Compute 'name' for relocs against both local and global symbols.
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
252b5132 1/* i386.c -- Assemble code for the Intel 80386
f7e42eb4 2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
0f10071e 3 2000, 2001, 2002, 2003, 2004
47926f60 4 Free Software Foundation, Inc.
252b5132
RH
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
47926f60
KH
23/* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 25 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
252b5132 29
252b5132 30#include "as.h"
3882b010 31#include "safe-ctype.h"
252b5132 32#include "subsegs.h"
316e2c05 33#include "dwarf2dbg.h"
54cfded0 34#include "dw2gencfi.h"
252b5132 35#include "opcode/i386.h"
d2b2c203 36#include "elf/x86-64.h"
252b5132 37
252b5132
RH
38#ifndef REGISTER_WARNINGS
39#define REGISTER_WARNINGS 1
40#endif
41
c3332e24 42#ifndef INFER_ADDR_PREFIX
eecb386c 43#define INFER_ADDR_PREFIX 1
c3332e24
AM
44#endif
45
252b5132
RH
46#ifndef SCALE1_WHEN_NO_INDEX
47/* Specifying a scale factor besides 1 when there is no index is
48 futile. eg. `mov (%ebx,2),%al' does exactly the same as
49 `mov (%ebx),%al'. To slavishly follow what the programmer
50 specified, set SCALE1_WHEN_NO_INDEX to 0. */
51#define SCALE1_WHEN_NO_INDEX 1
52#endif
53
29b0f896
AM
54#ifndef DEFAULT_ARCH
55#define DEFAULT_ARCH "i386"
246fcdee 56#endif
252b5132 57
edde18a5
AM
58#ifndef INLINE
59#if __GNUC__ >= 2
60#define INLINE __inline__
61#else
62#define INLINE
63#endif
64#endif
65
29b0f896
AM
66static INLINE unsigned int mode_from_disp_size PARAMS ((unsigned int));
67static INLINE int fits_in_signed_byte PARAMS ((offsetT));
68static INLINE int fits_in_unsigned_byte PARAMS ((offsetT));
69static INLINE int fits_in_unsigned_word PARAMS ((offsetT));
70static INLINE int fits_in_signed_word PARAMS ((offsetT));
71static INLINE int fits_in_unsigned_long PARAMS ((offsetT));
72static INLINE int fits_in_signed_long PARAMS ((offsetT));
847f7ad4
AM
73static int smallest_imm_type PARAMS ((offsetT));
74static offsetT offset_in_range PARAMS ((offsetT, int));
252b5132 75static int add_prefix PARAMS ((unsigned int));
3e73aa7c 76static void set_code_flag PARAMS ((int));
47926f60 77static void set_16bit_gcc_code_flag PARAMS ((int));
252b5132 78static void set_intel_syntax PARAMS ((int));
e413e4e9 79static void set_cpu_arch PARAMS ((int));
6482c264
NC
80#ifdef TE_PE
81static void pe_directive_secrel PARAMS ((int));
82#endif
29b0f896
AM
83static char *output_invalid PARAMS ((int c));
84static int i386_operand PARAMS ((char *operand_string));
85static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
86static const reg_entry *parse_register PARAMS ((char *reg_string,
87 char **end_op));
88static char *parse_insn PARAMS ((char *, char *));
89static char *parse_operands PARAMS ((char *, const char *));
90static void swap_operands PARAMS ((void));
91static void optimize_imm PARAMS ((void));
92static void optimize_disp PARAMS ((void));
93static int match_template PARAMS ((void));
94static int check_string PARAMS ((void));
95static int process_suffix PARAMS ((void));
96static int check_byte_reg PARAMS ((void));
97static int check_long_reg PARAMS ((void));
98static int check_qword_reg PARAMS ((void));
99static int check_word_reg PARAMS ((void));
100static int finalize_imm PARAMS ((void));
101static int process_operands PARAMS ((void));
102static const seg_entry *build_modrm_byte PARAMS ((void));
103static void output_insn PARAMS ((void));
104static void output_branch PARAMS ((void));
105static void output_jump PARAMS ((void));
106static void output_interseg_jump PARAMS ((void));
2bbd9c25
JJ
107static void output_imm PARAMS ((fragS *insn_start_frag,
108 offsetT insn_start_off));
109static void output_disp PARAMS ((fragS *insn_start_frag,
110 offsetT insn_start_off));
29b0f896
AM
111#ifndef I386COFF
112static void s_bss PARAMS ((int));
252b5132
RH
113#endif
114
a847613f 115static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 116
252b5132 117/* 'md_assemble ()' gathers together information and puts it into a
47926f60 118 i386_insn. */
252b5132 119
520dc8e8
AM
120union i386_op
121 {
122 expressionS *disps;
123 expressionS *imms;
124 const reg_entry *regs;
125 };
126
252b5132
RH
127struct _i386_insn
128 {
47926f60 129 /* TM holds the template for the insn were currently assembling. */
252b5132
RH
130 template tm;
131
132 /* SUFFIX holds the instruction mnemonic suffix if given.
133 (e.g. 'l' for 'movl') */
134 char suffix;
135
47926f60 136 /* OPERANDS gives the number of given operands. */
252b5132
RH
137 unsigned int operands;
138
139 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
140 of given register, displacement, memory operands and immediate
47926f60 141 operands. */
252b5132
RH
142 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
143
144 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 145 use OP[i] for the corresponding operand. */
252b5132
RH
146 unsigned int types[MAX_OPERANDS];
147
520dc8e8
AM
148 /* Displacement expression, immediate expression, or register for each
149 operand. */
150 union i386_op op[MAX_OPERANDS];
252b5132 151
3e73aa7c
JH
152 /* Flags for operands. */
153 unsigned int flags[MAX_OPERANDS];
154#define Operand_PCrel 1
155
252b5132 156 /* Relocation type for operand */
f86103b7 157 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 158
252b5132
RH
159 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
160 the base index byte below. */
161 const reg_entry *base_reg;
162 const reg_entry *index_reg;
163 unsigned int log2_scale_factor;
164
165 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 166 explicit segment overrides are given. */
ce8a8b2f 167 const seg_entry *seg[2];
252b5132
RH
168
169 /* PREFIX holds all the given prefix opcodes (usually null).
170 PREFIXES is the number of prefix opcodes. */
171 unsigned int prefixes;
172 unsigned char prefix[MAX_PREFIXES];
173
174 /* RM and SIB are the modrm byte and the sib byte where the
175 addressing modes of this insn are encoded. */
176
177 modrm_byte rm;
3e73aa7c 178 rex_byte rex;
252b5132
RH
179 sib_byte sib;
180 };
181
182typedef struct _i386_insn i386_insn;
183
184/* List of chars besides those in app.c:symbol_chars that can start an
185 operand. Used to prevent the scrubber eating vital white-space. */
32137342 186const char extra_symbol_chars[] = "*%-(["
252b5132 187#ifdef LEX_AT
32137342
NC
188 "@"
189#endif
190#ifdef LEX_QM
191 "?"
252b5132 192#endif
32137342 193 ;
252b5132 194
29b0f896
AM
195#if (defined (TE_I386AIX) \
196 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
197 && !defined (TE_LINUX) \
32137342 198 && !defined (TE_NETWARE) \
29b0f896
AM
199 && !defined (TE_FreeBSD) \
200 && !defined (TE_NetBSD)))
252b5132 201/* This array holds the chars that always start a comment. If the
ce8a8b2f 202 pre-processor is disabled, these aren't very useful. */
252b5132
RH
203const char comment_chars[] = "#/";
204#define PREFIX_SEPARATOR '\\'
252b5132
RH
205
206/* This array holds the chars that only start a comment at the beginning of
207 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
208 .line and .file directives will appear in the pre-processed output.
209 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 210 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
211 #NO_APP at the beginning of its output.
212 Also note that comments started like this one will always work if
252b5132 213 '/' isn't otherwise defined. */
0d9f6d04 214const char line_comment_chars[] = "#";
29b0f896 215
252b5132 216#else
29b0f896
AM
217/* Putting '/' here makes it impossible to use the divide operator.
218 However, we need it for compatibility with SVR4 systems. */
219const char comment_chars[] = "#";
220#define PREFIX_SEPARATOR '/'
221
0d9f6d04 222const char line_comment_chars[] = "/#";
252b5132
RH
223#endif
224
63a0b638 225const char line_separator_chars[] = ";";
252b5132 226
ce8a8b2f
AM
227/* Chars that can be used to separate mant from exp in floating point
228 nums. */
252b5132
RH
229const char EXP_CHARS[] = "eE";
230
ce8a8b2f
AM
231/* Chars that mean this number is a floating point constant
232 As in 0f12.456
233 or 0d1.2345e12. */
252b5132
RH
234const char FLT_CHARS[] = "fFdDxX";
235
ce8a8b2f 236/* Tables for lexical analysis. */
252b5132
RH
237static char mnemonic_chars[256];
238static char register_chars[256];
239static char operand_chars[256];
240static char identifier_chars[256];
241static char digit_chars[256];
242
ce8a8b2f 243/* Lexical macros. */
252b5132
RH
244#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
245#define is_operand_char(x) (operand_chars[(unsigned char) x])
246#define is_register_char(x) (register_chars[(unsigned char) x])
247#define is_space_char(x) ((x) == ' ')
248#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
249#define is_digit_char(x) (digit_chars[(unsigned char) x])
250
0234cb7c 251/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
252static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
253
254/* md_assemble() always leaves the strings it's passed unaltered. To
255 effect this we maintain a stack of saved characters that we've smashed
256 with '\0's (indicating end of strings for various sub-fields of the
47926f60 257 assembler instruction). */
252b5132 258static char save_stack[32];
ce8a8b2f 259static char *save_stack_p;
252b5132
RH
260#define END_STRING_AND_SAVE(s) \
261 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
262#define RESTORE_END_STRING(s) \
263 do { *(s) = *--save_stack_p; } while (0)
264
47926f60 265/* The instruction we're assembling. */
252b5132
RH
266static i386_insn i;
267
268/* Possible templates for current insn. */
269static const templates *current_templates;
270
47926f60 271/* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
252b5132
RH
272static expressionS disp_expressions[2], im_expressions[2];
273
47926f60
KH
274/* Current operand we are working on. */
275static int this_operand;
252b5132 276
3e73aa7c
JH
277/* We support four different modes. FLAG_CODE variable is used to distinguish
278 these. */
279
280enum flag_code {
281 CODE_32BIT,
282 CODE_16BIT,
283 CODE_64BIT };
f3c180ae 284#define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
3e73aa7c
JH
285
286static enum flag_code flag_code;
287static int use_rela_relocations = 0;
288
289/* The names used to print error messages. */
b77a7acd 290static const char *flag_code_names[] =
3e73aa7c
JH
291 {
292 "32",
293 "16",
294 "64"
295 };
252b5132 296
47926f60
KH
297/* 1 for intel syntax,
298 0 if att syntax. */
299static int intel_syntax = 0;
252b5132 300
47926f60
KH
301/* 1 if register prefix % not required. */
302static int allow_naked_reg = 0;
252b5132 303
47926f60
KH
304/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
305 leave, push, and pop instructions so that gcc has the same stack
306 frame as in 32 bit mode. */
307static char stackop_size = '\0';
eecb386c 308
12b55ccc
L
309/* Non-zero to optimize code alignment. */
310int optimize_align_code = 1;
311
47926f60
KH
312/* Non-zero to quieten some warnings. */
313static int quiet_warnings = 0;
a38cf1db 314
47926f60
KH
315/* CPU name. */
316static const char *cpu_arch_name = NULL;
a38cf1db 317
47926f60 318/* CPU feature flags. */
29b0f896 319static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
a38cf1db 320
fddf5b5b
AM
321/* If set, conditional jumps are not automatically promoted to handle
322 larger than a byte offset. */
323static unsigned int no_cond_jump_promotion = 0;
324
29b0f896
AM
325/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
326symbolS *GOT_symbol;
327
a4447b93
RH
328/* The dwarf2 return column, adjusted for 32 or 64 bit. */
329unsigned int x86_dwarf2_return_column;
330
331/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
332int x86_cie_data_alignment;
333
252b5132 334/* Interface to relax_segment.
fddf5b5b
AM
335 There are 3 major relax states for 386 jump insns because the
336 different types of jumps add different sizes to frags when we're
337 figuring out what sort of jump to choose to reach a given label. */
252b5132 338
47926f60 339/* Types. */
93c2a809
AM
340#define UNCOND_JUMP 0
341#define COND_JUMP 1
342#define COND_JUMP86 2
fddf5b5b 343
47926f60 344/* Sizes. */
252b5132
RH
345#define CODE16 1
346#define SMALL 0
29b0f896 347#define SMALL16 (SMALL | CODE16)
252b5132 348#define BIG 2
29b0f896 349#define BIG16 (BIG | CODE16)
252b5132
RH
350
351#ifndef INLINE
352#ifdef __GNUC__
353#define INLINE __inline__
354#else
355#define INLINE
356#endif
357#endif
358
fddf5b5b
AM
359#define ENCODE_RELAX_STATE(type, size) \
360 ((relax_substateT) (((type) << 2) | (size)))
361#define TYPE_FROM_RELAX_STATE(s) \
362 ((s) >> 2)
363#define DISP_SIZE_FROM_RELAX_STATE(s) \
364 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
365
366/* This table is used by relax_frag to promote short jumps to long
367 ones where necessary. SMALL (short) jumps may be promoted to BIG
368 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
369 don't allow a short jump in a 32 bit code segment to be promoted to
370 a 16 bit offset jump because it's slower (requires data size
371 prefix), and doesn't work, unless the destination is in the bottom
372 64k of the code segment (The top 16 bits of eip are zeroed). */
373
374const relax_typeS md_relax_table[] =
375{
24eab124
AM
376 /* The fields are:
377 1) most positive reach of this state,
378 2) most negative reach of this state,
93c2a809 379 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 380 4) which index into the table to try if we can't fit into this one. */
252b5132 381
fddf5b5b 382 /* UNCOND_JUMP states. */
93c2a809
AM
383 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
384 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
385 /* dword jmp adds 4 bytes to frag:
386 0 extra opcode bytes, 4 displacement bytes. */
252b5132 387 {0, 0, 4, 0},
93c2a809
AM
388 /* word jmp adds 2 byte2 to frag:
389 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
390 {0, 0, 2, 0},
391
93c2a809
AM
392 /* COND_JUMP states. */
393 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
394 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
395 /* dword conditionals adds 5 bytes to frag:
396 1 extra opcode byte, 4 displacement bytes. */
397 {0, 0, 5, 0},
fddf5b5b 398 /* word conditionals add 3 bytes to frag:
93c2a809
AM
399 1 extra opcode byte, 2 displacement bytes. */
400 {0, 0, 3, 0},
401
402 /* COND_JUMP86 states. */
403 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
404 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
405 /* dword conditionals adds 5 bytes to frag:
406 1 extra opcode byte, 4 displacement bytes. */
407 {0, 0, 5, 0},
408 /* word conditionals add 4 bytes to frag:
409 1 displacement byte and a 3 byte long branch insn. */
410 {0, 0, 4, 0}
252b5132
RH
411};
412
e413e4e9
AM
413static const arch_entry cpu_arch[] = {
414 {"i8086", Cpu086 },
415 {"i186", Cpu086|Cpu186 },
416 {"i286", Cpu086|Cpu186|Cpu286 },
417 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
418 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
419 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
420 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
421 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
422 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
a167610d 423 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuSSE|CpuSSE2 },
3e73aa7c
JH
424 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
425 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|Cpu3dnow },
a167610d 426 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|Cpu3dnow|CpuSSE|CpuSSE2 },
e413e4e9
AM
427 {NULL, 0 }
428};
429
29b0f896
AM
430const pseudo_typeS md_pseudo_table[] =
431{
432#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
433 {"align", s_align_bytes, 0},
434#else
435 {"align", s_align_ptwo, 0},
436#endif
437 {"arch", set_cpu_arch, 0},
438#ifndef I386COFF
439 {"bss", s_bss, 0},
440#endif
441 {"ffloat", float_cons, 'f'},
442 {"dfloat", float_cons, 'd'},
443 {"tfloat", float_cons, 'x'},
444 {"value", cons, 2},
445 {"noopt", s_ignore, 0},
446 {"optim", s_ignore, 0},
447 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
448 {"code16", set_code_flag, CODE_16BIT},
449 {"code32", set_code_flag, CODE_32BIT},
450 {"code64", set_code_flag, CODE_64BIT},
451 {"intel_syntax", set_intel_syntax, 1},
452 {"att_syntax", set_intel_syntax, 0},
c6682705 453 {"file", (void (*) PARAMS ((int))) dwarf2_directive_file, 0},
29b0f896 454 {"loc", dwarf2_directive_loc, 0},
6482c264
NC
455#ifdef TE_PE
456 {"secrel32", pe_directive_secrel, 0},
457#endif
29b0f896
AM
458 {0, 0, 0}
459};
460
461/* For interface with expression (). */
462extern char *input_line_pointer;
463
464/* Hash table for instruction mnemonic lookup. */
465static struct hash_control *op_hash;
466
467/* Hash table for register lookup. */
468static struct hash_control *reg_hash;
469\f
252b5132
RH
470void
471i386_align_code (fragP, count)
472 fragS *fragP;
473 int count;
474{
ce8a8b2f
AM
475 /* Various efficient no-op patterns for aligning code labels.
476 Note: Don't try to assemble the instructions in the comments.
477 0L and 0w are not legal. */
252b5132
RH
478 static const char f32_1[] =
479 {0x90}; /* nop */
480 static const char f32_2[] =
481 {0x89,0xf6}; /* movl %esi,%esi */
482 static const char f32_3[] =
483 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
484 static const char f32_4[] =
485 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
486 static const char f32_5[] =
487 {0x90, /* nop */
488 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
489 static const char f32_6[] =
490 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
491 static const char f32_7[] =
492 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
493 static const char f32_8[] =
494 {0x90, /* nop */
495 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
496 static const char f32_9[] =
497 {0x89,0xf6, /* movl %esi,%esi */
498 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
499 static const char f32_10[] =
500 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
501 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
502 static const char f32_11[] =
503 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
504 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
505 static const char f32_12[] =
506 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
507 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
508 static const char f32_13[] =
509 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
510 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
511 static const char f32_14[] =
512 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
513 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
514 static const char f32_15[] =
515 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
516 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
c3332e24
AM
517 static const char f16_3[] =
518 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
252b5132
RH
519 static const char f16_4[] =
520 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
521 static const char f16_5[] =
522 {0x90, /* nop */
523 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
524 static const char f16_6[] =
525 {0x89,0xf6, /* mov %si,%si */
526 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
527 static const char f16_7[] =
528 {0x8d,0x74,0x00, /* lea 0(%si),%si */
529 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
530 static const char f16_8[] =
531 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
532 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
533 static const char *const f32_patt[] = {
534 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
535 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
536 };
537 static const char *const f16_patt[] = {
c3332e24 538 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
252b5132
RH
539 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
540 };
541
33fef721
JH
542 if (count <= 0 || count > 15)
543 return;
3e73aa7c 544
33fef721
JH
545 /* The recommended way to pad 64bit code is to use NOPs preceded by
546 maximally four 0x66 prefixes. Balance the size of nops. */
547 if (flag_code == CODE_64BIT)
252b5132 548 {
33fef721
JH
549 int i;
550 int nnops = (count + 3) / 4;
551 int len = count / nnops;
552 int remains = count - nnops * len;
553 int pos = 0;
554
555 for (i = 0; i < remains; i++)
252b5132 556 {
33fef721
JH
557 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
558 fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
559 pos += len + 1;
560 }
561 for (; i < nnops; i++)
562 {
563 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
564 fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
565 pos += len;
252b5132 566 }
252b5132 567 }
33fef721
JH
568 else
569 if (flag_code == CODE_16BIT)
570 {
571 memcpy (fragP->fr_literal + fragP->fr_fix,
572 f16_patt[count - 1], count);
573 if (count > 8)
574 /* Adjust jump offset. */
575 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
576 }
577 else
578 memcpy (fragP->fr_literal + fragP->fr_fix,
579 f32_patt[count - 1], count);
580 fragP->fr_var = count;
252b5132
RH
581}
582
252b5132
RH
583static INLINE unsigned int
584mode_from_disp_size (t)
585 unsigned int t;
586{
3e73aa7c 587 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
252b5132
RH
588}
589
590static INLINE int
591fits_in_signed_byte (num)
847f7ad4 592 offsetT num;
252b5132
RH
593{
594 return (num >= -128) && (num <= 127);
47926f60 595}
252b5132
RH
596
597static INLINE int
598fits_in_unsigned_byte (num)
847f7ad4 599 offsetT num;
252b5132
RH
600{
601 return (num & 0xff) == num;
47926f60 602}
252b5132
RH
603
604static INLINE int
605fits_in_unsigned_word (num)
847f7ad4 606 offsetT num;
252b5132
RH
607{
608 return (num & 0xffff) == num;
47926f60 609}
252b5132
RH
610
611static INLINE int
612fits_in_signed_word (num)
847f7ad4 613 offsetT num;
252b5132
RH
614{
615 return (-32768 <= num) && (num <= 32767);
47926f60 616}
3e73aa7c
JH
617static INLINE int
618fits_in_signed_long (num)
619 offsetT num ATTRIBUTE_UNUSED;
620{
621#ifndef BFD64
622 return 1;
623#else
624 return (!(((offsetT) -1 << 31) & num)
625 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
626#endif
627} /* fits_in_signed_long() */
628static INLINE int
629fits_in_unsigned_long (num)
630 offsetT num ATTRIBUTE_UNUSED;
631{
632#ifndef BFD64
633 return 1;
634#else
635 return (num & (((offsetT) 2 << 31) - 1)) == num;
636#endif
637} /* fits_in_unsigned_long() */
252b5132
RH
638
639static int
640smallest_imm_type (num)
847f7ad4 641 offsetT num;
252b5132 642{
a847613f 643 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
e413e4e9
AM
644 {
645 /* This code is disabled on the 486 because all the Imm1 forms
646 in the opcode table are slower on the i486. They're the
647 versions with the implicitly specified single-position
648 displacement, which has another syntax if you really want to
649 use that form. */
650 if (num == 1)
3e73aa7c 651 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
e413e4e9 652 }
252b5132 653 return (fits_in_signed_byte (num)
3e73aa7c 654 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 655 : fits_in_unsigned_byte (num)
3e73aa7c 656 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 657 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
3e73aa7c
JH
658 ? (Imm16 | Imm32 | Imm32S | Imm64)
659 : fits_in_signed_long (num)
660 ? (Imm32 | Imm32S | Imm64)
661 : fits_in_unsigned_long (num)
662 ? (Imm32 | Imm64)
663 : Imm64);
47926f60 664}
252b5132 665
847f7ad4
AM
666static offsetT
667offset_in_range (val, size)
668 offsetT val;
669 int size;
670{
508866be 671 addressT mask;
ba2adb93 672
847f7ad4
AM
673 switch (size)
674 {
508866be
L
675 case 1: mask = ((addressT) 1 << 8) - 1; break;
676 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 677 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
678#ifdef BFD64
679 case 8: mask = ((addressT) 2 << 63) - 1; break;
680#endif
47926f60 681 default: abort ();
847f7ad4
AM
682 }
683
ba2adb93 684 /* If BFD64, sign extend val. */
3e73aa7c
JH
685 if (!use_rela_relocations)
686 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
687 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
ba2adb93 688
47926f60 689 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
690 {
691 char buf1[40], buf2[40];
692
693 sprint_value (buf1, val);
694 sprint_value (buf2, val & mask);
695 as_warn (_("%s shortened to %s"), buf1, buf2);
696 }
697 return val & mask;
698}
699
252b5132
RH
700/* Returns 0 if attempting to add a prefix where one from the same
701 class already exists, 1 if non rep/repne added, 2 if rep/repne
702 added. */
703static int
704add_prefix (prefix)
705 unsigned int prefix;
706{
707 int ret = 1;
708 int q;
709
29b0f896
AM
710 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
711 && flag_code == CODE_64BIT)
3e73aa7c
JH
712 q = REX_PREFIX;
713 else
714 switch (prefix)
715 {
716 default:
717 abort ();
718
719 case CS_PREFIX_OPCODE:
720 case DS_PREFIX_OPCODE:
721 case ES_PREFIX_OPCODE:
722 case FS_PREFIX_OPCODE:
723 case GS_PREFIX_OPCODE:
724 case SS_PREFIX_OPCODE:
725 q = SEG_PREFIX;
726 break;
252b5132 727
3e73aa7c
JH
728 case REPNE_PREFIX_OPCODE:
729 case REPE_PREFIX_OPCODE:
730 ret = 2;
731 /* fall thru */
732 case LOCK_PREFIX_OPCODE:
733 q = LOCKREP_PREFIX;
734 break;
252b5132 735
3e73aa7c
JH
736 case FWAIT_OPCODE:
737 q = WAIT_PREFIX;
738 break;
252b5132 739
3e73aa7c
JH
740 case ADDR_PREFIX_OPCODE:
741 q = ADDR_PREFIX;
742 break;
252b5132 743
3e73aa7c
JH
744 case DATA_PREFIX_OPCODE:
745 q = DATA_PREFIX;
746 break;
747 }
252b5132 748
29b0f896 749 if (i.prefix[q] != 0)
252b5132
RH
750 {
751 as_bad (_("same type of prefix used twice"));
752 return 0;
753 }
754
755 i.prefixes += 1;
756 i.prefix[q] = prefix;
757 return ret;
758}
759
760static void
3e73aa7c 761set_code_flag (value)
e5cb08ac 762 int value;
eecb386c 763{
3e73aa7c
JH
764 flag_code = value;
765 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
766 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
767 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
768 {
769 as_bad (_("64bit mode not supported on this CPU."));
770 }
771 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
772 {
773 as_bad (_("32bit mode not supported on this CPU."));
774 }
eecb386c
AM
775 stackop_size = '\0';
776}
777
778static void
3e73aa7c
JH
779set_16bit_gcc_code_flag (new_code_flag)
780 int new_code_flag;
252b5132 781{
3e73aa7c
JH
782 flag_code = new_code_flag;
783 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
784 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
785 stackop_size = 'l';
252b5132
RH
786}
787
788static void
789set_intel_syntax (syntax_flag)
eecb386c 790 int syntax_flag;
252b5132
RH
791{
792 /* Find out if register prefixing is specified. */
793 int ask_naked_reg = 0;
794
795 SKIP_WHITESPACE ();
29b0f896 796 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132
RH
797 {
798 char *string = input_line_pointer;
799 int e = get_symbol_end ();
800
47926f60 801 if (strcmp (string, "prefix") == 0)
252b5132 802 ask_naked_reg = 1;
47926f60 803 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
804 ask_naked_reg = -1;
805 else
d0b47220 806 as_bad (_("bad argument to syntax directive."));
252b5132
RH
807 *input_line_pointer = e;
808 }
809 demand_empty_rest_of_line ();
c3332e24 810
252b5132
RH
811 intel_syntax = syntax_flag;
812
813 if (ask_naked_reg == 0)
f86103b7
AM
814 allow_naked_reg = (intel_syntax
815 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
816 else
817 allow_naked_reg = (ask_naked_reg < 0);
818}
819
e413e4e9
AM
820static void
821set_cpu_arch (dummy)
47926f60 822 int dummy ATTRIBUTE_UNUSED;
e413e4e9 823{
47926f60 824 SKIP_WHITESPACE ();
e413e4e9 825
29b0f896 826 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9
AM
827 {
828 char *string = input_line_pointer;
829 int e = get_symbol_end ();
830 int i;
831
832 for (i = 0; cpu_arch[i].name; i++)
833 {
834 if (strcmp (string, cpu_arch[i].name) == 0)
835 {
836 cpu_arch_name = cpu_arch[i].name;
fddf5b5b
AM
837 cpu_arch_flags = (cpu_arch[i].flags
838 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
e413e4e9
AM
839 break;
840 }
841 }
842 if (!cpu_arch[i].name)
843 as_bad (_("no such architecture: `%s'"), string);
844
845 *input_line_pointer = e;
846 }
847 else
848 as_bad (_("missing cpu architecture"));
849
fddf5b5b
AM
850 no_cond_jump_promotion = 0;
851 if (*input_line_pointer == ','
29b0f896 852 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b
AM
853 {
854 char *string = ++input_line_pointer;
855 int e = get_symbol_end ();
856
857 if (strcmp (string, "nojumps") == 0)
858 no_cond_jump_promotion = 1;
859 else if (strcmp (string, "jumps") == 0)
860 ;
861 else
862 as_bad (_("no such architecture modifier: `%s'"), string);
863
864 *input_line_pointer = e;
865 }
866
e413e4e9
AM
867 demand_empty_rest_of_line ();
868}
869
b9d79e03
JH
870unsigned long
871i386_mach ()
872{
873 if (!strcmp (default_arch, "x86_64"))
874 return bfd_mach_x86_64;
875 else if (!strcmp (default_arch, "i386"))
876 return bfd_mach_i386_i386;
877 else
878 as_fatal (_("Unknown architecture"));
879}
b9d79e03 880\f
252b5132
RH
881void
882md_begin ()
883{
884 const char *hash_err;
885
47926f60 886 /* Initialize op_hash hash table. */
252b5132
RH
887 op_hash = hash_new ();
888
889 {
29b0f896
AM
890 const template *optab;
891 templates *core_optab;
252b5132 892
47926f60
KH
893 /* Setup for loop. */
894 optab = i386_optab;
252b5132
RH
895 core_optab = (templates *) xmalloc (sizeof (templates));
896 core_optab->start = optab;
897
898 while (1)
899 {
900 ++optab;
901 if (optab->name == NULL
902 || strcmp (optab->name, (optab - 1)->name) != 0)
903 {
904 /* different name --> ship out current template list;
47926f60 905 add to hash table; & begin anew. */
252b5132
RH
906 core_optab->end = optab;
907 hash_err = hash_insert (op_hash,
908 (optab - 1)->name,
909 (PTR) core_optab);
910 if (hash_err)
911 {
252b5132
RH
912 as_fatal (_("Internal Error: Can't hash %s: %s"),
913 (optab - 1)->name,
914 hash_err);
915 }
916 if (optab->name == NULL)
917 break;
918 core_optab = (templates *) xmalloc (sizeof (templates));
919 core_optab->start = optab;
920 }
921 }
922 }
923
47926f60 924 /* Initialize reg_hash hash table. */
252b5132
RH
925 reg_hash = hash_new ();
926 {
29b0f896 927 const reg_entry *regtab;
252b5132
RH
928
929 for (regtab = i386_regtab;
930 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
931 regtab++)
932 {
933 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
934 if (hash_err)
3e73aa7c
JH
935 as_fatal (_("Internal Error: Can't hash %s: %s"),
936 regtab->reg_name,
937 hash_err);
252b5132
RH
938 }
939 }
940
47926f60 941 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 942 {
29b0f896
AM
943 int c;
944 char *p;
252b5132
RH
945
946 for (c = 0; c < 256; c++)
947 {
3882b010 948 if (ISDIGIT (c))
252b5132
RH
949 {
950 digit_chars[c] = c;
951 mnemonic_chars[c] = c;
952 register_chars[c] = c;
953 operand_chars[c] = c;
954 }
3882b010 955 else if (ISLOWER (c))
252b5132
RH
956 {
957 mnemonic_chars[c] = c;
958 register_chars[c] = c;
959 operand_chars[c] = c;
960 }
3882b010 961 else if (ISUPPER (c))
252b5132 962 {
3882b010 963 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
964 register_chars[c] = mnemonic_chars[c];
965 operand_chars[c] = c;
966 }
967
3882b010 968 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
969 identifier_chars[c] = c;
970 else if (c >= 128)
971 {
972 identifier_chars[c] = c;
973 operand_chars[c] = c;
974 }
975 }
976
977#ifdef LEX_AT
978 identifier_chars['@'] = '@';
32137342
NC
979#endif
980#ifdef LEX_QM
981 identifier_chars['?'] = '?';
982 operand_chars['?'] = '?';
252b5132 983#endif
252b5132
RH
984 digit_chars['-'] = '-';
985 identifier_chars['_'] = '_';
986 identifier_chars['.'] = '.';
987
988 for (p = operand_special_chars; *p != '\0'; p++)
989 operand_chars[(unsigned char) *p] = *p;
990 }
991
992#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
993 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
994 {
995 record_alignment (text_section, 2);
996 record_alignment (data_section, 2);
997 record_alignment (bss_section, 2);
998 }
999#endif
a4447b93
RH
1000
1001 if (flag_code == CODE_64BIT)
1002 {
1003 x86_dwarf2_return_column = 16;
1004 x86_cie_data_alignment = -8;
1005 }
1006 else
1007 {
1008 x86_dwarf2_return_column = 8;
1009 x86_cie_data_alignment = -4;
1010 }
252b5132
RH
1011}
1012
1013void
1014i386_print_statistics (file)
1015 FILE *file;
1016{
1017 hash_print_statistics (file, "i386 opcode", op_hash);
1018 hash_print_statistics (file, "i386 register", reg_hash);
1019}
1020\f
252b5132
RH
1021#ifdef DEBUG386
1022
ce8a8b2f 1023/* Debugging routines for md_assemble. */
252b5132
RH
1024static void pi PARAMS ((char *, i386_insn *));
1025static void pte PARAMS ((template *));
1026static void pt PARAMS ((unsigned int));
1027static void pe PARAMS ((expressionS *));
1028static void ps PARAMS ((symbolS *));
1029
1030static void
1031pi (line, x)
1032 char *line;
1033 i386_insn *x;
1034{
09f131f2 1035 unsigned int i;
252b5132
RH
1036
1037 fprintf (stdout, "%s: template ", line);
1038 pte (&x->tm);
09f131f2
JH
1039 fprintf (stdout, " address: base %s index %s scale %x\n",
1040 x->base_reg ? x->base_reg->reg_name : "none",
1041 x->index_reg ? x->index_reg->reg_name : "none",
1042 x->log2_scale_factor);
1043 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 1044 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
1045 fprintf (stdout, " sib: base %x index %x scale %x\n",
1046 x->sib.base, x->sib.index, x->sib.scale);
1047 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
29b0f896
AM
1048 (x->rex & REX_MODE64) != 0,
1049 (x->rex & REX_EXTX) != 0,
1050 (x->rex & REX_EXTY) != 0,
1051 (x->rex & REX_EXTZ) != 0);
252b5132
RH
1052 for (i = 0; i < x->operands; i++)
1053 {
1054 fprintf (stdout, " #%d: ", i + 1);
1055 pt (x->types[i]);
1056 fprintf (stdout, "\n");
1057 if (x->types[i]
3f4438ab 1058 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
520dc8e8 1059 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
252b5132 1060 if (x->types[i] & Imm)
520dc8e8 1061 pe (x->op[i].imms);
252b5132 1062 if (x->types[i] & Disp)
520dc8e8 1063 pe (x->op[i].disps);
252b5132
RH
1064 }
1065}
1066
1067static void
1068pte (t)
1069 template *t;
1070{
09f131f2 1071 unsigned int i;
252b5132 1072 fprintf (stdout, " %d operands ", t->operands);
47926f60 1073 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
1074 if (t->extension_opcode != None)
1075 fprintf (stdout, "ext %x ", t->extension_opcode);
1076 if (t->opcode_modifier & D)
1077 fprintf (stdout, "D");
1078 if (t->opcode_modifier & W)
1079 fprintf (stdout, "W");
1080 fprintf (stdout, "\n");
1081 for (i = 0; i < t->operands; i++)
1082 {
1083 fprintf (stdout, " #%d type ", i + 1);
1084 pt (t->operand_types[i]);
1085 fprintf (stdout, "\n");
1086 }
1087}
1088
1089static void
1090pe (e)
1091 expressionS *e;
1092{
24eab124 1093 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
1094 fprintf (stdout, " add_number %ld (%lx)\n",
1095 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
1096 if (e->X_add_symbol)
1097 {
1098 fprintf (stdout, " add_symbol ");
1099 ps (e->X_add_symbol);
1100 fprintf (stdout, "\n");
1101 }
1102 if (e->X_op_symbol)
1103 {
1104 fprintf (stdout, " op_symbol ");
1105 ps (e->X_op_symbol);
1106 fprintf (stdout, "\n");
1107 }
1108}
1109
1110static void
1111ps (s)
1112 symbolS *s;
1113{
1114 fprintf (stdout, "%s type %s%s",
1115 S_GET_NAME (s),
1116 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1117 segment_name (S_GET_SEGMENT (s)));
1118}
1119
1120struct type_name
1121 {
1122 unsigned int mask;
1123 char *tname;
1124 }
1125
29b0f896 1126static const type_names[] =
252b5132
RH
1127{
1128 { Reg8, "r8" },
1129 { Reg16, "r16" },
1130 { Reg32, "r32" },
09f131f2 1131 { Reg64, "r64" },
252b5132
RH
1132 { Imm8, "i8" },
1133 { Imm8S, "i8s" },
1134 { Imm16, "i16" },
1135 { Imm32, "i32" },
09f131f2
JH
1136 { Imm32S, "i32s" },
1137 { Imm64, "i64" },
252b5132
RH
1138 { Imm1, "i1" },
1139 { BaseIndex, "BaseIndex" },
1140 { Disp8, "d8" },
1141 { Disp16, "d16" },
1142 { Disp32, "d32" },
09f131f2
JH
1143 { Disp32S, "d32s" },
1144 { Disp64, "d64" },
252b5132
RH
1145 { InOutPortReg, "InOutPortReg" },
1146 { ShiftCount, "ShiftCount" },
1147 { Control, "control reg" },
1148 { Test, "test reg" },
1149 { Debug, "debug reg" },
1150 { FloatReg, "FReg" },
1151 { FloatAcc, "FAcc" },
1152 { SReg2, "SReg2" },
1153 { SReg3, "SReg3" },
1154 { Acc, "Acc" },
1155 { JumpAbsolute, "Jump Absolute" },
1156 { RegMMX, "rMMX" },
3f4438ab 1157 { RegXMM, "rXMM" },
252b5132
RH
1158 { EsSeg, "es" },
1159 { 0, "" }
1160};
1161
1162static void
1163pt (t)
1164 unsigned int t;
1165{
29b0f896 1166 const struct type_name *ty;
252b5132 1167
09f131f2
JH
1168 for (ty = type_names; ty->mask; ty++)
1169 if (t & ty->mask)
1170 fprintf (stdout, "%s, ", ty->tname);
252b5132
RH
1171 fflush (stdout);
1172}
1173
1174#endif /* DEBUG386 */
1175\f
29b0f896
AM
1176static bfd_reloc_code_real_type reloc
1177 PARAMS ((int, int, int, bfd_reloc_code_real_type));
252b5132
RH
1178
1179static bfd_reloc_code_real_type
3e73aa7c 1180reloc (size, pcrel, sign, other)
252b5132
RH
1181 int size;
1182 int pcrel;
3e73aa7c 1183 int sign;
252b5132
RH
1184 bfd_reloc_code_real_type other;
1185{
47926f60
KH
1186 if (other != NO_RELOC)
1187 return other;
252b5132
RH
1188
1189 if (pcrel)
1190 {
3e73aa7c 1191 if (!sign)
e5cb08ac 1192 as_bad (_("There are no unsigned pc-relative relocations"));
252b5132
RH
1193 switch (size)
1194 {
1195 case 1: return BFD_RELOC_8_PCREL;
1196 case 2: return BFD_RELOC_16_PCREL;
1197 case 4: return BFD_RELOC_32_PCREL;
1198 }
d0b47220 1199 as_bad (_("can not do %d byte pc-relative relocation"), size);
252b5132
RH
1200 }
1201 else
1202 {
3e73aa7c 1203 if (sign)
e5cb08ac 1204 switch (size)
3e73aa7c
JH
1205 {
1206 case 4: return BFD_RELOC_X86_64_32S;
1207 }
1208 else
1209 switch (size)
1210 {
1211 case 1: return BFD_RELOC_8;
1212 case 2: return BFD_RELOC_16;
1213 case 4: return BFD_RELOC_32;
1214 case 8: return BFD_RELOC_64;
1215 }
1216 as_bad (_("can not do %s %d byte relocation"),
1217 sign ? "signed" : "unsigned", size);
252b5132
RH
1218 }
1219
bfb32b52 1220 abort ();
252b5132
RH
1221 return BFD_RELOC_NONE;
1222}
1223
47926f60
KH
1224/* Here we decide which fixups can be adjusted to make them relative to
1225 the beginning of the section instead of the symbol. Basically we need
1226 to make sure that the dynamic relocations are done correctly, so in
1227 some cases we force the original symbol to be used. */
1228
252b5132 1229int
c0c949c7 1230tc_i386_fix_adjustable (fixP)
31312f95 1231 fixS *fixP ATTRIBUTE_UNUSED;
252b5132 1232{
6d249963 1233#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
31312f95
AM
1234 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
1235 return 1;
1236
a161fe53
AM
1237 /* Don't adjust pc-relative references to merge sections in 64-bit
1238 mode. */
1239 if (use_rela_relocations
1240 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1241 && fixP->fx_pcrel)
252b5132 1242 return 0;
31312f95 1243
8d01d9a9
AJ
1244 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
1245 and changed later by validate_fix. */
1246 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
1247 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
1248 return 0;
1249
ce8a8b2f 1250 /* adjust_reloc_syms doesn't know about the GOT. */
252b5132
RH
1251 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1252 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1253 || fixP->fx_r_type == BFD_RELOC_386_GOT32
13ae64f3
JJ
1254 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1255 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1256 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1257 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
1258 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1259 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
1260 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1261 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3e73aa7c
JH
1262 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1263 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 1264 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
bffbf940
JJ
1265 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1266 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1267 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
1268 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1269 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
252b5132
RH
1270 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1271 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1272 return 0;
31312f95 1273#endif
252b5132
RH
1274 return 1;
1275}
252b5132 1276
29b0f896 1277static int intel_float_operand PARAMS ((const char *mnemonic));
b4cac588
AM
1278
1279static int
252b5132 1280intel_float_operand (mnemonic)
29b0f896 1281 const char *mnemonic;
252b5132 1282{
47926f60 1283 if (mnemonic[0] == 'f' && mnemonic[1] == 'i')
cc5ca5ce 1284 return 2;
252b5132
RH
1285
1286 if (mnemonic[0] == 'f')
1287 return 1;
1288
1289 return 0;
1290}
1291
1292/* This is the guts of the machine-dependent assembler. LINE points to a
1293 machine dependent instruction. This function is supposed to emit
1294 the frags/bytes it assembles to. */
1295
1296void
1297md_assemble (line)
1298 char *line;
1299{
252b5132 1300 int j;
252b5132
RH
1301 char mnemonic[MAX_MNEM_SIZE];
1302
47926f60 1303 /* Initialize globals. */
252b5132
RH
1304 memset (&i, '\0', sizeof (i));
1305 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 1306 i.reloc[j] = NO_RELOC;
252b5132
RH
1307 memset (disp_expressions, '\0', sizeof (disp_expressions));
1308 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 1309 save_stack_p = save_stack;
252b5132
RH
1310
1311 /* First parse an instruction mnemonic & call i386_operand for the operands.
1312 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 1313 start of a (possibly prefixed) mnemonic. */
252b5132 1314
29b0f896
AM
1315 line = parse_insn (line, mnemonic);
1316 if (line == NULL)
1317 return;
252b5132 1318
29b0f896
AM
1319 line = parse_operands (line, mnemonic);
1320 if (line == NULL)
1321 return;
252b5132 1322
29b0f896
AM
1323 /* Now we've parsed the mnemonic into a set of templates, and have the
1324 operands at hand. */
1325
1326 /* All intel opcodes have reversed operands except for "bound" and
1327 "enter". We also don't reverse intersegment "jmp" and "call"
1328 instructions with 2 immediate operands so that the immediate segment
1329 precedes the offset, as it does when in AT&T mode. "enter" and the
1330 intersegment "jmp" and "call" instructions are the only ones that
1331 have two immediate operands. */
1332 if (intel_syntax && i.operands > 1
1333 && (strcmp (mnemonic, "bound") != 0)
1334 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1335 swap_operands ();
1336
1337 if (i.imm_operands)
1338 optimize_imm ();
1339
1340 if (i.disp_operands)
1341 optimize_disp ();
1342
1343 /* Next, we find a template that matches the given insn,
1344 making sure the overlap of the given operands types is consistent
1345 with the template operand types. */
252b5132 1346
29b0f896
AM
1347 if (!match_template ())
1348 return;
252b5132 1349
cd61ebfe
AM
1350 if (intel_syntax)
1351 {
1352 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1353 if (SYSV386_COMPAT
1354 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1355 i.tm.base_opcode ^= FloatR;
1356
1357 /* Zap movzx and movsx suffix. The suffix may have been set from
1358 "word ptr" or "byte ptr" on the source operand, but we'll use
1359 the suffix later to choose the destination register. */
1360 if ((i.tm.base_opcode & ~9) == 0x0fb6)
1361 i.suffix = 0;
1362 }
24eab124 1363
29b0f896
AM
1364 if (i.tm.opcode_modifier & FWait)
1365 if (!add_prefix (FWAIT_OPCODE))
1366 return;
252b5132 1367
29b0f896
AM
1368 /* Check string instruction segment overrides. */
1369 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1370 {
1371 if (!check_string ())
5dd0794d 1372 return;
29b0f896 1373 }
5dd0794d 1374
29b0f896
AM
1375 if (!process_suffix ())
1376 return;
e413e4e9 1377
29b0f896
AM
1378 /* Make still unresolved immediate matches conform to size of immediate
1379 given in i.suffix. */
1380 if (!finalize_imm ())
1381 return;
252b5132 1382
29b0f896
AM
1383 if (i.types[0] & Imm1)
1384 i.imm_operands = 0; /* kludge for shift insns. */
1385 if (i.types[0] & ImplicitRegister)
1386 i.reg_operands--;
1387 if (i.types[1] & ImplicitRegister)
1388 i.reg_operands--;
1389 if (i.types[2] & ImplicitRegister)
1390 i.reg_operands--;
252b5132 1391
29b0f896
AM
1392 if (i.tm.opcode_modifier & ImmExt)
1393 {
02fc3089
L
1394 expressionS *exp;
1395
ca164297
L
1396 if ((i.tm.cpu_flags & CpuPNI) && i.operands > 0)
1397 {
67c1ffbe 1398 /* These Intel Prescott New Instructions have the fixed
ca164297
L
1399 operands with an opcode suffix which is coded in the same
1400 place as an 8-bit immediate field would be. Here we check
1401 those operands and remove them afterwards. */
1402 unsigned int x;
1403
a4622f40 1404 for (x = 0; x < i.operands; x++)
ca164297
L
1405 if (i.op[x].regs->reg_num != x)
1406 as_bad (_("can't use register '%%%s' as operand %d in '%s'."),
1407 i.op[x].regs->reg_name, x + 1, i.tm.name);
1408 i.operands = 0;
1409 }
1410
29b0f896
AM
1411 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1412 opcode suffix which is coded in the same place as an 8-bit
1413 immediate field would be. Here we fake an 8-bit immediate
1414 operand from the opcode suffix stored in tm.extension_opcode. */
252b5132 1415
29b0f896 1416 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
252b5132 1417
29b0f896
AM
1418 exp = &im_expressions[i.imm_operands++];
1419 i.op[i.operands].imms = exp;
1420 i.types[i.operands++] = Imm8;
1421 exp->X_op = O_constant;
1422 exp->X_add_number = i.tm.extension_opcode;
1423 i.tm.extension_opcode = None;
1424 }
252b5132 1425
29b0f896
AM
1426 /* For insns with operands there are more diddles to do to the opcode. */
1427 if (i.operands)
1428 {
1429 if (!process_operands ())
1430 return;
1431 }
1432 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1433 {
1434 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1435 as_warn (_("translating to `%sp'"), i.tm.name);
1436 }
252b5132 1437
29b0f896
AM
1438 /* Handle conversion of 'int $3' --> special int3 insn. */
1439 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1440 {
1441 i.tm.base_opcode = INT3_OPCODE;
1442 i.imm_operands = 0;
1443 }
252b5132 1444
29b0f896
AM
1445 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1446 && i.op[0].disps->X_op == O_constant)
1447 {
1448 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1449 the absolute address given by the constant. Since ix86 jumps and
1450 calls are pc relative, we need to generate a reloc. */
1451 i.op[0].disps->X_add_symbol = &abs_symbol;
1452 i.op[0].disps->X_op = O_symbol;
1453 }
252b5132 1454
29b0f896
AM
1455 if ((i.tm.opcode_modifier & Rex64) != 0)
1456 i.rex |= REX_MODE64;
252b5132 1457
29b0f896
AM
1458 /* For 8 bit registers we need an empty rex prefix. Also if the
1459 instruction already has a prefix, we need to convert old
1460 registers to new ones. */
773f551c 1461
29b0f896
AM
1462 if (((i.types[0] & Reg8) != 0
1463 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1464 || ((i.types[1] & Reg8) != 0
1465 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1466 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1467 && i.rex != 0))
1468 {
1469 int x;
726c5dcd 1470
29b0f896
AM
1471 i.rex |= REX_OPCODE;
1472 for (x = 0; x < 2; x++)
1473 {
1474 /* Look for 8 bit operand that uses old registers. */
1475 if ((i.types[x] & Reg8) != 0
1476 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 1477 {
29b0f896
AM
1478 /* In case it is "hi" register, give up. */
1479 if (i.op[x].regs->reg_num > 3)
0477af35 1480 as_bad (_("can't encode register '%%%s' in an instruction requiring REX prefix."),
29b0f896 1481 i.op[x].regs->reg_name);
773f551c 1482
29b0f896
AM
1483 /* Otherwise it is equivalent to the extended register.
1484 Since the encoding doesn't change this is merely
1485 cosmetic cleanup for debug output. */
1486
1487 i.op[x].regs = i.op[x].regs + 8;
773f551c 1488 }
29b0f896
AM
1489 }
1490 }
773f551c 1491
29b0f896
AM
1492 if (i.rex != 0)
1493 add_prefix (REX_OPCODE | i.rex);
1494
1495 /* We are ready to output the insn. */
1496 output_insn ();
1497}
1498
1499static char *
1500parse_insn (line, mnemonic)
1501 char *line;
1502 char *mnemonic;
1503{
1504 char *l = line;
1505 char *token_start = l;
1506 char *mnem_p;
1507
1508 /* Non-zero if we found a prefix only acceptable with string insns. */
1509 const char *expecting_string_instruction = NULL;
45288df1 1510
29b0f896
AM
1511 while (1)
1512 {
1513 mnem_p = mnemonic;
1514 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1515 {
1516 mnem_p++;
1517 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 1518 {
29b0f896
AM
1519 as_bad (_("no such instruction: `%s'"), token_start);
1520 return NULL;
1521 }
1522 l++;
1523 }
1524 if (!is_space_char (*l)
1525 && *l != END_OF_INSN
1526 && *l != PREFIX_SEPARATOR
1527 && *l != ',')
1528 {
1529 as_bad (_("invalid character %s in mnemonic"),
1530 output_invalid (*l));
1531 return NULL;
1532 }
1533 if (token_start == l)
1534 {
1535 if (*l == PREFIX_SEPARATOR)
1536 as_bad (_("expecting prefix; got nothing"));
1537 else
1538 as_bad (_("expecting mnemonic; got nothing"));
1539 return NULL;
1540 }
45288df1 1541
29b0f896
AM
1542 /* Look up instruction (or prefix) via hash table. */
1543 current_templates = hash_find (op_hash, mnemonic);
47926f60 1544
29b0f896
AM
1545 if (*l != END_OF_INSN
1546 && (!is_space_char (*l) || l[1] != END_OF_INSN)
1547 && current_templates
1548 && (current_templates->start->opcode_modifier & IsPrefix))
1549 {
1550 /* If we are in 16-bit mode, do not allow addr16 or data16.
1551 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1552 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1553 && flag_code != CODE_64BIT
1554 && (((current_templates->start->opcode_modifier & Size32) != 0)
1555 ^ (flag_code == CODE_16BIT)))
1556 {
1557 as_bad (_("redundant %s prefix"),
1558 current_templates->start->name);
1559 return NULL;
45288df1 1560 }
29b0f896
AM
1561 /* Add prefix, checking for repeated prefixes. */
1562 switch (add_prefix (current_templates->start->base_opcode))
1563 {
1564 case 0:
1565 return NULL;
1566 case 2:
1567 expecting_string_instruction = current_templates->start->name;
1568 break;
1569 }
1570 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1571 token_start = ++l;
1572 }
1573 else
1574 break;
1575 }
45288df1 1576
29b0f896
AM
1577 if (!current_templates)
1578 {
1579 /* See if we can get a match by trimming off a suffix. */
1580 switch (mnem_p[-1])
1581 {
1582 case WORD_MNEM_SUFFIX:
1583 case BYTE_MNEM_SUFFIX:
1584 case QWORD_MNEM_SUFFIX:
1585 i.suffix = mnem_p[-1];
1586 mnem_p[-1] = '\0';
1587 current_templates = hash_find (op_hash, mnemonic);
1588 break;
1589 case SHORT_MNEM_SUFFIX:
1590 case LONG_MNEM_SUFFIX:
1591 if (!intel_syntax)
1592 {
1593 i.suffix = mnem_p[-1];
1594 mnem_p[-1] = '\0';
1595 current_templates = hash_find (op_hash, mnemonic);
1596 }
1597 break;
252b5132 1598
29b0f896
AM
1599 /* Intel Syntax. */
1600 case 'd':
1601 if (intel_syntax)
1602 {
1603 if (intel_float_operand (mnemonic))
1604 i.suffix = SHORT_MNEM_SUFFIX;
1605 else
1606 i.suffix = LONG_MNEM_SUFFIX;
1607 mnem_p[-1] = '\0';
1608 current_templates = hash_find (op_hash, mnemonic);
1609 }
1610 break;
1611 }
1612 if (!current_templates)
1613 {
1614 as_bad (_("no such instruction: `%s'"), token_start);
1615 return NULL;
1616 }
1617 }
252b5132 1618
29b0f896
AM
1619 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
1620 {
1621 /* Check for a branch hint. We allow ",pt" and ",pn" for
1622 predict taken and predict not taken respectively.
1623 I'm not sure that branch hints actually do anything on loop
1624 and jcxz insns (JumpByte) for current Pentium4 chips. They
1625 may work in the future and it doesn't hurt to accept them
1626 now. */
1627 if (l[0] == ',' && l[1] == 'p')
1628 {
1629 if (l[2] == 't')
1630 {
1631 if (!add_prefix (DS_PREFIX_OPCODE))
1632 return NULL;
1633 l += 3;
1634 }
1635 else if (l[2] == 'n')
1636 {
1637 if (!add_prefix (CS_PREFIX_OPCODE))
1638 return NULL;
1639 l += 3;
1640 }
1641 }
1642 }
1643 /* Any other comma loses. */
1644 if (*l == ',')
1645 {
1646 as_bad (_("invalid character %s in mnemonic"),
1647 output_invalid (*l));
1648 return NULL;
1649 }
252b5132 1650
29b0f896
AM
1651 /* Check if instruction is supported on specified architecture. */
1652 if ((current_templates->start->cpu_flags & ~(Cpu64 | CpuNo64))
1653 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64)))
1654 {
1655 as_warn (_("`%s' is not supported on `%s'"),
1656 current_templates->start->name, cpu_arch_name);
1657 }
1658 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1659 {
1660 as_warn (_("use .code16 to ensure correct addressing mode"));
1661 }
252b5132 1662
29b0f896
AM
1663 /* Check for rep/repne without a string instruction. */
1664 if (expecting_string_instruction
1665 && !(current_templates->start->opcode_modifier & IsString))
1666 {
1667 as_bad (_("expecting string instruction after `%s'"),
1668 expecting_string_instruction);
1669 return NULL;
1670 }
252b5132 1671
29b0f896
AM
1672 return l;
1673}
252b5132 1674
29b0f896
AM
1675static char *
1676parse_operands (l, mnemonic)
1677 char *l;
1678 const char *mnemonic;
1679{
1680 char *token_start;
3138f287 1681
29b0f896
AM
1682 /* 1 if operand is pending after ','. */
1683 unsigned int expecting_operand = 0;
252b5132 1684
29b0f896
AM
1685 /* Non-zero if operand parens not balanced. */
1686 unsigned int paren_not_balanced;
1687
1688 while (*l != END_OF_INSN)
1689 {
1690 /* Skip optional white space before operand. */
1691 if (is_space_char (*l))
1692 ++l;
1693 if (!is_operand_char (*l) && *l != END_OF_INSN)
1694 {
1695 as_bad (_("invalid character %s before operand %d"),
1696 output_invalid (*l),
1697 i.operands + 1);
1698 return NULL;
1699 }
1700 token_start = l; /* after white space */
1701 paren_not_balanced = 0;
1702 while (paren_not_balanced || *l != ',')
1703 {
1704 if (*l == END_OF_INSN)
1705 {
1706 if (paren_not_balanced)
1707 {
1708 if (!intel_syntax)
1709 as_bad (_("unbalanced parenthesis in operand %d."),
1710 i.operands + 1);
1711 else
1712 as_bad (_("unbalanced brackets in operand %d."),
1713 i.operands + 1);
1714 return NULL;
1715 }
1716 else
1717 break; /* we are done */
1718 }
1719 else if (!is_operand_char (*l) && !is_space_char (*l))
1720 {
1721 as_bad (_("invalid character %s in operand %d"),
1722 output_invalid (*l),
1723 i.operands + 1);
1724 return NULL;
1725 }
1726 if (!intel_syntax)
1727 {
1728 if (*l == '(')
1729 ++paren_not_balanced;
1730 if (*l == ')')
1731 --paren_not_balanced;
1732 }
1733 else
1734 {
1735 if (*l == '[')
1736 ++paren_not_balanced;
1737 if (*l == ']')
1738 --paren_not_balanced;
1739 }
1740 l++;
1741 }
1742 if (l != token_start)
1743 { /* Yes, we've read in another operand. */
1744 unsigned int operand_ok;
1745 this_operand = i.operands++;
1746 if (i.operands > MAX_OPERANDS)
1747 {
1748 as_bad (_("spurious operands; (%d operands/instruction max)"),
1749 MAX_OPERANDS);
1750 return NULL;
1751 }
1752 /* Now parse operand adding info to 'i' as we go along. */
1753 END_STRING_AND_SAVE (l);
1754
1755 if (intel_syntax)
1756 operand_ok =
1757 i386_intel_operand (token_start,
1758 intel_float_operand (mnemonic));
1759 else
1760 operand_ok = i386_operand (token_start);
1761
1762 RESTORE_END_STRING (l);
1763 if (!operand_ok)
1764 return NULL;
1765 }
1766 else
1767 {
1768 if (expecting_operand)
1769 {
1770 expecting_operand_after_comma:
1771 as_bad (_("expecting operand after ','; got nothing"));
1772 return NULL;
1773 }
1774 if (*l == ',')
1775 {
1776 as_bad (_("expecting operand before ','; got nothing"));
1777 return NULL;
1778 }
1779 }
7f3f1ea2 1780
29b0f896
AM
1781 /* Now *l must be either ',' or END_OF_INSN. */
1782 if (*l == ',')
1783 {
1784 if (*++l == END_OF_INSN)
1785 {
1786 /* Just skip it, if it's \n complain. */
1787 goto expecting_operand_after_comma;
1788 }
1789 expecting_operand = 1;
1790 }
1791 }
1792 return l;
1793}
7f3f1ea2 1794
29b0f896
AM
1795static void
1796swap_operands ()
1797{
1798 union i386_op temp_op;
1799 unsigned int temp_type;
f86103b7 1800 enum bfd_reloc_code_real temp_reloc;
29b0f896
AM
1801 int xchg1 = 0;
1802 int xchg2 = 0;
252b5132 1803
29b0f896
AM
1804 if (i.operands == 2)
1805 {
1806 xchg1 = 0;
1807 xchg2 = 1;
1808 }
1809 else if (i.operands == 3)
1810 {
1811 xchg1 = 0;
1812 xchg2 = 2;
1813 }
1814 temp_type = i.types[xchg2];
1815 i.types[xchg2] = i.types[xchg1];
1816 i.types[xchg1] = temp_type;
1817 temp_op = i.op[xchg2];
1818 i.op[xchg2] = i.op[xchg1];
1819 i.op[xchg1] = temp_op;
1820 temp_reloc = i.reloc[xchg2];
1821 i.reloc[xchg2] = i.reloc[xchg1];
1822 i.reloc[xchg1] = temp_reloc;
1823
1824 if (i.mem_operands == 2)
1825 {
1826 const seg_entry *temp_seg;
1827 temp_seg = i.seg[0];
1828 i.seg[0] = i.seg[1];
1829 i.seg[1] = temp_seg;
1830 }
1831}
252b5132 1832
29b0f896
AM
1833/* Try to ensure constant immediates are represented in the smallest
1834 opcode possible. */
1835static void
1836optimize_imm ()
1837{
1838 char guess_suffix = 0;
1839 int op;
252b5132 1840
29b0f896
AM
1841 if (i.suffix)
1842 guess_suffix = i.suffix;
1843 else if (i.reg_operands)
1844 {
1845 /* Figure out a suffix from the last register operand specified.
1846 We can't do this properly yet, ie. excluding InOutPortReg,
1847 but the following works for instructions with immediates.
1848 In any case, we can't set i.suffix yet. */
1849 for (op = i.operands; --op >= 0;)
1850 if (i.types[op] & Reg)
252b5132 1851 {
29b0f896
AM
1852 if (i.types[op] & Reg8)
1853 guess_suffix = BYTE_MNEM_SUFFIX;
1854 else if (i.types[op] & Reg16)
1855 guess_suffix = WORD_MNEM_SUFFIX;
1856 else if (i.types[op] & Reg32)
1857 guess_suffix = LONG_MNEM_SUFFIX;
1858 else if (i.types[op] & Reg64)
1859 guess_suffix = QWORD_MNEM_SUFFIX;
1860 break;
252b5132 1861 }
29b0f896
AM
1862 }
1863 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
1864 guess_suffix = WORD_MNEM_SUFFIX;
1865
1866 for (op = i.operands; --op >= 0;)
1867 if (i.types[op] & Imm)
1868 {
1869 switch (i.op[op].imms->X_op)
252b5132 1870 {
29b0f896
AM
1871 case O_constant:
1872 /* If a suffix is given, this operand may be shortened. */
1873 switch (guess_suffix)
252b5132 1874 {
29b0f896
AM
1875 case LONG_MNEM_SUFFIX:
1876 i.types[op] |= Imm32 | Imm64;
1877 break;
1878 case WORD_MNEM_SUFFIX:
1879 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1880 break;
1881 case BYTE_MNEM_SUFFIX:
1882 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1883 break;
252b5132 1884 }
252b5132 1885
29b0f896
AM
1886 /* If this operand is at most 16 bits, convert it
1887 to a signed 16 bit number before trying to see
1888 whether it will fit in an even smaller size.
1889 This allows a 16-bit operand such as $0xffe0 to
1890 be recognised as within Imm8S range. */
1891 if ((i.types[op] & Imm16)
1892 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 1893 {
29b0f896
AM
1894 i.op[op].imms->X_add_number =
1895 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1896 }
1897 if ((i.types[op] & Imm32)
1898 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
1899 == 0))
1900 {
1901 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
1902 ^ ((offsetT) 1 << 31))
1903 - ((offsetT) 1 << 31));
1904 }
1905 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
252b5132 1906
29b0f896
AM
1907 /* We must avoid matching of Imm32 templates when 64bit
1908 only immediate is available. */
1909 if (guess_suffix == QWORD_MNEM_SUFFIX)
1910 i.types[op] &= ~Imm32;
1911 break;
252b5132 1912
29b0f896
AM
1913 case O_absent:
1914 case O_register:
1915 abort ();
1916
1917 /* Symbols and expressions. */
1918 default:
1919 /* Convert symbolic operand to proper sizes for matching. */
1920 switch (guess_suffix)
1921 {
1922 case QWORD_MNEM_SUFFIX:
1923 i.types[op] = Imm64 | Imm32S;
1924 break;
1925 case LONG_MNEM_SUFFIX:
20f0a1fc 1926 i.types[op] = Imm32;
29b0f896
AM
1927 break;
1928 case WORD_MNEM_SUFFIX:
20f0a1fc 1929 i.types[op] = Imm16;
29b0f896
AM
1930 break;
1931 case BYTE_MNEM_SUFFIX:
20f0a1fc 1932 i.types[op] = Imm8 | Imm8S;
29b0f896 1933 break;
252b5132 1934 }
29b0f896 1935 break;
252b5132 1936 }
29b0f896
AM
1937 }
1938}
47926f60 1939
29b0f896
AM
1940/* Try to use the smallest displacement type too. */
1941static void
1942optimize_disp ()
1943{
1944 int op;
3e73aa7c 1945
29b0f896
AM
1946 for (op = i.operands; --op >= 0;)
1947 if ((i.types[op] & Disp) && i.op[op].disps->X_op == O_constant)
252b5132 1948 {
29b0f896
AM
1949 offsetT disp = i.op[op].disps->X_add_number;
1950
1951 if (i.types[op] & Disp16)
252b5132 1952 {
29b0f896
AM
1953 /* We know this operand is at most 16 bits, so
1954 convert to a signed 16 bit number before trying
1955 to see whether it will fit in an even smaller
1956 size. */
1957
1958 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
252b5132 1959 }
29b0f896 1960 else if (i.types[op] & Disp32)
252b5132 1961 {
29b0f896
AM
1962 /* We know this operand is at most 32 bits, so convert to a
1963 signed 32 bit number before trying to see whether it will
1964 fit in an even smaller size. */
1965 disp &= (((offsetT) 2 << 31) - 1);
1966 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 1967 }
29b0f896 1968 if (flag_code == CODE_64BIT)
252b5132 1969 {
29b0f896
AM
1970 if (fits_in_signed_long (disp))
1971 i.types[op] |= Disp32S;
1972 if (fits_in_unsigned_long (disp))
1973 i.types[op] |= Disp32;
252b5132 1974 }
29b0f896
AM
1975 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
1976 && fits_in_signed_byte (disp))
1977 i.types[op] |= Disp8;
252b5132 1978 }
29b0f896
AM
1979}
1980
1981static int
1982match_template ()
1983{
1984 /* Points to template once we've found it. */
1985 const template *t;
1986 unsigned int overlap0, overlap1, overlap2;
1987 unsigned int found_reverse_match;
1988 int suffix_check;
1989
1990#define MATCH(overlap, given, template) \
1991 ((overlap & ~JumpAbsolute) \
1992 && (((given) & (BaseIndex | JumpAbsolute)) \
1993 == ((overlap) & (BaseIndex | JumpAbsolute))))
1994
1995 /* If given types r0 and r1 are registers they must be of the same type
1996 unless the expected operand type register overlap is null.
1997 Note that Acc in a template matches every size of reg. */
1998#define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
1999 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
2000 || ((g0) & Reg) == ((g1) & Reg) \
2001 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
2002
2003 overlap0 = 0;
2004 overlap1 = 0;
2005 overlap2 = 0;
2006 found_reverse_match = 0;
2007 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
2008 ? No_bSuf
2009 : (i.suffix == WORD_MNEM_SUFFIX
2010 ? No_wSuf
2011 : (i.suffix == SHORT_MNEM_SUFFIX
2012 ? No_sSuf
2013 : (i.suffix == LONG_MNEM_SUFFIX
2014 ? No_lSuf
2015 : (i.suffix == QWORD_MNEM_SUFFIX
2016 ? No_qSuf
2017 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2018 ? No_xSuf : 0))))));
2019
20f0a1fc
NC
2020 t = current_templates->start;
2021 if (i.suffix == QWORD_MNEM_SUFFIX
2022 && flag_code != CODE_64BIT
2023 && (!intel_syntax
2024 || (!(t->opcode_modifier & IgnoreSize)
2025 && ! intel_float_operand (t->name)))
2026 && (!(t->operand_types[0] & (RegMMX | RegXMM))
2027 || !(t->operand_types[t->operands > 1] & (RegMMX | RegXMM)))
2028 && (t->base_opcode != 0x0fc7
2029 || t->extension_opcode != 1 /* cmpxchg8b */))
2030 t = current_templates->end;
2031 for (; t < current_templates->end; t++)
29b0f896
AM
2032 {
2033 /* Must have right number of operands. */
2034 if (i.operands != t->operands)
2035 continue;
2036
2037 /* Check the suffix, except for some instructions in intel mode. */
2038 if ((t->opcode_modifier & suffix_check)
2039 && !(intel_syntax
2040 && (t->opcode_modifier & IgnoreSize))
2041 && !(intel_syntax
2042 && t->base_opcode == 0xd9
2043 && (t->extension_opcode == 5 /* 0xd9,5 "fldcw" */
2044 || t->extension_opcode == 7))) /* 0xd9,7 "f{n}stcw" */
2045 continue;
2046
2047 /* Do not verify operands when there are none. */
2048 else if (!t->operands)
2049 {
2050 if (t->cpu_flags & ~cpu_arch_flags)
2051 continue;
2052 /* We've found a match; break out of loop. */
2053 break;
2054 }
252b5132 2055
29b0f896
AM
2056 overlap0 = i.types[0] & t->operand_types[0];
2057 switch (t->operands)
2058 {
2059 case 1:
2060 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
2061 continue;
2062 break;
2063 case 2:
2064 case 3:
2065 overlap1 = i.types[1] & t->operand_types[1];
2066 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
2067 || !MATCH (overlap1, i.types[1], t->operand_types[1])
2068 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2069 t->operand_types[0],
2070 overlap1, i.types[1],
2071 t->operand_types[1]))
2072 {
2073 /* Check if other direction is valid ... */
2074 if ((t->opcode_modifier & (D | FloatD)) == 0)
2075 continue;
2076
2077 /* Try reversing direction of operands. */
2078 overlap0 = i.types[0] & t->operand_types[1];
2079 overlap1 = i.types[1] & t->operand_types[0];
2080 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
2081 || !MATCH (overlap1, i.types[1], t->operand_types[0])
2082 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2083 t->operand_types[1],
2084 overlap1, i.types[1],
2085 t->operand_types[0]))
2086 {
2087 /* Does not match either direction. */
2088 continue;
2089 }
2090 /* found_reverse_match holds which of D or FloatDR
2091 we've found. */
2092 found_reverse_match = t->opcode_modifier & (D | FloatDR);
2093 }
2094 /* Found a forward 2 operand match here. */
2095 else if (t->operands == 3)
2096 {
2097 /* Here we make use of the fact that there are no
2098 reverse match 3 operand instructions, and all 3
2099 operand instructions only need to be checked for
2100 register consistency between operands 2 and 3. */
2101 overlap2 = i.types[2] & t->operand_types[2];
2102 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
2103 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
2104 t->operand_types[1],
2105 overlap2, i.types[2],
2106 t->operand_types[2]))
2107
2108 continue;
2109 }
2110 /* Found either forward/reverse 2 or 3 operand match here:
2111 slip through to break. */
2112 }
2113 if (t->cpu_flags & ~cpu_arch_flags)
2114 {
2115 found_reverse_match = 0;
2116 continue;
2117 }
2118 /* We've found a match; break out of loop. */
2119 break;
2120 }
2121
2122 if (t == current_templates->end)
2123 {
2124 /* We found no match. */
2125 as_bad (_("suffix or operands invalid for `%s'"),
2126 current_templates->start->name);
2127 return 0;
2128 }
252b5132 2129
29b0f896
AM
2130 if (!quiet_warnings)
2131 {
2132 if (!intel_syntax
2133 && ((i.types[0] & JumpAbsolute)
2134 != (t->operand_types[0] & JumpAbsolute)))
2135 {
2136 as_warn (_("indirect %s without `*'"), t->name);
2137 }
2138
2139 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2140 == (IsPrefix | IgnoreSize))
2141 {
2142 /* Warn them that a data or address size prefix doesn't
2143 affect assembly of the next line of code. */
2144 as_warn (_("stand-alone `%s' prefix"), t->name);
2145 }
2146 }
2147
2148 /* Copy the template we found. */
2149 i.tm = *t;
2150 if (found_reverse_match)
2151 {
2152 /* If we found a reverse match we must alter the opcode
2153 direction bit. found_reverse_match holds bits to change
2154 (different for int & float insns). */
2155
2156 i.tm.base_opcode ^= found_reverse_match;
2157
2158 i.tm.operand_types[0] = t->operand_types[1];
2159 i.tm.operand_types[1] = t->operand_types[0];
2160 }
2161
2162 return 1;
2163}
2164
2165static int
2166check_string ()
2167{
2168 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2169 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2170 {
2171 if (i.seg[0] != NULL && i.seg[0] != &es)
2172 {
2173 as_bad (_("`%s' operand %d must use `%%es' segment"),
2174 i.tm.name,
2175 mem_op + 1);
2176 return 0;
2177 }
2178 /* There's only ever one segment override allowed per instruction.
2179 This instruction possibly has a legal segment override on the
2180 second operand, so copy the segment to where non-string
2181 instructions store it, allowing common code. */
2182 i.seg[0] = i.seg[1];
2183 }
2184 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2185 {
2186 if (i.seg[1] != NULL && i.seg[1] != &es)
2187 {
2188 as_bad (_("`%s' operand %d must use `%%es' segment"),
2189 i.tm.name,
2190 mem_op + 2);
2191 return 0;
2192 }
2193 }
2194 return 1;
2195}
2196
2197static int
543613e9 2198process_suffix (void)
29b0f896
AM
2199{
2200 /* If matched instruction specifies an explicit instruction mnemonic
2201 suffix, use it. */
2202 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2203 {
2204 if (i.tm.opcode_modifier & Size16)
2205 i.suffix = WORD_MNEM_SUFFIX;
2206 else if (i.tm.opcode_modifier & Size64)
2207 i.suffix = QWORD_MNEM_SUFFIX;
2208 else
2209 i.suffix = LONG_MNEM_SUFFIX;
2210 }
2211 else if (i.reg_operands)
2212 {
2213 /* If there's no instruction mnemonic suffix we try to invent one
2214 based on register operands. */
2215 if (!i.suffix)
2216 {
2217 /* We take i.suffix from the last register operand specified,
2218 Destination register type is more significant than source
2219 register type. */
2220 int op;
543613e9 2221
29b0f896
AM
2222 for (op = i.operands; --op >= 0;)
2223 if ((i.types[op] & Reg)
2224 && !(i.tm.operand_types[op] & InOutPortReg))
2225 {
2226 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2227 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2228 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2229 LONG_MNEM_SUFFIX);
2230 break;
2231 }
2232 }
2233 else if (i.suffix == BYTE_MNEM_SUFFIX)
2234 {
2235 if (!check_byte_reg ())
2236 return 0;
2237 }
2238 else if (i.suffix == LONG_MNEM_SUFFIX)
2239 {
2240 if (!check_long_reg ())
2241 return 0;
2242 }
2243 else if (i.suffix == QWORD_MNEM_SUFFIX)
2244 {
2245 if (!check_qword_reg ())
2246 return 0;
2247 }
2248 else if (i.suffix == WORD_MNEM_SUFFIX)
2249 {
2250 if (!check_word_reg ())
2251 return 0;
2252 }
2253 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2254 /* Do nothing if the instruction is going to ignore the prefix. */
2255 ;
2256 else
2257 abort ();
2258 }
2259 else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
2260 {
2261 i.suffix = stackop_size;
543613e9
NC
2262 if (i.suffix == QWORD_MNEM_SUFFIX
2263 && (i.tm.opcode_modifier & No_qSuf))
2264 i.suffix = LONG_MNEM_SUFFIX;
29b0f896 2265 }
252b5132 2266
29b0f896
AM
2267 /* Change the opcode based on the operand size given by i.suffix;
2268 We need not change things for byte insns. */
29b0f896
AM
2269 if (!i.suffix && (i.tm.opcode_modifier & W))
2270 {
2271 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2272 return 0;
2273 }
252b5132 2274
29b0f896
AM
2275 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2276 {
2277 /* It's not a byte, select word/dword operation. */
2278 if (i.tm.opcode_modifier & W)
2279 {
2280 if (i.tm.opcode_modifier & ShortForm)
2281 i.tm.base_opcode |= 8;
2282 else
2283 i.tm.base_opcode |= 1;
2284 }
0f3f3d8b 2285
29b0f896
AM
2286 /* Now select between word & dword operations via the operand
2287 size prefix, except for instructions that will ignore this
2288 prefix anyway. */
2289 if (i.suffix != QWORD_MNEM_SUFFIX
9146926a
AM
2290 && !(i.tm.opcode_modifier & IgnoreSize)
2291 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2292 || (flag_code == CODE_64BIT
2293 && (i.tm.opcode_modifier & JumpByte))))
24eab124
AM
2294 {
2295 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 2296
29b0f896
AM
2297 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2298 prefix = ADDR_PREFIX_OPCODE;
252b5132 2299
29b0f896
AM
2300 if (!add_prefix (prefix))
2301 return 0;
24eab124 2302 }
252b5132 2303
29b0f896
AM
2304 /* Set mode64 for an operand. */
2305 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 2306 && flag_code == CODE_64BIT
29b0f896 2307 && (i.tm.opcode_modifier & NoRex64) == 0)
9146926a 2308 i.rex |= REX_MODE64;
3e73aa7c 2309
29b0f896
AM
2310 /* Size floating point instruction. */
2311 if (i.suffix == LONG_MNEM_SUFFIX)
543613e9
NC
2312 if (i.tm.opcode_modifier & FloatMF)
2313 i.tm.base_opcode ^= 4;
29b0f896 2314 }
7ecd2f8b 2315
29b0f896
AM
2316 return 1;
2317}
3e73aa7c 2318
29b0f896 2319static int
543613e9 2320check_byte_reg (void)
29b0f896
AM
2321{
2322 int op;
543613e9 2323
29b0f896
AM
2324 for (op = i.operands; --op >= 0;)
2325 {
2326 /* If this is an eight bit register, it's OK. If it's the 16 or
2327 32 bit version of an eight bit register, we will just use the
2328 low portion, and that's OK too. */
2329 if (i.types[op] & Reg8)
2330 continue;
2331
2332 /* movzx and movsx should not generate this warning. */
2333 if (intel_syntax
2334 && (i.tm.base_opcode == 0xfb7
2335 || i.tm.base_opcode == 0xfb6
2336 || i.tm.base_opcode == 0x63
2337 || i.tm.base_opcode == 0xfbe
2338 || i.tm.base_opcode == 0xfbf))
2339 continue;
2340
2341 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
2342#if 0
2343 /* Check that the template allows eight bit regs. This
2344 kills insns such as `orb $1,%edx', which maybe should be
2345 allowed. */
2346 && (i.tm.operand_types[op] & (Reg8 | InOutPortReg))
2347#endif
2348 )
2349 {
2350 /* Prohibit these changes in the 64bit mode, since the
2351 lowering is more complicated. */
2352 if (flag_code == CODE_64BIT
2353 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2354 {
0f3f3d8b 2355 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2356 i.op[op].regs->reg_name,
2357 i.suffix);
2358 return 0;
2359 }
2360#if REGISTER_WARNINGS
2361 if (!quiet_warnings
2362 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2363 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2364 (i.op[op].regs + (i.types[op] & Reg16
2365 ? REGNAM_AL - REGNAM_AX
2366 : REGNAM_AL - REGNAM_EAX))->reg_name,
2367 i.op[op].regs->reg_name,
2368 i.suffix);
2369#endif
2370 continue;
2371 }
2372 /* Any other register is bad. */
2373 if (i.types[op] & (Reg | RegMMX | RegXMM
2374 | SReg2 | SReg3
2375 | Control | Debug | Test
2376 | FloatReg | FloatAcc))
2377 {
2378 as_bad (_("`%%%s' not allowed with `%s%c'"),
2379 i.op[op].regs->reg_name,
2380 i.tm.name,
2381 i.suffix);
2382 return 0;
2383 }
2384 }
2385 return 1;
2386}
2387
2388static int
2389check_long_reg ()
2390{
2391 int op;
2392
2393 for (op = i.operands; --op >= 0;)
2394 /* Reject eight bit registers, except where the template requires
2395 them. (eg. movzb) */
2396 if ((i.types[op] & Reg8) != 0
2397 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2398 {
2399 as_bad (_("`%%%s' not allowed with `%s%c'"),
2400 i.op[op].regs->reg_name,
2401 i.tm.name,
2402 i.suffix);
2403 return 0;
2404 }
2405 /* Warn if the e prefix on a general reg is missing. */
2406 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2407 && (i.types[op] & Reg16) != 0
2408 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2409 {
2410 /* Prohibit these changes in the 64bit mode, since the
2411 lowering is more complicated. */
2412 if (flag_code == CODE_64BIT)
252b5132 2413 {
0f3f3d8b 2414 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2415 i.op[op].regs->reg_name,
2416 i.suffix);
2417 return 0;
252b5132 2418 }
29b0f896
AM
2419#if REGISTER_WARNINGS
2420 else
2421 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2422 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
2423 i.op[op].regs->reg_name,
2424 i.suffix);
2425#endif
252b5132 2426 }
29b0f896
AM
2427 /* Warn if the r prefix on a general reg is missing. */
2428 else if ((i.types[op] & Reg64) != 0
2429 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
252b5132 2430 {
0f3f3d8b 2431 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2432 i.op[op].regs->reg_name,
2433 i.suffix);
2434 return 0;
2435 }
2436 return 1;
2437}
252b5132 2438
29b0f896
AM
2439static int
2440check_qword_reg ()
2441{
2442 int op;
252b5132 2443
29b0f896
AM
2444 for (op = i.operands; --op >= 0; )
2445 /* Reject eight bit registers, except where the template requires
2446 them. (eg. movzb) */
2447 if ((i.types[op] & Reg8) != 0
2448 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2449 {
2450 as_bad (_("`%%%s' not allowed with `%s%c'"),
2451 i.op[op].regs->reg_name,
2452 i.tm.name,
2453 i.suffix);
2454 return 0;
2455 }
2456 /* Warn if the e prefix on a general reg is missing. */
2457 else if (((i.types[op] & Reg16) != 0
2458 || (i.types[op] & Reg32) != 0)
2459 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2460 {
2461 /* Prohibit these changes in the 64bit mode, since the
2462 lowering is more complicated. */
0f3f3d8b 2463 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2464 i.op[op].regs->reg_name,
2465 i.suffix);
2466 return 0;
252b5132 2467 }
29b0f896
AM
2468 return 1;
2469}
252b5132 2470
29b0f896
AM
2471static int
2472check_word_reg ()
2473{
2474 int op;
2475 for (op = i.operands; --op >= 0;)
2476 /* Reject eight bit registers, except where the template requires
2477 them. (eg. movzb) */
2478 if ((i.types[op] & Reg8) != 0
2479 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2480 {
2481 as_bad (_("`%%%s' not allowed with `%s%c'"),
2482 i.op[op].regs->reg_name,
2483 i.tm.name,
2484 i.suffix);
2485 return 0;
2486 }
2487 /* Warn if the e prefix on a general reg is present. */
2488 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2489 && (i.types[op] & Reg32) != 0
2490 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
252b5132 2491 {
29b0f896
AM
2492 /* Prohibit these changes in the 64bit mode, since the
2493 lowering is more complicated. */
2494 if (flag_code == CODE_64BIT)
252b5132 2495 {
0f3f3d8b 2496 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2497 i.op[op].regs->reg_name,
2498 i.suffix);
2499 return 0;
252b5132 2500 }
29b0f896
AM
2501 else
2502#if REGISTER_WARNINGS
2503 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2504 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
2505 i.op[op].regs->reg_name,
2506 i.suffix);
2507#endif
2508 }
2509 return 1;
2510}
252b5132 2511
29b0f896
AM
2512static int
2513finalize_imm ()
2514{
2515 unsigned int overlap0, overlap1, overlap2;
2516
2517 overlap0 = i.types[0] & i.tm.operand_types[0];
20f0a1fc 2518 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64))
29b0f896
AM
2519 && overlap0 != Imm8 && overlap0 != Imm8S
2520 && overlap0 != Imm16 && overlap0 != Imm32S
2521 && overlap0 != Imm32 && overlap0 != Imm64)
2522 {
2523 if (i.suffix)
2524 {
2525 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
2526 ? Imm8 | Imm8S
2527 : (i.suffix == WORD_MNEM_SUFFIX
2528 ? Imm16
2529 : (i.suffix == QWORD_MNEM_SUFFIX
2530 ? Imm64 | Imm32S
2531 : Imm32)));
2532 }
2533 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2534 || overlap0 == (Imm16 | Imm32)
2535 || overlap0 == (Imm16 | Imm32S))
2536 {
2537 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2538 ? Imm16 : Imm32S);
2539 }
2540 if (overlap0 != Imm8 && overlap0 != Imm8S
2541 && overlap0 != Imm16 && overlap0 != Imm32S
2542 && overlap0 != Imm32 && overlap0 != Imm64)
2543 {
2544 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2545 return 0;
2546 }
2547 }
2548 i.types[0] = overlap0;
2549
2550 overlap1 = i.types[1] & i.tm.operand_types[1];
2551 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32))
2552 && overlap1 != Imm8 && overlap1 != Imm8S
2553 && overlap1 != Imm16 && overlap1 != Imm32S
2554 && overlap1 != Imm32 && overlap1 != Imm64)
2555 {
2556 if (i.suffix)
2557 {
2558 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
2559 ? Imm8 | Imm8S
2560 : (i.suffix == WORD_MNEM_SUFFIX
2561 ? Imm16
2562 : (i.suffix == QWORD_MNEM_SUFFIX
2563 ? Imm64 | Imm32S
2564 : Imm32)));
2565 }
2566 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2567 || overlap1 == (Imm16 | Imm32)
2568 || overlap1 == (Imm16 | Imm32S))
2569 {
2570 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2571 ? Imm16 : Imm32S);
2572 }
2573 if (overlap1 != Imm8 && overlap1 != Imm8S
2574 && overlap1 != Imm16 && overlap1 != Imm32S
2575 && overlap1 != Imm32 && overlap1 != Imm64)
2576 {
2577 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
2578 return 0;
2579 }
2580 }
2581 i.types[1] = overlap1;
2582
2583 overlap2 = i.types[2] & i.tm.operand_types[2];
2584 assert ((overlap2 & Imm) == 0);
2585 i.types[2] = overlap2;
2586
2587 return 1;
2588}
2589
2590static int
2591process_operands ()
2592{
2593 /* Default segment register this instruction will use for memory
2594 accesses. 0 means unknown. This is only for optimizing out
2595 unnecessary segment overrides. */
2596 const seg_entry *default_seg = 0;
2597
2598 /* The imul $imm, %reg instruction is converted into
2599 imul $imm, %reg, %reg, and the clr %reg instruction
2600 is converted into xor %reg, %reg. */
2601 if (i.tm.opcode_modifier & regKludge)
2602 {
2603 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
2604 /* Pretend we saw the extra register operand. */
2605 assert (i.op[first_reg_op + 1].regs == 0);
2606 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2607 i.types[first_reg_op + 1] = i.types[first_reg_op];
2608 i.reg_operands = 2;
2609 }
2610
2611 if (i.tm.opcode_modifier & ShortForm)
2612 {
2613 /* The register or float register operand is in operand 0 or 1. */
2614 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
2615 /* Register goes in low 3 bits of opcode. */
2616 i.tm.base_opcode |= i.op[op].regs->reg_num;
2617 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2618 i.rex |= REX_EXTZ;
2619 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2620 {
2621 /* Warn about some common errors, but press on regardless.
2622 The first case can be generated by gcc (<= 2.8.1). */
2623 if (i.operands == 2)
2624 {
2625 /* Reversed arguments on faddp, fsubp, etc. */
2626 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
2627 i.op[1].regs->reg_name,
2628 i.op[0].regs->reg_name);
2629 }
2630 else
2631 {
2632 /* Extraneous `l' suffix on fp insn. */
2633 as_warn (_("translating to `%s %%%s'"), i.tm.name,
2634 i.op[0].regs->reg_name);
2635 }
2636 }
2637 }
2638 else if (i.tm.opcode_modifier & Modrm)
2639 {
2640 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
2641 must be put into the modrm byte). Now, we make the modrm and
2642 index base bytes based on all the info we've collected. */
29b0f896
AM
2643
2644 default_seg = build_modrm_byte ();
2645 }
2646 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2647 {
2648 if (i.tm.base_opcode == POP_SEG_SHORT
2649 && i.op[0].regs->reg_num == 1)
2650 {
2651 as_bad (_("you can't `pop %%cs'"));
2652 return 0;
2653 }
2654 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2655 if ((i.op[0].regs->reg_flags & RegRex) != 0)
2656 i.rex |= REX_EXTZ;
2657 }
2658 else if ((i.tm.base_opcode & ~(D | W)) == MOV_AX_DISP32)
2659 {
2660 default_seg = &ds;
2661 }
2662 else if ((i.tm.opcode_modifier & IsString) != 0)
2663 {
2664 /* For the string instructions that allow a segment override
2665 on one of their operands, the default segment is ds. */
2666 default_seg = &ds;
2667 }
2668
52271982
AM
2669 if (i.tm.base_opcode == 0x8d /* lea */ && i.seg[0] && !quiet_warnings)
2670 as_warn (_("segment override on `lea' is ineffectual"));
2671
2672 /* If a segment was explicitly specified, and the specified segment
2673 is not the default, use an opcode prefix to select it. If we
2674 never figured out what the default segment is, then default_seg
2675 will be zero at this point, and the specified segment prefix will
2676 always be used. */
29b0f896
AM
2677 if ((i.seg[0]) && (i.seg[0] != default_seg))
2678 {
2679 if (!add_prefix (i.seg[0]->seg_prefix))
2680 return 0;
2681 }
2682 return 1;
2683}
2684
2685static const seg_entry *
2686build_modrm_byte ()
2687{
2688 const seg_entry *default_seg = 0;
2689
2690 /* i.reg_operands MUST be the number of real register operands;
2691 implicit registers do not count. */
2692 if (i.reg_operands == 2)
2693 {
2694 unsigned int source, dest;
2695 source = ((i.types[0]
2696 & (Reg | RegMMX | RegXMM
2697 | SReg2 | SReg3
2698 | Control | Debug | Test))
2699 ? 0 : 1);
2700 dest = source + 1;
2701
2702 i.rm.mode = 3;
2703 /* One of the register operands will be encoded in the i.tm.reg
2704 field, the other in the combined i.tm.mode and i.tm.regmem
2705 fields. If no form of this instruction supports a memory
2706 destination operand, then we assume the source operand may
2707 sometimes be a memory operand and so we need to store the
2708 destination in the i.rm.reg field. */
2709 if ((i.tm.operand_types[dest] & AnyMem) == 0)
2710 {
2711 i.rm.reg = i.op[dest].regs->reg_num;
2712 i.rm.regmem = i.op[source].regs->reg_num;
2713 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2714 i.rex |= REX_EXTX;
2715 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2716 i.rex |= REX_EXTZ;
2717 }
2718 else
2719 {
2720 i.rm.reg = i.op[source].regs->reg_num;
2721 i.rm.regmem = i.op[dest].regs->reg_num;
2722 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2723 i.rex |= REX_EXTZ;
2724 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2725 i.rex |= REX_EXTX;
2726 }
2727 }
2728 else
2729 { /* If it's not 2 reg operands... */
2730 if (i.mem_operands)
2731 {
2732 unsigned int fake_zero_displacement = 0;
2733 unsigned int op = ((i.types[0] & AnyMem)
2734 ? 0
2735 : (i.types[1] & AnyMem) ? 1 : 2);
2736
2737 default_seg = &ds;
2738
2739 if (i.base_reg == 0)
2740 {
2741 i.rm.mode = 0;
2742 if (!i.disp_operands)
2743 fake_zero_displacement = 1;
2744 if (i.index_reg == 0)
2745 {
2746 /* Operand is just <disp> */
20f0a1fc 2747 if (flag_code == CODE_64BIT)
29b0f896
AM
2748 {
2749 /* 64bit mode overwrites the 32bit absolute
2750 addressing by RIP relative addressing and
2751 absolute addressing is encoded by one of the
2752 redundant SIB forms. */
2753 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2754 i.sib.base = NO_BASE_REGISTER;
2755 i.sib.index = NO_INDEX_REGISTER;
20f0a1fc
NC
2756 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0) ? Disp32S : Disp32);
2757 }
2758 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
2759 {
2760 i.rm.regmem = NO_BASE_REGISTER_16;
2761 i.types[op] = Disp16;
2762 }
2763 else
2764 {
2765 i.rm.regmem = NO_BASE_REGISTER;
2766 i.types[op] = Disp32;
29b0f896
AM
2767 }
2768 }
2769 else /* !i.base_reg && i.index_reg */
2770 {
2771 i.sib.index = i.index_reg->reg_num;
2772 i.sib.base = NO_BASE_REGISTER;
2773 i.sib.scale = i.log2_scale_factor;
2774 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2775 i.types[op] &= ~Disp;
2776 if (flag_code != CODE_64BIT)
2777 i.types[op] |= Disp32; /* Must be 32 bit */
2778 else
2779 i.types[op] |= Disp32S;
2780 if ((i.index_reg->reg_flags & RegRex) != 0)
2781 i.rex |= REX_EXTY;
2782 }
2783 }
2784 /* RIP addressing for 64bit mode. */
2785 else if (i.base_reg->reg_type == BaseIndex)
2786 {
2787 i.rm.regmem = NO_BASE_REGISTER;
20f0a1fc 2788 i.types[op] &= ~ Disp;
29b0f896
AM
2789 i.types[op] |= Disp32S;
2790 i.flags[op] = Operand_PCrel;
20f0a1fc
NC
2791 if (! i.disp_operands)
2792 fake_zero_displacement = 1;
29b0f896
AM
2793 }
2794 else if (i.base_reg->reg_type & Reg16)
2795 {
2796 switch (i.base_reg->reg_num)
2797 {
2798 case 3: /* (%bx) */
2799 if (i.index_reg == 0)
2800 i.rm.regmem = 7;
2801 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2802 i.rm.regmem = i.index_reg->reg_num - 6;
2803 break;
2804 case 5: /* (%bp) */
2805 default_seg = &ss;
2806 if (i.index_reg == 0)
2807 {
2808 i.rm.regmem = 6;
2809 if ((i.types[op] & Disp) == 0)
2810 {
2811 /* fake (%bp) into 0(%bp) */
2812 i.types[op] |= Disp8;
252b5132 2813 fake_zero_displacement = 1;
29b0f896
AM
2814 }
2815 }
2816 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2817 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2818 break;
2819 default: /* (%si) -> 4 or (%di) -> 5 */
2820 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2821 }
2822 i.rm.mode = mode_from_disp_size (i.types[op]);
2823 }
2824 else /* i.base_reg and 32/64 bit mode */
2825 {
2826 if (flag_code == CODE_64BIT
2827 && (i.types[op] & Disp))
20f0a1fc
NC
2828 i.types[op] = (i.types[op] & Disp8) | (i.prefix[ADDR_PREFIX] == 0 ? Disp32S : Disp32);
2829
29b0f896
AM
2830 i.rm.regmem = i.base_reg->reg_num;
2831 if ((i.base_reg->reg_flags & RegRex) != 0)
2832 i.rex |= REX_EXTZ;
2833 i.sib.base = i.base_reg->reg_num;
2834 /* x86-64 ignores REX prefix bit here to avoid decoder
2835 complications. */
2836 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
2837 {
2838 default_seg = &ss;
2839 if (i.disp_operands == 0)
2840 {
2841 fake_zero_displacement = 1;
2842 i.types[op] |= Disp8;
2843 }
2844 }
2845 else if (i.base_reg->reg_num == ESP_REG_NUM)
2846 {
2847 default_seg = &ss;
2848 }
2849 i.sib.scale = i.log2_scale_factor;
2850 if (i.index_reg == 0)
2851 {
2852 /* <disp>(%esp) becomes two byte modrm with no index
2853 register. We've already stored the code for esp
2854 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
2855 Any base register besides %esp will not use the
2856 extra modrm byte. */
2857 i.sib.index = NO_INDEX_REGISTER;
2858#if !SCALE1_WHEN_NO_INDEX
2859 /* Another case where we force the second modrm byte. */
2860 if (i.log2_scale_factor)
2861 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
252b5132 2862#endif
29b0f896
AM
2863 }
2864 else
2865 {
2866 i.sib.index = i.index_reg->reg_num;
2867 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2868 if ((i.index_reg->reg_flags & RegRex) != 0)
2869 i.rex |= REX_EXTY;
2870 }
2871 i.rm.mode = mode_from_disp_size (i.types[op]);
2872 }
252b5132 2873
29b0f896
AM
2874 if (fake_zero_displacement)
2875 {
2876 /* Fakes a zero displacement assuming that i.types[op]
2877 holds the correct displacement size. */
2878 expressionS *exp;
2879
2880 assert (i.op[op].disps == 0);
2881 exp = &disp_expressions[i.disp_operands++];
2882 i.op[op].disps = exp;
2883 exp->X_op = O_constant;
2884 exp->X_add_number = 0;
2885 exp->X_add_symbol = (symbolS *) 0;
2886 exp->X_op_symbol = (symbolS *) 0;
2887 }
2888 }
252b5132 2889
29b0f896
AM
2890 /* Fill in i.rm.reg or i.rm.regmem field with register operand
2891 (if any) based on i.tm.extension_opcode. Again, we must be
2892 careful to make sure that segment/control/debug/test/MMX
2893 registers are coded into the i.rm.reg field. */
2894 if (i.reg_operands)
2895 {
2896 unsigned int op =
2897 ((i.types[0]
2898 & (Reg | RegMMX | RegXMM
2899 | SReg2 | SReg3
2900 | Control | Debug | Test))
2901 ? 0
2902 : ((i.types[1]
2903 & (Reg | RegMMX | RegXMM
2904 | SReg2 | SReg3
2905 | Control | Debug | Test))
2906 ? 1
2907 : 2));
2908 /* If there is an extension opcode to put here, the register
2909 number must be put into the regmem field. */
2910 if (i.tm.extension_opcode != None)
2911 {
2912 i.rm.regmem = i.op[op].regs->reg_num;
2913 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2914 i.rex |= REX_EXTZ;
2915 }
2916 else
2917 {
2918 i.rm.reg = i.op[op].regs->reg_num;
2919 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2920 i.rex |= REX_EXTX;
2921 }
252b5132 2922
29b0f896
AM
2923 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
2924 must set it to 3 to indicate this is a register operand
2925 in the regmem field. */
2926 if (!i.mem_operands)
2927 i.rm.mode = 3;
2928 }
252b5132 2929
29b0f896
AM
2930 /* Fill in i.rm.reg field with extension opcode (if any). */
2931 if (i.tm.extension_opcode != None)
2932 i.rm.reg = i.tm.extension_opcode;
2933 }
2934 return default_seg;
2935}
252b5132 2936
29b0f896
AM
2937static void
2938output_branch ()
2939{
2940 char *p;
2941 int code16;
2942 int prefix;
2943 relax_substateT subtype;
2944 symbolS *sym;
2945 offsetT off;
2946
2947 code16 = 0;
2948 if (flag_code == CODE_16BIT)
2949 code16 = CODE16;
2950
2951 prefix = 0;
2952 if (i.prefix[DATA_PREFIX] != 0)
252b5132 2953 {
29b0f896
AM
2954 prefix = 1;
2955 i.prefixes -= 1;
2956 code16 ^= CODE16;
252b5132 2957 }
29b0f896
AM
2958 /* Pentium4 branch hints. */
2959 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
2960 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 2961 {
29b0f896
AM
2962 prefix++;
2963 i.prefixes--;
2964 }
2965 if (i.prefix[REX_PREFIX] != 0)
2966 {
2967 prefix++;
2968 i.prefixes--;
2f66722d
AM
2969 }
2970
29b0f896
AM
2971 if (i.prefixes != 0 && !intel_syntax)
2972 as_warn (_("skipping prefixes on this instruction"));
2973
2974 /* It's always a symbol; End frag & setup for relax.
2975 Make sure there is enough room in this frag for the largest
2976 instruction we may generate in md_convert_frag. This is 2
2977 bytes for the opcode and room for the prefix and largest
2978 displacement. */
2979 frag_grow (prefix + 2 + 4);
2980 /* Prefix and 1 opcode byte go in fr_fix. */
2981 p = frag_more (prefix + 1);
2982 if (i.prefix[DATA_PREFIX] != 0)
2983 *p++ = DATA_PREFIX_OPCODE;
2984 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
2985 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
2986 *p++ = i.prefix[SEG_PREFIX];
2987 if (i.prefix[REX_PREFIX] != 0)
2988 *p++ = i.prefix[REX_PREFIX];
2989 *p = i.tm.base_opcode;
2990
2991 if ((unsigned char) *p == JUMP_PC_RELATIVE)
2992 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
2993 else if ((cpu_arch_flags & Cpu386) != 0)
2994 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
2995 else
2996 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
2997 subtype |= code16;
3e73aa7c 2998
29b0f896
AM
2999 sym = i.op[0].disps->X_add_symbol;
3000 off = i.op[0].disps->X_add_number;
3e73aa7c 3001
29b0f896
AM
3002 if (i.op[0].disps->X_op != O_constant
3003 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 3004 {
29b0f896
AM
3005 /* Handle complex expressions. */
3006 sym = make_expr_symbol (i.op[0].disps);
3007 off = 0;
3008 }
3e73aa7c 3009
29b0f896
AM
3010 /* 1 possible extra opcode + 4 byte displacement go in var part.
3011 Pass reloc in fr_var. */
3012 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
3013}
3e73aa7c 3014
29b0f896
AM
3015static void
3016output_jump ()
3017{
3018 char *p;
3019 int size;
3e02c1cc 3020 fixS *fixP;
29b0f896
AM
3021
3022 if (i.tm.opcode_modifier & JumpByte)
3023 {
3024 /* This is a loop or jecxz type instruction. */
3025 size = 1;
3026 if (i.prefix[ADDR_PREFIX] != 0)
3027 {
3028 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3029 i.prefixes -= 1;
3030 }
3031 /* Pentium4 branch hints. */
3032 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3033 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3034 {
3035 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3036 i.prefixes--;
3e73aa7c
JH
3037 }
3038 }
29b0f896
AM
3039 else
3040 {
3041 int code16;
3e73aa7c 3042
29b0f896
AM
3043 code16 = 0;
3044 if (flag_code == CODE_16BIT)
3045 code16 = CODE16;
3e73aa7c 3046
29b0f896
AM
3047 if (i.prefix[DATA_PREFIX] != 0)
3048 {
3049 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3050 i.prefixes -= 1;
3051 code16 ^= CODE16;
3052 }
252b5132 3053
29b0f896
AM
3054 size = 4;
3055 if (code16)
3056 size = 2;
3057 }
9fcc94b6 3058
29b0f896
AM
3059 if (i.prefix[REX_PREFIX] != 0)
3060 {
3061 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3062 i.prefixes -= 1;
3063 }
252b5132 3064
29b0f896
AM
3065 if (i.prefixes != 0 && !intel_syntax)
3066 as_warn (_("skipping prefixes on this instruction"));
e0890092 3067
29b0f896
AM
3068 p = frag_more (1 + size);
3069 *p++ = i.tm.base_opcode;
e0890092 3070
3e02c1cc
AM
3071 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3072 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3073
3074 /* All jumps handled here are signed, but don't use a signed limit
3075 check for 32 and 16 bit jumps as we want to allow wrap around at
3076 4G and 64k respectively. */
3077 if (size == 1)
3078 fixP->fx_signed = 1;
29b0f896 3079}
e0890092 3080
29b0f896
AM
3081static void
3082output_interseg_jump ()
3083{
3084 char *p;
3085 int size;
3086 int prefix;
3087 int code16;
252b5132 3088
29b0f896
AM
3089 code16 = 0;
3090 if (flag_code == CODE_16BIT)
3091 code16 = CODE16;
a217f122 3092
29b0f896
AM
3093 prefix = 0;
3094 if (i.prefix[DATA_PREFIX] != 0)
3095 {
3096 prefix = 1;
3097 i.prefixes -= 1;
3098 code16 ^= CODE16;
3099 }
3100 if (i.prefix[REX_PREFIX] != 0)
3101 {
3102 prefix++;
3103 i.prefixes -= 1;
3104 }
252b5132 3105
29b0f896
AM
3106 size = 4;
3107 if (code16)
3108 size = 2;
252b5132 3109
29b0f896
AM
3110 if (i.prefixes != 0 && !intel_syntax)
3111 as_warn (_("skipping prefixes on this instruction"));
252b5132 3112
29b0f896
AM
3113 /* 1 opcode; 2 segment; offset */
3114 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 3115
29b0f896
AM
3116 if (i.prefix[DATA_PREFIX] != 0)
3117 *p++ = DATA_PREFIX_OPCODE;
252b5132 3118
29b0f896
AM
3119 if (i.prefix[REX_PREFIX] != 0)
3120 *p++ = i.prefix[REX_PREFIX];
252b5132 3121
29b0f896
AM
3122 *p++ = i.tm.base_opcode;
3123 if (i.op[1].imms->X_op == O_constant)
3124 {
3125 offsetT n = i.op[1].imms->X_add_number;
252b5132 3126
29b0f896
AM
3127 if (size == 2
3128 && !fits_in_unsigned_word (n)
3129 && !fits_in_signed_word (n))
3130 {
3131 as_bad (_("16-bit jump out of range"));
3132 return;
3133 }
3134 md_number_to_chars (p, n, size);
3135 }
3136 else
3137 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3138 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3139 if (i.op[0].imms->X_op != O_constant)
3140 as_bad (_("can't handle non absolute segment in `%s'"),
3141 i.tm.name);
3142 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3143}
a217f122 3144
29b0f896
AM
3145static void
3146output_insn ()
3147{
2bbd9c25
JJ
3148 fragS *insn_start_frag;
3149 offsetT insn_start_off;
3150
29b0f896
AM
3151 /* Tie dwarf2 debug info to the address at the start of the insn.
3152 We can't do this after the insn has been output as the current
3153 frag may have been closed off. eg. by frag_var. */
3154 dwarf2_emit_insn (0);
3155
2bbd9c25
JJ
3156 insn_start_frag = frag_now;
3157 insn_start_off = frag_now_fix ();
3158
29b0f896
AM
3159 /* Output jumps. */
3160 if (i.tm.opcode_modifier & Jump)
3161 output_branch ();
3162 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
3163 output_jump ();
3164 else if (i.tm.opcode_modifier & JumpInterSegment)
3165 output_interseg_jump ();
3166 else
3167 {
3168 /* Output normal instructions here. */
3169 char *p;
3170 unsigned char *q;
252b5132 3171
0f10071e
ML
3172 /* All opcodes on i386 have either 1 or 2 bytes, PadLock instructions
3173 have 3 bytes. We may use one more higher byte to specify a prefix
3174 the instruction requires. */
3175 if ((i.tm.cpu_flags & CpuPadLock) != 0
3176 && (i.tm.base_opcode & 0xff000000) != 0)
3177 {
3178 unsigned int prefix;
3179 prefix = (i.tm.base_opcode >> 24) & 0xff;
3180
3181 if (prefix != REPE_PREFIX_OPCODE
3182 || i.prefix[LOCKREP_PREFIX] != REPE_PREFIX_OPCODE)
3183 add_prefix (prefix);
3184 }
3185 else
3186 if ((i.tm.cpu_flags & CpuPadLock) == 0
3187 && (i.tm.base_opcode & 0xff0000) != 0)
3188 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
252b5132 3189
29b0f896
AM
3190 /* The prefix bytes. */
3191 for (q = i.prefix;
3192 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
3193 q++)
3194 {
3195 if (*q)
3196 {
3197 p = frag_more (1);
3198 md_number_to_chars (p, (valueT) *q, 1);
3199 }
3200 }
252b5132 3201
29b0f896
AM
3202 /* Now the opcode; be careful about word order here! */
3203 if (fits_in_unsigned_byte (i.tm.base_opcode))
3204 {
3205 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
3206 }
3207 else
3208 {
0f10071e
ML
3209 if ((i.tm.cpu_flags & CpuPadLock) != 0)
3210 {
3211 p = frag_more (3);
3212 *p++ = (i.tm.base_opcode >> 16) & 0xff;
3213 }
3214 else
3215 p = frag_more (2);
3216
29b0f896
AM
3217 /* Put out high byte first: can't use md_number_to_chars! */
3218 *p++ = (i.tm.base_opcode >> 8) & 0xff;
3219 *p = i.tm.base_opcode & 0xff;
3220 }
3e73aa7c 3221
29b0f896
AM
3222 /* Now the modrm byte and sib byte (if present). */
3223 if (i.tm.opcode_modifier & Modrm)
3224 {
3225 p = frag_more (1);
3226 md_number_to_chars (p,
3227 (valueT) (i.rm.regmem << 0
3228 | i.rm.reg << 3
3229 | i.rm.mode << 6),
3230 1);
3231 /* If i.rm.regmem == ESP (4)
3232 && i.rm.mode != (Register mode)
3233 && not 16 bit
3234 ==> need second modrm byte. */
3235 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
3236 && i.rm.mode != 3
3237 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
3238 {
3239 p = frag_more (1);
3240 md_number_to_chars (p,
3241 (valueT) (i.sib.base << 0
3242 | i.sib.index << 3
3243 | i.sib.scale << 6),
3244 1);
3245 }
3246 }
3e73aa7c 3247
29b0f896 3248 if (i.disp_operands)
2bbd9c25 3249 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 3250
29b0f896 3251 if (i.imm_operands)
2bbd9c25 3252 output_imm (insn_start_frag, insn_start_off);
29b0f896 3253 }
252b5132 3254
29b0f896
AM
3255#ifdef DEBUG386
3256 if (flag_debug)
3257 {
3258 pi (line, &i);
3259 }
3260#endif /* DEBUG386 */
3261}
252b5132 3262
29b0f896 3263static void
2bbd9c25
JJ
3264output_disp (insn_start_frag, insn_start_off)
3265 fragS *insn_start_frag;
3266 offsetT insn_start_off;
29b0f896
AM
3267{
3268 char *p;
3269 unsigned int n;
252b5132 3270
29b0f896
AM
3271 for (n = 0; n < i.operands; n++)
3272 {
3273 if (i.types[n] & Disp)
3274 {
3275 if (i.op[n].disps->X_op == O_constant)
3276 {
3277 int size;
3278 offsetT val;
252b5132 3279
29b0f896
AM
3280 size = 4;
3281 if (i.types[n] & (Disp8 | Disp16 | Disp64))
3282 {
3283 size = 2;
3284 if (i.types[n] & Disp8)
3285 size = 1;
3286 if (i.types[n] & Disp64)
3287 size = 8;
3288 }
3289 val = offset_in_range (i.op[n].disps->X_add_number,
3290 size);
3291 p = frag_more (size);
3292 md_number_to_chars (p, val, size);
3293 }
3294 else
3295 {
f86103b7 3296 enum bfd_reloc_code_real reloc_type;
29b0f896
AM
3297 int size = 4;
3298 int sign = 0;
3299 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
3300
3301 /* The PC relative address is computed relative
3302 to the instruction boundary, so in case immediate
3303 fields follows, we need to adjust the value. */
3304 if (pcrel && i.imm_operands)
3305 {
3306 int imm_size = 4;
3307 unsigned int n1;
252b5132 3308
29b0f896
AM
3309 for (n1 = 0; n1 < i.operands; n1++)
3310 if (i.types[n1] & Imm)
252b5132 3311 {
29b0f896 3312 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
252b5132 3313 {
29b0f896
AM
3314 imm_size = 2;
3315 if (i.types[n1] & (Imm8 | Imm8S))
3316 imm_size = 1;
3317 if (i.types[n1] & Imm64)
3318 imm_size = 8;
252b5132 3319 }
29b0f896 3320 break;
252b5132 3321 }
29b0f896
AM
3322 /* We should find the immediate. */
3323 if (n1 == i.operands)
3324 abort ();
3325 i.op[n].disps->X_add_number -= imm_size;
3326 }
520dc8e8 3327
29b0f896
AM
3328 if (i.types[n] & Disp32S)
3329 sign = 1;
3e73aa7c 3330
29b0f896
AM
3331 if (i.types[n] & (Disp16 | Disp64))
3332 {
3333 size = 2;
3334 if (i.types[n] & Disp64)
3335 size = 8;
3336 }
520dc8e8 3337
29b0f896 3338 p = frag_more (size);
2bbd9c25 3339 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
2bbd9c25
JJ
3340 if (reloc_type == BFD_RELOC_32
3341 && GOT_symbol
3342 && GOT_symbol == i.op[n].disps->X_add_symbol
3343 && (i.op[n].disps->X_op == O_symbol
3344 || (i.op[n].disps->X_op == O_add
3345 && ((symbol_get_value_expression
3346 (i.op[n].disps->X_op_symbol)->X_op)
3347 == O_subtract))))
3348 {
3349 offsetT add;
3350
3351 if (insn_start_frag == frag_now)
3352 add = (p - frag_now->fr_literal) - insn_start_off;
3353 else
3354 {
3355 fragS *fr;
3356
3357 add = insn_start_frag->fr_fix - insn_start_off;
3358 for (fr = insn_start_frag->fr_next;
3359 fr && fr != frag_now; fr = fr->fr_next)
3360 add += fr->fr_fix;
3361 add += p - frag_now->fr_literal;
3362 }
3363
3364 /* We don't support dynamic linking on x86-64 yet. */
3365 if (flag_code == CODE_64BIT)
3366 abort ();
3367 reloc_type = BFD_RELOC_386_GOTPC;
3368 i.op[n].disps->X_add_number += add;
3369 }
062cd5e7 3370 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2bbd9c25 3371 i.op[n].disps, pcrel, reloc_type);
29b0f896
AM
3372 }
3373 }
3374 }
3375}
252b5132 3376
29b0f896 3377static void
2bbd9c25
JJ
3378output_imm (insn_start_frag, insn_start_off)
3379 fragS *insn_start_frag;
3380 offsetT insn_start_off;
29b0f896
AM
3381{
3382 char *p;
3383 unsigned int n;
252b5132 3384
29b0f896
AM
3385 for (n = 0; n < i.operands; n++)
3386 {
3387 if (i.types[n] & Imm)
3388 {
3389 if (i.op[n].imms->X_op == O_constant)
3390 {
3391 int size;
3392 offsetT val;
b4cac588 3393
29b0f896
AM
3394 size = 4;
3395 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3396 {
3397 size = 2;
3398 if (i.types[n] & (Imm8 | Imm8S))
3399 size = 1;
3400 else if (i.types[n] & Imm64)
3401 size = 8;
3402 }
3403 val = offset_in_range (i.op[n].imms->X_add_number,
3404 size);
3405 p = frag_more (size);
3406 md_number_to_chars (p, val, size);
3407 }
3408 else
3409 {
3410 /* Not absolute_section.
3411 Need a 32-bit fixup (don't support 8bit
3412 non-absolute imms). Try to support other
3413 sizes ... */
f86103b7 3414 enum bfd_reloc_code_real reloc_type;
29b0f896
AM
3415 int size = 4;
3416 int sign = 0;
3417
3418 if ((i.types[n] & (Imm32S))
3419 && i.suffix == QWORD_MNEM_SUFFIX)
3420 sign = 1;
3421 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3422 {
3423 size = 2;
3424 if (i.types[n] & (Imm8 | Imm8S))
3425 size = 1;
3426 if (i.types[n] & Imm64)
3427 size = 8;
3428 }
520dc8e8 3429
29b0f896
AM
3430 p = frag_more (size);
3431 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 3432
2bbd9c25
JJ
3433 /* This is tough to explain. We end up with this one if we
3434 * have operands that look like
3435 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
3436 * obtain the absolute address of the GOT, and it is strongly
3437 * preferable from a performance point of view to avoid using
3438 * a runtime relocation for this. The actual sequence of
3439 * instructions often look something like:
3440 *
3441 * call .L66
3442 * .L66:
3443 * popl %ebx
3444 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
3445 *
3446 * The call and pop essentially return the absolute address
3447 * of the label .L66 and store it in %ebx. The linker itself
3448 * will ultimately change the first operand of the addl so
3449 * that %ebx points to the GOT, but to keep things simple, the
3450 * .o file must have this operand set so that it generates not
3451 * the absolute address of .L66, but the absolute address of
3452 * itself. This allows the linker itself simply treat a GOTPC
3453 * relocation as asking for a pcrel offset to the GOT to be
3454 * added in, and the addend of the relocation is stored in the
3455 * operand field for the instruction itself.
3456 *
3457 * Our job here is to fix the operand so that it would add
3458 * the correct offset so that %ebx would point to itself. The
3459 * thing that is tricky is that .-.L66 will point to the
3460 * beginning of the instruction, so we need to further modify
3461 * the operand so that it will point to itself. There are
3462 * other cases where you have something like:
3463 *
3464 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
3465 *
3466 * and here no correction would be required. Internally in
3467 * the assembler we treat operands of this form as not being
3468 * pcrel since the '.' is explicitly mentioned, and I wonder
3469 * whether it would simplify matters to do it this way. Who
3470 * knows. In earlier versions of the PIC patches, the
3471 * pcrel_adjust field was used to store the correction, but
3472 * since the expression is not pcrel, I felt it would be
3473 * confusing to do it this way. */
3474
29b0f896
AM
3475 if (reloc_type == BFD_RELOC_32
3476 && GOT_symbol
3477 && GOT_symbol == i.op[n].imms->X_add_symbol
3478 && (i.op[n].imms->X_op == O_symbol
3479 || (i.op[n].imms->X_op == O_add
3480 && ((symbol_get_value_expression
3481 (i.op[n].imms->X_op_symbol)->X_op)
3482 == O_subtract))))
3483 {
2bbd9c25
JJ
3484 offsetT add;
3485
3486 if (insn_start_frag == frag_now)
3487 add = (p - frag_now->fr_literal) - insn_start_off;
3488 else
3489 {
3490 fragS *fr;
3491
3492 add = insn_start_frag->fr_fix - insn_start_off;
3493 for (fr = insn_start_frag->fr_next;
3494 fr && fr != frag_now; fr = fr->fr_next)
3495 add += fr->fr_fix;
3496 add += p - frag_now->fr_literal;
3497 }
3498
29b0f896
AM
3499 /* We don't support dynamic linking on x86-64 yet. */
3500 if (flag_code == CODE_64BIT)
3501 abort ();
3502 reloc_type = BFD_RELOC_386_GOTPC;
2bbd9c25 3503 i.op[n].imms->X_add_number += add;
29b0f896 3504 }
29b0f896
AM
3505 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3506 i.op[n].imms, 0, reloc_type);
3507 }
3508 }
3509 }
252b5132
RH
3510}
3511\f
f3c180ae 3512#ifndef LEX_AT
f86103b7 3513static char *lex_got PARAMS ((enum bfd_reloc_code_real *, int *));
f3c180ae
AM
3514
3515/* Parse operands of the form
3516 <symbol>@GOTOFF+<nnn>
3517 and similar .plt or .got references.
3518
3519 If we find one, set up the correct relocation in RELOC and copy the
3520 input string, minus the `@GOTOFF' into a malloc'd buffer for
3521 parsing by the calling routine. Return this buffer, and if ADJUST
3522 is non-null set it to the length of the string we removed from the
3523 input line. Otherwise return NULL. */
3524static char *
3525lex_got (reloc, adjust)
f86103b7 3526 enum bfd_reloc_code_real *reloc;
f3c180ae
AM
3527 int *adjust;
3528{
3529 static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
3530 static const struct {
3531 const char *str;
f86103b7 3532 const enum bfd_reloc_code_real rel[NUM_FLAG_CODE];
f3c180ae 3533 } gotrel[] = {
13ae64f3
JJ
3534 { "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
3535 { "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, 0 } },
3536 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
bffbf940 3537 { "TLSGD", { BFD_RELOC_386_TLS_GD, 0, BFD_RELOC_X86_64_TLSGD } },
13ae64f3 3538 { "TLSLDM", { BFD_RELOC_386_TLS_LDM, 0, 0 } },
bffbf940
JJ
3539 { "TLSLD", { 0, 0, BFD_RELOC_X86_64_TLSLD } },
3540 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32, 0, BFD_RELOC_X86_64_GOTTPOFF } },
3541 { "TPOFF", { BFD_RELOC_386_TLS_LE_32, 0, BFD_RELOC_X86_64_TPOFF32 } },
13ae64f3 3542 { "NTPOFF", { BFD_RELOC_386_TLS_LE, 0, 0 } },
bffbf940 3543 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32, 0, BFD_RELOC_X86_64_DTPOFF32 } },
37e55690
JJ
3544 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE, 0, 0 } },
3545 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE, 0, 0 } },
13ae64f3 3546 { "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
f3c180ae
AM
3547 };
3548 char *cp;
3549 unsigned int j;
3550
3551 for (cp = input_line_pointer; *cp != '@'; cp++)
3552 if (is_end_of_line[(unsigned char) *cp])
3553 return NULL;
3554
3555 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3556 {
3557 int len;
3558
3559 len = strlen (gotrel[j].str);
28f81592 3560 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae
AM
3561 {
3562 if (gotrel[j].rel[(unsigned int) flag_code] != 0)
3563 {
28f81592
AM
3564 int first, second;
3565 char *tmpbuf, *past_reloc;
f3c180ae
AM
3566
3567 *reloc = gotrel[j].rel[(unsigned int) flag_code];
28f81592
AM
3568 if (adjust)
3569 *adjust = len;
f3c180ae
AM
3570
3571 if (GOT_symbol == NULL)
3572 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3573
3574 /* Replace the relocation token with ' ', so that
3575 errors like foo@GOTOFF1 will be detected. */
28f81592
AM
3576
3577 /* The length of the first part of our input line. */
f3c180ae 3578 first = cp - input_line_pointer;
28f81592
AM
3579
3580 /* The second part goes from after the reloc token until
3581 (and including) an end_of_line char. Don't use strlen
3582 here as the end_of_line char may not be a NUL. */
3583 past_reloc = cp + 1 + len;
3584 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
3585 ;
3586 second = cp - past_reloc;
3587
3588 /* Allocate and copy string. The trailing NUL shouldn't
3589 be necessary, but be safe. */
3590 tmpbuf = xmalloc (first + second + 2);
f3c180ae
AM
3591 memcpy (tmpbuf, input_line_pointer, first);
3592 tmpbuf[first] = ' ';
28f81592
AM
3593 memcpy (tmpbuf + first + 1, past_reloc, second);
3594 tmpbuf[first + second + 1] = '\0';
f3c180ae
AM
3595 return tmpbuf;
3596 }
3597
3598 as_bad (_("@%s reloc is not supported in %s bit mode"),
3599 gotrel[j].str, mode_name[(unsigned int) flag_code]);
3600 return NULL;
3601 }
3602 }
3603
3604 /* Might be a symbol version string. Don't as_bad here. */
3605 return NULL;
3606}
3607
3608/* x86_cons_fix_new is called via the expression parsing code when a
3609 reloc is needed. We use this hook to get the correct .got reloc. */
f86103b7 3610static enum bfd_reloc_code_real got_reloc = NO_RELOC;
f3c180ae
AM
3611
3612void
3613x86_cons_fix_new (frag, off, len, exp)
3614 fragS *frag;
3615 unsigned int off;
3616 unsigned int len;
3617 expressionS *exp;
3618{
f86103b7 3619 enum bfd_reloc_code_real r = reloc (len, 0, 0, got_reloc);
f3c180ae
AM
3620 got_reloc = NO_RELOC;
3621 fix_new_exp (frag, off, len, exp, 0, r);
3622}
3623
3624void
3625x86_cons (exp, size)
3626 expressionS *exp;
3627 int size;
3628{
3629 if (size == 4)
3630 {
3631 /* Handle @GOTOFF and the like in an expression. */
3632 char *save;
3633 char *gotfree_input_line;
3634 int adjust;
3635
3636 save = input_line_pointer;
3637 gotfree_input_line = lex_got (&got_reloc, &adjust);
3638 if (gotfree_input_line)
3639 input_line_pointer = gotfree_input_line;
3640
3641 expression (exp);
3642
3643 if (gotfree_input_line)
3644 {
3645 /* expression () has merrily parsed up to the end of line,
3646 or a comma - in the wrong buffer. Transfer how far
3647 input_line_pointer has moved to the right buffer. */
3648 input_line_pointer = (save
3649 + (input_line_pointer - gotfree_input_line)
3650 + adjust);
3651 free (gotfree_input_line);
3652 }
3653 }
3654 else
3655 expression (exp);
3656}
3657#endif
3658
6482c264
NC
3659#ifdef TE_PE
3660
3661#define O_secrel (O_max + 1)
3662
3663void
3664x86_pe_cons_fix_new (frag, off, len, exp)
3665 fragS *frag;
3666 unsigned int off;
3667 unsigned int len;
3668 expressionS *exp;
3669{
3670 enum bfd_reloc_code_real r = reloc (len, 0, 0, NO_RELOC);
3671
3672 if (exp->X_op == O_secrel)
3673 {
3674 exp->X_op = O_symbol;
3675 r = BFD_RELOC_32_SECREL;
3676 }
3677
3678 fix_new_exp (frag, off, len, exp, 0, r);
3679}
3680
3681static void
3682pe_directive_secrel (dummy)
3683 int dummy ATTRIBUTE_UNUSED;
3684{
3685 expressionS exp;
3686
3687 do
3688 {
3689 expression (&exp);
3690 if (exp.X_op == O_symbol)
3691 exp.X_op = O_secrel;
3692
3693 emit_expr (&exp, 4);
3694 }
3695 while (*input_line_pointer++ == ',');
3696
3697 input_line_pointer--;
3698 demand_empty_rest_of_line ();
3699}
3700
3701#endif
3702
252b5132
RH
3703static int i386_immediate PARAMS ((char *));
3704
3705static int
3706i386_immediate (imm_start)
3707 char *imm_start;
3708{
3709 char *save_input_line_pointer;
f3c180ae
AM
3710#ifndef LEX_AT
3711 char *gotfree_input_line;
3712#endif
252b5132 3713 segT exp_seg = 0;
47926f60 3714 expressionS *exp;
252b5132
RH
3715
3716 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3717 {
d0b47220 3718 as_bad (_("only 1 or 2 immediate operands are allowed"));
252b5132
RH
3719 return 0;
3720 }
3721
3722 exp = &im_expressions[i.imm_operands++];
520dc8e8 3723 i.op[this_operand].imms = exp;
252b5132
RH
3724
3725 if (is_space_char (*imm_start))
3726 ++imm_start;
3727
3728 save_input_line_pointer = input_line_pointer;
3729 input_line_pointer = imm_start;
3730
3731#ifndef LEX_AT
f3c180ae
AM
3732 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3733 if (gotfree_input_line)
3734 input_line_pointer = gotfree_input_line;
252b5132
RH
3735#endif
3736
3737 exp_seg = expression (exp);
3738
83183c0c 3739 SKIP_WHITESPACE ();
252b5132 3740 if (*input_line_pointer)
f3c180ae 3741 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
3742
3743 input_line_pointer = save_input_line_pointer;
f3c180ae
AM
3744#ifndef LEX_AT
3745 if (gotfree_input_line)
3746 free (gotfree_input_line);
3747#endif
252b5132 3748
2daf4fd8 3749 if (exp->X_op == O_absent || exp->X_op == O_big)
252b5132 3750 {
47926f60 3751 /* Missing or bad expr becomes absolute 0. */
d0b47220 3752 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
24eab124 3753 imm_start);
252b5132
RH
3754 exp->X_op = O_constant;
3755 exp->X_add_number = 0;
3756 exp->X_add_symbol = (symbolS *) 0;
3757 exp->X_op_symbol = (symbolS *) 0;
252b5132 3758 }
3e73aa7c 3759 else if (exp->X_op == O_constant)
252b5132 3760 {
47926f60 3761 /* Size it properly later. */
3e73aa7c
JH
3762 i.types[this_operand] |= Imm64;
3763 /* If BFD64, sign extend val. */
3764 if (!use_rela_relocations)
3765 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3766 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 3767 }
4c63da97 3768#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 3769 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 3770 && exp_seg != absolute_section
47926f60 3771 && exp_seg != text_section
24eab124
AM
3772 && exp_seg != data_section
3773 && exp_seg != bss_section
3774 && exp_seg != undefined_section
f86103b7 3775 && !bfd_is_com_section (exp_seg))
252b5132 3776 {
d0b47220 3777 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
3778 return 0;
3779 }
3780#endif
3781 else
3782 {
3783 /* This is an address. The size of the address will be
24eab124 3784 determined later, depending on destination register,
3e73aa7c
JH
3785 suffix, or the default for the section. */
3786 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
252b5132
RH
3787 }
3788
3789 return 1;
3790}
3791
551c1ca1 3792static char *i386_scale PARAMS ((char *));
252b5132 3793
551c1ca1 3794static char *
252b5132
RH
3795i386_scale (scale)
3796 char *scale;
3797{
551c1ca1
AM
3798 offsetT val;
3799 char *save = input_line_pointer;
252b5132 3800
551c1ca1
AM
3801 input_line_pointer = scale;
3802 val = get_absolute_expression ();
3803
3804 switch (val)
252b5132 3805 {
551c1ca1
AM
3806 case 0:
3807 case 1:
252b5132
RH
3808 i.log2_scale_factor = 0;
3809 break;
551c1ca1 3810 case 2:
252b5132
RH
3811 i.log2_scale_factor = 1;
3812 break;
551c1ca1 3813 case 4:
252b5132
RH
3814 i.log2_scale_factor = 2;
3815 break;
551c1ca1 3816 case 8:
252b5132
RH
3817 i.log2_scale_factor = 3;
3818 break;
3819 default:
252b5132 3820 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
24eab124 3821 scale);
551c1ca1
AM
3822 input_line_pointer = save;
3823 return NULL;
252b5132 3824 }
29b0f896 3825 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
3826 {
3827 as_warn (_("scale factor of %d without an index register"),
24eab124 3828 1 << i.log2_scale_factor);
252b5132
RH
3829#if SCALE1_WHEN_NO_INDEX
3830 i.log2_scale_factor = 0;
3831#endif
3832 }
551c1ca1
AM
3833 scale = input_line_pointer;
3834 input_line_pointer = save;
3835 return scale;
252b5132
RH
3836}
3837
3838static int i386_displacement PARAMS ((char *, char *));
3839
3840static int
3841i386_displacement (disp_start, disp_end)
3842 char *disp_start;
3843 char *disp_end;
3844{
29b0f896 3845 expressionS *exp;
252b5132
RH
3846 segT exp_seg = 0;
3847 char *save_input_line_pointer;
f3c180ae
AM
3848#ifndef LEX_AT
3849 char *gotfree_input_line;
3850#endif
252b5132
RH
3851 int bigdisp = Disp32;
3852
3e73aa7c 3853 if (flag_code == CODE_64BIT)
7ecd2f8b 3854 {
29b0f896
AM
3855 if (i.prefix[ADDR_PREFIX] == 0)
3856 bigdisp = Disp64;
7ecd2f8b
JH
3857 }
3858 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3859 bigdisp = Disp16;
252b5132
RH
3860 i.types[this_operand] |= bigdisp;
3861
3862 exp = &disp_expressions[i.disp_operands];
520dc8e8 3863 i.op[this_operand].disps = exp;
252b5132
RH
3864 i.disp_operands++;
3865 save_input_line_pointer = input_line_pointer;
3866 input_line_pointer = disp_start;
3867 END_STRING_AND_SAVE (disp_end);
3868
3869#ifndef GCC_ASM_O_HACK
3870#define GCC_ASM_O_HACK 0
3871#endif
3872#if GCC_ASM_O_HACK
3873 END_STRING_AND_SAVE (disp_end + 1);
3874 if ((i.types[this_operand] & BaseIndex) != 0
24eab124 3875 && displacement_string_end[-1] == '+')
252b5132
RH
3876 {
3877 /* This hack is to avoid a warning when using the "o"
24eab124
AM
3878 constraint within gcc asm statements.
3879 For instance:
3880
3881 #define _set_tssldt_desc(n,addr,limit,type) \
3882 __asm__ __volatile__ ( \
3883 "movw %w2,%0\n\t" \
3884 "movw %w1,2+%0\n\t" \
3885 "rorl $16,%1\n\t" \
3886 "movb %b1,4+%0\n\t" \
3887 "movb %4,5+%0\n\t" \
3888 "movb $0,6+%0\n\t" \
3889 "movb %h1,7+%0\n\t" \
3890 "rorl $16,%1" \
3891 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
3892
3893 This works great except that the output assembler ends
3894 up looking a bit weird if it turns out that there is
3895 no offset. You end up producing code that looks like:
3896
3897 #APP
3898 movw $235,(%eax)
3899 movw %dx,2+(%eax)
3900 rorl $16,%edx
3901 movb %dl,4+(%eax)
3902 movb $137,5+(%eax)
3903 movb $0,6+(%eax)
3904 movb %dh,7+(%eax)
3905 rorl $16,%edx
3906 #NO_APP
3907
47926f60 3908 So here we provide the missing zero. */
24eab124
AM
3909
3910 *displacement_string_end = '0';
252b5132
RH
3911 }
3912#endif
3913#ifndef LEX_AT
f3c180ae
AM
3914 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3915 if (gotfree_input_line)
3916 input_line_pointer = gotfree_input_line;
252b5132
RH
3917#endif
3918
24eab124 3919 exp_seg = expression (exp);
252b5132 3920
636c26b0
AM
3921 SKIP_WHITESPACE ();
3922 if (*input_line_pointer)
3923 as_bad (_("junk `%s' after expression"), input_line_pointer);
3924#if GCC_ASM_O_HACK
3925 RESTORE_END_STRING (disp_end + 1);
3926#endif
3927 RESTORE_END_STRING (disp_end);
3928 input_line_pointer = save_input_line_pointer;
3929#ifndef LEX_AT
3930 if (gotfree_input_line)
3931 free (gotfree_input_line);
3932#endif
3933
24eab124
AM
3934 /* We do this to make sure that the section symbol is in
3935 the symbol table. We will ultimately change the relocation
47926f60 3936 to be relative to the beginning of the section. */
1ae12ab7
AM
3937 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
3938 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
24eab124 3939 {
636c26b0
AM
3940 if (exp->X_op != O_symbol)
3941 {
3942 as_bad (_("bad expression used with @%s"),
3943 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
3944 ? "GOTPCREL"
3945 : "GOTOFF"));
3946 return 0;
3947 }
3948
e5cb08ac 3949 if (S_IS_LOCAL (exp->X_add_symbol)
24eab124
AM
3950 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
3951 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
3952 exp->X_op = O_subtract;
3953 exp->X_op_symbol = GOT_symbol;
1ae12ab7 3954 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 3955 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
23df1078 3956 else
29b0f896 3957 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 3958 }
252b5132 3959
2daf4fd8
AM
3960 if (exp->X_op == O_absent || exp->X_op == O_big)
3961 {
47926f60 3962 /* Missing or bad expr becomes absolute 0. */
d0b47220 3963 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
2daf4fd8
AM
3964 disp_start);
3965 exp->X_op = O_constant;
3966 exp->X_add_number = 0;
3967 exp->X_add_symbol = (symbolS *) 0;
3968 exp->X_op_symbol = (symbolS *) 0;
3969 }
3970
4c63da97 3971#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
45288df1 3972 if (exp->X_op != O_constant
45288df1 3973 && OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 3974 && exp_seg != absolute_section
45288df1
AM
3975 && exp_seg != text_section
3976 && exp_seg != data_section
3977 && exp_seg != bss_section
31312f95 3978 && exp_seg != undefined_section
f86103b7 3979 && !bfd_is_com_section (exp_seg))
24eab124 3980 {
d0b47220 3981 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
24eab124
AM
3982 return 0;
3983 }
252b5132 3984#endif
3e73aa7c
JH
3985 else if (flag_code == CODE_64BIT)
3986 i.types[this_operand] |= Disp32S | Disp32;
252b5132
RH
3987 return 1;
3988}
3989
e5cb08ac 3990static int i386_index_check PARAMS ((const char *));
252b5132 3991
eecb386c 3992/* Make sure the memory operand we've been dealt is valid.
47926f60
KH
3993 Return 1 on success, 0 on a failure. */
3994
252b5132 3995static int
eecb386c
AM
3996i386_index_check (operand_string)
3997 const char *operand_string;
252b5132 3998{
3e73aa7c 3999 int ok;
24eab124 4000#if INFER_ADDR_PREFIX
eecb386c
AM
4001 int fudged = 0;
4002
24eab124
AM
4003 tryprefix:
4004#endif
3e73aa7c 4005 ok = 1;
20f0a1fc
NC
4006 if (flag_code == CODE_64BIT)
4007 {
4008 unsigned RegXX = (i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32);
4009
4010 if ((i.base_reg
4011 && ((i.base_reg->reg_type & RegXX) == 0)
4012 && (i.base_reg->reg_type != BaseIndex
4013 || i.index_reg))
4014 || (i.index_reg
4015 && ((i.index_reg->reg_type & (RegXX | BaseIndex))
4016 != (RegXX | BaseIndex))))
4017 ok = 0;
3e73aa7c
JH
4018 }
4019 else
4020 {
4021 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4022 {
4023 /* 16bit checks. */
4024 if ((i.base_reg
29b0f896
AM
4025 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
4026 != (Reg16 | BaseIndex)))
3e73aa7c 4027 || (i.index_reg
29b0f896
AM
4028 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
4029 != (Reg16 | BaseIndex))
4030 || !(i.base_reg
4031 && i.base_reg->reg_num < 6
4032 && i.index_reg->reg_num >= 6
4033 && i.log2_scale_factor == 0))))
3e73aa7c
JH
4034 ok = 0;
4035 }
4036 else
e5cb08ac 4037 {
3e73aa7c
JH
4038 /* 32bit checks. */
4039 if ((i.base_reg
4040 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
4041 || (i.index_reg
29b0f896
AM
4042 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4043 != (Reg32 | BaseIndex))))
e5cb08ac 4044 ok = 0;
3e73aa7c
JH
4045 }
4046 }
4047 if (!ok)
24eab124
AM
4048 {
4049#if INFER_ADDR_PREFIX
20f0a1fc 4050 if (i.prefix[ADDR_PREFIX] == 0)
24eab124
AM
4051 {
4052 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
4053 i.prefixes += 1;
b23bac36
AM
4054 /* Change the size of any displacement too. At most one of
4055 Disp16 or Disp32 is set.
4056 FIXME. There doesn't seem to be any real need for separate
4057 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
47926f60 4058 Removing them would probably clean up the code quite a lot. */
20f0a1fc 4059 if (flag_code != CODE_64BIT && (i.types[this_operand] & (Disp16 | Disp32)))
29b0f896 4060 i.types[this_operand] ^= (Disp16 | Disp32);
eecb386c 4061 fudged = 1;
24eab124
AM
4062 goto tryprefix;
4063 }
eecb386c
AM
4064 if (fudged)
4065 as_bad (_("`%s' is not a valid base/index expression"),
4066 operand_string);
4067 else
c388dee8 4068#endif
eecb386c
AM
4069 as_bad (_("`%s' is not a valid %s bit base/index expression"),
4070 operand_string,
3e73aa7c 4071 flag_code_names[flag_code]);
24eab124 4072 }
20f0a1fc 4073 return ok;
24eab124 4074}
252b5132 4075
252b5132 4076/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
47926f60 4077 on error. */
252b5132 4078
252b5132
RH
4079static int
4080i386_operand (operand_string)
4081 char *operand_string;
4082{
af6bdddf
AM
4083 const reg_entry *r;
4084 char *end_op;
24eab124 4085 char *op_string = operand_string;
252b5132 4086
24eab124 4087 if (is_space_char (*op_string))
252b5132
RH
4088 ++op_string;
4089
24eab124 4090 /* We check for an absolute prefix (differentiating,
47926f60 4091 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
4092 if (*op_string == ABSOLUTE_PREFIX)
4093 {
4094 ++op_string;
4095 if (is_space_char (*op_string))
4096 ++op_string;
4097 i.types[this_operand] |= JumpAbsolute;
4098 }
252b5132 4099
47926f60 4100 /* Check if operand is a register. */
af6bdddf
AM
4101 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
4102 && (r = parse_register (op_string, &end_op)) != NULL)
24eab124 4103 {
24eab124
AM
4104 /* Check for a segment override by searching for ':' after a
4105 segment register. */
4106 op_string = end_op;
4107 if (is_space_char (*op_string))
4108 ++op_string;
4109 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
4110 {
4111 switch (r->reg_num)
4112 {
4113 case 0:
4114 i.seg[i.mem_operands] = &es;
4115 break;
4116 case 1:
4117 i.seg[i.mem_operands] = &cs;
4118 break;
4119 case 2:
4120 i.seg[i.mem_operands] = &ss;
4121 break;
4122 case 3:
4123 i.seg[i.mem_operands] = &ds;
4124 break;
4125 case 4:
4126 i.seg[i.mem_operands] = &fs;
4127 break;
4128 case 5:
4129 i.seg[i.mem_operands] = &gs;
4130 break;
4131 }
252b5132 4132
24eab124 4133 /* Skip the ':' and whitespace. */
252b5132
RH
4134 ++op_string;
4135 if (is_space_char (*op_string))
24eab124 4136 ++op_string;
252b5132 4137
24eab124
AM
4138 if (!is_digit_char (*op_string)
4139 && !is_identifier_char (*op_string)
4140 && *op_string != '('
4141 && *op_string != ABSOLUTE_PREFIX)
4142 {
4143 as_bad (_("bad memory operand `%s'"), op_string);
4144 return 0;
4145 }
47926f60 4146 /* Handle case of %es:*foo. */
24eab124
AM
4147 if (*op_string == ABSOLUTE_PREFIX)
4148 {
4149 ++op_string;
4150 if (is_space_char (*op_string))
4151 ++op_string;
4152 i.types[this_operand] |= JumpAbsolute;
4153 }
4154 goto do_memory_reference;
4155 }
4156 if (*op_string)
4157 {
d0b47220 4158 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
4159 return 0;
4160 }
4161 i.types[this_operand] |= r->reg_type & ~BaseIndex;
520dc8e8 4162 i.op[this_operand].regs = r;
24eab124
AM
4163 i.reg_operands++;
4164 }
af6bdddf
AM
4165 else if (*op_string == REGISTER_PREFIX)
4166 {
4167 as_bad (_("bad register name `%s'"), op_string);
4168 return 0;
4169 }
24eab124 4170 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 4171 {
24eab124
AM
4172 ++op_string;
4173 if (i.types[this_operand] & JumpAbsolute)
4174 {
d0b47220 4175 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
4176 return 0;
4177 }
4178 if (!i386_immediate (op_string))
4179 return 0;
4180 }
4181 else if (is_digit_char (*op_string)
4182 || is_identifier_char (*op_string)
e5cb08ac 4183 || *op_string == '(')
24eab124 4184 {
47926f60 4185 /* This is a memory reference of some sort. */
af6bdddf 4186 char *base_string;
252b5132 4187
47926f60 4188 /* Start and end of displacement string expression (if found). */
eecb386c
AM
4189 char *displacement_string_start;
4190 char *displacement_string_end;
252b5132 4191
24eab124 4192 do_memory_reference:
24eab124
AM
4193 if ((i.mem_operands == 1
4194 && (current_templates->start->opcode_modifier & IsString) == 0)
4195 || i.mem_operands == 2)
4196 {
4197 as_bad (_("too many memory references for `%s'"),
4198 current_templates->start->name);
4199 return 0;
4200 }
252b5132 4201
24eab124
AM
4202 /* Check for base index form. We detect the base index form by
4203 looking for an ')' at the end of the operand, searching
4204 for the '(' matching it, and finding a REGISTER_PREFIX or ','
4205 after the '('. */
af6bdddf 4206 base_string = op_string + strlen (op_string);
c3332e24 4207
af6bdddf
AM
4208 --base_string;
4209 if (is_space_char (*base_string))
4210 --base_string;
252b5132 4211
47926f60 4212 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
4213 displacement_string_start = op_string;
4214 displacement_string_end = base_string + 1;
252b5132 4215
24eab124
AM
4216 if (*base_string == ')')
4217 {
af6bdddf 4218 char *temp_string;
24eab124
AM
4219 unsigned int parens_balanced = 1;
4220 /* We've already checked that the number of left & right ()'s are
47926f60 4221 equal, so this loop will not be infinite. */
24eab124
AM
4222 do
4223 {
4224 base_string--;
4225 if (*base_string == ')')
4226 parens_balanced++;
4227 if (*base_string == '(')
4228 parens_balanced--;
4229 }
4230 while (parens_balanced);
c3332e24 4231
af6bdddf 4232 temp_string = base_string;
c3332e24 4233
24eab124 4234 /* Skip past '(' and whitespace. */
252b5132
RH
4235 ++base_string;
4236 if (is_space_char (*base_string))
24eab124 4237 ++base_string;
252b5132 4238
af6bdddf
AM
4239 if (*base_string == ','
4240 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4241 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
252b5132 4242 {
af6bdddf 4243 displacement_string_end = temp_string;
252b5132 4244
af6bdddf 4245 i.types[this_operand] |= BaseIndex;
252b5132 4246
af6bdddf 4247 if (i.base_reg)
24eab124 4248 {
24eab124
AM
4249 base_string = end_op;
4250 if (is_space_char (*base_string))
4251 ++base_string;
af6bdddf
AM
4252 }
4253
4254 /* There may be an index reg or scale factor here. */
4255 if (*base_string == ',')
4256 {
4257 ++base_string;
4258 if (is_space_char (*base_string))
4259 ++base_string;
4260
4261 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4262 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
24eab124 4263 {
af6bdddf 4264 base_string = end_op;
24eab124
AM
4265 if (is_space_char (*base_string))
4266 ++base_string;
af6bdddf
AM
4267 if (*base_string == ',')
4268 {
4269 ++base_string;
4270 if (is_space_char (*base_string))
4271 ++base_string;
4272 }
e5cb08ac 4273 else if (*base_string != ')')
af6bdddf
AM
4274 {
4275 as_bad (_("expecting `,' or `)' after index register in `%s'"),
4276 operand_string);
4277 return 0;
4278 }
24eab124 4279 }
af6bdddf 4280 else if (*base_string == REGISTER_PREFIX)
24eab124 4281 {
af6bdddf 4282 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
4283 return 0;
4284 }
252b5132 4285
47926f60 4286 /* Check for scale factor. */
551c1ca1 4287 if (*base_string != ')')
af6bdddf 4288 {
551c1ca1
AM
4289 char *end_scale = i386_scale (base_string);
4290
4291 if (!end_scale)
af6bdddf 4292 return 0;
24eab124 4293
551c1ca1 4294 base_string = end_scale;
af6bdddf
AM
4295 if (is_space_char (*base_string))
4296 ++base_string;
4297 if (*base_string != ')')
4298 {
4299 as_bad (_("expecting `)' after scale factor in `%s'"),
4300 operand_string);
4301 return 0;
4302 }
4303 }
4304 else if (!i.index_reg)
24eab124 4305 {
af6bdddf
AM
4306 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
4307 *base_string);
24eab124
AM
4308 return 0;
4309 }
4310 }
af6bdddf 4311 else if (*base_string != ')')
24eab124 4312 {
af6bdddf
AM
4313 as_bad (_("expecting `,' or `)' after base register in `%s'"),
4314 operand_string);
24eab124
AM
4315 return 0;
4316 }
c3332e24 4317 }
af6bdddf 4318 else if (*base_string == REGISTER_PREFIX)
c3332e24 4319 {
af6bdddf 4320 as_bad (_("bad register name `%s'"), base_string);
24eab124 4321 return 0;
c3332e24 4322 }
24eab124
AM
4323 }
4324
4325 /* If there's an expression beginning the operand, parse it,
4326 assuming displacement_string_start and
4327 displacement_string_end are meaningful. */
4328 if (displacement_string_start != displacement_string_end)
4329 {
4330 if (!i386_displacement (displacement_string_start,
4331 displacement_string_end))
4332 return 0;
4333 }
4334
4335 /* Special case for (%dx) while doing input/output op. */
4336 if (i.base_reg
4337 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
4338 && i.index_reg == 0
4339 && i.log2_scale_factor == 0
4340 && i.seg[i.mem_operands] == 0
4341 && (i.types[this_operand] & Disp) == 0)
4342 {
4343 i.types[this_operand] = InOutPortReg;
4344 return 1;
4345 }
4346
eecb386c
AM
4347 if (i386_index_check (operand_string) == 0)
4348 return 0;
24eab124
AM
4349 i.mem_operands++;
4350 }
4351 else
ce8a8b2f
AM
4352 {
4353 /* It's not a memory operand; argh! */
24eab124
AM
4354 as_bad (_("invalid char %s beginning operand %d `%s'"),
4355 output_invalid (*op_string),
4356 this_operand + 1,
4357 op_string);
4358 return 0;
4359 }
47926f60 4360 return 1; /* Normal return. */
252b5132
RH
4361}
4362\f
ee7fcc42
AM
4363/* md_estimate_size_before_relax()
4364
4365 Called just before relax() for rs_machine_dependent frags. The x86
4366 assembler uses these frags to handle variable size jump
4367 instructions.
4368
4369 Any symbol that is now undefined will not become defined.
4370 Return the correct fr_subtype in the frag.
4371 Return the initial "guess for variable size of frag" to caller.
4372 The guess is actually the growth beyond the fixed part. Whatever
4373 we do to grow the fixed or variable part contributes to our
4374 returned value. */
4375
252b5132
RH
4376int
4377md_estimate_size_before_relax (fragP, segment)
29b0f896
AM
4378 fragS *fragP;
4379 segT segment;
252b5132 4380{
252b5132 4381 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
4382 check for un-relaxable symbols. On an ELF system, we can't relax
4383 an externally visible symbol, because it may be overridden by a
4384 shared library. */
4385 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 4386#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
31312f95
AM
4387 || (OUTPUT_FLAVOR == bfd_target_elf_flavour
4388 && (S_IS_EXTERNAL (fragP->fr_symbol)
4389 || S_IS_WEAK (fragP->fr_symbol)))
b98ef147
AM
4390#endif
4391 )
252b5132 4392 {
b98ef147
AM
4393 /* Symbol is undefined in this segment, or we need to keep a
4394 reloc so that weak symbols can be overridden. */
4395 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 4396 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
4397 unsigned char *opcode;
4398 int old_fr_fix;
f6af82bd 4399
ee7fcc42
AM
4400 if (fragP->fr_var != NO_RELOC)
4401 reloc_type = fragP->fr_var;
b98ef147 4402 else if (size == 2)
f6af82bd
AM
4403 reloc_type = BFD_RELOC_16_PCREL;
4404 else
4405 reloc_type = BFD_RELOC_32_PCREL;
252b5132 4406
ee7fcc42
AM
4407 old_fr_fix = fragP->fr_fix;
4408 opcode = (unsigned char *) fragP->fr_opcode;
4409
fddf5b5b 4410 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 4411 {
fddf5b5b
AM
4412 case UNCOND_JUMP:
4413 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 4414 opcode[0] = 0xe9;
252b5132 4415 fragP->fr_fix += size;
062cd5e7
AS
4416 fix_new (fragP, old_fr_fix, size,
4417 fragP->fr_symbol,
4418 fragP->fr_offset, 1,
4419 reloc_type);
252b5132
RH
4420 break;
4421
fddf5b5b 4422 case COND_JUMP86:
412167cb
AM
4423 if (size == 2
4424 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
4425 {
4426 /* Negate the condition, and branch past an
4427 unconditional jump. */
4428 opcode[0] ^= 1;
4429 opcode[1] = 3;
4430 /* Insert an unconditional jump. */
4431 opcode[2] = 0xe9;
4432 /* We added two extra opcode bytes, and have a two byte
4433 offset. */
4434 fragP->fr_fix += 2 + 2;
062cd5e7
AS
4435 fix_new (fragP, old_fr_fix + 2, 2,
4436 fragP->fr_symbol,
4437 fragP->fr_offset, 1,
4438 reloc_type);
fddf5b5b
AM
4439 break;
4440 }
4441 /* Fall through. */
4442
4443 case COND_JUMP:
412167cb
AM
4444 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
4445 {
3e02c1cc
AM
4446 fixS *fixP;
4447
412167cb 4448 fragP->fr_fix += 1;
3e02c1cc
AM
4449 fixP = fix_new (fragP, old_fr_fix, 1,
4450 fragP->fr_symbol,
4451 fragP->fr_offset, 1,
4452 BFD_RELOC_8_PCREL);
4453 fixP->fx_signed = 1;
412167cb
AM
4454 break;
4455 }
93c2a809 4456
24eab124 4457 /* This changes the byte-displacement jump 0x7N
fddf5b5b 4458 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 4459 opcode[1] = opcode[0] + 0x10;
f6af82bd 4460 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
4461 /* We've added an opcode byte. */
4462 fragP->fr_fix += 1 + size;
062cd5e7
AS
4463 fix_new (fragP, old_fr_fix + 1, size,
4464 fragP->fr_symbol,
4465 fragP->fr_offset, 1,
4466 reloc_type);
252b5132 4467 break;
fddf5b5b
AM
4468
4469 default:
4470 BAD_CASE (fragP->fr_subtype);
4471 break;
252b5132
RH
4472 }
4473 frag_wane (fragP);
ee7fcc42 4474 return fragP->fr_fix - old_fr_fix;
252b5132 4475 }
93c2a809 4476
93c2a809
AM
4477 /* Guess size depending on current relax state. Initially the relax
4478 state will correspond to a short jump and we return 1, because
4479 the variable part of the frag (the branch offset) is one byte
4480 long. However, we can relax a section more than once and in that
4481 case we must either set fr_subtype back to the unrelaxed state,
4482 or return the value for the appropriate branch. */
4483 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
4484}
4485
47926f60
KH
4486/* Called after relax() is finished.
4487
4488 In: Address of frag.
4489 fr_type == rs_machine_dependent.
4490 fr_subtype is what the address relaxed to.
4491
4492 Out: Any fixSs and constants are set up.
4493 Caller will turn frag into a ".space 0". */
4494
252b5132
RH
4495void
4496md_convert_frag (abfd, sec, fragP)
ab9da554
ILT
4497 bfd *abfd ATTRIBUTE_UNUSED;
4498 segT sec ATTRIBUTE_UNUSED;
29b0f896 4499 fragS *fragP;
252b5132 4500{
29b0f896 4501 unsigned char *opcode;
252b5132 4502 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
4503 offsetT target_address;
4504 offsetT opcode_address;
252b5132 4505 unsigned int extension = 0;
847f7ad4 4506 offsetT displacement_from_opcode_start;
252b5132
RH
4507
4508 opcode = (unsigned char *) fragP->fr_opcode;
4509
47926f60 4510 /* Address we want to reach in file space. */
252b5132 4511 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 4512
47926f60 4513 /* Address opcode resides at in file space. */
252b5132
RH
4514 opcode_address = fragP->fr_address + fragP->fr_fix;
4515
47926f60 4516 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
4517 displacement_from_opcode_start = target_address - opcode_address;
4518
fddf5b5b 4519 if ((fragP->fr_subtype & BIG) == 0)
252b5132 4520 {
47926f60
KH
4521 /* Don't have to change opcode. */
4522 extension = 1; /* 1 opcode + 1 displacement */
252b5132 4523 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
4524 }
4525 else
4526 {
4527 if (no_cond_jump_promotion
4528 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4529 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
252b5132 4530
fddf5b5b
AM
4531 switch (fragP->fr_subtype)
4532 {
4533 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4534 extension = 4; /* 1 opcode + 4 displacement */
4535 opcode[0] = 0xe9;
4536 where_to_put_displacement = &opcode[1];
4537 break;
252b5132 4538
fddf5b5b
AM
4539 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4540 extension = 2; /* 1 opcode + 2 displacement */
4541 opcode[0] = 0xe9;
4542 where_to_put_displacement = &opcode[1];
4543 break;
252b5132 4544
fddf5b5b
AM
4545 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4546 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4547 extension = 5; /* 2 opcode + 4 displacement */
4548 opcode[1] = opcode[0] + 0x10;
4549 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4550 where_to_put_displacement = &opcode[2];
4551 break;
252b5132 4552
fddf5b5b
AM
4553 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4554 extension = 3; /* 2 opcode + 2 displacement */
4555 opcode[1] = opcode[0] + 0x10;
4556 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4557 where_to_put_displacement = &opcode[2];
4558 break;
252b5132 4559
fddf5b5b
AM
4560 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4561 extension = 4;
4562 opcode[0] ^= 1;
4563 opcode[1] = 3;
4564 opcode[2] = 0xe9;
4565 where_to_put_displacement = &opcode[3];
4566 break;
4567
4568 default:
4569 BAD_CASE (fragP->fr_subtype);
4570 break;
4571 }
252b5132 4572 }
fddf5b5b 4573
47926f60 4574 /* Now put displacement after opcode. */
252b5132
RH
4575 md_number_to_chars ((char *) where_to_put_displacement,
4576 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 4577 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
4578 fragP->fr_fix += extension;
4579}
4580\f
47926f60
KH
4581/* Size of byte displacement jmp. */
4582int md_short_jump_size = 2;
4583
4584/* Size of dword displacement jmp. */
4585int md_long_jump_size = 5;
252b5132 4586
47926f60
KH
4587/* Size of relocation record. */
4588const int md_reloc_size = 8;
252b5132
RH
4589
4590void
4591md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4592 char *ptr;
4593 addressT from_addr, to_addr;
ab9da554
ILT
4594 fragS *frag ATTRIBUTE_UNUSED;
4595 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 4596{
847f7ad4 4597 offsetT offset;
252b5132
RH
4598
4599 offset = to_addr - (from_addr + 2);
47926f60
KH
4600 /* Opcode for byte-disp jump. */
4601 md_number_to_chars (ptr, (valueT) 0xeb, 1);
252b5132
RH
4602 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4603}
4604
4605void
4606md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4607 char *ptr;
4608 addressT from_addr, to_addr;
a38cf1db
AM
4609 fragS *frag ATTRIBUTE_UNUSED;
4610 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 4611{
847f7ad4 4612 offsetT offset;
252b5132 4613
a38cf1db
AM
4614 offset = to_addr - (from_addr + 5);
4615 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4616 md_number_to_chars (ptr + 1, (valueT) offset, 4);
252b5132
RH
4617}
4618\f
4619/* Apply a fixup (fixS) to segment data, once it has been determined
4620 by our caller that we have all the info we need to fix it up.
4621
4622 On the 386, immediates, displacements, and data pointers are all in
4623 the same (little-endian) format, so we don't need to care about which
4624 we are handling. */
4625
94f592af
NC
4626void
4627md_apply_fix3 (fixP, valP, seg)
47926f60
KH
4628 /* The fix we're to put in. */
4629 fixS *fixP;
47926f60 4630 /* Pointer to the value of the bits. */
c6682705 4631 valueT *valP;
47926f60
KH
4632 /* Segment fix is from. */
4633 segT seg ATTRIBUTE_UNUSED;
252b5132 4634{
94f592af 4635 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 4636 valueT value = *valP;
252b5132 4637
f86103b7 4638#if !defined (TE_Mach)
93382f6d
AM
4639 if (fixP->fx_pcrel)
4640 {
4641 switch (fixP->fx_r_type)
4642 {
5865bb77
ILT
4643 default:
4644 break;
4645
93382f6d
AM
4646 case BFD_RELOC_32:
4647 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4648 break;
4649 case BFD_RELOC_16:
4650 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4651 break;
4652 case BFD_RELOC_8:
4653 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4654 break;
4655 }
4656 }
252b5132 4657
a161fe53 4658 if (fixP->fx_addsy != NULL
31312f95
AM
4659 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
4660 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4661 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
4662 && !use_rela_relocations)
252b5132 4663 {
31312f95
AM
4664 /* This is a hack. There should be a better way to handle this.
4665 This covers for the fact that bfd_install_relocation will
4666 subtract the current location (for partial_inplace, PC relative
4667 relocations); see more below. */
252b5132
RH
4668#ifndef OBJ_AOUT
4669 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4670#ifdef TE_PE
4671 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4672#endif
4673 )
4674 value += fixP->fx_where + fixP->fx_frag->fr_address;
4675#endif
4676#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2f66722d 4677 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
252b5132 4678 {
6539b54b 4679 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 4680
6539b54b 4681 if ((sym_seg == seg
2f66722d 4682 || (symbol_section_p (fixP->fx_addsy)
6539b54b 4683 && sym_seg != absolute_section))
ae6063d4 4684 && !generic_force_reloc (fixP))
2f66722d
AM
4685 {
4686 /* Yes, we add the values in twice. This is because
6539b54b
AM
4687 bfd_install_relocation subtracts them out again. I think
4688 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
4689 it. FIXME. */
4690 value += fixP->fx_where + fixP->fx_frag->fr_address;
4691 }
252b5132
RH
4692 }
4693#endif
4694#if defined (OBJ_COFF) && defined (TE_PE)
4695 /* For some reason, the PE format does not store a section
24eab124 4696 address offset for a PC relative symbol. */
252b5132
RH
4697 if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
4698 value += md_pcrel_from (fixP);
4699#endif
4700 }
4701
4702 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 4703 and we must not disappoint it. */
252b5132
RH
4704#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4705 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4706 && fixP->fx_addsy)
47926f60
KH
4707 switch (fixP->fx_r_type)
4708 {
4709 case BFD_RELOC_386_PLT32:
3e73aa7c 4710 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
4711 /* Make the jump instruction point to the address of the operand. At
4712 runtime we merely add the offset to the actual PLT entry. */
4713 value = -4;
4714 break;
31312f95 4715
13ae64f3
JJ
4716 case BFD_RELOC_386_TLS_GD:
4717 case BFD_RELOC_386_TLS_LDM:
13ae64f3 4718 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
4719 case BFD_RELOC_386_TLS_IE:
4720 case BFD_RELOC_386_TLS_GOTIE:
bffbf940
JJ
4721 case BFD_RELOC_X86_64_TLSGD:
4722 case BFD_RELOC_X86_64_TLSLD:
4723 case BFD_RELOC_X86_64_GOTTPOFF:
00f7efb6
JJ
4724 value = 0; /* Fully resolved at runtime. No addend. */
4725 /* Fallthrough */
4726 case BFD_RELOC_386_TLS_LE:
4727 case BFD_RELOC_386_TLS_LDO_32:
4728 case BFD_RELOC_386_TLS_LE_32:
4729 case BFD_RELOC_X86_64_DTPOFF32:
4730 case BFD_RELOC_X86_64_TPOFF32:
4731 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4732 break;
4733
4734 case BFD_RELOC_386_GOT32:
4735 case BFD_RELOC_X86_64_GOT32:
47926f60
KH
4736 value = 0; /* Fully resolved at runtime. No addend. */
4737 break;
47926f60
KH
4738
4739 case BFD_RELOC_VTABLE_INHERIT:
4740 case BFD_RELOC_VTABLE_ENTRY:
4741 fixP->fx_done = 0;
94f592af 4742 return;
47926f60
KH
4743
4744 default:
4745 break;
4746 }
4747#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 4748 *valP = value;
f86103b7 4749#endif /* !defined (TE_Mach) */
3e73aa7c 4750
3e73aa7c 4751 /* Are we finished with this relocation now? */
c6682705 4752 if (fixP->fx_addsy == NULL)
3e73aa7c
JH
4753 fixP->fx_done = 1;
4754 else if (use_rela_relocations)
4755 {
4756 fixP->fx_no_overflow = 1;
062cd5e7
AS
4757 /* Remember value for tc_gen_reloc. */
4758 fixP->fx_addnumber = value;
3e73aa7c
JH
4759 value = 0;
4760 }
f86103b7 4761
94f592af 4762 md_number_to_chars (p, value, fixP->fx_size);
252b5132 4763}
252b5132 4764\f
252b5132
RH
4765#define MAX_LITTLENUMS 6
4766
47926f60
KH
4767/* Turn the string pointed to by litP into a floating point constant
4768 of type TYPE, and emit the appropriate bytes. The number of
4769 LITTLENUMS emitted is stored in *SIZEP. An error message is
4770 returned, or NULL on OK. */
4771
252b5132
RH
4772char *
4773md_atof (type, litP, sizeP)
2ab9b79e 4774 int type;
252b5132
RH
4775 char *litP;
4776 int *sizeP;
4777{
4778 int prec;
4779 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4780 LITTLENUM_TYPE *wordP;
4781 char *t;
4782
4783 switch (type)
4784 {
4785 case 'f':
4786 case 'F':
4787 prec = 2;
4788 break;
4789
4790 case 'd':
4791 case 'D':
4792 prec = 4;
4793 break;
4794
4795 case 'x':
4796 case 'X':
4797 prec = 5;
4798 break;
4799
4800 default:
4801 *sizeP = 0;
4802 return _("Bad call to md_atof ()");
4803 }
4804 t = atof_ieee (input_line_pointer, type, words);
4805 if (t)
4806 input_line_pointer = t;
4807
4808 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4809 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4810 the bigendian 386. */
4811 for (wordP = words + prec - 1; prec--;)
4812 {
4813 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4814 litP += sizeof (LITTLENUM_TYPE);
4815 }
4816 return 0;
4817}
4818\f
4819char output_invalid_buf[8];
4820
252b5132
RH
4821static char *
4822output_invalid (c)
4823 int c;
4824{
3882b010 4825 if (ISPRINT (c))
252b5132
RH
4826 sprintf (output_invalid_buf, "'%c'", c);
4827 else
4828 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4829 return output_invalid_buf;
4830}
4831
af6bdddf 4832/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
4833
4834static const reg_entry *
4835parse_register (reg_string, end_op)
4836 char *reg_string;
4837 char **end_op;
4838{
af6bdddf
AM
4839 char *s = reg_string;
4840 char *p;
252b5132
RH
4841 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4842 const reg_entry *r;
4843
4844 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4845 if (*s == REGISTER_PREFIX)
4846 ++s;
4847
4848 if (is_space_char (*s))
4849 ++s;
4850
4851 p = reg_name_given;
af6bdddf 4852 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
4853 {
4854 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
4855 return (const reg_entry *) NULL;
4856 s++;
252b5132
RH
4857 }
4858
6588847e
DN
4859 /* For naked regs, make sure that we are not dealing with an identifier.
4860 This prevents confusing an identifier like `eax_var' with register
4861 `eax'. */
4862 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
4863 return (const reg_entry *) NULL;
4864
af6bdddf 4865 *end_op = s;
252b5132
RH
4866
4867 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
4868
5f47d35b 4869 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 4870 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 4871 {
5f47d35b
AM
4872 if (is_space_char (*s))
4873 ++s;
4874 if (*s == '(')
4875 {
af6bdddf 4876 ++s;
5f47d35b
AM
4877 if (is_space_char (*s))
4878 ++s;
4879 if (*s >= '0' && *s <= '7')
4880 {
4881 r = &i386_float_regtab[*s - '0'];
af6bdddf 4882 ++s;
5f47d35b
AM
4883 if (is_space_char (*s))
4884 ++s;
4885 if (*s == ')')
4886 {
4887 *end_op = s + 1;
4888 return r;
4889 }
5f47d35b 4890 }
47926f60 4891 /* We have "%st(" then garbage. */
5f47d35b
AM
4892 return (const reg_entry *) NULL;
4893 }
4894 }
4895
1ae00879 4896 if (r != NULL
20f0a1fc 4897 && ((r->reg_flags & (RegRex64 | RegRex)) | (r->reg_type & Reg64)) != 0
1ae00879 4898 && flag_code != CODE_64BIT)
20f0a1fc 4899 return (const reg_entry *) NULL;
1ae00879 4900
252b5132
RH
4901 return r;
4902}
4903\f
4cc782b5 4904#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12b55ccc 4905const char *md_shortopts = "kVQ:sqn";
252b5132 4906#else
12b55ccc 4907const char *md_shortopts = "qn";
252b5132 4908#endif
6e0b89ee 4909
252b5132 4910struct option md_longopts[] = {
3e73aa7c
JH
4911#define OPTION_32 (OPTION_MD_BASE + 0)
4912 {"32", no_argument, NULL, OPTION_32},
6e0b89ee 4913#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3e73aa7c
JH
4914#define OPTION_64 (OPTION_MD_BASE + 1)
4915 {"64", no_argument, NULL, OPTION_64},
6e0b89ee 4916#endif
252b5132
RH
4917 {NULL, no_argument, NULL, 0}
4918};
4919size_t md_longopts_size = sizeof (md_longopts);
4920
4921int
4922md_parse_option (c, arg)
4923 int c;
ab9da554 4924 char *arg ATTRIBUTE_UNUSED;
252b5132
RH
4925{
4926 switch (c)
4927 {
12b55ccc
L
4928 case 'n':
4929 optimize_align_code = 0;
4930 break;
4931
a38cf1db
AM
4932 case 'q':
4933 quiet_warnings = 1;
252b5132
RH
4934 break;
4935
4936#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
4937 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
4938 should be emitted or not. FIXME: Not implemented. */
4939 case 'Q':
252b5132
RH
4940 break;
4941
4942 /* -V: SVR4 argument to print version ID. */
4943 case 'V':
4944 print_version_id ();
4945 break;
4946
a38cf1db
AM
4947 /* -k: Ignore for FreeBSD compatibility. */
4948 case 'k':
252b5132 4949 break;
4cc782b5
ILT
4950
4951 case 's':
4952 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 4953 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 4954 break;
6e0b89ee 4955
3e73aa7c
JH
4956 case OPTION_64:
4957 {
4958 const char **list, **l;
4959
3e73aa7c
JH
4960 list = bfd_target_list ();
4961 for (l = list; *l != NULL; l++)
6e0b89ee
AM
4962 if (strcmp (*l, "elf64-x86-64") == 0)
4963 {
4964 default_arch = "x86_64";
4965 break;
4966 }
3e73aa7c 4967 if (*l == NULL)
6e0b89ee 4968 as_fatal (_("No compiled in support for x86_64"));
3e73aa7c
JH
4969 free (list);
4970 }
4971 break;
4972#endif
252b5132 4973
6e0b89ee
AM
4974 case OPTION_32:
4975 default_arch = "i386";
4976 break;
4977
252b5132
RH
4978 default:
4979 return 0;
4980 }
4981 return 1;
4982}
4983
4984void
4985md_show_usage (stream)
4986 FILE *stream;
4987{
4cc782b5
ILT
4988#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4989 fprintf (stream, _("\
a38cf1db
AM
4990 -Q ignored\n\
4991 -V print assembler version number\n\
4992 -k ignored\n\
12b55ccc 4993 -n Do not optimize code alignment\n\
a38cf1db
AM
4994 -q quieten some warnings\n\
4995 -s ignored\n"));
4996#else
4997 fprintf (stream, _("\
12b55ccc 4998 -n Do not optimize code alignment\n\
a38cf1db 4999 -q quieten some warnings\n"));
4cc782b5 5000#endif
252b5132
RH
5001}
5002
3e73aa7c
JH
5003#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
5004 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
252b5132
RH
5005
5006/* Pick the target format to use. */
5007
47926f60 5008const char *
252b5132
RH
5009i386_target_format ()
5010{
3e73aa7c
JH
5011 if (!strcmp (default_arch, "x86_64"))
5012 set_code_flag (CODE_64BIT);
5013 else if (!strcmp (default_arch, "i386"))
5014 set_code_flag (CODE_32BIT);
5015 else
5016 as_fatal (_("Unknown architecture"));
252b5132
RH
5017 switch (OUTPUT_FLAVOR)
5018 {
4c63da97
AM
5019#ifdef OBJ_MAYBE_AOUT
5020 case bfd_target_aout_flavour:
47926f60 5021 return AOUT_TARGET_FORMAT;
4c63da97
AM
5022#endif
5023#ifdef OBJ_MAYBE_COFF
252b5132
RH
5024 case bfd_target_coff_flavour:
5025 return "coff-i386";
4c63da97 5026#endif
3e73aa7c 5027#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 5028 case bfd_target_elf_flavour:
3e73aa7c 5029 {
e5cb08ac
KH
5030 if (flag_code == CODE_64BIT)
5031 use_rela_relocations = 1;
4ada7262 5032 return flag_code == CODE_64BIT ? "elf64-x86-64" : ELF_TARGET_FORMAT;
3e73aa7c 5033 }
4c63da97 5034#endif
252b5132
RH
5035 default:
5036 abort ();
5037 return NULL;
5038 }
5039}
5040
47926f60 5041#endif /* OBJ_MAYBE_ more than one */
a847613f
AM
5042
5043#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5044void i386_elf_emit_arch_note ()
5045{
5046 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
5047 && cpu_arch_name != NULL)
5048 {
5049 char *p;
5050 asection *seg = now_seg;
5051 subsegT subseg = now_subseg;
5052 Elf_Internal_Note i_note;
5053 Elf_External_Note e_note;
5054 asection *note_secp;
5055 int len;
5056
5057 /* Create the .note section. */
5058 note_secp = subseg_new (".note", 0);
5059 bfd_set_section_flags (stdoutput,
5060 note_secp,
5061 SEC_HAS_CONTENTS | SEC_READONLY);
5062
5063 /* Process the arch string. */
5064 len = strlen (cpu_arch_name);
5065
5066 i_note.namesz = len + 1;
5067 i_note.descsz = 0;
5068 i_note.type = NT_ARCH;
5069 p = frag_more (sizeof (e_note.namesz));
5070 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
5071 p = frag_more (sizeof (e_note.descsz));
5072 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
5073 p = frag_more (sizeof (e_note.type));
5074 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
5075 p = frag_more (len + 1);
5076 strcpy (p, cpu_arch_name);
5077
5078 frag_align (2, 0, 0);
5079
5080 subseg_set (seg, subseg);
5081 }
5082}
5083#endif
252b5132 5084\f
252b5132
RH
5085symbolS *
5086md_undefined_symbol (name)
5087 char *name;
5088{
18dc2407
ILT
5089 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
5090 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
5091 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
5092 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
5093 {
5094 if (!GOT_symbol)
5095 {
5096 if (symbol_find (name))
5097 as_bad (_("GOT already in symbol table"));
5098 GOT_symbol = symbol_new (name, undefined_section,
5099 (valueT) 0, &zero_address_frag);
5100 };
5101 return GOT_symbol;
5102 }
252b5132
RH
5103 return 0;
5104}
5105
5106/* Round up a section size to the appropriate boundary. */
47926f60 5107
252b5132
RH
5108valueT
5109md_section_align (segment, size)
ab9da554 5110 segT segment ATTRIBUTE_UNUSED;
252b5132
RH
5111 valueT size;
5112{
4c63da97
AM
5113#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
5114 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
5115 {
5116 /* For a.out, force the section size to be aligned. If we don't do
5117 this, BFD will align it for us, but it will not write out the
5118 final bytes of the section. This may be a bug in BFD, but it is
5119 easier to fix it here since that is how the other a.out targets
5120 work. */
5121 int align;
5122
5123 align = bfd_get_section_alignment (stdoutput, segment);
5124 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
5125 }
252b5132
RH
5126#endif
5127
5128 return size;
5129}
5130
5131/* On the i386, PC-relative offsets are relative to the start of the
5132 next instruction. That is, the address of the offset, plus its
5133 size, since the offset is always the last part of the insn. */
5134
5135long
5136md_pcrel_from (fixP)
5137 fixS *fixP;
5138{
5139 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
5140}
5141
5142#ifndef I386COFF
5143
5144static void
5145s_bss (ignore)
ab9da554 5146 int ignore ATTRIBUTE_UNUSED;
252b5132 5147{
29b0f896 5148 int temp;
252b5132
RH
5149
5150 temp = get_absolute_expression ();
5151 subseg_set (bss_section, (subsegT) temp);
5152 demand_empty_rest_of_line ();
5153}
5154
5155#endif
5156
252b5132
RH
5157void
5158i386_validate_fix (fixp)
5159 fixS *fixp;
5160{
5161 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
5162 {
3e73aa7c 5163 /* GOTOFF relocation are nonsense in 64bit mode. */
23df1078
JH
5164 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
5165 {
5166 if (flag_code != CODE_64BIT)
5167 abort ();
5168 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
5169 }
5170 else
5171 {
5172 if (flag_code == CODE_64BIT)
5173 abort ();
5174 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
5175 }
252b5132
RH
5176 fixp->fx_subsy = 0;
5177 }
5178}
5179
252b5132
RH
5180arelent *
5181tc_gen_reloc (section, fixp)
ab9da554 5182 asection *section ATTRIBUTE_UNUSED;
252b5132
RH
5183 fixS *fixp;
5184{
5185 arelent *rel;
5186 bfd_reloc_code_real_type code;
5187
5188 switch (fixp->fx_r_type)
5189 {
3e73aa7c
JH
5190 case BFD_RELOC_X86_64_PLT32:
5191 case BFD_RELOC_X86_64_GOT32:
5192 case BFD_RELOC_X86_64_GOTPCREL:
252b5132
RH
5193 case BFD_RELOC_386_PLT32:
5194 case BFD_RELOC_386_GOT32:
5195 case BFD_RELOC_386_GOTOFF:
5196 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
5197 case BFD_RELOC_386_TLS_GD:
5198 case BFD_RELOC_386_TLS_LDM:
5199 case BFD_RELOC_386_TLS_LDO_32:
5200 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
5201 case BFD_RELOC_386_TLS_IE:
5202 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
5203 case BFD_RELOC_386_TLS_LE_32:
5204 case BFD_RELOC_386_TLS_LE:
3e73aa7c 5205 case BFD_RELOC_X86_64_32S:
bffbf940
JJ
5206 case BFD_RELOC_X86_64_TLSGD:
5207 case BFD_RELOC_X86_64_TLSLD:
5208 case BFD_RELOC_X86_64_DTPOFF32:
5209 case BFD_RELOC_X86_64_GOTTPOFF:
5210 case BFD_RELOC_X86_64_TPOFF32:
252b5132
RH
5211 case BFD_RELOC_RVA:
5212 case BFD_RELOC_VTABLE_ENTRY:
5213 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
5214#ifdef TE_PE
5215 case BFD_RELOC_32_SECREL:
5216#endif
252b5132
RH
5217 code = fixp->fx_r_type;
5218 break;
5219 default:
93382f6d 5220 if (fixp->fx_pcrel)
252b5132 5221 {
93382f6d
AM
5222 switch (fixp->fx_size)
5223 {
5224 default:
b091f402
AM
5225 as_bad_where (fixp->fx_file, fixp->fx_line,
5226 _("can not do %d byte pc-relative relocation"),
5227 fixp->fx_size);
93382f6d
AM
5228 code = BFD_RELOC_32_PCREL;
5229 break;
5230 case 1: code = BFD_RELOC_8_PCREL; break;
5231 case 2: code = BFD_RELOC_16_PCREL; break;
5232 case 4: code = BFD_RELOC_32_PCREL; break;
5233 }
5234 }
5235 else
5236 {
5237 switch (fixp->fx_size)
5238 {
5239 default:
b091f402
AM
5240 as_bad_where (fixp->fx_file, fixp->fx_line,
5241 _("can not do %d byte relocation"),
5242 fixp->fx_size);
93382f6d
AM
5243 code = BFD_RELOC_32;
5244 break;
5245 case 1: code = BFD_RELOC_8; break;
5246 case 2: code = BFD_RELOC_16; break;
5247 case 4: code = BFD_RELOC_32; break;
937149dd 5248#ifdef BFD64
3e73aa7c 5249 case 8: code = BFD_RELOC_64; break;
937149dd 5250#endif
93382f6d 5251 }
252b5132
RH
5252 }
5253 break;
5254 }
252b5132
RH
5255
5256 if (code == BFD_RELOC_32
5257 && GOT_symbol
5258 && fixp->fx_addsy == GOT_symbol)
3e73aa7c
JH
5259 {
5260 /* We don't support GOTPC on 64bit targets. */
5261 if (flag_code == CODE_64BIT)
bfb32b52 5262 abort ();
3e73aa7c
JH
5263 code = BFD_RELOC_386_GOTPC;
5264 }
252b5132
RH
5265
5266 rel = (arelent *) xmalloc (sizeof (arelent));
49309057
ILT
5267 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5268 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
5269
5270 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184
CF
5271
5272#ifdef TE_PE
5273 if (S_IS_WEAK (fixp->fx_addsy))
5274 rel->addend = rel->address - (*rel->sym_ptr_ptr)->value + 4;
5275 else
5276#endif
3e73aa7c
JH
5277 if (!use_rela_relocations)
5278 {
5279 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
5280 vtable entry to be used in the relocation's section offset. */
5281 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5282 rel->address = fixp->fx_offset;
252b5132 5283
c6682705 5284 rel->addend = 0;
3e73aa7c
JH
5285 }
5286 /* Use the rela in 64bit mode. */
252b5132 5287 else
3e73aa7c 5288 {
062cd5e7
AS
5289 if (!fixp->fx_pcrel)
5290 rel->addend = fixp->fx_offset;
5291 else
5292 switch (code)
5293 {
5294 case BFD_RELOC_X86_64_PLT32:
5295 case BFD_RELOC_X86_64_GOT32:
5296 case BFD_RELOC_X86_64_GOTPCREL:
bffbf940
JJ
5297 case BFD_RELOC_X86_64_TLSGD:
5298 case BFD_RELOC_X86_64_TLSLD:
5299 case BFD_RELOC_X86_64_GOTTPOFF:
062cd5e7
AS
5300 rel->addend = fixp->fx_offset - fixp->fx_size;
5301 break;
5302 default:
5303 rel->addend = (section->vma
5304 - fixp->fx_size
5305 + fixp->fx_addnumber
5306 + md_pcrel_from (fixp));
5307 break;
5308 }
3e73aa7c
JH
5309 }
5310
252b5132
RH
5311 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
5312 if (rel->howto == NULL)
5313 {
5314 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 5315 _("cannot represent relocation type %s"),
252b5132
RH
5316 bfd_get_reloc_code_name (code));
5317 /* Set howto to a garbage value so that we can keep going. */
5318 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
5319 assert (rel->howto != NULL);
5320 }
5321
5322 return rel;
5323}
5324
64a0c779
DN
5325\f
5326/* Parse operands using Intel syntax. This implements a recursive descent
5327 parser based on the BNF grammar published in Appendix B of the MASM 6.1
5328 Programmer's Guide.
5329
5330 FIXME: We do not recognize the full operand grammar defined in the MASM
5331 documentation. In particular, all the structure/union and
5332 high-level macro operands are missing.
5333
5334 Uppercase words are terminals, lower case words are non-terminals.
5335 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
5336 bars '|' denote choices. Most grammar productions are implemented in
5337 functions called 'intel_<production>'.
5338
5339 Initial production is 'expr'.
5340
0477af35 5341 addOp + | - | & | \| | << | >>
64a0c779
DN
5342
5343 alpha [a-zA-Z]
5344
5345 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
5346
5347 constant digits [[ radixOverride ]]
5348
5349 dataType BYTE | WORD | DWORD | QWORD | XWORD
5350
5351 digits decdigit
b77a7acd
AJ
5352 | digits decdigit
5353 | digits hexdigit
64a0c779
DN
5354
5355 decdigit [0-9]
5356
5357 e05 e05 addOp e06
b77a7acd 5358 | e06
64a0c779
DN
5359
5360 e06 e06 mulOp e09
b77a7acd 5361 | e09
64a0c779
DN
5362
5363 e09 OFFSET e10
5364 | e09 PTR e10
5365 | e09 : e10
5366 | e10
5367
5368 e10 e10 [ expr ]
b77a7acd 5369 | e11
64a0c779
DN
5370
5371 e11 ( expr )
b77a7acd 5372 | [ expr ]
64a0c779
DN
5373 | constant
5374 | dataType
5375 | id
5376 | $
5377 | register
0477af35 5378 | ~
64a0c779
DN
5379
5380 => expr SHORT e05
b77a7acd 5381 | e05
64a0c779
DN
5382
5383 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
b77a7acd 5384 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
64a0c779
DN
5385
5386 hexdigit a | b | c | d | e | f
b77a7acd 5387 | A | B | C | D | E | F
64a0c779
DN
5388
5389 id alpha
b77a7acd 5390 | id alpha
64a0c779
DN
5391 | id decdigit
5392
5393 mulOp * | / | MOD
5394
5395 quote " | '
5396
5397 register specialRegister
b77a7acd 5398 | gpRegister
64a0c779
DN
5399 | byteRegister
5400
5401 segmentRegister CS | DS | ES | FS | GS | SS
5402
5403 specialRegister CR0 | CR2 | CR3
b77a7acd 5404 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
64a0c779
DN
5405 | TR3 | TR4 | TR5 | TR6 | TR7
5406
64a0c779
DN
5407 We simplify the grammar in obvious places (e.g., register parsing is
5408 done by calling parse_register) and eliminate immediate left recursion
5409 to implement a recursive-descent parser.
5410
5411 expr SHORT e05
b77a7acd 5412 | e05
64a0c779
DN
5413
5414 e05 e06 e05'
5415
5416 e05' addOp e06 e05'
b77a7acd 5417 | Empty
64a0c779
DN
5418
5419 e06 e09 e06'
5420
5421 e06' mulOp e09 e06'
b77a7acd 5422 | Empty
64a0c779
DN
5423
5424 e09 OFFSET e10 e09'
b77a7acd 5425 | e10 e09'
64a0c779
DN
5426
5427 e09' PTR e10 e09'
b77a7acd 5428 | : e10 e09'
64a0c779
DN
5429 | Empty
5430
5431 e10 e11 e10'
5432
5433 e10' [ expr ] e10'
b77a7acd 5434 | Empty
64a0c779
DN
5435
5436 e11 ( expr )
b77a7acd 5437 | [ expr ]
64a0c779
DN
5438 | BYTE
5439 | WORD
5440 | DWORD
5441 | QWORD
5442 | XWORD
5443 | .
5444 | $
5445 | register
5446 | id
0477af35 5447 | ~
64a0c779
DN
5448 | constant */
5449
5450/* Parsing structure for the intel syntax parser. Used to implement the
5451 semantic actions for the operand grammar. */
5452struct intel_parser_s
5453 {
5454 char *op_string; /* The string being parsed. */
5455 int got_a_float; /* Whether the operand is a float. */
4a1805b1 5456 int op_modifier; /* Operand modifier. */
64a0c779
DN
5457 int is_mem; /* 1 if operand is memory reference. */
5458 const reg_entry *reg; /* Last register reference found. */
5459 char *disp; /* Displacement string being built. */
5460 };
5461
5462static struct intel_parser_s intel_parser;
5463
5464/* Token structure for parsing intel syntax. */
5465struct intel_token
5466 {
5467 int code; /* Token code. */
5468 const reg_entry *reg; /* Register entry for register tokens. */
5469 char *str; /* String representation. */
5470 };
5471
5472static struct intel_token cur_token, prev_token;
5473
50705ef4
AM
5474/* Token codes for the intel parser. Since T_SHORT is already used
5475 by COFF, undefine it first to prevent a warning. */
64a0c779
DN
5476#define T_NIL -1
5477#define T_CONST 1
5478#define T_REG 2
5479#define T_BYTE 3
5480#define T_WORD 4
5481#define T_DWORD 5
5482#define T_QWORD 6
5483#define T_XWORD 7
50705ef4 5484#undef T_SHORT
64a0c779
DN
5485#define T_SHORT 8
5486#define T_OFFSET 9
5487#define T_PTR 10
5488#define T_ID 11
0477af35 5489#define T_SHIFTOP 12
64a0c779
DN
5490
5491/* Prototypes for intel parser functions. */
5492static int intel_match_token PARAMS ((int code));
cce0cbdc
DN
5493static void intel_get_token PARAMS ((void));
5494static void intel_putback_token PARAMS ((void));
5495static int intel_expr PARAMS ((void));
5496static int intel_e05 PARAMS ((void));
5497static int intel_e05_1 PARAMS ((void));
5498static int intel_e06 PARAMS ((void));
5499static int intel_e06_1 PARAMS ((void));
5500static int intel_e09 PARAMS ((void));
5501static int intel_e09_1 PARAMS ((void));
5502static int intel_e10 PARAMS ((void));
5503static int intel_e10_1 PARAMS ((void));
5504static int intel_e11 PARAMS ((void));
64a0c779 5505
64a0c779
DN
5506static int
5507i386_intel_operand (operand_string, got_a_float)
5508 char *operand_string;
5509 int got_a_float;
5510{
5511 int ret;
5512 char *p;
5513
5514 /* Initialize token holders. */
5515 cur_token.code = prev_token.code = T_NIL;
5516 cur_token.reg = prev_token.reg = NULL;
5517 cur_token.str = prev_token.str = NULL;
5518
5519 /* Initialize parser structure. */
e5cb08ac 5520 p = intel_parser.op_string = (char *) malloc (strlen (operand_string) + 1);
64a0c779
DN
5521 if (p == NULL)
5522 abort ();
5523 strcpy (intel_parser.op_string, operand_string);
5524 intel_parser.got_a_float = got_a_float;
5525 intel_parser.op_modifier = -1;
5526 intel_parser.is_mem = 0;
5527 intel_parser.reg = NULL;
e5cb08ac 5528 intel_parser.disp = (char *) malloc (strlen (operand_string) + 1);
64a0c779
DN
5529 if (intel_parser.disp == NULL)
5530 abort ();
5531 intel_parser.disp[0] = '\0';
5532
5533 /* Read the first token and start the parser. */
5534 intel_get_token ();
5535 ret = intel_expr ();
5536
5537 if (ret)
5538 {
5539 /* If we found a memory reference, hand it over to i386_displacement
5540 to fill in the rest of the operand fields. */
5541 if (intel_parser.is_mem)
5542 {
5543 if ((i.mem_operands == 1
5544 && (current_templates->start->opcode_modifier & IsString) == 0)
5545 || i.mem_operands == 2)
5546 {
5547 as_bad (_("too many memory references for '%s'"),
5548 current_templates->start->name);
5549 ret = 0;
5550 }
5551 else
5552 {
5553 char *s = intel_parser.disp;
5554 i.mem_operands++;
5555
5556 /* Add the displacement expression. */
5557 if (*s != '\0')
a4622f40
AM
5558 ret = i386_displacement (s, s + strlen (s));
5559 if (ret)
5560 ret = i386_index_check (operand_string);
64a0c779
DN
5561 }
5562 }
5563
5564 /* Constant and OFFSET expressions are handled by i386_immediate. */
5565 else if (intel_parser.op_modifier == OFFSET_FLAT
5566 || intel_parser.reg == NULL)
5567 ret = i386_immediate (intel_parser.disp);
5568 }
5569
5570 free (p);
5571 free (intel_parser.disp);
5572
5573 return ret;
5574}
5575
64a0c779 5576/* expr SHORT e05
b77a7acd 5577 | e05 */
64a0c779
DN
5578static int
5579intel_expr ()
5580{
5581 /* expr SHORT e05 */
5582 if (cur_token.code == T_SHORT)
5583 {
5584 intel_parser.op_modifier = SHORT;
5585 intel_match_token (T_SHORT);
5586
5587 return (intel_e05 ());
5588 }
5589
5590 /* expr e05 */
5591 else
5592 return intel_e05 ();
5593}
5594
64a0c779
DN
5595/* e05 e06 e05'
5596
4a1805b1 5597 e05' addOp e06 e05'
64a0c779
DN
5598 | Empty */
5599static int
5600intel_e05 ()
5601{
5602 return (intel_e06 () && intel_e05_1 ());
5603}
5604
5605static int
5606intel_e05_1 ()
5607{
5608 /* e05' addOp e06 e05' */
0477af35
NC
5609 if (cur_token.code == '+' || cur_token.code == '-'
5610 || cur_token.code == '&' || cur_token.code == '|'
5611 || cur_token.code == T_SHIFTOP)
64a0c779
DN
5612 {
5613 strcat (intel_parser.disp, cur_token.str);
5614 intel_match_token (cur_token.code);
5615
5616 return (intel_e06 () && intel_e05_1 ());
5617 }
5618
5619 /* e05' Empty */
5620 else
5621 return 1;
4a1805b1 5622}
64a0c779
DN
5623
5624/* e06 e09 e06'
5625
5626 e06' mulOp e09 e06'
b77a7acd 5627 | Empty */
64a0c779
DN
5628static int
5629intel_e06 ()
5630{
5631 return (intel_e09 () && intel_e06_1 ());
5632}
5633
5634static int
5635intel_e06_1 ()
5636{
5637 /* e06' mulOp e09 e06' */
5638 if (cur_token.code == '*' || cur_token.code == '/')
5639 {
5640 strcat (intel_parser.disp, cur_token.str);
5641 intel_match_token (cur_token.code);
5642
5643 return (intel_e09 () && intel_e06_1 ());
5644 }
4a1805b1 5645
64a0c779 5646 /* e06' Empty */
4a1805b1 5647 else
64a0c779
DN
5648 return 1;
5649}
5650
64a0c779 5651/* e09 OFFSET e10 e09'
b77a7acd 5652 | e10 e09'
64a0c779
DN
5653
5654 e09' PTR e10 e09'
b77a7acd 5655 | : e10 e09'
64a0c779
DN
5656 | Empty */
5657static int
5658intel_e09 ()
5659{
5660 /* e09 OFFSET e10 e09' */
5661 if (cur_token.code == T_OFFSET)
5662 {
5663 intel_parser.is_mem = 0;
5664 intel_parser.op_modifier = OFFSET_FLAT;
5665 intel_match_token (T_OFFSET);
5666
5667 return (intel_e10 () && intel_e09_1 ());
5668 }
5669
5670 /* e09 e10 e09' */
5671 else
5672 return (intel_e10 () && intel_e09_1 ());
5673}
5674
5675static int
5676intel_e09_1 ()
5677{
5678 /* e09' PTR e10 e09' */
5679 if (cur_token.code == T_PTR)
5680 {
5681 if (prev_token.code == T_BYTE)
5682 i.suffix = BYTE_MNEM_SUFFIX;
5683
5684 else if (prev_token.code == T_WORD)
5685 {
5686 if (intel_parser.got_a_float == 2) /* "fi..." */
5687 i.suffix = SHORT_MNEM_SUFFIX;
5688 else
5689 i.suffix = WORD_MNEM_SUFFIX;
5690 }
5691
5692 else if (prev_token.code == T_DWORD)
5693 {
5694 if (intel_parser.got_a_float == 1) /* "f..." */
5695 i.suffix = SHORT_MNEM_SUFFIX;
5696 else
5697 i.suffix = LONG_MNEM_SUFFIX;
5698 }
5699
5700 else if (prev_token.code == T_QWORD)
f16b83df
JH
5701 {
5702 if (intel_parser.got_a_float == 1) /* "f..." */
5703 i.suffix = LONG_MNEM_SUFFIX;
5704 else
3e73aa7c 5705 i.suffix = QWORD_MNEM_SUFFIX;
f16b83df 5706 }
64a0c779
DN
5707
5708 else if (prev_token.code == T_XWORD)
5709 i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
5710
5711 else
5712 {
0477af35 5713 as_bad (_("Unknown operand modifier `%s'"), prev_token.str);
64a0c779
DN
5714 return 0;
5715 }
5716
5717 intel_match_token (T_PTR);
5718
5719 return (intel_e10 () && intel_e09_1 ());
5720 }
5721
5722 /* e09 : e10 e09' */
5723 else if (cur_token.code == ':')
5724 {
21d6c4af
DN
5725 /* Mark as a memory operand only if it's not already known to be an
5726 offset expression. */
5727 if (intel_parser.op_modifier != OFFSET_FLAT)
5728 intel_parser.is_mem = 1;
64a0c779
DN
5729
5730 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
5731 }
5732
5733 /* e09' Empty */
5734 else
5735 return 1;
5736}
5737
5738/* e10 e11 e10'
5739
5740 e10' [ expr ] e10'
b77a7acd 5741 | Empty */
64a0c779
DN
5742static int
5743intel_e10 ()
5744{
5745 return (intel_e11 () && intel_e10_1 ());
5746}
5747
5748static int
5749intel_e10_1 ()
5750{
5751 /* e10' [ expr ] e10' */
5752 if (cur_token.code == '[')
5753 {
5754 intel_match_token ('[');
21d6c4af
DN
5755
5756 /* Mark as a memory operand only if it's not already known to be an
5757 offset expression. If it's an offset expression, we need to keep
5758 the brace in. */
5759 if (intel_parser.op_modifier != OFFSET_FLAT)
5760 intel_parser.is_mem = 1;
5761 else
5762 strcat (intel_parser.disp, "[");
4a1805b1 5763
64a0c779 5764 /* Add a '+' to the displacement string if necessary. */
21d6c4af
DN
5765 if (*intel_parser.disp != '\0'
5766 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
64a0c779
DN
5767 strcat (intel_parser.disp, "+");
5768
21d6c4af
DN
5769 if (intel_expr () && intel_match_token (']'))
5770 {
5771 /* Preserve brackets when the operand is an offset expression. */
5772 if (intel_parser.op_modifier == OFFSET_FLAT)
5773 strcat (intel_parser.disp, "]");
5774
5775 return intel_e10_1 ();
5776 }
5777 else
5778 return 0;
64a0c779
DN
5779 }
5780
5781 /* e10' Empty */
5782 else
5783 return 1;
5784}
5785
64a0c779 5786/* e11 ( expr )
b77a7acd 5787 | [ expr ]
64a0c779
DN
5788 | BYTE
5789 | WORD
5790 | DWORD
5791 | QWORD
5792 | XWORD
4a1805b1 5793 | $
64a0c779
DN
5794 | .
5795 | register
5796 | id
0477af35 5797 | ~
64a0c779
DN
5798 | constant */
5799static int
5800intel_e11 ()
5801{
5802 /* e11 ( expr ) */
5803 if (cur_token.code == '(')
5804 {
5805 intel_match_token ('(');
5806 strcat (intel_parser.disp, "(");
5807
5808 if (intel_expr () && intel_match_token (')'))
e5cb08ac
KH
5809 {
5810 strcat (intel_parser.disp, ")");
5811 return 1;
5812 }
64a0c779
DN
5813 else
5814 return 0;
5815 }
5816
0477af35
NC
5817 /* e11 ~ expr */
5818 else if (cur_token.code == '~')
5819 {
5820 strcat (intel_parser.disp, "~");
5821 intel_match_token ('~');
5822
5823 return (intel_e11 ());
5824 }
5825
64a0c779
DN
5826 /* e11 [ expr ] */
5827 else if (cur_token.code == '[')
5828 {
5829 intel_match_token ('[');
21d6c4af
DN
5830
5831 /* Mark as a memory operand only if it's not already known to be an
5832 offset expression. If it's an offset expression, we need to keep
5833 the brace in. */
5834 if (intel_parser.op_modifier != OFFSET_FLAT)
5835 intel_parser.is_mem = 1;
5836 else
5837 strcat (intel_parser.disp, "[");
4a1805b1 5838
64a0c779
DN
5839 /* Operands for jump/call inside brackets denote absolute addresses. */
5840 if (current_templates->start->opcode_modifier & Jump
5841 || current_templates->start->opcode_modifier & JumpDword
5842 || current_templates->start->opcode_modifier & JumpByte
5843 || current_templates->start->opcode_modifier & JumpInterSegment)
5844 i.types[this_operand] |= JumpAbsolute;
5845
5846 /* Add a '+' to the displacement string if necessary. */
21d6c4af
DN
5847 if (*intel_parser.disp != '\0'
5848 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
64a0c779
DN
5849 strcat (intel_parser.disp, "+");
5850
21d6c4af
DN
5851 if (intel_expr () && intel_match_token (']'))
5852 {
5853 /* Preserve brackets when the operand is an offset expression. */
5854 if (intel_parser.op_modifier == OFFSET_FLAT)
5855 strcat (intel_parser.disp, "]");
5856
5857 return 1;
5858 }
5859 else
5860 return 0;
64a0c779
DN
5861 }
5862
4a1805b1 5863 /* e11 BYTE
64a0c779
DN
5864 | WORD
5865 | DWORD
5866 | QWORD
5867 | XWORD */
5868 else if (cur_token.code == T_BYTE
5869 || cur_token.code == T_WORD
5870 || cur_token.code == T_DWORD
5871 || cur_token.code == T_QWORD
5872 || cur_token.code == T_XWORD)
5873 {
5874 intel_match_token (cur_token.code);
5875
5876 return 1;
5877 }
5878
5879 /* e11 $
5880 | . */
5881 else if (cur_token.code == '$' || cur_token.code == '.')
5882 {
5883 strcat (intel_parser.disp, cur_token.str);
5884 intel_match_token (cur_token.code);
21d6c4af
DN
5885
5886 /* Mark as a memory operand only if it's not already known to be an
5887 offset expression. */
5888 if (intel_parser.op_modifier != OFFSET_FLAT)
5889 intel_parser.is_mem = 1;
64a0c779
DN
5890
5891 return 1;
5892 }
5893
5894 /* e11 register */
5895 else if (cur_token.code == T_REG)
5896 {
5897 const reg_entry *reg = intel_parser.reg = cur_token.reg;
5898
5899 intel_match_token (T_REG);
5900
5901 /* Check for segment change. */
5902 if (cur_token.code == ':')
5903 {
5904 if (reg->reg_type & (SReg2 | SReg3))
5905 {
5906 switch (reg->reg_num)
5907 {
5908 case 0:
5909 i.seg[i.mem_operands] = &es;
5910 break;
5911 case 1:
5912 i.seg[i.mem_operands] = &cs;
5913 break;
5914 case 2:
5915 i.seg[i.mem_operands] = &ss;
5916 break;
5917 case 3:
5918 i.seg[i.mem_operands] = &ds;
5919 break;
5920 case 4:
5921 i.seg[i.mem_operands] = &fs;
5922 break;
5923 case 5:
5924 i.seg[i.mem_operands] = &gs;
5925 break;
5926 }
5927 }
5928 else
5929 {
5930 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
5931 return 0;
5932 }
5933 }
5934
5935 /* Not a segment register. Check for register scaling. */
5936 else if (cur_token.code == '*')
5937 {
5938 if (!intel_parser.is_mem)
5939 {
5940 as_bad (_("Register scaling only allowed in memory operands."));
5941 return 0;
5942 }
5943
4a1805b1 5944 /* What follows must be a valid scale. */
64a0c779
DN
5945 if (intel_match_token ('*')
5946 && strchr ("01248", *cur_token.str))
5947 {
5948 i.index_reg = reg;
5949 i.types[this_operand] |= BaseIndex;
5950
5951 /* Set the scale after setting the register (otherwise,
5952 i386_scale will complain) */
5953 i386_scale (cur_token.str);
5954 intel_match_token (T_CONST);
5955 }
5956 else
5957 {
5958 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
5959 cur_token.str);
5960 return 0;
5961 }
5962 }
5963
5964 /* No scaling. If this is a memory operand, the register is either a
5965 base register (first occurrence) or an index register (second
5966 occurrence). */
5967 else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
5968 {
5969 if (i.base_reg && i.index_reg)
5970 {
0477af35 5971 as_bad (_("Too many register references in memory operand."));
64a0c779
DN
5972 return 0;
5973 }
5974
5975 if (i.base_reg == NULL)
5976 i.base_reg = reg;
5977 else
5978 i.index_reg = reg;
5979
5980 i.types[this_operand] |= BaseIndex;
5981 }
5982
5983 /* Offset modifier. Add the register to the displacement string to be
5984 parsed as an immediate expression after we're done. */
5985 else if (intel_parser.op_modifier == OFFSET_FLAT)
5986 strcat (intel_parser.disp, reg->reg_name);
4a1805b1 5987
64a0c779
DN
5988 /* It's neither base nor index nor offset. */
5989 else
5990 {
5991 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
5992 i.op[this_operand].regs = reg;
5993 i.reg_operands++;
5994 }
5995
5996 /* Since registers are not part of the displacement string (except
5997 when we're parsing offset operands), we may need to remove any
5998 preceding '+' from the displacement string. */
5999 if (*intel_parser.disp != '\0'
6000 && intel_parser.op_modifier != OFFSET_FLAT)
6001 {
6002 char *s = intel_parser.disp;
6003 s += strlen (s) - 1;
6004 if (*s == '+')
6005 *s = '\0';
6006 }
6007
6008 return 1;
6009 }
4a1805b1 6010
64a0c779
DN
6011 /* e11 id */
6012 else if (cur_token.code == T_ID)
6013 {
6014 /* Add the identifier to the displacement string. */
6015 strcat (intel_parser.disp, cur_token.str);
6016 intel_match_token (T_ID);
6017
6018 /* The identifier represents a memory reference only if it's not
6019 preceded by an offset modifier. */
21d6c4af 6020 if (intel_parser.op_modifier != OFFSET_FLAT)
64a0c779
DN
6021 intel_parser.is_mem = 1;
6022
6023 return 1;
6024 }
6025
6026 /* e11 constant */
6027 else if (cur_token.code == T_CONST
e5cb08ac 6028 || cur_token.code == '-'
64a0c779
DN
6029 || cur_token.code == '+')
6030 {
6031 char *save_str;
6032
6033 /* Allow constants that start with `+' or `-'. */
6034 if (cur_token.code == '-' || cur_token.code == '+')
6035 {
6036 strcat (intel_parser.disp, cur_token.str);
6037 intel_match_token (cur_token.code);
6038 if (cur_token.code != T_CONST)
6039 {
0477af35 6040 as_bad (_("Syntax error. Expecting a constant. Got `%s'."),
64a0c779
DN
6041 cur_token.str);
6042 return 0;
6043 }
6044 }
6045
e5cb08ac 6046 save_str = (char *) malloc (strlen (cur_token.str) + 1);
64a0c779 6047 if (save_str == NULL)
bc805888 6048 abort ();
64a0c779
DN
6049 strcpy (save_str, cur_token.str);
6050
6051 /* Get the next token to check for register scaling. */
6052 intel_match_token (cur_token.code);
6053
6054 /* Check if this constant is a scaling factor for an index register. */
6055 if (cur_token.code == '*')
6056 {
6057 if (intel_match_token ('*') && cur_token.code == T_REG)
6058 {
6059 if (!intel_parser.is_mem)
6060 {
6061 as_bad (_("Register scaling only allowed in memory operands."));
6062 return 0;
6063 }
6064
4a1805b1 6065 /* The constant is followed by `* reg', so it must be
64a0c779
DN
6066 a valid scale. */
6067 if (strchr ("01248", *save_str))
6068 {
6069 i.index_reg = cur_token.reg;
6070 i.types[this_operand] |= BaseIndex;
6071
6072 /* Set the scale after setting the register (otherwise,
6073 i386_scale will complain) */
6074 i386_scale (save_str);
6075 intel_match_token (T_REG);
6076
6077 /* Since registers are not part of the displacement
6078 string, we may need to remove any preceding '+' from
6079 the displacement string. */
6080 if (*intel_parser.disp != '\0')
6081 {
6082 char *s = intel_parser.disp;
6083 s += strlen (s) - 1;
6084 if (*s == '+')
6085 *s = '\0';
6086 }
6087
6088 free (save_str);
6089
6090 return 1;
6091 }
6092 else
6093 return 0;
6094 }
6095
6096 /* The constant was not used for register scaling. Since we have
6097 already consumed the token following `*' we now need to put it
6098 back in the stream. */
6099 else
6100 intel_putback_token ();
6101 }
6102
6103 /* Add the constant to the displacement string. */
6104 strcat (intel_parser.disp, save_str);
6105 free (save_str);
6106
6107 return 1;
6108 }
6109
64a0c779
DN
6110 as_bad (_("Unrecognized token '%s'"), cur_token.str);
6111 return 0;
6112}
6113
64a0c779
DN
6114/* Match the given token against cur_token. If they match, read the next
6115 token from the operand string. */
6116static int
6117intel_match_token (code)
e5cb08ac 6118 int code;
64a0c779
DN
6119{
6120 if (cur_token.code == code)
6121 {
6122 intel_get_token ();
6123 return 1;
6124 }
6125 else
6126 {
0477af35 6127 as_bad (_("Unexpected token `%s'"), cur_token.str);
64a0c779
DN
6128 return 0;
6129 }
6130}
6131
64a0c779
DN
6132/* Read a new token from intel_parser.op_string and store it in cur_token. */
6133static void
6134intel_get_token ()
6135{
6136 char *end_op;
6137 const reg_entry *reg;
6138 struct intel_token new_token;
6139
6140 new_token.code = T_NIL;
6141 new_token.reg = NULL;
6142 new_token.str = NULL;
6143
4a1805b1 6144 /* Free the memory allocated to the previous token and move
64a0c779
DN
6145 cur_token to prev_token. */
6146 if (prev_token.str)
6147 free (prev_token.str);
6148
6149 prev_token = cur_token;
6150
6151 /* Skip whitespace. */
6152 while (is_space_char (*intel_parser.op_string))
6153 intel_parser.op_string++;
6154
6155 /* Return an empty token if we find nothing else on the line. */
6156 if (*intel_parser.op_string == '\0')
6157 {
6158 cur_token = new_token;
6159 return;
6160 }
6161
6162 /* The new token cannot be larger than the remainder of the operand
6163 string. */
e5cb08ac 6164 new_token.str = (char *) malloc (strlen (intel_parser.op_string) + 1);
64a0c779 6165 if (new_token.str == NULL)
bc805888 6166 abort ();
64a0c779
DN
6167 new_token.str[0] = '\0';
6168
6169 if (strchr ("0123456789", *intel_parser.op_string))
6170 {
6171 char *p = new_token.str;
6172 char *q = intel_parser.op_string;
6173 new_token.code = T_CONST;
6174
6175 /* Allow any kind of identifier char to encompass floating point and
6176 hexadecimal numbers. */
6177 while (is_identifier_char (*q))
6178 *p++ = *q++;
6179 *p = '\0';
6180
6181 /* Recognize special symbol names [0-9][bf]. */
6182 if (strlen (intel_parser.op_string) == 2
4a1805b1 6183 && (intel_parser.op_string[1] == 'b'
64a0c779
DN
6184 || intel_parser.op_string[1] == 'f'))
6185 new_token.code = T_ID;
6186 }
6187
0477af35
NC
6188 else if (strchr ("<>", *intel_parser.op_string)
6189 && *intel_parser.op_string == *(intel_parser.op_string + 1))
6190 {
6191 new_token.code = T_SHIFTOP;
6192 new_token.str[0] = *intel_parser.op_string;
6193 new_token.str[1] = *intel_parser.op_string;
6194 new_token.str[2] = '\0';
6195 }
6196
6197 else if (strchr ("+-/*&|:[]()~", *intel_parser.op_string))
64a0c779
DN
6198 {
6199 new_token.code = *intel_parser.op_string;
6200 new_token.str[0] = *intel_parser.op_string;
6201 new_token.str[1] = '\0';
6202 }
6203
6204 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
6205 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
6206 {
6207 new_token.code = T_REG;
6208 new_token.reg = reg;
6209
6210 if (*intel_parser.op_string == REGISTER_PREFIX)
6211 {
6212 new_token.str[0] = REGISTER_PREFIX;
6213 new_token.str[1] = '\0';
6214 }
6215
6216 strcat (new_token.str, reg->reg_name);
6217 }
6218
6219 else if (is_identifier_char (*intel_parser.op_string))
6220 {
6221 char *p = new_token.str;
6222 char *q = intel_parser.op_string;
6223
6224 /* A '.' or '$' followed by an identifier char is an identifier.
6225 Otherwise, it's operator '.' followed by an expression. */
6226 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
6227 {
6228 new_token.code = *q;
6229 new_token.str[0] = *q;
6230 new_token.str[1] = '\0';
6231 }
6232 else
6233 {
6234 while (is_identifier_char (*q) || *q == '@')
6235 *p++ = *q++;
6236 *p = '\0';
6237
6238 if (strcasecmp (new_token.str, "BYTE") == 0)
6239 new_token.code = T_BYTE;
6240
6241 else if (strcasecmp (new_token.str, "WORD") == 0)
6242 new_token.code = T_WORD;
6243
6244 else if (strcasecmp (new_token.str, "DWORD") == 0)
6245 new_token.code = T_DWORD;
6246
6247 else if (strcasecmp (new_token.str, "QWORD") == 0)
6248 new_token.code = T_QWORD;
6249
6250 else if (strcasecmp (new_token.str, "XWORD") == 0)
6251 new_token.code = T_XWORD;
6252
6253 else if (strcasecmp (new_token.str, "PTR") == 0)
6254 new_token.code = T_PTR;
6255
6256 else if (strcasecmp (new_token.str, "SHORT") == 0)
6257 new_token.code = T_SHORT;
6258
6259 else if (strcasecmp (new_token.str, "OFFSET") == 0)
6260 {
6261 new_token.code = T_OFFSET;
6262
6263 /* ??? This is not mentioned in the MASM grammar but gcc
6264 makes use of it with -mintel-syntax. OFFSET may be
6265 followed by FLAT: */
6266 if (strncasecmp (q, " FLAT:", 6) == 0)
6267 strcat (new_token.str, " FLAT:");
6268 }
6269
6270 /* ??? This is not mentioned in the MASM grammar. */
6271 else if (strcasecmp (new_token.str, "FLAT") == 0)
6272 new_token.code = T_OFFSET;
6273
6274 else
6275 new_token.code = T_ID;
6276 }
6277 }
6278
6279 else
0477af35 6280 as_bad (_("Unrecognized token `%s'"), intel_parser.op_string);
64a0c779
DN
6281
6282 intel_parser.op_string += strlen (new_token.str);
6283 cur_token = new_token;
6284}
6285
64a0c779
DN
6286/* Put cur_token back into the token stream and make cur_token point to
6287 prev_token. */
6288static void
6289intel_putback_token ()
6290{
6291 intel_parser.op_string -= strlen (cur_token.str);
6292 free (cur_token.str);
6293 cur_token = prev_token;
4a1805b1 6294
64a0c779
DN
6295 /* Forget prev_token. */
6296 prev_token.code = T_NIL;
6297 prev_token.reg = NULL;
6298 prev_token.str = NULL;
6299}
54cfded0 6300
a4447b93 6301int
54cfded0
AM
6302tc_x86_regname_to_dw2regnum (const char *regname)
6303{
6304 unsigned int regnum;
6305 unsigned int regnames_count;
6306 char *regnames_32[] =
6307 {
a4447b93
RH
6308 "eax", "ecx", "edx", "ebx",
6309 "esp", "ebp", "esi", "edi",
54cfded0
AM
6310 "eip"
6311 };
6312 char *regnames_64[] =
6313 {
6314 "rax", "rbx", "rcx", "rdx",
6315 "rdi", "rsi", "rbp", "rsp",
6316 "r8", "r9", "r10", "r11",
6317 "r12", "r13", "r14", "r15",
6318 "rip"
6319 };
6320 char **regnames;
6321
6322 if (flag_code == CODE_64BIT)
6323 {
6324 regnames = regnames_64;
0cea6190 6325 regnames_count = ARRAY_SIZE (regnames_64);
54cfded0
AM
6326 }
6327 else
6328 {
6329 regnames = regnames_32;
0cea6190 6330 regnames_count = ARRAY_SIZE (regnames_32);
54cfded0
AM
6331 }
6332
6333 for (regnum = 0; regnum < regnames_count; regnum++)
6334 if (strcmp (regname, regnames[regnum]) == 0)
6335 return regnum;
6336
54cfded0
AM
6337 return -1;
6338}
6339
6340void
6341tc_x86_frame_initial_instructions (void)
6342{
a4447b93
RH
6343 static unsigned int sp_regno;
6344
6345 if (!sp_regno)
6346 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
6347 ? "rsp" : "esp");
6348
6349 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
6350 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 6351}
d2b2c203
DJ
6352
6353int
6354i386_elf_section_type (const char *str, size_t len)
6355{
6356 if (flag_code == CODE_64BIT
6357 && len == sizeof ("unwind") - 1
6358 && strncmp (str, "unwind", 6) == 0)
6359 return SHT_X86_64_UNWIND;
6360
6361 return -1;
6362}
This page took 0.890918 seconds and 4 git commands to generate.