[AArch64] Add ARMv8.3 command line option and feature flag
[deliverable/binutils-gdb.git] / gas / config / tc-aarch64.c
CommitLineData
a06ea964
NC
1/* tc-aarch64.c -- Assemble for the AArch64 ISA
2
6f2750fe 3 Copyright (C) 2009-2016 Free Software Foundation, Inc.
a06ea964
NC
4 Contributed by ARM Ltd.
5
6 This file is part of GAS.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the license, or
11 (at your option) any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING3. If not,
20 see <http://www.gnu.org/licenses/>. */
21
22#include "as.h"
23#include <limits.h>
24#include <stdarg.h>
25#include "bfd_stdint.h"
26#define NO_RELOC 0
27#include "safe-ctype.h"
28#include "subsegs.h"
29#include "obstack.h"
30
31#ifdef OBJ_ELF
32#include "elf/aarch64.h"
33#include "dw2gencfi.h"
34#endif
35
36#include "dwarf2dbg.h"
37
38/* Types of processor to assemble for. */
39#ifndef CPU_DEFAULT
40#define CPU_DEFAULT AARCH64_ARCH_V8
41#endif
42
43#define streq(a, b) (strcmp (a, b) == 0)
44
f4c51f60
JW
45#define END_OF_INSN '\0'
46
a06ea964
NC
47static aarch64_feature_set cpu_variant;
48
49/* Variables that we set while parsing command-line options. Once all
50 options have been read we re-process these values to set the real
51 assembly flags. */
52static const aarch64_feature_set *mcpu_cpu_opt = NULL;
53static const aarch64_feature_set *march_cpu_opt = NULL;
54
55/* Constants for known architecture features. */
56static const aarch64_feature_set cpu_default = CPU_DEFAULT;
57
a06ea964
NC
58#ifdef OBJ_ELF
59/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
60static symbolS *GOT_symbol;
cec5225b 61
69091a2c
YZ
62/* Which ABI to use. */
63enum aarch64_abi_type
64{
65 AARCH64_ABI_LP64 = 0,
66 AARCH64_ABI_ILP32 = 1
67};
68
69/* AArch64 ABI for the output file. */
70static enum aarch64_abi_type aarch64_abi = AARCH64_ABI_LP64;
71
cec5225b
YZ
72/* When non-zero, program to a 32-bit model, in which the C data types
73 int, long and all pointer types are 32-bit objects (ILP32); or to a
74 64-bit model, in which the C int type is 32-bits but the C long type
75 and all pointer types are 64-bit objects (LP64). */
69091a2c 76#define ilp32_p (aarch64_abi == AARCH64_ABI_ILP32)
a06ea964
NC
77#endif
78
f06935a5 79enum vector_el_type
a06ea964
NC
80{
81 NT_invtype = -1,
82 NT_b,
83 NT_h,
84 NT_s,
85 NT_d,
d50c751e
RS
86 NT_q,
87 NT_zero,
88 NT_merge
a06ea964
NC
89};
90
8f9a77af 91/* Bits for DEFINED field in vector_type_el. */
f11ad6bc
RS
92#define NTA_HASTYPE 1
93#define NTA_HASINDEX 2
94#define NTA_HASVARWIDTH 4
a06ea964 95
8f9a77af 96struct vector_type_el
a06ea964 97{
f06935a5 98 enum vector_el_type type;
a06ea964
NC
99 unsigned char defined;
100 unsigned width;
101 int64_t index;
102};
103
104#define FIXUP_F_HAS_EXPLICIT_SHIFT 0x00000001
105
106struct reloc
107{
108 bfd_reloc_code_real_type type;
109 expressionS exp;
110 int pc_rel;
111 enum aarch64_opnd opnd;
112 uint32_t flags;
113 unsigned need_libopcodes_p : 1;
114};
115
116struct aarch64_instruction
117{
118 /* libopcodes structure for instruction intermediate representation. */
119 aarch64_inst base;
120 /* Record assembly errors found during the parsing. */
121 struct
122 {
123 enum aarch64_operand_error_kind kind;
124 const char *error;
125 } parsing_error;
126 /* The condition that appears in the assembly line. */
127 int cond;
128 /* Relocation information (including the GAS internal fixup). */
129 struct reloc reloc;
130 /* Need to generate an immediate in the literal pool. */
131 unsigned gen_lit_pool : 1;
132};
133
134typedef struct aarch64_instruction aarch64_instruction;
135
136static aarch64_instruction inst;
137
138static bfd_boolean parse_operands (char *, const aarch64_opcode *);
139static bfd_boolean programmer_friendly_fixup (aarch64_instruction *);
140
141/* Diagnostics inline function utilites.
142
143 These are lightweight utlities which should only be called by parse_operands
144 and other parsers. GAS processes each assembly line by parsing it against
145 instruction template(s), in the case of multiple templates (for the same
146 mnemonic name), those templates are tried one by one until one succeeds or
147 all fail. An assembly line may fail a few templates before being
148 successfully parsed; an error saved here in most cases is not a user error
149 but an error indicating the current template is not the right template.
150 Therefore it is very important that errors can be saved at a low cost during
151 the parsing; we don't want to slow down the whole parsing by recording
152 non-user errors in detail.
153
154 Remember that the objective is to help GAS pick up the most approapriate
155 error message in the case of multiple templates, e.g. FMOV which has 8
156 templates. */
157
158static inline void
159clear_error (void)
160{
161 inst.parsing_error.kind = AARCH64_OPDE_NIL;
162 inst.parsing_error.error = NULL;
163}
164
165static inline bfd_boolean
166error_p (void)
167{
168 return inst.parsing_error.kind != AARCH64_OPDE_NIL;
169}
170
171static inline const char *
172get_error_message (void)
173{
174 return inst.parsing_error.error;
175}
176
a06ea964
NC
177static inline enum aarch64_operand_error_kind
178get_error_kind (void)
179{
180 return inst.parsing_error.kind;
181}
182
a06ea964
NC
183static inline void
184set_error (enum aarch64_operand_error_kind kind, const char *error)
185{
186 inst.parsing_error.kind = kind;
187 inst.parsing_error.error = error;
188}
189
190static inline void
191set_recoverable_error (const char *error)
192{
193 set_error (AARCH64_OPDE_RECOVERABLE, error);
194}
195
196/* Use the DESC field of the corresponding aarch64_operand entry to compose
197 the error message. */
198static inline void
199set_default_error (void)
200{
201 set_error (AARCH64_OPDE_SYNTAX_ERROR, NULL);
202}
203
204static inline void
205set_syntax_error (const char *error)
206{
207 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
208}
209
210static inline void
211set_first_syntax_error (const char *error)
212{
213 if (! error_p ())
214 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
215}
216
217static inline void
218set_fatal_syntax_error (const char *error)
219{
220 set_error (AARCH64_OPDE_FATAL_SYNTAX_ERROR, error);
221}
222\f
223/* Number of littlenums required to hold an extended precision number. */
224#define MAX_LITTLENUMS 6
225
226/* Return value for certain parsers when the parsing fails; those parsers
227 return the information of the parsed result, e.g. register number, on
228 success. */
229#define PARSE_FAIL -1
230
231/* This is an invalid condition code that means no conditional field is
232 present. */
233#define COND_ALWAYS 0x10
234
235typedef struct
236{
237 const char *template;
238 unsigned long value;
239} asm_barrier_opt;
240
241typedef struct
242{
243 const char *template;
244 uint32_t value;
245} asm_nzcv;
246
247struct reloc_entry
248{
249 char *name;
250 bfd_reloc_code_real_type reloc;
251};
252
a06ea964
NC
253/* Macros to define the register types and masks for the purpose
254 of parsing. */
255
256#undef AARCH64_REG_TYPES
257#define AARCH64_REG_TYPES \
258 BASIC_REG_TYPE(R_32) /* w[0-30] */ \
259 BASIC_REG_TYPE(R_64) /* x[0-30] */ \
260 BASIC_REG_TYPE(SP_32) /* wsp */ \
261 BASIC_REG_TYPE(SP_64) /* sp */ \
262 BASIC_REG_TYPE(Z_32) /* wzr */ \
263 BASIC_REG_TYPE(Z_64) /* xzr */ \
264 BASIC_REG_TYPE(FP_B) /* b[0-31] *//* NOTE: keep FP_[BHSDQ] consecutive! */\
265 BASIC_REG_TYPE(FP_H) /* h[0-31] */ \
266 BASIC_REG_TYPE(FP_S) /* s[0-31] */ \
267 BASIC_REG_TYPE(FP_D) /* d[0-31] */ \
268 BASIC_REG_TYPE(FP_Q) /* q[0-31] */ \
269 BASIC_REG_TYPE(CN) /* c[0-7] */ \
270 BASIC_REG_TYPE(VN) /* v[0-31] */ \
f11ad6bc
RS
271 BASIC_REG_TYPE(ZN) /* z[0-31] */ \
272 BASIC_REG_TYPE(PN) /* p[0-15] */ \
e1b988bb 273 /* Typecheck: any 64-bit int reg (inc SP exc XZR). */ \
a06ea964 274 MULTI_REG_TYPE(R64_SP, REG_TYPE(R_64) | REG_TYPE(SP_64)) \
4df068de
RS
275 /* Typecheck: same, plus SVE registers. */ \
276 MULTI_REG_TYPE(SVE_BASE, REG_TYPE(R_64) | REG_TYPE(SP_64) \
277 | REG_TYPE(ZN)) \
e1b988bb
RS
278 /* Typecheck: x[0-30], w[0-30] or [xw]zr. */ \
279 MULTI_REG_TYPE(R_Z, REG_TYPE(R_32) | REG_TYPE(R_64) \
280 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
4df068de
RS
281 /* Typecheck: same, plus SVE registers. */ \
282 MULTI_REG_TYPE(SVE_OFFSET, REG_TYPE(R_32) | REG_TYPE(R_64) \
283 | REG_TYPE(Z_32) | REG_TYPE(Z_64) \
284 | REG_TYPE(ZN)) \
e1b988bb
RS
285 /* Typecheck: x[0-30], w[0-30] or {w}sp. */ \
286 MULTI_REG_TYPE(R_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
287 | REG_TYPE(SP_32) | REG_TYPE(SP_64)) \
288 /* Typecheck: any int (inc {W}SP inc [WX]ZR). */ \
a06ea964
NC
289 MULTI_REG_TYPE(R_Z_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
290 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
291 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
292 /* Typecheck: any [BHSDQ]P FP. */ \
293 MULTI_REG_TYPE(BHSDQ, REG_TYPE(FP_B) | REG_TYPE(FP_H) \
294 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
e1b988bb 295 /* Typecheck: any int or [BHSDQ]P FP or V reg (exc SP inc [WX]ZR). */ \
a06ea964
NC
296 MULTI_REG_TYPE(R_Z_BHSDQ_V, REG_TYPE(R_32) | REG_TYPE(R_64) \
297 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
298 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
299 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
c0890d26
RS
300 /* Typecheck: as above, but also Zn and Pn. This should only be \
301 used for SVE instructions, since Zn and Pn are valid symbols \
302 in other contexts. */ \
303 MULTI_REG_TYPE(R_Z_BHSDQ_VZP, REG_TYPE(R_32) | REG_TYPE(R_64) \
304 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
305 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
306 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q) \
307 | REG_TYPE(ZN) | REG_TYPE(PN)) \
a06ea964
NC
308 /* Any integer register; used for error messages only. */ \
309 MULTI_REG_TYPE(R_N, REG_TYPE(R_32) | REG_TYPE(R_64) \
310 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
311 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
312 /* Pseudo type to mark the end of the enumerator sequence. */ \
313 BASIC_REG_TYPE(MAX)
314
315#undef BASIC_REG_TYPE
316#define BASIC_REG_TYPE(T) REG_TYPE_##T,
317#undef MULTI_REG_TYPE
318#define MULTI_REG_TYPE(T,V) BASIC_REG_TYPE(T)
319
320/* Register type enumerators. */
8a0b252a 321typedef enum aarch64_reg_type_
a06ea964
NC
322{
323 /* A list of REG_TYPE_*. */
324 AARCH64_REG_TYPES
325} aarch64_reg_type;
326
327#undef BASIC_REG_TYPE
328#define BASIC_REG_TYPE(T) 1 << REG_TYPE_##T,
329#undef REG_TYPE
330#define REG_TYPE(T) (1 << REG_TYPE_##T)
331#undef MULTI_REG_TYPE
332#define MULTI_REG_TYPE(T,V) V,
333
8a0b252a
TS
334/* Structure for a hash table entry for a register. */
335typedef struct
336{
337 const char *name;
338 unsigned char number;
339 ENUM_BITFIELD (aarch64_reg_type_) type : 8;
340 unsigned char builtin;
341} reg_entry;
342
a06ea964
NC
343/* Values indexed by aarch64_reg_type to assist the type checking. */
344static const unsigned reg_type_masks[] =
345{
346 AARCH64_REG_TYPES
347};
348
349#undef BASIC_REG_TYPE
350#undef REG_TYPE
351#undef MULTI_REG_TYPE
352#undef AARCH64_REG_TYPES
353
354/* Diagnostics used when we don't get a register of the expected type.
355 Note: this has to synchronized with aarch64_reg_type definitions
356 above. */
357static const char *
358get_reg_expected_msg (aarch64_reg_type reg_type)
359{
360 const char *msg;
361
362 switch (reg_type)
363 {
364 case REG_TYPE_R_32:
365 msg = N_("integer 32-bit register expected");
366 break;
367 case REG_TYPE_R_64:
368 msg = N_("integer 64-bit register expected");
369 break;
370 case REG_TYPE_R_N:
371 msg = N_("integer register expected");
372 break;
e1b988bb
RS
373 case REG_TYPE_R64_SP:
374 msg = N_("64-bit integer or SP register expected");
375 break;
4df068de
RS
376 case REG_TYPE_SVE_BASE:
377 msg = N_("base register expected");
378 break;
e1b988bb
RS
379 case REG_TYPE_R_Z:
380 msg = N_("integer or zero register expected");
381 break;
4df068de
RS
382 case REG_TYPE_SVE_OFFSET:
383 msg = N_("offset register expected");
384 break;
e1b988bb
RS
385 case REG_TYPE_R_SP:
386 msg = N_("integer or SP register expected");
387 break;
a06ea964
NC
388 case REG_TYPE_R_Z_SP:
389 msg = N_("integer, zero or SP register expected");
390 break;
391 case REG_TYPE_FP_B:
392 msg = N_("8-bit SIMD scalar register expected");
393 break;
394 case REG_TYPE_FP_H:
395 msg = N_("16-bit SIMD scalar or floating-point half precision "
396 "register expected");
397 break;
398 case REG_TYPE_FP_S:
399 msg = N_("32-bit SIMD scalar or floating-point single precision "
400 "register expected");
401 break;
402 case REG_TYPE_FP_D:
403 msg = N_("64-bit SIMD scalar or floating-point double precision "
404 "register expected");
405 break;
406 case REG_TYPE_FP_Q:
407 msg = N_("128-bit SIMD scalar or floating-point quad precision "
408 "register expected");
409 break;
410 case REG_TYPE_CN:
411 msg = N_("C0 - C15 expected");
412 break;
413 case REG_TYPE_R_Z_BHSDQ_V:
c0890d26 414 case REG_TYPE_R_Z_BHSDQ_VZP:
a06ea964
NC
415 msg = N_("register expected");
416 break;
417 case REG_TYPE_BHSDQ: /* any [BHSDQ]P FP */
418 msg = N_("SIMD scalar or floating-point register expected");
419 break;
420 case REG_TYPE_VN: /* any V reg */
421 msg = N_("vector register expected");
422 break;
f11ad6bc
RS
423 case REG_TYPE_ZN:
424 msg = N_("SVE vector register expected");
425 break;
426 case REG_TYPE_PN:
427 msg = N_("SVE predicate register expected");
428 break;
a06ea964
NC
429 default:
430 as_fatal (_("invalid register type %d"), reg_type);
431 }
432 return msg;
433}
434
435/* Some well known registers that we refer to directly elsewhere. */
436#define REG_SP 31
437
438/* Instructions take 4 bytes in the object file. */
439#define INSN_SIZE 4
440
a06ea964
NC
441static struct hash_control *aarch64_ops_hsh;
442static struct hash_control *aarch64_cond_hsh;
443static struct hash_control *aarch64_shift_hsh;
444static struct hash_control *aarch64_sys_regs_hsh;
445static struct hash_control *aarch64_pstatefield_hsh;
446static struct hash_control *aarch64_sys_regs_ic_hsh;
447static struct hash_control *aarch64_sys_regs_dc_hsh;
448static struct hash_control *aarch64_sys_regs_at_hsh;
449static struct hash_control *aarch64_sys_regs_tlbi_hsh;
450static struct hash_control *aarch64_reg_hsh;
451static struct hash_control *aarch64_barrier_opt_hsh;
452static struct hash_control *aarch64_nzcv_hsh;
453static struct hash_control *aarch64_pldop_hsh;
1e6f4800 454static struct hash_control *aarch64_hint_opt_hsh;
a06ea964
NC
455
456/* Stuff needed to resolve the label ambiguity
457 As:
458 ...
459 label: <insn>
460 may differ from:
461 ...
462 label:
463 <insn> */
464
465static symbolS *last_label_seen;
466
467/* Literal pool structure. Held on a per-section
468 and per-sub-section basis. */
469
470#define MAX_LITERAL_POOL_SIZE 1024
55d9b4c1
NC
471typedef struct literal_expression
472{
473 expressionS exp;
474 /* If exp.op == O_big then this bignum holds a copy of the global bignum value. */
475 LITTLENUM_TYPE * bignum;
476} literal_expression;
477
a06ea964
NC
478typedef struct literal_pool
479{
55d9b4c1 480 literal_expression literals[MAX_LITERAL_POOL_SIZE];
a06ea964
NC
481 unsigned int next_free_entry;
482 unsigned int id;
483 symbolS *symbol;
484 segT section;
485 subsegT sub_section;
486 int size;
487 struct literal_pool *next;
488} literal_pool;
489
490/* Pointer to a linked list of literal pools. */
491static literal_pool *list_of_pools = NULL;
492\f
493/* Pure syntax. */
494
495/* This array holds the chars that always start a comment. If the
496 pre-processor is disabled, these aren't very useful. */
497const char comment_chars[] = "";
498
499/* This array holds the chars that only start a comment at the beginning of
500 a line. If the line seems to have the form '# 123 filename'
501 .line and .file directives will appear in the pre-processed output. */
502/* Note that input_file.c hand checks for '#' at the beginning of the
503 first line of the input file. This is because the compiler outputs
504 #NO_APP at the beginning of its output. */
505/* Also note that comments like this one will always work. */
506const char line_comment_chars[] = "#";
507
508const char line_separator_chars[] = ";";
509
510/* Chars that can be used to separate mant
511 from exp in floating point numbers. */
512const char EXP_CHARS[] = "eE";
513
514/* Chars that mean this number is a floating point constant. */
515/* As in 0f12.456 */
516/* or 0d1.2345e12 */
517
518const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
519
520/* Prefix character that indicates the start of an immediate value. */
521#define is_immediate_prefix(C) ((C) == '#')
522
523/* Separator character handling. */
524
525#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
526
527static inline bfd_boolean
528skip_past_char (char **str, char c)
529{
530 if (**str == c)
531 {
532 (*str)++;
533 return TRUE;
534 }
535 else
536 return FALSE;
537}
538
539#define skip_past_comma(str) skip_past_char (str, ',')
540
541/* Arithmetic expressions (possibly involving symbols). */
542
a06ea964
NC
543static bfd_boolean in_my_get_expression_p = FALSE;
544
545/* Third argument to my_get_expression. */
546#define GE_NO_PREFIX 0
547#define GE_OPT_PREFIX 1
548
549/* Return TRUE if the string pointed by *STR is successfully parsed
550 as an valid expression; *EP will be filled with the information of
551 such an expression. Otherwise return FALSE. */
552
553static bfd_boolean
554my_get_expression (expressionS * ep, char **str, int prefix_mode,
555 int reject_absent)
556{
557 char *save_in;
558 segT seg;
559 int prefix_present_p = 0;
560
561 switch (prefix_mode)
562 {
563 case GE_NO_PREFIX:
564 break;
565 case GE_OPT_PREFIX:
566 if (is_immediate_prefix (**str))
567 {
568 (*str)++;
569 prefix_present_p = 1;
570 }
571 break;
572 default:
573 abort ();
574 }
575
576 memset (ep, 0, sizeof (expressionS));
577
578 save_in = input_line_pointer;
579 input_line_pointer = *str;
580 in_my_get_expression_p = TRUE;
581 seg = expression (ep);
582 in_my_get_expression_p = FALSE;
583
584 if (ep->X_op == O_illegal || (reject_absent && ep->X_op == O_absent))
585 {
586 /* We found a bad expression in md_operand(). */
587 *str = input_line_pointer;
588 input_line_pointer = save_in;
589 if (prefix_present_p && ! error_p ())
590 set_fatal_syntax_error (_("bad expression"));
591 else
592 set_first_syntax_error (_("bad expression"));
593 return FALSE;
594 }
595
596#ifdef OBJ_AOUT
597 if (seg != absolute_section
598 && seg != text_section
599 && seg != data_section
600 && seg != bss_section && seg != undefined_section)
601 {
602 set_syntax_error (_("bad segment"));
603 *str = input_line_pointer;
604 input_line_pointer = save_in;
605 return FALSE;
606 }
607#else
608 (void) seg;
609#endif
610
a06ea964
NC
611 *str = input_line_pointer;
612 input_line_pointer = save_in;
613 return TRUE;
614}
615
616/* Turn a string in input_line_pointer into a floating point constant
617 of type TYPE, and store the appropriate bytes in *LITP. The number
618 of LITTLENUMS emitted is stored in *SIZEP. An error message is
619 returned, or NULL on OK. */
620
6d4af3c2 621const char *
a06ea964
NC
622md_atof (int type, char *litP, int *sizeP)
623{
624 return ieee_md_atof (type, litP, sizeP, target_big_endian);
625}
626
627/* We handle all bad expressions here, so that we can report the faulty
628 instruction in the error message. */
629void
630md_operand (expressionS * exp)
631{
632 if (in_my_get_expression_p)
633 exp->X_op = O_illegal;
634}
635
636/* Immediate values. */
637
638/* Errors may be set multiple times during parsing or bit encoding
639 (particularly in the Neon bits), but usually the earliest error which is set
640 will be the most meaningful. Avoid overwriting it with later (cascading)
641 errors by calling this function. */
642
643static void
644first_error (const char *error)
645{
646 if (! error_p ())
647 set_syntax_error (error);
648}
649
650/* Similiar to first_error, but this function accepts formatted error
651 message. */
652static void
653first_error_fmt (const char *format, ...)
654{
655 va_list args;
656 enum
657 { size = 100 };
658 /* N.B. this single buffer will not cause error messages for different
659 instructions to pollute each other; this is because at the end of
660 processing of each assembly line, error message if any will be
661 collected by as_bad. */
662 static char buffer[size];
663
664 if (! error_p ())
665 {
3e0baa28 666 int ret ATTRIBUTE_UNUSED;
a06ea964
NC
667 va_start (args, format);
668 ret = vsnprintf (buffer, size, format, args);
669 know (ret <= size - 1 && ret >= 0);
670 va_end (args);
671 set_syntax_error (buffer);
672 }
673}
674
675/* Register parsing. */
676
677/* Generic register parser which is called by other specialized
678 register parsers.
679 CCP points to what should be the beginning of a register name.
680 If it is indeed a valid register name, advance CCP over it and
681 return the reg_entry structure; otherwise return NULL.
682 It does not issue diagnostics. */
683
684static reg_entry *
685parse_reg (char **ccp)
686{
687 char *start = *ccp;
688 char *p;
689 reg_entry *reg;
690
691#ifdef REGISTER_PREFIX
692 if (*start != REGISTER_PREFIX)
693 return NULL;
694 start++;
695#endif
696
697 p = start;
698 if (!ISALPHA (*p) || !is_name_beginner (*p))
699 return NULL;
700
701 do
702 p++;
703 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
704
705 reg = (reg_entry *) hash_find_n (aarch64_reg_hsh, start, p - start);
706
707 if (!reg)
708 return NULL;
709
710 *ccp = p;
711 return reg;
712}
713
714/* Return TRUE if REG->TYPE is a valid type of TYPE; otherwise
715 return FALSE. */
716static bfd_boolean
717aarch64_check_reg_type (const reg_entry *reg, aarch64_reg_type type)
718{
e1b988bb 719 return (reg_type_masks[type] & (1 << reg->type)) != 0;
a06ea964
NC
720}
721
4df068de
RS
722/* Try to parse a base or offset register. Allow SVE base and offset
723 registers if REG_TYPE includes SVE registers. Return the register
724 entry on success, setting *QUALIFIER to the register qualifier.
725 Return null otherwise.
e1b988bb 726
a06ea964
NC
727 Note that this function does not issue any diagnostics. */
728
e1b988bb 729static const reg_entry *
4df068de
RS
730aarch64_addr_reg_parse (char **ccp, aarch64_reg_type reg_type,
731 aarch64_opnd_qualifier_t *qualifier)
a06ea964
NC
732{
733 char *str = *ccp;
734 const reg_entry *reg = parse_reg (&str);
735
736 if (reg == NULL)
e1b988bb 737 return NULL;
a06ea964
NC
738
739 switch (reg->type)
740 {
e1b988bb 741 case REG_TYPE_R_32:
a06ea964 742 case REG_TYPE_SP_32:
e1b988bb
RS
743 case REG_TYPE_Z_32:
744 *qualifier = AARCH64_OPND_QLF_W;
a06ea964 745 break;
e1b988bb 746
a06ea964 747 case REG_TYPE_R_64:
e1b988bb 748 case REG_TYPE_SP_64:
a06ea964 749 case REG_TYPE_Z_64:
e1b988bb 750 *qualifier = AARCH64_OPND_QLF_X;
a06ea964 751 break;
e1b988bb 752
4df068de
RS
753 case REG_TYPE_ZN:
754 if ((reg_type_masks[reg_type] & (1 << REG_TYPE_ZN)) == 0
755 || str[0] != '.')
756 return NULL;
757 switch (TOLOWER (str[1]))
758 {
759 case 's':
760 *qualifier = AARCH64_OPND_QLF_S_S;
761 break;
762 case 'd':
763 *qualifier = AARCH64_OPND_QLF_S_D;
764 break;
765 default:
766 return NULL;
767 }
768 str += 2;
769 break;
770
a06ea964 771 default:
e1b988bb 772 return NULL;
a06ea964
NC
773 }
774
775 *ccp = str;
776
e1b988bb 777 return reg;
a06ea964
NC
778}
779
4df068de
RS
780/* Try to parse a base or offset register. Return the register entry
781 on success, setting *QUALIFIER to the register qualifier. Return null
782 otherwise.
783
784 Note that this function does not issue any diagnostics. */
785
786static const reg_entry *
787aarch64_reg_parse_32_64 (char **ccp, aarch64_opnd_qualifier_t *qualifier)
788{
789 return aarch64_addr_reg_parse (ccp, REG_TYPE_R_Z_SP, qualifier);
790}
791
f11ad6bc
RS
792/* Parse the qualifier of a vector register or vector element of type
793 REG_TYPE. Fill in *PARSED_TYPE and return TRUE if the parsing
794 succeeds; otherwise return FALSE.
a06ea964
NC
795
796 Accept only one occurrence of:
3067d3b9 797 8b 16b 2h 4h 8h 2s 4s 1d 2d
a06ea964
NC
798 b h s d q */
799static bfd_boolean
f11ad6bc
RS
800parse_vector_type_for_operand (aarch64_reg_type reg_type,
801 struct vector_type_el *parsed_type, char **str)
a06ea964
NC
802{
803 char *ptr = *str;
804 unsigned width;
805 unsigned element_size;
f06935a5 806 enum vector_el_type type;
a06ea964
NC
807
808 /* skip '.' */
d50c751e 809 gas_assert (*ptr == '.');
a06ea964
NC
810 ptr++;
811
f11ad6bc 812 if (reg_type == REG_TYPE_ZN || reg_type == REG_TYPE_PN || !ISDIGIT (*ptr))
a06ea964
NC
813 {
814 width = 0;
815 goto elt_size;
816 }
817 width = strtoul (ptr, &ptr, 10);
818 if (width != 1 && width != 2 && width != 4 && width != 8 && width != 16)
819 {
820 first_error_fmt (_("bad size %d in vector width specifier"), width);
821 return FALSE;
822 }
823
824elt_size:
825 switch (TOLOWER (*ptr))
826 {
827 case 'b':
828 type = NT_b;
829 element_size = 8;
830 break;
831 case 'h':
832 type = NT_h;
833 element_size = 16;
834 break;
835 case 's':
836 type = NT_s;
837 element_size = 32;
838 break;
839 case 'd':
840 type = NT_d;
841 element_size = 64;
842 break;
843 case 'q':
844 if (width == 1)
845 {
846 type = NT_q;
847 element_size = 128;
848 break;
849 }
850 /* fall through. */
851 default:
852 if (*ptr != '\0')
853 first_error_fmt (_("unexpected character `%c' in element size"), *ptr);
854 else
855 first_error (_("missing element size"));
856 return FALSE;
857 }
3067d3b9
MW
858 if (width != 0 && width * element_size != 64 && width * element_size != 128
859 && !(width == 2 && element_size == 16))
a06ea964
NC
860 {
861 first_error_fmt (_
862 ("invalid element size %d and vector size combination %c"),
863 width, *ptr);
864 return FALSE;
865 }
866 ptr++;
867
868 parsed_type->type = type;
869 parsed_type->width = width;
870
871 *str = ptr;
872
873 return TRUE;
874}
875
d50c751e
RS
876/* *STR contains an SVE zero/merge predication suffix. Parse it into
877 *PARSED_TYPE and point *STR at the end of the suffix. */
878
879static bfd_boolean
880parse_predication_for_operand (struct vector_type_el *parsed_type, char **str)
881{
882 char *ptr = *str;
883
884 /* Skip '/'. */
885 gas_assert (*ptr == '/');
886 ptr++;
887 switch (TOLOWER (*ptr))
888 {
889 case 'z':
890 parsed_type->type = NT_zero;
891 break;
892 case 'm':
893 parsed_type->type = NT_merge;
894 break;
895 default:
896 if (*ptr != '\0' && *ptr != ',')
897 first_error_fmt (_("unexpected character `%c' in predication type"),
898 *ptr);
899 else
900 first_error (_("missing predication type"));
901 return FALSE;
902 }
903 parsed_type->width = 0;
904 *str = ptr + 1;
905 return TRUE;
906}
907
a06ea964
NC
908/* Parse a register of the type TYPE.
909
910 Return PARSE_FAIL if the string pointed by *CCP is not a valid register
911 name or the parsed register is not of TYPE.
912
913 Otherwise return the register number, and optionally fill in the actual
914 type of the register in *RTYPE when multiple alternatives were given, and
915 return the register shape and element index information in *TYPEINFO.
916
917 IN_REG_LIST should be set with TRUE if the caller is parsing a register
918 list. */
919
920static int
921parse_typed_reg (char **ccp, aarch64_reg_type type, aarch64_reg_type *rtype,
8f9a77af 922 struct vector_type_el *typeinfo, bfd_boolean in_reg_list)
a06ea964
NC
923{
924 char *str = *ccp;
925 const reg_entry *reg = parse_reg (&str);
8f9a77af
RS
926 struct vector_type_el atype;
927 struct vector_type_el parsetype;
a06ea964
NC
928 bfd_boolean is_typed_vecreg = FALSE;
929
930 atype.defined = 0;
931 atype.type = NT_invtype;
932 atype.width = -1;
933 atype.index = 0;
934
935 if (reg == NULL)
936 {
937 if (typeinfo)
938 *typeinfo = atype;
939 set_default_error ();
940 return PARSE_FAIL;
941 }
942
943 if (! aarch64_check_reg_type (reg, type))
944 {
945 DEBUG_TRACE ("reg type check failed");
946 set_default_error ();
947 return PARSE_FAIL;
948 }
949 type = reg->type;
950
f11ad6bc 951 if ((type == REG_TYPE_VN || type == REG_TYPE_ZN || type == REG_TYPE_PN)
d50c751e 952 && (*str == '.' || (type == REG_TYPE_PN && *str == '/')))
a06ea964 953 {
d50c751e
RS
954 if (*str == '.')
955 {
956 if (!parse_vector_type_for_operand (type, &parsetype, &str))
957 return PARSE_FAIL;
958 }
959 else
960 {
961 if (!parse_predication_for_operand (&parsetype, &str))
962 return PARSE_FAIL;
963 }
a235d3ae 964
a06ea964
NC
965 /* Register if of the form Vn.[bhsdq]. */
966 is_typed_vecreg = TRUE;
967
f11ad6bc
RS
968 if (type == REG_TYPE_ZN || type == REG_TYPE_PN)
969 {
970 /* The width is always variable; we don't allow an integer width
971 to be specified. */
972 gas_assert (parsetype.width == 0);
973 atype.defined |= NTA_HASVARWIDTH | NTA_HASTYPE;
974 }
975 else if (parsetype.width == 0)
a06ea964
NC
976 /* Expect index. In the new scheme we cannot have
977 Vn.[bhsdq] represent a scalar. Therefore any
978 Vn.[bhsdq] should have an index following it.
979 Except in reglists ofcourse. */
980 atype.defined |= NTA_HASINDEX;
981 else
982 atype.defined |= NTA_HASTYPE;
983
984 atype.type = parsetype.type;
985 atype.width = parsetype.width;
986 }
987
988 if (skip_past_char (&str, '['))
989 {
990 expressionS exp;
991
992 /* Reject Sn[index] syntax. */
993 if (!is_typed_vecreg)
994 {
995 first_error (_("this type of register can't be indexed"));
996 return PARSE_FAIL;
997 }
998
999 if (in_reg_list == TRUE)
1000 {
1001 first_error (_("index not allowed inside register list"));
1002 return PARSE_FAIL;
1003 }
1004
1005 atype.defined |= NTA_HASINDEX;
1006
1007 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1008
1009 if (exp.X_op != O_constant)
1010 {
1011 first_error (_("constant expression required"));
1012 return PARSE_FAIL;
1013 }
1014
1015 if (! skip_past_char (&str, ']'))
1016 return PARSE_FAIL;
1017
1018 atype.index = exp.X_add_number;
1019 }
1020 else if (!in_reg_list && (atype.defined & NTA_HASINDEX) != 0)
1021 {
1022 /* Indexed vector register expected. */
1023 first_error (_("indexed vector register expected"));
1024 return PARSE_FAIL;
1025 }
1026
1027 /* A vector reg Vn should be typed or indexed. */
1028 if (type == REG_TYPE_VN && atype.defined == 0)
1029 {
1030 first_error (_("invalid use of vector register"));
1031 }
1032
1033 if (typeinfo)
1034 *typeinfo = atype;
1035
1036 if (rtype)
1037 *rtype = type;
1038
1039 *ccp = str;
1040
1041 return reg->number;
1042}
1043
1044/* Parse register.
1045
1046 Return the register number on success; return PARSE_FAIL otherwise.
1047
1048 If RTYPE is not NULL, return in *RTYPE the (possibly restricted) type of
1049 the register (e.g. NEON double or quad reg when either has been requested).
1050
1051 If this is a NEON vector register with additional type information, fill
1052 in the struct pointed to by VECTYPE (if non-NULL).
1053
1054 This parser does not handle register list. */
1055
1056static int
1057aarch64_reg_parse (char **ccp, aarch64_reg_type type,
8f9a77af 1058 aarch64_reg_type *rtype, struct vector_type_el *vectype)
a06ea964 1059{
8f9a77af 1060 struct vector_type_el atype;
a06ea964
NC
1061 char *str = *ccp;
1062 int reg = parse_typed_reg (&str, type, rtype, &atype,
1063 /*in_reg_list= */ FALSE);
1064
1065 if (reg == PARSE_FAIL)
1066 return PARSE_FAIL;
1067
1068 if (vectype)
1069 *vectype = atype;
1070
1071 *ccp = str;
1072
1073 return reg;
1074}
1075
1076static inline bfd_boolean
8f9a77af 1077eq_vector_type_el (struct vector_type_el e1, struct vector_type_el e2)
a06ea964
NC
1078{
1079 return
1080 e1.type == e2.type
1081 && e1.defined == e2.defined
1082 && e1.width == e2.width && e1.index == e2.index;
1083}
1084
10d76650
RS
1085/* This function parses a list of vector registers of type TYPE.
1086 On success, it returns the parsed register list information in the
1087 following encoded format:
a06ea964
NC
1088
1089 bit 18-22 | 13-17 | 7-11 | 2-6 | 0-1
1090 4th regno | 3rd regno | 2nd regno | 1st regno | num_of_reg
1091
1092 The information of the register shape and/or index is returned in
1093 *VECTYPE.
1094
1095 It returns PARSE_FAIL if the register list is invalid.
1096
1097 The list contains one to four registers.
1098 Each register can be one of:
1099 <Vt>.<T>[<index>]
1100 <Vt>.<T>
1101 All <T> should be identical.
1102 All <index> should be identical.
1103 There are restrictions on <Vt> numbers which are checked later
1104 (by reg_list_valid_p). */
1105
1106static int
10d76650
RS
1107parse_vector_reg_list (char **ccp, aarch64_reg_type type,
1108 struct vector_type_el *vectype)
a06ea964
NC
1109{
1110 char *str = *ccp;
1111 int nb_regs;
8f9a77af 1112 struct vector_type_el typeinfo, typeinfo_first;
a06ea964
NC
1113 int val, val_range;
1114 int in_range;
1115 int ret_val;
1116 int i;
1117 bfd_boolean error = FALSE;
1118 bfd_boolean expect_index = FALSE;
1119
1120 if (*str != '{')
1121 {
1122 set_syntax_error (_("expecting {"));
1123 return PARSE_FAIL;
1124 }
1125 str++;
1126
1127 nb_regs = 0;
1128 typeinfo_first.defined = 0;
1129 typeinfo_first.type = NT_invtype;
1130 typeinfo_first.width = -1;
1131 typeinfo_first.index = 0;
1132 ret_val = 0;
1133 val = -1;
1134 val_range = -1;
1135 in_range = 0;
1136 do
1137 {
1138 if (in_range)
1139 {
1140 str++; /* skip over '-' */
1141 val_range = val;
1142 }
10d76650 1143 val = parse_typed_reg (&str, type, NULL, &typeinfo,
a06ea964
NC
1144 /*in_reg_list= */ TRUE);
1145 if (val == PARSE_FAIL)
1146 {
1147 set_first_syntax_error (_("invalid vector register in list"));
1148 error = TRUE;
1149 continue;
1150 }
1151 /* reject [bhsd]n */
f11ad6bc 1152 if (type == REG_TYPE_VN && typeinfo.defined == 0)
a06ea964
NC
1153 {
1154 set_first_syntax_error (_("invalid scalar register in list"));
1155 error = TRUE;
1156 continue;
1157 }
1158
1159 if (typeinfo.defined & NTA_HASINDEX)
1160 expect_index = TRUE;
1161
1162 if (in_range)
1163 {
1164 if (val < val_range)
1165 {
1166 set_first_syntax_error
1167 (_("invalid range in vector register list"));
1168 error = TRUE;
1169 }
1170 val_range++;
1171 }
1172 else
1173 {
1174 val_range = val;
1175 if (nb_regs == 0)
1176 typeinfo_first = typeinfo;
8f9a77af 1177 else if (! eq_vector_type_el (typeinfo_first, typeinfo))
a06ea964
NC
1178 {
1179 set_first_syntax_error
1180 (_("type mismatch in vector register list"));
1181 error = TRUE;
1182 }
1183 }
1184 if (! error)
1185 for (i = val_range; i <= val; i++)
1186 {
1187 ret_val |= i << (5 * nb_regs);
1188 nb_regs++;
1189 }
1190 in_range = 0;
1191 }
1192 while (skip_past_comma (&str) || (in_range = 1, *str == '-'));
1193
1194 skip_whitespace (str);
1195 if (*str != '}')
1196 {
1197 set_first_syntax_error (_("end of vector register list not found"));
1198 error = TRUE;
1199 }
1200 str++;
1201
1202 skip_whitespace (str);
1203
1204 if (expect_index)
1205 {
1206 if (skip_past_char (&str, '['))
1207 {
1208 expressionS exp;
1209
1210 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1211 if (exp.X_op != O_constant)
1212 {
1213 set_first_syntax_error (_("constant expression required."));
1214 error = TRUE;
1215 }
1216 if (! skip_past_char (&str, ']'))
1217 error = TRUE;
1218 else
1219 typeinfo_first.index = exp.X_add_number;
1220 }
1221 else
1222 {
1223 set_first_syntax_error (_("expected index"));
1224 error = TRUE;
1225 }
1226 }
1227
1228 if (nb_regs > 4)
1229 {
1230 set_first_syntax_error (_("too many registers in vector register list"));
1231 error = TRUE;
1232 }
1233 else if (nb_regs == 0)
1234 {
1235 set_first_syntax_error (_("empty vector register list"));
1236 error = TRUE;
1237 }
1238
1239 *ccp = str;
1240 if (! error)
1241 *vectype = typeinfo_first;
1242
1243 return error ? PARSE_FAIL : (ret_val << 2) | (nb_regs - 1);
1244}
1245
1246/* Directives: register aliases. */
1247
1248static reg_entry *
1249insert_reg_alias (char *str, int number, aarch64_reg_type type)
1250{
1251 reg_entry *new;
1252 const char *name;
1253
1254 if ((new = hash_find (aarch64_reg_hsh, str)) != 0)
1255 {
1256 if (new->builtin)
1257 as_warn (_("ignoring attempt to redefine built-in register '%s'"),
1258 str);
1259
1260 /* Only warn about a redefinition if it's not defined as the
1261 same register. */
1262 else if (new->number != number || new->type != type)
1263 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1264
1265 return NULL;
1266 }
1267
1268 name = xstrdup (str);
add39d23 1269 new = XNEW (reg_entry);
a06ea964
NC
1270
1271 new->name = name;
1272 new->number = number;
1273 new->type = type;
1274 new->builtin = FALSE;
1275
1276 if (hash_insert (aarch64_reg_hsh, name, (void *) new))
1277 abort ();
1278
1279 return new;
1280}
1281
1282/* Look for the .req directive. This is of the form:
1283
1284 new_register_name .req existing_register_name
1285
1286 If we find one, or if it looks sufficiently like one that we want to
1287 handle any error here, return TRUE. Otherwise return FALSE. */
1288
1289static bfd_boolean
1290create_register_alias (char *newname, char *p)
1291{
1292 const reg_entry *old;
1293 char *oldname, *nbuf;
1294 size_t nlen;
1295
1296 /* The input scrubber ensures that whitespace after the mnemonic is
1297 collapsed to single spaces. */
1298 oldname = p;
1299 if (strncmp (oldname, " .req ", 6) != 0)
1300 return FALSE;
1301
1302 oldname += 6;
1303 if (*oldname == '\0')
1304 return FALSE;
1305
1306 old = hash_find (aarch64_reg_hsh, oldname);
1307 if (!old)
1308 {
1309 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
1310 return TRUE;
1311 }
1312
1313 /* If TC_CASE_SENSITIVE is defined, then newname already points to
1314 the desired alias name, and p points to its end. If not, then
1315 the desired alias name is in the global original_case_string. */
1316#ifdef TC_CASE_SENSITIVE
1317 nlen = p - newname;
1318#else
1319 newname = original_case_string;
1320 nlen = strlen (newname);
1321#endif
1322
29a2809e 1323 nbuf = xmemdup0 (newname, nlen);
a06ea964
NC
1324
1325 /* Create aliases under the new name as stated; an all-lowercase
1326 version of the new name; and an all-uppercase version of the new
1327 name. */
1328 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
1329 {
1330 for (p = nbuf; *p; p++)
1331 *p = TOUPPER (*p);
1332
1333 if (strncmp (nbuf, newname, nlen))
1334 {
1335 /* If this attempt to create an additional alias fails, do not bother
1336 trying to create the all-lower case alias. We will fail and issue
1337 a second, duplicate error message. This situation arises when the
1338 programmer does something like:
1339 foo .req r0
1340 Foo .req r1
1341 The second .req creates the "Foo" alias but then fails to create
1342 the artificial FOO alias because it has already been created by the
1343 first .req. */
1344 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
e1fa0163
NC
1345 {
1346 free (nbuf);
1347 return TRUE;
1348 }
a06ea964
NC
1349 }
1350
1351 for (p = nbuf; *p; p++)
1352 *p = TOLOWER (*p);
1353
1354 if (strncmp (nbuf, newname, nlen))
1355 insert_reg_alias (nbuf, old->number, old->type);
1356 }
1357
e1fa0163 1358 free (nbuf);
a06ea964
NC
1359 return TRUE;
1360}
1361
1362/* Should never be called, as .req goes between the alias and the
1363 register name, not at the beginning of the line. */
1364static void
1365s_req (int a ATTRIBUTE_UNUSED)
1366{
1367 as_bad (_("invalid syntax for .req directive"));
1368}
1369
1370/* The .unreq directive deletes an alias which was previously defined
1371 by .req. For example:
1372
1373 my_alias .req r11
1374 .unreq my_alias */
1375
1376static void
1377s_unreq (int a ATTRIBUTE_UNUSED)
1378{
1379 char *name;
1380 char saved_char;
1381
1382 name = input_line_pointer;
1383
1384 while (*input_line_pointer != 0
1385 && *input_line_pointer != ' ' && *input_line_pointer != '\n')
1386 ++input_line_pointer;
1387
1388 saved_char = *input_line_pointer;
1389 *input_line_pointer = 0;
1390
1391 if (!*name)
1392 as_bad (_("invalid syntax for .unreq directive"));
1393 else
1394 {
1395 reg_entry *reg = hash_find (aarch64_reg_hsh, name);
1396
1397 if (!reg)
1398 as_bad (_("unknown register alias '%s'"), name);
1399 else if (reg->builtin)
1400 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
1401 name);
1402 else
1403 {
1404 char *p;
1405 char *nbuf;
1406
1407 hash_delete (aarch64_reg_hsh, name, FALSE);
1408 free ((char *) reg->name);
1409 free (reg);
1410
1411 /* Also locate the all upper case and all lower case versions.
1412 Do not complain if we cannot find one or the other as it
1413 was probably deleted above. */
1414
1415 nbuf = strdup (name);
1416 for (p = nbuf; *p; p++)
1417 *p = TOUPPER (*p);
1418 reg = hash_find (aarch64_reg_hsh, nbuf);
1419 if (reg)
1420 {
1421 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1422 free ((char *) reg->name);
1423 free (reg);
1424 }
1425
1426 for (p = nbuf; *p; p++)
1427 *p = TOLOWER (*p);
1428 reg = hash_find (aarch64_reg_hsh, nbuf);
1429 if (reg)
1430 {
1431 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1432 free ((char *) reg->name);
1433 free (reg);
1434 }
1435
1436 free (nbuf);
1437 }
1438 }
1439
1440 *input_line_pointer = saved_char;
1441 demand_empty_rest_of_line ();
1442}
1443
1444/* Directives: Instruction set selection. */
1445
1446#ifdef OBJ_ELF
1447/* This code is to handle mapping symbols as defined in the ARM AArch64 ELF
1448 spec. (See "Mapping symbols", section 4.5.4, ARM AAELF64 version 0.05).
1449 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
1450 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
1451
1452/* Create a new mapping symbol for the transition to STATE. */
1453
1454static void
1455make_mapping_symbol (enum mstate state, valueT value, fragS * frag)
1456{
1457 symbolS *symbolP;
1458 const char *symname;
1459 int type;
1460
1461 switch (state)
1462 {
1463 case MAP_DATA:
1464 symname = "$d";
1465 type = BSF_NO_FLAGS;
1466 break;
1467 case MAP_INSN:
1468 symname = "$x";
1469 type = BSF_NO_FLAGS;
1470 break;
1471 default:
1472 abort ();
1473 }
1474
1475 symbolP = symbol_new (symname, now_seg, value, frag);
1476 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
1477
1478 /* Save the mapping symbols for future reference. Also check that
1479 we do not place two mapping symbols at the same offset within a
1480 frag. We'll handle overlap between frags in
1481 check_mapping_symbols.
1482
1483 If .fill or other data filling directive generates zero sized data,
1484 the mapping symbol for the following code will have the same value
1485 as the one generated for the data filling directive. In this case,
1486 we replace the old symbol with the new one at the same address. */
1487 if (value == 0)
1488 {
1489 if (frag->tc_frag_data.first_map != NULL)
1490 {
1491 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
1492 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP,
1493 &symbol_lastP);
1494 }
1495 frag->tc_frag_data.first_map = symbolP;
1496 }
1497 if (frag->tc_frag_data.last_map != NULL)
1498 {
1499 know (S_GET_VALUE (frag->tc_frag_data.last_map) <=
1500 S_GET_VALUE (symbolP));
1501 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
1502 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP,
1503 &symbol_lastP);
1504 }
1505 frag->tc_frag_data.last_map = symbolP;
1506}
1507
1508/* We must sometimes convert a region marked as code to data during
1509 code alignment, if an odd number of bytes have to be padded. The
1510 code mapping symbol is pushed to an aligned address. */
1511
1512static void
1513insert_data_mapping_symbol (enum mstate state,
1514 valueT value, fragS * frag, offsetT bytes)
1515{
1516 /* If there was already a mapping symbol, remove it. */
1517 if (frag->tc_frag_data.last_map != NULL
1518 && S_GET_VALUE (frag->tc_frag_data.last_map) ==
1519 frag->fr_address + value)
1520 {
1521 symbolS *symp = frag->tc_frag_data.last_map;
1522
1523 if (value == 0)
1524 {
1525 know (frag->tc_frag_data.first_map == symp);
1526 frag->tc_frag_data.first_map = NULL;
1527 }
1528 frag->tc_frag_data.last_map = NULL;
1529 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
1530 }
1531
1532 make_mapping_symbol (MAP_DATA, value, frag);
1533 make_mapping_symbol (state, value + bytes, frag);
1534}
1535
1536static void mapping_state_2 (enum mstate state, int max_chars);
1537
1538/* Set the mapping state to STATE. Only call this when about to
1539 emit some STATE bytes to the file. */
1540
1541void
1542mapping_state (enum mstate state)
1543{
1544 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1545
a578ef7e
JW
1546 if (state == MAP_INSN)
1547 /* AArch64 instructions require 4-byte alignment. When emitting
1548 instructions into any section, record the appropriate section
1549 alignment. */
1550 record_alignment (now_seg, 2);
1551
448eb63d
RL
1552 if (mapstate == state)
1553 /* The mapping symbol has already been emitted.
1554 There is nothing else to do. */
1555 return;
1556
c1baaddf 1557#define TRANSITION(from, to) (mapstate == (from) && state == (to))
a97902de
RL
1558 if (TRANSITION (MAP_UNDEFINED, MAP_DATA) && !subseg_text_p (now_seg))
1559 /* Emit MAP_DATA within executable section in order. Otherwise, it will be
c1baaddf 1560 evaluated later in the next else. */
a06ea964 1561 return;
c1baaddf
RL
1562 else if (TRANSITION (MAP_UNDEFINED, MAP_INSN))
1563 {
1564 /* Only add the symbol if the offset is > 0:
1565 if we're at the first frag, check it's size > 0;
1566 if we're not at the first frag, then for sure
1567 the offset is > 0. */
1568 struct frag *const frag_first = seg_info (now_seg)->frchainP->frch_root;
1569 const int add_symbol = (frag_now != frag_first)
1570 || (frag_now_fix () > 0);
1571
1572 if (add_symbol)
1573 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
1574 }
1575#undef TRANSITION
a06ea964
NC
1576
1577 mapping_state_2 (state, 0);
a06ea964
NC
1578}
1579
1580/* Same as mapping_state, but MAX_CHARS bytes have already been
1581 allocated. Put the mapping symbol that far back. */
1582
1583static void
1584mapping_state_2 (enum mstate state, int max_chars)
1585{
1586 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1587
1588 if (!SEG_NORMAL (now_seg))
1589 return;
1590
1591 if (mapstate == state)
1592 /* The mapping symbol has already been emitted.
1593 There is nothing else to do. */
1594 return;
1595
1596 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
1597 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
1598}
1599#else
1600#define mapping_state(x) /* nothing */
1601#define mapping_state_2(x, y) /* nothing */
1602#endif
1603
1604/* Directives: sectioning and alignment. */
1605
1606static void
1607s_bss (int ignore ATTRIBUTE_UNUSED)
1608{
1609 /* We don't support putting frags in the BSS segment, we fake it by
1610 marking in_bss, then looking at s_skip for clues. */
1611 subseg_set (bss_section, 0);
1612 demand_empty_rest_of_line ();
1613 mapping_state (MAP_DATA);
1614}
1615
1616static void
1617s_even (int ignore ATTRIBUTE_UNUSED)
1618{
1619 /* Never make frag if expect extra pass. */
1620 if (!need_pass_2)
1621 frag_align (1, 0, 0);
1622
1623 record_alignment (now_seg, 1);
1624
1625 demand_empty_rest_of_line ();
1626}
1627
1628/* Directives: Literal pools. */
1629
1630static literal_pool *
1631find_literal_pool (int size)
1632{
1633 literal_pool *pool;
1634
1635 for (pool = list_of_pools; pool != NULL; pool = pool->next)
1636 {
1637 if (pool->section == now_seg
1638 && pool->sub_section == now_subseg && pool->size == size)
1639 break;
1640 }
1641
1642 return pool;
1643}
1644
1645static literal_pool *
1646find_or_make_literal_pool (int size)
1647{
1648 /* Next literal pool ID number. */
1649 static unsigned int latest_pool_num = 1;
1650 literal_pool *pool;
1651
1652 pool = find_literal_pool (size);
1653
1654 if (pool == NULL)
1655 {
1656 /* Create a new pool. */
add39d23 1657 pool = XNEW (literal_pool);
a06ea964
NC
1658 if (!pool)
1659 return NULL;
1660
1661 /* Currently we always put the literal pool in the current text
1662 section. If we were generating "small" model code where we
1663 knew that all code and initialised data was within 1MB then
1664 we could output literals to mergeable, read-only data
1665 sections. */
1666
1667 pool->next_free_entry = 0;
1668 pool->section = now_seg;
1669 pool->sub_section = now_subseg;
1670 pool->size = size;
1671 pool->next = list_of_pools;
1672 pool->symbol = NULL;
1673
1674 /* Add it to the list. */
1675 list_of_pools = pool;
1676 }
1677
1678 /* New pools, and emptied pools, will have a NULL symbol. */
1679 if (pool->symbol == NULL)
1680 {
1681 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
1682 (valueT) 0, &zero_address_frag);
1683 pool->id = latest_pool_num++;
1684 }
1685
1686 /* Done. */
1687 return pool;
1688}
1689
1690/* Add the literal of size SIZE in *EXP to the relevant literal pool.
1691 Return TRUE on success, otherwise return FALSE. */
1692static bfd_boolean
1693add_to_lit_pool (expressionS *exp, int size)
1694{
1695 literal_pool *pool;
1696 unsigned int entry;
1697
1698 pool = find_or_make_literal_pool (size);
1699
1700 /* Check if this literal value is already in the pool. */
1701 for (entry = 0; entry < pool->next_free_entry; entry++)
1702 {
55d9b4c1
NC
1703 expressionS * litexp = & pool->literals[entry].exp;
1704
1705 if ((litexp->X_op == exp->X_op)
a06ea964 1706 && (exp->X_op == O_constant)
55d9b4c1
NC
1707 && (litexp->X_add_number == exp->X_add_number)
1708 && (litexp->X_unsigned == exp->X_unsigned))
a06ea964
NC
1709 break;
1710
55d9b4c1 1711 if ((litexp->X_op == exp->X_op)
a06ea964 1712 && (exp->X_op == O_symbol)
55d9b4c1
NC
1713 && (litexp->X_add_number == exp->X_add_number)
1714 && (litexp->X_add_symbol == exp->X_add_symbol)
1715 && (litexp->X_op_symbol == exp->X_op_symbol))
a06ea964
NC
1716 break;
1717 }
1718
1719 /* Do we need to create a new entry? */
1720 if (entry == pool->next_free_entry)
1721 {
1722 if (entry >= MAX_LITERAL_POOL_SIZE)
1723 {
1724 set_syntax_error (_("literal pool overflow"));
1725 return FALSE;
1726 }
1727
55d9b4c1 1728 pool->literals[entry].exp = *exp;
a06ea964 1729 pool->next_free_entry += 1;
55d9b4c1
NC
1730 if (exp->X_op == O_big)
1731 {
1732 /* PR 16688: Bignums are held in a single global array. We must
1733 copy and preserve that value now, before it is overwritten. */
add39d23
TS
1734 pool->literals[entry].bignum = XNEWVEC (LITTLENUM_TYPE,
1735 exp->X_add_number);
55d9b4c1
NC
1736 memcpy (pool->literals[entry].bignum, generic_bignum,
1737 CHARS_PER_LITTLENUM * exp->X_add_number);
1738 }
1739 else
1740 pool->literals[entry].bignum = NULL;
a06ea964
NC
1741 }
1742
1743 exp->X_op = O_symbol;
1744 exp->X_add_number = ((int) entry) * size;
1745 exp->X_add_symbol = pool->symbol;
1746
1747 return TRUE;
1748}
1749
1750/* Can't use symbol_new here, so have to create a symbol and then at
1751 a later date assign it a value. Thats what these functions do. */
1752
1753static void
1754symbol_locate (symbolS * symbolP,
1755 const char *name,/* It is copied, the caller can modify. */
1756 segT segment, /* Segment identifier (SEG_<something>). */
1757 valueT valu, /* Symbol value. */
1758 fragS * frag) /* Associated fragment. */
1759{
e57e6ddc 1760 size_t name_length;
a06ea964
NC
1761 char *preserved_copy_of_name;
1762
1763 name_length = strlen (name) + 1; /* +1 for \0. */
1764 obstack_grow (&notes, name, name_length);
1765 preserved_copy_of_name = obstack_finish (&notes);
1766
1767#ifdef tc_canonicalize_symbol_name
1768 preserved_copy_of_name =
1769 tc_canonicalize_symbol_name (preserved_copy_of_name);
1770#endif
1771
1772 S_SET_NAME (symbolP, preserved_copy_of_name);
1773
1774 S_SET_SEGMENT (symbolP, segment);
1775 S_SET_VALUE (symbolP, valu);
1776 symbol_clear_list_pointers (symbolP);
1777
1778 symbol_set_frag (symbolP, frag);
1779
1780 /* Link to end of symbol chain. */
1781 {
1782 extern int symbol_table_frozen;
1783
1784 if (symbol_table_frozen)
1785 abort ();
1786 }
1787
1788 symbol_append (symbolP, symbol_lastP, &symbol_rootP, &symbol_lastP);
1789
1790 obj_symbol_new_hook (symbolP);
1791
1792#ifdef tc_symbol_new_hook
1793 tc_symbol_new_hook (symbolP);
1794#endif
1795
1796#ifdef DEBUG_SYMS
1797 verify_symbol_chain (symbol_rootP, symbol_lastP);
1798#endif /* DEBUG_SYMS */
1799}
1800
1801
1802static void
1803s_ltorg (int ignored ATTRIBUTE_UNUSED)
1804{
1805 unsigned int entry;
1806 literal_pool *pool;
1807 char sym_name[20];
1808 int align;
1809
67a32447 1810 for (align = 2; align <= 4; align++)
a06ea964
NC
1811 {
1812 int size = 1 << align;
1813
1814 pool = find_literal_pool (size);
1815 if (pool == NULL || pool->symbol == NULL || pool->next_free_entry == 0)
1816 continue;
1817
a06ea964
NC
1818 /* Align pool as you have word accesses.
1819 Only make a frag if we have to. */
1820 if (!need_pass_2)
1821 frag_align (align, 0, 0);
1822
7ea12e5c
NC
1823 mapping_state (MAP_DATA);
1824
a06ea964
NC
1825 record_alignment (now_seg, align);
1826
1827 sprintf (sym_name, "$$lit_\002%x", pool->id);
1828
1829 symbol_locate (pool->symbol, sym_name, now_seg,
1830 (valueT) frag_now_fix (), frag_now);
1831 symbol_table_insert (pool->symbol);
1832
1833 for (entry = 0; entry < pool->next_free_entry; entry++)
55d9b4c1
NC
1834 {
1835 expressionS * exp = & pool->literals[entry].exp;
1836
1837 if (exp->X_op == O_big)
1838 {
1839 /* PR 16688: Restore the global bignum value. */
1840 gas_assert (pool->literals[entry].bignum != NULL);
1841 memcpy (generic_bignum, pool->literals[entry].bignum,
1842 CHARS_PER_LITTLENUM * exp->X_add_number);
1843 }
1844
1845 /* First output the expression in the instruction to the pool. */
1846 emit_expr (exp, size); /* .word|.xword */
1847
1848 if (exp->X_op == O_big)
1849 {
1850 free (pool->literals[entry].bignum);
1851 pool->literals[entry].bignum = NULL;
1852 }
1853 }
a06ea964
NC
1854
1855 /* Mark the pool as empty. */
1856 pool->next_free_entry = 0;
1857 pool->symbol = NULL;
1858 }
1859}
1860
1861#ifdef OBJ_ELF
1862/* Forward declarations for functions below, in the MD interface
1863 section. */
1864static fixS *fix_new_aarch64 (fragS *, int, short, expressionS *, int, int);
1865static struct reloc_table_entry * find_reloc_table_entry (char **);
1866
1867/* Directives: Data. */
1868/* N.B. the support for relocation suffix in this directive needs to be
1869 implemented properly. */
1870
1871static void
1872s_aarch64_elf_cons (int nbytes)
1873{
1874 expressionS exp;
1875
1876#ifdef md_flush_pending_output
1877 md_flush_pending_output ();
1878#endif
1879
1880 if (is_it_end_of_statement ())
1881 {
1882 demand_empty_rest_of_line ();
1883 return;
1884 }
1885
1886#ifdef md_cons_align
1887 md_cons_align (nbytes);
1888#endif
1889
1890 mapping_state (MAP_DATA);
1891 do
1892 {
1893 struct reloc_table_entry *reloc;
1894
1895 expression (&exp);
1896
1897 if (exp.X_op != O_symbol)
1898 emit_expr (&exp, (unsigned int) nbytes);
1899 else
1900 {
1901 skip_past_char (&input_line_pointer, '#');
1902 if (skip_past_char (&input_line_pointer, ':'))
1903 {
1904 reloc = find_reloc_table_entry (&input_line_pointer);
1905 if (reloc == NULL)
1906 as_bad (_("unrecognized relocation suffix"));
1907 else
1908 as_bad (_("unimplemented relocation suffix"));
1909 ignore_rest_of_line ();
1910 return;
1911 }
1912 else
1913 emit_expr (&exp, (unsigned int) nbytes);
1914 }
1915 }
1916 while (*input_line_pointer++ == ',');
1917
1918 /* Put terminator back into stream. */
1919 input_line_pointer--;
1920 demand_empty_rest_of_line ();
1921}
1922
1923#endif /* OBJ_ELF */
1924
1925/* Output a 32-bit word, but mark as an instruction. */
1926
1927static void
1928s_aarch64_inst (int ignored ATTRIBUTE_UNUSED)
1929{
1930 expressionS exp;
1931
1932#ifdef md_flush_pending_output
1933 md_flush_pending_output ();
1934#endif
1935
1936 if (is_it_end_of_statement ())
1937 {
1938 demand_empty_rest_of_line ();
1939 return;
1940 }
1941
a97902de 1942 /* Sections are assumed to start aligned. In executable section, there is no
c1baaddf
RL
1943 MAP_DATA symbol pending. So we only align the address during
1944 MAP_DATA --> MAP_INSN transition.
eb9d6cc9 1945 For other sections, this is not guaranteed. */
c1baaddf 1946 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
eb9d6cc9 1947 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
a06ea964 1948 frag_align_code (2, 0);
c1baaddf 1949
a06ea964
NC
1950#ifdef OBJ_ELF
1951 mapping_state (MAP_INSN);
1952#endif
1953
1954 do
1955 {
1956 expression (&exp);
1957 if (exp.X_op != O_constant)
1958 {
1959 as_bad (_("constant expression required"));
1960 ignore_rest_of_line ();
1961 return;
1962 }
1963
1964 if (target_big_endian)
1965 {
1966 unsigned int val = exp.X_add_number;
1967 exp.X_add_number = SWAP_32 (val);
1968 }
1969 emit_expr (&exp, 4);
1970 }
1971 while (*input_line_pointer++ == ',');
1972
1973 /* Put terminator back into stream. */
1974 input_line_pointer--;
1975 demand_empty_rest_of_line ();
1976}
1977
1978#ifdef OBJ_ELF
43a357f9
RL
1979/* Emit BFD_RELOC_AARCH64_TLSDESC_ADD on the next ADD instruction. */
1980
1981static void
1982s_tlsdescadd (int ignored ATTRIBUTE_UNUSED)
1983{
1984 expressionS exp;
1985
1986 expression (&exp);
1987 frag_grow (4);
1988 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
1989 BFD_RELOC_AARCH64_TLSDESC_ADD);
1990
1991 demand_empty_rest_of_line ();
1992}
1993
a06ea964
NC
1994/* Emit BFD_RELOC_AARCH64_TLSDESC_CALL on the next BLR instruction. */
1995
1996static void
1997s_tlsdesccall (int ignored ATTRIBUTE_UNUSED)
1998{
1999 expressionS exp;
2000
2001 /* Since we're just labelling the code, there's no need to define a
2002 mapping symbol. */
2003 expression (&exp);
2004 /* Make sure there is enough room in this frag for the following
2005 blr. This trick only works if the blr follows immediately after
2006 the .tlsdesc directive. */
2007 frag_grow (4);
2008 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
2009 BFD_RELOC_AARCH64_TLSDESC_CALL);
2010
2011 demand_empty_rest_of_line ();
2012}
43a357f9
RL
2013
2014/* Emit BFD_RELOC_AARCH64_TLSDESC_LDR on the next LDR instruction. */
2015
2016static void
2017s_tlsdescldr (int ignored ATTRIBUTE_UNUSED)
2018{
2019 expressionS exp;
2020
2021 expression (&exp);
2022 frag_grow (4);
2023 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
2024 BFD_RELOC_AARCH64_TLSDESC_LDR);
2025
2026 demand_empty_rest_of_line ();
2027}
a06ea964
NC
2028#endif /* OBJ_ELF */
2029
2030static void s_aarch64_arch (int);
2031static void s_aarch64_cpu (int);
ae527cd8 2032static void s_aarch64_arch_extension (int);
a06ea964
NC
2033
2034/* This table describes all the machine specific pseudo-ops the assembler
2035 has to support. The fields are:
2036 pseudo-op name without dot
2037 function to call to execute this pseudo-op
2038 Integer arg to pass to the function. */
2039
2040const pseudo_typeS md_pseudo_table[] = {
2041 /* Never called because '.req' does not start a line. */
2042 {"req", s_req, 0},
2043 {"unreq", s_unreq, 0},
2044 {"bss", s_bss, 0},
2045 {"even", s_even, 0},
2046 {"ltorg", s_ltorg, 0},
2047 {"pool", s_ltorg, 0},
2048 {"cpu", s_aarch64_cpu, 0},
2049 {"arch", s_aarch64_arch, 0},
ae527cd8 2050 {"arch_extension", s_aarch64_arch_extension, 0},
a06ea964
NC
2051 {"inst", s_aarch64_inst, 0},
2052#ifdef OBJ_ELF
43a357f9 2053 {"tlsdescadd", s_tlsdescadd, 0},
a06ea964 2054 {"tlsdesccall", s_tlsdesccall, 0},
43a357f9 2055 {"tlsdescldr", s_tlsdescldr, 0},
a06ea964
NC
2056 {"word", s_aarch64_elf_cons, 4},
2057 {"long", s_aarch64_elf_cons, 4},
2058 {"xword", s_aarch64_elf_cons, 8},
2059 {"dword", s_aarch64_elf_cons, 8},
2060#endif
2061 {0, 0, 0}
2062};
2063\f
2064
2065/* Check whether STR points to a register name followed by a comma or the
2066 end of line; REG_TYPE indicates which register types are checked
2067 against. Return TRUE if STR is such a register name; otherwise return
2068 FALSE. The function does not intend to produce any diagnostics, but since
2069 the register parser aarch64_reg_parse, which is called by this function,
2070 does produce diagnostics, we call clear_error to clear any diagnostics
2071 that may be generated by aarch64_reg_parse.
2072 Also, the function returns FALSE directly if there is any user error
2073 present at the function entry. This prevents the existing diagnostics
2074 state from being spoiled.
2075 The function currently serves parse_constant_immediate and
2076 parse_big_immediate only. */
2077static bfd_boolean
2078reg_name_p (char *str, aarch64_reg_type reg_type)
2079{
2080 int reg;
2081
2082 /* Prevent the diagnostics state from being spoiled. */
2083 if (error_p ())
2084 return FALSE;
2085
2086 reg = aarch64_reg_parse (&str, reg_type, NULL, NULL);
2087
2088 /* Clear the parsing error that may be set by the reg parser. */
2089 clear_error ();
2090
2091 if (reg == PARSE_FAIL)
2092 return FALSE;
2093
2094 skip_whitespace (str);
2095 if (*str == ',' || is_end_of_line[(unsigned int) *str])
2096 return TRUE;
2097
2098 return FALSE;
2099}
2100
2101/* Parser functions used exclusively in instruction operands. */
2102
2103/* Parse an immediate expression which may not be constant.
2104
2105 To prevent the expression parser from pushing a register name
2106 into the symbol table as an undefined symbol, firstly a check is
1799c0d0
RS
2107 done to find out whether STR is a register of type REG_TYPE followed
2108 by a comma or the end of line. Return FALSE if STR is such a string. */
a06ea964
NC
2109
2110static bfd_boolean
1799c0d0
RS
2111parse_immediate_expression (char **str, expressionS *exp,
2112 aarch64_reg_type reg_type)
a06ea964 2113{
1799c0d0 2114 if (reg_name_p (*str, reg_type))
a06ea964
NC
2115 {
2116 set_recoverable_error (_("immediate operand required"));
2117 return FALSE;
2118 }
2119
2120 my_get_expression (exp, str, GE_OPT_PREFIX, 1);
2121
2122 if (exp->X_op == O_absent)
2123 {
2124 set_fatal_syntax_error (_("missing immediate expression"));
2125 return FALSE;
2126 }
2127
2128 return TRUE;
2129}
2130
2131/* Constant immediate-value read function for use in insn parsing.
2132 STR points to the beginning of the immediate (with the optional
1799c0d0
RS
2133 leading #); *VAL receives the value. REG_TYPE says which register
2134 names should be treated as registers rather than as symbolic immediates.
a06ea964
NC
2135
2136 Return TRUE on success; otherwise return FALSE. */
2137
2138static bfd_boolean
1799c0d0 2139parse_constant_immediate (char **str, int64_t *val, aarch64_reg_type reg_type)
a06ea964
NC
2140{
2141 expressionS exp;
2142
1799c0d0 2143 if (! parse_immediate_expression (str, &exp, reg_type))
a06ea964
NC
2144 return FALSE;
2145
2146 if (exp.X_op != O_constant)
2147 {
2148 set_syntax_error (_("constant expression required"));
2149 return FALSE;
2150 }
2151
2152 *val = exp.X_add_number;
2153 return TRUE;
2154}
2155
2156static uint32_t
2157encode_imm_float_bits (uint32_t imm)
2158{
2159 return ((imm >> 19) & 0x7f) /* b[25:19] -> b[6:0] */
2160 | ((imm >> (31 - 7)) & 0x80); /* b[31] -> b[7] */
2161}
2162
62b0d0d5
YZ
2163/* Return TRUE if the single-precision floating-point value encoded in IMM
2164 can be expressed in the AArch64 8-bit signed floating-point format with
2165 3-bit exponent and normalized 4 bits of precision; in other words, the
2166 floating-point value must be expressable as
2167 (+/-) n / 16 * power (2, r)
2168 where n and r are integers such that 16 <= n <=31 and -3 <= r <= 4. */
2169
a06ea964
NC
2170static bfd_boolean
2171aarch64_imm_float_p (uint32_t imm)
2172{
62b0d0d5
YZ
2173 /* If a single-precision floating-point value has the following bit
2174 pattern, it can be expressed in the AArch64 8-bit floating-point
2175 format:
2176
2177 3 32222222 2221111111111
a06ea964 2178 1 09876543 21098765432109876543210
62b0d0d5
YZ
2179 n Eeeeeexx xxxx0000000000000000000
2180
2181 where n, e and each x are either 0 or 1 independently, with
2182 E == ~ e. */
a06ea964 2183
62b0d0d5
YZ
2184 uint32_t pattern;
2185
2186 /* Prepare the pattern for 'Eeeeee'. */
2187 if (((imm >> 30) & 0x1) == 0)
2188 pattern = 0x3e000000;
a06ea964 2189 else
62b0d0d5
YZ
2190 pattern = 0x40000000;
2191
2192 return (imm & 0x7ffff) == 0 /* lower 19 bits are 0. */
2193 && ((imm & 0x7e000000) == pattern); /* bits 25 - 29 == ~ bit 30. */
a06ea964
NC
2194}
2195
04a3379a
RS
2196/* Return TRUE if the IEEE double value encoded in IMM can be expressed
2197 as an IEEE float without any loss of precision. Store the value in
2198 *FPWORD if so. */
62b0d0d5 2199
a06ea964 2200static bfd_boolean
04a3379a 2201can_convert_double_to_float (uint64_t imm, uint32_t *fpword)
62b0d0d5
YZ
2202{
2203 /* If a double-precision floating-point value has the following bit
04a3379a 2204 pattern, it can be expressed in a float:
62b0d0d5 2205
04a3379a
RS
2206 6 66655555555 5544 44444444 33333333 33222222 22221111 111111
2207 3 21098765432 1098 76543210 98765432 10987654 32109876 54321098 76543210
2208 n E~~~eeeeeee ssss ssssssss ssssssss SSS00000 00000000 00000000 00000000
62b0d0d5 2209
04a3379a
RS
2210 -----------------------------> nEeeeeee esssssss ssssssss sssssSSS
2211 if Eeee_eeee != 1111_1111
2212
2213 where n, e, s and S are either 0 or 1 independently and where ~ is the
2214 inverse of E. */
62b0d0d5
YZ
2215
2216 uint32_t pattern;
2217 uint32_t high32 = imm >> 32;
04a3379a 2218 uint32_t low32 = imm;
62b0d0d5 2219
04a3379a
RS
2220 /* Lower 29 bits need to be 0s. */
2221 if ((imm & 0x1fffffff) != 0)
62b0d0d5
YZ
2222 return FALSE;
2223
2224 /* Prepare the pattern for 'Eeeeeeeee'. */
2225 if (((high32 >> 30) & 0x1) == 0)
04a3379a 2226 pattern = 0x38000000;
62b0d0d5
YZ
2227 else
2228 pattern = 0x40000000;
2229
04a3379a
RS
2230 /* Check E~~~. */
2231 if ((high32 & 0x78000000) != pattern)
62b0d0d5 2232 return FALSE;
04a3379a
RS
2233
2234 /* Check Eeee_eeee != 1111_1111. */
2235 if ((high32 & 0x7ff00000) == 0x47f00000)
2236 return FALSE;
2237
2238 *fpword = ((high32 & 0xc0000000) /* 1 n bit and 1 E bit. */
2239 | ((high32 << 3) & 0x3ffffff8) /* 7 e and 20 s bits. */
2240 | (low32 >> 29)); /* 3 S bits. */
2241 return TRUE;
62b0d0d5
YZ
2242}
2243
165d4950
RS
2244/* Return true if we should treat OPERAND as a double-precision
2245 floating-point operand rather than a single-precision one. */
2246static bfd_boolean
2247double_precision_operand_p (const aarch64_opnd_info *operand)
2248{
2249 /* Check for unsuffixed SVE registers, which are allowed
2250 for LDR and STR but not in instructions that require an
2251 immediate. We get better error messages if we arbitrarily
2252 pick one size, parse the immediate normally, and then
2253 report the match failure in the normal way. */
2254 return (operand->qualifier == AARCH64_OPND_QLF_NIL
2255 || aarch64_get_qualifier_esize (operand->qualifier) == 8);
2256}
2257
62b0d0d5
YZ
2258/* Parse a floating-point immediate. Return TRUE on success and return the
2259 value in *IMMED in the format of IEEE754 single-precision encoding.
2260 *CCP points to the start of the string; DP_P is TRUE when the immediate
2261 is expected to be in double-precision (N.B. this only matters when
1799c0d0
RS
2262 hexadecimal representation is involved). REG_TYPE says which register
2263 names should be treated as registers rather than as symbolic immediates.
62b0d0d5 2264
874d7e6e
RS
2265 This routine accepts any IEEE float; it is up to the callers to reject
2266 invalid ones. */
62b0d0d5
YZ
2267
2268static bfd_boolean
1799c0d0
RS
2269parse_aarch64_imm_float (char **ccp, int *immed, bfd_boolean dp_p,
2270 aarch64_reg_type reg_type)
a06ea964
NC
2271{
2272 char *str = *ccp;
2273 char *fpnum;
2274 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2275 int found_fpchar = 0;
62b0d0d5
YZ
2276 int64_t val = 0;
2277 unsigned fpword = 0;
2278 bfd_boolean hex_p = FALSE;
a06ea964
NC
2279
2280 skip_past_char (&str, '#');
2281
a06ea964
NC
2282 fpnum = str;
2283 skip_whitespace (fpnum);
2284
2285 if (strncmp (fpnum, "0x", 2) == 0)
62b0d0d5
YZ
2286 {
2287 /* Support the hexadecimal representation of the IEEE754 encoding.
2288 Double-precision is expected when DP_P is TRUE, otherwise the
2289 representation should be in single-precision. */
1799c0d0 2290 if (! parse_constant_immediate (&str, &val, reg_type))
62b0d0d5
YZ
2291 goto invalid_fp;
2292
2293 if (dp_p)
2294 {
04a3379a 2295 if (!can_convert_double_to_float (val, &fpword))
62b0d0d5
YZ
2296 goto invalid_fp;
2297 }
2298 else if ((uint64_t) val > 0xffffffff)
2299 goto invalid_fp;
2300 else
2301 fpword = val;
2302
2303 hex_p = TRUE;
2304 }
a06ea964
NC
2305 else
2306 {
6a9deabe
RS
2307 if (reg_name_p (str, reg_type))
2308 {
2309 set_recoverable_error (_("immediate operand required"));
2310 return FALSE;
2311 }
2312
62b0d0d5
YZ
2313 /* We must not accidentally parse an integer as a floating-point number.
2314 Make sure that the value we parse is not an integer by checking for
2315 special characters '.' or 'e'. */
a06ea964
NC
2316 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
2317 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
2318 {
2319 found_fpchar = 1;
2320 break;
2321 }
2322
2323 if (!found_fpchar)
2324 return FALSE;
2325 }
2326
62b0d0d5 2327 if (! hex_p)
a06ea964 2328 {
a06ea964
NC
2329 int i;
2330
62b0d0d5
YZ
2331 if ((str = atof_ieee (str, 's', words)) == NULL)
2332 goto invalid_fp;
2333
a06ea964
NC
2334 /* Our FP word must be 32 bits (single-precision FP). */
2335 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
2336 {
2337 fpword <<= LITTLENUM_NUMBER_OF_BITS;
2338 fpword |= words[i];
2339 }
62b0d0d5 2340 }
a06ea964 2341
874d7e6e
RS
2342 *immed = fpword;
2343 *ccp = str;
2344 return TRUE;
a06ea964
NC
2345
2346invalid_fp:
2347 set_fatal_syntax_error (_("invalid floating-point constant"));
2348 return FALSE;
2349}
2350
2351/* Less-generic immediate-value read function with the possibility of loading
2352 a big (64-bit) immediate, as required by AdvSIMD Modified immediate
2353 instructions.
2354
2355 To prevent the expression parser from pushing a register name into the
2356 symbol table as an undefined symbol, a check is firstly done to find
1799c0d0
RS
2357 out whether STR is a register of type REG_TYPE followed by a comma or
2358 the end of line. Return FALSE if STR is such a register. */
a06ea964
NC
2359
2360static bfd_boolean
1799c0d0 2361parse_big_immediate (char **str, int64_t *imm, aarch64_reg_type reg_type)
a06ea964
NC
2362{
2363 char *ptr = *str;
2364
1799c0d0 2365 if (reg_name_p (ptr, reg_type))
a06ea964
NC
2366 {
2367 set_syntax_error (_("immediate operand required"));
2368 return FALSE;
2369 }
2370
2371 my_get_expression (&inst.reloc.exp, &ptr, GE_OPT_PREFIX, 1);
2372
2373 if (inst.reloc.exp.X_op == O_constant)
2374 *imm = inst.reloc.exp.X_add_number;
2375
2376 *str = ptr;
2377
2378 return TRUE;
2379}
2380
2381/* Set operand IDX of the *INSTR that needs a GAS internal fixup.
2382 if NEED_LIBOPCODES is non-zero, the fixup will need
2383 assistance from the libopcodes. */
2384
2385static inline void
2386aarch64_set_gas_internal_fixup (struct reloc *reloc,
2387 const aarch64_opnd_info *operand,
2388 int need_libopcodes_p)
2389{
2390 reloc->type = BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2391 reloc->opnd = operand->type;
2392 if (need_libopcodes_p)
2393 reloc->need_libopcodes_p = 1;
2394};
2395
2396/* Return TRUE if the instruction needs to be fixed up later internally by
2397 the GAS; otherwise return FALSE. */
2398
2399static inline bfd_boolean
2400aarch64_gas_internal_fixup_p (void)
2401{
2402 return inst.reloc.type == BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2403}
2404
2405/* Assign the immediate value to the relavant field in *OPERAND if
2406 RELOC->EXP is a constant expression; otherwise, flag that *OPERAND
2407 needs an internal fixup in a later stage.
2408 ADDR_OFF_P determines whether it is the field ADDR.OFFSET.IMM or
2409 IMM.VALUE that may get assigned with the constant. */
2410static inline void
2411assign_imm_if_const_or_fixup_later (struct reloc *reloc,
2412 aarch64_opnd_info *operand,
2413 int addr_off_p,
2414 int need_libopcodes_p,
2415 int skip_p)
2416{
2417 if (reloc->exp.X_op == O_constant)
2418 {
2419 if (addr_off_p)
2420 operand->addr.offset.imm = reloc->exp.X_add_number;
2421 else
2422 operand->imm.value = reloc->exp.X_add_number;
2423 reloc->type = BFD_RELOC_UNUSED;
2424 }
2425 else
2426 {
2427 aarch64_set_gas_internal_fixup (reloc, operand, need_libopcodes_p);
2428 /* Tell libopcodes to ignore this operand or not. This is helpful
2429 when one of the operands needs to be fixed up later but we need
2430 libopcodes to check the other operands. */
2431 operand->skip = skip_p;
2432 }
2433}
2434
2435/* Relocation modifiers. Each entry in the table contains the textual
2436 name for the relocation which may be placed before a symbol used as
2437 a load/store offset, or add immediate. It must be surrounded by a
2438 leading and trailing colon, for example:
2439
2440 ldr x0, [x1, #:rello:varsym]
2441 add x0, x1, #:rello:varsym */
2442
2443struct reloc_table_entry
2444{
2445 const char *name;
2446 int pc_rel;
6f4a313b 2447 bfd_reloc_code_real_type adr_type;
a06ea964
NC
2448 bfd_reloc_code_real_type adrp_type;
2449 bfd_reloc_code_real_type movw_type;
2450 bfd_reloc_code_real_type add_type;
2451 bfd_reloc_code_real_type ldst_type;
74ad790c 2452 bfd_reloc_code_real_type ld_literal_type;
a06ea964
NC
2453};
2454
2455static struct reloc_table_entry reloc_table[] = {
2456 /* Low 12 bits of absolute address: ADD/i and LDR/STR */
2457 {"lo12", 0,
6f4a313b 2458 0, /* adr_type */
a06ea964
NC
2459 0,
2460 0,
2461 BFD_RELOC_AARCH64_ADD_LO12,
74ad790c
MS
2462 BFD_RELOC_AARCH64_LDST_LO12,
2463 0},
a06ea964
NC
2464
2465 /* Higher 21 bits of pc-relative page offset: ADRP */
2466 {"pg_hi21", 1,
6f4a313b 2467 0, /* adr_type */
a06ea964
NC
2468 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
2469 0,
2470 0,
74ad790c 2471 0,
a06ea964
NC
2472 0},
2473
2474 /* Higher 21 bits of pc-relative page offset: ADRP, no check */
2475 {"pg_hi21_nc", 1,
6f4a313b 2476 0, /* adr_type */
a06ea964
NC
2477 BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL,
2478 0,
2479 0,
74ad790c 2480 0,
a06ea964
NC
2481 0},
2482
2483 /* Most significant bits 0-15 of unsigned address/value: MOVZ */
2484 {"abs_g0", 0,
6f4a313b 2485 0, /* adr_type */
a06ea964
NC
2486 0,
2487 BFD_RELOC_AARCH64_MOVW_G0,
2488 0,
74ad790c 2489 0,
a06ea964
NC
2490 0},
2491
2492 /* Most significant bits 0-15 of signed address/value: MOVN/Z */
2493 {"abs_g0_s", 0,
6f4a313b 2494 0, /* adr_type */
a06ea964
NC
2495 0,
2496 BFD_RELOC_AARCH64_MOVW_G0_S,
2497 0,
74ad790c 2498 0,
a06ea964
NC
2499 0},
2500
2501 /* Less significant bits 0-15 of address/value: MOVK, no check */
2502 {"abs_g0_nc", 0,
6f4a313b 2503 0, /* adr_type */
a06ea964
NC
2504 0,
2505 BFD_RELOC_AARCH64_MOVW_G0_NC,
2506 0,
74ad790c 2507 0,
a06ea964
NC
2508 0},
2509
2510 /* Most significant bits 16-31 of unsigned address/value: MOVZ */
2511 {"abs_g1", 0,
6f4a313b 2512 0, /* adr_type */
a06ea964
NC
2513 0,
2514 BFD_RELOC_AARCH64_MOVW_G1,
2515 0,
74ad790c 2516 0,
a06ea964
NC
2517 0},
2518
2519 /* Most significant bits 16-31 of signed address/value: MOVN/Z */
2520 {"abs_g1_s", 0,
6f4a313b 2521 0, /* adr_type */
a06ea964
NC
2522 0,
2523 BFD_RELOC_AARCH64_MOVW_G1_S,
2524 0,
74ad790c 2525 0,
a06ea964
NC
2526 0},
2527
2528 /* Less significant bits 16-31 of address/value: MOVK, no check */
2529 {"abs_g1_nc", 0,
6f4a313b 2530 0, /* adr_type */
a06ea964
NC
2531 0,
2532 BFD_RELOC_AARCH64_MOVW_G1_NC,
2533 0,
74ad790c 2534 0,
a06ea964
NC
2535 0},
2536
2537 /* Most significant bits 32-47 of unsigned address/value: MOVZ */
2538 {"abs_g2", 0,
6f4a313b 2539 0, /* adr_type */
a06ea964
NC
2540 0,
2541 BFD_RELOC_AARCH64_MOVW_G2,
2542 0,
74ad790c 2543 0,
a06ea964
NC
2544 0},
2545
2546 /* Most significant bits 32-47 of signed address/value: MOVN/Z */
2547 {"abs_g2_s", 0,
6f4a313b 2548 0, /* adr_type */
a06ea964
NC
2549 0,
2550 BFD_RELOC_AARCH64_MOVW_G2_S,
2551 0,
74ad790c 2552 0,
a06ea964
NC
2553 0},
2554
2555 /* Less significant bits 32-47 of address/value: MOVK, no check */
2556 {"abs_g2_nc", 0,
6f4a313b 2557 0, /* adr_type */
a06ea964
NC
2558 0,
2559 BFD_RELOC_AARCH64_MOVW_G2_NC,
2560 0,
74ad790c 2561 0,
a06ea964
NC
2562 0},
2563
2564 /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
2565 {"abs_g3", 0,
6f4a313b 2566 0, /* adr_type */
a06ea964
NC
2567 0,
2568 BFD_RELOC_AARCH64_MOVW_G3,
2569 0,
74ad790c 2570 0,
a06ea964 2571 0},
4aa2c5e2 2572
a06ea964
NC
2573 /* Get to the page containing GOT entry for a symbol. */
2574 {"got", 1,
6f4a313b 2575 0, /* adr_type */
a06ea964
NC
2576 BFD_RELOC_AARCH64_ADR_GOT_PAGE,
2577 0,
2578 0,
74ad790c 2579 0,
4aa2c5e2
MS
2580 BFD_RELOC_AARCH64_GOT_LD_PREL19},
2581
a06ea964
NC
2582 /* 12 bit offset into the page containing GOT entry for that symbol. */
2583 {"got_lo12", 0,
6f4a313b 2584 0, /* adr_type */
a06ea964
NC
2585 0,
2586 0,
2587 0,
74ad790c
MS
2588 BFD_RELOC_AARCH64_LD_GOT_LO12_NC,
2589 0},
a06ea964 2590
ca632371
RL
2591 /* 0-15 bits of address/value: MOVk, no check. */
2592 {"gotoff_g0_nc", 0,
2593 0, /* adr_type */
2594 0,
2595 BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC,
2596 0,
2597 0,
2598 0},
2599
654248e7
RL
2600 /* Most significant bits 16-31 of address/value: MOVZ. */
2601 {"gotoff_g1", 0,
2602 0, /* adr_type */
2603 0,
2604 BFD_RELOC_AARCH64_MOVW_GOTOFF_G1,
2605 0,
2606 0,
2607 0},
2608
87f5fbcc
RL
2609 /* 15 bit offset into the page containing GOT entry for that symbol. */
2610 {"gotoff_lo15", 0,
2611 0, /* adr_type */
2612 0,
2613 0,
2614 0,
2615 BFD_RELOC_AARCH64_LD64_GOTOFF_LO15,
2616 0},
2617
3b957e5b
RL
2618 /* Get to the page containing GOT TLS entry for a symbol */
2619 {"gottprel_g0_nc", 0,
2620 0, /* adr_type */
2621 0,
2622 BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC,
2623 0,
2624 0,
2625 0},
2626
2627 /* Get to the page containing GOT TLS entry for a symbol */
2628 {"gottprel_g1", 0,
2629 0, /* adr_type */
2630 0,
2631 BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1,
2632 0,
2633 0,
2634 0},
2635
a06ea964
NC
2636 /* Get to the page containing GOT TLS entry for a symbol */
2637 {"tlsgd", 0,
3c12b054 2638 BFD_RELOC_AARCH64_TLSGD_ADR_PREL21, /* adr_type */
a06ea964
NC
2639 BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21,
2640 0,
2641 0,
74ad790c 2642 0,
a06ea964
NC
2643 0},
2644
2645 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2646 {"tlsgd_lo12", 0,
6f4a313b 2647 0, /* adr_type */
a06ea964
NC
2648 0,
2649 0,
2650 BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC,
74ad790c 2651 0,
a06ea964
NC
2652 0},
2653
3e8286c0
RL
2654 /* Lower 16 bits address/value: MOVk. */
2655 {"tlsgd_g0_nc", 0,
2656 0, /* adr_type */
2657 0,
2658 BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC,
2659 0,
2660 0,
2661 0},
2662
1aa66fb1
RL
2663 /* Most significant bits 16-31 of address/value: MOVZ. */
2664 {"tlsgd_g1", 0,
2665 0, /* adr_type */
2666 0,
2667 BFD_RELOC_AARCH64_TLSGD_MOVW_G1,
2668 0,
2669 0,
2670 0},
2671
a06ea964
NC
2672 /* Get to the page containing GOT TLS entry for a symbol */
2673 {"tlsdesc", 0,
389b8029 2674 BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21, /* adr_type */
418009c2 2675 BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21,
a06ea964
NC
2676 0,
2677 0,
74ad790c 2678 0,
1ada945d 2679 BFD_RELOC_AARCH64_TLSDESC_LD_PREL19},
a06ea964
NC
2680
2681 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2682 {"tlsdesc_lo12", 0,
6f4a313b 2683 0, /* adr_type */
a06ea964
NC
2684 0,
2685 0,
2686 BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC,
74ad790c
MS
2687 BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC,
2688 0},
a06ea964 2689
6c37fedc
JW
2690 /* Get to the page containing GOT TLS entry for a symbol.
2691 The same as GD, we allocate two consecutive GOT slots
2692 for module index and module offset, the only difference
2693 with GD is the module offset should be intialized to
2694 zero without any outstanding runtime relocation. */
2695 {"tlsldm", 0,
2696 BFD_RELOC_AARCH64_TLSLD_ADR_PREL21, /* adr_type */
1107e076 2697 BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21,
6c37fedc
JW
2698 0,
2699 0,
2700 0,
2701 0},
2702
a12fad50
JW
2703 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2704 {"tlsldm_lo12_nc", 0,
2705 0, /* adr_type */
2706 0,
2707 0,
2708 BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC,
2709 0,
2710 0},
2711
70151fb5
JW
2712 /* 12 bit offset into the module TLS base address. */
2713 {"dtprel_lo12", 0,
2714 0, /* adr_type */
2715 0,
2716 0,
2717 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12,
4c562523 2718 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12,
70151fb5
JW
2719 0},
2720
13289c10
JW
2721 /* Same as dtprel_lo12, no overflow check. */
2722 {"dtprel_lo12_nc", 0,
2723 0, /* adr_type */
2724 0,
2725 0,
2726 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC,
4c562523 2727 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC,
13289c10
JW
2728 0},
2729
49df5539
JW
2730 /* bits[23:12] of offset to the module TLS base address. */
2731 {"dtprel_hi12", 0,
2732 0, /* adr_type */
2733 0,
2734 0,
2735 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12,
2736 0,
2737 0},
2738
2739 /* bits[15:0] of offset to the module TLS base address. */
2740 {"dtprel_g0", 0,
2741 0, /* adr_type */
2742 0,
2743 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0,
2744 0,
2745 0,
2746 0},
2747
2748 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
2749 {"dtprel_g0_nc", 0,
2750 0, /* adr_type */
2751 0,
2752 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC,
2753 0,
2754 0,
2755 0},
2756
2757 /* bits[31:16] of offset to the module TLS base address. */
2758 {"dtprel_g1", 0,
2759 0, /* adr_type */
2760 0,
2761 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1,
2762 0,
2763 0,
2764 0},
2765
2766 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
2767 {"dtprel_g1_nc", 0,
2768 0, /* adr_type */
2769 0,
2770 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC,
2771 0,
2772 0,
2773 0},
2774
2775 /* bits[47:32] of offset to the module TLS base address. */
2776 {"dtprel_g2", 0,
2777 0, /* adr_type */
2778 0,
2779 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2,
2780 0,
2781 0,
2782 0},
2783
43a357f9
RL
2784 /* Lower 16 bit offset into GOT entry for a symbol */
2785 {"tlsdesc_off_g0_nc", 0,
2786 0, /* adr_type */
2787 0,
2788 BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC,
2789 0,
2790 0,
2791 0},
2792
2793 /* Higher 16 bit offset into GOT entry for a symbol */
2794 {"tlsdesc_off_g1", 0,
2795 0, /* adr_type */
2796 0,
2797 BFD_RELOC_AARCH64_TLSDESC_OFF_G1,
2798 0,
2799 0,
2800 0},
2801
a06ea964
NC
2802 /* Get to the page containing GOT TLS entry for a symbol */
2803 {"gottprel", 0,
6f4a313b 2804 0, /* adr_type */
a06ea964
NC
2805 BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21,
2806 0,
2807 0,
74ad790c 2808 0,
043bf05a 2809 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19},
a06ea964
NC
2810
2811 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2812 {"gottprel_lo12", 0,
6f4a313b 2813 0, /* adr_type */
a06ea964
NC
2814 0,
2815 0,
2816 0,
74ad790c
MS
2817 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC,
2818 0},
a06ea964
NC
2819
2820 /* Get tp offset for a symbol. */
2821 {"tprel", 0,
6f4a313b 2822 0, /* adr_type */
a06ea964
NC
2823 0,
2824 0,
2825 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
74ad790c 2826 0,
a06ea964
NC
2827 0},
2828
2829 /* Get tp offset for a symbol. */
2830 {"tprel_lo12", 0,
6f4a313b 2831 0, /* adr_type */
a06ea964
NC
2832 0,
2833 0,
2834 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
74ad790c 2835 0,
a06ea964
NC
2836 0},
2837
2838 /* Get tp offset for a symbol. */
2839 {"tprel_hi12", 0,
6f4a313b 2840 0, /* adr_type */
a06ea964
NC
2841 0,
2842 0,
2843 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12,
74ad790c 2844 0,
a06ea964
NC
2845 0},
2846
2847 /* Get tp offset for a symbol. */
2848 {"tprel_lo12_nc", 0,
6f4a313b 2849 0, /* adr_type */
a06ea964
NC
2850 0,
2851 0,
2852 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC,
74ad790c 2853 0,
a06ea964
NC
2854 0},
2855
2856 /* Most significant bits 32-47 of address/value: MOVZ. */
2857 {"tprel_g2", 0,
6f4a313b 2858 0, /* adr_type */
a06ea964
NC
2859 0,
2860 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2,
2861 0,
74ad790c 2862 0,
a06ea964
NC
2863 0},
2864
2865 /* Most significant bits 16-31 of address/value: MOVZ. */
2866 {"tprel_g1", 0,
6f4a313b 2867 0, /* adr_type */
a06ea964
NC
2868 0,
2869 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1,
2870 0,
74ad790c 2871 0,
a06ea964
NC
2872 0},
2873
2874 /* Most significant bits 16-31 of address/value: MOVZ, no check. */
2875 {"tprel_g1_nc", 0,
6f4a313b 2876 0, /* adr_type */
a06ea964
NC
2877 0,
2878 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC,
2879 0,
74ad790c 2880 0,
a06ea964
NC
2881 0},
2882
2883 /* Most significant bits 0-15 of address/value: MOVZ. */
2884 {"tprel_g0", 0,
6f4a313b 2885 0, /* adr_type */
a06ea964
NC
2886 0,
2887 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0,
2888 0,
74ad790c 2889 0,
a06ea964
NC
2890 0},
2891
2892 /* Most significant bits 0-15 of address/value: MOVZ, no check. */
2893 {"tprel_g0_nc", 0,
6f4a313b 2894 0, /* adr_type */
a06ea964
NC
2895 0,
2896 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC,
2897 0,
74ad790c 2898 0,
a06ea964 2899 0},
a921b5bd
JW
2900
2901 /* 15bit offset from got entry to base address of GOT table. */
2902 {"gotpage_lo15", 0,
2903 0,
2904 0,
2905 0,
2906 0,
2907 BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15,
2908 0},
3d715ce4
JW
2909
2910 /* 14bit offset from got entry to base address of GOT table. */
2911 {"gotpage_lo14", 0,
2912 0,
2913 0,
2914 0,
2915 0,
2916 BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14,
2917 0},
a06ea964
NC
2918};
2919
2920/* Given the address of a pointer pointing to the textual name of a
2921 relocation as may appear in assembler source, attempt to find its
2922 details in reloc_table. The pointer will be updated to the character
2923 after the trailing colon. On failure, NULL will be returned;
2924 otherwise return the reloc_table_entry. */
2925
2926static struct reloc_table_entry *
2927find_reloc_table_entry (char **str)
2928{
2929 unsigned int i;
2930 for (i = 0; i < ARRAY_SIZE (reloc_table); i++)
2931 {
2932 int length = strlen (reloc_table[i].name);
2933
2934 if (strncasecmp (reloc_table[i].name, *str, length) == 0
2935 && (*str)[length] == ':')
2936 {
2937 *str += (length + 1);
2938 return &reloc_table[i];
2939 }
2940 }
2941
2942 return NULL;
2943}
2944
2945/* Mode argument to parse_shift and parser_shifter_operand. */
2946enum parse_shift_mode
2947{
98907a70 2948 SHIFTED_NONE, /* no shifter allowed */
a06ea964
NC
2949 SHIFTED_ARITH_IMM, /* "rn{,lsl|lsr|asl|asr|uxt|sxt #n}" or
2950 "#imm{,lsl #n}" */
2951 SHIFTED_LOGIC_IMM, /* "rn{,lsl|lsr|asl|asr|ror #n}" or
2952 "#imm" */
2953 SHIFTED_LSL, /* bare "lsl #n" */
2442d846 2954 SHIFTED_MUL, /* bare "mul #n" */
a06ea964 2955 SHIFTED_LSL_MSL, /* "lsl|msl #n" */
98907a70 2956 SHIFTED_MUL_VL, /* "mul vl" */
a06ea964
NC
2957 SHIFTED_REG_OFFSET /* [su]xtw|sxtx {#n} or lsl #n */
2958};
2959
2960/* Parse a <shift> operator on an AArch64 data processing instruction.
2961 Return TRUE on success; otherwise return FALSE. */
2962static bfd_boolean
2963parse_shift (char **str, aarch64_opnd_info *operand, enum parse_shift_mode mode)
2964{
2965 const struct aarch64_name_value_pair *shift_op;
2966 enum aarch64_modifier_kind kind;
2967 expressionS exp;
2968 int exp_has_prefix;
2969 char *s = *str;
2970 char *p = s;
2971
2972 for (p = *str; ISALPHA (*p); p++)
2973 ;
2974
2975 if (p == *str)
2976 {
2977 set_syntax_error (_("shift expression expected"));
2978 return FALSE;
2979 }
2980
2981 shift_op = hash_find_n (aarch64_shift_hsh, *str, p - *str);
2982
2983 if (shift_op == NULL)
2984 {
2985 set_syntax_error (_("shift operator expected"));
2986 return FALSE;
2987 }
2988
2989 kind = aarch64_get_operand_modifier (shift_op);
2990
2991 if (kind == AARCH64_MOD_MSL && mode != SHIFTED_LSL_MSL)
2992 {
2993 set_syntax_error (_("invalid use of 'MSL'"));
2994 return FALSE;
2995 }
2996
2442d846 2997 if (kind == AARCH64_MOD_MUL
98907a70
RS
2998 && mode != SHIFTED_MUL
2999 && mode != SHIFTED_MUL_VL)
2442d846
RS
3000 {
3001 set_syntax_error (_("invalid use of 'MUL'"));
3002 return FALSE;
3003 }
3004
a06ea964
NC
3005 switch (mode)
3006 {
3007 case SHIFTED_LOGIC_IMM:
3008 if (aarch64_extend_operator_p (kind) == TRUE)
3009 {
3010 set_syntax_error (_("extending shift is not permitted"));
3011 return FALSE;
3012 }
3013 break;
3014
3015 case SHIFTED_ARITH_IMM:
3016 if (kind == AARCH64_MOD_ROR)
3017 {
3018 set_syntax_error (_("'ROR' shift is not permitted"));
3019 return FALSE;
3020 }
3021 break;
3022
3023 case SHIFTED_LSL:
3024 if (kind != AARCH64_MOD_LSL)
3025 {
3026 set_syntax_error (_("only 'LSL' shift is permitted"));
3027 return FALSE;
3028 }
3029 break;
3030
2442d846
RS
3031 case SHIFTED_MUL:
3032 if (kind != AARCH64_MOD_MUL)
3033 {
3034 set_syntax_error (_("only 'MUL' is permitted"));
3035 return FALSE;
3036 }
3037 break;
3038
98907a70
RS
3039 case SHIFTED_MUL_VL:
3040 /* "MUL VL" consists of two separate tokens. Require the first
3041 token to be "MUL" and look for a following "VL". */
3042 if (kind == AARCH64_MOD_MUL)
3043 {
3044 skip_whitespace (p);
3045 if (strncasecmp (p, "vl", 2) == 0 && !ISALPHA (p[2]))
3046 {
3047 p += 2;
3048 kind = AARCH64_MOD_MUL_VL;
3049 break;
3050 }
3051 }
3052 set_syntax_error (_("only 'MUL VL' is permitted"));
3053 return FALSE;
3054
a06ea964
NC
3055 case SHIFTED_REG_OFFSET:
3056 if (kind != AARCH64_MOD_UXTW && kind != AARCH64_MOD_LSL
3057 && kind != AARCH64_MOD_SXTW && kind != AARCH64_MOD_SXTX)
3058 {
3059 set_fatal_syntax_error
3060 (_("invalid shift for the register offset addressing mode"));
3061 return FALSE;
3062 }
3063 break;
3064
3065 case SHIFTED_LSL_MSL:
3066 if (kind != AARCH64_MOD_LSL && kind != AARCH64_MOD_MSL)
3067 {
3068 set_syntax_error (_("invalid shift operator"));
3069 return FALSE;
3070 }
3071 break;
3072
3073 default:
3074 abort ();
3075 }
3076
3077 /* Whitespace can appear here if the next thing is a bare digit. */
3078 skip_whitespace (p);
3079
3080 /* Parse shift amount. */
3081 exp_has_prefix = 0;
98907a70 3082 if ((mode == SHIFTED_REG_OFFSET && *p == ']') || kind == AARCH64_MOD_MUL_VL)
a06ea964
NC
3083 exp.X_op = O_absent;
3084 else
3085 {
3086 if (is_immediate_prefix (*p))
3087 {
3088 p++;
3089 exp_has_prefix = 1;
3090 }
3091 my_get_expression (&exp, &p, GE_NO_PREFIX, 0);
3092 }
98907a70
RS
3093 if (kind == AARCH64_MOD_MUL_VL)
3094 /* For consistency, give MUL VL the same shift amount as an implicit
3095 MUL #1. */
3096 operand->shifter.amount = 1;
3097 else if (exp.X_op == O_absent)
a06ea964
NC
3098 {
3099 if (aarch64_extend_operator_p (kind) == FALSE || exp_has_prefix)
3100 {
3101 set_syntax_error (_("missing shift amount"));
3102 return FALSE;
3103 }
3104 operand->shifter.amount = 0;
3105 }
3106 else if (exp.X_op != O_constant)
3107 {
3108 set_syntax_error (_("constant shift amount required"));
3109 return FALSE;
3110 }
2442d846
RS
3111 /* For parsing purposes, MUL #n has no inherent range. The range
3112 depends on the operand and will be checked by operand-specific
3113 routines. */
3114 else if (kind != AARCH64_MOD_MUL
3115 && (exp.X_add_number < 0 || exp.X_add_number > 63))
a06ea964
NC
3116 {
3117 set_fatal_syntax_error (_("shift amount out of range 0 to 63"));
3118 return FALSE;
3119 }
3120 else
3121 {
3122 operand->shifter.amount = exp.X_add_number;
3123 operand->shifter.amount_present = 1;
3124 }
3125
3126 operand->shifter.operator_present = 1;
3127 operand->shifter.kind = kind;
3128
3129 *str = p;
3130 return TRUE;
3131}
3132
3133/* Parse a <shifter_operand> for a data processing instruction:
3134
3135 #<immediate>
3136 #<immediate>, LSL #imm
3137
3138 Validation of immediate operands is deferred to md_apply_fix.
3139
3140 Return TRUE on success; otherwise return FALSE. */
3141
3142static bfd_boolean
3143parse_shifter_operand_imm (char **str, aarch64_opnd_info *operand,
3144 enum parse_shift_mode mode)
3145{
3146 char *p;
3147
3148 if (mode != SHIFTED_ARITH_IMM && mode != SHIFTED_LOGIC_IMM)
3149 return FALSE;
3150
3151 p = *str;
3152
3153 /* Accept an immediate expression. */
3154 if (! my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX, 1))
3155 return FALSE;
3156
3157 /* Accept optional LSL for arithmetic immediate values. */
3158 if (mode == SHIFTED_ARITH_IMM && skip_past_comma (&p))
3159 if (! parse_shift (&p, operand, SHIFTED_LSL))
3160 return FALSE;
3161
3162 /* Not accept any shifter for logical immediate values. */
3163 if (mode == SHIFTED_LOGIC_IMM && skip_past_comma (&p)
3164 && parse_shift (&p, operand, mode))
3165 {
3166 set_syntax_error (_("unexpected shift operator"));
3167 return FALSE;
3168 }
3169
3170 *str = p;
3171 return TRUE;
3172}
3173
3174/* Parse a <shifter_operand> for a data processing instruction:
3175
3176 <Rm>
3177 <Rm>, <shift>
3178 #<immediate>
3179 #<immediate>, LSL #imm
3180
3181 where <shift> is handled by parse_shift above, and the last two
3182 cases are handled by the function above.
3183
3184 Validation of immediate operands is deferred to md_apply_fix.
3185
3186 Return TRUE on success; otherwise return FALSE. */
3187
3188static bfd_boolean
3189parse_shifter_operand (char **str, aarch64_opnd_info *operand,
3190 enum parse_shift_mode mode)
3191{
e1b988bb
RS
3192 const reg_entry *reg;
3193 aarch64_opnd_qualifier_t qualifier;
a06ea964
NC
3194 enum aarch64_operand_class opd_class
3195 = aarch64_get_operand_class (operand->type);
3196
e1b988bb
RS
3197 reg = aarch64_reg_parse_32_64 (str, &qualifier);
3198 if (reg)
a06ea964
NC
3199 {
3200 if (opd_class == AARCH64_OPND_CLASS_IMMEDIATE)
3201 {
3202 set_syntax_error (_("unexpected register in the immediate operand"));
3203 return FALSE;
3204 }
3205
e1b988bb 3206 if (!aarch64_check_reg_type (reg, REG_TYPE_R_Z))
a06ea964 3207 {
e1b988bb 3208 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_Z)));
a06ea964
NC
3209 return FALSE;
3210 }
3211
e1b988bb
RS
3212 operand->reg.regno = reg->number;
3213 operand->qualifier = qualifier;
a06ea964
NC
3214
3215 /* Accept optional shift operation on register. */
3216 if (! skip_past_comma (str))
3217 return TRUE;
3218
3219 if (! parse_shift (str, operand, mode))
3220 return FALSE;
3221
3222 return TRUE;
3223 }
3224 else if (opd_class == AARCH64_OPND_CLASS_MODIFIED_REG)
3225 {
3226 set_syntax_error
3227 (_("integer register expected in the extended/shifted operand "
3228 "register"));
3229 return FALSE;
3230 }
3231
3232 /* We have a shifted immediate variable. */
3233 return parse_shifter_operand_imm (str, operand, mode);
3234}
3235
3236/* Return TRUE on success; return FALSE otherwise. */
3237
3238static bfd_boolean
3239parse_shifter_operand_reloc (char **str, aarch64_opnd_info *operand,
3240 enum parse_shift_mode mode)
3241{
3242 char *p = *str;
3243
3244 /* Determine if we have the sequence of characters #: or just :
3245 coming next. If we do, then we check for a :rello: relocation
3246 modifier. If we don't, punt the whole lot to
3247 parse_shifter_operand. */
3248
3249 if ((p[0] == '#' && p[1] == ':') || p[0] == ':')
3250 {
3251 struct reloc_table_entry *entry;
3252
3253 if (p[0] == '#')
3254 p += 2;
3255 else
3256 p++;
3257 *str = p;
3258
3259 /* Try to parse a relocation. Anything else is an error. */
3260 if (!(entry = find_reloc_table_entry (str)))
3261 {
3262 set_syntax_error (_("unknown relocation modifier"));
3263 return FALSE;
3264 }
3265
3266 if (entry->add_type == 0)
3267 {
3268 set_syntax_error
3269 (_("this relocation modifier is not allowed on this instruction"));
3270 return FALSE;
3271 }
3272
3273 /* Save str before we decompose it. */
3274 p = *str;
3275
3276 /* Next, we parse the expression. */
3277 if (! my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX, 1))
3278 return FALSE;
3279
3280 /* Record the relocation type (use the ADD variant here). */
3281 inst.reloc.type = entry->add_type;
3282 inst.reloc.pc_rel = entry->pc_rel;
3283
3284 /* If str is empty, we've reached the end, stop here. */
3285 if (**str == '\0')
3286 return TRUE;
3287
55d9b4c1 3288 /* Otherwise, we have a shifted reloc modifier, so rewind to
a06ea964
NC
3289 recover the variable name and continue parsing for the shifter. */
3290 *str = p;
3291 return parse_shifter_operand_imm (str, operand, mode);
3292 }
3293
3294 return parse_shifter_operand (str, operand, mode);
3295}
3296
3297/* Parse all forms of an address expression. Information is written
3298 to *OPERAND and/or inst.reloc.
3299
3300 The A64 instruction set has the following addressing modes:
3301
3302 Offset
4df068de
RS
3303 [base] // in SIMD ld/st structure
3304 [base{,#0}] // in ld/st exclusive
a06ea964
NC
3305 [base{,#imm}]
3306 [base,Xm{,LSL #imm}]
3307 [base,Xm,SXTX {#imm}]
3308 [base,Wm,(S|U)XTW {#imm}]
3309 Pre-indexed
3310 [base,#imm]!
3311 Post-indexed
3312 [base],#imm
4df068de 3313 [base],Xm // in SIMD ld/st structure
a06ea964
NC
3314 PC-relative (literal)
3315 label
4df068de 3316 SVE:
98907a70 3317 [base,#imm,MUL VL]
4df068de
RS
3318 [base,Zm.D{,LSL #imm}]
3319 [base,Zm.S,(S|U)XTW {#imm}]
3320 [base,Zm.D,(S|U)XTW {#imm}] // ignores top 32 bits of Zm.D elements
3321 [Zn.S,#imm]
3322 [Zn.D,#imm]
3323 [Zn.S,Zm.S{,LSL #imm}] // in ADR
3324 [Zn.D,Zm.D{,LSL #imm}] // in ADR
3325 [Zn.D,Zm.D,(S|U)XTW {#imm}] // in ADR
a06ea964
NC
3326
3327 (As a convenience, the notation "=immediate" is permitted in conjunction
3328 with the pc-relative literal load instructions to automatically place an
3329 immediate value or symbolic address in a nearby literal pool and generate
3330 a hidden label which references it.)
3331
3332 Upon a successful parsing, the address structure in *OPERAND will be
3333 filled in the following way:
3334
3335 .base_regno = <base>
3336 .offset.is_reg // 1 if the offset is a register
3337 .offset.imm = <imm>
3338 .offset.regno = <Rm>
3339
3340 For different addressing modes defined in the A64 ISA:
3341
3342 Offset
3343 .pcrel=0; .preind=1; .postind=0; .writeback=0
3344 Pre-indexed
3345 .pcrel=0; .preind=1; .postind=0; .writeback=1
3346 Post-indexed
3347 .pcrel=0; .preind=0; .postind=1; .writeback=1
3348 PC-relative (literal)
3349 .pcrel=1; .preind=1; .postind=0; .writeback=0
3350
3351 The shift/extension information, if any, will be stored in .shifter.
4df068de
RS
3352 The base and offset qualifiers will be stored in *BASE_QUALIFIER and
3353 *OFFSET_QUALIFIER respectively, with NIL being used if there's no
3354 corresponding register.
a06ea964 3355
4df068de 3356 BASE_TYPE says which types of base register should be accepted and
98907a70
RS
3357 OFFSET_TYPE says the same for offset registers. IMM_SHIFT_MODE
3358 is the type of shifter that is allowed for immediate offsets,
3359 or SHIFTED_NONE if none.
3360
3361 In all other respects, it is the caller's responsibility to check
3362 for addressing modes not supported by the instruction, and to set
3363 inst.reloc.type. */
a06ea964
NC
3364
3365static bfd_boolean
4df068de
RS
3366parse_address_main (char **str, aarch64_opnd_info *operand,
3367 aarch64_opnd_qualifier_t *base_qualifier,
3368 aarch64_opnd_qualifier_t *offset_qualifier,
98907a70
RS
3369 aarch64_reg_type base_type, aarch64_reg_type offset_type,
3370 enum parse_shift_mode imm_shift_mode)
a06ea964
NC
3371{
3372 char *p = *str;
e1b988bb 3373 const reg_entry *reg;
a06ea964
NC
3374 expressionS *exp = &inst.reloc.exp;
3375
4df068de
RS
3376 *base_qualifier = AARCH64_OPND_QLF_NIL;
3377 *offset_qualifier = AARCH64_OPND_QLF_NIL;
a06ea964
NC
3378 if (! skip_past_char (&p, '['))
3379 {
3380 /* =immediate or label. */
3381 operand->addr.pcrel = 1;
3382 operand->addr.preind = 1;
3383
f41aef5f
RE
3384 /* #:<reloc_op>:<symbol> */
3385 skip_past_char (&p, '#');
73866052 3386 if (skip_past_char (&p, ':'))
f41aef5f 3387 {
6f4a313b 3388 bfd_reloc_code_real_type ty;
f41aef5f
RE
3389 struct reloc_table_entry *entry;
3390
3391 /* Try to parse a relocation modifier. Anything else is
3392 an error. */
3393 entry = find_reloc_table_entry (&p);
3394 if (! entry)
3395 {
3396 set_syntax_error (_("unknown relocation modifier"));
3397 return FALSE;
3398 }
3399
6f4a313b
MS
3400 switch (operand->type)
3401 {
3402 case AARCH64_OPND_ADDR_PCREL21:
3403 /* adr */
3404 ty = entry->adr_type;
3405 break;
3406
3407 default:
74ad790c 3408 ty = entry->ld_literal_type;
6f4a313b
MS
3409 break;
3410 }
3411
3412 if (ty == 0)
f41aef5f
RE
3413 {
3414 set_syntax_error
3415 (_("this relocation modifier is not allowed on this "
3416 "instruction"));
3417 return FALSE;
3418 }
3419
3420 /* #:<reloc_op>: */
3421 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3422 {
3423 set_syntax_error (_("invalid relocation expression"));
3424 return FALSE;
3425 }
a06ea964 3426
f41aef5f 3427 /* #:<reloc_op>:<expr> */
6f4a313b
MS
3428 /* Record the relocation type. */
3429 inst.reloc.type = ty;
f41aef5f
RE
3430 inst.reloc.pc_rel = entry->pc_rel;
3431 }
3432 else
a06ea964 3433 {
f41aef5f
RE
3434
3435 if (skip_past_char (&p, '='))
3436 /* =immediate; need to generate the literal in the literal pool. */
3437 inst.gen_lit_pool = 1;
3438
3439 if (!my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3440 {
3441 set_syntax_error (_("invalid address"));
3442 return FALSE;
3443 }
a06ea964
NC
3444 }
3445
3446 *str = p;
3447 return TRUE;
3448 }
3449
3450 /* [ */
3451
4df068de
RS
3452 reg = aarch64_addr_reg_parse (&p, base_type, base_qualifier);
3453 if (!reg || !aarch64_check_reg_type (reg, base_type))
a06ea964 3454 {
4df068de 3455 set_syntax_error (_(get_reg_expected_msg (base_type)));
a06ea964
NC
3456 return FALSE;
3457 }
e1b988bb 3458 operand->addr.base_regno = reg->number;
a06ea964
NC
3459
3460 /* [Xn */
3461 if (skip_past_comma (&p))
3462 {
3463 /* [Xn, */
3464 operand->addr.preind = 1;
3465
4df068de 3466 reg = aarch64_addr_reg_parse (&p, offset_type, offset_qualifier);
e1b988bb 3467 if (reg)
a06ea964 3468 {
4df068de 3469 if (!aarch64_check_reg_type (reg, offset_type))
e1b988bb 3470 {
4df068de 3471 set_syntax_error (_(get_reg_expected_msg (offset_type)));
e1b988bb
RS
3472 return FALSE;
3473 }
3474
a06ea964 3475 /* [Xn,Rm */
e1b988bb 3476 operand->addr.offset.regno = reg->number;
a06ea964
NC
3477 operand->addr.offset.is_reg = 1;
3478 /* Shifted index. */
3479 if (skip_past_comma (&p))
3480 {
3481 /* [Xn,Rm, */
3482 if (! parse_shift (&p, operand, SHIFTED_REG_OFFSET))
3483 /* Use the diagnostics set in parse_shift, so not set new
3484 error message here. */
3485 return FALSE;
3486 }
3487 /* We only accept:
3488 [base,Xm{,LSL #imm}]
3489 [base,Xm,SXTX {#imm}]
3490 [base,Wm,(S|U)XTW {#imm}] */
3491 if (operand->shifter.kind == AARCH64_MOD_NONE
3492 || operand->shifter.kind == AARCH64_MOD_LSL
3493 || operand->shifter.kind == AARCH64_MOD_SXTX)
3494 {
4df068de 3495 if (*offset_qualifier == AARCH64_OPND_QLF_W)
a06ea964
NC
3496 {
3497 set_syntax_error (_("invalid use of 32-bit register offset"));
3498 return FALSE;
3499 }
4df068de
RS
3500 if (aarch64_get_qualifier_esize (*base_qualifier)
3501 != aarch64_get_qualifier_esize (*offset_qualifier))
3502 {
3503 set_syntax_error (_("offset has different size from base"));
3504 return FALSE;
3505 }
a06ea964 3506 }
4df068de 3507 else if (*offset_qualifier == AARCH64_OPND_QLF_X)
a06ea964
NC
3508 {
3509 set_syntax_error (_("invalid use of 64-bit register offset"));
3510 return FALSE;
3511 }
3512 }
3513 else
3514 {
3515 /* [Xn,#:<reloc_op>:<symbol> */
3516 skip_past_char (&p, '#');
73866052 3517 if (skip_past_char (&p, ':'))
a06ea964
NC
3518 {
3519 struct reloc_table_entry *entry;
3520
3521 /* Try to parse a relocation modifier. Anything else is
3522 an error. */
3523 if (!(entry = find_reloc_table_entry (&p)))
3524 {
3525 set_syntax_error (_("unknown relocation modifier"));
3526 return FALSE;
3527 }
3528
3529 if (entry->ldst_type == 0)
3530 {
3531 set_syntax_error
3532 (_("this relocation modifier is not allowed on this "
3533 "instruction"));
3534 return FALSE;
3535 }
3536
3537 /* [Xn,#:<reloc_op>: */
3538 /* We now have the group relocation table entry corresponding to
3539 the name in the assembler source. Next, we parse the
3540 expression. */
3541 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3542 {
3543 set_syntax_error (_("invalid relocation expression"));
3544 return FALSE;
3545 }
3546
3547 /* [Xn,#:<reloc_op>:<expr> */
3548 /* Record the load/store relocation type. */
3549 inst.reloc.type = entry->ldst_type;
3550 inst.reloc.pc_rel = entry->pc_rel;
3551 }
98907a70 3552 else
a06ea964 3553 {
98907a70
RS
3554 if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3555 {
3556 set_syntax_error (_("invalid expression in the address"));
3557 return FALSE;
3558 }
3559 /* [Xn,<expr> */
3560 if (imm_shift_mode != SHIFTED_NONE && skip_past_comma (&p))
3561 /* [Xn,<expr>,<shifter> */
3562 if (! parse_shift (&p, operand, imm_shift_mode))
3563 return FALSE;
a06ea964 3564 }
a06ea964
NC
3565 }
3566 }
3567
3568 if (! skip_past_char (&p, ']'))
3569 {
3570 set_syntax_error (_("']' expected"));
3571 return FALSE;
3572 }
3573
3574 if (skip_past_char (&p, '!'))
3575 {
3576 if (operand->addr.preind && operand->addr.offset.is_reg)
3577 {
3578 set_syntax_error (_("register offset not allowed in pre-indexed "
3579 "addressing mode"));
3580 return FALSE;
3581 }
3582 /* [Xn]! */
3583 operand->addr.writeback = 1;
3584 }
3585 else if (skip_past_comma (&p))
3586 {
3587 /* [Xn], */
3588 operand->addr.postind = 1;
3589 operand->addr.writeback = 1;
3590
3591 if (operand->addr.preind)
3592 {
3593 set_syntax_error (_("cannot combine pre- and post-indexing"));
3594 return FALSE;
3595 }
3596
4df068de 3597 reg = aarch64_reg_parse_32_64 (&p, offset_qualifier);
73866052 3598 if (reg)
a06ea964
NC
3599 {
3600 /* [Xn],Xm */
e1b988bb 3601 if (!aarch64_check_reg_type (reg, REG_TYPE_R_64))
a06ea964 3602 {
e1b988bb 3603 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_64)));
a06ea964
NC
3604 return FALSE;
3605 }
e1b988bb
RS
3606
3607 operand->addr.offset.regno = reg->number;
a06ea964
NC
3608 operand->addr.offset.is_reg = 1;
3609 }
3610 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3611 {
3612 /* [Xn],#expr */
3613 set_syntax_error (_("invalid expression in the address"));
3614 return FALSE;
3615 }
3616 }
3617
3618 /* If at this point neither .preind nor .postind is set, we have a
3619 bare [Rn]{!}; reject [Rn]! but accept [Rn] as a shorthand for [Rn,#0]. */
3620 if (operand->addr.preind == 0 && operand->addr.postind == 0)
3621 {
3622 if (operand->addr.writeback)
3623 {
3624 /* Reject [Rn]! */
3625 set_syntax_error (_("missing offset in the pre-indexed address"));
3626 return FALSE;
3627 }
3628 operand->addr.preind = 1;
3629 inst.reloc.exp.X_op = O_constant;
3630 inst.reloc.exp.X_add_number = 0;
3631 }
3632
3633 *str = p;
3634 return TRUE;
3635}
3636
73866052
RS
3637/* Parse a base AArch64 address (as opposed to an SVE one). Return TRUE
3638 on success. */
a06ea964 3639static bfd_boolean
73866052 3640parse_address (char **str, aarch64_opnd_info *operand)
a06ea964 3641{
4df068de
RS
3642 aarch64_opnd_qualifier_t base_qualifier, offset_qualifier;
3643 return parse_address_main (str, operand, &base_qualifier, &offset_qualifier,
98907a70 3644 REG_TYPE_R64_SP, REG_TYPE_R_Z, SHIFTED_NONE);
4df068de
RS
3645}
3646
98907a70 3647/* Parse an address in which SVE vector registers and MUL VL are allowed.
4df068de
RS
3648 The arguments have the same meaning as for parse_address_main.
3649 Return TRUE on success. */
3650static bfd_boolean
3651parse_sve_address (char **str, aarch64_opnd_info *operand,
3652 aarch64_opnd_qualifier_t *base_qualifier,
3653 aarch64_opnd_qualifier_t *offset_qualifier)
3654{
3655 return parse_address_main (str, operand, base_qualifier, offset_qualifier,
98907a70
RS
3656 REG_TYPE_SVE_BASE, REG_TYPE_SVE_OFFSET,
3657 SHIFTED_MUL_VL);
a06ea964
NC
3658}
3659
3660/* Parse an operand for a MOVZ, MOVN or MOVK instruction.
3661 Return TRUE on success; otherwise return FALSE. */
3662static bfd_boolean
3663parse_half (char **str, int *internal_fixup_p)
3664{
671eeb28 3665 char *p = *str;
a06ea964 3666
a06ea964
NC
3667 skip_past_char (&p, '#');
3668
3669 gas_assert (internal_fixup_p);
3670 *internal_fixup_p = 0;
3671
3672 if (*p == ':')
3673 {
3674 struct reloc_table_entry *entry;
3675
3676 /* Try to parse a relocation. Anything else is an error. */
3677 ++p;
3678 if (!(entry = find_reloc_table_entry (&p)))
3679 {
3680 set_syntax_error (_("unknown relocation modifier"));
3681 return FALSE;
3682 }
3683
3684 if (entry->movw_type == 0)
3685 {
3686 set_syntax_error
3687 (_("this relocation modifier is not allowed on this instruction"));
3688 return FALSE;
3689 }
3690
3691 inst.reloc.type = entry->movw_type;
3692 }
3693 else
3694 *internal_fixup_p = 1;
3695
a06ea964
NC
3696 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3697 return FALSE;
3698
3699 *str = p;
3700 return TRUE;
3701}
3702
3703/* Parse an operand for an ADRP instruction:
3704 ADRP <Xd>, <label>
3705 Return TRUE on success; otherwise return FALSE. */
3706
3707static bfd_boolean
3708parse_adrp (char **str)
3709{
3710 char *p;
3711
3712 p = *str;
3713 if (*p == ':')
3714 {
3715 struct reloc_table_entry *entry;
3716
3717 /* Try to parse a relocation. Anything else is an error. */
3718 ++p;
3719 if (!(entry = find_reloc_table_entry (&p)))
3720 {
3721 set_syntax_error (_("unknown relocation modifier"));
3722 return FALSE;
3723 }
3724
3725 if (entry->adrp_type == 0)
3726 {
3727 set_syntax_error
3728 (_("this relocation modifier is not allowed on this instruction"));
3729 return FALSE;
3730 }
3731
3732 inst.reloc.type = entry->adrp_type;
3733 }
3734 else
3735 inst.reloc.type = BFD_RELOC_AARCH64_ADR_HI21_PCREL;
3736
3737 inst.reloc.pc_rel = 1;
3738
3739 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3740 return FALSE;
3741
3742 *str = p;
3743 return TRUE;
3744}
3745
3746/* Miscellaneous. */
3747
245d2e3f
RS
3748/* Parse a symbolic operand such as "pow2" at *STR. ARRAY is an array
3749 of SIZE tokens in which index I gives the token for field value I,
3750 or is null if field value I is invalid. REG_TYPE says which register
3751 names should be treated as registers rather than as symbolic immediates.
3752
3753 Return true on success, moving *STR past the operand and storing the
3754 field value in *VAL. */
3755
3756static int
3757parse_enum_string (char **str, int64_t *val, const char *const *array,
3758 size_t size, aarch64_reg_type reg_type)
3759{
3760 expressionS exp;
3761 char *p, *q;
3762 size_t i;
3763
3764 /* Match C-like tokens. */
3765 p = q = *str;
3766 while (ISALNUM (*q))
3767 q++;
3768
3769 for (i = 0; i < size; ++i)
3770 if (array[i]
3771 && strncasecmp (array[i], p, q - p) == 0
3772 && array[i][q - p] == 0)
3773 {
3774 *val = i;
3775 *str = q;
3776 return TRUE;
3777 }
3778
3779 if (!parse_immediate_expression (&p, &exp, reg_type))
3780 return FALSE;
3781
3782 if (exp.X_op == O_constant
3783 && (uint64_t) exp.X_add_number < size)
3784 {
3785 *val = exp.X_add_number;
3786 *str = p;
3787 return TRUE;
3788 }
3789
3790 /* Use the default error for this operand. */
3791 return FALSE;
3792}
3793
a06ea964
NC
3794/* Parse an option for a preload instruction. Returns the encoding for the
3795 option, or PARSE_FAIL. */
3796
3797static int
3798parse_pldop (char **str)
3799{
3800 char *p, *q;
3801 const struct aarch64_name_value_pair *o;
3802
3803 p = q = *str;
3804 while (ISALNUM (*q))
3805 q++;
3806
3807 o = hash_find_n (aarch64_pldop_hsh, p, q - p);
3808 if (!o)
3809 return PARSE_FAIL;
3810
3811 *str = q;
3812 return o->value;
3813}
3814
3815/* Parse an option for a barrier instruction. Returns the encoding for the
3816 option, or PARSE_FAIL. */
3817
3818static int
3819parse_barrier (char **str)
3820{
3821 char *p, *q;
3822 const asm_barrier_opt *o;
3823
3824 p = q = *str;
3825 while (ISALPHA (*q))
3826 q++;
3827
3828 o = hash_find_n (aarch64_barrier_opt_hsh, p, q - p);
3829 if (!o)
3830 return PARSE_FAIL;
3831
3832 *str = q;
3833 return o->value;
3834}
3835
1e6f4800
MW
3836/* Parse an operand for a PSB barrier. Set *HINT_OPT to the hint-option record
3837 return 0 if successful. Otherwise return PARSE_FAIL. */
3838
3839static int
3840parse_barrier_psb (char **str,
3841 const struct aarch64_name_value_pair ** hint_opt)
3842{
3843 char *p, *q;
3844 const struct aarch64_name_value_pair *o;
3845
3846 p = q = *str;
3847 while (ISALPHA (*q))
3848 q++;
3849
3850 o = hash_find_n (aarch64_hint_opt_hsh, p, q - p);
3851 if (!o)
3852 {
3853 set_fatal_syntax_error
3854 ( _("unknown or missing option to PSB"));
3855 return PARSE_FAIL;
3856 }
3857
3858 if (o->value != 0x11)
3859 {
3860 /* PSB only accepts option name 'CSYNC'. */
3861 set_syntax_error
3862 (_("the specified option is not accepted for PSB"));
3863 return PARSE_FAIL;
3864 }
3865
3866 *str = q;
3867 *hint_opt = o;
3868 return 0;
3869}
3870
a06ea964 3871/* Parse a system register or a PSTATE field name for an MSR/MRS instruction.
a203d9b7 3872 Returns the encoding for the option, or PARSE_FAIL.
a06ea964
NC
3873
3874 If IMPLE_DEFINED_P is non-zero, the function will also try to parse the
72ca8fad
MW
3875 implementation defined system register name S<op0>_<op1>_<Cn>_<Cm>_<op2>.
3876
3877 If PSTATEFIELD_P is non-zero, the function will parse the name as a PSTATE
3878 field, otherwise as a system register.
3879*/
a06ea964
NC
3880
3881static int
72ca8fad
MW
3882parse_sys_reg (char **str, struct hash_control *sys_regs,
3883 int imple_defined_p, int pstatefield_p)
a06ea964
NC
3884{
3885 char *p, *q;
3886 char buf[32];
49eec193 3887 const aarch64_sys_reg *o;
a06ea964
NC
3888 int value;
3889
3890 p = buf;
3891 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3892 if (p < buf + 31)
3893 *p++ = TOLOWER (*q);
3894 *p = '\0';
3895 /* Assert that BUF be large enough. */
3896 gas_assert (p - buf == q - *str);
3897
3898 o = hash_find (sys_regs, buf);
3899 if (!o)
3900 {
3901 if (!imple_defined_p)
3902 return PARSE_FAIL;
3903 else
3904 {
df7b4545 3905 /* Parse S<op0>_<op1>_<Cn>_<Cm>_<op2>. */
a06ea964 3906 unsigned int op0, op1, cn, cm, op2;
df7b4545
JW
3907
3908 if (sscanf (buf, "s%u_%u_c%u_c%u_%u", &op0, &op1, &cn, &cm, &op2)
3909 != 5)
a06ea964 3910 return PARSE_FAIL;
df7b4545 3911 if (op0 > 3 || op1 > 7 || cn > 15 || cm > 15 || op2 > 7)
a06ea964
NC
3912 return PARSE_FAIL;
3913 value = (op0 << 14) | (op1 << 11) | (cn << 7) | (cm << 3) | op2;
3914 }
3915 }
3916 else
49eec193 3917 {
72ca8fad
MW
3918 if (pstatefield_p && !aarch64_pstatefield_supported_p (cpu_variant, o))
3919 as_bad (_("selected processor does not support PSTATE field "
3920 "name '%s'"), buf);
3921 if (!pstatefield_p && !aarch64_sys_reg_supported_p (cpu_variant, o))
3922 as_bad (_("selected processor does not support system register "
3923 "name '%s'"), buf);
9a73e520 3924 if (aarch64_sys_reg_deprecated_p (o))
49eec193 3925 as_warn (_("system register name '%s' is deprecated and may be "
72ca8fad 3926 "removed in a future release"), buf);
49eec193
YZ
3927 value = o->value;
3928 }
a06ea964
NC
3929
3930 *str = q;
3931 return value;
3932}
3933
3934/* Parse a system reg for ic/dc/at/tlbi instructions. Returns the table entry
3935 for the option, or NULL. */
3936
3937static const aarch64_sys_ins_reg *
3938parse_sys_ins_reg (char **str, struct hash_control *sys_ins_regs)
3939{
3940 char *p, *q;
3941 char buf[32];
3942 const aarch64_sys_ins_reg *o;
3943
3944 p = buf;
3945 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3946 if (p < buf + 31)
3947 *p++ = TOLOWER (*q);
3948 *p = '\0';
3949
3950 o = hash_find (sys_ins_regs, buf);
3951 if (!o)
3952 return NULL;
3953
d6bf7ce6
MW
3954 if (!aarch64_sys_ins_reg_supported_p (cpu_variant, o))
3955 as_bad (_("selected processor does not support system register "
3956 "name '%s'"), buf);
3957
a06ea964
NC
3958 *str = q;
3959 return o;
3960}
3961\f
3962#define po_char_or_fail(chr) do { \
3963 if (! skip_past_char (&str, chr)) \
3964 goto failure; \
3965} while (0)
3966
3967#define po_reg_or_fail(regtype) do { \
3968 val = aarch64_reg_parse (&str, regtype, &rtype, NULL); \
3969 if (val == PARSE_FAIL) \
3970 { \
3971 set_default_error (); \
3972 goto failure; \
3973 } \
3974 } while (0)
3975
e1b988bb
RS
3976#define po_int_reg_or_fail(reg_type) do { \
3977 reg = aarch64_reg_parse_32_64 (&str, &qualifier); \
3978 if (!reg || !aarch64_check_reg_type (reg, reg_type)) \
a06ea964
NC
3979 { \
3980 set_default_error (); \
3981 goto failure; \
3982 } \
e1b988bb
RS
3983 info->reg.regno = reg->number; \
3984 info->qualifier = qualifier; \
a06ea964
NC
3985 } while (0)
3986
3987#define po_imm_nc_or_fail() do { \
1799c0d0 3988 if (! parse_constant_immediate (&str, &val, imm_reg_type)) \
a06ea964
NC
3989 goto failure; \
3990 } while (0)
3991
3992#define po_imm_or_fail(min, max) do { \
1799c0d0 3993 if (! parse_constant_immediate (&str, &val, imm_reg_type)) \
a06ea964
NC
3994 goto failure; \
3995 if (val < min || val > max) \
3996 { \
3997 set_fatal_syntax_error (_("immediate value out of range "\
3998#min " to "#max)); \
3999 goto failure; \
4000 } \
4001 } while (0)
4002
245d2e3f
RS
4003#define po_enum_or_fail(array) do { \
4004 if (!parse_enum_string (&str, &val, array, \
4005 ARRAY_SIZE (array), imm_reg_type)) \
4006 goto failure; \
4007 } while (0)
4008
a06ea964
NC
4009#define po_misc_or_fail(expr) do { \
4010 if (!expr) \
4011 goto failure; \
4012 } while (0)
4013\f
4014/* encode the 12-bit imm field of Add/sub immediate */
4015static inline uint32_t
4016encode_addsub_imm (uint32_t imm)
4017{
4018 return imm << 10;
4019}
4020
4021/* encode the shift amount field of Add/sub immediate */
4022static inline uint32_t
4023encode_addsub_imm_shift_amount (uint32_t cnt)
4024{
4025 return cnt << 22;
4026}
4027
4028
4029/* encode the imm field of Adr instruction */
4030static inline uint32_t
4031encode_adr_imm (uint32_t imm)
4032{
4033 return (((imm & 0x3) << 29) /* [1:0] -> [30:29] */
4034 | ((imm & (0x7ffff << 2)) << 3)); /* [20:2] -> [23:5] */
4035}
4036
4037/* encode the immediate field of Move wide immediate */
4038static inline uint32_t
4039encode_movw_imm (uint32_t imm)
4040{
4041 return imm << 5;
4042}
4043
4044/* encode the 26-bit offset of unconditional branch */
4045static inline uint32_t
4046encode_branch_ofs_26 (uint32_t ofs)
4047{
4048 return ofs & ((1 << 26) - 1);
4049}
4050
4051/* encode the 19-bit offset of conditional branch and compare & branch */
4052static inline uint32_t
4053encode_cond_branch_ofs_19 (uint32_t ofs)
4054{
4055 return (ofs & ((1 << 19) - 1)) << 5;
4056}
4057
4058/* encode the 19-bit offset of ld literal */
4059static inline uint32_t
4060encode_ld_lit_ofs_19 (uint32_t ofs)
4061{
4062 return (ofs & ((1 << 19) - 1)) << 5;
4063}
4064
4065/* Encode the 14-bit offset of test & branch. */
4066static inline uint32_t
4067encode_tst_branch_ofs_14 (uint32_t ofs)
4068{
4069 return (ofs & ((1 << 14) - 1)) << 5;
4070}
4071
4072/* Encode the 16-bit imm field of svc/hvc/smc. */
4073static inline uint32_t
4074encode_svc_imm (uint32_t imm)
4075{
4076 return imm << 5;
4077}
4078
4079/* Reencode add(s) to sub(s), or sub(s) to add(s). */
4080static inline uint32_t
4081reencode_addsub_switch_add_sub (uint32_t opcode)
4082{
4083 return opcode ^ (1 << 30);
4084}
4085
4086static inline uint32_t
4087reencode_movzn_to_movz (uint32_t opcode)
4088{
4089 return opcode | (1 << 30);
4090}
4091
4092static inline uint32_t
4093reencode_movzn_to_movn (uint32_t opcode)
4094{
4095 return opcode & ~(1 << 30);
4096}
4097
4098/* Overall per-instruction processing. */
4099
4100/* We need to be able to fix up arbitrary expressions in some statements.
4101 This is so that we can handle symbols that are an arbitrary distance from
4102 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
4103 which returns part of an address in a form which will be valid for
4104 a data instruction. We do this by pushing the expression into a symbol
4105 in the expr_section, and creating a fix for that. */
4106
4107static fixS *
4108fix_new_aarch64 (fragS * frag,
4109 int where,
4110 short int size, expressionS * exp, int pc_rel, int reloc)
4111{
4112 fixS *new_fix;
4113
4114 switch (exp->X_op)
4115 {
4116 case O_constant:
4117 case O_symbol:
4118 case O_add:
4119 case O_subtract:
4120 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
4121 break;
4122
4123 default:
4124 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
4125 pc_rel, reloc);
4126 break;
4127 }
4128 return new_fix;
4129}
4130\f
4131/* Diagnostics on operands errors. */
4132
a52e6fd3
YZ
4133/* By default, output verbose error message.
4134 Disable the verbose error message by -mno-verbose-error. */
4135static int verbose_error_p = 1;
a06ea964
NC
4136
4137#ifdef DEBUG_AARCH64
4138/* N.B. this is only for the purpose of debugging. */
4139const char* operand_mismatch_kind_names[] =
4140{
4141 "AARCH64_OPDE_NIL",
4142 "AARCH64_OPDE_RECOVERABLE",
4143 "AARCH64_OPDE_SYNTAX_ERROR",
4144 "AARCH64_OPDE_FATAL_SYNTAX_ERROR",
4145 "AARCH64_OPDE_INVALID_VARIANT",
4146 "AARCH64_OPDE_OUT_OF_RANGE",
4147 "AARCH64_OPDE_UNALIGNED",
4148 "AARCH64_OPDE_REG_LIST",
4149 "AARCH64_OPDE_OTHER_ERROR",
4150};
4151#endif /* DEBUG_AARCH64 */
4152
4153/* Return TRUE if LHS is of higher severity than RHS, otherwise return FALSE.
4154
4155 When multiple errors of different kinds are found in the same assembly
4156 line, only the error of the highest severity will be picked up for
4157 issuing the diagnostics. */
4158
4159static inline bfd_boolean
4160operand_error_higher_severity_p (enum aarch64_operand_error_kind lhs,
4161 enum aarch64_operand_error_kind rhs)
4162{
4163 gas_assert (AARCH64_OPDE_RECOVERABLE > AARCH64_OPDE_NIL);
4164 gas_assert (AARCH64_OPDE_SYNTAX_ERROR > AARCH64_OPDE_RECOVERABLE);
4165 gas_assert (AARCH64_OPDE_FATAL_SYNTAX_ERROR > AARCH64_OPDE_SYNTAX_ERROR);
4166 gas_assert (AARCH64_OPDE_INVALID_VARIANT > AARCH64_OPDE_FATAL_SYNTAX_ERROR);
4167 gas_assert (AARCH64_OPDE_OUT_OF_RANGE > AARCH64_OPDE_INVALID_VARIANT);
4168 gas_assert (AARCH64_OPDE_UNALIGNED > AARCH64_OPDE_OUT_OF_RANGE);
4169 gas_assert (AARCH64_OPDE_REG_LIST > AARCH64_OPDE_UNALIGNED);
4170 gas_assert (AARCH64_OPDE_OTHER_ERROR > AARCH64_OPDE_REG_LIST);
4171 return lhs > rhs;
4172}
4173
4174/* Helper routine to get the mnemonic name from the assembly instruction
4175 line; should only be called for the diagnosis purpose, as there is
4176 string copy operation involved, which may affect the runtime
4177 performance if used in elsewhere. */
4178
4179static const char*
4180get_mnemonic_name (const char *str)
4181{
4182 static char mnemonic[32];
4183 char *ptr;
4184
4185 /* Get the first 15 bytes and assume that the full name is included. */
4186 strncpy (mnemonic, str, 31);
4187 mnemonic[31] = '\0';
4188
4189 /* Scan up to the end of the mnemonic, which must end in white space,
4190 '.', or end of string. */
4191 for (ptr = mnemonic; is_part_of_name(*ptr); ++ptr)
4192 ;
4193
4194 *ptr = '\0';
4195
4196 /* Append '...' to the truncated long name. */
4197 if (ptr - mnemonic == 31)
4198 mnemonic[28] = mnemonic[29] = mnemonic[30] = '.';
4199
4200 return mnemonic;
4201}
4202
4203static void
4204reset_aarch64_instruction (aarch64_instruction *instruction)
4205{
4206 memset (instruction, '\0', sizeof (aarch64_instruction));
4207 instruction->reloc.type = BFD_RELOC_UNUSED;
4208}
4209
4210/* Data strutures storing one user error in the assembly code related to
4211 operands. */
4212
4213struct operand_error_record
4214{
4215 const aarch64_opcode *opcode;
4216 aarch64_operand_error detail;
4217 struct operand_error_record *next;
4218};
4219
4220typedef struct operand_error_record operand_error_record;
4221
4222struct operand_errors
4223{
4224 operand_error_record *head;
4225 operand_error_record *tail;
4226};
4227
4228typedef struct operand_errors operand_errors;
4229
4230/* Top-level data structure reporting user errors for the current line of
4231 the assembly code.
4232 The way md_assemble works is that all opcodes sharing the same mnemonic
4233 name are iterated to find a match to the assembly line. In this data
4234 structure, each of the such opcodes will have one operand_error_record
4235 allocated and inserted. In other words, excessive errors related with
4236 a single opcode are disregarded. */
4237operand_errors operand_error_report;
4238
4239/* Free record nodes. */
4240static operand_error_record *free_opnd_error_record_nodes = NULL;
4241
4242/* Initialize the data structure that stores the operand mismatch
4243 information on assembling one line of the assembly code. */
4244static void
4245init_operand_error_report (void)
4246{
4247 if (operand_error_report.head != NULL)
4248 {
4249 gas_assert (operand_error_report.tail != NULL);
4250 operand_error_report.tail->next = free_opnd_error_record_nodes;
4251 free_opnd_error_record_nodes = operand_error_report.head;
4252 operand_error_report.head = NULL;
4253 operand_error_report.tail = NULL;
4254 return;
4255 }
4256 gas_assert (operand_error_report.tail == NULL);
4257}
4258
4259/* Return TRUE if some operand error has been recorded during the
4260 parsing of the current assembly line using the opcode *OPCODE;
4261 otherwise return FALSE. */
4262static inline bfd_boolean
4263opcode_has_operand_error_p (const aarch64_opcode *opcode)
4264{
4265 operand_error_record *record = operand_error_report.head;
4266 return record && record->opcode == opcode;
4267}
4268
4269/* Add the error record *NEW_RECORD to operand_error_report. The record's
4270 OPCODE field is initialized with OPCODE.
4271 N.B. only one record for each opcode, i.e. the maximum of one error is
4272 recorded for each instruction template. */
4273
4274static void
4275add_operand_error_record (const operand_error_record* new_record)
4276{
4277 const aarch64_opcode *opcode = new_record->opcode;
4278 operand_error_record* record = operand_error_report.head;
4279
4280 /* The record may have been created for this opcode. If not, we need
4281 to prepare one. */
4282 if (! opcode_has_operand_error_p (opcode))
4283 {
4284 /* Get one empty record. */
4285 if (free_opnd_error_record_nodes == NULL)
4286 {
325801bd 4287 record = XNEW (operand_error_record);
a06ea964
NC
4288 }
4289 else
4290 {
4291 record = free_opnd_error_record_nodes;
4292 free_opnd_error_record_nodes = record->next;
4293 }
4294 record->opcode = opcode;
4295 /* Insert at the head. */
4296 record->next = operand_error_report.head;
4297 operand_error_report.head = record;
4298 if (operand_error_report.tail == NULL)
4299 operand_error_report.tail = record;
4300 }
4301 else if (record->detail.kind != AARCH64_OPDE_NIL
4302 && record->detail.index <= new_record->detail.index
4303 && operand_error_higher_severity_p (record->detail.kind,
4304 new_record->detail.kind))
4305 {
4306 /* In the case of multiple errors found on operands related with a
4307 single opcode, only record the error of the leftmost operand and
4308 only if the error is of higher severity. */
4309 DEBUG_TRACE ("error %s on operand %d not added to the report due to"
4310 " the existing error %s on operand %d",
4311 operand_mismatch_kind_names[new_record->detail.kind],
4312 new_record->detail.index,
4313 operand_mismatch_kind_names[record->detail.kind],
4314 record->detail.index);
4315 return;
4316 }
4317
4318 record->detail = new_record->detail;
4319}
4320
4321static inline void
4322record_operand_error_info (const aarch64_opcode *opcode,
4323 aarch64_operand_error *error_info)
4324{
4325 operand_error_record record;
4326 record.opcode = opcode;
4327 record.detail = *error_info;
4328 add_operand_error_record (&record);
4329}
4330
4331/* Record an error of kind KIND and, if ERROR is not NULL, of the detailed
4332 error message *ERROR, for operand IDX (count from 0). */
4333
4334static void
4335record_operand_error (const aarch64_opcode *opcode, int idx,
4336 enum aarch64_operand_error_kind kind,
4337 const char* error)
4338{
4339 aarch64_operand_error info;
4340 memset(&info, 0, sizeof (info));
4341 info.index = idx;
4342 info.kind = kind;
4343 info.error = error;
4344 record_operand_error_info (opcode, &info);
4345}
4346
4347static void
4348record_operand_error_with_data (const aarch64_opcode *opcode, int idx,
4349 enum aarch64_operand_error_kind kind,
4350 const char* error, const int *extra_data)
4351{
4352 aarch64_operand_error info;
4353 info.index = idx;
4354 info.kind = kind;
4355 info.error = error;
4356 info.data[0] = extra_data[0];
4357 info.data[1] = extra_data[1];
4358 info.data[2] = extra_data[2];
4359 record_operand_error_info (opcode, &info);
4360}
4361
4362static void
4363record_operand_out_of_range_error (const aarch64_opcode *opcode, int idx,
4364 const char* error, int lower_bound,
4365 int upper_bound)
4366{
4367 int data[3] = {lower_bound, upper_bound, 0};
4368 record_operand_error_with_data (opcode, idx, AARCH64_OPDE_OUT_OF_RANGE,
4369 error, data);
4370}
4371
4372/* Remove the operand error record for *OPCODE. */
4373static void ATTRIBUTE_UNUSED
4374remove_operand_error_record (const aarch64_opcode *opcode)
4375{
4376 if (opcode_has_operand_error_p (opcode))
4377 {
4378 operand_error_record* record = operand_error_report.head;
4379 gas_assert (record != NULL && operand_error_report.tail != NULL);
4380 operand_error_report.head = record->next;
4381 record->next = free_opnd_error_record_nodes;
4382 free_opnd_error_record_nodes = record;
4383 if (operand_error_report.head == NULL)
4384 {
4385 gas_assert (operand_error_report.tail == record);
4386 operand_error_report.tail = NULL;
4387 }
4388 }
4389}
4390
4391/* Given the instruction in *INSTR, return the index of the best matched
4392 qualifier sequence in the list (an array) headed by QUALIFIERS_LIST.
4393
4394 Return -1 if there is no qualifier sequence; return the first match
4395 if there is multiple matches found. */
4396
4397static int
4398find_best_match (const aarch64_inst *instr,
4399 const aarch64_opnd_qualifier_seq_t *qualifiers_list)
4400{
4401 int i, num_opnds, max_num_matched, idx;
4402
4403 num_opnds = aarch64_num_of_operands (instr->opcode);
4404 if (num_opnds == 0)
4405 {
4406 DEBUG_TRACE ("no operand");
4407 return -1;
4408 }
4409
4410 max_num_matched = 0;
4989adac 4411 idx = 0;
a06ea964
NC
4412
4413 /* For each pattern. */
4414 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4415 {
4416 int j, num_matched;
4417 const aarch64_opnd_qualifier_t *qualifiers = *qualifiers_list;
4418
4419 /* Most opcodes has much fewer patterns in the list. */
4420 if (empty_qualifier_sequence_p (qualifiers) == TRUE)
4421 {
4422 DEBUG_TRACE_IF (i == 0, "empty list of qualifier sequence");
a06ea964
NC
4423 break;
4424 }
4425
4426 for (j = 0, num_matched = 0; j < num_opnds; ++j, ++qualifiers)
4427 if (*qualifiers == instr->operands[j].qualifier)
4428 ++num_matched;
4429
4430 if (num_matched > max_num_matched)
4431 {
4432 max_num_matched = num_matched;
4433 idx = i;
4434 }
4435 }
4436
4437 DEBUG_TRACE ("return with %d", idx);
4438 return idx;
4439}
4440
4441/* Assign qualifiers in the qualifier seqence (headed by QUALIFIERS) to the
4442 corresponding operands in *INSTR. */
4443
4444static inline void
4445assign_qualifier_sequence (aarch64_inst *instr,
4446 const aarch64_opnd_qualifier_t *qualifiers)
4447{
4448 int i = 0;
4449 int num_opnds = aarch64_num_of_operands (instr->opcode);
4450 gas_assert (num_opnds);
4451 for (i = 0; i < num_opnds; ++i, ++qualifiers)
4452 instr->operands[i].qualifier = *qualifiers;
4453}
4454
4455/* Print operands for the diagnosis purpose. */
4456
4457static void
4458print_operands (char *buf, const aarch64_opcode *opcode,
4459 const aarch64_opnd_info *opnds)
4460{
4461 int i;
4462
4463 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
4464 {
08d3b0cc 4465 char str[128];
a06ea964
NC
4466
4467 /* We regard the opcode operand info more, however we also look into
4468 the inst->operands to support the disassembling of the optional
4469 operand.
4470 The two operand code should be the same in all cases, apart from
4471 when the operand can be optional. */
4472 if (opcode->operands[i] == AARCH64_OPND_NIL
4473 || opnds[i].type == AARCH64_OPND_NIL)
4474 break;
4475
4476 /* Generate the operand string in STR. */
08d3b0cc 4477 aarch64_print_operand (str, sizeof (str), 0, opcode, opnds, i, NULL, NULL);
a06ea964
NC
4478
4479 /* Delimiter. */
4480 if (str[0] != '\0')
ad43e107 4481 strcat (buf, i == 0 ? " " : ", ");
a06ea964
NC
4482
4483 /* Append the operand string. */
4484 strcat (buf, str);
4485 }
4486}
4487
4488/* Send to stderr a string as information. */
4489
4490static void
4491output_info (const char *format, ...)
4492{
3b4dbbbf 4493 const char *file;
a06ea964
NC
4494 unsigned int line;
4495 va_list args;
4496
3b4dbbbf 4497 file = as_where (&line);
a06ea964
NC
4498 if (file)
4499 {
4500 if (line != 0)
4501 fprintf (stderr, "%s:%u: ", file, line);
4502 else
4503 fprintf (stderr, "%s: ", file);
4504 }
4505 fprintf (stderr, _("Info: "));
4506 va_start (args, format);
4507 vfprintf (stderr, format, args);
4508 va_end (args);
4509 (void) putc ('\n', stderr);
4510}
4511
4512/* Output one operand error record. */
4513
4514static void
4515output_operand_error_record (const operand_error_record *record, char *str)
4516{
28f013d5
JB
4517 const aarch64_operand_error *detail = &record->detail;
4518 int idx = detail->index;
a06ea964 4519 const aarch64_opcode *opcode = record->opcode;
28f013d5 4520 enum aarch64_opnd opd_code = (idx >= 0 ? opcode->operands[idx]
a06ea964 4521 : AARCH64_OPND_NIL);
a06ea964
NC
4522
4523 switch (detail->kind)
4524 {
4525 case AARCH64_OPDE_NIL:
4526 gas_assert (0);
4527 break;
4528
4529 case AARCH64_OPDE_SYNTAX_ERROR:
4530 case AARCH64_OPDE_RECOVERABLE:
4531 case AARCH64_OPDE_FATAL_SYNTAX_ERROR:
4532 case AARCH64_OPDE_OTHER_ERROR:
a06ea964
NC
4533 /* Use the prepared error message if there is, otherwise use the
4534 operand description string to describe the error. */
4535 if (detail->error != NULL)
4536 {
28f013d5 4537 if (idx < 0)
a06ea964
NC
4538 as_bad (_("%s -- `%s'"), detail->error, str);
4539 else
4540 as_bad (_("%s at operand %d -- `%s'"),
28f013d5 4541 detail->error, idx + 1, str);
a06ea964
NC
4542 }
4543 else
28f013d5
JB
4544 {
4545 gas_assert (idx >= 0);
ab3b8fcf 4546 as_bad (_("operand %d must be %s -- `%s'"), idx + 1,
a06ea964 4547 aarch64_get_operand_desc (opd_code), str);
28f013d5 4548 }
a06ea964
NC
4549 break;
4550
4551 case AARCH64_OPDE_INVALID_VARIANT:
4552 as_bad (_("operand mismatch -- `%s'"), str);
4553 if (verbose_error_p)
4554 {
4555 /* We will try to correct the erroneous instruction and also provide
4556 more information e.g. all other valid variants.
4557
4558 The string representation of the corrected instruction and other
4559 valid variants are generated by
4560
4561 1) obtaining the intermediate representation of the erroneous
4562 instruction;
4563 2) manipulating the IR, e.g. replacing the operand qualifier;
4564 3) printing out the instruction by calling the printer functions
4565 shared with the disassembler.
4566
4567 The limitation of this method is that the exact input assembly
4568 line cannot be accurately reproduced in some cases, for example an
4569 optional operand present in the actual assembly line will be
4570 omitted in the output; likewise for the optional syntax rules,
4571 e.g. the # before the immediate. Another limitation is that the
4572 assembly symbols and relocation operations in the assembly line
4573 currently cannot be printed out in the error report. Last but not
4574 least, when there is other error(s) co-exist with this error, the
4575 'corrected' instruction may be still incorrect, e.g. given
4576 'ldnp h0,h1,[x0,#6]!'
4577 this diagnosis will provide the version:
4578 'ldnp s0,s1,[x0,#6]!'
4579 which is still not right. */
4580 size_t len = strlen (get_mnemonic_name (str));
4581 int i, qlf_idx;
4582 bfd_boolean result;
08d3b0cc 4583 char buf[2048];
a06ea964
NC
4584 aarch64_inst *inst_base = &inst.base;
4585 const aarch64_opnd_qualifier_seq_t *qualifiers_list;
4586
4587 /* Init inst. */
4588 reset_aarch64_instruction (&inst);
4589 inst_base->opcode = opcode;
4590
4591 /* Reset the error report so that there is no side effect on the
4592 following operand parsing. */
4593 init_operand_error_report ();
4594
4595 /* Fill inst. */
4596 result = parse_operands (str + len, opcode)
4597 && programmer_friendly_fixup (&inst);
4598 gas_assert (result);
4599 result = aarch64_opcode_encode (opcode, inst_base, &inst_base->value,
4600 NULL, NULL);
4601 gas_assert (!result);
4602
4603 /* Find the most matched qualifier sequence. */
4604 qlf_idx = find_best_match (inst_base, opcode->qualifiers_list);
4605 gas_assert (qlf_idx > -1);
4606
4607 /* Assign the qualifiers. */
4608 assign_qualifier_sequence (inst_base,
4609 opcode->qualifiers_list[qlf_idx]);
4610
4611 /* Print the hint. */
4612 output_info (_(" did you mean this?"));
08d3b0cc 4613 snprintf (buf, sizeof (buf), "\t%s", get_mnemonic_name (str));
a06ea964
NC
4614 print_operands (buf, opcode, inst_base->operands);
4615 output_info (_(" %s"), buf);
4616
4617 /* Print out other variant(s) if there is any. */
4618 if (qlf_idx != 0 ||
4619 !empty_qualifier_sequence_p (opcode->qualifiers_list[1]))
4620 output_info (_(" other valid variant(s):"));
4621
4622 /* For each pattern. */
4623 qualifiers_list = opcode->qualifiers_list;
4624 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4625 {
4626 /* Most opcodes has much fewer patterns in the list.
4627 First NIL qualifier indicates the end in the list. */
4628 if (empty_qualifier_sequence_p (*qualifiers_list) == TRUE)
4629 break;
4630
4631 if (i != qlf_idx)
4632 {
4633 /* Mnemonics name. */
08d3b0cc 4634 snprintf (buf, sizeof (buf), "\t%s", get_mnemonic_name (str));
a06ea964
NC
4635
4636 /* Assign the qualifiers. */
4637 assign_qualifier_sequence (inst_base, *qualifiers_list);
4638
4639 /* Print instruction. */
4640 print_operands (buf, opcode, inst_base->operands);
4641
4642 output_info (_(" %s"), buf);
4643 }
4644 }
4645 }
4646 break;
4647
0c608d6b
RS
4648 case AARCH64_OPDE_UNTIED_OPERAND:
4649 as_bad (_("operand %d must be the same register as operand 1 -- `%s'"),
4650 detail->index + 1, str);
4651 break;
4652
a06ea964 4653 case AARCH64_OPDE_OUT_OF_RANGE:
f5555712
YZ
4654 if (detail->data[0] != detail->data[1])
4655 as_bad (_("%s out of range %d to %d at operand %d -- `%s'"),
4656 detail->error ? detail->error : _("immediate value"),
28f013d5 4657 detail->data[0], detail->data[1], idx + 1, str);
f5555712 4658 else
ab3b8fcf 4659 as_bad (_("%s must be %d at operand %d -- `%s'"),
f5555712 4660 detail->error ? detail->error : _("immediate value"),
28f013d5 4661 detail->data[0], idx + 1, str);
a06ea964
NC
4662 break;
4663
4664 case AARCH64_OPDE_REG_LIST:
4665 if (detail->data[0] == 1)
4666 as_bad (_("invalid number of registers in the list; "
4667 "only 1 register is expected at operand %d -- `%s'"),
28f013d5 4668 idx + 1, str);
a06ea964
NC
4669 else
4670 as_bad (_("invalid number of registers in the list; "
4671 "%d registers are expected at operand %d -- `%s'"),
28f013d5 4672 detail->data[0], idx + 1, str);
a06ea964
NC
4673 break;
4674
4675 case AARCH64_OPDE_UNALIGNED:
ab3b8fcf 4676 as_bad (_("immediate value must be a multiple of "
a06ea964 4677 "%d at operand %d -- `%s'"),
28f013d5 4678 detail->data[0], idx + 1, str);
a06ea964
NC
4679 break;
4680
4681 default:
4682 gas_assert (0);
4683 break;
4684 }
4685}
4686
4687/* Process and output the error message about the operand mismatching.
4688
4689 When this function is called, the operand error information had
4690 been collected for an assembly line and there will be multiple
4691 errors in the case of mulitple instruction templates; output the
4692 error message that most closely describes the problem. */
4693
4694static void
4695output_operand_error_report (char *str)
4696{
4697 int largest_error_pos;
4698 const char *msg = NULL;
4699 enum aarch64_operand_error_kind kind;
4700 operand_error_record *curr;
4701 operand_error_record *head = operand_error_report.head;
4702 operand_error_record *record = NULL;
4703
4704 /* No error to report. */
4705 if (head == NULL)
4706 return;
4707
4708 gas_assert (head != NULL && operand_error_report.tail != NULL);
4709
4710 /* Only one error. */
4711 if (head == operand_error_report.tail)
4712 {
4713 DEBUG_TRACE ("single opcode entry with error kind: %s",
4714 operand_mismatch_kind_names[head->detail.kind]);
4715 output_operand_error_record (head, str);
4716 return;
4717 }
4718
4719 /* Find the error kind of the highest severity. */
4720 DEBUG_TRACE ("multiple opcode entres with error kind");
4721 kind = AARCH64_OPDE_NIL;
4722 for (curr = head; curr != NULL; curr = curr->next)
4723 {
4724 gas_assert (curr->detail.kind != AARCH64_OPDE_NIL);
4725 DEBUG_TRACE ("\t%s", operand_mismatch_kind_names[curr->detail.kind]);
4726 if (operand_error_higher_severity_p (curr->detail.kind, kind))
4727 kind = curr->detail.kind;
4728 }
4729 gas_assert (kind != AARCH64_OPDE_NIL);
4730
4731 /* Pick up one of errors of KIND to report. */
4732 largest_error_pos = -2; /* Index can be -1 which means unknown index. */
4733 for (curr = head; curr != NULL; curr = curr->next)
4734 {
4735 if (curr->detail.kind != kind)
4736 continue;
4737 /* If there are multiple errors, pick up the one with the highest
4738 mismatching operand index. In the case of multiple errors with
4739 the equally highest operand index, pick up the first one or the
4740 first one with non-NULL error message. */
4741 if (curr->detail.index > largest_error_pos
4742 || (curr->detail.index == largest_error_pos && msg == NULL
4743 && curr->detail.error != NULL))
4744 {
4745 largest_error_pos = curr->detail.index;
4746 record = curr;
4747 msg = record->detail.error;
4748 }
4749 }
4750
4751 gas_assert (largest_error_pos != -2 && record != NULL);
4752 DEBUG_TRACE ("Pick up error kind %s to report",
4753 operand_mismatch_kind_names[record->detail.kind]);
4754
4755 /* Output. */
4756 output_operand_error_record (record, str);
4757}
4758\f
4759/* Write an AARCH64 instruction to buf - always little-endian. */
4760static void
4761put_aarch64_insn (char *buf, uint32_t insn)
4762{
4763 unsigned char *where = (unsigned char *) buf;
4764 where[0] = insn;
4765 where[1] = insn >> 8;
4766 where[2] = insn >> 16;
4767 where[3] = insn >> 24;
4768}
4769
4770static uint32_t
4771get_aarch64_insn (char *buf)
4772{
4773 unsigned char *where = (unsigned char *) buf;
4774 uint32_t result;
4775 result = (where[0] | (where[1] << 8) | (where[2] << 16) | (where[3] << 24));
4776 return result;
4777}
4778
4779static void
4780output_inst (struct aarch64_inst *new_inst)
4781{
4782 char *to = NULL;
4783
4784 to = frag_more (INSN_SIZE);
4785
4786 frag_now->tc_frag_data.recorded = 1;
4787
4788 put_aarch64_insn (to, inst.base.value);
4789
4790 if (inst.reloc.type != BFD_RELOC_UNUSED)
4791 {
4792 fixS *fixp = fix_new_aarch64 (frag_now, to - frag_now->fr_literal,
4793 INSN_SIZE, &inst.reloc.exp,
4794 inst.reloc.pc_rel,
4795 inst.reloc.type);
4796 DEBUG_TRACE ("Prepared relocation fix up");
4797 /* Don't check the addend value against the instruction size,
4798 that's the job of our code in md_apply_fix(). */
4799 fixp->fx_no_overflow = 1;
4800 if (new_inst != NULL)
4801 fixp->tc_fix_data.inst = new_inst;
4802 if (aarch64_gas_internal_fixup_p ())
4803 {
4804 gas_assert (inst.reloc.opnd != AARCH64_OPND_NIL);
4805 fixp->tc_fix_data.opnd = inst.reloc.opnd;
4806 fixp->fx_addnumber = inst.reloc.flags;
4807 }
4808 }
4809
4810 dwarf2_emit_insn (INSN_SIZE);
4811}
4812
4813/* Link together opcodes of the same name. */
4814
4815struct templates
4816{
4817 aarch64_opcode *opcode;
4818 struct templates *next;
4819};
4820
4821typedef struct templates templates;
4822
4823static templates *
4824lookup_mnemonic (const char *start, int len)
4825{
4826 templates *templ = NULL;
4827
4828 templ = hash_find_n (aarch64_ops_hsh, start, len);
4829 return templ;
4830}
4831
4832/* Subroutine of md_assemble, responsible for looking up the primary
4833 opcode from the mnemonic the user wrote. STR points to the
4834 beginning of the mnemonic. */
4835
4836static templates *
4837opcode_lookup (char **str)
4838{
bb7eff52 4839 char *end, *base, *dot;
a06ea964
NC
4840 const aarch64_cond *cond;
4841 char condname[16];
4842 int len;
4843
4844 /* Scan up to the end of the mnemonic, which must end in white space,
4845 '.', or end of string. */
bb7eff52 4846 dot = 0;
a06ea964 4847 for (base = end = *str; is_part_of_name(*end); end++)
bb7eff52
RS
4848 if (*end == '.' && !dot)
4849 dot = end;
a06ea964 4850
bb7eff52 4851 if (end == base || dot == base)
a06ea964
NC
4852 return 0;
4853
4854 inst.cond = COND_ALWAYS;
4855
4856 /* Handle a possible condition. */
bb7eff52 4857 if (dot)
a06ea964 4858 {
bb7eff52 4859 cond = hash_find_n (aarch64_cond_hsh, dot + 1, end - dot - 1);
a06ea964
NC
4860 if (cond)
4861 {
4862 inst.cond = cond->value;
bb7eff52 4863 *str = end;
a06ea964
NC
4864 }
4865 else
4866 {
bb7eff52 4867 *str = dot;
a06ea964
NC
4868 return 0;
4869 }
bb7eff52 4870 len = dot - base;
a06ea964
NC
4871 }
4872 else
bb7eff52
RS
4873 {
4874 *str = end;
4875 len = end - base;
4876 }
a06ea964
NC
4877
4878 if (inst.cond == COND_ALWAYS)
4879 {
4880 /* Look for unaffixed mnemonic. */
4881 return lookup_mnemonic (base, len);
4882 }
4883 else if (len <= 13)
4884 {
4885 /* append ".c" to mnemonic if conditional */
4886 memcpy (condname, base, len);
4887 memcpy (condname + len, ".c", 2);
4888 base = condname;
4889 len += 2;
4890 return lookup_mnemonic (base, len);
4891 }
4892
4893 return NULL;
4894}
4895
8f9a77af
RS
4896/* Internal helper routine converting a vector_type_el structure *VECTYPE
4897 to a corresponding operand qualifier. */
a06ea964
NC
4898
4899static inline aarch64_opnd_qualifier_t
8f9a77af 4900vectype_to_qualifier (const struct vector_type_el *vectype)
a06ea964 4901{
f06935a5 4902 /* Element size in bytes indexed by vector_el_type. */
a06ea964
NC
4903 const unsigned char ele_size[5]
4904 = {1, 2, 4, 8, 16};
65f2205d
MW
4905 const unsigned int ele_base [5] =
4906 {
4907 AARCH64_OPND_QLF_V_8B,
3067d3b9 4908 AARCH64_OPND_QLF_V_2H,
65f2205d
MW
4909 AARCH64_OPND_QLF_V_2S,
4910 AARCH64_OPND_QLF_V_1D,
4911 AARCH64_OPND_QLF_V_1Q
4912 };
a06ea964
NC
4913
4914 if (!vectype->defined || vectype->type == NT_invtype)
4915 goto vectype_conversion_fail;
4916
d50c751e
RS
4917 if (vectype->type == NT_zero)
4918 return AARCH64_OPND_QLF_P_Z;
4919 if (vectype->type == NT_merge)
4920 return AARCH64_OPND_QLF_P_M;
4921
a06ea964
NC
4922 gas_assert (vectype->type >= NT_b && vectype->type <= NT_q);
4923
f11ad6bc 4924 if (vectype->defined & (NTA_HASINDEX | NTA_HASVARWIDTH))
a06ea964
NC
4925 /* Vector element register. */
4926 return AARCH64_OPND_QLF_S_B + vectype->type;
4927 else
4928 {
4929 /* Vector register. */
4930 int reg_size = ele_size[vectype->type] * vectype->width;
4931 unsigned offset;
65f2205d 4932 unsigned shift;
3067d3b9 4933 if (reg_size != 16 && reg_size != 8 && reg_size != 4)
a06ea964 4934 goto vectype_conversion_fail;
65f2205d
MW
4935
4936 /* The conversion is by calculating the offset from the base operand
4937 qualifier for the vector type. The operand qualifiers are regular
4938 enough that the offset can established by shifting the vector width by
4939 a vector-type dependent amount. */
4940 shift = 0;
4941 if (vectype->type == NT_b)
4942 shift = 4;
3067d3b9 4943 else if (vectype->type == NT_h || vectype->type == NT_s)
65f2205d
MW
4944 shift = 2;
4945 else if (vectype->type >= NT_d)
4946 shift = 1;
4947 else
4948 gas_assert (0);
4949
4950 offset = ele_base [vectype->type] + (vectype->width >> shift);
4951 gas_assert (AARCH64_OPND_QLF_V_8B <= offset
4952 && offset <= AARCH64_OPND_QLF_V_1Q);
4953 return offset;
a06ea964
NC
4954 }
4955
4956vectype_conversion_fail:
4957 first_error (_("bad vector arrangement type"));
4958 return AARCH64_OPND_QLF_NIL;
4959}
4960
4961/* Process an optional operand that is found omitted from the assembly line.
4962 Fill *OPERAND for such an operand of type TYPE. OPCODE points to the
4963 instruction's opcode entry while IDX is the index of this omitted operand.
4964 */
4965
4966static void
4967process_omitted_operand (enum aarch64_opnd type, const aarch64_opcode *opcode,
4968 int idx, aarch64_opnd_info *operand)
4969{
4970 aarch64_insn default_value = get_optional_operand_default_value (opcode);
4971 gas_assert (optional_operand_p (opcode, idx));
4972 gas_assert (!operand->present);
4973
4974 switch (type)
4975 {
4976 case AARCH64_OPND_Rd:
4977 case AARCH64_OPND_Rn:
4978 case AARCH64_OPND_Rm:
4979 case AARCH64_OPND_Rt:
4980 case AARCH64_OPND_Rt2:
4981 case AARCH64_OPND_Rs:
4982 case AARCH64_OPND_Ra:
4983 case AARCH64_OPND_Rt_SYS:
4984 case AARCH64_OPND_Rd_SP:
4985 case AARCH64_OPND_Rn_SP:
4986 case AARCH64_OPND_Fd:
4987 case AARCH64_OPND_Fn:
4988 case AARCH64_OPND_Fm:
4989 case AARCH64_OPND_Fa:
4990 case AARCH64_OPND_Ft:
4991 case AARCH64_OPND_Ft2:
4992 case AARCH64_OPND_Sd:
4993 case AARCH64_OPND_Sn:
4994 case AARCH64_OPND_Sm:
4995 case AARCH64_OPND_Vd:
4996 case AARCH64_OPND_Vn:
4997 case AARCH64_OPND_Vm:
4998 case AARCH64_OPND_VdD1:
4999 case AARCH64_OPND_VnD1:
5000 operand->reg.regno = default_value;
5001 break;
5002
5003 case AARCH64_OPND_Ed:
5004 case AARCH64_OPND_En:
5005 case AARCH64_OPND_Em:
5006 operand->reglane.regno = default_value;
5007 break;
5008
5009 case AARCH64_OPND_IDX:
5010 case AARCH64_OPND_BIT_NUM:
5011 case AARCH64_OPND_IMMR:
5012 case AARCH64_OPND_IMMS:
5013 case AARCH64_OPND_SHLL_IMM:
5014 case AARCH64_OPND_IMM_VLSL:
5015 case AARCH64_OPND_IMM_VLSR:
5016 case AARCH64_OPND_CCMP_IMM:
5017 case AARCH64_OPND_FBITS:
5018 case AARCH64_OPND_UIMM4:
5019 case AARCH64_OPND_UIMM3_OP1:
5020 case AARCH64_OPND_UIMM3_OP2:
5021 case AARCH64_OPND_IMM:
5022 case AARCH64_OPND_WIDTH:
5023 case AARCH64_OPND_UIMM7:
5024 case AARCH64_OPND_NZCV:
245d2e3f
RS
5025 case AARCH64_OPND_SVE_PATTERN:
5026 case AARCH64_OPND_SVE_PRFOP:
a06ea964
NC
5027 operand->imm.value = default_value;
5028 break;
5029
2442d846
RS
5030 case AARCH64_OPND_SVE_PATTERN_SCALED:
5031 operand->imm.value = default_value;
5032 operand->shifter.kind = AARCH64_MOD_MUL;
5033 operand->shifter.amount = 1;
5034 break;
5035
a06ea964
NC
5036 case AARCH64_OPND_EXCEPTION:
5037 inst.reloc.type = BFD_RELOC_UNUSED;
5038 break;
5039
5040 case AARCH64_OPND_BARRIER_ISB:
5041 operand->barrier = aarch64_barrier_options + default_value;
5042
5043 default:
5044 break;
5045 }
5046}
5047
5048/* Process the relocation type for move wide instructions.
5049 Return TRUE on success; otherwise return FALSE. */
5050
5051static bfd_boolean
5052process_movw_reloc_info (void)
5053{
5054 int is32;
5055 unsigned shift;
5056
5057 is32 = inst.base.operands[0].qualifier == AARCH64_OPND_QLF_W ? 1 : 0;
5058
5059 if (inst.base.opcode->op == OP_MOVK)
5060 switch (inst.reloc.type)
5061 {
5062 case BFD_RELOC_AARCH64_MOVW_G0_S:
5063 case BFD_RELOC_AARCH64_MOVW_G1_S:
5064 case BFD_RELOC_AARCH64_MOVW_G2_S:
1aa66fb1 5065 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
a06ea964 5066 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
a06ea964 5067 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
a06ea964
NC
5068 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5069 set_syntax_error
5070 (_("the specified relocation type is not allowed for MOVK"));
5071 return FALSE;
5072 default:
5073 break;
5074 }
5075
5076 switch (inst.reloc.type)
5077 {
5078 case BFD_RELOC_AARCH64_MOVW_G0:
a06ea964 5079 case BFD_RELOC_AARCH64_MOVW_G0_NC:
f09c556a 5080 case BFD_RELOC_AARCH64_MOVW_G0_S:
ca632371 5081 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
43a357f9 5082 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
3e8286c0 5083 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
3b957e5b 5084 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
49df5539
JW
5085 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
5086 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
a06ea964
NC
5087 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5088 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5089 shift = 0;
5090 break;
5091 case BFD_RELOC_AARCH64_MOVW_G1:
a06ea964 5092 case BFD_RELOC_AARCH64_MOVW_G1_NC:
f09c556a 5093 case BFD_RELOC_AARCH64_MOVW_G1_S:
654248e7 5094 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
43a357f9 5095 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
1aa66fb1 5096 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
3b957e5b 5097 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
49df5539
JW
5098 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
5099 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
a06ea964
NC
5100 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5101 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5102 shift = 16;
5103 break;
5104 case BFD_RELOC_AARCH64_MOVW_G2:
a06ea964 5105 case BFD_RELOC_AARCH64_MOVW_G2_NC:
f09c556a 5106 case BFD_RELOC_AARCH64_MOVW_G2_S:
49df5539 5107 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
a06ea964
NC
5108 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5109 if (is32)
5110 {
5111 set_fatal_syntax_error
5112 (_("the specified relocation type is not allowed for 32-bit "
5113 "register"));
5114 return FALSE;
5115 }
5116 shift = 32;
5117 break;
5118 case BFD_RELOC_AARCH64_MOVW_G3:
5119 if (is32)
5120 {
5121 set_fatal_syntax_error
5122 (_("the specified relocation type is not allowed for 32-bit "
5123 "register"));
5124 return FALSE;
5125 }
5126 shift = 48;
5127 break;
5128 default:
5129 /* More cases should be added when more MOVW-related relocation types
5130 are supported in GAS. */
5131 gas_assert (aarch64_gas_internal_fixup_p ());
5132 /* The shift amount should have already been set by the parser. */
5133 return TRUE;
5134 }
5135 inst.base.operands[1].shifter.amount = shift;
5136 return TRUE;
5137}
5138
5139/* A primitive log caculator. */
5140
5141static inline unsigned int
5142get_logsz (unsigned int size)
5143{
5144 const unsigned char ls[16] =
5145 {0, 1, -1, 2, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, 4};
5146 if (size > 16)
5147 {
5148 gas_assert (0);
5149 return -1;
5150 }
5151 gas_assert (ls[size - 1] != (unsigned char)-1);
5152 return ls[size - 1];
5153}
5154
5155/* Determine and return the real reloc type code for an instruction
5156 with the pseudo reloc type code BFD_RELOC_AARCH64_LDST_LO12. */
5157
5158static inline bfd_reloc_code_real_type
5159ldst_lo12_determine_real_reloc_type (void)
5160{
4c562523 5161 unsigned logsz;
a06ea964
NC
5162 enum aarch64_opnd_qualifier opd0_qlf = inst.base.operands[0].qualifier;
5163 enum aarch64_opnd_qualifier opd1_qlf = inst.base.operands[1].qualifier;
5164
4c562523
JW
5165 const bfd_reloc_code_real_type reloc_ldst_lo12[3][5] = {
5166 {
5167 BFD_RELOC_AARCH64_LDST8_LO12,
5168 BFD_RELOC_AARCH64_LDST16_LO12,
5169 BFD_RELOC_AARCH64_LDST32_LO12,
5170 BFD_RELOC_AARCH64_LDST64_LO12,
a06ea964 5171 BFD_RELOC_AARCH64_LDST128_LO12
4c562523
JW
5172 },
5173 {
5174 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12,
5175 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12,
5176 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12,
5177 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12,
5178 BFD_RELOC_AARCH64_NONE
5179 },
5180 {
5181 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC,
5182 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC,
5183 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC,
5184 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC,
5185 BFD_RELOC_AARCH64_NONE
5186 }
a06ea964
NC
5187 };
5188
4c562523
JW
5189 gas_assert (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
5190 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
5191 || (inst.reloc.type
5192 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC));
a06ea964
NC
5193 gas_assert (inst.base.opcode->operands[1] == AARCH64_OPND_ADDR_UIMM12);
5194
5195 if (opd1_qlf == AARCH64_OPND_QLF_NIL)
5196 opd1_qlf =
5197 aarch64_get_expected_qualifier (inst.base.opcode->qualifiers_list,
5198 1, opd0_qlf, 0);
5199 gas_assert (opd1_qlf != AARCH64_OPND_QLF_NIL);
5200
5201 logsz = get_logsz (aarch64_get_qualifier_esize (opd1_qlf));
4c562523
JW
5202 if (inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
5203 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC)
5204 gas_assert (logsz <= 3);
5205 else
5206 gas_assert (logsz <= 4);
a06ea964 5207
4c562523
JW
5208 /* In reloc.c, these pseudo relocation types should be defined in similar
5209 order as above reloc_ldst_lo12 array. Because the array index calcuation
5210 below relies on this. */
5211 return reloc_ldst_lo12[inst.reloc.type - BFD_RELOC_AARCH64_LDST_LO12][logsz];
a06ea964
NC
5212}
5213
5214/* Check whether a register list REGINFO is valid. The registers must be
5215 numbered in increasing order (modulo 32), in increments of one or two.
5216
5217 If ACCEPT_ALTERNATE is non-zero, the register numbers should be in
5218 increments of two.
5219
5220 Return FALSE if such a register list is invalid, otherwise return TRUE. */
5221
5222static bfd_boolean
5223reg_list_valid_p (uint32_t reginfo, int accept_alternate)
5224{
5225 uint32_t i, nb_regs, prev_regno, incr;
5226
5227 nb_regs = 1 + (reginfo & 0x3);
5228 reginfo >>= 2;
5229 prev_regno = reginfo & 0x1f;
5230 incr = accept_alternate ? 2 : 1;
5231
5232 for (i = 1; i < nb_regs; ++i)
5233 {
5234 uint32_t curr_regno;
5235 reginfo >>= 5;
5236 curr_regno = reginfo & 0x1f;
5237 if (curr_regno != ((prev_regno + incr) & 0x1f))
5238 return FALSE;
5239 prev_regno = curr_regno;
5240 }
5241
5242 return TRUE;
5243}
5244
5245/* Generic instruction operand parser. This does no encoding and no
5246 semantic validation; it merely squirrels values away in the inst
5247 structure. Returns TRUE or FALSE depending on whether the
5248 specified grammar matched. */
5249
5250static bfd_boolean
5251parse_operands (char *str, const aarch64_opcode *opcode)
5252{
5253 int i;
5254 char *backtrack_pos = 0;
5255 const enum aarch64_opnd *operands = opcode->operands;
1799c0d0 5256 aarch64_reg_type imm_reg_type;
a06ea964
NC
5257
5258 clear_error ();
5259 skip_whitespace (str);
5260
c0890d26
RS
5261 if (AARCH64_CPU_HAS_FEATURE (AARCH64_FEATURE_SVE, *opcode->avariant))
5262 imm_reg_type = REG_TYPE_R_Z_BHSDQ_VZP;
5263 else
5264 imm_reg_type = REG_TYPE_R_Z_BHSDQ_V;
1799c0d0 5265
a06ea964
NC
5266 for (i = 0; operands[i] != AARCH64_OPND_NIL; i++)
5267 {
5268 int64_t val;
e1b988bb 5269 const reg_entry *reg;
a06ea964
NC
5270 int comma_skipped_p = 0;
5271 aarch64_reg_type rtype;
8f9a77af 5272 struct vector_type_el vectype;
4df068de 5273 aarch64_opnd_qualifier_t qualifier, base_qualifier, offset_qualifier;
a06ea964 5274 aarch64_opnd_info *info = &inst.base.operands[i];
f11ad6bc 5275 aarch64_reg_type reg_type;
a06ea964
NC
5276
5277 DEBUG_TRACE ("parse operand %d", i);
5278
5279 /* Assign the operand code. */
5280 info->type = operands[i];
5281
5282 if (optional_operand_p (opcode, i))
5283 {
5284 /* Remember where we are in case we need to backtrack. */
5285 gas_assert (!backtrack_pos);
5286 backtrack_pos = str;
5287 }
5288
5289 /* Expect comma between operands; the backtrack mechanizm will take
5290 care of cases of omitted optional operand. */
5291 if (i > 0 && ! skip_past_char (&str, ','))
5292 {
5293 set_syntax_error (_("comma expected between operands"));
5294 goto failure;
5295 }
5296 else
5297 comma_skipped_p = 1;
5298
5299 switch (operands[i])
5300 {
5301 case AARCH64_OPND_Rd:
5302 case AARCH64_OPND_Rn:
5303 case AARCH64_OPND_Rm:
5304 case AARCH64_OPND_Rt:
5305 case AARCH64_OPND_Rt2:
5306 case AARCH64_OPND_Rs:
5307 case AARCH64_OPND_Ra:
5308 case AARCH64_OPND_Rt_SYS:
ee804238 5309 case AARCH64_OPND_PAIRREG:
047cd301 5310 case AARCH64_OPND_SVE_Rm:
e1b988bb 5311 po_int_reg_or_fail (REG_TYPE_R_Z);
a06ea964
NC
5312 break;
5313
5314 case AARCH64_OPND_Rd_SP:
5315 case AARCH64_OPND_Rn_SP:
047cd301 5316 case AARCH64_OPND_SVE_Rn_SP:
e1b988bb 5317 po_int_reg_or_fail (REG_TYPE_R_SP);
a06ea964
NC
5318 break;
5319
5320 case AARCH64_OPND_Rm_EXT:
5321 case AARCH64_OPND_Rm_SFT:
5322 po_misc_or_fail (parse_shifter_operand
5323 (&str, info, (operands[i] == AARCH64_OPND_Rm_EXT
5324 ? SHIFTED_ARITH_IMM
5325 : SHIFTED_LOGIC_IMM)));
5326 if (!info->shifter.operator_present)
5327 {
5328 /* Default to LSL if not present. Libopcodes prefers shifter
5329 kind to be explicit. */
5330 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5331 info->shifter.kind = AARCH64_MOD_LSL;
5332 /* For Rm_EXT, libopcodes will carry out further check on whether
5333 or not stack pointer is used in the instruction (Recall that
5334 "the extend operator is not optional unless at least one of
5335 "Rd" or "Rn" is '11111' (i.e. WSP)"). */
5336 }
5337 break;
5338
5339 case AARCH64_OPND_Fd:
5340 case AARCH64_OPND_Fn:
5341 case AARCH64_OPND_Fm:
5342 case AARCH64_OPND_Fa:
5343 case AARCH64_OPND_Ft:
5344 case AARCH64_OPND_Ft2:
5345 case AARCH64_OPND_Sd:
5346 case AARCH64_OPND_Sn:
5347 case AARCH64_OPND_Sm:
047cd301
RS
5348 case AARCH64_OPND_SVE_VZn:
5349 case AARCH64_OPND_SVE_Vd:
5350 case AARCH64_OPND_SVE_Vm:
5351 case AARCH64_OPND_SVE_Vn:
a06ea964
NC
5352 val = aarch64_reg_parse (&str, REG_TYPE_BHSDQ, &rtype, NULL);
5353 if (val == PARSE_FAIL)
5354 {
5355 first_error (_(get_reg_expected_msg (REG_TYPE_BHSDQ)));
5356 goto failure;
5357 }
5358 gas_assert (rtype >= REG_TYPE_FP_B && rtype <= REG_TYPE_FP_Q);
5359
5360 info->reg.regno = val;
5361 info->qualifier = AARCH64_OPND_QLF_S_B + (rtype - REG_TYPE_FP_B);
5362 break;
5363
f11ad6bc
RS
5364 case AARCH64_OPND_SVE_Pd:
5365 case AARCH64_OPND_SVE_Pg3:
5366 case AARCH64_OPND_SVE_Pg4_5:
5367 case AARCH64_OPND_SVE_Pg4_10:
5368 case AARCH64_OPND_SVE_Pg4_16:
5369 case AARCH64_OPND_SVE_Pm:
5370 case AARCH64_OPND_SVE_Pn:
5371 case AARCH64_OPND_SVE_Pt:
5372 reg_type = REG_TYPE_PN;
5373 goto vector_reg;
5374
5375 case AARCH64_OPND_SVE_Za_5:
5376 case AARCH64_OPND_SVE_Za_16:
5377 case AARCH64_OPND_SVE_Zd:
5378 case AARCH64_OPND_SVE_Zm_5:
5379 case AARCH64_OPND_SVE_Zm_16:
5380 case AARCH64_OPND_SVE_Zn:
5381 case AARCH64_OPND_SVE_Zt:
5382 reg_type = REG_TYPE_ZN;
5383 goto vector_reg;
5384
a06ea964
NC
5385 case AARCH64_OPND_Vd:
5386 case AARCH64_OPND_Vn:
5387 case AARCH64_OPND_Vm:
f11ad6bc
RS
5388 reg_type = REG_TYPE_VN;
5389 vector_reg:
5390 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
a06ea964
NC
5391 if (val == PARSE_FAIL)
5392 {
f11ad6bc 5393 first_error (_(get_reg_expected_msg (reg_type)));
a06ea964
NC
5394 goto failure;
5395 }
5396 if (vectype.defined & NTA_HASINDEX)
5397 goto failure;
5398
5399 info->reg.regno = val;
f11ad6bc
RS
5400 if ((reg_type == REG_TYPE_PN || reg_type == REG_TYPE_ZN)
5401 && vectype.type == NT_invtype)
5402 /* Unqualified Pn and Zn registers are allowed in certain
5403 contexts. Rely on F_STRICT qualifier checking to catch
5404 invalid uses. */
5405 info->qualifier = AARCH64_OPND_QLF_NIL;
5406 else
5407 {
5408 info->qualifier = vectype_to_qualifier (&vectype);
5409 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5410 goto failure;
5411 }
a06ea964
NC
5412 break;
5413
5414 case AARCH64_OPND_VdD1:
5415 case AARCH64_OPND_VnD1:
5416 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
5417 if (val == PARSE_FAIL)
5418 {
5419 set_first_syntax_error (_(get_reg_expected_msg (REG_TYPE_VN)));
5420 goto failure;
5421 }
5422 if (vectype.type != NT_d || vectype.index != 1)
5423 {
5424 set_fatal_syntax_error
5425 (_("the top half of a 128-bit FP/SIMD register is expected"));
5426 goto failure;
5427 }
5428 info->reg.regno = val;
5429 /* N.B: VdD1 and VnD1 are treated as an fp or advsimd scalar register
5430 here; it is correct for the purpose of encoding/decoding since
5431 only the register number is explicitly encoded in the related
5432 instructions, although this appears a bit hacky. */
5433 info->qualifier = AARCH64_OPND_QLF_S_D;
5434 break;
5435
f11ad6bc
RS
5436 case AARCH64_OPND_SVE_Zn_INDEX:
5437 reg_type = REG_TYPE_ZN;
5438 goto vector_reg_index;
5439
a06ea964
NC
5440 case AARCH64_OPND_Ed:
5441 case AARCH64_OPND_En:
5442 case AARCH64_OPND_Em:
f11ad6bc
RS
5443 reg_type = REG_TYPE_VN;
5444 vector_reg_index:
5445 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
a06ea964
NC
5446 if (val == PARSE_FAIL)
5447 {
f11ad6bc 5448 first_error (_(get_reg_expected_msg (reg_type)));
a06ea964
NC
5449 goto failure;
5450 }
5451 if (vectype.type == NT_invtype || !(vectype.defined & NTA_HASINDEX))
5452 goto failure;
5453
5454 info->reglane.regno = val;
5455 info->reglane.index = vectype.index;
5456 info->qualifier = vectype_to_qualifier (&vectype);
5457 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5458 goto failure;
5459 break;
5460
f11ad6bc
RS
5461 case AARCH64_OPND_SVE_ZnxN:
5462 case AARCH64_OPND_SVE_ZtxN:
5463 reg_type = REG_TYPE_ZN;
5464 goto vector_reg_list;
5465
a06ea964
NC
5466 case AARCH64_OPND_LVn:
5467 case AARCH64_OPND_LVt:
5468 case AARCH64_OPND_LVt_AL:
5469 case AARCH64_OPND_LEt:
f11ad6bc
RS
5470 reg_type = REG_TYPE_VN;
5471 vector_reg_list:
5472 if (reg_type == REG_TYPE_ZN
5473 && get_opcode_dependent_value (opcode) == 1
5474 && *str != '{')
a06ea964 5475 {
f11ad6bc
RS
5476 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
5477 if (val == PARSE_FAIL)
5478 {
5479 first_error (_(get_reg_expected_msg (reg_type)));
5480 goto failure;
5481 }
5482 info->reglist.first_regno = val;
5483 info->reglist.num_regs = 1;
5484 }
5485 else
5486 {
5487 val = parse_vector_reg_list (&str, reg_type, &vectype);
5488 if (val == PARSE_FAIL)
5489 goto failure;
5490 if (! reg_list_valid_p (val, /* accept_alternate */ 0))
5491 {
5492 set_fatal_syntax_error (_("invalid register list"));
5493 goto failure;
5494 }
5495 info->reglist.first_regno = (val >> 2) & 0x1f;
5496 info->reglist.num_regs = (val & 0x3) + 1;
a06ea964 5497 }
a06ea964
NC
5498 if (operands[i] == AARCH64_OPND_LEt)
5499 {
5500 if (!(vectype.defined & NTA_HASINDEX))
5501 goto failure;
5502 info->reglist.has_index = 1;
5503 info->reglist.index = vectype.index;
5504 }
f11ad6bc
RS
5505 else
5506 {
5507 if (vectype.defined & NTA_HASINDEX)
5508 goto failure;
5509 if (!(vectype.defined & NTA_HASTYPE))
5510 {
5511 if (reg_type == REG_TYPE_ZN)
5512 set_fatal_syntax_error (_("missing type suffix"));
5513 goto failure;
5514 }
5515 }
a06ea964
NC
5516 info->qualifier = vectype_to_qualifier (&vectype);
5517 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5518 goto failure;
5519 break;
5520
5521 case AARCH64_OPND_Cn:
5522 case AARCH64_OPND_Cm:
5523 po_reg_or_fail (REG_TYPE_CN);
5524 if (val > 15)
5525 {
5526 set_fatal_syntax_error (_(get_reg_expected_msg (REG_TYPE_CN)));
5527 goto failure;
5528 }
5529 inst.base.operands[i].reg.regno = val;
5530 break;
5531
5532 case AARCH64_OPND_SHLL_IMM:
5533 case AARCH64_OPND_IMM_VLSR:
5534 po_imm_or_fail (1, 64);
5535 info->imm.value = val;
5536 break;
5537
5538 case AARCH64_OPND_CCMP_IMM:
e950b345 5539 case AARCH64_OPND_SIMM5:
a06ea964
NC
5540 case AARCH64_OPND_FBITS:
5541 case AARCH64_OPND_UIMM4:
5542 case AARCH64_OPND_UIMM3_OP1:
5543 case AARCH64_OPND_UIMM3_OP2:
5544 case AARCH64_OPND_IMM_VLSL:
5545 case AARCH64_OPND_IMM:
5546 case AARCH64_OPND_WIDTH:
e950b345
RS
5547 case AARCH64_OPND_SVE_INV_LIMM:
5548 case AARCH64_OPND_SVE_LIMM:
5549 case AARCH64_OPND_SVE_LIMM_MOV:
5550 case AARCH64_OPND_SVE_SHLIMM_PRED:
5551 case AARCH64_OPND_SVE_SHLIMM_UNPRED:
5552 case AARCH64_OPND_SVE_SHRIMM_PRED:
5553 case AARCH64_OPND_SVE_SHRIMM_UNPRED:
5554 case AARCH64_OPND_SVE_SIMM5:
5555 case AARCH64_OPND_SVE_SIMM5B:
5556 case AARCH64_OPND_SVE_SIMM6:
5557 case AARCH64_OPND_SVE_SIMM8:
5558 case AARCH64_OPND_SVE_UIMM3:
5559 case AARCH64_OPND_SVE_UIMM7:
5560 case AARCH64_OPND_SVE_UIMM8:
5561 case AARCH64_OPND_SVE_UIMM8_53:
a06ea964
NC
5562 po_imm_nc_or_fail ();
5563 info->imm.value = val;
5564 break;
5565
e950b345
RS
5566 case AARCH64_OPND_SVE_AIMM:
5567 case AARCH64_OPND_SVE_ASIMM:
5568 po_imm_nc_or_fail ();
5569 info->imm.value = val;
5570 skip_whitespace (str);
5571 if (skip_past_comma (&str))
5572 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
5573 else
5574 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
5575 break;
5576
245d2e3f
RS
5577 case AARCH64_OPND_SVE_PATTERN:
5578 po_enum_or_fail (aarch64_sve_pattern_array);
5579 info->imm.value = val;
5580 break;
5581
2442d846
RS
5582 case AARCH64_OPND_SVE_PATTERN_SCALED:
5583 po_enum_or_fail (aarch64_sve_pattern_array);
5584 info->imm.value = val;
5585 if (skip_past_comma (&str)
5586 && !parse_shift (&str, info, SHIFTED_MUL))
5587 goto failure;
5588 if (!info->shifter.operator_present)
5589 {
5590 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5591 info->shifter.kind = AARCH64_MOD_MUL;
5592 info->shifter.amount = 1;
5593 }
5594 break;
5595
245d2e3f
RS
5596 case AARCH64_OPND_SVE_PRFOP:
5597 po_enum_or_fail (aarch64_sve_prfop_array);
5598 info->imm.value = val;
5599 break;
5600
a06ea964
NC
5601 case AARCH64_OPND_UIMM7:
5602 po_imm_or_fail (0, 127);
5603 info->imm.value = val;
5604 break;
5605
5606 case AARCH64_OPND_IDX:
5607 case AARCH64_OPND_BIT_NUM:
5608 case AARCH64_OPND_IMMR:
5609 case AARCH64_OPND_IMMS:
5610 po_imm_or_fail (0, 63);
5611 info->imm.value = val;
5612 break;
5613
5614 case AARCH64_OPND_IMM0:
5615 po_imm_nc_or_fail ();
5616 if (val != 0)
5617 {
5618 set_fatal_syntax_error (_("immediate zero expected"));
5619 goto failure;
5620 }
5621 info->imm.value = 0;
5622 break;
5623
5624 case AARCH64_OPND_FPIMM0:
5625 {
5626 int qfloat;
5627 bfd_boolean res1 = FALSE, res2 = FALSE;
5628 /* N.B. -0.0 will be rejected; although -0.0 shouldn't be rejected,
5629 it is probably not worth the effort to support it. */
1799c0d0
RS
5630 if (!(res1 = parse_aarch64_imm_float (&str, &qfloat, FALSE,
5631 imm_reg_type))
6a9deabe
RS
5632 && (error_p ()
5633 || !(res2 = parse_constant_immediate (&str, &val,
5634 imm_reg_type))))
a06ea964
NC
5635 goto failure;
5636 if ((res1 && qfloat == 0) || (res2 && val == 0))
5637 {
5638 info->imm.value = 0;
5639 info->imm.is_fp = 1;
5640 break;
5641 }
5642 set_fatal_syntax_error (_("immediate zero expected"));
5643 goto failure;
5644 }
5645
5646 case AARCH64_OPND_IMM_MOV:
5647 {
5648 char *saved = str;
8db49cc2
WN
5649 if (reg_name_p (str, REG_TYPE_R_Z_SP) ||
5650 reg_name_p (str, REG_TYPE_VN))
a06ea964
NC
5651 goto failure;
5652 str = saved;
5653 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5654 GE_OPT_PREFIX, 1));
5655 /* The MOV immediate alias will be fixed up by fix_mov_imm_insn
5656 later. fix_mov_imm_insn will try to determine a machine
5657 instruction (MOVZ, MOVN or ORR) for it and will issue an error
5658 message if the immediate cannot be moved by a single
5659 instruction. */
5660 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
5661 inst.base.operands[i].skip = 1;
5662 }
5663 break;
5664
5665 case AARCH64_OPND_SIMD_IMM:
5666 case AARCH64_OPND_SIMD_IMM_SFT:
1799c0d0 5667 if (! parse_big_immediate (&str, &val, imm_reg_type))
a06ea964
NC
5668 goto failure;
5669 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5670 /* addr_off_p */ 0,
5671 /* need_libopcodes_p */ 1,
5672 /* skip_p */ 1);
5673 /* Parse shift.
5674 N.B. although AARCH64_OPND_SIMD_IMM doesn't permit any
5675 shift, we don't check it here; we leave the checking to
5676 the libopcodes (operand_general_constraint_met_p). By
5677 doing this, we achieve better diagnostics. */
5678 if (skip_past_comma (&str)
5679 && ! parse_shift (&str, info, SHIFTED_LSL_MSL))
5680 goto failure;
5681 if (!info->shifter.operator_present
5682 && info->type == AARCH64_OPND_SIMD_IMM_SFT)
5683 {
5684 /* Default to LSL if not present. Libopcodes prefers shifter
5685 kind to be explicit. */
5686 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5687 info->shifter.kind = AARCH64_MOD_LSL;
5688 }
5689 break;
5690
5691 case AARCH64_OPND_FPIMM:
5692 case AARCH64_OPND_SIMD_FPIMM:
165d4950 5693 case AARCH64_OPND_SVE_FPIMM8:
a06ea964
NC
5694 {
5695 int qfloat;
165d4950
RS
5696 bfd_boolean dp_p;
5697
5698 dp_p = double_precision_operand_p (&inst.base.operands[0]);
6a9deabe 5699 if (!parse_aarch64_imm_float (&str, &qfloat, dp_p, imm_reg_type)
874d7e6e 5700 || !aarch64_imm_float_p (qfloat))
a06ea964 5701 {
6a9deabe
RS
5702 if (!error_p ())
5703 set_fatal_syntax_error (_("invalid floating-point"
5704 " constant"));
a06ea964
NC
5705 goto failure;
5706 }
5707 inst.base.operands[i].imm.value = encode_imm_float_bits (qfloat);
5708 inst.base.operands[i].imm.is_fp = 1;
5709 }
5710 break;
5711
165d4950
RS
5712 case AARCH64_OPND_SVE_I1_HALF_ONE:
5713 case AARCH64_OPND_SVE_I1_HALF_TWO:
5714 case AARCH64_OPND_SVE_I1_ZERO_ONE:
5715 {
5716 int qfloat;
5717 bfd_boolean dp_p;
5718
5719 dp_p = double_precision_operand_p (&inst.base.operands[0]);
5720 if (!parse_aarch64_imm_float (&str, &qfloat, dp_p, imm_reg_type))
5721 {
5722 if (!error_p ())
5723 set_fatal_syntax_error (_("invalid floating-point"
5724 " constant"));
5725 goto failure;
5726 }
5727 inst.base.operands[i].imm.value = qfloat;
5728 inst.base.operands[i].imm.is_fp = 1;
5729 }
5730 break;
5731
a06ea964
NC
5732 case AARCH64_OPND_LIMM:
5733 po_misc_or_fail (parse_shifter_operand (&str, info,
5734 SHIFTED_LOGIC_IMM));
5735 if (info->shifter.operator_present)
5736 {
5737 set_fatal_syntax_error
5738 (_("shift not allowed for bitmask immediate"));
5739 goto failure;
5740 }
5741 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5742 /* addr_off_p */ 0,
5743 /* need_libopcodes_p */ 1,
5744 /* skip_p */ 1);
5745 break;
5746
5747 case AARCH64_OPND_AIMM:
5748 if (opcode->op == OP_ADD)
5749 /* ADD may have relocation types. */
5750 po_misc_or_fail (parse_shifter_operand_reloc (&str, info,
5751 SHIFTED_ARITH_IMM));
5752 else
5753 po_misc_or_fail (parse_shifter_operand (&str, info,
5754 SHIFTED_ARITH_IMM));
5755 switch (inst.reloc.type)
5756 {
5757 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5758 info->shifter.amount = 12;
5759 break;
5760 case BFD_RELOC_UNUSED:
5761 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5762 if (info->shifter.kind != AARCH64_MOD_NONE)
5763 inst.reloc.flags = FIXUP_F_HAS_EXPLICIT_SHIFT;
5764 inst.reloc.pc_rel = 0;
5765 break;
5766 default:
5767 break;
5768 }
5769 info->imm.value = 0;
5770 if (!info->shifter.operator_present)
5771 {
5772 /* Default to LSL if not present. Libopcodes prefers shifter
5773 kind to be explicit. */
5774 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5775 info->shifter.kind = AARCH64_MOD_LSL;
5776 }
5777 break;
5778
5779 case AARCH64_OPND_HALF:
5780 {
5781 /* #<imm16> or relocation. */
5782 int internal_fixup_p;
5783 po_misc_or_fail (parse_half (&str, &internal_fixup_p));
5784 if (internal_fixup_p)
5785 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5786 skip_whitespace (str);
5787 if (skip_past_comma (&str))
5788 {
5789 /* {, LSL #<shift>} */
5790 if (! aarch64_gas_internal_fixup_p ())
5791 {
5792 set_fatal_syntax_error (_("can't mix relocation modifier "
5793 "with explicit shift"));
5794 goto failure;
5795 }
5796 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
5797 }
5798 else
5799 inst.base.operands[i].shifter.amount = 0;
5800 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
5801 inst.base.operands[i].imm.value = 0;
5802 if (! process_movw_reloc_info ())
5803 goto failure;
5804 }
5805 break;
5806
5807 case AARCH64_OPND_EXCEPTION:
1799c0d0
RS
5808 po_misc_or_fail (parse_immediate_expression (&str, &inst.reloc.exp,
5809 imm_reg_type));
a06ea964
NC
5810 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5811 /* addr_off_p */ 0,
5812 /* need_libopcodes_p */ 0,
5813 /* skip_p */ 1);
5814 break;
5815
5816 case AARCH64_OPND_NZCV:
5817 {
5818 const asm_nzcv *nzcv = hash_find_n (aarch64_nzcv_hsh, str, 4);
5819 if (nzcv != NULL)
5820 {
5821 str += 4;
5822 info->imm.value = nzcv->value;
5823 break;
5824 }
5825 po_imm_or_fail (0, 15);
5826 info->imm.value = val;
5827 }
5828 break;
5829
5830 case AARCH64_OPND_COND:
68a64283 5831 case AARCH64_OPND_COND1:
bb7eff52
RS
5832 {
5833 char *start = str;
5834 do
5835 str++;
5836 while (ISALPHA (*str));
5837 info->cond = hash_find_n (aarch64_cond_hsh, start, str - start);
5838 if (info->cond == NULL)
5839 {
5840 set_syntax_error (_("invalid condition"));
5841 goto failure;
5842 }
5843 else if (operands[i] == AARCH64_OPND_COND1
5844 && (info->cond->value & 0xe) == 0xe)
5845 {
5846 /* Do not allow AL or NV. */
5847 set_default_error ();
5848 goto failure;
5849 }
5850 }
a06ea964
NC
5851 break;
5852
5853 case AARCH64_OPND_ADDR_ADRP:
5854 po_misc_or_fail (parse_adrp (&str));
5855 /* Clear the value as operand needs to be relocated. */
5856 info->imm.value = 0;
5857 break;
5858
5859 case AARCH64_OPND_ADDR_PCREL14:
5860 case AARCH64_OPND_ADDR_PCREL19:
5861 case AARCH64_OPND_ADDR_PCREL21:
5862 case AARCH64_OPND_ADDR_PCREL26:
73866052 5863 po_misc_or_fail (parse_address (&str, info));
a06ea964
NC
5864 if (!info->addr.pcrel)
5865 {
5866 set_syntax_error (_("invalid pc-relative address"));
5867 goto failure;
5868 }
5869 if (inst.gen_lit_pool
5870 && (opcode->iclass != loadlit || opcode->op == OP_PRFM_LIT))
5871 {
5872 /* Only permit "=value" in the literal load instructions.
5873 The literal will be generated by programmer_friendly_fixup. */
5874 set_syntax_error (_("invalid use of \"=immediate\""));
5875 goto failure;
5876 }
5877 if (inst.reloc.exp.X_op == O_symbol && find_reloc_table_entry (&str))
5878 {
5879 set_syntax_error (_("unrecognized relocation suffix"));
5880 goto failure;
5881 }
5882 if (inst.reloc.exp.X_op == O_constant && !inst.gen_lit_pool)
5883 {
5884 info->imm.value = inst.reloc.exp.X_add_number;
5885 inst.reloc.type = BFD_RELOC_UNUSED;
5886 }
5887 else
5888 {
5889 info->imm.value = 0;
f41aef5f
RE
5890 if (inst.reloc.type == BFD_RELOC_UNUSED)
5891 switch (opcode->iclass)
5892 {
5893 case compbranch:
5894 case condbranch:
5895 /* e.g. CBZ or B.COND */
5896 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
5897 inst.reloc.type = BFD_RELOC_AARCH64_BRANCH19;
5898 break;
5899 case testbranch:
5900 /* e.g. TBZ */
5901 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL14);
5902 inst.reloc.type = BFD_RELOC_AARCH64_TSTBR14;
5903 break;
5904 case branch_imm:
5905 /* e.g. B or BL */
5906 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL26);
5907 inst.reloc.type =
5908 (opcode->op == OP_BL) ? BFD_RELOC_AARCH64_CALL26
5909 : BFD_RELOC_AARCH64_JUMP26;
5910 break;
5911 case loadlit:
5912 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
5913 inst.reloc.type = BFD_RELOC_AARCH64_LD_LO19_PCREL;
5914 break;
5915 case pcreladdr:
5916 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL21);
5917 inst.reloc.type = BFD_RELOC_AARCH64_ADR_LO21_PCREL;
5918 break;
5919 default:
5920 gas_assert (0);
5921 abort ();
5922 }
a06ea964
NC
5923 inst.reloc.pc_rel = 1;
5924 }
5925 break;
5926
5927 case AARCH64_OPND_ADDR_SIMPLE:
5928 case AARCH64_OPND_SIMD_ADDR_SIMPLE:
e1b988bb
RS
5929 {
5930 /* [<Xn|SP>{, #<simm>}] */
5931 char *start = str;
5932 /* First use the normal address-parsing routines, to get
5933 the usual syntax errors. */
73866052 5934 po_misc_or_fail (parse_address (&str, info));
e1b988bb
RS
5935 if (info->addr.pcrel || info->addr.offset.is_reg
5936 || !info->addr.preind || info->addr.postind
5937 || info->addr.writeback)
5938 {
5939 set_syntax_error (_("invalid addressing mode"));
5940 goto failure;
5941 }
5942
5943 /* Then retry, matching the specific syntax of these addresses. */
5944 str = start;
5945 po_char_or_fail ('[');
5946 po_reg_or_fail (REG_TYPE_R64_SP);
5947 /* Accept optional ", #0". */
5948 if (operands[i] == AARCH64_OPND_ADDR_SIMPLE
5949 && skip_past_char (&str, ','))
5950 {
5951 skip_past_char (&str, '#');
5952 if (! skip_past_char (&str, '0'))
5953 {
5954 set_fatal_syntax_error
5955 (_("the optional immediate offset can only be 0"));
5956 goto failure;
5957 }
5958 }
5959 po_char_or_fail (']');
5960 break;
5961 }
a06ea964
NC
5962
5963 case AARCH64_OPND_ADDR_REGOFF:
5964 /* [<Xn|SP>, <R><m>{, <extend> {<amount>}}] */
73866052 5965 po_misc_or_fail (parse_address (&str, info));
4df068de 5966 regoff_addr:
a06ea964
NC
5967 if (info->addr.pcrel || !info->addr.offset.is_reg
5968 || !info->addr.preind || info->addr.postind
5969 || info->addr.writeback)
5970 {
5971 set_syntax_error (_("invalid addressing mode"));
5972 goto failure;
5973 }
5974 if (!info->shifter.operator_present)
5975 {
5976 /* Default to LSL if not present. Libopcodes prefers shifter
5977 kind to be explicit. */
5978 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5979 info->shifter.kind = AARCH64_MOD_LSL;
5980 }
5981 /* Qualifier to be deduced by libopcodes. */
5982 break;
5983
5984 case AARCH64_OPND_ADDR_SIMM7:
73866052 5985 po_misc_or_fail (parse_address (&str, info));
a06ea964
NC
5986 if (info->addr.pcrel || info->addr.offset.is_reg
5987 || (!info->addr.preind && !info->addr.postind))
5988 {
5989 set_syntax_error (_("invalid addressing mode"));
5990 goto failure;
5991 }
73866052
RS
5992 if (inst.reloc.type != BFD_RELOC_UNUSED)
5993 {
5994 set_syntax_error (_("relocation not allowed"));
5995 goto failure;
5996 }
a06ea964
NC
5997 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5998 /* addr_off_p */ 1,
5999 /* need_libopcodes_p */ 1,
6000 /* skip_p */ 0);
6001 break;
6002
6003 case AARCH64_OPND_ADDR_SIMM9:
6004 case AARCH64_OPND_ADDR_SIMM9_2:
73866052 6005 po_misc_or_fail (parse_address (&str, info));
a06ea964
NC
6006 if (info->addr.pcrel || info->addr.offset.is_reg
6007 || (!info->addr.preind && !info->addr.postind)
6008 || (operands[i] == AARCH64_OPND_ADDR_SIMM9_2
6009 && info->addr.writeback))
6010 {
6011 set_syntax_error (_("invalid addressing mode"));
6012 goto failure;
6013 }
6014 if (inst.reloc.type != BFD_RELOC_UNUSED)
6015 {
6016 set_syntax_error (_("relocation not allowed"));
6017 goto failure;
6018 }
6019 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6020 /* addr_off_p */ 1,
6021 /* need_libopcodes_p */ 1,
6022 /* skip_p */ 0);
6023 break;
6024
6025 case AARCH64_OPND_ADDR_UIMM12:
73866052 6026 po_misc_or_fail (parse_address (&str, info));
a06ea964
NC
6027 if (info->addr.pcrel || info->addr.offset.is_reg
6028 || !info->addr.preind || info->addr.writeback)
6029 {
6030 set_syntax_error (_("invalid addressing mode"));
6031 goto failure;
6032 }
6033 if (inst.reloc.type == BFD_RELOC_UNUSED)
6034 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
4c562523
JW
6035 else if (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
6036 || (inst.reloc.type
6037 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12)
6038 || (inst.reloc.type
6039 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC))
a06ea964
NC
6040 inst.reloc.type = ldst_lo12_determine_real_reloc_type ();
6041 /* Leave qualifier to be determined by libopcodes. */
6042 break;
6043
6044 case AARCH64_OPND_SIMD_ADDR_POST:
6045 /* [<Xn|SP>], <Xm|#<amount>> */
73866052 6046 po_misc_or_fail (parse_address (&str, info));
a06ea964
NC
6047 if (!info->addr.postind || !info->addr.writeback)
6048 {
6049 set_syntax_error (_("invalid addressing mode"));
6050 goto failure;
6051 }
6052 if (!info->addr.offset.is_reg)
6053 {
6054 if (inst.reloc.exp.X_op == O_constant)
6055 info->addr.offset.imm = inst.reloc.exp.X_add_number;
6056 else
6057 {
6058 set_fatal_syntax_error
ab3b8fcf 6059 (_("writeback value must be an immediate constant"));
a06ea964
NC
6060 goto failure;
6061 }
6062 }
6063 /* No qualifier. */
6064 break;
6065
98907a70
RS
6066 case AARCH64_OPND_SVE_ADDR_RI_S4xVL:
6067 case AARCH64_OPND_SVE_ADDR_RI_S4x2xVL:
6068 case AARCH64_OPND_SVE_ADDR_RI_S4x3xVL:
6069 case AARCH64_OPND_SVE_ADDR_RI_S4x4xVL:
6070 case AARCH64_OPND_SVE_ADDR_RI_S6xVL:
6071 case AARCH64_OPND_SVE_ADDR_RI_S9xVL:
4df068de
RS
6072 case AARCH64_OPND_SVE_ADDR_RI_U6:
6073 case AARCH64_OPND_SVE_ADDR_RI_U6x2:
6074 case AARCH64_OPND_SVE_ADDR_RI_U6x4:
6075 case AARCH64_OPND_SVE_ADDR_RI_U6x8:
98907a70
RS
6076 /* [X<n>{, #imm, MUL VL}]
6077 [X<n>{, #imm}]
4df068de
RS
6078 but recognizing SVE registers. */
6079 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6080 &offset_qualifier));
6081 if (base_qualifier != AARCH64_OPND_QLF_X)
6082 {
6083 set_syntax_error (_("invalid addressing mode"));
6084 goto failure;
6085 }
6086 sve_regimm:
6087 if (info->addr.pcrel || info->addr.offset.is_reg
6088 || !info->addr.preind || info->addr.writeback)
6089 {
6090 set_syntax_error (_("invalid addressing mode"));
6091 goto failure;
6092 }
6093 if (inst.reloc.type != BFD_RELOC_UNUSED
6094 || inst.reloc.exp.X_op != O_constant)
6095 {
6096 /* Make sure this has priority over
6097 "invalid addressing mode". */
6098 set_fatal_syntax_error (_("constant offset required"));
6099 goto failure;
6100 }
6101 info->addr.offset.imm = inst.reloc.exp.X_add_number;
6102 break;
6103
6104 case AARCH64_OPND_SVE_ADDR_RR:
6105 case AARCH64_OPND_SVE_ADDR_RR_LSL1:
6106 case AARCH64_OPND_SVE_ADDR_RR_LSL2:
6107 case AARCH64_OPND_SVE_ADDR_RR_LSL3:
6108 case AARCH64_OPND_SVE_ADDR_RX:
6109 case AARCH64_OPND_SVE_ADDR_RX_LSL1:
6110 case AARCH64_OPND_SVE_ADDR_RX_LSL2:
6111 case AARCH64_OPND_SVE_ADDR_RX_LSL3:
6112 /* [<Xn|SP>, <R><m>{, lsl #<amount>}]
6113 but recognizing SVE registers. */
6114 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6115 &offset_qualifier));
6116 if (base_qualifier != AARCH64_OPND_QLF_X
6117 || offset_qualifier != AARCH64_OPND_QLF_X)
6118 {
6119 set_syntax_error (_("invalid addressing mode"));
6120 goto failure;
6121 }
6122 goto regoff_addr;
6123
6124 case AARCH64_OPND_SVE_ADDR_RZ:
6125 case AARCH64_OPND_SVE_ADDR_RZ_LSL1:
6126 case AARCH64_OPND_SVE_ADDR_RZ_LSL2:
6127 case AARCH64_OPND_SVE_ADDR_RZ_LSL3:
6128 case AARCH64_OPND_SVE_ADDR_RZ_XTW_14:
6129 case AARCH64_OPND_SVE_ADDR_RZ_XTW_22:
6130 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_14:
6131 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_22:
6132 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_14:
6133 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_22:
6134 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_14:
6135 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_22:
6136 /* [<Xn|SP>, Z<m>.D{, LSL #<amount>}]
6137 [<Xn|SP>, Z<m>.<T>, <extend> {#<amount>}] */
6138 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6139 &offset_qualifier));
6140 if (base_qualifier != AARCH64_OPND_QLF_X
6141 || (offset_qualifier != AARCH64_OPND_QLF_S_S
6142 && offset_qualifier != AARCH64_OPND_QLF_S_D))
6143 {
6144 set_syntax_error (_("invalid addressing mode"));
6145 goto failure;
6146 }
6147 info->qualifier = offset_qualifier;
6148 goto regoff_addr;
6149
6150 case AARCH64_OPND_SVE_ADDR_ZI_U5:
6151 case AARCH64_OPND_SVE_ADDR_ZI_U5x2:
6152 case AARCH64_OPND_SVE_ADDR_ZI_U5x4:
6153 case AARCH64_OPND_SVE_ADDR_ZI_U5x8:
6154 /* [Z<n>.<T>{, #imm}] */
6155 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6156 &offset_qualifier));
6157 if (base_qualifier != AARCH64_OPND_QLF_S_S
6158 && base_qualifier != AARCH64_OPND_QLF_S_D)
6159 {
6160 set_syntax_error (_("invalid addressing mode"));
6161 goto failure;
6162 }
6163 info->qualifier = base_qualifier;
6164 goto sve_regimm;
6165
6166 case AARCH64_OPND_SVE_ADDR_ZZ_LSL:
6167 case AARCH64_OPND_SVE_ADDR_ZZ_SXTW:
6168 case AARCH64_OPND_SVE_ADDR_ZZ_UXTW:
6169 /* [Z<n>.<T>, Z<m>.<T>{, LSL #<amount>}]
6170 [Z<n>.D, Z<m>.D, <extend> {#<amount>}]
6171
6172 We don't reject:
6173
6174 [Z<n>.S, Z<m>.S, <extend> {#<amount>}]
6175
6176 here since we get better error messages by leaving it to
6177 the qualifier checking routines. */
6178 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6179 &offset_qualifier));
6180 if ((base_qualifier != AARCH64_OPND_QLF_S_S
6181 && base_qualifier != AARCH64_OPND_QLF_S_D)
6182 || offset_qualifier != base_qualifier)
6183 {
6184 set_syntax_error (_("invalid addressing mode"));
6185 goto failure;
6186 }
6187 info->qualifier = base_qualifier;
6188 goto regoff_addr;
6189
a06ea964 6190 case AARCH64_OPND_SYSREG:
72ca8fad 6191 if ((val = parse_sys_reg (&str, aarch64_sys_regs_hsh, 1, 0))
a203d9b7 6192 == PARSE_FAIL)
a06ea964 6193 {
a203d9b7
YZ
6194 set_syntax_error (_("unknown or missing system register name"));
6195 goto failure;
a06ea964 6196 }
a203d9b7 6197 inst.base.operands[i].sysreg = val;
a06ea964
NC
6198 break;
6199
6200 case AARCH64_OPND_PSTATEFIELD:
72ca8fad 6201 if ((val = parse_sys_reg (&str, aarch64_pstatefield_hsh, 0, 1))
a3251895 6202 == PARSE_FAIL)
a06ea964
NC
6203 {
6204 set_syntax_error (_("unknown or missing PSTATE field name"));
6205 goto failure;
6206 }
6207 inst.base.operands[i].pstatefield = val;
6208 break;
6209
6210 case AARCH64_OPND_SYSREG_IC:
6211 inst.base.operands[i].sysins_op =
6212 parse_sys_ins_reg (&str, aarch64_sys_regs_ic_hsh);
6213 goto sys_reg_ins;
6214 case AARCH64_OPND_SYSREG_DC:
6215 inst.base.operands[i].sysins_op =
6216 parse_sys_ins_reg (&str, aarch64_sys_regs_dc_hsh);
6217 goto sys_reg_ins;
6218 case AARCH64_OPND_SYSREG_AT:
6219 inst.base.operands[i].sysins_op =
6220 parse_sys_ins_reg (&str, aarch64_sys_regs_at_hsh);
6221 goto sys_reg_ins;
6222 case AARCH64_OPND_SYSREG_TLBI:
6223 inst.base.operands[i].sysins_op =
6224 parse_sys_ins_reg (&str, aarch64_sys_regs_tlbi_hsh);
6225sys_reg_ins:
6226 if (inst.base.operands[i].sysins_op == NULL)
6227 {
6228 set_fatal_syntax_error ( _("unknown or missing operation name"));
6229 goto failure;
6230 }
6231 break;
6232
6233 case AARCH64_OPND_BARRIER:
6234 case AARCH64_OPND_BARRIER_ISB:
6235 val = parse_barrier (&str);
6236 if (val != PARSE_FAIL
6237 && operands[i] == AARCH64_OPND_BARRIER_ISB && val != 0xf)
6238 {
6239 /* ISB only accepts options name 'sy'. */
6240 set_syntax_error
6241 (_("the specified option is not accepted in ISB"));
6242 /* Turn off backtrack as this optional operand is present. */
6243 backtrack_pos = 0;
6244 goto failure;
6245 }
6246 /* This is an extension to accept a 0..15 immediate. */
6247 if (val == PARSE_FAIL)
6248 po_imm_or_fail (0, 15);
6249 info->barrier = aarch64_barrier_options + val;
6250 break;
6251
6252 case AARCH64_OPND_PRFOP:
6253 val = parse_pldop (&str);
6254 /* This is an extension to accept a 0..31 immediate. */
6255 if (val == PARSE_FAIL)
6256 po_imm_or_fail (0, 31);
6257 inst.base.operands[i].prfop = aarch64_prfops + val;
6258 break;
6259
1e6f4800
MW
6260 case AARCH64_OPND_BARRIER_PSB:
6261 val = parse_barrier_psb (&str, &(info->hint_option));
6262 if (val == PARSE_FAIL)
6263 goto failure;
6264 break;
6265
a06ea964
NC
6266 default:
6267 as_fatal (_("unhandled operand code %d"), operands[i]);
6268 }
6269
6270 /* If we get here, this operand was successfully parsed. */
6271 inst.base.operands[i].present = 1;
6272 continue;
6273
6274failure:
6275 /* The parse routine should already have set the error, but in case
6276 not, set a default one here. */
6277 if (! error_p ())
6278 set_default_error ();
6279
6280 if (! backtrack_pos)
6281 goto parse_operands_return;
6282
f4c51f60
JW
6283 {
6284 /* We reach here because this operand is marked as optional, and
6285 either no operand was supplied or the operand was supplied but it
6286 was syntactically incorrect. In the latter case we report an
6287 error. In the former case we perform a few more checks before
6288 dropping through to the code to insert the default operand. */
6289
6290 char *tmp = backtrack_pos;
6291 char endchar = END_OF_INSN;
6292
6293 if (i != (aarch64_num_of_operands (opcode) - 1))
6294 endchar = ',';
6295 skip_past_char (&tmp, ',');
6296
6297 if (*tmp != endchar)
6298 /* The user has supplied an operand in the wrong format. */
6299 goto parse_operands_return;
6300
6301 /* Make sure there is not a comma before the optional operand.
6302 For example the fifth operand of 'sys' is optional:
6303
6304 sys #0,c0,c0,#0, <--- wrong
6305 sys #0,c0,c0,#0 <--- correct. */
6306 if (comma_skipped_p && i && endchar == END_OF_INSN)
6307 {
6308 set_fatal_syntax_error
6309 (_("unexpected comma before the omitted optional operand"));
6310 goto parse_operands_return;
6311 }
6312 }
6313
a06ea964
NC
6314 /* Reaching here means we are dealing with an optional operand that is
6315 omitted from the assembly line. */
6316 gas_assert (optional_operand_p (opcode, i));
6317 info->present = 0;
6318 process_omitted_operand (operands[i], opcode, i, info);
6319
6320 /* Try again, skipping the optional operand at backtrack_pos. */
6321 str = backtrack_pos;
6322 backtrack_pos = 0;
6323
a06ea964
NC
6324 /* Clear any error record after the omitted optional operand has been
6325 successfully handled. */
6326 clear_error ();
6327 }
6328
6329 /* Check if we have parsed all the operands. */
6330 if (*str != '\0' && ! error_p ())
6331 {
6332 /* Set I to the index of the last present operand; this is
6333 for the purpose of diagnostics. */
6334 for (i -= 1; i >= 0 && !inst.base.operands[i].present; --i)
6335 ;
6336 set_fatal_syntax_error
6337 (_("unexpected characters following instruction"));
6338 }
6339
6340parse_operands_return:
6341
6342 if (error_p ())
6343 {
6344 DEBUG_TRACE ("parsing FAIL: %s - %s",
6345 operand_mismatch_kind_names[get_error_kind ()],
6346 get_error_message ());
6347 /* Record the operand error properly; this is useful when there
6348 are multiple instruction templates for a mnemonic name, so that
6349 later on, we can select the error that most closely describes
6350 the problem. */
6351 record_operand_error (opcode, i, get_error_kind (),
6352 get_error_message ());
6353 return FALSE;
6354 }
6355 else
6356 {
6357 DEBUG_TRACE ("parsing SUCCESS");
6358 return TRUE;
6359 }
6360}
6361
6362/* It does some fix-up to provide some programmer friendly feature while
6363 keeping the libopcodes happy, i.e. libopcodes only accepts
6364 the preferred architectural syntax.
6365 Return FALSE if there is any failure; otherwise return TRUE. */
6366
6367static bfd_boolean
6368programmer_friendly_fixup (aarch64_instruction *instr)
6369{
6370 aarch64_inst *base = &instr->base;
6371 const aarch64_opcode *opcode = base->opcode;
6372 enum aarch64_op op = opcode->op;
6373 aarch64_opnd_info *operands = base->operands;
6374
6375 DEBUG_TRACE ("enter");
6376
6377 switch (opcode->iclass)
6378 {
6379 case testbranch:
6380 /* TBNZ Xn|Wn, #uimm6, label
6381 Test and Branch Not Zero: conditionally jumps to label if bit number
6382 uimm6 in register Xn is not zero. The bit number implies the width of
6383 the register, which may be written and should be disassembled as Wn if
6384 uimm is less than 32. */
6385 if (operands[0].qualifier == AARCH64_OPND_QLF_W)
6386 {
6387 if (operands[1].imm.value >= 32)
6388 {
6389 record_operand_out_of_range_error (opcode, 1, _("immediate value"),
6390 0, 31);
6391 return FALSE;
6392 }
6393 operands[0].qualifier = AARCH64_OPND_QLF_X;
6394 }
6395 break;
6396 case loadlit:
6397 /* LDR Wt, label | =value
6398 As a convenience assemblers will typically permit the notation
6399 "=value" in conjunction with the pc-relative literal load instructions
6400 to automatically place an immediate value or symbolic address in a
6401 nearby literal pool and generate a hidden label which references it.
6402 ISREG has been set to 0 in the case of =value. */
6403 if (instr->gen_lit_pool
6404 && (op == OP_LDR_LIT || op == OP_LDRV_LIT || op == OP_LDRSW_LIT))
6405 {
6406 int size = aarch64_get_qualifier_esize (operands[0].qualifier);
6407 if (op == OP_LDRSW_LIT)
6408 size = 4;
6409 if (instr->reloc.exp.X_op != O_constant
67a32447 6410 && instr->reloc.exp.X_op != O_big
a06ea964
NC
6411 && instr->reloc.exp.X_op != O_symbol)
6412 {
6413 record_operand_error (opcode, 1,
6414 AARCH64_OPDE_FATAL_SYNTAX_ERROR,
6415 _("constant expression expected"));
6416 return FALSE;
6417 }
6418 if (! add_to_lit_pool (&instr->reloc.exp, size))
6419 {
6420 record_operand_error (opcode, 1,
6421 AARCH64_OPDE_OTHER_ERROR,
6422 _("literal pool insertion failed"));
6423 return FALSE;
6424 }
6425 }
6426 break;
a06ea964
NC
6427 case log_shift:
6428 case bitfield:
6429 /* UXT[BHW] Wd, Wn
6430 Unsigned Extend Byte|Halfword|Word: UXT[BH] is architectural alias
6431 for UBFM Wd,Wn,#0,#7|15, while UXTW is pseudo instruction which is
6432 encoded using ORR Wd, WZR, Wn (MOV Wd,Wn).
6433 A programmer-friendly assembler should accept a destination Xd in
6434 place of Wd, however that is not the preferred form for disassembly.
6435 */
6436 if ((op == OP_UXTB || op == OP_UXTH || op == OP_UXTW)
6437 && operands[1].qualifier == AARCH64_OPND_QLF_W
6438 && operands[0].qualifier == AARCH64_OPND_QLF_X)
6439 operands[0].qualifier = AARCH64_OPND_QLF_W;
6440 break;
6441
6442 case addsub_ext:
6443 {
6444 /* In the 64-bit form, the final register operand is written as Wm
6445 for all but the (possibly omitted) UXTX/LSL and SXTX
6446 operators.
6447 As a programmer-friendly assembler, we accept e.g.
6448 ADDS <Xd>, <Xn|SP>, <Xm>{, UXTB {#<amount>}} and change it to
6449 ADDS <Xd>, <Xn|SP>, <Wm>{, UXTB {#<amount>}}. */
6450 int idx = aarch64_operand_index (opcode->operands,
6451 AARCH64_OPND_Rm_EXT);
6452 gas_assert (idx == 1 || idx == 2);
6453 if (operands[0].qualifier == AARCH64_OPND_QLF_X
6454 && operands[idx].qualifier == AARCH64_OPND_QLF_X
6455 && operands[idx].shifter.kind != AARCH64_MOD_LSL
6456 && operands[idx].shifter.kind != AARCH64_MOD_UXTX
6457 && operands[idx].shifter.kind != AARCH64_MOD_SXTX)
6458 operands[idx].qualifier = AARCH64_OPND_QLF_W;
6459 }
6460 break;
6461
6462 default:
6463 break;
6464 }
6465
6466 DEBUG_TRACE ("exit with SUCCESS");
6467 return TRUE;
6468}
6469
5c47e525 6470/* Check for loads and stores that will cause unpredictable behavior. */
54a28c4c
JW
6471
6472static void
6473warn_unpredictable_ldst (aarch64_instruction *instr, char *str)
6474{
6475 aarch64_inst *base = &instr->base;
6476 const aarch64_opcode *opcode = base->opcode;
6477 const aarch64_opnd_info *opnds = base->operands;
6478 switch (opcode->iclass)
6479 {
6480 case ldst_pos:
6481 case ldst_imm9:
6482 case ldst_unscaled:
6483 case ldst_unpriv:
5c47e525
RE
6484 /* Loading/storing the base register is unpredictable if writeback. */
6485 if ((aarch64_get_operand_class (opnds[0].type)
6486 == AARCH64_OPND_CLASS_INT_REG)
6487 && opnds[0].reg.regno == opnds[1].addr.base_regno
4bf8c6e8 6488 && opnds[1].addr.base_regno != REG_SP
54a28c4c 6489 && opnds[1].addr.writeback)
5c47e525 6490 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
54a28c4c
JW
6491 break;
6492 case ldstpair_off:
6493 case ldstnapair_offs:
6494 case ldstpair_indexed:
5c47e525
RE
6495 /* Loading/storing the base register is unpredictable if writeback. */
6496 if ((aarch64_get_operand_class (opnds[0].type)
6497 == AARCH64_OPND_CLASS_INT_REG)
6498 && (opnds[0].reg.regno == opnds[2].addr.base_regno
6499 || opnds[1].reg.regno == opnds[2].addr.base_regno)
4bf8c6e8 6500 && opnds[2].addr.base_regno != REG_SP
54a28c4c 6501 && opnds[2].addr.writeback)
5c47e525
RE
6502 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
6503 /* Load operations must load different registers. */
54a28c4c
JW
6504 if ((opcode->opcode & (1 << 22))
6505 && opnds[0].reg.regno == opnds[1].reg.regno)
6506 as_warn (_("unpredictable load of register pair -- `%s'"), str);
6507 break;
6508 default:
6509 break;
6510 }
6511}
6512
a06ea964
NC
6513/* A wrapper function to interface with libopcodes on encoding and
6514 record the error message if there is any.
6515
6516 Return TRUE on success; otherwise return FALSE. */
6517
6518static bfd_boolean
6519do_encode (const aarch64_opcode *opcode, aarch64_inst *instr,
6520 aarch64_insn *code)
6521{
6522 aarch64_operand_error error_info;
6523 error_info.kind = AARCH64_OPDE_NIL;
6524 if (aarch64_opcode_encode (opcode, instr, code, NULL, &error_info))
6525 return TRUE;
6526 else
6527 {
6528 gas_assert (error_info.kind != AARCH64_OPDE_NIL);
6529 record_operand_error_info (opcode, &error_info);
6530 return FALSE;
6531 }
6532}
6533
6534#ifdef DEBUG_AARCH64
6535static inline void
6536dump_opcode_operands (const aarch64_opcode *opcode)
6537{
6538 int i = 0;
6539 while (opcode->operands[i] != AARCH64_OPND_NIL)
6540 {
6541 aarch64_verbose ("\t\t opnd%d: %s", i,
6542 aarch64_get_operand_name (opcode->operands[i])[0] != '\0'
6543 ? aarch64_get_operand_name (opcode->operands[i])
6544 : aarch64_get_operand_desc (opcode->operands[i]));
6545 ++i;
6546 }
6547}
6548#endif /* DEBUG_AARCH64 */
6549
6550/* This is the guts of the machine-dependent assembler. STR points to a
6551 machine dependent instruction. This function is supposed to emit
6552 the frags/bytes it assembles to. */
6553
6554void
6555md_assemble (char *str)
6556{
6557 char *p = str;
6558 templates *template;
6559 aarch64_opcode *opcode;
6560 aarch64_inst *inst_base;
6561 unsigned saved_cond;
6562
6563 /* Align the previous label if needed. */
6564 if (last_label_seen != NULL)
6565 {
6566 symbol_set_frag (last_label_seen, frag_now);
6567 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
6568 S_SET_SEGMENT (last_label_seen, now_seg);
6569 }
6570
6571 inst.reloc.type = BFD_RELOC_UNUSED;
6572
6573 DEBUG_TRACE ("\n\n");
6574 DEBUG_TRACE ("==============================");
6575 DEBUG_TRACE ("Enter md_assemble with %s", str);
6576
6577 template = opcode_lookup (&p);
6578 if (!template)
6579 {
6580 /* It wasn't an instruction, but it might be a register alias of
6581 the form alias .req reg directive. */
6582 if (!create_register_alias (str, p))
6583 as_bad (_("unknown mnemonic `%s' -- `%s'"), get_mnemonic_name (str),
6584 str);
6585 return;
6586 }
6587
6588 skip_whitespace (p);
6589 if (*p == ',')
6590 {
6591 as_bad (_("unexpected comma after the mnemonic name `%s' -- `%s'"),
6592 get_mnemonic_name (str), str);
6593 return;
6594 }
6595
6596 init_operand_error_report ();
6597
eb9d6cc9
RL
6598 /* Sections are assumed to start aligned. In executable section, there is no
6599 MAP_DATA symbol pending. So we only align the address during
6600 MAP_DATA --> MAP_INSN transition.
6601 For other sections, this is not guaranteed. */
6602 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
6603 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
6604 frag_align_code (2, 0);
6605
a06ea964
NC
6606 saved_cond = inst.cond;
6607 reset_aarch64_instruction (&inst);
6608 inst.cond = saved_cond;
6609
6610 /* Iterate through all opcode entries with the same mnemonic name. */
6611 do
6612 {
6613 opcode = template->opcode;
6614
6615 DEBUG_TRACE ("opcode %s found", opcode->name);
6616#ifdef DEBUG_AARCH64
6617 if (debug_dump)
6618 dump_opcode_operands (opcode);
6619#endif /* DEBUG_AARCH64 */
6620
a06ea964
NC
6621 mapping_state (MAP_INSN);
6622
6623 inst_base = &inst.base;
6624 inst_base->opcode = opcode;
6625
6626 /* Truly conditionally executed instructions, e.g. b.cond. */
6627 if (opcode->flags & F_COND)
6628 {
6629 gas_assert (inst.cond != COND_ALWAYS);
6630 inst_base->cond = get_cond_from_value (inst.cond);
6631 DEBUG_TRACE ("condition found %s", inst_base->cond->names[0]);
6632 }
6633 else if (inst.cond != COND_ALWAYS)
6634 {
6635 /* It shouldn't arrive here, where the assembly looks like a
6636 conditional instruction but the found opcode is unconditional. */
6637 gas_assert (0);
6638 continue;
6639 }
6640
6641 if (parse_operands (p, opcode)
6642 && programmer_friendly_fixup (&inst)
6643 && do_encode (inst_base->opcode, &inst.base, &inst_base->value))
6644 {
3f06bfce
YZ
6645 /* Check that this instruction is supported for this CPU. */
6646 if (!opcode->avariant
93d8990c 6647 || !AARCH64_CPU_HAS_ALL_FEATURES (cpu_variant, *opcode->avariant))
3f06bfce
YZ
6648 {
6649 as_bad (_("selected processor does not support `%s'"), str);
6650 return;
6651 }
6652
54a28c4c
JW
6653 warn_unpredictable_ldst (&inst, str);
6654
a06ea964
NC
6655 if (inst.reloc.type == BFD_RELOC_UNUSED
6656 || !inst.reloc.need_libopcodes_p)
6657 output_inst (NULL);
6658 else
6659 {
6660 /* If there is relocation generated for the instruction,
6661 store the instruction information for the future fix-up. */
6662 struct aarch64_inst *copy;
6663 gas_assert (inst.reloc.type != BFD_RELOC_UNUSED);
325801bd 6664 copy = XNEW (struct aarch64_inst);
a06ea964
NC
6665 memcpy (copy, &inst.base, sizeof (struct aarch64_inst));
6666 output_inst (copy);
6667 }
6668 return;
6669 }
6670
6671 template = template->next;
6672 if (template != NULL)
6673 {
6674 reset_aarch64_instruction (&inst);
6675 inst.cond = saved_cond;
6676 }
6677 }
6678 while (template != NULL);
6679
6680 /* Issue the error messages if any. */
6681 output_operand_error_report (str);
6682}
6683
6684/* Various frobbings of labels and their addresses. */
6685
6686void
6687aarch64_start_line_hook (void)
6688{
6689 last_label_seen = NULL;
6690}
6691
6692void
6693aarch64_frob_label (symbolS * sym)
6694{
6695 last_label_seen = sym;
6696
6697 dwarf2_emit_label (sym);
6698}
6699
6700int
6701aarch64_data_in_code (void)
6702{
6703 if (!strncmp (input_line_pointer + 1, "data:", 5))
6704 {
6705 *input_line_pointer = '/';
6706 input_line_pointer += 5;
6707 *input_line_pointer = 0;
6708 return 1;
6709 }
6710
6711 return 0;
6712}
6713
6714char *
6715aarch64_canonicalize_symbol_name (char *name)
6716{
6717 int len;
6718
6719 if ((len = strlen (name)) > 5 && streq (name + len - 5, "/data"))
6720 *(name + len - 5) = 0;
6721
6722 return name;
6723}
6724\f
6725/* Table of all register names defined by default. The user can
6726 define additional names with .req. Note that all register names
6727 should appear in both upper and lowercase variants. Some registers
6728 also have mixed-case names. */
6729
6730#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE }
6731#define REGNUM(p,n,t) REGDEF(p##n, n, t)
f11ad6bc 6732#define REGSET16(p,t) \
a06ea964
NC
6733 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
6734 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
6735 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
f11ad6bc
RS
6736 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
6737#define REGSET31(p,t) \
6738 REGSET16(p, t), \
a06ea964
NC
6739 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
6740 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
6741 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
6742 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t)
6743#define REGSET(p,t) \
6744 REGSET31(p,t), REGNUM(p,31,t)
6745
6746/* These go into aarch64_reg_hsh hash-table. */
6747static const reg_entry reg_names[] = {
6748 /* Integer registers. */
6749 REGSET31 (x, R_64), REGSET31 (X, R_64),
6750 REGSET31 (w, R_32), REGSET31 (W, R_32),
6751
6752 REGDEF (wsp, 31, SP_32), REGDEF (WSP, 31, SP_32),
6753 REGDEF (sp, 31, SP_64), REGDEF (SP, 31, SP_64),
6754
6755 REGDEF (wzr, 31, Z_32), REGDEF (WZR, 31, Z_32),
6756 REGDEF (xzr, 31, Z_64), REGDEF (XZR, 31, Z_64),
6757
6758 /* Coprocessor register numbers. */
6759 REGSET (c, CN), REGSET (C, CN),
6760
6761 /* Floating-point single precision registers. */
6762 REGSET (s, FP_S), REGSET (S, FP_S),
6763
6764 /* Floating-point double precision registers. */
6765 REGSET (d, FP_D), REGSET (D, FP_D),
6766
6767 /* Floating-point half precision registers. */
6768 REGSET (h, FP_H), REGSET (H, FP_H),
6769
6770 /* Floating-point byte precision registers. */
6771 REGSET (b, FP_B), REGSET (B, FP_B),
6772
6773 /* Floating-point quad precision registers. */
6774 REGSET (q, FP_Q), REGSET (Q, FP_Q),
6775
6776 /* FP/SIMD registers. */
6777 REGSET (v, VN), REGSET (V, VN),
f11ad6bc
RS
6778
6779 /* SVE vector registers. */
6780 REGSET (z, ZN), REGSET (Z, ZN),
6781
6782 /* SVE predicate registers. */
6783 REGSET16 (p, PN), REGSET16 (P, PN)
a06ea964
NC
6784};
6785
6786#undef REGDEF
6787#undef REGNUM
f11ad6bc
RS
6788#undef REGSET16
6789#undef REGSET31
a06ea964
NC
6790#undef REGSET
6791
6792#define N 1
6793#define n 0
6794#define Z 1
6795#define z 0
6796#define C 1
6797#define c 0
6798#define V 1
6799#define v 0
6800#define B(a,b,c,d) (((a) << 3) | ((b) << 2) | ((c) << 1) | (d))
6801static const asm_nzcv nzcv_names[] = {
6802 {"nzcv", B (n, z, c, v)},
6803 {"nzcV", B (n, z, c, V)},
6804 {"nzCv", B (n, z, C, v)},
6805 {"nzCV", B (n, z, C, V)},
6806 {"nZcv", B (n, Z, c, v)},
6807 {"nZcV", B (n, Z, c, V)},
6808 {"nZCv", B (n, Z, C, v)},
6809 {"nZCV", B (n, Z, C, V)},
6810 {"Nzcv", B (N, z, c, v)},
6811 {"NzcV", B (N, z, c, V)},
6812 {"NzCv", B (N, z, C, v)},
6813 {"NzCV", B (N, z, C, V)},
6814 {"NZcv", B (N, Z, c, v)},
6815 {"NZcV", B (N, Z, c, V)},
6816 {"NZCv", B (N, Z, C, v)},
6817 {"NZCV", B (N, Z, C, V)}
6818};
6819
6820#undef N
6821#undef n
6822#undef Z
6823#undef z
6824#undef C
6825#undef c
6826#undef V
6827#undef v
6828#undef B
6829\f
6830/* MD interface: bits in the object file. */
6831
6832/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
6833 for use in the a.out file, and stores them in the array pointed to by buf.
6834 This knows about the endian-ness of the target machine and does
6835 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
6836 2 (short) and 4 (long) Floating numbers are put out as a series of
6837 LITTLENUMS (shorts, here at least). */
6838
6839void
6840md_number_to_chars (char *buf, valueT val, int n)
6841{
6842 if (target_big_endian)
6843 number_to_chars_bigendian (buf, val, n);
6844 else
6845 number_to_chars_littleendian (buf, val, n);
6846}
6847
6848/* MD interface: Sections. */
6849
6850/* Estimate the size of a frag before relaxing. Assume everything fits in
6851 4 bytes. */
6852
6853int
6854md_estimate_size_before_relax (fragS * fragp, segT segtype ATTRIBUTE_UNUSED)
6855{
6856 fragp->fr_var = 4;
6857 return 4;
6858}
6859
6860/* Round up a section size to the appropriate boundary. */
6861
6862valueT
6863md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
6864{
6865 return size;
6866}
6867
6868/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
f803aa8e
DPT
6869 of an rs_align_code fragment.
6870
6871 Here we fill the frag with the appropriate info for padding the
6872 output stream. The resulting frag will consist of a fixed (fr_fix)
6873 and of a repeating (fr_var) part.
6874
6875 The fixed content is always emitted before the repeating content and
6876 these two parts are used as follows in constructing the output:
6877 - the fixed part will be used to align to a valid instruction word
6878 boundary, in case that we start at a misaligned address; as no
6879 executable instruction can live at the misaligned location, we
6880 simply fill with zeros;
6881 - the variable part will be used to cover the remaining padding and
6882 we fill using the AArch64 NOP instruction.
6883
6884 Note that the size of a RS_ALIGN_CODE fragment is always 7 to provide
6885 enough storage space for up to 3 bytes for padding the back to a valid
6886 instruction alignment and exactly 4 bytes to store the NOP pattern. */
a06ea964
NC
6887
6888void
6889aarch64_handle_align (fragS * fragP)
6890{
6891 /* NOP = d503201f */
6892 /* AArch64 instructions are always little-endian. */
d9235011 6893 static unsigned char const aarch64_noop[4] = { 0x1f, 0x20, 0x03, 0xd5 };
a06ea964
NC
6894
6895 int bytes, fix, noop_size;
6896 char *p;
a06ea964
NC
6897
6898 if (fragP->fr_type != rs_align_code)
6899 return;
6900
6901 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
6902 p = fragP->fr_literal + fragP->fr_fix;
a06ea964
NC
6903
6904#ifdef OBJ_ELF
6905 gas_assert (fragP->tc_frag_data.recorded);
6906#endif
6907
a06ea964 6908 noop_size = sizeof (aarch64_noop);
a06ea964 6909
f803aa8e
DPT
6910 fix = bytes & (noop_size - 1);
6911 if (fix)
a06ea964 6912 {
a06ea964
NC
6913#ifdef OBJ_ELF
6914 insert_data_mapping_symbol (MAP_INSN, fragP->fr_fix, fragP, fix);
6915#endif
6916 memset (p, 0, fix);
6917 p += fix;
f803aa8e 6918 fragP->fr_fix += fix;
a06ea964
NC
6919 }
6920
f803aa8e
DPT
6921 if (noop_size)
6922 memcpy (p, aarch64_noop, noop_size);
6923 fragP->fr_var = noop_size;
a06ea964
NC
6924}
6925
6926/* Perform target specific initialisation of a frag.
6927 Note - despite the name this initialisation is not done when the frag
6928 is created, but only when its type is assigned. A frag can be created
6929 and used a long time before its type is set, so beware of assuming that
6930 this initialisationis performed first. */
6931
6932#ifndef OBJ_ELF
6933void
6934aarch64_init_frag (fragS * fragP ATTRIBUTE_UNUSED,
6935 int max_chars ATTRIBUTE_UNUSED)
6936{
6937}
6938
6939#else /* OBJ_ELF is defined. */
6940void
6941aarch64_init_frag (fragS * fragP, int max_chars)
6942{
6943 /* Record a mapping symbol for alignment frags. We will delete this
6944 later if the alignment ends up empty. */
6945 if (!fragP->tc_frag_data.recorded)
c7ad08e6
RL
6946 fragP->tc_frag_data.recorded = 1;
6947
6948 switch (fragP->fr_type)
a06ea964 6949 {
c7ad08e6
RL
6950 case rs_align_test:
6951 case rs_fill:
6952 mapping_state_2 (MAP_DATA, max_chars);
6953 break;
7ea12e5c
NC
6954 case rs_align:
6955 /* PR 20364: We can get alignment frags in code sections,
6956 so do not just assume that we should use the MAP_DATA state. */
6957 mapping_state_2 (subseg_text_p (now_seg) ? MAP_INSN : MAP_DATA, max_chars);
6958 break;
c7ad08e6
RL
6959 case rs_align_code:
6960 mapping_state_2 (MAP_INSN, max_chars);
6961 break;
6962 default:
6963 break;
a06ea964
NC
6964 }
6965}
6966\f
6967/* Initialize the DWARF-2 unwind information for this procedure. */
6968
6969void
6970tc_aarch64_frame_initial_instructions (void)
6971{
6972 cfi_add_CFA_def_cfa (REG_SP, 0);
6973}
6974#endif /* OBJ_ELF */
6975
6976/* Convert REGNAME to a DWARF-2 register number. */
6977
6978int
6979tc_aarch64_regname_to_dw2regnum (char *regname)
6980{
6981 const reg_entry *reg = parse_reg (&regname);
6982 if (reg == NULL)
6983 return -1;
6984
6985 switch (reg->type)
6986 {
6987 case REG_TYPE_SP_32:
6988 case REG_TYPE_SP_64:
6989 case REG_TYPE_R_32:
6990 case REG_TYPE_R_64:
a2cac51c
RH
6991 return reg->number;
6992
a06ea964
NC
6993 case REG_TYPE_FP_B:
6994 case REG_TYPE_FP_H:
6995 case REG_TYPE_FP_S:
6996 case REG_TYPE_FP_D:
6997 case REG_TYPE_FP_Q:
a2cac51c
RH
6998 return reg->number + 64;
6999
a06ea964
NC
7000 default:
7001 break;
7002 }
7003 return -1;
7004}
7005
cec5225b
YZ
7006/* Implement DWARF2_ADDR_SIZE. */
7007
7008int
7009aarch64_dwarf2_addr_size (void)
7010{
7011#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7012 if (ilp32_p)
7013 return 4;
7014#endif
7015 return bfd_arch_bits_per_address (stdoutput) / 8;
7016}
7017
a06ea964
NC
7018/* MD interface: Symbol and relocation handling. */
7019
7020/* Return the address within the segment that a PC-relative fixup is
7021 relative to. For AArch64 PC-relative fixups applied to instructions
7022 are generally relative to the location plus AARCH64_PCREL_OFFSET bytes. */
7023
7024long
7025md_pcrel_from_section (fixS * fixP, segT seg)
7026{
7027 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
7028
7029 /* If this is pc-relative and we are going to emit a relocation
7030 then we just want to put out any pipeline compensation that the linker
7031 will need. Otherwise we want to use the calculated base. */
7032 if (fixP->fx_pcrel
7033 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
7034 || aarch64_force_relocation (fixP)))
7035 base = 0;
7036
7037 /* AArch64 should be consistent for all pc-relative relocations. */
7038 return base + AARCH64_PCREL_OFFSET;
7039}
7040
7041/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
7042 Otherwise we have no need to default values of symbols. */
7043
7044symbolS *
7045md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
7046{
7047#ifdef OBJ_ELF
7048 if (name[0] == '_' && name[1] == 'G'
7049 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
7050 {
7051 if (!GOT_symbol)
7052 {
7053 if (symbol_find (name))
7054 as_bad (_("GOT already in the symbol table"));
7055
7056 GOT_symbol = symbol_new (name, undefined_section,
7057 (valueT) 0, &zero_address_frag);
7058 }
7059
7060 return GOT_symbol;
7061 }
7062#endif
7063
7064 return 0;
7065}
7066
7067/* Return non-zero if the indicated VALUE has overflowed the maximum
7068 range expressible by a unsigned number with the indicated number of
7069 BITS. */
7070
7071static bfd_boolean
7072unsigned_overflow (valueT value, unsigned bits)
7073{
7074 valueT lim;
7075 if (bits >= sizeof (valueT) * 8)
7076 return FALSE;
7077 lim = (valueT) 1 << bits;
7078 return (value >= lim);
7079}
7080
7081
7082/* Return non-zero if the indicated VALUE has overflowed the maximum
7083 range expressible by an signed number with the indicated number of
7084 BITS. */
7085
7086static bfd_boolean
7087signed_overflow (offsetT value, unsigned bits)
7088{
7089 offsetT lim;
7090 if (bits >= sizeof (offsetT) * 8)
7091 return FALSE;
7092 lim = (offsetT) 1 << (bits - 1);
7093 return (value < -lim || value >= lim);
7094}
7095
7096/* Given an instruction in *INST, which is expected to be a scaled, 12-bit,
7097 unsigned immediate offset load/store instruction, try to encode it as
7098 an unscaled, 9-bit, signed immediate offset load/store instruction.
7099 Return TRUE if it is successful; otherwise return FALSE.
7100
7101 As a programmer-friendly assembler, LDUR/STUR instructions can be generated
7102 in response to the standard LDR/STR mnemonics when the immediate offset is
7103 unambiguous, i.e. when it is negative or unaligned. */
7104
7105static bfd_boolean
7106try_to_encode_as_unscaled_ldst (aarch64_inst *instr)
7107{
7108 int idx;
7109 enum aarch64_op new_op;
7110 const aarch64_opcode *new_opcode;
7111
7112 gas_assert (instr->opcode->iclass == ldst_pos);
7113
7114 switch (instr->opcode->op)
7115 {
7116 case OP_LDRB_POS:new_op = OP_LDURB; break;
7117 case OP_STRB_POS: new_op = OP_STURB; break;
7118 case OP_LDRSB_POS: new_op = OP_LDURSB; break;
7119 case OP_LDRH_POS: new_op = OP_LDURH; break;
7120 case OP_STRH_POS: new_op = OP_STURH; break;
7121 case OP_LDRSH_POS: new_op = OP_LDURSH; break;
7122 case OP_LDR_POS: new_op = OP_LDUR; break;
7123 case OP_STR_POS: new_op = OP_STUR; break;
7124 case OP_LDRF_POS: new_op = OP_LDURV; break;
7125 case OP_STRF_POS: new_op = OP_STURV; break;
7126 case OP_LDRSW_POS: new_op = OP_LDURSW; break;
7127 case OP_PRFM_POS: new_op = OP_PRFUM; break;
7128 default: new_op = OP_NIL; break;
7129 }
7130
7131 if (new_op == OP_NIL)
7132 return FALSE;
7133
7134 new_opcode = aarch64_get_opcode (new_op);
7135 gas_assert (new_opcode != NULL);
7136
7137 DEBUG_TRACE ("Check programmer-friendly STURB/LDURB -> STRB/LDRB: %d == %d",
7138 instr->opcode->op, new_opcode->op);
7139
7140 aarch64_replace_opcode (instr, new_opcode);
7141
7142 /* Clear up the ADDR_SIMM9's qualifier; otherwise the
7143 qualifier matching may fail because the out-of-date qualifier will
7144 prevent the operand being updated with a new and correct qualifier. */
7145 idx = aarch64_operand_index (instr->opcode->operands,
7146 AARCH64_OPND_ADDR_SIMM9);
7147 gas_assert (idx == 1);
7148 instr->operands[idx].qualifier = AARCH64_OPND_QLF_NIL;
7149
7150 DEBUG_TRACE ("Found LDURB entry to encode programmer-friendly LDRB");
7151
7152 if (!aarch64_opcode_encode (instr->opcode, instr, &instr->value, NULL, NULL))
7153 return FALSE;
7154
7155 return TRUE;
7156}
7157
7158/* Called by fix_insn to fix a MOV immediate alias instruction.
7159
7160 Operand for a generic move immediate instruction, which is an alias
7161 instruction that generates a single MOVZ, MOVN or ORR instruction to loads
7162 a 32-bit/64-bit immediate value into general register. An assembler error
7163 shall result if the immediate cannot be created by a single one of these
7164 instructions. If there is a choice, then to ensure reversability an
7165 assembler must prefer a MOVZ to MOVN, and MOVZ or MOVN to ORR. */
7166
7167static void
7168fix_mov_imm_insn (fixS *fixP, char *buf, aarch64_inst *instr, offsetT value)
7169{
7170 const aarch64_opcode *opcode;
7171
7172 /* Need to check if the destination is SP/ZR. The check has to be done
7173 before any aarch64_replace_opcode. */
7174 int try_mov_wide_p = !aarch64_stack_pointer_p (&instr->operands[0]);
7175 int try_mov_bitmask_p = !aarch64_zero_register_p (&instr->operands[0]);
7176
7177 instr->operands[1].imm.value = value;
7178 instr->operands[1].skip = 0;
7179
7180 if (try_mov_wide_p)
7181 {
7182 /* Try the MOVZ alias. */
7183 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDE);
7184 aarch64_replace_opcode (instr, opcode);
7185 if (aarch64_opcode_encode (instr->opcode, instr,
7186 &instr->value, NULL, NULL))
7187 {
7188 put_aarch64_insn (buf, instr->value);
7189 return;
7190 }
7191 /* Try the MOVK alias. */
7192 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDEN);
7193 aarch64_replace_opcode (instr, opcode);
7194 if (aarch64_opcode_encode (instr->opcode, instr,
7195 &instr->value, NULL, NULL))
7196 {
7197 put_aarch64_insn (buf, instr->value);
7198 return;
7199 }
7200 }
7201
7202 if (try_mov_bitmask_p)
7203 {
7204 /* Try the ORR alias. */
7205 opcode = aarch64_get_opcode (OP_MOV_IMM_LOG);
7206 aarch64_replace_opcode (instr, opcode);
7207 if (aarch64_opcode_encode (instr->opcode, instr,
7208 &instr->value, NULL, NULL))
7209 {
7210 put_aarch64_insn (buf, instr->value);
7211 return;
7212 }
7213 }
7214
7215 as_bad_where (fixP->fx_file, fixP->fx_line,
7216 _("immediate cannot be moved by a single instruction"));
7217}
7218
7219/* An instruction operand which is immediate related may have symbol used
7220 in the assembly, e.g.
7221
7222 mov w0, u32
7223 .set u32, 0x00ffff00
7224
7225 At the time when the assembly instruction is parsed, a referenced symbol,
7226 like 'u32' in the above example may not have been seen; a fixS is created
7227 in such a case and is handled here after symbols have been resolved.
7228 Instruction is fixed up with VALUE using the information in *FIXP plus
7229 extra information in FLAGS.
7230
7231 This function is called by md_apply_fix to fix up instructions that need
7232 a fix-up described above but does not involve any linker-time relocation. */
7233
7234static void
7235fix_insn (fixS *fixP, uint32_t flags, offsetT value)
7236{
7237 int idx;
7238 uint32_t insn;
7239 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
7240 enum aarch64_opnd opnd = fixP->tc_fix_data.opnd;
7241 aarch64_inst *new_inst = fixP->tc_fix_data.inst;
7242
7243 if (new_inst)
7244 {
7245 /* Now the instruction is about to be fixed-up, so the operand that
7246 was previously marked as 'ignored' needs to be unmarked in order
7247 to get the encoding done properly. */
7248 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
7249 new_inst->operands[idx].skip = 0;
7250 }
7251
7252 gas_assert (opnd != AARCH64_OPND_NIL);
7253
7254 switch (opnd)
7255 {
7256 case AARCH64_OPND_EXCEPTION:
7257 if (unsigned_overflow (value, 16))
7258 as_bad_where (fixP->fx_file, fixP->fx_line,
7259 _("immediate out of range"));
7260 insn = get_aarch64_insn (buf);
7261 insn |= encode_svc_imm (value);
7262 put_aarch64_insn (buf, insn);
7263 break;
7264
7265 case AARCH64_OPND_AIMM:
7266 /* ADD or SUB with immediate.
7267 NOTE this assumes we come here with a add/sub shifted reg encoding
7268 3 322|2222|2 2 2 21111 111111
7269 1 098|7654|3 2 1 09876 543210 98765 43210
7270 0b000000 sf 000|1011|shift 0 Rm imm6 Rn Rd ADD
7271 2b000000 sf 010|1011|shift 0 Rm imm6 Rn Rd ADDS
7272 4b000000 sf 100|1011|shift 0 Rm imm6 Rn Rd SUB
7273 6b000000 sf 110|1011|shift 0 Rm imm6 Rn Rd SUBS
7274 ->
7275 3 322|2222|2 2 221111111111
7276 1 098|7654|3 2 109876543210 98765 43210
7277 11000000 sf 001|0001|shift imm12 Rn Rd ADD
7278 31000000 sf 011|0001|shift imm12 Rn Rd ADDS
7279 51000000 sf 101|0001|shift imm12 Rn Rd SUB
7280 71000000 sf 111|0001|shift imm12 Rn Rd SUBS
7281 Fields sf Rn Rd are already set. */
7282 insn = get_aarch64_insn (buf);
7283 if (value < 0)
7284 {
7285 /* Add <-> sub. */
7286 insn = reencode_addsub_switch_add_sub (insn);
7287 value = -value;
7288 }
7289
7290 if ((flags & FIXUP_F_HAS_EXPLICIT_SHIFT) == 0
7291 && unsigned_overflow (value, 12))
7292 {
7293 /* Try to shift the value by 12 to make it fit. */
7294 if (((value >> 12) << 12) == value
7295 && ! unsigned_overflow (value, 12 + 12))
7296 {
7297 value >>= 12;
7298 insn |= encode_addsub_imm_shift_amount (1);
7299 }
7300 }
7301
7302 if (unsigned_overflow (value, 12))
7303 as_bad_where (fixP->fx_file, fixP->fx_line,
7304 _("immediate out of range"));
7305
7306 insn |= encode_addsub_imm (value);
7307
7308 put_aarch64_insn (buf, insn);
7309 break;
7310
7311 case AARCH64_OPND_SIMD_IMM:
7312 case AARCH64_OPND_SIMD_IMM_SFT:
7313 case AARCH64_OPND_LIMM:
7314 /* Bit mask immediate. */
7315 gas_assert (new_inst != NULL);
7316 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
7317 new_inst->operands[idx].imm.value = value;
7318 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
7319 &new_inst->value, NULL, NULL))
7320 put_aarch64_insn (buf, new_inst->value);
7321 else
7322 as_bad_where (fixP->fx_file, fixP->fx_line,
7323 _("invalid immediate"));
7324 break;
7325
7326 case AARCH64_OPND_HALF:
7327 /* 16-bit unsigned immediate. */
7328 if (unsigned_overflow (value, 16))
7329 as_bad_where (fixP->fx_file, fixP->fx_line,
7330 _("immediate out of range"));
7331 insn = get_aarch64_insn (buf);
7332 insn |= encode_movw_imm (value & 0xffff);
7333 put_aarch64_insn (buf, insn);
7334 break;
7335
7336 case AARCH64_OPND_IMM_MOV:
7337 /* Operand for a generic move immediate instruction, which is
7338 an alias instruction that generates a single MOVZ, MOVN or ORR
7339 instruction to loads a 32-bit/64-bit immediate value into general
7340 register. An assembler error shall result if the immediate cannot be
7341 created by a single one of these instructions. If there is a choice,
7342 then to ensure reversability an assembler must prefer a MOVZ to MOVN,
7343 and MOVZ or MOVN to ORR. */
7344 gas_assert (new_inst != NULL);
7345 fix_mov_imm_insn (fixP, buf, new_inst, value);
7346 break;
7347
7348 case AARCH64_OPND_ADDR_SIMM7:
7349 case AARCH64_OPND_ADDR_SIMM9:
7350 case AARCH64_OPND_ADDR_SIMM9_2:
7351 case AARCH64_OPND_ADDR_UIMM12:
7352 /* Immediate offset in an address. */
7353 insn = get_aarch64_insn (buf);
7354
7355 gas_assert (new_inst != NULL && new_inst->value == insn);
7356 gas_assert (new_inst->opcode->operands[1] == opnd
7357 || new_inst->opcode->operands[2] == opnd);
7358
7359 /* Get the index of the address operand. */
7360 if (new_inst->opcode->operands[1] == opnd)
7361 /* e.g. STR <Xt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
7362 idx = 1;
7363 else
7364 /* e.g. LDP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]. */
7365 idx = 2;
7366
7367 /* Update the resolved offset value. */
7368 new_inst->operands[idx].addr.offset.imm = value;
7369
7370 /* Encode/fix-up. */
7371 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
7372 &new_inst->value, NULL, NULL))
7373 {
7374 put_aarch64_insn (buf, new_inst->value);
7375 break;
7376 }
7377 else if (new_inst->opcode->iclass == ldst_pos
7378 && try_to_encode_as_unscaled_ldst (new_inst))
7379 {
7380 put_aarch64_insn (buf, new_inst->value);
7381 break;
7382 }
7383
7384 as_bad_where (fixP->fx_file, fixP->fx_line,
7385 _("immediate offset out of range"));
7386 break;
7387
7388 default:
7389 gas_assert (0);
7390 as_fatal (_("unhandled operand code %d"), opnd);
7391 }
7392}
7393
7394/* Apply a fixup (fixP) to segment data, once it has been determined
7395 by our caller that we have all the info we need to fix it up.
7396
7397 Parameter valP is the pointer to the value of the bits. */
7398
7399void
7400md_apply_fix (fixS * fixP, valueT * valP, segT seg)
7401{
7402 offsetT value = *valP;
7403 uint32_t insn;
7404 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
7405 int scale;
7406 unsigned flags = fixP->fx_addnumber;
7407
7408 DEBUG_TRACE ("\n\n");
7409 DEBUG_TRACE ("~~~~~~~~~~~~~~~~~~~~~~~~~");
7410 DEBUG_TRACE ("Enter md_apply_fix");
7411
7412 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
7413
7414 /* Note whether this will delete the relocation. */
7415
7416 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
7417 fixP->fx_done = 1;
7418
7419 /* Process the relocations. */
7420 switch (fixP->fx_r_type)
7421 {
7422 case BFD_RELOC_NONE:
7423 /* This will need to go in the object file. */
7424 fixP->fx_done = 0;
7425 break;
7426
7427 case BFD_RELOC_8:
7428 case BFD_RELOC_8_PCREL:
7429 if (fixP->fx_done || !seg->use_rela_p)
7430 md_number_to_chars (buf, value, 1);
7431 break;
7432
7433 case BFD_RELOC_16:
7434 case BFD_RELOC_16_PCREL:
7435 if (fixP->fx_done || !seg->use_rela_p)
7436 md_number_to_chars (buf, value, 2);
7437 break;
7438
7439 case BFD_RELOC_32:
7440 case BFD_RELOC_32_PCREL:
7441 if (fixP->fx_done || !seg->use_rela_p)
7442 md_number_to_chars (buf, value, 4);
7443 break;
7444
7445 case BFD_RELOC_64:
7446 case BFD_RELOC_64_PCREL:
7447 if (fixP->fx_done || !seg->use_rela_p)
7448 md_number_to_chars (buf, value, 8);
7449 break;
7450
7451 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
7452 /* We claim that these fixups have been processed here, even if
7453 in fact we generate an error because we do not have a reloc
7454 for them, so tc_gen_reloc() will reject them. */
7455 fixP->fx_done = 1;
7456 if (fixP->fx_addsy && !S_IS_DEFINED (fixP->fx_addsy))
7457 {
7458 as_bad_where (fixP->fx_file, fixP->fx_line,
7459 _("undefined symbol %s used as an immediate value"),
7460 S_GET_NAME (fixP->fx_addsy));
7461 goto apply_fix_return;
7462 }
7463 fix_insn (fixP, flags, value);
7464 break;
7465
7466 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
a06ea964
NC
7467 if (fixP->fx_done || !seg->use_rela_p)
7468 {
89d2a2a3
MS
7469 if (value & 3)
7470 as_bad_where (fixP->fx_file, fixP->fx_line,
7471 _("pc-relative load offset not word aligned"));
7472 if (signed_overflow (value, 21))
7473 as_bad_where (fixP->fx_file, fixP->fx_line,
7474 _("pc-relative load offset out of range"));
a06ea964
NC
7475 insn = get_aarch64_insn (buf);
7476 insn |= encode_ld_lit_ofs_19 (value >> 2);
7477 put_aarch64_insn (buf, insn);
7478 }
7479 break;
7480
7481 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
a06ea964
NC
7482 if (fixP->fx_done || !seg->use_rela_p)
7483 {
89d2a2a3
MS
7484 if (signed_overflow (value, 21))
7485 as_bad_where (fixP->fx_file, fixP->fx_line,
7486 _("pc-relative address offset out of range"));
a06ea964
NC
7487 insn = get_aarch64_insn (buf);
7488 insn |= encode_adr_imm (value);
7489 put_aarch64_insn (buf, insn);
7490 }
7491 break;
7492
7493 case BFD_RELOC_AARCH64_BRANCH19:
a06ea964
NC
7494 if (fixP->fx_done || !seg->use_rela_p)
7495 {
89d2a2a3
MS
7496 if (value & 3)
7497 as_bad_where (fixP->fx_file, fixP->fx_line,
7498 _("conditional branch target not word aligned"));
7499 if (signed_overflow (value, 21))
7500 as_bad_where (fixP->fx_file, fixP->fx_line,
7501 _("conditional branch out of range"));
a06ea964
NC
7502 insn = get_aarch64_insn (buf);
7503 insn |= encode_cond_branch_ofs_19 (value >> 2);
7504 put_aarch64_insn (buf, insn);
7505 }
7506 break;
7507
7508 case BFD_RELOC_AARCH64_TSTBR14:
a06ea964
NC
7509 if (fixP->fx_done || !seg->use_rela_p)
7510 {
89d2a2a3
MS
7511 if (value & 3)
7512 as_bad_where (fixP->fx_file, fixP->fx_line,
7513 _("conditional branch target not word aligned"));
7514 if (signed_overflow (value, 16))
7515 as_bad_where (fixP->fx_file, fixP->fx_line,
7516 _("conditional branch out of range"));
a06ea964
NC
7517 insn = get_aarch64_insn (buf);
7518 insn |= encode_tst_branch_ofs_14 (value >> 2);
7519 put_aarch64_insn (buf, insn);
7520 }
7521 break;
7522
a06ea964 7523 case BFD_RELOC_AARCH64_CALL26:
f09c556a 7524 case BFD_RELOC_AARCH64_JUMP26:
a06ea964
NC
7525 if (fixP->fx_done || !seg->use_rela_p)
7526 {
89d2a2a3
MS
7527 if (value & 3)
7528 as_bad_where (fixP->fx_file, fixP->fx_line,
7529 _("branch target not word aligned"));
7530 if (signed_overflow (value, 28))
7531 as_bad_where (fixP->fx_file, fixP->fx_line,
7532 _("branch out of range"));
a06ea964
NC
7533 insn = get_aarch64_insn (buf);
7534 insn |= encode_branch_ofs_26 (value >> 2);
7535 put_aarch64_insn (buf, insn);
7536 }
7537 break;
7538
7539 case BFD_RELOC_AARCH64_MOVW_G0:
a06ea964 7540 case BFD_RELOC_AARCH64_MOVW_G0_NC:
f09c556a 7541 case BFD_RELOC_AARCH64_MOVW_G0_S:
ca632371 7542 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
a06ea964
NC
7543 scale = 0;
7544 goto movw_common;
7545 case BFD_RELOC_AARCH64_MOVW_G1:
a06ea964 7546 case BFD_RELOC_AARCH64_MOVW_G1_NC:
f09c556a 7547 case BFD_RELOC_AARCH64_MOVW_G1_S:
654248e7 7548 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
a06ea964
NC
7549 scale = 16;
7550 goto movw_common;
43a357f9
RL
7551 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7552 scale = 0;
7553 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7554 /* Should always be exported to object file, see
7555 aarch64_force_relocation(). */
7556 gas_assert (!fixP->fx_done);
7557 gas_assert (seg->use_rela_p);
7558 goto movw_common;
7559 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7560 scale = 16;
7561 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7562 /* Should always be exported to object file, see
7563 aarch64_force_relocation(). */
7564 gas_assert (!fixP->fx_done);
7565 gas_assert (seg->use_rela_p);
7566 goto movw_common;
a06ea964 7567 case BFD_RELOC_AARCH64_MOVW_G2:
a06ea964 7568 case BFD_RELOC_AARCH64_MOVW_G2_NC:
f09c556a 7569 case BFD_RELOC_AARCH64_MOVW_G2_S:
a06ea964
NC
7570 scale = 32;
7571 goto movw_common;
7572 case BFD_RELOC_AARCH64_MOVW_G3:
7573 scale = 48;
7574 movw_common:
7575 if (fixP->fx_done || !seg->use_rela_p)
7576 {
7577 insn = get_aarch64_insn (buf);
7578
7579 if (!fixP->fx_done)
7580 {
7581 /* REL signed addend must fit in 16 bits */
7582 if (signed_overflow (value, 16))
7583 as_bad_where (fixP->fx_file, fixP->fx_line,
7584 _("offset out of range"));
7585 }
7586 else
7587 {
7588 /* Check for overflow and scale. */
7589 switch (fixP->fx_r_type)
7590 {
7591 case BFD_RELOC_AARCH64_MOVW_G0:
7592 case BFD_RELOC_AARCH64_MOVW_G1:
7593 case BFD_RELOC_AARCH64_MOVW_G2:
7594 case BFD_RELOC_AARCH64_MOVW_G3:
654248e7 7595 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
43a357f9 7596 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
a06ea964
NC
7597 if (unsigned_overflow (value, scale + 16))
7598 as_bad_where (fixP->fx_file, fixP->fx_line,
7599 _("unsigned value out of range"));
7600 break;
7601 case BFD_RELOC_AARCH64_MOVW_G0_S:
7602 case BFD_RELOC_AARCH64_MOVW_G1_S:
7603 case BFD_RELOC_AARCH64_MOVW_G2_S:
7604 /* NOTE: We can only come here with movz or movn. */
7605 if (signed_overflow (value, scale + 16))
7606 as_bad_where (fixP->fx_file, fixP->fx_line,
7607 _("signed value out of range"));
7608 if (value < 0)
7609 {
7610 /* Force use of MOVN. */
7611 value = ~value;
7612 insn = reencode_movzn_to_movn (insn);
7613 }
7614 else
7615 {
7616 /* Force use of MOVZ. */
7617 insn = reencode_movzn_to_movz (insn);
7618 }
7619 break;
7620 default:
7621 /* Unchecked relocations. */
7622 break;
7623 }
7624 value >>= scale;
7625 }
7626
7627 /* Insert value into MOVN/MOVZ/MOVK instruction. */
7628 insn |= encode_movw_imm (value & 0xffff);
7629
7630 put_aarch64_insn (buf, insn);
7631 }
7632 break;
7633
a6bb11b2
YZ
7634 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
7635 fixP->fx_r_type = (ilp32_p
7636 ? BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
7637 : BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
7638 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7639 /* Should always be exported to object file, see
7640 aarch64_force_relocation(). */
7641 gas_assert (!fixP->fx_done);
7642 gas_assert (seg->use_rela_p);
7643 break;
7644
7645 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
7646 fixP->fx_r_type = (ilp32_p
7647 ? BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
7648 : BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC);
7649 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7650 /* Should always be exported to object file, see
7651 aarch64_force_relocation(). */
7652 gas_assert (!fixP->fx_done);
7653 gas_assert (seg->use_rela_p);
7654 break;
7655
2c0a3565
MS
7656 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
7657 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 7658 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
2c0a3565
MS
7659 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7660 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
1ada945d 7661 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
a06ea964 7662 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
2c0a3565 7663 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 7664 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
3e8286c0 7665 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
1aa66fb1 7666 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
a06ea964 7667 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 7668 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
2c0a3565 7669 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 7670 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
3b957e5b
RL
7671 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7672 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
49df5539 7673 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
70151fb5 7674 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
13289c10 7675 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
a12fad50 7676 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
1107e076 7677 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6c37fedc 7678 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4c562523
JW
7679 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
7680 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
7681 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
7682 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
7683 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
7684 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
7685 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
7686 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
49df5539
JW
7687 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
7688 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7689 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
7690 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
7691 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
a06ea964 7692 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
2c0a3565 7693 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a06ea964 7694 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a06ea964
NC
7695 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
7696 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
2c0a3565
MS
7697 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
7698 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7699 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
7700 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7701 /* Should always be exported to object file, see
7702 aarch64_force_relocation(). */
7703 gas_assert (!fixP->fx_done);
7704 gas_assert (seg->use_rela_p);
7705 break;
7706
a6bb11b2
YZ
7707 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
7708 /* Should always be exported to object file, see
7709 aarch64_force_relocation(). */
7710 fixP->fx_r_type = (ilp32_p
7711 ? BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
7712 : BFD_RELOC_AARCH64_LD64_GOT_LO12_NC);
7713 gas_assert (!fixP->fx_done);
7714 gas_assert (seg->use_rela_p);
7715 break;
7716
a06ea964 7717 case BFD_RELOC_AARCH64_ADD_LO12:
f09c556a
JW
7718 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7719 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7720 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7721 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7722 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3d715ce4 7723 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
87f5fbcc 7724 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
a921b5bd 7725 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
f09c556a
JW
7726 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7727 case BFD_RELOC_AARCH64_LDST128_LO12:
a06ea964
NC
7728 case BFD_RELOC_AARCH64_LDST16_LO12:
7729 case BFD_RELOC_AARCH64_LDST32_LO12:
7730 case BFD_RELOC_AARCH64_LDST64_LO12:
f09c556a 7731 case BFD_RELOC_AARCH64_LDST8_LO12:
a06ea964
NC
7732 /* Should always be exported to object file, see
7733 aarch64_force_relocation(). */
7734 gas_assert (!fixP->fx_done);
7735 gas_assert (seg->use_rela_p);
7736 break;
7737
7738 case BFD_RELOC_AARCH64_TLSDESC_ADD:
a06ea964 7739 case BFD_RELOC_AARCH64_TLSDESC_CALL:
f09c556a 7740 case BFD_RELOC_AARCH64_TLSDESC_LDR:
a06ea964
NC
7741 break;
7742
b97e87cc
NC
7743 case BFD_RELOC_UNUSED:
7744 /* An error will already have been reported. */
7745 break;
7746
a06ea964
NC
7747 default:
7748 as_bad_where (fixP->fx_file, fixP->fx_line,
7749 _("unexpected %s fixup"),
7750 bfd_get_reloc_code_name (fixP->fx_r_type));
7751 break;
7752 }
7753
7754apply_fix_return:
7755 /* Free the allocated the struct aarch64_inst.
7756 N.B. currently there are very limited number of fix-up types actually use
7757 this field, so the impact on the performance should be minimal . */
7758 if (fixP->tc_fix_data.inst != NULL)
7759 free (fixP->tc_fix_data.inst);
7760
7761 return;
7762}
7763
7764/* Translate internal representation of relocation info to BFD target
7765 format. */
7766
7767arelent *
7768tc_gen_reloc (asection * section, fixS * fixp)
7769{
7770 arelent *reloc;
7771 bfd_reloc_code_real_type code;
7772
325801bd 7773 reloc = XNEW (arelent);
a06ea964 7774
325801bd 7775 reloc->sym_ptr_ptr = XNEW (asymbol *);
a06ea964
NC
7776 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
7777 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
7778
7779 if (fixp->fx_pcrel)
7780 {
7781 if (section->use_rela_p)
7782 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
7783 else
7784 fixp->fx_offset = reloc->address;
7785 }
7786 reloc->addend = fixp->fx_offset;
7787
7788 code = fixp->fx_r_type;
7789 switch (code)
7790 {
7791 case BFD_RELOC_16:
7792 if (fixp->fx_pcrel)
7793 code = BFD_RELOC_16_PCREL;
7794 break;
7795
7796 case BFD_RELOC_32:
7797 if (fixp->fx_pcrel)
7798 code = BFD_RELOC_32_PCREL;
7799 break;
7800
7801 case BFD_RELOC_64:
7802 if (fixp->fx_pcrel)
7803 code = BFD_RELOC_64_PCREL;
7804 break;
7805
7806 default:
7807 break;
7808 }
7809
7810 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
7811 if (reloc->howto == NULL)
7812 {
7813 as_bad_where (fixp->fx_file, fixp->fx_line,
7814 _
7815 ("cannot represent %s relocation in this object file format"),
7816 bfd_get_reloc_code_name (code));
7817 return NULL;
7818 }
7819
7820 return reloc;
7821}
7822
7823/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
7824
7825void
7826cons_fix_new_aarch64 (fragS * frag, int where, int size, expressionS * exp)
7827{
7828 bfd_reloc_code_real_type type;
7829 int pcrel = 0;
7830
7831 /* Pick a reloc.
7832 FIXME: @@ Should look at CPU word size. */
7833 switch (size)
7834 {
7835 case 1:
7836 type = BFD_RELOC_8;
7837 break;
7838 case 2:
7839 type = BFD_RELOC_16;
7840 break;
7841 case 4:
7842 type = BFD_RELOC_32;
7843 break;
7844 case 8:
7845 type = BFD_RELOC_64;
7846 break;
7847 default:
7848 as_bad (_("cannot do %u-byte relocation"), size);
7849 type = BFD_RELOC_UNUSED;
7850 break;
7851 }
7852
7853 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
7854}
7855
7856int
7857aarch64_force_relocation (struct fix *fixp)
7858{
7859 switch (fixp->fx_r_type)
7860 {
7861 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
7862 /* Perform these "immediate" internal relocations
7863 even if the symbol is extern or weak. */
7864 return 0;
7865
a6bb11b2 7866 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
f09c556a
JW
7867 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
7868 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
a6bb11b2
YZ
7869 /* Pseudo relocs that need to be fixed up according to
7870 ilp32_p. */
7871 return 0;
7872
2c0a3565
MS
7873 case BFD_RELOC_AARCH64_ADD_LO12:
7874 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7875 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7876 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7877 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7878 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3d715ce4 7879 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
87f5fbcc 7880 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
a921b5bd 7881 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
2c0a3565
MS
7882 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7883 case BFD_RELOC_AARCH64_LDST128_LO12:
7884 case BFD_RELOC_AARCH64_LDST16_LO12:
7885 case BFD_RELOC_AARCH64_LDST32_LO12:
7886 case BFD_RELOC_AARCH64_LDST64_LO12:
7887 case BFD_RELOC_AARCH64_LDST8_LO12:
7888 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
7889 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 7890 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
2c0a3565
MS
7891 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7892 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
1ada945d 7893 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
43a357f9
RL
7894 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7895 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
a06ea964 7896 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
2c0a3565 7897 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 7898 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
3e8286c0 7899 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
1aa66fb1 7900 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
a06ea964 7901 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 7902 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
2c0a3565 7903 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 7904 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
3b957e5b
RL
7905 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7906 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7907 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
70151fb5 7908 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
13289c10 7909 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
a12fad50 7910 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
1107e076 7911 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6c37fedc 7912 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4c562523
JW
7913 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
7914 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
7915 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
7916 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
7917 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
7918 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
7919 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
7920 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
49df5539
JW
7921 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
7922 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7923 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
7924 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
7925 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
a06ea964 7926 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
2c0a3565 7927 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a06ea964 7928 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a06ea964
NC
7929 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
7930 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
2c0a3565
MS
7931 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
7932 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7933 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
7934 /* Always leave these relocations for the linker. */
7935 return 1;
7936
7937 default:
7938 break;
7939 }
7940
7941 return generic_force_reloc (fixp);
7942}
7943
7944#ifdef OBJ_ELF
7945
7946const char *
7947elf64_aarch64_target_format (void)
7948{
a75cf613
ES
7949 if (strcmp (TARGET_OS, "cloudabi") == 0)
7950 {
7951 /* FIXME: What to do for ilp32_p ? */
7952 return target_big_endian ? "elf64-bigaarch64-cloudabi" : "elf64-littleaarch64-cloudabi";
7953 }
a06ea964 7954 if (target_big_endian)
cec5225b 7955 return ilp32_p ? "elf32-bigaarch64" : "elf64-bigaarch64";
a06ea964 7956 else
cec5225b 7957 return ilp32_p ? "elf32-littleaarch64" : "elf64-littleaarch64";
a06ea964
NC
7958}
7959
7960void
7961aarch64elf_frob_symbol (symbolS * symp, int *puntp)
7962{
7963 elf_frob_symbol (symp, puntp);
7964}
7965#endif
7966
7967/* MD interface: Finalization. */
7968
7969/* A good place to do this, although this was probably not intended
7970 for this kind of use. We need to dump the literal pool before
7971 references are made to a null symbol pointer. */
7972
7973void
7974aarch64_cleanup (void)
7975{
7976 literal_pool *pool;
7977
7978 for (pool = list_of_pools; pool; pool = pool->next)
7979 {
7980 /* Put it at the end of the relevant section. */
7981 subseg_set (pool->section, pool->sub_section);
7982 s_ltorg (0);
7983 }
7984}
7985
7986#ifdef OBJ_ELF
7987/* Remove any excess mapping symbols generated for alignment frags in
7988 SEC. We may have created a mapping symbol before a zero byte
7989 alignment; remove it if there's a mapping symbol after the
7990 alignment. */
7991static void
7992check_mapping_symbols (bfd * abfd ATTRIBUTE_UNUSED, asection * sec,
7993 void *dummy ATTRIBUTE_UNUSED)
7994{
7995 segment_info_type *seginfo = seg_info (sec);
7996 fragS *fragp;
7997
7998 if (seginfo == NULL || seginfo->frchainP == NULL)
7999 return;
8000
8001 for (fragp = seginfo->frchainP->frch_root;
8002 fragp != NULL; fragp = fragp->fr_next)
8003 {
8004 symbolS *sym = fragp->tc_frag_data.last_map;
8005 fragS *next = fragp->fr_next;
8006
8007 /* Variable-sized frags have been converted to fixed size by
8008 this point. But if this was variable-sized to start with,
8009 there will be a fixed-size frag after it. So don't handle
8010 next == NULL. */
8011 if (sym == NULL || next == NULL)
8012 continue;
8013
8014 if (S_GET_VALUE (sym) < next->fr_address)
8015 /* Not at the end of this frag. */
8016 continue;
8017 know (S_GET_VALUE (sym) == next->fr_address);
8018
8019 do
8020 {
8021 if (next->tc_frag_data.first_map != NULL)
8022 {
8023 /* Next frag starts with a mapping symbol. Discard this
8024 one. */
8025 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
8026 break;
8027 }
8028
8029 if (next->fr_next == NULL)
8030 {
8031 /* This mapping symbol is at the end of the section. Discard
8032 it. */
8033 know (next->fr_fix == 0 && next->fr_var == 0);
8034 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
8035 break;
8036 }
8037
8038 /* As long as we have empty frags without any mapping symbols,
8039 keep looking. */
8040 /* If the next frag is non-empty and does not start with a
8041 mapping symbol, then this mapping symbol is required. */
8042 if (next->fr_address != next->fr_next->fr_address)
8043 break;
8044
8045 next = next->fr_next;
8046 }
8047 while (next != NULL);
8048 }
8049}
8050#endif
8051
8052/* Adjust the symbol table. */
8053
8054void
8055aarch64_adjust_symtab (void)
8056{
8057#ifdef OBJ_ELF
8058 /* Remove any overlapping mapping symbols generated by alignment frags. */
8059 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
8060 /* Now do generic ELF adjustments. */
8061 elf_adjust_symtab ();
8062#endif
8063}
8064
8065static void
8066checked_hash_insert (struct hash_control *table, const char *key, void *value)
8067{
8068 const char *hash_err;
8069
8070 hash_err = hash_insert (table, key, value);
8071 if (hash_err)
8072 printf ("Internal Error: Can't hash %s\n", key);
8073}
8074
8075static void
8076fill_instruction_hash_table (void)
8077{
8078 aarch64_opcode *opcode = aarch64_opcode_table;
8079
8080 while (opcode->name != NULL)
8081 {
8082 templates *templ, *new_templ;
8083 templ = hash_find (aarch64_ops_hsh, opcode->name);
8084
add39d23 8085 new_templ = XNEW (templates);
a06ea964
NC
8086 new_templ->opcode = opcode;
8087 new_templ->next = NULL;
8088
8089 if (!templ)
8090 checked_hash_insert (aarch64_ops_hsh, opcode->name, (void *) new_templ);
8091 else
8092 {
8093 new_templ->next = templ->next;
8094 templ->next = new_templ;
8095 }
8096 ++opcode;
8097 }
8098}
8099
8100static inline void
8101convert_to_upper (char *dst, const char *src, size_t num)
8102{
8103 unsigned int i;
8104 for (i = 0; i < num && *src != '\0'; ++i, ++dst, ++src)
8105 *dst = TOUPPER (*src);
8106 *dst = '\0';
8107}
8108
8109/* Assume STR point to a lower-case string, allocate, convert and return
8110 the corresponding upper-case string. */
8111static inline const char*
8112get_upper_str (const char *str)
8113{
8114 char *ret;
8115 size_t len = strlen (str);
325801bd 8116 ret = XNEWVEC (char, len + 1);
a06ea964
NC
8117 convert_to_upper (ret, str, len);
8118 return ret;
8119}
8120
8121/* MD interface: Initialization. */
8122
8123void
8124md_begin (void)
8125{
8126 unsigned mach;
8127 unsigned int i;
8128
8129 if ((aarch64_ops_hsh = hash_new ()) == NULL
8130 || (aarch64_cond_hsh = hash_new ()) == NULL
8131 || (aarch64_shift_hsh = hash_new ()) == NULL
8132 || (aarch64_sys_regs_hsh = hash_new ()) == NULL
8133 || (aarch64_pstatefield_hsh = hash_new ()) == NULL
8134 || (aarch64_sys_regs_ic_hsh = hash_new ()) == NULL
8135 || (aarch64_sys_regs_dc_hsh = hash_new ()) == NULL
8136 || (aarch64_sys_regs_at_hsh = hash_new ()) == NULL
8137 || (aarch64_sys_regs_tlbi_hsh = hash_new ()) == NULL
8138 || (aarch64_reg_hsh = hash_new ()) == NULL
8139 || (aarch64_barrier_opt_hsh = hash_new ()) == NULL
8140 || (aarch64_nzcv_hsh = hash_new ()) == NULL
1e6f4800
MW
8141 || (aarch64_pldop_hsh = hash_new ()) == NULL
8142 || (aarch64_hint_opt_hsh = hash_new ()) == NULL)
a06ea964
NC
8143 as_fatal (_("virtual memory exhausted"));
8144
8145 fill_instruction_hash_table ();
8146
8147 for (i = 0; aarch64_sys_regs[i].name != NULL; ++i)
8148 checked_hash_insert (aarch64_sys_regs_hsh, aarch64_sys_regs[i].name,
8149 (void *) (aarch64_sys_regs + i));
8150
8151 for (i = 0; aarch64_pstatefields[i].name != NULL; ++i)
8152 checked_hash_insert (aarch64_pstatefield_hsh,
8153 aarch64_pstatefields[i].name,
8154 (void *) (aarch64_pstatefields + i));
8155
875880c6 8156 for (i = 0; aarch64_sys_regs_ic[i].name != NULL; i++)
a06ea964 8157 checked_hash_insert (aarch64_sys_regs_ic_hsh,
875880c6 8158 aarch64_sys_regs_ic[i].name,
a06ea964
NC
8159 (void *) (aarch64_sys_regs_ic + i));
8160
875880c6 8161 for (i = 0; aarch64_sys_regs_dc[i].name != NULL; i++)
a06ea964 8162 checked_hash_insert (aarch64_sys_regs_dc_hsh,
875880c6 8163 aarch64_sys_regs_dc[i].name,
a06ea964
NC
8164 (void *) (aarch64_sys_regs_dc + i));
8165
875880c6 8166 for (i = 0; aarch64_sys_regs_at[i].name != NULL; i++)
a06ea964 8167 checked_hash_insert (aarch64_sys_regs_at_hsh,
875880c6 8168 aarch64_sys_regs_at[i].name,
a06ea964
NC
8169 (void *) (aarch64_sys_regs_at + i));
8170
875880c6 8171 for (i = 0; aarch64_sys_regs_tlbi[i].name != NULL; i++)
a06ea964 8172 checked_hash_insert (aarch64_sys_regs_tlbi_hsh,
875880c6 8173 aarch64_sys_regs_tlbi[i].name,
a06ea964
NC
8174 (void *) (aarch64_sys_regs_tlbi + i));
8175
8176 for (i = 0; i < ARRAY_SIZE (reg_names); i++)
8177 checked_hash_insert (aarch64_reg_hsh, reg_names[i].name,
8178 (void *) (reg_names + i));
8179
8180 for (i = 0; i < ARRAY_SIZE (nzcv_names); i++)
8181 checked_hash_insert (aarch64_nzcv_hsh, nzcv_names[i].template,
8182 (void *) (nzcv_names + i));
8183
8184 for (i = 0; aarch64_operand_modifiers[i].name != NULL; i++)
8185 {
8186 const char *name = aarch64_operand_modifiers[i].name;
8187 checked_hash_insert (aarch64_shift_hsh, name,
8188 (void *) (aarch64_operand_modifiers + i));
8189 /* Also hash the name in the upper case. */
8190 checked_hash_insert (aarch64_shift_hsh, get_upper_str (name),
8191 (void *) (aarch64_operand_modifiers + i));
8192 }
8193
8194 for (i = 0; i < ARRAY_SIZE (aarch64_conds); i++)
8195 {
8196 unsigned int j;
8197 /* A condition code may have alias(es), e.g. "cc", "lo" and "ul" are
8198 the same condition code. */
8199 for (j = 0; j < ARRAY_SIZE (aarch64_conds[i].names); ++j)
8200 {
8201 const char *name = aarch64_conds[i].names[j];
8202 if (name == NULL)
8203 break;
8204 checked_hash_insert (aarch64_cond_hsh, name,
8205 (void *) (aarch64_conds + i));
8206 /* Also hash the name in the upper case. */
8207 checked_hash_insert (aarch64_cond_hsh, get_upper_str (name),
8208 (void *) (aarch64_conds + i));
8209 }
8210 }
8211
8212 for (i = 0; i < ARRAY_SIZE (aarch64_barrier_options); i++)
8213 {
8214 const char *name = aarch64_barrier_options[i].name;
8215 /* Skip xx00 - the unallocated values of option. */
8216 if ((i & 0x3) == 0)
8217 continue;
8218 checked_hash_insert (aarch64_barrier_opt_hsh, name,
8219 (void *) (aarch64_barrier_options + i));
8220 /* Also hash the name in the upper case. */
8221 checked_hash_insert (aarch64_barrier_opt_hsh, get_upper_str (name),
8222 (void *) (aarch64_barrier_options + i));
8223 }
8224
8225 for (i = 0; i < ARRAY_SIZE (aarch64_prfops); i++)
8226 {
8227 const char* name = aarch64_prfops[i].name;
a1ccaec9
YZ
8228 /* Skip the unallocated hint encodings. */
8229 if (name == NULL)
a06ea964
NC
8230 continue;
8231 checked_hash_insert (aarch64_pldop_hsh, name,
8232 (void *) (aarch64_prfops + i));
8233 /* Also hash the name in the upper case. */
8234 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
8235 (void *) (aarch64_prfops + i));
8236 }
8237
1e6f4800
MW
8238 for (i = 0; aarch64_hint_options[i].name != NULL; i++)
8239 {
8240 const char* name = aarch64_hint_options[i].name;
8241
8242 checked_hash_insert (aarch64_hint_opt_hsh, name,
8243 (void *) (aarch64_hint_options + i));
8244 /* Also hash the name in the upper case. */
8245 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
8246 (void *) (aarch64_hint_options + i));
8247 }
8248
a06ea964
NC
8249 /* Set the cpu variant based on the command-line options. */
8250 if (!mcpu_cpu_opt)
8251 mcpu_cpu_opt = march_cpu_opt;
8252
8253 if (!mcpu_cpu_opt)
8254 mcpu_cpu_opt = &cpu_default;
8255
8256 cpu_variant = *mcpu_cpu_opt;
8257
8258 /* Record the CPU type. */
cec5225b 8259 mach = ilp32_p ? bfd_mach_aarch64_ilp32 : bfd_mach_aarch64;
a06ea964
NC
8260
8261 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
8262}
8263
8264/* Command line processing. */
8265
8266const char *md_shortopts = "m:";
8267
8268#ifdef AARCH64_BI_ENDIAN
8269#define OPTION_EB (OPTION_MD_BASE + 0)
8270#define OPTION_EL (OPTION_MD_BASE + 1)
8271#else
8272#if TARGET_BYTES_BIG_ENDIAN
8273#define OPTION_EB (OPTION_MD_BASE + 0)
8274#else
8275#define OPTION_EL (OPTION_MD_BASE + 1)
8276#endif
8277#endif
8278
8279struct option md_longopts[] = {
8280#ifdef OPTION_EB
8281 {"EB", no_argument, NULL, OPTION_EB},
8282#endif
8283#ifdef OPTION_EL
8284 {"EL", no_argument, NULL, OPTION_EL},
8285#endif
8286 {NULL, no_argument, NULL, 0}
8287};
8288
8289size_t md_longopts_size = sizeof (md_longopts);
8290
8291struct aarch64_option_table
8292{
e0471c16
TS
8293 const char *option; /* Option name to match. */
8294 const char *help; /* Help information. */
a06ea964
NC
8295 int *var; /* Variable to change. */
8296 int value; /* What to change it to. */
8297 char *deprecated; /* If non-null, print this message. */
8298};
8299
8300static struct aarch64_option_table aarch64_opts[] = {
8301 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
8302 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
8303 NULL},
8304#ifdef DEBUG_AARCH64
8305 {"mdebug-dump", N_("temporary switch for dumping"), &debug_dump, 1, NULL},
8306#endif /* DEBUG_AARCH64 */
8307 {"mverbose-error", N_("output verbose error messages"), &verbose_error_p, 1,
8308 NULL},
a52e6fd3
YZ
8309 {"mno-verbose-error", N_("do not output verbose error messages"),
8310 &verbose_error_p, 0, NULL},
a06ea964
NC
8311 {NULL, NULL, NULL, 0, NULL}
8312};
8313
8314struct aarch64_cpu_option_table
8315{
e0471c16 8316 const char *name;
a06ea964
NC
8317 const aarch64_feature_set value;
8318 /* The canonical name of the CPU, or NULL to use NAME converted to upper
8319 case. */
8320 const char *canonical_name;
8321};
8322
8323/* This list should, at a minimum, contain all the cpu names
8324 recognized by GCC. */
8325static const struct aarch64_cpu_option_table aarch64_cpus[] = {
8326 {"all", AARCH64_ANY, NULL},
9c352f1c
JG
8327 {"cortex-a35", AARCH64_FEATURE (AARCH64_ARCH_V8,
8328 AARCH64_FEATURE_CRC), "Cortex-A35"},
aa31c464
JW
8329 {"cortex-a53", AARCH64_FEATURE (AARCH64_ARCH_V8,
8330 AARCH64_FEATURE_CRC), "Cortex-A53"},
8331 {"cortex-a57", AARCH64_FEATURE (AARCH64_ARCH_V8,
8332 AARCH64_FEATURE_CRC), "Cortex-A57"},
2abdd192
JW
8333 {"cortex-a72", AARCH64_FEATURE (AARCH64_ARCH_V8,
8334 AARCH64_FEATURE_CRC), "Cortex-A72"},
1aa70332
KT
8335 {"cortex-a73", AARCH64_FEATURE (AARCH64_ARCH_V8,
8336 AARCH64_FEATURE_CRC), "Cortex-A73"},
2412d878
EM
8337 {"exynos-m1", AARCH64_FEATURE (AARCH64_ARCH_V8,
8338 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
8339 "Samsung Exynos M1"},
2fe9c2a0
SP
8340 {"falkor", AARCH64_FEATURE (AARCH64_ARCH_V8,
8341 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
8342 "Qualcomm Falkor"},
6b21c2bf
JW
8343 {"qdf24xx", AARCH64_FEATURE (AARCH64_ARCH_V8,
8344 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
8345 "Qualcomm QDF24XX"},
faade851
JW
8346 {"thunderx", AARCH64_FEATURE (AARCH64_ARCH_V8,
8347 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
8348 "Cavium ThunderX"},
9f99c22e
VP
8349 {"vulcan", AARCH64_FEATURE (AARCH64_ARCH_V8_1,
8350 AARCH64_FEATURE_CRYPTO),
0a8be2fe 8351 "Broadcom Vulcan"},
070cb956
PT
8352 /* The 'xgene-1' name is an older name for 'xgene1', which was used
8353 in earlier releases and is superseded by 'xgene1' in all
8354 tools. */
9877c63c 8355 {"xgene-1", AARCH64_ARCH_V8, "APM X-Gene 1"},
070cb956 8356 {"xgene1", AARCH64_ARCH_V8, "APM X-Gene 1"},
aa31c464
JW
8357 {"xgene2", AARCH64_FEATURE (AARCH64_ARCH_V8,
8358 AARCH64_FEATURE_CRC), "APM X-Gene 2"},
a06ea964
NC
8359 {"generic", AARCH64_ARCH_V8, NULL},
8360
a06ea964
NC
8361 {NULL, AARCH64_ARCH_NONE, NULL}
8362};
8363
8364struct aarch64_arch_option_table
8365{
e0471c16 8366 const char *name;
a06ea964
NC
8367 const aarch64_feature_set value;
8368};
8369
8370/* This list should, at a minimum, contain all the architecture names
8371 recognized by GCC. */
8372static const struct aarch64_arch_option_table aarch64_archs[] = {
8373 {"all", AARCH64_ANY},
5a1ad39d 8374 {"armv8-a", AARCH64_ARCH_V8},
88f0ea34 8375 {"armv8.1-a", AARCH64_ARCH_V8_1},
acb787b0 8376 {"armv8.2-a", AARCH64_ARCH_V8_2},
1924ff75 8377 {"armv8.3-a", AARCH64_ARCH_V8_3},
a06ea964
NC
8378 {NULL, AARCH64_ARCH_NONE}
8379};
8380
8381/* ISA extensions. */
8382struct aarch64_option_cpu_value_table
8383{
e0471c16 8384 const char *name;
a06ea964 8385 const aarch64_feature_set value;
93d8990c 8386 const aarch64_feature_set require; /* Feature dependencies. */
a06ea964
NC
8387};
8388
8389static const struct aarch64_option_cpu_value_table aarch64_features[] = {
93d8990c
SN
8390 {"crc", AARCH64_FEATURE (AARCH64_FEATURE_CRC, 0),
8391 AARCH64_ARCH_NONE},
8392 {"crypto", AARCH64_FEATURE (AARCH64_FEATURE_CRYPTO, 0),
fa09f4ea 8393 AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
93d8990c
SN
8394 {"fp", AARCH64_FEATURE (AARCH64_FEATURE_FP, 0),
8395 AARCH64_ARCH_NONE},
8396 {"lse", AARCH64_FEATURE (AARCH64_FEATURE_LSE, 0),
8397 AARCH64_ARCH_NONE},
8398 {"simd", AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0),
fa09f4ea 8399 AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
93d8990c
SN
8400 {"pan", AARCH64_FEATURE (AARCH64_FEATURE_PAN, 0),
8401 AARCH64_ARCH_NONE},
8402 {"lor", AARCH64_FEATURE (AARCH64_FEATURE_LOR, 0),
8403 AARCH64_ARCH_NONE},
8404 {"ras", AARCH64_FEATURE (AARCH64_FEATURE_RAS, 0),
8405 AARCH64_ARCH_NONE},
8406 {"rdma", AARCH64_FEATURE (AARCH64_FEATURE_RDMA, 0),
8407 AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
8408 {"fp16", AARCH64_FEATURE (AARCH64_FEATURE_F16, 0),
8409 AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
8410 {"profile", AARCH64_FEATURE (AARCH64_FEATURE_PROFILE, 0),
8411 AARCH64_ARCH_NONE},
c0890d26
RS
8412 {"sve", AARCH64_FEATURE (AARCH64_FEATURE_SVE, 0),
8413 AARCH64_FEATURE (AARCH64_FEATURE_FP
8414 | AARCH64_FEATURE_SIMD, 0)},
93d8990c 8415 {NULL, AARCH64_ARCH_NONE, AARCH64_ARCH_NONE},
a06ea964
NC
8416};
8417
8418struct aarch64_long_option_table
8419{
e0471c16
TS
8420 const char *option; /* Substring to match. */
8421 const char *help; /* Help information. */
17b9d67d 8422 int (*func) (const char *subopt); /* Function to decode sub-option. */
a06ea964
NC
8423 char *deprecated; /* If non-null, print this message. */
8424};
8425
93d8990c
SN
8426/* Transitive closure of features depending on set. */
8427static aarch64_feature_set
8428aarch64_feature_disable_set (aarch64_feature_set set)
8429{
8430 const struct aarch64_option_cpu_value_table *opt;
8431 aarch64_feature_set prev = 0;
8432
8433 while (prev != set) {
8434 prev = set;
8435 for (opt = aarch64_features; opt->name != NULL; opt++)
8436 if (AARCH64_CPU_HAS_ANY_FEATURES (opt->require, set))
8437 AARCH64_MERGE_FEATURE_SETS (set, set, opt->value);
8438 }
8439 return set;
8440}
8441
8442/* Transitive closure of dependencies of set. */
8443static aarch64_feature_set
8444aarch64_feature_enable_set (aarch64_feature_set set)
8445{
8446 const struct aarch64_option_cpu_value_table *opt;
8447 aarch64_feature_set prev = 0;
8448
8449 while (prev != set) {
8450 prev = set;
8451 for (opt = aarch64_features; opt->name != NULL; opt++)
8452 if (AARCH64_CPU_HAS_FEATURE (set, opt->value))
8453 AARCH64_MERGE_FEATURE_SETS (set, set, opt->require);
8454 }
8455 return set;
8456}
8457
a06ea964 8458static int
82b8a785 8459aarch64_parse_features (const char *str, const aarch64_feature_set **opt_p,
ae527cd8 8460 bfd_boolean ext_only)
a06ea964
NC
8461{
8462 /* We insist on extensions being added before being removed. We achieve
8463 this by using the ADDING_VALUE variable to indicate whether we are
8464 adding an extension (1) or removing it (0) and only allowing it to
8465 change in the order -1 -> 1 -> 0. */
8466 int adding_value = -1;
325801bd 8467 aarch64_feature_set *ext_set = XNEW (aarch64_feature_set);
a06ea964
NC
8468
8469 /* Copy the feature set, so that we can modify it. */
8470 *ext_set = **opt_p;
8471 *opt_p = ext_set;
8472
8473 while (str != NULL && *str != 0)
8474 {
8475 const struct aarch64_option_cpu_value_table *opt;
82b8a785 8476 const char *ext = NULL;
a06ea964
NC
8477 int optlen;
8478
ae527cd8 8479 if (!ext_only)
a06ea964 8480 {
ae527cd8
JB
8481 if (*str != '+')
8482 {
8483 as_bad (_("invalid architectural extension"));
8484 return 0;
8485 }
a06ea964 8486
ae527cd8
JB
8487 ext = strchr (++str, '+');
8488 }
a06ea964
NC
8489
8490 if (ext != NULL)
8491 optlen = ext - str;
8492 else
8493 optlen = strlen (str);
8494
8495 if (optlen >= 2 && strncmp (str, "no", 2) == 0)
8496 {
8497 if (adding_value != 0)
8498 adding_value = 0;
8499 optlen -= 2;
8500 str += 2;
8501 }
8502 else if (optlen > 0)
8503 {
8504 if (adding_value == -1)
8505 adding_value = 1;
8506 else if (adding_value != 1)
8507 {
8508 as_bad (_("must specify extensions to add before specifying "
8509 "those to remove"));
8510 return FALSE;
8511 }
8512 }
8513
8514 if (optlen == 0)
8515 {
8516 as_bad (_("missing architectural extension"));
8517 return 0;
8518 }
8519
8520 gas_assert (adding_value != -1);
8521
8522 for (opt = aarch64_features; opt->name != NULL; opt++)
8523 if (strncmp (opt->name, str, optlen) == 0)
8524 {
93d8990c
SN
8525 aarch64_feature_set set;
8526
a06ea964
NC
8527 /* Add or remove the extension. */
8528 if (adding_value)
93d8990c
SN
8529 {
8530 set = aarch64_feature_enable_set (opt->value);
8531 AARCH64_MERGE_FEATURE_SETS (*ext_set, *ext_set, set);
8532 }
a06ea964 8533 else
93d8990c
SN
8534 {
8535 set = aarch64_feature_disable_set (opt->value);
8536 AARCH64_CLEAR_FEATURE (*ext_set, *ext_set, set);
8537 }
a06ea964
NC
8538 break;
8539 }
8540
8541 if (opt->name == NULL)
8542 {
8543 as_bad (_("unknown architectural extension `%s'"), str);
8544 return 0;
8545 }
8546
8547 str = ext;
8548 };
8549
8550 return 1;
8551}
8552
8553static int
17b9d67d 8554aarch64_parse_cpu (const char *str)
a06ea964
NC
8555{
8556 const struct aarch64_cpu_option_table *opt;
82b8a785 8557 const char *ext = strchr (str, '+');
a06ea964
NC
8558 size_t optlen;
8559
8560 if (ext != NULL)
8561 optlen = ext - str;
8562 else
8563 optlen = strlen (str);
8564
8565 if (optlen == 0)
8566 {
8567 as_bad (_("missing cpu name `%s'"), str);
8568 return 0;
8569 }
8570
8571 for (opt = aarch64_cpus; opt->name != NULL; opt++)
8572 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
8573 {
8574 mcpu_cpu_opt = &opt->value;
8575 if (ext != NULL)
ae527cd8 8576 return aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE);
a06ea964
NC
8577
8578 return 1;
8579 }
8580
8581 as_bad (_("unknown cpu `%s'"), str);
8582 return 0;
8583}
8584
8585static int
17b9d67d 8586aarch64_parse_arch (const char *str)
a06ea964
NC
8587{
8588 const struct aarch64_arch_option_table *opt;
82b8a785 8589 const char *ext = strchr (str, '+');
a06ea964
NC
8590 size_t optlen;
8591
8592 if (ext != NULL)
8593 optlen = ext - str;
8594 else
8595 optlen = strlen (str);
8596
8597 if (optlen == 0)
8598 {
8599 as_bad (_("missing architecture name `%s'"), str);
8600 return 0;
8601 }
8602
8603 for (opt = aarch64_archs; opt->name != NULL; opt++)
8604 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
8605 {
8606 march_cpu_opt = &opt->value;
8607 if (ext != NULL)
ae527cd8 8608 return aarch64_parse_features (ext, &march_cpu_opt, FALSE);
a06ea964
NC
8609
8610 return 1;
8611 }
8612
8613 as_bad (_("unknown architecture `%s'\n"), str);
8614 return 0;
8615}
8616
69091a2c
YZ
8617/* ABIs. */
8618struct aarch64_option_abi_value_table
8619{
e0471c16 8620 const char *name;
69091a2c
YZ
8621 enum aarch64_abi_type value;
8622};
8623
8624static const struct aarch64_option_abi_value_table aarch64_abis[] = {
8625 {"ilp32", AARCH64_ABI_ILP32},
8626 {"lp64", AARCH64_ABI_LP64},
69091a2c
YZ
8627};
8628
8629static int
17b9d67d 8630aarch64_parse_abi (const char *str)
69091a2c 8631{
5703197e 8632 unsigned int i;
69091a2c 8633
5703197e 8634 if (str[0] == '\0')
69091a2c
YZ
8635 {
8636 as_bad (_("missing abi name `%s'"), str);
8637 return 0;
8638 }
8639
5703197e
TS
8640 for (i = 0; i < ARRAY_SIZE (aarch64_abis); i++)
8641 if (strcmp (str, aarch64_abis[i].name) == 0)
69091a2c 8642 {
5703197e 8643 aarch64_abi = aarch64_abis[i].value;
69091a2c
YZ
8644 return 1;
8645 }
8646
8647 as_bad (_("unknown abi `%s'\n"), str);
8648 return 0;
8649}
8650
a06ea964 8651static struct aarch64_long_option_table aarch64_long_opts[] = {
69091a2c
YZ
8652#ifdef OBJ_ELF
8653 {"mabi=", N_("<abi name>\t specify for ABI <abi name>"),
8654 aarch64_parse_abi, NULL},
8655#endif /* OBJ_ELF */
a06ea964
NC
8656 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
8657 aarch64_parse_cpu, NULL},
8658 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
8659 aarch64_parse_arch, NULL},
8660 {NULL, NULL, 0, NULL}
8661};
8662
8663int
17b9d67d 8664md_parse_option (int c, const char *arg)
a06ea964
NC
8665{
8666 struct aarch64_option_table *opt;
8667 struct aarch64_long_option_table *lopt;
8668
8669 switch (c)
8670 {
8671#ifdef OPTION_EB
8672 case OPTION_EB:
8673 target_big_endian = 1;
8674 break;
8675#endif
8676
8677#ifdef OPTION_EL
8678 case OPTION_EL:
8679 target_big_endian = 0;
8680 break;
8681#endif
8682
8683 case 'a':
8684 /* Listing option. Just ignore these, we don't support additional
8685 ones. */
8686 return 0;
8687
8688 default:
8689 for (opt = aarch64_opts; opt->option != NULL; opt++)
8690 {
8691 if (c == opt->option[0]
8692 && ((arg == NULL && opt->option[1] == 0)
8693 || streq (arg, opt->option + 1)))
8694 {
8695 /* If the option is deprecated, tell the user. */
8696 if (opt->deprecated != NULL)
8697 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
8698 arg ? arg : "", _(opt->deprecated));
8699
8700 if (opt->var != NULL)
8701 *opt->var = opt->value;
8702
8703 return 1;
8704 }
8705 }
8706
8707 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
8708 {
8709 /* These options are expected to have an argument. */
8710 if (c == lopt->option[0]
8711 && arg != NULL
8712 && strncmp (arg, lopt->option + 1,
8713 strlen (lopt->option + 1)) == 0)
8714 {
8715 /* If the option is deprecated, tell the user. */
8716 if (lopt->deprecated != NULL)
8717 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
8718 _(lopt->deprecated));
8719
8720 /* Call the sup-option parser. */
8721 return lopt->func (arg + strlen (lopt->option) - 1);
8722 }
8723 }
8724
8725 return 0;
8726 }
8727
8728 return 1;
8729}
8730
8731void
8732md_show_usage (FILE * fp)
8733{
8734 struct aarch64_option_table *opt;
8735 struct aarch64_long_option_table *lopt;
8736
8737 fprintf (fp, _(" AArch64-specific assembler options:\n"));
8738
8739 for (opt = aarch64_opts; opt->option != NULL; opt++)
8740 if (opt->help != NULL)
8741 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
8742
8743 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
8744 if (lopt->help != NULL)
8745 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
8746
8747#ifdef OPTION_EB
8748 fprintf (fp, _("\
8749 -EB assemble code for a big-endian cpu\n"));
8750#endif
8751
8752#ifdef OPTION_EL
8753 fprintf (fp, _("\
8754 -EL assemble code for a little-endian cpu\n"));
8755#endif
8756}
8757
8758/* Parse a .cpu directive. */
8759
8760static void
8761s_aarch64_cpu (int ignored ATTRIBUTE_UNUSED)
8762{
8763 const struct aarch64_cpu_option_table *opt;
8764 char saved_char;
8765 char *name;
8766 char *ext;
8767 size_t optlen;
8768
8769 name = input_line_pointer;
8770 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
8771 input_line_pointer++;
8772 saved_char = *input_line_pointer;
8773 *input_line_pointer = 0;
8774
8775 ext = strchr (name, '+');
8776
8777 if (ext != NULL)
8778 optlen = ext - name;
8779 else
8780 optlen = strlen (name);
8781
8782 /* Skip the first "all" entry. */
8783 for (opt = aarch64_cpus + 1; opt->name != NULL; opt++)
8784 if (strlen (opt->name) == optlen
8785 && strncmp (name, opt->name, optlen) == 0)
8786 {
8787 mcpu_cpu_opt = &opt->value;
8788 if (ext != NULL)
ae527cd8 8789 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
a06ea964
NC
8790 return;
8791
8792 cpu_variant = *mcpu_cpu_opt;
8793
8794 *input_line_pointer = saved_char;
8795 demand_empty_rest_of_line ();
8796 return;
8797 }
8798 as_bad (_("unknown cpu `%s'"), name);
8799 *input_line_pointer = saved_char;
8800 ignore_rest_of_line ();
8801}
8802
8803
8804/* Parse a .arch directive. */
8805
8806static void
8807s_aarch64_arch (int ignored ATTRIBUTE_UNUSED)
8808{
8809 const struct aarch64_arch_option_table *opt;
8810 char saved_char;
8811 char *name;
8812 char *ext;
8813 size_t optlen;
8814
8815 name = input_line_pointer;
8816 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
8817 input_line_pointer++;
8818 saved_char = *input_line_pointer;
8819 *input_line_pointer = 0;
8820
8821 ext = strchr (name, '+');
8822
8823 if (ext != NULL)
8824 optlen = ext - name;
8825 else
8826 optlen = strlen (name);
8827
8828 /* Skip the first "all" entry. */
8829 for (opt = aarch64_archs + 1; opt->name != NULL; opt++)
8830 if (strlen (opt->name) == optlen
8831 && strncmp (name, opt->name, optlen) == 0)
8832 {
8833 mcpu_cpu_opt = &opt->value;
8834 if (ext != NULL)
ae527cd8 8835 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
a06ea964
NC
8836 return;
8837
8838 cpu_variant = *mcpu_cpu_opt;
8839
8840 *input_line_pointer = saved_char;
8841 demand_empty_rest_of_line ();
8842 return;
8843 }
8844
8845 as_bad (_("unknown architecture `%s'\n"), name);
8846 *input_line_pointer = saved_char;
8847 ignore_rest_of_line ();
8848}
8849
ae527cd8
JB
8850/* Parse a .arch_extension directive. */
8851
8852static void
8853s_aarch64_arch_extension (int ignored ATTRIBUTE_UNUSED)
8854{
8855 char saved_char;
8856 char *ext = input_line_pointer;;
8857
8858 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
8859 input_line_pointer++;
8860 saved_char = *input_line_pointer;
8861 *input_line_pointer = 0;
8862
8863 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, TRUE))
8864 return;
8865
8866 cpu_variant = *mcpu_cpu_opt;
8867
8868 *input_line_pointer = saved_char;
8869 demand_empty_rest_of_line ();
8870}
8871
a06ea964
NC
8872/* Copy symbol information. */
8873
8874void
8875aarch64_copy_symbol_attributes (symbolS * dest, symbolS * src)
8876{
8877 AARCH64_GET_FLAG (dest) = AARCH64_GET_FLAG (src);
8878}
This page took 0.692744 seconds and 4 git commands to generate.