
f03c6599 2328 mntput(rootmnt);
1da177e4 2329 if (pwdmnt)
f03c6599 2330 mntput(pwdmnt);
1da177e4 2331
741a2951
JD
2332 return new_ns;
2333}
2334
213dd266 2335struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
e3222c4e 2336 struct fs_struct *new_fs)
741a2951 2337{
6b3286ed 2338 struct mnt_namespace *new_ns;
741a2951 2339
e3222c4e 2340 BUG_ON(!ns);
6b3286ed 2341 get_mnt_ns(ns);
741a2951
JD
2342
2343 if (!(flags & CLONE_NEWNS))
e3222c4e 2344 return ns;
741a2951 2345
e3222c4e 2346 new_ns = dup_mnt_ns(ns, new_fs);
741a2951 2347
6b3286ed 2348 put_mnt_ns(ns);
e3222c4e 2349 return new_ns;
1da177e4
LT
2350}
2351
cf8d2c11
TM
2352/**
2353 * create_mnt_ns - creates a private namespace and adds a root filesystem
2354 * @mnt: pointer to the new root filesystem mountpoint
2355 */
1a4eeaf2 2356static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2357{
1a4eeaf2 2358 struct mnt_namespace *new_ns = alloc_mnt_ns();
cf8d2c11 2359 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2360 struct mount *mnt = real_mount(m);
2361 mnt->mnt_ns = new_ns;
be08d6d2 2362 new_ns->root = mnt;
1a4eeaf2 2363 list_add(&new_ns->list, &mnt->mnt_list);
c1334495 2364 } else {
1a4eeaf2 2365 mntput(m);
cf8d2c11
TM
2366 }
2367 return new_ns;
2368}
cf8d2c11 2369
ea441d11
AV
2370struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2371{
2372 struct mnt_namespace *ns;
d31da0f0 2373 struct super_block *s;
ea441d11
AV
2374 struct path path;
2375 int err;
2376
2377 ns = create_mnt_ns(mnt);
2378 if (IS_ERR(ns))
2379 return ERR_CAST(ns);
2380
2381 err = vfs_path_lookup(mnt->mnt_root, mnt,
2382 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2383
2384 put_mnt_ns(ns);
2385
2386 if (err)
2387 return ERR_PTR(err);
2388
2389 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2390 s = path.mnt->mnt_sb;
2391 atomic_inc(&s->s_active);
ea441d11
AV
2392 mntput(path.mnt);
2393 /* lock the sucker */
d31da0f0 2394 down_write(&s->s_umount);
ea441d11
AV
2395 /* ... and return the root of (sub)tree on it */
2396 return path.dentry;
2397}
2398EXPORT_SYMBOL(mount_subtree);
2399
bdc480e3
HC
2400SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2401 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2402{
eca6f534
VN
2403 int ret;
2404 char *kernel_type;
2405 char *kernel_dir;
2406 char *kernel_dev;
1da177e4 2407 unsigned long data_page;
1da177e4 2408
eca6f534
VN
2409 ret = copy_mount_string(type, &kernel_type);
2410 if (ret < 0)
2411 goto out_type;
1da177e4 2412
eca6f534
VN
2413 kernel_dir = getname(dir_name);
2414 if (IS_ERR(kernel_dir)) {
2415 ret = PTR_ERR(kernel_dir);
2416 goto out_dir;
2417 }
1da177e4 2418
eca6f534
VN
2419 ret = copy_mount_string(dev_name, &kernel_dev);
2420 if (ret < 0)
2421 goto out_dev;
1da177e4 2422
eca6f534
VN
2423 ret = copy_mount_options(data, &data_page);
2424 if (ret < 0)
2425 goto out_data;
1da177e4 2426
eca6f534
VN
2427 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2428 (void *) data_page);
1da177e4 2429
eca6f534
VN
2430 free_page(data_page);
2431out_data:
2432 kfree(kernel_dev);
2433out_dev:
2434 putname(kernel_dir);
2435out_dir:
2436 kfree(kernel_type);
2437out_type:
2438 return ret;
1da177e4
LT
2439}
2440
afac7cba
AV
2441/*
2442 * Return true if path is reachable from root
2443 *
2444 * namespace_sem or vfsmount_lock is held
2445 */
643822b4 2446bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2447 const struct path *root)
2448{
643822b4 2449 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2450 dentry = mnt->mnt_mountpoint;
0714a533 2451 mnt = mnt->mnt_parent;
afac7cba 2452 }
643822b4 2453 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2454}
2455
2456int path_is_under(struct path *path1, struct path *path2)
2457{
2458 int res;
962830df 2459 br_read_lock(&vfsmount_lock);
643822b4 2460 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
962830df 2461 br_read_unlock(&vfsmount_lock);
afac7cba
AV
2462 return res;
2463}
2464EXPORT_SYMBOL(path_is_under);
2465
1da177e4
LT
2466/*
2467 * pivot_root Semantics:
2468 * Moves the root file system of the current process to the directory put_old,
2469 * makes new_root as the new root file system of the current process, and sets
2470 * root/cwd of all processes which had them on the current root to new_root.
2471 *
2472 * Restrictions:
2473 * The new_root and put_old must be directories, and must not be on the
2474 * same file system as the current process root. The put_old must be
2475 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2476 * pointed to by put_old must yield the same directory as new_root. No other
2477 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2478 *
4a0d11fa
NB
2479 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2480 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2481 * in this situation.
2482 *
1da177e4
LT
2483 * Notes:
2484 * - we don't move root/cwd if they are not at the root (reason: if something
2485 * cared enough to change them, it's probably wrong to force them elsewhere)
2486 * - it's okay to pick a root that isn't the root of a file system, e.g.
2487 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2488 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2489 * first.
2490 */
3480b257
HC
2491SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2492 const char __user *, put_old)
1da177e4 2493{
2d8f3038 2494 struct path new, old, parent_path, root_parent, root;
419148da 2495 struct mount *new_mnt, *root_mnt;
1da177e4
LT
2496 int error;
2497
2498 if (!capable(CAP_SYS_ADMIN))
2499 return -EPERM;
2500
2d8f3038 2501 error = user_path_dir(new_root, &new);
1da177e4
LT
2502 if (error)
2503 goto out0;
1da177e4 2504
2d8f3038 2505 error = user_path_dir(put_old, &old);
1da177e4
LT
2506 if (error)
2507 goto out1;
2508
2d8f3038 2509 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2510 if (error)
2511 goto out2;
1da177e4 2512
f7ad3c6b 2513 get_fs_root(current->fs, &root);
b12cea91
AV
2514 error = lock_mount(&old);
2515 if (error)
2516 goto out3;
2517
1da177e4 2518 error = -EINVAL;
419148da
AV
2519 new_mnt = real_mount(new.mnt);
2520 root_mnt = real_mount(root.mnt);
fc7be130
AV
2521 if (IS_MNT_SHARED(real_mount(old.mnt)) ||
2522 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2523 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2524 goto out4;
143c8c91 2525 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2526 goto out4;
1da177e4 2527 error = -ENOENT;
f3da392e 2528 if (d_unlinked(new.dentry))
b12cea91 2529 goto out4;
f3da392e 2530 if (d_unlinked(old.dentry))
b12cea91 2531 goto out4;
1da177e4 2532 error = -EBUSY;
2d8f3038
AV
2533 if (new.mnt == root.mnt ||
2534 old.mnt == root.mnt)
b12cea91 2535 goto out4; /* loop, on the same file system */
1da177e4 2536 error = -EINVAL;
8c3ee42e 2537 if (root.mnt->mnt_root != root.dentry)
b12cea91 2538 goto out4; /* not a mountpoint */
676da58d 2539 if (!mnt_has_parent(root_mnt))
b12cea91 2540 goto out4; /* not attached */
2d8f3038 2541 if (new.mnt->mnt_root != new.dentry)
b12cea91 2542 goto out4; /* not a mountpoint */
676da58d 2543 if (!mnt_has_parent(new_mnt))
b12cea91 2544 goto out4; /* not attached */
4ac91378 2545 /* make sure we can reach put_old from new_root */
643822b4 2546 if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
b12cea91 2547 goto out4;
962830df 2548 br_write_lock(&vfsmount_lock);
419148da
AV
2549 detach_mnt(new_mnt, &parent_path);
2550 detach_mnt(root_mnt, &root_parent);
4ac91378 2551 /* mount old root on put_old */
419148da 2552 attach_mnt(root_mnt, &old);
4ac91378 2553 /* mount new_root on / */
419148da 2554 attach_mnt(new_mnt, &root_parent);
6b3286ed 2555 touch_mnt_namespace(current->nsproxy->mnt_ns);
962830df 2556 br_write_unlock(&vfsmount_lock);
2d8f3038 2557 chroot_fs_refs(&root, &new);
1da177e4 2558 error = 0;
b12cea91
AV
2559out4:
2560 unlock_mount(&old);
2561 if (!error) {
2562 path_put(&root_parent);
2563 path_put(&parent_path);
2564 }
2565out3:
8c3ee42e 2566 path_put(&root);
b12cea91 2567out2:
2d8f3038 2568 path_put(&old);
1da177e4 2569out1:
2d8f3038 2570 path_put(&new);
1da177e4 2571out0:
1da177e4 2572 return error;
1da177e4
LT
2573}
2574
2575static void __init init_mount_tree(void)
2576{
2577 struct vfsmount *mnt;
6b3286ed 2578 struct mnt_namespace *ns;
ac748a09 2579 struct path root;
1da177e4
LT
2580
2581 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2582 if (IS_ERR(mnt))
2583 panic("Can't create rootfs");
b3e19d92 2584
3b22edc5
TM
2585 ns = create_mnt_ns(mnt);
2586 if (IS_ERR(ns))
1da177e4 2587 panic("Can't allocate initial namespace");
6b3286ed
KK
2588
2589 init_task.nsproxy->mnt_ns = ns;
2590 get_mnt_ns(ns);
2591
be08d6d2
AV
2592 root.mnt = mnt;
2593 root.dentry = mnt->mnt_root;
ac748a09
JB
2594
2595 set_fs_pwd(current->fs, &root);
2596 set_fs_root(current->fs, &root);
1da177e4
LT
2597}
2598
74bf17cf 2599void __init mnt_init(void)
1da177e4 2600{
13f14b4d 2601 unsigned u;
15a67dd8 2602 int err;
1da177e4 2603
390c6843
RP
2604 init_rwsem(&namespace_sem);
2605
7d6fec45 2606 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2607 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2608
b58fed8b 2609 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4
LT
2610
2611 if (!mount_hashtable)
2612 panic("Failed to allocate mount hash table\n");
2613
80cdc6da 2614 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
13f14b4d
ED
2615
2616 for (u = 0; u < HASH_SIZE; u++)
2617 INIT_LIST_HEAD(&mount_hashtable[u]);
1da177e4 2618
962830df 2619 br_lock_init(&vfsmount_lock);
99b7db7b 2620
15a67dd8
RD
2621 err = sysfs_init();
2622 if (err)
2623 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2624 __func__, err);
00d26666
GKH
2625 fs_kobj = kobject_create_and_add("fs", NULL);
2626 if (!fs_kobj)
8e24eea7 2627 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2628 init_rootfs();
2629 init_mount_tree();
2630}
2631
616511d0 2632void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2633{
70fbcdf4 2634 LIST_HEAD(umount_list);
616511d0 2635
d498b25a 2636 if (!atomic_dec_and_test(&ns->count))
616511d0 2637 return;
390c6843 2638 down_write(&namespace_sem);
962830df 2639 br_write_lock(&vfsmount_lock);
be08d6d2 2640 umount_tree(ns->root, 0, &umount_list);
962830df 2641 br_write_unlock(&vfsmount_lock);
390c6843 2642 up_write(&namespace_sem);
70fbcdf4 2643 release_mounts(&umount_list);
6b3286ed 2644 kfree(ns);
1da177e4 2645}
9d412a43
AV
2646
2647struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2648{
423e0ab0
TC
2649 struct vfsmount *mnt;
2650 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2651 if (!IS_ERR(mnt)) {
2652 /*
2653 * it is a longterm mount, don't release mnt until
2654 * we unmount before file sys is unregistered
2655 */
f7a99c5b 2656 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
2657 }
2658 return mnt;
9d412a43
AV
2659}
2660EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2661
2662void kern_unmount(struct vfsmount *mnt)
2663{
2664 /* release long term mount so mount point can be released */
2665 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b
AV
2666 br_write_lock(&vfsmount_lock);
2667 real_mount(mnt)->mnt_ns = NULL;
2668 br_write_unlock(&vfsmount_lock);
423e0ab0
TC
2669 mntput(mnt);
2670 }
2671}
2672EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2673
2674bool our_mnt(struct vfsmount *mnt)
2675{
143c8c91 2676 return check_mnt(real_mount(mnt));
02125a82 2677}
This page took 0.859331 seconds and 5 git commands to generate.