[AArch64][2/3] GAS support BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
[deliverable/binutils-gdb.git] / gas / config / tc-aarch64.c
CommitLineData
a06ea964
NC
1/* tc-aarch64.c -- Assemble for the AArch64 ISA
2
b90efa5b 3 Copyright (C) 2009-2015 Free Software Foundation, Inc.
a06ea964
NC
4 Contributed by ARM Ltd.
5
6 This file is part of GAS.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the license, or
11 (at your option) any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING3. If not,
20 see <http://www.gnu.org/licenses/>. */
21
22#include "as.h"
23#include <limits.h>
24#include <stdarg.h>
25#include "bfd_stdint.h"
26#define NO_RELOC 0
27#include "safe-ctype.h"
28#include "subsegs.h"
29#include "obstack.h"
30
31#ifdef OBJ_ELF
32#include "elf/aarch64.h"
33#include "dw2gencfi.h"
34#endif
35
36#include "dwarf2dbg.h"
37
38/* Types of processor to assemble for. */
39#ifndef CPU_DEFAULT
40#define CPU_DEFAULT AARCH64_ARCH_V8
41#endif
42
43#define streq(a, b) (strcmp (a, b) == 0)
44
f4c51f60
JW
45#define END_OF_INSN '\0'
46
a06ea964
NC
47static aarch64_feature_set cpu_variant;
48
49/* Variables that we set while parsing command-line options. Once all
50 options have been read we re-process these values to set the real
51 assembly flags. */
52static const aarch64_feature_set *mcpu_cpu_opt = NULL;
53static const aarch64_feature_set *march_cpu_opt = NULL;
54
55/* Constants for known architecture features. */
56static const aarch64_feature_set cpu_default = CPU_DEFAULT;
57
a06ea964
NC
58#ifdef OBJ_ELF
59/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
60static symbolS *GOT_symbol;
cec5225b 61
69091a2c
YZ
62/* Which ABI to use. */
63enum aarch64_abi_type
64{
65 AARCH64_ABI_LP64 = 0,
66 AARCH64_ABI_ILP32 = 1
67};
68
69/* AArch64 ABI for the output file. */
70static enum aarch64_abi_type aarch64_abi = AARCH64_ABI_LP64;
71
cec5225b
YZ
72/* When non-zero, program to a 32-bit model, in which the C data types
73 int, long and all pointer types are 32-bit objects (ILP32); or to a
74 64-bit model, in which the C int type is 32-bits but the C long type
75 and all pointer types are 64-bit objects (LP64). */
69091a2c 76#define ilp32_p (aarch64_abi == AARCH64_ABI_ILP32)
a06ea964
NC
77#endif
78
79enum neon_el_type
80{
81 NT_invtype = -1,
82 NT_b,
83 NT_h,
84 NT_s,
85 NT_d,
86 NT_q
87};
88
89/* Bits for DEFINED field in neon_type_el. */
90#define NTA_HASTYPE 1
91#define NTA_HASINDEX 2
92
93struct neon_type_el
94{
95 enum neon_el_type type;
96 unsigned char defined;
97 unsigned width;
98 int64_t index;
99};
100
101#define FIXUP_F_HAS_EXPLICIT_SHIFT 0x00000001
102
103struct reloc
104{
105 bfd_reloc_code_real_type type;
106 expressionS exp;
107 int pc_rel;
108 enum aarch64_opnd opnd;
109 uint32_t flags;
110 unsigned need_libopcodes_p : 1;
111};
112
113struct aarch64_instruction
114{
115 /* libopcodes structure for instruction intermediate representation. */
116 aarch64_inst base;
117 /* Record assembly errors found during the parsing. */
118 struct
119 {
120 enum aarch64_operand_error_kind kind;
121 const char *error;
122 } parsing_error;
123 /* The condition that appears in the assembly line. */
124 int cond;
125 /* Relocation information (including the GAS internal fixup). */
126 struct reloc reloc;
127 /* Need to generate an immediate in the literal pool. */
128 unsigned gen_lit_pool : 1;
129};
130
131typedef struct aarch64_instruction aarch64_instruction;
132
133static aarch64_instruction inst;
134
135static bfd_boolean parse_operands (char *, const aarch64_opcode *);
136static bfd_boolean programmer_friendly_fixup (aarch64_instruction *);
137
138/* Diagnostics inline function utilites.
139
140 These are lightweight utlities which should only be called by parse_operands
141 and other parsers. GAS processes each assembly line by parsing it against
142 instruction template(s), in the case of multiple templates (for the same
143 mnemonic name), those templates are tried one by one until one succeeds or
144 all fail. An assembly line may fail a few templates before being
145 successfully parsed; an error saved here in most cases is not a user error
146 but an error indicating the current template is not the right template.
147 Therefore it is very important that errors can be saved at a low cost during
148 the parsing; we don't want to slow down the whole parsing by recording
149 non-user errors in detail.
150
151 Remember that the objective is to help GAS pick up the most approapriate
152 error message in the case of multiple templates, e.g. FMOV which has 8
153 templates. */
154
155static inline void
156clear_error (void)
157{
158 inst.parsing_error.kind = AARCH64_OPDE_NIL;
159 inst.parsing_error.error = NULL;
160}
161
162static inline bfd_boolean
163error_p (void)
164{
165 return inst.parsing_error.kind != AARCH64_OPDE_NIL;
166}
167
168static inline const char *
169get_error_message (void)
170{
171 return inst.parsing_error.error;
172}
173
a06ea964
NC
174static inline enum aarch64_operand_error_kind
175get_error_kind (void)
176{
177 return inst.parsing_error.kind;
178}
179
a06ea964
NC
180static inline void
181set_error (enum aarch64_operand_error_kind kind, const char *error)
182{
183 inst.parsing_error.kind = kind;
184 inst.parsing_error.error = error;
185}
186
187static inline void
188set_recoverable_error (const char *error)
189{
190 set_error (AARCH64_OPDE_RECOVERABLE, error);
191}
192
193/* Use the DESC field of the corresponding aarch64_operand entry to compose
194 the error message. */
195static inline void
196set_default_error (void)
197{
198 set_error (AARCH64_OPDE_SYNTAX_ERROR, NULL);
199}
200
201static inline void
202set_syntax_error (const char *error)
203{
204 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
205}
206
207static inline void
208set_first_syntax_error (const char *error)
209{
210 if (! error_p ())
211 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
212}
213
214static inline void
215set_fatal_syntax_error (const char *error)
216{
217 set_error (AARCH64_OPDE_FATAL_SYNTAX_ERROR, error);
218}
219\f
220/* Number of littlenums required to hold an extended precision number. */
221#define MAX_LITTLENUMS 6
222
223/* Return value for certain parsers when the parsing fails; those parsers
224 return the information of the parsed result, e.g. register number, on
225 success. */
226#define PARSE_FAIL -1
227
228/* This is an invalid condition code that means no conditional field is
229 present. */
230#define COND_ALWAYS 0x10
231
232typedef struct
233{
234 const char *template;
235 unsigned long value;
236} asm_barrier_opt;
237
238typedef struct
239{
240 const char *template;
241 uint32_t value;
242} asm_nzcv;
243
244struct reloc_entry
245{
246 char *name;
247 bfd_reloc_code_real_type reloc;
248};
249
250/* Structure for a hash table entry for a register. */
251typedef struct
252{
253 const char *name;
254 unsigned char number;
255 unsigned char type;
256 unsigned char builtin;
257} reg_entry;
258
259/* Macros to define the register types and masks for the purpose
260 of parsing. */
261
262#undef AARCH64_REG_TYPES
263#define AARCH64_REG_TYPES \
264 BASIC_REG_TYPE(R_32) /* w[0-30] */ \
265 BASIC_REG_TYPE(R_64) /* x[0-30] */ \
266 BASIC_REG_TYPE(SP_32) /* wsp */ \
267 BASIC_REG_TYPE(SP_64) /* sp */ \
268 BASIC_REG_TYPE(Z_32) /* wzr */ \
269 BASIC_REG_TYPE(Z_64) /* xzr */ \
270 BASIC_REG_TYPE(FP_B) /* b[0-31] *//* NOTE: keep FP_[BHSDQ] consecutive! */\
271 BASIC_REG_TYPE(FP_H) /* h[0-31] */ \
272 BASIC_REG_TYPE(FP_S) /* s[0-31] */ \
273 BASIC_REG_TYPE(FP_D) /* d[0-31] */ \
274 BASIC_REG_TYPE(FP_Q) /* q[0-31] */ \
275 BASIC_REG_TYPE(CN) /* c[0-7] */ \
276 BASIC_REG_TYPE(VN) /* v[0-31] */ \
277 /* Typecheck: any 64-bit int reg (inc SP exc XZR) */ \
278 MULTI_REG_TYPE(R64_SP, REG_TYPE(R_64) | REG_TYPE(SP_64)) \
279 /* Typecheck: any int (inc {W}SP inc [WX]ZR) */ \
280 MULTI_REG_TYPE(R_Z_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
281 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
282 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
283 /* Typecheck: any [BHSDQ]P FP. */ \
284 MULTI_REG_TYPE(BHSDQ, REG_TYPE(FP_B) | REG_TYPE(FP_H) \
285 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
286 /* Typecheck: any int or [BHSDQ]P FP or V reg (exc SP inc [WX]ZR) */ \
287 MULTI_REG_TYPE(R_Z_BHSDQ_V, REG_TYPE(R_32) | REG_TYPE(R_64) \
288 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
289 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
290 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
291 /* Any integer register; used for error messages only. */ \
292 MULTI_REG_TYPE(R_N, REG_TYPE(R_32) | REG_TYPE(R_64) \
293 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
294 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
295 /* Pseudo type to mark the end of the enumerator sequence. */ \
296 BASIC_REG_TYPE(MAX)
297
298#undef BASIC_REG_TYPE
299#define BASIC_REG_TYPE(T) REG_TYPE_##T,
300#undef MULTI_REG_TYPE
301#define MULTI_REG_TYPE(T,V) BASIC_REG_TYPE(T)
302
303/* Register type enumerators. */
304typedef enum
305{
306 /* A list of REG_TYPE_*. */
307 AARCH64_REG_TYPES
308} aarch64_reg_type;
309
310#undef BASIC_REG_TYPE
311#define BASIC_REG_TYPE(T) 1 << REG_TYPE_##T,
312#undef REG_TYPE
313#define REG_TYPE(T) (1 << REG_TYPE_##T)
314#undef MULTI_REG_TYPE
315#define MULTI_REG_TYPE(T,V) V,
316
317/* Values indexed by aarch64_reg_type to assist the type checking. */
318static const unsigned reg_type_masks[] =
319{
320 AARCH64_REG_TYPES
321};
322
323#undef BASIC_REG_TYPE
324#undef REG_TYPE
325#undef MULTI_REG_TYPE
326#undef AARCH64_REG_TYPES
327
328/* Diagnostics used when we don't get a register of the expected type.
329 Note: this has to synchronized with aarch64_reg_type definitions
330 above. */
331static const char *
332get_reg_expected_msg (aarch64_reg_type reg_type)
333{
334 const char *msg;
335
336 switch (reg_type)
337 {
338 case REG_TYPE_R_32:
339 msg = N_("integer 32-bit register expected");
340 break;
341 case REG_TYPE_R_64:
342 msg = N_("integer 64-bit register expected");
343 break;
344 case REG_TYPE_R_N:
345 msg = N_("integer register expected");
346 break;
347 case REG_TYPE_R_Z_SP:
348 msg = N_("integer, zero or SP register expected");
349 break;
350 case REG_TYPE_FP_B:
351 msg = N_("8-bit SIMD scalar register expected");
352 break;
353 case REG_TYPE_FP_H:
354 msg = N_("16-bit SIMD scalar or floating-point half precision "
355 "register expected");
356 break;
357 case REG_TYPE_FP_S:
358 msg = N_("32-bit SIMD scalar or floating-point single precision "
359 "register expected");
360 break;
361 case REG_TYPE_FP_D:
362 msg = N_("64-bit SIMD scalar or floating-point double precision "
363 "register expected");
364 break;
365 case REG_TYPE_FP_Q:
366 msg = N_("128-bit SIMD scalar or floating-point quad precision "
367 "register expected");
368 break;
369 case REG_TYPE_CN:
370 msg = N_("C0 - C15 expected");
371 break;
372 case REG_TYPE_R_Z_BHSDQ_V:
373 msg = N_("register expected");
374 break;
375 case REG_TYPE_BHSDQ: /* any [BHSDQ]P FP */
376 msg = N_("SIMD scalar or floating-point register expected");
377 break;
378 case REG_TYPE_VN: /* any V reg */
379 msg = N_("vector register expected");
380 break;
381 default:
382 as_fatal (_("invalid register type %d"), reg_type);
383 }
384 return msg;
385}
386
387/* Some well known registers that we refer to directly elsewhere. */
388#define REG_SP 31
389
390/* Instructions take 4 bytes in the object file. */
391#define INSN_SIZE 4
392
393/* Define some common error messages. */
394#define BAD_SP _("SP not allowed here")
395
396static struct hash_control *aarch64_ops_hsh;
397static struct hash_control *aarch64_cond_hsh;
398static struct hash_control *aarch64_shift_hsh;
399static struct hash_control *aarch64_sys_regs_hsh;
400static struct hash_control *aarch64_pstatefield_hsh;
401static struct hash_control *aarch64_sys_regs_ic_hsh;
402static struct hash_control *aarch64_sys_regs_dc_hsh;
403static struct hash_control *aarch64_sys_regs_at_hsh;
404static struct hash_control *aarch64_sys_regs_tlbi_hsh;
405static struct hash_control *aarch64_reg_hsh;
406static struct hash_control *aarch64_barrier_opt_hsh;
407static struct hash_control *aarch64_nzcv_hsh;
408static struct hash_control *aarch64_pldop_hsh;
409
410/* Stuff needed to resolve the label ambiguity
411 As:
412 ...
413 label: <insn>
414 may differ from:
415 ...
416 label:
417 <insn> */
418
419static symbolS *last_label_seen;
420
421/* Literal pool structure. Held on a per-section
422 and per-sub-section basis. */
423
424#define MAX_LITERAL_POOL_SIZE 1024
55d9b4c1
NC
425typedef struct literal_expression
426{
427 expressionS exp;
428 /* If exp.op == O_big then this bignum holds a copy of the global bignum value. */
429 LITTLENUM_TYPE * bignum;
430} literal_expression;
431
a06ea964
NC
432typedef struct literal_pool
433{
55d9b4c1 434 literal_expression literals[MAX_LITERAL_POOL_SIZE];
a06ea964
NC
435 unsigned int next_free_entry;
436 unsigned int id;
437 symbolS *symbol;
438 segT section;
439 subsegT sub_section;
440 int size;
441 struct literal_pool *next;
442} literal_pool;
443
444/* Pointer to a linked list of literal pools. */
445static literal_pool *list_of_pools = NULL;
446\f
447/* Pure syntax. */
448
449/* This array holds the chars that always start a comment. If the
450 pre-processor is disabled, these aren't very useful. */
451const char comment_chars[] = "";
452
453/* This array holds the chars that only start a comment at the beginning of
454 a line. If the line seems to have the form '# 123 filename'
455 .line and .file directives will appear in the pre-processed output. */
456/* Note that input_file.c hand checks for '#' at the beginning of the
457 first line of the input file. This is because the compiler outputs
458 #NO_APP at the beginning of its output. */
459/* Also note that comments like this one will always work. */
460const char line_comment_chars[] = "#";
461
462const char line_separator_chars[] = ";";
463
464/* Chars that can be used to separate mant
465 from exp in floating point numbers. */
466const char EXP_CHARS[] = "eE";
467
468/* Chars that mean this number is a floating point constant. */
469/* As in 0f12.456 */
470/* or 0d1.2345e12 */
471
472const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
473
474/* Prefix character that indicates the start of an immediate value. */
475#define is_immediate_prefix(C) ((C) == '#')
476
477/* Separator character handling. */
478
479#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
480
481static inline bfd_boolean
482skip_past_char (char **str, char c)
483{
484 if (**str == c)
485 {
486 (*str)++;
487 return TRUE;
488 }
489 else
490 return FALSE;
491}
492
493#define skip_past_comma(str) skip_past_char (str, ',')
494
495/* Arithmetic expressions (possibly involving symbols). */
496
a06ea964
NC
497static bfd_boolean in_my_get_expression_p = FALSE;
498
499/* Third argument to my_get_expression. */
500#define GE_NO_PREFIX 0
501#define GE_OPT_PREFIX 1
502
503/* Return TRUE if the string pointed by *STR is successfully parsed
504 as an valid expression; *EP will be filled with the information of
505 such an expression. Otherwise return FALSE. */
506
507static bfd_boolean
508my_get_expression (expressionS * ep, char **str, int prefix_mode,
509 int reject_absent)
510{
511 char *save_in;
512 segT seg;
513 int prefix_present_p = 0;
514
515 switch (prefix_mode)
516 {
517 case GE_NO_PREFIX:
518 break;
519 case GE_OPT_PREFIX:
520 if (is_immediate_prefix (**str))
521 {
522 (*str)++;
523 prefix_present_p = 1;
524 }
525 break;
526 default:
527 abort ();
528 }
529
530 memset (ep, 0, sizeof (expressionS));
531
532 save_in = input_line_pointer;
533 input_line_pointer = *str;
534 in_my_get_expression_p = TRUE;
535 seg = expression (ep);
536 in_my_get_expression_p = FALSE;
537
538 if (ep->X_op == O_illegal || (reject_absent && ep->X_op == O_absent))
539 {
540 /* We found a bad expression in md_operand(). */
541 *str = input_line_pointer;
542 input_line_pointer = save_in;
543 if (prefix_present_p && ! error_p ())
544 set_fatal_syntax_error (_("bad expression"));
545 else
546 set_first_syntax_error (_("bad expression"));
547 return FALSE;
548 }
549
550#ifdef OBJ_AOUT
551 if (seg != absolute_section
552 && seg != text_section
553 && seg != data_section
554 && seg != bss_section && seg != undefined_section)
555 {
556 set_syntax_error (_("bad segment"));
557 *str = input_line_pointer;
558 input_line_pointer = save_in;
559 return FALSE;
560 }
561#else
562 (void) seg;
563#endif
564
a06ea964
NC
565 *str = input_line_pointer;
566 input_line_pointer = save_in;
567 return TRUE;
568}
569
570/* Turn a string in input_line_pointer into a floating point constant
571 of type TYPE, and store the appropriate bytes in *LITP. The number
572 of LITTLENUMS emitted is stored in *SIZEP. An error message is
573 returned, or NULL on OK. */
574
575char *
576md_atof (int type, char *litP, int *sizeP)
577{
578 return ieee_md_atof (type, litP, sizeP, target_big_endian);
579}
580
581/* We handle all bad expressions here, so that we can report the faulty
582 instruction in the error message. */
583void
584md_operand (expressionS * exp)
585{
586 if (in_my_get_expression_p)
587 exp->X_op = O_illegal;
588}
589
590/* Immediate values. */
591
592/* Errors may be set multiple times during parsing or bit encoding
593 (particularly in the Neon bits), but usually the earliest error which is set
594 will be the most meaningful. Avoid overwriting it with later (cascading)
595 errors by calling this function. */
596
597static void
598first_error (const char *error)
599{
600 if (! error_p ())
601 set_syntax_error (error);
602}
603
604/* Similiar to first_error, but this function accepts formatted error
605 message. */
606static void
607first_error_fmt (const char *format, ...)
608{
609 va_list args;
610 enum
611 { size = 100 };
612 /* N.B. this single buffer will not cause error messages for different
613 instructions to pollute each other; this is because at the end of
614 processing of each assembly line, error message if any will be
615 collected by as_bad. */
616 static char buffer[size];
617
618 if (! error_p ())
619 {
3e0baa28 620 int ret ATTRIBUTE_UNUSED;
a06ea964
NC
621 va_start (args, format);
622 ret = vsnprintf (buffer, size, format, args);
623 know (ret <= size - 1 && ret >= 0);
624 va_end (args);
625 set_syntax_error (buffer);
626 }
627}
628
629/* Register parsing. */
630
631/* Generic register parser which is called by other specialized
632 register parsers.
633 CCP points to what should be the beginning of a register name.
634 If it is indeed a valid register name, advance CCP over it and
635 return the reg_entry structure; otherwise return NULL.
636 It does not issue diagnostics. */
637
638static reg_entry *
639parse_reg (char **ccp)
640{
641 char *start = *ccp;
642 char *p;
643 reg_entry *reg;
644
645#ifdef REGISTER_PREFIX
646 if (*start != REGISTER_PREFIX)
647 return NULL;
648 start++;
649#endif
650
651 p = start;
652 if (!ISALPHA (*p) || !is_name_beginner (*p))
653 return NULL;
654
655 do
656 p++;
657 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
658
659 reg = (reg_entry *) hash_find_n (aarch64_reg_hsh, start, p - start);
660
661 if (!reg)
662 return NULL;
663
664 *ccp = p;
665 return reg;
666}
667
668/* Return TRUE if REG->TYPE is a valid type of TYPE; otherwise
669 return FALSE. */
670static bfd_boolean
671aarch64_check_reg_type (const reg_entry *reg, aarch64_reg_type type)
672{
673 if (reg->type == type)
674 return TRUE;
675
676 switch (type)
677 {
678 case REG_TYPE_R64_SP: /* 64-bit integer reg (inc SP exc XZR). */
679 case REG_TYPE_R_Z_SP: /* Integer reg (inc {X}SP inc [WX]ZR). */
680 case REG_TYPE_R_Z_BHSDQ_V: /* Any register apart from Cn. */
681 case REG_TYPE_BHSDQ: /* Any [BHSDQ]P FP or SIMD scalar register. */
682 case REG_TYPE_VN: /* Vector register. */
683 gas_assert (reg->type < REG_TYPE_MAX && type < REG_TYPE_MAX);
684 return ((reg_type_masks[reg->type] & reg_type_masks[type])
685 == reg_type_masks[reg->type]);
686 default:
687 as_fatal ("unhandled type %d", type);
688 abort ();
689 }
690}
691
692/* Parse a register and return PARSE_FAIL if the register is not of type R_Z_SP.
693 Return the register number otherwise. *ISREG32 is set to one if the
694 register is 32-bit wide; *ISREGZERO is set to one if the register is
695 of type Z_32 or Z_64.
696 Note that this function does not issue any diagnostics. */
697
698static int
699aarch64_reg_parse_32_64 (char **ccp, int reject_sp, int reject_rz,
700 int *isreg32, int *isregzero)
701{
702 char *str = *ccp;
703 const reg_entry *reg = parse_reg (&str);
704
705 if (reg == NULL)
706 return PARSE_FAIL;
707
708 if (! aarch64_check_reg_type (reg, REG_TYPE_R_Z_SP))
709 return PARSE_FAIL;
710
711 switch (reg->type)
712 {
713 case REG_TYPE_SP_32:
714 case REG_TYPE_SP_64:
715 if (reject_sp)
716 return PARSE_FAIL;
717 *isreg32 = reg->type == REG_TYPE_SP_32;
718 *isregzero = 0;
719 break;
720 case REG_TYPE_R_32:
721 case REG_TYPE_R_64:
722 *isreg32 = reg->type == REG_TYPE_R_32;
723 *isregzero = 0;
724 break;
725 case REG_TYPE_Z_32:
726 case REG_TYPE_Z_64:
727 if (reject_rz)
728 return PARSE_FAIL;
729 *isreg32 = reg->type == REG_TYPE_Z_32;
730 *isregzero = 1;
731 break;
732 default:
733 return PARSE_FAIL;
734 }
735
736 *ccp = str;
737
738 return reg->number;
739}
740
741/* Parse the qualifier of a SIMD vector register or a SIMD vector element.
742 Fill in *PARSED_TYPE and return TRUE if the parsing succeeds;
743 otherwise return FALSE.
744
745 Accept only one occurrence of:
746 8b 16b 4h 8h 2s 4s 1d 2d
747 b h s d q */
748static bfd_boolean
749parse_neon_type_for_operand (struct neon_type_el *parsed_type, char **str)
750{
751 char *ptr = *str;
752 unsigned width;
753 unsigned element_size;
754 enum neon_el_type type;
755
756 /* skip '.' */
757 ptr++;
758
759 if (!ISDIGIT (*ptr))
760 {
761 width = 0;
762 goto elt_size;
763 }
764 width = strtoul (ptr, &ptr, 10);
765 if (width != 1 && width != 2 && width != 4 && width != 8 && width != 16)
766 {
767 first_error_fmt (_("bad size %d in vector width specifier"), width);
768 return FALSE;
769 }
770
771elt_size:
772 switch (TOLOWER (*ptr))
773 {
774 case 'b':
775 type = NT_b;
776 element_size = 8;
777 break;
778 case 'h':
779 type = NT_h;
780 element_size = 16;
781 break;
782 case 's':
783 type = NT_s;
784 element_size = 32;
785 break;
786 case 'd':
787 type = NT_d;
788 element_size = 64;
789 break;
790 case 'q':
791 if (width == 1)
792 {
793 type = NT_q;
794 element_size = 128;
795 break;
796 }
797 /* fall through. */
798 default:
799 if (*ptr != '\0')
800 first_error_fmt (_("unexpected character `%c' in element size"), *ptr);
801 else
802 first_error (_("missing element size"));
803 return FALSE;
804 }
805 if (width != 0 && width * element_size != 64 && width * element_size != 128)
806 {
807 first_error_fmt (_
808 ("invalid element size %d and vector size combination %c"),
809 width, *ptr);
810 return FALSE;
811 }
812 ptr++;
813
814 parsed_type->type = type;
815 parsed_type->width = width;
816
817 *str = ptr;
818
819 return TRUE;
820}
821
822/* Parse a single type, e.g. ".8b", leading period included.
823 Only applicable to Vn registers.
824
825 Return TRUE on success; otherwise return FALSE. */
826static bfd_boolean
827parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
828{
829 char *str = *ccp;
830
831 if (*str == '.')
832 {
833 if (! parse_neon_type_for_operand (vectype, &str))
834 {
835 first_error (_("vector type expected"));
836 return FALSE;
837 }
838 }
839 else
840 return FALSE;
841
842 *ccp = str;
843
844 return TRUE;
845}
846
847/* Parse a register of the type TYPE.
848
849 Return PARSE_FAIL if the string pointed by *CCP is not a valid register
850 name or the parsed register is not of TYPE.
851
852 Otherwise return the register number, and optionally fill in the actual
853 type of the register in *RTYPE when multiple alternatives were given, and
854 return the register shape and element index information in *TYPEINFO.
855
856 IN_REG_LIST should be set with TRUE if the caller is parsing a register
857 list. */
858
859static int
860parse_typed_reg (char **ccp, aarch64_reg_type type, aarch64_reg_type *rtype,
861 struct neon_type_el *typeinfo, bfd_boolean in_reg_list)
862{
863 char *str = *ccp;
864 const reg_entry *reg = parse_reg (&str);
865 struct neon_type_el atype;
866 struct neon_type_el parsetype;
867 bfd_boolean is_typed_vecreg = FALSE;
868
869 atype.defined = 0;
870 atype.type = NT_invtype;
871 atype.width = -1;
872 atype.index = 0;
873
874 if (reg == NULL)
875 {
876 if (typeinfo)
877 *typeinfo = atype;
878 set_default_error ();
879 return PARSE_FAIL;
880 }
881
882 if (! aarch64_check_reg_type (reg, type))
883 {
884 DEBUG_TRACE ("reg type check failed");
885 set_default_error ();
886 return PARSE_FAIL;
887 }
888 type = reg->type;
889
890 if (type == REG_TYPE_VN
891 && parse_neon_operand_type (&parsetype, &str))
892 {
893 /* Register if of the form Vn.[bhsdq]. */
894 is_typed_vecreg = TRUE;
895
896 if (parsetype.width == 0)
897 /* Expect index. In the new scheme we cannot have
898 Vn.[bhsdq] represent a scalar. Therefore any
899 Vn.[bhsdq] should have an index following it.
900 Except in reglists ofcourse. */
901 atype.defined |= NTA_HASINDEX;
902 else
903 atype.defined |= NTA_HASTYPE;
904
905 atype.type = parsetype.type;
906 atype.width = parsetype.width;
907 }
908
909 if (skip_past_char (&str, '['))
910 {
911 expressionS exp;
912
913 /* Reject Sn[index] syntax. */
914 if (!is_typed_vecreg)
915 {
916 first_error (_("this type of register can't be indexed"));
917 return PARSE_FAIL;
918 }
919
920 if (in_reg_list == TRUE)
921 {
922 first_error (_("index not allowed inside register list"));
923 return PARSE_FAIL;
924 }
925
926 atype.defined |= NTA_HASINDEX;
927
928 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
929
930 if (exp.X_op != O_constant)
931 {
932 first_error (_("constant expression required"));
933 return PARSE_FAIL;
934 }
935
936 if (! skip_past_char (&str, ']'))
937 return PARSE_FAIL;
938
939 atype.index = exp.X_add_number;
940 }
941 else if (!in_reg_list && (atype.defined & NTA_HASINDEX) != 0)
942 {
943 /* Indexed vector register expected. */
944 first_error (_("indexed vector register expected"));
945 return PARSE_FAIL;
946 }
947
948 /* A vector reg Vn should be typed or indexed. */
949 if (type == REG_TYPE_VN && atype.defined == 0)
950 {
951 first_error (_("invalid use of vector register"));
952 }
953
954 if (typeinfo)
955 *typeinfo = atype;
956
957 if (rtype)
958 *rtype = type;
959
960 *ccp = str;
961
962 return reg->number;
963}
964
965/* Parse register.
966
967 Return the register number on success; return PARSE_FAIL otherwise.
968
969 If RTYPE is not NULL, return in *RTYPE the (possibly restricted) type of
970 the register (e.g. NEON double or quad reg when either has been requested).
971
972 If this is a NEON vector register with additional type information, fill
973 in the struct pointed to by VECTYPE (if non-NULL).
974
975 This parser does not handle register list. */
976
977static int
978aarch64_reg_parse (char **ccp, aarch64_reg_type type,
979 aarch64_reg_type *rtype, struct neon_type_el *vectype)
980{
981 struct neon_type_el atype;
982 char *str = *ccp;
983 int reg = parse_typed_reg (&str, type, rtype, &atype,
984 /*in_reg_list= */ FALSE);
985
986 if (reg == PARSE_FAIL)
987 return PARSE_FAIL;
988
989 if (vectype)
990 *vectype = atype;
991
992 *ccp = str;
993
994 return reg;
995}
996
997static inline bfd_boolean
998eq_neon_type_el (struct neon_type_el e1, struct neon_type_el e2)
999{
1000 return
1001 e1.type == e2.type
1002 && e1.defined == e2.defined
1003 && e1.width == e2.width && e1.index == e2.index;
1004}
1005
1006/* This function parses the NEON register list. On success, it returns
1007 the parsed register list information in the following encoded format:
1008
1009 bit 18-22 | 13-17 | 7-11 | 2-6 | 0-1
1010 4th regno | 3rd regno | 2nd regno | 1st regno | num_of_reg
1011
1012 The information of the register shape and/or index is returned in
1013 *VECTYPE.
1014
1015 It returns PARSE_FAIL if the register list is invalid.
1016
1017 The list contains one to four registers.
1018 Each register can be one of:
1019 <Vt>.<T>[<index>]
1020 <Vt>.<T>
1021 All <T> should be identical.
1022 All <index> should be identical.
1023 There are restrictions on <Vt> numbers which are checked later
1024 (by reg_list_valid_p). */
1025
1026static int
1027parse_neon_reg_list (char **ccp, struct neon_type_el *vectype)
1028{
1029 char *str = *ccp;
1030 int nb_regs;
1031 struct neon_type_el typeinfo, typeinfo_first;
1032 int val, val_range;
1033 int in_range;
1034 int ret_val;
1035 int i;
1036 bfd_boolean error = FALSE;
1037 bfd_boolean expect_index = FALSE;
1038
1039 if (*str != '{')
1040 {
1041 set_syntax_error (_("expecting {"));
1042 return PARSE_FAIL;
1043 }
1044 str++;
1045
1046 nb_regs = 0;
1047 typeinfo_first.defined = 0;
1048 typeinfo_first.type = NT_invtype;
1049 typeinfo_first.width = -1;
1050 typeinfo_first.index = 0;
1051 ret_val = 0;
1052 val = -1;
1053 val_range = -1;
1054 in_range = 0;
1055 do
1056 {
1057 if (in_range)
1058 {
1059 str++; /* skip over '-' */
1060 val_range = val;
1061 }
1062 val = parse_typed_reg (&str, REG_TYPE_VN, NULL, &typeinfo,
1063 /*in_reg_list= */ TRUE);
1064 if (val == PARSE_FAIL)
1065 {
1066 set_first_syntax_error (_("invalid vector register in list"));
1067 error = TRUE;
1068 continue;
1069 }
1070 /* reject [bhsd]n */
1071 if (typeinfo.defined == 0)
1072 {
1073 set_first_syntax_error (_("invalid scalar register in list"));
1074 error = TRUE;
1075 continue;
1076 }
1077
1078 if (typeinfo.defined & NTA_HASINDEX)
1079 expect_index = TRUE;
1080
1081 if (in_range)
1082 {
1083 if (val < val_range)
1084 {
1085 set_first_syntax_error
1086 (_("invalid range in vector register list"));
1087 error = TRUE;
1088 }
1089 val_range++;
1090 }
1091 else
1092 {
1093 val_range = val;
1094 if (nb_regs == 0)
1095 typeinfo_first = typeinfo;
1096 else if (! eq_neon_type_el (typeinfo_first, typeinfo))
1097 {
1098 set_first_syntax_error
1099 (_("type mismatch in vector register list"));
1100 error = TRUE;
1101 }
1102 }
1103 if (! error)
1104 for (i = val_range; i <= val; i++)
1105 {
1106 ret_val |= i << (5 * nb_regs);
1107 nb_regs++;
1108 }
1109 in_range = 0;
1110 }
1111 while (skip_past_comma (&str) || (in_range = 1, *str == '-'));
1112
1113 skip_whitespace (str);
1114 if (*str != '}')
1115 {
1116 set_first_syntax_error (_("end of vector register list not found"));
1117 error = TRUE;
1118 }
1119 str++;
1120
1121 skip_whitespace (str);
1122
1123 if (expect_index)
1124 {
1125 if (skip_past_char (&str, '['))
1126 {
1127 expressionS exp;
1128
1129 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1130 if (exp.X_op != O_constant)
1131 {
1132 set_first_syntax_error (_("constant expression required."));
1133 error = TRUE;
1134 }
1135 if (! skip_past_char (&str, ']'))
1136 error = TRUE;
1137 else
1138 typeinfo_first.index = exp.X_add_number;
1139 }
1140 else
1141 {
1142 set_first_syntax_error (_("expected index"));
1143 error = TRUE;
1144 }
1145 }
1146
1147 if (nb_regs > 4)
1148 {
1149 set_first_syntax_error (_("too many registers in vector register list"));
1150 error = TRUE;
1151 }
1152 else if (nb_regs == 0)
1153 {
1154 set_first_syntax_error (_("empty vector register list"));
1155 error = TRUE;
1156 }
1157
1158 *ccp = str;
1159 if (! error)
1160 *vectype = typeinfo_first;
1161
1162 return error ? PARSE_FAIL : (ret_val << 2) | (nb_regs - 1);
1163}
1164
1165/* Directives: register aliases. */
1166
1167static reg_entry *
1168insert_reg_alias (char *str, int number, aarch64_reg_type type)
1169{
1170 reg_entry *new;
1171 const char *name;
1172
1173 if ((new = hash_find (aarch64_reg_hsh, str)) != 0)
1174 {
1175 if (new->builtin)
1176 as_warn (_("ignoring attempt to redefine built-in register '%s'"),
1177 str);
1178
1179 /* Only warn about a redefinition if it's not defined as the
1180 same register. */
1181 else if (new->number != number || new->type != type)
1182 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1183
1184 return NULL;
1185 }
1186
1187 name = xstrdup (str);
1188 new = xmalloc (sizeof (reg_entry));
1189
1190 new->name = name;
1191 new->number = number;
1192 new->type = type;
1193 new->builtin = FALSE;
1194
1195 if (hash_insert (aarch64_reg_hsh, name, (void *) new))
1196 abort ();
1197
1198 return new;
1199}
1200
1201/* Look for the .req directive. This is of the form:
1202
1203 new_register_name .req existing_register_name
1204
1205 If we find one, or if it looks sufficiently like one that we want to
1206 handle any error here, return TRUE. Otherwise return FALSE. */
1207
1208static bfd_boolean
1209create_register_alias (char *newname, char *p)
1210{
1211 const reg_entry *old;
1212 char *oldname, *nbuf;
1213 size_t nlen;
1214
1215 /* The input scrubber ensures that whitespace after the mnemonic is
1216 collapsed to single spaces. */
1217 oldname = p;
1218 if (strncmp (oldname, " .req ", 6) != 0)
1219 return FALSE;
1220
1221 oldname += 6;
1222 if (*oldname == '\0')
1223 return FALSE;
1224
1225 old = hash_find (aarch64_reg_hsh, oldname);
1226 if (!old)
1227 {
1228 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
1229 return TRUE;
1230 }
1231
1232 /* If TC_CASE_SENSITIVE is defined, then newname already points to
1233 the desired alias name, and p points to its end. If not, then
1234 the desired alias name is in the global original_case_string. */
1235#ifdef TC_CASE_SENSITIVE
1236 nlen = p - newname;
1237#else
1238 newname = original_case_string;
1239 nlen = strlen (newname);
1240#endif
1241
1242 nbuf = alloca (nlen + 1);
1243 memcpy (nbuf, newname, nlen);
1244 nbuf[nlen] = '\0';
1245
1246 /* Create aliases under the new name as stated; an all-lowercase
1247 version of the new name; and an all-uppercase version of the new
1248 name. */
1249 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
1250 {
1251 for (p = nbuf; *p; p++)
1252 *p = TOUPPER (*p);
1253
1254 if (strncmp (nbuf, newname, nlen))
1255 {
1256 /* If this attempt to create an additional alias fails, do not bother
1257 trying to create the all-lower case alias. We will fail and issue
1258 a second, duplicate error message. This situation arises when the
1259 programmer does something like:
1260 foo .req r0
1261 Foo .req r1
1262 The second .req creates the "Foo" alias but then fails to create
1263 the artificial FOO alias because it has already been created by the
1264 first .req. */
1265 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
1266 return TRUE;
1267 }
1268
1269 for (p = nbuf; *p; p++)
1270 *p = TOLOWER (*p);
1271
1272 if (strncmp (nbuf, newname, nlen))
1273 insert_reg_alias (nbuf, old->number, old->type);
1274 }
1275
1276 return TRUE;
1277}
1278
1279/* Should never be called, as .req goes between the alias and the
1280 register name, not at the beginning of the line. */
1281static void
1282s_req (int a ATTRIBUTE_UNUSED)
1283{
1284 as_bad (_("invalid syntax for .req directive"));
1285}
1286
1287/* The .unreq directive deletes an alias which was previously defined
1288 by .req. For example:
1289
1290 my_alias .req r11
1291 .unreq my_alias */
1292
1293static void
1294s_unreq (int a ATTRIBUTE_UNUSED)
1295{
1296 char *name;
1297 char saved_char;
1298
1299 name = input_line_pointer;
1300
1301 while (*input_line_pointer != 0
1302 && *input_line_pointer != ' ' && *input_line_pointer != '\n')
1303 ++input_line_pointer;
1304
1305 saved_char = *input_line_pointer;
1306 *input_line_pointer = 0;
1307
1308 if (!*name)
1309 as_bad (_("invalid syntax for .unreq directive"));
1310 else
1311 {
1312 reg_entry *reg = hash_find (aarch64_reg_hsh, name);
1313
1314 if (!reg)
1315 as_bad (_("unknown register alias '%s'"), name);
1316 else if (reg->builtin)
1317 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
1318 name);
1319 else
1320 {
1321 char *p;
1322 char *nbuf;
1323
1324 hash_delete (aarch64_reg_hsh, name, FALSE);
1325 free ((char *) reg->name);
1326 free (reg);
1327
1328 /* Also locate the all upper case and all lower case versions.
1329 Do not complain if we cannot find one or the other as it
1330 was probably deleted above. */
1331
1332 nbuf = strdup (name);
1333 for (p = nbuf; *p; p++)
1334 *p = TOUPPER (*p);
1335 reg = hash_find (aarch64_reg_hsh, nbuf);
1336 if (reg)
1337 {
1338 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1339 free ((char *) reg->name);
1340 free (reg);
1341 }
1342
1343 for (p = nbuf; *p; p++)
1344 *p = TOLOWER (*p);
1345 reg = hash_find (aarch64_reg_hsh, nbuf);
1346 if (reg)
1347 {
1348 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1349 free ((char *) reg->name);
1350 free (reg);
1351 }
1352
1353 free (nbuf);
1354 }
1355 }
1356
1357 *input_line_pointer = saved_char;
1358 demand_empty_rest_of_line ();
1359}
1360
1361/* Directives: Instruction set selection. */
1362
1363#ifdef OBJ_ELF
1364/* This code is to handle mapping symbols as defined in the ARM AArch64 ELF
1365 spec. (See "Mapping symbols", section 4.5.4, ARM AAELF64 version 0.05).
1366 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
1367 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
1368
1369/* Create a new mapping symbol for the transition to STATE. */
1370
1371static void
1372make_mapping_symbol (enum mstate state, valueT value, fragS * frag)
1373{
1374 symbolS *symbolP;
1375 const char *symname;
1376 int type;
1377
1378 switch (state)
1379 {
1380 case MAP_DATA:
1381 symname = "$d";
1382 type = BSF_NO_FLAGS;
1383 break;
1384 case MAP_INSN:
1385 symname = "$x";
1386 type = BSF_NO_FLAGS;
1387 break;
1388 default:
1389 abort ();
1390 }
1391
1392 symbolP = symbol_new (symname, now_seg, value, frag);
1393 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
1394
1395 /* Save the mapping symbols for future reference. Also check that
1396 we do not place two mapping symbols at the same offset within a
1397 frag. We'll handle overlap between frags in
1398 check_mapping_symbols.
1399
1400 If .fill or other data filling directive generates zero sized data,
1401 the mapping symbol for the following code will have the same value
1402 as the one generated for the data filling directive. In this case,
1403 we replace the old symbol with the new one at the same address. */
1404 if (value == 0)
1405 {
1406 if (frag->tc_frag_data.first_map != NULL)
1407 {
1408 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
1409 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP,
1410 &symbol_lastP);
1411 }
1412 frag->tc_frag_data.first_map = symbolP;
1413 }
1414 if (frag->tc_frag_data.last_map != NULL)
1415 {
1416 know (S_GET_VALUE (frag->tc_frag_data.last_map) <=
1417 S_GET_VALUE (symbolP));
1418 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
1419 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP,
1420 &symbol_lastP);
1421 }
1422 frag->tc_frag_data.last_map = symbolP;
1423}
1424
1425/* We must sometimes convert a region marked as code to data during
1426 code alignment, if an odd number of bytes have to be padded. The
1427 code mapping symbol is pushed to an aligned address. */
1428
1429static void
1430insert_data_mapping_symbol (enum mstate state,
1431 valueT value, fragS * frag, offsetT bytes)
1432{
1433 /* If there was already a mapping symbol, remove it. */
1434 if (frag->tc_frag_data.last_map != NULL
1435 && S_GET_VALUE (frag->tc_frag_data.last_map) ==
1436 frag->fr_address + value)
1437 {
1438 symbolS *symp = frag->tc_frag_data.last_map;
1439
1440 if (value == 0)
1441 {
1442 know (frag->tc_frag_data.first_map == symp);
1443 frag->tc_frag_data.first_map = NULL;
1444 }
1445 frag->tc_frag_data.last_map = NULL;
1446 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
1447 }
1448
1449 make_mapping_symbol (MAP_DATA, value, frag);
1450 make_mapping_symbol (state, value + bytes, frag);
1451}
1452
1453static void mapping_state_2 (enum mstate state, int max_chars);
1454
1455/* Set the mapping state to STATE. Only call this when about to
1456 emit some STATE bytes to the file. */
1457
1458void
1459mapping_state (enum mstate state)
1460{
1461 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1462
a578ef7e
JW
1463 if (state == MAP_INSN)
1464 /* AArch64 instructions require 4-byte alignment. When emitting
1465 instructions into any section, record the appropriate section
1466 alignment. */
1467 record_alignment (now_seg, 2);
1468
448eb63d
RL
1469 if (mapstate == state)
1470 /* The mapping symbol has already been emitted.
1471 There is nothing else to do. */
1472 return;
1473
c1baaddf 1474#define TRANSITION(from, to) (mapstate == (from) && state == (to))
a97902de
RL
1475 if (TRANSITION (MAP_UNDEFINED, MAP_DATA) && !subseg_text_p (now_seg))
1476 /* Emit MAP_DATA within executable section in order. Otherwise, it will be
c1baaddf 1477 evaluated later in the next else. */
a06ea964 1478 return;
c1baaddf
RL
1479 else if (TRANSITION (MAP_UNDEFINED, MAP_INSN))
1480 {
1481 /* Only add the symbol if the offset is > 0:
1482 if we're at the first frag, check it's size > 0;
1483 if we're not at the first frag, then for sure
1484 the offset is > 0. */
1485 struct frag *const frag_first = seg_info (now_seg)->frchainP->frch_root;
1486 const int add_symbol = (frag_now != frag_first)
1487 || (frag_now_fix () > 0);
1488
1489 if (add_symbol)
1490 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
1491 }
1492#undef TRANSITION
a06ea964
NC
1493
1494 mapping_state_2 (state, 0);
a06ea964
NC
1495}
1496
1497/* Same as mapping_state, but MAX_CHARS bytes have already been
1498 allocated. Put the mapping symbol that far back. */
1499
1500static void
1501mapping_state_2 (enum mstate state, int max_chars)
1502{
1503 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1504
1505 if (!SEG_NORMAL (now_seg))
1506 return;
1507
1508 if (mapstate == state)
1509 /* The mapping symbol has already been emitted.
1510 There is nothing else to do. */
1511 return;
1512
1513 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
1514 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
1515}
1516#else
1517#define mapping_state(x) /* nothing */
1518#define mapping_state_2(x, y) /* nothing */
1519#endif
1520
1521/* Directives: sectioning and alignment. */
1522
1523static void
1524s_bss (int ignore ATTRIBUTE_UNUSED)
1525{
1526 /* We don't support putting frags in the BSS segment, we fake it by
1527 marking in_bss, then looking at s_skip for clues. */
1528 subseg_set (bss_section, 0);
1529 demand_empty_rest_of_line ();
1530 mapping_state (MAP_DATA);
1531}
1532
1533static void
1534s_even (int ignore ATTRIBUTE_UNUSED)
1535{
1536 /* Never make frag if expect extra pass. */
1537 if (!need_pass_2)
1538 frag_align (1, 0, 0);
1539
1540 record_alignment (now_seg, 1);
1541
1542 demand_empty_rest_of_line ();
1543}
1544
1545/* Directives: Literal pools. */
1546
1547static literal_pool *
1548find_literal_pool (int size)
1549{
1550 literal_pool *pool;
1551
1552 for (pool = list_of_pools; pool != NULL; pool = pool->next)
1553 {
1554 if (pool->section == now_seg
1555 && pool->sub_section == now_subseg && pool->size == size)
1556 break;
1557 }
1558
1559 return pool;
1560}
1561
1562static literal_pool *
1563find_or_make_literal_pool (int size)
1564{
1565 /* Next literal pool ID number. */
1566 static unsigned int latest_pool_num = 1;
1567 literal_pool *pool;
1568
1569 pool = find_literal_pool (size);
1570
1571 if (pool == NULL)
1572 {
1573 /* Create a new pool. */
1574 pool = xmalloc (sizeof (*pool));
1575 if (!pool)
1576 return NULL;
1577
1578 /* Currently we always put the literal pool in the current text
1579 section. If we were generating "small" model code where we
1580 knew that all code and initialised data was within 1MB then
1581 we could output literals to mergeable, read-only data
1582 sections. */
1583
1584 pool->next_free_entry = 0;
1585 pool->section = now_seg;
1586 pool->sub_section = now_subseg;
1587 pool->size = size;
1588 pool->next = list_of_pools;
1589 pool->symbol = NULL;
1590
1591 /* Add it to the list. */
1592 list_of_pools = pool;
1593 }
1594
1595 /* New pools, and emptied pools, will have a NULL symbol. */
1596 if (pool->symbol == NULL)
1597 {
1598 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
1599 (valueT) 0, &zero_address_frag);
1600 pool->id = latest_pool_num++;
1601 }
1602
1603 /* Done. */
1604 return pool;
1605}
1606
1607/* Add the literal of size SIZE in *EXP to the relevant literal pool.
1608 Return TRUE on success, otherwise return FALSE. */
1609static bfd_boolean
1610add_to_lit_pool (expressionS *exp, int size)
1611{
1612 literal_pool *pool;
1613 unsigned int entry;
1614
1615 pool = find_or_make_literal_pool (size);
1616
1617 /* Check if this literal value is already in the pool. */
1618 for (entry = 0; entry < pool->next_free_entry; entry++)
1619 {
55d9b4c1
NC
1620 expressionS * litexp = & pool->literals[entry].exp;
1621
1622 if ((litexp->X_op == exp->X_op)
a06ea964 1623 && (exp->X_op == O_constant)
55d9b4c1
NC
1624 && (litexp->X_add_number == exp->X_add_number)
1625 && (litexp->X_unsigned == exp->X_unsigned))
a06ea964
NC
1626 break;
1627
55d9b4c1 1628 if ((litexp->X_op == exp->X_op)
a06ea964 1629 && (exp->X_op == O_symbol)
55d9b4c1
NC
1630 && (litexp->X_add_number == exp->X_add_number)
1631 && (litexp->X_add_symbol == exp->X_add_symbol)
1632 && (litexp->X_op_symbol == exp->X_op_symbol))
a06ea964
NC
1633 break;
1634 }
1635
1636 /* Do we need to create a new entry? */
1637 if (entry == pool->next_free_entry)
1638 {
1639 if (entry >= MAX_LITERAL_POOL_SIZE)
1640 {
1641 set_syntax_error (_("literal pool overflow"));
1642 return FALSE;
1643 }
1644
55d9b4c1 1645 pool->literals[entry].exp = *exp;
a06ea964 1646 pool->next_free_entry += 1;
55d9b4c1
NC
1647 if (exp->X_op == O_big)
1648 {
1649 /* PR 16688: Bignums are held in a single global array. We must
1650 copy and preserve that value now, before it is overwritten. */
1651 pool->literals[entry].bignum = xmalloc (CHARS_PER_LITTLENUM * exp->X_add_number);
1652 memcpy (pool->literals[entry].bignum, generic_bignum,
1653 CHARS_PER_LITTLENUM * exp->X_add_number);
1654 }
1655 else
1656 pool->literals[entry].bignum = NULL;
a06ea964
NC
1657 }
1658
1659 exp->X_op = O_symbol;
1660 exp->X_add_number = ((int) entry) * size;
1661 exp->X_add_symbol = pool->symbol;
1662
1663 return TRUE;
1664}
1665
1666/* Can't use symbol_new here, so have to create a symbol and then at
1667 a later date assign it a value. Thats what these functions do. */
1668
1669static void
1670symbol_locate (symbolS * symbolP,
1671 const char *name,/* It is copied, the caller can modify. */
1672 segT segment, /* Segment identifier (SEG_<something>). */
1673 valueT valu, /* Symbol value. */
1674 fragS * frag) /* Associated fragment. */
1675{
e57e6ddc 1676 size_t name_length;
a06ea964
NC
1677 char *preserved_copy_of_name;
1678
1679 name_length = strlen (name) + 1; /* +1 for \0. */
1680 obstack_grow (&notes, name, name_length);
1681 preserved_copy_of_name = obstack_finish (&notes);
1682
1683#ifdef tc_canonicalize_symbol_name
1684 preserved_copy_of_name =
1685 tc_canonicalize_symbol_name (preserved_copy_of_name);
1686#endif
1687
1688 S_SET_NAME (symbolP, preserved_copy_of_name);
1689
1690 S_SET_SEGMENT (symbolP, segment);
1691 S_SET_VALUE (symbolP, valu);
1692 symbol_clear_list_pointers (symbolP);
1693
1694 symbol_set_frag (symbolP, frag);
1695
1696 /* Link to end of symbol chain. */
1697 {
1698 extern int symbol_table_frozen;
1699
1700 if (symbol_table_frozen)
1701 abort ();
1702 }
1703
1704 symbol_append (symbolP, symbol_lastP, &symbol_rootP, &symbol_lastP);
1705
1706 obj_symbol_new_hook (symbolP);
1707
1708#ifdef tc_symbol_new_hook
1709 tc_symbol_new_hook (symbolP);
1710#endif
1711
1712#ifdef DEBUG_SYMS
1713 verify_symbol_chain (symbol_rootP, symbol_lastP);
1714#endif /* DEBUG_SYMS */
1715}
1716
1717
1718static void
1719s_ltorg (int ignored ATTRIBUTE_UNUSED)
1720{
1721 unsigned int entry;
1722 literal_pool *pool;
1723 char sym_name[20];
1724 int align;
1725
67a32447 1726 for (align = 2; align <= 4; align++)
a06ea964
NC
1727 {
1728 int size = 1 << align;
1729
1730 pool = find_literal_pool (size);
1731 if (pool == NULL || pool->symbol == NULL || pool->next_free_entry == 0)
1732 continue;
1733
1734 mapping_state (MAP_DATA);
1735
1736 /* Align pool as you have word accesses.
1737 Only make a frag if we have to. */
1738 if (!need_pass_2)
1739 frag_align (align, 0, 0);
1740
1741 record_alignment (now_seg, align);
1742
1743 sprintf (sym_name, "$$lit_\002%x", pool->id);
1744
1745 symbol_locate (pool->symbol, sym_name, now_seg,
1746 (valueT) frag_now_fix (), frag_now);
1747 symbol_table_insert (pool->symbol);
1748
1749 for (entry = 0; entry < pool->next_free_entry; entry++)
55d9b4c1
NC
1750 {
1751 expressionS * exp = & pool->literals[entry].exp;
1752
1753 if (exp->X_op == O_big)
1754 {
1755 /* PR 16688: Restore the global bignum value. */
1756 gas_assert (pool->literals[entry].bignum != NULL);
1757 memcpy (generic_bignum, pool->literals[entry].bignum,
1758 CHARS_PER_LITTLENUM * exp->X_add_number);
1759 }
1760
1761 /* First output the expression in the instruction to the pool. */
1762 emit_expr (exp, size); /* .word|.xword */
1763
1764 if (exp->X_op == O_big)
1765 {
1766 free (pool->literals[entry].bignum);
1767 pool->literals[entry].bignum = NULL;
1768 }
1769 }
a06ea964
NC
1770
1771 /* Mark the pool as empty. */
1772 pool->next_free_entry = 0;
1773 pool->symbol = NULL;
1774 }
1775}
1776
1777#ifdef OBJ_ELF
1778/* Forward declarations for functions below, in the MD interface
1779 section. */
1780static fixS *fix_new_aarch64 (fragS *, int, short, expressionS *, int, int);
1781static struct reloc_table_entry * find_reloc_table_entry (char **);
1782
1783/* Directives: Data. */
1784/* N.B. the support for relocation suffix in this directive needs to be
1785 implemented properly. */
1786
1787static void
1788s_aarch64_elf_cons (int nbytes)
1789{
1790 expressionS exp;
1791
1792#ifdef md_flush_pending_output
1793 md_flush_pending_output ();
1794#endif
1795
1796 if (is_it_end_of_statement ())
1797 {
1798 demand_empty_rest_of_line ();
1799 return;
1800 }
1801
1802#ifdef md_cons_align
1803 md_cons_align (nbytes);
1804#endif
1805
1806 mapping_state (MAP_DATA);
1807 do
1808 {
1809 struct reloc_table_entry *reloc;
1810
1811 expression (&exp);
1812
1813 if (exp.X_op != O_symbol)
1814 emit_expr (&exp, (unsigned int) nbytes);
1815 else
1816 {
1817 skip_past_char (&input_line_pointer, '#');
1818 if (skip_past_char (&input_line_pointer, ':'))
1819 {
1820 reloc = find_reloc_table_entry (&input_line_pointer);
1821 if (reloc == NULL)
1822 as_bad (_("unrecognized relocation suffix"));
1823 else
1824 as_bad (_("unimplemented relocation suffix"));
1825 ignore_rest_of_line ();
1826 return;
1827 }
1828 else
1829 emit_expr (&exp, (unsigned int) nbytes);
1830 }
1831 }
1832 while (*input_line_pointer++ == ',');
1833
1834 /* Put terminator back into stream. */
1835 input_line_pointer--;
1836 demand_empty_rest_of_line ();
1837}
1838
1839#endif /* OBJ_ELF */
1840
1841/* Output a 32-bit word, but mark as an instruction. */
1842
1843static void
1844s_aarch64_inst (int ignored ATTRIBUTE_UNUSED)
1845{
1846 expressionS exp;
1847
1848#ifdef md_flush_pending_output
1849 md_flush_pending_output ();
1850#endif
1851
1852 if (is_it_end_of_statement ())
1853 {
1854 demand_empty_rest_of_line ();
1855 return;
1856 }
1857
a97902de 1858 /* Sections are assumed to start aligned. In executable section, there is no
c1baaddf
RL
1859 MAP_DATA symbol pending. So we only align the address during
1860 MAP_DATA --> MAP_INSN transition.
eb9d6cc9 1861 For other sections, this is not guaranteed. */
c1baaddf 1862 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
eb9d6cc9 1863 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
a06ea964 1864 frag_align_code (2, 0);
c1baaddf 1865
a06ea964
NC
1866#ifdef OBJ_ELF
1867 mapping_state (MAP_INSN);
1868#endif
1869
1870 do
1871 {
1872 expression (&exp);
1873 if (exp.X_op != O_constant)
1874 {
1875 as_bad (_("constant expression required"));
1876 ignore_rest_of_line ();
1877 return;
1878 }
1879
1880 if (target_big_endian)
1881 {
1882 unsigned int val = exp.X_add_number;
1883 exp.X_add_number = SWAP_32 (val);
1884 }
1885 emit_expr (&exp, 4);
1886 }
1887 while (*input_line_pointer++ == ',');
1888
1889 /* Put terminator back into stream. */
1890 input_line_pointer--;
1891 demand_empty_rest_of_line ();
1892}
1893
1894#ifdef OBJ_ELF
1895/* Emit BFD_RELOC_AARCH64_TLSDESC_CALL on the next BLR instruction. */
1896
1897static void
1898s_tlsdesccall (int ignored ATTRIBUTE_UNUSED)
1899{
1900 expressionS exp;
1901
1902 /* Since we're just labelling the code, there's no need to define a
1903 mapping symbol. */
1904 expression (&exp);
1905 /* Make sure there is enough room in this frag for the following
1906 blr. This trick only works if the blr follows immediately after
1907 the .tlsdesc directive. */
1908 frag_grow (4);
1909 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
1910 BFD_RELOC_AARCH64_TLSDESC_CALL);
1911
1912 demand_empty_rest_of_line ();
1913}
1914#endif /* OBJ_ELF */
1915
1916static void s_aarch64_arch (int);
1917static void s_aarch64_cpu (int);
ae527cd8 1918static void s_aarch64_arch_extension (int);
a06ea964
NC
1919
1920/* This table describes all the machine specific pseudo-ops the assembler
1921 has to support. The fields are:
1922 pseudo-op name without dot
1923 function to call to execute this pseudo-op
1924 Integer arg to pass to the function. */
1925
1926const pseudo_typeS md_pseudo_table[] = {
1927 /* Never called because '.req' does not start a line. */
1928 {"req", s_req, 0},
1929 {"unreq", s_unreq, 0},
1930 {"bss", s_bss, 0},
1931 {"even", s_even, 0},
1932 {"ltorg", s_ltorg, 0},
1933 {"pool", s_ltorg, 0},
1934 {"cpu", s_aarch64_cpu, 0},
1935 {"arch", s_aarch64_arch, 0},
ae527cd8 1936 {"arch_extension", s_aarch64_arch_extension, 0},
a06ea964
NC
1937 {"inst", s_aarch64_inst, 0},
1938#ifdef OBJ_ELF
1939 {"tlsdesccall", s_tlsdesccall, 0},
1940 {"word", s_aarch64_elf_cons, 4},
1941 {"long", s_aarch64_elf_cons, 4},
1942 {"xword", s_aarch64_elf_cons, 8},
1943 {"dword", s_aarch64_elf_cons, 8},
1944#endif
1945 {0, 0, 0}
1946};
1947\f
1948
1949/* Check whether STR points to a register name followed by a comma or the
1950 end of line; REG_TYPE indicates which register types are checked
1951 against. Return TRUE if STR is such a register name; otherwise return
1952 FALSE. The function does not intend to produce any diagnostics, but since
1953 the register parser aarch64_reg_parse, which is called by this function,
1954 does produce diagnostics, we call clear_error to clear any diagnostics
1955 that may be generated by aarch64_reg_parse.
1956 Also, the function returns FALSE directly if there is any user error
1957 present at the function entry. This prevents the existing diagnostics
1958 state from being spoiled.
1959 The function currently serves parse_constant_immediate and
1960 parse_big_immediate only. */
1961static bfd_boolean
1962reg_name_p (char *str, aarch64_reg_type reg_type)
1963{
1964 int reg;
1965
1966 /* Prevent the diagnostics state from being spoiled. */
1967 if (error_p ())
1968 return FALSE;
1969
1970 reg = aarch64_reg_parse (&str, reg_type, NULL, NULL);
1971
1972 /* Clear the parsing error that may be set by the reg parser. */
1973 clear_error ();
1974
1975 if (reg == PARSE_FAIL)
1976 return FALSE;
1977
1978 skip_whitespace (str);
1979 if (*str == ',' || is_end_of_line[(unsigned int) *str])
1980 return TRUE;
1981
1982 return FALSE;
1983}
1984
1985/* Parser functions used exclusively in instruction operands. */
1986
1987/* Parse an immediate expression which may not be constant.
1988
1989 To prevent the expression parser from pushing a register name
1990 into the symbol table as an undefined symbol, firstly a check is
1991 done to find out whether STR is a valid register name followed
1992 by a comma or the end of line. Return FALSE if STR is such a
1993 string. */
1994
1995static bfd_boolean
1996parse_immediate_expression (char **str, expressionS *exp)
1997{
1998 if (reg_name_p (*str, REG_TYPE_R_Z_BHSDQ_V))
1999 {
2000 set_recoverable_error (_("immediate operand required"));
2001 return FALSE;
2002 }
2003
2004 my_get_expression (exp, str, GE_OPT_PREFIX, 1);
2005
2006 if (exp->X_op == O_absent)
2007 {
2008 set_fatal_syntax_error (_("missing immediate expression"));
2009 return FALSE;
2010 }
2011
2012 return TRUE;
2013}
2014
2015/* Constant immediate-value read function for use in insn parsing.
2016 STR points to the beginning of the immediate (with the optional
2017 leading #); *VAL receives the value.
2018
2019 Return TRUE on success; otherwise return FALSE. */
2020
2021static bfd_boolean
2022parse_constant_immediate (char **str, int64_t * val)
2023{
2024 expressionS exp;
2025
2026 if (! parse_immediate_expression (str, &exp))
2027 return FALSE;
2028
2029 if (exp.X_op != O_constant)
2030 {
2031 set_syntax_error (_("constant expression required"));
2032 return FALSE;
2033 }
2034
2035 *val = exp.X_add_number;
2036 return TRUE;
2037}
2038
2039static uint32_t
2040encode_imm_float_bits (uint32_t imm)
2041{
2042 return ((imm >> 19) & 0x7f) /* b[25:19] -> b[6:0] */
2043 | ((imm >> (31 - 7)) & 0x80); /* b[31] -> b[7] */
2044}
2045
62b0d0d5
YZ
2046/* Return TRUE if the single-precision floating-point value encoded in IMM
2047 can be expressed in the AArch64 8-bit signed floating-point format with
2048 3-bit exponent and normalized 4 bits of precision; in other words, the
2049 floating-point value must be expressable as
2050 (+/-) n / 16 * power (2, r)
2051 where n and r are integers such that 16 <= n <=31 and -3 <= r <= 4. */
2052
a06ea964
NC
2053static bfd_boolean
2054aarch64_imm_float_p (uint32_t imm)
2055{
62b0d0d5
YZ
2056 /* If a single-precision floating-point value has the following bit
2057 pattern, it can be expressed in the AArch64 8-bit floating-point
2058 format:
2059
2060 3 32222222 2221111111111
a06ea964 2061 1 09876543 21098765432109876543210
62b0d0d5
YZ
2062 n Eeeeeexx xxxx0000000000000000000
2063
2064 where n, e and each x are either 0 or 1 independently, with
2065 E == ~ e. */
a06ea964 2066
62b0d0d5
YZ
2067 uint32_t pattern;
2068
2069 /* Prepare the pattern for 'Eeeeee'. */
2070 if (((imm >> 30) & 0x1) == 0)
2071 pattern = 0x3e000000;
a06ea964 2072 else
62b0d0d5
YZ
2073 pattern = 0x40000000;
2074
2075 return (imm & 0x7ffff) == 0 /* lower 19 bits are 0. */
2076 && ((imm & 0x7e000000) == pattern); /* bits 25 - 29 == ~ bit 30. */
a06ea964
NC
2077}
2078
62b0d0d5
YZ
2079/* Like aarch64_imm_float_p but for a double-precision floating-point value.
2080
2081 Return TRUE if the value encoded in IMM can be expressed in the AArch64
2082 8-bit signed floating-point format with 3-bit exponent and normalized 4
2083 bits of precision (i.e. can be used in an FMOV instruction); return the
2084 equivalent single-precision encoding in *FPWORD.
2085
2086 Otherwise return FALSE. */
2087
a06ea964 2088static bfd_boolean
62b0d0d5
YZ
2089aarch64_double_precision_fmovable (uint64_t imm, uint32_t *fpword)
2090{
2091 /* If a double-precision floating-point value has the following bit
2092 pattern, it can be expressed in the AArch64 8-bit floating-point
2093 format:
2094
2095 6 66655555555 554444444...21111111111
2096 3 21098765432 109876543...098765432109876543210
2097 n Eeeeeeeeexx xxxx00000...000000000000000000000
2098
2099 where n, e and each x are either 0 or 1 independently, with
2100 E == ~ e. */
2101
2102 uint32_t pattern;
2103 uint32_t high32 = imm >> 32;
2104
2105 /* Lower 32 bits need to be 0s. */
2106 if ((imm & 0xffffffff) != 0)
2107 return FALSE;
2108
2109 /* Prepare the pattern for 'Eeeeeeeee'. */
2110 if (((high32 >> 30) & 0x1) == 0)
2111 pattern = 0x3fc00000;
2112 else
2113 pattern = 0x40000000;
2114
2115 if ((high32 & 0xffff) == 0 /* bits 32 - 47 are 0. */
2116 && (high32 & 0x7fc00000) == pattern) /* bits 54 - 61 == ~ bit 62. */
2117 {
2118 /* Convert to the single-precision encoding.
2119 i.e. convert
2120 n Eeeeeeeeexx xxxx00000...000000000000000000000
2121 to
2122 n Eeeeeexx xxxx0000000000000000000. */
2123 *fpword = ((high32 & 0xfe000000) /* nEeeeee. */
2124 | (((high32 >> 16) & 0x3f) << 19)); /* xxxxxx. */
2125 return TRUE;
2126 }
2127 else
2128 return FALSE;
2129}
2130
2131/* Parse a floating-point immediate. Return TRUE on success and return the
2132 value in *IMMED in the format of IEEE754 single-precision encoding.
2133 *CCP points to the start of the string; DP_P is TRUE when the immediate
2134 is expected to be in double-precision (N.B. this only matters when
2135 hexadecimal representation is involved).
2136
2137 N.B. 0.0 is accepted by this function. */
2138
2139static bfd_boolean
2140parse_aarch64_imm_float (char **ccp, int *immed, bfd_boolean dp_p)
a06ea964
NC
2141{
2142 char *str = *ccp;
2143 char *fpnum;
2144 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2145 int found_fpchar = 0;
62b0d0d5
YZ
2146 int64_t val = 0;
2147 unsigned fpword = 0;
2148 bfd_boolean hex_p = FALSE;
a06ea964
NC
2149
2150 skip_past_char (&str, '#');
2151
a06ea964
NC
2152 fpnum = str;
2153 skip_whitespace (fpnum);
2154
2155 if (strncmp (fpnum, "0x", 2) == 0)
62b0d0d5
YZ
2156 {
2157 /* Support the hexadecimal representation of the IEEE754 encoding.
2158 Double-precision is expected when DP_P is TRUE, otherwise the
2159 representation should be in single-precision. */
2160 if (! parse_constant_immediate (&str, &val))
2161 goto invalid_fp;
2162
2163 if (dp_p)
2164 {
2165 if (! aarch64_double_precision_fmovable (val, &fpword))
2166 goto invalid_fp;
2167 }
2168 else if ((uint64_t) val > 0xffffffff)
2169 goto invalid_fp;
2170 else
2171 fpword = val;
2172
2173 hex_p = TRUE;
2174 }
a06ea964
NC
2175 else
2176 {
62b0d0d5
YZ
2177 /* We must not accidentally parse an integer as a floating-point number.
2178 Make sure that the value we parse is not an integer by checking for
2179 special characters '.' or 'e'. */
a06ea964
NC
2180 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
2181 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
2182 {
2183 found_fpchar = 1;
2184 break;
2185 }
2186
2187 if (!found_fpchar)
2188 return FALSE;
2189 }
2190
62b0d0d5 2191 if (! hex_p)
a06ea964 2192 {
a06ea964
NC
2193 int i;
2194
62b0d0d5
YZ
2195 if ((str = atof_ieee (str, 's', words)) == NULL)
2196 goto invalid_fp;
2197
a06ea964
NC
2198 /* Our FP word must be 32 bits (single-precision FP). */
2199 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
2200 {
2201 fpword <<= LITTLENUM_NUMBER_OF_BITS;
2202 fpword |= words[i];
2203 }
62b0d0d5 2204 }
a06ea964 2205
62b0d0d5
YZ
2206 if (aarch64_imm_float_p (fpword) || (fpword & 0x7fffffff) == 0)
2207 {
2208 *immed = fpword;
a06ea964 2209 *ccp = str;
a06ea964
NC
2210 return TRUE;
2211 }
2212
2213invalid_fp:
2214 set_fatal_syntax_error (_("invalid floating-point constant"));
2215 return FALSE;
2216}
2217
2218/* Less-generic immediate-value read function with the possibility of loading
2219 a big (64-bit) immediate, as required by AdvSIMD Modified immediate
2220 instructions.
2221
2222 To prevent the expression parser from pushing a register name into the
2223 symbol table as an undefined symbol, a check is firstly done to find
2224 out whether STR is a valid register name followed by a comma or the end
2225 of line. Return FALSE if STR is such a register. */
2226
2227static bfd_boolean
2228parse_big_immediate (char **str, int64_t *imm)
2229{
2230 char *ptr = *str;
2231
2232 if (reg_name_p (ptr, REG_TYPE_R_Z_BHSDQ_V))
2233 {
2234 set_syntax_error (_("immediate operand required"));
2235 return FALSE;
2236 }
2237
2238 my_get_expression (&inst.reloc.exp, &ptr, GE_OPT_PREFIX, 1);
2239
2240 if (inst.reloc.exp.X_op == O_constant)
2241 *imm = inst.reloc.exp.X_add_number;
2242
2243 *str = ptr;
2244
2245 return TRUE;
2246}
2247
2248/* Set operand IDX of the *INSTR that needs a GAS internal fixup.
2249 if NEED_LIBOPCODES is non-zero, the fixup will need
2250 assistance from the libopcodes. */
2251
2252static inline void
2253aarch64_set_gas_internal_fixup (struct reloc *reloc,
2254 const aarch64_opnd_info *operand,
2255 int need_libopcodes_p)
2256{
2257 reloc->type = BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2258 reloc->opnd = operand->type;
2259 if (need_libopcodes_p)
2260 reloc->need_libopcodes_p = 1;
2261};
2262
2263/* Return TRUE if the instruction needs to be fixed up later internally by
2264 the GAS; otherwise return FALSE. */
2265
2266static inline bfd_boolean
2267aarch64_gas_internal_fixup_p (void)
2268{
2269 return inst.reloc.type == BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2270}
2271
2272/* Assign the immediate value to the relavant field in *OPERAND if
2273 RELOC->EXP is a constant expression; otherwise, flag that *OPERAND
2274 needs an internal fixup in a later stage.
2275 ADDR_OFF_P determines whether it is the field ADDR.OFFSET.IMM or
2276 IMM.VALUE that may get assigned with the constant. */
2277static inline void
2278assign_imm_if_const_or_fixup_later (struct reloc *reloc,
2279 aarch64_opnd_info *operand,
2280 int addr_off_p,
2281 int need_libopcodes_p,
2282 int skip_p)
2283{
2284 if (reloc->exp.X_op == O_constant)
2285 {
2286 if (addr_off_p)
2287 operand->addr.offset.imm = reloc->exp.X_add_number;
2288 else
2289 operand->imm.value = reloc->exp.X_add_number;
2290 reloc->type = BFD_RELOC_UNUSED;
2291 }
2292 else
2293 {
2294 aarch64_set_gas_internal_fixup (reloc, operand, need_libopcodes_p);
2295 /* Tell libopcodes to ignore this operand or not. This is helpful
2296 when one of the operands needs to be fixed up later but we need
2297 libopcodes to check the other operands. */
2298 operand->skip = skip_p;
2299 }
2300}
2301
2302/* Relocation modifiers. Each entry in the table contains the textual
2303 name for the relocation which may be placed before a symbol used as
2304 a load/store offset, or add immediate. It must be surrounded by a
2305 leading and trailing colon, for example:
2306
2307 ldr x0, [x1, #:rello:varsym]
2308 add x0, x1, #:rello:varsym */
2309
2310struct reloc_table_entry
2311{
2312 const char *name;
2313 int pc_rel;
6f4a313b 2314 bfd_reloc_code_real_type adr_type;
a06ea964
NC
2315 bfd_reloc_code_real_type adrp_type;
2316 bfd_reloc_code_real_type movw_type;
2317 bfd_reloc_code_real_type add_type;
2318 bfd_reloc_code_real_type ldst_type;
74ad790c 2319 bfd_reloc_code_real_type ld_literal_type;
a06ea964
NC
2320};
2321
2322static struct reloc_table_entry reloc_table[] = {
2323 /* Low 12 bits of absolute address: ADD/i and LDR/STR */
2324 {"lo12", 0,
6f4a313b 2325 0, /* adr_type */
a06ea964
NC
2326 0,
2327 0,
2328 BFD_RELOC_AARCH64_ADD_LO12,
74ad790c
MS
2329 BFD_RELOC_AARCH64_LDST_LO12,
2330 0},
a06ea964
NC
2331
2332 /* Higher 21 bits of pc-relative page offset: ADRP */
2333 {"pg_hi21", 1,
6f4a313b 2334 0, /* adr_type */
a06ea964
NC
2335 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
2336 0,
2337 0,
74ad790c 2338 0,
a06ea964
NC
2339 0},
2340
2341 /* Higher 21 bits of pc-relative page offset: ADRP, no check */
2342 {"pg_hi21_nc", 1,
6f4a313b 2343 0, /* adr_type */
a06ea964
NC
2344 BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL,
2345 0,
2346 0,
74ad790c 2347 0,
a06ea964
NC
2348 0},
2349
2350 /* Most significant bits 0-15 of unsigned address/value: MOVZ */
2351 {"abs_g0", 0,
6f4a313b 2352 0, /* adr_type */
a06ea964
NC
2353 0,
2354 BFD_RELOC_AARCH64_MOVW_G0,
2355 0,
74ad790c 2356 0,
a06ea964
NC
2357 0},
2358
2359 /* Most significant bits 0-15 of signed address/value: MOVN/Z */
2360 {"abs_g0_s", 0,
6f4a313b 2361 0, /* adr_type */
a06ea964
NC
2362 0,
2363 BFD_RELOC_AARCH64_MOVW_G0_S,
2364 0,
74ad790c 2365 0,
a06ea964
NC
2366 0},
2367
2368 /* Less significant bits 0-15 of address/value: MOVK, no check */
2369 {"abs_g0_nc", 0,
6f4a313b 2370 0, /* adr_type */
a06ea964
NC
2371 0,
2372 BFD_RELOC_AARCH64_MOVW_G0_NC,
2373 0,
74ad790c 2374 0,
a06ea964
NC
2375 0},
2376
2377 /* Most significant bits 16-31 of unsigned address/value: MOVZ */
2378 {"abs_g1", 0,
6f4a313b 2379 0, /* adr_type */
a06ea964
NC
2380 0,
2381 BFD_RELOC_AARCH64_MOVW_G1,
2382 0,
74ad790c 2383 0,
a06ea964
NC
2384 0},
2385
2386 /* Most significant bits 16-31 of signed address/value: MOVN/Z */
2387 {"abs_g1_s", 0,
6f4a313b 2388 0, /* adr_type */
a06ea964
NC
2389 0,
2390 BFD_RELOC_AARCH64_MOVW_G1_S,
2391 0,
74ad790c 2392 0,
a06ea964
NC
2393 0},
2394
2395 /* Less significant bits 16-31 of address/value: MOVK, no check */
2396 {"abs_g1_nc", 0,
6f4a313b 2397 0, /* adr_type */
a06ea964
NC
2398 0,
2399 BFD_RELOC_AARCH64_MOVW_G1_NC,
2400 0,
74ad790c 2401 0,
a06ea964
NC
2402 0},
2403
2404 /* Most significant bits 32-47 of unsigned address/value: MOVZ */
2405 {"abs_g2", 0,
6f4a313b 2406 0, /* adr_type */
a06ea964
NC
2407 0,
2408 BFD_RELOC_AARCH64_MOVW_G2,
2409 0,
74ad790c 2410 0,
a06ea964
NC
2411 0},
2412
2413 /* Most significant bits 32-47 of signed address/value: MOVN/Z */
2414 {"abs_g2_s", 0,
6f4a313b 2415 0, /* adr_type */
a06ea964
NC
2416 0,
2417 BFD_RELOC_AARCH64_MOVW_G2_S,
2418 0,
74ad790c 2419 0,
a06ea964
NC
2420 0},
2421
2422 /* Less significant bits 32-47 of address/value: MOVK, no check */
2423 {"abs_g2_nc", 0,
6f4a313b 2424 0, /* adr_type */
a06ea964
NC
2425 0,
2426 BFD_RELOC_AARCH64_MOVW_G2_NC,
2427 0,
74ad790c 2428 0,
a06ea964
NC
2429 0},
2430
2431 /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
2432 {"abs_g3", 0,
6f4a313b 2433 0, /* adr_type */
a06ea964
NC
2434 0,
2435 BFD_RELOC_AARCH64_MOVW_G3,
2436 0,
74ad790c 2437 0,
a06ea964 2438 0},
4aa2c5e2 2439
a06ea964
NC
2440 /* Get to the page containing GOT entry for a symbol. */
2441 {"got", 1,
6f4a313b 2442 0, /* adr_type */
a06ea964
NC
2443 BFD_RELOC_AARCH64_ADR_GOT_PAGE,
2444 0,
2445 0,
74ad790c 2446 0,
4aa2c5e2
MS
2447 BFD_RELOC_AARCH64_GOT_LD_PREL19},
2448
a06ea964
NC
2449 /* 12 bit offset into the page containing GOT entry for that symbol. */
2450 {"got_lo12", 0,
6f4a313b 2451 0, /* adr_type */
a06ea964
NC
2452 0,
2453 0,
2454 0,
74ad790c
MS
2455 BFD_RELOC_AARCH64_LD_GOT_LO12_NC,
2456 0},
a06ea964 2457
87f5fbcc
RL
2458 /* 15 bit offset into the page containing GOT entry for that symbol. */
2459 {"gotoff_lo15", 0,
2460 0, /* adr_type */
2461 0,
2462 0,
2463 0,
2464 BFD_RELOC_AARCH64_LD64_GOTOFF_LO15,
2465 0},
2466
a06ea964
NC
2467 /* Get to the page containing GOT TLS entry for a symbol */
2468 {"tlsgd", 0,
3c12b054 2469 BFD_RELOC_AARCH64_TLSGD_ADR_PREL21, /* adr_type */
a06ea964
NC
2470 BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21,
2471 0,
2472 0,
74ad790c 2473 0,
a06ea964
NC
2474 0},
2475
2476 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2477 {"tlsgd_lo12", 0,
6f4a313b 2478 0, /* adr_type */
a06ea964
NC
2479 0,
2480 0,
2481 BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC,
74ad790c 2482 0,
a06ea964
NC
2483 0},
2484
2485 /* Get to the page containing GOT TLS entry for a symbol */
2486 {"tlsdesc", 0,
389b8029 2487 BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21, /* adr_type */
418009c2 2488 BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21,
a06ea964
NC
2489 0,
2490 0,
74ad790c 2491 0,
1ada945d 2492 BFD_RELOC_AARCH64_TLSDESC_LD_PREL19},
a06ea964
NC
2493
2494 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2495 {"tlsdesc_lo12", 0,
6f4a313b 2496 0, /* adr_type */
a06ea964
NC
2497 0,
2498 0,
2499 BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC,
74ad790c
MS
2500 BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC,
2501 0},
a06ea964 2502
6c37fedc
JW
2503 /* Get to the page containing GOT TLS entry for a symbol.
2504 The same as GD, we allocate two consecutive GOT slots
2505 for module index and module offset, the only difference
2506 with GD is the module offset should be intialized to
2507 zero without any outstanding runtime relocation. */
2508 {"tlsldm", 0,
2509 BFD_RELOC_AARCH64_TLSLD_ADR_PREL21, /* adr_type */
2510 0,
2511 0,
2512 0,
2513 0,
2514 0},
2515
a06ea964
NC
2516 /* Get to the page containing GOT TLS entry for a symbol */
2517 {"gottprel", 0,
6f4a313b 2518 0, /* adr_type */
a06ea964
NC
2519 BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21,
2520 0,
2521 0,
74ad790c 2522 0,
043bf05a 2523 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19},
a06ea964
NC
2524
2525 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2526 {"gottprel_lo12", 0,
6f4a313b 2527 0, /* adr_type */
a06ea964
NC
2528 0,
2529 0,
2530 0,
74ad790c
MS
2531 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC,
2532 0},
a06ea964
NC
2533
2534 /* Get tp offset for a symbol. */
2535 {"tprel", 0,
6f4a313b 2536 0, /* adr_type */
a06ea964
NC
2537 0,
2538 0,
2539 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
74ad790c 2540 0,
a06ea964
NC
2541 0},
2542
2543 /* Get tp offset for a symbol. */
2544 {"tprel_lo12", 0,
6f4a313b 2545 0, /* adr_type */
a06ea964
NC
2546 0,
2547 0,
2548 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
74ad790c 2549 0,
a06ea964
NC
2550 0},
2551
2552 /* Get tp offset for a symbol. */
2553 {"tprel_hi12", 0,
6f4a313b 2554 0, /* adr_type */
a06ea964
NC
2555 0,
2556 0,
2557 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12,
74ad790c 2558 0,
a06ea964
NC
2559 0},
2560
2561 /* Get tp offset for a symbol. */
2562 {"tprel_lo12_nc", 0,
6f4a313b 2563 0, /* adr_type */
a06ea964
NC
2564 0,
2565 0,
2566 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC,
74ad790c 2567 0,
a06ea964
NC
2568 0},
2569
2570 /* Most significant bits 32-47 of address/value: MOVZ. */
2571 {"tprel_g2", 0,
6f4a313b 2572 0, /* adr_type */
a06ea964
NC
2573 0,
2574 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2,
2575 0,
74ad790c 2576 0,
a06ea964
NC
2577 0},
2578
2579 /* Most significant bits 16-31 of address/value: MOVZ. */
2580 {"tprel_g1", 0,
6f4a313b 2581 0, /* adr_type */
a06ea964
NC
2582 0,
2583 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1,
2584 0,
74ad790c 2585 0,
a06ea964
NC
2586 0},
2587
2588 /* Most significant bits 16-31 of address/value: MOVZ, no check. */
2589 {"tprel_g1_nc", 0,
6f4a313b 2590 0, /* adr_type */
a06ea964
NC
2591 0,
2592 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC,
2593 0,
74ad790c 2594 0,
a06ea964
NC
2595 0},
2596
2597 /* Most significant bits 0-15 of address/value: MOVZ. */
2598 {"tprel_g0", 0,
6f4a313b 2599 0, /* adr_type */
a06ea964
NC
2600 0,
2601 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0,
2602 0,
74ad790c 2603 0,
a06ea964
NC
2604 0},
2605
2606 /* Most significant bits 0-15 of address/value: MOVZ, no check. */
2607 {"tprel_g0_nc", 0,
6f4a313b 2608 0, /* adr_type */
a06ea964
NC
2609 0,
2610 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC,
2611 0,
74ad790c 2612 0,
a06ea964 2613 0},
a921b5bd
JW
2614
2615 /* 15bit offset from got entry to base address of GOT table. */
2616 {"gotpage_lo15", 0,
2617 0,
2618 0,
2619 0,
2620 0,
2621 BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15,
2622 0},
3d715ce4
JW
2623
2624 /* 14bit offset from got entry to base address of GOT table. */
2625 {"gotpage_lo14", 0,
2626 0,
2627 0,
2628 0,
2629 0,
2630 BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14,
2631 0},
a06ea964
NC
2632};
2633
2634/* Given the address of a pointer pointing to the textual name of a
2635 relocation as may appear in assembler source, attempt to find its
2636 details in reloc_table. The pointer will be updated to the character
2637 after the trailing colon. On failure, NULL will be returned;
2638 otherwise return the reloc_table_entry. */
2639
2640static struct reloc_table_entry *
2641find_reloc_table_entry (char **str)
2642{
2643 unsigned int i;
2644 for (i = 0; i < ARRAY_SIZE (reloc_table); i++)
2645 {
2646 int length = strlen (reloc_table[i].name);
2647
2648 if (strncasecmp (reloc_table[i].name, *str, length) == 0
2649 && (*str)[length] == ':')
2650 {
2651 *str += (length + 1);
2652 return &reloc_table[i];
2653 }
2654 }
2655
2656 return NULL;
2657}
2658
2659/* Mode argument to parse_shift and parser_shifter_operand. */
2660enum parse_shift_mode
2661{
2662 SHIFTED_ARITH_IMM, /* "rn{,lsl|lsr|asl|asr|uxt|sxt #n}" or
2663 "#imm{,lsl #n}" */
2664 SHIFTED_LOGIC_IMM, /* "rn{,lsl|lsr|asl|asr|ror #n}" or
2665 "#imm" */
2666 SHIFTED_LSL, /* bare "lsl #n" */
2667 SHIFTED_LSL_MSL, /* "lsl|msl #n" */
2668 SHIFTED_REG_OFFSET /* [su]xtw|sxtx {#n} or lsl #n */
2669};
2670
2671/* Parse a <shift> operator on an AArch64 data processing instruction.
2672 Return TRUE on success; otherwise return FALSE. */
2673static bfd_boolean
2674parse_shift (char **str, aarch64_opnd_info *operand, enum parse_shift_mode mode)
2675{
2676 const struct aarch64_name_value_pair *shift_op;
2677 enum aarch64_modifier_kind kind;
2678 expressionS exp;
2679 int exp_has_prefix;
2680 char *s = *str;
2681 char *p = s;
2682
2683 for (p = *str; ISALPHA (*p); p++)
2684 ;
2685
2686 if (p == *str)
2687 {
2688 set_syntax_error (_("shift expression expected"));
2689 return FALSE;
2690 }
2691
2692 shift_op = hash_find_n (aarch64_shift_hsh, *str, p - *str);
2693
2694 if (shift_op == NULL)
2695 {
2696 set_syntax_error (_("shift operator expected"));
2697 return FALSE;
2698 }
2699
2700 kind = aarch64_get_operand_modifier (shift_op);
2701
2702 if (kind == AARCH64_MOD_MSL && mode != SHIFTED_LSL_MSL)
2703 {
2704 set_syntax_error (_("invalid use of 'MSL'"));
2705 return FALSE;
2706 }
2707
2708 switch (mode)
2709 {
2710 case SHIFTED_LOGIC_IMM:
2711 if (aarch64_extend_operator_p (kind) == TRUE)
2712 {
2713 set_syntax_error (_("extending shift is not permitted"));
2714 return FALSE;
2715 }
2716 break;
2717
2718 case SHIFTED_ARITH_IMM:
2719 if (kind == AARCH64_MOD_ROR)
2720 {
2721 set_syntax_error (_("'ROR' shift is not permitted"));
2722 return FALSE;
2723 }
2724 break;
2725
2726 case SHIFTED_LSL:
2727 if (kind != AARCH64_MOD_LSL)
2728 {
2729 set_syntax_error (_("only 'LSL' shift is permitted"));
2730 return FALSE;
2731 }
2732 break;
2733
2734 case SHIFTED_REG_OFFSET:
2735 if (kind != AARCH64_MOD_UXTW && kind != AARCH64_MOD_LSL
2736 && kind != AARCH64_MOD_SXTW && kind != AARCH64_MOD_SXTX)
2737 {
2738 set_fatal_syntax_error
2739 (_("invalid shift for the register offset addressing mode"));
2740 return FALSE;
2741 }
2742 break;
2743
2744 case SHIFTED_LSL_MSL:
2745 if (kind != AARCH64_MOD_LSL && kind != AARCH64_MOD_MSL)
2746 {
2747 set_syntax_error (_("invalid shift operator"));
2748 return FALSE;
2749 }
2750 break;
2751
2752 default:
2753 abort ();
2754 }
2755
2756 /* Whitespace can appear here if the next thing is a bare digit. */
2757 skip_whitespace (p);
2758
2759 /* Parse shift amount. */
2760 exp_has_prefix = 0;
2761 if (mode == SHIFTED_REG_OFFSET && *p == ']')
2762 exp.X_op = O_absent;
2763 else
2764 {
2765 if (is_immediate_prefix (*p))
2766 {
2767 p++;
2768 exp_has_prefix = 1;
2769 }
2770 my_get_expression (&exp, &p, GE_NO_PREFIX, 0);
2771 }
2772 if (exp.X_op == O_absent)
2773 {
2774 if (aarch64_extend_operator_p (kind) == FALSE || exp_has_prefix)
2775 {
2776 set_syntax_error (_("missing shift amount"));
2777 return FALSE;
2778 }
2779 operand->shifter.amount = 0;
2780 }
2781 else if (exp.X_op != O_constant)
2782 {
2783 set_syntax_error (_("constant shift amount required"));
2784 return FALSE;
2785 }
2786 else if (exp.X_add_number < 0 || exp.X_add_number > 63)
2787 {
2788 set_fatal_syntax_error (_("shift amount out of range 0 to 63"));
2789 return FALSE;
2790 }
2791 else
2792 {
2793 operand->shifter.amount = exp.X_add_number;
2794 operand->shifter.amount_present = 1;
2795 }
2796
2797 operand->shifter.operator_present = 1;
2798 operand->shifter.kind = kind;
2799
2800 *str = p;
2801 return TRUE;
2802}
2803
2804/* Parse a <shifter_operand> for a data processing instruction:
2805
2806 #<immediate>
2807 #<immediate>, LSL #imm
2808
2809 Validation of immediate operands is deferred to md_apply_fix.
2810
2811 Return TRUE on success; otherwise return FALSE. */
2812
2813static bfd_boolean
2814parse_shifter_operand_imm (char **str, aarch64_opnd_info *operand,
2815 enum parse_shift_mode mode)
2816{
2817 char *p;
2818
2819 if (mode != SHIFTED_ARITH_IMM && mode != SHIFTED_LOGIC_IMM)
2820 return FALSE;
2821
2822 p = *str;
2823
2824 /* Accept an immediate expression. */
2825 if (! my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX, 1))
2826 return FALSE;
2827
2828 /* Accept optional LSL for arithmetic immediate values. */
2829 if (mode == SHIFTED_ARITH_IMM && skip_past_comma (&p))
2830 if (! parse_shift (&p, operand, SHIFTED_LSL))
2831 return FALSE;
2832
2833 /* Not accept any shifter for logical immediate values. */
2834 if (mode == SHIFTED_LOGIC_IMM && skip_past_comma (&p)
2835 && parse_shift (&p, operand, mode))
2836 {
2837 set_syntax_error (_("unexpected shift operator"));
2838 return FALSE;
2839 }
2840
2841 *str = p;
2842 return TRUE;
2843}
2844
2845/* Parse a <shifter_operand> for a data processing instruction:
2846
2847 <Rm>
2848 <Rm>, <shift>
2849 #<immediate>
2850 #<immediate>, LSL #imm
2851
2852 where <shift> is handled by parse_shift above, and the last two
2853 cases are handled by the function above.
2854
2855 Validation of immediate operands is deferred to md_apply_fix.
2856
2857 Return TRUE on success; otherwise return FALSE. */
2858
2859static bfd_boolean
2860parse_shifter_operand (char **str, aarch64_opnd_info *operand,
2861 enum parse_shift_mode mode)
2862{
2863 int reg;
2864 int isreg32, isregzero;
2865 enum aarch64_operand_class opd_class
2866 = aarch64_get_operand_class (operand->type);
2867
2868 if ((reg =
2869 aarch64_reg_parse_32_64 (str, 0, 0, &isreg32, &isregzero)) != PARSE_FAIL)
2870 {
2871 if (opd_class == AARCH64_OPND_CLASS_IMMEDIATE)
2872 {
2873 set_syntax_error (_("unexpected register in the immediate operand"));
2874 return FALSE;
2875 }
2876
2877 if (!isregzero && reg == REG_SP)
2878 {
2879 set_syntax_error (BAD_SP);
2880 return FALSE;
2881 }
2882
2883 operand->reg.regno = reg;
2884 operand->qualifier = isreg32 ? AARCH64_OPND_QLF_W : AARCH64_OPND_QLF_X;
2885
2886 /* Accept optional shift operation on register. */
2887 if (! skip_past_comma (str))
2888 return TRUE;
2889
2890 if (! parse_shift (str, operand, mode))
2891 return FALSE;
2892
2893 return TRUE;
2894 }
2895 else if (opd_class == AARCH64_OPND_CLASS_MODIFIED_REG)
2896 {
2897 set_syntax_error
2898 (_("integer register expected in the extended/shifted operand "
2899 "register"));
2900 return FALSE;
2901 }
2902
2903 /* We have a shifted immediate variable. */
2904 return parse_shifter_operand_imm (str, operand, mode);
2905}
2906
2907/* Return TRUE on success; return FALSE otherwise. */
2908
2909static bfd_boolean
2910parse_shifter_operand_reloc (char **str, aarch64_opnd_info *operand,
2911 enum parse_shift_mode mode)
2912{
2913 char *p = *str;
2914
2915 /* Determine if we have the sequence of characters #: or just :
2916 coming next. If we do, then we check for a :rello: relocation
2917 modifier. If we don't, punt the whole lot to
2918 parse_shifter_operand. */
2919
2920 if ((p[0] == '#' && p[1] == ':') || p[0] == ':')
2921 {
2922 struct reloc_table_entry *entry;
2923
2924 if (p[0] == '#')
2925 p += 2;
2926 else
2927 p++;
2928 *str = p;
2929
2930 /* Try to parse a relocation. Anything else is an error. */
2931 if (!(entry = find_reloc_table_entry (str)))
2932 {
2933 set_syntax_error (_("unknown relocation modifier"));
2934 return FALSE;
2935 }
2936
2937 if (entry->add_type == 0)
2938 {
2939 set_syntax_error
2940 (_("this relocation modifier is not allowed on this instruction"));
2941 return FALSE;
2942 }
2943
2944 /* Save str before we decompose it. */
2945 p = *str;
2946
2947 /* Next, we parse the expression. */
2948 if (! my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX, 1))
2949 return FALSE;
2950
2951 /* Record the relocation type (use the ADD variant here). */
2952 inst.reloc.type = entry->add_type;
2953 inst.reloc.pc_rel = entry->pc_rel;
2954
2955 /* If str is empty, we've reached the end, stop here. */
2956 if (**str == '\0')
2957 return TRUE;
2958
55d9b4c1 2959 /* Otherwise, we have a shifted reloc modifier, so rewind to
a06ea964
NC
2960 recover the variable name and continue parsing for the shifter. */
2961 *str = p;
2962 return parse_shifter_operand_imm (str, operand, mode);
2963 }
2964
2965 return parse_shifter_operand (str, operand, mode);
2966}
2967
2968/* Parse all forms of an address expression. Information is written
2969 to *OPERAND and/or inst.reloc.
2970
2971 The A64 instruction set has the following addressing modes:
2972
2973 Offset
2974 [base] // in SIMD ld/st structure
2975 [base{,#0}] // in ld/st exclusive
2976 [base{,#imm}]
2977 [base,Xm{,LSL #imm}]
2978 [base,Xm,SXTX {#imm}]
2979 [base,Wm,(S|U)XTW {#imm}]
2980 Pre-indexed
2981 [base,#imm]!
2982 Post-indexed
2983 [base],#imm
2984 [base],Xm // in SIMD ld/st structure
2985 PC-relative (literal)
2986 label
2987 =immediate
2988
2989 (As a convenience, the notation "=immediate" is permitted in conjunction
2990 with the pc-relative literal load instructions to automatically place an
2991 immediate value or symbolic address in a nearby literal pool and generate
2992 a hidden label which references it.)
2993
2994 Upon a successful parsing, the address structure in *OPERAND will be
2995 filled in the following way:
2996
2997 .base_regno = <base>
2998 .offset.is_reg // 1 if the offset is a register
2999 .offset.imm = <imm>
3000 .offset.regno = <Rm>
3001
3002 For different addressing modes defined in the A64 ISA:
3003
3004 Offset
3005 .pcrel=0; .preind=1; .postind=0; .writeback=0
3006 Pre-indexed
3007 .pcrel=0; .preind=1; .postind=0; .writeback=1
3008 Post-indexed
3009 .pcrel=0; .preind=0; .postind=1; .writeback=1
3010 PC-relative (literal)
3011 .pcrel=1; .preind=1; .postind=0; .writeback=0
3012
3013 The shift/extension information, if any, will be stored in .shifter.
3014
3015 It is the caller's responsibility to check for addressing modes not
3016 supported by the instruction, and to set inst.reloc.type. */
3017
3018static bfd_boolean
3019parse_address_main (char **str, aarch64_opnd_info *operand, int reloc,
3020 int accept_reg_post_index)
3021{
3022 char *p = *str;
3023 int reg;
3024 int isreg32, isregzero;
3025 expressionS *exp = &inst.reloc.exp;
3026
3027 if (! skip_past_char (&p, '['))
3028 {
3029 /* =immediate or label. */
3030 operand->addr.pcrel = 1;
3031 operand->addr.preind = 1;
3032
f41aef5f
RE
3033 /* #:<reloc_op>:<symbol> */
3034 skip_past_char (&p, '#');
3035 if (reloc && skip_past_char (&p, ':'))
3036 {
6f4a313b 3037 bfd_reloc_code_real_type ty;
f41aef5f
RE
3038 struct reloc_table_entry *entry;
3039
3040 /* Try to parse a relocation modifier. Anything else is
3041 an error. */
3042 entry = find_reloc_table_entry (&p);
3043 if (! entry)
3044 {
3045 set_syntax_error (_("unknown relocation modifier"));
3046 return FALSE;
3047 }
3048
6f4a313b
MS
3049 switch (operand->type)
3050 {
3051 case AARCH64_OPND_ADDR_PCREL21:
3052 /* adr */
3053 ty = entry->adr_type;
3054 break;
3055
3056 default:
74ad790c 3057 ty = entry->ld_literal_type;
6f4a313b
MS
3058 break;
3059 }
3060
3061 if (ty == 0)
f41aef5f
RE
3062 {
3063 set_syntax_error
3064 (_("this relocation modifier is not allowed on this "
3065 "instruction"));
3066 return FALSE;
3067 }
3068
3069 /* #:<reloc_op>: */
3070 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3071 {
3072 set_syntax_error (_("invalid relocation expression"));
3073 return FALSE;
3074 }
a06ea964 3075
f41aef5f 3076 /* #:<reloc_op>:<expr> */
6f4a313b
MS
3077 /* Record the relocation type. */
3078 inst.reloc.type = ty;
f41aef5f
RE
3079 inst.reloc.pc_rel = entry->pc_rel;
3080 }
3081 else
a06ea964 3082 {
f41aef5f
RE
3083
3084 if (skip_past_char (&p, '='))
3085 /* =immediate; need to generate the literal in the literal pool. */
3086 inst.gen_lit_pool = 1;
3087
3088 if (!my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3089 {
3090 set_syntax_error (_("invalid address"));
3091 return FALSE;
3092 }
a06ea964
NC
3093 }
3094
3095 *str = p;
3096 return TRUE;
3097 }
3098
3099 /* [ */
3100
3101 /* Accept SP and reject ZR */
3102 reg = aarch64_reg_parse_32_64 (&p, 0, 1, &isreg32, &isregzero);
3103 if (reg == PARSE_FAIL || isreg32)
3104 {
3105 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_64)));
3106 return FALSE;
3107 }
3108 operand->addr.base_regno = reg;
3109
3110 /* [Xn */
3111 if (skip_past_comma (&p))
3112 {
3113 /* [Xn, */
3114 operand->addr.preind = 1;
3115
3116 /* Reject SP and accept ZR */
3117 reg = aarch64_reg_parse_32_64 (&p, 1, 0, &isreg32, &isregzero);
3118 if (reg != PARSE_FAIL)
3119 {
3120 /* [Xn,Rm */
3121 operand->addr.offset.regno = reg;
3122 operand->addr.offset.is_reg = 1;
3123 /* Shifted index. */
3124 if (skip_past_comma (&p))
3125 {
3126 /* [Xn,Rm, */
3127 if (! parse_shift (&p, operand, SHIFTED_REG_OFFSET))
3128 /* Use the diagnostics set in parse_shift, so not set new
3129 error message here. */
3130 return FALSE;
3131 }
3132 /* We only accept:
3133 [base,Xm{,LSL #imm}]
3134 [base,Xm,SXTX {#imm}]
3135 [base,Wm,(S|U)XTW {#imm}] */
3136 if (operand->shifter.kind == AARCH64_MOD_NONE
3137 || operand->shifter.kind == AARCH64_MOD_LSL
3138 || operand->shifter.kind == AARCH64_MOD_SXTX)
3139 {
3140 if (isreg32)
3141 {
3142 set_syntax_error (_("invalid use of 32-bit register offset"));
3143 return FALSE;
3144 }
3145 }
3146 else if (!isreg32)
3147 {
3148 set_syntax_error (_("invalid use of 64-bit register offset"));
3149 return FALSE;
3150 }
3151 }
3152 else
3153 {
3154 /* [Xn,#:<reloc_op>:<symbol> */
3155 skip_past_char (&p, '#');
3156 if (reloc && skip_past_char (&p, ':'))
3157 {
3158 struct reloc_table_entry *entry;
3159
3160 /* Try to parse a relocation modifier. Anything else is
3161 an error. */
3162 if (!(entry = find_reloc_table_entry (&p)))
3163 {
3164 set_syntax_error (_("unknown relocation modifier"));
3165 return FALSE;
3166 }
3167
3168 if (entry->ldst_type == 0)
3169 {
3170 set_syntax_error
3171 (_("this relocation modifier is not allowed on this "
3172 "instruction"));
3173 return FALSE;
3174 }
3175
3176 /* [Xn,#:<reloc_op>: */
3177 /* We now have the group relocation table entry corresponding to
3178 the name in the assembler source. Next, we parse the
3179 expression. */
3180 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3181 {
3182 set_syntax_error (_("invalid relocation expression"));
3183 return FALSE;
3184 }
3185
3186 /* [Xn,#:<reloc_op>:<expr> */
3187 /* Record the load/store relocation type. */
3188 inst.reloc.type = entry->ldst_type;
3189 inst.reloc.pc_rel = entry->pc_rel;
3190 }
3191 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3192 {
3193 set_syntax_error (_("invalid expression in the address"));
3194 return FALSE;
3195 }
3196 /* [Xn,<expr> */
3197 }
3198 }
3199
3200 if (! skip_past_char (&p, ']'))
3201 {
3202 set_syntax_error (_("']' expected"));
3203 return FALSE;
3204 }
3205
3206 if (skip_past_char (&p, '!'))
3207 {
3208 if (operand->addr.preind && operand->addr.offset.is_reg)
3209 {
3210 set_syntax_error (_("register offset not allowed in pre-indexed "
3211 "addressing mode"));
3212 return FALSE;
3213 }
3214 /* [Xn]! */
3215 operand->addr.writeback = 1;
3216 }
3217 else if (skip_past_comma (&p))
3218 {
3219 /* [Xn], */
3220 operand->addr.postind = 1;
3221 operand->addr.writeback = 1;
3222
3223 if (operand->addr.preind)
3224 {
3225 set_syntax_error (_("cannot combine pre- and post-indexing"));
3226 return FALSE;
3227 }
3228
3229 if (accept_reg_post_index
3230 && (reg = aarch64_reg_parse_32_64 (&p, 1, 1, &isreg32,
3231 &isregzero)) != PARSE_FAIL)
3232 {
3233 /* [Xn],Xm */
3234 if (isreg32)
3235 {
3236 set_syntax_error (_("invalid 32-bit register offset"));
3237 return FALSE;
3238 }
3239 operand->addr.offset.regno = reg;
3240 operand->addr.offset.is_reg = 1;
3241 }
3242 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3243 {
3244 /* [Xn],#expr */
3245 set_syntax_error (_("invalid expression in the address"));
3246 return FALSE;
3247 }
3248 }
3249
3250 /* If at this point neither .preind nor .postind is set, we have a
3251 bare [Rn]{!}; reject [Rn]! but accept [Rn] as a shorthand for [Rn,#0]. */
3252 if (operand->addr.preind == 0 && operand->addr.postind == 0)
3253 {
3254 if (operand->addr.writeback)
3255 {
3256 /* Reject [Rn]! */
3257 set_syntax_error (_("missing offset in the pre-indexed address"));
3258 return FALSE;
3259 }
3260 operand->addr.preind = 1;
3261 inst.reloc.exp.X_op = O_constant;
3262 inst.reloc.exp.X_add_number = 0;
3263 }
3264
3265 *str = p;
3266 return TRUE;
3267}
3268
3269/* Return TRUE on success; otherwise return FALSE. */
3270static bfd_boolean
3271parse_address (char **str, aarch64_opnd_info *operand,
3272 int accept_reg_post_index)
3273{
3274 return parse_address_main (str, operand, 0, accept_reg_post_index);
3275}
3276
3277/* Return TRUE on success; otherwise return FALSE. */
3278static bfd_boolean
3279parse_address_reloc (char **str, aarch64_opnd_info *operand)
3280{
3281 return parse_address_main (str, operand, 1, 0);
3282}
3283
3284/* Parse an operand for a MOVZ, MOVN or MOVK instruction.
3285 Return TRUE on success; otherwise return FALSE. */
3286static bfd_boolean
3287parse_half (char **str, int *internal_fixup_p)
3288{
3289 char *p, *saved;
3290 int dummy;
3291
3292 p = *str;
3293 skip_past_char (&p, '#');
3294
3295 gas_assert (internal_fixup_p);
3296 *internal_fixup_p = 0;
3297
3298 if (*p == ':')
3299 {
3300 struct reloc_table_entry *entry;
3301
3302 /* Try to parse a relocation. Anything else is an error. */
3303 ++p;
3304 if (!(entry = find_reloc_table_entry (&p)))
3305 {
3306 set_syntax_error (_("unknown relocation modifier"));
3307 return FALSE;
3308 }
3309
3310 if (entry->movw_type == 0)
3311 {
3312 set_syntax_error
3313 (_("this relocation modifier is not allowed on this instruction"));
3314 return FALSE;
3315 }
3316
3317 inst.reloc.type = entry->movw_type;
3318 }
3319 else
3320 *internal_fixup_p = 1;
3321
3322 /* Avoid parsing a register as a general symbol. */
3323 saved = p;
3324 if (aarch64_reg_parse_32_64 (&p, 0, 0, &dummy, &dummy) != PARSE_FAIL)
3325 return FALSE;
3326 p = saved;
3327
3328 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3329 return FALSE;
3330
3331 *str = p;
3332 return TRUE;
3333}
3334
3335/* Parse an operand for an ADRP instruction:
3336 ADRP <Xd>, <label>
3337 Return TRUE on success; otherwise return FALSE. */
3338
3339static bfd_boolean
3340parse_adrp (char **str)
3341{
3342 char *p;
3343
3344 p = *str;
3345 if (*p == ':')
3346 {
3347 struct reloc_table_entry *entry;
3348
3349 /* Try to parse a relocation. Anything else is an error. */
3350 ++p;
3351 if (!(entry = find_reloc_table_entry (&p)))
3352 {
3353 set_syntax_error (_("unknown relocation modifier"));
3354 return FALSE;
3355 }
3356
3357 if (entry->adrp_type == 0)
3358 {
3359 set_syntax_error
3360 (_("this relocation modifier is not allowed on this instruction"));
3361 return FALSE;
3362 }
3363
3364 inst.reloc.type = entry->adrp_type;
3365 }
3366 else
3367 inst.reloc.type = BFD_RELOC_AARCH64_ADR_HI21_PCREL;
3368
3369 inst.reloc.pc_rel = 1;
3370
3371 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3372 return FALSE;
3373
3374 *str = p;
3375 return TRUE;
3376}
3377
3378/* Miscellaneous. */
3379
3380/* Parse an option for a preload instruction. Returns the encoding for the
3381 option, or PARSE_FAIL. */
3382
3383static int
3384parse_pldop (char **str)
3385{
3386 char *p, *q;
3387 const struct aarch64_name_value_pair *o;
3388
3389 p = q = *str;
3390 while (ISALNUM (*q))
3391 q++;
3392
3393 o = hash_find_n (aarch64_pldop_hsh, p, q - p);
3394 if (!o)
3395 return PARSE_FAIL;
3396
3397 *str = q;
3398 return o->value;
3399}
3400
3401/* Parse an option for a barrier instruction. Returns the encoding for the
3402 option, or PARSE_FAIL. */
3403
3404static int
3405parse_barrier (char **str)
3406{
3407 char *p, *q;
3408 const asm_barrier_opt *o;
3409
3410 p = q = *str;
3411 while (ISALPHA (*q))
3412 q++;
3413
3414 o = hash_find_n (aarch64_barrier_opt_hsh, p, q - p);
3415 if (!o)
3416 return PARSE_FAIL;
3417
3418 *str = q;
3419 return o->value;
3420}
3421
3422/* Parse a system register or a PSTATE field name for an MSR/MRS instruction.
a203d9b7 3423 Returns the encoding for the option, or PARSE_FAIL.
a06ea964
NC
3424
3425 If IMPLE_DEFINED_P is non-zero, the function will also try to parse the
72ca8fad
MW
3426 implementation defined system register name S<op0>_<op1>_<Cn>_<Cm>_<op2>.
3427
3428 If PSTATEFIELD_P is non-zero, the function will parse the name as a PSTATE
3429 field, otherwise as a system register.
3430*/
a06ea964
NC
3431
3432static int
72ca8fad
MW
3433parse_sys_reg (char **str, struct hash_control *sys_regs,
3434 int imple_defined_p, int pstatefield_p)
a06ea964
NC
3435{
3436 char *p, *q;
3437 char buf[32];
49eec193 3438 const aarch64_sys_reg *o;
a06ea964
NC
3439 int value;
3440
3441 p = buf;
3442 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3443 if (p < buf + 31)
3444 *p++ = TOLOWER (*q);
3445 *p = '\0';
3446 /* Assert that BUF be large enough. */
3447 gas_assert (p - buf == q - *str);
3448
3449 o = hash_find (sys_regs, buf);
3450 if (!o)
3451 {
3452 if (!imple_defined_p)
3453 return PARSE_FAIL;
3454 else
3455 {
df7b4545 3456 /* Parse S<op0>_<op1>_<Cn>_<Cm>_<op2>. */
a06ea964 3457 unsigned int op0, op1, cn, cm, op2;
df7b4545
JW
3458
3459 if (sscanf (buf, "s%u_%u_c%u_c%u_%u", &op0, &op1, &cn, &cm, &op2)
3460 != 5)
a06ea964 3461 return PARSE_FAIL;
df7b4545 3462 if (op0 > 3 || op1 > 7 || cn > 15 || cm > 15 || op2 > 7)
a06ea964
NC
3463 return PARSE_FAIL;
3464 value = (op0 << 14) | (op1 << 11) | (cn << 7) | (cm << 3) | op2;
3465 }
3466 }
3467 else
49eec193 3468 {
72ca8fad
MW
3469 if (pstatefield_p && !aarch64_pstatefield_supported_p (cpu_variant, o))
3470 as_bad (_("selected processor does not support PSTATE field "
3471 "name '%s'"), buf);
3472 if (!pstatefield_p && !aarch64_sys_reg_supported_p (cpu_variant, o))
3473 as_bad (_("selected processor does not support system register "
3474 "name '%s'"), buf);
9a73e520 3475 if (aarch64_sys_reg_deprecated_p (o))
49eec193 3476 as_warn (_("system register name '%s' is deprecated and may be "
72ca8fad 3477 "removed in a future release"), buf);
49eec193
YZ
3478 value = o->value;
3479 }
a06ea964
NC
3480
3481 *str = q;
3482 return value;
3483}
3484
3485/* Parse a system reg for ic/dc/at/tlbi instructions. Returns the table entry
3486 for the option, or NULL. */
3487
3488static const aarch64_sys_ins_reg *
3489parse_sys_ins_reg (char **str, struct hash_control *sys_ins_regs)
3490{
3491 char *p, *q;
3492 char buf[32];
3493 const aarch64_sys_ins_reg *o;
3494
3495 p = buf;
3496 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3497 if (p < buf + 31)
3498 *p++ = TOLOWER (*q);
3499 *p = '\0';
3500
3501 o = hash_find (sys_ins_regs, buf);
3502 if (!o)
3503 return NULL;
3504
3505 *str = q;
3506 return o;
3507}
3508\f
3509#define po_char_or_fail(chr) do { \
3510 if (! skip_past_char (&str, chr)) \
3511 goto failure; \
3512} while (0)
3513
3514#define po_reg_or_fail(regtype) do { \
3515 val = aarch64_reg_parse (&str, regtype, &rtype, NULL); \
3516 if (val == PARSE_FAIL) \
3517 { \
3518 set_default_error (); \
3519 goto failure; \
3520 } \
3521 } while (0)
3522
3523#define po_int_reg_or_fail(reject_sp, reject_rz) do { \
3524 val = aarch64_reg_parse_32_64 (&str, reject_sp, reject_rz, \
3525 &isreg32, &isregzero); \
3526 if (val == PARSE_FAIL) \
3527 { \
3528 set_default_error (); \
3529 goto failure; \
3530 } \
3531 info->reg.regno = val; \
3532 if (isreg32) \
3533 info->qualifier = AARCH64_OPND_QLF_W; \
3534 else \
3535 info->qualifier = AARCH64_OPND_QLF_X; \
3536 } while (0)
3537
3538#define po_imm_nc_or_fail() do { \
3539 if (! parse_constant_immediate (&str, &val)) \
3540 goto failure; \
3541 } while (0)
3542
3543#define po_imm_or_fail(min, max) do { \
3544 if (! parse_constant_immediate (&str, &val)) \
3545 goto failure; \
3546 if (val < min || val > max) \
3547 { \
3548 set_fatal_syntax_error (_("immediate value out of range "\
3549#min " to "#max)); \
3550 goto failure; \
3551 } \
3552 } while (0)
3553
3554#define po_misc_or_fail(expr) do { \
3555 if (!expr) \
3556 goto failure; \
3557 } while (0)
3558\f
3559/* encode the 12-bit imm field of Add/sub immediate */
3560static inline uint32_t
3561encode_addsub_imm (uint32_t imm)
3562{
3563 return imm << 10;
3564}
3565
3566/* encode the shift amount field of Add/sub immediate */
3567static inline uint32_t
3568encode_addsub_imm_shift_amount (uint32_t cnt)
3569{
3570 return cnt << 22;
3571}
3572
3573
3574/* encode the imm field of Adr instruction */
3575static inline uint32_t
3576encode_adr_imm (uint32_t imm)
3577{
3578 return (((imm & 0x3) << 29) /* [1:0] -> [30:29] */
3579 | ((imm & (0x7ffff << 2)) << 3)); /* [20:2] -> [23:5] */
3580}
3581
3582/* encode the immediate field of Move wide immediate */
3583static inline uint32_t
3584encode_movw_imm (uint32_t imm)
3585{
3586 return imm << 5;
3587}
3588
3589/* encode the 26-bit offset of unconditional branch */
3590static inline uint32_t
3591encode_branch_ofs_26 (uint32_t ofs)
3592{
3593 return ofs & ((1 << 26) - 1);
3594}
3595
3596/* encode the 19-bit offset of conditional branch and compare & branch */
3597static inline uint32_t
3598encode_cond_branch_ofs_19 (uint32_t ofs)
3599{
3600 return (ofs & ((1 << 19) - 1)) << 5;
3601}
3602
3603/* encode the 19-bit offset of ld literal */
3604static inline uint32_t
3605encode_ld_lit_ofs_19 (uint32_t ofs)
3606{
3607 return (ofs & ((1 << 19) - 1)) << 5;
3608}
3609
3610/* Encode the 14-bit offset of test & branch. */
3611static inline uint32_t
3612encode_tst_branch_ofs_14 (uint32_t ofs)
3613{
3614 return (ofs & ((1 << 14) - 1)) << 5;
3615}
3616
3617/* Encode the 16-bit imm field of svc/hvc/smc. */
3618static inline uint32_t
3619encode_svc_imm (uint32_t imm)
3620{
3621 return imm << 5;
3622}
3623
3624/* Reencode add(s) to sub(s), or sub(s) to add(s). */
3625static inline uint32_t
3626reencode_addsub_switch_add_sub (uint32_t opcode)
3627{
3628 return opcode ^ (1 << 30);
3629}
3630
3631static inline uint32_t
3632reencode_movzn_to_movz (uint32_t opcode)
3633{
3634 return opcode | (1 << 30);
3635}
3636
3637static inline uint32_t
3638reencode_movzn_to_movn (uint32_t opcode)
3639{
3640 return opcode & ~(1 << 30);
3641}
3642
3643/* Overall per-instruction processing. */
3644
3645/* We need to be able to fix up arbitrary expressions in some statements.
3646 This is so that we can handle symbols that are an arbitrary distance from
3647 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
3648 which returns part of an address in a form which will be valid for
3649 a data instruction. We do this by pushing the expression into a symbol
3650 in the expr_section, and creating a fix for that. */
3651
3652static fixS *
3653fix_new_aarch64 (fragS * frag,
3654 int where,
3655 short int size, expressionS * exp, int pc_rel, int reloc)
3656{
3657 fixS *new_fix;
3658
3659 switch (exp->X_op)
3660 {
3661 case O_constant:
3662 case O_symbol:
3663 case O_add:
3664 case O_subtract:
3665 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
3666 break;
3667
3668 default:
3669 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
3670 pc_rel, reloc);
3671 break;
3672 }
3673 return new_fix;
3674}
3675\f
3676/* Diagnostics on operands errors. */
3677
a52e6fd3
YZ
3678/* By default, output verbose error message.
3679 Disable the verbose error message by -mno-verbose-error. */
3680static int verbose_error_p = 1;
a06ea964
NC
3681
3682#ifdef DEBUG_AARCH64
3683/* N.B. this is only for the purpose of debugging. */
3684const char* operand_mismatch_kind_names[] =
3685{
3686 "AARCH64_OPDE_NIL",
3687 "AARCH64_OPDE_RECOVERABLE",
3688 "AARCH64_OPDE_SYNTAX_ERROR",
3689 "AARCH64_OPDE_FATAL_SYNTAX_ERROR",
3690 "AARCH64_OPDE_INVALID_VARIANT",
3691 "AARCH64_OPDE_OUT_OF_RANGE",
3692 "AARCH64_OPDE_UNALIGNED",
3693 "AARCH64_OPDE_REG_LIST",
3694 "AARCH64_OPDE_OTHER_ERROR",
3695};
3696#endif /* DEBUG_AARCH64 */
3697
3698/* Return TRUE if LHS is of higher severity than RHS, otherwise return FALSE.
3699
3700 When multiple errors of different kinds are found in the same assembly
3701 line, only the error of the highest severity will be picked up for
3702 issuing the diagnostics. */
3703
3704static inline bfd_boolean
3705operand_error_higher_severity_p (enum aarch64_operand_error_kind lhs,
3706 enum aarch64_operand_error_kind rhs)
3707{
3708 gas_assert (AARCH64_OPDE_RECOVERABLE > AARCH64_OPDE_NIL);
3709 gas_assert (AARCH64_OPDE_SYNTAX_ERROR > AARCH64_OPDE_RECOVERABLE);
3710 gas_assert (AARCH64_OPDE_FATAL_SYNTAX_ERROR > AARCH64_OPDE_SYNTAX_ERROR);
3711 gas_assert (AARCH64_OPDE_INVALID_VARIANT > AARCH64_OPDE_FATAL_SYNTAX_ERROR);
3712 gas_assert (AARCH64_OPDE_OUT_OF_RANGE > AARCH64_OPDE_INVALID_VARIANT);
3713 gas_assert (AARCH64_OPDE_UNALIGNED > AARCH64_OPDE_OUT_OF_RANGE);
3714 gas_assert (AARCH64_OPDE_REG_LIST > AARCH64_OPDE_UNALIGNED);
3715 gas_assert (AARCH64_OPDE_OTHER_ERROR > AARCH64_OPDE_REG_LIST);
3716 return lhs > rhs;
3717}
3718
3719/* Helper routine to get the mnemonic name from the assembly instruction
3720 line; should only be called for the diagnosis purpose, as there is
3721 string copy operation involved, which may affect the runtime
3722 performance if used in elsewhere. */
3723
3724static const char*
3725get_mnemonic_name (const char *str)
3726{
3727 static char mnemonic[32];
3728 char *ptr;
3729
3730 /* Get the first 15 bytes and assume that the full name is included. */
3731 strncpy (mnemonic, str, 31);
3732 mnemonic[31] = '\0';
3733
3734 /* Scan up to the end of the mnemonic, which must end in white space,
3735 '.', or end of string. */
3736 for (ptr = mnemonic; is_part_of_name(*ptr); ++ptr)
3737 ;
3738
3739 *ptr = '\0';
3740
3741 /* Append '...' to the truncated long name. */
3742 if (ptr - mnemonic == 31)
3743 mnemonic[28] = mnemonic[29] = mnemonic[30] = '.';
3744
3745 return mnemonic;
3746}
3747
3748static void
3749reset_aarch64_instruction (aarch64_instruction *instruction)
3750{
3751 memset (instruction, '\0', sizeof (aarch64_instruction));
3752 instruction->reloc.type = BFD_RELOC_UNUSED;
3753}
3754
3755/* Data strutures storing one user error in the assembly code related to
3756 operands. */
3757
3758struct operand_error_record
3759{
3760 const aarch64_opcode *opcode;
3761 aarch64_operand_error detail;
3762 struct operand_error_record *next;
3763};
3764
3765typedef struct operand_error_record operand_error_record;
3766
3767struct operand_errors
3768{
3769 operand_error_record *head;
3770 operand_error_record *tail;
3771};
3772
3773typedef struct operand_errors operand_errors;
3774
3775/* Top-level data structure reporting user errors for the current line of
3776 the assembly code.
3777 The way md_assemble works is that all opcodes sharing the same mnemonic
3778 name are iterated to find a match to the assembly line. In this data
3779 structure, each of the such opcodes will have one operand_error_record
3780 allocated and inserted. In other words, excessive errors related with
3781 a single opcode are disregarded. */
3782operand_errors operand_error_report;
3783
3784/* Free record nodes. */
3785static operand_error_record *free_opnd_error_record_nodes = NULL;
3786
3787/* Initialize the data structure that stores the operand mismatch
3788 information on assembling one line of the assembly code. */
3789static void
3790init_operand_error_report (void)
3791{
3792 if (operand_error_report.head != NULL)
3793 {
3794 gas_assert (operand_error_report.tail != NULL);
3795 operand_error_report.tail->next = free_opnd_error_record_nodes;
3796 free_opnd_error_record_nodes = operand_error_report.head;
3797 operand_error_report.head = NULL;
3798 operand_error_report.tail = NULL;
3799 return;
3800 }
3801 gas_assert (operand_error_report.tail == NULL);
3802}
3803
3804/* Return TRUE if some operand error has been recorded during the
3805 parsing of the current assembly line using the opcode *OPCODE;
3806 otherwise return FALSE. */
3807static inline bfd_boolean
3808opcode_has_operand_error_p (const aarch64_opcode *opcode)
3809{
3810 operand_error_record *record = operand_error_report.head;
3811 return record && record->opcode == opcode;
3812}
3813
3814/* Add the error record *NEW_RECORD to operand_error_report. The record's
3815 OPCODE field is initialized with OPCODE.
3816 N.B. only one record for each opcode, i.e. the maximum of one error is
3817 recorded for each instruction template. */
3818
3819static void
3820add_operand_error_record (const operand_error_record* new_record)
3821{
3822 const aarch64_opcode *opcode = new_record->opcode;
3823 operand_error_record* record = operand_error_report.head;
3824
3825 /* The record may have been created for this opcode. If not, we need
3826 to prepare one. */
3827 if (! opcode_has_operand_error_p (opcode))
3828 {
3829 /* Get one empty record. */
3830 if (free_opnd_error_record_nodes == NULL)
3831 {
3832 record = xmalloc (sizeof (operand_error_record));
3833 if (record == NULL)
3834 abort ();
3835 }
3836 else
3837 {
3838 record = free_opnd_error_record_nodes;
3839 free_opnd_error_record_nodes = record->next;
3840 }
3841 record->opcode = opcode;
3842 /* Insert at the head. */
3843 record->next = operand_error_report.head;
3844 operand_error_report.head = record;
3845 if (operand_error_report.tail == NULL)
3846 operand_error_report.tail = record;
3847 }
3848 else if (record->detail.kind != AARCH64_OPDE_NIL
3849 && record->detail.index <= new_record->detail.index
3850 && operand_error_higher_severity_p (record->detail.kind,
3851 new_record->detail.kind))
3852 {
3853 /* In the case of multiple errors found on operands related with a
3854 single opcode, only record the error of the leftmost operand and
3855 only if the error is of higher severity. */
3856 DEBUG_TRACE ("error %s on operand %d not added to the report due to"
3857 " the existing error %s on operand %d",
3858 operand_mismatch_kind_names[new_record->detail.kind],
3859 new_record->detail.index,
3860 operand_mismatch_kind_names[record->detail.kind],
3861 record->detail.index);
3862 return;
3863 }
3864
3865 record->detail = new_record->detail;
3866}
3867
3868static inline void
3869record_operand_error_info (const aarch64_opcode *opcode,
3870 aarch64_operand_error *error_info)
3871{
3872 operand_error_record record;
3873 record.opcode = opcode;
3874 record.detail = *error_info;
3875 add_operand_error_record (&record);
3876}
3877
3878/* Record an error of kind KIND and, if ERROR is not NULL, of the detailed
3879 error message *ERROR, for operand IDX (count from 0). */
3880
3881static void
3882record_operand_error (const aarch64_opcode *opcode, int idx,
3883 enum aarch64_operand_error_kind kind,
3884 const char* error)
3885{
3886 aarch64_operand_error info;
3887 memset(&info, 0, sizeof (info));
3888 info.index = idx;
3889 info.kind = kind;
3890 info.error = error;
3891 record_operand_error_info (opcode, &info);
3892}
3893
3894static void
3895record_operand_error_with_data (const aarch64_opcode *opcode, int idx,
3896 enum aarch64_operand_error_kind kind,
3897 const char* error, const int *extra_data)
3898{
3899 aarch64_operand_error info;
3900 info.index = idx;
3901 info.kind = kind;
3902 info.error = error;
3903 info.data[0] = extra_data[0];
3904 info.data[1] = extra_data[1];
3905 info.data[2] = extra_data[2];
3906 record_operand_error_info (opcode, &info);
3907}
3908
3909static void
3910record_operand_out_of_range_error (const aarch64_opcode *opcode, int idx,
3911 const char* error, int lower_bound,
3912 int upper_bound)
3913{
3914 int data[3] = {lower_bound, upper_bound, 0};
3915 record_operand_error_with_data (opcode, idx, AARCH64_OPDE_OUT_OF_RANGE,
3916 error, data);
3917}
3918
3919/* Remove the operand error record for *OPCODE. */
3920static void ATTRIBUTE_UNUSED
3921remove_operand_error_record (const aarch64_opcode *opcode)
3922{
3923 if (opcode_has_operand_error_p (opcode))
3924 {
3925 operand_error_record* record = operand_error_report.head;
3926 gas_assert (record != NULL && operand_error_report.tail != NULL);
3927 operand_error_report.head = record->next;
3928 record->next = free_opnd_error_record_nodes;
3929 free_opnd_error_record_nodes = record;
3930 if (operand_error_report.head == NULL)
3931 {
3932 gas_assert (operand_error_report.tail == record);
3933 operand_error_report.tail = NULL;
3934 }
3935 }
3936}
3937
3938/* Given the instruction in *INSTR, return the index of the best matched
3939 qualifier sequence in the list (an array) headed by QUALIFIERS_LIST.
3940
3941 Return -1 if there is no qualifier sequence; return the first match
3942 if there is multiple matches found. */
3943
3944static int
3945find_best_match (const aarch64_inst *instr,
3946 const aarch64_opnd_qualifier_seq_t *qualifiers_list)
3947{
3948 int i, num_opnds, max_num_matched, idx;
3949
3950 num_opnds = aarch64_num_of_operands (instr->opcode);
3951 if (num_opnds == 0)
3952 {
3953 DEBUG_TRACE ("no operand");
3954 return -1;
3955 }
3956
3957 max_num_matched = 0;
3958 idx = -1;
3959
3960 /* For each pattern. */
3961 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
3962 {
3963 int j, num_matched;
3964 const aarch64_opnd_qualifier_t *qualifiers = *qualifiers_list;
3965
3966 /* Most opcodes has much fewer patterns in the list. */
3967 if (empty_qualifier_sequence_p (qualifiers) == TRUE)
3968 {
3969 DEBUG_TRACE_IF (i == 0, "empty list of qualifier sequence");
3970 if (i != 0 && idx == -1)
3971 /* If nothing has been matched, return the 1st sequence. */
3972 idx = 0;
3973 break;
3974 }
3975
3976 for (j = 0, num_matched = 0; j < num_opnds; ++j, ++qualifiers)
3977 if (*qualifiers == instr->operands[j].qualifier)
3978 ++num_matched;
3979
3980 if (num_matched > max_num_matched)
3981 {
3982 max_num_matched = num_matched;
3983 idx = i;
3984 }
3985 }
3986
3987 DEBUG_TRACE ("return with %d", idx);
3988 return idx;
3989}
3990
3991/* Assign qualifiers in the qualifier seqence (headed by QUALIFIERS) to the
3992 corresponding operands in *INSTR. */
3993
3994static inline void
3995assign_qualifier_sequence (aarch64_inst *instr,
3996 const aarch64_opnd_qualifier_t *qualifiers)
3997{
3998 int i = 0;
3999 int num_opnds = aarch64_num_of_operands (instr->opcode);
4000 gas_assert (num_opnds);
4001 for (i = 0; i < num_opnds; ++i, ++qualifiers)
4002 instr->operands[i].qualifier = *qualifiers;
4003}
4004
4005/* Print operands for the diagnosis purpose. */
4006
4007static void
4008print_operands (char *buf, const aarch64_opcode *opcode,
4009 const aarch64_opnd_info *opnds)
4010{
4011 int i;
4012
4013 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
4014 {
4015 const size_t size = 128;
4016 char str[size];
4017
4018 /* We regard the opcode operand info more, however we also look into
4019 the inst->operands to support the disassembling of the optional
4020 operand.
4021 The two operand code should be the same in all cases, apart from
4022 when the operand can be optional. */
4023 if (opcode->operands[i] == AARCH64_OPND_NIL
4024 || opnds[i].type == AARCH64_OPND_NIL)
4025 break;
4026
4027 /* Generate the operand string in STR. */
4028 aarch64_print_operand (str, size, 0, opcode, opnds, i, NULL, NULL);
4029
4030 /* Delimiter. */
4031 if (str[0] != '\0')
4032 strcat (buf, i == 0 ? " " : ",");
4033
4034 /* Append the operand string. */
4035 strcat (buf, str);
4036 }
4037}
4038
4039/* Send to stderr a string as information. */
4040
4041static void
4042output_info (const char *format, ...)
4043{
4044 char *file;
4045 unsigned int line;
4046 va_list args;
4047
4048 as_where (&file, &line);
4049 if (file)
4050 {
4051 if (line != 0)
4052 fprintf (stderr, "%s:%u: ", file, line);
4053 else
4054 fprintf (stderr, "%s: ", file);
4055 }
4056 fprintf (stderr, _("Info: "));
4057 va_start (args, format);
4058 vfprintf (stderr, format, args);
4059 va_end (args);
4060 (void) putc ('\n', stderr);
4061}
4062
4063/* Output one operand error record. */
4064
4065static void
4066output_operand_error_record (const operand_error_record *record, char *str)
4067{
28f013d5
JB
4068 const aarch64_operand_error *detail = &record->detail;
4069 int idx = detail->index;
a06ea964 4070 const aarch64_opcode *opcode = record->opcode;
28f013d5 4071 enum aarch64_opnd opd_code = (idx >= 0 ? opcode->operands[idx]
a06ea964 4072 : AARCH64_OPND_NIL);
a06ea964
NC
4073
4074 switch (detail->kind)
4075 {
4076 case AARCH64_OPDE_NIL:
4077 gas_assert (0);
4078 break;
4079
4080 case AARCH64_OPDE_SYNTAX_ERROR:
4081 case AARCH64_OPDE_RECOVERABLE:
4082 case AARCH64_OPDE_FATAL_SYNTAX_ERROR:
4083 case AARCH64_OPDE_OTHER_ERROR:
a06ea964
NC
4084 /* Use the prepared error message if there is, otherwise use the
4085 operand description string to describe the error. */
4086 if (detail->error != NULL)
4087 {
28f013d5 4088 if (idx < 0)
a06ea964
NC
4089 as_bad (_("%s -- `%s'"), detail->error, str);
4090 else
4091 as_bad (_("%s at operand %d -- `%s'"),
28f013d5 4092 detail->error, idx + 1, str);
a06ea964
NC
4093 }
4094 else
28f013d5
JB
4095 {
4096 gas_assert (idx >= 0);
4097 as_bad (_("operand %d should be %s -- `%s'"), idx + 1,
a06ea964 4098 aarch64_get_operand_desc (opd_code), str);
28f013d5 4099 }
a06ea964
NC
4100 break;
4101
4102 case AARCH64_OPDE_INVALID_VARIANT:
4103 as_bad (_("operand mismatch -- `%s'"), str);
4104 if (verbose_error_p)
4105 {
4106 /* We will try to correct the erroneous instruction and also provide
4107 more information e.g. all other valid variants.
4108
4109 The string representation of the corrected instruction and other
4110 valid variants are generated by
4111
4112 1) obtaining the intermediate representation of the erroneous
4113 instruction;
4114 2) manipulating the IR, e.g. replacing the operand qualifier;
4115 3) printing out the instruction by calling the printer functions
4116 shared with the disassembler.
4117
4118 The limitation of this method is that the exact input assembly
4119 line cannot be accurately reproduced in some cases, for example an
4120 optional operand present in the actual assembly line will be
4121 omitted in the output; likewise for the optional syntax rules,
4122 e.g. the # before the immediate. Another limitation is that the
4123 assembly symbols and relocation operations in the assembly line
4124 currently cannot be printed out in the error report. Last but not
4125 least, when there is other error(s) co-exist with this error, the
4126 'corrected' instruction may be still incorrect, e.g. given
4127 'ldnp h0,h1,[x0,#6]!'
4128 this diagnosis will provide the version:
4129 'ldnp s0,s1,[x0,#6]!'
4130 which is still not right. */
4131 size_t len = strlen (get_mnemonic_name (str));
4132 int i, qlf_idx;
4133 bfd_boolean result;
4134 const size_t size = 2048;
4135 char buf[size];
4136 aarch64_inst *inst_base = &inst.base;
4137 const aarch64_opnd_qualifier_seq_t *qualifiers_list;
4138
4139 /* Init inst. */
4140 reset_aarch64_instruction (&inst);
4141 inst_base->opcode = opcode;
4142
4143 /* Reset the error report so that there is no side effect on the
4144 following operand parsing. */
4145 init_operand_error_report ();
4146
4147 /* Fill inst. */
4148 result = parse_operands (str + len, opcode)
4149 && programmer_friendly_fixup (&inst);
4150 gas_assert (result);
4151 result = aarch64_opcode_encode (opcode, inst_base, &inst_base->value,
4152 NULL, NULL);
4153 gas_assert (!result);
4154
4155 /* Find the most matched qualifier sequence. */
4156 qlf_idx = find_best_match (inst_base, opcode->qualifiers_list);
4157 gas_assert (qlf_idx > -1);
4158
4159 /* Assign the qualifiers. */
4160 assign_qualifier_sequence (inst_base,
4161 opcode->qualifiers_list[qlf_idx]);
4162
4163 /* Print the hint. */
4164 output_info (_(" did you mean this?"));
4165 snprintf (buf, size, "\t%s", get_mnemonic_name (str));
4166 print_operands (buf, opcode, inst_base->operands);
4167 output_info (_(" %s"), buf);
4168
4169 /* Print out other variant(s) if there is any. */
4170 if (qlf_idx != 0 ||
4171 !empty_qualifier_sequence_p (opcode->qualifiers_list[1]))
4172 output_info (_(" other valid variant(s):"));
4173
4174 /* For each pattern. */
4175 qualifiers_list = opcode->qualifiers_list;
4176 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4177 {
4178 /* Most opcodes has much fewer patterns in the list.
4179 First NIL qualifier indicates the end in the list. */
4180 if (empty_qualifier_sequence_p (*qualifiers_list) == TRUE)
4181 break;
4182
4183 if (i != qlf_idx)
4184 {
4185 /* Mnemonics name. */
4186 snprintf (buf, size, "\t%s", get_mnemonic_name (str));
4187
4188 /* Assign the qualifiers. */
4189 assign_qualifier_sequence (inst_base, *qualifiers_list);
4190
4191 /* Print instruction. */
4192 print_operands (buf, opcode, inst_base->operands);
4193
4194 output_info (_(" %s"), buf);
4195 }
4196 }
4197 }
4198 break;
4199
4200 case AARCH64_OPDE_OUT_OF_RANGE:
f5555712
YZ
4201 if (detail->data[0] != detail->data[1])
4202 as_bad (_("%s out of range %d to %d at operand %d -- `%s'"),
4203 detail->error ? detail->error : _("immediate value"),
28f013d5 4204 detail->data[0], detail->data[1], idx + 1, str);
f5555712
YZ
4205 else
4206 as_bad (_("%s expected to be %d at operand %d -- `%s'"),
4207 detail->error ? detail->error : _("immediate value"),
28f013d5 4208 detail->data[0], idx + 1, str);
a06ea964
NC
4209 break;
4210
4211 case AARCH64_OPDE_REG_LIST:
4212 if (detail->data[0] == 1)
4213 as_bad (_("invalid number of registers in the list; "
4214 "only 1 register is expected at operand %d -- `%s'"),
28f013d5 4215 idx + 1, str);
a06ea964
NC
4216 else
4217 as_bad (_("invalid number of registers in the list; "
4218 "%d registers are expected at operand %d -- `%s'"),
28f013d5 4219 detail->data[0], idx + 1, str);
a06ea964
NC
4220 break;
4221
4222 case AARCH64_OPDE_UNALIGNED:
4223 as_bad (_("immediate value should be a multiple of "
4224 "%d at operand %d -- `%s'"),
28f013d5 4225 detail->data[0], idx + 1, str);
a06ea964
NC
4226 break;
4227
4228 default:
4229 gas_assert (0);
4230 break;
4231 }
4232}
4233
4234/* Process and output the error message about the operand mismatching.
4235
4236 When this function is called, the operand error information had
4237 been collected for an assembly line and there will be multiple
4238 errors in the case of mulitple instruction templates; output the
4239 error message that most closely describes the problem. */
4240
4241static void
4242output_operand_error_report (char *str)
4243{
4244 int largest_error_pos;
4245 const char *msg = NULL;
4246 enum aarch64_operand_error_kind kind;
4247 operand_error_record *curr;
4248 operand_error_record *head = operand_error_report.head;
4249 operand_error_record *record = NULL;
4250
4251 /* No error to report. */
4252 if (head == NULL)
4253 return;
4254
4255 gas_assert (head != NULL && operand_error_report.tail != NULL);
4256
4257 /* Only one error. */
4258 if (head == operand_error_report.tail)
4259 {
4260 DEBUG_TRACE ("single opcode entry with error kind: %s",
4261 operand_mismatch_kind_names[head->detail.kind]);
4262 output_operand_error_record (head, str);
4263 return;
4264 }
4265
4266 /* Find the error kind of the highest severity. */
4267 DEBUG_TRACE ("multiple opcode entres with error kind");
4268 kind = AARCH64_OPDE_NIL;
4269 for (curr = head; curr != NULL; curr = curr->next)
4270 {
4271 gas_assert (curr->detail.kind != AARCH64_OPDE_NIL);
4272 DEBUG_TRACE ("\t%s", operand_mismatch_kind_names[curr->detail.kind]);
4273 if (operand_error_higher_severity_p (curr->detail.kind, kind))
4274 kind = curr->detail.kind;
4275 }
4276 gas_assert (kind != AARCH64_OPDE_NIL);
4277
4278 /* Pick up one of errors of KIND to report. */
4279 largest_error_pos = -2; /* Index can be -1 which means unknown index. */
4280 for (curr = head; curr != NULL; curr = curr->next)
4281 {
4282 if (curr->detail.kind != kind)
4283 continue;
4284 /* If there are multiple errors, pick up the one with the highest
4285 mismatching operand index. In the case of multiple errors with
4286 the equally highest operand index, pick up the first one or the
4287 first one with non-NULL error message. */
4288 if (curr->detail.index > largest_error_pos
4289 || (curr->detail.index == largest_error_pos && msg == NULL
4290 && curr->detail.error != NULL))
4291 {
4292 largest_error_pos = curr->detail.index;
4293 record = curr;
4294 msg = record->detail.error;
4295 }
4296 }
4297
4298 gas_assert (largest_error_pos != -2 && record != NULL);
4299 DEBUG_TRACE ("Pick up error kind %s to report",
4300 operand_mismatch_kind_names[record->detail.kind]);
4301
4302 /* Output. */
4303 output_operand_error_record (record, str);
4304}
4305\f
4306/* Write an AARCH64 instruction to buf - always little-endian. */
4307static void
4308put_aarch64_insn (char *buf, uint32_t insn)
4309{
4310 unsigned char *where = (unsigned char *) buf;
4311 where[0] = insn;
4312 where[1] = insn >> 8;
4313 where[2] = insn >> 16;
4314 where[3] = insn >> 24;
4315}
4316
4317static uint32_t
4318get_aarch64_insn (char *buf)
4319{
4320 unsigned char *where = (unsigned char *) buf;
4321 uint32_t result;
4322 result = (where[0] | (where[1] << 8) | (where[2] << 16) | (where[3] << 24));
4323 return result;
4324}
4325
4326static void
4327output_inst (struct aarch64_inst *new_inst)
4328{
4329 char *to = NULL;
4330
4331 to = frag_more (INSN_SIZE);
4332
4333 frag_now->tc_frag_data.recorded = 1;
4334
4335 put_aarch64_insn (to, inst.base.value);
4336
4337 if (inst.reloc.type != BFD_RELOC_UNUSED)
4338 {
4339 fixS *fixp = fix_new_aarch64 (frag_now, to - frag_now->fr_literal,
4340 INSN_SIZE, &inst.reloc.exp,
4341 inst.reloc.pc_rel,
4342 inst.reloc.type);
4343 DEBUG_TRACE ("Prepared relocation fix up");
4344 /* Don't check the addend value against the instruction size,
4345 that's the job of our code in md_apply_fix(). */
4346 fixp->fx_no_overflow = 1;
4347 if (new_inst != NULL)
4348 fixp->tc_fix_data.inst = new_inst;
4349 if (aarch64_gas_internal_fixup_p ())
4350 {
4351 gas_assert (inst.reloc.opnd != AARCH64_OPND_NIL);
4352 fixp->tc_fix_data.opnd = inst.reloc.opnd;
4353 fixp->fx_addnumber = inst.reloc.flags;
4354 }
4355 }
4356
4357 dwarf2_emit_insn (INSN_SIZE);
4358}
4359
4360/* Link together opcodes of the same name. */
4361
4362struct templates
4363{
4364 aarch64_opcode *opcode;
4365 struct templates *next;
4366};
4367
4368typedef struct templates templates;
4369
4370static templates *
4371lookup_mnemonic (const char *start, int len)
4372{
4373 templates *templ = NULL;
4374
4375 templ = hash_find_n (aarch64_ops_hsh, start, len);
4376 return templ;
4377}
4378
4379/* Subroutine of md_assemble, responsible for looking up the primary
4380 opcode from the mnemonic the user wrote. STR points to the
4381 beginning of the mnemonic. */
4382
4383static templates *
4384opcode_lookup (char **str)
4385{
4386 char *end, *base;
4387 const aarch64_cond *cond;
4388 char condname[16];
4389 int len;
4390
4391 /* Scan up to the end of the mnemonic, which must end in white space,
4392 '.', or end of string. */
4393 for (base = end = *str; is_part_of_name(*end); end++)
4394 if (*end == '.')
4395 break;
4396
4397 if (end == base)
4398 return 0;
4399
4400 inst.cond = COND_ALWAYS;
4401
4402 /* Handle a possible condition. */
4403 if (end[0] == '.')
4404 {
4405 cond = hash_find_n (aarch64_cond_hsh, end + 1, 2);
4406 if (cond)
4407 {
4408 inst.cond = cond->value;
4409 *str = end + 3;
4410 }
4411 else
4412 {
4413 *str = end;
4414 return 0;
4415 }
4416 }
4417 else
4418 *str = end;
4419
4420 len = end - base;
4421
4422 if (inst.cond == COND_ALWAYS)
4423 {
4424 /* Look for unaffixed mnemonic. */
4425 return lookup_mnemonic (base, len);
4426 }
4427 else if (len <= 13)
4428 {
4429 /* append ".c" to mnemonic if conditional */
4430 memcpy (condname, base, len);
4431 memcpy (condname + len, ".c", 2);
4432 base = condname;
4433 len += 2;
4434 return lookup_mnemonic (base, len);
4435 }
4436
4437 return NULL;
4438}
4439
4440/* Internal helper routine converting a vector neon_type_el structure
4441 *VECTYPE to a corresponding operand qualifier. */
4442
4443static inline aarch64_opnd_qualifier_t
4444vectype_to_qualifier (const struct neon_type_el *vectype)
4445{
4446 /* Element size in bytes indexed by neon_el_type. */
4447 const unsigned char ele_size[5]
4448 = {1, 2, 4, 8, 16};
4449
4450 if (!vectype->defined || vectype->type == NT_invtype)
4451 goto vectype_conversion_fail;
4452
4453 gas_assert (vectype->type >= NT_b && vectype->type <= NT_q);
4454
4455 if (vectype->defined & NTA_HASINDEX)
4456 /* Vector element register. */
4457 return AARCH64_OPND_QLF_S_B + vectype->type;
4458 else
4459 {
4460 /* Vector register. */
4461 int reg_size = ele_size[vectype->type] * vectype->width;
4462 unsigned offset;
4463 if (reg_size != 16 && reg_size != 8)
4464 goto vectype_conversion_fail;
4465 /* The conversion is calculated based on the relation of the order of
4466 qualifiers to the vector element size and vector register size. */
4467 offset = (vectype->type == NT_q)
4468 ? 8 : (vectype->type << 1) + (reg_size >> 4);
4469 gas_assert (offset <= 8);
4470 return AARCH64_OPND_QLF_V_8B + offset;
4471 }
4472
4473vectype_conversion_fail:
4474 first_error (_("bad vector arrangement type"));
4475 return AARCH64_OPND_QLF_NIL;
4476}
4477
4478/* Process an optional operand that is found omitted from the assembly line.
4479 Fill *OPERAND for such an operand of type TYPE. OPCODE points to the
4480 instruction's opcode entry while IDX is the index of this omitted operand.
4481 */
4482
4483static void
4484process_omitted_operand (enum aarch64_opnd type, const aarch64_opcode *opcode,
4485 int idx, aarch64_opnd_info *operand)
4486{
4487 aarch64_insn default_value = get_optional_operand_default_value (opcode);
4488 gas_assert (optional_operand_p (opcode, idx));
4489 gas_assert (!operand->present);
4490
4491 switch (type)
4492 {
4493 case AARCH64_OPND_Rd:
4494 case AARCH64_OPND_Rn:
4495 case AARCH64_OPND_Rm:
4496 case AARCH64_OPND_Rt:
4497 case AARCH64_OPND_Rt2:
4498 case AARCH64_OPND_Rs:
4499 case AARCH64_OPND_Ra:
4500 case AARCH64_OPND_Rt_SYS:
4501 case AARCH64_OPND_Rd_SP:
4502 case AARCH64_OPND_Rn_SP:
4503 case AARCH64_OPND_Fd:
4504 case AARCH64_OPND_Fn:
4505 case AARCH64_OPND_Fm:
4506 case AARCH64_OPND_Fa:
4507 case AARCH64_OPND_Ft:
4508 case AARCH64_OPND_Ft2:
4509 case AARCH64_OPND_Sd:
4510 case AARCH64_OPND_Sn:
4511 case AARCH64_OPND_Sm:
4512 case AARCH64_OPND_Vd:
4513 case AARCH64_OPND_Vn:
4514 case AARCH64_OPND_Vm:
4515 case AARCH64_OPND_VdD1:
4516 case AARCH64_OPND_VnD1:
4517 operand->reg.regno = default_value;
4518 break;
4519
4520 case AARCH64_OPND_Ed:
4521 case AARCH64_OPND_En:
4522 case AARCH64_OPND_Em:
4523 operand->reglane.regno = default_value;
4524 break;
4525
4526 case AARCH64_OPND_IDX:
4527 case AARCH64_OPND_BIT_NUM:
4528 case AARCH64_OPND_IMMR:
4529 case AARCH64_OPND_IMMS:
4530 case AARCH64_OPND_SHLL_IMM:
4531 case AARCH64_OPND_IMM_VLSL:
4532 case AARCH64_OPND_IMM_VLSR:
4533 case AARCH64_OPND_CCMP_IMM:
4534 case AARCH64_OPND_FBITS:
4535 case AARCH64_OPND_UIMM4:
4536 case AARCH64_OPND_UIMM3_OP1:
4537 case AARCH64_OPND_UIMM3_OP2:
4538 case AARCH64_OPND_IMM:
4539 case AARCH64_OPND_WIDTH:
4540 case AARCH64_OPND_UIMM7:
4541 case AARCH64_OPND_NZCV:
4542 operand->imm.value = default_value;
4543 break;
4544
4545 case AARCH64_OPND_EXCEPTION:
4546 inst.reloc.type = BFD_RELOC_UNUSED;
4547 break;
4548
4549 case AARCH64_OPND_BARRIER_ISB:
4550 operand->barrier = aarch64_barrier_options + default_value;
4551
4552 default:
4553 break;
4554 }
4555}
4556
4557/* Process the relocation type for move wide instructions.
4558 Return TRUE on success; otherwise return FALSE. */
4559
4560static bfd_boolean
4561process_movw_reloc_info (void)
4562{
4563 int is32;
4564 unsigned shift;
4565
4566 is32 = inst.base.operands[0].qualifier == AARCH64_OPND_QLF_W ? 1 : 0;
4567
4568 if (inst.base.opcode->op == OP_MOVK)
4569 switch (inst.reloc.type)
4570 {
4571 case BFD_RELOC_AARCH64_MOVW_G0_S:
4572 case BFD_RELOC_AARCH64_MOVW_G1_S:
4573 case BFD_RELOC_AARCH64_MOVW_G2_S:
4574 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
a06ea964 4575 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
a06ea964
NC
4576 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4577 set_syntax_error
4578 (_("the specified relocation type is not allowed for MOVK"));
4579 return FALSE;
4580 default:
4581 break;
4582 }
4583
4584 switch (inst.reloc.type)
4585 {
4586 case BFD_RELOC_AARCH64_MOVW_G0:
a06ea964 4587 case BFD_RELOC_AARCH64_MOVW_G0_NC:
f09c556a 4588 case BFD_RELOC_AARCH64_MOVW_G0_S:
a06ea964
NC
4589 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
4590 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
4591 shift = 0;
4592 break;
4593 case BFD_RELOC_AARCH64_MOVW_G1:
a06ea964 4594 case BFD_RELOC_AARCH64_MOVW_G1_NC:
f09c556a 4595 case BFD_RELOC_AARCH64_MOVW_G1_S:
a06ea964
NC
4596 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
4597 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
4598 shift = 16;
4599 break;
4600 case BFD_RELOC_AARCH64_MOVW_G2:
a06ea964 4601 case BFD_RELOC_AARCH64_MOVW_G2_NC:
f09c556a 4602 case BFD_RELOC_AARCH64_MOVW_G2_S:
a06ea964
NC
4603 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4604 if (is32)
4605 {
4606 set_fatal_syntax_error
4607 (_("the specified relocation type is not allowed for 32-bit "
4608 "register"));
4609 return FALSE;
4610 }
4611 shift = 32;
4612 break;
4613 case BFD_RELOC_AARCH64_MOVW_G3:
4614 if (is32)
4615 {
4616 set_fatal_syntax_error
4617 (_("the specified relocation type is not allowed for 32-bit "
4618 "register"));
4619 return FALSE;
4620 }
4621 shift = 48;
4622 break;
4623 default:
4624 /* More cases should be added when more MOVW-related relocation types
4625 are supported in GAS. */
4626 gas_assert (aarch64_gas_internal_fixup_p ());
4627 /* The shift amount should have already been set by the parser. */
4628 return TRUE;
4629 }
4630 inst.base.operands[1].shifter.amount = shift;
4631 return TRUE;
4632}
4633
4634/* A primitive log caculator. */
4635
4636static inline unsigned int
4637get_logsz (unsigned int size)
4638{
4639 const unsigned char ls[16] =
4640 {0, 1, -1, 2, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, 4};
4641 if (size > 16)
4642 {
4643 gas_assert (0);
4644 return -1;
4645 }
4646 gas_assert (ls[size - 1] != (unsigned char)-1);
4647 return ls[size - 1];
4648}
4649
4650/* Determine and return the real reloc type code for an instruction
4651 with the pseudo reloc type code BFD_RELOC_AARCH64_LDST_LO12. */
4652
4653static inline bfd_reloc_code_real_type
4654ldst_lo12_determine_real_reloc_type (void)
4655{
4656 int logsz;
4657 enum aarch64_opnd_qualifier opd0_qlf = inst.base.operands[0].qualifier;
4658 enum aarch64_opnd_qualifier opd1_qlf = inst.base.operands[1].qualifier;
4659
4660 const bfd_reloc_code_real_type reloc_ldst_lo12[5] = {
4661 BFD_RELOC_AARCH64_LDST8_LO12, BFD_RELOC_AARCH64_LDST16_LO12,
4662 BFD_RELOC_AARCH64_LDST32_LO12, BFD_RELOC_AARCH64_LDST64_LO12,
4663 BFD_RELOC_AARCH64_LDST128_LO12
4664 };
4665
4666 gas_assert (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12);
4667 gas_assert (inst.base.opcode->operands[1] == AARCH64_OPND_ADDR_UIMM12);
4668
4669 if (opd1_qlf == AARCH64_OPND_QLF_NIL)
4670 opd1_qlf =
4671 aarch64_get_expected_qualifier (inst.base.opcode->qualifiers_list,
4672 1, opd0_qlf, 0);
4673 gas_assert (opd1_qlf != AARCH64_OPND_QLF_NIL);
4674
4675 logsz = get_logsz (aarch64_get_qualifier_esize (opd1_qlf));
4676 gas_assert (logsz >= 0 && logsz <= 4);
4677
4678 return reloc_ldst_lo12[logsz];
4679}
4680
4681/* Check whether a register list REGINFO is valid. The registers must be
4682 numbered in increasing order (modulo 32), in increments of one or two.
4683
4684 If ACCEPT_ALTERNATE is non-zero, the register numbers should be in
4685 increments of two.
4686
4687 Return FALSE if such a register list is invalid, otherwise return TRUE. */
4688
4689static bfd_boolean
4690reg_list_valid_p (uint32_t reginfo, int accept_alternate)
4691{
4692 uint32_t i, nb_regs, prev_regno, incr;
4693
4694 nb_regs = 1 + (reginfo & 0x3);
4695 reginfo >>= 2;
4696 prev_regno = reginfo & 0x1f;
4697 incr = accept_alternate ? 2 : 1;
4698
4699 for (i = 1; i < nb_regs; ++i)
4700 {
4701 uint32_t curr_regno;
4702 reginfo >>= 5;
4703 curr_regno = reginfo & 0x1f;
4704 if (curr_regno != ((prev_regno + incr) & 0x1f))
4705 return FALSE;
4706 prev_regno = curr_regno;
4707 }
4708
4709 return TRUE;
4710}
4711
4712/* Generic instruction operand parser. This does no encoding and no
4713 semantic validation; it merely squirrels values away in the inst
4714 structure. Returns TRUE or FALSE depending on whether the
4715 specified grammar matched. */
4716
4717static bfd_boolean
4718parse_operands (char *str, const aarch64_opcode *opcode)
4719{
4720 int i;
4721 char *backtrack_pos = 0;
4722 const enum aarch64_opnd *operands = opcode->operands;
4723
4724 clear_error ();
4725 skip_whitespace (str);
4726
4727 for (i = 0; operands[i] != AARCH64_OPND_NIL; i++)
4728 {
4729 int64_t val;
4730 int isreg32, isregzero;
4731 int comma_skipped_p = 0;
4732 aarch64_reg_type rtype;
4733 struct neon_type_el vectype;
4734 aarch64_opnd_info *info = &inst.base.operands[i];
4735
4736 DEBUG_TRACE ("parse operand %d", i);
4737
4738 /* Assign the operand code. */
4739 info->type = operands[i];
4740
4741 if (optional_operand_p (opcode, i))
4742 {
4743 /* Remember where we are in case we need to backtrack. */
4744 gas_assert (!backtrack_pos);
4745 backtrack_pos = str;
4746 }
4747
4748 /* Expect comma between operands; the backtrack mechanizm will take
4749 care of cases of omitted optional operand. */
4750 if (i > 0 && ! skip_past_char (&str, ','))
4751 {
4752 set_syntax_error (_("comma expected between operands"));
4753 goto failure;
4754 }
4755 else
4756 comma_skipped_p = 1;
4757
4758 switch (operands[i])
4759 {
4760 case AARCH64_OPND_Rd:
4761 case AARCH64_OPND_Rn:
4762 case AARCH64_OPND_Rm:
4763 case AARCH64_OPND_Rt:
4764 case AARCH64_OPND_Rt2:
4765 case AARCH64_OPND_Rs:
4766 case AARCH64_OPND_Ra:
4767 case AARCH64_OPND_Rt_SYS:
ee804238 4768 case AARCH64_OPND_PAIRREG:
a06ea964
NC
4769 po_int_reg_or_fail (1, 0);
4770 break;
4771
4772 case AARCH64_OPND_Rd_SP:
4773 case AARCH64_OPND_Rn_SP:
4774 po_int_reg_or_fail (0, 1);
4775 break;
4776
4777 case AARCH64_OPND_Rm_EXT:
4778 case AARCH64_OPND_Rm_SFT:
4779 po_misc_or_fail (parse_shifter_operand
4780 (&str, info, (operands[i] == AARCH64_OPND_Rm_EXT
4781 ? SHIFTED_ARITH_IMM
4782 : SHIFTED_LOGIC_IMM)));
4783 if (!info->shifter.operator_present)
4784 {
4785 /* Default to LSL if not present. Libopcodes prefers shifter
4786 kind to be explicit. */
4787 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
4788 info->shifter.kind = AARCH64_MOD_LSL;
4789 /* For Rm_EXT, libopcodes will carry out further check on whether
4790 or not stack pointer is used in the instruction (Recall that
4791 "the extend operator is not optional unless at least one of
4792 "Rd" or "Rn" is '11111' (i.e. WSP)"). */
4793 }
4794 break;
4795
4796 case AARCH64_OPND_Fd:
4797 case AARCH64_OPND_Fn:
4798 case AARCH64_OPND_Fm:
4799 case AARCH64_OPND_Fa:
4800 case AARCH64_OPND_Ft:
4801 case AARCH64_OPND_Ft2:
4802 case AARCH64_OPND_Sd:
4803 case AARCH64_OPND_Sn:
4804 case AARCH64_OPND_Sm:
4805 val = aarch64_reg_parse (&str, REG_TYPE_BHSDQ, &rtype, NULL);
4806 if (val == PARSE_FAIL)
4807 {
4808 first_error (_(get_reg_expected_msg (REG_TYPE_BHSDQ)));
4809 goto failure;
4810 }
4811 gas_assert (rtype >= REG_TYPE_FP_B && rtype <= REG_TYPE_FP_Q);
4812
4813 info->reg.regno = val;
4814 info->qualifier = AARCH64_OPND_QLF_S_B + (rtype - REG_TYPE_FP_B);
4815 break;
4816
4817 case AARCH64_OPND_Vd:
4818 case AARCH64_OPND_Vn:
4819 case AARCH64_OPND_Vm:
4820 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
4821 if (val == PARSE_FAIL)
4822 {
4823 first_error (_(get_reg_expected_msg (REG_TYPE_VN)));
4824 goto failure;
4825 }
4826 if (vectype.defined & NTA_HASINDEX)
4827 goto failure;
4828
4829 info->reg.regno = val;
4830 info->qualifier = vectype_to_qualifier (&vectype);
4831 if (info->qualifier == AARCH64_OPND_QLF_NIL)
4832 goto failure;
4833 break;
4834
4835 case AARCH64_OPND_VdD1:
4836 case AARCH64_OPND_VnD1:
4837 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
4838 if (val == PARSE_FAIL)
4839 {
4840 set_first_syntax_error (_(get_reg_expected_msg (REG_TYPE_VN)));
4841 goto failure;
4842 }
4843 if (vectype.type != NT_d || vectype.index != 1)
4844 {
4845 set_fatal_syntax_error
4846 (_("the top half of a 128-bit FP/SIMD register is expected"));
4847 goto failure;
4848 }
4849 info->reg.regno = val;
4850 /* N.B: VdD1 and VnD1 are treated as an fp or advsimd scalar register
4851 here; it is correct for the purpose of encoding/decoding since
4852 only the register number is explicitly encoded in the related
4853 instructions, although this appears a bit hacky. */
4854 info->qualifier = AARCH64_OPND_QLF_S_D;
4855 break;
4856
4857 case AARCH64_OPND_Ed:
4858 case AARCH64_OPND_En:
4859 case AARCH64_OPND_Em:
4860 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
4861 if (val == PARSE_FAIL)
4862 {
4863 first_error (_(get_reg_expected_msg (REG_TYPE_VN)));
4864 goto failure;
4865 }
4866 if (vectype.type == NT_invtype || !(vectype.defined & NTA_HASINDEX))
4867 goto failure;
4868
4869 info->reglane.regno = val;
4870 info->reglane.index = vectype.index;
4871 info->qualifier = vectype_to_qualifier (&vectype);
4872 if (info->qualifier == AARCH64_OPND_QLF_NIL)
4873 goto failure;
4874 break;
4875
4876 case AARCH64_OPND_LVn:
4877 case AARCH64_OPND_LVt:
4878 case AARCH64_OPND_LVt_AL:
4879 case AARCH64_OPND_LEt:
4880 if ((val = parse_neon_reg_list (&str, &vectype)) == PARSE_FAIL)
4881 goto failure;
4882 if (! reg_list_valid_p (val, /* accept_alternate */ 0))
4883 {
4884 set_fatal_syntax_error (_("invalid register list"));
4885 goto failure;
4886 }
4887 info->reglist.first_regno = (val >> 2) & 0x1f;
4888 info->reglist.num_regs = (val & 0x3) + 1;
4889 if (operands[i] == AARCH64_OPND_LEt)
4890 {
4891 if (!(vectype.defined & NTA_HASINDEX))
4892 goto failure;
4893 info->reglist.has_index = 1;
4894 info->reglist.index = vectype.index;
4895 }
4896 else if (!(vectype.defined & NTA_HASTYPE))
4897 goto failure;
4898 info->qualifier = vectype_to_qualifier (&vectype);
4899 if (info->qualifier == AARCH64_OPND_QLF_NIL)
4900 goto failure;
4901 break;
4902
4903 case AARCH64_OPND_Cn:
4904 case AARCH64_OPND_Cm:
4905 po_reg_or_fail (REG_TYPE_CN);
4906 if (val > 15)
4907 {
4908 set_fatal_syntax_error (_(get_reg_expected_msg (REG_TYPE_CN)));
4909 goto failure;
4910 }
4911 inst.base.operands[i].reg.regno = val;
4912 break;
4913
4914 case AARCH64_OPND_SHLL_IMM:
4915 case AARCH64_OPND_IMM_VLSR:
4916 po_imm_or_fail (1, 64);
4917 info->imm.value = val;
4918 break;
4919
4920 case AARCH64_OPND_CCMP_IMM:
4921 case AARCH64_OPND_FBITS:
4922 case AARCH64_OPND_UIMM4:
4923 case AARCH64_OPND_UIMM3_OP1:
4924 case AARCH64_OPND_UIMM3_OP2:
4925 case AARCH64_OPND_IMM_VLSL:
4926 case AARCH64_OPND_IMM:
4927 case AARCH64_OPND_WIDTH:
4928 po_imm_nc_or_fail ();
4929 info->imm.value = val;
4930 break;
4931
4932 case AARCH64_OPND_UIMM7:
4933 po_imm_or_fail (0, 127);
4934 info->imm.value = val;
4935 break;
4936
4937 case AARCH64_OPND_IDX:
4938 case AARCH64_OPND_BIT_NUM:
4939 case AARCH64_OPND_IMMR:
4940 case AARCH64_OPND_IMMS:
4941 po_imm_or_fail (0, 63);
4942 info->imm.value = val;
4943 break;
4944
4945 case AARCH64_OPND_IMM0:
4946 po_imm_nc_or_fail ();
4947 if (val != 0)
4948 {
4949 set_fatal_syntax_error (_("immediate zero expected"));
4950 goto failure;
4951 }
4952 info->imm.value = 0;
4953 break;
4954
4955 case AARCH64_OPND_FPIMM0:
4956 {
4957 int qfloat;
4958 bfd_boolean res1 = FALSE, res2 = FALSE;
4959 /* N.B. -0.0 will be rejected; although -0.0 shouldn't be rejected,
4960 it is probably not worth the effort to support it. */
62b0d0d5 4961 if (!(res1 = parse_aarch64_imm_float (&str, &qfloat, FALSE))
a06ea964
NC
4962 && !(res2 = parse_constant_immediate (&str, &val)))
4963 goto failure;
4964 if ((res1 && qfloat == 0) || (res2 && val == 0))
4965 {
4966 info->imm.value = 0;
4967 info->imm.is_fp = 1;
4968 break;
4969 }
4970 set_fatal_syntax_error (_("immediate zero expected"));
4971 goto failure;
4972 }
4973
4974 case AARCH64_OPND_IMM_MOV:
4975 {
4976 char *saved = str;
8db49cc2
WN
4977 if (reg_name_p (str, REG_TYPE_R_Z_SP) ||
4978 reg_name_p (str, REG_TYPE_VN))
a06ea964
NC
4979 goto failure;
4980 str = saved;
4981 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
4982 GE_OPT_PREFIX, 1));
4983 /* The MOV immediate alias will be fixed up by fix_mov_imm_insn
4984 later. fix_mov_imm_insn will try to determine a machine
4985 instruction (MOVZ, MOVN or ORR) for it and will issue an error
4986 message if the immediate cannot be moved by a single
4987 instruction. */
4988 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
4989 inst.base.operands[i].skip = 1;
4990 }
4991 break;
4992
4993 case AARCH64_OPND_SIMD_IMM:
4994 case AARCH64_OPND_SIMD_IMM_SFT:
4995 if (! parse_big_immediate (&str, &val))
4996 goto failure;
4997 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
4998 /* addr_off_p */ 0,
4999 /* need_libopcodes_p */ 1,
5000 /* skip_p */ 1);
5001 /* Parse shift.
5002 N.B. although AARCH64_OPND_SIMD_IMM doesn't permit any
5003 shift, we don't check it here; we leave the checking to
5004 the libopcodes (operand_general_constraint_met_p). By
5005 doing this, we achieve better diagnostics. */
5006 if (skip_past_comma (&str)
5007 && ! parse_shift (&str, info, SHIFTED_LSL_MSL))
5008 goto failure;
5009 if (!info->shifter.operator_present
5010 && info->type == AARCH64_OPND_SIMD_IMM_SFT)
5011 {
5012 /* Default to LSL if not present. Libopcodes prefers shifter
5013 kind to be explicit. */
5014 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5015 info->shifter.kind = AARCH64_MOD_LSL;
5016 }
5017 break;
5018
5019 case AARCH64_OPND_FPIMM:
5020 case AARCH64_OPND_SIMD_FPIMM:
5021 {
5022 int qfloat;
62b0d0d5
YZ
5023 bfd_boolean dp_p
5024 = (aarch64_get_qualifier_esize (inst.base.operands[0].qualifier)
5025 == 8);
5026 if (! parse_aarch64_imm_float (&str, &qfloat, dp_p))
a06ea964
NC
5027 goto failure;
5028 if (qfloat == 0)
5029 {
5030 set_fatal_syntax_error (_("invalid floating-point constant"));
5031 goto failure;
5032 }
5033 inst.base.operands[i].imm.value = encode_imm_float_bits (qfloat);
5034 inst.base.operands[i].imm.is_fp = 1;
5035 }
5036 break;
5037
5038 case AARCH64_OPND_LIMM:
5039 po_misc_or_fail (parse_shifter_operand (&str, info,
5040 SHIFTED_LOGIC_IMM));
5041 if (info->shifter.operator_present)
5042 {
5043 set_fatal_syntax_error
5044 (_("shift not allowed for bitmask immediate"));
5045 goto failure;
5046 }
5047 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5048 /* addr_off_p */ 0,
5049 /* need_libopcodes_p */ 1,
5050 /* skip_p */ 1);
5051 break;
5052
5053 case AARCH64_OPND_AIMM:
5054 if (opcode->op == OP_ADD)
5055 /* ADD may have relocation types. */
5056 po_misc_or_fail (parse_shifter_operand_reloc (&str, info,
5057 SHIFTED_ARITH_IMM));
5058 else
5059 po_misc_or_fail (parse_shifter_operand (&str, info,
5060 SHIFTED_ARITH_IMM));
5061 switch (inst.reloc.type)
5062 {
5063 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5064 info->shifter.amount = 12;
5065 break;
5066 case BFD_RELOC_UNUSED:
5067 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5068 if (info->shifter.kind != AARCH64_MOD_NONE)
5069 inst.reloc.flags = FIXUP_F_HAS_EXPLICIT_SHIFT;
5070 inst.reloc.pc_rel = 0;
5071 break;
5072 default:
5073 break;
5074 }
5075 info->imm.value = 0;
5076 if (!info->shifter.operator_present)
5077 {
5078 /* Default to LSL if not present. Libopcodes prefers shifter
5079 kind to be explicit. */
5080 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5081 info->shifter.kind = AARCH64_MOD_LSL;
5082 }
5083 break;
5084
5085 case AARCH64_OPND_HALF:
5086 {
5087 /* #<imm16> or relocation. */
5088 int internal_fixup_p;
5089 po_misc_or_fail (parse_half (&str, &internal_fixup_p));
5090 if (internal_fixup_p)
5091 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5092 skip_whitespace (str);
5093 if (skip_past_comma (&str))
5094 {
5095 /* {, LSL #<shift>} */
5096 if (! aarch64_gas_internal_fixup_p ())
5097 {
5098 set_fatal_syntax_error (_("can't mix relocation modifier "
5099 "with explicit shift"));
5100 goto failure;
5101 }
5102 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
5103 }
5104 else
5105 inst.base.operands[i].shifter.amount = 0;
5106 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
5107 inst.base.operands[i].imm.value = 0;
5108 if (! process_movw_reloc_info ())
5109 goto failure;
5110 }
5111 break;
5112
5113 case AARCH64_OPND_EXCEPTION:
5114 po_misc_or_fail (parse_immediate_expression (&str, &inst.reloc.exp));
5115 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5116 /* addr_off_p */ 0,
5117 /* need_libopcodes_p */ 0,
5118 /* skip_p */ 1);
5119 break;
5120
5121 case AARCH64_OPND_NZCV:
5122 {
5123 const asm_nzcv *nzcv = hash_find_n (aarch64_nzcv_hsh, str, 4);
5124 if (nzcv != NULL)
5125 {
5126 str += 4;
5127 info->imm.value = nzcv->value;
5128 break;
5129 }
5130 po_imm_or_fail (0, 15);
5131 info->imm.value = val;
5132 }
5133 break;
5134
5135 case AARCH64_OPND_COND:
68a64283 5136 case AARCH64_OPND_COND1:
a06ea964
NC
5137 info->cond = hash_find_n (aarch64_cond_hsh, str, 2);
5138 str += 2;
5139 if (info->cond == NULL)
5140 {
5141 set_syntax_error (_("invalid condition"));
5142 goto failure;
5143 }
68a64283
YZ
5144 else if (operands[i] == AARCH64_OPND_COND1
5145 && (info->cond->value & 0xe) == 0xe)
5146 {
5147 /* Not allow AL or NV. */
5148 set_default_error ();
5149 goto failure;
5150 }
a06ea964
NC
5151 break;
5152
5153 case AARCH64_OPND_ADDR_ADRP:
5154 po_misc_or_fail (parse_adrp (&str));
5155 /* Clear the value as operand needs to be relocated. */
5156 info->imm.value = 0;
5157 break;
5158
5159 case AARCH64_OPND_ADDR_PCREL14:
5160 case AARCH64_OPND_ADDR_PCREL19:
5161 case AARCH64_OPND_ADDR_PCREL21:
5162 case AARCH64_OPND_ADDR_PCREL26:
5163 po_misc_or_fail (parse_address_reloc (&str, info));
5164 if (!info->addr.pcrel)
5165 {
5166 set_syntax_error (_("invalid pc-relative address"));
5167 goto failure;
5168 }
5169 if (inst.gen_lit_pool
5170 && (opcode->iclass != loadlit || opcode->op == OP_PRFM_LIT))
5171 {
5172 /* Only permit "=value" in the literal load instructions.
5173 The literal will be generated by programmer_friendly_fixup. */
5174 set_syntax_error (_("invalid use of \"=immediate\""));
5175 goto failure;
5176 }
5177 if (inst.reloc.exp.X_op == O_symbol && find_reloc_table_entry (&str))
5178 {
5179 set_syntax_error (_("unrecognized relocation suffix"));
5180 goto failure;
5181 }
5182 if (inst.reloc.exp.X_op == O_constant && !inst.gen_lit_pool)
5183 {
5184 info->imm.value = inst.reloc.exp.X_add_number;
5185 inst.reloc.type = BFD_RELOC_UNUSED;
5186 }
5187 else
5188 {
5189 info->imm.value = 0;
f41aef5f
RE
5190 if (inst.reloc.type == BFD_RELOC_UNUSED)
5191 switch (opcode->iclass)
5192 {
5193 case compbranch:
5194 case condbranch:
5195 /* e.g. CBZ or B.COND */
5196 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
5197 inst.reloc.type = BFD_RELOC_AARCH64_BRANCH19;
5198 break;
5199 case testbranch:
5200 /* e.g. TBZ */
5201 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL14);
5202 inst.reloc.type = BFD_RELOC_AARCH64_TSTBR14;
5203 break;
5204 case branch_imm:
5205 /* e.g. B or BL */
5206 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL26);
5207 inst.reloc.type =
5208 (opcode->op == OP_BL) ? BFD_RELOC_AARCH64_CALL26
5209 : BFD_RELOC_AARCH64_JUMP26;
5210 break;
5211 case loadlit:
5212 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
5213 inst.reloc.type = BFD_RELOC_AARCH64_LD_LO19_PCREL;
5214 break;
5215 case pcreladdr:
5216 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL21);
5217 inst.reloc.type = BFD_RELOC_AARCH64_ADR_LO21_PCREL;
5218 break;
5219 default:
5220 gas_assert (0);
5221 abort ();
5222 }
a06ea964
NC
5223 inst.reloc.pc_rel = 1;
5224 }
5225 break;
5226
5227 case AARCH64_OPND_ADDR_SIMPLE:
5228 case AARCH64_OPND_SIMD_ADDR_SIMPLE:
5229 /* [<Xn|SP>{, #<simm>}] */
5230 po_char_or_fail ('[');
5231 po_reg_or_fail (REG_TYPE_R64_SP);
5232 /* Accept optional ", #0". */
5233 if (operands[i] == AARCH64_OPND_ADDR_SIMPLE
5234 && skip_past_char (&str, ','))
5235 {
5236 skip_past_char (&str, '#');
5237 if (! skip_past_char (&str, '0'))
5238 {
5239 set_fatal_syntax_error
5240 (_("the optional immediate offset can only be 0"));
5241 goto failure;
5242 }
5243 }
5244 po_char_or_fail (']');
5245 info->addr.base_regno = val;
5246 break;
5247
5248 case AARCH64_OPND_ADDR_REGOFF:
5249 /* [<Xn|SP>, <R><m>{, <extend> {<amount>}}] */
5250 po_misc_or_fail (parse_address (&str, info, 0));
5251 if (info->addr.pcrel || !info->addr.offset.is_reg
5252 || !info->addr.preind || info->addr.postind
5253 || info->addr.writeback)
5254 {
5255 set_syntax_error (_("invalid addressing mode"));
5256 goto failure;
5257 }
5258 if (!info->shifter.operator_present)
5259 {
5260 /* Default to LSL if not present. Libopcodes prefers shifter
5261 kind to be explicit. */
5262 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5263 info->shifter.kind = AARCH64_MOD_LSL;
5264 }
5265 /* Qualifier to be deduced by libopcodes. */
5266 break;
5267
5268 case AARCH64_OPND_ADDR_SIMM7:
5269 po_misc_or_fail (parse_address (&str, info, 0));
5270 if (info->addr.pcrel || info->addr.offset.is_reg
5271 || (!info->addr.preind && !info->addr.postind))
5272 {
5273 set_syntax_error (_("invalid addressing mode"));
5274 goto failure;
5275 }
5276 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5277 /* addr_off_p */ 1,
5278 /* need_libopcodes_p */ 1,
5279 /* skip_p */ 0);
5280 break;
5281
5282 case AARCH64_OPND_ADDR_SIMM9:
5283 case AARCH64_OPND_ADDR_SIMM9_2:
5284 po_misc_or_fail (parse_address_reloc (&str, info));
5285 if (info->addr.pcrel || info->addr.offset.is_reg
5286 || (!info->addr.preind && !info->addr.postind)
5287 || (operands[i] == AARCH64_OPND_ADDR_SIMM9_2
5288 && info->addr.writeback))
5289 {
5290 set_syntax_error (_("invalid addressing mode"));
5291 goto failure;
5292 }
5293 if (inst.reloc.type != BFD_RELOC_UNUSED)
5294 {
5295 set_syntax_error (_("relocation not allowed"));
5296 goto failure;
5297 }
5298 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5299 /* addr_off_p */ 1,
5300 /* need_libopcodes_p */ 1,
5301 /* skip_p */ 0);
5302 break;
5303
5304 case AARCH64_OPND_ADDR_UIMM12:
5305 po_misc_or_fail (parse_address_reloc (&str, info));
5306 if (info->addr.pcrel || info->addr.offset.is_reg
5307 || !info->addr.preind || info->addr.writeback)
5308 {
5309 set_syntax_error (_("invalid addressing mode"));
5310 goto failure;
5311 }
5312 if (inst.reloc.type == BFD_RELOC_UNUSED)
5313 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
5314 else if (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12)
5315 inst.reloc.type = ldst_lo12_determine_real_reloc_type ();
5316 /* Leave qualifier to be determined by libopcodes. */
5317 break;
5318
5319 case AARCH64_OPND_SIMD_ADDR_POST:
5320 /* [<Xn|SP>], <Xm|#<amount>> */
5321 po_misc_or_fail (parse_address (&str, info, 1));
5322 if (!info->addr.postind || !info->addr.writeback)
5323 {
5324 set_syntax_error (_("invalid addressing mode"));
5325 goto failure;
5326 }
5327 if (!info->addr.offset.is_reg)
5328 {
5329 if (inst.reloc.exp.X_op == O_constant)
5330 info->addr.offset.imm = inst.reloc.exp.X_add_number;
5331 else
5332 {
5333 set_fatal_syntax_error
5334 (_("writeback value should be an immediate constant"));
5335 goto failure;
5336 }
5337 }
5338 /* No qualifier. */
5339 break;
5340
5341 case AARCH64_OPND_SYSREG:
72ca8fad 5342 if ((val = parse_sys_reg (&str, aarch64_sys_regs_hsh, 1, 0))
a203d9b7 5343 == PARSE_FAIL)
a06ea964 5344 {
a203d9b7
YZ
5345 set_syntax_error (_("unknown or missing system register name"));
5346 goto failure;
a06ea964 5347 }
a203d9b7 5348 inst.base.operands[i].sysreg = val;
a06ea964
NC
5349 break;
5350
5351 case AARCH64_OPND_PSTATEFIELD:
72ca8fad 5352 if ((val = parse_sys_reg (&str, aarch64_pstatefield_hsh, 0, 1))
a3251895 5353 == PARSE_FAIL)
a06ea964
NC
5354 {
5355 set_syntax_error (_("unknown or missing PSTATE field name"));
5356 goto failure;
5357 }
5358 inst.base.operands[i].pstatefield = val;
5359 break;
5360
5361 case AARCH64_OPND_SYSREG_IC:
5362 inst.base.operands[i].sysins_op =
5363 parse_sys_ins_reg (&str, aarch64_sys_regs_ic_hsh);
5364 goto sys_reg_ins;
5365 case AARCH64_OPND_SYSREG_DC:
5366 inst.base.operands[i].sysins_op =
5367 parse_sys_ins_reg (&str, aarch64_sys_regs_dc_hsh);
5368 goto sys_reg_ins;
5369 case AARCH64_OPND_SYSREG_AT:
5370 inst.base.operands[i].sysins_op =
5371 parse_sys_ins_reg (&str, aarch64_sys_regs_at_hsh);
5372 goto sys_reg_ins;
5373 case AARCH64_OPND_SYSREG_TLBI:
5374 inst.base.operands[i].sysins_op =
5375 parse_sys_ins_reg (&str, aarch64_sys_regs_tlbi_hsh);
5376sys_reg_ins:
5377 if (inst.base.operands[i].sysins_op == NULL)
5378 {
5379 set_fatal_syntax_error ( _("unknown or missing operation name"));
5380 goto failure;
5381 }
5382 break;
5383
5384 case AARCH64_OPND_BARRIER:
5385 case AARCH64_OPND_BARRIER_ISB:
5386 val = parse_barrier (&str);
5387 if (val != PARSE_FAIL
5388 && operands[i] == AARCH64_OPND_BARRIER_ISB && val != 0xf)
5389 {
5390 /* ISB only accepts options name 'sy'. */
5391 set_syntax_error
5392 (_("the specified option is not accepted in ISB"));
5393 /* Turn off backtrack as this optional operand is present. */
5394 backtrack_pos = 0;
5395 goto failure;
5396 }
5397 /* This is an extension to accept a 0..15 immediate. */
5398 if (val == PARSE_FAIL)
5399 po_imm_or_fail (0, 15);
5400 info->barrier = aarch64_barrier_options + val;
5401 break;
5402
5403 case AARCH64_OPND_PRFOP:
5404 val = parse_pldop (&str);
5405 /* This is an extension to accept a 0..31 immediate. */
5406 if (val == PARSE_FAIL)
5407 po_imm_or_fail (0, 31);
5408 inst.base.operands[i].prfop = aarch64_prfops + val;
5409 break;
5410
5411 default:
5412 as_fatal (_("unhandled operand code %d"), operands[i]);
5413 }
5414
5415 /* If we get here, this operand was successfully parsed. */
5416 inst.base.operands[i].present = 1;
5417 continue;
5418
5419failure:
5420 /* The parse routine should already have set the error, but in case
5421 not, set a default one here. */
5422 if (! error_p ())
5423 set_default_error ();
5424
5425 if (! backtrack_pos)
5426 goto parse_operands_return;
5427
f4c51f60
JW
5428 {
5429 /* We reach here because this operand is marked as optional, and
5430 either no operand was supplied or the operand was supplied but it
5431 was syntactically incorrect. In the latter case we report an
5432 error. In the former case we perform a few more checks before
5433 dropping through to the code to insert the default operand. */
5434
5435 char *tmp = backtrack_pos;
5436 char endchar = END_OF_INSN;
5437
5438 if (i != (aarch64_num_of_operands (opcode) - 1))
5439 endchar = ',';
5440 skip_past_char (&tmp, ',');
5441
5442 if (*tmp != endchar)
5443 /* The user has supplied an operand in the wrong format. */
5444 goto parse_operands_return;
5445
5446 /* Make sure there is not a comma before the optional operand.
5447 For example the fifth operand of 'sys' is optional:
5448
5449 sys #0,c0,c0,#0, <--- wrong
5450 sys #0,c0,c0,#0 <--- correct. */
5451 if (comma_skipped_p && i && endchar == END_OF_INSN)
5452 {
5453 set_fatal_syntax_error
5454 (_("unexpected comma before the omitted optional operand"));
5455 goto parse_operands_return;
5456 }
5457 }
5458
a06ea964
NC
5459 /* Reaching here means we are dealing with an optional operand that is
5460 omitted from the assembly line. */
5461 gas_assert (optional_operand_p (opcode, i));
5462 info->present = 0;
5463 process_omitted_operand (operands[i], opcode, i, info);
5464
5465 /* Try again, skipping the optional operand at backtrack_pos. */
5466 str = backtrack_pos;
5467 backtrack_pos = 0;
5468
a06ea964
NC
5469 /* Clear any error record after the omitted optional operand has been
5470 successfully handled. */
5471 clear_error ();
5472 }
5473
5474 /* Check if we have parsed all the operands. */
5475 if (*str != '\0' && ! error_p ())
5476 {
5477 /* Set I to the index of the last present operand; this is
5478 for the purpose of diagnostics. */
5479 for (i -= 1; i >= 0 && !inst.base.operands[i].present; --i)
5480 ;
5481 set_fatal_syntax_error
5482 (_("unexpected characters following instruction"));
5483 }
5484
5485parse_operands_return:
5486
5487 if (error_p ())
5488 {
5489 DEBUG_TRACE ("parsing FAIL: %s - %s",
5490 operand_mismatch_kind_names[get_error_kind ()],
5491 get_error_message ());
5492 /* Record the operand error properly; this is useful when there
5493 are multiple instruction templates for a mnemonic name, so that
5494 later on, we can select the error that most closely describes
5495 the problem. */
5496 record_operand_error (opcode, i, get_error_kind (),
5497 get_error_message ());
5498 return FALSE;
5499 }
5500 else
5501 {
5502 DEBUG_TRACE ("parsing SUCCESS");
5503 return TRUE;
5504 }
5505}
5506
5507/* It does some fix-up to provide some programmer friendly feature while
5508 keeping the libopcodes happy, i.e. libopcodes only accepts
5509 the preferred architectural syntax.
5510 Return FALSE if there is any failure; otherwise return TRUE. */
5511
5512static bfd_boolean
5513programmer_friendly_fixup (aarch64_instruction *instr)
5514{
5515 aarch64_inst *base = &instr->base;
5516 const aarch64_opcode *opcode = base->opcode;
5517 enum aarch64_op op = opcode->op;
5518 aarch64_opnd_info *operands = base->operands;
5519
5520 DEBUG_TRACE ("enter");
5521
5522 switch (opcode->iclass)
5523 {
5524 case testbranch:
5525 /* TBNZ Xn|Wn, #uimm6, label
5526 Test and Branch Not Zero: conditionally jumps to label if bit number
5527 uimm6 in register Xn is not zero. The bit number implies the width of
5528 the register, which may be written and should be disassembled as Wn if
5529 uimm is less than 32. */
5530 if (operands[0].qualifier == AARCH64_OPND_QLF_W)
5531 {
5532 if (operands[1].imm.value >= 32)
5533 {
5534 record_operand_out_of_range_error (opcode, 1, _("immediate value"),
5535 0, 31);
5536 return FALSE;
5537 }
5538 operands[0].qualifier = AARCH64_OPND_QLF_X;
5539 }
5540 break;
5541 case loadlit:
5542 /* LDR Wt, label | =value
5543 As a convenience assemblers will typically permit the notation
5544 "=value" in conjunction with the pc-relative literal load instructions
5545 to automatically place an immediate value or symbolic address in a
5546 nearby literal pool and generate a hidden label which references it.
5547 ISREG has been set to 0 in the case of =value. */
5548 if (instr->gen_lit_pool
5549 && (op == OP_LDR_LIT || op == OP_LDRV_LIT || op == OP_LDRSW_LIT))
5550 {
5551 int size = aarch64_get_qualifier_esize (operands[0].qualifier);
5552 if (op == OP_LDRSW_LIT)
5553 size = 4;
5554 if (instr->reloc.exp.X_op != O_constant
67a32447 5555 && instr->reloc.exp.X_op != O_big
a06ea964
NC
5556 && instr->reloc.exp.X_op != O_symbol)
5557 {
5558 record_operand_error (opcode, 1,
5559 AARCH64_OPDE_FATAL_SYNTAX_ERROR,
5560 _("constant expression expected"));
5561 return FALSE;
5562 }
5563 if (! add_to_lit_pool (&instr->reloc.exp, size))
5564 {
5565 record_operand_error (opcode, 1,
5566 AARCH64_OPDE_OTHER_ERROR,
5567 _("literal pool insertion failed"));
5568 return FALSE;
5569 }
5570 }
5571 break;
a06ea964
NC
5572 case log_shift:
5573 case bitfield:
5574 /* UXT[BHW] Wd, Wn
5575 Unsigned Extend Byte|Halfword|Word: UXT[BH] is architectural alias
5576 for UBFM Wd,Wn,#0,#7|15, while UXTW is pseudo instruction which is
5577 encoded using ORR Wd, WZR, Wn (MOV Wd,Wn).
5578 A programmer-friendly assembler should accept a destination Xd in
5579 place of Wd, however that is not the preferred form for disassembly.
5580 */
5581 if ((op == OP_UXTB || op == OP_UXTH || op == OP_UXTW)
5582 && operands[1].qualifier == AARCH64_OPND_QLF_W
5583 && operands[0].qualifier == AARCH64_OPND_QLF_X)
5584 operands[0].qualifier = AARCH64_OPND_QLF_W;
5585 break;
5586
5587 case addsub_ext:
5588 {
5589 /* In the 64-bit form, the final register operand is written as Wm
5590 for all but the (possibly omitted) UXTX/LSL and SXTX
5591 operators.
5592 As a programmer-friendly assembler, we accept e.g.
5593 ADDS <Xd>, <Xn|SP>, <Xm>{, UXTB {#<amount>}} and change it to
5594 ADDS <Xd>, <Xn|SP>, <Wm>{, UXTB {#<amount>}}. */
5595 int idx = aarch64_operand_index (opcode->operands,
5596 AARCH64_OPND_Rm_EXT);
5597 gas_assert (idx == 1 || idx == 2);
5598 if (operands[0].qualifier == AARCH64_OPND_QLF_X
5599 && operands[idx].qualifier == AARCH64_OPND_QLF_X
5600 && operands[idx].shifter.kind != AARCH64_MOD_LSL
5601 && operands[idx].shifter.kind != AARCH64_MOD_UXTX
5602 && operands[idx].shifter.kind != AARCH64_MOD_SXTX)
5603 operands[idx].qualifier = AARCH64_OPND_QLF_W;
5604 }
5605 break;
5606
5607 default:
5608 break;
5609 }
5610
5611 DEBUG_TRACE ("exit with SUCCESS");
5612 return TRUE;
5613}
5614
5c47e525 5615/* Check for loads and stores that will cause unpredictable behavior. */
54a28c4c
JW
5616
5617static void
5618warn_unpredictable_ldst (aarch64_instruction *instr, char *str)
5619{
5620 aarch64_inst *base = &instr->base;
5621 const aarch64_opcode *opcode = base->opcode;
5622 const aarch64_opnd_info *opnds = base->operands;
5623 switch (opcode->iclass)
5624 {
5625 case ldst_pos:
5626 case ldst_imm9:
5627 case ldst_unscaled:
5628 case ldst_unpriv:
5c47e525
RE
5629 /* Loading/storing the base register is unpredictable if writeback. */
5630 if ((aarch64_get_operand_class (opnds[0].type)
5631 == AARCH64_OPND_CLASS_INT_REG)
5632 && opnds[0].reg.regno == opnds[1].addr.base_regno
4bf8c6e8 5633 && opnds[1].addr.base_regno != REG_SP
54a28c4c 5634 && opnds[1].addr.writeback)
5c47e525 5635 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
54a28c4c
JW
5636 break;
5637 case ldstpair_off:
5638 case ldstnapair_offs:
5639 case ldstpair_indexed:
5c47e525
RE
5640 /* Loading/storing the base register is unpredictable if writeback. */
5641 if ((aarch64_get_operand_class (opnds[0].type)
5642 == AARCH64_OPND_CLASS_INT_REG)
5643 && (opnds[0].reg.regno == opnds[2].addr.base_regno
5644 || opnds[1].reg.regno == opnds[2].addr.base_regno)
4bf8c6e8 5645 && opnds[2].addr.base_regno != REG_SP
54a28c4c 5646 && opnds[2].addr.writeback)
5c47e525
RE
5647 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
5648 /* Load operations must load different registers. */
54a28c4c
JW
5649 if ((opcode->opcode & (1 << 22))
5650 && opnds[0].reg.regno == opnds[1].reg.regno)
5651 as_warn (_("unpredictable load of register pair -- `%s'"), str);
5652 break;
5653 default:
5654 break;
5655 }
5656}
5657
a06ea964
NC
5658/* A wrapper function to interface with libopcodes on encoding and
5659 record the error message if there is any.
5660
5661 Return TRUE on success; otherwise return FALSE. */
5662
5663static bfd_boolean
5664do_encode (const aarch64_opcode *opcode, aarch64_inst *instr,
5665 aarch64_insn *code)
5666{
5667 aarch64_operand_error error_info;
5668 error_info.kind = AARCH64_OPDE_NIL;
5669 if (aarch64_opcode_encode (opcode, instr, code, NULL, &error_info))
5670 return TRUE;
5671 else
5672 {
5673 gas_assert (error_info.kind != AARCH64_OPDE_NIL);
5674 record_operand_error_info (opcode, &error_info);
5675 return FALSE;
5676 }
5677}
5678
5679#ifdef DEBUG_AARCH64
5680static inline void
5681dump_opcode_operands (const aarch64_opcode *opcode)
5682{
5683 int i = 0;
5684 while (opcode->operands[i] != AARCH64_OPND_NIL)
5685 {
5686 aarch64_verbose ("\t\t opnd%d: %s", i,
5687 aarch64_get_operand_name (opcode->operands[i])[0] != '\0'
5688 ? aarch64_get_operand_name (opcode->operands[i])
5689 : aarch64_get_operand_desc (opcode->operands[i]));
5690 ++i;
5691 }
5692}
5693#endif /* DEBUG_AARCH64 */
5694
5695/* This is the guts of the machine-dependent assembler. STR points to a
5696 machine dependent instruction. This function is supposed to emit
5697 the frags/bytes it assembles to. */
5698
5699void
5700md_assemble (char *str)
5701{
5702 char *p = str;
5703 templates *template;
5704 aarch64_opcode *opcode;
5705 aarch64_inst *inst_base;
5706 unsigned saved_cond;
5707
5708 /* Align the previous label if needed. */
5709 if (last_label_seen != NULL)
5710 {
5711 symbol_set_frag (last_label_seen, frag_now);
5712 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
5713 S_SET_SEGMENT (last_label_seen, now_seg);
5714 }
5715
5716 inst.reloc.type = BFD_RELOC_UNUSED;
5717
5718 DEBUG_TRACE ("\n\n");
5719 DEBUG_TRACE ("==============================");
5720 DEBUG_TRACE ("Enter md_assemble with %s", str);
5721
5722 template = opcode_lookup (&p);
5723 if (!template)
5724 {
5725 /* It wasn't an instruction, but it might be a register alias of
5726 the form alias .req reg directive. */
5727 if (!create_register_alias (str, p))
5728 as_bad (_("unknown mnemonic `%s' -- `%s'"), get_mnemonic_name (str),
5729 str);
5730 return;
5731 }
5732
5733 skip_whitespace (p);
5734 if (*p == ',')
5735 {
5736 as_bad (_("unexpected comma after the mnemonic name `%s' -- `%s'"),
5737 get_mnemonic_name (str), str);
5738 return;
5739 }
5740
5741 init_operand_error_report ();
5742
eb9d6cc9
RL
5743 /* Sections are assumed to start aligned. In executable section, there is no
5744 MAP_DATA symbol pending. So we only align the address during
5745 MAP_DATA --> MAP_INSN transition.
5746 For other sections, this is not guaranteed. */
5747 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
5748 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
5749 frag_align_code (2, 0);
5750
a06ea964
NC
5751 saved_cond = inst.cond;
5752 reset_aarch64_instruction (&inst);
5753 inst.cond = saved_cond;
5754
5755 /* Iterate through all opcode entries with the same mnemonic name. */
5756 do
5757 {
5758 opcode = template->opcode;
5759
5760 DEBUG_TRACE ("opcode %s found", opcode->name);
5761#ifdef DEBUG_AARCH64
5762 if (debug_dump)
5763 dump_opcode_operands (opcode);
5764#endif /* DEBUG_AARCH64 */
5765
a06ea964
NC
5766 mapping_state (MAP_INSN);
5767
5768 inst_base = &inst.base;
5769 inst_base->opcode = opcode;
5770
5771 /* Truly conditionally executed instructions, e.g. b.cond. */
5772 if (opcode->flags & F_COND)
5773 {
5774 gas_assert (inst.cond != COND_ALWAYS);
5775 inst_base->cond = get_cond_from_value (inst.cond);
5776 DEBUG_TRACE ("condition found %s", inst_base->cond->names[0]);
5777 }
5778 else if (inst.cond != COND_ALWAYS)
5779 {
5780 /* It shouldn't arrive here, where the assembly looks like a
5781 conditional instruction but the found opcode is unconditional. */
5782 gas_assert (0);
5783 continue;
5784 }
5785
5786 if (parse_operands (p, opcode)
5787 && programmer_friendly_fixup (&inst)
5788 && do_encode (inst_base->opcode, &inst.base, &inst_base->value))
5789 {
3f06bfce
YZ
5790 /* Check that this instruction is supported for this CPU. */
5791 if (!opcode->avariant
5792 || !AARCH64_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant))
5793 {
5794 as_bad (_("selected processor does not support `%s'"), str);
5795 return;
5796 }
5797
54a28c4c
JW
5798 warn_unpredictable_ldst (&inst, str);
5799
a06ea964
NC
5800 if (inst.reloc.type == BFD_RELOC_UNUSED
5801 || !inst.reloc.need_libopcodes_p)
5802 output_inst (NULL);
5803 else
5804 {
5805 /* If there is relocation generated for the instruction,
5806 store the instruction information for the future fix-up. */
5807 struct aarch64_inst *copy;
5808 gas_assert (inst.reloc.type != BFD_RELOC_UNUSED);
5809 if ((copy = xmalloc (sizeof (struct aarch64_inst))) == NULL)
5810 abort ();
5811 memcpy (copy, &inst.base, sizeof (struct aarch64_inst));
5812 output_inst (copy);
5813 }
5814 return;
5815 }
5816
5817 template = template->next;
5818 if (template != NULL)
5819 {
5820 reset_aarch64_instruction (&inst);
5821 inst.cond = saved_cond;
5822 }
5823 }
5824 while (template != NULL);
5825
5826 /* Issue the error messages if any. */
5827 output_operand_error_report (str);
5828}
5829
5830/* Various frobbings of labels and their addresses. */
5831
5832void
5833aarch64_start_line_hook (void)
5834{
5835 last_label_seen = NULL;
5836}
5837
5838void
5839aarch64_frob_label (symbolS * sym)
5840{
5841 last_label_seen = sym;
5842
5843 dwarf2_emit_label (sym);
5844}
5845
5846int
5847aarch64_data_in_code (void)
5848{
5849 if (!strncmp (input_line_pointer + 1, "data:", 5))
5850 {
5851 *input_line_pointer = '/';
5852 input_line_pointer += 5;
5853 *input_line_pointer = 0;
5854 return 1;
5855 }
5856
5857 return 0;
5858}
5859
5860char *
5861aarch64_canonicalize_symbol_name (char *name)
5862{
5863 int len;
5864
5865 if ((len = strlen (name)) > 5 && streq (name + len - 5, "/data"))
5866 *(name + len - 5) = 0;
5867
5868 return name;
5869}
5870\f
5871/* Table of all register names defined by default. The user can
5872 define additional names with .req. Note that all register names
5873 should appear in both upper and lowercase variants. Some registers
5874 also have mixed-case names. */
5875
5876#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE }
5877#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5878#define REGSET31(p,t) \
5879 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
5880 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
5881 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
5882 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t), \
5883 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
5884 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
5885 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
5886 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t)
5887#define REGSET(p,t) \
5888 REGSET31(p,t), REGNUM(p,31,t)
5889
5890/* These go into aarch64_reg_hsh hash-table. */
5891static const reg_entry reg_names[] = {
5892 /* Integer registers. */
5893 REGSET31 (x, R_64), REGSET31 (X, R_64),
5894 REGSET31 (w, R_32), REGSET31 (W, R_32),
5895
5896 REGDEF (wsp, 31, SP_32), REGDEF (WSP, 31, SP_32),
5897 REGDEF (sp, 31, SP_64), REGDEF (SP, 31, SP_64),
5898
5899 REGDEF (wzr, 31, Z_32), REGDEF (WZR, 31, Z_32),
5900 REGDEF (xzr, 31, Z_64), REGDEF (XZR, 31, Z_64),
5901
5902 /* Coprocessor register numbers. */
5903 REGSET (c, CN), REGSET (C, CN),
5904
5905 /* Floating-point single precision registers. */
5906 REGSET (s, FP_S), REGSET (S, FP_S),
5907
5908 /* Floating-point double precision registers. */
5909 REGSET (d, FP_D), REGSET (D, FP_D),
5910
5911 /* Floating-point half precision registers. */
5912 REGSET (h, FP_H), REGSET (H, FP_H),
5913
5914 /* Floating-point byte precision registers. */
5915 REGSET (b, FP_B), REGSET (B, FP_B),
5916
5917 /* Floating-point quad precision registers. */
5918 REGSET (q, FP_Q), REGSET (Q, FP_Q),
5919
5920 /* FP/SIMD registers. */
5921 REGSET (v, VN), REGSET (V, VN),
5922};
5923
5924#undef REGDEF
5925#undef REGNUM
5926#undef REGSET
5927
5928#define N 1
5929#define n 0
5930#define Z 1
5931#define z 0
5932#define C 1
5933#define c 0
5934#define V 1
5935#define v 0
5936#define B(a,b,c,d) (((a) << 3) | ((b) << 2) | ((c) << 1) | (d))
5937static const asm_nzcv nzcv_names[] = {
5938 {"nzcv", B (n, z, c, v)},
5939 {"nzcV", B (n, z, c, V)},
5940 {"nzCv", B (n, z, C, v)},
5941 {"nzCV", B (n, z, C, V)},
5942 {"nZcv", B (n, Z, c, v)},
5943 {"nZcV", B (n, Z, c, V)},
5944 {"nZCv", B (n, Z, C, v)},
5945 {"nZCV", B (n, Z, C, V)},
5946 {"Nzcv", B (N, z, c, v)},
5947 {"NzcV", B (N, z, c, V)},
5948 {"NzCv", B (N, z, C, v)},
5949 {"NzCV", B (N, z, C, V)},
5950 {"NZcv", B (N, Z, c, v)},
5951 {"NZcV", B (N, Z, c, V)},
5952 {"NZCv", B (N, Z, C, v)},
5953 {"NZCV", B (N, Z, C, V)}
5954};
5955
5956#undef N
5957#undef n
5958#undef Z
5959#undef z
5960#undef C
5961#undef c
5962#undef V
5963#undef v
5964#undef B
5965\f
5966/* MD interface: bits in the object file. */
5967
5968/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
5969 for use in the a.out file, and stores them in the array pointed to by buf.
5970 This knows about the endian-ness of the target machine and does
5971 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
5972 2 (short) and 4 (long) Floating numbers are put out as a series of
5973 LITTLENUMS (shorts, here at least). */
5974
5975void
5976md_number_to_chars (char *buf, valueT val, int n)
5977{
5978 if (target_big_endian)
5979 number_to_chars_bigendian (buf, val, n);
5980 else
5981 number_to_chars_littleendian (buf, val, n);
5982}
5983
5984/* MD interface: Sections. */
5985
5986/* Estimate the size of a frag before relaxing. Assume everything fits in
5987 4 bytes. */
5988
5989int
5990md_estimate_size_before_relax (fragS * fragp, segT segtype ATTRIBUTE_UNUSED)
5991{
5992 fragp->fr_var = 4;
5993 return 4;
5994}
5995
5996/* Round up a section size to the appropriate boundary. */
5997
5998valueT
5999md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
6000{
6001 return size;
6002}
6003
6004/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
f803aa8e
DPT
6005 of an rs_align_code fragment.
6006
6007 Here we fill the frag with the appropriate info for padding the
6008 output stream. The resulting frag will consist of a fixed (fr_fix)
6009 and of a repeating (fr_var) part.
6010
6011 The fixed content is always emitted before the repeating content and
6012 these two parts are used as follows in constructing the output:
6013 - the fixed part will be used to align to a valid instruction word
6014 boundary, in case that we start at a misaligned address; as no
6015 executable instruction can live at the misaligned location, we
6016 simply fill with zeros;
6017 - the variable part will be used to cover the remaining padding and
6018 we fill using the AArch64 NOP instruction.
6019
6020 Note that the size of a RS_ALIGN_CODE fragment is always 7 to provide
6021 enough storage space for up to 3 bytes for padding the back to a valid
6022 instruction alignment and exactly 4 bytes to store the NOP pattern. */
a06ea964
NC
6023
6024void
6025aarch64_handle_align (fragS * fragP)
6026{
6027 /* NOP = d503201f */
6028 /* AArch64 instructions are always little-endian. */
6029 static char const aarch64_noop[4] = { 0x1f, 0x20, 0x03, 0xd5 };
6030
6031 int bytes, fix, noop_size;
6032 char *p;
a06ea964
NC
6033
6034 if (fragP->fr_type != rs_align_code)
6035 return;
6036
6037 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
6038 p = fragP->fr_literal + fragP->fr_fix;
a06ea964
NC
6039
6040#ifdef OBJ_ELF
6041 gas_assert (fragP->tc_frag_data.recorded);
6042#endif
6043
a06ea964 6044 noop_size = sizeof (aarch64_noop);
a06ea964 6045
f803aa8e
DPT
6046 fix = bytes & (noop_size - 1);
6047 if (fix)
a06ea964 6048 {
a06ea964
NC
6049#ifdef OBJ_ELF
6050 insert_data_mapping_symbol (MAP_INSN, fragP->fr_fix, fragP, fix);
6051#endif
6052 memset (p, 0, fix);
6053 p += fix;
f803aa8e 6054 fragP->fr_fix += fix;
a06ea964
NC
6055 }
6056
f803aa8e
DPT
6057 if (noop_size)
6058 memcpy (p, aarch64_noop, noop_size);
6059 fragP->fr_var = noop_size;
a06ea964
NC
6060}
6061
6062/* Perform target specific initialisation of a frag.
6063 Note - despite the name this initialisation is not done when the frag
6064 is created, but only when its type is assigned. A frag can be created
6065 and used a long time before its type is set, so beware of assuming that
6066 this initialisationis performed first. */
6067
6068#ifndef OBJ_ELF
6069void
6070aarch64_init_frag (fragS * fragP ATTRIBUTE_UNUSED,
6071 int max_chars ATTRIBUTE_UNUSED)
6072{
6073}
6074
6075#else /* OBJ_ELF is defined. */
6076void
6077aarch64_init_frag (fragS * fragP, int max_chars)
6078{
6079 /* Record a mapping symbol for alignment frags. We will delete this
6080 later if the alignment ends up empty. */
6081 if (!fragP->tc_frag_data.recorded)
c7ad08e6
RL
6082 fragP->tc_frag_data.recorded = 1;
6083
6084 switch (fragP->fr_type)
a06ea964 6085 {
c7ad08e6
RL
6086 case rs_align:
6087 case rs_align_test:
6088 case rs_fill:
6089 mapping_state_2 (MAP_DATA, max_chars);
6090 break;
6091 case rs_align_code:
6092 mapping_state_2 (MAP_INSN, max_chars);
6093 break;
6094 default:
6095 break;
a06ea964
NC
6096 }
6097}
6098\f
6099/* Initialize the DWARF-2 unwind information for this procedure. */
6100
6101void
6102tc_aarch64_frame_initial_instructions (void)
6103{
6104 cfi_add_CFA_def_cfa (REG_SP, 0);
6105}
6106#endif /* OBJ_ELF */
6107
6108/* Convert REGNAME to a DWARF-2 register number. */
6109
6110int
6111tc_aarch64_regname_to_dw2regnum (char *regname)
6112{
6113 const reg_entry *reg = parse_reg (&regname);
6114 if (reg == NULL)
6115 return -1;
6116
6117 switch (reg->type)
6118 {
6119 case REG_TYPE_SP_32:
6120 case REG_TYPE_SP_64:
6121 case REG_TYPE_R_32:
6122 case REG_TYPE_R_64:
a2cac51c
RH
6123 return reg->number;
6124
a06ea964
NC
6125 case REG_TYPE_FP_B:
6126 case REG_TYPE_FP_H:
6127 case REG_TYPE_FP_S:
6128 case REG_TYPE_FP_D:
6129 case REG_TYPE_FP_Q:
a2cac51c
RH
6130 return reg->number + 64;
6131
a06ea964
NC
6132 default:
6133 break;
6134 }
6135 return -1;
6136}
6137
cec5225b
YZ
6138/* Implement DWARF2_ADDR_SIZE. */
6139
6140int
6141aarch64_dwarf2_addr_size (void)
6142{
6143#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
6144 if (ilp32_p)
6145 return 4;
6146#endif
6147 return bfd_arch_bits_per_address (stdoutput) / 8;
6148}
6149
a06ea964
NC
6150/* MD interface: Symbol and relocation handling. */
6151
6152/* Return the address within the segment that a PC-relative fixup is
6153 relative to. For AArch64 PC-relative fixups applied to instructions
6154 are generally relative to the location plus AARCH64_PCREL_OFFSET bytes. */
6155
6156long
6157md_pcrel_from_section (fixS * fixP, segT seg)
6158{
6159 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
6160
6161 /* If this is pc-relative and we are going to emit a relocation
6162 then we just want to put out any pipeline compensation that the linker
6163 will need. Otherwise we want to use the calculated base. */
6164 if (fixP->fx_pcrel
6165 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
6166 || aarch64_force_relocation (fixP)))
6167 base = 0;
6168
6169 /* AArch64 should be consistent for all pc-relative relocations. */
6170 return base + AARCH64_PCREL_OFFSET;
6171}
6172
6173/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
6174 Otherwise we have no need to default values of symbols. */
6175
6176symbolS *
6177md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
6178{
6179#ifdef OBJ_ELF
6180 if (name[0] == '_' && name[1] == 'G'
6181 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
6182 {
6183 if (!GOT_symbol)
6184 {
6185 if (symbol_find (name))
6186 as_bad (_("GOT already in the symbol table"));
6187
6188 GOT_symbol = symbol_new (name, undefined_section,
6189 (valueT) 0, &zero_address_frag);
6190 }
6191
6192 return GOT_symbol;
6193 }
6194#endif
6195
6196 return 0;
6197}
6198
6199/* Return non-zero if the indicated VALUE has overflowed the maximum
6200 range expressible by a unsigned number with the indicated number of
6201 BITS. */
6202
6203static bfd_boolean
6204unsigned_overflow (valueT value, unsigned bits)
6205{
6206 valueT lim;
6207 if (bits >= sizeof (valueT) * 8)
6208 return FALSE;
6209 lim = (valueT) 1 << bits;
6210 return (value >= lim);
6211}
6212
6213
6214/* Return non-zero if the indicated VALUE has overflowed the maximum
6215 range expressible by an signed number with the indicated number of
6216 BITS. */
6217
6218static bfd_boolean
6219signed_overflow (offsetT value, unsigned bits)
6220{
6221 offsetT lim;
6222 if (bits >= sizeof (offsetT) * 8)
6223 return FALSE;
6224 lim = (offsetT) 1 << (bits - 1);
6225 return (value < -lim || value >= lim);
6226}
6227
6228/* Given an instruction in *INST, which is expected to be a scaled, 12-bit,
6229 unsigned immediate offset load/store instruction, try to encode it as
6230 an unscaled, 9-bit, signed immediate offset load/store instruction.
6231 Return TRUE if it is successful; otherwise return FALSE.
6232
6233 As a programmer-friendly assembler, LDUR/STUR instructions can be generated
6234 in response to the standard LDR/STR mnemonics when the immediate offset is
6235 unambiguous, i.e. when it is negative or unaligned. */
6236
6237static bfd_boolean
6238try_to_encode_as_unscaled_ldst (aarch64_inst *instr)
6239{
6240 int idx;
6241 enum aarch64_op new_op;
6242 const aarch64_opcode *new_opcode;
6243
6244 gas_assert (instr->opcode->iclass == ldst_pos);
6245
6246 switch (instr->opcode->op)
6247 {
6248 case OP_LDRB_POS:new_op = OP_LDURB; break;
6249 case OP_STRB_POS: new_op = OP_STURB; break;
6250 case OP_LDRSB_POS: new_op = OP_LDURSB; break;
6251 case OP_LDRH_POS: new_op = OP_LDURH; break;
6252 case OP_STRH_POS: new_op = OP_STURH; break;
6253 case OP_LDRSH_POS: new_op = OP_LDURSH; break;
6254 case OP_LDR_POS: new_op = OP_LDUR; break;
6255 case OP_STR_POS: new_op = OP_STUR; break;
6256 case OP_LDRF_POS: new_op = OP_LDURV; break;
6257 case OP_STRF_POS: new_op = OP_STURV; break;
6258 case OP_LDRSW_POS: new_op = OP_LDURSW; break;
6259 case OP_PRFM_POS: new_op = OP_PRFUM; break;
6260 default: new_op = OP_NIL; break;
6261 }
6262
6263 if (new_op == OP_NIL)
6264 return FALSE;
6265
6266 new_opcode = aarch64_get_opcode (new_op);
6267 gas_assert (new_opcode != NULL);
6268
6269 DEBUG_TRACE ("Check programmer-friendly STURB/LDURB -> STRB/LDRB: %d == %d",
6270 instr->opcode->op, new_opcode->op);
6271
6272 aarch64_replace_opcode (instr, new_opcode);
6273
6274 /* Clear up the ADDR_SIMM9's qualifier; otherwise the
6275 qualifier matching may fail because the out-of-date qualifier will
6276 prevent the operand being updated with a new and correct qualifier. */
6277 idx = aarch64_operand_index (instr->opcode->operands,
6278 AARCH64_OPND_ADDR_SIMM9);
6279 gas_assert (idx == 1);
6280 instr->operands[idx].qualifier = AARCH64_OPND_QLF_NIL;
6281
6282 DEBUG_TRACE ("Found LDURB entry to encode programmer-friendly LDRB");
6283
6284 if (!aarch64_opcode_encode (instr->opcode, instr, &instr->value, NULL, NULL))
6285 return FALSE;
6286
6287 return TRUE;
6288}
6289
6290/* Called by fix_insn to fix a MOV immediate alias instruction.
6291
6292 Operand for a generic move immediate instruction, which is an alias
6293 instruction that generates a single MOVZ, MOVN or ORR instruction to loads
6294 a 32-bit/64-bit immediate value into general register. An assembler error
6295 shall result if the immediate cannot be created by a single one of these
6296 instructions. If there is a choice, then to ensure reversability an
6297 assembler must prefer a MOVZ to MOVN, and MOVZ or MOVN to ORR. */
6298
6299static void
6300fix_mov_imm_insn (fixS *fixP, char *buf, aarch64_inst *instr, offsetT value)
6301{
6302 const aarch64_opcode *opcode;
6303
6304 /* Need to check if the destination is SP/ZR. The check has to be done
6305 before any aarch64_replace_opcode. */
6306 int try_mov_wide_p = !aarch64_stack_pointer_p (&instr->operands[0]);
6307 int try_mov_bitmask_p = !aarch64_zero_register_p (&instr->operands[0]);
6308
6309 instr->operands[1].imm.value = value;
6310 instr->operands[1].skip = 0;
6311
6312 if (try_mov_wide_p)
6313 {
6314 /* Try the MOVZ alias. */
6315 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDE);
6316 aarch64_replace_opcode (instr, opcode);
6317 if (aarch64_opcode_encode (instr->opcode, instr,
6318 &instr->value, NULL, NULL))
6319 {
6320 put_aarch64_insn (buf, instr->value);
6321 return;
6322 }
6323 /* Try the MOVK alias. */
6324 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDEN);
6325 aarch64_replace_opcode (instr, opcode);
6326 if (aarch64_opcode_encode (instr->opcode, instr,
6327 &instr->value, NULL, NULL))
6328 {
6329 put_aarch64_insn (buf, instr->value);
6330 return;
6331 }
6332 }
6333
6334 if (try_mov_bitmask_p)
6335 {
6336 /* Try the ORR alias. */
6337 opcode = aarch64_get_opcode (OP_MOV_IMM_LOG);
6338 aarch64_replace_opcode (instr, opcode);
6339 if (aarch64_opcode_encode (instr->opcode, instr,
6340 &instr->value, NULL, NULL))
6341 {
6342 put_aarch64_insn (buf, instr->value);
6343 return;
6344 }
6345 }
6346
6347 as_bad_where (fixP->fx_file, fixP->fx_line,
6348 _("immediate cannot be moved by a single instruction"));
6349}
6350
6351/* An instruction operand which is immediate related may have symbol used
6352 in the assembly, e.g.
6353
6354 mov w0, u32
6355 .set u32, 0x00ffff00
6356
6357 At the time when the assembly instruction is parsed, a referenced symbol,
6358 like 'u32' in the above example may not have been seen; a fixS is created
6359 in such a case and is handled here after symbols have been resolved.
6360 Instruction is fixed up with VALUE using the information in *FIXP plus
6361 extra information in FLAGS.
6362
6363 This function is called by md_apply_fix to fix up instructions that need
6364 a fix-up described above but does not involve any linker-time relocation. */
6365
6366static void
6367fix_insn (fixS *fixP, uint32_t flags, offsetT value)
6368{
6369 int idx;
6370 uint32_t insn;
6371 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
6372 enum aarch64_opnd opnd = fixP->tc_fix_data.opnd;
6373 aarch64_inst *new_inst = fixP->tc_fix_data.inst;
6374
6375 if (new_inst)
6376 {
6377 /* Now the instruction is about to be fixed-up, so the operand that
6378 was previously marked as 'ignored' needs to be unmarked in order
6379 to get the encoding done properly. */
6380 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
6381 new_inst->operands[idx].skip = 0;
6382 }
6383
6384 gas_assert (opnd != AARCH64_OPND_NIL);
6385
6386 switch (opnd)
6387 {
6388 case AARCH64_OPND_EXCEPTION:
6389 if (unsigned_overflow (value, 16))
6390 as_bad_where (fixP->fx_file, fixP->fx_line,
6391 _("immediate out of range"));
6392 insn = get_aarch64_insn (buf);
6393 insn |= encode_svc_imm (value);
6394 put_aarch64_insn (buf, insn);
6395 break;
6396
6397 case AARCH64_OPND_AIMM:
6398 /* ADD or SUB with immediate.
6399 NOTE this assumes we come here with a add/sub shifted reg encoding
6400 3 322|2222|2 2 2 21111 111111
6401 1 098|7654|3 2 1 09876 543210 98765 43210
6402 0b000000 sf 000|1011|shift 0 Rm imm6 Rn Rd ADD
6403 2b000000 sf 010|1011|shift 0 Rm imm6 Rn Rd ADDS
6404 4b000000 sf 100|1011|shift 0 Rm imm6 Rn Rd SUB
6405 6b000000 sf 110|1011|shift 0 Rm imm6 Rn Rd SUBS
6406 ->
6407 3 322|2222|2 2 221111111111
6408 1 098|7654|3 2 109876543210 98765 43210
6409 11000000 sf 001|0001|shift imm12 Rn Rd ADD
6410 31000000 sf 011|0001|shift imm12 Rn Rd ADDS
6411 51000000 sf 101|0001|shift imm12 Rn Rd SUB
6412 71000000 sf 111|0001|shift imm12 Rn Rd SUBS
6413 Fields sf Rn Rd are already set. */
6414 insn = get_aarch64_insn (buf);
6415 if (value < 0)
6416 {
6417 /* Add <-> sub. */
6418 insn = reencode_addsub_switch_add_sub (insn);
6419 value = -value;
6420 }
6421
6422 if ((flags & FIXUP_F_HAS_EXPLICIT_SHIFT) == 0
6423 && unsigned_overflow (value, 12))
6424 {
6425 /* Try to shift the value by 12 to make it fit. */
6426 if (((value >> 12) << 12) == value
6427 && ! unsigned_overflow (value, 12 + 12))
6428 {
6429 value >>= 12;
6430 insn |= encode_addsub_imm_shift_amount (1);
6431 }
6432 }
6433
6434 if (unsigned_overflow (value, 12))
6435 as_bad_where (fixP->fx_file, fixP->fx_line,
6436 _("immediate out of range"));
6437
6438 insn |= encode_addsub_imm (value);
6439
6440 put_aarch64_insn (buf, insn);
6441 break;
6442
6443 case AARCH64_OPND_SIMD_IMM:
6444 case AARCH64_OPND_SIMD_IMM_SFT:
6445 case AARCH64_OPND_LIMM:
6446 /* Bit mask immediate. */
6447 gas_assert (new_inst != NULL);
6448 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
6449 new_inst->operands[idx].imm.value = value;
6450 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
6451 &new_inst->value, NULL, NULL))
6452 put_aarch64_insn (buf, new_inst->value);
6453 else
6454 as_bad_where (fixP->fx_file, fixP->fx_line,
6455 _("invalid immediate"));
6456 break;
6457
6458 case AARCH64_OPND_HALF:
6459 /* 16-bit unsigned immediate. */
6460 if (unsigned_overflow (value, 16))
6461 as_bad_where (fixP->fx_file, fixP->fx_line,
6462 _("immediate out of range"));
6463 insn = get_aarch64_insn (buf);
6464 insn |= encode_movw_imm (value & 0xffff);
6465 put_aarch64_insn (buf, insn);
6466 break;
6467
6468 case AARCH64_OPND_IMM_MOV:
6469 /* Operand for a generic move immediate instruction, which is
6470 an alias instruction that generates a single MOVZ, MOVN or ORR
6471 instruction to loads a 32-bit/64-bit immediate value into general
6472 register. An assembler error shall result if the immediate cannot be
6473 created by a single one of these instructions. If there is a choice,
6474 then to ensure reversability an assembler must prefer a MOVZ to MOVN,
6475 and MOVZ or MOVN to ORR. */
6476 gas_assert (new_inst != NULL);
6477 fix_mov_imm_insn (fixP, buf, new_inst, value);
6478 break;
6479
6480 case AARCH64_OPND_ADDR_SIMM7:
6481 case AARCH64_OPND_ADDR_SIMM9:
6482 case AARCH64_OPND_ADDR_SIMM9_2:
6483 case AARCH64_OPND_ADDR_UIMM12:
6484 /* Immediate offset in an address. */
6485 insn = get_aarch64_insn (buf);
6486
6487 gas_assert (new_inst != NULL && new_inst->value == insn);
6488 gas_assert (new_inst->opcode->operands[1] == opnd
6489 || new_inst->opcode->operands[2] == opnd);
6490
6491 /* Get the index of the address operand. */
6492 if (new_inst->opcode->operands[1] == opnd)
6493 /* e.g. STR <Xt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
6494 idx = 1;
6495 else
6496 /* e.g. LDP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]. */
6497 idx = 2;
6498
6499 /* Update the resolved offset value. */
6500 new_inst->operands[idx].addr.offset.imm = value;
6501
6502 /* Encode/fix-up. */
6503 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
6504 &new_inst->value, NULL, NULL))
6505 {
6506 put_aarch64_insn (buf, new_inst->value);
6507 break;
6508 }
6509 else if (new_inst->opcode->iclass == ldst_pos
6510 && try_to_encode_as_unscaled_ldst (new_inst))
6511 {
6512 put_aarch64_insn (buf, new_inst->value);
6513 break;
6514 }
6515
6516 as_bad_where (fixP->fx_file, fixP->fx_line,
6517 _("immediate offset out of range"));
6518 break;
6519
6520 default:
6521 gas_assert (0);
6522 as_fatal (_("unhandled operand code %d"), opnd);
6523 }
6524}
6525
6526/* Apply a fixup (fixP) to segment data, once it has been determined
6527 by our caller that we have all the info we need to fix it up.
6528
6529 Parameter valP is the pointer to the value of the bits. */
6530
6531void
6532md_apply_fix (fixS * fixP, valueT * valP, segT seg)
6533{
6534 offsetT value = *valP;
6535 uint32_t insn;
6536 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
6537 int scale;
6538 unsigned flags = fixP->fx_addnumber;
6539
6540 DEBUG_TRACE ("\n\n");
6541 DEBUG_TRACE ("~~~~~~~~~~~~~~~~~~~~~~~~~");
6542 DEBUG_TRACE ("Enter md_apply_fix");
6543
6544 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
6545
6546 /* Note whether this will delete the relocation. */
6547
6548 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
6549 fixP->fx_done = 1;
6550
6551 /* Process the relocations. */
6552 switch (fixP->fx_r_type)
6553 {
6554 case BFD_RELOC_NONE:
6555 /* This will need to go in the object file. */
6556 fixP->fx_done = 0;
6557 break;
6558
6559 case BFD_RELOC_8:
6560 case BFD_RELOC_8_PCREL:
6561 if (fixP->fx_done || !seg->use_rela_p)
6562 md_number_to_chars (buf, value, 1);
6563 break;
6564
6565 case BFD_RELOC_16:
6566 case BFD_RELOC_16_PCREL:
6567 if (fixP->fx_done || !seg->use_rela_p)
6568 md_number_to_chars (buf, value, 2);
6569 break;
6570
6571 case BFD_RELOC_32:
6572 case BFD_RELOC_32_PCREL:
6573 if (fixP->fx_done || !seg->use_rela_p)
6574 md_number_to_chars (buf, value, 4);
6575 break;
6576
6577 case BFD_RELOC_64:
6578 case BFD_RELOC_64_PCREL:
6579 if (fixP->fx_done || !seg->use_rela_p)
6580 md_number_to_chars (buf, value, 8);
6581 break;
6582
6583 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
6584 /* We claim that these fixups have been processed here, even if
6585 in fact we generate an error because we do not have a reloc
6586 for them, so tc_gen_reloc() will reject them. */
6587 fixP->fx_done = 1;
6588 if (fixP->fx_addsy && !S_IS_DEFINED (fixP->fx_addsy))
6589 {
6590 as_bad_where (fixP->fx_file, fixP->fx_line,
6591 _("undefined symbol %s used as an immediate value"),
6592 S_GET_NAME (fixP->fx_addsy));
6593 goto apply_fix_return;
6594 }
6595 fix_insn (fixP, flags, value);
6596 break;
6597
6598 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
a06ea964
NC
6599 if (fixP->fx_done || !seg->use_rela_p)
6600 {
89d2a2a3
MS
6601 if (value & 3)
6602 as_bad_where (fixP->fx_file, fixP->fx_line,
6603 _("pc-relative load offset not word aligned"));
6604 if (signed_overflow (value, 21))
6605 as_bad_where (fixP->fx_file, fixP->fx_line,
6606 _("pc-relative load offset out of range"));
a06ea964
NC
6607 insn = get_aarch64_insn (buf);
6608 insn |= encode_ld_lit_ofs_19 (value >> 2);
6609 put_aarch64_insn (buf, insn);
6610 }
6611 break;
6612
6613 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
a06ea964
NC
6614 if (fixP->fx_done || !seg->use_rela_p)
6615 {
89d2a2a3
MS
6616 if (signed_overflow (value, 21))
6617 as_bad_where (fixP->fx_file, fixP->fx_line,
6618 _("pc-relative address offset out of range"));
a06ea964
NC
6619 insn = get_aarch64_insn (buf);
6620 insn |= encode_adr_imm (value);
6621 put_aarch64_insn (buf, insn);
6622 }
6623 break;
6624
6625 case BFD_RELOC_AARCH64_BRANCH19:
a06ea964
NC
6626 if (fixP->fx_done || !seg->use_rela_p)
6627 {
89d2a2a3
MS
6628 if (value & 3)
6629 as_bad_where (fixP->fx_file, fixP->fx_line,
6630 _("conditional branch target not word aligned"));
6631 if (signed_overflow (value, 21))
6632 as_bad_where (fixP->fx_file, fixP->fx_line,
6633 _("conditional branch out of range"));
a06ea964
NC
6634 insn = get_aarch64_insn (buf);
6635 insn |= encode_cond_branch_ofs_19 (value >> 2);
6636 put_aarch64_insn (buf, insn);
6637 }
6638 break;
6639
6640 case BFD_RELOC_AARCH64_TSTBR14:
a06ea964
NC
6641 if (fixP->fx_done || !seg->use_rela_p)
6642 {
89d2a2a3
MS
6643 if (value & 3)
6644 as_bad_where (fixP->fx_file, fixP->fx_line,
6645 _("conditional branch target not word aligned"));
6646 if (signed_overflow (value, 16))
6647 as_bad_where (fixP->fx_file, fixP->fx_line,
6648 _("conditional branch out of range"));
a06ea964
NC
6649 insn = get_aarch64_insn (buf);
6650 insn |= encode_tst_branch_ofs_14 (value >> 2);
6651 put_aarch64_insn (buf, insn);
6652 }
6653 break;
6654
a06ea964 6655 case BFD_RELOC_AARCH64_CALL26:
f09c556a 6656 case BFD_RELOC_AARCH64_JUMP26:
a06ea964
NC
6657 if (fixP->fx_done || !seg->use_rela_p)
6658 {
89d2a2a3
MS
6659 if (value & 3)
6660 as_bad_where (fixP->fx_file, fixP->fx_line,
6661 _("branch target not word aligned"));
6662 if (signed_overflow (value, 28))
6663 as_bad_where (fixP->fx_file, fixP->fx_line,
6664 _("branch out of range"));
a06ea964
NC
6665 insn = get_aarch64_insn (buf);
6666 insn |= encode_branch_ofs_26 (value >> 2);
6667 put_aarch64_insn (buf, insn);
6668 }
6669 break;
6670
6671 case BFD_RELOC_AARCH64_MOVW_G0:
a06ea964 6672 case BFD_RELOC_AARCH64_MOVW_G0_NC:
f09c556a 6673 case BFD_RELOC_AARCH64_MOVW_G0_S:
a06ea964
NC
6674 scale = 0;
6675 goto movw_common;
6676 case BFD_RELOC_AARCH64_MOVW_G1:
a06ea964 6677 case BFD_RELOC_AARCH64_MOVW_G1_NC:
f09c556a 6678 case BFD_RELOC_AARCH64_MOVW_G1_S:
a06ea964
NC
6679 scale = 16;
6680 goto movw_common;
6681 case BFD_RELOC_AARCH64_MOVW_G2:
a06ea964 6682 case BFD_RELOC_AARCH64_MOVW_G2_NC:
f09c556a 6683 case BFD_RELOC_AARCH64_MOVW_G2_S:
a06ea964
NC
6684 scale = 32;
6685 goto movw_common;
6686 case BFD_RELOC_AARCH64_MOVW_G3:
6687 scale = 48;
6688 movw_common:
6689 if (fixP->fx_done || !seg->use_rela_p)
6690 {
6691 insn = get_aarch64_insn (buf);
6692
6693 if (!fixP->fx_done)
6694 {
6695 /* REL signed addend must fit in 16 bits */
6696 if (signed_overflow (value, 16))
6697 as_bad_where (fixP->fx_file, fixP->fx_line,
6698 _("offset out of range"));
6699 }
6700 else
6701 {
6702 /* Check for overflow and scale. */
6703 switch (fixP->fx_r_type)
6704 {
6705 case BFD_RELOC_AARCH64_MOVW_G0:
6706 case BFD_RELOC_AARCH64_MOVW_G1:
6707 case BFD_RELOC_AARCH64_MOVW_G2:
6708 case BFD_RELOC_AARCH64_MOVW_G3:
6709 if (unsigned_overflow (value, scale + 16))
6710 as_bad_where (fixP->fx_file, fixP->fx_line,
6711 _("unsigned value out of range"));
6712 break;
6713 case BFD_RELOC_AARCH64_MOVW_G0_S:
6714 case BFD_RELOC_AARCH64_MOVW_G1_S:
6715 case BFD_RELOC_AARCH64_MOVW_G2_S:
6716 /* NOTE: We can only come here with movz or movn. */
6717 if (signed_overflow (value, scale + 16))
6718 as_bad_where (fixP->fx_file, fixP->fx_line,
6719 _("signed value out of range"));
6720 if (value < 0)
6721 {
6722 /* Force use of MOVN. */
6723 value = ~value;
6724 insn = reencode_movzn_to_movn (insn);
6725 }
6726 else
6727 {
6728 /* Force use of MOVZ. */
6729 insn = reencode_movzn_to_movz (insn);
6730 }
6731 break;
6732 default:
6733 /* Unchecked relocations. */
6734 break;
6735 }
6736 value >>= scale;
6737 }
6738
6739 /* Insert value into MOVN/MOVZ/MOVK instruction. */
6740 insn |= encode_movw_imm (value & 0xffff);
6741
6742 put_aarch64_insn (buf, insn);
6743 }
6744 break;
6745
a6bb11b2
YZ
6746 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
6747 fixP->fx_r_type = (ilp32_p
6748 ? BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
6749 : BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
6750 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6751 /* Should always be exported to object file, see
6752 aarch64_force_relocation(). */
6753 gas_assert (!fixP->fx_done);
6754 gas_assert (seg->use_rela_p);
6755 break;
6756
6757 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
6758 fixP->fx_r_type = (ilp32_p
6759 ? BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
6760 : BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC);
6761 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6762 /* Should always be exported to object file, see
6763 aarch64_force_relocation(). */
6764 gas_assert (!fixP->fx_done);
6765 gas_assert (seg->use_rela_p);
6766 break;
6767
2c0a3565
MS
6768 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6769 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 6770 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
2c0a3565
MS
6771 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6772 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
1ada945d 6773 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
a06ea964 6774 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
2c0a3565 6775 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 6776 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
a06ea964 6777 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 6778 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
2c0a3565 6779 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 6780 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6c37fedc 6781 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
a06ea964 6782 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
2c0a3565 6783 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a06ea964 6784 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a06ea964
NC
6785 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
6786 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
2c0a3565
MS
6787 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
6788 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6789 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
6790 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6791 /* Should always be exported to object file, see
6792 aarch64_force_relocation(). */
6793 gas_assert (!fixP->fx_done);
6794 gas_assert (seg->use_rela_p);
6795 break;
6796
a6bb11b2
YZ
6797 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
6798 /* Should always be exported to object file, see
6799 aarch64_force_relocation(). */
6800 fixP->fx_r_type = (ilp32_p
6801 ? BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
6802 : BFD_RELOC_AARCH64_LD64_GOT_LO12_NC);
6803 gas_assert (!fixP->fx_done);
6804 gas_assert (seg->use_rela_p);
6805 break;
6806
a06ea964 6807 case BFD_RELOC_AARCH64_ADD_LO12:
f09c556a
JW
6808 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6809 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
6810 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6811 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
6812 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3d715ce4 6813 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
87f5fbcc 6814 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
a921b5bd 6815 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
f09c556a
JW
6816 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
6817 case BFD_RELOC_AARCH64_LDST128_LO12:
a06ea964
NC
6818 case BFD_RELOC_AARCH64_LDST16_LO12:
6819 case BFD_RELOC_AARCH64_LDST32_LO12:
6820 case BFD_RELOC_AARCH64_LDST64_LO12:
f09c556a 6821 case BFD_RELOC_AARCH64_LDST8_LO12:
a06ea964
NC
6822 /* Should always be exported to object file, see
6823 aarch64_force_relocation(). */
6824 gas_assert (!fixP->fx_done);
6825 gas_assert (seg->use_rela_p);
6826 break;
6827
6828 case BFD_RELOC_AARCH64_TLSDESC_ADD:
a06ea964 6829 case BFD_RELOC_AARCH64_TLSDESC_CALL:
f09c556a 6830 case BFD_RELOC_AARCH64_TLSDESC_LDR:
a06ea964
NC
6831 break;
6832
b97e87cc
NC
6833 case BFD_RELOC_UNUSED:
6834 /* An error will already have been reported. */
6835 break;
6836
a06ea964
NC
6837 default:
6838 as_bad_where (fixP->fx_file, fixP->fx_line,
6839 _("unexpected %s fixup"),
6840 bfd_get_reloc_code_name (fixP->fx_r_type));
6841 break;
6842 }
6843
6844apply_fix_return:
6845 /* Free the allocated the struct aarch64_inst.
6846 N.B. currently there are very limited number of fix-up types actually use
6847 this field, so the impact on the performance should be minimal . */
6848 if (fixP->tc_fix_data.inst != NULL)
6849 free (fixP->tc_fix_data.inst);
6850
6851 return;
6852}
6853
6854/* Translate internal representation of relocation info to BFD target
6855 format. */
6856
6857arelent *
6858tc_gen_reloc (asection * section, fixS * fixp)
6859{
6860 arelent *reloc;
6861 bfd_reloc_code_real_type code;
6862
6863 reloc = xmalloc (sizeof (arelent));
6864
6865 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
6866 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
6867 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
6868
6869 if (fixp->fx_pcrel)
6870 {
6871 if (section->use_rela_p)
6872 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
6873 else
6874 fixp->fx_offset = reloc->address;
6875 }
6876 reloc->addend = fixp->fx_offset;
6877
6878 code = fixp->fx_r_type;
6879 switch (code)
6880 {
6881 case BFD_RELOC_16:
6882 if (fixp->fx_pcrel)
6883 code = BFD_RELOC_16_PCREL;
6884 break;
6885
6886 case BFD_RELOC_32:
6887 if (fixp->fx_pcrel)
6888 code = BFD_RELOC_32_PCREL;
6889 break;
6890
6891 case BFD_RELOC_64:
6892 if (fixp->fx_pcrel)
6893 code = BFD_RELOC_64_PCREL;
6894 break;
6895
6896 default:
6897 break;
6898 }
6899
6900 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6901 if (reloc->howto == NULL)
6902 {
6903 as_bad_where (fixp->fx_file, fixp->fx_line,
6904 _
6905 ("cannot represent %s relocation in this object file format"),
6906 bfd_get_reloc_code_name (code));
6907 return NULL;
6908 }
6909
6910 return reloc;
6911}
6912
6913/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6914
6915void
6916cons_fix_new_aarch64 (fragS * frag, int where, int size, expressionS * exp)
6917{
6918 bfd_reloc_code_real_type type;
6919 int pcrel = 0;
6920
6921 /* Pick a reloc.
6922 FIXME: @@ Should look at CPU word size. */
6923 switch (size)
6924 {
6925 case 1:
6926 type = BFD_RELOC_8;
6927 break;
6928 case 2:
6929 type = BFD_RELOC_16;
6930 break;
6931 case 4:
6932 type = BFD_RELOC_32;
6933 break;
6934 case 8:
6935 type = BFD_RELOC_64;
6936 break;
6937 default:
6938 as_bad (_("cannot do %u-byte relocation"), size);
6939 type = BFD_RELOC_UNUSED;
6940 break;
6941 }
6942
6943 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
6944}
6945
6946int
6947aarch64_force_relocation (struct fix *fixp)
6948{
6949 switch (fixp->fx_r_type)
6950 {
6951 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
6952 /* Perform these "immediate" internal relocations
6953 even if the symbol is extern or weak. */
6954 return 0;
6955
a6bb11b2 6956 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
f09c556a
JW
6957 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
6958 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
a6bb11b2
YZ
6959 /* Pseudo relocs that need to be fixed up according to
6960 ilp32_p. */
6961 return 0;
6962
2c0a3565
MS
6963 case BFD_RELOC_AARCH64_ADD_LO12:
6964 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6965 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
6966 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6967 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
6968 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3d715ce4 6969 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
87f5fbcc 6970 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
a921b5bd 6971 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
2c0a3565
MS
6972 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
6973 case BFD_RELOC_AARCH64_LDST128_LO12:
6974 case BFD_RELOC_AARCH64_LDST16_LO12:
6975 case BFD_RELOC_AARCH64_LDST32_LO12:
6976 case BFD_RELOC_AARCH64_LDST64_LO12:
6977 case BFD_RELOC_AARCH64_LDST8_LO12:
6978 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6979 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 6980 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
2c0a3565
MS
6981 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6982 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
1ada945d 6983 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
a06ea964 6984 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
2c0a3565 6985 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 6986 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
a06ea964 6987 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 6988 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
2c0a3565 6989 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 6990 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6c37fedc 6991 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
a06ea964 6992 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
2c0a3565 6993 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a06ea964 6994 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a06ea964
NC
6995 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
6996 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
2c0a3565
MS
6997 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
6998 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6999 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
7000 /* Always leave these relocations for the linker. */
7001 return 1;
7002
7003 default:
7004 break;
7005 }
7006
7007 return generic_force_reloc (fixp);
7008}
7009
7010#ifdef OBJ_ELF
7011
7012const char *
7013elf64_aarch64_target_format (void)
7014{
7015 if (target_big_endian)
cec5225b 7016 return ilp32_p ? "elf32-bigaarch64" : "elf64-bigaarch64";
a06ea964 7017 else
cec5225b 7018 return ilp32_p ? "elf32-littleaarch64" : "elf64-littleaarch64";
a06ea964
NC
7019}
7020
7021void
7022aarch64elf_frob_symbol (symbolS * symp, int *puntp)
7023{
7024 elf_frob_symbol (symp, puntp);
7025}
7026#endif
7027
7028/* MD interface: Finalization. */
7029
7030/* A good place to do this, although this was probably not intended
7031 for this kind of use. We need to dump the literal pool before
7032 references are made to a null symbol pointer. */
7033
7034void
7035aarch64_cleanup (void)
7036{
7037 literal_pool *pool;
7038
7039 for (pool = list_of_pools; pool; pool = pool->next)
7040 {
7041 /* Put it at the end of the relevant section. */
7042 subseg_set (pool->section, pool->sub_section);
7043 s_ltorg (0);
7044 }
7045}
7046
7047#ifdef OBJ_ELF
7048/* Remove any excess mapping symbols generated for alignment frags in
7049 SEC. We may have created a mapping symbol before a zero byte
7050 alignment; remove it if there's a mapping symbol after the
7051 alignment. */
7052static void
7053check_mapping_symbols (bfd * abfd ATTRIBUTE_UNUSED, asection * sec,
7054 void *dummy ATTRIBUTE_UNUSED)
7055{
7056 segment_info_type *seginfo = seg_info (sec);
7057 fragS *fragp;
7058
7059 if (seginfo == NULL || seginfo->frchainP == NULL)
7060 return;
7061
7062 for (fragp = seginfo->frchainP->frch_root;
7063 fragp != NULL; fragp = fragp->fr_next)
7064 {
7065 symbolS *sym = fragp->tc_frag_data.last_map;
7066 fragS *next = fragp->fr_next;
7067
7068 /* Variable-sized frags have been converted to fixed size by
7069 this point. But if this was variable-sized to start with,
7070 there will be a fixed-size frag after it. So don't handle
7071 next == NULL. */
7072 if (sym == NULL || next == NULL)
7073 continue;
7074
7075 if (S_GET_VALUE (sym) < next->fr_address)
7076 /* Not at the end of this frag. */
7077 continue;
7078 know (S_GET_VALUE (sym) == next->fr_address);
7079
7080 do
7081 {
7082 if (next->tc_frag_data.first_map != NULL)
7083 {
7084 /* Next frag starts with a mapping symbol. Discard this
7085 one. */
7086 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
7087 break;
7088 }
7089
7090 if (next->fr_next == NULL)
7091 {
7092 /* This mapping symbol is at the end of the section. Discard
7093 it. */
7094 know (next->fr_fix == 0 && next->fr_var == 0);
7095 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
7096 break;
7097 }
7098
7099 /* As long as we have empty frags without any mapping symbols,
7100 keep looking. */
7101 /* If the next frag is non-empty and does not start with a
7102 mapping symbol, then this mapping symbol is required. */
7103 if (next->fr_address != next->fr_next->fr_address)
7104 break;
7105
7106 next = next->fr_next;
7107 }
7108 while (next != NULL);
7109 }
7110}
7111#endif
7112
7113/* Adjust the symbol table. */
7114
7115void
7116aarch64_adjust_symtab (void)
7117{
7118#ifdef OBJ_ELF
7119 /* Remove any overlapping mapping symbols generated by alignment frags. */
7120 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
7121 /* Now do generic ELF adjustments. */
7122 elf_adjust_symtab ();
7123#endif
7124}
7125
7126static void
7127checked_hash_insert (struct hash_control *table, const char *key, void *value)
7128{
7129 const char *hash_err;
7130
7131 hash_err = hash_insert (table, key, value);
7132 if (hash_err)
7133 printf ("Internal Error: Can't hash %s\n", key);
7134}
7135
7136static void
7137fill_instruction_hash_table (void)
7138{
7139 aarch64_opcode *opcode = aarch64_opcode_table;
7140
7141 while (opcode->name != NULL)
7142 {
7143 templates *templ, *new_templ;
7144 templ = hash_find (aarch64_ops_hsh, opcode->name);
7145
7146 new_templ = (templates *) xmalloc (sizeof (templates));
7147 new_templ->opcode = opcode;
7148 new_templ->next = NULL;
7149
7150 if (!templ)
7151 checked_hash_insert (aarch64_ops_hsh, opcode->name, (void *) new_templ);
7152 else
7153 {
7154 new_templ->next = templ->next;
7155 templ->next = new_templ;
7156 }
7157 ++opcode;
7158 }
7159}
7160
7161static inline void
7162convert_to_upper (char *dst, const char *src, size_t num)
7163{
7164 unsigned int i;
7165 for (i = 0; i < num && *src != '\0'; ++i, ++dst, ++src)
7166 *dst = TOUPPER (*src);
7167 *dst = '\0';
7168}
7169
7170/* Assume STR point to a lower-case string, allocate, convert and return
7171 the corresponding upper-case string. */
7172static inline const char*
7173get_upper_str (const char *str)
7174{
7175 char *ret;
7176 size_t len = strlen (str);
7177 if ((ret = xmalloc (len + 1)) == NULL)
7178 abort ();
7179 convert_to_upper (ret, str, len);
7180 return ret;
7181}
7182
7183/* MD interface: Initialization. */
7184
7185void
7186md_begin (void)
7187{
7188 unsigned mach;
7189 unsigned int i;
7190
7191 if ((aarch64_ops_hsh = hash_new ()) == NULL
7192 || (aarch64_cond_hsh = hash_new ()) == NULL
7193 || (aarch64_shift_hsh = hash_new ()) == NULL
7194 || (aarch64_sys_regs_hsh = hash_new ()) == NULL
7195 || (aarch64_pstatefield_hsh = hash_new ()) == NULL
7196 || (aarch64_sys_regs_ic_hsh = hash_new ()) == NULL
7197 || (aarch64_sys_regs_dc_hsh = hash_new ()) == NULL
7198 || (aarch64_sys_regs_at_hsh = hash_new ()) == NULL
7199 || (aarch64_sys_regs_tlbi_hsh = hash_new ()) == NULL
7200 || (aarch64_reg_hsh = hash_new ()) == NULL
7201 || (aarch64_barrier_opt_hsh = hash_new ()) == NULL
7202 || (aarch64_nzcv_hsh = hash_new ()) == NULL
7203 || (aarch64_pldop_hsh = hash_new ()) == NULL)
7204 as_fatal (_("virtual memory exhausted"));
7205
7206 fill_instruction_hash_table ();
7207
7208 for (i = 0; aarch64_sys_regs[i].name != NULL; ++i)
7209 checked_hash_insert (aarch64_sys_regs_hsh, aarch64_sys_regs[i].name,
7210 (void *) (aarch64_sys_regs + i));
7211
7212 for (i = 0; aarch64_pstatefields[i].name != NULL; ++i)
7213 checked_hash_insert (aarch64_pstatefield_hsh,
7214 aarch64_pstatefields[i].name,
7215 (void *) (aarch64_pstatefields + i));
7216
7217 for (i = 0; aarch64_sys_regs_ic[i].template != NULL; i++)
7218 checked_hash_insert (aarch64_sys_regs_ic_hsh,
7219 aarch64_sys_regs_ic[i].template,
7220 (void *) (aarch64_sys_regs_ic + i));
7221
7222 for (i = 0; aarch64_sys_regs_dc[i].template != NULL; i++)
7223 checked_hash_insert (aarch64_sys_regs_dc_hsh,
7224 aarch64_sys_regs_dc[i].template,
7225 (void *) (aarch64_sys_regs_dc + i));
7226
7227 for (i = 0; aarch64_sys_regs_at[i].template != NULL; i++)
7228 checked_hash_insert (aarch64_sys_regs_at_hsh,
7229 aarch64_sys_regs_at[i].template,
7230 (void *) (aarch64_sys_regs_at + i));
7231
7232 for (i = 0; aarch64_sys_regs_tlbi[i].template != NULL; i++)
7233 checked_hash_insert (aarch64_sys_regs_tlbi_hsh,
7234 aarch64_sys_regs_tlbi[i].template,
7235 (void *) (aarch64_sys_regs_tlbi + i));
7236
7237 for (i = 0; i < ARRAY_SIZE (reg_names); i++)
7238 checked_hash_insert (aarch64_reg_hsh, reg_names[i].name,
7239 (void *) (reg_names + i));
7240
7241 for (i = 0; i < ARRAY_SIZE (nzcv_names); i++)
7242 checked_hash_insert (aarch64_nzcv_hsh, nzcv_names[i].template,
7243 (void *) (nzcv_names + i));
7244
7245 for (i = 0; aarch64_operand_modifiers[i].name != NULL; i++)
7246 {
7247 const char *name = aarch64_operand_modifiers[i].name;
7248 checked_hash_insert (aarch64_shift_hsh, name,
7249 (void *) (aarch64_operand_modifiers + i));
7250 /* Also hash the name in the upper case. */
7251 checked_hash_insert (aarch64_shift_hsh, get_upper_str (name),
7252 (void *) (aarch64_operand_modifiers + i));
7253 }
7254
7255 for (i = 0; i < ARRAY_SIZE (aarch64_conds); i++)
7256 {
7257 unsigned int j;
7258 /* A condition code may have alias(es), e.g. "cc", "lo" and "ul" are
7259 the same condition code. */
7260 for (j = 0; j < ARRAY_SIZE (aarch64_conds[i].names); ++j)
7261 {
7262 const char *name = aarch64_conds[i].names[j];
7263 if (name == NULL)
7264 break;
7265 checked_hash_insert (aarch64_cond_hsh, name,
7266 (void *) (aarch64_conds + i));
7267 /* Also hash the name in the upper case. */
7268 checked_hash_insert (aarch64_cond_hsh, get_upper_str (name),
7269 (void *) (aarch64_conds + i));
7270 }
7271 }
7272
7273 for (i = 0; i < ARRAY_SIZE (aarch64_barrier_options); i++)
7274 {
7275 const char *name = aarch64_barrier_options[i].name;
7276 /* Skip xx00 - the unallocated values of option. */
7277 if ((i & 0x3) == 0)
7278 continue;
7279 checked_hash_insert (aarch64_barrier_opt_hsh, name,
7280 (void *) (aarch64_barrier_options + i));
7281 /* Also hash the name in the upper case. */
7282 checked_hash_insert (aarch64_barrier_opt_hsh, get_upper_str (name),
7283 (void *) (aarch64_barrier_options + i));
7284 }
7285
7286 for (i = 0; i < ARRAY_SIZE (aarch64_prfops); i++)
7287 {
7288 const char* name = aarch64_prfops[i].name;
a1ccaec9
YZ
7289 /* Skip the unallocated hint encodings. */
7290 if (name == NULL)
a06ea964
NC
7291 continue;
7292 checked_hash_insert (aarch64_pldop_hsh, name,
7293 (void *) (aarch64_prfops + i));
7294 /* Also hash the name in the upper case. */
7295 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
7296 (void *) (aarch64_prfops + i));
7297 }
7298
7299 /* Set the cpu variant based on the command-line options. */
7300 if (!mcpu_cpu_opt)
7301 mcpu_cpu_opt = march_cpu_opt;
7302
7303 if (!mcpu_cpu_opt)
7304 mcpu_cpu_opt = &cpu_default;
7305
7306 cpu_variant = *mcpu_cpu_opt;
7307
7308 /* Record the CPU type. */
cec5225b 7309 mach = ilp32_p ? bfd_mach_aarch64_ilp32 : bfd_mach_aarch64;
a06ea964
NC
7310
7311 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
7312}
7313
7314/* Command line processing. */
7315
7316const char *md_shortopts = "m:";
7317
7318#ifdef AARCH64_BI_ENDIAN
7319#define OPTION_EB (OPTION_MD_BASE + 0)
7320#define OPTION_EL (OPTION_MD_BASE + 1)
7321#else
7322#if TARGET_BYTES_BIG_ENDIAN
7323#define OPTION_EB (OPTION_MD_BASE + 0)
7324#else
7325#define OPTION_EL (OPTION_MD_BASE + 1)
7326#endif
7327#endif
7328
7329struct option md_longopts[] = {
7330#ifdef OPTION_EB
7331 {"EB", no_argument, NULL, OPTION_EB},
7332#endif
7333#ifdef OPTION_EL
7334 {"EL", no_argument, NULL, OPTION_EL},
7335#endif
7336 {NULL, no_argument, NULL, 0}
7337};
7338
7339size_t md_longopts_size = sizeof (md_longopts);
7340
7341struct aarch64_option_table
7342{
7343 char *option; /* Option name to match. */
7344 char *help; /* Help information. */
7345 int *var; /* Variable to change. */
7346 int value; /* What to change it to. */
7347 char *deprecated; /* If non-null, print this message. */
7348};
7349
7350static struct aarch64_option_table aarch64_opts[] = {
7351 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
7352 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
7353 NULL},
7354#ifdef DEBUG_AARCH64
7355 {"mdebug-dump", N_("temporary switch for dumping"), &debug_dump, 1, NULL},
7356#endif /* DEBUG_AARCH64 */
7357 {"mverbose-error", N_("output verbose error messages"), &verbose_error_p, 1,
7358 NULL},
a52e6fd3
YZ
7359 {"mno-verbose-error", N_("do not output verbose error messages"),
7360 &verbose_error_p, 0, NULL},
a06ea964
NC
7361 {NULL, NULL, NULL, 0, NULL}
7362};
7363
7364struct aarch64_cpu_option_table
7365{
7366 char *name;
7367 const aarch64_feature_set value;
7368 /* The canonical name of the CPU, or NULL to use NAME converted to upper
7369 case. */
7370 const char *canonical_name;
7371};
7372
7373/* This list should, at a minimum, contain all the cpu names
7374 recognized by GCC. */
7375static const struct aarch64_cpu_option_table aarch64_cpus[] = {
7376 {"all", AARCH64_ANY, NULL},
aa31c464
JW
7377 {"cortex-a53", AARCH64_FEATURE (AARCH64_ARCH_V8,
7378 AARCH64_FEATURE_CRC), "Cortex-A53"},
7379 {"cortex-a57", AARCH64_FEATURE (AARCH64_ARCH_V8,
7380 AARCH64_FEATURE_CRC), "Cortex-A57"},
2abdd192
JW
7381 {"cortex-a72", AARCH64_FEATURE (AARCH64_ARCH_V8,
7382 AARCH64_FEATURE_CRC), "Cortex-A72"},
2412d878
EM
7383 {"exynos-m1", AARCH64_FEATURE (AARCH64_ARCH_V8,
7384 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
7385 "Samsung Exynos M1"},
faade851
JW
7386 {"thunderx", AARCH64_FEATURE (AARCH64_ARCH_V8,
7387 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
7388 "Cavium ThunderX"},
070cb956
PT
7389 /* The 'xgene-1' name is an older name for 'xgene1', which was used
7390 in earlier releases and is superseded by 'xgene1' in all
7391 tools. */
9877c63c 7392 {"xgene-1", AARCH64_ARCH_V8, "APM X-Gene 1"},
070cb956 7393 {"xgene1", AARCH64_ARCH_V8, "APM X-Gene 1"},
aa31c464
JW
7394 {"xgene2", AARCH64_FEATURE (AARCH64_ARCH_V8,
7395 AARCH64_FEATURE_CRC), "APM X-Gene 2"},
a06ea964
NC
7396 {"generic", AARCH64_ARCH_V8, NULL},
7397
a06ea964
NC
7398 {NULL, AARCH64_ARCH_NONE, NULL}
7399};
7400
7401struct aarch64_arch_option_table
7402{
7403 char *name;
7404 const aarch64_feature_set value;
7405};
7406
7407/* This list should, at a minimum, contain all the architecture names
7408 recognized by GCC. */
7409static const struct aarch64_arch_option_table aarch64_archs[] = {
7410 {"all", AARCH64_ANY},
5a1ad39d 7411 {"armv8-a", AARCH64_ARCH_V8},
88f0ea34 7412 {"armv8.1-a", AARCH64_ARCH_V8_1},
a06ea964
NC
7413 {NULL, AARCH64_ARCH_NONE}
7414};
7415
7416/* ISA extensions. */
7417struct aarch64_option_cpu_value_table
7418{
7419 char *name;
7420 const aarch64_feature_set value;
7421};
7422
7423static const struct aarch64_option_cpu_value_table aarch64_features[] = {
e60bb1dd 7424 {"crc", AARCH64_FEATURE (AARCH64_FEATURE_CRC, 0)},
a06ea964
NC
7425 {"crypto", AARCH64_FEATURE (AARCH64_FEATURE_CRYPTO, 0)},
7426 {"fp", AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
ee804238 7427 {"lse", AARCH64_FEATURE (AARCH64_FEATURE_LSE, 0)},
a06ea964 7428 {"simd", AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
72ca8fad 7429 {"pan", AARCH64_FEATURE (AARCH64_FEATURE_PAN, 0)},
290806fd 7430 {"lor", AARCH64_FEATURE (AARCH64_FEATURE_LOR, 0)},
9e1f0fa7
MW
7431 {"rdma", AARCH64_FEATURE (AARCH64_FEATURE_SIMD
7432 | AARCH64_FEATURE_RDMA, 0)},
a06ea964
NC
7433 {NULL, AARCH64_ARCH_NONE}
7434};
7435
7436struct aarch64_long_option_table
7437{
7438 char *option; /* Substring to match. */
7439 char *help; /* Help information. */
7440 int (*func) (char *subopt); /* Function to decode sub-option. */
7441 char *deprecated; /* If non-null, print this message. */
7442};
7443
7444static int
ae527cd8
JB
7445aarch64_parse_features (char *str, const aarch64_feature_set **opt_p,
7446 bfd_boolean ext_only)
a06ea964
NC
7447{
7448 /* We insist on extensions being added before being removed. We achieve
7449 this by using the ADDING_VALUE variable to indicate whether we are
7450 adding an extension (1) or removing it (0) and only allowing it to
7451 change in the order -1 -> 1 -> 0. */
7452 int adding_value = -1;
7453 aarch64_feature_set *ext_set = xmalloc (sizeof (aarch64_feature_set));
7454
7455 /* Copy the feature set, so that we can modify it. */
7456 *ext_set = **opt_p;
7457 *opt_p = ext_set;
7458
7459 while (str != NULL && *str != 0)
7460 {
7461 const struct aarch64_option_cpu_value_table *opt;
ae527cd8 7462 char *ext = NULL;
a06ea964
NC
7463 int optlen;
7464
ae527cd8 7465 if (!ext_only)
a06ea964 7466 {
ae527cd8
JB
7467 if (*str != '+')
7468 {
7469 as_bad (_("invalid architectural extension"));
7470 return 0;
7471 }
a06ea964 7472
ae527cd8
JB
7473 ext = strchr (++str, '+');
7474 }
a06ea964
NC
7475
7476 if (ext != NULL)
7477 optlen = ext - str;
7478 else
7479 optlen = strlen (str);
7480
7481 if (optlen >= 2 && strncmp (str, "no", 2) == 0)
7482 {
7483 if (adding_value != 0)
7484 adding_value = 0;
7485 optlen -= 2;
7486 str += 2;
7487 }
7488 else if (optlen > 0)
7489 {
7490 if (adding_value == -1)
7491 adding_value = 1;
7492 else if (adding_value != 1)
7493 {
7494 as_bad (_("must specify extensions to add before specifying "
7495 "those to remove"));
7496 return FALSE;
7497 }
7498 }
7499
7500 if (optlen == 0)
7501 {
7502 as_bad (_("missing architectural extension"));
7503 return 0;
7504 }
7505
7506 gas_assert (adding_value != -1);
7507
7508 for (opt = aarch64_features; opt->name != NULL; opt++)
7509 if (strncmp (opt->name, str, optlen) == 0)
7510 {
7511 /* Add or remove the extension. */
7512 if (adding_value)
7513 AARCH64_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
7514 else
7515 AARCH64_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
7516 break;
7517 }
7518
7519 if (opt->name == NULL)
7520 {
7521 as_bad (_("unknown architectural extension `%s'"), str);
7522 return 0;
7523 }
7524
7525 str = ext;
7526 };
7527
7528 return 1;
7529}
7530
7531static int
7532aarch64_parse_cpu (char *str)
7533{
7534 const struct aarch64_cpu_option_table *opt;
7535 char *ext = strchr (str, '+');
7536 size_t optlen;
7537
7538 if (ext != NULL)
7539 optlen = ext - str;
7540 else
7541 optlen = strlen (str);
7542
7543 if (optlen == 0)
7544 {
7545 as_bad (_("missing cpu name `%s'"), str);
7546 return 0;
7547 }
7548
7549 for (opt = aarch64_cpus; opt->name != NULL; opt++)
7550 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
7551 {
7552 mcpu_cpu_opt = &opt->value;
7553 if (ext != NULL)
ae527cd8 7554 return aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE);
a06ea964
NC
7555
7556 return 1;
7557 }
7558
7559 as_bad (_("unknown cpu `%s'"), str);
7560 return 0;
7561}
7562
7563static int
7564aarch64_parse_arch (char *str)
7565{
7566 const struct aarch64_arch_option_table *opt;
7567 char *ext = strchr (str, '+');
7568 size_t optlen;
7569
7570 if (ext != NULL)
7571 optlen = ext - str;
7572 else
7573 optlen = strlen (str);
7574
7575 if (optlen == 0)
7576 {
7577 as_bad (_("missing architecture name `%s'"), str);
7578 return 0;
7579 }
7580
7581 for (opt = aarch64_archs; opt->name != NULL; opt++)
7582 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
7583 {
7584 march_cpu_opt = &opt->value;
7585 if (ext != NULL)
ae527cd8 7586 return aarch64_parse_features (ext, &march_cpu_opt, FALSE);
a06ea964
NC
7587
7588 return 1;
7589 }
7590
7591 as_bad (_("unknown architecture `%s'\n"), str);
7592 return 0;
7593}
7594
69091a2c
YZ
7595/* ABIs. */
7596struct aarch64_option_abi_value_table
7597{
7598 char *name;
7599 enum aarch64_abi_type value;
7600};
7601
7602static const struct aarch64_option_abi_value_table aarch64_abis[] = {
7603 {"ilp32", AARCH64_ABI_ILP32},
7604 {"lp64", AARCH64_ABI_LP64},
7605 {NULL, 0}
7606};
7607
7608static int
7609aarch64_parse_abi (char *str)
7610{
7611 const struct aarch64_option_abi_value_table *opt;
7612 size_t optlen = strlen (str);
7613
7614 if (optlen == 0)
7615 {
7616 as_bad (_("missing abi name `%s'"), str);
7617 return 0;
7618 }
7619
7620 for (opt = aarch64_abis; opt->name != NULL; opt++)
7621 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
7622 {
7623 aarch64_abi = opt->value;
7624 return 1;
7625 }
7626
7627 as_bad (_("unknown abi `%s'\n"), str);
7628 return 0;
7629}
7630
a06ea964 7631static struct aarch64_long_option_table aarch64_long_opts[] = {
69091a2c
YZ
7632#ifdef OBJ_ELF
7633 {"mabi=", N_("<abi name>\t specify for ABI <abi name>"),
7634 aarch64_parse_abi, NULL},
7635#endif /* OBJ_ELF */
a06ea964
NC
7636 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
7637 aarch64_parse_cpu, NULL},
7638 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
7639 aarch64_parse_arch, NULL},
7640 {NULL, NULL, 0, NULL}
7641};
7642
7643int
7644md_parse_option (int c, char *arg)
7645{
7646 struct aarch64_option_table *opt;
7647 struct aarch64_long_option_table *lopt;
7648
7649 switch (c)
7650 {
7651#ifdef OPTION_EB
7652 case OPTION_EB:
7653 target_big_endian = 1;
7654 break;
7655#endif
7656
7657#ifdef OPTION_EL
7658 case OPTION_EL:
7659 target_big_endian = 0;
7660 break;
7661#endif
7662
7663 case 'a':
7664 /* Listing option. Just ignore these, we don't support additional
7665 ones. */
7666 return 0;
7667
7668 default:
7669 for (opt = aarch64_opts; opt->option != NULL; opt++)
7670 {
7671 if (c == opt->option[0]
7672 && ((arg == NULL && opt->option[1] == 0)
7673 || streq (arg, opt->option + 1)))
7674 {
7675 /* If the option is deprecated, tell the user. */
7676 if (opt->deprecated != NULL)
7677 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
7678 arg ? arg : "", _(opt->deprecated));
7679
7680 if (opt->var != NULL)
7681 *opt->var = opt->value;
7682
7683 return 1;
7684 }
7685 }
7686
7687 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
7688 {
7689 /* These options are expected to have an argument. */
7690 if (c == lopt->option[0]
7691 && arg != NULL
7692 && strncmp (arg, lopt->option + 1,
7693 strlen (lopt->option + 1)) == 0)
7694 {
7695 /* If the option is deprecated, tell the user. */
7696 if (lopt->deprecated != NULL)
7697 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
7698 _(lopt->deprecated));
7699
7700 /* Call the sup-option parser. */
7701 return lopt->func (arg + strlen (lopt->option) - 1);
7702 }
7703 }
7704
7705 return 0;
7706 }
7707
7708 return 1;
7709}
7710
7711void
7712md_show_usage (FILE * fp)
7713{
7714 struct aarch64_option_table *opt;
7715 struct aarch64_long_option_table *lopt;
7716
7717 fprintf (fp, _(" AArch64-specific assembler options:\n"));
7718
7719 for (opt = aarch64_opts; opt->option != NULL; opt++)
7720 if (opt->help != NULL)
7721 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
7722
7723 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
7724 if (lopt->help != NULL)
7725 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
7726
7727#ifdef OPTION_EB
7728 fprintf (fp, _("\
7729 -EB assemble code for a big-endian cpu\n"));
7730#endif
7731
7732#ifdef OPTION_EL
7733 fprintf (fp, _("\
7734 -EL assemble code for a little-endian cpu\n"));
7735#endif
7736}
7737
7738/* Parse a .cpu directive. */
7739
7740static void
7741s_aarch64_cpu (int ignored ATTRIBUTE_UNUSED)
7742{
7743 const struct aarch64_cpu_option_table *opt;
7744 char saved_char;
7745 char *name;
7746 char *ext;
7747 size_t optlen;
7748
7749 name = input_line_pointer;
7750 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7751 input_line_pointer++;
7752 saved_char = *input_line_pointer;
7753 *input_line_pointer = 0;
7754
7755 ext = strchr (name, '+');
7756
7757 if (ext != NULL)
7758 optlen = ext - name;
7759 else
7760 optlen = strlen (name);
7761
7762 /* Skip the first "all" entry. */
7763 for (opt = aarch64_cpus + 1; opt->name != NULL; opt++)
7764 if (strlen (opt->name) == optlen
7765 && strncmp (name, opt->name, optlen) == 0)
7766 {
7767 mcpu_cpu_opt = &opt->value;
7768 if (ext != NULL)
ae527cd8 7769 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
a06ea964
NC
7770 return;
7771
7772 cpu_variant = *mcpu_cpu_opt;
7773
7774 *input_line_pointer = saved_char;
7775 demand_empty_rest_of_line ();
7776 return;
7777 }
7778 as_bad (_("unknown cpu `%s'"), name);
7779 *input_line_pointer = saved_char;
7780 ignore_rest_of_line ();
7781}
7782
7783
7784/* Parse a .arch directive. */
7785
7786static void
7787s_aarch64_arch (int ignored ATTRIBUTE_UNUSED)
7788{
7789 const struct aarch64_arch_option_table *opt;
7790 char saved_char;
7791 char *name;
7792 char *ext;
7793 size_t optlen;
7794
7795 name = input_line_pointer;
7796 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7797 input_line_pointer++;
7798 saved_char = *input_line_pointer;
7799 *input_line_pointer = 0;
7800
7801 ext = strchr (name, '+');
7802
7803 if (ext != NULL)
7804 optlen = ext - name;
7805 else
7806 optlen = strlen (name);
7807
7808 /* Skip the first "all" entry. */
7809 for (opt = aarch64_archs + 1; opt->name != NULL; opt++)
7810 if (strlen (opt->name) == optlen
7811 && strncmp (name, opt->name, optlen) == 0)
7812 {
7813 mcpu_cpu_opt = &opt->value;
7814 if (ext != NULL)
ae527cd8 7815 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
a06ea964
NC
7816 return;
7817
7818 cpu_variant = *mcpu_cpu_opt;
7819
7820 *input_line_pointer = saved_char;
7821 demand_empty_rest_of_line ();
7822 return;
7823 }
7824
7825 as_bad (_("unknown architecture `%s'\n"), name);
7826 *input_line_pointer = saved_char;
7827 ignore_rest_of_line ();
7828}
7829
ae527cd8
JB
7830/* Parse a .arch_extension directive. */
7831
7832static void
7833s_aarch64_arch_extension (int ignored ATTRIBUTE_UNUSED)
7834{
7835 char saved_char;
7836 char *ext = input_line_pointer;;
7837
7838 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7839 input_line_pointer++;
7840 saved_char = *input_line_pointer;
7841 *input_line_pointer = 0;
7842
7843 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, TRUE))
7844 return;
7845
7846 cpu_variant = *mcpu_cpu_opt;
7847
7848 *input_line_pointer = saved_char;
7849 demand_empty_rest_of_line ();
7850}
7851
a06ea964
NC
7852/* Copy symbol information. */
7853
7854void
7855aarch64_copy_symbol_attributes (symbolS * dest, symbolS * src)
7856{
7857 AARCH64_GET_FLAG (dest) = AARCH64_GET_FLAG (src);
7858}
This page took 0.748407 seconds and 4 git commands to generate.