userfaultfd: allocate the userfaultfd_ctx cacheline aligned
[deliverable/linux.git] / fs / userfaultfd.c
CommitLineData
86039bd3
AA
1/*
2 * fs/userfaultfd.c
3 *
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
10 *
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
13 */
14
15#include <linux/hashtable.h>
16#include <linux/sched.h>
17#include <linux/mm.h>
18#include <linux/poll.h>
19#include <linux/slab.h>
20#include <linux/seq_file.h>
21#include <linux/file.h>
22#include <linux/bug.h>
23#include <linux/anon_inodes.h>
24#include <linux/syscalls.h>
25#include <linux/userfaultfd_k.h>
26#include <linux/mempolicy.h>
27#include <linux/ioctl.h>
28#include <linux/security.h>
29
3004ec9c
AA
30static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
31
86039bd3
AA
32enum userfaultfd_state {
33 UFFD_STATE_WAIT_API,
34 UFFD_STATE_RUNNING,
35};
36
3004ec9c
AA
37/*
38 * Start with fault_pending_wqh and fault_wqh so they're more likely
39 * to be in the same cacheline.
40 */
86039bd3 41struct userfaultfd_ctx {
15b726ef
AA
42 /* waitqueue head for the pending (i.e. not read) userfaults */
43 wait_queue_head_t fault_pending_wqh;
44 /* waitqueue head for the userfaults */
86039bd3
AA
45 wait_queue_head_t fault_wqh;
46 /* waitqueue head for the pseudo fd to wakeup poll/read */
47 wait_queue_head_t fd_wqh;
3004ec9c
AA
48 /* pseudo fd refcounting */
49 atomic_t refcount;
86039bd3
AA
50 /* userfaultfd syscall flags */
51 unsigned int flags;
52 /* state machine */
53 enum userfaultfd_state state;
54 /* released */
55 bool released;
56 /* mm with one ore more vmas attached to this userfaultfd_ctx */
57 struct mm_struct *mm;
58};
59
60struct userfaultfd_wait_queue {
a9b85f94 61 struct uffd_msg msg;
86039bd3 62 wait_queue_t wq;
86039bd3
AA
63 struct userfaultfd_ctx *ctx;
64};
65
66struct userfaultfd_wake_range {
67 unsigned long start;
68 unsigned long len;
69};
70
71static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode,
72 int wake_flags, void *key)
73{
74 struct userfaultfd_wake_range *range = key;
75 int ret;
76 struct userfaultfd_wait_queue *uwq;
77 unsigned long start, len;
78
79 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
80 ret = 0;
86039bd3
AA
81 /* len == 0 means wake all */
82 start = range->start;
83 len = range->len;
a9b85f94
AA
84 if (len && (start > uwq->msg.arg.pagefault.address ||
85 start + len <= uwq->msg.arg.pagefault.address))
86039bd3
AA
86 goto out;
87 ret = wake_up_state(wq->private, mode);
88 if (ret)
89 /*
90 * Wake only once, autoremove behavior.
91 *
92 * After the effect of list_del_init is visible to the
93 * other CPUs, the waitqueue may disappear from under
94 * us, see the !list_empty_careful() in
95 * handle_userfault(). try_to_wake_up() has an
96 * implicit smp_mb__before_spinlock, and the
97 * wq->private is read before calling the extern
98 * function "wake_up_state" (which in turns calls
99 * try_to_wake_up). While the spin_lock;spin_unlock;
100 * wouldn't be enough, the smp_mb__before_spinlock is
101 * enough to avoid an explicit smp_mb() here.
102 */
103 list_del_init(&wq->task_list);
104out:
105 return ret;
106}
107
108/**
109 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
110 * context.
111 * @ctx: [in] Pointer to the userfaultfd context.
112 *
113 * Returns: In case of success, returns not zero.
114 */
115static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
116{
117 if (!atomic_inc_not_zero(&ctx->refcount))
118 BUG();
119}
120
121/**
122 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
123 * context.
124 * @ctx: [in] Pointer to userfaultfd context.
125 *
126 * The userfaultfd context reference must have been previously acquired either
127 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
128 */
129static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
130{
131 if (atomic_dec_and_test(&ctx->refcount)) {
132 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
133 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
134 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
135 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
136 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
137 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
138 mmput(ctx->mm);
3004ec9c 139 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
86039bd3
AA
140 }
141}
142
a9b85f94 143static inline void msg_init(struct uffd_msg *msg)
86039bd3 144{
a9b85f94
AA
145 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
146 /*
147 * Must use memset to zero out the paddings or kernel data is
148 * leaked to userland.
149 */
150 memset(msg, 0, sizeof(struct uffd_msg));
151}
152
153static inline struct uffd_msg userfault_msg(unsigned long address,
154 unsigned int flags,
155 unsigned long reason)
156{
157 struct uffd_msg msg;
158 msg_init(&msg);
159 msg.event = UFFD_EVENT_PAGEFAULT;
160 msg.arg.pagefault.address = address;
86039bd3
AA
161 if (flags & FAULT_FLAG_WRITE)
162 /*
a9b85f94
AA
163 * If UFFD_FEATURE_PAGEFAULT_FLAG_WRITE was set in the
164 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
165 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
166 * was a read fault, otherwise if set it means it's
167 * a write fault.
86039bd3 168 */
a9b85f94 169 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
86039bd3
AA
170 if (reason & VM_UFFD_WP)
171 /*
a9b85f94
AA
172 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
173 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
174 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
175 * a missing fault, otherwise if set it means it's a
176 * write protect fault.
86039bd3 177 */
a9b85f94
AA
178 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
179 return msg;
86039bd3
AA
180}
181
182/*
183 * The locking rules involved in returning VM_FAULT_RETRY depending on
184 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
185 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
186 * recommendation in __lock_page_or_retry is not an understatement.
187 *
188 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
189 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
190 * not set.
191 *
192 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
193 * set, VM_FAULT_RETRY can still be returned if and only if there are
194 * fatal_signal_pending()s, and the mmap_sem must be released before
195 * returning it.
196 */
197int handle_userfault(struct vm_area_struct *vma, unsigned long address,
198 unsigned int flags, unsigned long reason)
199{
200 struct mm_struct *mm = vma->vm_mm;
201 struct userfaultfd_ctx *ctx;
202 struct userfaultfd_wait_queue uwq;
ba85c702 203 int ret;
86039bd3
AA
204
205 BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
206
ba85c702 207 ret = VM_FAULT_SIGBUS;
86039bd3
AA
208 ctx = vma->vm_userfaultfd_ctx.ctx;
209 if (!ctx)
ba85c702 210 goto out;
86039bd3
AA
211
212 BUG_ON(ctx->mm != mm);
213
214 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
215 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
216
217 /*
218 * If it's already released don't get it. This avoids to loop
219 * in __get_user_pages if userfaultfd_release waits on the
220 * caller of handle_userfault to release the mmap_sem.
221 */
222 if (unlikely(ACCESS_ONCE(ctx->released)))
ba85c702 223 goto out;
86039bd3
AA
224
225 /*
226 * Check that we can return VM_FAULT_RETRY.
227 *
228 * NOTE: it should become possible to return VM_FAULT_RETRY
229 * even if FAULT_FLAG_TRIED is set without leading to gup()
230 * -EBUSY failures, if the userfaultfd is to be extended for
231 * VM_UFFD_WP tracking and we intend to arm the userfault
232 * without first stopping userland access to the memory. For
233 * VM_UFFD_MISSING userfaults this is enough for now.
234 */
235 if (unlikely(!(flags & FAULT_FLAG_ALLOW_RETRY))) {
236 /*
237 * Validate the invariant that nowait must allow retry
238 * to be sure not to return SIGBUS erroneously on
239 * nowait invocations.
240 */
241 BUG_ON(flags & FAULT_FLAG_RETRY_NOWAIT);
242#ifdef CONFIG_DEBUG_VM
243 if (printk_ratelimit()) {
244 printk(KERN_WARNING
245 "FAULT_FLAG_ALLOW_RETRY missing %x\n", flags);
246 dump_stack();
247 }
248#endif
ba85c702 249 goto out;
86039bd3
AA
250 }
251
252 /*
253 * Handle nowait, not much to do other than tell it to retry
254 * and wait.
255 */
ba85c702 256 ret = VM_FAULT_RETRY;
86039bd3 257 if (flags & FAULT_FLAG_RETRY_NOWAIT)
ba85c702 258 goto out;
86039bd3
AA
259
260 /* take the reference before dropping the mmap_sem */
261 userfaultfd_ctx_get(ctx);
262
263 /* be gentle and immediately relinquish the mmap_sem */
264 up_read(&mm->mmap_sem);
265
266 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
267 uwq.wq.private = current;
a9b85f94 268 uwq.msg = userfault_msg(address, flags, reason);
86039bd3
AA
269 uwq.ctx = ctx;
270
15b726ef 271 spin_lock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
272 /*
273 * After the __add_wait_queue the uwq is visible to userland
274 * through poll/read().
275 */
15b726ef
AA
276 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
277 /*
278 * The smp_mb() after __set_current_state prevents the reads
279 * following the spin_unlock to happen before the list_add in
280 * __add_wait_queue.
281 */
ba85c702 282 set_current_state(TASK_KILLABLE);
15b726ef 283 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3 284
ba85c702
AA
285 if (likely(!ACCESS_ONCE(ctx->released) &&
286 !fatal_signal_pending(current))) {
86039bd3
AA
287 wake_up_poll(&ctx->fd_wqh, POLLIN);
288 schedule();
ba85c702
AA
289 ret |= VM_FAULT_MAJOR;
290 }
86039bd3 291
ba85c702 292 __set_current_state(TASK_RUNNING);
15b726ef
AA
293
294 /*
295 * Here we race with the list_del; list_add in
296 * userfaultfd_ctx_read(), however because we don't ever run
297 * list_del_init() to refile across the two lists, the prev
298 * and next pointers will never point to self. list_add also
299 * would never let any of the two pointers to point to
300 * self. So list_empty_careful won't risk to see both pointers
301 * pointing to self at any time during the list refile. The
302 * only case where list_del_init() is called is the full
303 * removal in the wake function and there we don't re-list_add
304 * and it's fine not to block on the spinlock. The uwq on this
305 * kernel stack can be released after the list_del_init.
306 */
ba85c702 307 if (!list_empty_careful(&uwq.wq.task_list)) {
15b726ef
AA
308 spin_lock(&ctx->fault_pending_wqh.lock);
309 /*
310 * No need of list_del_init(), the uwq on the stack
311 * will be freed shortly anyway.
312 */
313 list_del(&uwq.wq.task_list);
314 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3 315 }
86039bd3
AA
316
317 /*
318 * ctx may go away after this if the userfault pseudo fd is
319 * already released.
320 */
321 userfaultfd_ctx_put(ctx);
322
ba85c702
AA
323out:
324 return ret;
86039bd3
AA
325}
326
327static int userfaultfd_release(struct inode *inode, struct file *file)
328{
329 struct userfaultfd_ctx *ctx = file->private_data;
330 struct mm_struct *mm = ctx->mm;
331 struct vm_area_struct *vma, *prev;
332 /* len == 0 means wake all */
333 struct userfaultfd_wake_range range = { .len = 0, };
334 unsigned long new_flags;
335
336 ACCESS_ONCE(ctx->released) = true;
337
338 /*
339 * Flush page faults out of all CPUs. NOTE: all page faults
340 * must be retried without returning VM_FAULT_SIGBUS if
341 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
342 * changes while handle_userfault released the mmap_sem. So
343 * it's critical that released is set to true (above), before
344 * taking the mmap_sem for writing.
345 */
346 down_write(&mm->mmap_sem);
347 prev = NULL;
348 for (vma = mm->mmap; vma; vma = vma->vm_next) {
349 cond_resched();
350 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
351 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
352 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
353 prev = vma;
354 continue;
355 }
356 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
357 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
358 new_flags, vma->anon_vma,
359 vma->vm_file, vma->vm_pgoff,
360 vma_policy(vma),
361 NULL_VM_UFFD_CTX);
362 if (prev)
363 vma = prev;
364 else
365 prev = vma;
366 vma->vm_flags = new_flags;
367 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
368 }
369 up_write(&mm->mmap_sem);
370
371 /*
15b726ef 372 * After no new page faults can wait on this fault_*wqh, flush
86039bd3 373 * the last page faults that may have been already waiting on
15b726ef 374 * the fault_*wqh.
86039bd3 375 */
15b726ef
AA
376 spin_lock(&ctx->fault_pending_wqh.lock);
377 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 0, &range);
86039bd3 378 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, 0, &range);
15b726ef 379 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
380
381 wake_up_poll(&ctx->fd_wqh, POLLHUP);
382 userfaultfd_ctx_put(ctx);
383 return 0;
384}
385
15b726ef
AA
386/* fault_pending_wqh.lock must be hold by the caller */
387static inline struct userfaultfd_wait_queue *find_userfault(
388 struct userfaultfd_ctx *ctx)
86039bd3
AA
389{
390 wait_queue_t *wq;
15b726ef 391 struct userfaultfd_wait_queue *uwq;
86039bd3 392
15b726ef 393 VM_BUG_ON(!spin_is_locked(&ctx->fault_pending_wqh.lock));
86039bd3 394
15b726ef
AA
395 uwq = NULL;
396 if (!waitqueue_active(&ctx->fault_pending_wqh))
397 goto out;
398 /* walk in reverse to provide FIFO behavior to read userfaults */
399 wq = list_last_entry(&ctx->fault_pending_wqh.task_list,
400 typeof(*wq), task_list);
401 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
402out:
403 return uwq;
86039bd3
AA
404}
405
406static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
407{
408 struct userfaultfd_ctx *ctx = file->private_data;
409 unsigned int ret;
410
411 poll_wait(file, &ctx->fd_wqh, wait);
412
413 switch (ctx->state) {
414 case UFFD_STATE_WAIT_API:
415 return POLLERR;
416 case UFFD_STATE_RUNNING:
ba85c702
AA
417 /*
418 * poll() never guarantees that read won't block.
419 * userfaults can be waken before they're read().
420 */
421 if (unlikely(!(file->f_flags & O_NONBLOCK)))
422 return POLLERR;
15b726ef
AA
423 /*
424 * lockless access to see if there are pending faults
425 * __pollwait last action is the add_wait_queue but
426 * the spin_unlock would allow the waitqueue_active to
427 * pass above the actual list_add inside
428 * add_wait_queue critical section. So use a full
429 * memory barrier to serialize the list_add write of
430 * add_wait_queue() with the waitqueue_active read
431 * below.
432 */
433 ret = 0;
434 smp_mb();
435 if (waitqueue_active(&ctx->fault_pending_wqh))
436 ret = POLLIN;
86039bd3
AA
437 return ret;
438 default:
439 BUG();
440 }
441}
442
443static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
a9b85f94 444 struct uffd_msg *msg)
86039bd3
AA
445{
446 ssize_t ret;
447 DECLARE_WAITQUEUE(wait, current);
15b726ef 448 struct userfaultfd_wait_queue *uwq;
86039bd3 449
15b726ef 450 /* always take the fd_wqh lock before the fault_pending_wqh lock */
86039bd3
AA
451 spin_lock(&ctx->fd_wqh.lock);
452 __add_wait_queue(&ctx->fd_wqh, &wait);
453 for (;;) {
454 set_current_state(TASK_INTERRUPTIBLE);
15b726ef
AA
455 spin_lock(&ctx->fault_pending_wqh.lock);
456 uwq = find_userfault(ctx);
457 if (uwq) {
86039bd3 458 /*
15b726ef
AA
459 * The fault_pending_wqh.lock prevents the uwq
460 * to disappear from under us.
461 *
462 * Refile this userfault from
463 * fault_pending_wqh to fault_wqh, it's not
464 * pending anymore after we read it.
465 *
466 * Use list_del() by hand (as
467 * userfaultfd_wake_function also uses
468 * list_del_init() by hand) to be sure nobody
469 * changes __remove_wait_queue() to use
470 * list_del_init() in turn breaking the
471 * !list_empty_careful() check in
472 * handle_userfault(). The uwq->wq.task_list
473 * must never be empty at any time during the
474 * refile, or the waitqueue could disappear
475 * from under us. The "wait_queue_head_t"
476 * parameter of __remove_wait_queue() is unused
477 * anyway.
86039bd3 478 */
15b726ef
AA
479 list_del(&uwq->wq.task_list);
480 __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
481
a9b85f94
AA
482 /* careful to always initialize msg if ret == 0 */
483 *msg = uwq->msg;
15b726ef 484 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
485 ret = 0;
486 break;
487 }
15b726ef 488 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
489 if (signal_pending(current)) {
490 ret = -ERESTARTSYS;
491 break;
492 }
493 if (no_wait) {
494 ret = -EAGAIN;
495 break;
496 }
497 spin_unlock(&ctx->fd_wqh.lock);
498 schedule();
499 spin_lock(&ctx->fd_wqh.lock);
500 }
501 __remove_wait_queue(&ctx->fd_wqh, &wait);
502 __set_current_state(TASK_RUNNING);
503 spin_unlock(&ctx->fd_wqh.lock);
504
505 return ret;
506}
507
508static ssize_t userfaultfd_read(struct file *file, char __user *buf,
509 size_t count, loff_t *ppos)
510{
511 struct userfaultfd_ctx *ctx = file->private_data;
512 ssize_t _ret, ret = 0;
a9b85f94 513 struct uffd_msg msg;
86039bd3
AA
514 int no_wait = file->f_flags & O_NONBLOCK;
515
516 if (ctx->state == UFFD_STATE_WAIT_API)
517 return -EINVAL;
518 BUG_ON(ctx->state != UFFD_STATE_RUNNING);
519
520 for (;;) {
a9b85f94 521 if (count < sizeof(msg))
86039bd3 522 return ret ? ret : -EINVAL;
a9b85f94 523 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
86039bd3
AA
524 if (_ret < 0)
525 return ret ? ret : _ret;
a9b85f94 526 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
86039bd3 527 return ret ? ret : -EFAULT;
a9b85f94
AA
528 ret += sizeof(msg);
529 buf += sizeof(msg);
530 count -= sizeof(msg);
86039bd3
AA
531 /*
532 * Allow to read more than one fault at time but only
533 * block if waiting for the very first one.
534 */
535 no_wait = O_NONBLOCK;
536 }
537}
538
539static void __wake_userfault(struct userfaultfd_ctx *ctx,
540 struct userfaultfd_wake_range *range)
541{
542 unsigned long start, end;
543
544 start = range->start;
545 end = range->start + range->len;
546
15b726ef 547 spin_lock(&ctx->fault_pending_wqh.lock);
86039bd3 548 /* wake all in the range and autoremove */
15b726ef
AA
549 if (waitqueue_active(&ctx->fault_pending_wqh))
550 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 0,
551 range);
552 if (waitqueue_active(&ctx->fault_wqh))
553 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, 0, range);
554 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
555}
556
557static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
558 struct userfaultfd_wake_range *range)
559{
560 /*
561 * To be sure waitqueue_active() is not reordered by the CPU
562 * before the pagetable update, use an explicit SMP memory
563 * barrier here. PT lock release or up_read(mmap_sem) still
564 * have release semantics that can allow the
565 * waitqueue_active() to be reordered before the pte update.
566 */
567 smp_mb();
568
569 /*
570 * Use waitqueue_active because it's very frequent to
571 * change the address space atomically even if there are no
572 * userfaults yet. So we take the spinlock only when we're
573 * sure we've userfaults to wake.
574 */
15b726ef
AA
575 if (waitqueue_active(&ctx->fault_pending_wqh) ||
576 waitqueue_active(&ctx->fault_wqh))
86039bd3
AA
577 __wake_userfault(ctx, range);
578}
579
580static __always_inline int validate_range(struct mm_struct *mm,
581 __u64 start, __u64 len)
582{
583 __u64 task_size = mm->task_size;
584
585 if (start & ~PAGE_MASK)
586 return -EINVAL;
587 if (len & ~PAGE_MASK)
588 return -EINVAL;
589 if (!len)
590 return -EINVAL;
591 if (start < mmap_min_addr)
592 return -EINVAL;
593 if (start >= task_size)
594 return -EINVAL;
595 if (len > task_size - start)
596 return -EINVAL;
597 return 0;
598}
599
600static int userfaultfd_register(struct userfaultfd_ctx *ctx,
601 unsigned long arg)
602{
603 struct mm_struct *mm = ctx->mm;
604 struct vm_area_struct *vma, *prev, *cur;
605 int ret;
606 struct uffdio_register uffdio_register;
607 struct uffdio_register __user *user_uffdio_register;
608 unsigned long vm_flags, new_flags;
609 bool found;
610 unsigned long start, end, vma_end;
611
612 user_uffdio_register = (struct uffdio_register __user *) arg;
613
614 ret = -EFAULT;
615 if (copy_from_user(&uffdio_register, user_uffdio_register,
616 sizeof(uffdio_register)-sizeof(__u64)))
617 goto out;
618
619 ret = -EINVAL;
620 if (!uffdio_register.mode)
621 goto out;
622 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
623 UFFDIO_REGISTER_MODE_WP))
624 goto out;
625 vm_flags = 0;
626 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
627 vm_flags |= VM_UFFD_MISSING;
628 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
629 vm_flags |= VM_UFFD_WP;
630 /*
631 * FIXME: remove the below error constraint by
632 * implementing the wprotect tracking mode.
633 */
634 ret = -EINVAL;
635 goto out;
636 }
637
638 ret = validate_range(mm, uffdio_register.range.start,
639 uffdio_register.range.len);
640 if (ret)
641 goto out;
642
643 start = uffdio_register.range.start;
644 end = start + uffdio_register.range.len;
645
646 down_write(&mm->mmap_sem);
647 vma = find_vma_prev(mm, start, &prev);
648
649 ret = -ENOMEM;
650 if (!vma)
651 goto out_unlock;
652
653 /* check that there's at least one vma in the range */
654 ret = -EINVAL;
655 if (vma->vm_start >= end)
656 goto out_unlock;
657
658 /*
659 * Search for not compatible vmas.
660 *
661 * FIXME: this shall be relaxed later so that it doesn't fail
662 * on tmpfs backed vmas (in addition to the current allowance
663 * on anonymous vmas).
664 */
665 found = false;
666 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
667 cond_resched();
668
669 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
670 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
671
672 /* check not compatible vmas */
673 ret = -EINVAL;
674 if (cur->vm_ops)
675 goto out_unlock;
676
677 /*
678 * Check that this vma isn't already owned by a
679 * different userfaultfd. We can't allow more than one
680 * userfaultfd to own a single vma simultaneously or we
681 * wouldn't know which one to deliver the userfaults to.
682 */
683 ret = -EBUSY;
684 if (cur->vm_userfaultfd_ctx.ctx &&
685 cur->vm_userfaultfd_ctx.ctx != ctx)
686 goto out_unlock;
687
688 found = true;
689 }
690 BUG_ON(!found);
691
692 if (vma->vm_start < start)
693 prev = vma;
694
695 ret = 0;
696 do {
697 cond_resched();
698
699 BUG_ON(vma->vm_ops);
700 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
701 vma->vm_userfaultfd_ctx.ctx != ctx);
702
703 /*
704 * Nothing to do: this vma is already registered into this
705 * userfaultfd and with the right tracking mode too.
706 */
707 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
708 (vma->vm_flags & vm_flags) == vm_flags)
709 goto skip;
710
711 if (vma->vm_start > start)
712 start = vma->vm_start;
713 vma_end = min(end, vma->vm_end);
714
715 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
716 prev = vma_merge(mm, prev, start, vma_end, new_flags,
717 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
718 vma_policy(vma),
719 ((struct vm_userfaultfd_ctx){ ctx }));
720 if (prev) {
721 vma = prev;
722 goto next;
723 }
724 if (vma->vm_start < start) {
725 ret = split_vma(mm, vma, start, 1);
726 if (ret)
727 break;
728 }
729 if (vma->vm_end > end) {
730 ret = split_vma(mm, vma, end, 0);
731 if (ret)
732 break;
733 }
734 next:
735 /*
736 * In the vma_merge() successful mprotect-like case 8:
737 * the next vma was merged into the current one and
738 * the current one has not been updated yet.
739 */
740 vma->vm_flags = new_flags;
741 vma->vm_userfaultfd_ctx.ctx = ctx;
742
743 skip:
744 prev = vma;
745 start = vma->vm_end;
746 vma = vma->vm_next;
747 } while (vma && vma->vm_start < end);
748out_unlock:
749 up_write(&mm->mmap_sem);
750 if (!ret) {
751 /*
752 * Now that we scanned all vmas we can already tell
753 * userland which ioctls methods are guaranteed to
754 * succeed on this range.
755 */
756 if (put_user(UFFD_API_RANGE_IOCTLS,
757 &user_uffdio_register->ioctls))
758 ret = -EFAULT;
759 }
760out:
761 return ret;
762}
763
764static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
765 unsigned long arg)
766{
767 struct mm_struct *mm = ctx->mm;
768 struct vm_area_struct *vma, *prev, *cur;
769 int ret;
770 struct uffdio_range uffdio_unregister;
771 unsigned long new_flags;
772 bool found;
773 unsigned long start, end, vma_end;
774 const void __user *buf = (void __user *)arg;
775
776 ret = -EFAULT;
777 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
778 goto out;
779
780 ret = validate_range(mm, uffdio_unregister.start,
781 uffdio_unregister.len);
782 if (ret)
783 goto out;
784
785 start = uffdio_unregister.start;
786 end = start + uffdio_unregister.len;
787
788 down_write(&mm->mmap_sem);
789 vma = find_vma_prev(mm, start, &prev);
790
791 ret = -ENOMEM;
792 if (!vma)
793 goto out_unlock;
794
795 /* check that there's at least one vma in the range */
796 ret = -EINVAL;
797 if (vma->vm_start >= end)
798 goto out_unlock;
799
800 /*
801 * Search for not compatible vmas.
802 *
803 * FIXME: this shall be relaxed later so that it doesn't fail
804 * on tmpfs backed vmas (in addition to the current allowance
805 * on anonymous vmas).
806 */
807 found = false;
808 ret = -EINVAL;
809 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
810 cond_resched();
811
812 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
813 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
814
815 /*
816 * Check not compatible vmas, not strictly required
817 * here as not compatible vmas cannot have an
818 * userfaultfd_ctx registered on them, but this
819 * provides for more strict behavior to notice
820 * unregistration errors.
821 */
822 if (cur->vm_ops)
823 goto out_unlock;
824
825 found = true;
826 }
827 BUG_ON(!found);
828
829 if (vma->vm_start < start)
830 prev = vma;
831
832 ret = 0;
833 do {
834 cond_resched();
835
836 BUG_ON(vma->vm_ops);
837
838 /*
839 * Nothing to do: this vma is already registered into this
840 * userfaultfd and with the right tracking mode too.
841 */
842 if (!vma->vm_userfaultfd_ctx.ctx)
843 goto skip;
844
845 if (vma->vm_start > start)
846 start = vma->vm_start;
847 vma_end = min(end, vma->vm_end);
848
849 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
850 prev = vma_merge(mm, prev, start, vma_end, new_flags,
851 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
852 vma_policy(vma),
853 NULL_VM_UFFD_CTX);
854 if (prev) {
855 vma = prev;
856 goto next;
857 }
858 if (vma->vm_start < start) {
859 ret = split_vma(mm, vma, start, 1);
860 if (ret)
861 break;
862 }
863 if (vma->vm_end > end) {
864 ret = split_vma(mm, vma, end, 0);
865 if (ret)
866 break;
867 }
868 next:
869 /*
870 * In the vma_merge() successful mprotect-like case 8:
871 * the next vma was merged into the current one and
872 * the current one has not been updated yet.
873 */
874 vma->vm_flags = new_flags;
875 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
876
877 skip:
878 prev = vma;
879 start = vma->vm_end;
880 vma = vma->vm_next;
881 } while (vma && vma->vm_start < end);
882out_unlock:
883 up_write(&mm->mmap_sem);
884out:
885 return ret;
886}
887
888/*
ba85c702
AA
889 * userfaultfd_wake is needed in case an userfault is in flight by the
890 * time a UFFDIO_COPY (or other ioctl variants) completes. The page
891 * may be well get mapped and the page fault if repeated wouldn't lead
892 * to a userfault anymore, but before scheduling in TASK_KILLABLE mode
893 * handle_userfault() doesn't recheck the pagetables and it doesn't
894 * serialize against UFFDO_COPY (or other ioctl variants). Ultimately
895 * the knowledge of which pages are mapped is left to userland who is
896 * responsible for handling the race between read() userfaults and
897 * background UFFDIO_COPY (or other ioctl variants), if done by
898 * separate concurrent threads.
899 *
900 * userfaultfd_wake may be used in combination with the
901 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
86039bd3
AA
902 */
903static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
904 unsigned long arg)
905{
906 int ret;
907 struct uffdio_range uffdio_wake;
908 struct userfaultfd_wake_range range;
909 const void __user *buf = (void __user *)arg;
910
911 ret = -EFAULT;
912 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
913 goto out;
914
915 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
916 if (ret)
917 goto out;
918
919 range.start = uffdio_wake.start;
920 range.len = uffdio_wake.len;
921
922 /*
923 * len == 0 means wake all and we don't want to wake all here,
924 * so check it again to be sure.
925 */
926 VM_BUG_ON(!range.len);
927
928 wake_userfault(ctx, &range);
929 ret = 0;
930
931out:
932 return ret;
933}
934
935/*
936 * userland asks for a certain API version and we return which bits
937 * and ioctl commands are implemented in this kernel for such API
938 * version or -EINVAL if unknown.
939 */
940static int userfaultfd_api(struct userfaultfd_ctx *ctx,
941 unsigned long arg)
942{
943 struct uffdio_api uffdio_api;
944 void __user *buf = (void __user *)arg;
945 int ret;
946
947 ret = -EINVAL;
948 if (ctx->state != UFFD_STATE_WAIT_API)
949 goto out;
950 ret = -EFAULT;
a9b85f94 951 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
86039bd3 952 goto out;
a9b85f94 953 if (uffdio_api.api != UFFD_API || uffdio_api.features) {
86039bd3
AA
954 memset(&uffdio_api, 0, sizeof(uffdio_api));
955 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
956 goto out;
957 ret = -EINVAL;
958 goto out;
959 }
3f602d27 960 uffdio_api.features = UFFD_API_FEATURES;
86039bd3
AA
961 uffdio_api.ioctls = UFFD_API_IOCTLS;
962 ret = -EFAULT;
963 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
964 goto out;
965 ctx->state = UFFD_STATE_RUNNING;
966 ret = 0;
967out:
968 return ret;
969}
970
971static long userfaultfd_ioctl(struct file *file, unsigned cmd,
972 unsigned long arg)
973{
974 int ret = -EINVAL;
975 struct userfaultfd_ctx *ctx = file->private_data;
976
977 switch(cmd) {
978 case UFFDIO_API:
979 ret = userfaultfd_api(ctx, arg);
980 break;
981 case UFFDIO_REGISTER:
982 ret = userfaultfd_register(ctx, arg);
983 break;
984 case UFFDIO_UNREGISTER:
985 ret = userfaultfd_unregister(ctx, arg);
986 break;
987 case UFFDIO_WAKE:
988 ret = userfaultfd_wake(ctx, arg);
989 break;
990 }
991 return ret;
992}
993
994#ifdef CONFIG_PROC_FS
995static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
996{
997 struct userfaultfd_ctx *ctx = f->private_data;
998 wait_queue_t *wq;
999 struct userfaultfd_wait_queue *uwq;
1000 unsigned long pending = 0, total = 0;
1001
15b726ef
AA
1002 spin_lock(&ctx->fault_pending_wqh.lock);
1003 list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) {
1004 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1005 pending++;
1006 total++;
1007 }
86039bd3
AA
1008 list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) {
1009 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
86039bd3
AA
1010 total++;
1011 }
15b726ef 1012 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1013
1014 /*
1015 * If more protocols will be added, there will be all shown
1016 * separated by a space. Like this:
1017 * protocols: aa:... bb:...
1018 */
1019 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
3f602d27 1020 pending, total, UFFD_API, UFFD_API_FEATURES,
86039bd3
AA
1021 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1022}
1023#endif
1024
1025static const struct file_operations userfaultfd_fops = {
1026#ifdef CONFIG_PROC_FS
1027 .show_fdinfo = userfaultfd_show_fdinfo,
1028#endif
1029 .release = userfaultfd_release,
1030 .poll = userfaultfd_poll,
1031 .read = userfaultfd_read,
1032 .unlocked_ioctl = userfaultfd_ioctl,
1033 .compat_ioctl = userfaultfd_ioctl,
1034 .llseek = noop_llseek,
1035};
1036
3004ec9c
AA
1037static void init_once_userfaultfd_ctx(void *mem)
1038{
1039 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1040
1041 init_waitqueue_head(&ctx->fault_pending_wqh);
1042 init_waitqueue_head(&ctx->fault_wqh);
1043 init_waitqueue_head(&ctx->fd_wqh);
1044}
1045
86039bd3
AA
1046/**
1047 * userfaultfd_file_create - Creates an userfaultfd file pointer.
1048 * @flags: Flags for the userfaultfd file.
1049 *
1050 * This function creates an userfaultfd file pointer, w/out installing
1051 * it into the fd table. This is useful when the userfaultfd file is
1052 * used during the initialization of data structures that require
1053 * extra setup after the userfaultfd creation. So the userfaultfd
1054 * creation is split into the file pointer creation phase, and the
1055 * file descriptor installation phase. In this way races with
1056 * userspace closing the newly installed file descriptor can be
1057 * avoided. Returns an userfaultfd file pointer, or a proper error
1058 * pointer.
1059 */
1060static struct file *userfaultfd_file_create(int flags)
1061{
1062 struct file *file;
1063 struct userfaultfd_ctx *ctx;
1064
1065 BUG_ON(!current->mm);
1066
1067 /* Check the UFFD_* constants for consistency. */
1068 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1069 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1070
1071 file = ERR_PTR(-EINVAL);
1072 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1073 goto out;
1074
1075 file = ERR_PTR(-ENOMEM);
3004ec9c 1076 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
86039bd3
AA
1077 if (!ctx)
1078 goto out;
1079
1080 atomic_set(&ctx->refcount, 1);
86039bd3
AA
1081 ctx->flags = flags;
1082 ctx->state = UFFD_STATE_WAIT_API;
1083 ctx->released = false;
1084 ctx->mm = current->mm;
1085 /* prevent the mm struct to be freed */
1086 atomic_inc(&ctx->mm->mm_users);
1087
1088 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1089 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1090 if (IS_ERR(file))
3004ec9c 1091 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
86039bd3
AA
1092out:
1093 return file;
1094}
1095
1096SYSCALL_DEFINE1(userfaultfd, int, flags)
1097{
1098 int fd, error;
1099 struct file *file;
1100
1101 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1102 if (error < 0)
1103 return error;
1104 fd = error;
1105
1106 file = userfaultfd_file_create(flags);
1107 if (IS_ERR(file)) {
1108 error = PTR_ERR(file);
1109 goto err_put_unused_fd;
1110 }
1111 fd_install(fd, file);
1112
1113 return fd;
1114
1115err_put_unused_fd:
1116 put_unused_fd(fd);
1117
1118 return error;
1119}
3004ec9c
AA
1120
1121static int __init userfaultfd_init(void)
1122{
1123 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1124 sizeof(struct userfaultfd_ctx),
1125 0,
1126 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1127 init_once_userfaultfd_ctx);
1128 return 0;
1129}
1130__initcall(userfaultfd_init);
This page took 0.069801 seconds and 5 git commands to generate.