AArch64: Wire through instr_sequence
[deliverable/binutils-gdb.git] / gas / config / tc-aarch64.c
CommitLineData
a06ea964
NC
1/* tc-aarch64.c -- Assemble for the AArch64 ISA
2
219d1afa 3 Copyright (C) 2009-2018 Free Software Foundation, Inc.
a06ea964
NC
4 Contributed by ARM Ltd.
5
6 This file is part of GAS.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the license, or
11 (at your option) any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING3. If not,
20 see <http://www.gnu.org/licenses/>. */
21
22#include "as.h"
23#include <limits.h>
24#include <stdarg.h>
25#include "bfd_stdint.h"
26#define NO_RELOC 0
27#include "safe-ctype.h"
28#include "subsegs.h"
29#include "obstack.h"
30
31#ifdef OBJ_ELF
32#include "elf/aarch64.h"
33#include "dw2gencfi.h"
34#endif
35
36#include "dwarf2dbg.h"
37
38/* Types of processor to assemble for. */
39#ifndef CPU_DEFAULT
40#define CPU_DEFAULT AARCH64_ARCH_V8
41#endif
42
43#define streq(a, b) (strcmp (a, b) == 0)
44
f4c51f60
JW
45#define END_OF_INSN '\0'
46
a06ea964
NC
47static aarch64_feature_set cpu_variant;
48
49/* Variables that we set while parsing command-line options. Once all
50 options have been read we re-process these values to set the real
51 assembly flags. */
52static const aarch64_feature_set *mcpu_cpu_opt = NULL;
53static const aarch64_feature_set *march_cpu_opt = NULL;
54
55/* Constants for known architecture features. */
56static const aarch64_feature_set cpu_default = CPU_DEFAULT;
57
7e84b55d
TC
58/* Currently active instruction sequence. */
59static aarch64_instr_sequence *insn_sequence = NULL;
60
a06ea964
NC
61#ifdef OBJ_ELF
62/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
63static symbolS *GOT_symbol;
cec5225b 64
69091a2c
YZ
65/* Which ABI to use. */
66enum aarch64_abi_type
67{
3c0367d0
JW
68 AARCH64_ABI_NONE = 0,
69 AARCH64_ABI_LP64 = 1,
70 AARCH64_ABI_ILP32 = 2
69091a2c
YZ
71};
72
3c0367d0
JW
73#ifndef DEFAULT_ARCH
74#define DEFAULT_ARCH "aarch64"
75#endif
76
77/* DEFAULT_ARCH is initialized in gas/configure.tgt. */
78static const char *default_arch = DEFAULT_ARCH;
79
69091a2c 80/* AArch64 ABI for the output file. */
3c0367d0 81static enum aarch64_abi_type aarch64_abi = AARCH64_ABI_NONE;
69091a2c 82
cec5225b
YZ
83/* When non-zero, program to a 32-bit model, in which the C data types
84 int, long and all pointer types are 32-bit objects (ILP32); or to a
85 64-bit model, in which the C int type is 32-bits but the C long type
86 and all pointer types are 64-bit objects (LP64). */
69091a2c 87#define ilp32_p (aarch64_abi == AARCH64_ABI_ILP32)
a06ea964
NC
88#endif
89
f06935a5 90enum vector_el_type
a06ea964
NC
91{
92 NT_invtype = -1,
93 NT_b,
94 NT_h,
95 NT_s,
96 NT_d,
d50c751e
RS
97 NT_q,
98 NT_zero,
99 NT_merge
a06ea964
NC
100};
101
8f9a77af 102/* Bits for DEFINED field in vector_type_el. */
f11ad6bc
RS
103#define NTA_HASTYPE 1
104#define NTA_HASINDEX 2
105#define NTA_HASVARWIDTH 4
a06ea964 106
8f9a77af 107struct vector_type_el
a06ea964 108{
f06935a5 109 enum vector_el_type type;
a06ea964
NC
110 unsigned char defined;
111 unsigned width;
112 int64_t index;
113};
114
115#define FIXUP_F_HAS_EXPLICIT_SHIFT 0x00000001
116
117struct reloc
118{
119 bfd_reloc_code_real_type type;
120 expressionS exp;
121 int pc_rel;
122 enum aarch64_opnd opnd;
123 uint32_t flags;
124 unsigned need_libopcodes_p : 1;
125};
126
127struct aarch64_instruction
128{
129 /* libopcodes structure for instruction intermediate representation. */
130 aarch64_inst base;
131 /* Record assembly errors found during the parsing. */
132 struct
133 {
134 enum aarch64_operand_error_kind kind;
135 const char *error;
136 } parsing_error;
137 /* The condition that appears in the assembly line. */
138 int cond;
139 /* Relocation information (including the GAS internal fixup). */
140 struct reloc reloc;
141 /* Need to generate an immediate in the literal pool. */
142 unsigned gen_lit_pool : 1;
143};
144
145typedef struct aarch64_instruction aarch64_instruction;
146
147static aarch64_instruction inst;
148
149static bfd_boolean parse_operands (char *, const aarch64_opcode *);
150static bfd_boolean programmer_friendly_fixup (aarch64_instruction *);
151
7e84b55d
TC
152#ifdef OBJ_ELF
153# define now_instr_sequence seg_info \
154 (now_seg)->tc_segment_info_data.insn_sequence
155#else
156static struct aarch64_instr_sequence now_instr_sequence;
157#endif
158
33eaf5de 159/* Diagnostics inline function utilities.
a06ea964 160
33eaf5de 161 These are lightweight utilities which should only be called by parse_operands
a06ea964
NC
162 and other parsers. GAS processes each assembly line by parsing it against
163 instruction template(s), in the case of multiple templates (for the same
164 mnemonic name), those templates are tried one by one until one succeeds or
165 all fail. An assembly line may fail a few templates before being
166 successfully parsed; an error saved here in most cases is not a user error
167 but an error indicating the current template is not the right template.
168 Therefore it is very important that errors can be saved at a low cost during
169 the parsing; we don't want to slow down the whole parsing by recording
170 non-user errors in detail.
171
33eaf5de 172 Remember that the objective is to help GAS pick up the most appropriate
a06ea964
NC
173 error message in the case of multiple templates, e.g. FMOV which has 8
174 templates. */
175
176static inline void
177clear_error (void)
178{
179 inst.parsing_error.kind = AARCH64_OPDE_NIL;
180 inst.parsing_error.error = NULL;
181}
182
183static inline bfd_boolean
184error_p (void)
185{
186 return inst.parsing_error.kind != AARCH64_OPDE_NIL;
187}
188
189static inline const char *
190get_error_message (void)
191{
192 return inst.parsing_error.error;
193}
194
a06ea964
NC
195static inline enum aarch64_operand_error_kind
196get_error_kind (void)
197{
198 return inst.parsing_error.kind;
199}
200
a06ea964
NC
201static inline void
202set_error (enum aarch64_operand_error_kind kind, const char *error)
203{
204 inst.parsing_error.kind = kind;
205 inst.parsing_error.error = error;
206}
207
208static inline void
209set_recoverable_error (const char *error)
210{
211 set_error (AARCH64_OPDE_RECOVERABLE, error);
212}
213
214/* Use the DESC field of the corresponding aarch64_operand entry to compose
215 the error message. */
216static inline void
217set_default_error (void)
218{
219 set_error (AARCH64_OPDE_SYNTAX_ERROR, NULL);
220}
221
222static inline void
223set_syntax_error (const char *error)
224{
225 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
226}
227
228static inline void
229set_first_syntax_error (const char *error)
230{
231 if (! error_p ())
232 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
233}
234
235static inline void
236set_fatal_syntax_error (const char *error)
237{
238 set_error (AARCH64_OPDE_FATAL_SYNTAX_ERROR, error);
239}
240\f
241/* Number of littlenums required to hold an extended precision number. */
242#define MAX_LITTLENUMS 6
243
244/* Return value for certain parsers when the parsing fails; those parsers
245 return the information of the parsed result, e.g. register number, on
246 success. */
247#define PARSE_FAIL -1
248
249/* This is an invalid condition code that means no conditional field is
250 present. */
251#define COND_ALWAYS 0x10
252
253typedef struct
254{
255 const char *template;
256 unsigned long value;
257} asm_barrier_opt;
258
259typedef struct
260{
261 const char *template;
262 uint32_t value;
263} asm_nzcv;
264
265struct reloc_entry
266{
267 char *name;
268 bfd_reloc_code_real_type reloc;
269};
270
a06ea964
NC
271/* Macros to define the register types and masks for the purpose
272 of parsing. */
273
274#undef AARCH64_REG_TYPES
275#define AARCH64_REG_TYPES \
276 BASIC_REG_TYPE(R_32) /* w[0-30] */ \
277 BASIC_REG_TYPE(R_64) /* x[0-30] */ \
278 BASIC_REG_TYPE(SP_32) /* wsp */ \
279 BASIC_REG_TYPE(SP_64) /* sp */ \
280 BASIC_REG_TYPE(Z_32) /* wzr */ \
281 BASIC_REG_TYPE(Z_64) /* xzr */ \
282 BASIC_REG_TYPE(FP_B) /* b[0-31] *//* NOTE: keep FP_[BHSDQ] consecutive! */\
283 BASIC_REG_TYPE(FP_H) /* h[0-31] */ \
284 BASIC_REG_TYPE(FP_S) /* s[0-31] */ \
285 BASIC_REG_TYPE(FP_D) /* d[0-31] */ \
286 BASIC_REG_TYPE(FP_Q) /* q[0-31] */ \
a06ea964 287 BASIC_REG_TYPE(VN) /* v[0-31] */ \
f11ad6bc
RS
288 BASIC_REG_TYPE(ZN) /* z[0-31] */ \
289 BASIC_REG_TYPE(PN) /* p[0-15] */ \
e1b988bb 290 /* Typecheck: any 64-bit int reg (inc SP exc XZR). */ \
a06ea964 291 MULTI_REG_TYPE(R64_SP, REG_TYPE(R_64) | REG_TYPE(SP_64)) \
4df068de
RS
292 /* Typecheck: same, plus SVE registers. */ \
293 MULTI_REG_TYPE(SVE_BASE, REG_TYPE(R_64) | REG_TYPE(SP_64) \
294 | REG_TYPE(ZN)) \
e1b988bb
RS
295 /* Typecheck: x[0-30], w[0-30] or [xw]zr. */ \
296 MULTI_REG_TYPE(R_Z, REG_TYPE(R_32) | REG_TYPE(R_64) \
297 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
4df068de
RS
298 /* Typecheck: same, plus SVE registers. */ \
299 MULTI_REG_TYPE(SVE_OFFSET, REG_TYPE(R_32) | REG_TYPE(R_64) \
300 | REG_TYPE(Z_32) | REG_TYPE(Z_64) \
301 | REG_TYPE(ZN)) \
e1b988bb
RS
302 /* Typecheck: x[0-30], w[0-30] or {w}sp. */ \
303 MULTI_REG_TYPE(R_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
304 | REG_TYPE(SP_32) | REG_TYPE(SP_64)) \
305 /* Typecheck: any int (inc {W}SP inc [WX]ZR). */ \
a06ea964
NC
306 MULTI_REG_TYPE(R_Z_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
307 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
308 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
309 /* Typecheck: any [BHSDQ]P FP. */ \
310 MULTI_REG_TYPE(BHSDQ, REG_TYPE(FP_B) | REG_TYPE(FP_H) \
311 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
e1b988bb 312 /* Typecheck: any int or [BHSDQ]P FP or V reg (exc SP inc [WX]ZR). */ \
a06ea964
NC
313 MULTI_REG_TYPE(R_Z_BHSDQ_V, REG_TYPE(R_32) | REG_TYPE(R_64) \
314 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
315 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
316 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
5b2b928e
JB
317 /* Typecheck: as above, but also Zn, Pn, and {W}SP. This should only \
318 be used for SVE instructions, since Zn and Pn are valid symbols \
c0890d26 319 in other contexts. */ \
5b2b928e
JB
320 MULTI_REG_TYPE(R_Z_SP_BHSDQ_VZP, REG_TYPE(R_32) | REG_TYPE(R_64) \
321 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
c0890d26
RS
322 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
323 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
324 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q) \
325 | REG_TYPE(ZN) | REG_TYPE(PN)) \
a06ea964
NC
326 /* Any integer register; used for error messages only. */ \
327 MULTI_REG_TYPE(R_N, REG_TYPE(R_32) | REG_TYPE(R_64) \
328 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
329 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
330 /* Pseudo type to mark the end of the enumerator sequence. */ \
331 BASIC_REG_TYPE(MAX)
332
333#undef BASIC_REG_TYPE
334#define BASIC_REG_TYPE(T) REG_TYPE_##T,
335#undef MULTI_REG_TYPE
336#define MULTI_REG_TYPE(T,V) BASIC_REG_TYPE(T)
337
338/* Register type enumerators. */
8a0b252a 339typedef enum aarch64_reg_type_
a06ea964
NC
340{
341 /* A list of REG_TYPE_*. */
342 AARCH64_REG_TYPES
343} aarch64_reg_type;
344
345#undef BASIC_REG_TYPE
346#define BASIC_REG_TYPE(T) 1 << REG_TYPE_##T,
347#undef REG_TYPE
348#define REG_TYPE(T) (1 << REG_TYPE_##T)
349#undef MULTI_REG_TYPE
350#define MULTI_REG_TYPE(T,V) V,
351
8a0b252a
TS
352/* Structure for a hash table entry for a register. */
353typedef struct
354{
355 const char *name;
356 unsigned char number;
357 ENUM_BITFIELD (aarch64_reg_type_) type : 8;
358 unsigned char builtin;
359} reg_entry;
360
a06ea964
NC
361/* Values indexed by aarch64_reg_type to assist the type checking. */
362static const unsigned reg_type_masks[] =
363{
364 AARCH64_REG_TYPES
365};
366
367#undef BASIC_REG_TYPE
368#undef REG_TYPE
369#undef MULTI_REG_TYPE
370#undef AARCH64_REG_TYPES
371
372/* Diagnostics used when we don't get a register of the expected type.
373 Note: this has to synchronized with aarch64_reg_type definitions
374 above. */
375static const char *
376get_reg_expected_msg (aarch64_reg_type reg_type)
377{
378 const char *msg;
379
380 switch (reg_type)
381 {
382 case REG_TYPE_R_32:
383 msg = N_("integer 32-bit register expected");
384 break;
385 case REG_TYPE_R_64:
386 msg = N_("integer 64-bit register expected");
387 break;
388 case REG_TYPE_R_N:
389 msg = N_("integer register expected");
390 break;
e1b988bb
RS
391 case REG_TYPE_R64_SP:
392 msg = N_("64-bit integer or SP register expected");
393 break;
4df068de
RS
394 case REG_TYPE_SVE_BASE:
395 msg = N_("base register expected");
396 break;
e1b988bb
RS
397 case REG_TYPE_R_Z:
398 msg = N_("integer or zero register expected");
399 break;
4df068de
RS
400 case REG_TYPE_SVE_OFFSET:
401 msg = N_("offset register expected");
402 break;
e1b988bb
RS
403 case REG_TYPE_R_SP:
404 msg = N_("integer or SP register expected");
405 break;
a06ea964
NC
406 case REG_TYPE_R_Z_SP:
407 msg = N_("integer, zero or SP register expected");
408 break;
409 case REG_TYPE_FP_B:
410 msg = N_("8-bit SIMD scalar register expected");
411 break;
412 case REG_TYPE_FP_H:
413 msg = N_("16-bit SIMD scalar or floating-point half precision "
414 "register expected");
415 break;
416 case REG_TYPE_FP_S:
417 msg = N_("32-bit SIMD scalar or floating-point single precision "
418 "register expected");
419 break;
420 case REG_TYPE_FP_D:
421 msg = N_("64-bit SIMD scalar or floating-point double precision "
422 "register expected");
423 break;
424 case REG_TYPE_FP_Q:
425 msg = N_("128-bit SIMD scalar or floating-point quad precision "
426 "register expected");
427 break;
a06ea964 428 case REG_TYPE_R_Z_BHSDQ_V:
5b2b928e 429 case REG_TYPE_R_Z_SP_BHSDQ_VZP:
a06ea964
NC
430 msg = N_("register expected");
431 break;
432 case REG_TYPE_BHSDQ: /* any [BHSDQ]P FP */
433 msg = N_("SIMD scalar or floating-point register expected");
434 break;
435 case REG_TYPE_VN: /* any V reg */
436 msg = N_("vector register expected");
437 break;
f11ad6bc
RS
438 case REG_TYPE_ZN:
439 msg = N_("SVE vector register expected");
440 break;
441 case REG_TYPE_PN:
442 msg = N_("SVE predicate register expected");
443 break;
a06ea964
NC
444 default:
445 as_fatal (_("invalid register type %d"), reg_type);
446 }
447 return msg;
448}
449
450/* Some well known registers that we refer to directly elsewhere. */
451#define REG_SP 31
452
453/* Instructions take 4 bytes in the object file. */
454#define INSN_SIZE 4
455
a06ea964
NC
456static struct hash_control *aarch64_ops_hsh;
457static struct hash_control *aarch64_cond_hsh;
458static struct hash_control *aarch64_shift_hsh;
459static struct hash_control *aarch64_sys_regs_hsh;
460static struct hash_control *aarch64_pstatefield_hsh;
461static struct hash_control *aarch64_sys_regs_ic_hsh;
462static struct hash_control *aarch64_sys_regs_dc_hsh;
463static struct hash_control *aarch64_sys_regs_at_hsh;
464static struct hash_control *aarch64_sys_regs_tlbi_hsh;
465static struct hash_control *aarch64_reg_hsh;
466static struct hash_control *aarch64_barrier_opt_hsh;
467static struct hash_control *aarch64_nzcv_hsh;
468static struct hash_control *aarch64_pldop_hsh;
1e6f4800 469static struct hash_control *aarch64_hint_opt_hsh;
a06ea964
NC
470
471/* Stuff needed to resolve the label ambiguity
472 As:
473 ...
474 label: <insn>
475 may differ from:
476 ...
477 label:
478 <insn> */
479
480static symbolS *last_label_seen;
481
482/* Literal pool structure. Held on a per-section
483 and per-sub-section basis. */
484
485#define MAX_LITERAL_POOL_SIZE 1024
55d9b4c1
NC
486typedef struct literal_expression
487{
488 expressionS exp;
489 /* If exp.op == O_big then this bignum holds a copy of the global bignum value. */
490 LITTLENUM_TYPE * bignum;
491} literal_expression;
492
a06ea964
NC
493typedef struct literal_pool
494{
55d9b4c1 495 literal_expression literals[MAX_LITERAL_POOL_SIZE];
a06ea964
NC
496 unsigned int next_free_entry;
497 unsigned int id;
498 symbolS *symbol;
499 segT section;
500 subsegT sub_section;
501 int size;
502 struct literal_pool *next;
503} literal_pool;
504
505/* Pointer to a linked list of literal pools. */
506static literal_pool *list_of_pools = NULL;
507\f
508/* Pure syntax. */
509
510/* This array holds the chars that always start a comment. If the
511 pre-processor is disabled, these aren't very useful. */
512const char comment_chars[] = "";
513
514/* This array holds the chars that only start a comment at the beginning of
515 a line. If the line seems to have the form '# 123 filename'
516 .line and .file directives will appear in the pre-processed output. */
517/* Note that input_file.c hand checks for '#' at the beginning of the
518 first line of the input file. This is because the compiler outputs
519 #NO_APP at the beginning of its output. */
520/* Also note that comments like this one will always work. */
521const char line_comment_chars[] = "#";
522
523const char line_separator_chars[] = ";";
524
525/* Chars that can be used to separate mant
526 from exp in floating point numbers. */
527const char EXP_CHARS[] = "eE";
528
529/* Chars that mean this number is a floating point constant. */
530/* As in 0f12.456 */
531/* or 0d1.2345e12 */
532
533const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
534
535/* Prefix character that indicates the start of an immediate value. */
536#define is_immediate_prefix(C) ((C) == '#')
537
538/* Separator character handling. */
539
540#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
541
542static inline bfd_boolean
543skip_past_char (char **str, char c)
544{
545 if (**str == c)
546 {
547 (*str)++;
548 return TRUE;
549 }
550 else
551 return FALSE;
552}
553
554#define skip_past_comma(str) skip_past_char (str, ',')
555
556/* Arithmetic expressions (possibly involving symbols). */
557
a06ea964
NC
558static bfd_boolean in_my_get_expression_p = FALSE;
559
560/* Third argument to my_get_expression. */
561#define GE_NO_PREFIX 0
562#define GE_OPT_PREFIX 1
563
564/* Return TRUE if the string pointed by *STR is successfully parsed
565 as an valid expression; *EP will be filled with the information of
566 such an expression. Otherwise return FALSE. */
567
568static bfd_boolean
569my_get_expression (expressionS * ep, char **str, int prefix_mode,
570 int reject_absent)
571{
572 char *save_in;
573 segT seg;
574 int prefix_present_p = 0;
575
576 switch (prefix_mode)
577 {
578 case GE_NO_PREFIX:
579 break;
580 case GE_OPT_PREFIX:
581 if (is_immediate_prefix (**str))
582 {
583 (*str)++;
584 prefix_present_p = 1;
585 }
586 break;
587 default:
588 abort ();
589 }
590
591 memset (ep, 0, sizeof (expressionS));
592
593 save_in = input_line_pointer;
594 input_line_pointer = *str;
595 in_my_get_expression_p = TRUE;
596 seg = expression (ep);
597 in_my_get_expression_p = FALSE;
598
599 if (ep->X_op == O_illegal || (reject_absent && ep->X_op == O_absent))
600 {
601 /* We found a bad expression in md_operand(). */
602 *str = input_line_pointer;
603 input_line_pointer = save_in;
604 if (prefix_present_p && ! error_p ())
605 set_fatal_syntax_error (_("bad expression"));
606 else
607 set_first_syntax_error (_("bad expression"));
608 return FALSE;
609 }
610
611#ifdef OBJ_AOUT
612 if (seg != absolute_section
613 && seg != text_section
614 && seg != data_section
615 && seg != bss_section && seg != undefined_section)
616 {
617 set_syntax_error (_("bad segment"));
618 *str = input_line_pointer;
619 input_line_pointer = save_in;
620 return FALSE;
621 }
622#else
623 (void) seg;
624#endif
625
a06ea964
NC
626 *str = input_line_pointer;
627 input_line_pointer = save_in;
628 return TRUE;
629}
630
631/* Turn a string in input_line_pointer into a floating point constant
632 of type TYPE, and store the appropriate bytes in *LITP. The number
633 of LITTLENUMS emitted is stored in *SIZEP. An error message is
634 returned, or NULL on OK. */
635
6d4af3c2 636const char *
a06ea964
NC
637md_atof (int type, char *litP, int *sizeP)
638{
639 return ieee_md_atof (type, litP, sizeP, target_big_endian);
640}
641
642/* We handle all bad expressions here, so that we can report the faulty
643 instruction in the error message. */
644void
645md_operand (expressionS * exp)
646{
647 if (in_my_get_expression_p)
648 exp->X_op = O_illegal;
649}
650
651/* Immediate values. */
652
653/* Errors may be set multiple times during parsing or bit encoding
654 (particularly in the Neon bits), but usually the earliest error which is set
655 will be the most meaningful. Avoid overwriting it with later (cascading)
656 errors by calling this function. */
657
658static void
659first_error (const char *error)
660{
661 if (! error_p ())
662 set_syntax_error (error);
663}
664
2b0f3761 665/* Similar to first_error, but this function accepts formatted error
a06ea964
NC
666 message. */
667static void
668first_error_fmt (const char *format, ...)
669{
670 va_list args;
671 enum
672 { size = 100 };
673 /* N.B. this single buffer will not cause error messages for different
674 instructions to pollute each other; this is because at the end of
675 processing of each assembly line, error message if any will be
676 collected by as_bad. */
677 static char buffer[size];
678
679 if (! error_p ())
680 {
3e0baa28 681 int ret ATTRIBUTE_UNUSED;
a06ea964
NC
682 va_start (args, format);
683 ret = vsnprintf (buffer, size, format, args);
684 know (ret <= size - 1 && ret >= 0);
685 va_end (args);
686 set_syntax_error (buffer);
687 }
688}
689
690/* Register parsing. */
691
692/* Generic register parser which is called by other specialized
693 register parsers.
694 CCP points to what should be the beginning of a register name.
695 If it is indeed a valid register name, advance CCP over it and
696 return the reg_entry structure; otherwise return NULL.
697 It does not issue diagnostics. */
698
699static reg_entry *
700parse_reg (char **ccp)
701{
702 char *start = *ccp;
703 char *p;
704 reg_entry *reg;
705
706#ifdef REGISTER_PREFIX
707 if (*start != REGISTER_PREFIX)
708 return NULL;
709 start++;
710#endif
711
712 p = start;
713 if (!ISALPHA (*p) || !is_name_beginner (*p))
714 return NULL;
715
716 do
717 p++;
718 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
719
720 reg = (reg_entry *) hash_find_n (aarch64_reg_hsh, start, p - start);
721
722 if (!reg)
723 return NULL;
724
725 *ccp = p;
726 return reg;
727}
728
729/* Return TRUE if REG->TYPE is a valid type of TYPE; otherwise
730 return FALSE. */
731static bfd_boolean
732aarch64_check_reg_type (const reg_entry *reg, aarch64_reg_type type)
733{
e1b988bb 734 return (reg_type_masks[type] & (1 << reg->type)) != 0;
a06ea964
NC
735}
736
4df068de
RS
737/* Try to parse a base or offset register. Allow SVE base and offset
738 registers if REG_TYPE includes SVE registers. Return the register
739 entry on success, setting *QUALIFIER to the register qualifier.
740 Return null otherwise.
e1b988bb 741
a06ea964
NC
742 Note that this function does not issue any diagnostics. */
743
e1b988bb 744static const reg_entry *
4df068de
RS
745aarch64_addr_reg_parse (char **ccp, aarch64_reg_type reg_type,
746 aarch64_opnd_qualifier_t *qualifier)
a06ea964
NC
747{
748 char *str = *ccp;
749 const reg_entry *reg = parse_reg (&str);
750
751 if (reg == NULL)
e1b988bb 752 return NULL;
a06ea964
NC
753
754 switch (reg->type)
755 {
e1b988bb 756 case REG_TYPE_R_32:
a06ea964 757 case REG_TYPE_SP_32:
e1b988bb
RS
758 case REG_TYPE_Z_32:
759 *qualifier = AARCH64_OPND_QLF_W;
a06ea964 760 break;
e1b988bb 761
a06ea964 762 case REG_TYPE_R_64:
e1b988bb 763 case REG_TYPE_SP_64:
a06ea964 764 case REG_TYPE_Z_64:
e1b988bb 765 *qualifier = AARCH64_OPND_QLF_X;
a06ea964 766 break;
e1b988bb 767
4df068de
RS
768 case REG_TYPE_ZN:
769 if ((reg_type_masks[reg_type] & (1 << REG_TYPE_ZN)) == 0
770 || str[0] != '.')
771 return NULL;
772 switch (TOLOWER (str[1]))
773 {
774 case 's':
775 *qualifier = AARCH64_OPND_QLF_S_S;
776 break;
777 case 'd':
778 *qualifier = AARCH64_OPND_QLF_S_D;
779 break;
780 default:
781 return NULL;
782 }
783 str += 2;
784 break;
785
a06ea964 786 default:
e1b988bb 787 return NULL;
a06ea964
NC
788 }
789
790 *ccp = str;
791
e1b988bb 792 return reg;
a06ea964
NC
793}
794
4df068de
RS
795/* Try to parse a base or offset register. Return the register entry
796 on success, setting *QUALIFIER to the register qualifier. Return null
797 otherwise.
798
799 Note that this function does not issue any diagnostics. */
800
801static const reg_entry *
802aarch64_reg_parse_32_64 (char **ccp, aarch64_opnd_qualifier_t *qualifier)
803{
804 return aarch64_addr_reg_parse (ccp, REG_TYPE_R_Z_SP, qualifier);
805}
806
f11ad6bc
RS
807/* Parse the qualifier of a vector register or vector element of type
808 REG_TYPE. Fill in *PARSED_TYPE and return TRUE if the parsing
809 succeeds; otherwise return FALSE.
a06ea964
NC
810
811 Accept only one occurrence of:
65a55fbb 812 4b 8b 16b 2h 4h 8h 2s 4s 1d 2d
a06ea964
NC
813 b h s d q */
814static bfd_boolean
f11ad6bc
RS
815parse_vector_type_for_operand (aarch64_reg_type reg_type,
816 struct vector_type_el *parsed_type, char **str)
a06ea964
NC
817{
818 char *ptr = *str;
819 unsigned width;
820 unsigned element_size;
f06935a5 821 enum vector_el_type type;
a06ea964
NC
822
823 /* skip '.' */
d50c751e 824 gas_assert (*ptr == '.');
a06ea964
NC
825 ptr++;
826
f11ad6bc 827 if (reg_type == REG_TYPE_ZN || reg_type == REG_TYPE_PN || !ISDIGIT (*ptr))
a06ea964
NC
828 {
829 width = 0;
830 goto elt_size;
831 }
832 width = strtoul (ptr, &ptr, 10);
833 if (width != 1 && width != 2 && width != 4 && width != 8 && width != 16)
834 {
835 first_error_fmt (_("bad size %d in vector width specifier"), width);
836 return FALSE;
837 }
838
839elt_size:
840 switch (TOLOWER (*ptr))
841 {
842 case 'b':
843 type = NT_b;
844 element_size = 8;
845 break;
846 case 'h':
847 type = NT_h;
848 element_size = 16;
849 break;
850 case 's':
851 type = NT_s;
852 element_size = 32;
853 break;
854 case 'd':
855 type = NT_d;
856 element_size = 64;
857 break;
858 case 'q':
582e12bf 859 if (reg_type == REG_TYPE_ZN || width == 1)
a06ea964
NC
860 {
861 type = NT_q;
862 element_size = 128;
863 break;
864 }
865 /* fall through. */
866 default:
867 if (*ptr != '\0')
868 first_error_fmt (_("unexpected character `%c' in element size"), *ptr);
869 else
870 first_error (_("missing element size"));
871 return FALSE;
872 }
65a55fbb
TC
873 if (width != 0 && width * element_size != 64
874 && width * element_size != 128
875 && !(width == 2 && element_size == 16)
876 && !(width == 4 && element_size == 8))
a06ea964
NC
877 {
878 first_error_fmt (_
879 ("invalid element size %d and vector size combination %c"),
880 width, *ptr);
881 return FALSE;
882 }
883 ptr++;
884
885 parsed_type->type = type;
886 parsed_type->width = width;
887
888 *str = ptr;
889
890 return TRUE;
891}
892
d50c751e
RS
893/* *STR contains an SVE zero/merge predication suffix. Parse it into
894 *PARSED_TYPE and point *STR at the end of the suffix. */
895
896static bfd_boolean
897parse_predication_for_operand (struct vector_type_el *parsed_type, char **str)
898{
899 char *ptr = *str;
900
901 /* Skip '/'. */
902 gas_assert (*ptr == '/');
903 ptr++;
904 switch (TOLOWER (*ptr))
905 {
906 case 'z':
907 parsed_type->type = NT_zero;
908 break;
909 case 'm':
910 parsed_type->type = NT_merge;
911 break;
912 default:
913 if (*ptr != '\0' && *ptr != ',')
914 first_error_fmt (_("unexpected character `%c' in predication type"),
915 *ptr);
916 else
917 first_error (_("missing predication type"));
918 return FALSE;
919 }
920 parsed_type->width = 0;
921 *str = ptr + 1;
922 return TRUE;
923}
924
a06ea964
NC
925/* Parse a register of the type TYPE.
926
927 Return PARSE_FAIL if the string pointed by *CCP is not a valid register
928 name or the parsed register is not of TYPE.
929
930 Otherwise return the register number, and optionally fill in the actual
931 type of the register in *RTYPE when multiple alternatives were given, and
932 return the register shape and element index information in *TYPEINFO.
933
934 IN_REG_LIST should be set with TRUE if the caller is parsing a register
935 list. */
936
937static int
938parse_typed_reg (char **ccp, aarch64_reg_type type, aarch64_reg_type *rtype,
8f9a77af 939 struct vector_type_el *typeinfo, bfd_boolean in_reg_list)
a06ea964
NC
940{
941 char *str = *ccp;
942 const reg_entry *reg = parse_reg (&str);
8f9a77af
RS
943 struct vector_type_el atype;
944 struct vector_type_el parsetype;
a06ea964
NC
945 bfd_boolean is_typed_vecreg = FALSE;
946
947 atype.defined = 0;
948 atype.type = NT_invtype;
949 atype.width = -1;
950 atype.index = 0;
951
952 if (reg == NULL)
953 {
954 if (typeinfo)
955 *typeinfo = atype;
956 set_default_error ();
957 return PARSE_FAIL;
958 }
959
960 if (! aarch64_check_reg_type (reg, type))
961 {
962 DEBUG_TRACE ("reg type check failed");
963 set_default_error ();
964 return PARSE_FAIL;
965 }
966 type = reg->type;
967
f11ad6bc 968 if ((type == REG_TYPE_VN || type == REG_TYPE_ZN || type == REG_TYPE_PN)
d50c751e 969 && (*str == '.' || (type == REG_TYPE_PN && *str == '/')))
a06ea964 970 {
d50c751e
RS
971 if (*str == '.')
972 {
973 if (!parse_vector_type_for_operand (type, &parsetype, &str))
974 return PARSE_FAIL;
975 }
976 else
977 {
978 if (!parse_predication_for_operand (&parsetype, &str))
979 return PARSE_FAIL;
980 }
a235d3ae 981
a06ea964
NC
982 /* Register if of the form Vn.[bhsdq]. */
983 is_typed_vecreg = TRUE;
984
f11ad6bc
RS
985 if (type == REG_TYPE_ZN || type == REG_TYPE_PN)
986 {
987 /* The width is always variable; we don't allow an integer width
988 to be specified. */
989 gas_assert (parsetype.width == 0);
990 atype.defined |= NTA_HASVARWIDTH | NTA_HASTYPE;
991 }
992 else if (parsetype.width == 0)
a06ea964
NC
993 /* Expect index. In the new scheme we cannot have
994 Vn.[bhsdq] represent a scalar. Therefore any
995 Vn.[bhsdq] should have an index following it.
33eaf5de 996 Except in reglists of course. */
a06ea964
NC
997 atype.defined |= NTA_HASINDEX;
998 else
999 atype.defined |= NTA_HASTYPE;
1000
1001 atype.type = parsetype.type;
1002 atype.width = parsetype.width;
1003 }
1004
1005 if (skip_past_char (&str, '['))
1006 {
1007 expressionS exp;
1008
1009 /* Reject Sn[index] syntax. */
1010 if (!is_typed_vecreg)
1011 {
1012 first_error (_("this type of register can't be indexed"));
1013 return PARSE_FAIL;
1014 }
1015
535b785f 1016 if (in_reg_list)
a06ea964
NC
1017 {
1018 first_error (_("index not allowed inside register list"));
1019 return PARSE_FAIL;
1020 }
1021
1022 atype.defined |= NTA_HASINDEX;
1023
1024 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1025
1026 if (exp.X_op != O_constant)
1027 {
1028 first_error (_("constant expression required"));
1029 return PARSE_FAIL;
1030 }
1031
1032 if (! skip_past_char (&str, ']'))
1033 return PARSE_FAIL;
1034
1035 atype.index = exp.X_add_number;
1036 }
1037 else if (!in_reg_list && (atype.defined & NTA_HASINDEX) != 0)
1038 {
1039 /* Indexed vector register expected. */
1040 first_error (_("indexed vector register expected"));
1041 return PARSE_FAIL;
1042 }
1043
1044 /* A vector reg Vn should be typed or indexed. */
1045 if (type == REG_TYPE_VN && atype.defined == 0)
1046 {
1047 first_error (_("invalid use of vector register"));
1048 }
1049
1050 if (typeinfo)
1051 *typeinfo = atype;
1052
1053 if (rtype)
1054 *rtype = type;
1055
1056 *ccp = str;
1057
1058 return reg->number;
1059}
1060
1061/* Parse register.
1062
1063 Return the register number on success; return PARSE_FAIL otherwise.
1064
1065 If RTYPE is not NULL, return in *RTYPE the (possibly restricted) type of
1066 the register (e.g. NEON double or quad reg when either has been requested).
1067
1068 If this is a NEON vector register with additional type information, fill
1069 in the struct pointed to by VECTYPE (if non-NULL).
1070
1071 This parser does not handle register list. */
1072
1073static int
1074aarch64_reg_parse (char **ccp, aarch64_reg_type type,
8f9a77af 1075 aarch64_reg_type *rtype, struct vector_type_el *vectype)
a06ea964 1076{
8f9a77af 1077 struct vector_type_el atype;
a06ea964
NC
1078 char *str = *ccp;
1079 int reg = parse_typed_reg (&str, type, rtype, &atype,
1080 /*in_reg_list= */ FALSE);
1081
1082 if (reg == PARSE_FAIL)
1083 return PARSE_FAIL;
1084
1085 if (vectype)
1086 *vectype = atype;
1087
1088 *ccp = str;
1089
1090 return reg;
1091}
1092
1093static inline bfd_boolean
8f9a77af 1094eq_vector_type_el (struct vector_type_el e1, struct vector_type_el e2)
a06ea964
NC
1095{
1096 return
1097 e1.type == e2.type
1098 && e1.defined == e2.defined
1099 && e1.width == e2.width && e1.index == e2.index;
1100}
1101
10d76650
RS
1102/* This function parses a list of vector registers of type TYPE.
1103 On success, it returns the parsed register list information in the
1104 following encoded format:
a06ea964
NC
1105
1106 bit 18-22 | 13-17 | 7-11 | 2-6 | 0-1
1107 4th regno | 3rd regno | 2nd regno | 1st regno | num_of_reg
1108
1109 The information of the register shape and/or index is returned in
1110 *VECTYPE.
1111
1112 It returns PARSE_FAIL if the register list is invalid.
1113
1114 The list contains one to four registers.
1115 Each register can be one of:
1116 <Vt>.<T>[<index>]
1117 <Vt>.<T>
1118 All <T> should be identical.
1119 All <index> should be identical.
1120 There are restrictions on <Vt> numbers which are checked later
1121 (by reg_list_valid_p). */
1122
1123static int
10d76650
RS
1124parse_vector_reg_list (char **ccp, aarch64_reg_type type,
1125 struct vector_type_el *vectype)
a06ea964
NC
1126{
1127 char *str = *ccp;
1128 int nb_regs;
8f9a77af 1129 struct vector_type_el typeinfo, typeinfo_first;
a06ea964
NC
1130 int val, val_range;
1131 int in_range;
1132 int ret_val;
1133 int i;
1134 bfd_boolean error = FALSE;
1135 bfd_boolean expect_index = FALSE;
1136
1137 if (*str != '{')
1138 {
1139 set_syntax_error (_("expecting {"));
1140 return PARSE_FAIL;
1141 }
1142 str++;
1143
1144 nb_regs = 0;
1145 typeinfo_first.defined = 0;
1146 typeinfo_first.type = NT_invtype;
1147 typeinfo_first.width = -1;
1148 typeinfo_first.index = 0;
1149 ret_val = 0;
1150 val = -1;
1151 val_range = -1;
1152 in_range = 0;
1153 do
1154 {
1155 if (in_range)
1156 {
1157 str++; /* skip over '-' */
1158 val_range = val;
1159 }
10d76650 1160 val = parse_typed_reg (&str, type, NULL, &typeinfo,
a06ea964
NC
1161 /*in_reg_list= */ TRUE);
1162 if (val == PARSE_FAIL)
1163 {
1164 set_first_syntax_error (_("invalid vector register in list"));
1165 error = TRUE;
1166 continue;
1167 }
1168 /* reject [bhsd]n */
f11ad6bc 1169 if (type == REG_TYPE_VN && typeinfo.defined == 0)
a06ea964
NC
1170 {
1171 set_first_syntax_error (_("invalid scalar register in list"));
1172 error = TRUE;
1173 continue;
1174 }
1175
1176 if (typeinfo.defined & NTA_HASINDEX)
1177 expect_index = TRUE;
1178
1179 if (in_range)
1180 {
1181 if (val < val_range)
1182 {
1183 set_first_syntax_error
1184 (_("invalid range in vector register list"));
1185 error = TRUE;
1186 }
1187 val_range++;
1188 }
1189 else
1190 {
1191 val_range = val;
1192 if (nb_regs == 0)
1193 typeinfo_first = typeinfo;
8f9a77af 1194 else if (! eq_vector_type_el (typeinfo_first, typeinfo))
a06ea964
NC
1195 {
1196 set_first_syntax_error
1197 (_("type mismatch in vector register list"));
1198 error = TRUE;
1199 }
1200 }
1201 if (! error)
1202 for (i = val_range; i <= val; i++)
1203 {
1204 ret_val |= i << (5 * nb_regs);
1205 nb_regs++;
1206 }
1207 in_range = 0;
1208 }
1209 while (skip_past_comma (&str) || (in_range = 1, *str == '-'));
1210
1211 skip_whitespace (str);
1212 if (*str != '}')
1213 {
1214 set_first_syntax_error (_("end of vector register list not found"));
1215 error = TRUE;
1216 }
1217 str++;
1218
1219 skip_whitespace (str);
1220
1221 if (expect_index)
1222 {
1223 if (skip_past_char (&str, '['))
1224 {
1225 expressionS exp;
1226
1227 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1228 if (exp.X_op != O_constant)
1229 {
1230 set_first_syntax_error (_("constant expression required."));
1231 error = TRUE;
1232 }
1233 if (! skip_past_char (&str, ']'))
1234 error = TRUE;
1235 else
1236 typeinfo_first.index = exp.X_add_number;
1237 }
1238 else
1239 {
1240 set_first_syntax_error (_("expected index"));
1241 error = TRUE;
1242 }
1243 }
1244
1245 if (nb_regs > 4)
1246 {
1247 set_first_syntax_error (_("too many registers in vector register list"));
1248 error = TRUE;
1249 }
1250 else if (nb_regs == 0)
1251 {
1252 set_first_syntax_error (_("empty vector register list"));
1253 error = TRUE;
1254 }
1255
1256 *ccp = str;
1257 if (! error)
1258 *vectype = typeinfo_first;
1259
1260 return error ? PARSE_FAIL : (ret_val << 2) | (nb_regs - 1);
1261}
1262
1263/* Directives: register aliases. */
1264
1265static reg_entry *
1266insert_reg_alias (char *str, int number, aarch64_reg_type type)
1267{
1268 reg_entry *new;
1269 const char *name;
1270
1271 if ((new = hash_find (aarch64_reg_hsh, str)) != 0)
1272 {
1273 if (new->builtin)
1274 as_warn (_("ignoring attempt to redefine built-in register '%s'"),
1275 str);
1276
1277 /* Only warn about a redefinition if it's not defined as the
1278 same register. */
1279 else if (new->number != number || new->type != type)
1280 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1281
1282 return NULL;
1283 }
1284
1285 name = xstrdup (str);
add39d23 1286 new = XNEW (reg_entry);
a06ea964
NC
1287
1288 new->name = name;
1289 new->number = number;
1290 new->type = type;
1291 new->builtin = FALSE;
1292
1293 if (hash_insert (aarch64_reg_hsh, name, (void *) new))
1294 abort ();
1295
1296 return new;
1297}
1298
1299/* Look for the .req directive. This is of the form:
1300
1301 new_register_name .req existing_register_name
1302
1303 If we find one, or if it looks sufficiently like one that we want to
1304 handle any error here, return TRUE. Otherwise return FALSE. */
1305
1306static bfd_boolean
1307create_register_alias (char *newname, char *p)
1308{
1309 const reg_entry *old;
1310 char *oldname, *nbuf;
1311 size_t nlen;
1312
1313 /* The input scrubber ensures that whitespace after the mnemonic is
1314 collapsed to single spaces. */
1315 oldname = p;
1316 if (strncmp (oldname, " .req ", 6) != 0)
1317 return FALSE;
1318
1319 oldname += 6;
1320 if (*oldname == '\0')
1321 return FALSE;
1322
1323 old = hash_find (aarch64_reg_hsh, oldname);
1324 if (!old)
1325 {
1326 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
1327 return TRUE;
1328 }
1329
1330 /* If TC_CASE_SENSITIVE is defined, then newname already points to
1331 the desired alias name, and p points to its end. If not, then
1332 the desired alias name is in the global original_case_string. */
1333#ifdef TC_CASE_SENSITIVE
1334 nlen = p - newname;
1335#else
1336 newname = original_case_string;
1337 nlen = strlen (newname);
1338#endif
1339
29a2809e 1340 nbuf = xmemdup0 (newname, nlen);
a06ea964
NC
1341
1342 /* Create aliases under the new name as stated; an all-lowercase
1343 version of the new name; and an all-uppercase version of the new
1344 name. */
1345 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
1346 {
1347 for (p = nbuf; *p; p++)
1348 *p = TOUPPER (*p);
1349
1350 if (strncmp (nbuf, newname, nlen))
1351 {
1352 /* If this attempt to create an additional alias fails, do not bother
1353 trying to create the all-lower case alias. We will fail and issue
1354 a second, duplicate error message. This situation arises when the
1355 programmer does something like:
1356 foo .req r0
1357 Foo .req r1
1358 The second .req creates the "Foo" alias but then fails to create
1359 the artificial FOO alias because it has already been created by the
1360 first .req. */
1361 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
e1fa0163
NC
1362 {
1363 free (nbuf);
1364 return TRUE;
1365 }
a06ea964
NC
1366 }
1367
1368 for (p = nbuf; *p; p++)
1369 *p = TOLOWER (*p);
1370
1371 if (strncmp (nbuf, newname, nlen))
1372 insert_reg_alias (nbuf, old->number, old->type);
1373 }
1374
e1fa0163 1375 free (nbuf);
a06ea964
NC
1376 return TRUE;
1377}
1378
1379/* Should never be called, as .req goes between the alias and the
1380 register name, not at the beginning of the line. */
1381static void
1382s_req (int a ATTRIBUTE_UNUSED)
1383{
1384 as_bad (_("invalid syntax for .req directive"));
1385}
1386
1387/* The .unreq directive deletes an alias which was previously defined
1388 by .req. For example:
1389
1390 my_alias .req r11
1391 .unreq my_alias */
1392
1393static void
1394s_unreq (int a ATTRIBUTE_UNUSED)
1395{
1396 char *name;
1397 char saved_char;
1398
1399 name = input_line_pointer;
1400
1401 while (*input_line_pointer != 0
1402 && *input_line_pointer != ' ' && *input_line_pointer != '\n')
1403 ++input_line_pointer;
1404
1405 saved_char = *input_line_pointer;
1406 *input_line_pointer = 0;
1407
1408 if (!*name)
1409 as_bad (_("invalid syntax for .unreq directive"));
1410 else
1411 {
1412 reg_entry *reg = hash_find (aarch64_reg_hsh, name);
1413
1414 if (!reg)
1415 as_bad (_("unknown register alias '%s'"), name);
1416 else if (reg->builtin)
1417 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
1418 name);
1419 else
1420 {
1421 char *p;
1422 char *nbuf;
1423
1424 hash_delete (aarch64_reg_hsh, name, FALSE);
1425 free ((char *) reg->name);
1426 free (reg);
1427
1428 /* Also locate the all upper case and all lower case versions.
1429 Do not complain if we cannot find one or the other as it
1430 was probably deleted above. */
1431
1432 nbuf = strdup (name);
1433 for (p = nbuf; *p; p++)
1434 *p = TOUPPER (*p);
1435 reg = hash_find (aarch64_reg_hsh, nbuf);
1436 if (reg)
1437 {
1438 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1439 free ((char *) reg->name);
1440 free (reg);
1441 }
1442
1443 for (p = nbuf; *p; p++)
1444 *p = TOLOWER (*p);
1445 reg = hash_find (aarch64_reg_hsh, nbuf);
1446 if (reg)
1447 {
1448 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1449 free ((char *) reg->name);
1450 free (reg);
1451 }
1452
1453 free (nbuf);
1454 }
1455 }
1456
1457 *input_line_pointer = saved_char;
1458 demand_empty_rest_of_line ();
1459}
1460
1461/* Directives: Instruction set selection. */
1462
1463#ifdef OBJ_ELF
1464/* This code is to handle mapping symbols as defined in the ARM AArch64 ELF
1465 spec. (See "Mapping symbols", section 4.5.4, ARM AAELF64 version 0.05).
1466 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
1467 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
1468
1469/* Create a new mapping symbol for the transition to STATE. */
1470
1471static void
1472make_mapping_symbol (enum mstate state, valueT value, fragS * frag)
1473{
1474 symbolS *symbolP;
1475 const char *symname;
1476 int type;
1477
1478 switch (state)
1479 {
1480 case MAP_DATA:
1481 symname = "$d";
1482 type = BSF_NO_FLAGS;
1483 break;
1484 case MAP_INSN:
1485 symname = "$x";
1486 type = BSF_NO_FLAGS;
1487 break;
1488 default:
1489 abort ();
1490 }
1491
1492 symbolP = symbol_new (symname, now_seg, value, frag);
1493 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
1494
1495 /* Save the mapping symbols for future reference. Also check that
1496 we do not place two mapping symbols at the same offset within a
1497 frag. We'll handle overlap between frags in
1498 check_mapping_symbols.
1499
1500 If .fill or other data filling directive generates zero sized data,
1501 the mapping symbol for the following code will have the same value
1502 as the one generated for the data filling directive. In this case,
1503 we replace the old symbol with the new one at the same address. */
1504 if (value == 0)
1505 {
1506 if (frag->tc_frag_data.first_map != NULL)
1507 {
1508 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
1509 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP,
1510 &symbol_lastP);
1511 }
1512 frag->tc_frag_data.first_map = symbolP;
1513 }
1514 if (frag->tc_frag_data.last_map != NULL)
1515 {
1516 know (S_GET_VALUE (frag->tc_frag_data.last_map) <=
1517 S_GET_VALUE (symbolP));
1518 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
1519 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP,
1520 &symbol_lastP);
1521 }
1522 frag->tc_frag_data.last_map = symbolP;
1523}
1524
1525/* We must sometimes convert a region marked as code to data during
1526 code alignment, if an odd number of bytes have to be padded. The
1527 code mapping symbol is pushed to an aligned address. */
1528
1529static void
1530insert_data_mapping_symbol (enum mstate state,
1531 valueT value, fragS * frag, offsetT bytes)
1532{
1533 /* If there was already a mapping symbol, remove it. */
1534 if (frag->tc_frag_data.last_map != NULL
1535 && S_GET_VALUE (frag->tc_frag_data.last_map) ==
1536 frag->fr_address + value)
1537 {
1538 symbolS *symp = frag->tc_frag_data.last_map;
1539
1540 if (value == 0)
1541 {
1542 know (frag->tc_frag_data.first_map == symp);
1543 frag->tc_frag_data.first_map = NULL;
1544 }
1545 frag->tc_frag_data.last_map = NULL;
1546 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
1547 }
1548
1549 make_mapping_symbol (MAP_DATA, value, frag);
1550 make_mapping_symbol (state, value + bytes, frag);
1551}
1552
1553static void mapping_state_2 (enum mstate state, int max_chars);
1554
1555/* Set the mapping state to STATE. Only call this when about to
1556 emit some STATE bytes to the file. */
1557
1558void
1559mapping_state (enum mstate state)
1560{
1561 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1562
a578ef7e
JW
1563 if (state == MAP_INSN)
1564 /* AArch64 instructions require 4-byte alignment. When emitting
1565 instructions into any section, record the appropriate section
1566 alignment. */
1567 record_alignment (now_seg, 2);
1568
448eb63d
RL
1569 if (mapstate == state)
1570 /* The mapping symbol has already been emitted.
1571 There is nothing else to do. */
1572 return;
1573
c1baaddf 1574#define TRANSITION(from, to) (mapstate == (from) && state == (to))
a97902de
RL
1575 if (TRANSITION (MAP_UNDEFINED, MAP_DATA) && !subseg_text_p (now_seg))
1576 /* Emit MAP_DATA within executable section in order. Otherwise, it will be
c1baaddf 1577 evaluated later in the next else. */
a06ea964 1578 return;
c1baaddf
RL
1579 else if (TRANSITION (MAP_UNDEFINED, MAP_INSN))
1580 {
1581 /* Only add the symbol if the offset is > 0:
1582 if we're at the first frag, check it's size > 0;
1583 if we're not at the first frag, then for sure
1584 the offset is > 0. */
1585 struct frag *const frag_first = seg_info (now_seg)->frchainP->frch_root;
1586 const int add_symbol = (frag_now != frag_first)
1587 || (frag_now_fix () > 0);
1588
1589 if (add_symbol)
1590 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
1591 }
1592#undef TRANSITION
a06ea964
NC
1593
1594 mapping_state_2 (state, 0);
a06ea964
NC
1595}
1596
1597/* Same as mapping_state, but MAX_CHARS bytes have already been
1598 allocated. Put the mapping symbol that far back. */
1599
1600static void
1601mapping_state_2 (enum mstate state, int max_chars)
1602{
1603 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1604
1605 if (!SEG_NORMAL (now_seg))
1606 return;
1607
1608 if (mapstate == state)
1609 /* The mapping symbol has already been emitted.
1610 There is nothing else to do. */
1611 return;
1612
1613 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
1614 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
1615}
1616#else
1617#define mapping_state(x) /* nothing */
1618#define mapping_state_2(x, y) /* nothing */
1619#endif
1620
1621/* Directives: sectioning and alignment. */
1622
1623static void
1624s_bss (int ignore ATTRIBUTE_UNUSED)
1625{
1626 /* We don't support putting frags in the BSS segment, we fake it by
1627 marking in_bss, then looking at s_skip for clues. */
1628 subseg_set (bss_section, 0);
1629 demand_empty_rest_of_line ();
1630 mapping_state (MAP_DATA);
1631}
1632
1633static void
1634s_even (int ignore ATTRIBUTE_UNUSED)
1635{
1636 /* Never make frag if expect extra pass. */
1637 if (!need_pass_2)
1638 frag_align (1, 0, 0);
1639
1640 record_alignment (now_seg, 1);
1641
1642 demand_empty_rest_of_line ();
1643}
1644
1645/* Directives: Literal pools. */
1646
1647static literal_pool *
1648find_literal_pool (int size)
1649{
1650 literal_pool *pool;
1651
1652 for (pool = list_of_pools; pool != NULL; pool = pool->next)
1653 {
1654 if (pool->section == now_seg
1655 && pool->sub_section == now_subseg && pool->size == size)
1656 break;
1657 }
1658
1659 return pool;
1660}
1661
1662static literal_pool *
1663find_or_make_literal_pool (int size)
1664{
1665 /* Next literal pool ID number. */
1666 static unsigned int latest_pool_num = 1;
1667 literal_pool *pool;
1668
1669 pool = find_literal_pool (size);
1670
1671 if (pool == NULL)
1672 {
1673 /* Create a new pool. */
add39d23 1674 pool = XNEW (literal_pool);
a06ea964
NC
1675 if (!pool)
1676 return NULL;
1677
1678 /* Currently we always put the literal pool in the current text
1679 section. If we were generating "small" model code where we
1680 knew that all code and initialised data was within 1MB then
1681 we could output literals to mergeable, read-only data
1682 sections. */
1683
1684 pool->next_free_entry = 0;
1685 pool->section = now_seg;
1686 pool->sub_section = now_subseg;
1687 pool->size = size;
1688 pool->next = list_of_pools;
1689 pool->symbol = NULL;
1690
1691 /* Add it to the list. */
1692 list_of_pools = pool;
1693 }
1694
1695 /* New pools, and emptied pools, will have a NULL symbol. */
1696 if (pool->symbol == NULL)
1697 {
1698 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
1699 (valueT) 0, &zero_address_frag);
1700 pool->id = latest_pool_num++;
1701 }
1702
1703 /* Done. */
1704 return pool;
1705}
1706
1707/* Add the literal of size SIZE in *EXP to the relevant literal pool.
1708 Return TRUE on success, otherwise return FALSE. */
1709static bfd_boolean
1710add_to_lit_pool (expressionS *exp, int size)
1711{
1712 literal_pool *pool;
1713 unsigned int entry;
1714
1715 pool = find_or_make_literal_pool (size);
1716
1717 /* Check if this literal value is already in the pool. */
1718 for (entry = 0; entry < pool->next_free_entry; entry++)
1719 {
55d9b4c1
NC
1720 expressionS * litexp = & pool->literals[entry].exp;
1721
1722 if ((litexp->X_op == exp->X_op)
a06ea964 1723 && (exp->X_op == O_constant)
55d9b4c1
NC
1724 && (litexp->X_add_number == exp->X_add_number)
1725 && (litexp->X_unsigned == exp->X_unsigned))
a06ea964
NC
1726 break;
1727
55d9b4c1 1728 if ((litexp->X_op == exp->X_op)
a06ea964 1729 && (exp->X_op == O_symbol)
55d9b4c1
NC
1730 && (litexp->X_add_number == exp->X_add_number)
1731 && (litexp->X_add_symbol == exp->X_add_symbol)
1732 && (litexp->X_op_symbol == exp->X_op_symbol))
a06ea964
NC
1733 break;
1734 }
1735
1736 /* Do we need to create a new entry? */
1737 if (entry == pool->next_free_entry)
1738 {
1739 if (entry >= MAX_LITERAL_POOL_SIZE)
1740 {
1741 set_syntax_error (_("literal pool overflow"));
1742 return FALSE;
1743 }
1744
55d9b4c1 1745 pool->literals[entry].exp = *exp;
a06ea964 1746 pool->next_free_entry += 1;
55d9b4c1
NC
1747 if (exp->X_op == O_big)
1748 {
1749 /* PR 16688: Bignums are held in a single global array. We must
1750 copy and preserve that value now, before it is overwritten. */
add39d23
TS
1751 pool->literals[entry].bignum = XNEWVEC (LITTLENUM_TYPE,
1752 exp->X_add_number);
55d9b4c1
NC
1753 memcpy (pool->literals[entry].bignum, generic_bignum,
1754 CHARS_PER_LITTLENUM * exp->X_add_number);
1755 }
1756 else
1757 pool->literals[entry].bignum = NULL;
a06ea964
NC
1758 }
1759
1760 exp->X_op = O_symbol;
1761 exp->X_add_number = ((int) entry) * size;
1762 exp->X_add_symbol = pool->symbol;
1763
1764 return TRUE;
1765}
1766
1767/* Can't use symbol_new here, so have to create a symbol and then at
33eaf5de 1768 a later date assign it a value. That's what these functions do. */
a06ea964
NC
1769
1770static void
1771symbol_locate (symbolS * symbolP,
1772 const char *name,/* It is copied, the caller can modify. */
1773 segT segment, /* Segment identifier (SEG_<something>). */
1774 valueT valu, /* Symbol value. */
1775 fragS * frag) /* Associated fragment. */
1776{
e57e6ddc 1777 size_t name_length;
a06ea964
NC
1778 char *preserved_copy_of_name;
1779
1780 name_length = strlen (name) + 1; /* +1 for \0. */
1781 obstack_grow (&notes, name, name_length);
1782 preserved_copy_of_name = obstack_finish (&notes);
1783
1784#ifdef tc_canonicalize_symbol_name
1785 preserved_copy_of_name =
1786 tc_canonicalize_symbol_name (preserved_copy_of_name);
1787#endif
1788
1789 S_SET_NAME (symbolP, preserved_copy_of_name);
1790
1791 S_SET_SEGMENT (symbolP, segment);
1792 S_SET_VALUE (symbolP, valu);
1793 symbol_clear_list_pointers (symbolP);
1794
1795 symbol_set_frag (symbolP, frag);
1796
1797 /* Link to end of symbol chain. */
1798 {
1799 extern int symbol_table_frozen;
1800
1801 if (symbol_table_frozen)
1802 abort ();
1803 }
1804
1805 symbol_append (symbolP, symbol_lastP, &symbol_rootP, &symbol_lastP);
1806
1807 obj_symbol_new_hook (symbolP);
1808
1809#ifdef tc_symbol_new_hook
1810 tc_symbol_new_hook (symbolP);
1811#endif
1812
1813#ifdef DEBUG_SYMS
1814 verify_symbol_chain (symbol_rootP, symbol_lastP);
1815#endif /* DEBUG_SYMS */
1816}
1817
1818
1819static void
1820s_ltorg (int ignored ATTRIBUTE_UNUSED)
1821{
1822 unsigned int entry;
1823 literal_pool *pool;
1824 char sym_name[20];
1825 int align;
1826
67a32447 1827 for (align = 2; align <= 4; align++)
a06ea964
NC
1828 {
1829 int size = 1 << align;
1830
1831 pool = find_literal_pool (size);
1832 if (pool == NULL || pool->symbol == NULL || pool->next_free_entry == 0)
1833 continue;
1834
a06ea964
NC
1835 /* Align pool as you have word accesses.
1836 Only make a frag if we have to. */
1837 if (!need_pass_2)
1838 frag_align (align, 0, 0);
1839
7ea12e5c
NC
1840 mapping_state (MAP_DATA);
1841
a06ea964
NC
1842 record_alignment (now_seg, align);
1843
1844 sprintf (sym_name, "$$lit_\002%x", pool->id);
1845
1846 symbol_locate (pool->symbol, sym_name, now_seg,
1847 (valueT) frag_now_fix (), frag_now);
1848 symbol_table_insert (pool->symbol);
1849
1850 for (entry = 0; entry < pool->next_free_entry; entry++)
55d9b4c1
NC
1851 {
1852 expressionS * exp = & pool->literals[entry].exp;
1853
1854 if (exp->X_op == O_big)
1855 {
1856 /* PR 16688: Restore the global bignum value. */
1857 gas_assert (pool->literals[entry].bignum != NULL);
1858 memcpy (generic_bignum, pool->literals[entry].bignum,
1859 CHARS_PER_LITTLENUM * exp->X_add_number);
1860 }
1861
1862 /* First output the expression in the instruction to the pool. */
1863 emit_expr (exp, size); /* .word|.xword */
1864
1865 if (exp->X_op == O_big)
1866 {
1867 free (pool->literals[entry].bignum);
1868 pool->literals[entry].bignum = NULL;
1869 }
1870 }
a06ea964
NC
1871
1872 /* Mark the pool as empty. */
1873 pool->next_free_entry = 0;
1874 pool->symbol = NULL;
1875 }
1876}
1877
1878#ifdef OBJ_ELF
1879/* Forward declarations for functions below, in the MD interface
1880 section. */
1881static fixS *fix_new_aarch64 (fragS *, int, short, expressionS *, int, int);
1882static struct reloc_table_entry * find_reloc_table_entry (char **);
1883
1884/* Directives: Data. */
1885/* N.B. the support for relocation suffix in this directive needs to be
1886 implemented properly. */
1887
1888static void
1889s_aarch64_elf_cons (int nbytes)
1890{
1891 expressionS exp;
1892
1893#ifdef md_flush_pending_output
1894 md_flush_pending_output ();
1895#endif
1896
1897 if (is_it_end_of_statement ())
1898 {
1899 demand_empty_rest_of_line ();
1900 return;
1901 }
1902
1903#ifdef md_cons_align
1904 md_cons_align (nbytes);
1905#endif
1906
1907 mapping_state (MAP_DATA);
1908 do
1909 {
1910 struct reloc_table_entry *reloc;
1911
1912 expression (&exp);
1913
1914 if (exp.X_op != O_symbol)
1915 emit_expr (&exp, (unsigned int) nbytes);
1916 else
1917 {
1918 skip_past_char (&input_line_pointer, '#');
1919 if (skip_past_char (&input_line_pointer, ':'))
1920 {
1921 reloc = find_reloc_table_entry (&input_line_pointer);
1922 if (reloc == NULL)
1923 as_bad (_("unrecognized relocation suffix"));
1924 else
1925 as_bad (_("unimplemented relocation suffix"));
1926 ignore_rest_of_line ();
1927 return;
1928 }
1929 else
1930 emit_expr (&exp, (unsigned int) nbytes);
1931 }
1932 }
1933 while (*input_line_pointer++ == ',');
1934
1935 /* Put terminator back into stream. */
1936 input_line_pointer--;
1937 demand_empty_rest_of_line ();
1938}
1939
1940#endif /* OBJ_ELF */
1941
1942/* Output a 32-bit word, but mark as an instruction. */
1943
1944static void
1945s_aarch64_inst (int ignored ATTRIBUTE_UNUSED)
1946{
1947 expressionS exp;
1948
1949#ifdef md_flush_pending_output
1950 md_flush_pending_output ();
1951#endif
1952
1953 if (is_it_end_of_statement ())
1954 {
1955 demand_empty_rest_of_line ();
1956 return;
1957 }
1958
a97902de 1959 /* Sections are assumed to start aligned. In executable section, there is no
c1baaddf
RL
1960 MAP_DATA symbol pending. So we only align the address during
1961 MAP_DATA --> MAP_INSN transition.
eb9d6cc9 1962 For other sections, this is not guaranteed. */
c1baaddf 1963 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
eb9d6cc9 1964 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
a06ea964 1965 frag_align_code (2, 0);
c1baaddf 1966
a06ea964
NC
1967#ifdef OBJ_ELF
1968 mapping_state (MAP_INSN);
1969#endif
1970
1971 do
1972 {
1973 expression (&exp);
1974 if (exp.X_op != O_constant)
1975 {
1976 as_bad (_("constant expression required"));
1977 ignore_rest_of_line ();
1978 return;
1979 }
1980
1981 if (target_big_endian)
1982 {
1983 unsigned int val = exp.X_add_number;
1984 exp.X_add_number = SWAP_32 (val);
1985 }
1986 emit_expr (&exp, 4);
1987 }
1988 while (*input_line_pointer++ == ',');
1989
1990 /* Put terminator back into stream. */
1991 input_line_pointer--;
1992 demand_empty_rest_of_line ();
1993}
1994
1995#ifdef OBJ_ELF
43a357f9
RL
1996/* Emit BFD_RELOC_AARCH64_TLSDESC_ADD on the next ADD instruction. */
1997
1998static void
1999s_tlsdescadd (int ignored ATTRIBUTE_UNUSED)
2000{
2001 expressionS exp;
2002
2003 expression (&exp);
2004 frag_grow (4);
2005 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
2006 BFD_RELOC_AARCH64_TLSDESC_ADD);
2007
2008 demand_empty_rest_of_line ();
2009}
2010
a06ea964
NC
2011/* Emit BFD_RELOC_AARCH64_TLSDESC_CALL on the next BLR instruction. */
2012
2013static void
2014s_tlsdesccall (int ignored ATTRIBUTE_UNUSED)
2015{
2016 expressionS exp;
2017
2018 /* Since we're just labelling the code, there's no need to define a
2019 mapping symbol. */
2020 expression (&exp);
2021 /* Make sure there is enough room in this frag for the following
2022 blr. This trick only works if the blr follows immediately after
2023 the .tlsdesc directive. */
2024 frag_grow (4);
2025 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
2026 BFD_RELOC_AARCH64_TLSDESC_CALL);
2027
2028 demand_empty_rest_of_line ();
2029}
43a357f9
RL
2030
2031/* Emit BFD_RELOC_AARCH64_TLSDESC_LDR on the next LDR instruction. */
2032
2033static void
2034s_tlsdescldr (int ignored ATTRIBUTE_UNUSED)
2035{
2036 expressionS exp;
2037
2038 expression (&exp);
2039 frag_grow (4);
2040 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
2041 BFD_RELOC_AARCH64_TLSDESC_LDR);
2042
2043 demand_empty_rest_of_line ();
2044}
a06ea964
NC
2045#endif /* OBJ_ELF */
2046
2047static void s_aarch64_arch (int);
2048static void s_aarch64_cpu (int);
ae527cd8 2049static void s_aarch64_arch_extension (int);
a06ea964
NC
2050
2051/* This table describes all the machine specific pseudo-ops the assembler
2052 has to support. The fields are:
2053 pseudo-op name without dot
2054 function to call to execute this pseudo-op
2055 Integer arg to pass to the function. */
2056
2057const pseudo_typeS md_pseudo_table[] = {
2058 /* Never called because '.req' does not start a line. */
2059 {"req", s_req, 0},
2060 {"unreq", s_unreq, 0},
2061 {"bss", s_bss, 0},
2062 {"even", s_even, 0},
2063 {"ltorg", s_ltorg, 0},
2064 {"pool", s_ltorg, 0},
2065 {"cpu", s_aarch64_cpu, 0},
2066 {"arch", s_aarch64_arch, 0},
ae527cd8 2067 {"arch_extension", s_aarch64_arch_extension, 0},
a06ea964
NC
2068 {"inst", s_aarch64_inst, 0},
2069#ifdef OBJ_ELF
43a357f9 2070 {"tlsdescadd", s_tlsdescadd, 0},
a06ea964 2071 {"tlsdesccall", s_tlsdesccall, 0},
43a357f9 2072 {"tlsdescldr", s_tlsdescldr, 0},
a06ea964
NC
2073 {"word", s_aarch64_elf_cons, 4},
2074 {"long", s_aarch64_elf_cons, 4},
2075 {"xword", s_aarch64_elf_cons, 8},
2076 {"dword", s_aarch64_elf_cons, 8},
2077#endif
2078 {0, 0, 0}
2079};
2080\f
2081
2082/* Check whether STR points to a register name followed by a comma or the
2083 end of line; REG_TYPE indicates which register types are checked
2084 against. Return TRUE if STR is such a register name; otherwise return
2085 FALSE. The function does not intend to produce any diagnostics, but since
2086 the register parser aarch64_reg_parse, which is called by this function,
2087 does produce diagnostics, we call clear_error to clear any diagnostics
2088 that may be generated by aarch64_reg_parse.
2089 Also, the function returns FALSE directly if there is any user error
2090 present at the function entry. This prevents the existing diagnostics
2091 state from being spoiled.
2092 The function currently serves parse_constant_immediate and
2093 parse_big_immediate only. */
2094static bfd_boolean
2095reg_name_p (char *str, aarch64_reg_type reg_type)
2096{
2097 int reg;
2098
2099 /* Prevent the diagnostics state from being spoiled. */
2100 if (error_p ())
2101 return FALSE;
2102
2103 reg = aarch64_reg_parse (&str, reg_type, NULL, NULL);
2104
2105 /* Clear the parsing error that may be set by the reg parser. */
2106 clear_error ();
2107
2108 if (reg == PARSE_FAIL)
2109 return FALSE;
2110
2111 skip_whitespace (str);
2112 if (*str == ',' || is_end_of_line[(unsigned int) *str])
2113 return TRUE;
2114
2115 return FALSE;
2116}
2117
2118/* Parser functions used exclusively in instruction operands. */
2119
2120/* Parse an immediate expression which may not be constant.
2121
2122 To prevent the expression parser from pushing a register name
2123 into the symbol table as an undefined symbol, firstly a check is
1799c0d0
RS
2124 done to find out whether STR is a register of type REG_TYPE followed
2125 by a comma or the end of line. Return FALSE if STR is such a string. */
a06ea964
NC
2126
2127static bfd_boolean
1799c0d0
RS
2128parse_immediate_expression (char **str, expressionS *exp,
2129 aarch64_reg_type reg_type)
a06ea964 2130{
1799c0d0 2131 if (reg_name_p (*str, reg_type))
a06ea964
NC
2132 {
2133 set_recoverable_error (_("immediate operand required"));
2134 return FALSE;
2135 }
2136
2137 my_get_expression (exp, str, GE_OPT_PREFIX, 1);
2138
2139 if (exp->X_op == O_absent)
2140 {
2141 set_fatal_syntax_error (_("missing immediate expression"));
2142 return FALSE;
2143 }
2144
2145 return TRUE;
2146}
2147
2148/* Constant immediate-value read function for use in insn parsing.
2149 STR points to the beginning of the immediate (with the optional
1799c0d0
RS
2150 leading #); *VAL receives the value. REG_TYPE says which register
2151 names should be treated as registers rather than as symbolic immediates.
a06ea964
NC
2152
2153 Return TRUE on success; otherwise return FALSE. */
2154
2155static bfd_boolean
1799c0d0 2156parse_constant_immediate (char **str, int64_t *val, aarch64_reg_type reg_type)
a06ea964
NC
2157{
2158 expressionS exp;
2159
1799c0d0 2160 if (! parse_immediate_expression (str, &exp, reg_type))
a06ea964
NC
2161 return FALSE;
2162
2163 if (exp.X_op != O_constant)
2164 {
2165 set_syntax_error (_("constant expression required"));
2166 return FALSE;
2167 }
2168
2169 *val = exp.X_add_number;
2170 return TRUE;
2171}
2172
2173static uint32_t
2174encode_imm_float_bits (uint32_t imm)
2175{
2176 return ((imm >> 19) & 0x7f) /* b[25:19] -> b[6:0] */
2177 | ((imm >> (31 - 7)) & 0x80); /* b[31] -> b[7] */
2178}
2179
62b0d0d5
YZ
2180/* Return TRUE if the single-precision floating-point value encoded in IMM
2181 can be expressed in the AArch64 8-bit signed floating-point format with
2182 3-bit exponent and normalized 4 bits of precision; in other words, the
2183 floating-point value must be expressable as
2184 (+/-) n / 16 * power (2, r)
2185 where n and r are integers such that 16 <= n <=31 and -3 <= r <= 4. */
2186
a06ea964
NC
2187static bfd_boolean
2188aarch64_imm_float_p (uint32_t imm)
2189{
62b0d0d5
YZ
2190 /* If a single-precision floating-point value has the following bit
2191 pattern, it can be expressed in the AArch64 8-bit floating-point
2192 format:
2193
2194 3 32222222 2221111111111
a06ea964 2195 1 09876543 21098765432109876543210
62b0d0d5
YZ
2196 n Eeeeeexx xxxx0000000000000000000
2197
2198 where n, e and each x are either 0 or 1 independently, with
2199 E == ~ e. */
a06ea964 2200
62b0d0d5
YZ
2201 uint32_t pattern;
2202
2203 /* Prepare the pattern for 'Eeeeee'. */
2204 if (((imm >> 30) & 0x1) == 0)
2205 pattern = 0x3e000000;
a06ea964 2206 else
62b0d0d5
YZ
2207 pattern = 0x40000000;
2208
2209 return (imm & 0x7ffff) == 0 /* lower 19 bits are 0. */
2210 && ((imm & 0x7e000000) == pattern); /* bits 25 - 29 == ~ bit 30. */
a06ea964
NC
2211}
2212
04a3379a
RS
2213/* Return TRUE if the IEEE double value encoded in IMM can be expressed
2214 as an IEEE float without any loss of precision. Store the value in
2215 *FPWORD if so. */
62b0d0d5 2216
a06ea964 2217static bfd_boolean
04a3379a 2218can_convert_double_to_float (uint64_t imm, uint32_t *fpword)
62b0d0d5
YZ
2219{
2220 /* If a double-precision floating-point value has the following bit
04a3379a 2221 pattern, it can be expressed in a float:
62b0d0d5 2222
04a3379a
RS
2223 6 66655555555 5544 44444444 33333333 33222222 22221111 111111
2224 3 21098765432 1098 76543210 98765432 10987654 32109876 54321098 76543210
2225 n E~~~eeeeeee ssss ssssssss ssssssss SSS00000 00000000 00000000 00000000
62b0d0d5 2226
04a3379a
RS
2227 -----------------------------> nEeeeeee esssssss ssssssss sssssSSS
2228 if Eeee_eeee != 1111_1111
2229
2230 where n, e, s and S are either 0 or 1 independently and where ~ is the
2231 inverse of E. */
62b0d0d5
YZ
2232
2233 uint32_t pattern;
2234 uint32_t high32 = imm >> 32;
04a3379a 2235 uint32_t low32 = imm;
62b0d0d5 2236
04a3379a
RS
2237 /* Lower 29 bits need to be 0s. */
2238 if ((imm & 0x1fffffff) != 0)
62b0d0d5
YZ
2239 return FALSE;
2240
2241 /* Prepare the pattern for 'Eeeeeeeee'. */
2242 if (((high32 >> 30) & 0x1) == 0)
04a3379a 2243 pattern = 0x38000000;
62b0d0d5
YZ
2244 else
2245 pattern = 0x40000000;
2246
04a3379a
RS
2247 /* Check E~~~. */
2248 if ((high32 & 0x78000000) != pattern)
62b0d0d5 2249 return FALSE;
04a3379a
RS
2250
2251 /* Check Eeee_eeee != 1111_1111. */
2252 if ((high32 & 0x7ff00000) == 0x47f00000)
2253 return FALSE;
2254
2255 *fpword = ((high32 & 0xc0000000) /* 1 n bit and 1 E bit. */
2256 | ((high32 << 3) & 0x3ffffff8) /* 7 e and 20 s bits. */
2257 | (low32 >> 29)); /* 3 S bits. */
2258 return TRUE;
62b0d0d5
YZ
2259}
2260
165d4950
RS
2261/* Return true if we should treat OPERAND as a double-precision
2262 floating-point operand rather than a single-precision one. */
2263static bfd_boolean
2264double_precision_operand_p (const aarch64_opnd_info *operand)
2265{
2266 /* Check for unsuffixed SVE registers, which are allowed
2267 for LDR and STR but not in instructions that require an
2268 immediate. We get better error messages if we arbitrarily
2269 pick one size, parse the immediate normally, and then
2270 report the match failure in the normal way. */
2271 return (operand->qualifier == AARCH64_OPND_QLF_NIL
2272 || aarch64_get_qualifier_esize (operand->qualifier) == 8);
2273}
2274
62b0d0d5
YZ
2275/* Parse a floating-point immediate. Return TRUE on success and return the
2276 value in *IMMED in the format of IEEE754 single-precision encoding.
2277 *CCP points to the start of the string; DP_P is TRUE when the immediate
2278 is expected to be in double-precision (N.B. this only matters when
1799c0d0
RS
2279 hexadecimal representation is involved). REG_TYPE says which register
2280 names should be treated as registers rather than as symbolic immediates.
62b0d0d5 2281
874d7e6e
RS
2282 This routine accepts any IEEE float; it is up to the callers to reject
2283 invalid ones. */
62b0d0d5
YZ
2284
2285static bfd_boolean
1799c0d0
RS
2286parse_aarch64_imm_float (char **ccp, int *immed, bfd_boolean dp_p,
2287 aarch64_reg_type reg_type)
a06ea964
NC
2288{
2289 char *str = *ccp;
2290 char *fpnum;
2291 LITTLENUM_TYPE words[MAX_LITTLENUMS];
62b0d0d5
YZ
2292 int64_t val = 0;
2293 unsigned fpword = 0;
2294 bfd_boolean hex_p = FALSE;
a06ea964
NC
2295
2296 skip_past_char (&str, '#');
2297
a06ea964
NC
2298 fpnum = str;
2299 skip_whitespace (fpnum);
2300
2301 if (strncmp (fpnum, "0x", 2) == 0)
62b0d0d5
YZ
2302 {
2303 /* Support the hexadecimal representation of the IEEE754 encoding.
2304 Double-precision is expected when DP_P is TRUE, otherwise the
2305 representation should be in single-precision. */
1799c0d0 2306 if (! parse_constant_immediate (&str, &val, reg_type))
62b0d0d5
YZ
2307 goto invalid_fp;
2308
2309 if (dp_p)
2310 {
04a3379a 2311 if (!can_convert_double_to_float (val, &fpword))
62b0d0d5
YZ
2312 goto invalid_fp;
2313 }
2314 else if ((uint64_t) val > 0xffffffff)
2315 goto invalid_fp;
2316 else
2317 fpword = val;
2318
2319 hex_p = TRUE;
2320 }
66881839
TC
2321 else if (reg_name_p (str, reg_type))
2322 {
2323 set_recoverable_error (_("immediate operand required"));
2324 return FALSE;
a06ea964
NC
2325 }
2326
62b0d0d5 2327 if (! hex_p)
a06ea964 2328 {
a06ea964
NC
2329 int i;
2330
62b0d0d5
YZ
2331 if ((str = atof_ieee (str, 's', words)) == NULL)
2332 goto invalid_fp;
2333
a06ea964
NC
2334 /* Our FP word must be 32 bits (single-precision FP). */
2335 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
2336 {
2337 fpword <<= LITTLENUM_NUMBER_OF_BITS;
2338 fpword |= words[i];
2339 }
62b0d0d5 2340 }
a06ea964 2341
874d7e6e
RS
2342 *immed = fpword;
2343 *ccp = str;
2344 return TRUE;
a06ea964
NC
2345
2346invalid_fp:
2347 set_fatal_syntax_error (_("invalid floating-point constant"));
2348 return FALSE;
2349}
2350
2351/* Less-generic immediate-value read function with the possibility of loading
2352 a big (64-bit) immediate, as required by AdvSIMD Modified immediate
2353 instructions.
2354
2355 To prevent the expression parser from pushing a register name into the
2356 symbol table as an undefined symbol, a check is firstly done to find
1799c0d0
RS
2357 out whether STR is a register of type REG_TYPE followed by a comma or
2358 the end of line. Return FALSE if STR is such a register. */
a06ea964
NC
2359
2360static bfd_boolean
1799c0d0 2361parse_big_immediate (char **str, int64_t *imm, aarch64_reg_type reg_type)
a06ea964
NC
2362{
2363 char *ptr = *str;
2364
1799c0d0 2365 if (reg_name_p (ptr, reg_type))
a06ea964
NC
2366 {
2367 set_syntax_error (_("immediate operand required"));
2368 return FALSE;
2369 }
2370
2371 my_get_expression (&inst.reloc.exp, &ptr, GE_OPT_PREFIX, 1);
2372
2373 if (inst.reloc.exp.X_op == O_constant)
2374 *imm = inst.reloc.exp.X_add_number;
2375
2376 *str = ptr;
2377
2378 return TRUE;
2379}
2380
2381/* Set operand IDX of the *INSTR that needs a GAS internal fixup.
2382 if NEED_LIBOPCODES is non-zero, the fixup will need
2383 assistance from the libopcodes. */
2384
2385static inline void
2386aarch64_set_gas_internal_fixup (struct reloc *reloc,
2387 const aarch64_opnd_info *operand,
2388 int need_libopcodes_p)
2389{
2390 reloc->type = BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2391 reloc->opnd = operand->type;
2392 if (need_libopcodes_p)
2393 reloc->need_libopcodes_p = 1;
2394};
2395
2396/* Return TRUE if the instruction needs to be fixed up later internally by
2397 the GAS; otherwise return FALSE. */
2398
2399static inline bfd_boolean
2400aarch64_gas_internal_fixup_p (void)
2401{
2402 return inst.reloc.type == BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2403}
2404
33eaf5de 2405/* Assign the immediate value to the relevant field in *OPERAND if
a06ea964
NC
2406 RELOC->EXP is a constant expression; otherwise, flag that *OPERAND
2407 needs an internal fixup in a later stage.
2408 ADDR_OFF_P determines whether it is the field ADDR.OFFSET.IMM or
2409 IMM.VALUE that may get assigned with the constant. */
2410static inline void
2411assign_imm_if_const_or_fixup_later (struct reloc *reloc,
2412 aarch64_opnd_info *operand,
2413 int addr_off_p,
2414 int need_libopcodes_p,
2415 int skip_p)
2416{
2417 if (reloc->exp.X_op == O_constant)
2418 {
2419 if (addr_off_p)
2420 operand->addr.offset.imm = reloc->exp.X_add_number;
2421 else
2422 operand->imm.value = reloc->exp.X_add_number;
2423 reloc->type = BFD_RELOC_UNUSED;
2424 }
2425 else
2426 {
2427 aarch64_set_gas_internal_fixup (reloc, operand, need_libopcodes_p);
2428 /* Tell libopcodes to ignore this operand or not. This is helpful
2429 when one of the operands needs to be fixed up later but we need
2430 libopcodes to check the other operands. */
2431 operand->skip = skip_p;
2432 }
2433}
2434
2435/* Relocation modifiers. Each entry in the table contains the textual
2436 name for the relocation which may be placed before a symbol used as
2437 a load/store offset, or add immediate. It must be surrounded by a
2438 leading and trailing colon, for example:
2439
2440 ldr x0, [x1, #:rello:varsym]
2441 add x0, x1, #:rello:varsym */
2442
2443struct reloc_table_entry
2444{
2445 const char *name;
2446 int pc_rel;
6f4a313b 2447 bfd_reloc_code_real_type adr_type;
a06ea964
NC
2448 bfd_reloc_code_real_type adrp_type;
2449 bfd_reloc_code_real_type movw_type;
2450 bfd_reloc_code_real_type add_type;
2451 bfd_reloc_code_real_type ldst_type;
74ad790c 2452 bfd_reloc_code_real_type ld_literal_type;
a06ea964
NC
2453};
2454
2455static struct reloc_table_entry reloc_table[] = {
2456 /* Low 12 bits of absolute address: ADD/i and LDR/STR */
2457 {"lo12", 0,
6f4a313b 2458 0, /* adr_type */
a06ea964
NC
2459 0,
2460 0,
2461 BFD_RELOC_AARCH64_ADD_LO12,
74ad790c
MS
2462 BFD_RELOC_AARCH64_LDST_LO12,
2463 0},
a06ea964
NC
2464
2465 /* Higher 21 bits of pc-relative page offset: ADRP */
2466 {"pg_hi21", 1,
6f4a313b 2467 0, /* adr_type */
a06ea964
NC
2468 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
2469 0,
2470 0,
74ad790c 2471 0,
a06ea964
NC
2472 0},
2473
2474 /* Higher 21 bits of pc-relative page offset: ADRP, no check */
2475 {"pg_hi21_nc", 1,
6f4a313b 2476 0, /* adr_type */
a06ea964
NC
2477 BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL,
2478 0,
2479 0,
74ad790c 2480 0,
a06ea964
NC
2481 0},
2482
2483 /* Most significant bits 0-15 of unsigned address/value: MOVZ */
2484 {"abs_g0", 0,
6f4a313b 2485 0, /* adr_type */
a06ea964
NC
2486 0,
2487 BFD_RELOC_AARCH64_MOVW_G0,
2488 0,
74ad790c 2489 0,
a06ea964
NC
2490 0},
2491
2492 /* Most significant bits 0-15 of signed address/value: MOVN/Z */
2493 {"abs_g0_s", 0,
6f4a313b 2494 0, /* adr_type */
a06ea964
NC
2495 0,
2496 BFD_RELOC_AARCH64_MOVW_G0_S,
2497 0,
74ad790c 2498 0,
a06ea964
NC
2499 0},
2500
2501 /* Less significant bits 0-15 of address/value: MOVK, no check */
2502 {"abs_g0_nc", 0,
6f4a313b 2503 0, /* adr_type */
a06ea964
NC
2504 0,
2505 BFD_RELOC_AARCH64_MOVW_G0_NC,
2506 0,
74ad790c 2507 0,
a06ea964
NC
2508 0},
2509
2510 /* Most significant bits 16-31 of unsigned address/value: MOVZ */
2511 {"abs_g1", 0,
6f4a313b 2512 0, /* adr_type */
a06ea964
NC
2513 0,
2514 BFD_RELOC_AARCH64_MOVW_G1,
2515 0,
74ad790c 2516 0,
a06ea964
NC
2517 0},
2518
2519 /* Most significant bits 16-31 of signed address/value: MOVN/Z */
2520 {"abs_g1_s", 0,
6f4a313b 2521 0, /* adr_type */
a06ea964
NC
2522 0,
2523 BFD_RELOC_AARCH64_MOVW_G1_S,
2524 0,
74ad790c 2525 0,
a06ea964
NC
2526 0},
2527
2528 /* Less significant bits 16-31 of address/value: MOVK, no check */
2529 {"abs_g1_nc", 0,
6f4a313b 2530 0, /* adr_type */
a06ea964
NC
2531 0,
2532 BFD_RELOC_AARCH64_MOVW_G1_NC,
2533 0,
74ad790c 2534 0,
a06ea964
NC
2535 0},
2536
2537 /* Most significant bits 32-47 of unsigned address/value: MOVZ */
2538 {"abs_g2", 0,
6f4a313b 2539 0, /* adr_type */
a06ea964
NC
2540 0,
2541 BFD_RELOC_AARCH64_MOVW_G2,
2542 0,
74ad790c 2543 0,
a06ea964
NC
2544 0},
2545
2546 /* Most significant bits 32-47 of signed address/value: MOVN/Z */
2547 {"abs_g2_s", 0,
6f4a313b 2548 0, /* adr_type */
a06ea964
NC
2549 0,
2550 BFD_RELOC_AARCH64_MOVW_G2_S,
2551 0,
74ad790c 2552 0,
a06ea964
NC
2553 0},
2554
2555 /* Less significant bits 32-47 of address/value: MOVK, no check */
2556 {"abs_g2_nc", 0,
6f4a313b 2557 0, /* adr_type */
a06ea964
NC
2558 0,
2559 BFD_RELOC_AARCH64_MOVW_G2_NC,
2560 0,
74ad790c 2561 0,
a06ea964
NC
2562 0},
2563
2564 /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
2565 {"abs_g3", 0,
6f4a313b 2566 0, /* adr_type */
a06ea964
NC
2567 0,
2568 BFD_RELOC_AARCH64_MOVW_G3,
2569 0,
74ad790c 2570 0,
a06ea964 2571 0},
4aa2c5e2 2572
32247401
RL
2573 /* Most significant bits 0-15 of signed/unsigned address/value: MOVZ */
2574 {"prel_g0", 1,
2575 0, /* adr_type */
2576 0,
2577 BFD_RELOC_AARCH64_MOVW_PREL_G0,
2578 0,
2579 0,
2580 0},
2581
2582 /* Most significant bits 0-15 of signed/unsigned address/value: MOVK */
2583 {"prel_g0_nc", 1,
2584 0, /* adr_type */
2585 0,
2586 BFD_RELOC_AARCH64_MOVW_PREL_G0_NC,
2587 0,
2588 0,
2589 0},
2590
2591 /* Most significant bits 16-31 of signed/unsigned address/value: MOVZ */
2592 {"prel_g1", 1,
2593 0, /* adr_type */
2594 0,
2595 BFD_RELOC_AARCH64_MOVW_PREL_G1,
2596 0,
2597 0,
2598 0},
2599
2600 /* Most significant bits 16-31 of signed/unsigned address/value: MOVK */
2601 {"prel_g1_nc", 1,
2602 0, /* adr_type */
2603 0,
2604 BFD_RELOC_AARCH64_MOVW_PREL_G1_NC,
2605 0,
2606 0,
2607 0},
2608
2609 /* Most significant bits 32-47 of signed/unsigned address/value: MOVZ */
2610 {"prel_g2", 1,
2611 0, /* adr_type */
2612 0,
2613 BFD_RELOC_AARCH64_MOVW_PREL_G2,
2614 0,
2615 0,
2616 0},
2617
2618 /* Most significant bits 32-47 of signed/unsigned address/value: MOVK */
2619 {"prel_g2_nc", 1,
2620 0, /* adr_type */
2621 0,
2622 BFD_RELOC_AARCH64_MOVW_PREL_G2_NC,
2623 0,
2624 0,
2625 0},
2626
2627 /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
2628 {"prel_g3", 1,
2629 0, /* adr_type */
2630 0,
2631 BFD_RELOC_AARCH64_MOVW_PREL_G3,
2632 0,
2633 0,
2634 0},
2635
a06ea964
NC
2636 /* Get to the page containing GOT entry for a symbol. */
2637 {"got", 1,
6f4a313b 2638 0, /* adr_type */
a06ea964
NC
2639 BFD_RELOC_AARCH64_ADR_GOT_PAGE,
2640 0,
2641 0,
74ad790c 2642 0,
4aa2c5e2
MS
2643 BFD_RELOC_AARCH64_GOT_LD_PREL19},
2644
a06ea964
NC
2645 /* 12 bit offset into the page containing GOT entry for that symbol. */
2646 {"got_lo12", 0,
6f4a313b 2647 0, /* adr_type */
a06ea964
NC
2648 0,
2649 0,
2650 0,
74ad790c
MS
2651 BFD_RELOC_AARCH64_LD_GOT_LO12_NC,
2652 0},
a06ea964 2653
ca632371
RL
2654 /* 0-15 bits of address/value: MOVk, no check. */
2655 {"gotoff_g0_nc", 0,
2656 0, /* adr_type */
2657 0,
2658 BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC,
2659 0,
2660 0,
2661 0},
2662
654248e7
RL
2663 /* Most significant bits 16-31 of address/value: MOVZ. */
2664 {"gotoff_g1", 0,
2665 0, /* adr_type */
2666 0,
2667 BFD_RELOC_AARCH64_MOVW_GOTOFF_G1,
2668 0,
2669 0,
2670 0},
2671
87f5fbcc
RL
2672 /* 15 bit offset into the page containing GOT entry for that symbol. */
2673 {"gotoff_lo15", 0,
2674 0, /* adr_type */
2675 0,
2676 0,
2677 0,
2678 BFD_RELOC_AARCH64_LD64_GOTOFF_LO15,
2679 0},
2680
3b957e5b
RL
2681 /* Get to the page containing GOT TLS entry for a symbol */
2682 {"gottprel_g0_nc", 0,
2683 0, /* adr_type */
2684 0,
2685 BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC,
2686 0,
2687 0,
2688 0},
2689
2690 /* Get to the page containing GOT TLS entry for a symbol */
2691 {"gottprel_g1", 0,
2692 0, /* adr_type */
2693 0,
2694 BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1,
2695 0,
2696 0,
2697 0},
2698
a06ea964
NC
2699 /* Get to the page containing GOT TLS entry for a symbol */
2700 {"tlsgd", 0,
3c12b054 2701 BFD_RELOC_AARCH64_TLSGD_ADR_PREL21, /* adr_type */
a06ea964
NC
2702 BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21,
2703 0,
2704 0,
74ad790c 2705 0,
a06ea964
NC
2706 0},
2707
2708 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2709 {"tlsgd_lo12", 0,
6f4a313b 2710 0, /* adr_type */
a06ea964
NC
2711 0,
2712 0,
2713 BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC,
74ad790c 2714 0,
a06ea964
NC
2715 0},
2716
3e8286c0
RL
2717 /* Lower 16 bits address/value: MOVk. */
2718 {"tlsgd_g0_nc", 0,
2719 0, /* adr_type */
2720 0,
2721 BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC,
2722 0,
2723 0,
2724 0},
2725
1aa66fb1
RL
2726 /* Most significant bits 16-31 of address/value: MOVZ. */
2727 {"tlsgd_g1", 0,
2728 0, /* adr_type */
2729 0,
2730 BFD_RELOC_AARCH64_TLSGD_MOVW_G1,
2731 0,
2732 0,
2733 0},
2734
a06ea964
NC
2735 /* Get to the page containing GOT TLS entry for a symbol */
2736 {"tlsdesc", 0,
389b8029 2737 BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21, /* adr_type */
418009c2 2738 BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21,
a06ea964
NC
2739 0,
2740 0,
74ad790c 2741 0,
1ada945d 2742 BFD_RELOC_AARCH64_TLSDESC_LD_PREL19},
a06ea964
NC
2743
2744 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2745 {"tlsdesc_lo12", 0,
6f4a313b 2746 0, /* adr_type */
a06ea964
NC
2747 0,
2748 0,
f955cccf 2749 BFD_RELOC_AARCH64_TLSDESC_ADD_LO12,
74ad790c
MS
2750 BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC,
2751 0},
a06ea964 2752
6c37fedc
JW
2753 /* Get to the page containing GOT TLS entry for a symbol.
2754 The same as GD, we allocate two consecutive GOT slots
2755 for module index and module offset, the only difference
33eaf5de 2756 with GD is the module offset should be initialized to
6c37fedc
JW
2757 zero without any outstanding runtime relocation. */
2758 {"tlsldm", 0,
2759 BFD_RELOC_AARCH64_TLSLD_ADR_PREL21, /* adr_type */
1107e076 2760 BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21,
6c37fedc
JW
2761 0,
2762 0,
2763 0,
2764 0},
2765
a12fad50
JW
2766 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2767 {"tlsldm_lo12_nc", 0,
2768 0, /* adr_type */
2769 0,
2770 0,
2771 BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC,
2772 0,
2773 0},
2774
70151fb5
JW
2775 /* 12 bit offset into the module TLS base address. */
2776 {"dtprel_lo12", 0,
2777 0, /* adr_type */
2778 0,
2779 0,
2780 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12,
4c562523 2781 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12,
70151fb5
JW
2782 0},
2783
13289c10
JW
2784 /* Same as dtprel_lo12, no overflow check. */
2785 {"dtprel_lo12_nc", 0,
2786 0, /* adr_type */
2787 0,
2788 0,
2789 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC,
4c562523 2790 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC,
13289c10
JW
2791 0},
2792
49df5539
JW
2793 /* bits[23:12] of offset to the module TLS base address. */
2794 {"dtprel_hi12", 0,
2795 0, /* adr_type */
2796 0,
2797 0,
2798 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12,
2799 0,
2800 0},
2801
2802 /* bits[15:0] of offset to the module TLS base address. */
2803 {"dtprel_g0", 0,
2804 0, /* adr_type */
2805 0,
2806 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0,
2807 0,
2808 0,
2809 0},
2810
2811 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
2812 {"dtprel_g0_nc", 0,
2813 0, /* adr_type */
2814 0,
2815 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC,
2816 0,
2817 0,
2818 0},
2819
2820 /* bits[31:16] of offset to the module TLS base address. */
2821 {"dtprel_g1", 0,
2822 0, /* adr_type */
2823 0,
2824 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1,
2825 0,
2826 0,
2827 0},
2828
2829 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
2830 {"dtprel_g1_nc", 0,
2831 0, /* adr_type */
2832 0,
2833 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC,
2834 0,
2835 0,
2836 0},
2837
2838 /* bits[47:32] of offset to the module TLS base address. */
2839 {"dtprel_g2", 0,
2840 0, /* adr_type */
2841 0,
2842 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2,
2843 0,
2844 0,
2845 0},
2846
43a357f9
RL
2847 /* Lower 16 bit offset into GOT entry for a symbol */
2848 {"tlsdesc_off_g0_nc", 0,
2849 0, /* adr_type */
2850 0,
2851 BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC,
2852 0,
2853 0,
2854 0},
2855
2856 /* Higher 16 bit offset into GOT entry for a symbol */
2857 {"tlsdesc_off_g1", 0,
2858 0, /* adr_type */
2859 0,
2860 BFD_RELOC_AARCH64_TLSDESC_OFF_G1,
2861 0,
2862 0,
2863 0},
2864
a06ea964
NC
2865 /* Get to the page containing GOT TLS entry for a symbol */
2866 {"gottprel", 0,
6f4a313b 2867 0, /* adr_type */
a06ea964
NC
2868 BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21,
2869 0,
2870 0,
74ad790c 2871 0,
043bf05a 2872 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19},
a06ea964
NC
2873
2874 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2875 {"gottprel_lo12", 0,
6f4a313b 2876 0, /* adr_type */
a06ea964
NC
2877 0,
2878 0,
2879 0,
74ad790c
MS
2880 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC,
2881 0},
a06ea964
NC
2882
2883 /* Get tp offset for a symbol. */
2884 {"tprel", 0,
6f4a313b 2885 0, /* adr_type */
a06ea964
NC
2886 0,
2887 0,
2888 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
74ad790c 2889 0,
a06ea964
NC
2890 0},
2891
2892 /* Get tp offset for a symbol. */
2893 {"tprel_lo12", 0,
6f4a313b 2894 0, /* adr_type */
a06ea964
NC
2895 0,
2896 0,
2897 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
84f1b9fb 2898 BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12,
a06ea964
NC
2899 0},
2900
2901 /* Get tp offset for a symbol. */
2902 {"tprel_hi12", 0,
6f4a313b 2903 0, /* adr_type */
a06ea964
NC
2904 0,
2905 0,
2906 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12,
74ad790c 2907 0,
a06ea964
NC
2908 0},
2909
2910 /* Get tp offset for a symbol. */
2911 {"tprel_lo12_nc", 0,
6f4a313b 2912 0, /* adr_type */
a06ea964
NC
2913 0,
2914 0,
2915 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC,
84f1b9fb 2916 BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC,
a06ea964
NC
2917 0},
2918
2919 /* Most significant bits 32-47 of address/value: MOVZ. */
2920 {"tprel_g2", 0,
6f4a313b 2921 0, /* adr_type */
a06ea964
NC
2922 0,
2923 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2,
2924 0,
74ad790c 2925 0,
a06ea964
NC
2926 0},
2927
2928 /* Most significant bits 16-31 of address/value: MOVZ. */
2929 {"tprel_g1", 0,
6f4a313b 2930 0, /* adr_type */
a06ea964
NC
2931 0,
2932 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1,
2933 0,
74ad790c 2934 0,
a06ea964
NC
2935 0},
2936
2937 /* Most significant bits 16-31 of address/value: MOVZ, no check. */
2938 {"tprel_g1_nc", 0,
6f4a313b 2939 0, /* adr_type */
a06ea964
NC
2940 0,
2941 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC,
2942 0,
74ad790c 2943 0,
a06ea964
NC
2944 0},
2945
2946 /* Most significant bits 0-15 of address/value: MOVZ. */
2947 {"tprel_g0", 0,
6f4a313b 2948 0, /* adr_type */
a06ea964
NC
2949 0,
2950 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0,
2951 0,
74ad790c 2952 0,
a06ea964
NC
2953 0},
2954
2955 /* Most significant bits 0-15 of address/value: MOVZ, no check. */
2956 {"tprel_g0_nc", 0,
6f4a313b 2957 0, /* adr_type */
a06ea964
NC
2958 0,
2959 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC,
2960 0,
74ad790c 2961 0,
a06ea964 2962 0},
a921b5bd
JW
2963
2964 /* 15bit offset from got entry to base address of GOT table. */
2965 {"gotpage_lo15", 0,
2966 0,
2967 0,
2968 0,
2969 0,
2970 BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15,
2971 0},
3d715ce4
JW
2972
2973 /* 14bit offset from got entry to base address of GOT table. */
2974 {"gotpage_lo14", 0,
2975 0,
2976 0,
2977 0,
2978 0,
2979 BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14,
2980 0},
a06ea964
NC
2981};
2982
2983/* Given the address of a pointer pointing to the textual name of a
2984 relocation as may appear in assembler source, attempt to find its
2985 details in reloc_table. The pointer will be updated to the character
2986 after the trailing colon. On failure, NULL will be returned;
2987 otherwise return the reloc_table_entry. */
2988
2989static struct reloc_table_entry *
2990find_reloc_table_entry (char **str)
2991{
2992 unsigned int i;
2993 for (i = 0; i < ARRAY_SIZE (reloc_table); i++)
2994 {
2995 int length = strlen (reloc_table[i].name);
2996
2997 if (strncasecmp (reloc_table[i].name, *str, length) == 0
2998 && (*str)[length] == ':')
2999 {
3000 *str += (length + 1);
3001 return &reloc_table[i];
3002 }
3003 }
3004
3005 return NULL;
3006}
3007
3008/* Mode argument to parse_shift and parser_shifter_operand. */
3009enum parse_shift_mode
3010{
98907a70 3011 SHIFTED_NONE, /* no shifter allowed */
a06ea964
NC
3012 SHIFTED_ARITH_IMM, /* "rn{,lsl|lsr|asl|asr|uxt|sxt #n}" or
3013 "#imm{,lsl #n}" */
3014 SHIFTED_LOGIC_IMM, /* "rn{,lsl|lsr|asl|asr|ror #n}" or
3015 "#imm" */
3016 SHIFTED_LSL, /* bare "lsl #n" */
2442d846 3017 SHIFTED_MUL, /* bare "mul #n" */
a06ea964 3018 SHIFTED_LSL_MSL, /* "lsl|msl #n" */
98907a70 3019 SHIFTED_MUL_VL, /* "mul vl" */
a06ea964
NC
3020 SHIFTED_REG_OFFSET /* [su]xtw|sxtx {#n} or lsl #n */
3021};
3022
3023/* Parse a <shift> operator on an AArch64 data processing instruction.
3024 Return TRUE on success; otherwise return FALSE. */
3025static bfd_boolean
3026parse_shift (char **str, aarch64_opnd_info *operand, enum parse_shift_mode mode)
3027{
3028 const struct aarch64_name_value_pair *shift_op;
3029 enum aarch64_modifier_kind kind;
3030 expressionS exp;
3031 int exp_has_prefix;
3032 char *s = *str;
3033 char *p = s;
3034
3035 for (p = *str; ISALPHA (*p); p++)
3036 ;
3037
3038 if (p == *str)
3039 {
3040 set_syntax_error (_("shift expression expected"));
3041 return FALSE;
3042 }
3043
3044 shift_op = hash_find_n (aarch64_shift_hsh, *str, p - *str);
3045
3046 if (shift_op == NULL)
3047 {
3048 set_syntax_error (_("shift operator expected"));
3049 return FALSE;
3050 }
3051
3052 kind = aarch64_get_operand_modifier (shift_op);
3053
3054 if (kind == AARCH64_MOD_MSL && mode != SHIFTED_LSL_MSL)
3055 {
3056 set_syntax_error (_("invalid use of 'MSL'"));
3057 return FALSE;
3058 }
3059
2442d846 3060 if (kind == AARCH64_MOD_MUL
98907a70
RS
3061 && mode != SHIFTED_MUL
3062 && mode != SHIFTED_MUL_VL)
2442d846
RS
3063 {
3064 set_syntax_error (_("invalid use of 'MUL'"));
3065 return FALSE;
3066 }
3067
a06ea964
NC
3068 switch (mode)
3069 {
3070 case SHIFTED_LOGIC_IMM:
535b785f 3071 if (aarch64_extend_operator_p (kind))
a06ea964
NC
3072 {
3073 set_syntax_error (_("extending shift is not permitted"));
3074 return FALSE;
3075 }
3076 break;
3077
3078 case SHIFTED_ARITH_IMM:
3079 if (kind == AARCH64_MOD_ROR)
3080 {
3081 set_syntax_error (_("'ROR' shift is not permitted"));
3082 return FALSE;
3083 }
3084 break;
3085
3086 case SHIFTED_LSL:
3087 if (kind != AARCH64_MOD_LSL)
3088 {
3089 set_syntax_error (_("only 'LSL' shift is permitted"));
3090 return FALSE;
3091 }
3092 break;
3093
2442d846
RS
3094 case SHIFTED_MUL:
3095 if (kind != AARCH64_MOD_MUL)
3096 {
3097 set_syntax_error (_("only 'MUL' is permitted"));
3098 return FALSE;
3099 }
3100 break;
3101
98907a70
RS
3102 case SHIFTED_MUL_VL:
3103 /* "MUL VL" consists of two separate tokens. Require the first
3104 token to be "MUL" and look for a following "VL". */
3105 if (kind == AARCH64_MOD_MUL)
3106 {
3107 skip_whitespace (p);
3108 if (strncasecmp (p, "vl", 2) == 0 && !ISALPHA (p[2]))
3109 {
3110 p += 2;
3111 kind = AARCH64_MOD_MUL_VL;
3112 break;
3113 }
3114 }
3115 set_syntax_error (_("only 'MUL VL' is permitted"));
3116 return FALSE;
3117
a06ea964
NC
3118 case SHIFTED_REG_OFFSET:
3119 if (kind != AARCH64_MOD_UXTW && kind != AARCH64_MOD_LSL
3120 && kind != AARCH64_MOD_SXTW && kind != AARCH64_MOD_SXTX)
3121 {
3122 set_fatal_syntax_error
3123 (_("invalid shift for the register offset addressing mode"));
3124 return FALSE;
3125 }
3126 break;
3127
3128 case SHIFTED_LSL_MSL:
3129 if (kind != AARCH64_MOD_LSL && kind != AARCH64_MOD_MSL)
3130 {
3131 set_syntax_error (_("invalid shift operator"));
3132 return FALSE;
3133 }
3134 break;
3135
3136 default:
3137 abort ();
3138 }
3139
3140 /* Whitespace can appear here if the next thing is a bare digit. */
3141 skip_whitespace (p);
3142
3143 /* Parse shift amount. */
3144 exp_has_prefix = 0;
98907a70 3145 if ((mode == SHIFTED_REG_OFFSET && *p == ']') || kind == AARCH64_MOD_MUL_VL)
a06ea964
NC
3146 exp.X_op = O_absent;
3147 else
3148 {
3149 if (is_immediate_prefix (*p))
3150 {
3151 p++;
3152 exp_has_prefix = 1;
3153 }
3154 my_get_expression (&exp, &p, GE_NO_PREFIX, 0);
3155 }
98907a70
RS
3156 if (kind == AARCH64_MOD_MUL_VL)
3157 /* For consistency, give MUL VL the same shift amount as an implicit
3158 MUL #1. */
3159 operand->shifter.amount = 1;
3160 else if (exp.X_op == O_absent)
a06ea964 3161 {
535b785f 3162 if (!aarch64_extend_operator_p (kind) || exp_has_prefix)
a06ea964
NC
3163 {
3164 set_syntax_error (_("missing shift amount"));
3165 return FALSE;
3166 }
3167 operand->shifter.amount = 0;
3168 }
3169 else if (exp.X_op != O_constant)
3170 {
3171 set_syntax_error (_("constant shift amount required"));
3172 return FALSE;
3173 }
2442d846
RS
3174 /* For parsing purposes, MUL #n has no inherent range. The range
3175 depends on the operand and will be checked by operand-specific
3176 routines. */
3177 else if (kind != AARCH64_MOD_MUL
3178 && (exp.X_add_number < 0 || exp.X_add_number > 63))
a06ea964
NC
3179 {
3180 set_fatal_syntax_error (_("shift amount out of range 0 to 63"));
3181 return FALSE;
3182 }
3183 else
3184 {
3185 operand->shifter.amount = exp.X_add_number;
3186 operand->shifter.amount_present = 1;
3187 }
3188
3189 operand->shifter.operator_present = 1;
3190 operand->shifter.kind = kind;
3191
3192 *str = p;
3193 return TRUE;
3194}
3195
3196/* Parse a <shifter_operand> for a data processing instruction:
3197
3198 #<immediate>
3199 #<immediate>, LSL #imm
3200
3201 Validation of immediate operands is deferred to md_apply_fix.
3202
3203 Return TRUE on success; otherwise return FALSE. */
3204
3205static bfd_boolean
3206parse_shifter_operand_imm (char **str, aarch64_opnd_info *operand,
3207 enum parse_shift_mode mode)
3208{
3209 char *p;
3210
3211 if (mode != SHIFTED_ARITH_IMM && mode != SHIFTED_LOGIC_IMM)
3212 return FALSE;
3213
3214 p = *str;
3215
3216 /* Accept an immediate expression. */
3217 if (! my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX, 1))
3218 return FALSE;
3219
3220 /* Accept optional LSL for arithmetic immediate values. */
3221 if (mode == SHIFTED_ARITH_IMM && skip_past_comma (&p))
3222 if (! parse_shift (&p, operand, SHIFTED_LSL))
3223 return FALSE;
3224
3225 /* Not accept any shifter for logical immediate values. */
3226 if (mode == SHIFTED_LOGIC_IMM && skip_past_comma (&p)
3227 && parse_shift (&p, operand, mode))
3228 {
3229 set_syntax_error (_("unexpected shift operator"));
3230 return FALSE;
3231 }
3232
3233 *str = p;
3234 return TRUE;
3235}
3236
3237/* Parse a <shifter_operand> for a data processing instruction:
3238
3239 <Rm>
3240 <Rm>, <shift>
3241 #<immediate>
3242 #<immediate>, LSL #imm
3243
3244 where <shift> is handled by parse_shift above, and the last two
3245 cases are handled by the function above.
3246
3247 Validation of immediate operands is deferred to md_apply_fix.
3248
3249 Return TRUE on success; otherwise return FALSE. */
3250
3251static bfd_boolean
3252parse_shifter_operand (char **str, aarch64_opnd_info *operand,
3253 enum parse_shift_mode mode)
3254{
e1b988bb
RS
3255 const reg_entry *reg;
3256 aarch64_opnd_qualifier_t qualifier;
a06ea964
NC
3257 enum aarch64_operand_class opd_class
3258 = aarch64_get_operand_class (operand->type);
3259
e1b988bb
RS
3260 reg = aarch64_reg_parse_32_64 (str, &qualifier);
3261 if (reg)
a06ea964
NC
3262 {
3263 if (opd_class == AARCH64_OPND_CLASS_IMMEDIATE)
3264 {
3265 set_syntax_error (_("unexpected register in the immediate operand"));
3266 return FALSE;
3267 }
3268
e1b988bb 3269 if (!aarch64_check_reg_type (reg, REG_TYPE_R_Z))
a06ea964 3270 {
e1b988bb 3271 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_Z)));
a06ea964
NC
3272 return FALSE;
3273 }
3274
e1b988bb
RS
3275 operand->reg.regno = reg->number;
3276 operand->qualifier = qualifier;
a06ea964
NC
3277
3278 /* Accept optional shift operation on register. */
3279 if (! skip_past_comma (str))
3280 return TRUE;
3281
3282 if (! parse_shift (str, operand, mode))
3283 return FALSE;
3284
3285 return TRUE;
3286 }
3287 else if (opd_class == AARCH64_OPND_CLASS_MODIFIED_REG)
3288 {
3289 set_syntax_error
3290 (_("integer register expected in the extended/shifted operand "
3291 "register"));
3292 return FALSE;
3293 }
3294
3295 /* We have a shifted immediate variable. */
3296 return parse_shifter_operand_imm (str, operand, mode);
3297}
3298
3299/* Return TRUE on success; return FALSE otherwise. */
3300
3301static bfd_boolean
3302parse_shifter_operand_reloc (char **str, aarch64_opnd_info *operand,
3303 enum parse_shift_mode mode)
3304{
3305 char *p = *str;
3306
3307 /* Determine if we have the sequence of characters #: or just :
3308 coming next. If we do, then we check for a :rello: relocation
3309 modifier. If we don't, punt the whole lot to
3310 parse_shifter_operand. */
3311
3312 if ((p[0] == '#' && p[1] == ':') || p[0] == ':')
3313 {
3314 struct reloc_table_entry *entry;
3315
3316 if (p[0] == '#')
3317 p += 2;
3318 else
3319 p++;
3320 *str = p;
3321
3322 /* Try to parse a relocation. Anything else is an error. */
3323 if (!(entry = find_reloc_table_entry (str)))
3324 {
3325 set_syntax_error (_("unknown relocation modifier"));
3326 return FALSE;
3327 }
3328
3329 if (entry->add_type == 0)
3330 {
3331 set_syntax_error
3332 (_("this relocation modifier is not allowed on this instruction"));
3333 return FALSE;
3334 }
3335
3336 /* Save str before we decompose it. */
3337 p = *str;
3338
3339 /* Next, we parse the expression. */
3340 if (! my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX, 1))
3341 return FALSE;
3342
3343 /* Record the relocation type (use the ADD variant here). */
3344 inst.reloc.type = entry->add_type;
3345 inst.reloc.pc_rel = entry->pc_rel;
3346
3347 /* If str is empty, we've reached the end, stop here. */
3348 if (**str == '\0')
3349 return TRUE;
3350
55d9b4c1 3351 /* Otherwise, we have a shifted reloc modifier, so rewind to
a06ea964
NC
3352 recover the variable name and continue parsing for the shifter. */
3353 *str = p;
3354 return parse_shifter_operand_imm (str, operand, mode);
3355 }
3356
3357 return parse_shifter_operand (str, operand, mode);
3358}
3359
3360/* Parse all forms of an address expression. Information is written
3361 to *OPERAND and/or inst.reloc.
3362
3363 The A64 instruction set has the following addressing modes:
3364
3365 Offset
4df068de
RS
3366 [base] // in SIMD ld/st structure
3367 [base{,#0}] // in ld/st exclusive
a06ea964
NC
3368 [base{,#imm}]
3369 [base,Xm{,LSL #imm}]
3370 [base,Xm,SXTX {#imm}]
3371 [base,Wm,(S|U)XTW {#imm}]
3372 Pre-indexed
3373 [base,#imm]!
3374 Post-indexed
3375 [base],#imm
4df068de 3376 [base],Xm // in SIMD ld/st structure
a06ea964
NC
3377 PC-relative (literal)
3378 label
4df068de 3379 SVE:
98907a70 3380 [base,#imm,MUL VL]
4df068de
RS
3381 [base,Zm.D{,LSL #imm}]
3382 [base,Zm.S,(S|U)XTW {#imm}]
3383 [base,Zm.D,(S|U)XTW {#imm}] // ignores top 32 bits of Zm.D elements
3384 [Zn.S,#imm]
3385 [Zn.D,#imm]
3386 [Zn.S,Zm.S{,LSL #imm}] // in ADR
3387 [Zn.D,Zm.D{,LSL #imm}] // in ADR
3388 [Zn.D,Zm.D,(S|U)XTW {#imm}] // in ADR
a06ea964
NC
3389
3390 (As a convenience, the notation "=immediate" is permitted in conjunction
3391 with the pc-relative literal load instructions to automatically place an
3392 immediate value or symbolic address in a nearby literal pool and generate
3393 a hidden label which references it.)
3394
3395 Upon a successful parsing, the address structure in *OPERAND will be
3396 filled in the following way:
3397
3398 .base_regno = <base>
3399 .offset.is_reg // 1 if the offset is a register
3400 .offset.imm = <imm>
3401 .offset.regno = <Rm>
3402
3403 For different addressing modes defined in the A64 ISA:
3404
3405 Offset
3406 .pcrel=0; .preind=1; .postind=0; .writeback=0
3407 Pre-indexed
3408 .pcrel=0; .preind=1; .postind=0; .writeback=1
3409 Post-indexed
3410 .pcrel=0; .preind=0; .postind=1; .writeback=1
3411 PC-relative (literal)
3412 .pcrel=1; .preind=1; .postind=0; .writeback=0
3413
3414 The shift/extension information, if any, will be stored in .shifter.
4df068de
RS
3415 The base and offset qualifiers will be stored in *BASE_QUALIFIER and
3416 *OFFSET_QUALIFIER respectively, with NIL being used if there's no
3417 corresponding register.
a06ea964 3418
4df068de 3419 BASE_TYPE says which types of base register should be accepted and
98907a70
RS
3420 OFFSET_TYPE says the same for offset registers. IMM_SHIFT_MODE
3421 is the type of shifter that is allowed for immediate offsets,
3422 or SHIFTED_NONE if none.
3423
3424 In all other respects, it is the caller's responsibility to check
3425 for addressing modes not supported by the instruction, and to set
3426 inst.reloc.type. */
a06ea964
NC
3427
3428static bfd_boolean
4df068de
RS
3429parse_address_main (char **str, aarch64_opnd_info *operand,
3430 aarch64_opnd_qualifier_t *base_qualifier,
3431 aarch64_opnd_qualifier_t *offset_qualifier,
98907a70
RS
3432 aarch64_reg_type base_type, aarch64_reg_type offset_type,
3433 enum parse_shift_mode imm_shift_mode)
a06ea964
NC
3434{
3435 char *p = *str;
e1b988bb 3436 const reg_entry *reg;
a06ea964
NC
3437 expressionS *exp = &inst.reloc.exp;
3438
4df068de
RS
3439 *base_qualifier = AARCH64_OPND_QLF_NIL;
3440 *offset_qualifier = AARCH64_OPND_QLF_NIL;
a06ea964
NC
3441 if (! skip_past_char (&p, '['))
3442 {
3443 /* =immediate or label. */
3444 operand->addr.pcrel = 1;
3445 operand->addr.preind = 1;
3446
f41aef5f
RE
3447 /* #:<reloc_op>:<symbol> */
3448 skip_past_char (&p, '#');
73866052 3449 if (skip_past_char (&p, ':'))
f41aef5f 3450 {
6f4a313b 3451 bfd_reloc_code_real_type ty;
f41aef5f
RE
3452 struct reloc_table_entry *entry;
3453
3454 /* Try to parse a relocation modifier. Anything else is
3455 an error. */
3456 entry = find_reloc_table_entry (&p);
3457 if (! entry)
3458 {
3459 set_syntax_error (_("unknown relocation modifier"));
3460 return FALSE;
3461 }
3462
6f4a313b
MS
3463 switch (operand->type)
3464 {
3465 case AARCH64_OPND_ADDR_PCREL21:
3466 /* adr */
3467 ty = entry->adr_type;
3468 break;
3469
3470 default:
74ad790c 3471 ty = entry->ld_literal_type;
6f4a313b
MS
3472 break;
3473 }
3474
3475 if (ty == 0)
f41aef5f
RE
3476 {
3477 set_syntax_error
3478 (_("this relocation modifier is not allowed on this "
3479 "instruction"));
3480 return FALSE;
3481 }
3482
3483 /* #:<reloc_op>: */
3484 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3485 {
3486 set_syntax_error (_("invalid relocation expression"));
3487 return FALSE;
3488 }
a06ea964 3489
f41aef5f 3490 /* #:<reloc_op>:<expr> */
6f4a313b
MS
3491 /* Record the relocation type. */
3492 inst.reloc.type = ty;
f41aef5f
RE
3493 inst.reloc.pc_rel = entry->pc_rel;
3494 }
3495 else
a06ea964 3496 {
f41aef5f
RE
3497
3498 if (skip_past_char (&p, '='))
3499 /* =immediate; need to generate the literal in the literal pool. */
3500 inst.gen_lit_pool = 1;
3501
3502 if (!my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3503 {
3504 set_syntax_error (_("invalid address"));
3505 return FALSE;
3506 }
a06ea964
NC
3507 }
3508
3509 *str = p;
3510 return TRUE;
3511 }
3512
3513 /* [ */
3514
4df068de
RS
3515 reg = aarch64_addr_reg_parse (&p, base_type, base_qualifier);
3516 if (!reg || !aarch64_check_reg_type (reg, base_type))
a06ea964 3517 {
4df068de 3518 set_syntax_error (_(get_reg_expected_msg (base_type)));
a06ea964
NC
3519 return FALSE;
3520 }
e1b988bb 3521 operand->addr.base_regno = reg->number;
a06ea964
NC
3522
3523 /* [Xn */
3524 if (skip_past_comma (&p))
3525 {
3526 /* [Xn, */
3527 operand->addr.preind = 1;
3528
4df068de 3529 reg = aarch64_addr_reg_parse (&p, offset_type, offset_qualifier);
e1b988bb 3530 if (reg)
a06ea964 3531 {
4df068de 3532 if (!aarch64_check_reg_type (reg, offset_type))
e1b988bb 3533 {
4df068de 3534 set_syntax_error (_(get_reg_expected_msg (offset_type)));
e1b988bb
RS
3535 return FALSE;
3536 }
3537
a06ea964 3538 /* [Xn,Rm */
e1b988bb 3539 operand->addr.offset.regno = reg->number;
a06ea964
NC
3540 operand->addr.offset.is_reg = 1;
3541 /* Shifted index. */
3542 if (skip_past_comma (&p))
3543 {
3544 /* [Xn,Rm, */
3545 if (! parse_shift (&p, operand, SHIFTED_REG_OFFSET))
3546 /* Use the diagnostics set in parse_shift, so not set new
3547 error message here. */
3548 return FALSE;
3549 }
3550 /* We only accept:
3551 [base,Xm{,LSL #imm}]
3552 [base,Xm,SXTX {#imm}]
3553 [base,Wm,(S|U)XTW {#imm}] */
3554 if (operand->shifter.kind == AARCH64_MOD_NONE
3555 || operand->shifter.kind == AARCH64_MOD_LSL
3556 || operand->shifter.kind == AARCH64_MOD_SXTX)
3557 {
4df068de 3558 if (*offset_qualifier == AARCH64_OPND_QLF_W)
a06ea964
NC
3559 {
3560 set_syntax_error (_("invalid use of 32-bit register offset"));
3561 return FALSE;
3562 }
4df068de
RS
3563 if (aarch64_get_qualifier_esize (*base_qualifier)
3564 != aarch64_get_qualifier_esize (*offset_qualifier))
3565 {
3566 set_syntax_error (_("offset has different size from base"));
3567 return FALSE;
3568 }
a06ea964 3569 }
4df068de 3570 else if (*offset_qualifier == AARCH64_OPND_QLF_X)
a06ea964
NC
3571 {
3572 set_syntax_error (_("invalid use of 64-bit register offset"));
3573 return FALSE;
3574 }
3575 }
3576 else
3577 {
3578 /* [Xn,#:<reloc_op>:<symbol> */
3579 skip_past_char (&p, '#');
73866052 3580 if (skip_past_char (&p, ':'))
a06ea964
NC
3581 {
3582 struct reloc_table_entry *entry;
3583
3584 /* Try to parse a relocation modifier. Anything else is
3585 an error. */
3586 if (!(entry = find_reloc_table_entry (&p)))
3587 {
3588 set_syntax_error (_("unknown relocation modifier"));
3589 return FALSE;
3590 }
3591
3592 if (entry->ldst_type == 0)
3593 {
3594 set_syntax_error
3595 (_("this relocation modifier is not allowed on this "
3596 "instruction"));
3597 return FALSE;
3598 }
3599
3600 /* [Xn,#:<reloc_op>: */
3601 /* We now have the group relocation table entry corresponding to
3602 the name in the assembler source. Next, we parse the
3603 expression. */
3604 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3605 {
3606 set_syntax_error (_("invalid relocation expression"));
3607 return FALSE;
3608 }
3609
3610 /* [Xn,#:<reloc_op>:<expr> */
3611 /* Record the load/store relocation type. */
3612 inst.reloc.type = entry->ldst_type;
3613 inst.reloc.pc_rel = entry->pc_rel;
3614 }
98907a70 3615 else
a06ea964 3616 {
98907a70
RS
3617 if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3618 {
3619 set_syntax_error (_("invalid expression in the address"));
3620 return FALSE;
3621 }
3622 /* [Xn,<expr> */
3623 if (imm_shift_mode != SHIFTED_NONE && skip_past_comma (&p))
3624 /* [Xn,<expr>,<shifter> */
3625 if (! parse_shift (&p, operand, imm_shift_mode))
3626 return FALSE;
a06ea964 3627 }
a06ea964
NC
3628 }
3629 }
3630
3631 if (! skip_past_char (&p, ']'))
3632 {
3633 set_syntax_error (_("']' expected"));
3634 return FALSE;
3635 }
3636
3637 if (skip_past_char (&p, '!'))
3638 {
3639 if (operand->addr.preind && operand->addr.offset.is_reg)
3640 {
3641 set_syntax_error (_("register offset not allowed in pre-indexed "
3642 "addressing mode"));
3643 return FALSE;
3644 }
3645 /* [Xn]! */
3646 operand->addr.writeback = 1;
3647 }
3648 else if (skip_past_comma (&p))
3649 {
3650 /* [Xn], */
3651 operand->addr.postind = 1;
3652 operand->addr.writeback = 1;
3653
3654 if (operand->addr.preind)
3655 {
3656 set_syntax_error (_("cannot combine pre- and post-indexing"));
3657 return FALSE;
3658 }
3659
4df068de 3660 reg = aarch64_reg_parse_32_64 (&p, offset_qualifier);
73866052 3661 if (reg)
a06ea964
NC
3662 {
3663 /* [Xn],Xm */
e1b988bb 3664 if (!aarch64_check_reg_type (reg, REG_TYPE_R_64))
a06ea964 3665 {
e1b988bb 3666 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_64)));
a06ea964
NC
3667 return FALSE;
3668 }
e1b988bb
RS
3669
3670 operand->addr.offset.regno = reg->number;
a06ea964
NC
3671 operand->addr.offset.is_reg = 1;
3672 }
3673 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3674 {
3675 /* [Xn],#expr */
3676 set_syntax_error (_("invalid expression in the address"));
3677 return FALSE;
3678 }
3679 }
3680
3681 /* If at this point neither .preind nor .postind is set, we have a
3682 bare [Rn]{!}; reject [Rn]! but accept [Rn] as a shorthand for [Rn,#0]. */
3683 if (operand->addr.preind == 0 && operand->addr.postind == 0)
3684 {
3685 if (operand->addr.writeback)
3686 {
3687 /* Reject [Rn]! */
3688 set_syntax_error (_("missing offset in the pre-indexed address"));
3689 return FALSE;
3690 }
c8d59609 3691
a06ea964
NC
3692 operand->addr.preind = 1;
3693 inst.reloc.exp.X_op = O_constant;
3694 inst.reloc.exp.X_add_number = 0;
3695 }
3696
3697 *str = p;
3698 return TRUE;
3699}
3700
73866052
RS
3701/* Parse a base AArch64 address (as opposed to an SVE one). Return TRUE
3702 on success. */
a06ea964 3703static bfd_boolean
73866052 3704parse_address (char **str, aarch64_opnd_info *operand)
a06ea964 3705{
4df068de
RS
3706 aarch64_opnd_qualifier_t base_qualifier, offset_qualifier;
3707 return parse_address_main (str, operand, &base_qualifier, &offset_qualifier,
98907a70 3708 REG_TYPE_R64_SP, REG_TYPE_R_Z, SHIFTED_NONE);
4df068de
RS
3709}
3710
98907a70 3711/* Parse an address in which SVE vector registers and MUL VL are allowed.
4df068de
RS
3712 The arguments have the same meaning as for parse_address_main.
3713 Return TRUE on success. */
3714static bfd_boolean
3715parse_sve_address (char **str, aarch64_opnd_info *operand,
3716 aarch64_opnd_qualifier_t *base_qualifier,
3717 aarch64_opnd_qualifier_t *offset_qualifier)
3718{
3719 return parse_address_main (str, operand, base_qualifier, offset_qualifier,
98907a70
RS
3720 REG_TYPE_SVE_BASE, REG_TYPE_SVE_OFFSET,
3721 SHIFTED_MUL_VL);
a06ea964
NC
3722}
3723
3724/* Parse an operand for a MOVZ, MOVN or MOVK instruction.
3725 Return TRUE on success; otherwise return FALSE. */
3726static bfd_boolean
3727parse_half (char **str, int *internal_fixup_p)
3728{
671eeb28 3729 char *p = *str;
a06ea964 3730
a06ea964
NC
3731 skip_past_char (&p, '#');
3732
3733 gas_assert (internal_fixup_p);
3734 *internal_fixup_p = 0;
3735
3736 if (*p == ':')
3737 {
3738 struct reloc_table_entry *entry;
3739
3740 /* Try to parse a relocation. Anything else is an error. */
3741 ++p;
3742 if (!(entry = find_reloc_table_entry (&p)))
3743 {
3744 set_syntax_error (_("unknown relocation modifier"));
3745 return FALSE;
3746 }
3747
3748 if (entry->movw_type == 0)
3749 {
3750 set_syntax_error
3751 (_("this relocation modifier is not allowed on this instruction"));
3752 return FALSE;
3753 }
3754
3755 inst.reloc.type = entry->movw_type;
3756 }
3757 else
3758 *internal_fixup_p = 1;
3759
a06ea964
NC
3760 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3761 return FALSE;
3762
3763 *str = p;
3764 return TRUE;
3765}
3766
3767/* Parse an operand for an ADRP instruction:
3768 ADRP <Xd>, <label>
3769 Return TRUE on success; otherwise return FALSE. */
3770
3771static bfd_boolean
3772parse_adrp (char **str)
3773{
3774 char *p;
3775
3776 p = *str;
3777 if (*p == ':')
3778 {
3779 struct reloc_table_entry *entry;
3780
3781 /* Try to parse a relocation. Anything else is an error. */
3782 ++p;
3783 if (!(entry = find_reloc_table_entry (&p)))
3784 {
3785 set_syntax_error (_("unknown relocation modifier"));
3786 return FALSE;
3787 }
3788
3789 if (entry->adrp_type == 0)
3790 {
3791 set_syntax_error
3792 (_("this relocation modifier is not allowed on this instruction"));
3793 return FALSE;
3794 }
3795
3796 inst.reloc.type = entry->adrp_type;
3797 }
3798 else
3799 inst.reloc.type = BFD_RELOC_AARCH64_ADR_HI21_PCREL;
3800
3801 inst.reloc.pc_rel = 1;
3802
3803 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3804 return FALSE;
3805
3806 *str = p;
3807 return TRUE;
3808}
3809
3810/* Miscellaneous. */
3811
245d2e3f
RS
3812/* Parse a symbolic operand such as "pow2" at *STR. ARRAY is an array
3813 of SIZE tokens in which index I gives the token for field value I,
3814 or is null if field value I is invalid. REG_TYPE says which register
3815 names should be treated as registers rather than as symbolic immediates.
3816
3817 Return true on success, moving *STR past the operand and storing the
3818 field value in *VAL. */
3819
3820static int
3821parse_enum_string (char **str, int64_t *val, const char *const *array,
3822 size_t size, aarch64_reg_type reg_type)
3823{
3824 expressionS exp;
3825 char *p, *q;
3826 size_t i;
3827
3828 /* Match C-like tokens. */
3829 p = q = *str;
3830 while (ISALNUM (*q))
3831 q++;
3832
3833 for (i = 0; i < size; ++i)
3834 if (array[i]
3835 && strncasecmp (array[i], p, q - p) == 0
3836 && array[i][q - p] == 0)
3837 {
3838 *val = i;
3839 *str = q;
3840 return TRUE;
3841 }
3842
3843 if (!parse_immediate_expression (&p, &exp, reg_type))
3844 return FALSE;
3845
3846 if (exp.X_op == O_constant
3847 && (uint64_t) exp.X_add_number < size)
3848 {
3849 *val = exp.X_add_number;
3850 *str = p;
3851 return TRUE;
3852 }
3853
3854 /* Use the default error for this operand. */
3855 return FALSE;
3856}
3857
a06ea964
NC
3858/* Parse an option for a preload instruction. Returns the encoding for the
3859 option, or PARSE_FAIL. */
3860
3861static int
3862parse_pldop (char **str)
3863{
3864 char *p, *q;
3865 const struct aarch64_name_value_pair *o;
3866
3867 p = q = *str;
3868 while (ISALNUM (*q))
3869 q++;
3870
3871 o = hash_find_n (aarch64_pldop_hsh, p, q - p);
3872 if (!o)
3873 return PARSE_FAIL;
3874
3875 *str = q;
3876 return o->value;
3877}
3878
3879/* Parse an option for a barrier instruction. Returns the encoding for the
3880 option, or PARSE_FAIL. */
3881
3882static int
3883parse_barrier (char **str)
3884{
3885 char *p, *q;
3886 const asm_barrier_opt *o;
3887
3888 p = q = *str;
3889 while (ISALPHA (*q))
3890 q++;
3891
3892 o = hash_find_n (aarch64_barrier_opt_hsh, p, q - p);
3893 if (!o)
3894 return PARSE_FAIL;
3895
3896 *str = q;
3897 return o->value;
3898}
3899
1e6f4800
MW
3900/* Parse an operand for a PSB barrier. Set *HINT_OPT to the hint-option record
3901 return 0 if successful. Otherwise return PARSE_FAIL. */
3902
3903static int
3904parse_barrier_psb (char **str,
3905 const struct aarch64_name_value_pair ** hint_opt)
3906{
3907 char *p, *q;
3908 const struct aarch64_name_value_pair *o;
3909
3910 p = q = *str;
3911 while (ISALPHA (*q))
3912 q++;
3913
3914 o = hash_find_n (aarch64_hint_opt_hsh, p, q - p);
3915 if (!o)
3916 {
3917 set_fatal_syntax_error
3918 ( _("unknown or missing option to PSB"));
3919 return PARSE_FAIL;
3920 }
3921
3922 if (o->value != 0x11)
3923 {
3924 /* PSB only accepts option name 'CSYNC'. */
3925 set_syntax_error
3926 (_("the specified option is not accepted for PSB"));
3927 return PARSE_FAIL;
3928 }
3929
3930 *str = q;
3931 *hint_opt = o;
3932 return 0;
3933}
3934
a06ea964 3935/* Parse a system register or a PSTATE field name for an MSR/MRS instruction.
a203d9b7 3936 Returns the encoding for the option, or PARSE_FAIL.
a06ea964
NC
3937
3938 If IMPLE_DEFINED_P is non-zero, the function will also try to parse the
72ca8fad
MW
3939 implementation defined system register name S<op0>_<op1>_<Cn>_<Cm>_<op2>.
3940
3941 If PSTATEFIELD_P is non-zero, the function will parse the name as a PSTATE
3942 field, otherwise as a system register.
3943*/
a06ea964
NC
3944
3945static int
72ca8fad 3946parse_sys_reg (char **str, struct hash_control *sys_regs,
561a72d4
TC
3947 int imple_defined_p, int pstatefield_p,
3948 uint32_t* flags)
a06ea964
NC
3949{
3950 char *p, *q;
3951 char buf[32];
49eec193 3952 const aarch64_sys_reg *o;
a06ea964
NC
3953 int value;
3954
3955 p = buf;
3956 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3957 if (p < buf + 31)
3958 *p++ = TOLOWER (*q);
3959 *p = '\0';
3960 /* Assert that BUF be large enough. */
3961 gas_assert (p - buf == q - *str);
3962
3963 o = hash_find (sys_regs, buf);
3964 if (!o)
3965 {
3966 if (!imple_defined_p)
3967 return PARSE_FAIL;
3968 else
3969 {
df7b4545 3970 /* Parse S<op0>_<op1>_<Cn>_<Cm>_<op2>. */
a06ea964 3971 unsigned int op0, op1, cn, cm, op2;
df7b4545
JW
3972
3973 if (sscanf (buf, "s%u_%u_c%u_c%u_%u", &op0, &op1, &cn, &cm, &op2)
3974 != 5)
a06ea964 3975 return PARSE_FAIL;
df7b4545 3976 if (op0 > 3 || op1 > 7 || cn > 15 || cm > 15 || op2 > 7)
a06ea964
NC
3977 return PARSE_FAIL;
3978 value = (op0 << 14) | (op1 << 11) | (cn << 7) | (cm << 3) | op2;
561a72d4
TC
3979 if (flags)
3980 *flags = 0;
a06ea964
NC
3981 }
3982 }
3983 else
49eec193 3984 {
72ca8fad
MW
3985 if (pstatefield_p && !aarch64_pstatefield_supported_p (cpu_variant, o))
3986 as_bad (_("selected processor does not support PSTATE field "
3987 "name '%s'"), buf);
3988 if (!pstatefield_p && !aarch64_sys_reg_supported_p (cpu_variant, o))
3989 as_bad (_("selected processor does not support system register "
3990 "name '%s'"), buf);
9a73e520 3991 if (aarch64_sys_reg_deprecated_p (o))
49eec193 3992 as_warn (_("system register name '%s' is deprecated and may be "
72ca8fad 3993 "removed in a future release"), buf);
49eec193 3994 value = o->value;
561a72d4
TC
3995 if (flags)
3996 *flags = o->flags;
49eec193 3997 }
a06ea964
NC
3998
3999 *str = q;
4000 return value;
4001}
4002
4003/* Parse a system reg for ic/dc/at/tlbi instructions. Returns the table entry
4004 for the option, or NULL. */
4005
4006static const aarch64_sys_ins_reg *
4007parse_sys_ins_reg (char **str, struct hash_control *sys_ins_regs)
4008{
4009 char *p, *q;
4010 char buf[32];
4011 const aarch64_sys_ins_reg *o;
4012
4013 p = buf;
4014 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
4015 if (p < buf + 31)
4016 *p++ = TOLOWER (*q);
4017 *p = '\0';
4018
4019 o = hash_find (sys_ins_regs, buf);
4020 if (!o)
4021 return NULL;
4022
d6bf7ce6
MW
4023 if (!aarch64_sys_ins_reg_supported_p (cpu_variant, o))
4024 as_bad (_("selected processor does not support system register "
4025 "name '%s'"), buf);
4026
a06ea964
NC
4027 *str = q;
4028 return o;
4029}
4030\f
4031#define po_char_or_fail(chr) do { \
4032 if (! skip_past_char (&str, chr)) \
4033 goto failure; \
4034} while (0)
4035
4036#define po_reg_or_fail(regtype) do { \
4037 val = aarch64_reg_parse (&str, regtype, &rtype, NULL); \
4038 if (val == PARSE_FAIL) \
4039 { \
4040 set_default_error (); \
4041 goto failure; \
4042 } \
4043 } while (0)
4044
e1b988bb
RS
4045#define po_int_reg_or_fail(reg_type) do { \
4046 reg = aarch64_reg_parse_32_64 (&str, &qualifier); \
4047 if (!reg || !aarch64_check_reg_type (reg, reg_type)) \
a06ea964
NC
4048 { \
4049 set_default_error (); \
4050 goto failure; \
4051 } \
e1b988bb
RS
4052 info->reg.regno = reg->number; \
4053 info->qualifier = qualifier; \
a06ea964
NC
4054 } while (0)
4055
4056#define po_imm_nc_or_fail() do { \
1799c0d0 4057 if (! parse_constant_immediate (&str, &val, imm_reg_type)) \
a06ea964
NC
4058 goto failure; \
4059 } while (0)
4060
4061#define po_imm_or_fail(min, max) do { \
1799c0d0 4062 if (! parse_constant_immediate (&str, &val, imm_reg_type)) \
a06ea964
NC
4063 goto failure; \
4064 if (val < min || val > max) \
4065 { \
4066 set_fatal_syntax_error (_("immediate value out of range "\
4067#min " to "#max)); \
4068 goto failure; \
4069 } \
4070 } while (0)
4071
245d2e3f
RS
4072#define po_enum_or_fail(array) do { \
4073 if (!parse_enum_string (&str, &val, array, \
4074 ARRAY_SIZE (array), imm_reg_type)) \
4075 goto failure; \
4076 } while (0)
4077
a06ea964
NC
4078#define po_misc_or_fail(expr) do { \
4079 if (!expr) \
4080 goto failure; \
4081 } while (0)
4082\f
4083/* encode the 12-bit imm field of Add/sub immediate */
4084static inline uint32_t
4085encode_addsub_imm (uint32_t imm)
4086{
4087 return imm << 10;
4088}
4089
4090/* encode the shift amount field of Add/sub immediate */
4091static inline uint32_t
4092encode_addsub_imm_shift_amount (uint32_t cnt)
4093{
4094 return cnt << 22;
4095}
4096
4097
4098/* encode the imm field of Adr instruction */
4099static inline uint32_t
4100encode_adr_imm (uint32_t imm)
4101{
4102 return (((imm & 0x3) << 29) /* [1:0] -> [30:29] */
4103 | ((imm & (0x7ffff << 2)) << 3)); /* [20:2] -> [23:5] */
4104}
4105
4106/* encode the immediate field of Move wide immediate */
4107static inline uint32_t
4108encode_movw_imm (uint32_t imm)
4109{
4110 return imm << 5;
4111}
4112
4113/* encode the 26-bit offset of unconditional branch */
4114static inline uint32_t
4115encode_branch_ofs_26 (uint32_t ofs)
4116{
4117 return ofs & ((1 << 26) - 1);
4118}
4119
4120/* encode the 19-bit offset of conditional branch and compare & branch */
4121static inline uint32_t
4122encode_cond_branch_ofs_19 (uint32_t ofs)
4123{
4124 return (ofs & ((1 << 19) - 1)) << 5;
4125}
4126
4127/* encode the 19-bit offset of ld literal */
4128static inline uint32_t
4129encode_ld_lit_ofs_19 (uint32_t ofs)
4130{
4131 return (ofs & ((1 << 19) - 1)) << 5;
4132}
4133
4134/* Encode the 14-bit offset of test & branch. */
4135static inline uint32_t
4136encode_tst_branch_ofs_14 (uint32_t ofs)
4137{
4138 return (ofs & ((1 << 14) - 1)) << 5;
4139}
4140
4141/* Encode the 16-bit imm field of svc/hvc/smc. */
4142static inline uint32_t
4143encode_svc_imm (uint32_t imm)
4144{
4145 return imm << 5;
4146}
4147
4148/* Reencode add(s) to sub(s), or sub(s) to add(s). */
4149static inline uint32_t
4150reencode_addsub_switch_add_sub (uint32_t opcode)
4151{
4152 return opcode ^ (1 << 30);
4153}
4154
4155static inline uint32_t
4156reencode_movzn_to_movz (uint32_t opcode)
4157{
4158 return opcode | (1 << 30);
4159}
4160
4161static inline uint32_t
4162reencode_movzn_to_movn (uint32_t opcode)
4163{
4164 return opcode & ~(1 << 30);
4165}
4166
4167/* Overall per-instruction processing. */
4168
4169/* We need to be able to fix up arbitrary expressions in some statements.
4170 This is so that we can handle symbols that are an arbitrary distance from
4171 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
4172 which returns part of an address in a form which will be valid for
4173 a data instruction. We do this by pushing the expression into a symbol
4174 in the expr_section, and creating a fix for that. */
4175
4176static fixS *
4177fix_new_aarch64 (fragS * frag,
4178 int where,
4179 short int size, expressionS * exp, int pc_rel, int reloc)
4180{
4181 fixS *new_fix;
4182
4183 switch (exp->X_op)
4184 {
4185 case O_constant:
4186 case O_symbol:
4187 case O_add:
4188 case O_subtract:
4189 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
4190 break;
4191
4192 default:
4193 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
4194 pc_rel, reloc);
4195 break;
4196 }
4197 return new_fix;
4198}
4199\f
4200/* Diagnostics on operands errors. */
4201
a52e6fd3
YZ
4202/* By default, output verbose error message.
4203 Disable the verbose error message by -mno-verbose-error. */
4204static int verbose_error_p = 1;
a06ea964
NC
4205
4206#ifdef DEBUG_AARCH64
4207/* N.B. this is only for the purpose of debugging. */
4208const char* operand_mismatch_kind_names[] =
4209{
4210 "AARCH64_OPDE_NIL",
4211 "AARCH64_OPDE_RECOVERABLE",
4212 "AARCH64_OPDE_SYNTAX_ERROR",
4213 "AARCH64_OPDE_FATAL_SYNTAX_ERROR",
4214 "AARCH64_OPDE_INVALID_VARIANT",
4215 "AARCH64_OPDE_OUT_OF_RANGE",
4216 "AARCH64_OPDE_UNALIGNED",
4217 "AARCH64_OPDE_REG_LIST",
4218 "AARCH64_OPDE_OTHER_ERROR",
4219};
4220#endif /* DEBUG_AARCH64 */
4221
4222/* Return TRUE if LHS is of higher severity than RHS, otherwise return FALSE.
4223
4224 When multiple errors of different kinds are found in the same assembly
4225 line, only the error of the highest severity will be picked up for
4226 issuing the diagnostics. */
4227
4228static inline bfd_boolean
4229operand_error_higher_severity_p (enum aarch64_operand_error_kind lhs,
4230 enum aarch64_operand_error_kind rhs)
4231{
4232 gas_assert (AARCH64_OPDE_RECOVERABLE > AARCH64_OPDE_NIL);
4233 gas_assert (AARCH64_OPDE_SYNTAX_ERROR > AARCH64_OPDE_RECOVERABLE);
4234 gas_assert (AARCH64_OPDE_FATAL_SYNTAX_ERROR > AARCH64_OPDE_SYNTAX_ERROR);
4235 gas_assert (AARCH64_OPDE_INVALID_VARIANT > AARCH64_OPDE_FATAL_SYNTAX_ERROR);
4236 gas_assert (AARCH64_OPDE_OUT_OF_RANGE > AARCH64_OPDE_INVALID_VARIANT);
4237 gas_assert (AARCH64_OPDE_UNALIGNED > AARCH64_OPDE_OUT_OF_RANGE);
4238 gas_assert (AARCH64_OPDE_REG_LIST > AARCH64_OPDE_UNALIGNED);
4239 gas_assert (AARCH64_OPDE_OTHER_ERROR > AARCH64_OPDE_REG_LIST);
4240 return lhs > rhs;
4241}
4242
4243/* Helper routine to get the mnemonic name from the assembly instruction
4244 line; should only be called for the diagnosis purpose, as there is
4245 string copy operation involved, which may affect the runtime
4246 performance if used in elsewhere. */
4247
4248static const char*
4249get_mnemonic_name (const char *str)
4250{
4251 static char mnemonic[32];
4252 char *ptr;
4253
4254 /* Get the first 15 bytes and assume that the full name is included. */
4255 strncpy (mnemonic, str, 31);
4256 mnemonic[31] = '\0';
4257
4258 /* Scan up to the end of the mnemonic, which must end in white space,
4259 '.', or end of string. */
4260 for (ptr = mnemonic; is_part_of_name(*ptr); ++ptr)
4261 ;
4262
4263 *ptr = '\0';
4264
4265 /* Append '...' to the truncated long name. */
4266 if (ptr - mnemonic == 31)
4267 mnemonic[28] = mnemonic[29] = mnemonic[30] = '.';
4268
4269 return mnemonic;
4270}
4271
4272static void
4273reset_aarch64_instruction (aarch64_instruction *instruction)
4274{
4275 memset (instruction, '\0', sizeof (aarch64_instruction));
4276 instruction->reloc.type = BFD_RELOC_UNUSED;
4277}
4278
33eaf5de 4279/* Data structures storing one user error in the assembly code related to
a06ea964
NC
4280 operands. */
4281
4282struct operand_error_record
4283{
4284 const aarch64_opcode *opcode;
4285 aarch64_operand_error detail;
4286 struct operand_error_record *next;
4287};
4288
4289typedef struct operand_error_record operand_error_record;
4290
4291struct operand_errors
4292{
4293 operand_error_record *head;
4294 operand_error_record *tail;
4295};
4296
4297typedef struct operand_errors operand_errors;
4298
4299/* Top-level data structure reporting user errors for the current line of
4300 the assembly code.
4301 The way md_assemble works is that all opcodes sharing the same mnemonic
4302 name are iterated to find a match to the assembly line. In this data
4303 structure, each of the such opcodes will have one operand_error_record
4304 allocated and inserted. In other words, excessive errors related with
4305 a single opcode are disregarded. */
4306operand_errors operand_error_report;
4307
4308/* Free record nodes. */
4309static operand_error_record *free_opnd_error_record_nodes = NULL;
4310
4311/* Initialize the data structure that stores the operand mismatch
4312 information on assembling one line of the assembly code. */
4313static void
4314init_operand_error_report (void)
4315{
4316 if (operand_error_report.head != NULL)
4317 {
4318 gas_assert (operand_error_report.tail != NULL);
4319 operand_error_report.tail->next = free_opnd_error_record_nodes;
4320 free_opnd_error_record_nodes = operand_error_report.head;
4321 operand_error_report.head = NULL;
4322 operand_error_report.tail = NULL;
4323 return;
4324 }
4325 gas_assert (operand_error_report.tail == NULL);
4326}
4327
4328/* Return TRUE if some operand error has been recorded during the
4329 parsing of the current assembly line using the opcode *OPCODE;
4330 otherwise return FALSE. */
4331static inline bfd_boolean
4332opcode_has_operand_error_p (const aarch64_opcode *opcode)
4333{
4334 operand_error_record *record = operand_error_report.head;
4335 return record && record->opcode == opcode;
4336}
4337
4338/* Add the error record *NEW_RECORD to operand_error_report. The record's
4339 OPCODE field is initialized with OPCODE.
4340 N.B. only one record for each opcode, i.e. the maximum of one error is
4341 recorded for each instruction template. */
4342
4343static void
4344add_operand_error_record (const operand_error_record* new_record)
4345{
4346 const aarch64_opcode *opcode = new_record->opcode;
4347 operand_error_record* record = operand_error_report.head;
4348
4349 /* The record may have been created for this opcode. If not, we need
4350 to prepare one. */
4351 if (! opcode_has_operand_error_p (opcode))
4352 {
4353 /* Get one empty record. */
4354 if (free_opnd_error_record_nodes == NULL)
4355 {
325801bd 4356 record = XNEW (operand_error_record);
a06ea964
NC
4357 }
4358 else
4359 {
4360 record = free_opnd_error_record_nodes;
4361 free_opnd_error_record_nodes = record->next;
4362 }
4363 record->opcode = opcode;
4364 /* Insert at the head. */
4365 record->next = operand_error_report.head;
4366 operand_error_report.head = record;
4367 if (operand_error_report.tail == NULL)
4368 operand_error_report.tail = record;
4369 }
4370 else if (record->detail.kind != AARCH64_OPDE_NIL
4371 && record->detail.index <= new_record->detail.index
4372 && operand_error_higher_severity_p (record->detail.kind,
4373 new_record->detail.kind))
4374 {
4375 /* In the case of multiple errors found on operands related with a
4376 single opcode, only record the error of the leftmost operand and
4377 only if the error is of higher severity. */
4378 DEBUG_TRACE ("error %s on operand %d not added to the report due to"
4379 " the existing error %s on operand %d",
4380 operand_mismatch_kind_names[new_record->detail.kind],
4381 new_record->detail.index,
4382 operand_mismatch_kind_names[record->detail.kind],
4383 record->detail.index);
4384 return;
4385 }
4386
4387 record->detail = new_record->detail;
4388}
4389
4390static inline void
4391record_operand_error_info (const aarch64_opcode *opcode,
4392 aarch64_operand_error *error_info)
4393{
4394 operand_error_record record;
4395 record.opcode = opcode;
4396 record.detail = *error_info;
4397 add_operand_error_record (&record);
4398}
4399
4400/* Record an error of kind KIND and, if ERROR is not NULL, of the detailed
4401 error message *ERROR, for operand IDX (count from 0). */
4402
4403static void
4404record_operand_error (const aarch64_opcode *opcode, int idx,
4405 enum aarch64_operand_error_kind kind,
4406 const char* error)
4407{
4408 aarch64_operand_error info;
4409 memset(&info, 0, sizeof (info));
4410 info.index = idx;
4411 info.kind = kind;
4412 info.error = error;
2a9b2c1a 4413 info.non_fatal = FALSE;
a06ea964
NC
4414 record_operand_error_info (opcode, &info);
4415}
4416
4417static void
4418record_operand_error_with_data (const aarch64_opcode *opcode, int idx,
4419 enum aarch64_operand_error_kind kind,
4420 const char* error, const int *extra_data)
4421{
4422 aarch64_operand_error info;
4423 info.index = idx;
4424 info.kind = kind;
4425 info.error = error;
4426 info.data[0] = extra_data[0];
4427 info.data[1] = extra_data[1];
4428 info.data[2] = extra_data[2];
2a9b2c1a 4429 info.non_fatal = FALSE;
a06ea964
NC
4430 record_operand_error_info (opcode, &info);
4431}
4432
4433static void
4434record_operand_out_of_range_error (const aarch64_opcode *opcode, int idx,
4435 const char* error, int lower_bound,
4436 int upper_bound)
4437{
4438 int data[3] = {lower_bound, upper_bound, 0};
4439 record_operand_error_with_data (opcode, idx, AARCH64_OPDE_OUT_OF_RANGE,
4440 error, data);
4441}
4442
4443/* Remove the operand error record for *OPCODE. */
4444static void ATTRIBUTE_UNUSED
4445remove_operand_error_record (const aarch64_opcode *opcode)
4446{
4447 if (opcode_has_operand_error_p (opcode))
4448 {
4449 operand_error_record* record = operand_error_report.head;
4450 gas_assert (record != NULL && operand_error_report.tail != NULL);
4451 operand_error_report.head = record->next;
4452 record->next = free_opnd_error_record_nodes;
4453 free_opnd_error_record_nodes = record;
4454 if (operand_error_report.head == NULL)
4455 {
4456 gas_assert (operand_error_report.tail == record);
4457 operand_error_report.tail = NULL;
4458 }
4459 }
4460}
4461
4462/* Given the instruction in *INSTR, return the index of the best matched
4463 qualifier sequence in the list (an array) headed by QUALIFIERS_LIST.
4464
4465 Return -1 if there is no qualifier sequence; return the first match
4466 if there is multiple matches found. */
4467
4468static int
4469find_best_match (const aarch64_inst *instr,
4470 const aarch64_opnd_qualifier_seq_t *qualifiers_list)
4471{
4472 int i, num_opnds, max_num_matched, idx;
4473
4474 num_opnds = aarch64_num_of_operands (instr->opcode);
4475 if (num_opnds == 0)
4476 {
4477 DEBUG_TRACE ("no operand");
4478 return -1;
4479 }
4480
4481 max_num_matched = 0;
4989adac 4482 idx = 0;
a06ea964
NC
4483
4484 /* For each pattern. */
4485 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4486 {
4487 int j, num_matched;
4488 const aarch64_opnd_qualifier_t *qualifiers = *qualifiers_list;
4489
4490 /* Most opcodes has much fewer patterns in the list. */
535b785f 4491 if (empty_qualifier_sequence_p (qualifiers))
a06ea964
NC
4492 {
4493 DEBUG_TRACE_IF (i == 0, "empty list of qualifier sequence");
a06ea964
NC
4494 break;
4495 }
4496
4497 for (j = 0, num_matched = 0; j < num_opnds; ++j, ++qualifiers)
4498 if (*qualifiers == instr->operands[j].qualifier)
4499 ++num_matched;
4500
4501 if (num_matched > max_num_matched)
4502 {
4503 max_num_matched = num_matched;
4504 idx = i;
4505 }
4506 }
4507
4508 DEBUG_TRACE ("return with %d", idx);
4509 return idx;
4510}
4511
33eaf5de 4512/* Assign qualifiers in the qualifier sequence (headed by QUALIFIERS) to the
a06ea964
NC
4513 corresponding operands in *INSTR. */
4514
4515static inline void
4516assign_qualifier_sequence (aarch64_inst *instr,
4517 const aarch64_opnd_qualifier_t *qualifiers)
4518{
4519 int i = 0;
4520 int num_opnds = aarch64_num_of_operands (instr->opcode);
4521 gas_assert (num_opnds);
4522 for (i = 0; i < num_opnds; ++i, ++qualifiers)
4523 instr->operands[i].qualifier = *qualifiers;
4524}
4525
4526/* Print operands for the diagnosis purpose. */
4527
4528static void
4529print_operands (char *buf, const aarch64_opcode *opcode,
4530 const aarch64_opnd_info *opnds)
4531{
4532 int i;
4533
4534 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
4535 {
08d3b0cc 4536 char str[128];
a06ea964
NC
4537
4538 /* We regard the opcode operand info more, however we also look into
4539 the inst->operands to support the disassembling of the optional
4540 operand.
4541 The two operand code should be the same in all cases, apart from
4542 when the operand can be optional. */
4543 if (opcode->operands[i] == AARCH64_OPND_NIL
4544 || opnds[i].type == AARCH64_OPND_NIL)
4545 break;
4546
4547 /* Generate the operand string in STR. */
7d02540a
TC
4548 aarch64_print_operand (str, sizeof (str), 0, opcode, opnds, i, NULL, NULL,
4549 NULL);
a06ea964
NC
4550
4551 /* Delimiter. */
4552 if (str[0] != '\0')
ad43e107 4553 strcat (buf, i == 0 ? " " : ", ");
a06ea964
NC
4554
4555 /* Append the operand string. */
4556 strcat (buf, str);
4557 }
4558}
4559
4560/* Send to stderr a string as information. */
4561
4562static void
4563output_info (const char *format, ...)
4564{
3b4dbbbf 4565 const char *file;
a06ea964
NC
4566 unsigned int line;
4567 va_list args;
4568
3b4dbbbf 4569 file = as_where (&line);
a06ea964
NC
4570 if (file)
4571 {
4572 if (line != 0)
4573 fprintf (stderr, "%s:%u: ", file, line);
4574 else
4575 fprintf (stderr, "%s: ", file);
4576 }
4577 fprintf (stderr, _("Info: "));
4578 va_start (args, format);
4579 vfprintf (stderr, format, args);
4580 va_end (args);
4581 (void) putc ('\n', stderr);
4582}
4583
4584/* Output one operand error record. */
4585
4586static void
4587output_operand_error_record (const operand_error_record *record, char *str)
4588{
28f013d5
JB
4589 const aarch64_operand_error *detail = &record->detail;
4590 int idx = detail->index;
a06ea964 4591 const aarch64_opcode *opcode = record->opcode;
28f013d5 4592 enum aarch64_opnd opd_code = (idx >= 0 ? opcode->operands[idx]
a06ea964 4593 : AARCH64_OPND_NIL);
a06ea964 4594
7d02540a
TC
4595 typedef void (*handler_t)(const char *format, ...);
4596 handler_t handler = detail->non_fatal ? as_warn : as_bad;
4597
a06ea964
NC
4598 switch (detail->kind)
4599 {
4600 case AARCH64_OPDE_NIL:
4601 gas_assert (0);
4602 break;
a06ea964
NC
4603 case AARCH64_OPDE_SYNTAX_ERROR:
4604 case AARCH64_OPDE_RECOVERABLE:
4605 case AARCH64_OPDE_FATAL_SYNTAX_ERROR:
4606 case AARCH64_OPDE_OTHER_ERROR:
a06ea964
NC
4607 /* Use the prepared error message if there is, otherwise use the
4608 operand description string to describe the error. */
4609 if (detail->error != NULL)
4610 {
28f013d5 4611 if (idx < 0)
7d02540a 4612 handler (_("%s -- `%s'"), detail->error, str);
a06ea964 4613 else
7d02540a
TC
4614 handler (_("%s at operand %d -- `%s'"),
4615 detail->error, idx + 1, str);
a06ea964
NC
4616 }
4617 else
28f013d5
JB
4618 {
4619 gas_assert (idx >= 0);
7d02540a
TC
4620 handler (_("operand %d must be %s -- `%s'"), idx + 1,
4621 aarch64_get_operand_desc (opd_code), str);
28f013d5 4622 }
a06ea964
NC
4623 break;
4624
4625 case AARCH64_OPDE_INVALID_VARIANT:
7d02540a 4626 handler (_("operand mismatch -- `%s'"), str);
a06ea964
NC
4627 if (verbose_error_p)
4628 {
4629 /* We will try to correct the erroneous instruction and also provide
4630 more information e.g. all other valid variants.
4631
4632 The string representation of the corrected instruction and other
4633 valid variants are generated by
4634
4635 1) obtaining the intermediate representation of the erroneous
4636 instruction;
4637 2) manipulating the IR, e.g. replacing the operand qualifier;
4638 3) printing out the instruction by calling the printer functions
4639 shared with the disassembler.
4640
4641 The limitation of this method is that the exact input assembly
4642 line cannot be accurately reproduced in some cases, for example an
4643 optional operand present in the actual assembly line will be
4644 omitted in the output; likewise for the optional syntax rules,
4645 e.g. the # before the immediate. Another limitation is that the
4646 assembly symbols and relocation operations in the assembly line
4647 currently cannot be printed out in the error report. Last but not
4648 least, when there is other error(s) co-exist with this error, the
4649 'corrected' instruction may be still incorrect, e.g. given
4650 'ldnp h0,h1,[x0,#6]!'
4651 this diagnosis will provide the version:
4652 'ldnp s0,s1,[x0,#6]!'
4653 which is still not right. */
4654 size_t len = strlen (get_mnemonic_name (str));
4655 int i, qlf_idx;
4656 bfd_boolean result;
08d3b0cc 4657 char buf[2048];
a06ea964
NC
4658 aarch64_inst *inst_base = &inst.base;
4659 const aarch64_opnd_qualifier_seq_t *qualifiers_list;
4660
4661 /* Init inst. */
4662 reset_aarch64_instruction (&inst);
4663 inst_base->opcode = opcode;
4664
4665 /* Reset the error report so that there is no side effect on the
4666 following operand parsing. */
4667 init_operand_error_report ();
4668
4669 /* Fill inst. */
4670 result = parse_operands (str + len, opcode)
4671 && programmer_friendly_fixup (&inst);
4672 gas_assert (result);
4673 result = aarch64_opcode_encode (opcode, inst_base, &inst_base->value,
7e84b55d 4674 NULL, NULL, insn_sequence);
a06ea964
NC
4675 gas_assert (!result);
4676
4677 /* Find the most matched qualifier sequence. */
4678 qlf_idx = find_best_match (inst_base, opcode->qualifiers_list);
4679 gas_assert (qlf_idx > -1);
4680
4681 /* Assign the qualifiers. */
4682 assign_qualifier_sequence (inst_base,
4683 opcode->qualifiers_list[qlf_idx]);
4684
4685 /* Print the hint. */
4686 output_info (_(" did you mean this?"));
08d3b0cc 4687 snprintf (buf, sizeof (buf), "\t%s", get_mnemonic_name (str));
a06ea964
NC
4688 print_operands (buf, opcode, inst_base->operands);
4689 output_info (_(" %s"), buf);
4690
4691 /* Print out other variant(s) if there is any. */
4692 if (qlf_idx != 0 ||
4693 !empty_qualifier_sequence_p (opcode->qualifiers_list[1]))
4694 output_info (_(" other valid variant(s):"));
4695
4696 /* For each pattern. */
4697 qualifiers_list = opcode->qualifiers_list;
4698 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4699 {
4700 /* Most opcodes has much fewer patterns in the list.
4701 First NIL qualifier indicates the end in the list. */
535b785f 4702 if (empty_qualifier_sequence_p (*qualifiers_list))
a06ea964
NC
4703 break;
4704
4705 if (i != qlf_idx)
4706 {
4707 /* Mnemonics name. */
08d3b0cc 4708 snprintf (buf, sizeof (buf), "\t%s", get_mnemonic_name (str));
a06ea964
NC
4709
4710 /* Assign the qualifiers. */
4711 assign_qualifier_sequence (inst_base, *qualifiers_list);
4712
4713 /* Print instruction. */
4714 print_operands (buf, opcode, inst_base->operands);
4715
4716 output_info (_(" %s"), buf);
4717 }
4718 }
4719 }
4720 break;
4721
0c608d6b 4722 case AARCH64_OPDE_UNTIED_OPERAND:
7d02540a
TC
4723 handler (_("operand %d must be the same register as operand 1 -- `%s'"),
4724 detail->index + 1, str);
0c608d6b
RS
4725 break;
4726
a06ea964 4727 case AARCH64_OPDE_OUT_OF_RANGE:
f5555712 4728 if (detail->data[0] != detail->data[1])
7d02540a
TC
4729 handler (_("%s out of range %d to %d at operand %d -- `%s'"),
4730 detail->error ? detail->error : _("immediate value"),
4731 detail->data[0], detail->data[1], idx + 1, str);
f5555712 4732 else
7d02540a
TC
4733 handler (_("%s must be %d at operand %d -- `%s'"),
4734 detail->error ? detail->error : _("immediate value"),
4735 detail->data[0], idx + 1, str);
a06ea964
NC
4736 break;
4737
4738 case AARCH64_OPDE_REG_LIST:
4739 if (detail->data[0] == 1)
7d02540a
TC
4740 handler (_("invalid number of registers in the list; "
4741 "only 1 register is expected at operand %d -- `%s'"),
4742 idx + 1, str);
a06ea964 4743 else
7d02540a
TC
4744 handler (_("invalid number of registers in the list; "
4745 "%d registers are expected at operand %d -- `%s'"),
4746 detail->data[0], idx + 1, str);
a06ea964
NC
4747 break;
4748
4749 case AARCH64_OPDE_UNALIGNED:
7d02540a
TC
4750 handler (_("immediate value must be a multiple of "
4751 "%d at operand %d -- `%s'"),
4752 detail->data[0], idx + 1, str);
a06ea964
NC
4753 break;
4754
4755 default:
4756 gas_assert (0);
4757 break;
4758 }
4759}
4760
4761/* Process and output the error message about the operand mismatching.
4762
4763 When this function is called, the operand error information had
4764 been collected for an assembly line and there will be multiple
33eaf5de 4765 errors in the case of multiple instruction templates; output the
7d02540a
TC
4766 error message that most closely describes the problem.
4767
4768 The errors to be printed can be filtered on printing all errors
4769 or only non-fatal errors. This distinction has to be made because
4770 the error buffer may already be filled with fatal errors we don't want to
4771 print due to the different instruction templates. */
a06ea964
NC
4772
4773static void
7d02540a 4774output_operand_error_report (char *str, bfd_boolean non_fatal_only)
a06ea964
NC
4775{
4776 int largest_error_pos;
4777 const char *msg = NULL;
4778 enum aarch64_operand_error_kind kind;
4779 operand_error_record *curr;
4780 operand_error_record *head = operand_error_report.head;
4781 operand_error_record *record = NULL;
4782
4783 /* No error to report. */
4784 if (head == NULL)
4785 return;
4786
4787 gas_assert (head != NULL && operand_error_report.tail != NULL);
4788
4789 /* Only one error. */
4790 if (head == operand_error_report.tail)
4791 {
7d02540a
TC
4792 /* If the only error is a non-fatal one and we don't want to print it,
4793 just exit. */
4794 if (!non_fatal_only || head->detail.non_fatal)
4795 {
4796 DEBUG_TRACE ("single opcode entry with error kind: %s",
4797 operand_mismatch_kind_names[head->detail.kind]);
4798 output_operand_error_record (head, str);
4799 }
a06ea964
NC
4800 return;
4801 }
4802
4803 /* Find the error kind of the highest severity. */
33eaf5de 4804 DEBUG_TRACE ("multiple opcode entries with error kind");
a06ea964
NC
4805 kind = AARCH64_OPDE_NIL;
4806 for (curr = head; curr != NULL; curr = curr->next)
4807 {
4808 gas_assert (curr->detail.kind != AARCH64_OPDE_NIL);
4809 DEBUG_TRACE ("\t%s", operand_mismatch_kind_names[curr->detail.kind]);
4810 if (operand_error_higher_severity_p (curr->detail.kind, kind))
4811 kind = curr->detail.kind;
4812 }
4813 gas_assert (kind != AARCH64_OPDE_NIL);
4814
4815 /* Pick up one of errors of KIND to report. */
4816 largest_error_pos = -2; /* Index can be -1 which means unknown index. */
4817 for (curr = head; curr != NULL; curr = curr->next)
4818 {
7d02540a
TC
4819 /* If we don't want to print non-fatal errors then don't consider them
4820 at all. */
4821 if (curr->detail.kind != kind
af81c43b 4822 || (non_fatal_only && !curr->detail.non_fatal))
a06ea964
NC
4823 continue;
4824 /* If there are multiple errors, pick up the one with the highest
4825 mismatching operand index. In the case of multiple errors with
4826 the equally highest operand index, pick up the first one or the
4827 first one with non-NULL error message. */
4828 if (curr->detail.index > largest_error_pos
4829 || (curr->detail.index == largest_error_pos && msg == NULL
4830 && curr->detail.error != NULL))
4831 {
4832 largest_error_pos = curr->detail.index;
4833 record = curr;
4834 msg = record->detail.error;
4835 }
4836 }
4837
7d02540a
TC
4838 /* The way errors are collected in the back-end is a bit non-intuitive. But
4839 essentially, because each operand template is tried recursively you may
4840 always have errors collected from the previous tried OPND. These are
4841 usually skipped if there is one successful match. However now with the
4842 non-fatal errors we have to ignore those previously collected hard errors
4843 when we're only interested in printing the non-fatal ones. This condition
4844 prevents us from printing errors that are not appropriate, since we did
4845 match a condition, but it also has warnings that it wants to print. */
4846 if (non_fatal_only && !record)
4847 return;
4848
a06ea964
NC
4849 gas_assert (largest_error_pos != -2 && record != NULL);
4850 DEBUG_TRACE ("Pick up error kind %s to report",
4851 operand_mismatch_kind_names[record->detail.kind]);
4852
4853 /* Output. */
4854 output_operand_error_record (record, str);
4855}
4856\f
4857/* Write an AARCH64 instruction to buf - always little-endian. */
4858static void
4859put_aarch64_insn (char *buf, uint32_t insn)
4860{
4861 unsigned char *where = (unsigned char *) buf;
4862 where[0] = insn;
4863 where[1] = insn >> 8;
4864 where[2] = insn >> 16;
4865 where[3] = insn >> 24;
4866}
4867
4868static uint32_t
4869get_aarch64_insn (char *buf)
4870{
4871 unsigned char *where = (unsigned char *) buf;
4872 uint32_t result;
4873 result = (where[0] | (where[1] << 8) | (where[2] << 16) | (where[3] << 24));
4874 return result;
4875}
4876
4877static void
4878output_inst (struct aarch64_inst *new_inst)
4879{
4880 char *to = NULL;
4881
4882 to = frag_more (INSN_SIZE);
4883
4884 frag_now->tc_frag_data.recorded = 1;
4885
4886 put_aarch64_insn (to, inst.base.value);
4887
4888 if (inst.reloc.type != BFD_RELOC_UNUSED)
4889 {
4890 fixS *fixp = fix_new_aarch64 (frag_now, to - frag_now->fr_literal,
4891 INSN_SIZE, &inst.reloc.exp,
4892 inst.reloc.pc_rel,
4893 inst.reloc.type);
4894 DEBUG_TRACE ("Prepared relocation fix up");
4895 /* Don't check the addend value against the instruction size,
4896 that's the job of our code in md_apply_fix(). */
4897 fixp->fx_no_overflow = 1;
4898 if (new_inst != NULL)
4899 fixp->tc_fix_data.inst = new_inst;
4900 if (aarch64_gas_internal_fixup_p ())
4901 {
4902 gas_assert (inst.reloc.opnd != AARCH64_OPND_NIL);
4903 fixp->tc_fix_data.opnd = inst.reloc.opnd;
4904 fixp->fx_addnumber = inst.reloc.flags;
4905 }
4906 }
4907
4908 dwarf2_emit_insn (INSN_SIZE);
4909}
4910
4911/* Link together opcodes of the same name. */
4912
4913struct templates
4914{
4915 aarch64_opcode *opcode;
4916 struct templates *next;
4917};
4918
4919typedef struct templates templates;
4920
4921static templates *
4922lookup_mnemonic (const char *start, int len)
4923{
4924 templates *templ = NULL;
4925
4926 templ = hash_find_n (aarch64_ops_hsh, start, len);
4927 return templ;
4928}
4929
4930/* Subroutine of md_assemble, responsible for looking up the primary
4931 opcode from the mnemonic the user wrote. STR points to the
4932 beginning of the mnemonic. */
4933
4934static templates *
4935opcode_lookup (char **str)
4936{
bb7eff52 4937 char *end, *base, *dot;
a06ea964
NC
4938 const aarch64_cond *cond;
4939 char condname[16];
4940 int len;
4941
4942 /* Scan up to the end of the mnemonic, which must end in white space,
4943 '.', or end of string. */
bb7eff52 4944 dot = 0;
a06ea964 4945 for (base = end = *str; is_part_of_name(*end); end++)
bb7eff52
RS
4946 if (*end == '.' && !dot)
4947 dot = end;
a06ea964 4948
bb7eff52 4949 if (end == base || dot == base)
a06ea964
NC
4950 return 0;
4951
4952 inst.cond = COND_ALWAYS;
4953
4954 /* Handle a possible condition. */
bb7eff52 4955 if (dot)
a06ea964 4956 {
bb7eff52 4957 cond = hash_find_n (aarch64_cond_hsh, dot + 1, end - dot - 1);
a06ea964
NC
4958 if (cond)
4959 {
4960 inst.cond = cond->value;
bb7eff52 4961 *str = end;
a06ea964
NC
4962 }
4963 else
4964 {
bb7eff52 4965 *str = dot;
a06ea964
NC
4966 return 0;
4967 }
bb7eff52 4968 len = dot - base;
a06ea964
NC
4969 }
4970 else
bb7eff52
RS
4971 {
4972 *str = end;
4973 len = end - base;
4974 }
a06ea964
NC
4975
4976 if (inst.cond == COND_ALWAYS)
4977 {
4978 /* Look for unaffixed mnemonic. */
4979 return lookup_mnemonic (base, len);
4980 }
4981 else if (len <= 13)
4982 {
4983 /* append ".c" to mnemonic if conditional */
4984 memcpy (condname, base, len);
4985 memcpy (condname + len, ".c", 2);
4986 base = condname;
4987 len += 2;
4988 return lookup_mnemonic (base, len);
4989 }
4990
4991 return NULL;
4992}
4993
8f9a77af
RS
4994/* Internal helper routine converting a vector_type_el structure *VECTYPE
4995 to a corresponding operand qualifier. */
a06ea964
NC
4996
4997static inline aarch64_opnd_qualifier_t
8f9a77af 4998vectype_to_qualifier (const struct vector_type_el *vectype)
a06ea964 4999{
f06935a5 5000 /* Element size in bytes indexed by vector_el_type. */
a06ea964
NC
5001 const unsigned char ele_size[5]
5002 = {1, 2, 4, 8, 16};
65f2205d
MW
5003 const unsigned int ele_base [5] =
5004 {
a3b3345a 5005 AARCH64_OPND_QLF_V_4B,
3067d3b9 5006 AARCH64_OPND_QLF_V_2H,
65f2205d
MW
5007 AARCH64_OPND_QLF_V_2S,
5008 AARCH64_OPND_QLF_V_1D,
5009 AARCH64_OPND_QLF_V_1Q
5010 };
a06ea964
NC
5011
5012 if (!vectype->defined || vectype->type == NT_invtype)
5013 goto vectype_conversion_fail;
5014
d50c751e
RS
5015 if (vectype->type == NT_zero)
5016 return AARCH64_OPND_QLF_P_Z;
5017 if (vectype->type == NT_merge)
5018 return AARCH64_OPND_QLF_P_M;
5019
a06ea964
NC
5020 gas_assert (vectype->type >= NT_b && vectype->type <= NT_q);
5021
f11ad6bc 5022 if (vectype->defined & (NTA_HASINDEX | NTA_HASVARWIDTH))
00c2093f
TC
5023 {
5024 /* Special case S_4B. */
5025 if (vectype->type == NT_b && vectype->width == 4)
5026 return AARCH64_OPND_QLF_S_4B;
5027
5028 /* Vector element register. */
5029 return AARCH64_OPND_QLF_S_B + vectype->type;
5030 }
a06ea964
NC
5031 else
5032 {
5033 /* Vector register. */
5034 int reg_size = ele_size[vectype->type] * vectype->width;
5035 unsigned offset;
65f2205d 5036 unsigned shift;
3067d3b9 5037 if (reg_size != 16 && reg_size != 8 && reg_size != 4)
a06ea964 5038 goto vectype_conversion_fail;
65f2205d
MW
5039
5040 /* The conversion is by calculating the offset from the base operand
5041 qualifier for the vector type. The operand qualifiers are regular
5042 enough that the offset can established by shifting the vector width by
5043 a vector-type dependent amount. */
5044 shift = 0;
5045 if (vectype->type == NT_b)
a3b3345a 5046 shift = 3;
3067d3b9 5047 else if (vectype->type == NT_h || vectype->type == NT_s)
65f2205d
MW
5048 shift = 2;
5049 else if (vectype->type >= NT_d)
5050 shift = 1;
5051 else
5052 gas_assert (0);
5053
5054 offset = ele_base [vectype->type] + (vectype->width >> shift);
a3b3345a 5055 gas_assert (AARCH64_OPND_QLF_V_4B <= offset
65f2205d
MW
5056 && offset <= AARCH64_OPND_QLF_V_1Q);
5057 return offset;
a06ea964
NC
5058 }
5059
5060vectype_conversion_fail:
5061 first_error (_("bad vector arrangement type"));
5062 return AARCH64_OPND_QLF_NIL;
5063}
5064
5065/* Process an optional operand that is found omitted from the assembly line.
5066 Fill *OPERAND for such an operand of type TYPE. OPCODE points to the
5067 instruction's opcode entry while IDX is the index of this omitted operand.
5068 */
5069
5070static void
5071process_omitted_operand (enum aarch64_opnd type, const aarch64_opcode *opcode,
5072 int idx, aarch64_opnd_info *operand)
5073{
5074 aarch64_insn default_value = get_optional_operand_default_value (opcode);
5075 gas_assert (optional_operand_p (opcode, idx));
5076 gas_assert (!operand->present);
5077
5078 switch (type)
5079 {
5080 case AARCH64_OPND_Rd:
5081 case AARCH64_OPND_Rn:
5082 case AARCH64_OPND_Rm:
5083 case AARCH64_OPND_Rt:
5084 case AARCH64_OPND_Rt2:
5085 case AARCH64_OPND_Rs:
5086 case AARCH64_OPND_Ra:
5087 case AARCH64_OPND_Rt_SYS:
5088 case AARCH64_OPND_Rd_SP:
5089 case AARCH64_OPND_Rn_SP:
c84364ec 5090 case AARCH64_OPND_Rm_SP:
a06ea964
NC
5091 case AARCH64_OPND_Fd:
5092 case AARCH64_OPND_Fn:
5093 case AARCH64_OPND_Fm:
5094 case AARCH64_OPND_Fa:
5095 case AARCH64_OPND_Ft:
5096 case AARCH64_OPND_Ft2:
5097 case AARCH64_OPND_Sd:
5098 case AARCH64_OPND_Sn:
5099 case AARCH64_OPND_Sm:
f42f1a1d 5100 case AARCH64_OPND_Va:
a06ea964
NC
5101 case AARCH64_OPND_Vd:
5102 case AARCH64_OPND_Vn:
5103 case AARCH64_OPND_Vm:
5104 case AARCH64_OPND_VdD1:
5105 case AARCH64_OPND_VnD1:
5106 operand->reg.regno = default_value;
5107 break;
5108
5109 case AARCH64_OPND_Ed:
5110 case AARCH64_OPND_En:
5111 case AARCH64_OPND_Em:
369c9167 5112 case AARCH64_OPND_Em16:
f42f1a1d 5113 case AARCH64_OPND_SM3_IMM2:
a06ea964
NC
5114 operand->reglane.regno = default_value;
5115 break;
5116
5117 case AARCH64_OPND_IDX:
5118 case AARCH64_OPND_BIT_NUM:
5119 case AARCH64_OPND_IMMR:
5120 case AARCH64_OPND_IMMS:
5121 case AARCH64_OPND_SHLL_IMM:
5122 case AARCH64_OPND_IMM_VLSL:
5123 case AARCH64_OPND_IMM_VLSR:
5124 case AARCH64_OPND_CCMP_IMM:
5125 case AARCH64_OPND_FBITS:
5126 case AARCH64_OPND_UIMM4:
5127 case AARCH64_OPND_UIMM3_OP1:
5128 case AARCH64_OPND_UIMM3_OP2:
5129 case AARCH64_OPND_IMM:
f42f1a1d 5130 case AARCH64_OPND_IMM_2:
a06ea964
NC
5131 case AARCH64_OPND_WIDTH:
5132 case AARCH64_OPND_UIMM7:
5133 case AARCH64_OPND_NZCV:
245d2e3f
RS
5134 case AARCH64_OPND_SVE_PATTERN:
5135 case AARCH64_OPND_SVE_PRFOP:
a06ea964
NC
5136 operand->imm.value = default_value;
5137 break;
5138
2442d846
RS
5139 case AARCH64_OPND_SVE_PATTERN_SCALED:
5140 operand->imm.value = default_value;
5141 operand->shifter.kind = AARCH64_MOD_MUL;
5142 operand->shifter.amount = 1;
5143 break;
5144
a06ea964
NC
5145 case AARCH64_OPND_EXCEPTION:
5146 inst.reloc.type = BFD_RELOC_UNUSED;
5147 break;
5148
5149 case AARCH64_OPND_BARRIER_ISB:
5150 operand->barrier = aarch64_barrier_options + default_value;
5151
5152 default:
5153 break;
5154 }
5155}
5156
5157/* Process the relocation type for move wide instructions.
5158 Return TRUE on success; otherwise return FALSE. */
5159
5160static bfd_boolean
5161process_movw_reloc_info (void)
5162{
5163 int is32;
5164 unsigned shift;
5165
5166 is32 = inst.base.operands[0].qualifier == AARCH64_OPND_QLF_W ? 1 : 0;
5167
5168 if (inst.base.opcode->op == OP_MOVK)
5169 switch (inst.reloc.type)
5170 {
5171 case BFD_RELOC_AARCH64_MOVW_G0_S:
5172 case BFD_RELOC_AARCH64_MOVW_G1_S:
5173 case BFD_RELOC_AARCH64_MOVW_G2_S:
32247401
RL
5174 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
5175 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
5176 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
5177 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
1aa66fb1 5178 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
a06ea964 5179 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
a06ea964 5180 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
a06ea964
NC
5181 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5182 set_syntax_error
5183 (_("the specified relocation type is not allowed for MOVK"));
5184 return FALSE;
5185 default:
5186 break;
5187 }
5188
5189 switch (inst.reloc.type)
5190 {
5191 case BFD_RELOC_AARCH64_MOVW_G0:
a06ea964 5192 case BFD_RELOC_AARCH64_MOVW_G0_NC:
f09c556a 5193 case BFD_RELOC_AARCH64_MOVW_G0_S:
ca632371 5194 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
32247401
RL
5195 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
5196 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
43a357f9 5197 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
3e8286c0 5198 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
3b957e5b 5199 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
49df5539
JW
5200 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
5201 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
a06ea964
NC
5202 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5203 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5204 shift = 0;
5205 break;
5206 case BFD_RELOC_AARCH64_MOVW_G1:
a06ea964 5207 case BFD_RELOC_AARCH64_MOVW_G1_NC:
f09c556a 5208 case BFD_RELOC_AARCH64_MOVW_G1_S:
654248e7 5209 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
32247401
RL
5210 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
5211 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
43a357f9 5212 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
1aa66fb1 5213 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
3b957e5b 5214 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
49df5539
JW
5215 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
5216 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
a06ea964
NC
5217 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5218 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5219 shift = 16;
5220 break;
5221 case BFD_RELOC_AARCH64_MOVW_G2:
a06ea964 5222 case BFD_RELOC_AARCH64_MOVW_G2_NC:
f09c556a 5223 case BFD_RELOC_AARCH64_MOVW_G2_S:
32247401
RL
5224 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
5225 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
49df5539 5226 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
a06ea964
NC
5227 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5228 if (is32)
5229 {
5230 set_fatal_syntax_error
5231 (_("the specified relocation type is not allowed for 32-bit "
5232 "register"));
5233 return FALSE;
5234 }
5235 shift = 32;
5236 break;
5237 case BFD_RELOC_AARCH64_MOVW_G3:
32247401 5238 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
a06ea964
NC
5239 if (is32)
5240 {
5241 set_fatal_syntax_error
5242 (_("the specified relocation type is not allowed for 32-bit "
5243 "register"));
5244 return FALSE;
5245 }
5246 shift = 48;
5247 break;
5248 default:
5249 /* More cases should be added when more MOVW-related relocation types
5250 are supported in GAS. */
5251 gas_assert (aarch64_gas_internal_fixup_p ());
5252 /* The shift amount should have already been set by the parser. */
5253 return TRUE;
5254 }
5255 inst.base.operands[1].shifter.amount = shift;
5256 return TRUE;
5257}
5258
33eaf5de 5259/* A primitive log calculator. */
a06ea964
NC
5260
5261static inline unsigned int
5262get_logsz (unsigned int size)
5263{
5264 const unsigned char ls[16] =
5265 {0, 1, -1, 2, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, 4};
5266 if (size > 16)
5267 {
5268 gas_assert (0);
5269 return -1;
5270 }
5271 gas_assert (ls[size - 1] != (unsigned char)-1);
5272 return ls[size - 1];
5273}
5274
5275/* Determine and return the real reloc type code for an instruction
5276 with the pseudo reloc type code BFD_RELOC_AARCH64_LDST_LO12. */
5277
5278static inline bfd_reloc_code_real_type
5279ldst_lo12_determine_real_reloc_type (void)
5280{
4c562523 5281 unsigned logsz;
a06ea964
NC
5282 enum aarch64_opnd_qualifier opd0_qlf = inst.base.operands[0].qualifier;
5283 enum aarch64_opnd_qualifier opd1_qlf = inst.base.operands[1].qualifier;
5284
84f1b9fb 5285 const bfd_reloc_code_real_type reloc_ldst_lo12[5][5] = {
4c562523
JW
5286 {
5287 BFD_RELOC_AARCH64_LDST8_LO12,
5288 BFD_RELOC_AARCH64_LDST16_LO12,
5289 BFD_RELOC_AARCH64_LDST32_LO12,
5290 BFD_RELOC_AARCH64_LDST64_LO12,
a06ea964 5291 BFD_RELOC_AARCH64_LDST128_LO12
4c562523
JW
5292 },
5293 {
5294 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12,
5295 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12,
5296 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12,
5297 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12,
5298 BFD_RELOC_AARCH64_NONE
5299 },
5300 {
5301 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC,
5302 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC,
5303 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC,
5304 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC,
5305 BFD_RELOC_AARCH64_NONE
84f1b9fb
RL
5306 },
5307 {
5308 BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12,
5309 BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12,
5310 BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12,
5311 BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12,
5312 BFD_RELOC_AARCH64_NONE
5313 },
5314 {
5315 BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC,
5316 BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC,
5317 BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC,
5318 BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC,
5319 BFD_RELOC_AARCH64_NONE
4c562523 5320 }
a06ea964
NC
5321 };
5322
4c562523
JW
5323 gas_assert (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
5324 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
5325 || (inst.reloc.type
84f1b9fb
RL
5326 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC)
5327 || (inst.reloc.type
5328 == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12)
5329 || (inst.reloc.type
5330 == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC));
a06ea964
NC
5331 gas_assert (inst.base.opcode->operands[1] == AARCH64_OPND_ADDR_UIMM12);
5332
5333 if (opd1_qlf == AARCH64_OPND_QLF_NIL)
5334 opd1_qlf =
5335 aarch64_get_expected_qualifier (inst.base.opcode->qualifiers_list,
5336 1, opd0_qlf, 0);
5337 gas_assert (opd1_qlf != AARCH64_OPND_QLF_NIL);
5338
5339 logsz = get_logsz (aarch64_get_qualifier_esize (opd1_qlf));
4c562523 5340 if (inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
84f1b9fb
RL
5341 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC
5342 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12
5343 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC)
4c562523
JW
5344 gas_assert (logsz <= 3);
5345 else
5346 gas_assert (logsz <= 4);
a06ea964 5347
4c562523 5348 /* In reloc.c, these pseudo relocation types should be defined in similar
33eaf5de 5349 order as above reloc_ldst_lo12 array. Because the array index calculation
4c562523
JW
5350 below relies on this. */
5351 return reloc_ldst_lo12[inst.reloc.type - BFD_RELOC_AARCH64_LDST_LO12][logsz];
a06ea964
NC
5352}
5353
5354/* Check whether a register list REGINFO is valid. The registers must be
5355 numbered in increasing order (modulo 32), in increments of one or two.
5356
5357 If ACCEPT_ALTERNATE is non-zero, the register numbers should be in
5358 increments of two.
5359
5360 Return FALSE if such a register list is invalid, otherwise return TRUE. */
5361
5362static bfd_boolean
5363reg_list_valid_p (uint32_t reginfo, int accept_alternate)
5364{
5365 uint32_t i, nb_regs, prev_regno, incr;
5366
5367 nb_regs = 1 + (reginfo & 0x3);
5368 reginfo >>= 2;
5369 prev_regno = reginfo & 0x1f;
5370 incr = accept_alternate ? 2 : 1;
5371
5372 for (i = 1; i < nb_regs; ++i)
5373 {
5374 uint32_t curr_regno;
5375 reginfo >>= 5;
5376 curr_regno = reginfo & 0x1f;
5377 if (curr_regno != ((prev_regno + incr) & 0x1f))
5378 return FALSE;
5379 prev_regno = curr_regno;
5380 }
5381
5382 return TRUE;
5383}
5384
5385/* Generic instruction operand parser. This does no encoding and no
5386 semantic validation; it merely squirrels values away in the inst
5387 structure. Returns TRUE or FALSE depending on whether the
5388 specified grammar matched. */
5389
5390static bfd_boolean
5391parse_operands (char *str, const aarch64_opcode *opcode)
5392{
5393 int i;
5394 char *backtrack_pos = 0;
5395 const enum aarch64_opnd *operands = opcode->operands;
1799c0d0 5396 aarch64_reg_type imm_reg_type;
a06ea964
NC
5397
5398 clear_error ();
5399 skip_whitespace (str);
5400
c0890d26 5401 if (AARCH64_CPU_HAS_FEATURE (AARCH64_FEATURE_SVE, *opcode->avariant))
5b2b928e 5402 imm_reg_type = REG_TYPE_R_Z_SP_BHSDQ_VZP;
c0890d26
RS
5403 else
5404 imm_reg_type = REG_TYPE_R_Z_BHSDQ_V;
1799c0d0 5405
a06ea964
NC
5406 for (i = 0; operands[i] != AARCH64_OPND_NIL; i++)
5407 {
5408 int64_t val;
e1b988bb 5409 const reg_entry *reg;
a06ea964
NC
5410 int comma_skipped_p = 0;
5411 aarch64_reg_type rtype;
8f9a77af 5412 struct vector_type_el vectype;
4df068de 5413 aarch64_opnd_qualifier_t qualifier, base_qualifier, offset_qualifier;
a06ea964 5414 aarch64_opnd_info *info = &inst.base.operands[i];
f11ad6bc 5415 aarch64_reg_type reg_type;
a06ea964
NC
5416
5417 DEBUG_TRACE ("parse operand %d", i);
5418
5419 /* Assign the operand code. */
5420 info->type = operands[i];
5421
5422 if (optional_operand_p (opcode, i))
5423 {
5424 /* Remember where we are in case we need to backtrack. */
5425 gas_assert (!backtrack_pos);
5426 backtrack_pos = str;
5427 }
5428
33eaf5de 5429 /* Expect comma between operands; the backtrack mechanism will take
a06ea964
NC
5430 care of cases of omitted optional operand. */
5431 if (i > 0 && ! skip_past_char (&str, ','))
5432 {
5433 set_syntax_error (_("comma expected between operands"));
5434 goto failure;
5435 }
5436 else
5437 comma_skipped_p = 1;
5438
5439 switch (operands[i])
5440 {
5441 case AARCH64_OPND_Rd:
5442 case AARCH64_OPND_Rn:
5443 case AARCH64_OPND_Rm:
5444 case AARCH64_OPND_Rt:
5445 case AARCH64_OPND_Rt2:
5446 case AARCH64_OPND_Rs:
5447 case AARCH64_OPND_Ra:
5448 case AARCH64_OPND_Rt_SYS:
ee804238 5449 case AARCH64_OPND_PAIRREG:
047cd301 5450 case AARCH64_OPND_SVE_Rm:
e1b988bb 5451 po_int_reg_or_fail (REG_TYPE_R_Z);
a06ea964
NC
5452 break;
5453
5454 case AARCH64_OPND_Rd_SP:
5455 case AARCH64_OPND_Rn_SP:
047cd301 5456 case AARCH64_OPND_SVE_Rn_SP:
c84364ec 5457 case AARCH64_OPND_Rm_SP:
e1b988bb 5458 po_int_reg_or_fail (REG_TYPE_R_SP);
a06ea964
NC
5459 break;
5460
5461 case AARCH64_OPND_Rm_EXT:
5462 case AARCH64_OPND_Rm_SFT:
5463 po_misc_or_fail (parse_shifter_operand
5464 (&str, info, (operands[i] == AARCH64_OPND_Rm_EXT
5465 ? SHIFTED_ARITH_IMM
5466 : SHIFTED_LOGIC_IMM)));
5467 if (!info->shifter.operator_present)
5468 {
5469 /* Default to LSL if not present. Libopcodes prefers shifter
5470 kind to be explicit. */
5471 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5472 info->shifter.kind = AARCH64_MOD_LSL;
5473 /* For Rm_EXT, libopcodes will carry out further check on whether
5474 or not stack pointer is used in the instruction (Recall that
5475 "the extend operator is not optional unless at least one of
5476 "Rd" or "Rn" is '11111' (i.e. WSP)"). */
5477 }
5478 break;
5479
5480 case AARCH64_OPND_Fd:
5481 case AARCH64_OPND_Fn:
5482 case AARCH64_OPND_Fm:
5483 case AARCH64_OPND_Fa:
5484 case AARCH64_OPND_Ft:
5485 case AARCH64_OPND_Ft2:
5486 case AARCH64_OPND_Sd:
5487 case AARCH64_OPND_Sn:
5488 case AARCH64_OPND_Sm:
047cd301
RS
5489 case AARCH64_OPND_SVE_VZn:
5490 case AARCH64_OPND_SVE_Vd:
5491 case AARCH64_OPND_SVE_Vm:
5492 case AARCH64_OPND_SVE_Vn:
a06ea964
NC
5493 val = aarch64_reg_parse (&str, REG_TYPE_BHSDQ, &rtype, NULL);
5494 if (val == PARSE_FAIL)
5495 {
5496 first_error (_(get_reg_expected_msg (REG_TYPE_BHSDQ)));
5497 goto failure;
5498 }
5499 gas_assert (rtype >= REG_TYPE_FP_B && rtype <= REG_TYPE_FP_Q);
5500
5501 info->reg.regno = val;
5502 info->qualifier = AARCH64_OPND_QLF_S_B + (rtype - REG_TYPE_FP_B);
5503 break;
5504
f11ad6bc
RS
5505 case AARCH64_OPND_SVE_Pd:
5506 case AARCH64_OPND_SVE_Pg3:
5507 case AARCH64_OPND_SVE_Pg4_5:
5508 case AARCH64_OPND_SVE_Pg4_10:
5509 case AARCH64_OPND_SVE_Pg4_16:
5510 case AARCH64_OPND_SVE_Pm:
5511 case AARCH64_OPND_SVE_Pn:
5512 case AARCH64_OPND_SVE_Pt:
5513 reg_type = REG_TYPE_PN;
5514 goto vector_reg;
5515
5516 case AARCH64_OPND_SVE_Za_5:
5517 case AARCH64_OPND_SVE_Za_16:
5518 case AARCH64_OPND_SVE_Zd:
5519 case AARCH64_OPND_SVE_Zm_5:
5520 case AARCH64_OPND_SVE_Zm_16:
5521 case AARCH64_OPND_SVE_Zn:
5522 case AARCH64_OPND_SVE_Zt:
5523 reg_type = REG_TYPE_ZN;
5524 goto vector_reg;
5525
f42f1a1d 5526 case AARCH64_OPND_Va:
a06ea964
NC
5527 case AARCH64_OPND_Vd:
5528 case AARCH64_OPND_Vn:
5529 case AARCH64_OPND_Vm:
f11ad6bc
RS
5530 reg_type = REG_TYPE_VN;
5531 vector_reg:
5532 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
a06ea964
NC
5533 if (val == PARSE_FAIL)
5534 {
f11ad6bc 5535 first_error (_(get_reg_expected_msg (reg_type)));
a06ea964
NC
5536 goto failure;
5537 }
5538 if (vectype.defined & NTA_HASINDEX)
5539 goto failure;
5540
5541 info->reg.regno = val;
f11ad6bc
RS
5542 if ((reg_type == REG_TYPE_PN || reg_type == REG_TYPE_ZN)
5543 && vectype.type == NT_invtype)
5544 /* Unqualified Pn and Zn registers are allowed in certain
5545 contexts. Rely on F_STRICT qualifier checking to catch
5546 invalid uses. */
5547 info->qualifier = AARCH64_OPND_QLF_NIL;
5548 else
5549 {
5550 info->qualifier = vectype_to_qualifier (&vectype);
5551 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5552 goto failure;
5553 }
a06ea964
NC
5554 break;
5555
5556 case AARCH64_OPND_VdD1:
5557 case AARCH64_OPND_VnD1:
5558 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
5559 if (val == PARSE_FAIL)
5560 {
5561 set_first_syntax_error (_(get_reg_expected_msg (REG_TYPE_VN)));
5562 goto failure;
5563 }
5564 if (vectype.type != NT_d || vectype.index != 1)
5565 {
5566 set_fatal_syntax_error
5567 (_("the top half of a 128-bit FP/SIMD register is expected"));
5568 goto failure;
5569 }
5570 info->reg.regno = val;
5571 /* N.B: VdD1 and VnD1 are treated as an fp or advsimd scalar register
5572 here; it is correct for the purpose of encoding/decoding since
5573 only the register number is explicitly encoded in the related
5574 instructions, although this appears a bit hacky. */
5575 info->qualifier = AARCH64_OPND_QLF_S_D;
5576 break;
5577
582e12bf
RS
5578 case AARCH64_OPND_SVE_Zm3_INDEX:
5579 case AARCH64_OPND_SVE_Zm3_22_INDEX:
5580 case AARCH64_OPND_SVE_Zm4_INDEX:
f11ad6bc
RS
5581 case AARCH64_OPND_SVE_Zn_INDEX:
5582 reg_type = REG_TYPE_ZN;
5583 goto vector_reg_index;
5584
a06ea964
NC
5585 case AARCH64_OPND_Ed:
5586 case AARCH64_OPND_En:
5587 case AARCH64_OPND_Em:
369c9167 5588 case AARCH64_OPND_Em16:
f42f1a1d 5589 case AARCH64_OPND_SM3_IMM2:
f11ad6bc
RS
5590 reg_type = REG_TYPE_VN;
5591 vector_reg_index:
5592 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
a06ea964
NC
5593 if (val == PARSE_FAIL)
5594 {
f11ad6bc 5595 first_error (_(get_reg_expected_msg (reg_type)));
a06ea964
NC
5596 goto failure;
5597 }
5598 if (vectype.type == NT_invtype || !(vectype.defined & NTA_HASINDEX))
5599 goto failure;
5600
5601 info->reglane.regno = val;
5602 info->reglane.index = vectype.index;
5603 info->qualifier = vectype_to_qualifier (&vectype);
5604 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5605 goto failure;
5606 break;
5607
f11ad6bc
RS
5608 case AARCH64_OPND_SVE_ZnxN:
5609 case AARCH64_OPND_SVE_ZtxN:
5610 reg_type = REG_TYPE_ZN;
5611 goto vector_reg_list;
5612
a06ea964
NC
5613 case AARCH64_OPND_LVn:
5614 case AARCH64_OPND_LVt:
5615 case AARCH64_OPND_LVt_AL:
5616 case AARCH64_OPND_LEt:
f11ad6bc
RS
5617 reg_type = REG_TYPE_VN;
5618 vector_reg_list:
5619 if (reg_type == REG_TYPE_ZN
5620 && get_opcode_dependent_value (opcode) == 1
5621 && *str != '{')
a06ea964 5622 {
f11ad6bc
RS
5623 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
5624 if (val == PARSE_FAIL)
5625 {
5626 first_error (_(get_reg_expected_msg (reg_type)));
5627 goto failure;
5628 }
5629 info->reglist.first_regno = val;
5630 info->reglist.num_regs = 1;
5631 }
5632 else
5633 {
5634 val = parse_vector_reg_list (&str, reg_type, &vectype);
5635 if (val == PARSE_FAIL)
5636 goto failure;
5637 if (! reg_list_valid_p (val, /* accept_alternate */ 0))
5638 {
5639 set_fatal_syntax_error (_("invalid register list"));
5640 goto failure;
5641 }
5642 info->reglist.first_regno = (val >> 2) & 0x1f;
5643 info->reglist.num_regs = (val & 0x3) + 1;
a06ea964 5644 }
a06ea964
NC
5645 if (operands[i] == AARCH64_OPND_LEt)
5646 {
5647 if (!(vectype.defined & NTA_HASINDEX))
5648 goto failure;
5649 info->reglist.has_index = 1;
5650 info->reglist.index = vectype.index;
5651 }
f11ad6bc
RS
5652 else
5653 {
5654 if (vectype.defined & NTA_HASINDEX)
5655 goto failure;
5656 if (!(vectype.defined & NTA_HASTYPE))
5657 {
5658 if (reg_type == REG_TYPE_ZN)
5659 set_fatal_syntax_error (_("missing type suffix"));
5660 goto failure;
5661 }
5662 }
a06ea964
NC
5663 info->qualifier = vectype_to_qualifier (&vectype);
5664 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5665 goto failure;
5666 break;
5667
a6a51754
RL
5668 case AARCH64_OPND_CRn:
5669 case AARCH64_OPND_CRm:
a06ea964 5670 {
a6a51754
RL
5671 char prefix = *(str++);
5672 if (prefix != 'c' && prefix != 'C')
5673 goto failure;
5674
5675 po_imm_nc_or_fail ();
5676 if (val > 15)
5677 {
5678 set_fatal_syntax_error (_(N_ ("C0 - C15 expected")));
5679 goto failure;
5680 }
5681 info->qualifier = AARCH64_OPND_QLF_CR;
5682 info->imm.value = val;
5683 break;
a06ea964 5684 }
a06ea964
NC
5685
5686 case AARCH64_OPND_SHLL_IMM:
5687 case AARCH64_OPND_IMM_VLSR:
5688 po_imm_or_fail (1, 64);
5689 info->imm.value = val;
5690 break;
5691
5692 case AARCH64_OPND_CCMP_IMM:
e950b345 5693 case AARCH64_OPND_SIMM5:
a06ea964
NC
5694 case AARCH64_OPND_FBITS:
5695 case AARCH64_OPND_UIMM4:
5696 case AARCH64_OPND_UIMM3_OP1:
5697 case AARCH64_OPND_UIMM3_OP2:
5698 case AARCH64_OPND_IMM_VLSL:
5699 case AARCH64_OPND_IMM:
f42f1a1d 5700 case AARCH64_OPND_IMM_2:
a06ea964 5701 case AARCH64_OPND_WIDTH:
e950b345
RS
5702 case AARCH64_OPND_SVE_INV_LIMM:
5703 case AARCH64_OPND_SVE_LIMM:
5704 case AARCH64_OPND_SVE_LIMM_MOV:
5705 case AARCH64_OPND_SVE_SHLIMM_PRED:
5706 case AARCH64_OPND_SVE_SHLIMM_UNPRED:
5707 case AARCH64_OPND_SVE_SHRIMM_PRED:
5708 case AARCH64_OPND_SVE_SHRIMM_UNPRED:
5709 case AARCH64_OPND_SVE_SIMM5:
5710 case AARCH64_OPND_SVE_SIMM5B:
5711 case AARCH64_OPND_SVE_SIMM6:
5712 case AARCH64_OPND_SVE_SIMM8:
5713 case AARCH64_OPND_SVE_UIMM3:
5714 case AARCH64_OPND_SVE_UIMM7:
5715 case AARCH64_OPND_SVE_UIMM8:
5716 case AARCH64_OPND_SVE_UIMM8_53:
c2c4ff8d
SN
5717 case AARCH64_OPND_IMM_ROT1:
5718 case AARCH64_OPND_IMM_ROT2:
5719 case AARCH64_OPND_IMM_ROT3:
582e12bf
RS
5720 case AARCH64_OPND_SVE_IMM_ROT1:
5721 case AARCH64_OPND_SVE_IMM_ROT2:
a06ea964
NC
5722 po_imm_nc_or_fail ();
5723 info->imm.value = val;
5724 break;
5725
e950b345
RS
5726 case AARCH64_OPND_SVE_AIMM:
5727 case AARCH64_OPND_SVE_ASIMM:
5728 po_imm_nc_or_fail ();
5729 info->imm.value = val;
5730 skip_whitespace (str);
5731 if (skip_past_comma (&str))
5732 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
5733 else
5734 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
5735 break;
5736
245d2e3f
RS
5737 case AARCH64_OPND_SVE_PATTERN:
5738 po_enum_or_fail (aarch64_sve_pattern_array);
5739 info->imm.value = val;
5740 break;
5741
2442d846
RS
5742 case AARCH64_OPND_SVE_PATTERN_SCALED:
5743 po_enum_or_fail (aarch64_sve_pattern_array);
5744 info->imm.value = val;
5745 if (skip_past_comma (&str)
5746 && !parse_shift (&str, info, SHIFTED_MUL))
5747 goto failure;
5748 if (!info->shifter.operator_present)
5749 {
5750 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5751 info->shifter.kind = AARCH64_MOD_MUL;
5752 info->shifter.amount = 1;
5753 }
5754 break;
5755
245d2e3f
RS
5756 case AARCH64_OPND_SVE_PRFOP:
5757 po_enum_or_fail (aarch64_sve_prfop_array);
5758 info->imm.value = val;
5759 break;
5760
a06ea964
NC
5761 case AARCH64_OPND_UIMM7:
5762 po_imm_or_fail (0, 127);
5763 info->imm.value = val;
5764 break;
5765
5766 case AARCH64_OPND_IDX:
f42f1a1d 5767 case AARCH64_OPND_MASK:
a06ea964
NC
5768 case AARCH64_OPND_BIT_NUM:
5769 case AARCH64_OPND_IMMR:
5770 case AARCH64_OPND_IMMS:
5771 po_imm_or_fail (0, 63);
5772 info->imm.value = val;
5773 break;
5774
5775 case AARCH64_OPND_IMM0:
5776 po_imm_nc_or_fail ();
5777 if (val != 0)
5778 {
5779 set_fatal_syntax_error (_("immediate zero expected"));
5780 goto failure;
5781 }
5782 info->imm.value = 0;
5783 break;
5784
5785 case AARCH64_OPND_FPIMM0:
5786 {
5787 int qfloat;
5788 bfd_boolean res1 = FALSE, res2 = FALSE;
5789 /* N.B. -0.0 will be rejected; although -0.0 shouldn't be rejected,
5790 it is probably not worth the effort to support it. */
1799c0d0
RS
5791 if (!(res1 = parse_aarch64_imm_float (&str, &qfloat, FALSE,
5792 imm_reg_type))
6a9deabe
RS
5793 && (error_p ()
5794 || !(res2 = parse_constant_immediate (&str, &val,
5795 imm_reg_type))))
a06ea964
NC
5796 goto failure;
5797 if ((res1 && qfloat == 0) || (res2 && val == 0))
5798 {
5799 info->imm.value = 0;
5800 info->imm.is_fp = 1;
5801 break;
5802 }
5803 set_fatal_syntax_error (_("immediate zero expected"));
5804 goto failure;
5805 }
5806
5807 case AARCH64_OPND_IMM_MOV:
5808 {
5809 char *saved = str;
8db49cc2
WN
5810 if (reg_name_p (str, REG_TYPE_R_Z_SP) ||
5811 reg_name_p (str, REG_TYPE_VN))
a06ea964
NC
5812 goto failure;
5813 str = saved;
5814 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5815 GE_OPT_PREFIX, 1));
5816 /* The MOV immediate alias will be fixed up by fix_mov_imm_insn
5817 later. fix_mov_imm_insn will try to determine a machine
5818 instruction (MOVZ, MOVN or ORR) for it and will issue an error
5819 message if the immediate cannot be moved by a single
5820 instruction. */
5821 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
5822 inst.base.operands[i].skip = 1;
5823 }
5824 break;
5825
5826 case AARCH64_OPND_SIMD_IMM:
5827 case AARCH64_OPND_SIMD_IMM_SFT:
1799c0d0 5828 if (! parse_big_immediate (&str, &val, imm_reg_type))
a06ea964
NC
5829 goto failure;
5830 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5831 /* addr_off_p */ 0,
5832 /* need_libopcodes_p */ 1,
5833 /* skip_p */ 1);
5834 /* Parse shift.
5835 N.B. although AARCH64_OPND_SIMD_IMM doesn't permit any
5836 shift, we don't check it here; we leave the checking to
5837 the libopcodes (operand_general_constraint_met_p). By
5838 doing this, we achieve better diagnostics. */
5839 if (skip_past_comma (&str)
5840 && ! parse_shift (&str, info, SHIFTED_LSL_MSL))
5841 goto failure;
5842 if (!info->shifter.operator_present
5843 && info->type == AARCH64_OPND_SIMD_IMM_SFT)
5844 {
5845 /* Default to LSL if not present. Libopcodes prefers shifter
5846 kind to be explicit. */
5847 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5848 info->shifter.kind = AARCH64_MOD_LSL;
5849 }
5850 break;
5851
5852 case AARCH64_OPND_FPIMM:
5853 case AARCH64_OPND_SIMD_FPIMM:
165d4950 5854 case AARCH64_OPND_SVE_FPIMM8:
a06ea964
NC
5855 {
5856 int qfloat;
165d4950
RS
5857 bfd_boolean dp_p;
5858
5859 dp_p = double_precision_operand_p (&inst.base.operands[0]);
6a9deabe 5860 if (!parse_aarch64_imm_float (&str, &qfloat, dp_p, imm_reg_type)
874d7e6e 5861 || !aarch64_imm_float_p (qfloat))
a06ea964 5862 {
6a9deabe
RS
5863 if (!error_p ())
5864 set_fatal_syntax_error (_("invalid floating-point"
5865 " constant"));
a06ea964
NC
5866 goto failure;
5867 }
5868 inst.base.operands[i].imm.value = encode_imm_float_bits (qfloat);
5869 inst.base.operands[i].imm.is_fp = 1;
5870 }
5871 break;
5872
165d4950
RS
5873 case AARCH64_OPND_SVE_I1_HALF_ONE:
5874 case AARCH64_OPND_SVE_I1_HALF_TWO:
5875 case AARCH64_OPND_SVE_I1_ZERO_ONE:
5876 {
5877 int qfloat;
5878 bfd_boolean dp_p;
5879
5880 dp_p = double_precision_operand_p (&inst.base.operands[0]);
5881 if (!parse_aarch64_imm_float (&str, &qfloat, dp_p, imm_reg_type))
5882 {
5883 if (!error_p ())
5884 set_fatal_syntax_error (_("invalid floating-point"
5885 " constant"));
5886 goto failure;
5887 }
5888 inst.base.operands[i].imm.value = qfloat;
5889 inst.base.operands[i].imm.is_fp = 1;
5890 }
5891 break;
5892
a06ea964
NC
5893 case AARCH64_OPND_LIMM:
5894 po_misc_or_fail (parse_shifter_operand (&str, info,
5895 SHIFTED_LOGIC_IMM));
5896 if (info->shifter.operator_present)
5897 {
5898 set_fatal_syntax_error
5899 (_("shift not allowed for bitmask immediate"));
5900 goto failure;
5901 }
5902 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5903 /* addr_off_p */ 0,
5904 /* need_libopcodes_p */ 1,
5905 /* skip_p */ 1);
5906 break;
5907
5908 case AARCH64_OPND_AIMM:
5909 if (opcode->op == OP_ADD)
5910 /* ADD may have relocation types. */
5911 po_misc_or_fail (parse_shifter_operand_reloc (&str, info,
5912 SHIFTED_ARITH_IMM));
5913 else
5914 po_misc_or_fail (parse_shifter_operand (&str, info,
5915 SHIFTED_ARITH_IMM));
5916 switch (inst.reloc.type)
5917 {
5918 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5919 info->shifter.amount = 12;
5920 break;
5921 case BFD_RELOC_UNUSED:
5922 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5923 if (info->shifter.kind != AARCH64_MOD_NONE)
5924 inst.reloc.flags = FIXUP_F_HAS_EXPLICIT_SHIFT;
5925 inst.reloc.pc_rel = 0;
5926 break;
5927 default:
5928 break;
5929 }
5930 info->imm.value = 0;
5931 if (!info->shifter.operator_present)
5932 {
5933 /* Default to LSL if not present. Libopcodes prefers shifter
5934 kind to be explicit. */
5935 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5936 info->shifter.kind = AARCH64_MOD_LSL;
5937 }
5938 break;
5939
5940 case AARCH64_OPND_HALF:
5941 {
5942 /* #<imm16> or relocation. */
5943 int internal_fixup_p;
5944 po_misc_or_fail (parse_half (&str, &internal_fixup_p));
5945 if (internal_fixup_p)
5946 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5947 skip_whitespace (str);
5948 if (skip_past_comma (&str))
5949 {
5950 /* {, LSL #<shift>} */
5951 if (! aarch64_gas_internal_fixup_p ())
5952 {
5953 set_fatal_syntax_error (_("can't mix relocation modifier "
5954 "with explicit shift"));
5955 goto failure;
5956 }
5957 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
5958 }
5959 else
5960 inst.base.operands[i].shifter.amount = 0;
5961 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
5962 inst.base.operands[i].imm.value = 0;
5963 if (! process_movw_reloc_info ())
5964 goto failure;
5965 }
5966 break;
5967
5968 case AARCH64_OPND_EXCEPTION:
1799c0d0
RS
5969 po_misc_or_fail (parse_immediate_expression (&str, &inst.reloc.exp,
5970 imm_reg_type));
a06ea964
NC
5971 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5972 /* addr_off_p */ 0,
5973 /* need_libopcodes_p */ 0,
5974 /* skip_p */ 1);
5975 break;
5976
5977 case AARCH64_OPND_NZCV:
5978 {
5979 const asm_nzcv *nzcv = hash_find_n (aarch64_nzcv_hsh, str, 4);
5980 if (nzcv != NULL)
5981 {
5982 str += 4;
5983 info->imm.value = nzcv->value;
5984 break;
5985 }
5986 po_imm_or_fail (0, 15);
5987 info->imm.value = val;
5988 }
5989 break;
5990
5991 case AARCH64_OPND_COND:
68a64283 5992 case AARCH64_OPND_COND1:
bb7eff52
RS
5993 {
5994 char *start = str;
5995 do
5996 str++;
5997 while (ISALPHA (*str));
5998 info->cond = hash_find_n (aarch64_cond_hsh, start, str - start);
5999 if (info->cond == NULL)
6000 {
6001 set_syntax_error (_("invalid condition"));
6002 goto failure;
6003 }
6004 else if (operands[i] == AARCH64_OPND_COND1
6005 && (info->cond->value & 0xe) == 0xe)
6006 {
6007 /* Do not allow AL or NV. */
6008 set_default_error ();
6009 goto failure;
6010 }
6011 }
a06ea964
NC
6012 break;
6013
6014 case AARCH64_OPND_ADDR_ADRP:
6015 po_misc_or_fail (parse_adrp (&str));
6016 /* Clear the value as operand needs to be relocated. */
6017 info->imm.value = 0;
6018 break;
6019
6020 case AARCH64_OPND_ADDR_PCREL14:
6021 case AARCH64_OPND_ADDR_PCREL19:
6022 case AARCH64_OPND_ADDR_PCREL21:
6023 case AARCH64_OPND_ADDR_PCREL26:
73866052 6024 po_misc_or_fail (parse_address (&str, info));
a06ea964
NC
6025 if (!info->addr.pcrel)
6026 {
6027 set_syntax_error (_("invalid pc-relative address"));
6028 goto failure;
6029 }
6030 if (inst.gen_lit_pool
6031 && (opcode->iclass != loadlit || opcode->op == OP_PRFM_LIT))
6032 {
6033 /* Only permit "=value" in the literal load instructions.
6034 The literal will be generated by programmer_friendly_fixup. */
6035 set_syntax_error (_("invalid use of \"=immediate\""));
6036 goto failure;
6037 }
6038 if (inst.reloc.exp.X_op == O_symbol && find_reloc_table_entry (&str))
6039 {
6040 set_syntax_error (_("unrecognized relocation suffix"));
6041 goto failure;
6042 }
6043 if (inst.reloc.exp.X_op == O_constant && !inst.gen_lit_pool)
6044 {
6045 info->imm.value = inst.reloc.exp.X_add_number;
6046 inst.reloc.type = BFD_RELOC_UNUSED;
6047 }
6048 else
6049 {
6050 info->imm.value = 0;
f41aef5f
RE
6051 if (inst.reloc.type == BFD_RELOC_UNUSED)
6052 switch (opcode->iclass)
6053 {
6054 case compbranch:
6055 case condbranch:
6056 /* e.g. CBZ or B.COND */
6057 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
6058 inst.reloc.type = BFD_RELOC_AARCH64_BRANCH19;
6059 break;
6060 case testbranch:
6061 /* e.g. TBZ */
6062 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL14);
6063 inst.reloc.type = BFD_RELOC_AARCH64_TSTBR14;
6064 break;
6065 case branch_imm:
6066 /* e.g. B or BL */
6067 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL26);
6068 inst.reloc.type =
6069 (opcode->op == OP_BL) ? BFD_RELOC_AARCH64_CALL26
6070 : BFD_RELOC_AARCH64_JUMP26;
6071 break;
6072 case loadlit:
6073 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
6074 inst.reloc.type = BFD_RELOC_AARCH64_LD_LO19_PCREL;
6075 break;
6076 case pcreladdr:
6077 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL21);
6078 inst.reloc.type = BFD_RELOC_AARCH64_ADR_LO21_PCREL;
6079 break;
6080 default:
6081 gas_assert (0);
6082 abort ();
6083 }
a06ea964
NC
6084 inst.reloc.pc_rel = 1;
6085 }
6086 break;
6087
6088 case AARCH64_OPND_ADDR_SIMPLE:
6089 case AARCH64_OPND_SIMD_ADDR_SIMPLE:
e1b988bb
RS
6090 {
6091 /* [<Xn|SP>{, #<simm>}] */
6092 char *start = str;
6093 /* First use the normal address-parsing routines, to get
6094 the usual syntax errors. */
73866052 6095 po_misc_or_fail (parse_address (&str, info));
e1b988bb
RS
6096 if (info->addr.pcrel || info->addr.offset.is_reg
6097 || !info->addr.preind || info->addr.postind
6098 || info->addr.writeback)
6099 {
6100 set_syntax_error (_("invalid addressing mode"));
6101 goto failure;
6102 }
6103
6104 /* Then retry, matching the specific syntax of these addresses. */
6105 str = start;
6106 po_char_or_fail ('[');
6107 po_reg_or_fail (REG_TYPE_R64_SP);
6108 /* Accept optional ", #0". */
6109 if (operands[i] == AARCH64_OPND_ADDR_SIMPLE
6110 && skip_past_char (&str, ','))
6111 {
6112 skip_past_char (&str, '#');
6113 if (! skip_past_char (&str, '0'))
6114 {
6115 set_fatal_syntax_error
6116 (_("the optional immediate offset can only be 0"));
6117 goto failure;
6118 }
6119 }
6120 po_char_or_fail (']');
6121 break;
6122 }
a06ea964
NC
6123
6124 case AARCH64_OPND_ADDR_REGOFF:
6125 /* [<Xn|SP>, <R><m>{, <extend> {<amount>}}] */
73866052 6126 po_misc_or_fail (parse_address (&str, info));
4df068de 6127 regoff_addr:
a06ea964
NC
6128 if (info->addr.pcrel || !info->addr.offset.is_reg
6129 || !info->addr.preind || info->addr.postind
6130 || info->addr.writeback)
6131 {
6132 set_syntax_error (_("invalid addressing mode"));
6133 goto failure;
6134 }
6135 if (!info->shifter.operator_present)
6136 {
6137 /* Default to LSL if not present. Libopcodes prefers shifter
6138 kind to be explicit. */
6139 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
6140 info->shifter.kind = AARCH64_MOD_LSL;
6141 }
6142 /* Qualifier to be deduced by libopcodes. */
6143 break;
6144
6145 case AARCH64_OPND_ADDR_SIMM7:
73866052 6146 po_misc_or_fail (parse_address (&str, info));
a06ea964
NC
6147 if (info->addr.pcrel || info->addr.offset.is_reg
6148 || (!info->addr.preind && !info->addr.postind))
6149 {
6150 set_syntax_error (_("invalid addressing mode"));
6151 goto failure;
6152 }
73866052
RS
6153 if (inst.reloc.type != BFD_RELOC_UNUSED)
6154 {
6155 set_syntax_error (_("relocation not allowed"));
6156 goto failure;
6157 }
a06ea964
NC
6158 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6159 /* addr_off_p */ 1,
6160 /* need_libopcodes_p */ 1,
6161 /* skip_p */ 0);
6162 break;
6163
6164 case AARCH64_OPND_ADDR_SIMM9:
6165 case AARCH64_OPND_ADDR_SIMM9_2:
73866052 6166 po_misc_or_fail (parse_address (&str, info));
a06ea964
NC
6167 if (info->addr.pcrel || info->addr.offset.is_reg
6168 || (!info->addr.preind && !info->addr.postind)
6169 || (operands[i] == AARCH64_OPND_ADDR_SIMM9_2
6170 && info->addr.writeback))
6171 {
6172 set_syntax_error (_("invalid addressing mode"));
6173 goto failure;
6174 }
6175 if (inst.reloc.type != BFD_RELOC_UNUSED)
6176 {
6177 set_syntax_error (_("relocation not allowed"));
6178 goto failure;
6179 }
6180 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6181 /* addr_off_p */ 1,
6182 /* need_libopcodes_p */ 1,
6183 /* skip_p */ 0);
6184 break;
6185
3f06e550 6186 case AARCH64_OPND_ADDR_SIMM10:
f42f1a1d 6187 case AARCH64_OPND_ADDR_OFFSET:
3f06e550
SN
6188 po_misc_or_fail (parse_address (&str, info));
6189 if (info->addr.pcrel || info->addr.offset.is_reg
6190 || !info->addr.preind || info->addr.postind)
6191 {
6192 set_syntax_error (_("invalid addressing mode"));
6193 goto failure;
6194 }
6195 if (inst.reloc.type != BFD_RELOC_UNUSED)
6196 {
6197 set_syntax_error (_("relocation not allowed"));
6198 goto failure;
6199 }
6200 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6201 /* addr_off_p */ 1,
6202 /* need_libopcodes_p */ 1,
6203 /* skip_p */ 0);
6204 break;
6205
a06ea964 6206 case AARCH64_OPND_ADDR_UIMM12:
73866052 6207 po_misc_or_fail (parse_address (&str, info));
a06ea964
NC
6208 if (info->addr.pcrel || info->addr.offset.is_reg
6209 || !info->addr.preind || info->addr.writeback)
6210 {
6211 set_syntax_error (_("invalid addressing mode"));
6212 goto failure;
6213 }
6214 if (inst.reloc.type == BFD_RELOC_UNUSED)
6215 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
4c562523
JW
6216 else if (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
6217 || (inst.reloc.type
6218 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12)
6219 || (inst.reloc.type
84f1b9fb
RL
6220 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC)
6221 || (inst.reloc.type
6222 == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12)
6223 || (inst.reloc.type
6224 == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC))
a06ea964
NC
6225 inst.reloc.type = ldst_lo12_determine_real_reloc_type ();
6226 /* Leave qualifier to be determined by libopcodes. */
6227 break;
6228
6229 case AARCH64_OPND_SIMD_ADDR_POST:
6230 /* [<Xn|SP>], <Xm|#<amount>> */
73866052 6231 po_misc_or_fail (parse_address (&str, info));
a06ea964
NC
6232 if (!info->addr.postind || !info->addr.writeback)
6233 {
6234 set_syntax_error (_("invalid addressing mode"));
6235 goto failure;
6236 }
6237 if (!info->addr.offset.is_reg)
6238 {
6239 if (inst.reloc.exp.X_op == O_constant)
6240 info->addr.offset.imm = inst.reloc.exp.X_add_number;
6241 else
6242 {
6243 set_fatal_syntax_error
ab3b8fcf 6244 (_("writeback value must be an immediate constant"));
a06ea964
NC
6245 goto failure;
6246 }
6247 }
6248 /* No qualifier. */
6249 break;
6250
582e12bf 6251 case AARCH64_OPND_SVE_ADDR_RI_S4x16:
98907a70
RS
6252 case AARCH64_OPND_SVE_ADDR_RI_S4xVL:
6253 case AARCH64_OPND_SVE_ADDR_RI_S4x2xVL:
6254 case AARCH64_OPND_SVE_ADDR_RI_S4x3xVL:
6255 case AARCH64_OPND_SVE_ADDR_RI_S4x4xVL:
6256 case AARCH64_OPND_SVE_ADDR_RI_S6xVL:
6257 case AARCH64_OPND_SVE_ADDR_RI_S9xVL:
4df068de
RS
6258 case AARCH64_OPND_SVE_ADDR_RI_U6:
6259 case AARCH64_OPND_SVE_ADDR_RI_U6x2:
6260 case AARCH64_OPND_SVE_ADDR_RI_U6x4:
6261 case AARCH64_OPND_SVE_ADDR_RI_U6x8:
98907a70
RS
6262 /* [X<n>{, #imm, MUL VL}]
6263 [X<n>{, #imm}]
4df068de
RS
6264 but recognizing SVE registers. */
6265 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6266 &offset_qualifier));
6267 if (base_qualifier != AARCH64_OPND_QLF_X)
6268 {
6269 set_syntax_error (_("invalid addressing mode"));
6270 goto failure;
6271 }
6272 sve_regimm:
6273 if (info->addr.pcrel || info->addr.offset.is_reg
6274 || !info->addr.preind || info->addr.writeback)
6275 {
6276 set_syntax_error (_("invalid addressing mode"));
6277 goto failure;
6278 }
6279 if (inst.reloc.type != BFD_RELOC_UNUSED
6280 || inst.reloc.exp.X_op != O_constant)
6281 {
6282 /* Make sure this has priority over
6283 "invalid addressing mode". */
6284 set_fatal_syntax_error (_("constant offset required"));
6285 goto failure;
6286 }
6287 info->addr.offset.imm = inst.reloc.exp.X_add_number;
6288 break;
6289
c8d59609
NC
6290 case AARCH64_OPND_SVE_ADDR_R:
6291 /* [<Xn|SP>{, <R><m>}]
6292 but recognizing SVE registers. */
6293 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6294 &offset_qualifier));
6295 if (offset_qualifier == AARCH64_OPND_QLF_NIL)
6296 {
6297 offset_qualifier = AARCH64_OPND_QLF_X;
6298 info->addr.offset.is_reg = 1;
6299 info->addr.offset.regno = 31;
6300 }
6301 else if (base_qualifier != AARCH64_OPND_QLF_X
6302 || offset_qualifier != AARCH64_OPND_QLF_X)
6303 {
6304 set_syntax_error (_("invalid addressing mode"));
6305 goto failure;
6306 }
6307 goto regoff_addr;
6308
4df068de
RS
6309 case AARCH64_OPND_SVE_ADDR_RR:
6310 case AARCH64_OPND_SVE_ADDR_RR_LSL1:
6311 case AARCH64_OPND_SVE_ADDR_RR_LSL2:
6312 case AARCH64_OPND_SVE_ADDR_RR_LSL3:
6313 case AARCH64_OPND_SVE_ADDR_RX:
6314 case AARCH64_OPND_SVE_ADDR_RX_LSL1:
6315 case AARCH64_OPND_SVE_ADDR_RX_LSL2:
6316 case AARCH64_OPND_SVE_ADDR_RX_LSL3:
6317 /* [<Xn|SP>, <R><m>{, lsl #<amount>}]
6318 but recognizing SVE registers. */
6319 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6320 &offset_qualifier));
6321 if (base_qualifier != AARCH64_OPND_QLF_X
6322 || offset_qualifier != AARCH64_OPND_QLF_X)
6323 {
6324 set_syntax_error (_("invalid addressing mode"));
6325 goto failure;
6326 }
6327 goto regoff_addr;
6328
6329 case AARCH64_OPND_SVE_ADDR_RZ:
6330 case AARCH64_OPND_SVE_ADDR_RZ_LSL1:
6331 case AARCH64_OPND_SVE_ADDR_RZ_LSL2:
6332 case AARCH64_OPND_SVE_ADDR_RZ_LSL3:
6333 case AARCH64_OPND_SVE_ADDR_RZ_XTW_14:
6334 case AARCH64_OPND_SVE_ADDR_RZ_XTW_22:
6335 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_14:
6336 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_22:
6337 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_14:
6338 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_22:
6339 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_14:
6340 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_22:
6341 /* [<Xn|SP>, Z<m>.D{, LSL #<amount>}]
6342 [<Xn|SP>, Z<m>.<T>, <extend> {#<amount>}] */
6343 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6344 &offset_qualifier));
6345 if (base_qualifier != AARCH64_OPND_QLF_X
6346 || (offset_qualifier != AARCH64_OPND_QLF_S_S
6347 && offset_qualifier != AARCH64_OPND_QLF_S_D))
6348 {
6349 set_syntax_error (_("invalid addressing mode"));
6350 goto failure;
6351 }
6352 info->qualifier = offset_qualifier;
6353 goto regoff_addr;
6354
6355 case AARCH64_OPND_SVE_ADDR_ZI_U5:
6356 case AARCH64_OPND_SVE_ADDR_ZI_U5x2:
6357 case AARCH64_OPND_SVE_ADDR_ZI_U5x4:
6358 case AARCH64_OPND_SVE_ADDR_ZI_U5x8:
6359 /* [Z<n>.<T>{, #imm}] */
6360 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6361 &offset_qualifier));
6362 if (base_qualifier != AARCH64_OPND_QLF_S_S
6363 && base_qualifier != AARCH64_OPND_QLF_S_D)
6364 {
6365 set_syntax_error (_("invalid addressing mode"));
6366 goto failure;
6367 }
6368 info->qualifier = base_qualifier;
6369 goto sve_regimm;
6370
6371 case AARCH64_OPND_SVE_ADDR_ZZ_LSL:
6372 case AARCH64_OPND_SVE_ADDR_ZZ_SXTW:
6373 case AARCH64_OPND_SVE_ADDR_ZZ_UXTW:
6374 /* [Z<n>.<T>, Z<m>.<T>{, LSL #<amount>}]
6375 [Z<n>.D, Z<m>.D, <extend> {#<amount>}]
6376
6377 We don't reject:
6378
6379 [Z<n>.S, Z<m>.S, <extend> {#<amount>}]
6380
6381 here since we get better error messages by leaving it to
6382 the qualifier checking routines. */
6383 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6384 &offset_qualifier));
6385 if ((base_qualifier != AARCH64_OPND_QLF_S_S
6386 && base_qualifier != AARCH64_OPND_QLF_S_D)
6387 || offset_qualifier != base_qualifier)
6388 {
6389 set_syntax_error (_("invalid addressing mode"));
6390 goto failure;
6391 }
6392 info->qualifier = base_qualifier;
6393 goto regoff_addr;
6394
a06ea964 6395 case AARCH64_OPND_SYSREG:
7d02540a
TC
6396 {
6397 uint32_t sysreg_flags;
6398 if ((val = parse_sys_reg (&str, aarch64_sys_regs_hsh, 1, 0,
6399 &sysreg_flags)) == PARSE_FAIL)
6400 {
6401 set_syntax_error (_("unknown or missing system register name"));
6402 goto failure;
6403 }
6404 inst.base.operands[i].sysreg.value = val;
6405 inst.base.operands[i].sysreg.flags = sysreg_flags;
6406 break;
6407 }
a06ea964
NC
6408
6409 case AARCH64_OPND_PSTATEFIELD:
561a72d4 6410 if ((val = parse_sys_reg (&str, aarch64_pstatefield_hsh, 0, 1, NULL))
a3251895 6411 == PARSE_FAIL)
a06ea964
NC
6412 {
6413 set_syntax_error (_("unknown or missing PSTATE field name"));
6414 goto failure;
6415 }
6416 inst.base.operands[i].pstatefield = val;
6417 break;
6418
6419 case AARCH64_OPND_SYSREG_IC:
6420 inst.base.operands[i].sysins_op =
6421 parse_sys_ins_reg (&str, aarch64_sys_regs_ic_hsh);
6422 goto sys_reg_ins;
6423 case AARCH64_OPND_SYSREG_DC:
6424 inst.base.operands[i].sysins_op =
6425 parse_sys_ins_reg (&str, aarch64_sys_regs_dc_hsh);
6426 goto sys_reg_ins;
6427 case AARCH64_OPND_SYSREG_AT:
6428 inst.base.operands[i].sysins_op =
6429 parse_sys_ins_reg (&str, aarch64_sys_regs_at_hsh);
6430 goto sys_reg_ins;
6431 case AARCH64_OPND_SYSREG_TLBI:
6432 inst.base.operands[i].sysins_op =
6433 parse_sys_ins_reg (&str, aarch64_sys_regs_tlbi_hsh);
6434sys_reg_ins:
6435 if (inst.base.operands[i].sysins_op == NULL)
6436 {
6437 set_fatal_syntax_error ( _("unknown or missing operation name"));
6438 goto failure;
6439 }
6440 break;
6441
6442 case AARCH64_OPND_BARRIER:
6443 case AARCH64_OPND_BARRIER_ISB:
6444 val = parse_barrier (&str);
6445 if (val != PARSE_FAIL
6446 && operands[i] == AARCH64_OPND_BARRIER_ISB && val != 0xf)
6447 {
6448 /* ISB only accepts options name 'sy'. */
6449 set_syntax_error
6450 (_("the specified option is not accepted in ISB"));
6451 /* Turn off backtrack as this optional operand is present. */
6452 backtrack_pos = 0;
6453 goto failure;
6454 }
6455 /* This is an extension to accept a 0..15 immediate. */
6456 if (val == PARSE_FAIL)
6457 po_imm_or_fail (0, 15);
6458 info->barrier = aarch64_barrier_options + val;
6459 break;
6460
6461 case AARCH64_OPND_PRFOP:
6462 val = parse_pldop (&str);
6463 /* This is an extension to accept a 0..31 immediate. */
6464 if (val == PARSE_FAIL)
6465 po_imm_or_fail (0, 31);
6466 inst.base.operands[i].prfop = aarch64_prfops + val;
6467 break;
6468
1e6f4800
MW
6469 case AARCH64_OPND_BARRIER_PSB:
6470 val = parse_barrier_psb (&str, &(info->hint_option));
6471 if (val == PARSE_FAIL)
6472 goto failure;
6473 break;
6474
a06ea964
NC
6475 default:
6476 as_fatal (_("unhandled operand code %d"), operands[i]);
6477 }
6478
6479 /* If we get here, this operand was successfully parsed. */
6480 inst.base.operands[i].present = 1;
6481 continue;
6482
6483failure:
6484 /* The parse routine should already have set the error, but in case
6485 not, set a default one here. */
6486 if (! error_p ())
6487 set_default_error ();
6488
6489 if (! backtrack_pos)
6490 goto parse_operands_return;
6491
f4c51f60
JW
6492 {
6493 /* We reach here because this operand is marked as optional, and
6494 either no operand was supplied or the operand was supplied but it
6495 was syntactically incorrect. In the latter case we report an
6496 error. In the former case we perform a few more checks before
6497 dropping through to the code to insert the default operand. */
6498
6499 char *tmp = backtrack_pos;
6500 char endchar = END_OF_INSN;
6501
6502 if (i != (aarch64_num_of_operands (opcode) - 1))
6503 endchar = ',';
6504 skip_past_char (&tmp, ',');
6505
6506 if (*tmp != endchar)
6507 /* The user has supplied an operand in the wrong format. */
6508 goto parse_operands_return;
6509
6510 /* Make sure there is not a comma before the optional operand.
6511 For example the fifth operand of 'sys' is optional:
6512
6513 sys #0,c0,c0,#0, <--- wrong
6514 sys #0,c0,c0,#0 <--- correct. */
6515 if (comma_skipped_p && i && endchar == END_OF_INSN)
6516 {
6517 set_fatal_syntax_error
6518 (_("unexpected comma before the omitted optional operand"));
6519 goto parse_operands_return;
6520 }
6521 }
6522
a06ea964
NC
6523 /* Reaching here means we are dealing with an optional operand that is
6524 omitted from the assembly line. */
6525 gas_assert (optional_operand_p (opcode, i));
6526 info->present = 0;
6527 process_omitted_operand (operands[i], opcode, i, info);
6528
6529 /* Try again, skipping the optional operand at backtrack_pos. */
6530 str = backtrack_pos;
6531 backtrack_pos = 0;
6532
a06ea964
NC
6533 /* Clear any error record after the omitted optional operand has been
6534 successfully handled. */
6535 clear_error ();
6536 }
6537
6538 /* Check if we have parsed all the operands. */
6539 if (*str != '\0' && ! error_p ())
6540 {
6541 /* Set I to the index of the last present operand; this is
6542 for the purpose of diagnostics. */
6543 for (i -= 1; i >= 0 && !inst.base.operands[i].present; --i)
6544 ;
6545 set_fatal_syntax_error
6546 (_("unexpected characters following instruction"));
6547 }
6548
6549parse_operands_return:
6550
6551 if (error_p ())
6552 {
6553 DEBUG_TRACE ("parsing FAIL: %s - %s",
6554 operand_mismatch_kind_names[get_error_kind ()],
6555 get_error_message ());
6556 /* Record the operand error properly; this is useful when there
6557 are multiple instruction templates for a mnemonic name, so that
6558 later on, we can select the error that most closely describes
6559 the problem. */
6560 record_operand_error (opcode, i, get_error_kind (),
6561 get_error_message ());
6562 return FALSE;
6563 }
6564 else
6565 {
6566 DEBUG_TRACE ("parsing SUCCESS");
6567 return TRUE;
6568 }
6569}
6570
6571/* It does some fix-up to provide some programmer friendly feature while
6572 keeping the libopcodes happy, i.e. libopcodes only accepts
6573 the preferred architectural syntax.
6574 Return FALSE if there is any failure; otherwise return TRUE. */
6575
6576static bfd_boolean
6577programmer_friendly_fixup (aarch64_instruction *instr)
6578{
6579 aarch64_inst *base = &instr->base;
6580 const aarch64_opcode *opcode = base->opcode;
6581 enum aarch64_op op = opcode->op;
6582 aarch64_opnd_info *operands = base->operands;
6583
6584 DEBUG_TRACE ("enter");
6585
6586 switch (opcode->iclass)
6587 {
6588 case testbranch:
6589 /* TBNZ Xn|Wn, #uimm6, label
6590 Test and Branch Not Zero: conditionally jumps to label if bit number
6591 uimm6 in register Xn is not zero. The bit number implies the width of
6592 the register, which may be written and should be disassembled as Wn if
6593 uimm is less than 32. */
6594 if (operands[0].qualifier == AARCH64_OPND_QLF_W)
6595 {
6596 if (operands[1].imm.value >= 32)
6597 {
6598 record_operand_out_of_range_error (opcode, 1, _("immediate value"),
6599 0, 31);
6600 return FALSE;
6601 }
6602 operands[0].qualifier = AARCH64_OPND_QLF_X;
6603 }
6604 break;
6605 case loadlit:
6606 /* LDR Wt, label | =value
6607 As a convenience assemblers will typically permit the notation
6608 "=value" in conjunction with the pc-relative literal load instructions
6609 to automatically place an immediate value or symbolic address in a
6610 nearby literal pool and generate a hidden label which references it.
6611 ISREG has been set to 0 in the case of =value. */
6612 if (instr->gen_lit_pool
6613 && (op == OP_LDR_LIT || op == OP_LDRV_LIT || op == OP_LDRSW_LIT))
6614 {
6615 int size = aarch64_get_qualifier_esize (operands[0].qualifier);
6616 if (op == OP_LDRSW_LIT)
6617 size = 4;
6618 if (instr->reloc.exp.X_op != O_constant
67a32447 6619 && instr->reloc.exp.X_op != O_big
a06ea964
NC
6620 && instr->reloc.exp.X_op != O_symbol)
6621 {
6622 record_operand_error (opcode, 1,
6623 AARCH64_OPDE_FATAL_SYNTAX_ERROR,
6624 _("constant expression expected"));
6625 return FALSE;
6626 }
6627 if (! add_to_lit_pool (&instr->reloc.exp, size))
6628 {
6629 record_operand_error (opcode, 1,
6630 AARCH64_OPDE_OTHER_ERROR,
6631 _("literal pool insertion failed"));
6632 return FALSE;
6633 }
6634 }
6635 break;
a06ea964
NC
6636 case log_shift:
6637 case bitfield:
6638 /* UXT[BHW] Wd, Wn
6639 Unsigned Extend Byte|Halfword|Word: UXT[BH] is architectural alias
6640 for UBFM Wd,Wn,#0,#7|15, while UXTW is pseudo instruction which is
6641 encoded using ORR Wd, WZR, Wn (MOV Wd,Wn).
6642 A programmer-friendly assembler should accept a destination Xd in
6643 place of Wd, however that is not the preferred form for disassembly.
6644 */
6645 if ((op == OP_UXTB || op == OP_UXTH || op == OP_UXTW)
6646 && operands[1].qualifier == AARCH64_OPND_QLF_W
6647 && operands[0].qualifier == AARCH64_OPND_QLF_X)
6648 operands[0].qualifier = AARCH64_OPND_QLF_W;
6649 break;
6650
6651 case addsub_ext:
6652 {
6653 /* In the 64-bit form, the final register operand is written as Wm
6654 for all but the (possibly omitted) UXTX/LSL and SXTX
6655 operators.
6656 As a programmer-friendly assembler, we accept e.g.
6657 ADDS <Xd>, <Xn|SP>, <Xm>{, UXTB {#<amount>}} and change it to
6658 ADDS <Xd>, <Xn|SP>, <Wm>{, UXTB {#<amount>}}. */
6659 int idx = aarch64_operand_index (opcode->operands,
6660 AARCH64_OPND_Rm_EXT);
6661 gas_assert (idx == 1 || idx == 2);
6662 if (operands[0].qualifier == AARCH64_OPND_QLF_X
6663 && operands[idx].qualifier == AARCH64_OPND_QLF_X
6664 && operands[idx].shifter.kind != AARCH64_MOD_LSL
6665 && operands[idx].shifter.kind != AARCH64_MOD_UXTX
6666 && operands[idx].shifter.kind != AARCH64_MOD_SXTX)
6667 operands[idx].qualifier = AARCH64_OPND_QLF_W;
6668 }
6669 break;
6670
6671 default:
6672 break;
6673 }
6674
6675 DEBUG_TRACE ("exit with SUCCESS");
6676 return TRUE;
6677}
6678
5c47e525 6679/* Check for loads and stores that will cause unpredictable behavior. */
54a28c4c
JW
6680
6681static void
6682warn_unpredictable_ldst (aarch64_instruction *instr, char *str)
6683{
6684 aarch64_inst *base = &instr->base;
6685 const aarch64_opcode *opcode = base->opcode;
6686 const aarch64_opnd_info *opnds = base->operands;
6687 switch (opcode->iclass)
6688 {
6689 case ldst_pos:
6690 case ldst_imm9:
3f06e550 6691 case ldst_imm10:
54a28c4c
JW
6692 case ldst_unscaled:
6693 case ldst_unpriv:
5c47e525
RE
6694 /* Loading/storing the base register is unpredictable if writeback. */
6695 if ((aarch64_get_operand_class (opnds[0].type)
6696 == AARCH64_OPND_CLASS_INT_REG)
6697 && opnds[0].reg.regno == opnds[1].addr.base_regno
4bf8c6e8 6698 && opnds[1].addr.base_regno != REG_SP
54a28c4c 6699 && opnds[1].addr.writeback)
5c47e525 6700 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
54a28c4c
JW
6701 break;
6702 case ldstpair_off:
6703 case ldstnapair_offs:
6704 case ldstpair_indexed:
5c47e525
RE
6705 /* Loading/storing the base register is unpredictable if writeback. */
6706 if ((aarch64_get_operand_class (opnds[0].type)
6707 == AARCH64_OPND_CLASS_INT_REG)
6708 && (opnds[0].reg.regno == opnds[2].addr.base_regno
6709 || opnds[1].reg.regno == opnds[2].addr.base_regno)
4bf8c6e8 6710 && opnds[2].addr.base_regno != REG_SP
54a28c4c 6711 && opnds[2].addr.writeback)
5c47e525
RE
6712 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
6713 /* Load operations must load different registers. */
54a28c4c
JW
6714 if ((opcode->opcode & (1 << 22))
6715 && opnds[0].reg.regno == opnds[1].reg.regno)
6716 as_warn (_("unpredictable load of register pair -- `%s'"), str);
6717 break;
ee943970
RR
6718
6719 case ldstexcl:
6720 /* It is unpredictable if the destination and status registers are the
6721 same. */
6722 if ((aarch64_get_operand_class (opnds[0].type)
6723 == AARCH64_OPND_CLASS_INT_REG)
6724 && (aarch64_get_operand_class (opnds[1].type)
6725 == AARCH64_OPND_CLASS_INT_REG)
6726 && (opnds[0].reg.regno == opnds[1].reg.regno
6727 || opnds[0].reg.regno == opnds[2].reg.regno))
6728 as_warn (_("unpredictable: identical transfer and status registers"
6729 " --`%s'"),
6730 str);
6731
6732 break;
6733
54a28c4c
JW
6734 default:
6735 break;
6736 }
6737}
6738
a06ea964
NC
6739/* A wrapper function to interface with libopcodes on encoding and
6740 record the error message if there is any.
6741
6742 Return TRUE on success; otherwise return FALSE. */
6743
6744static bfd_boolean
6745do_encode (const aarch64_opcode *opcode, aarch64_inst *instr,
6746 aarch64_insn *code)
6747{
6748 aarch64_operand_error error_info;
7d02540a 6749 memset (&error_info, '\0', sizeof (error_info));
a06ea964 6750 error_info.kind = AARCH64_OPDE_NIL;
7e84b55d 6751 if (aarch64_opcode_encode (opcode, instr, code, NULL, &error_info, insn_sequence)
7d02540a 6752 && !error_info.non_fatal)
a06ea964 6753 return TRUE;
7d02540a
TC
6754
6755 gas_assert (error_info.kind != AARCH64_OPDE_NIL);
6756 record_operand_error_info (opcode, &error_info);
6757 return error_info.non_fatal;
a06ea964
NC
6758}
6759
6760#ifdef DEBUG_AARCH64
6761static inline void
6762dump_opcode_operands (const aarch64_opcode *opcode)
6763{
6764 int i = 0;
6765 while (opcode->operands[i] != AARCH64_OPND_NIL)
6766 {
6767 aarch64_verbose ("\t\t opnd%d: %s", i,
6768 aarch64_get_operand_name (opcode->operands[i])[0] != '\0'
6769 ? aarch64_get_operand_name (opcode->operands[i])
6770 : aarch64_get_operand_desc (opcode->operands[i]));
6771 ++i;
6772 }
6773}
6774#endif /* DEBUG_AARCH64 */
6775
6776/* This is the guts of the machine-dependent assembler. STR points to a
6777 machine dependent instruction. This function is supposed to emit
6778 the frags/bytes it assembles to. */
6779
6780void
6781md_assemble (char *str)
6782{
6783 char *p = str;
6784 templates *template;
6785 aarch64_opcode *opcode;
6786 aarch64_inst *inst_base;
6787 unsigned saved_cond;
6788
6789 /* Align the previous label if needed. */
6790 if (last_label_seen != NULL)
6791 {
6792 symbol_set_frag (last_label_seen, frag_now);
6793 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
6794 S_SET_SEGMENT (last_label_seen, now_seg);
6795 }
6796
7e84b55d
TC
6797 /* Update the current insn_sequence from the segment. */
6798 insn_sequence = &seg_info (now_seg)->tc_segment_info_data.insn_sequence;
6799
a06ea964
NC
6800 inst.reloc.type = BFD_RELOC_UNUSED;
6801
6802 DEBUG_TRACE ("\n\n");
6803 DEBUG_TRACE ("==============================");
6804 DEBUG_TRACE ("Enter md_assemble with %s", str);
6805
6806 template = opcode_lookup (&p);
6807 if (!template)
6808 {
6809 /* It wasn't an instruction, but it might be a register alias of
6810 the form alias .req reg directive. */
6811 if (!create_register_alias (str, p))
6812 as_bad (_("unknown mnemonic `%s' -- `%s'"), get_mnemonic_name (str),
6813 str);
6814 return;
6815 }
6816
6817 skip_whitespace (p);
6818 if (*p == ',')
6819 {
6820 as_bad (_("unexpected comma after the mnemonic name `%s' -- `%s'"),
6821 get_mnemonic_name (str), str);
6822 return;
6823 }
6824
6825 init_operand_error_report ();
6826
eb9d6cc9
RL
6827 /* Sections are assumed to start aligned. In executable section, there is no
6828 MAP_DATA symbol pending. So we only align the address during
6829 MAP_DATA --> MAP_INSN transition.
6830 For other sections, this is not guaranteed. */
6831 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
6832 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
6833 frag_align_code (2, 0);
6834
a06ea964
NC
6835 saved_cond = inst.cond;
6836 reset_aarch64_instruction (&inst);
6837 inst.cond = saved_cond;
6838
6839 /* Iterate through all opcode entries with the same mnemonic name. */
6840 do
6841 {
6842 opcode = template->opcode;
6843
6844 DEBUG_TRACE ("opcode %s found", opcode->name);
6845#ifdef DEBUG_AARCH64
6846 if (debug_dump)
6847 dump_opcode_operands (opcode);
6848#endif /* DEBUG_AARCH64 */
6849
a06ea964
NC
6850 mapping_state (MAP_INSN);
6851
6852 inst_base = &inst.base;
6853 inst_base->opcode = opcode;
6854
6855 /* Truly conditionally executed instructions, e.g. b.cond. */
6856 if (opcode->flags & F_COND)
6857 {
6858 gas_assert (inst.cond != COND_ALWAYS);
6859 inst_base->cond = get_cond_from_value (inst.cond);
6860 DEBUG_TRACE ("condition found %s", inst_base->cond->names[0]);
6861 }
6862 else if (inst.cond != COND_ALWAYS)
6863 {
6864 /* It shouldn't arrive here, where the assembly looks like a
6865 conditional instruction but the found opcode is unconditional. */
6866 gas_assert (0);
6867 continue;
6868 }
6869
6870 if (parse_operands (p, opcode)
6871 && programmer_friendly_fixup (&inst)
6872 && do_encode (inst_base->opcode, &inst.base, &inst_base->value))
6873 {
3f06bfce
YZ
6874 /* Check that this instruction is supported for this CPU. */
6875 if (!opcode->avariant
93d8990c 6876 || !AARCH64_CPU_HAS_ALL_FEATURES (cpu_variant, *opcode->avariant))
3f06bfce
YZ
6877 {
6878 as_bad (_("selected processor does not support `%s'"), str);
6879 return;
6880 }
6881
54a28c4c
JW
6882 warn_unpredictable_ldst (&inst, str);
6883
a06ea964
NC
6884 if (inst.reloc.type == BFD_RELOC_UNUSED
6885 || !inst.reloc.need_libopcodes_p)
6886 output_inst (NULL);
6887 else
6888 {
6889 /* If there is relocation generated for the instruction,
6890 store the instruction information for the future fix-up. */
6891 struct aarch64_inst *copy;
6892 gas_assert (inst.reloc.type != BFD_RELOC_UNUSED);
325801bd 6893 copy = XNEW (struct aarch64_inst);
a06ea964
NC
6894 memcpy (copy, &inst.base, sizeof (struct aarch64_inst));
6895 output_inst (copy);
6896 }
7d02540a
TC
6897
6898 /* Issue non-fatal messages if any. */
6899 output_operand_error_report (str, TRUE);
a06ea964
NC
6900 return;
6901 }
6902
6903 template = template->next;
6904 if (template != NULL)
6905 {
6906 reset_aarch64_instruction (&inst);
6907 inst.cond = saved_cond;
6908 }
6909 }
6910 while (template != NULL);
6911
6912 /* Issue the error messages if any. */
7d02540a 6913 output_operand_error_report (str, FALSE);
a06ea964
NC
6914}
6915
6916/* Various frobbings of labels and their addresses. */
6917
6918void
6919aarch64_start_line_hook (void)
6920{
6921 last_label_seen = NULL;
6922}
6923
6924void
6925aarch64_frob_label (symbolS * sym)
6926{
6927 last_label_seen = sym;
6928
6929 dwarf2_emit_label (sym);
6930}
6931
6932int
6933aarch64_data_in_code (void)
6934{
6935 if (!strncmp (input_line_pointer + 1, "data:", 5))
6936 {
6937 *input_line_pointer = '/';
6938 input_line_pointer += 5;
6939 *input_line_pointer = 0;
6940 return 1;
6941 }
6942
6943 return 0;
6944}
6945
6946char *
6947aarch64_canonicalize_symbol_name (char *name)
6948{
6949 int len;
6950
6951 if ((len = strlen (name)) > 5 && streq (name + len - 5, "/data"))
6952 *(name + len - 5) = 0;
6953
6954 return name;
6955}
6956\f
6957/* Table of all register names defined by default. The user can
6958 define additional names with .req. Note that all register names
6959 should appear in both upper and lowercase variants. Some registers
6960 also have mixed-case names. */
6961
6962#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE }
8975f864 6963#define REGDEF_ALIAS(s, n, t) { #s, n, REG_TYPE_##t, FALSE}
a06ea964 6964#define REGNUM(p,n,t) REGDEF(p##n, n, t)
f11ad6bc 6965#define REGSET16(p,t) \
a06ea964
NC
6966 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
6967 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
6968 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
f11ad6bc
RS
6969 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
6970#define REGSET31(p,t) \
6971 REGSET16(p, t), \
a06ea964
NC
6972 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
6973 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
6974 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
6975 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t)
6976#define REGSET(p,t) \
6977 REGSET31(p,t), REGNUM(p,31,t)
6978
6979/* These go into aarch64_reg_hsh hash-table. */
6980static const reg_entry reg_names[] = {
6981 /* Integer registers. */
6982 REGSET31 (x, R_64), REGSET31 (X, R_64),
6983 REGSET31 (w, R_32), REGSET31 (W, R_32),
6984
8975f864 6985 REGDEF_ALIAS (ip0, 16, R_64), REGDEF_ALIAS (IP0, 16, R_64),
f10e937a 6986 REGDEF_ALIAS (ip1, 17, R_64), REGDEF_ALIAS (IP1, 17, R_64),
8975f864
RR
6987 REGDEF_ALIAS (fp, 29, R_64), REGDEF_ALIAS (FP, 29, R_64),
6988 REGDEF_ALIAS (lr, 30, R_64), REGDEF_ALIAS (LR, 30, R_64),
a06ea964
NC
6989 REGDEF (wsp, 31, SP_32), REGDEF (WSP, 31, SP_32),
6990 REGDEF (sp, 31, SP_64), REGDEF (SP, 31, SP_64),
6991
6992 REGDEF (wzr, 31, Z_32), REGDEF (WZR, 31, Z_32),
6993 REGDEF (xzr, 31, Z_64), REGDEF (XZR, 31, Z_64),
6994
a06ea964
NC
6995 /* Floating-point single precision registers. */
6996 REGSET (s, FP_S), REGSET (S, FP_S),
6997
6998 /* Floating-point double precision registers. */
6999 REGSET (d, FP_D), REGSET (D, FP_D),
7000
7001 /* Floating-point half precision registers. */
7002 REGSET (h, FP_H), REGSET (H, FP_H),
7003
7004 /* Floating-point byte precision registers. */
7005 REGSET (b, FP_B), REGSET (B, FP_B),
7006
7007 /* Floating-point quad precision registers. */
7008 REGSET (q, FP_Q), REGSET (Q, FP_Q),
7009
7010 /* FP/SIMD registers. */
7011 REGSET (v, VN), REGSET (V, VN),
f11ad6bc
RS
7012
7013 /* SVE vector registers. */
7014 REGSET (z, ZN), REGSET (Z, ZN),
7015
7016 /* SVE predicate registers. */
7017 REGSET16 (p, PN), REGSET16 (P, PN)
a06ea964
NC
7018};
7019
7020#undef REGDEF
8975f864 7021#undef REGDEF_ALIAS
a06ea964 7022#undef REGNUM
f11ad6bc
RS
7023#undef REGSET16
7024#undef REGSET31
a06ea964
NC
7025#undef REGSET
7026
7027#define N 1
7028#define n 0
7029#define Z 1
7030#define z 0
7031#define C 1
7032#define c 0
7033#define V 1
7034#define v 0
7035#define B(a,b,c,d) (((a) << 3) | ((b) << 2) | ((c) << 1) | (d))
7036static const asm_nzcv nzcv_names[] = {
7037 {"nzcv", B (n, z, c, v)},
7038 {"nzcV", B (n, z, c, V)},
7039 {"nzCv", B (n, z, C, v)},
7040 {"nzCV", B (n, z, C, V)},
7041 {"nZcv", B (n, Z, c, v)},
7042 {"nZcV", B (n, Z, c, V)},
7043 {"nZCv", B (n, Z, C, v)},
7044 {"nZCV", B (n, Z, C, V)},
7045 {"Nzcv", B (N, z, c, v)},
7046 {"NzcV", B (N, z, c, V)},
7047 {"NzCv", B (N, z, C, v)},
7048 {"NzCV", B (N, z, C, V)},
7049 {"NZcv", B (N, Z, c, v)},
7050 {"NZcV", B (N, Z, c, V)},
7051 {"NZCv", B (N, Z, C, v)},
7052 {"NZCV", B (N, Z, C, V)}
7053};
7054
7055#undef N
7056#undef n
7057#undef Z
7058#undef z
7059#undef C
7060#undef c
7061#undef V
7062#undef v
7063#undef B
7064\f
7065/* MD interface: bits in the object file. */
7066
7067/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
7068 for use in the a.out file, and stores them in the array pointed to by buf.
7069 This knows about the endian-ness of the target machine and does
7070 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
7071 2 (short) and 4 (long) Floating numbers are put out as a series of
7072 LITTLENUMS (shorts, here at least). */
7073
7074void
7075md_number_to_chars (char *buf, valueT val, int n)
7076{
7077 if (target_big_endian)
7078 number_to_chars_bigendian (buf, val, n);
7079 else
7080 number_to_chars_littleendian (buf, val, n);
7081}
7082
7083/* MD interface: Sections. */
7084
7085/* Estimate the size of a frag before relaxing. Assume everything fits in
7086 4 bytes. */
7087
7088int
7089md_estimate_size_before_relax (fragS * fragp, segT segtype ATTRIBUTE_UNUSED)
7090{
7091 fragp->fr_var = 4;
7092 return 4;
7093}
7094
7095/* Round up a section size to the appropriate boundary. */
7096
7097valueT
7098md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
7099{
7100 return size;
7101}
7102
7103/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
f803aa8e
DPT
7104 of an rs_align_code fragment.
7105
7106 Here we fill the frag with the appropriate info for padding the
7107 output stream. The resulting frag will consist of a fixed (fr_fix)
7108 and of a repeating (fr_var) part.
7109
7110 The fixed content is always emitted before the repeating content and
7111 these two parts are used as follows in constructing the output:
7112 - the fixed part will be used to align to a valid instruction word
7113 boundary, in case that we start at a misaligned address; as no
7114 executable instruction can live at the misaligned location, we
7115 simply fill with zeros;
7116 - the variable part will be used to cover the remaining padding and
7117 we fill using the AArch64 NOP instruction.
7118
7119 Note that the size of a RS_ALIGN_CODE fragment is always 7 to provide
7120 enough storage space for up to 3 bytes for padding the back to a valid
7121 instruction alignment and exactly 4 bytes to store the NOP pattern. */
a06ea964
NC
7122
7123void
7124aarch64_handle_align (fragS * fragP)
7125{
7126 /* NOP = d503201f */
7127 /* AArch64 instructions are always little-endian. */
d9235011 7128 static unsigned char const aarch64_noop[4] = { 0x1f, 0x20, 0x03, 0xd5 };
a06ea964
NC
7129
7130 int bytes, fix, noop_size;
7131 char *p;
a06ea964
NC
7132
7133 if (fragP->fr_type != rs_align_code)
7134 return;
7135
7136 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
7137 p = fragP->fr_literal + fragP->fr_fix;
a06ea964
NC
7138
7139#ifdef OBJ_ELF
7140 gas_assert (fragP->tc_frag_data.recorded);
7141#endif
7142
a06ea964 7143 noop_size = sizeof (aarch64_noop);
a06ea964 7144
f803aa8e
DPT
7145 fix = bytes & (noop_size - 1);
7146 if (fix)
a06ea964 7147 {
a06ea964
NC
7148#ifdef OBJ_ELF
7149 insert_data_mapping_symbol (MAP_INSN, fragP->fr_fix, fragP, fix);
7150#endif
7151 memset (p, 0, fix);
7152 p += fix;
f803aa8e 7153 fragP->fr_fix += fix;
a06ea964
NC
7154 }
7155
f803aa8e
DPT
7156 if (noop_size)
7157 memcpy (p, aarch64_noop, noop_size);
7158 fragP->fr_var = noop_size;
a06ea964
NC
7159}
7160
7161/* Perform target specific initialisation of a frag.
7162 Note - despite the name this initialisation is not done when the frag
7163 is created, but only when its type is assigned. A frag can be created
7164 and used a long time before its type is set, so beware of assuming that
33eaf5de 7165 this initialisation is performed first. */
a06ea964
NC
7166
7167#ifndef OBJ_ELF
7168void
7169aarch64_init_frag (fragS * fragP ATTRIBUTE_UNUSED,
7170 int max_chars ATTRIBUTE_UNUSED)
7171{
7172}
7173
7174#else /* OBJ_ELF is defined. */
7175void
7176aarch64_init_frag (fragS * fragP, int max_chars)
7177{
7178 /* Record a mapping symbol for alignment frags. We will delete this
7179 later if the alignment ends up empty. */
7180 if (!fragP->tc_frag_data.recorded)
c7ad08e6
RL
7181 fragP->tc_frag_data.recorded = 1;
7182
e8d84ca1
NC
7183 /* PR 21809: Do not set a mapping state for debug sections
7184 - it just confuses other tools. */
7185 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
7186 return;
7187
c7ad08e6 7188 switch (fragP->fr_type)
a06ea964 7189 {
c7ad08e6
RL
7190 case rs_align_test:
7191 case rs_fill:
7192 mapping_state_2 (MAP_DATA, max_chars);
7193 break;
7ea12e5c
NC
7194 case rs_align:
7195 /* PR 20364: We can get alignment frags in code sections,
7196 so do not just assume that we should use the MAP_DATA state. */
7197 mapping_state_2 (subseg_text_p (now_seg) ? MAP_INSN : MAP_DATA, max_chars);
7198 break;
c7ad08e6
RL
7199 case rs_align_code:
7200 mapping_state_2 (MAP_INSN, max_chars);
7201 break;
7202 default:
7203 break;
a06ea964
NC
7204 }
7205}
7206\f
7207/* Initialize the DWARF-2 unwind information for this procedure. */
7208
7209void
7210tc_aarch64_frame_initial_instructions (void)
7211{
7212 cfi_add_CFA_def_cfa (REG_SP, 0);
7213}
7214#endif /* OBJ_ELF */
7215
7216/* Convert REGNAME to a DWARF-2 register number. */
7217
7218int
7219tc_aarch64_regname_to_dw2regnum (char *regname)
7220{
7221 const reg_entry *reg = parse_reg (&regname);
7222 if (reg == NULL)
7223 return -1;
7224
7225 switch (reg->type)
7226 {
7227 case REG_TYPE_SP_32:
7228 case REG_TYPE_SP_64:
7229 case REG_TYPE_R_32:
7230 case REG_TYPE_R_64:
a2cac51c
RH
7231 return reg->number;
7232
a06ea964
NC
7233 case REG_TYPE_FP_B:
7234 case REG_TYPE_FP_H:
7235 case REG_TYPE_FP_S:
7236 case REG_TYPE_FP_D:
7237 case REG_TYPE_FP_Q:
a2cac51c
RH
7238 return reg->number + 64;
7239
a06ea964
NC
7240 default:
7241 break;
7242 }
7243 return -1;
7244}
7245
cec5225b
YZ
7246/* Implement DWARF2_ADDR_SIZE. */
7247
7248int
7249aarch64_dwarf2_addr_size (void)
7250{
7251#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7252 if (ilp32_p)
7253 return 4;
7254#endif
7255 return bfd_arch_bits_per_address (stdoutput) / 8;
7256}
7257
a06ea964
NC
7258/* MD interface: Symbol and relocation handling. */
7259
7260/* Return the address within the segment that a PC-relative fixup is
7261 relative to. For AArch64 PC-relative fixups applied to instructions
7262 are generally relative to the location plus AARCH64_PCREL_OFFSET bytes. */
7263
7264long
7265md_pcrel_from_section (fixS * fixP, segT seg)
7266{
7267 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
7268
7269 /* If this is pc-relative and we are going to emit a relocation
7270 then we just want to put out any pipeline compensation that the linker
7271 will need. Otherwise we want to use the calculated base. */
7272 if (fixP->fx_pcrel
7273 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
7274 || aarch64_force_relocation (fixP)))
7275 base = 0;
7276
7277 /* AArch64 should be consistent for all pc-relative relocations. */
7278 return base + AARCH64_PCREL_OFFSET;
7279}
7280
7281/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
7282 Otherwise we have no need to default values of symbols. */
7283
7284symbolS *
7285md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
7286{
7287#ifdef OBJ_ELF
7288 if (name[0] == '_' && name[1] == 'G'
7289 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
7290 {
7291 if (!GOT_symbol)
7292 {
7293 if (symbol_find (name))
7294 as_bad (_("GOT already in the symbol table"));
7295
7296 GOT_symbol = symbol_new (name, undefined_section,
7297 (valueT) 0, &zero_address_frag);
7298 }
7299
7300 return GOT_symbol;
7301 }
7302#endif
7303
7304 return 0;
7305}
7306
7307/* Return non-zero if the indicated VALUE has overflowed the maximum
7308 range expressible by a unsigned number with the indicated number of
7309 BITS. */
7310
7311static bfd_boolean
7312unsigned_overflow (valueT value, unsigned bits)
7313{
7314 valueT lim;
7315 if (bits >= sizeof (valueT) * 8)
7316 return FALSE;
7317 lim = (valueT) 1 << bits;
7318 return (value >= lim);
7319}
7320
7321
7322/* Return non-zero if the indicated VALUE has overflowed the maximum
7323 range expressible by an signed number with the indicated number of
7324 BITS. */
7325
7326static bfd_boolean
7327signed_overflow (offsetT value, unsigned bits)
7328{
7329 offsetT lim;
7330 if (bits >= sizeof (offsetT) * 8)
7331 return FALSE;
7332 lim = (offsetT) 1 << (bits - 1);
7333 return (value < -lim || value >= lim);
7334}
7335
7336/* Given an instruction in *INST, which is expected to be a scaled, 12-bit,
7337 unsigned immediate offset load/store instruction, try to encode it as
7338 an unscaled, 9-bit, signed immediate offset load/store instruction.
7339 Return TRUE if it is successful; otherwise return FALSE.
7340
7341 As a programmer-friendly assembler, LDUR/STUR instructions can be generated
7342 in response to the standard LDR/STR mnemonics when the immediate offset is
7343 unambiguous, i.e. when it is negative or unaligned. */
7344
7345static bfd_boolean
7346try_to_encode_as_unscaled_ldst (aarch64_inst *instr)
7347{
7348 int idx;
7349 enum aarch64_op new_op;
7350 const aarch64_opcode *new_opcode;
7351
7352 gas_assert (instr->opcode->iclass == ldst_pos);
7353
7354 switch (instr->opcode->op)
7355 {
7356 case OP_LDRB_POS:new_op = OP_LDURB; break;
7357 case OP_STRB_POS: new_op = OP_STURB; break;
7358 case OP_LDRSB_POS: new_op = OP_LDURSB; break;
7359 case OP_LDRH_POS: new_op = OP_LDURH; break;
7360 case OP_STRH_POS: new_op = OP_STURH; break;
7361 case OP_LDRSH_POS: new_op = OP_LDURSH; break;
7362 case OP_LDR_POS: new_op = OP_LDUR; break;
7363 case OP_STR_POS: new_op = OP_STUR; break;
7364 case OP_LDRF_POS: new_op = OP_LDURV; break;
7365 case OP_STRF_POS: new_op = OP_STURV; break;
7366 case OP_LDRSW_POS: new_op = OP_LDURSW; break;
7367 case OP_PRFM_POS: new_op = OP_PRFUM; break;
7368 default: new_op = OP_NIL; break;
7369 }
7370
7371 if (new_op == OP_NIL)
7372 return FALSE;
7373
7374 new_opcode = aarch64_get_opcode (new_op);
7375 gas_assert (new_opcode != NULL);
7376
7377 DEBUG_TRACE ("Check programmer-friendly STURB/LDURB -> STRB/LDRB: %d == %d",
7378 instr->opcode->op, new_opcode->op);
7379
7380 aarch64_replace_opcode (instr, new_opcode);
7381
7382 /* Clear up the ADDR_SIMM9's qualifier; otherwise the
7383 qualifier matching may fail because the out-of-date qualifier will
7384 prevent the operand being updated with a new and correct qualifier. */
7385 idx = aarch64_operand_index (instr->opcode->operands,
7386 AARCH64_OPND_ADDR_SIMM9);
7387 gas_assert (idx == 1);
7388 instr->operands[idx].qualifier = AARCH64_OPND_QLF_NIL;
7389
7390 DEBUG_TRACE ("Found LDURB entry to encode programmer-friendly LDRB");
7391
7e84b55d
TC
7392 if (!aarch64_opcode_encode (instr->opcode, instr, &instr->value, NULL, NULL,
7393 insn_sequence))
a06ea964
NC
7394 return FALSE;
7395
7396 return TRUE;
7397}
7398
7399/* Called by fix_insn to fix a MOV immediate alias instruction.
7400
7401 Operand for a generic move immediate instruction, which is an alias
7402 instruction that generates a single MOVZ, MOVN or ORR instruction to loads
7403 a 32-bit/64-bit immediate value into general register. An assembler error
7404 shall result if the immediate cannot be created by a single one of these
7405 instructions. If there is a choice, then to ensure reversability an
7406 assembler must prefer a MOVZ to MOVN, and MOVZ or MOVN to ORR. */
7407
7408static void
7409fix_mov_imm_insn (fixS *fixP, char *buf, aarch64_inst *instr, offsetT value)
7410{
7411 const aarch64_opcode *opcode;
7412
7413 /* Need to check if the destination is SP/ZR. The check has to be done
7414 before any aarch64_replace_opcode. */
7415 int try_mov_wide_p = !aarch64_stack_pointer_p (&instr->operands[0]);
7416 int try_mov_bitmask_p = !aarch64_zero_register_p (&instr->operands[0]);
7417
7418 instr->operands[1].imm.value = value;
7419 instr->operands[1].skip = 0;
7420
7421 if (try_mov_wide_p)
7422 {
7423 /* Try the MOVZ alias. */
7424 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDE);
7425 aarch64_replace_opcode (instr, opcode);
7426 if (aarch64_opcode_encode (instr->opcode, instr,
7e84b55d 7427 &instr->value, NULL, NULL, insn_sequence))
a06ea964
NC
7428 {
7429 put_aarch64_insn (buf, instr->value);
7430 return;
7431 }
7432 /* Try the MOVK alias. */
7433 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDEN);
7434 aarch64_replace_opcode (instr, opcode);
7435 if (aarch64_opcode_encode (instr->opcode, instr,
7e84b55d 7436 &instr->value, NULL, NULL, insn_sequence))
a06ea964
NC
7437 {
7438 put_aarch64_insn (buf, instr->value);
7439 return;
7440 }
7441 }
7442
7443 if (try_mov_bitmask_p)
7444 {
7445 /* Try the ORR alias. */
7446 opcode = aarch64_get_opcode (OP_MOV_IMM_LOG);
7447 aarch64_replace_opcode (instr, opcode);
7448 if (aarch64_opcode_encode (instr->opcode, instr,
7e84b55d 7449 &instr->value, NULL, NULL, insn_sequence))
a06ea964
NC
7450 {
7451 put_aarch64_insn (buf, instr->value);
7452 return;
7453 }
7454 }
7455
7456 as_bad_where (fixP->fx_file, fixP->fx_line,
7457 _("immediate cannot be moved by a single instruction"));
7458}
7459
7460/* An instruction operand which is immediate related may have symbol used
7461 in the assembly, e.g.
7462
7463 mov w0, u32
7464 .set u32, 0x00ffff00
7465
7466 At the time when the assembly instruction is parsed, a referenced symbol,
7467 like 'u32' in the above example may not have been seen; a fixS is created
7468 in such a case and is handled here after symbols have been resolved.
7469 Instruction is fixed up with VALUE using the information in *FIXP plus
7470 extra information in FLAGS.
7471
7472 This function is called by md_apply_fix to fix up instructions that need
7473 a fix-up described above but does not involve any linker-time relocation. */
7474
7475static void
7476fix_insn (fixS *fixP, uint32_t flags, offsetT value)
7477{
7478 int idx;
7479 uint32_t insn;
7480 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
7481 enum aarch64_opnd opnd = fixP->tc_fix_data.opnd;
7482 aarch64_inst *new_inst = fixP->tc_fix_data.inst;
7483
7484 if (new_inst)
7485 {
7486 /* Now the instruction is about to be fixed-up, so the operand that
7487 was previously marked as 'ignored' needs to be unmarked in order
7488 to get the encoding done properly. */
7489 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
7490 new_inst->operands[idx].skip = 0;
7491 }
7492
7493 gas_assert (opnd != AARCH64_OPND_NIL);
7494
7495 switch (opnd)
7496 {
7497 case AARCH64_OPND_EXCEPTION:
7498 if (unsigned_overflow (value, 16))
7499 as_bad_where (fixP->fx_file, fixP->fx_line,
7500 _("immediate out of range"));
7501 insn = get_aarch64_insn (buf);
7502 insn |= encode_svc_imm (value);
7503 put_aarch64_insn (buf, insn);
7504 break;
7505
7506 case AARCH64_OPND_AIMM:
7507 /* ADD or SUB with immediate.
7508 NOTE this assumes we come here with a add/sub shifted reg encoding
7509 3 322|2222|2 2 2 21111 111111
7510 1 098|7654|3 2 1 09876 543210 98765 43210
7511 0b000000 sf 000|1011|shift 0 Rm imm6 Rn Rd ADD
7512 2b000000 sf 010|1011|shift 0 Rm imm6 Rn Rd ADDS
7513 4b000000 sf 100|1011|shift 0 Rm imm6 Rn Rd SUB
7514 6b000000 sf 110|1011|shift 0 Rm imm6 Rn Rd SUBS
7515 ->
7516 3 322|2222|2 2 221111111111
7517 1 098|7654|3 2 109876543210 98765 43210
7518 11000000 sf 001|0001|shift imm12 Rn Rd ADD
7519 31000000 sf 011|0001|shift imm12 Rn Rd ADDS
7520 51000000 sf 101|0001|shift imm12 Rn Rd SUB
7521 71000000 sf 111|0001|shift imm12 Rn Rd SUBS
7522 Fields sf Rn Rd are already set. */
7523 insn = get_aarch64_insn (buf);
7524 if (value < 0)
7525 {
7526 /* Add <-> sub. */
7527 insn = reencode_addsub_switch_add_sub (insn);
7528 value = -value;
7529 }
7530
7531 if ((flags & FIXUP_F_HAS_EXPLICIT_SHIFT) == 0
7532 && unsigned_overflow (value, 12))
7533 {
7534 /* Try to shift the value by 12 to make it fit. */
7535 if (((value >> 12) << 12) == value
7536 && ! unsigned_overflow (value, 12 + 12))
7537 {
7538 value >>= 12;
7539 insn |= encode_addsub_imm_shift_amount (1);
7540 }
7541 }
7542
7543 if (unsigned_overflow (value, 12))
7544 as_bad_where (fixP->fx_file, fixP->fx_line,
7545 _("immediate out of range"));
7546
7547 insn |= encode_addsub_imm (value);
7548
7549 put_aarch64_insn (buf, insn);
7550 break;
7551
7552 case AARCH64_OPND_SIMD_IMM:
7553 case AARCH64_OPND_SIMD_IMM_SFT:
7554 case AARCH64_OPND_LIMM:
7555 /* Bit mask immediate. */
7556 gas_assert (new_inst != NULL);
7557 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
7558 new_inst->operands[idx].imm.value = value;
7559 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
7e84b55d 7560 &new_inst->value, NULL, NULL, insn_sequence))
a06ea964
NC
7561 put_aarch64_insn (buf, new_inst->value);
7562 else
7563 as_bad_where (fixP->fx_file, fixP->fx_line,
7564 _("invalid immediate"));
7565 break;
7566
7567 case AARCH64_OPND_HALF:
7568 /* 16-bit unsigned immediate. */
7569 if (unsigned_overflow (value, 16))
7570 as_bad_where (fixP->fx_file, fixP->fx_line,
7571 _("immediate out of range"));
7572 insn = get_aarch64_insn (buf);
7573 insn |= encode_movw_imm (value & 0xffff);
7574 put_aarch64_insn (buf, insn);
7575 break;
7576
7577 case AARCH64_OPND_IMM_MOV:
7578 /* Operand for a generic move immediate instruction, which is
7579 an alias instruction that generates a single MOVZ, MOVN or ORR
7580 instruction to loads a 32-bit/64-bit immediate value into general
7581 register. An assembler error shall result if the immediate cannot be
7582 created by a single one of these instructions. If there is a choice,
7583 then to ensure reversability an assembler must prefer a MOVZ to MOVN,
7584 and MOVZ or MOVN to ORR. */
7585 gas_assert (new_inst != NULL);
7586 fix_mov_imm_insn (fixP, buf, new_inst, value);
7587 break;
7588
7589 case AARCH64_OPND_ADDR_SIMM7:
7590 case AARCH64_OPND_ADDR_SIMM9:
7591 case AARCH64_OPND_ADDR_SIMM9_2:
3f06e550 7592 case AARCH64_OPND_ADDR_SIMM10:
a06ea964
NC
7593 case AARCH64_OPND_ADDR_UIMM12:
7594 /* Immediate offset in an address. */
7595 insn = get_aarch64_insn (buf);
7596
7597 gas_assert (new_inst != NULL && new_inst->value == insn);
7598 gas_assert (new_inst->opcode->operands[1] == opnd
7599 || new_inst->opcode->operands[2] == opnd);
7600
7601 /* Get the index of the address operand. */
7602 if (new_inst->opcode->operands[1] == opnd)
7603 /* e.g. STR <Xt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
7604 idx = 1;
7605 else
7606 /* e.g. LDP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]. */
7607 idx = 2;
7608
7609 /* Update the resolved offset value. */
7610 new_inst->operands[idx].addr.offset.imm = value;
7611
7612 /* Encode/fix-up. */
7613 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
7e84b55d 7614 &new_inst->value, NULL, NULL, insn_sequence))
a06ea964
NC
7615 {
7616 put_aarch64_insn (buf, new_inst->value);
7617 break;
7618 }
7619 else if (new_inst->opcode->iclass == ldst_pos
7620 && try_to_encode_as_unscaled_ldst (new_inst))
7621 {
7622 put_aarch64_insn (buf, new_inst->value);
7623 break;
7624 }
7625
7626 as_bad_where (fixP->fx_file, fixP->fx_line,
7627 _("immediate offset out of range"));
7628 break;
7629
7630 default:
7631 gas_assert (0);
7632 as_fatal (_("unhandled operand code %d"), opnd);
7633 }
7634}
7635
7636/* Apply a fixup (fixP) to segment data, once it has been determined
7637 by our caller that we have all the info we need to fix it up.
7638
7639 Parameter valP is the pointer to the value of the bits. */
7640
7641void
7642md_apply_fix (fixS * fixP, valueT * valP, segT seg)
7643{
7644 offsetT value = *valP;
7645 uint32_t insn;
7646 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
7647 int scale;
7648 unsigned flags = fixP->fx_addnumber;
7649
7650 DEBUG_TRACE ("\n\n");
7651 DEBUG_TRACE ("~~~~~~~~~~~~~~~~~~~~~~~~~");
7652 DEBUG_TRACE ("Enter md_apply_fix");
7653
7654 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
7655
7656 /* Note whether this will delete the relocation. */
7657
7658 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
7659 fixP->fx_done = 1;
7660
7661 /* Process the relocations. */
7662 switch (fixP->fx_r_type)
7663 {
7664 case BFD_RELOC_NONE:
7665 /* This will need to go in the object file. */
7666 fixP->fx_done = 0;
7667 break;
7668
7669 case BFD_RELOC_8:
7670 case BFD_RELOC_8_PCREL:
7671 if (fixP->fx_done || !seg->use_rela_p)
7672 md_number_to_chars (buf, value, 1);
7673 break;
7674
7675 case BFD_RELOC_16:
7676 case BFD_RELOC_16_PCREL:
7677 if (fixP->fx_done || !seg->use_rela_p)
7678 md_number_to_chars (buf, value, 2);
7679 break;
7680
7681 case BFD_RELOC_32:
7682 case BFD_RELOC_32_PCREL:
7683 if (fixP->fx_done || !seg->use_rela_p)
7684 md_number_to_chars (buf, value, 4);
7685 break;
7686
7687 case BFD_RELOC_64:
7688 case BFD_RELOC_64_PCREL:
7689 if (fixP->fx_done || !seg->use_rela_p)
7690 md_number_to_chars (buf, value, 8);
7691 break;
7692
7693 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
7694 /* We claim that these fixups have been processed here, even if
7695 in fact we generate an error because we do not have a reloc
7696 for them, so tc_gen_reloc() will reject them. */
7697 fixP->fx_done = 1;
7698 if (fixP->fx_addsy && !S_IS_DEFINED (fixP->fx_addsy))
7699 {
7700 as_bad_where (fixP->fx_file, fixP->fx_line,
7701 _("undefined symbol %s used as an immediate value"),
7702 S_GET_NAME (fixP->fx_addsy));
7703 goto apply_fix_return;
7704 }
7705 fix_insn (fixP, flags, value);
7706 break;
7707
7708 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
a06ea964
NC
7709 if (fixP->fx_done || !seg->use_rela_p)
7710 {
89d2a2a3
MS
7711 if (value & 3)
7712 as_bad_where (fixP->fx_file, fixP->fx_line,
7713 _("pc-relative load offset not word aligned"));
7714 if (signed_overflow (value, 21))
7715 as_bad_where (fixP->fx_file, fixP->fx_line,
7716 _("pc-relative load offset out of range"));
a06ea964
NC
7717 insn = get_aarch64_insn (buf);
7718 insn |= encode_ld_lit_ofs_19 (value >> 2);
7719 put_aarch64_insn (buf, insn);
7720 }
7721 break;
7722
7723 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
a06ea964
NC
7724 if (fixP->fx_done || !seg->use_rela_p)
7725 {
89d2a2a3
MS
7726 if (signed_overflow (value, 21))
7727 as_bad_where (fixP->fx_file, fixP->fx_line,
7728 _("pc-relative address offset out of range"));
a06ea964
NC
7729 insn = get_aarch64_insn (buf);
7730 insn |= encode_adr_imm (value);
7731 put_aarch64_insn (buf, insn);
7732 }
7733 break;
7734
7735 case BFD_RELOC_AARCH64_BRANCH19:
a06ea964
NC
7736 if (fixP->fx_done || !seg->use_rela_p)
7737 {
89d2a2a3
MS
7738 if (value & 3)
7739 as_bad_where (fixP->fx_file, fixP->fx_line,
7740 _("conditional branch target not word aligned"));
7741 if (signed_overflow (value, 21))
7742 as_bad_where (fixP->fx_file, fixP->fx_line,
7743 _("conditional branch out of range"));
a06ea964
NC
7744 insn = get_aarch64_insn (buf);
7745 insn |= encode_cond_branch_ofs_19 (value >> 2);
7746 put_aarch64_insn (buf, insn);
7747 }
7748 break;
7749
7750 case BFD_RELOC_AARCH64_TSTBR14:
a06ea964
NC
7751 if (fixP->fx_done || !seg->use_rela_p)
7752 {
89d2a2a3
MS
7753 if (value & 3)
7754 as_bad_where (fixP->fx_file, fixP->fx_line,
7755 _("conditional branch target not word aligned"));
7756 if (signed_overflow (value, 16))
7757 as_bad_where (fixP->fx_file, fixP->fx_line,
7758 _("conditional branch out of range"));
a06ea964
NC
7759 insn = get_aarch64_insn (buf);
7760 insn |= encode_tst_branch_ofs_14 (value >> 2);
7761 put_aarch64_insn (buf, insn);
7762 }
7763 break;
7764
a06ea964 7765 case BFD_RELOC_AARCH64_CALL26:
f09c556a 7766 case BFD_RELOC_AARCH64_JUMP26:
a06ea964
NC
7767 if (fixP->fx_done || !seg->use_rela_p)
7768 {
89d2a2a3
MS
7769 if (value & 3)
7770 as_bad_where (fixP->fx_file, fixP->fx_line,
7771 _("branch target not word aligned"));
7772 if (signed_overflow (value, 28))
7773 as_bad_where (fixP->fx_file, fixP->fx_line,
7774 _("branch out of range"));
a06ea964
NC
7775 insn = get_aarch64_insn (buf);
7776 insn |= encode_branch_ofs_26 (value >> 2);
7777 put_aarch64_insn (buf, insn);
7778 }
7779 break;
7780
7781 case BFD_RELOC_AARCH64_MOVW_G0:
a06ea964 7782 case BFD_RELOC_AARCH64_MOVW_G0_NC:
f09c556a 7783 case BFD_RELOC_AARCH64_MOVW_G0_S:
ca632371 7784 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
32247401
RL
7785 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
7786 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
a06ea964
NC
7787 scale = 0;
7788 goto movw_common;
7789 case BFD_RELOC_AARCH64_MOVW_G1:
a06ea964 7790 case BFD_RELOC_AARCH64_MOVW_G1_NC:
f09c556a 7791 case BFD_RELOC_AARCH64_MOVW_G1_S:
654248e7 7792 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
32247401
RL
7793 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
7794 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
a06ea964
NC
7795 scale = 16;
7796 goto movw_common;
43a357f9
RL
7797 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7798 scale = 0;
7799 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7800 /* Should always be exported to object file, see
7801 aarch64_force_relocation(). */
7802 gas_assert (!fixP->fx_done);
7803 gas_assert (seg->use_rela_p);
7804 goto movw_common;
7805 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7806 scale = 16;
7807 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7808 /* Should always be exported to object file, see
7809 aarch64_force_relocation(). */
7810 gas_assert (!fixP->fx_done);
7811 gas_assert (seg->use_rela_p);
7812 goto movw_common;
a06ea964 7813 case BFD_RELOC_AARCH64_MOVW_G2:
a06ea964 7814 case BFD_RELOC_AARCH64_MOVW_G2_NC:
f09c556a 7815 case BFD_RELOC_AARCH64_MOVW_G2_S:
32247401
RL
7816 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
7817 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
a06ea964
NC
7818 scale = 32;
7819 goto movw_common;
7820 case BFD_RELOC_AARCH64_MOVW_G3:
32247401 7821 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
a06ea964
NC
7822 scale = 48;
7823 movw_common:
7824 if (fixP->fx_done || !seg->use_rela_p)
7825 {
7826 insn = get_aarch64_insn (buf);
7827
7828 if (!fixP->fx_done)
7829 {
7830 /* REL signed addend must fit in 16 bits */
7831 if (signed_overflow (value, 16))
7832 as_bad_where (fixP->fx_file, fixP->fx_line,
7833 _("offset out of range"));
7834 }
7835 else
7836 {
7837 /* Check for overflow and scale. */
7838 switch (fixP->fx_r_type)
7839 {
7840 case BFD_RELOC_AARCH64_MOVW_G0:
7841 case BFD_RELOC_AARCH64_MOVW_G1:
7842 case BFD_RELOC_AARCH64_MOVW_G2:
7843 case BFD_RELOC_AARCH64_MOVW_G3:
654248e7 7844 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
43a357f9 7845 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
a06ea964
NC
7846 if (unsigned_overflow (value, scale + 16))
7847 as_bad_where (fixP->fx_file, fixP->fx_line,
7848 _("unsigned value out of range"));
7849 break;
7850 case BFD_RELOC_AARCH64_MOVW_G0_S:
7851 case BFD_RELOC_AARCH64_MOVW_G1_S:
7852 case BFD_RELOC_AARCH64_MOVW_G2_S:
32247401
RL
7853 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
7854 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
7855 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
a06ea964
NC
7856 /* NOTE: We can only come here with movz or movn. */
7857 if (signed_overflow (value, scale + 16))
7858 as_bad_where (fixP->fx_file, fixP->fx_line,
7859 _("signed value out of range"));
7860 if (value < 0)
7861 {
7862 /* Force use of MOVN. */
7863 value = ~value;
7864 insn = reencode_movzn_to_movn (insn);
7865 }
7866 else
7867 {
7868 /* Force use of MOVZ. */
7869 insn = reencode_movzn_to_movz (insn);
7870 }
7871 break;
7872 default:
7873 /* Unchecked relocations. */
7874 break;
7875 }
7876 value >>= scale;
7877 }
7878
7879 /* Insert value into MOVN/MOVZ/MOVK instruction. */
7880 insn |= encode_movw_imm (value & 0xffff);
7881
7882 put_aarch64_insn (buf, insn);
7883 }
7884 break;
7885
a6bb11b2
YZ
7886 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
7887 fixP->fx_r_type = (ilp32_p
7888 ? BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
7889 : BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
7890 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7891 /* Should always be exported to object file, see
7892 aarch64_force_relocation(). */
7893 gas_assert (!fixP->fx_done);
7894 gas_assert (seg->use_rela_p);
7895 break;
7896
7897 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
7898 fixP->fx_r_type = (ilp32_p
7899 ? BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
f955cccf 7900 : BFD_RELOC_AARCH64_TLSDESC_LD64_LO12);
a6bb11b2
YZ
7901 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7902 /* Should always be exported to object file, see
7903 aarch64_force_relocation(). */
7904 gas_assert (!fixP->fx_done);
7905 gas_assert (seg->use_rela_p);
7906 break;
7907
f955cccf 7908 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
2c0a3565 7909 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 7910 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
2c0a3565 7911 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
f955cccf 7912 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
1ada945d 7913 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
a06ea964 7914 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
2c0a3565 7915 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 7916 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
3e8286c0 7917 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
1aa66fb1 7918 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
a06ea964 7919 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 7920 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
2c0a3565 7921 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 7922 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
3b957e5b
RL
7923 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7924 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
49df5539 7925 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
70151fb5 7926 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
13289c10 7927 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
a12fad50 7928 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
1107e076 7929 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6c37fedc 7930 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4c562523
JW
7931 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
7932 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
7933 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
7934 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
7935 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
7936 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
7937 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
7938 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
49df5539
JW
7939 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
7940 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7941 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
7942 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
7943 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
84f1b9fb
RL
7944 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
7945 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
7946 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
7947 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
7948 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
7949 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
7950 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
7951 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
a06ea964 7952 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
2c0a3565 7953 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a06ea964 7954 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a06ea964
NC
7955 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
7956 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
2c0a3565
MS
7957 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
7958 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7959 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
7960 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7961 /* Should always be exported to object file, see
7962 aarch64_force_relocation(). */
7963 gas_assert (!fixP->fx_done);
7964 gas_assert (seg->use_rela_p);
7965 break;
7966
a6bb11b2
YZ
7967 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
7968 /* Should always be exported to object file, see
7969 aarch64_force_relocation(). */
7970 fixP->fx_r_type = (ilp32_p
7971 ? BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
7972 : BFD_RELOC_AARCH64_LD64_GOT_LO12_NC);
7973 gas_assert (!fixP->fx_done);
7974 gas_assert (seg->use_rela_p);
7975 break;
7976
a06ea964 7977 case BFD_RELOC_AARCH64_ADD_LO12:
f09c556a
JW
7978 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7979 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7980 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7981 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7982 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3d715ce4 7983 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
87f5fbcc 7984 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
a921b5bd 7985 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
f09c556a
JW
7986 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7987 case BFD_RELOC_AARCH64_LDST128_LO12:
a06ea964
NC
7988 case BFD_RELOC_AARCH64_LDST16_LO12:
7989 case BFD_RELOC_AARCH64_LDST32_LO12:
7990 case BFD_RELOC_AARCH64_LDST64_LO12:
f09c556a 7991 case BFD_RELOC_AARCH64_LDST8_LO12:
a06ea964
NC
7992 /* Should always be exported to object file, see
7993 aarch64_force_relocation(). */
7994 gas_assert (!fixP->fx_done);
7995 gas_assert (seg->use_rela_p);
7996 break;
7997
7998 case BFD_RELOC_AARCH64_TLSDESC_ADD:
a06ea964 7999 case BFD_RELOC_AARCH64_TLSDESC_CALL:
f09c556a 8000 case BFD_RELOC_AARCH64_TLSDESC_LDR:
a06ea964
NC
8001 break;
8002
b97e87cc
NC
8003 case BFD_RELOC_UNUSED:
8004 /* An error will already have been reported. */
8005 break;
8006
a06ea964
NC
8007 default:
8008 as_bad_where (fixP->fx_file, fixP->fx_line,
8009 _("unexpected %s fixup"),
8010 bfd_get_reloc_code_name (fixP->fx_r_type));
8011 break;
8012 }
8013
8014apply_fix_return:
8015 /* Free the allocated the struct aarch64_inst.
8016 N.B. currently there are very limited number of fix-up types actually use
8017 this field, so the impact on the performance should be minimal . */
8018 if (fixP->tc_fix_data.inst != NULL)
8019 free (fixP->tc_fix_data.inst);
8020
8021 return;
8022}
8023
8024/* Translate internal representation of relocation info to BFD target
8025 format. */
8026
8027arelent *
8028tc_gen_reloc (asection * section, fixS * fixp)
8029{
8030 arelent *reloc;
8031 bfd_reloc_code_real_type code;
8032
325801bd 8033 reloc = XNEW (arelent);
a06ea964 8034
325801bd 8035 reloc->sym_ptr_ptr = XNEW (asymbol *);
a06ea964
NC
8036 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
8037 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
8038
8039 if (fixp->fx_pcrel)
8040 {
8041 if (section->use_rela_p)
8042 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
8043 else
8044 fixp->fx_offset = reloc->address;
8045 }
8046 reloc->addend = fixp->fx_offset;
8047
8048 code = fixp->fx_r_type;
8049 switch (code)
8050 {
8051 case BFD_RELOC_16:
8052 if (fixp->fx_pcrel)
8053 code = BFD_RELOC_16_PCREL;
8054 break;
8055
8056 case BFD_RELOC_32:
8057 if (fixp->fx_pcrel)
8058 code = BFD_RELOC_32_PCREL;
8059 break;
8060
8061 case BFD_RELOC_64:
8062 if (fixp->fx_pcrel)
8063 code = BFD_RELOC_64_PCREL;
8064 break;
8065
8066 default:
8067 break;
8068 }
8069
8070 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
8071 if (reloc->howto == NULL)
8072 {
8073 as_bad_where (fixp->fx_file, fixp->fx_line,
8074 _
8075 ("cannot represent %s relocation in this object file format"),
8076 bfd_get_reloc_code_name (code));
8077 return NULL;
8078 }
8079
8080 return reloc;
8081}
8082
8083/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
8084
8085void
8086cons_fix_new_aarch64 (fragS * frag, int where, int size, expressionS * exp)
8087{
8088 bfd_reloc_code_real_type type;
8089 int pcrel = 0;
8090
8091 /* Pick a reloc.
8092 FIXME: @@ Should look at CPU word size. */
8093 switch (size)
8094 {
8095 case 1:
8096 type = BFD_RELOC_8;
8097 break;
8098 case 2:
8099 type = BFD_RELOC_16;
8100 break;
8101 case 4:
8102 type = BFD_RELOC_32;
8103 break;
8104 case 8:
8105 type = BFD_RELOC_64;
8106 break;
8107 default:
8108 as_bad (_("cannot do %u-byte relocation"), size);
8109 type = BFD_RELOC_UNUSED;
8110 break;
8111 }
8112
8113 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
8114}
8115
8116int
8117aarch64_force_relocation (struct fix *fixp)
8118{
8119 switch (fixp->fx_r_type)
8120 {
8121 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
8122 /* Perform these "immediate" internal relocations
8123 even if the symbol is extern or weak. */
8124 return 0;
8125
a6bb11b2 8126 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
f09c556a
JW
8127 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
8128 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
a6bb11b2
YZ
8129 /* Pseudo relocs that need to be fixed up according to
8130 ilp32_p. */
8131 return 0;
8132
2c0a3565
MS
8133 case BFD_RELOC_AARCH64_ADD_LO12:
8134 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
8135 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
8136 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
8137 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
8138 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3d715ce4 8139 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
87f5fbcc 8140 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
a921b5bd 8141 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
2c0a3565
MS
8142 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
8143 case BFD_RELOC_AARCH64_LDST128_LO12:
8144 case BFD_RELOC_AARCH64_LDST16_LO12:
8145 case BFD_RELOC_AARCH64_LDST32_LO12:
8146 case BFD_RELOC_AARCH64_LDST64_LO12:
8147 case BFD_RELOC_AARCH64_LDST8_LO12:
f955cccf 8148 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
2c0a3565 8149 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 8150 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
2c0a3565 8151 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
f955cccf 8152 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
1ada945d 8153 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
43a357f9
RL
8154 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
8155 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
a06ea964 8156 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
2c0a3565 8157 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 8158 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
3e8286c0 8159 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
1aa66fb1 8160 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
a06ea964 8161 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 8162 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
2c0a3565 8163 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 8164 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
3b957e5b
RL
8165 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
8166 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
8167 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
70151fb5 8168 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
13289c10 8169 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
a12fad50 8170 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
1107e076 8171 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6c37fedc 8172 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4c562523
JW
8173 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
8174 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
8175 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
8176 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
8177 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
8178 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
8179 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
8180 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
49df5539
JW
8181 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
8182 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
8183 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
8184 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
8185 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
84f1b9fb
RL
8186 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
8187 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
8188 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
8189 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
8190 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
8191 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
8192 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
8193 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
a06ea964 8194 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
2c0a3565 8195 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a06ea964 8196 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a06ea964
NC
8197 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
8198 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
2c0a3565
MS
8199 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
8200 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
8201 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
8202 /* Always leave these relocations for the linker. */
8203 return 1;
8204
8205 default:
8206 break;
8207 }
8208
8209 return generic_force_reloc (fixp);
8210}
8211
8212#ifdef OBJ_ELF
8213
3c0367d0
JW
8214/* Implement md_after_parse_args. This is the earliest time we need to decide
8215 ABI. If no -mabi specified, the ABI will be decided by target triplet. */
8216
8217void
8218aarch64_after_parse_args (void)
8219{
8220 if (aarch64_abi != AARCH64_ABI_NONE)
8221 return;
8222
8223 /* DEFAULT_ARCH will have ":32" extension if it's configured for ILP32. */
8224 if (strlen (default_arch) > 7 && strcmp (default_arch + 7, ":32") == 0)
8225 aarch64_abi = AARCH64_ABI_ILP32;
8226 else
8227 aarch64_abi = AARCH64_ABI_LP64;
8228}
8229
a06ea964
NC
8230const char *
8231elf64_aarch64_target_format (void)
8232{
a75cf613
ES
8233 if (strcmp (TARGET_OS, "cloudabi") == 0)
8234 {
8235 /* FIXME: What to do for ilp32_p ? */
8236 return target_big_endian ? "elf64-bigaarch64-cloudabi" : "elf64-littleaarch64-cloudabi";
8237 }
a06ea964 8238 if (target_big_endian)
cec5225b 8239 return ilp32_p ? "elf32-bigaarch64" : "elf64-bigaarch64";
a06ea964 8240 else
cec5225b 8241 return ilp32_p ? "elf32-littleaarch64" : "elf64-littleaarch64";
a06ea964
NC
8242}
8243
8244void
8245aarch64elf_frob_symbol (symbolS * symp, int *puntp)
8246{
8247 elf_frob_symbol (symp, puntp);
8248}
8249#endif
8250
8251/* MD interface: Finalization. */
8252
8253/* A good place to do this, although this was probably not intended
8254 for this kind of use. We need to dump the literal pool before
8255 references are made to a null symbol pointer. */
8256
8257void
8258aarch64_cleanup (void)
8259{
8260 literal_pool *pool;
8261
8262 for (pool = list_of_pools; pool; pool = pool->next)
8263 {
8264 /* Put it at the end of the relevant section. */
8265 subseg_set (pool->section, pool->sub_section);
8266 s_ltorg (0);
8267 }
8268}
8269
8270#ifdef OBJ_ELF
8271/* Remove any excess mapping symbols generated for alignment frags in
8272 SEC. We may have created a mapping symbol before a zero byte
8273 alignment; remove it if there's a mapping symbol after the
8274 alignment. */
8275static void
8276check_mapping_symbols (bfd * abfd ATTRIBUTE_UNUSED, asection * sec,
8277 void *dummy ATTRIBUTE_UNUSED)
8278{
8279 segment_info_type *seginfo = seg_info (sec);
8280 fragS *fragp;
8281
8282 if (seginfo == NULL || seginfo->frchainP == NULL)
8283 return;
8284
8285 for (fragp = seginfo->frchainP->frch_root;
8286 fragp != NULL; fragp = fragp->fr_next)
8287 {
8288 symbolS *sym = fragp->tc_frag_data.last_map;
8289 fragS *next = fragp->fr_next;
8290
8291 /* Variable-sized frags have been converted to fixed size by
8292 this point. But if this was variable-sized to start with,
8293 there will be a fixed-size frag after it. So don't handle
8294 next == NULL. */
8295 if (sym == NULL || next == NULL)
8296 continue;
8297
8298 if (S_GET_VALUE (sym) < next->fr_address)
8299 /* Not at the end of this frag. */
8300 continue;
8301 know (S_GET_VALUE (sym) == next->fr_address);
8302
8303 do
8304 {
8305 if (next->tc_frag_data.first_map != NULL)
8306 {
8307 /* Next frag starts with a mapping symbol. Discard this
8308 one. */
8309 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
8310 break;
8311 }
8312
8313 if (next->fr_next == NULL)
8314 {
8315 /* This mapping symbol is at the end of the section. Discard
8316 it. */
8317 know (next->fr_fix == 0 && next->fr_var == 0);
8318 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
8319 break;
8320 }
8321
8322 /* As long as we have empty frags without any mapping symbols,
8323 keep looking. */
8324 /* If the next frag is non-empty and does not start with a
8325 mapping symbol, then this mapping symbol is required. */
8326 if (next->fr_address != next->fr_next->fr_address)
8327 break;
8328
8329 next = next->fr_next;
8330 }
8331 while (next != NULL);
8332 }
8333}
8334#endif
8335
8336/* Adjust the symbol table. */
8337
8338void
8339aarch64_adjust_symtab (void)
8340{
8341#ifdef OBJ_ELF
8342 /* Remove any overlapping mapping symbols generated by alignment frags. */
8343 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
8344 /* Now do generic ELF adjustments. */
8345 elf_adjust_symtab ();
8346#endif
8347}
8348
8349static void
8350checked_hash_insert (struct hash_control *table, const char *key, void *value)
8351{
8352 const char *hash_err;
8353
8354 hash_err = hash_insert (table, key, value);
8355 if (hash_err)
8356 printf ("Internal Error: Can't hash %s\n", key);
8357}
8358
8359static void
8360fill_instruction_hash_table (void)
8361{
8362 aarch64_opcode *opcode = aarch64_opcode_table;
8363
8364 while (opcode->name != NULL)
8365 {
8366 templates *templ, *new_templ;
8367 templ = hash_find (aarch64_ops_hsh, opcode->name);
8368
add39d23 8369 new_templ = XNEW (templates);
a06ea964
NC
8370 new_templ->opcode = opcode;
8371 new_templ->next = NULL;
8372
8373 if (!templ)
8374 checked_hash_insert (aarch64_ops_hsh, opcode->name, (void *) new_templ);
8375 else
8376 {
8377 new_templ->next = templ->next;
8378 templ->next = new_templ;
8379 }
8380 ++opcode;
8381 }
8382}
8383
8384static inline void
8385convert_to_upper (char *dst, const char *src, size_t num)
8386{
8387 unsigned int i;
8388 for (i = 0; i < num && *src != '\0'; ++i, ++dst, ++src)
8389 *dst = TOUPPER (*src);
8390 *dst = '\0';
8391}
8392
8393/* Assume STR point to a lower-case string, allocate, convert and return
8394 the corresponding upper-case string. */
8395static inline const char*
8396get_upper_str (const char *str)
8397{
8398 char *ret;
8399 size_t len = strlen (str);
325801bd 8400 ret = XNEWVEC (char, len + 1);
a06ea964
NC
8401 convert_to_upper (ret, str, len);
8402 return ret;
8403}
8404
8405/* MD interface: Initialization. */
8406
8407void
8408md_begin (void)
8409{
8410 unsigned mach;
8411 unsigned int i;
8412
8413 if ((aarch64_ops_hsh = hash_new ()) == NULL
8414 || (aarch64_cond_hsh = hash_new ()) == NULL
8415 || (aarch64_shift_hsh = hash_new ()) == NULL
8416 || (aarch64_sys_regs_hsh = hash_new ()) == NULL
8417 || (aarch64_pstatefield_hsh = hash_new ()) == NULL
8418 || (aarch64_sys_regs_ic_hsh = hash_new ()) == NULL
8419 || (aarch64_sys_regs_dc_hsh = hash_new ()) == NULL
8420 || (aarch64_sys_regs_at_hsh = hash_new ()) == NULL
8421 || (aarch64_sys_regs_tlbi_hsh = hash_new ()) == NULL
8422 || (aarch64_reg_hsh = hash_new ()) == NULL
8423 || (aarch64_barrier_opt_hsh = hash_new ()) == NULL
8424 || (aarch64_nzcv_hsh = hash_new ()) == NULL
1e6f4800
MW
8425 || (aarch64_pldop_hsh = hash_new ()) == NULL
8426 || (aarch64_hint_opt_hsh = hash_new ()) == NULL)
a06ea964
NC
8427 as_fatal (_("virtual memory exhausted"));
8428
8429 fill_instruction_hash_table ();
8430
8431 for (i = 0; aarch64_sys_regs[i].name != NULL; ++i)
8432 checked_hash_insert (aarch64_sys_regs_hsh, aarch64_sys_regs[i].name,
8433 (void *) (aarch64_sys_regs + i));
8434
8435 for (i = 0; aarch64_pstatefields[i].name != NULL; ++i)
8436 checked_hash_insert (aarch64_pstatefield_hsh,
8437 aarch64_pstatefields[i].name,
8438 (void *) (aarch64_pstatefields + i));
8439
875880c6 8440 for (i = 0; aarch64_sys_regs_ic[i].name != NULL; i++)
a06ea964 8441 checked_hash_insert (aarch64_sys_regs_ic_hsh,
875880c6 8442 aarch64_sys_regs_ic[i].name,
a06ea964
NC
8443 (void *) (aarch64_sys_regs_ic + i));
8444
875880c6 8445 for (i = 0; aarch64_sys_regs_dc[i].name != NULL; i++)
a06ea964 8446 checked_hash_insert (aarch64_sys_regs_dc_hsh,
875880c6 8447 aarch64_sys_regs_dc[i].name,
a06ea964
NC
8448 (void *) (aarch64_sys_regs_dc + i));
8449
875880c6 8450 for (i = 0; aarch64_sys_regs_at[i].name != NULL; i++)
a06ea964 8451 checked_hash_insert (aarch64_sys_regs_at_hsh,
875880c6 8452 aarch64_sys_regs_at[i].name,
a06ea964
NC
8453 (void *) (aarch64_sys_regs_at + i));
8454
875880c6 8455 for (i = 0; aarch64_sys_regs_tlbi[i].name != NULL; i++)
a06ea964 8456 checked_hash_insert (aarch64_sys_regs_tlbi_hsh,
875880c6 8457 aarch64_sys_regs_tlbi[i].name,
a06ea964
NC
8458 (void *) (aarch64_sys_regs_tlbi + i));
8459
8460 for (i = 0; i < ARRAY_SIZE (reg_names); i++)
8461 checked_hash_insert (aarch64_reg_hsh, reg_names[i].name,
8462 (void *) (reg_names + i));
8463
8464 for (i = 0; i < ARRAY_SIZE (nzcv_names); i++)
8465 checked_hash_insert (aarch64_nzcv_hsh, nzcv_names[i].template,
8466 (void *) (nzcv_names + i));
8467
8468 for (i = 0; aarch64_operand_modifiers[i].name != NULL; i++)
8469 {
8470 const char *name = aarch64_operand_modifiers[i].name;
8471 checked_hash_insert (aarch64_shift_hsh, name,
8472 (void *) (aarch64_operand_modifiers + i));
8473 /* Also hash the name in the upper case. */
8474 checked_hash_insert (aarch64_shift_hsh, get_upper_str (name),
8475 (void *) (aarch64_operand_modifiers + i));
8476 }
8477
8478 for (i = 0; i < ARRAY_SIZE (aarch64_conds); i++)
8479 {
8480 unsigned int j;
8481 /* A condition code may have alias(es), e.g. "cc", "lo" and "ul" are
8482 the same condition code. */
8483 for (j = 0; j < ARRAY_SIZE (aarch64_conds[i].names); ++j)
8484 {
8485 const char *name = aarch64_conds[i].names[j];
8486 if (name == NULL)
8487 break;
8488 checked_hash_insert (aarch64_cond_hsh, name,
8489 (void *) (aarch64_conds + i));
8490 /* Also hash the name in the upper case. */
8491 checked_hash_insert (aarch64_cond_hsh, get_upper_str (name),
8492 (void *) (aarch64_conds + i));
8493 }
8494 }
8495
8496 for (i = 0; i < ARRAY_SIZE (aarch64_barrier_options); i++)
8497 {
8498 const char *name = aarch64_barrier_options[i].name;
8499 /* Skip xx00 - the unallocated values of option. */
8500 if ((i & 0x3) == 0)
8501 continue;
8502 checked_hash_insert (aarch64_barrier_opt_hsh, name,
8503 (void *) (aarch64_barrier_options + i));
8504 /* Also hash the name in the upper case. */
8505 checked_hash_insert (aarch64_barrier_opt_hsh, get_upper_str (name),
8506 (void *) (aarch64_barrier_options + i));
8507 }
8508
8509 for (i = 0; i < ARRAY_SIZE (aarch64_prfops); i++)
8510 {
8511 const char* name = aarch64_prfops[i].name;
a1ccaec9
YZ
8512 /* Skip the unallocated hint encodings. */
8513 if (name == NULL)
a06ea964
NC
8514 continue;
8515 checked_hash_insert (aarch64_pldop_hsh, name,
8516 (void *) (aarch64_prfops + i));
8517 /* Also hash the name in the upper case. */
8518 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
8519 (void *) (aarch64_prfops + i));
8520 }
8521
1e6f4800
MW
8522 for (i = 0; aarch64_hint_options[i].name != NULL; i++)
8523 {
8524 const char* name = aarch64_hint_options[i].name;
8525
8526 checked_hash_insert (aarch64_hint_opt_hsh, name,
8527 (void *) (aarch64_hint_options + i));
8528 /* Also hash the name in the upper case. */
8529 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
8530 (void *) (aarch64_hint_options + i));
8531 }
8532
a06ea964
NC
8533 /* Set the cpu variant based on the command-line options. */
8534 if (!mcpu_cpu_opt)
8535 mcpu_cpu_opt = march_cpu_opt;
8536
8537 if (!mcpu_cpu_opt)
8538 mcpu_cpu_opt = &cpu_default;
8539
8540 cpu_variant = *mcpu_cpu_opt;
8541
8542 /* Record the CPU type. */
cec5225b 8543 mach = ilp32_p ? bfd_mach_aarch64_ilp32 : bfd_mach_aarch64;
a06ea964
NC
8544
8545 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
8546}
8547
8548/* Command line processing. */
8549
8550const char *md_shortopts = "m:";
8551
8552#ifdef AARCH64_BI_ENDIAN
8553#define OPTION_EB (OPTION_MD_BASE + 0)
8554#define OPTION_EL (OPTION_MD_BASE + 1)
8555#else
8556#if TARGET_BYTES_BIG_ENDIAN
8557#define OPTION_EB (OPTION_MD_BASE + 0)
8558#else
8559#define OPTION_EL (OPTION_MD_BASE + 1)
8560#endif
8561#endif
8562
8563struct option md_longopts[] = {
8564#ifdef OPTION_EB
8565 {"EB", no_argument, NULL, OPTION_EB},
8566#endif
8567#ifdef OPTION_EL
8568 {"EL", no_argument, NULL, OPTION_EL},
8569#endif
8570 {NULL, no_argument, NULL, 0}
8571};
8572
8573size_t md_longopts_size = sizeof (md_longopts);
8574
8575struct aarch64_option_table
8576{
e0471c16
TS
8577 const char *option; /* Option name to match. */
8578 const char *help; /* Help information. */
a06ea964
NC
8579 int *var; /* Variable to change. */
8580 int value; /* What to change it to. */
8581 char *deprecated; /* If non-null, print this message. */
8582};
8583
8584static struct aarch64_option_table aarch64_opts[] = {
8585 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
8586 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
8587 NULL},
8588#ifdef DEBUG_AARCH64
8589 {"mdebug-dump", N_("temporary switch for dumping"), &debug_dump, 1, NULL},
8590#endif /* DEBUG_AARCH64 */
8591 {"mverbose-error", N_("output verbose error messages"), &verbose_error_p, 1,
8592 NULL},
a52e6fd3
YZ
8593 {"mno-verbose-error", N_("do not output verbose error messages"),
8594 &verbose_error_p, 0, NULL},
a06ea964
NC
8595 {NULL, NULL, NULL, 0, NULL}
8596};
8597
8598struct aarch64_cpu_option_table
8599{
e0471c16 8600 const char *name;
a06ea964
NC
8601 const aarch64_feature_set value;
8602 /* The canonical name of the CPU, or NULL to use NAME converted to upper
8603 case. */
8604 const char *canonical_name;
8605};
8606
8607/* This list should, at a minimum, contain all the cpu names
8608 recognized by GCC. */
8609static const struct aarch64_cpu_option_table aarch64_cpus[] = {
8610 {"all", AARCH64_ANY, NULL},
9c352f1c
JG
8611 {"cortex-a35", AARCH64_FEATURE (AARCH64_ARCH_V8,
8612 AARCH64_FEATURE_CRC), "Cortex-A35"},
aa31c464
JW
8613 {"cortex-a53", AARCH64_FEATURE (AARCH64_ARCH_V8,
8614 AARCH64_FEATURE_CRC), "Cortex-A53"},
8615 {"cortex-a57", AARCH64_FEATURE (AARCH64_ARCH_V8,
8616 AARCH64_FEATURE_CRC), "Cortex-A57"},
2abdd192
JW
8617 {"cortex-a72", AARCH64_FEATURE (AARCH64_ARCH_V8,
8618 AARCH64_FEATURE_CRC), "Cortex-A72"},
1aa70332
KT
8619 {"cortex-a73", AARCH64_FEATURE (AARCH64_ARCH_V8,
8620 AARCH64_FEATURE_CRC), "Cortex-A73"},
1e292627 8621 {"cortex-a55", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
1c5c938a 8622 AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16 | AARCH64_FEATURE_DOTPROD),
1e292627
JG
8623 "Cortex-A55"},
8624 {"cortex-a75", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
1c5c938a 8625 AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16 | AARCH64_FEATURE_DOTPROD),
1e292627 8626 "Cortex-A75"},
c2a0f929 8627 {"cortex-a76", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
8628 AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16 | AARCH64_FEATURE_DOTPROD),
8629 "Cortex-A76"},
2412d878
EM
8630 {"exynos-m1", AARCH64_FEATURE (AARCH64_ARCH_V8,
8631 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
8632 "Samsung Exynos M1"},
2fe9c2a0 8633 {"falkor", AARCH64_FEATURE (AARCH64_ARCH_V8,
e58ff055
JW
8634 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO
8635 | AARCH64_FEATURE_RDMA),
2fe9c2a0 8636 "Qualcomm Falkor"},
6b21c2bf 8637 {"qdf24xx", AARCH64_FEATURE (AARCH64_ARCH_V8,
e58ff055
JW
8638 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO
8639 | AARCH64_FEATURE_RDMA),
6b21c2bf 8640 "Qualcomm QDF24XX"},
eb5c42e5 8641 {"saphira", AARCH64_FEATURE (AARCH64_ARCH_V8_4,
7605d944
SP
8642 AARCH64_FEATURE_CRYPTO | AARCH64_FEATURE_PROFILE),
8643 "Qualcomm Saphira"},
faade851
JW
8644 {"thunderx", AARCH64_FEATURE (AARCH64_ARCH_V8,
8645 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
8646 "Cavium ThunderX"},
9f99c22e
VP
8647 {"vulcan", AARCH64_FEATURE (AARCH64_ARCH_V8_1,
8648 AARCH64_FEATURE_CRYPTO),
0a8be2fe 8649 "Broadcom Vulcan"},
070cb956
PT
8650 /* The 'xgene-1' name is an older name for 'xgene1', which was used
8651 in earlier releases and is superseded by 'xgene1' in all
8652 tools. */
9877c63c 8653 {"xgene-1", AARCH64_ARCH_V8, "APM X-Gene 1"},
070cb956 8654 {"xgene1", AARCH64_ARCH_V8, "APM X-Gene 1"},
aa31c464
JW
8655 {"xgene2", AARCH64_FEATURE (AARCH64_ARCH_V8,
8656 AARCH64_FEATURE_CRC), "APM X-Gene 2"},
a06ea964
NC
8657 {"generic", AARCH64_ARCH_V8, NULL},
8658
a06ea964
NC
8659 {NULL, AARCH64_ARCH_NONE, NULL}
8660};
8661
8662struct aarch64_arch_option_table
8663{
e0471c16 8664 const char *name;
a06ea964
NC
8665 const aarch64_feature_set value;
8666};
8667
8668/* This list should, at a minimum, contain all the architecture names
8669 recognized by GCC. */
8670static const struct aarch64_arch_option_table aarch64_archs[] = {
8671 {"all", AARCH64_ANY},
5a1ad39d 8672 {"armv8-a", AARCH64_ARCH_V8},
88f0ea34 8673 {"armv8.1-a", AARCH64_ARCH_V8_1},
acb787b0 8674 {"armv8.2-a", AARCH64_ARCH_V8_2},
1924ff75 8675 {"armv8.3-a", AARCH64_ARCH_V8_3},
b6b9ca0c 8676 {"armv8.4-a", AARCH64_ARCH_V8_4},
a06ea964
NC
8677 {NULL, AARCH64_ARCH_NONE}
8678};
8679
8680/* ISA extensions. */
8681struct aarch64_option_cpu_value_table
8682{
e0471c16 8683 const char *name;
a06ea964 8684 const aarch64_feature_set value;
93d8990c 8685 const aarch64_feature_set require; /* Feature dependencies. */
a06ea964
NC
8686};
8687
8688static const struct aarch64_option_cpu_value_table aarch64_features[] = {
93d8990c
SN
8689 {"crc", AARCH64_FEATURE (AARCH64_FEATURE_CRC, 0),
8690 AARCH64_ARCH_NONE},
c0e7cef7
NC
8691 {"crypto", AARCH64_FEATURE (AARCH64_FEATURE_CRYPTO
8692 | AARCH64_FEATURE_AES
8693 | AARCH64_FEATURE_SHA2, 0),
fa09f4ea 8694 AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
93d8990c
SN
8695 {"fp", AARCH64_FEATURE (AARCH64_FEATURE_FP, 0),
8696 AARCH64_ARCH_NONE},
8697 {"lse", AARCH64_FEATURE (AARCH64_FEATURE_LSE, 0),
8698 AARCH64_ARCH_NONE},
8699 {"simd", AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0),
fa09f4ea 8700 AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
93d8990c
SN
8701 {"pan", AARCH64_FEATURE (AARCH64_FEATURE_PAN, 0),
8702 AARCH64_ARCH_NONE},
8703 {"lor", AARCH64_FEATURE (AARCH64_FEATURE_LOR, 0),
8704 AARCH64_ARCH_NONE},
8705 {"ras", AARCH64_FEATURE (AARCH64_FEATURE_RAS, 0),
8706 AARCH64_ARCH_NONE},
8707 {"rdma", AARCH64_FEATURE (AARCH64_FEATURE_RDMA, 0),
8708 AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
8709 {"fp16", AARCH64_FEATURE (AARCH64_FEATURE_F16, 0),
8710 AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
d0f7791c
TC
8711 {"fp16fml", AARCH64_FEATURE (AARCH64_FEATURE_F16_FML, 0),
8712 AARCH64_FEATURE (AARCH64_FEATURE_FP
8713 | AARCH64_FEATURE_F16, 0)},
93d8990c
SN
8714 {"profile", AARCH64_FEATURE (AARCH64_FEATURE_PROFILE, 0),
8715 AARCH64_ARCH_NONE},
c0890d26 8716 {"sve", AARCH64_FEATURE (AARCH64_FEATURE_SVE, 0),
582e12bf
RS
8717 AARCH64_FEATURE (AARCH64_FEATURE_F16
8718 | AARCH64_FEATURE_SIMD
8719 | AARCH64_FEATURE_COMPNUM, 0)},
f482d304
RS
8720 {"compnum", AARCH64_FEATURE (AARCH64_FEATURE_COMPNUM, 0),
8721 AARCH64_FEATURE (AARCH64_FEATURE_F16
8722 | AARCH64_FEATURE_SIMD, 0)},
d74d4880
SN
8723 {"rcpc", AARCH64_FEATURE (AARCH64_FEATURE_RCPC, 0),
8724 AARCH64_ARCH_NONE},
65a55fbb
TC
8725 {"dotprod", AARCH64_FEATURE (AARCH64_FEATURE_DOTPROD, 0),
8726 AARCH64_ARCH_NONE},
c0e7cef7
NC
8727 {"sha2", AARCH64_FEATURE (AARCH64_FEATURE_SHA2, 0),
8728 AARCH64_ARCH_NONE},
8729 {"aes", AARCH64_FEATURE (AARCH64_FEATURE_AES, 0),
8730 AARCH64_ARCH_NONE},
b6b9ca0c
TC
8731 {"sm4", AARCH64_FEATURE (AARCH64_FEATURE_SM4, 0),
8732 AARCH64_ARCH_NONE},
8733 {"sha3", AARCH64_FEATURE (AARCH64_FEATURE_SHA2
8734 | AARCH64_FEATURE_SHA3, 0),
8735 AARCH64_ARCH_NONE},
93d8990c 8736 {NULL, AARCH64_ARCH_NONE, AARCH64_ARCH_NONE},
a06ea964
NC
8737};
8738
8739struct aarch64_long_option_table
8740{
e0471c16
TS
8741 const char *option; /* Substring to match. */
8742 const char *help; /* Help information. */
17b9d67d 8743 int (*func) (const char *subopt); /* Function to decode sub-option. */
a06ea964
NC
8744 char *deprecated; /* If non-null, print this message. */
8745};
8746
93d8990c
SN
8747/* Transitive closure of features depending on set. */
8748static aarch64_feature_set
8749aarch64_feature_disable_set (aarch64_feature_set set)
8750{
8751 const struct aarch64_option_cpu_value_table *opt;
8752 aarch64_feature_set prev = 0;
8753
8754 while (prev != set) {
8755 prev = set;
8756 for (opt = aarch64_features; opt->name != NULL; opt++)
8757 if (AARCH64_CPU_HAS_ANY_FEATURES (opt->require, set))
8758 AARCH64_MERGE_FEATURE_SETS (set, set, opt->value);
8759 }
8760 return set;
8761}
8762
8763/* Transitive closure of dependencies of set. */
8764static aarch64_feature_set
8765aarch64_feature_enable_set (aarch64_feature_set set)
8766{
8767 const struct aarch64_option_cpu_value_table *opt;
8768 aarch64_feature_set prev = 0;
8769
8770 while (prev != set) {
8771 prev = set;
8772 for (opt = aarch64_features; opt->name != NULL; opt++)
8773 if (AARCH64_CPU_HAS_FEATURE (set, opt->value))
8774 AARCH64_MERGE_FEATURE_SETS (set, set, opt->require);
8775 }
8776 return set;
8777}
8778
a06ea964 8779static int
82b8a785 8780aarch64_parse_features (const char *str, const aarch64_feature_set **opt_p,
ae527cd8 8781 bfd_boolean ext_only)
a06ea964
NC
8782{
8783 /* We insist on extensions being added before being removed. We achieve
8784 this by using the ADDING_VALUE variable to indicate whether we are
8785 adding an extension (1) or removing it (0) and only allowing it to
8786 change in the order -1 -> 1 -> 0. */
8787 int adding_value = -1;
325801bd 8788 aarch64_feature_set *ext_set = XNEW (aarch64_feature_set);
a06ea964
NC
8789
8790 /* Copy the feature set, so that we can modify it. */
8791 *ext_set = **opt_p;
8792 *opt_p = ext_set;
8793
8794 while (str != NULL && *str != 0)
8795 {
8796 const struct aarch64_option_cpu_value_table *opt;
82b8a785 8797 const char *ext = NULL;
a06ea964
NC
8798 int optlen;
8799
ae527cd8 8800 if (!ext_only)
a06ea964 8801 {
ae527cd8
JB
8802 if (*str != '+')
8803 {
8804 as_bad (_("invalid architectural extension"));
8805 return 0;
8806 }
a06ea964 8807
ae527cd8
JB
8808 ext = strchr (++str, '+');
8809 }
a06ea964
NC
8810
8811 if (ext != NULL)
8812 optlen = ext - str;
8813 else
8814 optlen = strlen (str);
8815
8816 if (optlen >= 2 && strncmp (str, "no", 2) == 0)
8817 {
8818 if (adding_value != 0)
8819 adding_value = 0;
8820 optlen -= 2;
8821 str += 2;
8822 }
8823 else if (optlen > 0)
8824 {
8825 if (adding_value == -1)
8826 adding_value = 1;
8827 else if (adding_value != 1)
8828 {
8829 as_bad (_("must specify extensions to add before specifying "
8830 "those to remove"));
8831 return FALSE;
8832 }
8833 }
8834
8835 if (optlen == 0)
8836 {
8837 as_bad (_("missing architectural extension"));
8838 return 0;
8839 }
8840
8841 gas_assert (adding_value != -1);
8842
8843 for (opt = aarch64_features; opt->name != NULL; opt++)
8844 if (strncmp (opt->name, str, optlen) == 0)
8845 {
93d8990c
SN
8846 aarch64_feature_set set;
8847
a06ea964
NC
8848 /* Add or remove the extension. */
8849 if (adding_value)
93d8990c
SN
8850 {
8851 set = aarch64_feature_enable_set (opt->value);
8852 AARCH64_MERGE_FEATURE_SETS (*ext_set, *ext_set, set);
8853 }
a06ea964 8854 else
93d8990c
SN
8855 {
8856 set = aarch64_feature_disable_set (opt->value);
8857 AARCH64_CLEAR_FEATURE (*ext_set, *ext_set, set);
8858 }
a06ea964
NC
8859 break;
8860 }
8861
8862 if (opt->name == NULL)
8863 {
8864 as_bad (_("unknown architectural extension `%s'"), str);
8865 return 0;
8866 }
8867
8868 str = ext;
8869 };
8870
8871 return 1;
8872}
8873
8874static int
17b9d67d 8875aarch64_parse_cpu (const char *str)
a06ea964
NC
8876{
8877 const struct aarch64_cpu_option_table *opt;
82b8a785 8878 const char *ext = strchr (str, '+');
a06ea964
NC
8879 size_t optlen;
8880
8881 if (ext != NULL)
8882 optlen = ext - str;
8883 else
8884 optlen = strlen (str);
8885
8886 if (optlen == 0)
8887 {
8888 as_bad (_("missing cpu name `%s'"), str);
8889 return 0;
8890 }
8891
8892 for (opt = aarch64_cpus; opt->name != NULL; opt++)
8893 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
8894 {
8895 mcpu_cpu_opt = &opt->value;
8896 if (ext != NULL)
ae527cd8 8897 return aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE);
a06ea964
NC
8898
8899 return 1;
8900 }
8901
8902 as_bad (_("unknown cpu `%s'"), str);
8903 return 0;
8904}
8905
8906static int
17b9d67d 8907aarch64_parse_arch (const char *str)
a06ea964
NC
8908{
8909 const struct aarch64_arch_option_table *opt;
82b8a785 8910 const char *ext = strchr (str, '+');
a06ea964
NC
8911 size_t optlen;
8912
8913 if (ext != NULL)
8914 optlen = ext - str;
8915 else
8916 optlen = strlen (str);
8917
8918 if (optlen == 0)
8919 {
8920 as_bad (_("missing architecture name `%s'"), str);
8921 return 0;
8922 }
8923
8924 for (opt = aarch64_archs; opt->name != NULL; opt++)
8925 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
8926 {
8927 march_cpu_opt = &opt->value;
8928 if (ext != NULL)
ae527cd8 8929 return aarch64_parse_features (ext, &march_cpu_opt, FALSE);
a06ea964
NC
8930
8931 return 1;
8932 }
8933
8934 as_bad (_("unknown architecture `%s'\n"), str);
8935 return 0;
8936}
8937
69091a2c
YZ
8938/* ABIs. */
8939struct aarch64_option_abi_value_table
8940{
e0471c16 8941 const char *name;
69091a2c
YZ
8942 enum aarch64_abi_type value;
8943};
8944
8945static const struct aarch64_option_abi_value_table aarch64_abis[] = {
8946 {"ilp32", AARCH64_ABI_ILP32},
8947 {"lp64", AARCH64_ABI_LP64},
69091a2c
YZ
8948};
8949
8950static int
17b9d67d 8951aarch64_parse_abi (const char *str)
69091a2c 8952{
5703197e 8953 unsigned int i;
69091a2c 8954
5703197e 8955 if (str[0] == '\0')
69091a2c
YZ
8956 {
8957 as_bad (_("missing abi name `%s'"), str);
8958 return 0;
8959 }
8960
5703197e
TS
8961 for (i = 0; i < ARRAY_SIZE (aarch64_abis); i++)
8962 if (strcmp (str, aarch64_abis[i].name) == 0)
69091a2c 8963 {
5703197e 8964 aarch64_abi = aarch64_abis[i].value;
69091a2c
YZ
8965 return 1;
8966 }
8967
8968 as_bad (_("unknown abi `%s'\n"), str);
8969 return 0;
8970}
8971
a06ea964 8972static struct aarch64_long_option_table aarch64_long_opts[] = {
69091a2c
YZ
8973#ifdef OBJ_ELF
8974 {"mabi=", N_("<abi name>\t specify for ABI <abi name>"),
8975 aarch64_parse_abi, NULL},
8976#endif /* OBJ_ELF */
a06ea964
NC
8977 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
8978 aarch64_parse_cpu, NULL},
8979 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
8980 aarch64_parse_arch, NULL},
8981 {NULL, NULL, 0, NULL}
8982};
8983
8984int
17b9d67d 8985md_parse_option (int c, const char *arg)
a06ea964
NC
8986{
8987 struct aarch64_option_table *opt;
8988 struct aarch64_long_option_table *lopt;
8989
8990 switch (c)
8991 {
8992#ifdef OPTION_EB
8993 case OPTION_EB:
8994 target_big_endian = 1;
8995 break;
8996#endif
8997
8998#ifdef OPTION_EL
8999 case OPTION_EL:
9000 target_big_endian = 0;
9001 break;
9002#endif
9003
9004 case 'a':
9005 /* Listing option. Just ignore these, we don't support additional
9006 ones. */
9007 return 0;
9008
9009 default:
9010 for (opt = aarch64_opts; opt->option != NULL; opt++)
9011 {
9012 if (c == opt->option[0]
9013 && ((arg == NULL && opt->option[1] == 0)
9014 || streq (arg, opt->option + 1)))
9015 {
9016 /* If the option is deprecated, tell the user. */
9017 if (opt->deprecated != NULL)
9018 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
9019 arg ? arg : "", _(opt->deprecated));
9020
9021 if (opt->var != NULL)
9022 *opt->var = opt->value;
9023
9024 return 1;
9025 }
9026 }
9027
9028 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
9029 {
9030 /* These options are expected to have an argument. */
9031 if (c == lopt->option[0]
9032 && arg != NULL
9033 && strncmp (arg, lopt->option + 1,
9034 strlen (lopt->option + 1)) == 0)
9035 {
9036 /* If the option is deprecated, tell the user. */
9037 if (lopt->deprecated != NULL)
9038 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
9039 _(lopt->deprecated));
9040
9041 /* Call the sup-option parser. */
9042 return lopt->func (arg + strlen (lopt->option) - 1);
9043 }
9044 }
9045
9046 return 0;
9047 }
9048
9049 return 1;
9050}
9051
9052void
9053md_show_usage (FILE * fp)
9054{
9055 struct aarch64_option_table *opt;
9056 struct aarch64_long_option_table *lopt;
9057
9058 fprintf (fp, _(" AArch64-specific assembler options:\n"));
9059
9060 for (opt = aarch64_opts; opt->option != NULL; opt++)
9061 if (opt->help != NULL)
9062 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
9063
9064 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
9065 if (lopt->help != NULL)
9066 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
9067
9068#ifdef OPTION_EB
9069 fprintf (fp, _("\
9070 -EB assemble code for a big-endian cpu\n"));
9071#endif
9072
9073#ifdef OPTION_EL
9074 fprintf (fp, _("\
9075 -EL assemble code for a little-endian cpu\n"));
9076#endif
9077}
9078
9079/* Parse a .cpu directive. */
9080
9081static void
9082s_aarch64_cpu (int ignored ATTRIBUTE_UNUSED)
9083{
9084 const struct aarch64_cpu_option_table *opt;
9085 char saved_char;
9086 char *name;
9087 char *ext;
9088 size_t optlen;
9089
9090 name = input_line_pointer;
9091 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
9092 input_line_pointer++;
9093 saved_char = *input_line_pointer;
9094 *input_line_pointer = 0;
9095
9096 ext = strchr (name, '+');
9097
9098 if (ext != NULL)
9099 optlen = ext - name;
9100 else
9101 optlen = strlen (name);
9102
9103 /* Skip the first "all" entry. */
9104 for (opt = aarch64_cpus + 1; opt->name != NULL; opt++)
9105 if (strlen (opt->name) == optlen
9106 && strncmp (name, opt->name, optlen) == 0)
9107 {
9108 mcpu_cpu_opt = &opt->value;
9109 if (ext != NULL)
ae527cd8 9110 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
a06ea964
NC
9111 return;
9112
9113 cpu_variant = *mcpu_cpu_opt;
9114
9115 *input_line_pointer = saved_char;
9116 demand_empty_rest_of_line ();
9117 return;
9118 }
9119 as_bad (_("unknown cpu `%s'"), name);
9120 *input_line_pointer = saved_char;
9121 ignore_rest_of_line ();
9122}
9123
9124
9125/* Parse a .arch directive. */
9126
9127static void
9128s_aarch64_arch (int ignored ATTRIBUTE_UNUSED)
9129{
9130 const struct aarch64_arch_option_table *opt;
9131 char saved_char;
9132 char *name;
9133 char *ext;
9134 size_t optlen;
9135
9136 name = input_line_pointer;
9137 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
9138 input_line_pointer++;
9139 saved_char = *input_line_pointer;
9140 *input_line_pointer = 0;
9141
9142 ext = strchr (name, '+');
9143
9144 if (ext != NULL)
9145 optlen = ext - name;
9146 else
9147 optlen = strlen (name);
9148
9149 /* Skip the first "all" entry. */
9150 for (opt = aarch64_archs + 1; opt->name != NULL; opt++)
9151 if (strlen (opt->name) == optlen
9152 && strncmp (name, opt->name, optlen) == 0)
9153 {
9154 mcpu_cpu_opt = &opt->value;
9155 if (ext != NULL)
ae527cd8 9156 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
a06ea964
NC
9157 return;
9158
9159 cpu_variant = *mcpu_cpu_opt;
9160
9161 *input_line_pointer = saved_char;
9162 demand_empty_rest_of_line ();
9163 return;
9164 }
9165
9166 as_bad (_("unknown architecture `%s'\n"), name);
9167 *input_line_pointer = saved_char;
9168 ignore_rest_of_line ();
9169}
9170
ae527cd8
JB
9171/* Parse a .arch_extension directive. */
9172
9173static void
9174s_aarch64_arch_extension (int ignored ATTRIBUTE_UNUSED)
9175{
9176 char saved_char;
9177 char *ext = input_line_pointer;;
9178
9179 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
9180 input_line_pointer++;
9181 saved_char = *input_line_pointer;
9182 *input_line_pointer = 0;
9183
9184 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, TRUE))
9185 return;
9186
9187 cpu_variant = *mcpu_cpu_opt;
9188
9189 *input_line_pointer = saved_char;
9190 demand_empty_rest_of_line ();
9191}
9192
a06ea964
NC
9193/* Copy symbol information. */
9194
9195void
9196aarch64_copy_symbol_attributes (symbolS * dest, symbolS * src)
9197{
9198 AARCH64_GET_FLAG (dest) = AARCH64_GET_FLAG (src);
9199}
This page took 0.845614 seconds and 4 git commands to generate.