Allow non-fatal errors to be emitted and for disassembly notes be placed on AArch64
[deliverable/binutils-gdb.git] / gas / config / tc-aarch64.c
CommitLineData
a06ea964
NC
1/* tc-aarch64.c -- Assemble for the AArch64 ISA
2
219d1afa 3 Copyright (C) 2009-2018 Free Software Foundation, Inc.
a06ea964
NC
4 Contributed by ARM Ltd.
5
6 This file is part of GAS.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the license, or
11 (at your option) any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING3. If not,
20 see <http://www.gnu.org/licenses/>. */
21
22#include "as.h"
23#include <limits.h>
24#include <stdarg.h>
25#include "bfd_stdint.h"
26#define NO_RELOC 0
27#include "safe-ctype.h"
28#include "subsegs.h"
29#include "obstack.h"
30
31#ifdef OBJ_ELF
32#include "elf/aarch64.h"
33#include "dw2gencfi.h"
34#endif
35
36#include "dwarf2dbg.h"
37
38/* Types of processor to assemble for. */
39#ifndef CPU_DEFAULT
40#define CPU_DEFAULT AARCH64_ARCH_V8
41#endif
42
43#define streq(a, b) (strcmp (a, b) == 0)
44
f4c51f60
JW
45#define END_OF_INSN '\0'
46
a06ea964
NC
47static aarch64_feature_set cpu_variant;
48
49/* Variables that we set while parsing command-line options. Once all
50 options have been read we re-process these values to set the real
51 assembly flags. */
52static const aarch64_feature_set *mcpu_cpu_opt = NULL;
53static const aarch64_feature_set *march_cpu_opt = NULL;
54
55/* Constants for known architecture features. */
56static const aarch64_feature_set cpu_default = CPU_DEFAULT;
57
a06ea964
NC
58#ifdef OBJ_ELF
59/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
60static symbolS *GOT_symbol;
cec5225b 61
69091a2c
YZ
62/* Which ABI to use. */
63enum aarch64_abi_type
64{
3c0367d0
JW
65 AARCH64_ABI_NONE = 0,
66 AARCH64_ABI_LP64 = 1,
67 AARCH64_ABI_ILP32 = 2
69091a2c
YZ
68};
69
3c0367d0
JW
70#ifndef DEFAULT_ARCH
71#define DEFAULT_ARCH "aarch64"
72#endif
73
74/* DEFAULT_ARCH is initialized in gas/configure.tgt. */
75static const char *default_arch = DEFAULT_ARCH;
76
69091a2c 77/* AArch64 ABI for the output file. */
3c0367d0 78static enum aarch64_abi_type aarch64_abi = AARCH64_ABI_NONE;
69091a2c 79
cec5225b
YZ
80/* When non-zero, program to a 32-bit model, in which the C data types
81 int, long and all pointer types are 32-bit objects (ILP32); or to a
82 64-bit model, in which the C int type is 32-bits but the C long type
83 and all pointer types are 64-bit objects (LP64). */
69091a2c 84#define ilp32_p (aarch64_abi == AARCH64_ABI_ILP32)
a06ea964
NC
85#endif
86
f06935a5 87enum vector_el_type
a06ea964
NC
88{
89 NT_invtype = -1,
90 NT_b,
91 NT_h,
92 NT_s,
93 NT_d,
d50c751e
RS
94 NT_q,
95 NT_zero,
96 NT_merge
a06ea964
NC
97};
98
8f9a77af 99/* Bits for DEFINED field in vector_type_el. */
f11ad6bc
RS
100#define NTA_HASTYPE 1
101#define NTA_HASINDEX 2
102#define NTA_HASVARWIDTH 4
a06ea964 103
8f9a77af 104struct vector_type_el
a06ea964 105{
f06935a5 106 enum vector_el_type type;
a06ea964
NC
107 unsigned char defined;
108 unsigned width;
109 int64_t index;
110};
111
112#define FIXUP_F_HAS_EXPLICIT_SHIFT 0x00000001
113
114struct reloc
115{
116 bfd_reloc_code_real_type type;
117 expressionS exp;
118 int pc_rel;
119 enum aarch64_opnd opnd;
120 uint32_t flags;
121 unsigned need_libopcodes_p : 1;
122};
123
124struct aarch64_instruction
125{
126 /* libopcodes structure for instruction intermediate representation. */
127 aarch64_inst base;
128 /* Record assembly errors found during the parsing. */
129 struct
130 {
131 enum aarch64_operand_error_kind kind;
132 const char *error;
133 } parsing_error;
134 /* The condition that appears in the assembly line. */
135 int cond;
136 /* Relocation information (including the GAS internal fixup). */
137 struct reloc reloc;
138 /* Need to generate an immediate in the literal pool. */
139 unsigned gen_lit_pool : 1;
140};
141
142typedef struct aarch64_instruction aarch64_instruction;
143
144static aarch64_instruction inst;
145
146static bfd_boolean parse_operands (char *, const aarch64_opcode *);
147static bfd_boolean programmer_friendly_fixup (aarch64_instruction *);
148
33eaf5de 149/* Diagnostics inline function utilities.
a06ea964 150
33eaf5de 151 These are lightweight utilities which should only be called by parse_operands
a06ea964
NC
152 and other parsers. GAS processes each assembly line by parsing it against
153 instruction template(s), in the case of multiple templates (for the same
154 mnemonic name), those templates are tried one by one until one succeeds or
155 all fail. An assembly line may fail a few templates before being
156 successfully parsed; an error saved here in most cases is not a user error
157 but an error indicating the current template is not the right template.
158 Therefore it is very important that errors can be saved at a low cost during
159 the parsing; we don't want to slow down the whole parsing by recording
160 non-user errors in detail.
161
33eaf5de 162 Remember that the objective is to help GAS pick up the most appropriate
a06ea964
NC
163 error message in the case of multiple templates, e.g. FMOV which has 8
164 templates. */
165
166static inline void
167clear_error (void)
168{
169 inst.parsing_error.kind = AARCH64_OPDE_NIL;
170 inst.parsing_error.error = NULL;
171}
172
173static inline bfd_boolean
174error_p (void)
175{
176 return inst.parsing_error.kind != AARCH64_OPDE_NIL;
177}
178
179static inline const char *
180get_error_message (void)
181{
182 return inst.parsing_error.error;
183}
184
a06ea964
NC
185static inline enum aarch64_operand_error_kind
186get_error_kind (void)
187{
188 return inst.parsing_error.kind;
189}
190
a06ea964
NC
191static inline void
192set_error (enum aarch64_operand_error_kind kind, const char *error)
193{
194 inst.parsing_error.kind = kind;
195 inst.parsing_error.error = error;
196}
197
198static inline void
199set_recoverable_error (const char *error)
200{
201 set_error (AARCH64_OPDE_RECOVERABLE, error);
202}
203
204/* Use the DESC field of the corresponding aarch64_operand entry to compose
205 the error message. */
206static inline void
207set_default_error (void)
208{
209 set_error (AARCH64_OPDE_SYNTAX_ERROR, NULL);
210}
211
212static inline void
213set_syntax_error (const char *error)
214{
215 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
216}
217
218static inline void
219set_first_syntax_error (const char *error)
220{
221 if (! error_p ())
222 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
223}
224
225static inline void
226set_fatal_syntax_error (const char *error)
227{
228 set_error (AARCH64_OPDE_FATAL_SYNTAX_ERROR, error);
229}
230\f
231/* Number of littlenums required to hold an extended precision number. */
232#define MAX_LITTLENUMS 6
233
234/* Return value for certain parsers when the parsing fails; those parsers
235 return the information of the parsed result, e.g. register number, on
236 success. */
237#define PARSE_FAIL -1
238
239/* This is an invalid condition code that means no conditional field is
240 present. */
241#define COND_ALWAYS 0x10
242
243typedef struct
244{
245 const char *template;
246 unsigned long value;
247} asm_barrier_opt;
248
249typedef struct
250{
251 const char *template;
252 uint32_t value;
253} asm_nzcv;
254
255struct reloc_entry
256{
257 char *name;
258 bfd_reloc_code_real_type reloc;
259};
260
a06ea964
NC
261/* Macros to define the register types and masks for the purpose
262 of parsing. */
263
264#undef AARCH64_REG_TYPES
265#define AARCH64_REG_TYPES \
266 BASIC_REG_TYPE(R_32) /* w[0-30] */ \
267 BASIC_REG_TYPE(R_64) /* x[0-30] */ \
268 BASIC_REG_TYPE(SP_32) /* wsp */ \
269 BASIC_REG_TYPE(SP_64) /* sp */ \
270 BASIC_REG_TYPE(Z_32) /* wzr */ \
271 BASIC_REG_TYPE(Z_64) /* xzr */ \
272 BASIC_REG_TYPE(FP_B) /* b[0-31] *//* NOTE: keep FP_[BHSDQ] consecutive! */\
273 BASIC_REG_TYPE(FP_H) /* h[0-31] */ \
274 BASIC_REG_TYPE(FP_S) /* s[0-31] */ \
275 BASIC_REG_TYPE(FP_D) /* d[0-31] */ \
276 BASIC_REG_TYPE(FP_Q) /* q[0-31] */ \
a06ea964 277 BASIC_REG_TYPE(VN) /* v[0-31] */ \
f11ad6bc
RS
278 BASIC_REG_TYPE(ZN) /* z[0-31] */ \
279 BASIC_REG_TYPE(PN) /* p[0-15] */ \
e1b988bb 280 /* Typecheck: any 64-bit int reg (inc SP exc XZR). */ \
a06ea964 281 MULTI_REG_TYPE(R64_SP, REG_TYPE(R_64) | REG_TYPE(SP_64)) \
4df068de
RS
282 /* Typecheck: same, plus SVE registers. */ \
283 MULTI_REG_TYPE(SVE_BASE, REG_TYPE(R_64) | REG_TYPE(SP_64) \
284 | REG_TYPE(ZN)) \
e1b988bb
RS
285 /* Typecheck: x[0-30], w[0-30] or [xw]zr. */ \
286 MULTI_REG_TYPE(R_Z, REG_TYPE(R_32) | REG_TYPE(R_64) \
287 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
4df068de
RS
288 /* Typecheck: same, plus SVE registers. */ \
289 MULTI_REG_TYPE(SVE_OFFSET, REG_TYPE(R_32) | REG_TYPE(R_64) \
290 | REG_TYPE(Z_32) | REG_TYPE(Z_64) \
291 | REG_TYPE(ZN)) \
e1b988bb
RS
292 /* Typecheck: x[0-30], w[0-30] or {w}sp. */ \
293 MULTI_REG_TYPE(R_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
294 | REG_TYPE(SP_32) | REG_TYPE(SP_64)) \
295 /* Typecheck: any int (inc {W}SP inc [WX]ZR). */ \
a06ea964
NC
296 MULTI_REG_TYPE(R_Z_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
297 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
298 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
299 /* Typecheck: any [BHSDQ]P FP. */ \
300 MULTI_REG_TYPE(BHSDQ, REG_TYPE(FP_B) | REG_TYPE(FP_H) \
301 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
e1b988bb 302 /* Typecheck: any int or [BHSDQ]P FP or V reg (exc SP inc [WX]ZR). */ \
a06ea964
NC
303 MULTI_REG_TYPE(R_Z_BHSDQ_V, REG_TYPE(R_32) | REG_TYPE(R_64) \
304 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
305 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
306 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
5b2b928e
JB
307 /* Typecheck: as above, but also Zn, Pn, and {W}SP. This should only \
308 be used for SVE instructions, since Zn and Pn are valid symbols \
c0890d26 309 in other contexts. */ \
5b2b928e
JB
310 MULTI_REG_TYPE(R_Z_SP_BHSDQ_VZP, REG_TYPE(R_32) | REG_TYPE(R_64) \
311 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
c0890d26
RS
312 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
313 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
314 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q) \
315 | REG_TYPE(ZN) | REG_TYPE(PN)) \
a06ea964
NC
316 /* Any integer register; used for error messages only. */ \
317 MULTI_REG_TYPE(R_N, REG_TYPE(R_32) | REG_TYPE(R_64) \
318 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
319 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
320 /* Pseudo type to mark the end of the enumerator sequence. */ \
321 BASIC_REG_TYPE(MAX)
322
323#undef BASIC_REG_TYPE
324#define BASIC_REG_TYPE(T) REG_TYPE_##T,
325#undef MULTI_REG_TYPE
326#define MULTI_REG_TYPE(T,V) BASIC_REG_TYPE(T)
327
328/* Register type enumerators. */
8a0b252a 329typedef enum aarch64_reg_type_
a06ea964
NC
330{
331 /* A list of REG_TYPE_*. */
332 AARCH64_REG_TYPES
333} aarch64_reg_type;
334
335#undef BASIC_REG_TYPE
336#define BASIC_REG_TYPE(T) 1 << REG_TYPE_##T,
337#undef REG_TYPE
338#define REG_TYPE(T) (1 << REG_TYPE_##T)
339#undef MULTI_REG_TYPE
340#define MULTI_REG_TYPE(T,V) V,
341
8a0b252a
TS
342/* Structure for a hash table entry for a register. */
343typedef struct
344{
345 const char *name;
346 unsigned char number;
347 ENUM_BITFIELD (aarch64_reg_type_) type : 8;
348 unsigned char builtin;
349} reg_entry;
350
a06ea964
NC
351/* Values indexed by aarch64_reg_type to assist the type checking. */
352static const unsigned reg_type_masks[] =
353{
354 AARCH64_REG_TYPES
355};
356
357#undef BASIC_REG_TYPE
358#undef REG_TYPE
359#undef MULTI_REG_TYPE
360#undef AARCH64_REG_TYPES
361
362/* Diagnostics used when we don't get a register of the expected type.
363 Note: this has to synchronized with aarch64_reg_type definitions
364 above. */
365static const char *
366get_reg_expected_msg (aarch64_reg_type reg_type)
367{
368 const char *msg;
369
370 switch (reg_type)
371 {
372 case REG_TYPE_R_32:
373 msg = N_("integer 32-bit register expected");
374 break;
375 case REG_TYPE_R_64:
376 msg = N_("integer 64-bit register expected");
377 break;
378 case REG_TYPE_R_N:
379 msg = N_("integer register expected");
380 break;
e1b988bb
RS
381 case REG_TYPE_R64_SP:
382 msg = N_("64-bit integer or SP register expected");
383 break;
4df068de
RS
384 case REG_TYPE_SVE_BASE:
385 msg = N_("base register expected");
386 break;
e1b988bb
RS
387 case REG_TYPE_R_Z:
388 msg = N_("integer or zero register expected");
389 break;
4df068de
RS
390 case REG_TYPE_SVE_OFFSET:
391 msg = N_("offset register expected");
392 break;
e1b988bb
RS
393 case REG_TYPE_R_SP:
394 msg = N_("integer or SP register expected");
395 break;
a06ea964
NC
396 case REG_TYPE_R_Z_SP:
397 msg = N_("integer, zero or SP register expected");
398 break;
399 case REG_TYPE_FP_B:
400 msg = N_("8-bit SIMD scalar register expected");
401 break;
402 case REG_TYPE_FP_H:
403 msg = N_("16-bit SIMD scalar or floating-point half precision "
404 "register expected");
405 break;
406 case REG_TYPE_FP_S:
407 msg = N_("32-bit SIMD scalar or floating-point single precision "
408 "register expected");
409 break;
410 case REG_TYPE_FP_D:
411 msg = N_("64-bit SIMD scalar or floating-point double precision "
412 "register expected");
413 break;
414 case REG_TYPE_FP_Q:
415 msg = N_("128-bit SIMD scalar or floating-point quad precision "
416 "register expected");
417 break;
a06ea964 418 case REG_TYPE_R_Z_BHSDQ_V:
5b2b928e 419 case REG_TYPE_R_Z_SP_BHSDQ_VZP:
a06ea964
NC
420 msg = N_("register expected");
421 break;
422 case REG_TYPE_BHSDQ: /* any [BHSDQ]P FP */
423 msg = N_("SIMD scalar or floating-point register expected");
424 break;
425 case REG_TYPE_VN: /* any V reg */
426 msg = N_("vector register expected");
427 break;
f11ad6bc
RS
428 case REG_TYPE_ZN:
429 msg = N_("SVE vector register expected");
430 break;
431 case REG_TYPE_PN:
432 msg = N_("SVE predicate register expected");
433 break;
a06ea964
NC
434 default:
435 as_fatal (_("invalid register type %d"), reg_type);
436 }
437 return msg;
438}
439
440/* Some well known registers that we refer to directly elsewhere. */
441#define REG_SP 31
442
443/* Instructions take 4 bytes in the object file. */
444#define INSN_SIZE 4
445
a06ea964
NC
446static struct hash_control *aarch64_ops_hsh;
447static struct hash_control *aarch64_cond_hsh;
448static struct hash_control *aarch64_shift_hsh;
449static struct hash_control *aarch64_sys_regs_hsh;
450static struct hash_control *aarch64_pstatefield_hsh;
451static struct hash_control *aarch64_sys_regs_ic_hsh;
452static struct hash_control *aarch64_sys_regs_dc_hsh;
453static struct hash_control *aarch64_sys_regs_at_hsh;
454static struct hash_control *aarch64_sys_regs_tlbi_hsh;
455static struct hash_control *aarch64_reg_hsh;
456static struct hash_control *aarch64_barrier_opt_hsh;
457static struct hash_control *aarch64_nzcv_hsh;
458static struct hash_control *aarch64_pldop_hsh;
1e6f4800 459static struct hash_control *aarch64_hint_opt_hsh;
a06ea964
NC
460
461/* Stuff needed to resolve the label ambiguity
462 As:
463 ...
464 label: <insn>
465 may differ from:
466 ...
467 label:
468 <insn> */
469
470static symbolS *last_label_seen;
471
472/* Literal pool structure. Held on a per-section
473 and per-sub-section basis. */
474
475#define MAX_LITERAL_POOL_SIZE 1024
55d9b4c1
NC
476typedef struct literal_expression
477{
478 expressionS exp;
479 /* If exp.op == O_big then this bignum holds a copy of the global bignum value. */
480 LITTLENUM_TYPE * bignum;
481} literal_expression;
482
a06ea964
NC
483typedef struct literal_pool
484{
55d9b4c1 485 literal_expression literals[MAX_LITERAL_POOL_SIZE];
a06ea964
NC
486 unsigned int next_free_entry;
487 unsigned int id;
488 symbolS *symbol;
489 segT section;
490 subsegT sub_section;
491 int size;
492 struct literal_pool *next;
493} literal_pool;
494
495/* Pointer to a linked list of literal pools. */
496static literal_pool *list_of_pools = NULL;
497\f
498/* Pure syntax. */
499
500/* This array holds the chars that always start a comment. If the
501 pre-processor is disabled, these aren't very useful. */
502const char comment_chars[] = "";
503
504/* This array holds the chars that only start a comment at the beginning of
505 a line. If the line seems to have the form '# 123 filename'
506 .line and .file directives will appear in the pre-processed output. */
507/* Note that input_file.c hand checks for '#' at the beginning of the
508 first line of the input file. This is because the compiler outputs
509 #NO_APP at the beginning of its output. */
510/* Also note that comments like this one will always work. */
511const char line_comment_chars[] = "#";
512
513const char line_separator_chars[] = ";";
514
515/* Chars that can be used to separate mant
516 from exp in floating point numbers. */
517const char EXP_CHARS[] = "eE";
518
519/* Chars that mean this number is a floating point constant. */
520/* As in 0f12.456 */
521/* or 0d1.2345e12 */
522
523const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
524
525/* Prefix character that indicates the start of an immediate value. */
526#define is_immediate_prefix(C) ((C) == '#')
527
528/* Separator character handling. */
529
530#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
531
532static inline bfd_boolean
533skip_past_char (char **str, char c)
534{
535 if (**str == c)
536 {
537 (*str)++;
538 return TRUE;
539 }
540 else
541 return FALSE;
542}
543
544#define skip_past_comma(str) skip_past_char (str, ',')
545
546/* Arithmetic expressions (possibly involving symbols). */
547
a06ea964
NC
548static bfd_boolean in_my_get_expression_p = FALSE;
549
550/* Third argument to my_get_expression. */
551#define GE_NO_PREFIX 0
552#define GE_OPT_PREFIX 1
553
554/* Return TRUE if the string pointed by *STR is successfully parsed
555 as an valid expression; *EP will be filled with the information of
556 such an expression. Otherwise return FALSE. */
557
558static bfd_boolean
559my_get_expression (expressionS * ep, char **str, int prefix_mode,
560 int reject_absent)
561{
562 char *save_in;
563 segT seg;
564 int prefix_present_p = 0;
565
566 switch (prefix_mode)
567 {
568 case GE_NO_PREFIX:
569 break;
570 case GE_OPT_PREFIX:
571 if (is_immediate_prefix (**str))
572 {
573 (*str)++;
574 prefix_present_p = 1;
575 }
576 break;
577 default:
578 abort ();
579 }
580
581 memset (ep, 0, sizeof (expressionS));
582
583 save_in = input_line_pointer;
584 input_line_pointer = *str;
585 in_my_get_expression_p = TRUE;
586 seg = expression (ep);
587 in_my_get_expression_p = FALSE;
588
589 if (ep->X_op == O_illegal || (reject_absent && ep->X_op == O_absent))
590 {
591 /* We found a bad expression in md_operand(). */
592 *str = input_line_pointer;
593 input_line_pointer = save_in;
594 if (prefix_present_p && ! error_p ())
595 set_fatal_syntax_error (_("bad expression"));
596 else
597 set_first_syntax_error (_("bad expression"));
598 return FALSE;
599 }
600
601#ifdef OBJ_AOUT
602 if (seg != absolute_section
603 && seg != text_section
604 && seg != data_section
605 && seg != bss_section && seg != undefined_section)
606 {
607 set_syntax_error (_("bad segment"));
608 *str = input_line_pointer;
609 input_line_pointer = save_in;
610 return FALSE;
611 }
612#else
613 (void) seg;
614#endif
615
a06ea964
NC
616 *str = input_line_pointer;
617 input_line_pointer = save_in;
618 return TRUE;
619}
620
621/* Turn a string in input_line_pointer into a floating point constant
622 of type TYPE, and store the appropriate bytes in *LITP. The number
623 of LITTLENUMS emitted is stored in *SIZEP. An error message is
624 returned, or NULL on OK. */
625
6d4af3c2 626const char *
a06ea964
NC
627md_atof (int type, char *litP, int *sizeP)
628{
629 return ieee_md_atof (type, litP, sizeP, target_big_endian);
630}
631
632/* We handle all bad expressions here, so that we can report the faulty
633 instruction in the error message. */
634void
635md_operand (expressionS * exp)
636{
637 if (in_my_get_expression_p)
638 exp->X_op = O_illegal;
639}
640
641/* Immediate values. */
642
643/* Errors may be set multiple times during parsing or bit encoding
644 (particularly in the Neon bits), but usually the earliest error which is set
645 will be the most meaningful. Avoid overwriting it with later (cascading)
646 errors by calling this function. */
647
648static void
649first_error (const char *error)
650{
651 if (! error_p ())
652 set_syntax_error (error);
653}
654
2b0f3761 655/* Similar to first_error, but this function accepts formatted error
a06ea964
NC
656 message. */
657static void
658first_error_fmt (const char *format, ...)
659{
660 va_list args;
661 enum
662 { size = 100 };
663 /* N.B. this single buffer will not cause error messages for different
664 instructions to pollute each other; this is because at the end of
665 processing of each assembly line, error message if any will be
666 collected by as_bad. */
667 static char buffer[size];
668
669 if (! error_p ())
670 {
3e0baa28 671 int ret ATTRIBUTE_UNUSED;
a06ea964
NC
672 va_start (args, format);
673 ret = vsnprintf (buffer, size, format, args);
674 know (ret <= size - 1 && ret >= 0);
675 va_end (args);
676 set_syntax_error (buffer);
677 }
678}
679
680/* Register parsing. */
681
682/* Generic register parser which is called by other specialized
683 register parsers.
684 CCP points to what should be the beginning of a register name.
685 If it is indeed a valid register name, advance CCP over it and
686 return the reg_entry structure; otherwise return NULL.
687 It does not issue diagnostics. */
688
689static reg_entry *
690parse_reg (char **ccp)
691{
692 char *start = *ccp;
693 char *p;
694 reg_entry *reg;
695
696#ifdef REGISTER_PREFIX
697 if (*start != REGISTER_PREFIX)
698 return NULL;
699 start++;
700#endif
701
702 p = start;
703 if (!ISALPHA (*p) || !is_name_beginner (*p))
704 return NULL;
705
706 do
707 p++;
708 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
709
710 reg = (reg_entry *) hash_find_n (aarch64_reg_hsh, start, p - start);
711
712 if (!reg)
713 return NULL;
714
715 *ccp = p;
716 return reg;
717}
718
719/* Return TRUE if REG->TYPE is a valid type of TYPE; otherwise
720 return FALSE. */
721static bfd_boolean
722aarch64_check_reg_type (const reg_entry *reg, aarch64_reg_type type)
723{
e1b988bb 724 return (reg_type_masks[type] & (1 << reg->type)) != 0;
a06ea964
NC
725}
726
4df068de
RS
727/* Try to parse a base or offset register. Allow SVE base and offset
728 registers if REG_TYPE includes SVE registers. Return the register
729 entry on success, setting *QUALIFIER to the register qualifier.
730 Return null otherwise.
e1b988bb 731
a06ea964
NC
732 Note that this function does not issue any diagnostics. */
733
e1b988bb 734static const reg_entry *
4df068de
RS
735aarch64_addr_reg_parse (char **ccp, aarch64_reg_type reg_type,
736 aarch64_opnd_qualifier_t *qualifier)
a06ea964
NC
737{
738 char *str = *ccp;
739 const reg_entry *reg = parse_reg (&str);
740
741 if (reg == NULL)
e1b988bb 742 return NULL;
a06ea964
NC
743
744 switch (reg->type)
745 {
e1b988bb 746 case REG_TYPE_R_32:
a06ea964 747 case REG_TYPE_SP_32:
e1b988bb
RS
748 case REG_TYPE_Z_32:
749 *qualifier = AARCH64_OPND_QLF_W;
a06ea964 750 break;
e1b988bb 751
a06ea964 752 case REG_TYPE_R_64:
e1b988bb 753 case REG_TYPE_SP_64:
a06ea964 754 case REG_TYPE_Z_64:
e1b988bb 755 *qualifier = AARCH64_OPND_QLF_X;
a06ea964 756 break;
e1b988bb 757
4df068de
RS
758 case REG_TYPE_ZN:
759 if ((reg_type_masks[reg_type] & (1 << REG_TYPE_ZN)) == 0
760 || str[0] != '.')
761 return NULL;
762 switch (TOLOWER (str[1]))
763 {
764 case 's':
765 *qualifier = AARCH64_OPND_QLF_S_S;
766 break;
767 case 'd':
768 *qualifier = AARCH64_OPND_QLF_S_D;
769 break;
770 default:
771 return NULL;
772 }
773 str += 2;
774 break;
775
a06ea964 776 default:
e1b988bb 777 return NULL;
a06ea964
NC
778 }
779
780 *ccp = str;
781
e1b988bb 782 return reg;
a06ea964
NC
783}
784
4df068de
RS
785/* Try to parse a base or offset register. Return the register entry
786 on success, setting *QUALIFIER to the register qualifier. Return null
787 otherwise.
788
789 Note that this function does not issue any diagnostics. */
790
791static const reg_entry *
792aarch64_reg_parse_32_64 (char **ccp, aarch64_opnd_qualifier_t *qualifier)
793{
794 return aarch64_addr_reg_parse (ccp, REG_TYPE_R_Z_SP, qualifier);
795}
796
f11ad6bc
RS
797/* Parse the qualifier of a vector register or vector element of type
798 REG_TYPE. Fill in *PARSED_TYPE and return TRUE if the parsing
799 succeeds; otherwise return FALSE.
a06ea964
NC
800
801 Accept only one occurrence of:
65a55fbb 802 4b 8b 16b 2h 4h 8h 2s 4s 1d 2d
a06ea964
NC
803 b h s d q */
804static bfd_boolean
f11ad6bc
RS
805parse_vector_type_for_operand (aarch64_reg_type reg_type,
806 struct vector_type_el *parsed_type, char **str)
a06ea964
NC
807{
808 char *ptr = *str;
809 unsigned width;
810 unsigned element_size;
f06935a5 811 enum vector_el_type type;
a06ea964
NC
812
813 /* skip '.' */
d50c751e 814 gas_assert (*ptr == '.');
a06ea964
NC
815 ptr++;
816
f11ad6bc 817 if (reg_type == REG_TYPE_ZN || reg_type == REG_TYPE_PN || !ISDIGIT (*ptr))
a06ea964
NC
818 {
819 width = 0;
820 goto elt_size;
821 }
822 width = strtoul (ptr, &ptr, 10);
823 if (width != 1 && width != 2 && width != 4 && width != 8 && width != 16)
824 {
825 first_error_fmt (_("bad size %d in vector width specifier"), width);
826 return FALSE;
827 }
828
829elt_size:
830 switch (TOLOWER (*ptr))
831 {
832 case 'b':
833 type = NT_b;
834 element_size = 8;
835 break;
836 case 'h':
837 type = NT_h;
838 element_size = 16;
839 break;
840 case 's':
841 type = NT_s;
842 element_size = 32;
843 break;
844 case 'd':
845 type = NT_d;
846 element_size = 64;
847 break;
848 case 'q':
582e12bf 849 if (reg_type == REG_TYPE_ZN || width == 1)
a06ea964
NC
850 {
851 type = NT_q;
852 element_size = 128;
853 break;
854 }
855 /* fall through. */
856 default:
857 if (*ptr != '\0')
858 first_error_fmt (_("unexpected character `%c' in element size"), *ptr);
859 else
860 first_error (_("missing element size"));
861 return FALSE;
862 }
65a55fbb
TC
863 if (width != 0 && width * element_size != 64
864 && width * element_size != 128
865 && !(width == 2 && element_size == 16)
866 && !(width == 4 && element_size == 8))
a06ea964
NC
867 {
868 first_error_fmt (_
869 ("invalid element size %d and vector size combination %c"),
870 width, *ptr);
871 return FALSE;
872 }
873 ptr++;
874
875 parsed_type->type = type;
876 parsed_type->width = width;
877
878 *str = ptr;
879
880 return TRUE;
881}
882
d50c751e
RS
883/* *STR contains an SVE zero/merge predication suffix. Parse it into
884 *PARSED_TYPE and point *STR at the end of the suffix. */
885
886static bfd_boolean
887parse_predication_for_operand (struct vector_type_el *parsed_type, char **str)
888{
889 char *ptr = *str;
890
891 /* Skip '/'. */
892 gas_assert (*ptr == '/');
893 ptr++;
894 switch (TOLOWER (*ptr))
895 {
896 case 'z':
897 parsed_type->type = NT_zero;
898 break;
899 case 'm':
900 parsed_type->type = NT_merge;
901 break;
902 default:
903 if (*ptr != '\0' && *ptr != ',')
904 first_error_fmt (_("unexpected character `%c' in predication type"),
905 *ptr);
906 else
907 first_error (_("missing predication type"));
908 return FALSE;
909 }
910 parsed_type->width = 0;
911 *str = ptr + 1;
912 return TRUE;
913}
914
a06ea964
NC
915/* Parse a register of the type TYPE.
916
917 Return PARSE_FAIL if the string pointed by *CCP is not a valid register
918 name or the parsed register is not of TYPE.
919
920 Otherwise return the register number, and optionally fill in the actual
921 type of the register in *RTYPE when multiple alternatives were given, and
922 return the register shape and element index information in *TYPEINFO.
923
924 IN_REG_LIST should be set with TRUE if the caller is parsing a register
925 list. */
926
927static int
928parse_typed_reg (char **ccp, aarch64_reg_type type, aarch64_reg_type *rtype,
8f9a77af 929 struct vector_type_el *typeinfo, bfd_boolean in_reg_list)
a06ea964
NC
930{
931 char *str = *ccp;
932 const reg_entry *reg = parse_reg (&str);
8f9a77af
RS
933 struct vector_type_el atype;
934 struct vector_type_el parsetype;
a06ea964
NC
935 bfd_boolean is_typed_vecreg = FALSE;
936
937 atype.defined = 0;
938 atype.type = NT_invtype;
939 atype.width = -1;
940 atype.index = 0;
941
942 if (reg == NULL)
943 {
944 if (typeinfo)
945 *typeinfo = atype;
946 set_default_error ();
947 return PARSE_FAIL;
948 }
949
950 if (! aarch64_check_reg_type (reg, type))
951 {
952 DEBUG_TRACE ("reg type check failed");
953 set_default_error ();
954 return PARSE_FAIL;
955 }
956 type = reg->type;
957
f11ad6bc 958 if ((type == REG_TYPE_VN || type == REG_TYPE_ZN || type == REG_TYPE_PN)
d50c751e 959 && (*str == '.' || (type == REG_TYPE_PN && *str == '/')))
a06ea964 960 {
d50c751e
RS
961 if (*str == '.')
962 {
963 if (!parse_vector_type_for_operand (type, &parsetype, &str))
964 return PARSE_FAIL;
965 }
966 else
967 {
968 if (!parse_predication_for_operand (&parsetype, &str))
969 return PARSE_FAIL;
970 }
a235d3ae 971
a06ea964
NC
972 /* Register if of the form Vn.[bhsdq]. */
973 is_typed_vecreg = TRUE;
974
f11ad6bc
RS
975 if (type == REG_TYPE_ZN || type == REG_TYPE_PN)
976 {
977 /* The width is always variable; we don't allow an integer width
978 to be specified. */
979 gas_assert (parsetype.width == 0);
980 atype.defined |= NTA_HASVARWIDTH | NTA_HASTYPE;
981 }
982 else if (parsetype.width == 0)
a06ea964
NC
983 /* Expect index. In the new scheme we cannot have
984 Vn.[bhsdq] represent a scalar. Therefore any
985 Vn.[bhsdq] should have an index following it.
33eaf5de 986 Except in reglists of course. */
a06ea964
NC
987 atype.defined |= NTA_HASINDEX;
988 else
989 atype.defined |= NTA_HASTYPE;
990
991 atype.type = parsetype.type;
992 atype.width = parsetype.width;
993 }
994
995 if (skip_past_char (&str, '['))
996 {
997 expressionS exp;
998
999 /* Reject Sn[index] syntax. */
1000 if (!is_typed_vecreg)
1001 {
1002 first_error (_("this type of register can't be indexed"));
1003 return PARSE_FAIL;
1004 }
1005
535b785f 1006 if (in_reg_list)
a06ea964
NC
1007 {
1008 first_error (_("index not allowed inside register list"));
1009 return PARSE_FAIL;
1010 }
1011
1012 atype.defined |= NTA_HASINDEX;
1013
1014 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1015
1016 if (exp.X_op != O_constant)
1017 {
1018 first_error (_("constant expression required"));
1019 return PARSE_FAIL;
1020 }
1021
1022 if (! skip_past_char (&str, ']'))
1023 return PARSE_FAIL;
1024
1025 atype.index = exp.X_add_number;
1026 }
1027 else if (!in_reg_list && (atype.defined & NTA_HASINDEX) != 0)
1028 {
1029 /* Indexed vector register expected. */
1030 first_error (_("indexed vector register expected"));
1031 return PARSE_FAIL;
1032 }
1033
1034 /* A vector reg Vn should be typed or indexed. */
1035 if (type == REG_TYPE_VN && atype.defined == 0)
1036 {
1037 first_error (_("invalid use of vector register"));
1038 }
1039
1040 if (typeinfo)
1041 *typeinfo = atype;
1042
1043 if (rtype)
1044 *rtype = type;
1045
1046 *ccp = str;
1047
1048 return reg->number;
1049}
1050
1051/* Parse register.
1052
1053 Return the register number on success; return PARSE_FAIL otherwise.
1054
1055 If RTYPE is not NULL, return in *RTYPE the (possibly restricted) type of
1056 the register (e.g. NEON double or quad reg when either has been requested).
1057
1058 If this is a NEON vector register with additional type information, fill
1059 in the struct pointed to by VECTYPE (if non-NULL).
1060
1061 This parser does not handle register list. */
1062
1063static int
1064aarch64_reg_parse (char **ccp, aarch64_reg_type type,
8f9a77af 1065 aarch64_reg_type *rtype, struct vector_type_el *vectype)
a06ea964 1066{
8f9a77af 1067 struct vector_type_el atype;
a06ea964
NC
1068 char *str = *ccp;
1069 int reg = parse_typed_reg (&str, type, rtype, &atype,
1070 /*in_reg_list= */ FALSE);
1071
1072 if (reg == PARSE_FAIL)
1073 return PARSE_FAIL;
1074
1075 if (vectype)
1076 *vectype = atype;
1077
1078 *ccp = str;
1079
1080 return reg;
1081}
1082
1083static inline bfd_boolean
8f9a77af 1084eq_vector_type_el (struct vector_type_el e1, struct vector_type_el e2)
a06ea964
NC
1085{
1086 return
1087 e1.type == e2.type
1088 && e1.defined == e2.defined
1089 && e1.width == e2.width && e1.index == e2.index;
1090}
1091
10d76650
RS
1092/* This function parses a list of vector registers of type TYPE.
1093 On success, it returns the parsed register list information in the
1094 following encoded format:
a06ea964
NC
1095
1096 bit 18-22 | 13-17 | 7-11 | 2-6 | 0-1
1097 4th regno | 3rd regno | 2nd regno | 1st regno | num_of_reg
1098
1099 The information of the register shape and/or index is returned in
1100 *VECTYPE.
1101
1102 It returns PARSE_FAIL if the register list is invalid.
1103
1104 The list contains one to four registers.
1105 Each register can be one of:
1106 <Vt>.<T>[<index>]
1107 <Vt>.<T>
1108 All <T> should be identical.
1109 All <index> should be identical.
1110 There are restrictions on <Vt> numbers which are checked later
1111 (by reg_list_valid_p). */
1112
1113static int
10d76650
RS
1114parse_vector_reg_list (char **ccp, aarch64_reg_type type,
1115 struct vector_type_el *vectype)
a06ea964
NC
1116{
1117 char *str = *ccp;
1118 int nb_regs;
8f9a77af 1119 struct vector_type_el typeinfo, typeinfo_first;
a06ea964
NC
1120 int val, val_range;
1121 int in_range;
1122 int ret_val;
1123 int i;
1124 bfd_boolean error = FALSE;
1125 bfd_boolean expect_index = FALSE;
1126
1127 if (*str != '{')
1128 {
1129 set_syntax_error (_("expecting {"));
1130 return PARSE_FAIL;
1131 }
1132 str++;
1133
1134 nb_regs = 0;
1135 typeinfo_first.defined = 0;
1136 typeinfo_first.type = NT_invtype;
1137 typeinfo_first.width = -1;
1138 typeinfo_first.index = 0;
1139 ret_val = 0;
1140 val = -1;
1141 val_range = -1;
1142 in_range = 0;
1143 do
1144 {
1145 if (in_range)
1146 {
1147 str++; /* skip over '-' */
1148 val_range = val;
1149 }
10d76650 1150 val = parse_typed_reg (&str, type, NULL, &typeinfo,
a06ea964
NC
1151 /*in_reg_list= */ TRUE);
1152 if (val == PARSE_FAIL)
1153 {
1154 set_first_syntax_error (_("invalid vector register in list"));
1155 error = TRUE;
1156 continue;
1157 }
1158 /* reject [bhsd]n */
f11ad6bc 1159 if (type == REG_TYPE_VN && typeinfo.defined == 0)
a06ea964
NC
1160 {
1161 set_first_syntax_error (_("invalid scalar register in list"));
1162 error = TRUE;
1163 continue;
1164 }
1165
1166 if (typeinfo.defined & NTA_HASINDEX)
1167 expect_index = TRUE;
1168
1169 if (in_range)
1170 {
1171 if (val < val_range)
1172 {
1173 set_first_syntax_error
1174 (_("invalid range in vector register list"));
1175 error = TRUE;
1176 }
1177 val_range++;
1178 }
1179 else
1180 {
1181 val_range = val;
1182 if (nb_regs == 0)
1183 typeinfo_first = typeinfo;
8f9a77af 1184 else if (! eq_vector_type_el (typeinfo_first, typeinfo))
a06ea964
NC
1185 {
1186 set_first_syntax_error
1187 (_("type mismatch in vector register list"));
1188 error = TRUE;
1189 }
1190 }
1191 if (! error)
1192 for (i = val_range; i <= val; i++)
1193 {
1194 ret_val |= i << (5 * nb_regs);
1195 nb_regs++;
1196 }
1197 in_range = 0;
1198 }
1199 while (skip_past_comma (&str) || (in_range = 1, *str == '-'));
1200
1201 skip_whitespace (str);
1202 if (*str != '}')
1203 {
1204 set_first_syntax_error (_("end of vector register list not found"));
1205 error = TRUE;
1206 }
1207 str++;
1208
1209 skip_whitespace (str);
1210
1211 if (expect_index)
1212 {
1213 if (skip_past_char (&str, '['))
1214 {
1215 expressionS exp;
1216
1217 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1218 if (exp.X_op != O_constant)
1219 {
1220 set_first_syntax_error (_("constant expression required."));
1221 error = TRUE;
1222 }
1223 if (! skip_past_char (&str, ']'))
1224 error = TRUE;
1225 else
1226 typeinfo_first.index = exp.X_add_number;
1227 }
1228 else
1229 {
1230 set_first_syntax_error (_("expected index"));
1231 error = TRUE;
1232 }
1233 }
1234
1235 if (nb_regs > 4)
1236 {
1237 set_first_syntax_error (_("too many registers in vector register list"));
1238 error = TRUE;
1239 }
1240 else if (nb_regs == 0)
1241 {
1242 set_first_syntax_error (_("empty vector register list"));
1243 error = TRUE;
1244 }
1245
1246 *ccp = str;
1247 if (! error)
1248 *vectype = typeinfo_first;
1249
1250 return error ? PARSE_FAIL : (ret_val << 2) | (nb_regs - 1);
1251}
1252
1253/* Directives: register aliases. */
1254
1255static reg_entry *
1256insert_reg_alias (char *str, int number, aarch64_reg_type type)
1257{
1258 reg_entry *new;
1259 const char *name;
1260
1261 if ((new = hash_find (aarch64_reg_hsh, str)) != 0)
1262 {
1263 if (new->builtin)
1264 as_warn (_("ignoring attempt to redefine built-in register '%s'"),
1265 str);
1266
1267 /* Only warn about a redefinition if it's not defined as the
1268 same register. */
1269 else if (new->number != number || new->type != type)
1270 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1271
1272 return NULL;
1273 }
1274
1275 name = xstrdup (str);
add39d23 1276 new = XNEW (reg_entry);
a06ea964
NC
1277
1278 new->name = name;
1279 new->number = number;
1280 new->type = type;
1281 new->builtin = FALSE;
1282
1283 if (hash_insert (aarch64_reg_hsh, name, (void *) new))
1284 abort ();
1285
1286 return new;
1287}
1288
1289/* Look for the .req directive. This is of the form:
1290
1291 new_register_name .req existing_register_name
1292
1293 If we find one, or if it looks sufficiently like one that we want to
1294 handle any error here, return TRUE. Otherwise return FALSE. */
1295
1296static bfd_boolean
1297create_register_alias (char *newname, char *p)
1298{
1299 const reg_entry *old;
1300 char *oldname, *nbuf;
1301 size_t nlen;
1302
1303 /* The input scrubber ensures that whitespace after the mnemonic is
1304 collapsed to single spaces. */
1305 oldname = p;
1306 if (strncmp (oldname, " .req ", 6) != 0)
1307 return FALSE;
1308
1309 oldname += 6;
1310 if (*oldname == '\0')
1311 return FALSE;
1312
1313 old = hash_find (aarch64_reg_hsh, oldname);
1314 if (!old)
1315 {
1316 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
1317 return TRUE;
1318 }
1319
1320 /* If TC_CASE_SENSITIVE is defined, then newname already points to
1321 the desired alias name, and p points to its end. If not, then
1322 the desired alias name is in the global original_case_string. */
1323#ifdef TC_CASE_SENSITIVE
1324 nlen = p - newname;
1325#else
1326 newname = original_case_string;
1327 nlen = strlen (newname);
1328#endif
1329
29a2809e 1330 nbuf = xmemdup0 (newname, nlen);
a06ea964
NC
1331
1332 /* Create aliases under the new name as stated; an all-lowercase
1333 version of the new name; and an all-uppercase version of the new
1334 name. */
1335 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
1336 {
1337 for (p = nbuf; *p; p++)
1338 *p = TOUPPER (*p);
1339
1340 if (strncmp (nbuf, newname, nlen))
1341 {
1342 /* If this attempt to create an additional alias fails, do not bother
1343 trying to create the all-lower case alias. We will fail and issue
1344 a second, duplicate error message. This situation arises when the
1345 programmer does something like:
1346 foo .req r0
1347 Foo .req r1
1348 The second .req creates the "Foo" alias but then fails to create
1349 the artificial FOO alias because it has already been created by the
1350 first .req. */
1351 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
e1fa0163
NC
1352 {
1353 free (nbuf);
1354 return TRUE;
1355 }
a06ea964
NC
1356 }
1357
1358 for (p = nbuf; *p; p++)
1359 *p = TOLOWER (*p);
1360
1361 if (strncmp (nbuf, newname, nlen))
1362 insert_reg_alias (nbuf, old->number, old->type);
1363 }
1364
e1fa0163 1365 free (nbuf);
a06ea964
NC
1366 return TRUE;
1367}
1368
1369/* Should never be called, as .req goes between the alias and the
1370 register name, not at the beginning of the line. */
1371static void
1372s_req (int a ATTRIBUTE_UNUSED)
1373{
1374 as_bad (_("invalid syntax for .req directive"));
1375}
1376
1377/* The .unreq directive deletes an alias which was previously defined
1378 by .req. For example:
1379
1380 my_alias .req r11
1381 .unreq my_alias */
1382
1383static void
1384s_unreq (int a ATTRIBUTE_UNUSED)
1385{
1386 char *name;
1387 char saved_char;
1388
1389 name = input_line_pointer;
1390
1391 while (*input_line_pointer != 0
1392 && *input_line_pointer != ' ' && *input_line_pointer != '\n')
1393 ++input_line_pointer;
1394
1395 saved_char = *input_line_pointer;
1396 *input_line_pointer = 0;
1397
1398 if (!*name)
1399 as_bad (_("invalid syntax for .unreq directive"));
1400 else
1401 {
1402 reg_entry *reg = hash_find (aarch64_reg_hsh, name);
1403
1404 if (!reg)
1405 as_bad (_("unknown register alias '%s'"), name);
1406 else if (reg->builtin)
1407 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
1408 name);
1409 else
1410 {
1411 char *p;
1412 char *nbuf;
1413
1414 hash_delete (aarch64_reg_hsh, name, FALSE);
1415 free ((char *) reg->name);
1416 free (reg);
1417
1418 /* Also locate the all upper case and all lower case versions.
1419 Do not complain if we cannot find one or the other as it
1420 was probably deleted above. */
1421
1422 nbuf = strdup (name);
1423 for (p = nbuf; *p; p++)
1424 *p = TOUPPER (*p);
1425 reg = hash_find (aarch64_reg_hsh, nbuf);
1426 if (reg)
1427 {
1428 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1429 free ((char *) reg->name);
1430 free (reg);
1431 }
1432
1433 for (p = nbuf; *p; p++)
1434 *p = TOLOWER (*p);
1435 reg = hash_find (aarch64_reg_hsh, nbuf);
1436 if (reg)
1437 {
1438 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1439 free ((char *) reg->name);
1440 free (reg);
1441 }
1442
1443 free (nbuf);
1444 }
1445 }
1446
1447 *input_line_pointer = saved_char;
1448 demand_empty_rest_of_line ();
1449}
1450
1451/* Directives: Instruction set selection. */
1452
1453#ifdef OBJ_ELF
1454/* This code is to handle mapping symbols as defined in the ARM AArch64 ELF
1455 spec. (See "Mapping symbols", section 4.5.4, ARM AAELF64 version 0.05).
1456 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
1457 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
1458
1459/* Create a new mapping symbol for the transition to STATE. */
1460
1461static void
1462make_mapping_symbol (enum mstate state, valueT value, fragS * frag)
1463{
1464 symbolS *symbolP;
1465 const char *symname;
1466 int type;
1467
1468 switch (state)
1469 {
1470 case MAP_DATA:
1471 symname = "$d";
1472 type = BSF_NO_FLAGS;
1473 break;
1474 case MAP_INSN:
1475 symname = "$x";
1476 type = BSF_NO_FLAGS;
1477 break;
1478 default:
1479 abort ();
1480 }
1481
1482 symbolP = symbol_new (symname, now_seg, value, frag);
1483 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
1484
1485 /* Save the mapping symbols for future reference. Also check that
1486 we do not place two mapping symbols at the same offset within a
1487 frag. We'll handle overlap between frags in
1488 check_mapping_symbols.
1489
1490 If .fill or other data filling directive generates zero sized data,
1491 the mapping symbol for the following code will have the same value
1492 as the one generated for the data filling directive. In this case,
1493 we replace the old symbol with the new one at the same address. */
1494 if (value == 0)
1495 {
1496 if (frag->tc_frag_data.first_map != NULL)
1497 {
1498 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
1499 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP,
1500 &symbol_lastP);
1501 }
1502 frag->tc_frag_data.first_map = symbolP;
1503 }
1504 if (frag->tc_frag_data.last_map != NULL)
1505 {
1506 know (S_GET_VALUE (frag->tc_frag_data.last_map) <=
1507 S_GET_VALUE (symbolP));
1508 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
1509 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP,
1510 &symbol_lastP);
1511 }
1512 frag->tc_frag_data.last_map = symbolP;
1513}
1514
1515/* We must sometimes convert a region marked as code to data during
1516 code alignment, if an odd number of bytes have to be padded. The
1517 code mapping symbol is pushed to an aligned address. */
1518
1519static void
1520insert_data_mapping_symbol (enum mstate state,
1521 valueT value, fragS * frag, offsetT bytes)
1522{
1523 /* If there was already a mapping symbol, remove it. */
1524 if (frag->tc_frag_data.last_map != NULL
1525 && S_GET_VALUE (frag->tc_frag_data.last_map) ==
1526 frag->fr_address + value)
1527 {
1528 symbolS *symp = frag->tc_frag_data.last_map;
1529
1530 if (value == 0)
1531 {
1532 know (frag->tc_frag_data.first_map == symp);
1533 frag->tc_frag_data.first_map = NULL;
1534 }
1535 frag->tc_frag_data.last_map = NULL;
1536 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
1537 }
1538
1539 make_mapping_symbol (MAP_DATA, value, frag);
1540 make_mapping_symbol (state, value + bytes, frag);
1541}
1542
1543static void mapping_state_2 (enum mstate state, int max_chars);
1544
1545/* Set the mapping state to STATE. Only call this when about to
1546 emit some STATE bytes to the file. */
1547
1548void
1549mapping_state (enum mstate state)
1550{
1551 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1552
a578ef7e
JW
1553 if (state == MAP_INSN)
1554 /* AArch64 instructions require 4-byte alignment. When emitting
1555 instructions into any section, record the appropriate section
1556 alignment. */
1557 record_alignment (now_seg, 2);
1558
448eb63d
RL
1559 if (mapstate == state)
1560 /* The mapping symbol has already been emitted.
1561 There is nothing else to do. */
1562 return;
1563
c1baaddf 1564#define TRANSITION(from, to) (mapstate == (from) && state == (to))
a97902de
RL
1565 if (TRANSITION (MAP_UNDEFINED, MAP_DATA) && !subseg_text_p (now_seg))
1566 /* Emit MAP_DATA within executable section in order. Otherwise, it will be
c1baaddf 1567 evaluated later in the next else. */
a06ea964 1568 return;
c1baaddf
RL
1569 else if (TRANSITION (MAP_UNDEFINED, MAP_INSN))
1570 {
1571 /* Only add the symbol if the offset is > 0:
1572 if we're at the first frag, check it's size > 0;
1573 if we're not at the first frag, then for sure
1574 the offset is > 0. */
1575 struct frag *const frag_first = seg_info (now_seg)->frchainP->frch_root;
1576 const int add_symbol = (frag_now != frag_first)
1577 || (frag_now_fix () > 0);
1578
1579 if (add_symbol)
1580 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
1581 }
1582#undef TRANSITION
a06ea964
NC
1583
1584 mapping_state_2 (state, 0);
a06ea964
NC
1585}
1586
1587/* Same as mapping_state, but MAX_CHARS bytes have already been
1588 allocated. Put the mapping symbol that far back. */
1589
1590static void
1591mapping_state_2 (enum mstate state, int max_chars)
1592{
1593 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1594
1595 if (!SEG_NORMAL (now_seg))
1596 return;
1597
1598 if (mapstate == state)
1599 /* The mapping symbol has already been emitted.
1600 There is nothing else to do. */
1601 return;
1602
1603 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
1604 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
1605}
1606#else
1607#define mapping_state(x) /* nothing */
1608#define mapping_state_2(x, y) /* nothing */
1609#endif
1610
1611/* Directives: sectioning and alignment. */
1612
1613static void
1614s_bss (int ignore ATTRIBUTE_UNUSED)
1615{
1616 /* We don't support putting frags in the BSS segment, we fake it by
1617 marking in_bss, then looking at s_skip for clues. */
1618 subseg_set (bss_section, 0);
1619 demand_empty_rest_of_line ();
1620 mapping_state (MAP_DATA);
1621}
1622
1623static void
1624s_even (int ignore ATTRIBUTE_UNUSED)
1625{
1626 /* Never make frag if expect extra pass. */
1627 if (!need_pass_2)
1628 frag_align (1, 0, 0);
1629
1630 record_alignment (now_seg, 1);
1631
1632 demand_empty_rest_of_line ();
1633}
1634
1635/* Directives: Literal pools. */
1636
1637static literal_pool *
1638find_literal_pool (int size)
1639{
1640 literal_pool *pool;
1641
1642 for (pool = list_of_pools; pool != NULL; pool = pool->next)
1643 {
1644 if (pool->section == now_seg
1645 && pool->sub_section == now_subseg && pool->size == size)
1646 break;
1647 }
1648
1649 return pool;
1650}
1651
1652static literal_pool *
1653find_or_make_literal_pool (int size)
1654{
1655 /* Next literal pool ID number. */
1656 static unsigned int latest_pool_num = 1;
1657 literal_pool *pool;
1658
1659 pool = find_literal_pool (size);
1660
1661 if (pool == NULL)
1662 {
1663 /* Create a new pool. */
add39d23 1664 pool = XNEW (literal_pool);
a06ea964
NC
1665 if (!pool)
1666 return NULL;
1667
1668 /* Currently we always put the literal pool in the current text
1669 section. If we were generating "small" model code where we
1670 knew that all code and initialised data was within 1MB then
1671 we could output literals to mergeable, read-only data
1672 sections. */
1673
1674 pool->next_free_entry = 0;
1675 pool->section = now_seg;
1676 pool->sub_section = now_subseg;
1677 pool->size = size;
1678 pool->next = list_of_pools;
1679 pool->symbol = NULL;
1680
1681 /* Add it to the list. */
1682 list_of_pools = pool;
1683 }
1684
1685 /* New pools, and emptied pools, will have a NULL symbol. */
1686 if (pool->symbol == NULL)
1687 {
1688 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
1689 (valueT) 0, &zero_address_frag);
1690 pool->id = latest_pool_num++;
1691 }
1692
1693 /* Done. */
1694 return pool;
1695}
1696
1697/* Add the literal of size SIZE in *EXP to the relevant literal pool.
1698 Return TRUE on success, otherwise return FALSE. */
1699static bfd_boolean
1700add_to_lit_pool (expressionS *exp, int size)
1701{
1702 literal_pool *pool;
1703 unsigned int entry;
1704
1705 pool = find_or_make_literal_pool (size);
1706
1707 /* Check if this literal value is already in the pool. */
1708 for (entry = 0; entry < pool->next_free_entry; entry++)
1709 {
55d9b4c1
NC
1710 expressionS * litexp = & pool->literals[entry].exp;
1711
1712 if ((litexp->X_op == exp->X_op)
a06ea964 1713 && (exp->X_op == O_constant)
55d9b4c1
NC
1714 && (litexp->X_add_number == exp->X_add_number)
1715 && (litexp->X_unsigned == exp->X_unsigned))
a06ea964
NC
1716 break;
1717
55d9b4c1 1718 if ((litexp->X_op == exp->X_op)
a06ea964 1719 && (exp->X_op == O_symbol)
55d9b4c1
NC
1720 && (litexp->X_add_number == exp->X_add_number)
1721 && (litexp->X_add_symbol == exp->X_add_symbol)
1722 && (litexp->X_op_symbol == exp->X_op_symbol))
a06ea964
NC
1723 break;
1724 }
1725
1726 /* Do we need to create a new entry? */
1727 if (entry == pool->next_free_entry)
1728 {
1729 if (entry >= MAX_LITERAL_POOL_SIZE)
1730 {
1731 set_syntax_error (_("literal pool overflow"));
1732 return FALSE;
1733 }
1734
55d9b4c1 1735 pool->literals[entry].exp = *exp;
a06ea964 1736 pool->next_free_entry += 1;
55d9b4c1
NC
1737 if (exp->X_op == O_big)
1738 {
1739 /* PR 16688: Bignums are held in a single global array. We must
1740 copy and preserve that value now, before it is overwritten. */
add39d23
TS
1741 pool->literals[entry].bignum = XNEWVEC (LITTLENUM_TYPE,
1742 exp->X_add_number);
55d9b4c1
NC
1743 memcpy (pool->literals[entry].bignum, generic_bignum,
1744 CHARS_PER_LITTLENUM * exp->X_add_number);
1745 }
1746 else
1747 pool->literals[entry].bignum = NULL;
a06ea964
NC
1748 }
1749
1750 exp->X_op = O_symbol;
1751 exp->X_add_number = ((int) entry) * size;
1752 exp->X_add_symbol = pool->symbol;
1753
1754 return TRUE;
1755}
1756
1757/* Can't use symbol_new here, so have to create a symbol and then at
33eaf5de 1758 a later date assign it a value. That's what these functions do. */
a06ea964
NC
1759
1760static void
1761symbol_locate (symbolS * symbolP,
1762 const char *name,/* It is copied, the caller can modify. */
1763 segT segment, /* Segment identifier (SEG_<something>). */
1764 valueT valu, /* Symbol value. */
1765 fragS * frag) /* Associated fragment. */
1766{
e57e6ddc 1767 size_t name_length;
a06ea964
NC
1768 char *preserved_copy_of_name;
1769
1770 name_length = strlen (name) + 1; /* +1 for \0. */
1771 obstack_grow (&notes, name, name_length);
1772 preserved_copy_of_name = obstack_finish (&notes);
1773
1774#ifdef tc_canonicalize_symbol_name
1775 preserved_copy_of_name =
1776 tc_canonicalize_symbol_name (preserved_copy_of_name);
1777#endif
1778
1779 S_SET_NAME (symbolP, preserved_copy_of_name);
1780
1781 S_SET_SEGMENT (symbolP, segment);
1782 S_SET_VALUE (symbolP, valu);
1783 symbol_clear_list_pointers (symbolP);
1784
1785 symbol_set_frag (symbolP, frag);
1786
1787 /* Link to end of symbol chain. */
1788 {
1789 extern int symbol_table_frozen;
1790
1791 if (symbol_table_frozen)
1792 abort ();
1793 }
1794
1795 symbol_append (symbolP, symbol_lastP, &symbol_rootP, &symbol_lastP);
1796
1797 obj_symbol_new_hook (symbolP);
1798
1799#ifdef tc_symbol_new_hook
1800 tc_symbol_new_hook (symbolP);
1801#endif
1802
1803#ifdef DEBUG_SYMS
1804 verify_symbol_chain (symbol_rootP, symbol_lastP);
1805#endif /* DEBUG_SYMS */
1806}
1807
1808
1809static void
1810s_ltorg (int ignored ATTRIBUTE_UNUSED)
1811{
1812 unsigned int entry;
1813 literal_pool *pool;
1814 char sym_name[20];
1815 int align;
1816
67a32447 1817 for (align = 2; align <= 4; align++)
a06ea964
NC
1818 {
1819 int size = 1 << align;
1820
1821 pool = find_literal_pool (size);
1822 if (pool == NULL || pool->symbol == NULL || pool->next_free_entry == 0)
1823 continue;
1824
a06ea964
NC
1825 /* Align pool as you have word accesses.
1826 Only make a frag if we have to. */
1827 if (!need_pass_2)
1828 frag_align (align, 0, 0);
1829
7ea12e5c
NC
1830 mapping_state (MAP_DATA);
1831
a06ea964
NC
1832 record_alignment (now_seg, align);
1833
1834 sprintf (sym_name, "$$lit_\002%x", pool->id);
1835
1836 symbol_locate (pool->symbol, sym_name, now_seg,
1837 (valueT) frag_now_fix (), frag_now);
1838 symbol_table_insert (pool->symbol);
1839
1840 for (entry = 0; entry < pool->next_free_entry; entry++)
55d9b4c1
NC
1841 {
1842 expressionS * exp = & pool->literals[entry].exp;
1843
1844 if (exp->X_op == O_big)
1845 {
1846 /* PR 16688: Restore the global bignum value. */
1847 gas_assert (pool->literals[entry].bignum != NULL);
1848 memcpy (generic_bignum, pool->literals[entry].bignum,
1849 CHARS_PER_LITTLENUM * exp->X_add_number);
1850 }
1851
1852 /* First output the expression in the instruction to the pool. */
1853 emit_expr (exp, size); /* .word|.xword */
1854
1855 if (exp->X_op == O_big)
1856 {
1857 free (pool->literals[entry].bignum);
1858 pool->literals[entry].bignum = NULL;
1859 }
1860 }
a06ea964
NC
1861
1862 /* Mark the pool as empty. */
1863 pool->next_free_entry = 0;
1864 pool->symbol = NULL;
1865 }
1866}
1867
1868#ifdef OBJ_ELF
1869/* Forward declarations for functions below, in the MD interface
1870 section. */
1871static fixS *fix_new_aarch64 (fragS *, int, short, expressionS *, int, int);
1872static struct reloc_table_entry * find_reloc_table_entry (char **);
1873
1874/* Directives: Data. */
1875/* N.B. the support for relocation suffix in this directive needs to be
1876 implemented properly. */
1877
1878static void
1879s_aarch64_elf_cons (int nbytes)
1880{
1881 expressionS exp;
1882
1883#ifdef md_flush_pending_output
1884 md_flush_pending_output ();
1885#endif
1886
1887 if (is_it_end_of_statement ())
1888 {
1889 demand_empty_rest_of_line ();
1890 return;
1891 }
1892
1893#ifdef md_cons_align
1894 md_cons_align (nbytes);
1895#endif
1896
1897 mapping_state (MAP_DATA);
1898 do
1899 {
1900 struct reloc_table_entry *reloc;
1901
1902 expression (&exp);
1903
1904 if (exp.X_op != O_symbol)
1905 emit_expr (&exp, (unsigned int) nbytes);
1906 else
1907 {
1908 skip_past_char (&input_line_pointer, '#');
1909 if (skip_past_char (&input_line_pointer, ':'))
1910 {
1911 reloc = find_reloc_table_entry (&input_line_pointer);
1912 if (reloc == NULL)
1913 as_bad (_("unrecognized relocation suffix"));
1914 else
1915 as_bad (_("unimplemented relocation suffix"));
1916 ignore_rest_of_line ();
1917 return;
1918 }
1919 else
1920 emit_expr (&exp, (unsigned int) nbytes);
1921 }
1922 }
1923 while (*input_line_pointer++ == ',');
1924
1925 /* Put terminator back into stream. */
1926 input_line_pointer--;
1927 demand_empty_rest_of_line ();
1928}
1929
1930#endif /* OBJ_ELF */
1931
1932/* Output a 32-bit word, but mark as an instruction. */
1933
1934static void
1935s_aarch64_inst (int ignored ATTRIBUTE_UNUSED)
1936{
1937 expressionS exp;
1938
1939#ifdef md_flush_pending_output
1940 md_flush_pending_output ();
1941#endif
1942
1943 if (is_it_end_of_statement ())
1944 {
1945 demand_empty_rest_of_line ();
1946 return;
1947 }
1948
a97902de 1949 /* Sections are assumed to start aligned. In executable section, there is no
c1baaddf
RL
1950 MAP_DATA symbol pending. So we only align the address during
1951 MAP_DATA --> MAP_INSN transition.
eb9d6cc9 1952 For other sections, this is not guaranteed. */
c1baaddf 1953 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
eb9d6cc9 1954 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
a06ea964 1955 frag_align_code (2, 0);
c1baaddf 1956
a06ea964
NC
1957#ifdef OBJ_ELF
1958 mapping_state (MAP_INSN);
1959#endif
1960
1961 do
1962 {
1963 expression (&exp);
1964 if (exp.X_op != O_constant)
1965 {
1966 as_bad (_("constant expression required"));
1967 ignore_rest_of_line ();
1968 return;
1969 }
1970
1971 if (target_big_endian)
1972 {
1973 unsigned int val = exp.X_add_number;
1974 exp.X_add_number = SWAP_32 (val);
1975 }
1976 emit_expr (&exp, 4);
1977 }
1978 while (*input_line_pointer++ == ',');
1979
1980 /* Put terminator back into stream. */
1981 input_line_pointer--;
1982 demand_empty_rest_of_line ();
1983}
1984
1985#ifdef OBJ_ELF
43a357f9
RL
1986/* Emit BFD_RELOC_AARCH64_TLSDESC_ADD on the next ADD instruction. */
1987
1988static void
1989s_tlsdescadd (int ignored ATTRIBUTE_UNUSED)
1990{
1991 expressionS exp;
1992
1993 expression (&exp);
1994 frag_grow (4);
1995 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
1996 BFD_RELOC_AARCH64_TLSDESC_ADD);
1997
1998 demand_empty_rest_of_line ();
1999}
2000
a06ea964
NC
2001/* Emit BFD_RELOC_AARCH64_TLSDESC_CALL on the next BLR instruction. */
2002
2003static void
2004s_tlsdesccall (int ignored ATTRIBUTE_UNUSED)
2005{
2006 expressionS exp;
2007
2008 /* Since we're just labelling the code, there's no need to define a
2009 mapping symbol. */
2010 expression (&exp);
2011 /* Make sure there is enough room in this frag for the following
2012 blr. This trick only works if the blr follows immediately after
2013 the .tlsdesc directive. */
2014 frag_grow (4);
2015 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
2016 BFD_RELOC_AARCH64_TLSDESC_CALL);
2017
2018 demand_empty_rest_of_line ();
2019}
43a357f9
RL
2020
2021/* Emit BFD_RELOC_AARCH64_TLSDESC_LDR on the next LDR instruction. */
2022
2023static void
2024s_tlsdescldr (int ignored ATTRIBUTE_UNUSED)
2025{
2026 expressionS exp;
2027
2028 expression (&exp);
2029 frag_grow (4);
2030 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
2031 BFD_RELOC_AARCH64_TLSDESC_LDR);
2032
2033 demand_empty_rest_of_line ();
2034}
a06ea964
NC
2035#endif /* OBJ_ELF */
2036
2037static void s_aarch64_arch (int);
2038static void s_aarch64_cpu (int);
ae527cd8 2039static void s_aarch64_arch_extension (int);
a06ea964
NC
2040
2041/* This table describes all the machine specific pseudo-ops the assembler
2042 has to support. The fields are:
2043 pseudo-op name without dot
2044 function to call to execute this pseudo-op
2045 Integer arg to pass to the function. */
2046
2047const pseudo_typeS md_pseudo_table[] = {
2048 /* Never called because '.req' does not start a line. */
2049 {"req", s_req, 0},
2050 {"unreq", s_unreq, 0},
2051 {"bss", s_bss, 0},
2052 {"even", s_even, 0},
2053 {"ltorg", s_ltorg, 0},
2054 {"pool", s_ltorg, 0},
2055 {"cpu", s_aarch64_cpu, 0},
2056 {"arch", s_aarch64_arch, 0},
ae527cd8 2057 {"arch_extension", s_aarch64_arch_extension, 0},
a06ea964
NC
2058 {"inst", s_aarch64_inst, 0},
2059#ifdef OBJ_ELF
43a357f9 2060 {"tlsdescadd", s_tlsdescadd, 0},
a06ea964 2061 {"tlsdesccall", s_tlsdesccall, 0},
43a357f9 2062 {"tlsdescldr", s_tlsdescldr, 0},
a06ea964
NC
2063 {"word", s_aarch64_elf_cons, 4},
2064 {"long", s_aarch64_elf_cons, 4},
2065 {"xword", s_aarch64_elf_cons, 8},
2066 {"dword", s_aarch64_elf_cons, 8},
2067#endif
2068 {0, 0, 0}
2069};
2070\f
2071
2072/* Check whether STR points to a register name followed by a comma or the
2073 end of line; REG_TYPE indicates which register types are checked
2074 against. Return TRUE if STR is such a register name; otherwise return
2075 FALSE. The function does not intend to produce any diagnostics, but since
2076 the register parser aarch64_reg_parse, which is called by this function,
2077 does produce diagnostics, we call clear_error to clear any diagnostics
2078 that may be generated by aarch64_reg_parse.
2079 Also, the function returns FALSE directly if there is any user error
2080 present at the function entry. This prevents the existing diagnostics
2081 state from being spoiled.
2082 The function currently serves parse_constant_immediate and
2083 parse_big_immediate only. */
2084static bfd_boolean
2085reg_name_p (char *str, aarch64_reg_type reg_type)
2086{
2087 int reg;
2088
2089 /* Prevent the diagnostics state from being spoiled. */
2090 if (error_p ())
2091 return FALSE;
2092
2093 reg = aarch64_reg_parse (&str, reg_type, NULL, NULL);
2094
2095 /* Clear the parsing error that may be set by the reg parser. */
2096 clear_error ();
2097
2098 if (reg == PARSE_FAIL)
2099 return FALSE;
2100
2101 skip_whitespace (str);
2102 if (*str == ',' || is_end_of_line[(unsigned int) *str])
2103 return TRUE;
2104
2105 return FALSE;
2106}
2107
2108/* Parser functions used exclusively in instruction operands. */
2109
2110/* Parse an immediate expression which may not be constant.
2111
2112 To prevent the expression parser from pushing a register name
2113 into the symbol table as an undefined symbol, firstly a check is
1799c0d0
RS
2114 done to find out whether STR is a register of type REG_TYPE followed
2115 by a comma or the end of line. Return FALSE if STR is such a string. */
a06ea964
NC
2116
2117static bfd_boolean
1799c0d0
RS
2118parse_immediate_expression (char **str, expressionS *exp,
2119 aarch64_reg_type reg_type)
a06ea964 2120{
1799c0d0 2121 if (reg_name_p (*str, reg_type))
a06ea964
NC
2122 {
2123 set_recoverable_error (_("immediate operand required"));
2124 return FALSE;
2125 }
2126
2127 my_get_expression (exp, str, GE_OPT_PREFIX, 1);
2128
2129 if (exp->X_op == O_absent)
2130 {
2131 set_fatal_syntax_error (_("missing immediate expression"));
2132 return FALSE;
2133 }
2134
2135 return TRUE;
2136}
2137
2138/* Constant immediate-value read function for use in insn parsing.
2139 STR points to the beginning of the immediate (with the optional
1799c0d0
RS
2140 leading #); *VAL receives the value. REG_TYPE says which register
2141 names should be treated as registers rather than as symbolic immediates.
a06ea964
NC
2142
2143 Return TRUE on success; otherwise return FALSE. */
2144
2145static bfd_boolean
1799c0d0 2146parse_constant_immediate (char **str, int64_t *val, aarch64_reg_type reg_type)
a06ea964
NC
2147{
2148 expressionS exp;
2149
1799c0d0 2150 if (! parse_immediate_expression (str, &exp, reg_type))
a06ea964
NC
2151 return FALSE;
2152
2153 if (exp.X_op != O_constant)
2154 {
2155 set_syntax_error (_("constant expression required"));
2156 return FALSE;
2157 }
2158
2159 *val = exp.X_add_number;
2160 return TRUE;
2161}
2162
2163static uint32_t
2164encode_imm_float_bits (uint32_t imm)
2165{
2166 return ((imm >> 19) & 0x7f) /* b[25:19] -> b[6:0] */
2167 | ((imm >> (31 - 7)) & 0x80); /* b[31] -> b[7] */
2168}
2169
62b0d0d5
YZ
2170/* Return TRUE if the single-precision floating-point value encoded in IMM
2171 can be expressed in the AArch64 8-bit signed floating-point format with
2172 3-bit exponent and normalized 4 bits of precision; in other words, the
2173 floating-point value must be expressable as
2174 (+/-) n / 16 * power (2, r)
2175 where n and r are integers such that 16 <= n <=31 and -3 <= r <= 4. */
2176
a06ea964
NC
2177static bfd_boolean
2178aarch64_imm_float_p (uint32_t imm)
2179{
62b0d0d5
YZ
2180 /* If a single-precision floating-point value has the following bit
2181 pattern, it can be expressed in the AArch64 8-bit floating-point
2182 format:
2183
2184 3 32222222 2221111111111
a06ea964 2185 1 09876543 21098765432109876543210
62b0d0d5
YZ
2186 n Eeeeeexx xxxx0000000000000000000
2187
2188 where n, e and each x are either 0 or 1 independently, with
2189 E == ~ e. */
a06ea964 2190
62b0d0d5
YZ
2191 uint32_t pattern;
2192
2193 /* Prepare the pattern for 'Eeeeee'. */
2194 if (((imm >> 30) & 0x1) == 0)
2195 pattern = 0x3e000000;
a06ea964 2196 else
62b0d0d5
YZ
2197 pattern = 0x40000000;
2198
2199 return (imm & 0x7ffff) == 0 /* lower 19 bits are 0. */
2200 && ((imm & 0x7e000000) == pattern); /* bits 25 - 29 == ~ bit 30. */
a06ea964
NC
2201}
2202
04a3379a
RS
2203/* Return TRUE if the IEEE double value encoded in IMM can be expressed
2204 as an IEEE float without any loss of precision. Store the value in
2205 *FPWORD if so. */
62b0d0d5 2206
a06ea964 2207static bfd_boolean
04a3379a 2208can_convert_double_to_float (uint64_t imm, uint32_t *fpword)
62b0d0d5
YZ
2209{
2210 /* If a double-precision floating-point value has the following bit
04a3379a 2211 pattern, it can be expressed in a float:
62b0d0d5 2212
04a3379a
RS
2213 6 66655555555 5544 44444444 33333333 33222222 22221111 111111
2214 3 21098765432 1098 76543210 98765432 10987654 32109876 54321098 76543210
2215 n E~~~eeeeeee ssss ssssssss ssssssss SSS00000 00000000 00000000 00000000
62b0d0d5 2216
04a3379a
RS
2217 -----------------------------> nEeeeeee esssssss ssssssss sssssSSS
2218 if Eeee_eeee != 1111_1111
2219
2220 where n, e, s and S are either 0 or 1 independently and where ~ is the
2221 inverse of E. */
62b0d0d5
YZ
2222
2223 uint32_t pattern;
2224 uint32_t high32 = imm >> 32;
04a3379a 2225 uint32_t low32 = imm;
62b0d0d5 2226
04a3379a
RS
2227 /* Lower 29 bits need to be 0s. */
2228 if ((imm & 0x1fffffff) != 0)
62b0d0d5
YZ
2229 return FALSE;
2230
2231 /* Prepare the pattern for 'Eeeeeeeee'. */
2232 if (((high32 >> 30) & 0x1) == 0)
04a3379a 2233 pattern = 0x38000000;
62b0d0d5
YZ
2234 else
2235 pattern = 0x40000000;
2236
04a3379a
RS
2237 /* Check E~~~. */
2238 if ((high32 & 0x78000000) != pattern)
62b0d0d5 2239 return FALSE;
04a3379a
RS
2240
2241 /* Check Eeee_eeee != 1111_1111. */
2242 if ((high32 & 0x7ff00000) == 0x47f00000)
2243 return FALSE;
2244
2245 *fpword = ((high32 & 0xc0000000) /* 1 n bit and 1 E bit. */
2246 | ((high32 << 3) & 0x3ffffff8) /* 7 e and 20 s bits. */
2247 | (low32 >> 29)); /* 3 S bits. */
2248 return TRUE;
62b0d0d5
YZ
2249}
2250
165d4950
RS
2251/* Return true if we should treat OPERAND as a double-precision
2252 floating-point operand rather than a single-precision one. */
2253static bfd_boolean
2254double_precision_operand_p (const aarch64_opnd_info *operand)
2255{
2256 /* Check for unsuffixed SVE registers, which are allowed
2257 for LDR and STR but not in instructions that require an
2258 immediate. We get better error messages if we arbitrarily
2259 pick one size, parse the immediate normally, and then
2260 report the match failure in the normal way. */
2261 return (operand->qualifier == AARCH64_OPND_QLF_NIL
2262 || aarch64_get_qualifier_esize (operand->qualifier) == 8);
2263}
2264
62b0d0d5
YZ
2265/* Parse a floating-point immediate. Return TRUE on success and return the
2266 value in *IMMED in the format of IEEE754 single-precision encoding.
2267 *CCP points to the start of the string; DP_P is TRUE when the immediate
2268 is expected to be in double-precision (N.B. this only matters when
1799c0d0
RS
2269 hexadecimal representation is involved). REG_TYPE says which register
2270 names should be treated as registers rather than as symbolic immediates.
62b0d0d5 2271
874d7e6e
RS
2272 This routine accepts any IEEE float; it is up to the callers to reject
2273 invalid ones. */
62b0d0d5
YZ
2274
2275static bfd_boolean
1799c0d0
RS
2276parse_aarch64_imm_float (char **ccp, int *immed, bfd_boolean dp_p,
2277 aarch64_reg_type reg_type)
a06ea964
NC
2278{
2279 char *str = *ccp;
2280 char *fpnum;
2281 LITTLENUM_TYPE words[MAX_LITTLENUMS];
62b0d0d5
YZ
2282 int64_t val = 0;
2283 unsigned fpword = 0;
2284 bfd_boolean hex_p = FALSE;
a06ea964
NC
2285
2286 skip_past_char (&str, '#');
2287
a06ea964
NC
2288 fpnum = str;
2289 skip_whitespace (fpnum);
2290
2291 if (strncmp (fpnum, "0x", 2) == 0)
62b0d0d5
YZ
2292 {
2293 /* Support the hexadecimal representation of the IEEE754 encoding.
2294 Double-precision is expected when DP_P is TRUE, otherwise the
2295 representation should be in single-precision. */
1799c0d0 2296 if (! parse_constant_immediate (&str, &val, reg_type))
62b0d0d5
YZ
2297 goto invalid_fp;
2298
2299 if (dp_p)
2300 {
04a3379a 2301 if (!can_convert_double_to_float (val, &fpword))
62b0d0d5
YZ
2302 goto invalid_fp;
2303 }
2304 else if ((uint64_t) val > 0xffffffff)
2305 goto invalid_fp;
2306 else
2307 fpword = val;
2308
2309 hex_p = TRUE;
2310 }
66881839
TC
2311 else if (reg_name_p (str, reg_type))
2312 {
2313 set_recoverable_error (_("immediate operand required"));
2314 return FALSE;
a06ea964
NC
2315 }
2316
62b0d0d5 2317 if (! hex_p)
a06ea964 2318 {
a06ea964
NC
2319 int i;
2320
62b0d0d5
YZ
2321 if ((str = atof_ieee (str, 's', words)) == NULL)
2322 goto invalid_fp;
2323
a06ea964
NC
2324 /* Our FP word must be 32 bits (single-precision FP). */
2325 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
2326 {
2327 fpword <<= LITTLENUM_NUMBER_OF_BITS;
2328 fpword |= words[i];
2329 }
62b0d0d5 2330 }
a06ea964 2331
874d7e6e
RS
2332 *immed = fpword;
2333 *ccp = str;
2334 return TRUE;
a06ea964
NC
2335
2336invalid_fp:
2337 set_fatal_syntax_error (_("invalid floating-point constant"));
2338 return FALSE;
2339}
2340
2341/* Less-generic immediate-value read function with the possibility of loading
2342 a big (64-bit) immediate, as required by AdvSIMD Modified immediate
2343 instructions.
2344
2345 To prevent the expression parser from pushing a register name into the
2346 symbol table as an undefined symbol, a check is firstly done to find
1799c0d0
RS
2347 out whether STR is a register of type REG_TYPE followed by a comma or
2348 the end of line. Return FALSE if STR is such a register. */
a06ea964
NC
2349
2350static bfd_boolean
1799c0d0 2351parse_big_immediate (char **str, int64_t *imm, aarch64_reg_type reg_type)
a06ea964
NC
2352{
2353 char *ptr = *str;
2354
1799c0d0 2355 if (reg_name_p (ptr, reg_type))
a06ea964
NC
2356 {
2357 set_syntax_error (_("immediate operand required"));
2358 return FALSE;
2359 }
2360
2361 my_get_expression (&inst.reloc.exp, &ptr, GE_OPT_PREFIX, 1);
2362
2363 if (inst.reloc.exp.X_op == O_constant)
2364 *imm = inst.reloc.exp.X_add_number;
2365
2366 *str = ptr;
2367
2368 return TRUE;
2369}
2370
2371/* Set operand IDX of the *INSTR that needs a GAS internal fixup.
2372 if NEED_LIBOPCODES is non-zero, the fixup will need
2373 assistance from the libopcodes. */
2374
2375static inline void
2376aarch64_set_gas_internal_fixup (struct reloc *reloc,
2377 const aarch64_opnd_info *operand,
2378 int need_libopcodes_p)
2379{
2380 reloc->type = BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2381 reloc->opnd = operand->type;
2382 if (need_libopcodes_p)
2383 reloc->need_libopcodes_p = 1;
2384};
2385
2386/* Return TRUE if the instruction needs to be fixed up later internally by
2387 the GAS; otherwise return FALSE. */
2388
2389static inline bfd_boolean
2390aarch64_gas_internal_fixup_p (void)
2391{
2392 return inst.reloc.type == BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2393}
2394
33eaf5de 2395/* Assign the immediate value to the relevant field in *OPERAND if
a06ea964
NC
2396 RELOC->EXP is a constant expression; otherwise, flag that *OPERAND
2397 needs an internal fixup in a later stage.
2398 ADDR_OFF_P determines whether it is the field ADDR.OFFSET.IMM or
2399 IMM.VALUE that may get assigned with the constant. */
2400static inline void
2401assign_imm_if_const_or_fixup_later (struct reloc *reloc,
2402 aarch64_opnd_info *operand,
2403 int addr_off_p,
2404 int need_libopcodes_p,
2405 int skip_p)
2406{
2407 if (reloc->exp.X_op == O_constant)
2408 {
2409 if (addr_off_p)
2410 operand->addr.offset.imm = reloc->exp.X_add_number;
2411 else
2412 operand->imm.value = reloc->exp.X_add_number;
2413 reloc->type = BFD_RELOC_UNUSED;
2414 }
2415 else
2416 {
2417 aarch64_set_gas_internal_fixup (reloc, operand, need_libopcodes_p);
2418 /* Tell libopcodes to ignore this operand or not. This is helpful
2419 when one of the operands needs to be fixed up later but we need
2420 libopcodes to check the other operands. */
2421 operand->skip = skip_p;
2422 }
2423}
2424
2425/* Relocation modifiers. Each entry in the table contains the textual
2426 name for the relocation which may be placed before a symbol used as
2427 a load/store offset, or add immediate. It must be surrounded by a
2428 leading and trailing colon, for example:
2429
2430 ldr x0, [x1, #:rello:varsym]
2431 add x0, x1, #:rello:varsym */
2432
2433struct reloc_table_entry
2434{
2435 const char *name;
2436 int pc_rel;
6f4a313b 2437 bfd_reloc_code_real_type adr_type;
a06ea964
NC
2438 bfd_reloc_code_real_type adrp_type;
2439 bfd_reloc_code_real_type movw_type;
2440 bfd_reloc_code_real_type add_type;
2441 bfd_reloc_code_real_type ldst_type;
74ad790c 2442 bfd_reloc_code_real_type ld_literal_type;
a06ea964
NC
2443};
2444
2445static struct reloc_table_entry reloc_table[] = {
2446 /* Low 12 bits of absolute address: ADD/i and LDR/STR */
2447 {"lo12", 0,
6f4a313b 2448 0, /* adr_type */
a06ea964
NC
2449 0,
2450 0,
2451 BFD_RELOC_AARCH64_ADD_LO12,
74ad790c
MS
2452 BFD_RELOC_AARCH64_LDST_LO12,
2453 0},
a06ea964
NC
2454
2455 /* Higher 21 bits of pc-relative page offset: ADRP */
2456 {"pg_hi21", 1,
6f4a313b 2457 0, /* adr_type */
a06ea964
NC
2458 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
2459 0,
2460 0,
74ad790c 2461 0,
a06ea964
NC
2462 0},
2463
2464 /* Higher 21 bits of pc-relative page offset: ADRP, no check */
2465 {"pg_hi21_nc", 1,
6f4a313b 2466 0, /* adr_type */
a06ea964
NC
2467 BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL,
2468 0,
2469 0,
74ad790c 2470 0,
a06ea964
NC
2471 0},
2472
2473 /* Most significant bits 0-15 of unsigned address/value: MOVZ */
2474 {"abs_g0", 0,
6f4a313b 2475 0, /* adr_type */
a06ea964
NC
2476 0,
2477 BFD_RELOC_AARCH64_MOVW_G0,
2478 0,
74ad790c 2479 0,
a06ea964
NC
2480 0},
2481
2482 /* Most significant bits 0-15 of signed address/value: MOVN/Z */
2483 {"abs_g0_s", 0,
6f4a313b 2484 0, /* adr_type */
a06ea964
NC
2485 0,
2486 BFD_RELOC_AARCH64_MOVW_G0_S,
2487 0,
74ad790c 2488 0,
a06ea964
NC
2489 0},
2490
2491 /* Less significant bits 0-15 of address/value: MOVK, no check */
2492 {"abs_g0_nc", 0,
6f4a313b 2493 0, /* adr_type */
a06ea964
NC
2494 0,
2495 BFD_RELOC_AARCH64_MOVW_G0_NC,
2496 0,
74ad790c 2497 0,
a06ea964
NC
2498 0},
2499
2500 /* Most significant bits 16-31 of unsigned address/value: MOVZ */
2501 {"abs_g1", 0,
6f4a313b 2502 0, /* adr_type */
a06ea964
NC
2503 0,
2504 BFD_RELOC_AARCH64_MOVW_G1,
2505 0,
74ad790c 2506 0,
a06ea964
NC
2507 0},
2508
2509 /* Most significant bits 16-31 of signed address/value: MOVN/Z */
2510 {"abs_g1_s", 0,
6f4a313b 2511 0, /* adr_type */
a06ea964
NC
2512 0,
2513 BFD_RELOC_AARCH64_MOVW_G1_S,
2514 0,
74ad790c 2515 0,
a06ea964
NC
2516 0},
2517
2518 /* Less significant bits 16-31 of address/value: MOVK, no check */
2519 {"abs_g1_nc", 0,
6f4a313b 2520 0, /* adr_type */
a06ea964
NC
2521 0,
2522 BFD_RELOC_AARCH64_MOVW_G1_NC,
2523 0,
74ad790c 2524 0,
a06ea964
NC
2525 0},
2526
2527 /* Most significant bits 32-47 of unsigned address/value: MOVZ */
2528 {"abs_g2", 0,
6f4a313b 2529 0, /* adr_type */
a06ea964
NC
2530 0,
2531 BFD_RELOC_AARCH64_MOVW_G2,
2532 0,
74ad790c 2533 0,
a06ea964
NC
2534 0},
2535
2536 /* Most significant bits 32-47 of signed address/value: MOVN/Z */
2537 {"abs_g2_s", 0,
6f4a313b 2538 0, /* adr_type */
a06ea964
NC
2539 0,
2540 BFD_RELOC_AARCH64_MOVW_G2_S,
2541 0,
74ad790c 2542 0,
a06ea964
NC
2543 0},
2544
2545 /* Less significant bits 32-47 of address/value: MOVK, no check */
2546 {"abs_g2_nc", 0,
6f4a313b 2547 0, /* adr_type */
a06ea964
NC
2548 0,
2549 BFD_RELOC_AARCH64_MOVW_G2_NC,
2550 0,
74ad790c 2551 0,
a06ea964
NC
2552 0},
2553
2554 /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
2555 {"abs_g3", 0,
6f4a313b 2556 0, /* adr_type */
a06ea964
NC
2557 0,
2558 BFD_RELOC_AARCH64_MOVW_G3,
2559 0,
74ad790c 2560 0,
a06ea964 2561 0},
4aa2c5e2 2562
32247401
RL
2563 /* Most significant bits 0-15 of signed/unsigned address/value: MOVZ */
2564 {"prel_g0", 1,
2565 0, /* adr_type */
2566 0,
2567 BFD_RELOC_AARCH64_MOVW_PREL_G0,
2568 0,
2569 0,
2570 0},
2571
2572 /* Most significant bits 0-15 of signed/unsigned address/value: MOVK */
2573 {"prel_g0_nc", 1,
2574 0, /* adr_type */
2575 0,
2576 BFD_RELOC_AARCH64_MOVW_PREL_G0_NC,
2577 0,
2578 0,
2579 0},
2580
2581 /* Most significant bits 16-31 of signed/unsigned address/value: MOVZ */
2582 {"prel_g1", 1,
2583 0, /* adr_type */
2584 0,
2585 BFD_RELOC_AARCH64_MOVW_PREL_G1,
2586 0,
2587 0,
2588 0},
2589
2590 /* Most significant bits 16-31 of signed/unsigned address/value: MOVK */
2591 {"prel_g1_nc", 1,
2592 0, /* adr_type */
2593 0,
2594 BFD_RELOC_AARCH64_MOVW_PREL_G1_NC,
2595 0,
2596 0,
2597 0},
2598
2599 /* Most significant bits 32-47 of signed/unsigned address/value: MOVZ */
2600 {"prel_g2", 1,
2601 0, /* adr_type */
2602 0,
2603 BFD_RELOC_AARCH64_MOVW_PREL_G2,
2604 0,
2605 0,
2606 0},
2607
2608 /* Most significant bits 32-47 of signed/unsigned address/value: MOVK */
2609 {"prel_g2_nc", 1,
2610 0, /* adr_type */
2611 0,
2612 BFD_RELOC_AARCH64_MOVW_PREL_G2_NC,
2613 0,
2614 0,
2615 0},
2616
2617 /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
2618 {"prel_g3", 1,
2619 0, /* adr_type */
2620 0,
2621 BFD_RELOC_AARCH64_MOVW_PREL_G3,
2622 0,
2623 0,
2624 0},
2625
a06ea964
NC
2626 /* Get to the page containing GOT entry for a symbol. */
2627 {"got", 1,
6f4a313b 2628 0, /* adr_type */
a06ea964
NC
2629 BFD_RELOC_AARCH64_ADR_GOT_PAGE,
2630 0,
2631 0,
74ad790c 2632 0,
4aa2c5e2
MS
2633 BFD_RELOC_AARCH64_GOT_LD_PREL19},
2634
a06ea964
NC
2635 /* 12 bit offset into the page containing GOT entry for that symbol. */
2636 {"got_lo12", 0,
6f4a313b 2637 0, /* adr_type */
a06ea964
NC
2638 0,
2639 0,
2640 0,
74ad790c
MS
2641 BFD_RELOC_AARCH64_LD_GOT_LO12_NC,
2642 0},
a06ea964 2643
ca632371
RL
2644 /* 0-15 bits of address/value: MOVk, no check. */
2645 {"gotoff_g0_nc", 0,
2646 0, /* adr_type */
2647 0,
2648 BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC,
2649 0,
2650 0,
2651 0},
2652
654248e7
RL
2653 /* Most significant bits 16-31 of address/value: MOVZ. */
2654 {"gotoff_g1", 0,
2655 0, /* adr_type */
2656 0,
2657 BFD_RELOC_AARCH64_MOVW_GOTOFF_G1,
2658 0,
2659 0,
2660 0},
2661
87f5fbcc
RL
2662 /* 15 bit offset into the page containing GOT entry for that symbol. */
2663 {"gotoff_lo15", 0,
2664 0, /* adr_type */
2665 0,
2666 0,
2667 0,
2668 BFD_RELOC_AARCH64_LD64_GOTOFF_LO15,
2669 0},
2670
3b957e5b
RL
2671 /* Get to the page containing GOT TLS entry for a symbol */
2672 {"gottprel_g0_nc", 0,
2673 0, /* adr_type */
2674 0,
2675 BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC,
2676 0,
2677 0,
2678 0},
2679
2680 /* Get to the page containing GOT TLS entry for a symbol */
2681 {"gottprel_g1", 0,
2682 0, /* adr_type */
2683 0,
2684 BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1,
2685 0,
2686 0,
2687 0},
2688
a06ea964
NC
2689 /* Get to the page containing GOT TLS entry for a symbol */
2690 {"tlsgd", 0,
3c12b054 2691 BFD_RELOC_AARCH64_TLSGD_ADR_PREL21, /* adr_type */
a06ea964
NC
2692 BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21,
2693 0,
2694 0,
74ad790c 2695 0,
a06ea964
NC
2696 0},
2697
2698 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2699 {"tlsgd_lo12", 0,
6f4a313b 2700 0, /* adr_type */
a06ea964
NC
2701 0,
2702 0,
2703 BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC,
74ad790c 2704 0,
a06ea964
NC
2705 0},
2706
3e8286c0
RL
2707 /* Lower 16 bits address/value: MOVk. */
2708 {"tlsgd_g0_nc", 0,
2709 0, /* adr_type */
2710 0,
2711 BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC,
2712 0,
2713 0,
2714 0},
2715
1aa66fb1
RL
2716 /* Most significant bits 16-31 of address/value: MOVZ. */
2717 {"tlsgd_g1", 0,
2718 0, /* adr_type */
2719 0,
2720 BFD_RELOC_AARCH64_TLSGD_MOVW_G1,
2721 0,
2722 0,
2723 0},
2724
a06ea964
NC
2725 /* Get to the page containing GOT TLS entry for a symbol */
2726 {"tlsdesc", 0,
389b8029 2727 BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21, /* adr_type */
418009c2 2728 BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21,
a06ea964
NC
2729 0,
2730 0,
74ad790c 2731 0,
1ada945d 2732 BFD_RELOC_AARCH64_TLSDESC_LD_PREL19},
a06ea964
NC
2733
2734 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2735 {"tlsdesc_lo12", 0,
6f4a313b 2736 0, /* adr_type */
a06ea964
NC
2737 0,
2738 0,
f955cccf 2739 BFD_RELOC_AARCH64_TLSDESC_ADD_LO12,
74ad790c
MS
2740 BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC,
2741 0},
a06ea964 2742
6c37fedc
JW
2743 /* Get to the page containing GOT TLS entry for a symbol.
2744 The same as GD, we allocate two consecutive GOT slots
2745 for module index and module offset, the only difference
33eaf5de 2746 with GD is the module offset should be initialized to
6c37fedc
JW
2747 zero without any outstanding runtime relocation. */
2748 {"tlsldm", 0,
2749 BFD_RELOC_AARCH64_TLSLD_ADR_PREL21, /* adr_type */
1107e076 2750 BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21,
6c37fedc
JW
2751 0,
2752 0,
2753 0,
2754 0},
2755
a12fad50
JW
2756 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2757 {"tlsldm_lo12_nc", 0,
2758 0, /* adr_type */
2759 0,
2760 0,
2761 BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC,
2762 0,
2763 0},
2764
70151fb5
JW
2765 /* 12 bit offset into the module TLS base address. */
2766 {"dtprel_lo12", 0,
2767 0, /* adr_type */
2768 0,
2769 0,
2770 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12,
4c562523 2771 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12,
70151fb5
JW
2772 0},
2773
13289c10
JW
2774 /* Same as dtprel_lo12, no overflow check. */
2775 {"dtprel_lo12_nc", 0,
2776 0, /* adr_type */
2777 0,
2778 0,
2779 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC,
4c562523 2780 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC,
13289c10
JW
2781 0},
2782
49df5539
JW
2783 /* bits[23:12] of offset to the module TLS base address. */
2784 {"dtprel_hi12", 0,
2785 0, /* adr_type */
2786 0,
2787 0,
2788 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12,
2789 0,
2790 0},
2791
2792 /* bits[15:0] of offset to the module TLS base address. */
2793 {"dtprel_g0", 0,
2794 0, /* adr_type */
2795 0,
2796 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0,
2797 0,
2798 0,
2799 0},
2800
2801 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
2802 {"dtprel_g0_nc", 0,
2803 0, /* adr_type */
2804 0,
2805 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC,
2806 0,
2807 0,
2808 0},
2809
2810 /* bits[31:16] of offset to the module TLS base address. */
2811 {"dtprel_g1", 0,
2812 0, /* adr_type */
2813 0,
2814 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1,
2815 0,
2816 0,
2817 0},
2818
2819 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
2820 {"dtprel_g1_nc", 0,
2821 0, /* adr_type */
2822 0,
2823 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC,
2824 0,
2825 0,
2826 0},
2827
2828 /* bits[47:32] of offset to the module TLS base address. */
2829 {"dtprel_g2", 0,
2830 0, /* adr_type */
2831 0,
2832 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2,
2833 0,
2834 0,
2835 0},
2836
43a357f9
RL
2837 /* Lower 16 bit offset into GOT entry for a symbol */
2838 {"tlsdesc_off_g0_nc", 0,
2839 0, /* adr_type */
2840 0,
2841 BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC,
2842 0,
2843 0,
2844 0},
2845
2846 /* Higher 16 bit offset into GOT entry for a symbol */
2847 {"tlsdesc_off_g1", 0,
2848 0, /* adr_type */
2849 0,
2850 BFD_RELOC_AARCH64_TLSDESC_OFF_G1,
2851 0,
2852 0,
2853 0},
2854
a06ea964
NC
2855 /* Get to the page containing GOT TLS entry for a symbol */
2856 {"gottprel", 0,
6f4a313b 2857 0, /* adr_type */
a06ea964
NC
2858 BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21,
2859 0,
2860 0,
74ad790c 2861 0,
043bf05a 2862 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19},
a06ea964
NC
2863
2864 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2865 {"gottprel_lo12", 0,
6f4a313b 2866 0, /* adr_type */
a06ea964
NC
2867 0,
2868 0,
2869 0,
74ad790c
MS
2870 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC,
2871 0},
a06ea964
NC
2872
2873 /* Get tp offset for a symbol. */
2874 {"tprel", 0,
6f4a313b 2875 0, /* adr_type */
a06ea964
NC
2876 0,
2877 0,
2878 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
74ad790c 2879 0,
a06ea964
NC
2880 0},
2881
2882 /* Get tp offset for a symbol. */
2883 {"tprel_lo12", 0,
6f4a313b 2884 0, /* adr_type */
a06ea964
NC
2885 0,
2886 0,
2887 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
84f1b9fb 2888 BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12,
a06ea964
NC
2889 0},
2890
2891 /* Get tp offset for a symbol. */
2892 {"tprel_hi12", 0,
6f4a313b 2893 0, /* adr_type */
a06ea964
NC
2894 0,
2895 0,
2896 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12,
74ad790c 2897 0,
a06ea964
NC
2898 0},
2899
2900 /* Get tp offset for a symbol. */
2901 {"tprel_lo12_nc", 0,
6f4a313b 2902 0, /* adr_type */
a06ea964
NC
2903 0,
2904 0,
2905 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC,
84f1b9fb 2906 BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC,
a06ea964
NC
2907 0},
2908
2909 /* Most significant bits 32-47 of address/value: MOVZ. */
2910 {"tprel_g2", 0,
6f4a313b 2911 0, /* adr_type */
a06ea964
NC
2912 0,
2913 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2,
2914 0,
74ad790c 2915 0,
a06ea964
NC
2916 0},
2917
2918 /* Most significant bits 16-31 of address/value: MOVZ. */
2919 {"tprel_g1", 0,
6f4a313b 2920 0, /* adr_type */
a06ea964
NC
2921 0,
2922 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1,
2923 0,
74ad790c 2924 0,
a06ea964
NC
2925 0},
2926
2927 /* Most significant bits 16-31 of address/value: MOVZ, no check. */
2928 {"tprel_g1_nc", 0,
6f4a313b 2929 0, /* adr_type */
a06ea964
NC
2930 0,
2931 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC,
2932 0,
74ad790c 2933 0,
a06ea964
NC
2934 0},
2935
2936 /* Most significant bits 0-15 of address/value: MOVZ. */
2937 {"tprel_g0", 0,
6f4a313b 2938 0, /* adr_type */
a06ea964
NC
2939 0,
2940 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0,
2941 0,
74ad790c 2942 0,
a06ea964
NC
2943 0},
2944
2945 /* Most significant bits 0-15 of address/value: MOVZ, no check. */
2946 {"tprel_g0_nc", 0,
6f4a313b 2947 0, /* adr_type */
a06ea964
NC
2948 0,
2949 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC,
2950 0,
74ad790c 2951 0,
a06ea964 2952 0},
a921b5bd
JW
2953
2954 /* 15bit offset from got entry to base address of GOT table. */
2955 {"gotpage_lo15", 0,
2956 0,
2957 0,
2958 0,
2959 0,
2960 BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15,
2961 0},
3d715ce4
JW
2962
2963 /* 14bit offset from got entry to base address of GOT table. */
2964 {"gotpage_lo14", 0,
2965 0,
2966 0,
2967 0,
2968 0,
2969 BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14,
2970 0},
a06ea964
NC
2971};
2972
2973/* Given the address of a pointer pointing to the textual name of a
2974 relocation as may appear in assembler source, attempt to find its
2975 details in reloc_table. The pointer will be updated to the character
2976 after the trailing colon. On failure, NULL will be returned;
2977 otherwise return the reloc_table_entry. */
2978
2979static struct reloc_table_entry *
2980find_reloc_table_entry (char **str)
2981{
2982 unsigned int i;
2983 for (i = 0; i < ARRAY_SIZE (reloc_table); i++)
2984 {
2985 int length = strlen (reloc_table[i].name);
2986
2987 if (strncasecmp (reloc_table[i].name, *str, length) == 0
2988 && (*str)[length] == ':')
2989 {
2990 *str += (length + 1);
2991 return &reloc_table[i];
2992 }
2993 }
2994
2995 return NULL;
2996}
2997
2998/* Mode argument to parse_shift and parser_shifter_operand. */
2999enum parse_shift_mode
3000{
98907a70 3001 SHIFTED_NONE, /* no shifter allowed */
a06ea964
NC
3002 SHIFTED_ARITH_IMM, /* "rn{,lsl|lsr|asl|asr|uxt|sxt #n}" or
3003 "#imm{,lsl #n}" */
3004 SHIFTED_LOGIC_IMM, /* "rn{,lsl|lsr|asl|asr|ror #n}" or
3005 "#imm" */
3006 SHIFTED_LSL, /* bare "lsl #n" */
2442d846 3007 SHIFTED_MUL, /* bare "mul #n" */
a06ea964 3008 SHIFTED_LSL_MSL, /* "lsl|msl #n" */
98907a70 3009 SHIFTED_MUL_VL, /* "mul vl" */
a06ea964
NC
3010 SHIFTED_REG_OFFSET /* [su]xtw|sxtx {#n} or lsl #n */
3011};
3012
3013/* Parse a <shift> operator on an AArch64 data processing instruction.
3014 Return TRUE on success; otherwise return FALSE. */
3015static bfd_boolean
3016parse_shift (char **str, aarch64_opnd_info *operand, enum parse_shift_mode mode)
3017{
3018 const struct aarch64_name_value_pair *shift_op;
3019 enum aarch64_modifier_kind kind;
3020 expressionS exp;
3021 int exp_has_prefix;
3022 char *s = *str;
3023 char *p = s;
3024
3025 for (p = *str; ISALPHA (*p); p++)
3026 ;
3027
3028 if (p == *str)
3029 {
3030 set_syntax_error (_("shift expression expected"));
3031 return FALSE;
3032 }
3033
3034 shift_op = hash_find_n (aarch64_shift_hsh, *str, p - *str);
3035
3036 if (shift_op == NULL)
3037 {
3038 set_syntax_error (_("shift operator expected"));
3039 return FALSE;
3040 }
3041
3042 kind = aarch64_get_operand_modifier (shift_op);
3043
3044 if (kind == AARCH64_MOD_MSL && mode != SHIFTED_LSL_MSL)
3045 {
3046 set_syntax_error (_("invalid use of 'MSL'"));
3047 return FALSE;
3048 }
3049
2442d846 3050 if (kind == AARCH64_MOD_MUL
98907a70
RS
3051 && mode != SHIFTED_MUL
3052 && mode != SHIFTED_MUL_VL)
2442d846
RS
3053 {
3054 set_syntax_error (_("invalid use of 'MUL'"));
3055 return FALSE;
3056 }
3057
a06ea964
NC
3058 switch (mode)
3059 {
3060 case SHIFTED_LOGIC_IMM:
535b785f 3061 if (aarch64_extend_operator_p (kind))
a06ea964
NC
3062 {
3063 set_syntax_error (_("extending shift is not permitted"));
3064 return FALSE;
3065 }
3066 break;
3067
3068 case SHIFTED_ARITH_IMM:
3069 if (kind == AARCH64_MOD_ROR)
3070 {
3071 set_syntax_error (_("'ROR' shift is not permitted"));
3072 return FALSE;
3073 }
3074 break;
3075
3076 case SHIFTED_LSL:
3077 if (kind != AARCH64_MOD_LSL)
3078 {
3079 set_syntax_error (_("only 'LSL' shift is permitted"));
3080 return FALSE;
3081 }
3082 break;
3083
2442d846
RS
3084 case SHIFTED_MUL:
3085 if (kind != AARCH64_MOD_MUL)
3086 {
3087 set_syntax_error (_("only 'MUL' is permitted"));
3088 return FALSE;
3089 }
3090 break;
3091
98907a70
RS
3092 case SHIFTED_MUL_VL:
3093 /* "MUL VL" consists of two separate tokens. Require the first
3094 token to be "MUL" and look for a following "VL". */
3095 if (kind == AARCH64_MOD_MUL)
3096 {
3097 skip_whitespace (p);
3098 if (strncasecmp (p, "vl", 2) == 0 && !ISALPHA (p[2]))
3099 {
3100 p += 2;
3101 kind = AARCH64_MOD_MUL_VL;
3102 break;
3103 }
3104 }
3105 set_syntax_error (_("only 'MUL VL' is permitted"));
3106 return FALSE;
3107
a06ea964
NC
3108 case SHIFTED_REG_OFFSET:
3109 if (kind != AARCH64_MOD_UXTW && kind != AARCH64_MOD_LSL
3110 && kind != AARCH64_MOD_SXTW && kind != AARCH64_MOD_SXTX)
3111 {
3112 set_fatal_syntax_error
3113 (_("invalid shift for the register offset addressing mode"));
3114 return FALSE;
3115 }
3116 break;
3117
3118 case SHIFTED_LSL_MSL:
3119 if (kind != AARCH64_MOD_LSL && kind != AARCH64_MOD_MSL)
3120 {
3121 set_syntax_error (_("invalid shift operator"));
3122 return FALSE;
3123 }
3124 break;
3125
3126 default:
3127 abort ();
3128 }
3129
3130 /* Whitespace can appear here if the next thing is a bare digit. */
3131 skip_whitespace (p);
3132
3133 /* Parse shift amount. */
3134 exp_has_prefix = 0;
98907a70 3135 if ((mode == SHIFTED_REG_OFFSET && *p == ']') || kind == AARCH64_MOD_MUL_VL)
a06ea964
NC
3136 exp.X_op = O_absent;
3137 else
3138 {
3139 if (is_immediate_prefix (*p))
3140 {
3141 p++;
3142 exp_has_prefix = 1;
3143 }
3144 my_get_expression (&exp, &p, GE_NO_PREFIX, 0);
3145 }
98907a70
RS
3146 if (kind == AARCH64_MOD_MUL_VL)
3147 /* For consistency, give MUL VL the same shift amount as an implicit
3148 MUL #1. */
3149 operand->shifter.amount = 1;
3150 else if (exp.X_op == O_absent)
a06ea964 3151 {
535b785f 3152 if (!aarch64_extend_operator_p (kind) || exp_has_prefix)
a06ea964
NC
3153 {
3154 set_syntax_error (_("missing shift amount"));
3155 return FALSE;
3156 }
3157 operand->shifter.amount = 0;
3158 }
3159 else if (exp.X_op != O_constant)
3160 {
3161 set_syntax_error (_("constant shift amount required"));
3162 return FALSE;
3163 }
2442d846
RS
3164 /* For parsing purposes, MUL #n has no inherent range. The range
3165 depends on the operand and will be checked by operand-specific
3166 routines. */
3167 else if (kind != AARCH64_MOD_MUL
3168 && (exp.X_add_number < 0 || exp.X_add_number > 63))
a06ea964
NC
3169 {
3170 set_fatal_syntax_error (_("shift amount out of range 0 to 63"));
3171 return FALSE;
3172 }
3173 else
3174 {
3175 operand->shifter.amount = exp.X_add_number;
3176 operand->shifter.amount_present = 1;
3177 }
3178
3179 operand->shifter.operator_present = 1;
3180 operand->shifter.kind = kind;
3181
3182 *str = p;
3183 return TRUE;
3184}
3185
3186/* Parse a <shifter_operand> for a data processing instruction:
3187
3188 #<immediate>
3189 #<immediate>, LSL #imm
3190
3191 Validation of immediate operands is deferred to md_apply_fix.
3192
3193 Return TRUE on success; otherwise return FALSE. */
3194
3195static bfd_boolean
3196parse_shifter_operand_imm (char **str, aarch64_opnd_info *operand,
3197 enum parse_shift_mode mode)
3198{
3199 char *p;
3200
3201 if (mode != SHIFTED_ARITH_IMM && mode != SHIFTED_LOGIC_IMM)
3202 return FALSE;
3203
3204 p = *str;
3205
3206 /* Accept an immediate expression. */
3207 if (! my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX, 1))
3208 return FALSE;
3209
3210 /* Accept optional LSL for arithmetic immediate values. */
3211 if (mode == SHIFTED_ARITH_IMM && skip_past_comma (&p))
3212 if (! parse_shift (&p, operand, SHIFTED_LSL))
3213 return FALSE;
3214
3215 /* Not accept any shifter for logical immediate values. */
3216 if (mode == SHIFTED_LOGIC_IMM && skip_past_comma (&p)
3217 && parse_shift (&p, operand, mode))
3218 {
3219 set_syntax_error (_("unexpected shift operator"));
3220 return FALSE;
3221 }
3222
3223 *str = p;
3224 return TRUE;
3225}
3226
3227/* Parse a <shifter_operand> for a data processing instruction:
3228
3229 <Rm>
3230 <Rm>, <shift>
3231 #<immediate>
3232 #<immediate>, LSL #imm
3233
3234 where <shift> is handled by parse_shift above, and the last two
3235 cases are handled by the function above.
3236
3237 Validation of immediate operands is deferred to md_apply_fix.
3238
3239 Return TRUE on success; otherwise return FALSE. */
3240
3241static bfd_boolean
3242parse_shifter_operand (char **str, aarch64_opnd_info *operand,
3243 enum parse_shift_mode mode)
3244{
e1b988bb
RS
3245 const reg_entry *reg;
3246 aarch64_opnd_qualifier_t qualifier;
a06ea964
NC
3247 enum aarch64_operand_class opd_class
3248 = aarch64_get_operand_class (operand->type);
3249
e1b988bb
RS
3250 reg = aarch64_reg_parse_32_64 (str, &qualifier);
3251 if (reg)
a06ea964
NC
3252 {
3253 if (opd_class == AARCH64_OPND_CLASS_IMMEDIATE)
3254 {
3255 set_syntax_error (_("unexpected register in the immediate operand"));
3256 return FALSE;
3257 }
3258
e1b988bb 3259 if (!aarch64_check_reg_type (reg, REG_TYPE_R_Z))
a06ea964 3260 {
e1b988bb 3261 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_Z)));
a06ea964
NC
3262 return FALSE;
3263 }
3264
e1b988bb
RS
3265 operand->reg.regno = reg->number;
3266 operand->qualifier = qualifier;
a06ea964
NC
3267
3268 /* Accept optional shift operation on register. */
3269 if (! skip_past_comma (str))
3270 return TRUE;
3271
3272 if (! parse_shift (str, operand, mode))
3273 return FALSE;
3274
3275 return TRUE;
3276 }
3277 else if (opd_class == AARCH64_OPND_CLASS_MODIFIED_REG)
3278 {
3279 set_syntax_error
3280 (_("integer register expected in the extended/shifted operand "
3281 "register"));
3282 return FALSE;
3283 }
3284
3285 /* We have a shifted immediate variable. */
3286 return parse_shifter_operand_imm (str, operand, mode);
3287}
3288
3289/* Return TRUE on success; return FALSE otherwise. */
3290
3291static bfd_boolean
3292parse_shifter_operand_reloc (char **str, aarch64_opnd_info *operand,
3293 enum parse_shift_mode mode)
3294{
3295 char *p = *str;
3296
3297 /* Determine if we have the sequence of characters #: or just :
3298 coming next. If we do, then we check for a :rello: relocation
3299 modifier. If we don't, punt the whole lot to
3300 parse_shifter_operand. */
3301
3302 if ((p[0] == '#' && p[1] == ':') || p[0] == ':')
3303 {
3304 struct reloc_table_entry *entry;
3305
3306 if (p[0] == '#')
3307 p += 2;
3308 else
3309 p++;
3310 *str = p;
3311
3312 /* Try to parse a relocation. Anything else is an error. */
3313 if (!(entry = find_reloc_table_entry (str)))
3314 {
3315 set_syntax_error (_("unknown relocation modifier"));
3316 return FALSE;
3317 }
3318
3319 if (entry->add_type == 0)
3320 {
3321 set_syntax_error
3322 (_("this relocation modifier is not allowed on this instruction"));
3323 return FALSE;
3324 }
3325
3326 /* Save str before we decompose it. */
3327 p = *str;
3328
3329 /* Next, we parse the expression. */
3330 if (! my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX, 1))
3331 return FALSE;
3332
3333 /* Record the relocation type (use the ADD variant here). */
3334 inst.reloc.type = entry->add_type;
3335 inst.reloc.pc_rel = entry->pc_rel;
3336
3337 /* If str is empty, we've reached the end, stop here. */
3338 if (**str == '\0')
3339 return TRUE;
3340
55d9b4c1 3341 /* Otherwise, we have a shifted reloc modifier, so rewind to
a06ea964
NC
3342 recover the variable name and continue parsing for the shifter. */
3343 *str = p;
3344 return parse_shifter_operand_imm (str, operand, mode);
3345 }
3346
3347 return parse_shifter_operand (str, operand, mode);
3348}
3349
3350/* Parse all forms of an address expression. Information is written
3351 to *OPERAND and/or inst.reloc.
3352
3353 The A64 instruction set has the following addressing modes:
3354
3355 Offset
4df068de
RS
3356 [base] // in SIMD ld/st structure
3357 [base{,#0}] // in ld/st exclusive
a06ea964
NC
3358 [base{,#imm}]
3359 [base,Xm{,LSL #imm}]
3360 [base,Xm,SXTX {#imm}]
3361 [base,Wm,(S|U)XTW {#imm}]
3362 Pre-indexed
3363 [base,#imm]!
3364 Post-indexed
3365 [base],#imm
4df068de 3366 [base],Xm // in SIMD ld/st structure
a06ea964
NC
3367 PC-relative (literal)
3368 label
4df068de 3369 SVE:
98907a70 3370 [base,#imm,MUL VL]
4df068de
RS
3371 [base,Zm.D{,LSL #imm}]
3372 [base,Zm.S,(S|U)XTW {#imm}]
3373 [base,Zm.D,(S|U)XTW {#imm}] // ignores top 32 bits of Zm.D elements
3374 [Zn.S,#imm]
3375 [Zn.D,#imm]
3376 [Zn.S,Zm.S{,LSL #imm}] // in ADR
3377 [Zn.D,Zm.D{,LSL #imm}] // in ADR
3378 [Zn.D,Zm.D,(S|U)XTW {#imm}] // in ADR
a06ea964
NC
3379
3380 (As a convenience, the notation "=immediate" is permitted in conjunction
3381 with the pc-relative literal load instructions to automatically place an
3382 immediate value or symbolic address in a nearby literal pool and generate
3383 a hidden label which references it.)
3384
3385 Upon a successful parsing, the address structure in *OPERAND will be
3386 filled in the following way:
3387
3388 .base_regno = <base>
3389 .offset.is_reg // 1 if the offset is a register
3390 .offset.imm = <imm>
3391 .offset.regno = <Rm>
3392
3393 For different addressing modes defined in the A64 ISA:
3394
3395 Offset
3396 .pcrel=0; .preind=1; .postind=0; .writeback=0
3397 Pre-indexed
3398 .pcrel=0; .preind=1; .postind=0; .writeback=1
3399 Post-indexed
3400 .pcrel=0; .preind=0; .postind=1; .writeback=1
3401 PC-relative (literal)
3402 .pcrel=1; .preind=1; .postind=0; .writeback=0
3403
3404 The shift/extension information, if any, will be stored in .shifter.
4df068de
RS
3405 The base and offset qualifiers will be stored in *BASE_QUALIFIER and
3406 *OFFSET_QUALIFIER respectively, with NIL being used if there's no
3407 corresponding register.
a06ea964 3408
4df068de 3409 BASE_TYPE says which types of base register should be accepted and
98907a70
RS
3410 OFFSET_TYPE says the same for offset registers. IMM_SHIFT_MODE
3411 is the type of shifter that is allowed for immediate offsets,
3412 or SHIFTED_NONE if none.
3413
3414 In all other respects, it is the caller's responsibility to check
3415 for addressing modes not supported by the instruction, and to set
3416 inst.reloc.type. */
a06ea964
NC
3417
3418static bfd_boolean
4df068de
RS
3419parse_address_main (char **str, aarch64_opnd_info *operand,
3420 aarch64_opnd_qualifier_t *base_qualifier,
3421 aarch64_opnd_qualifier_t *offset_qualifier,
98907a70
RS
3422 aarch64_reg_type base_type, aarch64_reg_type offset_type,
3423 enum parse_shift_mode imm_shift_mode)
a06ea964
NC
3424{
3425 char *p = *str;
e1b988bb 3426 const reg_entry *reg;
a06ea964
NC
3427 expressionS *exp = &inst.reloc.exp;
3428
4df068de
RS
3429 *base_qualifier = AARCH64_OPND_QLF_NIL;
3430 *offset_qualifier = AARCH64_OPND_QLF_NIL;
a06ea964
NC
3431 if (! skip_past_char (&p, '['))
3432 {
3433 /* =immediate or label. */
3434 operand->addr.pcrel = 1;
3435 operand->addr.preind = 1;
3436
f41aef5f
RE
3437 /* #:<reloc_op>:<symbol> */
3438 skip_past_char (&p, '#');
73866052 3439 if (skip_past_char (&p, ':'))
f41aef5f 3440 {
6f4a313b 3441 bfd_reloc_code_real_type ty;
f41aef5f
RE
3442 struct reloc_table_entry *entry;
3443
3444 /* Try to parse a relocation modifier. Anything else is
3445 an error. */
3446 entry = find_reloc_table_entry (&p);
3447 if (! entry)
3448 {
3449 set_syntax_error (_("unknown relocation modifier"));
3450 return FALSE;
3451 }
3452
6f4a313b
MS
3453 switch (operand->type)
3454 {
3455 case AARCH64_OPND_ADDR_PCREL21:
3456 /* adr */
3457 ty = entry->adr_type;
3458 break;
3459
3460 default:
74ad790c 3461 ty = entry->ld_literal_type;
6f4a313b
MS
3462 break;
3463 }
3464
3465 if (ty == 0)
f41aef5f
RE
3466 {
3467 set_syntax_error
3468 (_("this relocation modifier is not allowed on this "
3469 "instruction"));
3470 return FALSE;
3471 }
3472
3473 /* #:<reloc_op>: */
3474 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3475 {
3476 set_syntax_error (_("invalid relocation expression"));
3477 return FALSE;
3478 }
a06ea964 3479
f41aef5f 3480 /* #:<reloc_op>:<expr> */
6f4a313b
MS
3481 /* Record the relocation type. */
3482 inst.reloc.type = ty;
f41aef5f
RE
3483 inst.reloc.pc_rel = entry->pc_rel;
3484 }
3485 else
a06ea964 3486 {
f41aef5f
RE
3487
3488 if (skip_past_char (&p, '='))
3489 /* =immediate; need to generate the literal in the literal pool. */
3490 inst.gen_lit_pool = 1;
3491
3492 if (!my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3493 {
3494 set_syntax_error (_("invalid address"));
3495 return FALSE;
3496 }
a06ea964
NC
3497 }
3498
3499 *str = p;
3500 return TRUE;
3501 }
3502
3503 /* [ */
3504
4df068de
RS
3505 reg = aarch64_addr_reg_parse (&p, base_type, base_qualifier);
3506 if (!reg || !aarch64_check_reg_type (reg, base_type))
a06ea964 3507 {
4df068de 3508 set_syntax_error (_(get_reg_expected_msg (base_type)));
a06ea964
NC
3509 return FALSE;
3510 }
e1b988bb 3511 operand->addr.base_regno = reg->number;
a06ea964
NC
3512
3513 /* [Xn */
3514 if (skip_past_comma (&p))
3515 {
3516 /* [Xn, */
3517 operand->addr.preind = 1;
3518
4df068de 3519 reg = aarch64_addr_reg_parse (&p, offset_type, offset_qualifier);
e1b988bb 3520 if (reg)
a06ea964 3521 {
4df068de 3522 if (!aarch64_check_reg_type (reg, offset_type))
e1b988bb 3523 {
4df068de 3524 set_syntax_error (_(get_reg_expected_msg (offset_type)));
e1b988bb
RS
3525 return FALSE;
3526 }
3527
a06ea964 3528 /* [Xn,Rm */
e1b988bb 3529 operand->addr.offset.regno = reg->number;
a06ea964
NC
3530 operand->addr.offset.is_reg = 1;
3531 /* Shifted index. */
3532 if (skip_past_comma (&p))
3533 {
3534 /* [Xn,Rm, */
3535 if (! parse_shift (&p, operand, SHIFTED_REG_OFFSET))
3536 /* Use the diagnostics set in parse_shift, so not set new
3537 error message here. */
3538 return FALSE;
3539 }
3540 /* We only accept:
3541 [base,Xm{,LSL #imm}]
3542 [base,Xm,SXTX {#imm}]
3543 [base,Wm,(S|U)XTW {#imm}] */
3544 if (operand->shifter.kind == AARCH64_MOD_NONE
3545 || operand->shifter.kind == AARCH64_MOD_LSL
3546 || operand->shifter.kind == AARCH64_MOD_SXTX)
3547 {
4df068de 3548 if (*offset_qualifier == AARCH64_OPND_QLF_W)
a06ea964
NC
3549 {
3550 set_syntax_error (_("invalid use of 32-bit register offset"));
3551 return FALSE;
3552 }
4df068de
RS
3553 if (aarch64_get_qualifier_esize (*base_qualifier)
3554 != aarch64_get_qualifier_esize (*offset_qualifier))
3555 {
3556 set_syntax_error (_("offset has different size from base"));
3557 return FALSE;
3558 }
a06ea964 3559 }
4df068de 3560 else if (*offset_qualifier == AARCH64_OPND_QLF_X)
a06ea964
NC
3561 {
3562 set_syntax_error (_("invalid use of 64-bit register offset"));
3563 return FALSE;
3564 }
3565 }
3566 else
3567 {
3568 /* [Xn,#:<reloc_op>:<symbol> */
3569 skip_past_char (&p, '#');
73866052 3570 if (skip_past_char (&p, ':'))
a06ea964
NC
3571 {
3572 struct reloc_table_entry *entry;
3573
3574 /* Try to parse a relocation modifier. Anything else is
3575 an error. */
3576 if (!(entry = find_reloc_table_entry (&p)))
3577 {
3578 set_syntax_error (_("unknown relocation modifier"));
3579 return FALSE;
3580 }
3581
3582 if (entry->ldst_type == 0)
3583 {
3584 set_syntax_error
3585 (_("this relocation modifier is not allowed on this "
3586 "instruction"));
3587 return FALSE;
3588 }
3589
3590 /* [Xn,#:<reloc_op>: */
3591 /* We now have the group relocation table entry corresponding to
3592 the name in the assembler source. Next, we parse the
3593 expression. */
3594 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3595 {
3596 set_syntax_error (_("invalid relocation expression"));
3597 return FALSE;
3598 }
3599
3600 /* [Xn,#:<reloc_op>:<expr> */
3601 /* Record the load/store relocation type. */
3602 inst.reloc.type = entry->ldst_type;
3603 inst.reloc.pc_rel = entry->pc_rel;
3604 }
98907a70 3605 else
a06ea964 3606 {
98907a70
RS
3607 if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3608 {
3609 set_syntax_error (_("invalid expression in the address"));
3610 return FALSE;
3611 }
3612 /* [Xn,<expr> */
3613 if (imm_shift_mode != SHIFTED_NONE && skip_past_comma (&p))
3614 /* [Xn,<expr>,<shifter> */
3615 if (! parse_shift (&p, operand, imm_shift_mode))
3616 return FALSE;
a06ea964 3617 }
a06ea964
NC
3618 }
3619 }
3620
3621 if (! skip_past_char (&p, ']'))
3622 {
3623 set_syntax_error (_("']' expected"));
3624 return FALSE;
3625 }
3626
3627 if (skip_past_char (&p, '!'))
3628 {
3629 if (operand->addr.preind && operand->addr.offset.is_reg)
3630 {
3631 set_syntax_error (_("register offset not allowed in pre-indexed "
3632 "addressing mode"));
3633 return FALSE;
3634 }
3635 /* [Xn]! */
3636 operand->addr.writeback = 1;
3637 }
3638 else if (skip_past_comma (&p))
3639 {
3640 /* [Xn], */
3641 operand->addr.postind = 1;
3642 operand->addr.writeback = 1;
3643
3644 if (operand->addr.preind)
3645 {
3646 set_syntax_error (_("cannot combine pre- and post-indexing"));
3647 return FALSE;
3648 }
3649
4df068de 3650 reg = aarch64_reg_parse_32_64 (&p, offset_qualifier);
73866052 3651 if (reg)
a06ea964
NC
3652 {
3653 /* [Xn],Xm */
e1b988bb 3654 if (!aarch64_check_reg_type (reg, REG_TYPE_R_64))
a06ea964 3655 {
e1b988bb 3656 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_64)));
a06ea964
NC
3657 return FALSE;
3658 }
e1b988bb
RS
3659
3660 operand->addr.offset.regno = reg->number;
a06ea964
NC
3661 operand->addr.offset.is_reg = 1;
3662 }
3663 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3664 {
3665 /* [Xn],#expr */
3666 set_syntax_error (_("invalid expression in the address"));
3667 return FALSE;
3668 }
3669 }
3670
3671 /* If at this point neither .preind nor .postind is set, we have a
3672 bare [Rn]{!}; reject [Rn]! but accept [Rn] as a shorthand for [Rn,#0]. */
3673 if (operand->addr.preind == 0 && operand->addr.postind == 0)
3674 {
3675 if (operand->addr.writeback)
3676 {
3677 /* Reject [Rn]! */
3678 set_syntax_error (_("missing offset in the pre-indexed address"));
3679 return FALSE;
3680 }
c8d59609 3681
a06ea964
NC
3682 operand->addr.preind = 1;
3683 inst.reloc.exp.X_op = O_constant;
3684 inst.reloc.exp.X_add_number = 0;
3685 }
3686
3687 *str = p;
3688 return TRUE;
3689}
3690
73866052
RS
3691/* Parse a base AArch64 address (as opposed to an SVE one). Return TRUE
3692 on success. */
a06ea964 3693static bfd_boolean
73866052 3694parse_address (char **str, aarch64_opnd_info *operand)
a06ea964 3695{
4df068de
RS
3696 aarch64_opnd_qualifier_t base_qualifier, offset_qualifier;
3697 return parse_address_main (str, operand, &base_qualifier, &offset_qualifier,
98907a70 3698 REG_TYPE_R64_SP, REG_TYPE_R_Z, SHIFTED_NONE);
4df068de
RS
3699}
3700
98907a70 3701/* Parse an address in which SVE vector registers and MUL VL are allowed.
4df068de
RS
3702 The arguments have the same meaning as for parse_address_main.
3703 Return TRUE on success. */
3704static bfd_boolean
3705parse_sve_address (char **str, aarch64_opnd_info *operand,
3706 aarch64_opnd_qualifier_t *base_qualifier,
3707 aarch64_opnd_qualifier_t *offset_qualifier)
3708{
3709 return parse_address_main (str, operand, base_qualifier, offset_qualifier,
98907a70
RS
3710 REG_TYPE_SVE_BASE, REG_TYPE_SVE_OFFSET,
3711 SHIFTED_MUL_VL);
a06ea964
NC
3712}
3713
3714/* Parse an operand for a MOVZ, MOVN or MOVK instruction.
3715 Return TRUE on success; otherwise return FALSE. */
3716static bfd_boolean
3717parse_half (char **str, int *internal_fixup_p)
3718{
671eeb28 3719 char *p = *str;
a06ea964 3720
a06ea964
NC
3721 skip_past_char (&p, '#');
3722
3723 gas_assert (internal_fixup_p);
3724 *internal_fixup_p = 0;
3725
3726 if (*p == ':')
3727 {
3728 struct reloc_table_entry *entry;
3729
3730 /* Try to parse a relocation. Anything else is an error. */
3731 ++p;
3732 if (!(entry = find_reloc_table_entry (&p)))
3733 {
3734 set_syntax_error (_("unknown relocation modifier"));
3735 return FALSE;
3736 }
3737
3738 if (entry->movw_type == 0)
3739 {
3740 set_syntax_error
3741 (_("this relocation modifier is not allowed on this instruction"));
3742 return FALSE;
3743 }
3744
3745 inst.reloc.type = entry->movw_type;
3746 }
3747 else
3748 *internal_fixup_p = 1;
3749
a06ea964
NC
3750 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3751 return FALSE;
3752
3753 *str = p;
3754 return TRUE;
3755}
3756
3757/* Parse an operand for an ADRP instruction:
3758 ADRP <Xd>, <label>
3759 Return TRUE on success; otherwise return FALSE. */
3760
3761static bfd_boolean
3762parse_adrp (char **str)
3763{
3764 char *p;
3765
3766 p = *str;
3767 if (*p == ':')
3768 {
3769 struct reloc_table_entry *entry;
3770
3771 /* Try to parse a relocation. Anything else is an error. */
3772 ++p;
3773 if (!(entry = find_reloc_table_entry (&p)))
3774 {
3775 set_syntax_error (_("unknown relocation modifier"));
3776 return FALSE;
3777 }
3778
3779 if (entry->adrp_type == 0)
3780 {
3781 set_syntax_error
3782 (_("this relocation modifier is not allowed on this instruction"));
3783 return FALSE;
3784 }
3785
3786 inst.reloc.type = entry->adrp_type;
3787 }
3788 else
3789 inst.reloc.type = BFD_RELOC_AARCH64_ADR_HI21_PCREL;
3790
3791 inst.reloc.pc_rel = 1;
3792
3793 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3794 return FALSE;
3795
3796 *str = p;
3797 return TRUE;
3798}
3799
3800/* Miscellaneous. */
3801
245d2e3f
RS
3802/* Parse a symbolic operand such as "pow2" at *STR. ARRAY is an array
3803 of SIZE tokens in which index I gives the token for field value I,
3804 or is null if field value I is invalid. REG_TYPE says which register
3805 names should be treated as registers rather than as symbolic immediates.
3806
3807 Return true on success, moving *STR past the operand and storing the
3808 field value in *VAL. */
3809
3810static int
3811parse_enum_string (char **str, int64_t *val, const char *const *array,
3812 size_t size, aarch64_reg_type reg_type)
3813{
3814 expressionS exp;
3815 char *p, *q;
3816 size_t i;
3817
3818 /* Match C-like tokens. */
3819 p = q = *str;
3820 while (ISALNUM (*q))
3821 q++;
3822
3823 for (i = 0; i < size; ++i)
3824 if (array[i]
3825 && strncasecmp (array[i], p, q - p) == 0
3826 && array[i][q - p] == 0)
3827 {
3828 *val = i;
3829 *str = q;
3830 return TRUE;
3831 }
3832
3833 if (!parse_immediate_expression (&p, &exp, reg_type))
3834 return FALSE;
3835
3836 if (exp.X_op == O_constant
3837 && (uint64_t) exp.X_add_number < size)
3838 {
3839 *val = exp.X_add_number;
3840 *str = p;
3841 return TRUE;
3842 }
3843
3844 /* Use the default error for this operand. */
3845 return FALSE;
3846}
3847
a06ea964
NC
3848/* Parse an option for a preload instruction. Returns the encoding for the
3849 option, or PARSE_FAIL. */
3850
3851static int
3852parse_pldop (char **str)
3853{
3854 char *p, *q;
3855 const struct aarch64_name_value_pair *o;
3856
3857 p = q = *str;
3858 while (ISALNUM (*q))
3859 q++;
3860
3861 o = hash_find_n (aarch64_pldop_hsh, p, q - p);
3862 if (!o)
3863 return PARSE_FAIL;
3864
3865 *str = q;
3866 return o->value;
3867}
3868
3869/* Parse an option for a barrier instruction. Returns the encoding for the
3870 option, or PARSE_FAIL. */
3871
3872static int
3873parse_barrier (char **str)
3874{
3875 char *p, *q;
3876 const asm_barrier_opt *o;
3877
3878 p = q = *str;
3879 while (ISALPHA (*q))
3880 q++;
3881
3882 o = hash_find_n (aarch64_barrier_opt_hsh, p, q - p);
3883 if (!o)
3884 return PARSE_FAIL;
3885
3886 *str = q;
3887 return o->value;
3888}
3889
1e6f4800
MW
3890/* Parse an operand for a PSB barrier. Set *HINT_OPT to the hint-option record
3891 return 0 if successful. Otherwise return PARSE_FAIL. */
3892
3893static int
3894parse_barrier_psb (char **str,
3895 const struct aarch64_name_value_pair ** hint_opt)
3896{
3897 char *p, *q;
3898 const struct aarch64_name_value_pair *o;
3899
3900 p = q = *str;
3901 while (ISALPHA (*q))
3902 q++;
3903
3904 o = hash_find_n (aarch64_hint_opt_hsh, p, q - p);
3905 if (!o)
3906 {
3907 set_fatal_syntax_error
3908 ( _("unknown or missing option to PSB"));
3909 return PARSE_FAIL;
3910 }
3911
3912 if (o->value != 0x11)
3913 {
3914 /* PSB only accepts option name 'CSYNC'. */
3915 set_syntax_error
3916 (_("the specified option is not accepted for PSB"));
3917 return PARSE_FAIL;
3918 }
3919
3920 *str = q;
3921 *hint_opt = o;
3922 return 0;
3923}
3924
a06ea964 3925/* Parse a system register or a PSTATE field name for an MSR/MRS instruction.
a203d9b7 3926 Returns the encoding for the option, or PARSE_FAIL.
a06ea964
NC
3927
3928 If IMPLE_DEFINED_P is non-zero, the function will also try to parse the
72ca8fad
MW
3929 implementation defined system register name S<op0>_<op1>_<Cn>_<Cm>_<op2>.
3930
3931 If PSTATEFIELD_P is non-zero, the function will parse the name as a PSTATE
3932 field, otherwise as a system register.
3933*/
a06ea964
NC
3934
3935static int
72ca8fad 3936parse_sys_reg (char **str, struct hash_control *sys_regs,
561a72d4
TC
3937 int imple_defined_p, int pstatefield_p,
3938 uint32_t* flags)
a06ea964
NC
3939{
3940 char *p, *q;
3941 char buf[32];
49eec193 3942 const aarch64_sys_reg *o;
a06ea964
NC
3943 int value;
3944
3945 p = buf;
3946 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3947 if (p < buf + 31)
3948 *p++ = TOLOWER (*q);
3949 *p = '\0';
3950 /* Assert that BUF be large enough. */
3951 gas_assert (p - buf == q - *str);
3952
3953 o = hash_find (sys_regs, buf);
3954 if (!o)
3955 {
3956 if (!imple_defined_p)
3957 return PARSE_FAIL;
3958 else
3959 {
df7b4545 3960 /* Parse S<op0>_<op1>_<Cn>_<Cm>_<op2>. */
a06ea964 3961 unsigned int op0, op1, cn, cm, op2;
df7b4545
JW
3962
3963 if (sscanf (buf, "s%u_%u_c%u_c%u_%u", &op0, &op1, &cn, &cm, &op2)
3964 != 5)
a06ea964 3965 return PARSE_FAIL;
df7b4545 3966 if (op0 > 3 || op1 > 7 || cn > 15 || cm > 15 || op2 > 7)
a06ea964
NC
3967 return PARSE_FAIL;
3968 value = (op0 << 14) | (op1 << 11) | (cn << 7) | (cm << 3) | op2;
561a72d4
TC
3969 if (flags)
3970 *flags = 0;
a06ea964
NC
3971 }
3972 }
3973 else
49eec193 3974 {
72ca8fad
MW
3975 if (pstatefield_p && !aarch64_pstatefield_supported_p (cpu_variant, o))
3976 as_bad (_("selected processor does not support PSTATE field "
3977 "name '%s'"), buf);
3978 if (!pstatefield_p && !aarch64_sys_reg_supported_p (cpu_variant, o))
3979 as_bad (_("selected processor does not support system register "
3980 "name '%s'"), buf);
9a73e520 3981 if (aarch64_sys_reg_deprecated_p (o))
49eec193 3982 as_warn (_("system register name '%s' is deprecated and may be "
72ca8fad 3983 "removed in a future release"), buf);
49eec193 3984 value = o->value;
561a72d4
TC
3985 if (flags)
3986 *flags = o->flags;
49eec193 3987 }
a06ea964
NC
3988
3989 *str = q;
3990 return value;
3991}
3992
3993/* Parse a system reg for ic/dc/at/tlbi instructions. Returns the table entry
3994 for the option, or NULL. */
3995
3996static const aarch64_sys_ins_reg *
3997parse_sys_ins_reg (char **str, struct hash_control *sys_ins_regs)
3998{
3999 char *p, *q;
4000 char buf[32];
4001 const aarch64_sys_ins_reg *o;
4002
4003 p = buf;
4004 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
4005 if (p < buf + 31)
4006 *p++ = TOLOWER (*q);
4007 *p = '\0';
4008
4009 o = hash_find (sys_ins_regs, buf);
4010 if (!o)
4011 return NULL;
4012
d6bf7ce6
MW
4013 if (!aarch64_sys_ins_reg_supported_p (cpu_variant, o))
4014 as_bad (_("selected processor does not support system register "
4015 "name '%s'"), buf);
4016
a06ea964
NC
4017 *str = q;
4018 return o;
4019}
4020\f
4021#define po_char_or_fail(chr) do { \
4022 if (! skip_past_char (&str, chr)) \
4023 goto failure; \
4024} while (0)
4025
4026#define po_reg_or_fail(regtype) do { \
4027 val = aarch64_reg_parse (&str, regtype, &rtype, NULL); \
4028 if (val == PARSE_FAIL) \
4029 { \
4030 set_default_error (); \
4031 goto failure; \
4032 } \
4033 } while (0)
4034
e1b988bb
RS
4035#define po_int_reg_or_fail(reg_type) do { \
4036 reg = aarch64_reg_parse_32_64 (&str, &qualifier); \
4037 if (!reg || !aarch64_check_reg_type (reg, reg_type)) \
a06ea964
NC
4038 { \
4039 set_default_error (); \
4040 goto failure; \
4041 } \
e1b988bb
RS
4042 info->reg.regno = reg->number; \
4043 info->qualifier = qualifier; \
a06ea964
NC
4044 } while (0)
4045
4046#define po_imm_nc_or_fail() do { \
1799c0d0 4047 if (! parse_constant_immediate (&str, &val, imm_reg_type)) \
a06ea964
NC
4048 goto failure; \
4049 } while (0)
4050
4051#define po_imm_or_fail(min, max) do { \
1799c0d0 4052 if (! parse_constant_immediate (&str, &val, imm_reg_type)) \
a06ea964
NC
4053 goto failure; \
4054 if (val < min || val > max) \
4055 { \
4056 set_fatal_syntax_error (_("immediate value out of range "\
4057#min " to "#max)); \
4058 goto failure; \
4059 } \
4060 } while (0)
4061
245d2e3f
RS
4062#define po_enum_or_fail(array) do { \
4063 if (!parse_enum_string (&str, &val, array, \
4064 ARRAY_SIZE (array), imm_reg_type)) \
4065 goto failure; \
4066 } while (0)
4067
a06ea964
NC
4068#define po_misc_or_fail(expr) do { \
4069 if (!expr) \
4070 goto failure; \
4071 } while (0)
4072\f
4073/* encode the 12-bit imm field of Add/sub immediate */
4074static inline uint32_t
4075encode_addsub_imm (uint32_t imm)
4076{
4077 return imm << 10;
4078}
4079
4080/* encode the shift amount field of Add/sub immediate */
4081static inline uint32_t
4082encode_addsub_imm_shift_amount (uint32_t cnt)
4083{
4084 return cnt << 22;
4085}
4086
4087
4088/* encode the imm field of Adr instruction */
4089static inline uint32_t
4090encode_adr_imm (uint32_t imm)
4091{
4092 return (((imm & 0x3) << 29) /* [1:0] -> [30:29] */
4093 | ((imm & (0x7ffff << 2)) << 3)); /* [20:2] -> [23:5] */
4094}
4095
4096/* encode the immediate field of Move wide immediate */
4097static inline uint32_t
4098encode_movw_imm (uint32_t imm)
4099{
4100 return imm << 5;
4101}
4102
4103/* encode the 26-bit offset of unconditional branch */
4104static inline uint32_t
4105encode_branch_ofs_26 (uint32_t ofs)
4106{
4107 return ofs & ((1 << 26) - 1);
4108}
4109
4110/* encode the 19-bit offset of conditional branch and compare & branch */
4111static inline uint32_t
4112encode_cond_branch_ofs_19 (uint32_t ofs)
4113{
4114 return (ofs & ((1 << 19) - 1)) << 5;
4115}
4116
4117/* encode the 19-bit offset of ld literal */
4118static inline uint32_t
4119encode_ld_lit_ofs_19 (uint32_t ofs)
4120{
4121 return (ofs & ((1 << 19) - 1)) << 5;
4122}
4123
4124/* Encode the 14-bit offset of test & branch. */
4125static inline uint32_t
4126encode_tst_branch_ofs_14 (uint32_t ofs)
4127{
4128 return (ofs & ((1 << 14) - 1)) << 5;
4129}
4130
4131/* Encode the 16-bit imm field of svc/hvc/smc. */
4132static inline uint32_t
4133encode_svc_imm (uint32_t imm)
4134{
4135 return imm << 5;
4136}
4137
4138/* Reencode add(s) to sub(s), or sub(s) to add(s). */
4139static inline uint32_t
4140reencode_addsub_switch_add_sub (uint32_t opcode)
4141{
4142 return opcode ^ (1 << 30);
4143}
4144
4145static inline uint32_t
4146reencode_movzn_to_movz (uint32_t opcode)
4147{
4148 return opcode | (1 << 30);
4149}
4150
4151static inline uint32_t
4152reencode_movzn_to_movn (uint32_t opcode)
4153{
4154 return opcode & ~(1 << 30);
4155}
4156
4157/* Overall per-instruction processing. */
4158
4159/* We need to be able to fix up arbitrary expressions in some statements.
4160 This is so that we can handle symbols that are an arbitrary distance from
4161 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
4162 which returns part of an address in a form which will be valid for
4163 a data instruction. We do this by pushing the expression into a symbol
4164 in the expr_section, and creating a fix for that. */
4165
4166static fixS *
4167fix_new_aarch64 (fragS * frag,
4168 int where,
4169 short int size, expressionS * exp, int pc_rel, int reloc)
4170{
4171 fixS *new_fix;
4172
4173 switch (exp->X_op)
4174 {
4175 case O_constant:
4176 case O_symbol:
4177 case O_add:
4178 case O_subtract:
4179 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
4180 break;
4181
4182 default:
4183 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
4184 pc_rel, reloc);
4185 break;
4186 }
4187 return new_fix;
4188}
4189\f
4190/* Diagnostics on operands errors. */
4191
a52e6fd3
YZ
4192/* By default, output verbose error message.
4193 Disable the verbose error message by -mno-verbose-error. */
4194static int verbose_error_p = 1;
a06ea964
NC
4195
4196#ifdef DEBUG_AARCH64
4197/* N.B. this is only for the purpose of debugging. */
4198const char* operand_mismatch_kind_names[] =
4199{
4200 "AARCH64_OPDE_NIL",
4201 "AARCH64_OPDE_RECOVERABLE",
4202 "AARCH64_OPDE_SYNTAX_ERROR",
4203 "AARCH64_OPDE_FATAL_SYNTAX_ERROR",
4204 "AARCH64_OPDE_INVALID_VARIANT",
4205 "AARCH64_OPDE_OUT_OF_RANGE",
4206 "AARCH64_OPDE_UNALIGNED",
4207 "AARCH64_OPDE_REG_LIST",
4208 "AARCH64_OPDE_OTHER_ERROR",
4209};
4210#endif /* DEBUG_AARCH64 */
4211
4212/* Return TRUE if LHS is of higher severity than RHS, otherwise return FALSE.
4213
4214 When multiple errors of different kinds are found in the same assembly
4215 line, only the error of the highest severity will be picked up for
4216 issuing the diagnostics. */
4217
4218static inline bfd_boolean
4219operand_error_higher_severity_p (enum aarch64_operand_error_kind lhs,
4220 enum aarch64_operand_error_kind rhs)
4221{
4222 gas_assert (AARCH64_OPDE_RECOVERABLE > AARCH64_OPDE_NIL);
4223 gas_assert (AARCH64_OPDE_SYNTAX_ERROR > AARCH64_OPDE_RECOVERABLE);
4224 gas_assert (AARCH64_OPDE_FATAL_SYNTAX_ERROR > AARCH64_OPDE_SYNTAX_ERROR);
4225 gas_assert (AARCH64_OPDE_INVALID_VARIANT > AARCH64_OPDE_FATAL_SYNTAX_ERROR);
4226 gas_assert (AARCH64_OPDE_OUT_OF_RANGE > AARCH64_OPDE_INVALID_VARIANT);
4227 gas_assert (AARCH64_OPDE_UNALIGNED > AARCH64_OPDE_OUT_OF_RANGE);
4228 gas_assert (AARCH64_OPDE_REG_LIST > AARCH64_OPDE_UNALIGNED);
4229 gas_assert (AARCH64_OPDE_OTHER_ERROR > AARCH64_OPDE_REG_LIST);
4230 return lhs > rhs;
4231}
4232
4233/* Helper routine to get the mnemonic name from the assembly instruction
4234 line; should only be called for the diagnosis purpose, as there is
4235 string copy operation involved, which may affect the runtime
4236 performance if used in elsewhere. */
4237
4238static const char*
4239get_mnemonic_name (const char *str)
4240{
4241 static char mnemonic[32];
4242 char *ptr;
4243
4244 /* Get the first 15 bytes and assume that the full name is included. */
4245 strncpy (mnemonic, str, 31);
4246 mnemonic[31] = '\0';
4247
4248 /* Scan up to the end of the mnemonic, which must end in white space,
4249 '.', or end of string. */
4250 for (ptr = mnemonic; is_part_of_name(*ptr); ++ptr)
4251 ;
4252
4253 *ptr = '\0';
4254
4255 /* Append '...' to the truncated long name. */
4256 if (ptr - mnemonic == 31)
4257 mnemonic[28] = mnemonic[29] = mnemonic[30] = '.';
4258
4259 return mnemonic;
4260}
4261
4262static void
4263reset_aarch64_instruction (aarch64_instruction *instruction)
4264{
4265 memset (instruction, '\0', sizeof (aarch64_instruction));
4266 instruction->reloc.type = BFD_RELOC_UNUSED;
4267}
4268
33eaf5de 4269/* Data structures storing one user error in the assembly code related to
a06ea964
NC
4270 operands. */
4271
4272struct operand_error_record
4273{
4274 const aarch64_opcode *opcode;
4275 aarch64_operand_error detail;
4276 struct operand_error_record *next;
4277};
4278
4279typedef struct operand_error_record operand_error_record;
4280
4281struct operand_errors
4282{
4283 operand_error_record *head;
4284 operand_error_record *tail;
4285};
4286
4287typedef struct operand_errors operand_errors;
4288
4289/* Top-level data structure reporting user errors for the current line of
4290 the assembly code.
4291 The way md_assemble works is that all opcodes sharing the same mnemonic
4292 name are iterated to find a match to the assembly line. In this data
4293 structure, each of the such opcodes will have one operand_error_record
4294 allocated and inserted. In other words, excessive errors related with
4295 a single opcode are disregarded. */
4296operand_errors operand_error_report;
4297
4298/* Free record nodes. */
4299static operand_error_record *free_opnd_error_record_nodes = NULL;
4300
4301/* Initialize the data structure that stores the operand mismatch
4302 information on assembling one line of the assembly code. */
4303static void
4304init_operand_error_report (void)
4305{
4306 if (operand_error_report.head != NULL)
4307 {
4308 gas_assert (operand_error_report.tail != NULL);
4309 operand_error_report.tail->next = free_opnd_error_record_nodes;
4310 free_opnd_error_record_nodes = operand_error_report.head;
4311 operand_error_report.head = NULL;
4312 operand_error_report.tail = NULL;
4313 return;
4314 }
4315 gas_assert (operand_error_report.tail == NULL);
4316}
4317
4318/* Return TRUE if some operand error has been recorded during the
4319 parsing of the current assembly line using the opcode *OPCODE;
4320 otherwise return FALSE. */
4321static inline bfd_boolean
4322opcode_has_operand_error_p (const aarch64_opcode *opcode)
4323{
4324 operand_error_record *record = operand_error_report.head;
4325 return record && record->opcode == opcode;
4326}
4327
4328/* Add the error record *NEW_RECORD to operand_error_report. The record's
4329 OPCODE field is initialized with OPCODE.
4330 N.B. only one record for each opcode, i.e. the maximum of one error is
4331 recorded for each instruction template. */
4332
4333static void
4334add_operand_error_record (const operand_error_record* new_record)
4335{
4336 const aarch64_opcode *opcode = new_record->opcode;
4337 operand_error_record* record = operand_error_report.head;
4338
4339 /* The record may have been created for this opcode. If not, we need
4340 to prepare one. */
4341 if (! opcode_has_operand_error_p (opcode))
4342 {
4343 /* Get one empty record. */
4344 if (free_opnd_error_record_nodes == NULL)
4345 {
325801bd 4346 record = XNEW (operand_error_record);
a06ea964
NC
4347 }
4348 else
4349 {
4350 record = free_opnd_error_record_nodes;
4351 free_opnd_error_record_nodes = record->next;
4352 }
4353 record->opcode = opcode;
4354 /* Insert at the head. */
4355 record->next = operand_error_report.head;
4356 operand_error_report.head = record;
4357 if (operand_error_report.tail == NULL)
4358 operand_error_report.tail = record;
4359 }
4360 else if (record->detail.kind != AARCH64_OPDE_NIL
4361 && record->detail.index <= new_record->detail.index
4362 && operand_error_higher_severity_p (record->detail.kind,
4363 new_record->detail.kind))
4364 {
4365 /* In the case of multiple errors found on operands related with a
4366 single opcode, only record the error of the leftmost operand and
4367 only if the error is of higher severity. */
4368 DEBUG_TRACE ("error %s on operand %d not added to the report due to"
4369 " the existing error %s on operand %d",
4370 operand_mismatch_kind_names[new_record->detail.kind],
4371 new_record->detail.index,
4372 operand_mismatch_kind_names[record->detail.kind],
4373 record->detail.index);
4374 return;
4375 }
4376
4377 record->detail = new_record->detail;
4378}
4379
4380static inline void
4381record_operand_error_info (const aarch64_opcode *opcode,
4382 aarch64_operand_error *error_info)
4383{
4384 operand_error_record record;
4385 record.opcode = opcode;
4386 record.detail = *error_info;
4387 add_operand_error_record (&record);
4388}
4389
4390/* Record an error of kind KIND and, if ERROR is not NULL, of the detailed
4391 error message *ERROR, for operand IDX (count from 0). */
4392
4393static void
4394record_operand_error (const aarch64_opcode *opcode, int idx,
4395 enum aarch64_operand_error_kind kind,
4396 const char* error)
4397{
4398 aarch64_operand_error info;
4399 memset(&info, 0, sizeof (info));
4400 info.index = idx;
4401 info.kind = kind;
4402 info.error = error;
4403 record_operand_error_info (opcode, &info);
4404}
4405
4406static void
4407record_operand_error_with_data (const aarch64_opcode *opcode, int idx,
4408 enum aarch64_operand_error_kind kind,
4409 const char* error, const int *extra_data)
4410{
4411 aarch64_operand_error info;
4412 info.index = idx;
4413 info.kind = kind;
4414 info.error = error;
4415 info.data[0] = extra_data[0];
4416 info.data[1] = extra_data[1];
4417 info.data[2] = extra_data[2];
4418 record_operand_error_info (opcode, &info);
4419}
4420
4421static void
4422record_operand_out_of_range_error (const aarch64_opcode *opcode, int idx,
4423 const char* error, int lower_bound,
4424 int upper_bound)
4425{
4426 int data[3] = {lower_bound, upper_bound, 0};
4427 record_operand_error_with_data (opcode, idx, AARCH64_OPDE_OUT_OF_RANGE,
4428 error, data);
4429}
4430
4431/* Remove the operand error record for *OPCODE. */
4432static void ATTRIBUTE_UNUSED
4433remove_operand_error_record (const aarch64_opcode *opcode)
4434{
4435 if (opcode_has_operand_error_p (opcode))
4436 {
4437 operand_error_record* record = operand_error_report.head;
4438 gas_assert (record != NULL && operand_error_report.tail != NULL);
4439 operand_error_report.head = record->next;
4440 record->next = free_opnd_error_record_nodes;
4441 free_opnd_error_record_nodes = record;
4442 if (operand_error_report.head == NULL)
4443 {
4444 gas_assert (operand_error_report.tail == record);
4445 operand_error_report.tail = NULL;
4446 }
4447 }
4448}
4449
4450/* Given the instruction in *INSTR, return the index of the best matched
4451 qualifier sequence in the list (an array) headed by QUALIFIERS_LIST.
4452
4453 Return -1 if there is no qualifier sequence; return the first match
4454 if there is multiple matches found. */
4455
4456static int
4457find_best_match (const aarch64_inst *instr,
4458 const aarch64_opnd_qualifier_seq_t *qualifiers_list)
4459{
4460 int i, num_opnds, max_num_matched, idx;
4461
4462 num_opnds = aarch64_num_of_operands (instr->opcode);
4463 if (num_opnds == 0)
4464 {
4465 DEBUG_TRACE ("no operand");
4466 return -1;
4467 }
4468
4469 max_num_matched = 0;
4989adac 4470 idx = 0;
a06ea964
NC
4471
4472 /* For each pattern. */
4473 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4474 {
4475 int j, num_matched;
4476 const aarch64_opnd_qualifier_t *qualifiers = *qualifiers_list;
4477
4478 /* Most opcodes has much fewer patterns in the list. */
535b785f 4479 if (empty_qualifier_sequence_p (qualifiers))
a06ea964
NC
4480 {
4481 DEBUG_TRACE_IF (i == 0, "empty list of qualifier sequence");
a06ea964
NC
4482 break;
4483 }
4484
4485 for (j = 0, num_matched = 0; j < num_opnds; ++j, ++qualifiers)
4486 if (*qualifiers == instr->operands[j].qualifier)
4487 ++num_matched;
4488
4489 if (num_matched > max_num_matched)
4490 {
4491 max_num_matched = num_matched;
4492 idx = i;
4493 }
4494 }
4495
4496 DEBUG_TRACE ("return with %d", idx);
4497 return idx;
4498}
4499
33eaf5de 4500/* Assign qualifiers in the qualifier sequence (headed by QUALIFIERS) to the
a06ea964
NC
4501 corresponding operands in *INSTR. */
4502
4503static inline void
4504assign_qualifier_sequence (aarch64_inst *instr,
4505 const aarch64_opnd_qualifier_t *qualifiers)
4506{
4507 int i = 0;
4508 int num_opnds = aarch64_num_of_operands (instr->opcode);
4509 gas_assert (num_opnds);
4510 for (i = 0; i < num_opnds; ++i, ++qualifiers)
4511 instr->operands[i].qualifier = *qualifiers;
4512}
4513
4514/* Print operands for the diagnosis purpose. */
4515
4516static void
4517print_operands (char *buf, const aarch64_opcode *opcode,
4518 const aarch64_opnd_info *opnds)
4519{
4520 int i;
4521
4522 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
4523 {
08d3b0cc 4524 char str[128];
a06ea964
NC
4525
4526 /* We regard the opcode operand info more, however we also look into
4527 the inst->operands to support the disassembling of the optional
4528 operand.
4529 The two operand code should be the same in all cases, apart from
4530 when the operand can be optional. */
4531 if (opcode->operands[i] == AARCH64_OPND_NIL
4532 || opnds[i].type == AARCH64_OPND_NIL)
4533 break;
4534
4535 /* Generate the operand string in STR. */
7d02540a
TC
4536 aarch64_print_operand (str, sizeof (str), 0, opcode, opnds, i, NULL, NULL,
4537 NULL);
a06ea964
NC
4538
4539 /* Delimiter. */
4540 if (str[0] != '\0')
ad43e107 4541 strcat (buf, i == 0 ? " " : ", ");
a06ea964
NC
4542
4543 /* Append the operand string. */
4544 strcat (buf, str);
4545 }
4546}
4547
4548/* Send to stderr a string as information. */
4549
4550static void
4551output_info (const char *format, ...)
4552{
3b4dbbbf 4553 const char *file;
a06ea964
NC
4554 unsigned int line;
4555 va_list args;
4556
3b4dbbbf 4557 file = as_where (&line);
a06ea964
NC
4558 if (file)
4559 {
4560 if (line != 0)
4561 fprintf (stderr, "%s:%u: ", file, line);
4562 else
4563 fprintf (stderr, "%s: ", file);
4564 }
4565 fprintf (stderr, _("Info: "));
4566 va_start (args, format);
4567 vfprintf (stderr, format, args);
4568 va_end (args);
4569 (void) putc ('\n', stderr);
4570}
4571
4572/* Output one operand error record. */
4573
4574static void
4575output_operand_error_record (const operand_error_record *record, char *str)
4576{
28f013d5
JB
4577 const aarch64_operand_error *detail = &record->detail;
4578 int idx = detail->index;
a06ea964 4579 const aarch64_opcode *opcode = record->opcode;
28f013d5 4580 enum aarch64_opnd opd_code = (idx >= 0 ? opcode->operands[idx]
a06ea964 4581 : AARCH64_OPND_NIL);
a06ea964 4582
7d02540a
TC
4583 typedef void (*handler_t)(const char *format, ...);
4584 handler_t handler = detail->non_fatal ? as_warn : as_bad;
4585
a06ea964
NC
4586 switch (detail->kind)
4587 {
4588 case AARCH64_OPDE_NIL:
4589 gas_assert (0);
4590 break;
a06ea964
NC
4591 case AARCH64_OPDE_SYNTAX_ERROR:
4592 case AARCH64_OPDE_RECOVERABLE:
4593 case AARCH64_OPDE_FATAL_SYNTAX_ERROR:
4594 case AARCH64_OPDE_OTHER_ERROR:
a06ea964
NC
4595 /* Use the prepared error message if there is, otherwise use the
4596 operand description string to describe the error. */
4597 if (detail->error != NULL)
4598 {
28f013d5 4599 if (idx < 0)
7d02540a 4600 handler (_("%s -- `%s'"), detail->error, str);
a06ea964 4601 else
7d02540a
TC
4602 handler (_("%s at operand %d -- `%s'"),
4603 detail->error, idx + 1, str);
a06ea964
NC
4604 }
4605 else
28f013d5
JB
4606 {
4607 gas_assert (idx >= 0);
7d02540a
TC
4608 handler (_("operand %d must be %s -- `%s'"), idx + 1,
4609 aarch64_get_operand_desc (opd_code), str);
28f013d5 4610 }
a06ea964
NC
4611 break;
4612
4613 case AARCH64_OPDE_INVALID_VARIANT:
7d02540a 4614 handler (_("operand mismatch -- `%s'"), str);
a06ea964
NC
4615 if (verbose_error_p)
4616 {
4617 /* We will try to correct the erroneous instruction and also provide
4618 more information e.g. all other valid variants.
4619
4620 The string representation of the corrected instruction and other
4621 valid variants are generated by
4622
4623 1) obtaining the intermediate representation of the erroneous
4624 instruction;
4625 2) manipulating the IR, e.g. replacing the operand qualifier;
4626 3) printing out the instruction by calling the printer functions
4627 shared with the disassembler.
4628
4629 The limitation of this method is that the exact input assembly
4630 line cannot be accurately reproduced in some cases, for example an
4631 optional operand present in the actual assembly line will be
4632 omitted in the output; likewise for the optional syntax rules,
4633 e.g. the # before the immediate. Another limitation is that the
4634 assembly symbols and relocation operations in the assembly line
4635 currently cannot be printed out in the error report. Last but not
4636 least, when there is other error(s) co-exist with this error, the
4637 'corrected' instruction may be still incorrect, e.g. given
4638 'ldnp h0,h1,[x0,#6]!'
4639 this diagnosis will provide the version:
4640 'ldnp s0,s1,[x0,#6]!'
4641 which is still not right. */
4642 size_t len = strlen (get_mnemonic_name (str));
4643 int i, qlf_idx;
4644 bfd_boolean result;
08d3b0cc 4645 char buf[2048];
a06ea964
NC
4646 aarch64_inst *inst_base = &inst.base;
4647 const aarch64_opnd_qualifier_seq_t *qualifiers_list;
4648
4649 /* Init inst. */
4650 reset_aarch64_instruction (&inst);
4651 inst_base->opcode = opcode;
4652
4653 /* Reset the error report so that there is no side effect on the
4654 following operand parsing. */
4655 init_operand_error_report ();
4656
4657 /* Fill inst. */
4658 result = parse_operands (str + len, opcode)
4659 && programmer_friendly_fixup (&inst);
4660 gas_assert (result);
4661 result = aarch64_opcode_encode (opcode, inst_base, &inst_base->value,
4662 NULL, NULL);
4663 gas_assert (!result);
4664
4665 /* Find the most matched qualifier sequence. */
4666 qlf_idx = find_best_match (inst_base, opcode->qualifiers_list);
4667 gas_assert (qlf_idx > -1);
4668
4669 /* Assign the qualifiers. */
4670 assign_qualifier_sequence (inst_base,
4671 opcode->qualifiers_list[qlf_idx]);
4672
4673 /* Print the hint. */
4674 output_info (_(" did you mean this?"));
08d3b0cc 4675 snprintf (buf, sizeof (buf), "\t%s", get_mnemonic_name (str));
a06ea964
NC
4676 print_operands (buf, opcode, inst_base->operands);
4677 output_info (_(" %s"), buf);
4678
4679 /* Print out other variant(s) if there is any. */
4680 if (qlf_idx != 0 ||
4681 !empty_qualifier_sequence_p (opcode->qualifiers_list[1]))
4682 output_info (_(" other valid variant(s):"));
4683
4684 /* For each pattern. */
4685 qualifiers_list = opcode->qualifiers_list;
4686 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4687 {
4688 /* Most opcodes has much fewer patterns in the list.
4689 First NIL qualifier indicates the end in the list. */
535b785f 4690 if (empty_qualifier_sequence_p (*qualifiers_list))
a06ea964
NC
4691 break;
4692
4693 if (i != qlf_idx)
4694 {
4695 /* Mnemonics name. */
08d3b0cc 4696 snprintf (buf, sizeof (buf), "\t%s", get_mnemonic_name (str));
a06ea964
NC
4697
4698 /* Assign the qualifiers. */
4699 assign_qualifier_sequence (inst_base, *qualifiers_list);
4700
4701 /* Print instruction. */
4702 print_operands (buf, opcode, inst_base->operands);
4703
4704 output_info (_(" %s"), buf);
4705 }
4706 }
4707 }
4708 break;
4709
0c608d6b 4710 case AARCH64_OPDE_UNTIED_OPERAND:
7d02540a
TC
4711 handler (_("operand %d must be the same register as operand 1 -- `%s'"),
4712 detail->index + 1, str);
0c608d6b
RS
4713 break;
4714
a06ea964 4715 case AARCH64_OPDE_OUT_OF_RANGE:
f5555712 4716 if (detail->data[0] != detail->data[1])
7d02540a
TC
4717 handler (_("%s out of range %d to %d at operand %d -- `%s'"),
4718 detail->error ? detail->error : _("immediate value"),
4719 detail->data[0], detail->data[1], idx + 1, str);
f5555712 4720 else
7d02540a
TC
4721 handler (_("%s must be %d at operand %d -- `%s'"),
4722 detail->error ? detail->error : _("immediate value"),
4723 detail->data[0], idx + 1, str);
a06ea964
NC
4724 break;
4725
4726 case AARCH64_OPDE_REG_LIST:
4727 if (detail->data[0] == 1)
7d02540a
TC
4728 handler (_("invalid number of registers in the list; "
4729 "only 1 register is expected at operand %d -- `%s'"),
4730 idx + 1, str);
a06ea964 4731 else
7d02540a
TC
4732 handler (_("invalid number of registers in the list; "
4733 "%d registers are expected at operand %d -- `%s'"),
4734 detail->data[0], idx + 1, str);
a06ea964
NC
4735 break;
4736
4737 case AARCH64_OPDE_UNALIGNED:
7d02540a
TC
4738 handler (_("immediate value must be a multiple of "
4739 "%d at operand %d -- `%s'"),
4740 detail->data[0], idx + 1, str);
a06ea964
NC
4741 break;
4742
4743 default:
4744 gas_assert (0);
4745 break;
4746 }
4747}
4748
4749/* Process and output the error message about the operand mismatching.
4750
4751 When this function is called, the operand error information had
4752 been collected for an assembly line and there will be multiple
33eaf5de 4753 errors in the case of multiple instruction templates; output the
7d02540a
TC
4754 error message that most closely describes the problem.
4755
4756 The errors to be printed can be filtered on printing all errors
4757 or only non-fatal errors. This distinction has to be made because
4758 the error buffer may already be filled with fatal errors we don't want to
4759 print due to the different instruction templates. */
a06ea964
NC
4760
4761static void
7d02540a 4762output_operand_error_report (char *str, bfd_boolean non_fatal_only)
a06ea964
NC
4763{
4764 int largest_error_pos;
4765 const char *msg = NULL;
4766 enum aarch64_operand_error_kind kind;
4767 operand_error_record *curr;
4768 operand_error_record *head = operand_error_report.head;
4769 operand_error_record *record = NULL;
4770
4771 /* No error to report. */
4772 if (head == NULL)
4773 return;
4774
4775 gas_assert (head != NULL && operand_error_report.tail != NULL);
4776
4777 /* Only one error. */
4778 if (head == operand_error_report.tail)
4779 {
7d02540a
TC
4780 /* If the only error is a non-fatal one and we don't want to print it,
4781 just exit. */
4782 if (!non_fatal_only || head->detail.non_fatal)
4783 {
4784 DEBUG_TRACE ("single opcode entry with error kind: %s",
4785 operand_mismatch_kind_names[head->detail.kind]);
4786 output_operand_error_record (head, str);
4787 }
a06ea964
NC
4788 return;
4789 }
4790
4791 /* Find the error kind of the highest severity. */
33eaf5de 4792 DEBUG_TRACE ("multiple opcode entries with error kind");
a06ea964
NC
4793 kind = AARCH64_OPDE_NIL;
4794 for (curr = head; curr != NULL; curr = curr->next)
4795 {
4796 gas_assert (curr->detail.kind != AARCH64_OPDE_NIL);
4797 DEBUG_TRACE ("\t%s", operand_mismatch_kind_names[curr->detail.kind]);
4798 if (operand_error_higher_severity_p (curr->detail.kind, kind))
4799 kind = curr->detail.kind;
4800 }
4801 gas_assert (kind != AARCH64_OPDE_NIL);
4802
4803 /* Pick up one of errors of KIND to report. */
4804 largest_error_pos = -2; /* Index can be -1 which means unknown index. */
4805 for (curr = head; curr != NULL; curr = curr->next)
4806 {
7d02540a
TC
4807 /* If we don't want to print non-fatal errors then don't consider them
4808 at all. */
4809 if (curr->detail.kind != kind
4810 || (non_fatal_only && !head->detail.non_fatal))
a06ea964
NC
4811 continue;
4812 /* If there are multiple errors, pick up the one with the highest
4813 mismatching operand index. In the case of multiple errors with
4814 the equally highest operand index, pick up the first one or the
4815 first one with non-NULL error message. */
4816 if (curr->detail.index > largest_error_pos
4817 || (curr->detail.index == largest_error_pos && msg == NULL
4818 && curr->detail.error != NULL))
4819 {
4820 largest_error_pos = curr->detail.index;
4821 record = curr;
4822 msg = record->detail.error;
4823 }
4824 }
4825
7d02540a
TC
4826 /* The way errors are collected in the back-end is a bit non-intuitive. But
4827 essentially, because each operand template is tried recursively you may
4828 always have errors collected from the previous tried OPND. These are
4829 usually skipped if there is one successful match. However now with the
4830 non-fatal errors we have to ignore those previously collected hard errors
4831 when we're only interested in printing the non-fatal ones. This condition
4832 prevents us from printing errors that are not appropriate, since we did
4833 match a condition, but it also has warnings that it wants to print. */
4834 if (non_fatal_only && !record)
4835 return;
4836
a06ea964
NC
4837 gas_assert (largest_error_pos != -2 && record != NULL);
4838 DEBUG_TRACE ("Pick up error kind %s to report",
4839 operand_mismatch_kind_names[record->detail.kind]);
4840
4841 /* Output. */
4842 output_operand_error_record (record, str);
4843}
4844\f
4845/* Write an AARCH64 instruction to buf - always little-endian. */
4846static void
4847put_aarch64_insn (char *buf, uint32_t insn)
4848{
4849 unsigned char *where = (unsigned char *) buf;
4850 where[0] = insn;
4851 where[1] = insn >> 8;
4852 where[2] = insn >> 16;
4853 where[3] = insn >> 24;
4854}
4855
4856static uint32_t
4857get_aarch64_insn (char *buf)
4858{
4859 unsigned char *where = (unsigned char *) buf;
4860 uint32_t result;
4861 result = (where[0] | (where[1] << 8) | (where[2] << 16) | (where[3] << 24));
4862 return result;
4863}
4864
4865static void
4866output_inst (struct aarch64_inst *new_inst)
4867{
4868 char *to = NULL;
4869
4870 to = frag_more (INSN_SIZE);
4871
4872 frag_now->tc_frag_data.recorded = 1;
4873
4874 put_aarch64_insn (to, inst.base.value);
4875
4876 if (inst.reloc.type != BFD_RELOC_UNUSED)
4877 {
4878 fixS *fixp = fix_new_aarch64 (frag_now, to - frag_now->fr_literal,
4879 INSN_SIZE, &inst.reloc.exp,
4880 inst.reloc.pc_rel,
4881 inst.reloc.type);
4882 DEBUG_TRACE ("Prepared relocation fix up");
4883 /* Don't check the addend value against the instruction size,
4884 that's the job of our code in md_apply_fix(). */
4885 fixp->fx_no_overflow = 1;
4886 if (new_inst != NULL)
4887 fixp->tc_fix_data.inst = new_inst;
4888 if (aarch64_gas_internal_fixup_p ())
4889 {
4890 gas_assert (inst.reloc.opnd != AARCH64_OPND_NIL);
4891 fixp->tc_fix_data.opnd = inst.reloc.opnd;
4892 fixp->fx_addnumber = inst.reloc.flags;
4893 }
4894 }
4895
4896 dwarf2_emit_insn (INSN_SIZE);
4897}
4898
4899/* Link together opcodes of the same name. */
4900
4901struct templates
4902{
4903 aarch64_opcode *opcode;
4904 struct templates *next;
4905};
4906
4907typedef struct templates templates;
4908
4909static templates *
4910lookup_mnemonic (const char *start, int len)
4911{
4912 templates *templ = NULL;
4913
4914 templ = hash_find_n (aarch64_ops_hsh, start, len);
4915 return templ;
4916}
4917
4918/* Subroutine of md_assemble, responsible for looking up the primary
4919 opcode from the mnemonic the user wrote. STR points to the
4920 beginning of the mnemonic. */
4921
4922static templates *
4923opcode_lookup (char **str)
4924{
bb7eff52 4925 char *end, *base, *dot;
a06ea964
NC
4926 const aarch64_cond *cond;
4927 char condname[16];
4928 int len;
4929
4930 /* Scan up to the end of the mnemonic, which must end in white space,
4931 '.', or end of string. */
bb7eff52 4932 dot = 0;
a06ea964 4933 for (base = end = *str; is_part_of_name(*end); end++)
bb7eff52
RS
4934 if (*end == '.' && !dot)
4935 dot = end;
a06ea964 4936
bb7eff52 4937 if (end == base || dot == base)
a06ea964
NC
4938 return 0;
4939
4940 inst.cond = COND_ALWAYS;
4941
4942 /* Handle a possible condition. */
bb7eff52 4943 if (dot)
a06ea964 4944 {
bb7eff52 4945 cond = hash_find_n (aarch64_cond_hsh, dot + 1, end - dot - 1);
a06ea964
NC
4946 if (cond)
4947 {
4948 inst.cond = cond->value;
bb7eff52 4949 *str = end;
a06ea964
NC
4950 }
4951 else
4952 {
bb7eff52 4953 *str = dot;
a06ea964
NC
4954 return 0;
4955 }
bb7eff52 4956 len = dot - base;
a06ea964
NC
4957 }
4958 else
bb7eff52
RS
4959 {
4960 *str = end;
4961 len = end - base;
4962 }
a06ea964
NC
4963
4964 if (inst.cond == COND_ALWAYS)
4965 {
4966 /* Look for unaffixed mnemonic. */
4967 return lookup_mnemonic (base, len);
4968 }
4969 else if (len <= 13)
4970 {
4971 /* append ".c" to mnemonic if conditional */
4972 memcpy (condname, base, len);
4973 memcpy (condname + len, ".c", 2);
4974 base = condname;
4975 len += 2;
4976 return lookup_mnemonic (base, len);
4977 }
4978
4979 return NULL;
4980}
4981
8f9a77af
RS
4982/* Internal helper routine converting a vector_type_el structure *VECTYPE
4983 to a corresponding operand qualifier. */
a06ea964
NC
4984
4985static inline aarch64_opnd_qualifier_t
8f9a77af 4986vectype_to_qualifier (const struct vector_type_el *vectype)
a06ea964 4987{
f06935a5 4988 /* Element size in bytes indexed by vector_el_type. */
a06ea964
NC
4989 const unsigned char ele_size[5]
4990 = {1, 2, 4, 8, 16};
65f2205d
MW
4991 const unsigned int ele_base [5] =
4992 {
a3b3345a 4993 AARCH64_OPND_QLF_V_4B,
3067d3b9 4994 AARCH64_OPND_QLF_V_2H,
65f2205d
MW
4995 AARCH64_OPND_QLF_V_2S,
4996 AARCH64_OPND_QLF_V_1D,
4997 AARCH64_OPND_QLF_V_1Q
4998 };
a06ea964
NC
4999
5000 if (!vectype->defined || vectype->type == NT_invtype)
5001 goto vectype_conversion_fail;
5002
d50c751e
RS
5003 if (vectype->type == NT_zero)
5004 return AARCH64_OPND_QLF_P_Z;
5005 if (vectype->type == NT_merge)
5006 return AARCH64_OPND_QLF_P_M;
5007
a06ea964
NC
5008 gas_assert (vectype->type >= NT_b && vectype->type <= NT_q);
5009
f11ad6bc 5010 if (vectype->defined & (NTA_HASINDEX | NTA_HASVARWIDTH))
00c2093f
TC
5011 {
5012 /* Special case S_4B. */
5013 if (vectype->type == NT_b && vectype->width == 4)
5014 return AARCH64_OPND_QLF_S_4B;
5015
5016 /* Vector element register. */
5017 return AARCH64_OPND_QLF_S_B + vectype->type;
5018 }
a06ea964
NC
5019 else
5020 {
5021 /* Vector register. */
5022 int reg_size = ele_size[vectype->type] * vectype->width;
5023 unsigned offset;
65f2205d 5024 unsigned shift;
3067d3b9 5025 if (reg_size != 16 && reg_size != 8 && reg_size != 4)
a06ea964 5026 goto vectype_conversion_fail;
65f2205d
MW
5027
5028 /* The conversion is by calculating the offset from the base operand
5029 qualifier for the vector type. The operand qualifiers are regular
5030 enough that the offset can established by shifting the vector width by
5031 a vector-type dependent amount. */
5032 shift = 0;
5033 if (vectype->type == NT_b)
a3b3345a 5034 shift = 3;
3067d3b9 5035 else if (vectype->type == NT_h || vectype->type == NT_s)
65f2205d
MW
5036 shift = 2;
5037 else if (vectype->type >= NT_d)
5038 shift = 1;
5039 else
5040 gas_assert (0);
5041
5042 offset = ele_base [vectype->type] + (vectype->width >> shift);
a3b3345a 5043 gas_assert (AARCH64_OPND_QLF_V_4B <= offset
65f2205d
MW
5044 && offset <= AARCH64_OPND_QLF_V_1Q);
5045 return offset;
a06ea964
NC
5046 }
5047
5048vectype_conversion_fail:
5049 first_error (_("bad vector arrangement type"));
5050 return AARCH64_OPND_QLF_NIL;
5051}
5052
5053/* Process an optional operand that is found omitted from the assembly line.
5054 Fill *OPERAND for such an operand of type TYPE. OPCODE points to the
5055 instruction's opcode entry while IDX is the index of this omitted operand.
5056 */
5057
5058static void
5059process_omitted_operand (enum aarch64_opnd type, const aarch64_opcode *opcode,
5060 int idx, aarch64_opnd_info *operand)
5061{
5062 aarch64_insn default_value = get_optional_operand_default_value (opcode);
5063 gas_assert (optional_operand_p (opcode, idx));
5064 gas_assert (!operand->present);
5065
5066 switch (type)
5067 {
5068 case AARCH64_OPND_Rd:
5069 case AARCH64_OPND_Rn:
5070 case AARCH64_OPND_Rm:
5071 case AARCH64_OPND_Rt:
5072 case AARCH64_OPND_Rt2:
5073 case AARCH64_OPND_Rs:
5074 case AARCH64_OPND_Ra:
5075 case AARCH64_OPND_Rt_SYS:
5076 case AARCH64_OPND_Rd_SP:
5077 case AARCH64_OPND_Rn_SP:
c84364ec 5078 case AARCH64_OPND_Rm_SP:
a06ea964
NC
5079 case AARCH64_OPND_Fd:
5080 case AARCH64_OPND_Fn:
5081 case AARCH64_OPND_Fm:
5082 case AARCH64_OPND_Fa:
5083 case AARCH64_OPND_Ft:
5084 case AARCH64_OPND_Ft2:
5085 case AARCH64_OPND_Sd:
5086 case AARCH64_OPND_Sn:
5087 case AARCH64_OPND_Sm:
f42f1a1d 5088 case AARCH64_OPND_Va:
a06ea964
NC
5089 case AARCH64_OPND_Vd:
5090 case AARCH64_OPND_Vn:
5091 case AARCH64_OPND_Vm:
5092 case AARCH64_OPND_VdD1:
5093 case AARCH64_OPND_VnD1:
5094 operand->reg.regno = default_value;
5095 break;
5096
5097 case AARCH64_OPND_Ed:
5098 case AARCH64_OPND_En:
5099 case AARCH64_OPND_Em:
f42f1a1d 5100 case AARCH64_OPND_SM3_IMM2:
a06ea964
NC
5101 operand->reglane.regno = default_value;
5102 break;
5103
5104 case AARCH64_OPND_IDX:
5105 case AARCH64_OPND_BIT_NUM:
5106 case AARCH64_OPND_IMMR:
5107 case AARCH64_OPND_IMMS:
5108 case AARCH64_OPND_SHLL_IMM:
5109 case AARCH64_OPND_IMM_VLSL:
5110 case AARCH64_OPND_IMM_VLSR:
5111 case AARCH64_OPND_CCMP_IMM:
5112 case AARCH64_OPND_FBITS:
5113 case AARCH64_OPND_UIMM4:
5114 case AARCH64_OPND_UIMM3_OP1:
5115 case AARCH64_OPND_UIMM3_OP2:
5116 case AARCH64_OPND_IMM:
f42f1a1d 5117 case AARCH64_OPND_IMM_2:
a06ea964
NC
5118 case AARCH64_OPND_WIDTH:
5119 case AARCH64_OPND_UIMM7:
5120 case AARCH64_OPND_NZCV:
245d2e3f
RS
5121 case AARCH64_OPND_SVE_PATTERN:
5122 case AARCH64_OPND_SVE_PRFOP:
a06ea964
NC
5123 operand->imm.value = default_value;
5124 break;
5125
2442d846
RS
5126 case AARCH64_OPND_SVE_PATTERN_SCALED:
5127 operand->imm.value = default_value;
5128 operand->shifter.kind = AARCH64_MOD_MUL;
5129 operand->shifter.amount = 1;
5130 break;
5131
a06ea964
NC
5132 case AARCH64_OPND_EXCEPTION:
5133 inst.reloc.type = BFD_RELOC_UNUSED;
5134 break;
5135
5136 case AARCH64_OPND_BARRIER_ISB:
5137 operand->barrier = aarch64_barrier_options + default_value;
5138
5139 default:
5140 break;
5141 }
5142}
5143
5144/* Process the relocation type for move wide instructions.
5145 Return TRUE on success; otherwise return FALSE. */
5146
5147static bfd_boolean
5148process_movw_reloc_info (void)
5149{
5150 int is32;
5151 unsigned shift;
5152
5153 is32 = inst.base.operands[0].qualifier == AARCH64_OPND_QLF_W ? 1 : 0;
5154
5155 if (inst.base.opcode->op == OP_MOVK)
5156 switch (inst.reloc.type)
5157 {
5158 case BFD_RELOC_AARCH64_MOVW_G0_S:
5159 case BFD_RELOC_AARCH64_MOVW_G1_S:
5160 case BFD_RELOC_AARCH64_MOVW_G2_S:
32247401
RL
5161 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
5162 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
5163 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
5164 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
1aa66fb1 5165 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
a06ea964 5166 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
a06ea964 5167 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
a06ea964
NC
5168 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5169 set_syntax_error
5170 (_("the specified relocation type is not allowed for MOVK"));
5171 return FALSE;
5172 default:
5173 break;
5174 }
5175
5176 switch (inst.reloc.type)
5177 {
5178 case BFD_RELOC_AARCH64_MOVW_G0:
a06ea964 5179 case BFD_RELOC_AARCH64_MOVW_G0_NC:
f09c556a 5180 case BFD_RELOC_AARCH64_MOVW_G0_S:
ca632371 5181 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
32247401
RL
5182 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
5183 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
43a357f9 5184 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
3e8286c0 5185 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
3b957e5b 5186 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
49df5539
JW
5187 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
5188 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
a06ea964
NC
5189 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5190 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5191 shift = 0;
5192 break;
5193 case BFD_RELOC_AARCH64_MOVW_G1:
a06ea964 5194 case BFD_RELOC_AARCH64_MOVW_G1_NC:
f09c556a 5195 case BFD_RELOC_AARCH64_MOVW_G1_S:
654248e7 5196 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
32247401
RL
5197 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
5198 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
43a357f9 5199 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
1aa66fb1 5200 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
3b957e5b 5201 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
49df5539
JW
5202 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
5203 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
a06ea964
NC
5204 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5205 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5206 shift = 16;
5207 break;
5208 case BFD_RELOC_AARCH64_MOVW_G2:
a06ea964 5209 case BFD_RELOC_AARCH64_MOVW_G2_NC:
f09c556a 5210 case BFD_RELOC_AARCH64_MOVW_G2_S:
32247401
RL
5211 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
5212 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
49df5539 5213 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
a06ea964
NC
5214 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5215 if (is32)
5216 {
5217 set_fatal_syntax_error
5218 (_("the specified relocation type is not allowed for 32-bit "
5219 "register"));
5220 return FALSE;
5221 }
5222 shift = 32;
5223 break;
5224 case BFD_RELOC_AARCH64_MOVW_G3:
32247401 5225 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
a06ea964
NC
5226 if (is32)
5227 {
5228 set_fatal_syntax_error
5229 (_("the specified relocation type is not allowed for 32-bit "
5230 "register"));
5231 return FALSE;
5232 }
5233 shift = 48;
5234 break;
5235 default:
5236 /* More cases should be added when more MOVW-related relocation types
5237 are supported in GAS. */
5238 gas_assert (aarch64_gas_internal_fixup_p ());
5239 /* The shift amount should have already been set by the parser. */
5240 return TRUE;
5241 }
5242 inst.base.operands[1].shifter.amount = shift;
5243 return TRUE;
5244}
5245
33eaf5de 5246/* A primitive log calculator. */
a06ea964
NC
5247
5248static inline unsigned int
5249get_logsz (unsigned int size)
5250{
5251 const unsigned char ls[16] =
5252 {0, 1, -1, 2, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, 4};
5253 if (size > 16)
5254 {
5255 gas_assert (0);
5256 return -1;
5257 }
5258 gas_assert (ls[size - 1] != (unsigned char)-1);
5259 return ls[size - 1];
5260}
5261
5262/* Determine and return the real reloc type code for an instruction
5263 with the pseudo reloc type code BFD_RELOC_AARCH64_LDST_LO12. */
5264
5265static inline bfd_reloc_code_real_type
5266ldst_lo12_determine_real_reloc_type (void)
5267{
4c562523 5268 unsigned logsz;
a06ea964
NC
5269 enum aarch64_opnd_qualifier opd0_qlf = inst.base.operands[0].qualifier;
5270 enum aarch64_opnd_qualifier opd1_qlf = inst.base.operands[1].qualifier;
5271
84f1b9fb 5272 const bfd_reloc_code_real_type reloc_ldst_lo12[5][5] = {
4c562523
JW
5273 {
5274 BFD_RELOC_AARCH64_LDST8_LO12,
5275 BFD_RELOC_AARCH64_LDST16_LO12,
5276 BFD_RELOC_AARCH64_LDST32_LO12,
5277 BFD_RELOC_AARCH64_LDST64_LO12,
a06ea964 5278 BFD_RELOC_AARCH64_LDST128_LO12
4c562523
JW
5279 },
5280 {
5281 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12,
5282 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12,
5283 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12,
5284 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12,
5285 BFD_RELOC_AARCH64_NONE
5286 },
5287 {
5288 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC,
5289 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC,
5290 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC,
5291 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC,
5292 BFD_RELOC_AARCH64_NONE
84f1b9fb
RL
5293 },
5294 {
5295 BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12,
5296 BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12,
5297 BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12,
5298 BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12,
5299 BFD_RELOC_AARCH64_NONE
5300 },
5301 {
5302 BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC,
5303 BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC,
5304 BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC,
5305 BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC,
5306 BFD_RELOC_AARCH64_NONE
4c562523 5307 }
a06ea964
NC
5308 };
5309
4c562523
JW
5310 gas_assert (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
5311 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
5312 || (inst.reloc.type
84f1b9fb
RL
5313 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC)
5314 || (inst.reloc.type
5315 == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12)
5316 || (inst.reloc.type
5317 == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC));
a06ea964
NC
5318 gas_assert (inst.base.opcode->operands[1] == AARCH64_OPND_ADDR_UIMM12);
5319
5320 if (opd1_qlf == AARCH64_OPND_QLF_NIL)
5321 opd1_qlf =
5322 aarch64_get_expected_qualifier (inst.base.opcode->qualifiers_list,
5323 1, opd0_qlf, 0);
5324 gas_assert (opd1_qlf != AARCH64_OPND_QLF_NIL);
5325
5326 logsz = get_logsz (aarch64_get_qualifier_esize (opd1_qlf));
4c562523 5327 if (inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
84f1b9fb
RL
5328 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC
5329 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12
5330 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC)
4c562523
JW
5331 gas_assert (logsz <= 3);
5332 else
5333 gas_assert (logsz <= 4);
a06ea964 5334
4c562523 5335 /* In reloc.c, these pseudo relocation types should be defined in similar
33eaf5de 5336 order as above reloc_ldst_lo12 array. Because the array index calculation
4c562523
JW
5337 below relies on this. */
5338 return reloc_ldst_lo12[inst.reloc.type - BFD_RELOC_AARCH64_LDST_LO12][logsz];
a06ea964
NC
5339}
5340
5341/* Check whether a register list REGINFO is valid. The registers must be
5342 numbered in increasing order (modulo 32), in increments of one or two.
5343
5344 If ACCEPT_ALTERNATE is non-zero, the register numbers should be in
5345 increments of two.
5346
5347 Return FALSE if such a register list is invalid, otherwise return TRUE. */
5348
5349static bfd_boolean
5350reg_list_valid_p (uint32_t reginfo, int accept_alternate)
5351{
5352 uint32_t i, nb_regs, prev_regno, incr;
5353
5354 nb_regs = 1 + (reginfo & 0x3);
5355 reginfo >>= 2;
5356 prev_regno = reginfo & 0x1f;
5357 incr = accept_alternate ? 2 : 1;
5358
5359 for (i = 1; i < nb_regs; ++i)
5360 {
5361 uint32_t curr_regno;
5362 reginfo >>= 5;
5363 curr_regno = reginfo & 0x1f;
5364 if (curr_regno != ((prev_regno + incr) & 0x1f))
5365 return FALSE;
5366 prev_regno = curr_regno;
5367 }
5368
5369 return TRUE;
5370}
5371
5372/* Generic instruction operand parser. This does no encoding and no
5373 semantic validation; it merely squirrels values away in the inst
5374 structure. Returns TRUE or FALSE depending on whether the
5375 specified grammar matched. */
5376
5377static bfd_boolean
5378parse_operands (char *str, const aarch64_opcode *opcode)
5379{
5380 int i;
5381 char *backtrack_pos = 0;
5382 const enum aarch64_opnd *operands = opcode->operands;
1799c0d0 5383 aarch64_reg_type imm_reg_type;
a06ea964
NC
5384
5385 clear_error ();
5386 skip_whitespace (str);
5387
c0890d26 5388 if (AARCH64_CPU_HAS_FEATURE (AARCH64_FEATURE_SVE, *opcode->avariant))
5b2b928e 5389 imm_reg_type = REG_TYPE_R_Z_SP_BHSDQ_VZP;
c0890d26
RS
5390 else
5391 imm_reg_type = REG_TYPE_R_Z_BHSDQ_V;
1799c0d0 5392
a06ea964
NC
5393 for (i = 0; operands[i] != AARCH64_OPND_NIL; i++)
5394 {
5395 int64_t val;
e1b988bb 5396 const reg_entry *reg;
a06ea964
NC
5397 int comma_skipped_p = 0;
5398 aarch64_reg_type rtype;
8f9a77af 5399 struct vector_type_el vectype;
4df068de 5400 aarch64_opnd_qualifier_t qualifier, base_qualifier, offset_qualifier;
a06ea964 5401 aarch64_opnd_info *info = &inst.base.operands[i];
f11ad6bc 5402 aarch64_reg_type reg_type;
a06ea964
NC
5403
5404 DEBUG_TRACE ("parse operand %d", i);
5405
5406 /* Assign the operand code. */
5407 info->type = operands[i];
5408
5409 if (optional_operand_p (opcode, i))
5410 {
5411 /* Remember where we are in case we need to backtrack. */
5412 gas_assert (!backtrack_pos);
5413 backtrack_pos = str;
5414 }
5415
33eaf5de 5416 /* Expect comma between operands; the backtrack mechanism will take
a06ea964
NC
5417 care of cases of omitted optional operand. */
5418 if (i > 0 && ! skip_past_char (&str, ','))
5419 {
5420 set_syntax_error (_("comma expected between operands"));
5421 goto failure;
5422 }
5423 else
5424 comma_skipped_p = 1;
5425
5426 switch (operands[i])
5427 {
5428 case AARCH64_OPND_Rd:
5429 case AARCH64_OPND_Rn:
5430 case AARCH64_OPND_Rm:
5431 case AARCH64_OPND_Rt:
5432 case AARCH64_OPND_Rt2:
5433 case AARCH64_OPND_Rs:
5434 case AARCH64_OPND_Ra:
5435 case AARCH64_OPND_Rt_SYS:
ee804238 5436 case AARCH64_OPND_PAIRREG:
047cd301 5437 case AARCH64_OPND_SVE_Rm:
e1b988bb 5438 po_int_reg_or_fail (REG_TYPE_R_Z);
a06ea964
NC
5439 break;
5440
5441 case AARCH64_OPND_Rd_SP:
5442 case AARCH64_OPND_Rn_SP:
047cd301 5443 case AARCH64_OPND_SVE_Rn_SP:
c84364ec 5444 case AARCH64_OPND_Rm_SP:
e1b988bb 5445 po_int_reg_or_fail (REG_TYPE_R_SP);
a06ea964
NC
5446 break;
5447
5448 case AARCH64_OPND_Rm_EXT:
5449 case AARCH64_OPND_Rm_SFT:
5450 po_misc_or_fail (parse_shifter_operand
5451 (&str, info, (operands[i] == AARCH64_OPND_Rm_EXT
5452 ? SHIFTED_ARITH_IMM
5453 : SHIFTED_LOGIC_IMM)));
5454 if (!info->shifter.operator_present)
5455 {
5456 /* Default to LSL if not present. Libopcodes prefers shifter
5457 kind to be explicit. */
5458 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5459 info->shifter.kind = AARCH64_MOD_LSL;
5460 /* For Rm_EXT, libopcodes will carry out further check on whether
5461 or not stack pointer is used in the instruction (Recall that
5462 "the extend operator is not optional unless at least one of
5463 "Rd" or "Rn" is '11111' (i.e. WSP)"). */
5464 }
5465 break;
5466
5467 case AARCH64_OPND_Fd:
5468 case AARCH64_OPND_Fn:
5469 case AARCH64_OPND_Fm:
5470 case AARCH64_OPND_Fa:
5471 case AARCH64_OPND_Ft:
5472 case AARCH64_OPND_Ft2:
5473 case AARCH64_OPND_Sd:
5474 case AARCH64_OPND_Sn:
5475 case AARCH64_OPND_Sm:
047cd301
RS
5476 case AARCH64_OPND_SVE_VZn:
5477 case AARCH64_OPND_SVE_Vd:
5478 case AARCH64_OPND_SVE_Vm:
5479 case AARCH64_OPND_SVE_Vn:
a06ea964
NC
5480 val = aarch64_reg_parse (&str, REG_TYPE_BHSDQ, &rtype, NULL);
5481 if (val == PARSE_FAIL)
5482 {
5483 first_error (_(get_reg_expected_msg (REG_TYPE_BHSDQ)));
5484 goto failure;
5485 }
5486 gas_assert (rtype >= REG_TYPE_FP_B && rtype <= REG_TYPE_FP_Q);
5487
5488 info->reg.regno = val;
5489 info->qualifier = AARCH64_OPND_QLF_S_B + (rtype - REG_TYPE_FP_B);
5490 break;
5491
f11ad6bc
RS
5492 case AARCH64_OPND_SVE_Pd:
5493 case AARCH64_OPND_SVE_Pg3:
5494 case AARCH64_OPND_SVE_Pg4_5:
5495 case AARCH64_OPND_SVE_Pg4_10:
5496 case AARCH64_OPND_SVE_Pg4_16:
5497 case AARCH64_OPND_SVE_Pm:
5498 case AARCH64_OPND_SVE_Pn:
5499 case AARCH64_OPND_SVE_Pt:
5500 reg_type = REG_TYPE_PN;
5501 goto vector_reg;
5502
5503 case AARCH64_OPND_SVE_Za_5:
5504 case AARCH64_OPND_SVE_Za_16:
5505 case AARCH64_OPND_SVE_Zd:
5506 case AARCH64_OPND_SVE_Zm_5:
5507 case AARCH64_OPND_SVE_Zm_16:
5508 case AARCH64_OPND_SVE_Zn:
5509 case AARCH64_OPND_SVE_Zt:
5510 reg_type = REG_TYPE_ZN;
5511 goto vector_reg;
5512
f42f1a1d 5513 case AARCH64_OPND_Va:
a06ea964
NC
5514 case AARCH64_OPND_Vd:
5515 case AARCH64_OPND_Vn:
5516 case AARCH64_OPND_Vm:
f11ad6bc
RS
5517 reg_type = REG_TYPE_VN;
5518 vector_reg:
5519 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
a06ea964
NC
5520 if (val == PARSE_FAIL)
5521 {
f11ad6bc 5522 first_error (_(get_reg_expected_msg (reg_type)));
a06ea964
NC
5523 goto failure;
5524 }
5525 if (vectype.defined & NTA_HASINDEX)
5526 goto failure;
5527
5528 info->reg.regno = val;
f11ad6bc
RS
5529 if ((reg_type == REG_TYPE_PN || reg_type == REG_TYPE_ZN)
5530 && vectype.type == NT_invtype)
5531 /* Unqualified Pn and Zn registers are allowed in certain
5532 contexts. Rely on F_STRICT qualifier checking to catch
5533 invalid uses. */
5534 info->qualifier = AARCH64_OPND_QLF_NIL;
5535 else
5536 {
5537 info->qualifier = vectype_to_qualifier (&vectype);
5538 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5539 goto failure;
5540 }
a06ea964
NC
5541 break;
5542
5543 case AARCH64_OPND_VdD1:
5544 case AARCH64_OPND_VnD1:
5545 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
5546 if (val == PARSE_FAIL)
5547 {
5548 set_first_syntax_error (_(get_reg_expected_msg (REG_TYPE_VN)));
5549 goto failure;
5550 }
5551 if (vectype.type != NT_d || vectype.index != 1)
5552 {
5553 set_fatal_syntax_error
5554 (_("the top half of a 128-bit FP/SIMD register is expected"));
5555 goto failure;
5556 }
5557 info->reg.regno = val;
5558 /* N.B: VdD1 and VnD1 are treated as an fp or advsimd scalar register
5559 here; it is correct for the purpose of encoding/decoding since
5560 only the register number is explicitly encoded in the related
5561 instructions, although this appears a bit hacky. */
5562 info->qualifier = AARCH64_OPND_QLF_S_D;
5563 break;
5564
582e12bf
RS
5565 case AARCH64_OPND_SVE_Zm3_INDEX:
5566 case AARCH64_OPND_SVE_Zm3_22_INDEX:
5567 case AARCH64_OPND_SVE_Zm4_INDEX:
f11ad6bc
RS
5568 case AARCH64_OPND_SVE_Zn_INDEX:
5569 reg_type = REG_TYPE_ZN;
5570 goto vector_reg_index;
5571
a06ea964
NC
5572 case AARCH64_OPND_Ed:
5573 case AARCH64_OPND_En:
5574 case AARCH64_OPND_Em:
f42f1a1d 5575 case AARCH64_OPND_SM3_IMM2:
f11ad6bc
RS
5576 reg_type = REG_TYPE_VN;
5577 vector_reg_index:
5578 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
a06ea964
NC
5579 if (val == PARSE_FAIL)
5580 {
f11ad6bc 5581 first_error (_(get_reg_expected_msg (reg_type)));
a06ea964
NC
5582 goto failure;
5583 }
5584 if (vectype.type == NT_invtype || !(vectype.defined & NTA_HASINDEX))
5585 goto failure;
5586
5587 info->reglane.regno = val;
5588 info->reglane.index = vectype.index;
5589 info->qualifier = vectype_to_qualifier (&vectype);
5590 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5591 goto failure;
5592 break;
5593
f11ad6bc
RS
5594 case AARCH64_OPND_SVE_ZnxN:
5595 case AARCH64_OPND_SVE_ZtxN:
5596 reg_type = REG_TYPE_ZN;
5597 goto vector_reg_list;
5598
a06ea964
NC
5599 case AARCH64_OPND_LVn:
5600 case AARCH64_OPND_LVt:
5601 case AARCH64_OPND_LVt_AL:
5602 case AARCH64_OPND_LEt:
f11ad6bc
RS
5603 reg_type = REG_TYPE_VN;
5604 vector_reg_list:
5605 if (reg_type == REG_TYPE_ZN
5606 && get_opcode_dependent_value (opcode) == 1
5607 && *str != '{')
a06ea964 5608 {
f11ad6bc
RS
5609 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
5610 if (val == PARSE_FAIL)
5611 {
5612 first_error (_(get_reg_expected_msg (reg_type)));
5613 goto failure;
5614 }
5615 info->reglist.first_regno = val;
5616 info->reglist.num_regs = 1;
5617 }
5618 else
5619 {
5620 val = parse_vector_reg_list (&str, reg_type, &vectype);
5621 if (val == PARSE_FAIL)
5622 goto failure;
5623 if (! reg_list_valid_p (val, /* accept_alternate */ 0))
5624 {
5625 set_fatal_syntax_error (_("invalid register list"));
5626 goto failure;
5627 }
5628 info->reglist.first_regno = (val >> 2) & 0x1f;
5629 info->reglist.num_regs = (val & 0x3) + 1;
a06ea964 5630 }
a06ea964
NC
5631 if (operands[i] == AARCH64_OPND_LEt)
5632 {
5633 if (!(vectype.defined & NTA_HASINDEX))
5634 goto failure;
5635 info->reglist.has_index = 1;
5636 info->reglist.index = vectype.index;
5637 }
f11ad6bc
RS
5638 else
5639 {
5640 if (vectype.defined & NTA_HASINDEX)
5641 goto failure;
5642 if (!(vectype.defined & NTA_HASTYPE))
5643 {
5644 if (reg_type == REG_TYPE_ZN)
5645 set_fatal_syntax_error (_("missing type suffix"));
5646 goto failure;
5647 }
5648 }
a06ea964
NC
5649 info->qualifier = vectype_to_qualifier (&vectype);
5650 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5651 goto failure;
5652 break;
5653
a6a51754
RL
5654 case AARCH64_OPND_CRn:
5655 case AARCH64_OPND_CRm:
a06ea964 5656 {
a6a51754
RL
5657 char prefix = *(str++);
5658 if (prefix != 'c' && prefix != 'C')
5659 goto failure;
5660
5661 po_imm_nc_or_fail ();
5662 if (val > 15)
5663 {
5664 set_fatal_syntax_error (_(N_ ("C0 - C15 expected")));
5665 goto failure;
5666 }
5667 info->qualifier = AARCH64_OPND_QLF_CR;
5668 info->imm.value = val;
5669 break;
a06ea964 5670 }
a06ea964
NC
5671
5672 case AARCH64_OPND_SHLL_IMM:
5673 case AARCH64_OPND_IMM_VLSR:
5674 po_imm_or_fail (1, 64);
5675 info->imm.value = val;
5676 break;
5677
5678 case AARCH64_OPND_CCMP_IMM:
e950b345 5679 case AARCH64_OPND_SIMM5:
a06ea964
NC
5680 case AARCH64_OPND_FBITS:
5681 case AARCH64_OPND_UIMM4:
5682 case AARCH64_OPND_UIMM3_OP1:
5683 case AARCH64_OPND_UIMM3_OP2:
5684 case AARCH64_OPND_IMM_VLSL:
5685 case AARCH64_OPND_IMM:
f42f1a1d 5686 case AARCH64_OPND_IMM_2:
a06ea964 5687 case AARCH64_OPND_WIDTH:
e950b345
RS
5688 case AARCH64_OPND_SVE_INV_LIMM:
5689 case AARCH64_OPND_SVE_LIMM:
5690 case AARCH64_OPND_SVE_LIMM_MOV:
5691 case AARCH64_OPND_SVE_SHLIMM_PRED:
5692 case AARCH64_OPND_SVE_SHLIMM_UNPRED:
5693 case AARCH64_OPND_SVE_SHRIMM_PRED:
5694 case AARCH64_OPND_SVE_SHRIMM_UNPRED:
5695 case AARCH64_OPND_SVE_SIMM5:
5696 case AARCH64_OPND_SVE_SIMM5B:
5697 case AARCH64_OPND_SVE_SIMM6:
5698 case AARCH64_OPND_SVE_SIMM8:
5699 case AARCH64_OPND_SVE_UIMM3:
5700 case AARCH64_OPND_SVE_UIMM7:
5701 case AARCH64_OPND_SVE_UIMM8:
5702 case AARCH64_OPND_SVE_UIMM8_53:
c2c4ff8d
SN
5703 case AARCH64_OPND_IMM_ROT1:
5704 case AARCH64_OPND_IMM_ROT2:
5705 case AARCH64_OPND_IMM_ROT3:
582e12bf
RS
5706 case AARCH64_OPND_SVE_IMM_ROT1:
5707 case AARCH64_OPND_SVE_IMM_ROT2:
a06ea964
NC
5708 po_imm_nc_or_fail ();
5709 info->imm.value = val;
5710 break;
5711
e950b345
RS
5712 case AARCH64_OPND_SVE_AIMM:
5713 case AARCH64_OPND_SVE_ASIMM:
5714 po_imm_nc_or_fail ();
5715 info->imm.value = val;
5716 skip_whitespace (str);
5717 if (skip_past_comma (&str))
5718 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
5719 else
5720 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
5721 break;
5722
245d2e3f
RS
5723 case AARCH64_OPND_SVE_PATTERN:
5724 po_enum_or_fail (aarch64_sve_pattern_array);
5725 info->imm.value = val;
5726 break;
5727
2442d846
RS
5728 case AARCH64_OPND_SVE_PATTERN_SCALED:
5729 po_enum_or_fail (aarch64_sve_pattern_array);
5730 info->imm.value = val;
5731 if (skip_past_comma (&str)
5732 && !parse_shift (&str, info, SHIFTED_MUL))
5733 goto failure;
5734 if (!info->shifter.operator_present)
5735 {
5736 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5737 info->shifter.kind = AARCH64_MOD_MUL;
5738 info->shifter.amount = 1;
5739 }
5740 break;
5741
245d2e3f
RS
5742 case AARCH64_OPND_SVE_PRFOP:
5743 po_enum_or_fail (aarch64_sve_prfop_array);
5744 info->imm.value = val;
5745 break;
5746
a06ea964
NC
5747 case AARCH64_OPND_UIMM7:
5748 po_imm_or_fail (0, 127);
5749 info->imm.value = val;
5750 break;
5751
5752 case AARCH64_OPND_IDX:
f42f1a1d 5753 case AARCH64_OPND_MASK:
a06ea964
NC
5754 case AARCH64_OPND_BIT_NUM:
5755 case AARCH64_OPND_IMMR:
5756 case AARCH64_OPND_IMMS:
5757 po_imm_or_fail (0, 63);
5758 info->imm.value = val;
5759 break;
5760
5761 case AARCH64_OPND_IMM0:
5762 po_imm_nc_or_fail ();
5763 if (val != 0)
5764 {
5765 set_fatal_syntax_error (_("immediate zero expected"));
5766 goto failure;
5767 }
5768 info->imm.value = 0;
5769 break;
5770
5771 case AARCH64_OPND_FPIMM0:
5772 {
5773 int qfloat;
5774 bfd_boolean res1 = FALSE, res2 = FALSE;
5775 /* N.B. -0.0 will be rejected; although -0.0 shouldn't be rejected,
5776 it is probably not worth the effort to support it. */
1799c0d0
RS
5777 if (!(res1 = parse_aarch64_imm_float (&str, &qfloat, FALSE,
5778 imm_reg_type))
6a9deabe
RS
5779 && (error_p ()
5780 || !(res2 = parse_constant_immediate (&str, &val,
5781 imm_reg_type))))
a06ea964
NC
5782 goto failure;
5783 if ((res1 && qfloat == 0) || (res2 && val == 0))
5784 {
5785 info->imm.value = 0;
5786 info->imm.is_fp = 1;
5787 break;
5788 }
5789 set_fatal_syntax_error (_("immediate zero expected"));
5790 goto failure;
5791 }
5792
5793 case AARCH64_OPND_IMM_MOV:
5794 {
5795 char *saved = str;
8db49cc2
WN
5796 if (reg_name_p (str, REG_TYPE_R_Z_SP) ||
5797 reg_name_p (str, REG_TYPE_VN))
a06ea964
NC
5798 goto failure;
5799 str = saved;
5800 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5801 GE_OPT_PREFIX, 1));
5802 /* The MOV immediate alias will be fixed up by fix_mov_imm_insn
5803 later. fix_mov_imm_insn will try to determine a machine
5804 instruction (MOVZ, MOVN or ORR) for it and will issue an error
5805 message if the immediate cannot be moved by a single
5806 instruction. */
5807 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
5808 inst.base.operands[i].skip = 1;
5809 }
5810 break;
5811
5812 case AARCH64_OPND_SIMD_IMM:
5813 case AARCH64_OPND_SIMD_IMM_SFT:
1799c0d0 5814 if (! parse_big_immediate (&str, &val, imm_reg_type))
a06ea964
NC
5815 goto failure;
5816 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5817 /* addr_off_p */ 0,
5818 /* need_libopcodes_p */ 1,
5819 /* skip_p */ 1);
5820 /* Parse shift.
5821 N.B. although AARCH64_OPND_SIMD_IMM doesn't permit any
5822 shift, we don't check it here; we leave the checking to
5823 the libopcodes (operand_general_constraint_met_p). By
5824 doing this, we achieve better diagnostics. */
5825 if (skip_past_comma (&str)
5826 && ! parse_shift (&str, info, SHIFTED_LSL_MSL))
5827 goto failure;
5828 if (!info->shifter.operator_present
5829 && info->type == AARCH64_OPND_SIMD_IMM_SFT)
5830 {
5831 /* Default to LSL if not present. Libopcodes prefers shifter
5832 kind to be explicit. */
5833 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5834 info->shifter.kind = AARCH64_MOD_LSL;
5835 }
5836 break;
5837
5838 case AARCH64_OPND_FPIMM:
5839 case AARCH64_OPND_SIMD_FPIMM:
165d4950 5840 case AARCH64_OPND_SVE_FPIMM8:
a06ea964
NC
5841 {
5842 int qfloat;
165d4950
RS
5843 bfd_boolean dp_p;
5844
5845 dp_p = double_precision_operand_p (&inst.base.operands[0]);
6a9deabe 5846 if (!parse_aarch64_imm_float (&str, &qfloat, dp_p, imm_reg_type)
874d7e6e 5847 || !aarch64_imm_float_p (qfloat))
a06ea964 5848 {
6a9deabe
RS
5849 if (!error_p ())
5850 set_fatal_syntax_error (_("invalid floating-point"
5851 " constant"));
a06ea964
NC
5852 goto failure;
5853 }
5854 inst.base.operands[i].imm.value = encode_imm_float_bits (qfloat);
5855 inst.base.operands[i].imm.is_fp = 1;
5856 }
5857 break;
5858
165d4950
RS
5859 case AARCH64_OPND_SVE_I1_HALF_ONE:
5860 case AARCH64_OPND_SVE_I1_HALF_TWO:
5861 case AARCH64_OPND_SVE_I1_ZERO_ONE:
5862 {
5863 int qfloat;
5864 bfd_boolean dp_p;
5865
5866 dp_p = double_precision_operand_p (&inst.base.operands[0]);
5867 if (!parse_aarch64_imm_float (&str, &qfloat, dp_p, imm_reg_type))
5868 {
5869 if (!error_p ())
5870 set_fatal_syntax_error (_("invalid floating-point"
5871 " constant"));
5872 goto failure;
5873 }
5874 inst.base.operands[i].imm.value = qfloat;
5875 inst.base.operands[i].imm.is_fp = 1;
5876 }
5877 break;
5878
a06ea964
NC
5879 case AARCH64_OPND_LIMM:
5880 po_misc_or_fail (parse_shifter_operand (&str, info,
5881 SHIFTED_LOGIC_IMM));
5882 if (info->shifter.operator_present)
5883 {
5884 set_fatal_syntax_error
5885 (_("shift not allowed for bitmask immediate"));
5886 goto failure;
5887 }
5888 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5889 /* addr_off_p */ 0,
5890 /* need_libopcodes_p */ 1,
5891 /* skip_p */ 1);
5892 break;
5893
5894 case AARCH64_OPND_AIMM:
5895 if (opcode->op == OP_ADD)
5896 /* ADD may have relocation types. */
5897 po_misc_or_fail (parse_shifter_operand_reloc (&str, info,
5898 SHIFTED_ARITH_IMM));
5899 else
5900 po_misc_or_fail (parse_shifter_operand (&str, info,
5901 SHIFTED_ARITH_IMM));
5902 switch (inst.reloc.type)
5903 {
5904 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5905 info->shifter.amount = 12;
5906 break;
5907 case BFD_RELOC_UNUSED:
5908 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5909 if (info->shifter.kind != AARCH64_MOD_NONE)
5910 inst.reloc.flags = FIXUP_F_HAS_EXPLICIT_SHIFT;
5911 inst.reloc.pc_rel = 0;
5912 break;
5913 default:
5914 break;
5915 }
5916 info->imm.value = 0;
5917 if (!info->shifter.operator_present)
5918 {
5919 /* Default to LSL if not present. Libopcodes prefers shifter
5920 kind to be explicit. */
5921 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5922 info->shifter.kind = AARCH64_MOD_LSL;
5923 }
5924 break;
5925
5926 case AARCH64_OPND_HALF:
5927 {
5928 /* #<imm16> or relocation. */
5929 int internal_fixup_p;
5930 po_misc_or_fail (parse_half (&str, &internal_fixup_p));
5931 if (internal_fixup_p)
5932 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5933 skip_whitespace (str);
5934 if (skip_past_comma (&str))
5935 {
5936 /* {, LSL #<shift>} */
5937 if (! aarch64_gas_internal_fixup_p ())
5938 {
5939 set_fatal_syntax_error (_("can't mix relocation modifier "
5940 "with explicit shift"));
5941 goto failure;
5942 }
5943 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
5944 }
5945 else
5946 inst.base.operands[i].shifter.amount = 0;
5947 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
5948 inst.base.operands[i].imm.value = 0;
5949 if (! process_movw_reloc_info ())
5950 goto failure;
5951 }
5952 break;
5953
5954 case AARCH64_OPND_EXCEPTION:
1799c0d0
RS
5955 po_misc_or_fail (parse_immediate_expression (&str, &inst.reloc.exp,
5956 imm_reg_type));
a06ea964
NC
5957 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5958 /* addr_off_p */ 0,
5959 /* need_libopcodes_p */ 0,
5960 /* skip_p */ 1);
5961 break;
5962
5963 case AARCH64_OPND_NZCV:
5964 {
5965 const asm_nzcv *nzcv = hash_find_n (aarch64_nzcv_hsh, str, 4);
5966 if (nzcv != NULL)
5967 {
5968 str += 4;
5969 info->imm.value = nzcv->value;
5970 break;
5971 }
5972 po_imm_or_fail (0, 15);
5973 info->imm.value = val;
5974 }
5975 break;
5976
5977 case AARCH64_OPND_COND:
68a64283 5978 case AARCH64_OPND_COND1:
bb7eff52
RS
5979 {
5980 char *start = str;
5981 do
5982 str++;
5983 while (ISALPHA (*str));
5984 info->cond = hash_find_n (aarch64_cond_hsh, start, str - start);
5985 if (info->cond == NULL)
5986 {
5987 set_syntax_error (_("invalid condition"));
5988 goto failure;
5989 }
5990 else if (operands[i] == AARCH64_OPND_COND1
5991 && (info->cond->value & 0xe) == 0xe)
5992 {
5993 /* Do not allow AL or NV. */
5994 set_default_error ();
5995 goto failure;
5996 }
5997 }
a06ea964
NC
5998 break;
5999
6000 case AARCH64_OPND_ADDR_ADRP:
6001 po_misc_or_fail (parse_adrp (&str));
6002 /* Clear the value as operand needs to be relocated. */
6003 info->imm.value = 0;
6004 break;
6005
6006 case AARCH64_OPND_ADDR_PCREL14:
6007 case AARCH64_OPND_ADDR_PCREL19:
6008 case AARCH64_OPND_ADDR_PCREL21:
6009 case AARCH64_OPND_ADDR_PCREL26:
73866052 6010 po_misc_or_fail (parse_address (&str, info));
a06ea964
NC
6011 if (!info->addr.pcrel)
6012 {
6013 set_syntax_error (_("invalid pc-relative address"));
6014 goto failure;
6015 }
6016 if (inst.gen_lit_pool
6017 && (opcode->iclass != loadlit || opcode->op == OP_PRFM_LIT))
6018 {
6019 /* Only permit "=value" in the literal load instructions.
6020 The literal will be generated by programmer_friendly_fixup. */
6021 set_syntax_error (_("invalid use of \"=immediate\""));
6022 goto failure;
6023 }
6024 if (inst.reloc.exp.X_op == O_symbol && find_reloc_table_entry (&str))
6025 {
6026 set_syntax_error (_("unrecognized relocation suffix"));
6027 goto failure;
6028 }
6029 if (inst.reloc.exp.X_op == O_constant && !inst.gen_lit_pool)
6030 {
6031 info->imm.value = inst.reloc.exp.X_add_number;
6032 inst.reloc.type = BFD_RELOC_UNUSED;
6033 }
6034 else
6035 {
6036 info->imm.value = 0;
f41aef5f
RE
6037 if (inst.reloc.type == BFD_RELOC_UNUSED)
6038 switch (opcode->iclass)
6039 {
6040 case compbranch:
6041 case condbranch:
6042 /* e.g. CBZ or B.COND */
6043 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
6044 inst.reloc.type = BFD_RELOC_AARCH64_BRANCH19;
6045 break;
6046 case testbranch:
6047 /* e.g. TBZ */
6048 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL14);
6049 inst.reloc.type = BFD_RELOC_AARCH64_TSTBR14;
6050 break;
6051 case branch_imm:
6052 /* e.g. B or BL */
6053 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL26);
6054 inst.reloc.type =
6055 (opcode->op == OP_BL) ? BFD_RELOC_AARCH64_CALL26
6056 : BFD_RELOC_AARCH64_JUMP26;
6057 break;
6058 case loadlit:
6059 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
6060 inst.reloc.type = BFD_RELOC_AARCH64_LD_LO19_PCREL;
6061 break;
6062 case pcreladdr:
6063 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL21);
6064 inst.reloc.type = BFD_RELOC_AARCH64_ADR_LO21_PCREL;
6065 break;
6066 default:
6067 gas_assert (0);
6068 abort ();
6069 }
a06ea964
NC
6070 inst.reloc.pc_rel = 1;
6071 }
6072 break;
6073
6074 case AARCH64_OPND_ADDR_SIMPLE:
6075 case AARCH64_OPND_SIMD_ADDR_SIMPLE:
e1b988bb
RS
6076 {
6077 /* [<Xn|SP>{, #<simm>}] */
6078 char *start = str;
6079 /* First use the normal address-parsing routines, to get
6080 the usual syntax errors. */
73866052 6081 po_misc_or_fail (parse_address (&str, info));
e1b988bb
RS
6082 if (info->addr.pcrel || info->addr.offset.is_reg
6083 || !info->addr.preind || info->addr.postind
6084 || info->addr.writeback)
6085 {
6086 set_syntax_error (_("invalid addressing mode"));
6087 goto failure;
6088 }
6089
6090 /* Then retry, matching the specific syntax of these addresses. */
6091 str = start;
6092 po_char_or_fail ('[');
6093 po_reg_or_fail (REG_TYPE_R64_SP);
6094 /* Accept optional ", #0". */
6095 if (operands[i] == AARCH64_OPND_ADDR_SIMPLE
6096 && skip_past_char (&str, ','))
6097 {
6098 skip_past_char (&str, '#');
6099 if (! skip_past_char (&str, '0'))
6100 {
6101 set_fatal_syntax_error
6102 (_("the optional immediate offset can only be 0"));
6103 goto failure;
6104 }
6105 }
6106 po_char_or_fail (']');
6107 break;
6108 }
a06ea964
NC
6109
6110 case AARCH64_OPND_ADDR_REGOFF:
6111 /* [<Xn|SP>, <R><m>{, <extend> {<amount>}}] */
73866052 6112 po_misc_or_fail (parse_address (&str, info));
4df068de 6113 regoff_addr:
a06ea964
NC
6114 if (info->addr.pcrel || !info->addr.offset.is_reg
6115 || !info->addr.preind || info->addr.postind
6116 || info->addr.writeback)
6117 {
6118 set_syntax_error (_("invalid addressing mode"));
6119 goto failure;
6120 }
6121 if (!info->shifter.operator_present)
6122 {
6123 /* Default to LSL if not present. Libopcodes prefers shifter
6124 kind to be explicit. */
6125 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
6126 info->shifter.kind = AARCH64_MOD_LSL;
6127 }
6128 /* Qualifier to be deduced by libopcodes. */
6129 break;
6130
6131 case AARCH64_OPND_ADDR_SIMM7:
73866052 6132 po_misc_or_fail (parse_address (&str, info));
a06ea964
NC
6133 if (info->addr.pcrel || info->addr.offset.is_reg
6134 || (!info->addr.preind && !info->addr.postind))
6135 {
6136 set_syntax_error (_("invalid addressing mode"));
6137 goto failure;
6138 }
73866052
RS
6139 if (inst.reloc.type != BFD_RELOC_UNUSED)
6140 {
6141 set_syntax_error (_("relocation not allowed"));
6142 goto failure;
6143 }
a06ea964
NC
6144 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6145 /* addr_off_p */ 1,
6146 /* need_libopcodes_p */ 1,
6147 /* skip_p */ 0);
6148 break;
6149
6150 case AARCH64_OPND_ADDR_SIMM9:
6151 case AARCH64_OPND_ADDR_SIMM9_2:
73866052 6152 po_misc_or_fail (parse_address (&str, info));
a06ea964
NC
6153 if (info->addr.pcrel || info->addr.offset.is_reg
6154 || (!info->addr.preind && !info->addr.postind)
6155 || (operands[i] == AARCH64_OPND_ADDR_SIMM9_2
6156 && info->addr.writeback))
6157 {
6158 set_syntax_error (_("invalid addressing mode"));
6159 goto failure;
6160 }
6161 if (inst.reloc.type != BFD_RELOC_UNUSED)
6162 {
6163 set_syntax_error (_("relocation not allowed"));
6164 goto failure;
6165 }
6166 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6167 /* addr_off_p */ 1,
6168 /* need_libopcodes_p */ 1,
6169 /* skip_p */ 0);
6170 break;
6171
3f06e550 6172 case AARCH64_OPND_ADDR_SIMM10:
f42f1a1d 6173 case AARCH64_OPND_ADDR_OFFSET:
3f06e550
SN
6174 po_misc_or_fail (parse_address (&str, info));
6175 if (info->addr.pcrel || info->addr.offset.is_reg
6176 || !info->addr.preind || info->addr.postind)
6177 {
6178 set_syntax_error (_("invalid addressing mode"));
6179 goto failure;
6180 }
6181 if (inst.reloc.type != BFD_RELOC_UNUSED)
6182 {
6183 set_syntax_error (_("relocation not allowed"));
6184 goto failure;
6185 }
6186 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6187 /* addr_off_p */ 1,
6188 /* need_libopcodes_p */ 1,
6189 /* skip_p */ 0);
6190 break;
6191
a06ea964 6192 case AARCH64_OPND_ADDR_UIMM12:
73866052 6193 po_misc_or_fail (parse_address (&str, info));
a06ea964
NC
6194 if (info->addr.pcrel || info->addr.offset.is_reg
6195 || !info->addr.preind || info->addr.writeback)
6196 {
6197 set_syntax_error (_("invalid addressing mode"));
6198 goto failure;
6199 }
6200 if (inst.reloc.type == BFD_RELOC_UNUSED)
6201 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
4c562523
JW
6202 else if (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
6203 || (inst.reloc.type
6204 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12)
6205 || (inst.reloc.type
84f1b9fb
RL
6206 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC)
6207 || (inst.reloc.type
6208 == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12)
6209 || (inst.reloc.type
6210 == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC))
a06ea964
NC
6211 inst.reloc.type = ldst_lo12_determine_real_reloc_type ();
6212 /* Leave qualifier to be determined by libopcodes. */
6213 break;
6214
6215 case AARCH64_OPND_SIMD_ADDR_POST:
6216 /* [<Xn|SP>], <Xm|#<amount>> */
73866052 6217 po_misc_or_fail (parse_address (&str, info));
a06ea964
NC
6218 if (!info->addr.postind || !info->addr.writeback)
6219 {
6220 set_syntax_error (_("invalid addressing mode"));
6221 goto failure;
6222 }
6223 if (!info->addr.offset.is_reg)
6224 {
6225 if (inst.reloc.exp.X_op == O_constant)
6226 info->addr.offset.imm = inst.reloc.exp.X_add_number;
6227 else
6228 {
6229 set_fatal_syntax_error
ab3b8fcf 6230 (_("writeback value must be an immediate constant"));
a06ea964
NC
6231 goto failure;
6232 }
6233 }
6234 /* No qualifier. */
6235 break;
6236
582e12bf 6237 case AARCH64_OPND_SVE_ADDR_RI_S4x16:
98907a70
RS
6238 case AARCH64_OPND_SVE_ADDR_RI_S4xVL:
6239 case AARCH64_OPND_SVE_ADDR_RI_S4x2xVL:
6240 case AARCH64_OPND_SVE_ADDR_RI_S4x3xVL:
6241 case AARCH64_OPND_SVE_ADDR_RI_S4x4xVL:
6242 case AARCH64_OPND_SVE_ADDR_RI_S6xVL:
6243 case AARCH64_OPND_SVE_ADDR_RI_S9xVL:
4df068de
RS
6244 case AARCH64_OPND_SVE_ADDR_RI_U6:
6245 case AARCH64_OPND_SVE_ADDR_RI_U6x2:
6246 case AARCH64_OPND_SVE_ADDR_RI_U6x4:
6247 case AARCH64_OPND_SVE_ADDR_RI_U6x8:
98907a70
RS
6248 /* [X<n>{, #imm, MUL VL}]
6249 [X<n>{, #imm}]
4df068de
RS
6250 but recognizing SVE registers. */
6251 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6252 &offset_qualifier));
6253 if (base_qualifier != AARCH64_OPND_QLF_X)
6254 {
6255 set_syntax_error (_("invalid addressing mode"));
6256 goto failure;
6257 }
6258 sve_regimm:
6259 if (info->addr.pcrel || info->addr.offset.is_reg
6260 || !info->addr.preind || info->addr.writeback)
6261 {
6262 set_syntax_error (_("invalid addressing mode"));
6263 goto failure;
6264 }
6265 if (inst.reloc.type != BFD_RELOC_UNUSED
6266 || inst.reloc.exp.X_op != O_constant)
6267 {
6268 /* Make sure this has priority over
6269 "invalid addressing mode". */
6270 set_fatal_syntax_error (_("constant offset required"));
6271 goto failure;
6272 }
6273 info->addr.offset.imm = inst.reloc.exp.X_add_number;
6274 break;
6275
c8d59609
NC
6276 case AARCH64_OPND_SVE_ADDR_R:
6277 /* [<Xn|SP>{, <R><m>}]
6278 but recognizing SVE registers. */
6279 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6280 &offset_qualifier));
6281 if (offset_qualifier == AARCH64_OPND_QLF_NIL)
6282 {
6283 offset_qualifier = AARCH64_OPND_QLF_X;
6284 info->addr.offset.is_reg = 1;
6285 info->addr.offset.regno = 31;
6286 }
6287 else if (base_qualifier != AARCH64_OPND_QLF_X
6288 || offset_qualifier != AARCH64_OPND_QLF_X)
6289 {
6290 set_syntax_error (_("invalid addressing mode"));
6291 goto failure;
6292 }
6293 goto regoff_addr;
6294
4df068de
RS
6295 case AARCH64_OPND_SVE_ADDR_RR:
6296 case AARCH64_OPND_SVE_ADDR_RR_LSL1:
6297 case AARCH64_OPND_SVE_ADDR_RR_LSL2:
6298 case AARCH64_OPND_SVE_ADDR_RR_LSL3:
6299 case AARCH64_OPND_SVE_ADDR_RX:
6300 case AARCH64_OPND_SVE_ADDR_RX_LSL1:
6301 case AARCH64_OPND_SVE_ADDR_RX_LSL2:
6302 case AARCH64_OPND_SVE_ADDR_RX_LSL3:
6303 /* [<Xn|SP>, <R><m>{, lsl #<amount>}]
6304 but recognizing SVE registers. */
6305 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6306 &offset_qualifier));
6307 if (base_qualifier != AARCH64_OPND_QLF_X
6308 || offset_qualifier != AARCH64_OPND_QLF_X)
6309 {
6310 set_syntax_error (_("invalid addressing mode"));
6311 goto failure;
6312 }
6313 goto regoff_addr;
6314
6315 case AARCH64_OPND_SVE_ADDR_RZ:
6316 case AARCH64_OPND_SVE_ADDR_RZ_LSL1:
6317 case AARCH64_OPND_SVE_ADDR_RZ_LSL2:
6318 case AARCH64_OPND_SVE_ADDR_RZ_LSL3:
6319 case AARCH64_OPND_SVE_ADDR_RZ_XTW_14:
6320 case AARCH64_OPND_SVE_ADDR_RZ_XTW_22:
6321 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_14:
6322 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_22:
6323 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_14:
6324 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_22:
6325 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_14:
6326 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_22:
6327 /* [<Xn|SP>, Z<m>.D{, LSL #<amount>}]
6328 [<Xn|SP>, Z<m>.<T>, <extend> {#<amount>}] */
6329 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6330 &offset_qualifier));
6331 if (base_qualifier != AARCH64_OPND_QLF_X
6332 || (offset_qualifier != AARCH64_OPND_QLF_S_S
6333 && offset_qualifier != AARCH64_OPND_QLF_S_D))
6334 {
6335 set_syntax_error (_("invalid addressing mode"));
6336 goto failure;
6337 }
6338 info->qualifier = offset_qualifier;
6339 goto regoff_addr;
6340
6341 case AARCH64_OPND_SVE_ADDR_ZI_U5:
6342 case AARCH64_OPND_SVE_ADDR_ZI_U5x2:
6343 case AARCH64_OPND_SVE_ADDR_ZI_U5x4:
6344 case AARCH64_OPND_SVE_ADDR_ZI_U5x8:
6345 /* [Z<n>.<T>{, #imm}] */
6346 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6347 &offset_qualifier));
6348 if (base_qualifier != AARCH64_OPND_QLF_S_S
6349 && base_qualifier != AARCH64_OPND_QLF_S_D)
6350 {
6351 set_syntax_error (_("invalid addressing mode"));
6352 goto failure;
6353 }
6354 info->qualifier = base_qualifier;
6355 goto sve_regimm;
6356
6357 case AARCH64_OPND_SVE_ADDR_ZZ_LSL:
6358 case AARCH64_OPND_SVE_ADDR_ZZ_SXTW:
6359 case AARCH64_OPND_SVE_ADDR_ZZ_UXTW:
6360 /* [Z<n>.<T>, Z<m>.<T>{, LSL #<amount>}]
6361 [Z<n>.D, Z<m>.D, <extend> {#<amount>}]
6362
6363 We don't reject:
6364
6365 [Z<n>.S, Z<m>.S, <extend> {#<amount>}]
6366
6367 here since we get better error messages by leaving it to
6368 the qualifier checking routines. */
6369 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6370 &offset_qualifier));
6371 if ((base_qualifier != AARCH64_OPND_QLF_S_S
6372 && base_qualifier != AARCH64_OPND_QLF_S_D)
6373 || offset_qualifier != base_qualifier)
6374 {
6375 set_syntax_error (_("invalid addressing mode"));
6376 goto failure;
6377 }
6378 info->qualifier = base_qualifier;
6379 goto regoff_addr;
6380
a06ea964 6381 case AARCH64_OPND_SYSREG:
7d02540a
TC
6382 {
6383 uint32_t sysreg_flags;
6384 if ((val = parse_sys_reg (&str, aarch64_sys_regs_hsh, 1, 0,
6385 &sysreg_flags)) == PARSE_FAIL)
6386 {
6387 set_syntax_error (_("unknown or missing system register name"));
6388 goto failure;
6389 }
6390 inst.base.operands[i].sysreg.value = val;
6391 inst.base.operands[i].sysreg.flags = sysreg_flags;
6392 break;
6393 }
a06ea964
NC
6394
6395 case AARCH64_OPND_PSTATEFIELD:
561a72d4 6396 if ((val = parse_sys_reg (&str, aarch64_pstatefield_hsh, 0, 1, NULL))
a3251895 6397 == PARSE_FAIL)
a06ea964
NC
6398 {
6399 set_syntax_error (_("unknown or missing PSTATE field name"));
6400 goto failure;
6401 }
6402 inst.base.operands[i].pstatefield = val;
6403 break;
6404
6405 case AARCH64_OPND_SYSREG_IC:
6406 inst.base.operands[i].sysins_op =
6407 parse_sys_ins_reg (&str, aarch64_sys_regs_ic_hsh);
6408 goto sys_reg_ins;
6409 case AARCH64_OPND_SYSREG_DC:
6410 inst.base.operands[i].sysins_op =
6411 parse_sys_ins_reg (&str, aarch64_sys_regs_dc_hsh);
6412 goto sys_reg_ins;
6413 case AARCH64_OPND_SYSREG_AT:
6414 inst.base.operands[i].sysins_op =
6415 parse_sys_ins_reg (&str, aarch64_sys_regs_at_hsh);
6416 goto sys_reg_ins;
6417 case AARCH64_OPND_SYSREG_TLBI:
6418 inst.base.operands[i].sysins_op =
6419 parse_sys_ins_reg (&str, aarch64_sys_regs_tlbi_hsh);
6420sys_reg_ins:
6421 if (inst.base.operands[i].sysins_op == NULL)
6422 {
6423 set_fatal_syntax_error ( _("unknown or missing operation name"));
6424 goto failure;
6425 }
6426 break;
6427
6428 case AARCH64_OPND_BARRIER:
6429 case AARCH64_OPND_BARRIER_ISB:
6430 val = parse_barrier (&str);
6431 if (val != PARSE_FAIL
6432 && operands[i] == AARCH64_OPND_BARRIER_ISB && val != 0xf)
6433 {
6434 /* ISB only accepts options name 'sy'. */
6435 set_syntax_error
6436 (_("the specified option is not accepted in ISB"));
6437 /* Turn off backtrack as this optional operand is present. */
6438 backtrack_pos = 0;
6439 goto failure;
6440 }
6441 /* This is an extension to accept a 0..15 immediate. */
6442 if (val == PARSE_FAIL)
6443 po_imm_or_fail (0, 15);
6444 info->barrier = aarch64_barrier_options + val;
6445 break;
6446
6447 case AARCH64_OPND_PRFOP:
6448 val = parse_pldop (&str);
6449 /* This is an extension to accept a 0..31 immediate. */
6450 if (val == PARSE_FAIL)
6451 po_imm_or_fail (0, 31);
6452 inst.base.operands[i].prfop = aarch64_prfops + val;
6453 break;
6454
1e6f4800
MW
6455 case AARCH64_OPND_BARRIER_PSB:
6456 val = parse_barrier_psb (&str, &(info->hint_option));
6457 if (val == PARSE_FAIL)
6458 goto failure;
6459 break;
6460
a06ea964
NC
6461 default:
6462 as_fatal (_("unhandled operand code %d"), operands[i]);
6463 }
6464
6465 /* If we get here, this operand was successfully parsed. */
6466 inst.base.operands[i].present = 1;
6467 continue;
6468
6469failure:
6470 /* The parse routine should already have set the error, but in case
6471 not, set a default one here. */
6472 if (! error_p ())
6473 set_default_error ();
6474
6475 if (! backtrack_pos)
6476 goto parse_operands_return;
6477
f4c51f60
JW
6478 {
6479 /* We reach here because this operand is marked as optional, and
6480 either no operand was supplied or the operand was supplied but it
6481 was syntactically incorrect. In the latter case we report an
6482 error. In the former case we perform a few more checks before
6483 dropping through to the code to insert the default operand. */
6484
6485 char *tmp = backtrack_pos;
6486 char endchar = END_OF_INSN;
6487
6488 if (i != (aarch64_num_of_operands (opcode) - 1))
6489 endchar = ',';
6490 skip_past_char (&tmp, ',');
6491
6492 if (*tmp != endchar)
6493 /* The user has supplied an operand in the wrong format. */
6494 goto parse_operands_return;
6495
6496 /* Make sure there is not a comma before the optional operand.
6497 For example the fifth operand of 'sys' is optional:
6498
6499 sys #0,c0,c0,#0, <--- wrong
6500 sys #0,c0,c0,#0 <--- correct. */
6501 if (comma_skipped_p && i && endchar == END_OF_INSN)
6502 {
6503 set_fatal_syntax_error
6504 (_("unexpected comma before the omitted optional operand"));
6505 goto parse_operands_return;
6506 }
6507 }
6508
a06ea964
NC
6509 /* Reaching here means we are dealing with an optional operand that is
6510 omitted from the assembly line. */
6511 gas_assert (optional_operand_p (opcode, i));
6512 info->present = 0;
6513 process_omitted_operand (operands[i], opcode, i, info);
6514
6515 /* Try again, skipping the optional operand at backtrack_pos. */
6516 str = backtrack_pos;
6517 backtrack_pos = 0;
6518
a06ea964
NC
6519 /* Clear any error record after the omitted optional operand has been
6520 successfully handled. */
6521 clear_error ();
6522 }
6523
6524 /* Check if we have parsed all the operands. */
6525 if (*str != '\0' && ! error_p ())
6526 {
6527 /* Set I to the index of the last present operand; this is
6528 for the purpose of diagnostics. */
6529 for (i -= 1; i >= 0 && !inst.base.operands[i].present; --i)
6530 ;
6531 set_fatal_syntax_error
6532 (_("unexpected characters following instruction"));
6533 }
6534
6535parse_operands_return:
6536
6537 if (error_p ())
6538 {
6539 DEBUG_TRACE ("parsing FAIL: %s - %s",
6540 operand_mismatch_kind_names[get_error_kind ()],
6541 get_error_message ());
6542 /* Record the operand error properly; this is useful when there
6543 are multiple instruction templates for a mnemonic name, so that
6544 later on, we can select the error that most closely describes
6545 the problem. */
6546 record_operand_error (opcode, i, get_error_kind (),
6547 get_error_message ());
6548 return FALSE;
6549 }
6550 else
6551 {
6552 DEBUG_TRACE ("parsing SUCCESS");
6553 return TRUE;
6554 }
6555}
6556
6557/* It does some fix-up to provide some programmer friendly feature while
6558 keeping the libopcodes happy, i.e. libopcodes only accepts
6559 the preferred architectural syntax.
6560 Return FALSE if there is any failure; otherwise return TRUE. */
6561
6562static bfd_boolean
6563programmer_friendly_fixup (aarch64_instruction *instr)
6564{
6565 aarch64_inst *base = &instr->base;
6566 const aarch64_opcode *opcode = base->opcode;
6567 enum aarch64_op op = opcode->op;
6568 aarch64_opnd_info *operands = base->operands;
6569
6570 DEBUG_TRACE ("enter");
6571
6572 switch (opcode->iclass)
6573 {
6574 case testbranch:
6575 /* TBNZ Xn|Wn, #uimm6, label
6576 Test and Branch Not Zero: conditionally jumps to label if bit number
6577 uimm6 in register Xn is not zero. The bit number implies the width of
6578 the register, which may be written and should be disassembled as Wn if
6579 uimm is less than 32. */
6580 if (operands[0].qualifier == AARCH64_OPND_QLF_W)
6581 {
6582 if (operands[1].imm.value >= 32)
6583 {
6584 record_operand_out_of_range_error (opcode, 1, _("immediate value"),
6585 0, 31);
6586 return FALSE;
6587 }
6588 operands[0].qualifier = AARCH64_OPND_QLF_X;
6589 }
6590 break;
6591 case loadlit:
6592 /* LDR Wt, label | =value
6593 As a convenience assemblers will typically permit the notation
6594 "=value" in conjunction with the pc-relative literal load instructions
6595 to automatically place an immediate value or symbolic address in a
6596 nearby literal pool and generate a hidden label which references it.
6597 ISREG has been set to 0 in the case of =value. */
6598 if (instr->gen_lit_pool
6599 && (op == OP_LDR_LIT || op == OP_LDRV_LIT || op == OP_LDRSW_LIT))
6600 {
6601 int size = aarch64_get_qualifier_esize (operands[0].qualifier);
6602 if (op == OP_LDRSW_LIT)
6603 size = 4;
6604 if (instr->reloc.exp.X_op != O_constant
67a32447 6605 && instr->reloc.exp.X_op != O_big
a06ea964
NC
6606 && instr->reloc.exp.X_op != O_symbol)
6607 {
6608 record_operand_error (opcode, 1,
6609 AARCH64_OPDE_FATAL_SYNTAX_ERROR,
6610 _("constant expression expected"));
6611 return FALSE;
6612 }
6613 if (! add_to_lit_pool (&instr->reloc.exp, size))
6614 {
6615 record_operand_error (opcode, 1,
6616 AARCH64_OPDE_OTHER_ERROR,
6617 _("literal pool insertion failed"));
6618 return FALSE;
6619 }
6620 }
6621 break;
a06ea964
NC
6622 case log_shift:
6623 case bitfield:
6624 /* UXT[BHW] Wd, Wn
6625 Unsigned Extend Byte|Halfword|Word: UXT[BH] is architectural alias
6626 for UBFM Wd,Wn,#0,#7|15, while UXTW is pseudo instruction which is
6627 encoded using ORR Wd, WZR, Wn (MOV Wd,Wn).
6628 A programmer-friendly assembler should accept a destination Xd in
6629 place of Wd, however that is not the preferred form for disassembly.
6630 */
6631 if ((op == OP_UXTB || op == OP_UXTH || op == OP_UXTW)
6632 && operands[1].qualifier == AARCH64_OPND_QLF_W
6633 && operands[0].qualifier == AARCH64_OPND_QLF_X)
6634 operands[0].qualifier = AARCH64_OPND_QLF_W;
6635 break;
6636
6637 case addsub_ext:
6638 {
6639 /* In the 64-bit form, the final register operand is written as Wm
6640 for all but the (possibly omitted) UXTX/LSL and SXTX
6641 operators.
6642 As a programmer-friendly assembler, we accept e.g.
6643 ADDS <Xd>, <Xn|SP>, <Xm>{, UXTB {#<amount>}} and change it to
6644 ADDS <Xd>, <Xn|SP>, <Wm>{, UXTB {#<amount>}}. */
6645 int idx = aarch64_operand_index (opcode->operands,
6646 AARCH64_OPND_Rm_EXT);
6647 gas_assert (idx == 1 || idx == 2);
6648 if (operands[0].qualifier == AARCH64_OPND_QLF_X
6649 && operands[idx].qualifier == AARCH64_OPND_QLF_X
6650 && operands[idx].shifter.kind != AARCH64_MOD_LSL
6651 && operands[idx].shifter.kind != AARCH64_MOD_UXTX
6652 && operands[idx].shifter.kind != AARCH64_MOD_SXTX)
6653 operands[idx].qualifier = AARCH64_OPND_QLF_W;
6654 }
6655 break;
6656
6657 default:
6658 break;
6659 }
6660
6661 DEBUG_TRACE ("exit with SUCCESS");
6662 return TRUE;
6663}
6664
5c47e525 6665/* Check for loads and stores that will cause unpredictable behavior. */
54a28c4c
JW
6666
6667static void
6668warn_unpredictable_ldst (aarch64_instruction *instr, char *str)
6669{
6670 aarch64_inst *base = &instr->base;
6671 const aarch64_opcode *opcode = base->opcode;
6672 const aarch64_opnd_info *opnds = base->operands;
6673 switch (opcode->iclass)
6674 {
6675 case ldst_pos:
6676 case ldst_imm9:
3f06e550 6677 case ldst_imm10:
54a28c4c
JW
6678 case ldst_unscaled:
6679 case ldst_unpriv:
5c47e525
RE
6680 /* Loading/storing the base register is unpredictable if writeback. */
6681 if ((aarch64_get_operand_class (opnds[0].type)
6682 == AARCH64_OPND_CLASS_INT_REG)
6683 && opnds[0].reg.regno == opnds[1].addr.base_regno
4bf8c6e8 6684 && opnds[1].addr.base_regno != REG_SP
54a28c4c 6685 && opnds[1].addr.writeback)
5c47e525 6686 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
54a28c4c
JW
6687 break;
6688 case ldstpair_off:
6689 case ldstnapair_offs:
6690 case ldstpair_indexed:
5c47e525
RE
6691 /* Loading/storing the base register is unpredictable if writeback. */
6692 if ((aarch64_get_operand_class (opnds[0].type)
6693 == AARCH64_OPND_CLASS_INT_REG)
6694 && (opnds[0].reg.regno == opnds[2].addr.base_regno
6695 || opnds[1].reg.regno == opnds[2].addr.base_regno)
4bf8c6e8 6696 && opnds[2].addr.base_regno != REG_SP
54a28c4c 6697 && opnds[2].addr.writeback)
5c47e525
RE
6698 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
6699 /* Load operations must load different registers. */
54a28c4c
JW
6700 if ((opcode->opcode & (1 << 22))
6701 && opnds[0].reg.regno == opnds[1].reg.regno)
6702 as_warn (_("unpredictable load of register pair -- `%s'"), str);
6703 break;
6704 default:
6705 break;
6706 }
6707}
6708
a06ea964
NC
6709/* A wrapper function to interface with libopcodes on encoding and
6710 record the error message if there is any.
6711
6712 Return TRUE on success; otherwise return FALSE. */
6713
6714static bfd_boolean
6715do_encode (const aarch64_opcode *opcode, aarch64_inst *instr,
6716 aarch64_insn *code)
6717{
6718 aarch64_operand_error error_info;
7d02540a 6719 memset (&error_info, '\0', sizeof (error_info));
a06ea964 6720 error_info.kind = AARCH64_OPDE_NIL;
7d02540a
TC
6721 if (aarch64_opcode_encode (opcode, instr, code, NULL, &error_info)
6722 && !error_info.non_fatal)
a06ea964 6723 return TRUE;
7d02540a
TC
6724
6725 gas_assert (error_info.kind != AARCH64_OPDE_NIL);
6726 record_operand_error_info (opcode, &error_info);
6727 return error_info.non_fatal;
a06ea964
NC
6728}
6729
6730#ifdef DEBUG_AARCH64
6731static inline void
6732dump_opcode_operands (const aarch64_opcode *opcode)
6733{
6734 int i = 0;
6735 while (opcode->operands[i] != AARCH64_OPND_NIL)
6736 {
6737 aarch64_verbose ("\t\t opnd%d: %s", i,
6738 aarch64_get_operand_name (opcode->operands[i])[0] != '\0'
6739 ? aarch64_get_operand_name (opcode->operands[i])
6740 : aarch64_get_operand_desc (opcode->operands[i]));
6741 ++i;
6742 }
6743}
6744#endif /* DEBUG_AARCH64 */
6745
6746/* This is the guts of the machine-dependent assembler. STR points to a
6747 machine dependent instruction. This function is supposed to emit
6748 the frags/bytes it assembles to. */
6749
6750void
6751md_assemble (char *str)
6752{
6753 char *p = str;
6754 templates *template;
6755 aarch64_opcode *opcode;
6756 aarch64_inst *inst_base;
6757 unsigned saved_cond;
6758
6759 /* Align the previous label if needed. */
6760 if (last_label_seen != NULL)
6761 {
6762 symbol_set_frag (last_label_seen, frag_now);
6763 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
6764 S_SET_SEGMENT (last_label_seen, now_seg);
6765 }
6766
6767 inst.reloc.type = BFD_RELOC_UNUSED;
6768
6769 DEBUG_TRACE ("\n\n");
6770 DEBUG_TRACE ("==============================");
6771 DEBUG_TRACE ("Enter md_assemble with %s", str);
6772
6773 template = opcode_lookup (&p);
6774 if (!template)
6775 {
6776 /* It wasn't an instruction, but it might be a register alias of
6777 the form alias .req reg directive. */
6778 if (!create_register_alias (str, p))
6779 as_bad (_("unknown mnemonic `%s' -- `%s'"), get_mnemonic_name (str),
6780 str);
6781 return;
6782 }
6783
6784 skip_whitespace (p);
6785 if (*p == ',')
6786 {
6787 as_bad (_("unexpected comma after the mnemonic name `%s' -- `%s'"),
6788 get_mnemonic_name (str), str);
6789 return;
6790 }
6791
6792 init_operand_error_report ();
6793
eb9d6cc9
RL
6794 /* Sections are assumed to start aligned. In executable section, there is no
6795 MAP_DATA symbol pending. So we only align the address during
6796 MAP_DATA --> MAP_INSN transition.
6797 For other sections, this is not guaranteed. */
6798 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
6799 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
6800 frag_align_code (2, 0);
6801
a06ea964
NC
6802 saved_cond = inst.cond;
6803 reset_aarch64_instruction (&inst);
6804 inst.cond = saved_cond;
6805
6806 /* Iterate through all opcode entries with the same mnemonic name. */
6807 do
6808 {
6809 opcode = template->opcode;
6810
6811 DEBUG_TRACE ("opcode %s found", opcode->name);
6812#ifdef DEBUG_AARCH64
6813 if (debug_dump)
6814 dump_opcode_operands (opcode);
6815#endif /* DEBUG_AARCH64 */
6816
a06ea964
NC
6817 mapping_state (MAP_INSN);
6818
6819 inst_base = &inst.base;
6820 inst_base->opcode = opcode;
6821
6822 /* Truly conditionally executed instructions, e.g. b.cond. */
6823 if (opcode->flags & F_COND)
6824 {
6825 gas_assert (inst.cond != COND_ALWAYS);
6826 inst_base->cond = get_cond_from_value (inst.cond);
6827 DEBUG_TRACE ("condition found %s", inst_base->cond->names[0]);
6828 }
6829 else if (inst.cond != COND_ALWAYS)
6830 {
6831 /* It shouldn't arrive here, where the assembly looks like a
6832 conditional instruction but the found opcode is unconditional. */
6833 gas_assert (0);
6834 continue;
6835 }
6836
6837 if (parse_operands (p, opcode)
6838 && programmer_friendly_fixup (&inst)
6839 && do_encode (inst_base->opcode, &inst.base, &inst_base->value))
6840 {
3f06bfce
YZ
6841 /* Check that this instruction is supported for this CPU. */
6842 if (!opcode->avariant
93d8990c 6843 || !AARCH64_CPU_HAS_ALL_FEATURES (cpu_variant, *opcode->avariant))
3f06bfce
YZ
6844 {
6845 as_bad (_("selected processor does not support `%s'"), str);
6846 return;
6847 }
6848
54a28c4c
JW
6849 warn_unpredictable_ldst (&inst, str);
6850
a06ea964
NC
6851 if (inst.reloc.type == BFD_RELOC_UNUSED
6852 || !inst.reloc.need_libopcodes_p)
6853 output_inst (NULL);
6854 else
6855 {
6856 /* If there is relocation generated for the instruction,
6857 store the instruction information for the future fix-up. */
6858 struct aarch64_inst *copy;
6859 gas_assert (inst.reloc.type != BFD_RELOC_UNUSED);
325801bd 6860 copy = XNEW (struct aarch64_inst);
a06ea964
NC
6861 memcpy (copy, &inst.base, sizeof (struct aarch64_inst));
6862 output_inst (copy);
6863 }
7d02540a
TC
6864
6865 /* Issue non-fatal messages if any. */
6866 output_operand_error_report (str, TRUE);
a06ea964
NC
6867 return;
6868 }
6869
6870 template = template->next;
6871 if (template != NULL)
6872 {
6873 reset_aarch64_instruction (&inst);
6874 inst.cond = saved_cond;
6875 }
6876 }
6877 while (template != NULL);
6878
6879 /* Issue the error messages if any. */
7d02540a 6880 output_operand_error_report (str, FALSE);
a06ea964
NC
6881}
6882
6883/* Various frobbings of labels and their addresses. */
6884
6885void
6886aarch64_start_line_hook (void)
6887{
6888 last_label_seen = NULL;
6889}
6890
6891void
6892aarch64_frob_label (symbolS * sym)
6893{
6894 last_label_seen = sym;
6895
6896 dwarf2_emit_label (sym);
6897}
6898
6899int
6900aarch64_data_in_code (void)
6901{
6902 if (!strncmp (input_line_pointer + 1, "data:", 5))
6903 {
6904 *input_line_pointer = '/';
6905 input_line_pointer += 5;
6906 *input_line_pointer = 0;
6907 return 1;
6908 }
6909
6910 return 0;
6911}
6912
6913char *
6914aarch64_canonicalize_symbol_name (char *name)
6915{
6916 int len;
6917
6918 if ((len = strlen (name)) > 5 && streq (name + len - 5, "/data"))
6919 *(name + len - 5) = 0;
6920
6921 return name;
6922}
6923\f
6924/* Table of all register names defined by default. The user can
6925 define additional names with .req. Note that all register names
6926 should appear in both upper and lowercase variants. Some registers
6927 also have mixed-case names. */
6928
6929#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE }
8975f864 6930#define REGDEF_ALIAS(s, n, t) { #s, n, REG_TYPE_##t, FALSE}
a06ea964 6931#define REGNUM(p,n,t) REGDEF(p##n, n, t)
f11ad6bc 6932#define REGSET16(p,t) \
a06ea964
NC
6933 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
6934 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
6935 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
f11ad6bc
RS
6936 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
6937#define REGSET31(p,t) \
6938 REGSET16(p, t), \
a06ea964
NC
6939 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
6940 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
6941 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
6942 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t)
6943#define REGSET(p,t) \
6944 REGSET31(p,t), REGNUM(p,31,t)
6945
6946/* These go into aarch64_reg_hsh hash-table. */
6947static const reg_entry reg_names[] = {
6948 /* Integer registers. */
6949 REGSET31 (x, R_64), REGSET31 (X, R_64),
6950 REGSET31 (w, R_32), REGSET31 (W, R_32),
6951
8975f864 6952 REGDEF_ALIAS (ip0, 16, R_64), REGDEF_ALIAS (IP0, 16, R_64),
f10e937a 6953 REGDEF_ALIAS (ip1, 17, R_64), REGDEF_ALIAS (IP1, 17, R_64),
8975f864
RR
6954 REGDEF_ALIAS (fp, 29, R_64), REGDEF_ALIAS (FP, 29, R_64),
6955 REGDEF_ALIAS (lr, 30, R_64), REGDEF_ALIAS (LR, 30, R_64),
a06ea964
NC
6956 REGDEF (wsp, 31, SP_32), REGDEF (WSP, 31, SP_32),
6957 REGDEF (sp, 31, SP_64), REGDEF (SP, 31, SP_64),
6958
6959 REGDEF (wzr, 31, Z_32), REGDEF (WZR, 31, Z_32),
6960 REGDEF (xzr, 31, Z_64), REGDEF (XZR, 31, Z_64),
6961
a06ea964
NC
6962 /* Floating-point single precision registers. */
6963 REGSET (s, FP_S), REGSET (S, FP_S),
6964
6965 /* Floating-point double precision registers. */
6966 REGSET (d, FP_D), REGSET (D, FP_D),
6967
6968 /* Floating-point half precision registers. */
6969 REGSET (h, FP_H), REGSET (H, FP_H),
6970
6971 /* Floating-point byte precision registers. */
6972 REGSET (b, FP_B), REGSET (B, FP_B),
6973
6974 /* Floating-point quad precision registers. */
6975 REGSET (q, FP_Q), REGSET (Q, FP_Q),
6976
6977 /* FP/SIMD registers. */
6978 REGSET (v, VN), REGSET (V, VN),
f11ad6bc
RS
6979
6980 /* SVE vector registers. */
6981 REGSET (z, ZN), REGSET (Z, ZN),
6982
6983 /* SVE predicate registers. */
6984 REGSET16 (p, PN), REGSET16 (P, PN)
a06ea964
NC
6985};
6986
6987#undef REGDEF
8975f864 6988#undef REGDEF_ALIAS
a06ea964 6989#undef REGNUM
f11ad6bc
RS
6990#undef REGSET16
6991#undef REGSET31
a06ea964
NC
6992#undef REGSET
6993
6994#define N 1
6995#define n 0
6996#define Z 1
6997#define z 0
6998#define C 1
6999#define c 0
7000#define V 1
7001#define v 0
7002#define B(a,b,c,d) (((a) << 3) | ((b) << 2) | ((c) << 1) | (d))
7003static const asm_nzcv nzcv_names[] = {
7004 {"nzcv", B (n, z, c, v)},
7005 {"nzcV", B (n, z, c, V)},
7006 {"nzCv", B (n, z, C, v)},
7007 {"nzCV", B (n, z, C, V)},
7008 {"nZcv", B (n, Z, c, v)},
7009 {"nZcV", B (n, Z, c, V)},
7010 {"nZCv", B (n, Z, C, v)},
7011 {"nZCV", B (n, Z, C, V)},
7012 {"Nzcv", B (N, z, c, v)},
7013 {"NzcV", B (N, z, c, V)},
7014 {"NzCv", B (N, z, C, v)},
7015 {"NzCV", B (N, z, C, V)},
7016 {"NZcv", B (N, Z, c, v)},
7017 {"NZcV", B (N, Z, c, V)},
7018 {"NZCv", B (N, Z, C, v)},
7019 {"NZCV", B (N, Z, C, V)}
7020};
7021
7022#undef N
7023#undef n
7024#undef Z
7025#undef z
7026#undef C
7027#undef c
7028#undef V
7029#undef v
7030#undef B
7031\f
7032/* MD interface: bits in the object file. */
7033
7034/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
7035 for use in the a.out file, and stores them in the array pointed to by buf.
7036 This knows about the endian-ness of the target machine and does
7037 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
7038 2 (short) and 4 (long) Floating numbers are put out as a series of
7039 LITTLENUMS (shorts, here at least). */
7040
7041void
7042md_number_to_chars (char *buf, valueT val, int n)
7043{
7044 if (target_big_endian)
7045 number_to_chars_bigendian (buf, val, n);
7046 else
7047 number_to_chars_littleendian (buf, val, n);
7048}
7049
7050/* MD interface: Sections. */
7051
7052/* Estimate the size of a frag before relaxing. Assume everything fits in
7053 4 bytes. */
7054
7055int
7056md_estimate_size_before_relax (fragS * fragp, segT segtype ATTRIBUTE_UNUSED)
7057{
7058 fragp->fr_var = 4;
7059 return 4;
7060}
7061
7062/* Round up a section size to the appropriate boundary. */
7063
7064valueT
7065md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
7066{
7067 return size;
7068}
7069
7070/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
f803aa8e
DPT
7071 of an rs_align_code fragment.
7072
7073 Here we fill the frag with the appropriate info for padding the
7074 output stream. The resulting frag will consist of a fixed (fr_fix)
7075 and of a repeating (fr_var) part.
7076
7077 The fixed content is always emitted before the repeating content and
7078 these two parts are used as follows in constructing the output:
7079 - the fixed part will be used to align to a valid instruction word
7080 boundary, in case that we start at a misaligned address; as no
7081 executable instruction can live at the misaligned location, we
7082 simply fill with zeros;
7083 - the variable part will be used to cover the remaining padding and
7084 we fill using the AArch64 NOP instruction.
7085
7086 Note that the size of a RS_ALIGN_CODE fragment is always 7 to provide
7087 enough storage space for up to 3 bytes for padding the back to a valid
7088 instruction alignment and exactly 4 bytes to store the NOP pattern. */
a06ea964
NC
7089
7090void
7091aarch64_handle_align (fragS * fragP)
7092{
7093 /* NOP = d503201f */
7094 /* AArch64 instructions are always little-endian. */
d9235011 7095 static unsigned char const aarch64_noop[4] = { 0x1f, 0x20, 0x03, 0xd5 };
a06ea964
NC
7096
7097 int bytes, fix, noop_size;
7098 char *p;
a06ea964
NC
7099
7100 if (fragP->fr_type != rs_align_code)
7101 return;
7102
7103 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
7104 p = fragP->fr_literal + fragP->fr_fix;
a06ea964
NC
7105
7106#ifdef OBJ_ELF
7107 gas_assert (fragP->tc_frag_data.recorded);
7108#endif
7109
a06ea964 7110 noop_size = sizeof (aarch64_noop);
a06ea964 7111
f803aa8e
DPT
7112 fix = bytes & (noop_size - 1);
7113 if (fix)
a06ea964 7114 {
a06ea964
NC
7115#ifdef OBJ_ELF
7116 insert_data_mapping_symbol (MAP_INSN, fragP->fr_fix, fragP, fix);
7117#endif
7118 memset (p, 0, fix);
7119 p += fix;
f803aa8e 7120 fragP->fr_fix += fix;
a06ea964
NC
7121 }
7122
f803aa8e
DPT
7123 if (noop_size)
7124 memcpy (p, aarch64_noop, noop_size);
7125 fragP->fr_var = noop_size;
a06ea964
NC
7126}
7127
7128/* Perform target specific initialisation of a frag.
7129 Note - despite the name this initialisation is not done when the frag
7130 is created, but only when its type is assigned. A frag can be created
7131 and used a long time before its type is set, so beware of assuming that
33eaf5de 7132 this initialisation is performed first. */
a06ea964
NC
7133
7134#ifndef OBJ_ELF
7135void
7136aarch64_init_frag (fragS * fragP ATTRIBUTE_UNUSED,
7137 int max_chars ATTRIBUTE_UNUSED)
7138{
7139}
7140
7141#else /* OBJ_ELF is defined. */
7142void
7143aarch64_init_frag (fragS * fragP, int max_chars)
7144{
7145 /* Record a mapping symbol for alignment frags. We will delete this
7146 later if the alignment ends up empty. */
7147 if (!fragP->tc_frag_data.recorded)
c7ad08e6
RL
7148 fragP->tc_frag_data.recorded = 1;
7149
e8d84ca1
NC
7150 /* PR 21809: Do not set a mapping state for debug sections
7151 - it just confuses other tools. */
7152 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
7153 return;
7154
c7ad08e6 7155 switch (fragP->fr_type)
a06ea964 7156 {
c7ad08e6
RL
7157 case rs_align_test:
7158 case rs_fill:
7159 mapping_state_2 (MAP_DATA, max_chars);
7160 break;
7ea12e5c
NC
7161 case rs_align:
7162 /* PR 20364: We can get alignment frags in code sections,
7163 so do not just assume that we should use the MAP_DATA state. */
7164 mapping_state_2 (subseg_text_p (now_seg) ? MAP_INSN : MAP_DATA, max_chars);
7165 break;
c7ad08e6
RL
7166 case rs_align_code:
7167 mapping_state_2 (MAP_INSN, max_chars);
7168 break;
7169 default:
7170 break;
a06ea964
NC
7171 }
7172}
7173\f
7174/* Initialize the DWARF-2 unwind information for this procedure. */
7175
7176void
7177tc_aarch64_frame_initial_instructions (void)
7178{
7179 cfi_add_CFA_def_cfa (REG_SP, 0);
7180}
7181#endif /* OBJ_ELF */
7182
7183/* Convert REGNAME to a DWARF-2 register number. */
7184
7185int
7186tc_aarch64_regname_to_dw2regnum (char *regname)
7187{
7188 const reg_entry *reg = parse_reg (&regname);
7189 if (reg == NULL)
7190 return -1;
7191
7192 switch (reg->type)
7193 {
7194 case REG_TYPE_SP_32:
7195 case REG_TYPE_SP_64:
7196 case REG_TYPE_R_32:
7197 case REG_TYPE_R_64:
a2cac51c
RH
7198 return reg->number;
7199
a06ea964
NC
7200 case REG_TYPE_FP_B:
7201 case REG_TYPE_FP_H:
7202 case REG_TYPE_FP_S:
7203 case REG_TYPE_FP_D:
7204 case REG_TYPE_FP_Q:
a2cac51c
RH
7205 return reg->number + 64;
7206
a06ea964
NC
7207 default:
7208 break;
7209 }
7210 return -1;
7211}
7212
cec5225b
YZ
7213/* Implement DWARF2_ADDR_SIZE. */
7214
7215int
7216aarch64_dwarf2_addr_size (void)
7217{
7218#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7219 if (ilp32_p)
7220 return 4;
7221#endif
7222 return bfd_arch_bits_per_address (stdoutput) / 8;
7223}
7224
a06ea964
NC
7225/* MD interface: Symbol and relocation handling. */
7226
7227/* Return the address within the segment that a PC-relative fixup is
7228 relative to. For AArch64 PC-relative fixups applied to instructions
7229 are generally relative to the location plus AARCH64_PCREL_OFFSET bytes. */
7230
7231long
7232md_pcrel_from_section (fixS * fixP, segT seg)
7233{
7234 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
7235
7236 /* If this is pc-relative and we are going to emit a relocation
7237 then we just want to put out any pipeline compensation that the linker
7238 will need. Otherwise we want to use the calculated base. */
7239 if (fixP->fx_pcrel
7240 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
7241 || aarch64_force_relocation (fixP)))
7242 base = 0;
7243
7244 /* AArch64 should be consistent for all pc-relative relocations. */
7245 return base + AARCH64_PCREL_OFFSET;
7246}
7247
7248/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
7249 Otherwise we have no need to default values of symbols. */
7250
7251symbolS *
7252md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
7253{
7254#ifdef OBJ_ELF
7255 if (name[0] == '_' && name[1] == 'G'
7256 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
7257 {
7258 if (!GOT_symbol)
7259 {
7260 if (symbol_find (name))
7261 as_bad (_("GOT already in the symbol table"));
7262
7263 GOT_symbol = symbol_new (name, undefined_section,
7264 (valueT) 0, &zero_address_frag);
7265 }
7266
7267 return GOT_symbol;
7268 }
7269#endif
7270
7271 return 0;
7272}
7273
7274/* Return non-zero if the indicated VALUE has overflowed the maximum
7275 range expressible by a unsigned number with the indicated number of
7276 BITS. */
7277
7278static bfd_boolean
7279unsigned_overflow (valueT value, unsigned bits)
7280{
7281 valueT lim;
7282 if (bits >= sizeof (valueT) * 8)
7283 return FALSE;
7284 lim = (valueT) 1 << bits;
7285 return (value >= lim);
7286}
7287
7288
7289/* Return non-zero if the indicated VALUE has overflowed the maximum
7290 range expressible by an signed number with the indicated number of
7291 BITS. */
7292
7293static bfd_boolean
7294signed_overflow (offsetT value, unsigned bits)
7295{
7296 offsetT lim;
7297 if (bits >= sizeof (offsetT) * 8)
7298 return FALSE;
7299 lim = (offsetT) 1 << (bits - 1);
7300 return (value < -lim || value >= lim);
7301}
7302
7303/* Given an instruction in *INST, which is expected to be a scaled, 12-bit,
7304 unsigned immediate offset load/store instruction, try to encode it as
7305 an unscaled, 9-bit, signed immediate offset load/store instruction.
7306 Return TRUE if it is successful; otherwise return FALSE.
7307
7308 As a programmer-friendly assembler, LDUR/STUR instructions can be generated
7309 in response to the standard LDR/STR mnemonics when the immediate offset is
7310 unambiguous, i.e. when it is negative or unaligned. */
7311
7312static bfd_boolean
7313try_to_encode_as_unscaled_ldst (aarch64_inst *instr)
7314{
7315 int idx;
7316 enum aarch64_op new_op;
7317 const aarch64_opcode *new_opcode;
7318
7319 gas_assert (instr->opcode->iclass == ldst_pos);
7320
7321 switch (instr->opcode->op)
7322 {
7323 case OP_LDRB_POS:new_op = OP_LDURB; break;
7324 case OP_STRB_POS: new_op = OP_STURB; break;
7325 case OP_LDRSB_POS: new_op = OP_LDURSB; break;
7326 case OP_LDRH_POS: new_op = OP_LDURH; break;
7327 case OP_STRH_POS: new_op = OP_STURH; break;
7328 case OP_LDRSH_POS: new_op = OP_LDURSH; break;
7329 case OP_LDR_POS: new_op = OP_LDUR; break;
7330 case OP_STR_POS: new_op = OP_STUR; break;
7331 case OP_LDRF_POS: new_op = OP_LDURV; break;
7332 case OP_STRF_POS: new_op = OP_STURV; break;
7333 case OP_LDRSW_POS: new_op = OP_LDURSW; break;
7334 case OP_PRFM_POS: new_op = OP_PRFUM; break;
7335 default: new_op = OP_NIL; break;
7336 }
7337
7338 if (new_op == OP_NIL)
7339 return FALSE;
7340
7341 new_opcode = aarch64_get_opcode (new_op);
7342 gas_assert (new_opcode != NULL);
7343
7344 DEBUG_TRACE ("Check programmer-friendly STURB/LDURB -> STRB/LDRB: %d == %d",
7345 instr->opcode->op, new_opcode->op);
7346
7347 aarch64_replace_opcode (instr, new_opcode);
7348
7349 /* Clear up the ADDR_SIMM9's qualifier; otherwise the
7350 qualifier matching may fail because the out-of-date qualifier will
7351 prevent the operand being updated with a new and correct qualifier. */
7352 idx = aarch64_operand_index (instr->opcode->operands,
7353 AARCH64_OPND_ADDR_SIMM9);
7354 gas_assert (idx == 1);
7355 instr->operands[idx].qualifier = AARCH64_OPND_QLF_NIL;
7356
7357 DEBUG_TRACE ("Found LDURB entry to encode programmer-friendly LDRB");
7358
7359 if (!aarch64_opcode_encode (instr->opcode, instr, &instr->value, NULL, NULL))
7360 return FALSE;
7361
7362 return TRUE;
7363}
7364
7365/* Called by fix_insn to fix a MOV immediate alias instruction.
7366
7367 Operand for a generic move immediate instruction, which is an alias
7368 instruction that generates a single MOVZ, MOVN or ORR instruction to loads
7369 a 32-bit/64-bit immediate value into general register. An assembler error
7370 shall result if the immediate cannot be created by a single one of these
7371 instructions. If there is a choice, then to ensure reversability an
7372 assembler must prefer a MOVZ to MOVN, and MOVZ or MOVN to ORR. */
7373
7374static void
7375fix_mov_imm_insn (fixS *fixP, char *buf, aarch64_inst *instr, offsetT value)
7376{
7377 const aarch64_opcode *opcode;
7378
7379 /* Need to check if the destination is SP/ZR. The check has to be done
7380 before any aarch64_replace_opcode. */
7381 int try_mov_wide_p = !aarch64_stack_pointer_p (&instr->operands[0]);
7382 int try_mov_bitmask_p = !aarch64_zero_register_p (&instr->operands[0]);
7383
7384 instr->operands[1].imm.value = value;
7385 instr->operands[1].skip = 0;
7386
7387 if (try_mov_wide_p)
7388 {
7389 /* Try the MOVZ alias. */
7390 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDE);
7391 aarch64_replace_opcode (instr, opcode);
7392 if (aarch64_opcode_encode (instr->opcode, instr,
7393 &instr->value, NULL, NULL))
7394 {
7395 put_aarch64_insn (buf, instr->value);
7396 return;
7397 }
7398 /* Try the MOVK alias. */
7399 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDEN);
7400 aarch64_replace_opcode (instr, opcode);
7401 if (aarch64_opcode_encode (instr->opcode, instr,
7402 &instr->value, NULL, NULL))
7403 {
7404 put_aarch64_insn (buf, instr->value);
7405 return;
7406 }
7407 }
7408
7409 if (try_mov_bitmask_p)
7410 {
7411 /* Try the ORR alias. */
7412 opcode = aarch64_get_opcode (OP_MOV_IMM_LOG);
7413 aarch64_replace_opcode (instr, opcode);
7414 if (aarch64_opcode_encode (instr->opcode, instr,
7415 &instr->value, NULL, NULL))
7416 {
7417 put_aarch64_insn (buf, instr->value);
7418 return;
7419 }
7420 }
7421
7422 as_bad_where (fixP->fx_file, fixP->fx_line,
7423 _("immediate cannot be moved by a single instruction"));
7424}
7425
7426/* An instruction operand which is immediate related may have symbol used
7427 in the assembly, e.g.
7428
7429 mov w0, u32
7430 .set u32, 0x00ffff00
7431
7432 At the time when the assembly instruction is parsed, a referenced symbol,
7433 like 'u32' in the above example may not have been seen; a fixS is created
7434 in such a case and is handled here after symbols have been resolved.
7435 Instruction is fixed up with VALUE using the information in *FIXP plus
7436 extra information in FLAGS.
7437
7438 This function is called by md_apply_fix to fix up instructions that need
7439 a fix-up described above but does not involve any linker-time relocation. */
7440
7441static void
7442fix_insn (fixS *fixP, uint32_t flags, offsetT value)
7443{
7444 int idx;
7445 uint32_t insn;
7446 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
7447 enum aarch64_opnd opnd = fixP->tc_fix_data.opnd;
7448 aarch64_inst *new_inst = fixP->tc_fix_data.inst;
7449
7450 if (new_inst)
7451 {
7452 /* Now the instruction is about to be fixed-up, so the operand that
7453 was previously marked as 'ignored' needs to be unmarked in order
7454 to get the encoding done properly. */
7455 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
7456 new_inst->operands[idx].skip = 0;
7457 }
7458
7459 gas_assert (opnd != AARCH64_OPND_NIL);
7460
7461 switch (opnd)
7462 {
7463 case AARCH64_OPND_EXCEPTION:
7464 if (unsigned_overflow (value, 16))
7465 as_bad_where (fixP->fx_file, fixP->fx_line,
7466 _("immediate out of range"));
7467 insn = get_aarch64_insn (buf);
7468 insn |= encode_svc_imm (value);
7469 put_aarch64_insn (buf, insn);
7470 break;
7471
7472 case AARCH64_OPND_AIMM:
7473 /* ADD or SUB with immediate.
7474 NOTE this assumes we come here with a add/sub shifted reg encoding
7475 3 322|2222|2 2 2 21111 111111
7476 1 098|7654|3 2 1 09876 543210 98765 43210
7477 0b000000 sf 000|1011|shift 0 Rm imm6 Rn Rd ADD
7478 2b000000 sf 010|1011|shift 0 Rm imm6 Rn Rd ADDS
7479 4b000000 sf 100|1011|shift 0 Rm imm6 Rn Rd SUB
7480 6b000000 sf 110|1011|shift 0 Rm imm6 Rn Rd SUBS
7481 ->
7482 3 322|2222|2 2 221111111111
7483 1 098|7654|3 2 109876543210 98765 43210
7484 11000000 sf 001|0001|shift imm12 Rn Rd ADD
7485 31000000 sf 011|0001|shift imm12 Rn Rd ADDS
7486 51000000 sf 101|0001|shift imm12 Rn Rd SUB
7487 71000000 sf 111|0001|shift imm12 Rn Rd SUBS
7488 Fields sf Rn Rd are already set. */
7489 insn = get_aarch64_insn (buf);
7490 if (value < 0)
7491 {
7492 /* Add <-> sub. */
7493 insn = reencode_addsub_switch_add_sub (insn);
7494 value = -value;
7495 }
7496
7497 if ((flags & FIXUP_F_HAS_EXPLICIT_SHIFT) == 0
7498 && unsigned_overflow (value, 12))
7499 {
7500 /* Try to shift the value by 12 to make it fit. */
7501 if (((value >> 12) << 12) == value
7502 && ! unsigned_overflow (value, 12 + 12))
7503 {
7504 value >>= 12;
7505 insn |= encode_addsub_imm_shift_amount (1);
7506 }
7507 }
7508
7509 if (unsigned_overflow (value, 12))
7510 as_bad_where (fixP->fx_file, fixP->fx_line,
7511 _("immediate out of range"));
7512
7513 insn |= encode_addsub_imm (value);
7514
7515 put_aarch64_insn (buf, insn);
7516 break;
7517
7518 case AARCH64_OPND_SIMD_IMM:
7519 case AARCH64_OPND_SIMD_IMM_SFT:
7520 case AARCH64_OPND_LIMM:
7521 /* Bit mask immediate. */
7522 gas_assert (new_inst != NULL);
7523 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
7524 new_inst->operands[idx].imm.value = value;
7525 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
7526 &new_inst->value, NULL, NULL))
7527 put_aarch64_insn (buf, new_inst->value);
7528 else
7529 as_bad_where (fixP->fx_file, fixP->fx_line,
7530 _("invalid immediate"));
7531 break;
7532
7533 case AARCH64_OPND_HALF:
7534 /* 16-bit unsigned immediate. */
7535 if (unsigned_overflow (value, 16))
7536 as_bad_where (fixP->fx_file, fixP->fx_line,
7537 _("immediate out of range"));
7538 insn = get_aarch64_insn (buf);
7539 insn |= encode_movw_imm (value & 0xffff);
7540 put_aarch64_insn (buf, insn);
7541 break;
7542
7543 case AARCH64_OPND_IMM_MOV:
7544 /* Operand for a generic move immediate instruction, which is
7545 an alias instruction that generates a single MOVZ, MOVN or ORR
7546 instruction to loads a 32-bit/64-bit immediate value into general
7547 register. An assembler error shall result if the immediate cannot be
7548 created by a single one of these instructions. If there is a choice,
7549 then to ensure reversability an assembler must prefer a MOVZ to MOVN,
7550 and MOVZ or MOVN to ORR. */
7551 gas_assert (new_inst != NULL);
7552 fix_mov_imm_insn (fixP, buf, new_inst, value);
7553 break;
7554
7555 case AARCH64_OPND_ADDR_SIMM7:
7556 case AARCH64_OPND_ADDR_SIMM9:
7557 case AARCH64_OPND_ADDR_SIMM9_2:
3f06e550 7558 case AARCH64_OPND_ADDR_SIMM10:
a06ea964
NC
7559 case AARCH64_OPND_ADDR_UIMM12:
7560 /* Immediate offset in an address. */
7561 insn = get_aarch64_insn (buf);
7562
7563 gas_assert (new_inst != NULL && new_inst->value == insn);
7564 gas_assert (new_inst->opcode->operands[1] == opnd
7565 || new_inst->opcode->operands[2] == opnd);
7566
7567 /* Get the index of the address operand. */
7568 if (new_inst->opcode->operands[1] == opnd)
7569 /* e.g. STR <Xt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
7570 idx = 1;
7571 else
7572 /* e.g. LDP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]. */
7573 idx = 2;
7574
7575 /* Update the resolved offset value. */
7576 new_inst->operands[idx].addr.offset.imm = value;
7577
7578 /* Encode/fix-up. */
7579 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
7580 &new_inst->value, NULL, NULL))
7581 {
7582 put_aarch64_insn (buf, new_inst->value);
7583 break;
7584 }
7585 else if (new_inst->opcode->iclass == ldst_pos
7586 && try_to_encode_as_unscaled_ldst (new_inst))
7587 {
7588 put_aarch64_insn (buf, new_inst->value);
7589 break;
7590 }
7591
7592 as_bad_where (fixP->fx_file, fixP->fx_line,
7593 _("immediate offset out of range"));
7594 break;
7595
7596 default:
7597 gas_assert (0);
7598 as_fatal (_("unhandled operand code %d"), opnd);
7599 }
7600}
7601
7602/* Apply a fixup (fixP) to segment data, once it has been determined
7603 by our caller that we have all the info we need to fix it up.
7604
7605 Parameter valP is the pointer to the value of the bits. */
7606
7607void
7608md_apply_fix (fixS * fixP, valueT * valP, segT seg)
7609{
7610 offsetT value = *valP;
7611 uint32_t insn;
7612 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
7613 int scale;
7614 unsigned flags = fixP->fx_addnumber;
7615
7616 DEBUG_TRACE ("\n\n");
7617 DEBUG_TRACE ("~~~~~~~~~~~~~~~~~~~~~~~~~");
7618 DEBUG_TRACE ("Enter md_apply_fix");
7619
7620 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
7621
7622 /* Note whether this will delete the relocation. */
7623
7624 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
7625 fixP->fx_done = 1;
7626
7627 /* Process the relocations. */
7628 switch (fixP->fx_r_type)
7629 {
7630 case BFD_RELOC_NONE:
7631 /* This will need to go in the object file. */
7632 fixP->fx_done = 0;
7633 break;
7634
7635 case BFD_RELOC_8:
7636 case BFD_RELOC_8_PCREL:
7637 if (fixP->fx_done || !seg->use_rela_p)
7638 md_number_to_chars (buf, value, 1);
7639 break;
7640
7641 case BFD_RELOC_16:
7642 case BFD_RELOC_16_PCREL:
7643 if (fixP->fx_done || !seg->use_rela_p)
7644 md_number_to_chars (buf, value, 2);
7645 break;
7646
7647 case BFD_RELOC_32:
7648 case BFD_RELOC_32_PCREL:
7649 if (fixP->fx_done || !seg->use_rela_p)
7650 md_number_to_chars (buf, value, 4);
7651 break;
7652
7653 case BFD_RELOC_64:
7654 case BFD_RELOC_64_PCREL:
7655 if (fixP->fx_done || !seg->use_rela_p)
7656 md_number_to_chars (buf, value, 8);
7657 break;
7658
7659 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
7660 /* We claim that these fixups have been processed here, even if
7661 in fact we generate an error because we do not have a reloc
7662 for them, so tc_gen_reloc() will reject them. */
7663 fixP->fx_done = 1;
7664 if (fixP->fx_addsy && !S_IS_DEFINED (fixP->fx_addsy))
7665 {
7666 as_bad_where (fixP->fx_file, fixP->fx_line,
7667 _("undefined symbol %s used as an immediate value"),
7668 S_GET_NAME (fixP->fx_addsy));
7669 goto apply_fix_return;
7670 }
7671 fix_insn (fixP, flags, value);
7672 break;
7673
7674 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
a06ea964
NC
7675 if (fixP->fx_done || !seg->use_rela_p)
7676 {
89d2a2a3
MS
7677 if (value & 3)
7678 as_bad_where (fixP->fx_file, fixP->fx_line,
7679 _("pc-relative load offset not word aligned"));
7680 if (signed_overflow (value, 21))
7681 as_bad_where (fixP->fx_file, fixP->fx_line,
7682 _("pc-relative load offset out of range"));
a06ea964
NC
7683 insn = get_aarch64_insn (buf);
7684 insn |= encode_ld_lit_ofs_19 (value >> 2);
7685 put_aarch64_insn (buf, insn);
7686 }
7687 break;
7688
7689 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
a06ea964
NC
7690 if (fixP->fx_done || !seg->use_rela_p)
7691 {
89d2a2a3
MS
7692 if (signed_overflow (value, 21))
7693 as_bad_where (fixP->fx_file, fixP->fx_line,
7694 _("pc-relative address offset out of range"));
a06ea964
NC
7695 insn = get_aarch64_insn (buf);
7696 insn |= encode_adr_imm (value);
7697 put_aarch64_insn (buf, insn);
7698 }
7699 break;
7700
7701 case BFD_RELOC_AARCH64_BRANCH19:
a06ea964
NC
7702 if (fixP->fx_done || !seg->use_rela_p)
7703 {
89d2a2a3
MS
7704 if (value & 3)
7705 as_bad_where (fixP->fx_file, fixP->fx_line,
7706 _("conditional branch target not word aligned"));
7707 if (signed_overflow (value, 21))
7708 as_bad_where (fixP->fx_file, fixP->fx_line,
7709 _("conditional branch out of range"));
a06ea964
NC
7710 insn = get_aarch64_insn (buf);
7711 insn |= encode_cond_branch_ofs_19 (value >> 2);
7712 put_aarch64_insn (buf, insn);
7713 }
7714 break;
7715
7716 case BFD_RELOC_AARCH64_TSTBR14:
a06ea964
NC
7717 if (fixP->fx_done || !seg->use_rela_p)
7718 {
89d2a2a3
MS
7719 if (value & 3)
7720 as_bad_where (fixP->fx_file, fixP->fx_line,
7721 _("conditional branch target not word aligned"));
7722 if (signed_overflow (value, 16))
7723 as_bad_where (fixP->fx_file, fixP->fx_line,
7724 _("conditional branch out of range"));
a06ea964
NC
7725 insn = get_aarch64_insn (buf);
7726 insn |= encode_tst_branch_ofs_14 (value >> 2);
7727 put_aarch64_insn (buf, insn);
7728 }
7729 break;
7730
a06ea964 7731 case BFD_RELOC_AARCH64_CALL26:
f09c556a 7732 case BFD_RELOC_AARCH64_JUMP26:
a06ea964
NC
7733 if (fixP->fx_done || !seg->use_rela_p)
7734 {
89d2a2a3
MS
7735 if (value & 3)
7736 as_bad_where (fixP->fx_file, fixP->fx_line,
7737 _("branch target not word aligned"));
7738 if (signed_overflow (value, 28))
7739 as_bad_where (fixP->fx_file, fixP->fx_line,
7740 _("branch out of range"));
a06ea964
NC
7741 insn = get_aarch64_insn (buf);
7742 insn |= encode_branch_ofs_26 (value >> 2);
7743 put_aarch64_insn (buf, insn);
7744 }
7745 break;
7746
7747 case BFD_RELOC_AARCH64_MOVW_G0:
a06ea964 7748 case BFD_RELOC_AARCH64_MOVW_G0_NC:
f09c556a 7749 case BFD_RELOC_AARCH64_MOVW_G0_S:
ca632371 7750 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
32247401
RL
7751 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
7752 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
a06ea964
NC
7753 scale = 0;
7754 goto movw_common;
7755 case BFD_RELOC_AARCH64_MOVW_G1:
a06ea964 7756 case BFD_RELOC_AARCH64_MOVW_G1_NC:
f09c556a 7757 case BFD_RELOC_AARCH64_MOVW_G1_S:
654248e7 7758 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
32247401
RL
7759 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
7760 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
a06ea964
NC
7761 scale = 16;
7762 goto movw_common;
43a357f9
RL
7763 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7764 scale = 0;
7765 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7766 /* Should always be exported to object file, see
7767 aarch64_force_relocation(). */
7768 gas_assert (!fixP->fx_done);
7769 gas_assert (seg->use_rela_p);
7770 goto movw_common;
7771 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7772 scale = 16;
7773 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7774 /* Should always be exported to object file, see
7775 aarch64_force_relocation(). */
7776 gas_assert (!fixP->fx_done);
7777 gas_assert (seg->use_rela_p);
7778 goto movw_common;
a06ea964 7779 case BFD_RELOC_AARCH64_MOVW_G2:
a06ea964 7780 case BFD_RELOC_AARCH64_MOVW_G2_NC:
f09c556a 7781 case BFD_RELOC_AARCH64_MOVW_G2_S:
32247401
RL
7782 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
7783 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
a06ea964
NC
7784 scale = 32;
7785 goto movw_common;
7786 case BFD_RELOC_AARCH64_MOVW_G3:
32247401 7787 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
a06ea964
NC
7788 scale = 48;
7789 movw_common:
7790 if (fixP->fx_done || !seg->use_rela_p)
7791 {
7792 insn = get_aarch64_insn (buf);
7793
7794 if (!fixP->fx_done)
7795 {
7796 /* REL signed addend must fit in 16 bits */
7797 if (signed_overflow (value, 16))
7798 as_bad_where (fixP->fx_file, fixP->fx_line,
7799 _("offset out of range"));
7800 }
7801 else
7802 {
7803 /* Check for overflow and scale. */
7804 switch (fixP->fx_r_type)
7805 {
7806 case BFD_RELOC_AARCH64_MOVW_G0:
7807 case BFD_RELOC_AARCH64_MOVW_G1:
7808 case BFD_RELOC_AARCH64_MOVW_G2:
7809 case BFD_RELOC_AARCH64_MOVW_G3:
654248e7 7810 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
43a357f9 7811 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
a06ea964
NC
7812 if (unsigned_overflow (value, scale + 16))
7813 as_bad_where (fixP->fx_file, fixP->fx_line,
7814 _("unsigned value out of range"));
7815 break;
7816 case BFD_RELOC_AARCH64_MOVW_G0_S:
7817 case BFD_RELOC_AARCH64_MOVW_G1_S:
7818 case BFD_RELOC_AARCH64_MOVW_G2_S:
32247401
RL
7819 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
7820 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
7821 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
a06ea964
NC
7822 /* NOTE: We can only come here with movz or movn. */
7823 if (signed_overflow (value, scale + 16))
7824 as_bad_where (fixP->fx_file, fixP->fx_line,
7825 _("signed value out of range"));
7826 if (value < 0)
7827 {
7828 /* Force use of MOVN. */
7829 value = ~value;
7830 insn = reencode_movzn_to_movn (insn);
7831 }
7832 else
7833 {
7834 /* Force use of MOVZ. */
7835 insn = reencode_movzn_to_movz (insn);
7836 }
7837 break;
7838 default:
7839 /* Unchecked relocations. */
7840 break;
7841 }
7842 value >>= scale;
7843 }
7844
7845 /* Insert value into MOVN/MOVZ/MOVK instruction. */
7846 insn |= encode_movw_imm (value & 0xffff);
7847
7848 put_aarch64_insn (buf, insn);
7849 }
7850 break;
7851
a6bb11b2
YZ
7852 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
7853 fixP->fx_r_type = (ilp32_p
7854 ? BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
7855 : BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
7856 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7857 /* Should always be exported to object file, see
7858 aarch64_force_relocation(). */
7859 gas_assert (!fixP->fx_done);
7860 gas_assert (seg->use_rela_p);
7861 break;
7862
7863 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
7864 fixP->fx_r_type = (ilp32_p
7865 ? BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
f955cccf 7866 : BFD_RELOC_AARCH64_TLSDESC_LD64_LO12);
a6bb11b2
YZ
7867 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7868 /* Should always be exported to object file, see
7869 aarch64_force_relocation(). */
7870 gas_assert (!fixP->fx_done);
7871 gas_assert (seg->use_rela_p);
7872 break;
7873
f955cccf 7874 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
2c0a3565 7875 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 7876 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
2c0a3565 7877 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
f955cccf 7878 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
1ada945d 7879 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
a06ea964 7880 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
2c0a3565 7881 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 7882 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
3e8286c0 7883 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
1aa66fb1 7884 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
a06ea964 7885 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 7886 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
2c0a3565 7887 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 7888 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
3b957e5b
RL
7889 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7890 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
49df5539 7891 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
70151fb5 7892 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
13289c10 7893 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
a12fad50 7894 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
1107e076 7895 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6c37fedc 7896 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4c562523
JW
7897 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
7898 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
7899 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
7900 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
7901 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
7902 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
7903 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
7904 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
49df5539
JW
7905 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
7906 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7907 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
7908 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
7909 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
84f1b9fb
RL
7910 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
7911 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
7912 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
7913 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
7914 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
7915 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
7916 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
7917 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
a06ea964 7918 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
2c0a3565 7919 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a06ea964 7920 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a06ea964
NC
7921 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
7922 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
2c0a3565
MS
7923 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
7924 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7925 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
7926 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7927 /* Should always be exported to object file, see
7928 aarch64_force_relocation(). */
7929 gas_assert (!fixP->fx_done);
7930 gas_assert (seg->use_rela_p);
7931 break;
7932
a6bb11b2
YZ
7933 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
7934 /* Should always be exported to object file, see
7935 aarch64_force_relocation(). */
7936 fixP->fx_r_type = (ilp32_p
7937 ? BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
7938 : BFD_RELOC_AARCH64_LD64_GOT_LO12_NC);
7939 gas_assert (!fixP->fx_done);
7940 gas_assert (seg->use_rela_p);
7941 break;
7942
a06ea964 7943 case BFD_RELOC_AARCH64_ADD_LO12:
f09c556a
JW
7944 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7945 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7946 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7947 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7948 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3d715ce4 7949 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
87f5fbcc 7950 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
a921b5bd 7951 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
f09c556a
JW
7952 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7953 case BFD_RELOC_AARCH64_LDST128_LO12:
a06ea964
NC
7954 case BFD_RELOC_AARCH64_LDST16_LO12:
7955 case BFD_RELOC_AARCH64_LDST32_LO12:
7956 case BFD_RELOC_AARCH64_LDST64_LO12:
f09c556a 7957 case BFD_RELOC_AARCH64_LDST8_LO12:
a06ea964
NC
7958 /* Should always be exported to object file, see
7959 aarch64_force_relocation(). */
7960 gas_assert (!fixP->fx_done);
7961 gas_assert (seg->use_rela_p);
7962 break;
7963
7964 case BFD_RELOC_AARCH64_TLSDESC_ADD:
a06ea964 7965 case BFD_RELOC_AARCH64_TLSDESC_CALL:
f09c556a 7966 case BFD_RELOC_AARCH64_TLSDESC_LDR:
a06ea964
NC
7967 break;
7968
b97e87cc
NC
7969 case BFD_RELOC_UNUSED:
7970 /* An error will already have been reported. */
7971 break;
7972
a06ea964
NC
7973 default:
7974 as_bad_where (fixP->fx_file, fixP->fx_line,
7975 _("unexpected %s fixup"),
7976 bfd_get_reloc_code_name (fixP->fx_r_type));
7977 break;
7978 }
7979
7980apply_fix_return:
7981 /* Free the allocated the struct aarch64_inst.
7982 N.B. currently there are very limited number of fix-up types actually use
7983 this field, so the impact on the performance should be minimal . */
7984 if (fixP->tc_fix_data.inst != NULL)
7985 free (fixP->tc_fix_data.inst);
7986
7987 return;
7988}
7989
7990/* Translate internal representation of relocation info to BFD target
7991 format. */
7992
7993arelent *
7994tc_gen_reloc (asection * section, fixS * fixp)
7995{
7996 arelent *reloc;
7997 bfd_reloc_code_real_type code;
7998
325801bd 7999 reloc = XNEW (arelent);
a06ea964 8000
325801bd 8001 reloc->sym_ptr_ptr = XNEW (asymbol *);
a06ea964
NC
8002 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
8003 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
8004
8005 if (fixp->fx_pcrel)
8006 {
8007 if (section->use_rela_p)
8008 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
8009 else
8010 fixp->fx_offset = reloc->address;
8011 }
8012 reloc->addend = fixp->fx_offset;
8013
8014 code = fixp->fx_r_type;
8015 switch (code)
8016 {
8017 case BFD_RELOC_16:
8018 if (fixp->fx_pcrel)
8019 code = BFD_RELOC_16_PCREL;
8020 break;
8021
8022 case BFD_RELOC_32:
8023 if (fixp->fx_pcrel)
8024 code = BFD_RELOC_32_PCREL;
8025 break;
8026
8027 case BFD_RELOC_64:
8028 if (fixp->fx_pcrel)
8029 code = BFD_RELOC_64_PCREL;
8030 break;
8031
8032 default:
8033 break;
8034 }
8035
8036 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
8037 if (reloc->howto == NULL)
8038 {
8039 as_bad_where (fixp->fx_file, fixp->fx_line,
8040 _
8041 ("cannot represent %s relocation in this object file format"),
8042 bfd_get_reloc_code_name (code));
8043 return NULL;
8044 }
8045
8046 return reloc;
8047}
8048
8049/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
8050
8051void
8052cons_fix_new_aarch64 (fragS * frag, int where, int size, expressionS * exp)
8053{
8054 bfd_reloc_code_real_type type;
8055 int pcrel = 0;
8056
8057 /* Pick a reloc.
8058 FIXME: @@ Should look at CPU word size. */
8059 switch (size)
8060 {
8061 case 1:
8062 type = BFD_RELOC_8;
8063 break;
8064 case 2:
8065 type = BFD_RELOC_16;
8066 break;
8067 case 4:
8068 type = BFD_RELOC_32;
8069 break;
8070 case 8:
8071 type = BFD_RELOC_64;
8072 break;
8073 default:
8074 as_bad (_("cannot do %u-byte relocation"), size);
8075 type = BFD_RELOC_UNUSED;
8076 break;
8077 }
8078
8079 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
8080}
8081
8082int
8083aarch64_force_relocation (struct fix *fixp)
8084{
8085 switch (fixp->fx_r_type)
8086 {
8087 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
8088 /* Perform these "immediate" internal relocations
8089 even if the symbol is extern or weak. */
8090 return 0;
8091
a6bb11b2 8092 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
f09c556a
JW
8093 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
8094 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
a6bb11b2
YZ
8095 /* Pseudo relocs that need to be fixed up according to
8096 ilp32_p. */
8097 return 0;
8098
2c0a3565
MS
8099 case BFD_RELOC_AARCH64_ADD_LO12:
8100 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
8101 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
8102 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
8103 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
8104 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3d715ce4 8105 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
87f5fbcc 8106 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
a921b5bd 8107 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
2c0a3565
MS
8108 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
8109 case BFD_RELOC_AARCH64_LDST128_LO12:
8110 case BFD_RELOC_AARCH64_LDST16_LO12:
8111 case BFD_RELOC_AARCH64_LDST32_LO12:
8112 case BFD_RELOC_AARCH64_LDST64_LO12:
8113 case BFD_RELOC_AARCH64_LDST8_LO12:
f955cccf 8114 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
2c0a3565 8115 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 8116 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
2c0a3565 8117 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
f955cccf 8118 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
1ada945d 8119 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
43a357f9
RL
8120 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
8121 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
a06ea964 8122 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
2c0a3565 8123 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 8124 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
3e8286c0 8125 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
1aa66fb1 8126 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
a06ea964 8127 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 8128 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
2c0a3565 8129 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 8130 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
3b957e5b
RL
8131 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
8132 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
8133 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
70151fb5 8134 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
13289c10 8135 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
a12fad50 8136 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
1107e076 8137 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6c37fedc 8138 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4c562523
JW
8139 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
8140 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
8141 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
8142 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
8143 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
8144 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
8145 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
8146 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
49df5539
JW
8147 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
8148 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
8149 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
8150 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
8151 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
84f1b9fb
RL
8152 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
8153 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
8154 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
8155 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
8156 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
8157 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
8158 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
8159 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
a06ea964 8160 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
2c0a3565 8161 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a06ea964 8162 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a06ea964
NC
8163 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
8164 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
2c0a3565
MS
8165 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
8166 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
8167 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
8168 /* Always leave these relocations for the linker. */
8169 return 1;
8170
8171 default:
8172 break;
8173 }
8174
8175 return generic_force_reloc (fixp);
8176}
8177
8178#ifdef OBJ_ELF
8179
3c0367d0
JW
8180/* Implement md_after_parse_args. This is the earliest time we need to decide
8181 ABI. If no -mabi specified, the ABI will be decided by target triplet. */
8182
8183void
8184aarch64_after_parse_args (void)
8185{
8186 if (aarch64_abi != AARCH64_ABI_NONE)
8187 return;
8188
8189 /* DEFAULT_ARCH will have ":32" extension if it's configured for ILP32. */
8190 if (strlen (default_arch) > 7 && strcmp (default_arch + 7, ":32") == 0)
8191 aarch64_abi = AARCH64_ABI_ILP32;
8192 else
8193 aarch64_abi = AARCH64_ABI_LP64;
8194}
8195
a06ea964
NC
8196const char *
8197elf64_aarch64_target_format (void)
8198{
a75cf613
ES
8199 if (strcmp (TARGET_OS, "cloudabi") == 0)
8200 {
8201 /* FIXME: What to do for ilp32_p ? */
8202 return target_big_endian ? "elf64-bigaarch64-cloudabi" : "elf64-littleaarch64-cloudabi";
8203 }
a06ea964 8204 if (target_big_endian)
cec5225b 8205 return ilp32_p ? "elf32-bigaarch64" : "elf64-bigaarch64";
a06ea964 8206 else
cec5225b 8207 return ilp32_p ? "elf32-littleaarch64" : "elf64-littleaarch64";
a06ea964
NC
8208}
8209
8210void
8211aarch64elf_frob_symbol (symbolS * symp, int *puntp)
8212{
8213 elf_frob_symbol (symp, puntp);
8214}
8215#endif
8216
8217/* MD interface: Finalization. */
8218
8219/* A good place to do this, although this was probably not intended
8220 for this kind of use. We need to dump the literal pool before
8221 references are made to a null symbol pointer. */
8222
8223void
8224aarch64_cleanup (void)
8225{
8226 literal_pool *pool;
8227
8228 for (pool = list_of_pools; pool; pool = pool->next)
8229 {
8230 /* Put it at the end of the relevant section. */
8231 subseg_set (pool->section, pool->sub_section);
8232 s_ltorg (0);
8233 }
8234}
8235
8236#ifdef OBJ_ELF
8237/* Remove any excess mapping symbols generated for alignment frags in
8238 SEC. We may have created a mapping symbol before a zero byte
8239 alignment; remove it if there's a mapping symbol after the
8240 alignment. */
8241static void
8242check_mapping_symbols (bfd * abfd ATTRIBUTE_UNUSED, asection * sec,
8243 void *dummy ATTRIBUTE_UNUSED)
8244{
8245 segment_info_type *seginfo = seg_info (sec);
8246 fragS *fragp;
8247
8248 if (seginfo == NULL || seginfo->frchainP == NULL)
8249 return;
8250
8251 for (fragp = seginfo->frchainP->frch_root;
8252 fragp != NULL; fragp = fragp->fr_next)
8253 {
8254 symbolS *sym = fragp->tc_frag_data.last_map;
8255 fragS *next = fragp->fr_next;
8256
8257 /* Variable-sized frags have been converted to fixed size by
8258 this point. But if this was variable-sized to start with,
8259 there will be a fixed-size frag after it. So don't handle
8260 next == NULL. */
8261 if (sym == NULL || next == NULL)
8262 continue;
8263
8264 if (S_GET_VALUE (sym) < next->fr_address)
8265 /* Not at the end of this frag. */
8266 continue;
8267 know (S_GET_VALUE (sym) == next->fr_address);
8268
8269 do
8270 {
8271 if (next->tc_frag_data.first_map != NULL)
8272 {
8273 /* Next frag starts with a mapping symbol. Discard this
8274 one. */
8275 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
8276 break;
8277 }
8278
8279 if (next->fr_next == NULL)
8280 {
8281 /* This mapping symbol is at the end of the section. Discard
8282 it. */
8283 know (next->fr_fix == 0 && next->fr_var == 0);
8284 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
8285 break;
8286 }
8287
8288 /* As long as we have empty frags without any mapping symbols,
8289 keep looking. */
8290 /* If the next frag is non-empty and does not start with a
8291 mapping symbol, then this mapping symbol is required. */
8292 if (next->fr_address != next->fr_next->fr_address)
8293 break;
8294
8295 next = next->fr_next;
8296 }
8297 while (next != NULL);
8298 }
8299}
8300#endif
8301
8302/* Adjust the symbol table. */
8303
8304void
8305aarch64_adjust_symtab (void)
8306{
8307#ifdef OBJ_ELF
8308 /* Remove any overlapping mapping symbols generated by alignment frags. */
8309 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
8310 /* Now do generic ELF adjustments. */
8311 elf_adjust_symtab ();
8312#endif
8313}
8314
8315static void
8316checked_hash_insert (struct hash_control *table, const char *key, void *value)
8317{
8318 const char *hash_err;
8319
8320 hash_err = hash_insert (table, key, value);
8321 if (hash_err)
8322 printf ("Internal Error: Can't hash %s\n", key);
8323}
8324
8325static void
8326fill_instruction_hash_table (void)
8327{
8328 aarch64_opcode *opcode = aarch64_opcode_table;
8329
8330 while (opcode->name != NULL)
8331 {
8332 templates *templ, *new_templ;
8333 templ = hash_find (aarch64_ops_hsh, opcode->name);
8334
add39d23 8335 new_templ = XNEW (templates);
a06ea964
NC
8336 new_templ->opcode = opcode;
8337 new_templ->next = NULL;
8338
8339 if (!templ)
8340 checked_hash_insert (aarch64_ops_hsh, opcode->name, (void *) new_templ);
8341 else
8342 {
8343 new_templ->next = templ->next;
8344 templ->next = new_templ;
8345 }
8346 ++opcode;
8347 }
8348}
8349
8350static inline void
8351convert_to_upper (char *dst, const char *src, size_t num)
8352{
8353 unsigned int i;
8354 for (i = 0; i < num && *src != '\0'; ++i, ++dst, ++src)
8355 *dst = TOUPPER (*src);
8356 *dst = '\0';
8357}
8358
8359/* Assume STR point to a lower-case string, allocate, convert and return
8360 the corresponding upper-case string. */
8361static inline const char*
8362get_upper_str (const char *str)
8363{
8364 char *ret;
8365 size_t len = strlen (str);
325801bd 8366 ret = XNEWVEC (char, len + 1);
a06ea964
NC
8367 convert_to_upper (ret, str, len);
8368 return ret;
8369}
8370
8371/* MD interface: Initialization. */
8372
8373void
8374md_begin (void)
8375{
8376 unsigned mach;
8377 unsigned int i;
8378
8379 if ((aarch64_ops_hsh = hash_new ()) == NULL
8380 || (aarch64_cond_hsh = hash_new ()) == NULL
8381 || (aarch64_shift_hsh = hash_new ()) == NULL
8382 || (aarch64_sys_regs_hsh = hash_new ()) == NULL
8383 || (aarch64_pstatefield_hsh = hash_new ()) == NULL
8384 || (aarch64_sys_regs_ic_hsh = hash_new ()) == NULL
8385 || (aarch64_sys_regs_dc_hsh = hash_new ()) == NULL
8386 || (aarch64_sys_regs_at_hsh = hash_new ()) == NULL
8387 || (aarch64_sys_regs_tlbi_hsh = hash_new ()) == NULL
8388 || (aarch64_reg_hsh = hash_new ()) == NULL
8389 || (aarch64_barrier_opt_hsh = hash_new ()) == NULL
8390 || (aarch64_nzcv_hsh = hash_new ()) == NULL
1e6f4800
MW
8391 || (aarch64_pldop_hsh = hash_new ()) == NULL
8392 || (aarch64_hint_opt_hsh = hash_new ()) == NULL)
a06ea964
NC
8393 as_fatal (_("virtual memory exhausted"));
8394
8395 fill_instruction_hash_table ();
8396
8397 for (i = 0; aarch64_sys_regs[i].name != NULL; ++i)
8398 checked_hash_insert (aarch64_sys_regs_hsh, aarch64_sys_regs[i].name,
8399 (void *) (aarch64_sys_regs + i));
8400
8401 for (i = 0; aarch64_pstatefields[i].name != NULL; ++i)
8402 checked_hash_insert (aarch64_pstatefield_hsh,
8403 aarch64_pstatefields[i].name,
8404 (void *) (aarch64_pstatefields + i));
8405
875880c6 8406 for (i = 0; aarch64_sys_regs_ic[i].name != NULL; i++)
a06ea964 8407 checked_hash_insert (aarch64_sys_regs_ic_hsh,
875880c6 8408 aarch64_sys_regs_ic[i].name,
a06ea964
NC
8409 (void *) (aarch64_sys_regs_ic + i));
8410
875880c6 8411 for (i = 0; aarch64_sys_regs_dc[i].name != NULL; i++)
a06ea964 8412 checked_hash_insert (aarch64_sys_regs_dc_hsh,
875880c6 8413 aarch64_sys_regs_dc[i].name,
a06ea964
NC
8414 (void *) (aarch64_sys_regs_dc + i));
8415
875880c6 8416 for (i = 0; aarch64_sys_regs_at[i].name != NULL; i++)
a06ea964 8417 checked_hash_insert (aarch64_sys_regs_at_hsh,
875880c6 8418 aarch64_sys_regs_at[i].name,
a06ea964
NC
8419 (void *) (aarch64_sys_regs_at + i));
8420
875880c6 8421 for (i = 0; aarch64_sys_regs_tlbi[i].name != NULL; i++)
a06ea964 8422 checked_hash_insert (aarch64_sys_regs_tlbi_hsh,
875880c6 8423 aarch64_sys_regs_tlbi[i].name,
a06ea964
NC
8424 (void *) (aarch64_sys_regs_tlbi + i));
8425
8426 for (i = 0; i < ARRAY_SIZE (reg_names); i++)
8427 checked_hash_insert (aarch64_reg_hsh, reg_names[i].name,
8428 (void *) (reg_names + i));
8429
8430 for (i = 0; i < ARRAY_SIZE (nzcv_names); i++)
8431 checked_hash_insert (aarch64_nzcv_hsh, nzcv_names[i].template,
8432 (void *) (nzcv_names + i));
8433
8434 for (i = 0; aarch64_operand_modifiers[i].name != NULL; i++)
8435 {
8436 const char *name = aarch64_operand_modifiers[i].name;
8437 checked_hash_insert (aarch64_shift_hsh, name,
8438 (void *) (aarch64_operand_modifiers + i));
8439 /* Also hash the name in the upper case. */
8440 checked_hash_insert (aarch64_shift_hsh, get_upper_str (name),
8441 (void *) (aarch64_operand_modifiers + i));
8442 }
8443
8444 for (i = 0; i < ARRAY_SIZE (aarch64_conds); i++)
8445 {
8446 unsigned int j;
8447 /* A condition code may have alias(es), e.g. "cc", "lo" and "ul" are
8448 the same condition code. */
8449 for (j = 0; j < ARRAY_SIZE (aarch64_conds[i].names); ++j)
8450 {
8451 const char *name = aarch64_conds[i].names[j];
8452 if (name == NULL)
8453 break;
8454 checked_hash_insert (aarch64_cond_hsh, name,
8455 (void *) (aarch64_conds + i));
8456 /* Also hash the name in the upper case. */
8457 checked_hash_insert (aarch64_cond_hsh, get_upper_str (name),
8458 (void *) (aarch64_conds + i));
8459 }
8460 }
8461
8462 for (i = 0; i < ARRAY_SIZE (aarch64_barrier_options); i++)
8463 {
8464 const char *name = aarch64_barrier_options[i].name;
8465 /* Skip xx00 - the unallocated values of option. */
8466 if ((i & 0x3) == 0)
8467 continue;
8468 checked_hash_insert (aarch64_barrier_opt_hsh, name,
8469 (void *) (aarch64_barrier_options + i));
8470 /* Also hash the name in the upper case. */
8471 checked_hash_insert (aarch64_barrier_opt_hsh, get_upper_str (name),
8472 (void *) (aarch64_barrier_options + i));
8473 }
8474
8475 for (i = 0; i < ARRAY_SIZE (aarch64_prfops); i++)
8476 {
8477 const char* name = aarch64_prfops[i].name;
a1ccaec9
YZ
8478 /* Skip the unallocated hint encodings. */
8479 if (name == NULL)
a06ea964
NC
8480 continue;
8481 checked_hash_insert (aarch64_pldop_hsh, name,
8482 (void *) (aarch64_prfops + i));
8483 /* Also hash the name in the upper case. */
8484 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
8485 (void *) (aarch64_prfops + i));
8486 }
8487
1e6f4800
MW
8488 for (i = 0; aarch64_hint_options[i].name != NULL; i++)
8489 {
8490 const char* name = aarch64_hint_options[i].name;
8491
8492 checked_hash_insert (aarch64_hint_opt_hsh, name,
8493 (void *) (aarch64_hint_options + i));
8494 /* Also hash the name in the upper case. */
8495 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
8496 (void *) (aarch64_hint_options + i));
8497 }
8498
a06ea964
NC
8499 /* Set the cpu variant based on the command-line options. */
8500 if (!mcpu_cpu_opt)
8501 mcpu_cpu_opt = march_cpu_opt;
8502
8503 if (!mcpu_cpu_opt)
8504 mcpu_cpu_opt = &cpu_default;
8505
8506 cpu_variant = *mcpu_cpu_opt;
8507
8508 /* Record the CPU type. */
cec5225b 8509 mach = ilp32_p ? bfd_mach_aarch64_ilp32 : bfd_mach_aarch64;
a06ea964
NC
8510
8511 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
8512}
8513
8514/* Command line processing. */
8515
8516const char *md_shortopts = "m:";
8517
8518#ifdef AARCH64_BI_ENDIAN
8519#define OPTION_EB (OPTION_MD_BASE + 0)
8520#define OPTION_EL (OPTION_MD_BASE + 1)
8521#else
8522#if TARGET_BYTES_BIG_ENDIAN
8523#define OPTION_EB (OPTION_MD_BASE + 0)
8524#else
8525#define OPTION_EL (OPTION_MD_BASE + 1)
8526#endif
8527#endif
8528
8529struct option md_longopts[] = {
8530#ifdef OPTION_EB
8531 {"EB", no_argument, NULL, OPTION_EB},
8532#endif
8533#ifdef OPTION_EL
8534 {"EL", no_argument, NULL, OPTION_EL},
8535#endif
8536 {NULL, no_argument, NULL, 0}
8537};
8538
8539size_t md_longopts_size = sizeof (md_longopts);
8540
8541struct aarch64_option_table
8542{
e0471c16
TS
8543 const char *option; /* Option name to match. */
8544 const char *help; /* Help information. */
a06ea964
NC
8545 int *var; /* Variable to change. */
8546 int value; /* What to change it to. */
8547 char *deprecated; /* If non-null, print this message. */
8548};
8549
8550static struct aarch64_option_table aarch64_opts[] = {
8551 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
8552 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
8553 NULL},
8554#ifdef DEBUG_AARCH64
8555 {"mdebug-dump", N_("temporary switch for dumping"), &debug_dump, 1, NULL},
8556#endif /* DEBUG_AARCH64 */
8557 {"mverbose-error", N_("output verbose error messages"), &verbose_error_p, 1,
8558 NULL},
a52e6fd3
YZ
8559 {"mno-verbose-error", N_("do not output verbose error messages"),
8560 &verbose_error_p, 0, NULL},
a06ea964
NC
8561 {NULL, NULL, NULL, 0, NULL}
8562};
8563
8564struct aarch64_cpu_option_table
8565{
e0471c16 8566 const char *name;
a06ea964
NC
8567 const aarch64_feature_set value;
8568 /* The canonical name of the CPU, or NULL to use NAME converted to upper
8569 case. */
8570 const char *canonical_name;
8571};
8572
8573/* This list should, at a minimum, contain all the cpu names
8574 recognized by GCC. */
8575static const struct aarch64_cpu_option_table aarch64_cpus[] = {
8576 {"all", AARCH64_ANY, NULL},
9c352f1c
JG
8577 {"cortex-a35", AARCH64_FEATURE (AARCH64_ARCH_V8,
8578 AARCH64_FEATURE_CRC), "Cortex-A35"},
aa31c464
JW
8579 {"cortex-a53", AARCH64_FEATURE (AARCH64_ARCH_V8,
8580 AARCH64_FEATURE_CRC), "Cortex-A53"},
8581 {"cortex-a57", AARCH64_FEATURE (AARCH64_ARCH_V8,
8582 AARCH64_FEATURE_CRC), "Cortex-A57"},
2abdd192
JW
8583 {"cortex-a72", AARCH64_FEATURE (AARCH64_ARCH_V8,
8584 AARCH64_FEATURE_CRC), "Cortex-A72"},
1aa70332
KT
8585 {"cortex-a73", AARCH64_FEATURE (AARCH64_ARCH_V8,
8586 AARCH64_FEATURE_CRC), "Cortex-A73"},
1e292627 8587 {"cortex-a55", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
1c5c938a 8588 AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16 | AARCH64_FEATURE_DOTPROD),
1e292627
JG
8589 "Cortex-A55"},
8590 {"cortex-a75", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
1c5c938a 8591 AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16 | AARCH64_FEATURE_DOTPROD),
1e292627 8592 "Cortex-A75"},
2412d878
EM
8593 {"exynos-m1", AARCH64_FEATURE (AARCH64_ARCH_V8,
8594 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
8595 "Samsung Exynos M1"},
2fe9c2a0 8596 {"falkor", AARCH64_FEATURE (AARCH64_ARCH_V8,
e58ff055
JW
8597 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO
8598 | AARCH64_FEATURE_RDMA),
2fe9c2a0 8599 "Qualcomm Falkor"},
6b21c2bf 8600 {"qdf24xx", AARCH64_FEATURE (AARCH64_ARCH_V8,
e58ff055
JW
8601 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO
8602 | AARCH64_FEATURE_RDMA),
6b21c2bf 8603 "Qualcomm QDF24XX"},
7605d944
SP
8604 {"saphira", AARCH64_FEATURE (AARCH64_ARCH_V8_3,
8605 AARCH64_FEATURE_CRYPTO | AARCH64_FEATURE_PROFILE),
8606 "Qualcomm Saphira"},
faade851
JW
8607 {"thunderx", AARCH64_FEATURE (AARCH64_ARCH_V8,
8608 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
8609 "Cavium ThunderX"},
9f99c22e
VP
8610 {"vulcan", AARCH64_FEATURE (AARCH64_ARCH_V8_1,
8611 AARCH64_FEATURE_CRYPTO),
0a8be2fe 8612 "Broadcom Vulcan"},
070cb956
PT
8613 /* The 'xgene-1' name is an older name for 'xgene1', which was used
8614 in earlier releases and is superseded by 'xgene1' in all
8615 tools. */
9877c63c 8616 {"xgene-1", AARCH64_ARCH_V8, "APM X-Gene 1"},
070cb956 8617 {"xgene1", AARCH64_ARCH_V8, "APM X-Gene 1"},
aa31c464
JW
8618 {"xgene2", AARCH64_FEATURE (AARCH64_ARCH_V8,
8619 AARCH64_FEATURE_CRC), "APM X-Gene 2"},
a06ea964
NC
8620 {"generic", AARCH64_ARCH_V8, NULL},
8621
a06ea964
NC
8622 {NULL, AARCH64_ARCH_NONE, NULL}
8623};
8624
8625struct aarch64_arch_option_table
8626{
e0471c16 8627 const char *name;
a06ea964
NC
8628 const aarch64_feature_set value;
8629};
8630
8631/* This list should, at a minimum, contain all the architecture names
8632 recognized by GCC. */
8633static const struct aarch64_arch_option_table aarch64_archs[] = {
8634 {"all", AARCH64_ANY},
5a1ad39d 8635 {"armv8-a", AARCH64_ARCH_V8},
88f0ea34 8636 {"armv8.1-a", AARCH64_ARCH_V8_1},
acb787b0 8637 {"armv8.2-a", AARCH64_ARCH_V8_2},
1924ff75 8638 {"armv8.3-a", AARCH64_ARCH_V8_3},
b6b9ca0c 8639 {"armv8.4-a", AARCH64_ARCH_V8_4},
a06ea964
NC
8640 {NULL, AARCH64_ARCH_NONE}
8641};
8642
8643/* ISA extensions. */
8644struct aarch64_option_cpu_value_table
8645{
e0471c16 8646 const char *name;
a06ea964 8647 const aarch64_feature_set value;
93d8990c 8648 const aarch64_feature_set require; /* Feature dependencies. */
a06ea964
NC
8649};
8650
8651static const struct aarch64_option_cpu_value_table aarch64_features[] = {
93d8990c
SN
8652 {"crc", AARCH64_FEATURE (AARCH64_FEATURE_CRC, 0),
8653 AARCH64_ARCH_NONE},
c0e7cef7
NC
8654 {"crypto", AARCH64_FEATURE (AARCH64_FEATURE_CRYPTO
8655 | AARCH64_FEATURE_AES
8656 | AARCH64_FEATURE_SHA2, 0),
fa09f4ea 8657 AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
93d8990c
SN
8658 {"fp", AARCH64_FEATURE (AARCH64_FEATURE_FP, 0),
8659 AARCH64_ARCH_NONE},
8660 {"lse", AARCH64_FEATURE (AARCH64_FEATURE_LSE, 0),
8661 AARCH64_ARCH_NONE},
8662 {"simd", AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0),
fa09f4ea 8663 AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
93d8990c
SN
8664 {"pan", AARCH64_FEATURE (AARCH64_FEATURE_PAN, 0),
8665 AARCH64_ARCH_NONE},
8666 {"lor", AARCH64_FEATURE (AARCH64_FEATURE_LOR, 0),
8667 AARCH64_ARCH_NONE},
8668 {"ras", AARCH64_FEATURE (AARCH64_FEATURE_RAS, 0),
8669 AARCH64_ARCH_NONE},
8670 {"rdma", AARCH64_FEATURE (AARCH64_FEATURE_RDMA, 0),
8671 AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
8672 {"fp16", AARCH64_FEATURE (AARCH64_FEATURE_F16, 0),
8673 AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
d0f7791c
TC
8674 {"fp16fml", AARCH64_FEATURE (AARCH64_FEATURE_F16_FML, 0),
8675 AARCH64_FEATURE (AARCH64_FEATURE_FP
8676 | AARCH64_FEATURE_F16, 0)},
93d8990c
SN
8677 {"profile", AARCH64_FEATURE (AARCH64_FEATURE_PROFILE, 0),
8678 AARCH64_ARCH_NONE},
c0890d26 8679 {"sve", AARCH64_FEATURE (AARCH64_FEATURE_SVE, 0),
582e12bf
RS
8680 AARCH64_FEATURE (AARCH64_FEATURE_F16
8681 | AARCH64_FEATURE_SIMD
8682 | AARCH64_FEATURE_COMPNUM, 0)},
f482d304
RS
8683 {"compnum", AARCH64_FEATURE (AARCH64_FEATURE_COMPNUM, 0),
8684 AARCH64_FEATURE (AARCH64_FEATURE_F16
8685 | AARCH64_FEATURE_SIMD, 0)},
d74d4880
SN
8686 {"rcpc", AARCH64_FEATURE (AARCH64_FEATURE_RCPC, 0),
8687 AARCH64_ARCH_NONE},
65a55fbb
TC
8688 {"dotprod", AARCH64_FEATURE (AARCH64_FEATURE_DOTPROD, 0),
8689 AARCH64_ARCH_NONE},
c0e7cef7
NC
8690 {"sha2", AARCH64_FEATURE (AARCH64_FEATURE_SHA2, 0),
8691 AARCH64_ARCH_NONE},
8692 {"aes", AARCH64_FEATURE (AARCH64_FEATURE_AES, 0),
8693 AARCH64_ARCH_NONE},
b6b9ca0c
TC
8694 {"sm4", AARCH64_FEATURE (AARCH64_FEATURE_SM4, 0),
8695 AARCH64_ARCH_NONE},
8696 {"sha3", AARCH64_FEATURE (AARCH64_FEATURE_SHA2
8697 | AARCH64_FEATURE_SHA3, 0),
8698 AARCH64_ARCH_NONE},
93d8990c 8699 {NULL, AARCH64_ARCH_NONE, AARCH64_ARCH_NONE},
a06ea964
NC
8700};
8701
8702struct aarch64_long_option_table
8703{
e0471c16
TS
8704 const char *option; /* Substring to match. */
8705 const char *help; /* Help information. */
17b9d67d 8706 int (*func) (const char *subopt); /* Function to decode sub-option. */
a06ea964
NC
8707 char *deprecated; /* If non-null, print this message. */
8708};
8709
93d8990c
SN
8710/* Transitive closure of features depending on set. */
8711static aarch64_feature_set
8712aarch64_feature_disable_set (aarch64_feature_set set)
8713{
8714 const struct aarch64_option_cpu_value_table *opt;
8715 aarch64_feature_set prev = 0;
8716
8717 while (prev != set) {
8718 prev = set;
8719 for (opt = aarch64_features; opt->name != NULL; opt++)
8720 if (AARCH64_CPU_HAS_ANY_FEATURES (opt->require, set))
8721 AARCH64_MERGE_FEATURE_SETS (set, set, opt->value);
8722 }
8723 return set;
8724}
8725
8726/* Transitive closure of dependencies of set. */
8727static aarch64_feature_set
8728aarch64_feature_enable_set (aarch64_feature_set set)
8729{
8730 const struct aarch64_option_cpu_value_table *opt;
8731 aarch64_feature_set prev = 0;
8732
8733 while (prev != set) {
8734 prev = set;
8735 for (opt = aarch64_features; opt->name != NULL; opt++)
8736 if (AARCH64_CPU_HAS_FEATURE (set, opt->value))
8737 AARCH64_MERGE_FEATURE_SETS (set, set, opt->require);
8738 }
8739 return set;
8740}
8741
a06ea964 8742static int
82b8a785 8743aarch64_parse_features (const char *str, const aarch64_feature_set **opt_p,
ae527cd8 8744 bfd_boolean ext_only)
a06ea964
NC
8745{
8746 /* We insist on extensions being added before being removed. We achieve
8747 this by using the ADDING_VALUE variable to indicate whether we are
8748 adding an extension (1) or removing it (0) and only allowing it to
8749 change in the order -1 -> 1 -> 0. */
8750 int adding_value = -1;
325801bd 8751 aarch64_feature_set *ext_set = XNEW (aarch64_feature_set);
a06ea964
NC
8752
8753 /* Copy the feature set, so that we can modify it. */
8754 *ext_set = **opt_p;
8755 *opt_p = ext_set;
8756
8757 while (str != NULL && *str != 0)
8758 {
8759 const struct aarch64_option_cpu_value_table *opt;
82b8a785 8760 const char *ext = NULL;
a06ea964
NC
8761 int optlen;
8762
ae527cd8 8763 if (!ext_only)
a06ea964 8764 {
ae527cd8
JB
8765 if (*str != '+')
8766 {
8767 as_bad (_("invalid architectural extension"));
8768 return 0;
8769 }
a06ea964 8770
ae527cd8
JB
8771 ext = strchr (++str, '+');
8772 }
a06ea964
NC
8773
8774 if (ext != NULL)
8775 optlen = ext - str;
8776 else
8777 optlen = strlen (str);
8778
8779 if (optlen >= 2 && strncmp (str, "no", 2) == 0)
8780 {
8781 if (adding_value != 0)
8782 adding_value = 0;
8783 optlen -= 2;
8784 str += 2;
8785 }
8786 else if (optlen > 0)
8787 {
8788 if (adding_value == -1)
8789 adding_value = 1;
8790 else if (adding_value != 1)
8791 {
8792 as_bad (_("must specify extensions to add before specifying "
8793 "those to remove"));
8794 return FALSE;
8795 }
8796 }
8797
8798 if (optlen == 0)
8799 {
8800 as_bad (_("missing architectural extension"));
8801 return 0;
8802 }
8803
8804 gas_assert (adding_value != -1);
8805
8806 for (opt = aarch64_features; opt->name != NULL; opt++)
8807 if (strncmp (opt->name, str, optlen) == 0)
8808 {
93d8990c
SN
8809 aarch64_feature_set set;
8810
a06ea964
NC
8811 /* Add or remove the extension. */
8812 if (adding_value)
93d8990c
SN
8813 {
8814 set = aarch64_feature_enable_set (opt->value);
8815 AARCH64_MERGE_FEATURE_SETS (*ext_set, *ext_set, set);
8816 }
a06ea964 8817 else
93d8990c
SN
8818 {
8819 set = aarch64_feature_disable_set (opt->value);
8820 AARCH64_CLEAR_FEATURE (*ext_set, *ext_set, set);
8821 }
a06ea964
NC
8822 break;
8823 }
8824
8825 if (opt->name == NULL)
8826 {
8827 as_bad (_("unknown architectural extension `%s'"), str);
8828 return 0;
8829 }
8830
8831 str = ext;
8832 };
8833
8834 return 1;
8835}
8836
8837static int
17b9d67d 8838aarch64_parse_cpu (const char *str)
a06ea964
NC
8839{
8840 const struct aarch64_cpu_option_table *opt;
82b8a785 8841 const char *ext = strchr (str, '+');
a06ea964
NC
8842 size_t optlen;
8843
8844 if (ext != NULL)
8845 optlen = ext - str;
8846 else
8847 optlen = strlen (str);
8848
8849 if (optlen == 0)
8850 {
8851 as_bad (_("missing cpu name `%s'"), str);
8852 return 0;
8853 }
8854
8855 for (opt = aarch64_cpus; opt->name != NULL; opt++)
8856 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
8857 {
8858 mcpu_cpu_opt = &opt->value;
8859 if (ext != NULL)
ae527cd8 8860 return aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE);
a06ea964
NC
8861
8862 return 1;
8863 }
8864
8865 as_bad (_("unknown cpu `%s'"), str);
8866 return 0;
8867}
8868
8869static int
17b9d67d 8870aarch64_parse_arch (const char *str)
a06ea964
NC
8871{
8872 const struct aarch64_arch_option_table *opt;
82b8a785 8873 const char *ext = strchr (str, '+');
a06ea964
NC
8874 size_t optlen;
8875
8876 if (ext != NULL)
8877 optlen = ext - str;
8878 else
8879 optlen = strlen (str);
8880
8881 if (optlen == 0)
8882 {
8883 as_bad (_("missing architecture name `%s'"), str);
8884 return 0;
8885 }
8886
8887 for (opt = aarch64_archs; opt->name != NULL; opt++)
8888 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
8889 {
8890 march_cpu_opt = &opt->value;
8891 if (ext != NULL)
ae527cd8 8892 return aarch64_parse_features (ext, &march_cpu_opt, FALSE);
a06ea964
NC
8893
8894 return 1;
8895 }
8896
8897 as_bad (_("unknown architecture `%s'\n"), str);
8898 return 0;
8899}
8900
69091a2c
YZ
8901/* ABIs. */
8902struct aarch64_option_abi_value_table
8903{
e0471c16 8904 const char *name;
69091a2c
YZ
8905 enum aarch64_abi_type value;
8906};
8907
8908static const struct aarch64_option_abi_value_table aarch64_abis[] = {
8909 {"ilp32", AARCH64_ABI_ILP32},
8910 {"lp64", AARCH64_ABI_LP64},
69091a2c
YZ
8911};
8912
8913static int
17b9d67d 8914aarch64_parse_abi (const char *str)
69091a2c 8915{
5703197e 8916 unsigned int i;
69091a2c 8917
5703197e 8918 if (str[0] == '\0')
69091a2c
YZ
8919 {
8920 as_bad (_("missing abi name `%s'"), str);
8921 return 0;
8922 }
8923
5703197e
TS
8924 for (i = 0; i < ARRAY_SIZE (aarch64_abis); i++)
8925 if (strcmp (str, aarch64_abis[i].name) == 0)
69091a2c 8926 {
5703197e 8927 aarch64_abi = aarch64_abis[i].value;
69091a2c
YZ
8928 return 1;
8929 }
8930
8931 as_bad (_("unknown abi `%s'\n"), str);
8932 return 0;
8933}
8934
a06ea964 8935static struct aarch64_long_option_table aarch64_long_opts[] = {
69091a2c
YZ
8936#ifdef OBJ_ELF
8937 {"mabi=", N_("<abi name>\t specify for ABI <abi name>"),
8938 aarch64_parse_abi, NULL},
8939#endif /* OBJ_ELF */
a06ea964
NC
8940 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
8941 aarch64_parse_cpu, NULL},
8942 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
8943 aarch64_parse_arch, NULL},
8944 {NULL, NULL, 0, NULL}
8945};
8946
8947int
17b9d67d 8948md_parse_option (int c, const char *arg)
a06ea964
NC
8949{
8950 struct aarch64_option_table *opt;
8951 struct aarch64_long_option_table *lopt;
8952
8953 switch (c)
8954 {
8955#ifdef OPTION_EB
8956 case OPTION_EB:
8957 target_big_endian = 1;
8958 break;
8959#endif
8960
8961#ifdef OPTION_EL
8962 case OPTION_EL:
8963 target_big_endian = 0;
8964 break;
8965#endif
8966
8967 case 'a':
8968 /* Listing option. Just ignore these, we don't support additional
8969 ones. */
8970 return 0;
8971
8972 default:
8973 for (opt = aarch64_opts; opt->option != NULL; opt++)
8974 {
8975 if (c == opt->option[0]
8976 && ((arg == NULL && opt->option[1] == 0)
8977 || streq (arg, opt->option + 1)))
8978 {
8979 /* If the option is deprecated, tell the user. */
8980 if (opt->deprecated != NULL)
8981 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
8982 arg ? arg : "", _(opt->deprecated));
8983
8984 if (opt->var != NULL)
8985 *opt->var = opt->value;
8986
8987 return 1;
8988 }
8989 }
8990
8991 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
8992 {
8993 /* These options are expected to have an argument. */
8994 if (c == lopt->option[0]
8995 && arg != NULL
8996 && strncmp (arg, lopt->option + 1,
8997 strlen (lopt->option + 1)) == 0)
8998 {
8999 /* If the option is deprecated, tell the user. */
9000 if (lopt->deprecated != NULL)
9001 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
9002 _(lopt->deprecated));
9003
9004 /* Call the sup-option parser. */
9005 return lopt->func (arg + strlen (lopt->option) - 1);
9006 }
9007 }
9008
9009 return 0;
9010 }
9011
9012 return 1;
9013}
9014
9015void
9016md_show_usage (FILE * fp)
9017{
9018 struct aarch64_option_table *opt;
9019 struct aarch64_long_option_table *lopt;
9020
9021 fprintf (fp, _(" AArch64-specific assembler options:\n"));
9022
9023 for (opt = aarch64_opts; opt->option != NULL; opt++)
9024 if (opt->help != NULL)
9025 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
9026
9027 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
9028 if (lopt->help != NULL)
9029 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
9030
9031#ifdef OPTION_EB
9032 fprintf (fp, _("\
9033 -EB assemble code for a big-endian cpu\n"));
9034#endif
9035
9036#ifdef OPTION_EL
9037 fprintf (fp, _("\
9038 -EL assemble code for a little-endian cpu\n"));
9039#endif
9040}
9041
9042/* Parse a .cpu directive. */
9043
9044static void
9045s_aarch64_cpu (int ignored ATTRIBUTE_UNUSED)
9046{
9047 const struct aarch64_cpu_option_table *opt;
9048 char saved_char;
9049 char *name;
9050 char *ext;
9051 size_t optlen;
9052
9053 name = input_line_pointer;
9054 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
9055 input_line_pointer++;
9056 saved_char = *input_line_pointer;
9057 *input_line_pointer = 0;
9058
9059 ext = strchr (name, '+');
9060
9061 if (ext != NULL)
9062 optlen = ext - name;
9063 else
9064 optlen = strlen (name);
9065
9066 /* Skip the first "all" entry. */
9067 for (opt = aarch64_cpus + 1; opt->name != NULL; opt++)
9068 if (strlen (opt->name) == optlen
9069 && strncmp (name, opt->name, optlen) == 0)
9070 {
9071 mcpu_cpu_opt = &opt->value;
9072 if (ext != NULL)
ae527cd8 9073 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
a06ea964
NC
9074 return;
9075
9076 cpu_variant = *mcpu_cpu_opt;
9077
9078 *input_line_pointer = saved_char;
9079 demand_empty_rest_of_line ();
9080 return;
9081 }
9082 as_bad (_("unknown cpu `%s'"), name);
9083 *input_line_pointer = saved_char;
9084 ignore_rest_of_line ();
9085}
9086
9087
9088/* Parse a .arch directive. */
9089
9090static void
9091s_aarch64_arch (int ignored ATTRIBUTE_UNUSED)
9092{
9093 const struct aarch64_arch_option_table *opt;
9094 char saved_char;
9095 char *name;
9096 char *ext;
9097 size_t optlen;
9098
9099 name = input_line_pointer;
9100 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
9101 input_line_pointer++;
9102 saved_char = *input_line_pointer;
9103 *input_line_pointer = 0;
9104
9105 ext = strchr (name, '+');
9106
9107 if (ext != NULL)
9108 optlen = ext - name;
9109 else
9110 optlen = strlen (name);
9111
9112 /* Skip the first "all" entry. */
9113 for (opt = aarch64_archs + 1; opt->name != NULL; opt++)
9114 if (strlen (opt->name) == optlen
9115 && strncmp (name, opt->name, optlen) == 0)
9116 {
9117 mcpu_cpu_opt = &opt->value;
9118 if (ext != NULL)
ae527cd8 9119 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
a06ea964
NC
9120 return;
9121
9122 cpu_variant = *mcpu_cpu_opt;
9123
9124 *input_line_pointer = saved_char;
9125 demand_empty_rest_of_line ();
9126 return;
9127 }
9128
9129 as_bad (_("unknown architecture `%s'\n"), name);
9130 *input_line_pointer = saved_char;
9131 ignore_rest_of_line ();
9132}
9133
ae527cd8
JB
9134/* Parse a .arch_extension directive. */
9135
9136static void
9137s_aarch64_arch_extension (int ignored ATTRIBUTE_UNUSED)
9138{
9139 char saved_char;
9140 char *ext = input_line_pointer;;
9141
9142 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
9143 input_line_pointer++;
9144 saved_char = *input_line_pointer;
9145 *input_line_pointer = 0;
9146
9147 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, TRUE))
9148 return;
9149
9150 cpu_variant = *mcpu_cpu_opt;
9151
9152 *input_line_pointer = saved_char;
9153 demand_empty_rest_of_line ();
9154}
9155
a06ea964
NC
9156/* Copy symbol information. */
9157
9158void
9159aarch64_copy_symbol_attributes (symbolS * dest, symbolS * src)
9160{
9161 AARCH64_GET_FLAG (dest) = AARCH64_GET_FLAG (src);
9162}
This page took 1.09861 seconds and 4 git commands to generate.