2005-04-18 Michael Snyder <msnyder@redhat.com>
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
252b5132 1/* i386.c -- Assemble code for the Intel 80386
f7e42eb4 2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
aef6203b 3 2000, 2001, 2002, 2003, 2004, 2005
47926f60 4 Free Software Foundation, Inc.
252b5132
RH
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
47926f60
KH
23/* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 25 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
252b5132 29
252b5132 30#include "as.h"
3882b010 31#include "safe-ctype.h"
252b5132 32#include "subsegs.h"
316e2c05 33#include "dwarf2dbg.h"
54cfded0 34#include "dw2gencfi.h"
252b5132 35#include "opcode/i386.h"
d2b2c203 36#include "elf/x86-64.h"
252b5132 37
252b5132
RH
38#ifndef REGISTER_WARNINGS
39#define REGISTER_WARNINGS 1
40#endif
41
c3332e24 42#ifndef INFER_ADDR_PREFIX
eecb386c 43#define INFER_ADDR_PREFIX 1
c3332e24
AM
44#endif
45
252b5132
RH
46#ifndef SCALE1_WHEN_NO_INDEX
47/* Specifying a scale factor besides 1 when there is no index is
48 futile. eg. `mov (%ebx,2),%al' does exactly the same as
49 `mov (%ebx),%al'. To slavishly follow what the programmer
50 specified, set SCALE1_WHEN_NO_INDEX to 0. */
51#define SCALE1_WHEN_NO_INDEX 1
52#endif
53
29b0f896
AM
54#ifndef DEFAULT_ARCH
55#define DEFAULT_ARCH "i386"
246fcdee 56#endif
252b5132 57
edde18a5
AM
58#ifndef INLINE
59#if __GNUC__ >= 2
60#define INLINE __inline__
61#else
62#define INLINE
63#endif
64#endif
65
29b0f896
AM
66static INLINE unsigned int mode_from_disp_size PARAMS ((unsigned int));
67static INLINE int fits_in_signed_byte PARAMS ((offsetT));
68static INLINE int fits_in_unsigned_byte PARAMS ((offsetT));
69static INLINE int fits_in_unsigned_word PARAMS ((offsetT));
70static INLINE int fits_in_signed_word PARAMS ((offsetT));
71static INLINE int fits_in_unsigned_long PARAMS ((offsetT));
72static INLINE int fits_in_signed_long PARAMS ((offsetT));
847f7ad4
AM
73static int smallest_imm_type PARAMS ((offsetT));
74static offsetT offset_in_range PARAMS ((offsetT, int));
252b5132 75static int add_prefix PARAMS ((unsigned int));
3e73aa7c 76static void set_code_flag PARAMS ((int));
47926f60 77static void set_16bit_gcc_code_flag PARAMS ((int));
252b5132 78static void set_intel_syntax PARAMS ((int));
e413e4e9 79static void set_cpu_arch PARAMS ((int));
6482c264
NC
80#ifdef TE_PE
81static void pe_directive_secrel PARAMS ((int));
82#endif
29b0f896
AM
83static char *output_invalid PARAMS ((int c));
84static int i386_operand PARAMS ((char *operand_string));
85static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
86static const reg_entry *parse_register PARAMS ((char *reg_string,
87 char **end_op));
88static char *parse_insn PARAMS ((char *, char *));
89static char *parse_operands PARAMS ((char *, const char *));
90static void swap_operands PARAMS ((void));
91static void optimize_imm PARAMS ((void));
92static void optimize_disp PARAMS ((void));
93static int match_template PARAMS ((void));
94static int check_string PARAMS ((void));
95static int process_suffix PARAMS ((void));
96static int check_byte_reg PARAMS ((void));
97static int check_long_reg PARAMS ((void));
98static int check_qword_reg PARAMS ((void));
99static int check_word_reg PARAMS ((void));
100static int finalize_imm PARAMS ((void));
101static int process_operands PARAMS ((void));
102static const seg_entry *build_modrm_byte PARAMS ((void));
103static void output_insn PARAMS ((void));
104static void output_branch PARAMS ((void));
105static void output_jump PARAMS ((void));
106static void output_interseg_jump PARAMS ((void));
2bbd9c25
JJ
107static void output_imm PARAMS ((fragS *insn_start_frag,
108 offsetT insn_start_off));
109static void output_disp PARAMS ((fragS *insn_start_frag,
110 offsetT insn_start_off));
29b0f896
AM
111#ifndef I386COFF
112static void s_bss PARAMS ((int));
252b5132
RH
113#endif
114
a847613f 115static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 116
252b5132 117/* 'md_assemble ()' gathers together information and puts it into a
47926f60 118 i386_insn. */
252b5132 119
520dc8e8
AM
120union i386_op
121 {
122 expressionS *disps;
123 expressionS *imms;
124 const reg_entry *regs;
125 };
126
252b5132
RH
127struct _i386_insn
128 {
47926f60 129 /* TM holds the template for the insn were currently assembling. */
252b5132
RH
130 template tm;
131
132 /* SUFFIX holds the instruction mnemonic suffix if given.
133 (e.g. 'l' for 'movl') */
134 char suffix;
135
47926f60 136 /* OPERANDS gives the number of given operands. */
252b5132
RH
137 unsigned int operands;
138
139 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
140 of given register, displacement, memory operands and immediate
47926f60 141 operands. */
252b5132
RH
142 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
143
144 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 145 use OP[i] for the corresponding operand. */
252b5132
RH
146 unsigned int types[MAX_OPERANDS];
147
520dc8e8
AM
148 /* Displacement expression, immediate expression, or register for each
149 operand. */
150 union i386_op op[MAX_OPERANDS];
252b5132 151
3e73aa7c
JH
152 /* Flags for operands. */
153 unsigned int flags[MAX_OPERANDS];
154#define Operand_PCrel 1
155
252b5132 156 /* Relocation type for operand */
f86103b7 157 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 158
252b5132
RH
159 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
160 the base index byte below. */
161 const reg_entry *base_reg;
162 const reg_entry *index_reg;
163 unsigned int log2_scale_factor;
164
165 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 166 explicit segment overrides are given. */
ce8a8b2f 167 const seg_entry *seg[2];
252b5132
RH
168
169 /* PREFIX holds all the given prefix opcodes (usually null).
170 PREFIXES is the number of prefix opcodes. */
171 unsigned int prefixes;
172 unsigned char prefix[MAX_PREFIXES];
173
174 /* RM and SIB are the modrm byte and the sib byte where the
175 addressing modes of this insn are encoded. */
176
177 modrm_byte rm;
3e73aa7c 178 rex_byte rex;
252b5132
RH
179 sib_byte sib;
180 };
181
182typedef struct _i386_insn i386_insn;
183
184/* List of chars besides those in app.c:symbol_chars that can start an
185 operand. Used to prevent the scrubber eating vital white-space. */
32137342 186const char extra_symbol_chars[] = "*%-(["
252b5132 187#ifdef LEX_AT
32137342
NC
188 "@"
189#endif
190#ifdef LEX_QM
191 "?"
252b5132 192#endif
32137342 193 ;
252b5132 194
29b0f896
AM
195#if (defined (TE_I386AIX) \
196 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
197 && !defined (TE_LINUX) \
32137342 198 && !defined (TE_NETWARE) \
29b0f896
AM
199 && !defined (TE_FreeBSD) \
200 && !defined (TE_NetBSD)))
252b5132 201/* This array holds the chars that always start a comment. If the
ce8a8b2f 202 pre-processor is disabled, these aren't very useful. */
252b5132
RH
203const char comment_chars[] = "#/";
204#define PREFIX_SEPARATOR '\\'
252b5132
RH
205
206/* This array holds the chars that only start a comment at the beginning of
207 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
208 .line and .file directives will appear in the pre-processed output.
209 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 210 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
211 #NO_APP at the beginning of its output.
212 Also note that comments started like this one will always work if
252b5132 213 '/' isn't otherwise defined. */
0d9f6d04 214const char line_comment_chars[] = "#";
29b0f896 215
252b5132 216#else
29b0f896
AM
217/* Putting '/' here makes it impossible to use the divide operator.
218 However, we need it for compatibility with SVR4 systems. */
219const char comment_chars[] = "#";
220#define PREFIX_SEPARATOR '/'
221
0d9f6d04 222const char line_comment_chars[] = "/#";
252b5132
RH
223#endif
224
63a0b638 225const char line_separator_chars[] = ";";
252b5132 226
ce8a8b2f
AM
227/* Chars that can be used to separate mant from exp in floating point
228 nums. */
252b5132
RH
229const char EXP_CHARS[] = "eE";
230
ce8a8b2f
AM
231/* Chars that mean this number is a floating point constant
232 As in 0f12.456
233 or 0d1.2345e12. */
252b5132
RH
234const char FLT_CHARS[] = "fFdDxX";
235
ce8a8b2f 236/* Tables for lexical analysis. */
252b5132
RH
237static char mnemonic_chars[256];
238static char register_chars[256];
239static char operand_chars[256];
240static char identifier_chars[256];
241static char digit_chars[256];
242
ce8a8b2f 243/* Lexical macros. */
252b5132
RH
244#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
245#define is_operand_char(x) (operand_chars[(unsigned char) x])
246#define is_register_char(x) (register_chars[(unsigned char) x])
247#define is_space_char(x) ((x) == ' ')
248#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
249#define is_digit_char(x) (digit_chars[(unsigned char) x])
250
0234cb7c 251/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
252static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
253
254/* md_assemble() always leaves the strings it's passed unaltered. To
255 effect this we maintain a stack of saved characters that we've smashed
256 with '\0's (indicating end of strings for various sub-fields of the
47926f60 257 assembler instruction). */
252b5132 258static char save_stack[32];
ce8a8b2f 259static char *save_stack_p;
252b5132
RH
260#define END_STRING_AND_SAVE(s) \
261 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
262#define RESTORE_END_STRING(s) \
263 do { *(s) = *--save_stack_p; } while (0)
264
47926f60 265/* The instruction we're assembling. */
252b5132
RH
266static i386_insn i;
267
268/* Possible templates for current insn. */
269static const templates *current_templates;
270
47926f60 271/* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
252b5132
RH
272static expressionS disp_expressions[2], im_expressions[2];
273
47926f60
KH
274/* Current operand we are working on. */
275static int this_operand;
252b5132 276
3e73aa7c
JH
277/* We support four different modes. FLAG_CODE variable is used to distinguish
278 these. */
279
280enum flag_code {
281 CODE_32BIT,
282 CODE_16BIT,
283 CODE_64BIT };
f3c180ae 284#define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
3e73aa7c
JH
285
286static enum flag_code flag_code;
287static int use_rela_relocations = 0;
288
289/* The names used to print error messages. */
b77a7acd 290static const char *flag_code_names[] =
3e73aa7c
JH
291 {
292 "32",
293 "16",
294 "64"
295 };
252b5132 296
47926f60
KH
297/* 1 for intel syntax,
298 0 if att syntax. */
299static int intel_syntax = 0;
252b5132 300
47926f60
KH
301/* 1 if register prefix % not required. */
302static int allow_naked_reg = 0;
252b5132 303
47926f60
KH
304/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
305 leave, push, and pop instructions so that gcc has the same stack
306 frame as in 32 bit mode. */
307static char stackop_size = '\0';
eecb386c 308
12b55ccc
L
309/* Non-zero to optimize code alignment. */
310int optimize_align_code = 1;
311
47926f60
KH
312/* Non-zero to quieten some warnings. */
313static int quiet_warnings = 0;
a38cf1db 314
47926f60
KH
315/* CPU name. */
316static const char *cpu_arch_name = NULL;
5c6af06e 317static const char *cpu_sub_arch_name = NULL;
a38cf1db 318
47926f60 319/* CPU feature flags. */
29b0f896 320static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
a38cf1db 321
fddf5b5b
AM
322/* If set, conditional jumps are not automatically promoted to handle
323 larger than a byte offset. */
324static unsigned int no_cond_jump_promotion = 0;
325
29b0f896
AM
326/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
327symbolS *GOT_symbol;
328
a4447b93
RH
329/* The dwarf2 return column, adjusted for 32 or 64 bit. */
330unsigned int x86_dwarf2_return_column;
331
332/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
333int x86_cie_data_alignment;
334
252b5132 335/* Interface to relax_segment.
fddf5b5b
AM
336 There are 3 major relax states for 386 jump insns because the
337 different types of jumps add different sizes to frags when we're
338 figuring out what sort of jump to choose to reach a given label. */
252b5132 339
47926f60 340/* Types. */
93c2a809
AM
341#define UNCOND_JUMP 0
342#define COND_JUMP 1
343#define COND_JUMP86 2
fddf5b5b 344
47926f60 345/* Sizes. */
252b5132
RH
346#define CODE16 1
347#define SMALL 0
29b0f896 348#define SMALL16 (SMALL | CODE16)
252b5132 349#define BIG 2
29b0f896 350#define BIG16 (BIG | CODE16)
252b5132
RH
351
352#ifndef INLINE
353#ifdef __GNUC__
354#define INLINE __inline__
355#else
356#define INLINE
357#endif
358#endif
359
fddf5b5b
AM
360#define ENCODE_RELAX_STATE(type, size) \
361 ((relax_substateT) (((type) << 2) | (size)))
362#define TYPE_FROM_RELAX_STATE(s) \
363 ((s) >> 2)
364#define DISP_SIZE_FROM_RELAX_STATE(s) \
365 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
366
367/* This table is used by relax_frag to promote short jumps to long
368 ones where necessary. SMALL (short) jumps may be promoted to BIG
369 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
370 don't allow a short jump in a 32 bit code segment to be promoted to
371 a 16 bit offset jump because it's slower (requires data size
372 prefix), and doesn't work, unless the destination is in the bottom
373 64k of the code segment (The top 16 bits of eip are zeroed). */
374
375const relax_typeS md_relax_table[] =
376{
24eab124
AM
377 /* The fields are:
378 1) most positive reach of this state,
379 2) most negative reach of this state,
93c2a809 380 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 381 4) which index into the table to try if we can't fit into this one. */
252b5132 382
fddf5b5b 383 /* UNCOND_JUMP states. */
93c2a809
AM
384 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
385 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
386 /* dword jmp adds 4 bytes to frag:
387 0 extra opcode bytes, 4 displacement bytes. */
252b5132 388 {0, 0, 4, 0},
93c2a809
AM
389 /* word jmp adds 2 byte2 to frag:
390 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
391 {0, 0, 2, 0},
392
93c2a809
AM
393 /* COND_JUMP states. */
394 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
395 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
396 /* dword conditionals adds 5 bytes to frag:
397 1 extra opcode byte, 4 displacement bytes. */
398 {0, 0, 5, 0},
fddf5b5b 399 /* word conditionals add 3 bytes to frag:
93c2a809
AM
400 1 extra opcode byte, 2 displacement bytes. */
401 {0, 0, 3, 0},
402
403 /* COND_JUMP86 states. */
404 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
405 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
406 /* dword conditionals adds 5 bytes to frag:
407 1 extra opcode byte, 4 displacement bytes. */
408 {0, 0, 5, 0},
409 /* word conditionals add 4 bytes to frag:
410 1 displacement byte and a 3 byte long branch insn. */
411 {0, 0, 4, 0}
252b5132
RH
412};
413
e413e4e9
AM
414static const arch_entry cpu_arch[] = {
415 {"i8086", Cpu086 },
416 {"i186", Cpu086|Cpu186 },
417 {"i286", Cpu086|Cpu186|Cpu286 },
418 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
419 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
5c6af06e
JB
420 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586 },
421 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686 },
422 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586 },
423 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686 },
424 {"pentiumii", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX },
425 {"pentiumiii",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuMMX2|CpuSSE },
426 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2|CpuSSE|CpuSSE2 },
427 {"prescott", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuPNI },
428 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX },
429 {"k6_2", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
430 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA },
431 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2 },
432 {".mmx", CpuMMX },
433 {".sse", CpuMMX|CpuMMX2|CpuSSE },
434 {".sse2", CpuMMX|CpuMMX2|CpuSSE|CpuSSE2 },
435 {".3dnow", CpuMMX|Cpu3dnow },
436 {".3dnowa", CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA },
437 {".padlock", CpuPadLock },
e413e4e9
AM
438 {NULL, 0 }
439};
440
29b0f896
AM
441const pseudo_typeS md_pseudo_table[] =
442{
443#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
444 {"align", s_align_bytes, 0},
445#else
446 {"align", s_align_ptwo, 0},
447#endif
448 {"arch", set_cpu_arch, 0},
449#ifndef I386COFF
450 {"bss", s_bss, 0},
451#endif
452 {"ffloat", float_cons, 'f'},
453 {"dfloat", float_cons, 'd'},
454 {"tfloat", float_cons, 'x'},
455 {"value", cons, 2},
456 {"noopt", s_ignore, 0},
457 {"optim", s_ignore, 0},
458 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
459 {"code16", set_code_flag, CODE_16BIT},
460 {"code32", set_code_flag, CODE_32BIT},
461 {"code64", set_code_flag, CODE_64BIT},
462 {"intel_syntax", set_intel_syntax, 1},
463 {"att_syntax", set_intel_syntax, 0},
c6682705 464 {"file", (void (*) PARAMS ((int))) dwarf2_directive_file, 0},
29b0f896 465 {"loc", dwarf2_directive_loc, 0},
6482c264
NC
466#ifdef TE_PE
467 {"secrel32", pe_directive_secrel, 0},
468#endif
29b0f896
AM
469 {0, 0, 0}
470};
471
472/* For interface with expression (). */
473extern char *input_line_pointer;
474
475/* Hash table for instruction mnemonic lookup. */
476static struct hash_control *op_hash;
477
478/* Hash table for register lookup. */
479static struct hash_control *reg_hash;
480\f
252b5132
RH
481void
482i386_align_code (fragP, count)
483 fragS *fragP;
484 int count;
485{
ce8a8b2f
AM
486 /* Various efficient no-op patterns for aligning code labels.
487 Note: Don't try to assemble the instructions in the comments.
488 0L and 0w are not legal. */
252b5132
RH
489 static const char f32_1[] =
490 {0x90}; /* nop */
491 static const char f32_2[] =
492 {0x89,0xf6}; /* movl %esi,%esi */
493 static const char f32_3[] =
494 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
495 static const char f32_4[] =
496 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
497 static const char f32_5[] =
498 {0x90, /* nop */
499 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
500 static const char f32_6[] =
501 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
502 static const char f32_7[] =
503 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
504 static const char f32_8[] =
505 {0x90, /* nop */
506 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
507 static const char f32_9[] =
508 {0x89,0xf6, /* movl %esi,%esi */
509 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
510 static const char f32_10[] =
511 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
512 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
513 static const char f32_11[] =
514 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
515 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
516 static const char f32_12[] =
517 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
518 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
519 static const char f32_13[] =
520 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
521 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
522 static const char f32_14[] =
523 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
524 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
525 static const char f32_15[] =
526 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
527 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
c3332e24
AM
528 static const char f16_3[] =
529 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
252b5132
RH
530 static const char f16_4[] =
531 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
532 static const char f16_5[] =
533 {0x90, /* nop */
534 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
535 static const char f16_6[] =
536 {0x89,0xf6, /* mov %si,%si */
537 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
538 static const char f16_7[] =
539 {0x8d,0x74,0x00, /* lea 0(%si),%si */
540 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
541 static const char f16_8[] =
542 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
543 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
544 static const char *const f32_patt[] = {
545 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
546 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
547 };
548 static const char *const f16_patt[] = {
c3332e24 549 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
252b5132
RH
550 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
551 };
552
33fef721
JH
553 if (count <= 0 || count > 15)
554 return;
3e73aa7c 555
33fef721
JH
556 /* The recommended way to pad 64bit code is to use NOPs preceded by
557 maximally four 0x66 prefixes. Balance the size of nops. */
558 if (flag_code == CODE_64BIT)
252b5132 559 {
33fef721
JH
560 int i;
561 int nnops = (count + 3) / 4;
562 int len = count / nnops;
563 int remains = count - nnops * len;
564 int pos = 0;
565
566 for (i = 0; i < remains; i++)
252b5132 567 {
33fef721
JH
568 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
569 fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
570 pos += len + 1;
571 }
572 for (; i < nnops; i++)
573 {
574 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
575 fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
576 pos += len;
252b5132 577 }
252b5132 578 }
33fef721
JH
579 else
580 if (flag_code == CODE_16BIT)
581 {
582 memcpy (fragP->fr_literal + fragP->fr_fix,
583 f16_patt[count - 1], count);
584 if (count > 8)
585 /* Adjust jump offset. */
586 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
587 }
588 else
589 memcpy (fragP->fr_literal + fragP->fr_fix,
590 f32_patt[count - 1], count);
591 fragP->fr_var = count;
252b5132
RH
592}
593
252b5132
RH
594static INLINE unsigned int
595mode_from_disp_size (t)
596 unsigned int t;
597{
3e73aa7c 598 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
252b5132
RH
599}
600
601static INLINE int
602fits_in_signed_byte (num)
847f7ad4 603 offsetT num;
252b5132
RH
604{
605 return (num >= -128) && (num <= 127);
47926f60 606}
252b5132
RH
607
608static INLINE int
609fits_in_unsigned_byte (num)
847f7ad4 610 offsetT num;
252b5132
RH
611{
612 return (num & 0xff) == num;
47926f60 613}
252b5132
RH
614
615static INLINE int
616fits_in_unsigned_word (num)
847f7ad4 617 offsetT num;
252b5132
RH
618{
619 return (num & 0xffff) == num;
47926f60 620}
252b5132
RH
621
622static INLINE int
623fits_in_signed_word (num)
847f7ad4 624 offsetT num;
252b5132
RH
625{
626 return (-32768 <= num) && (num <= 32767);
47926f60 627}
3e73aa7c
JH
628static INLINE int
629fits_in_signed_long (num)
630 offsetT num ATTRIBUTE_UNUSED;
631{
632#ifndef BFD64
633 return 1;
634#else
635 return (!(((offsetT) -1 << 31) & num)
636 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
637#endif
638} /* fits_in_signed_long() */
639static INLINE int
640fits_in_unsigned_long (num)
641 offsetT num ATTRIBUTE_UNUSED;
642{
643#ifndef BFD64
644 return 1;
645#else
646 return (num & (((offsetT) 2 << 31) - 1)) == num;
647#endif
648} /* fits_in_unsigned_long() */
252b5132
RH
649
650static int
651smallest_imm_type (num)
847f7ad4 652 offsetT num;
252b5132 653{
a847613f 654 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
e413e4e9
AM
655 {
656 /* This code is disabled on the 486 because all the Imm1 forms
657 in the opcode table are slower on the i486. They're the
658 versions with the implicitly specified single-position
659 displacement, which has another syntax if you really want to
660 use that form. */
661 if (num == 1)
3e73aa7c 662 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
e413e4e9 663 }
252b5132 664 return (fits_in_signed_byte (num)
3e73aa7c 665 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 666 : fits_in_unsigned_byte (num)
3e73aa7c 667 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 668 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
3e73aa7c
JH
669 ? (Imm16 | Imm32 | Imm32S | Imm64)
670 : fits_in_signed_long (num)
671 ? (Imm32 | Imm32S | Imm64)
672 : fits_in_unsigned_long (num)
673 ? (Imm32 | Imm64)
674 : Imm64);
47926f60 675}
252b5132 676
847f7ad4
AM
677static offsetT
678offset_in_range (val, size)
679 offsetT val;
680 int size;
681{
508866be 682 addressT mask;
ba2adb93 683
847f7ad4
AM
684 switch (size)
685 {
508866be
L
686 case 1: mask = ((addressT) 1 << 8) - 1; break;
687 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 688 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
689#ifdef BFD64
690 case 8: mask = ((addressT) 2 << 63) - 1; break;
691#endif
47926f60 692 default: abort ();
847f7ad4
AM
693 }
694
ba2adb93 695 /* If BFD64, sign extend val. */
3e73aa7c
JH
696 if (!use_rela_relocations)
697 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
698 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
ba2adb93 699
47926f60 700 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
701 {
702 char buf1[40], buf2[40];
703
704 sprint_value (buf1, val);
705 sprint_value (buf2, val & mask);
706 as_warn (_("%s shortened to %s"), buf1, buf2);
707 }
708 return val & mask;
709}
710
252b5132
RH
711/* Returns 0 if attempting to add a prefix where one from the same
712 class already exists, 1 if non rep/repne added, 2 if rep/repne
713 added. */
714static int
715add_prefix (prefix)
716 unsigned int prefix;
717{
718 int ret = 1;
719 int q;
720
29b0f896
AM
721 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
722 && flag_code == CODE_64BIT)
3e73aa7c
JH
723 q = REX_PREFIX;
724 else
725 switch (prefix)
726 {
727 default:
728 abort ();
729
730 case CS_PREFIX_OPCODE:
731 case DS_PREFIX_OPCODE:
732 case ES_PREFIX_OPCODE:
733 case FS_PREFIX_OPCODE:
734 case GS_PREFIX_OPCODE:
735 case SS_PREFIX_OPCODE:
736 q = SEG_PREFIX;
737 break;
252b5132 738
3e73aa7c
JH
739 case REPNE_PREFIX_OPCODE:
740 case REPE_PREFIX_OPCODE:
741 ret = 2;
742 /* fall thru */
743 case LOCK_PREFIX_OPCODE:
744 q = LOCKREP_PREFIX;
745 break;
252b5132 746
3e73aa7c
JH
747 case FWAIT_OPCODE:
748 q = WAIT_PREFIX;
749 break;
252b5132 750
3e73aa7c
JH
751 case ADDR_PREFIX_OPCODE:
752 q = ADDR_PREFIX;
753 break;
252b5132 754
3e73aa7c
JH
755 case DATA_PREFIX_OPCODE:
756 q = DATA_PREFIX;
757 break;
758 }
252b5132 759
29b0f896 760 if (i.prefix[q] != 0)
252b5132
RH
761 {
762 as_bad (_("same type of prefix used twice"));
763 return 0;
764 }
765
766 i.prefixes += 1;
767 i.prefix[q] = prefix;
768 return ret;
769}
770
771static void
3e73aa7c 772set_code_flag (value)
e5cb08ac 773 int value;
eecb386c 774{
3e73aa7c
JH
775 flag_code = value;
776 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
777 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
778 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
779 {
780 as_bad (_("64bit mode not supported on this CPU."));
781 }
782 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
783 {
784 as_bad (_("32bit mode not supported on this CPU."));
785 }
eecb386c
AM
786 stackop_size = '\0';
787}
788
789static void
3e73aa7c
JH
790set_16bit_gcc_code_flag (new_code_flag)
791 int new_code_flag;
252b5132 792{
3e73aa7c
JH
793 flag_code = new_code_flag;
794 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
795 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
9306ca4a 796 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
797}
798
799static void
800set_intel_syntax (syntax_flag)
eecb386c 801 int syntax_flag;
252b5132
RH
802{
803 /* Find out if register prefixing is specified. */
804 int ask_naked_reg = 0;
805
806 SKIP_WHITESPACE ();
29b0f896 807 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132
RH
808 {
809 char *string = input_line_pointer;
810 int e = get_symbol_end ();
811
47926f60 812 if (strcmp (string, "prefix") == 0)
252b5132 813 ask_naked_reg = 1;
47926f60 814 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
815 ask_naked_reg = -1;
816 else
d0b47220 817 as_bad (_("bad argument to syntax directive."));
252b5132
RH
818 *input_line_pointer = e;
819 }
820 demand_empty_rest_of_line ();
c3332e24 821
252b5132
RH
822 intel_syntax = syntax_flag;
823
824 if (ask_naked_reg == 0)
f86103b7
AM
825 allow_naked_reg = (intel_syntax
826 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
827 else
828 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a
JB
829
830 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
831 identifier_chars['$'] = intel_syntax ? '$' : 0;
252b5132
RH
832}
833
e413e4e9
AM
834static void
835set_cpu_arch (dummy)
47926f60 836 int dummy ATTRIBUTE_UNUSED;
e413e4e9 837{
47926f60 838 SKIP_WHITESPACE ();
e413e4e9 839
29b0f896 840 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9
AM
841 {
842 char *string = input_line_pointer;
843 int e = get_symbol_end ();
844 int i;
845
846 for (i = 0; cpu_arch[i].name; i++)
847 {
848 if (strcmp (string, cpu_arch[i].name) == 0)
849 {
5c6af06e
JB
850 if (*string != '.')
851 {
852 cpu_arch_name = cpu_arch[i].name;
853 cpu_sub_arch_name = NULL;
854 cpu_arch_flags = (cpu_arch[i].flags
855 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
856 break;
857 }
858 if ((cpu_arch_flags | cpu_arch[i].flags) != cpu_arch_flags)
859 {
860 cpu_sub_arch_name = cpu_arch[i].name;
861 cpu_arch_flags |= cpu_arch[i].flags;
862 }
863 *input_line_pointer = e;
864 demand_empty_rest_of_line ();
865 return;
e413e4e9
AM
866 }
867 }
868 if (!cpu_arch[i].name)
869 as_bad (_("no such architecture: `%s'"), string);
870
871 *input_line_pointer = e;
872 }
873 else
874 as_bad (_("missing cpu architecture"));
875
fddf5b5b
AM
876 no_cond_jump_promotion = 0;
877 if (*input_line_pointer == ','
29b0f896 878 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b
AM
879 {
880 char *string = ++input_line_pointer;
881 int e = get_symbol_end ();
882
883 if (strcmp (string, "nojumps") == 0)
884 no_cond_jump_promotion = 1;
885 else if (strcmp (string, "jumps") == 0)
886 ;
887 else
888 as_bad (_("no such architecture modifier: `%s'"), string);
889
890 *input_line_pointer = e;
891 }
892
e413e4e9
AM
893 demand_empty_rest_of_line ();
894}
895
b9d79e03
JH
896unsigned long
897i386_mach ()
898{
899 if (!strcmp (default_arch, "x86_64"))
900 return bfd_mach_x86_64;
901 else if (!strcmp (default_arch, "i386"))
902 return bfd_mach_i386_i386;
903 else
904 as_fatal (_("Unknown architecture"));
905}
b9d79e03 906\f
252b5132
RH
907void
908md_begin ()
909{
910 const char *hash_err;
911
47926f60 912 /* Initialize op_hash hash table. */
252b5132
RH
913 op_hash = hash_new ();
914
915 {
29b0f896
AM
916 const template *optab;
917 templates *core_optab;
252b5132 918
47926f60
KH
919 /* Setup for loop. */
920 optab = i386_optab;
252b5132
RH
921 core_optab = (templates *) xmalloc (sizeof (templates));
922 core_optab->start = optab;
923
924 while (1)
925 {
926 ++optab;
927 if (optab->name == NULL
928 || strcmp (optab->name, (optab - 1)->name) != 0)
929 {
930 /* different name --> ship out current template list;
47926f60 931 add to hash table; & begin anew. */
252b5132
RH
932 core_optab->end = optab;
933 hash_err = hash_insert (op_hash,
934 (optab - 1)->name,
935 (PTR) core_optab);
936 if (hash_err)
937 {
252b5132
RH
938 as_fatal (_("Internal Error: Can't hash %s: %s"),
939 (optab - 1)->name,
940 hash_err);
941 }
942 if (optab->name == NULL)
943 break;
944 core_optab = (templates *) xmalloc (sizeof (templates));
945 core_optab->start = optab;
946 }
947 }
948 }
949
47926f60 950 /* Initialize reg_hash hash table. */
252b5132
RH
951 reg_hash = hash_new ();
952 {
29b0f896 953 const reg_entry *regtab;
252b5132
RH
954
955 for (regtab = i386_regtab;
956 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
957 regtab++)
958 {
959 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
960 if (hash_err)
3e73aa7c
JH
961 as_fatal (_("Internal Error: Can't hash %s: %s"),
962 regtab->reg_name,
963 hash_err);
252b5132
RH
964 }
965 }
966
47926f60 967 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 968 {
29b0f896
AM
969 int c;
970 char *p;
252b5132
RH
971
972 for (c = 0; c < 256; c++)
973 {
3882b010 974 if (ISDIGIT (c))
252b5132
RH
975 {
976 digit_chars[c] = c;
977 mnemonic_chars[c] = c;
978 register_chars[c] = c;
979 operand_chars[c] = c;
980 }
3882b010 981 else if (ISLOWER (c))
252b5132
RH
982 {
983 mnemonic_chars[c] = c;
984 register_chars[c] = c;
985 operand_chars[c] = c;
986 }
3882b010 987 else if (ISUPPER (c))
252b5132 988 {
3882b010 989 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
990 register_chars[c] = mnemonic_chars[c];
991 operand_chars[c] = c;
992 }
993
3882b010 994 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
995 identifier_chars[c] = c;
996 else if (c >= 128)
997 {
998 identifier_chars[c] = c;
999 operand_chars[c] = c;
1000 }
1001 }
1002
1003#ifdef LEX_AT
1004 identifier_chars['@'] = '@';
32137342
NC
1005#endif
1006#ifdef LEX_QM
1007 identifier_chars['?'] = '?';
1008 operand_chars['?'] = '?';
252b5132 1009#endif
252b5132
RH
1010 digit_chars['-'] = '-';
1011 identifier_chars['_'] = '_';
1012 identifier_chars['.'] = '.';
1013
1014 for (p = operand_special_chars; *p != '\0'; p++)
1015 operand_chars[(unsigned char) *p] = *p;
1016 }
1017
1018#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1019 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
1020 {
1021 record_alignment (text_section, 2);
1022 record_alignment (data_section, 2);
1023 record_alignment (bss_section, 2);
1024 }
1025#endif
a4447b93
RH
1026
1027 if (flag_code == CODE_64BIT)
1028 {
1029 x86_dwarf2_return_column = 16;
1030 x86_cie_data_alignment = -8;
1031 }
1032 else
1033 {
1034 x86_dwarf2_return_column = 8;
1035 x86_cie_data_alignment = -4;
1036 }
252b5132
RH
1037}
1038
1039void
1040i386_print_statistics (file)
1041 FILE *file;
1042{
1043 hash_print_statistics (file, "i386 opcode", op_hash);
1044 hash_print_statistics (file, "i386 register", reg_hash);
1045}
1046\f
252b5132
RH
1047#ifdef DEBUG386
1048
ce8a8b2f 1049/* Debugging routines for md_assemble. */
252b5132
RH
1050static void pi PARAMS ((char *, i386_insn *));
1051static void pte PARAMS ((template *));
1052static void pt PARAMS ((unsigned int));
1053static void pe PARAMS ((expressionS *));
1054static void ps PARAMS ((symbolS *));
1055
1056static void
1057pi (line, x)
1058 char *line;
1059 i386_insn *x;
1060{
09f131f2 1061 unsigned int i;
252b5132
RH
1062
1063 fprintf (stdout, "%s: template ", line);
1064 pte (&x->tm);
09f131f2
JH
1065 fprintf (stdout, " address: base %s index %s scale %x\n",
1066 x->base_reg ? x->base_reg->reg_name : "none",
1067 x->index_reg ? x->index_reg->reg_name : "none",
1068 x->log2_scale_factor);
1069 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 1070 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
1071 fprintf (stdout, " sib: base %x index %x scale %x\n",
1072 x->sib.base, x->sib.index, x->sib.scale);
1073 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
29b0f896
AM
1074 (x->rex & REX_MODE64) != 0,
1075 (x->rex & REX_EXTX) != 0,
1076 (x->rex & REX_EXTY) != 0,
1077 (x->rex & REX_EXTZ) != 0);
252b5132
RH
1078 for (i = 0; i < x->operands; i++)
1079 {
1080 fprintf (stdout, " #%d: ", i + 1);
1081 pt (x->types[i]);
1082 fprintf (stdout, "\n");
1083 if (x->types[i]
3f4438ab 1084 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
520dc8e8 1085 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
252b5132 1086 if (x->types[i] & Imm)
520dc8e8 1087 pe (x->op[i].imms);
252b5132 1088 if (x->types[i] & Disp)
520dc8e8 1089 pe (x->op[i].disps);
252b5132
RH
1090 }
1091}
1092
1093static void
1094pte (t)
1095 template *t;
1096{
09f131f2 1097 unsigned int i;
252b5132 1098 fprintf (stdout, " %d operands ", t->operands);
47926f60 1099 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
1100 if (t->extension_opcode != None)
1101 fprintf (stdout, "ext %x ", t->extension_opcode);
1102 if (t->opcode_modifier & D)
1103 fprintf (stdout, "D");
1104 if (t->opcode_modifier & W)
1105 fprintf (stdout, "W");
1106 fprintf (stdout, "\n");
1107 for (i = 0; i < t->operands; i++)
1108 {
1109 fprintf (stdout, " #%d type ", i + 1);
1110 pt (t->operand_types[i]);
1111 fprintf (stdout, "\n");
1112 }
1113}
1114
1115static void
1116pe (e)
1117 expressionS *e;
1118{
24eab124 1119 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
1120 fprintf (stdout, " add_number %ld (%lx)\n",
1121 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
1122 if (e->X_add_symbol)
1123 {
1124 fprintf (stdout, " add_symbol ");
1125 ps (e->X_add_symbol);
1126 fprintf (stdout, "\n");
1127 }
1128 if (e->X_op_symbol)
1129 {
1130 fprintf (stdout, " op_symbol ");
1131 ps (e->X_op_symbol);
1132 fprintf (stdout, "\n");
1133 }
1134}
1135
1136static void
1137ps (s)
1138 symbolS *s;
1139{
1140 fprintf (stdout, "%s type %s%s",
1141 S_GET_NAME (s),
1142 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1143 segment_name (S_GET_SEGMENT (s)));
1144}
1145
1146struct type_name
1147 {
1148 unsigned int mask;
1149 char *tname;
1150 }
1151
29b0f896 1152static const type_names[] =
252b5132
RH
1153{
1154 { Reg8, "r8" },
1155 { Reg16, "r16" },
1156 { Reg32, "r32" },
09f131f2 1157 { Reg64, "r64" },
252b5132
RH
1158 { Imm8, "i8" },
1159 { Imm8S, "i8s" },
1160 { Imm16, "i16" },
1161 { Imm32, "i32" },
09f131f2
JH
1162 { Imm32S, "i32s" },
1163 { Imm64, "i64" },
252b5132
RH
1164 { Imm1, "i1" },
1165 { BaseIndex, "BaseIndex" },
1166 { Disp8, "d8" },
1167 { Disp16, "d16" },
1168 { Disp32, "d32" },
09f131f2
JH
1169 { Disp32S, "d32s" },
1170 { Disp64, "d64" },
252b5132
RH
1171 { InOutPortReg, "InOutPortReg" },
1172 { ShiftCount, "ShiftCount" },
1173 { Control, "control reg" },
1174 { Test, "test reg" },
1175 { Debug, "debug reg" },
1176 { FloatReg, "FReg" },
1177 { FloatAcc, "FAcc" },
1178 { SReg2, "SReg2" },
1179 { SReg3, "SReg3" },
1180 { Acc, "Acc" },
1181 { JumpAbsolute, "Jump Absolute" },
1182 { RegMMX, "rMMX" },
3f4438ab 1183 { RegXMM, "rXMM" },
252b5132
RH
1184 { EsSeg, "es" },
1185 { 0, "" }
1186};
1187
1188static void
1189pt (t)
1190 unsigned int t;
1191{
29b0f896 1192 const struct type_name *ty;
252b5132 1193
09f131f2
JH
1194 for (ty = type_names; ty->mask; ty++)
1195 if (t & ty->mask)
1196 fprintf (stdout, "%s, ", ty->tname);
252b5132
RH
1197 fflush (stdout);
1198}
1199
1200#endif /* DEBUG386 */
1201\f
29b0f896
AM
1202static bfd_reloc_code_real_type reloc
1203 PARAMS ((int, int, int, bfd_reloc_code_real_type));
252b5132
RH
1204
1205static bfd_reloc_code_real_type
3e73aa7c 1206reloc (size, pcrel, sign, other)
252b5132
RH
1207 int size;
1208 int pcrel;
3e73aa7c 1209 int sign;
252b5132
RH
1210 bfd_reloc_code_real_type other;
1211{
47926f60
KH
1212 if (other != NO_RELOC)
1213 return other;
252b5132
RH
1214
1215 if (pcrel)
1216 {
3e73aa7c 1217 if (!sign)
e5cb08ac 1218 as_bad (_("There are no unsigned pc-relative relocations"));
252b5132
RH
1219 switch (size)
1220 {
1221 case 1: return BFD_RELOC_8_PCREL;
1222 case 2: return BFD_RELOC_16_PCREL;
1223 case 4: return BFD_RELOC_32_PCREL;
1224 }
d0b47220 1225 as_bad (_("can not do %d byte pc-relative relocation"), size);
252b5132
RH
1226 }
1227 else
1228 {
3e73aa7c 1229 if (sign)
e5cb08ac 1230 switch (size)
3e73aa7c
JH
1231 {
1232 case 4: return BFD_RELOC_X86_64_32S;
1233 }
1234 else
1235 switch (size)
1236 {
1237 case 1: return BFD_RELOC_8;
1238 case 2: return BFD_RELOC_16;
1239 case 4: return BFD_RELOC_32;
1240 case 8: return BFD_RELOC_64;
1241 }
1242 as_bad (_("can not do %s %d byte relocation"),
1243 sign ? "signed" : "unsigned", size);
252b5132
RH
1244 }
1245
bfb32b52 1246 abort ();
252b5132
RH
1247 return BFD_RELOC_NONE;
1248}
1249
47926f60
KH
1250/* Here we decide which fixups can be adjusted to make them relative to
1251 the beginning of the section instead of the symbol. Basically we need
1252 to make sure that the dynamic relocations are done correctly, so in
1253 some cases we force the original symbol to be used. */
1254
252b5132 1255int
c0c949c7 1256tc_i386_fix_adjustable (fixP)
31312f95 1257 fixS *fixP ATTRIBUTE_UNUSED;
252b5132 1258{
6d249963 1259#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
31312f95
AM
1260 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
1261 return 1;
1262
a161fe53
AM
1263 /* Don't adjust pc-relative references to merge sections in 64-bit
1264 mode. */
1265 if (use_rela_relocations
1266 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1267 && fixP->fx_pcrel)
252b5132 1268 return 0;
31312f95 1269
8d01d9a9
AJ
1270 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
1271 and changed later by validate_fix. */
1272 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
1273 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
1274 return 0;
1275
ce8a8b2f 1276 /* adjust_reloc_syms doesn't know about the GOT. */
252b5132
RH
1277 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1278 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1279 || fixP->fx_r_type == BFD_RELOC_386_GOT32
13ae64f3
JJ
1280 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1281 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1282 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1283 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
1284 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1285 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
1286 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1287 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3e73aa7c
JH
1288 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1289 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 1290 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
bffbf940
JJ
1291 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1292 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1293 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
1294 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1295 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
252b5132
RH
1296 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1297 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1298 return 0;
31312f95 1299#endif
252b5132
RH
1300 return 1;
1301}
252b5132 1302
29b0f896 1303static int intel_float_operand PARAMS ((const char *mnemonic));
b4cac588
AM
1304
1305static int
252b5132 1306intel_float_operand (mnemonic)
29b0f896 1307 const char *mnemonic;
252b5132 1308{
9306ca4a
JB
1309 /* Note that the value returned is meaningful only for opcodes with (memory)
1310 operands, hence the code here is free to improperly handle opcodes that
1311 have no operands (for better performance and smaller code). */
1312
1313 if (mnemonic[0] != 'f')
1314 return 0; /* non-math */
1315
1316 switch (mnemonic[1])
1317 {
1318 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
1319 the fs segment override prefix not currently handled because no
1320 call path can make opcodes without operands get here */
1321 case 'i':
1322 return 2 /* integer op */;
1323 case 'l':
1324 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
1325 return 3; /* fldcw/fldenv */
1326 break;
1327 case 'n':
1328 if (mnemonic[2] != 'o' /* fnop */)
1329 return 3; /* non-waiting control op */
1330 break;
1331 case 'r':
1332 if (mnemonic[2] == 's')
1333 return 3; /* frstor/frstpm */
1334 break;
1335 case 's':
1336 if (mnemonic[2] == 'a')
1337 return 3; /* fsave */
1338 if (mnemonic[2] == 't')
1339 {
1340 switch (mnemonic[3])
1341 {
1342 case 'c': /* fstcw */
1343 case 'd': /* fstdw */
1344 case 'e': /* fstenv */
1345 case 's': /* fsts[gw] */
1346 return 3;
1347 }
1348 }
1349 break;
1350 case 'x':
1351 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
1352 return 0; /* fxsave/fxrstor are not really math ops */
1353 break;
1354 }
252b5132 1355
9306ca4a 1356 return 1;
252b5132
RH
1357}
1358
1359/* This is the guts of the machine-dependent assembler. LINE points to a
1360 machine dependent instruction. This function is supposed to emit
1361 the frags/bytes it assembles to. */
1362
1363void
1364md_assemble (line)
1365 char *line;
1366{
252b5132 1367 int j;
252b5132
RH
1368 char mnemonic[MAX_MNEM_SIZE];
1369
47926f60 1370 /* Initialize globals. */
252b5132
RH
1371 memset (&i, '\0', sizeof (i));
1372 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 1373 i.reloc[j] = NO_RELOC;
252b5132
RH
1374 memset (disp_expressions, '\0', sizeof (disp_expressions));
1375 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 1376 save_stack_p = save_stack;
252b5132
RH
1377
1378 /* First parse an instruction mnemonic & call i386_operand for the operands.
1379 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 1380 start of a (possibly prefixed) mnemonic. */
252b5132 1381
29b0f896
AM
1382 line = parse_insn (line, mnemonic);
1383 if (line == NULL)
1384 return;
252b5132 1385
29b0f896
AM
1386 line = parse_operands (line, mnemonic);
1387 if (line == NULL)
1388 return;
252b5132 1389
29b0f896
AM
1390 /* Now we've parsed the mnemonic into a set of templates, and have the
1391 operands at hand. */
1392
1393 /* All intel opcodes have reversed operands except for "bound" and
1394 "enter". We also don't reverse intersegment "jmp" and "call"
1395 instructions with 2 immediate operands so that the immediate segment
1396 precedes the offset, as it does when in AT&T mode. "enter" and the
1397 intersegment "jmp" and "call" instructions are the only ones that
1398 have two immediate operands. */
1399 if (intel_syntax && i.operands > 1
1400 && (strcmp (mnemonic, "bound") != 0)
1401 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1402 swap_operands ();
1403
1404 if (i.imm_operands)
1405 optimize_imm ();
1406
1407 if (i.disp_operands)
1408 optimize_disp ();
1409
1410 /* Next, we find a template that matches the given insn,
1411 making sure the overlap of the given operands types is consistent
1412 with the template operand types. */
252b5132 1413
29b0f896
AM
1414 if (!match_template ())
1415 return;
252b5132 1416
cd61ebfe
AM
1417 if (intel_syntax)
1418 {
1419 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1420 if (SYSV386_COMPAT
1421 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1422 i.tm.base_opcode ^= FloatR;
1423
1424 /* Zap movzx and movsx suffix. The suffix may have been set from
1425 "word ptr" or "byte ptr" on the source operand, but we'll use
1426 the suffix later to choose the destination register. */
1427 if ((i.tm.base_opcode & ~9) == 0x0fb6)
9306ca4a
JB
1428 {
1429 if (i.reg_operands < 2
1430 && !i.suffix
1431 && (~i.tm.opcode_modifier
1432 & (No_bSuf
1433 | No_wSuf
1434 | No_lSuf
1435 | No_sSuf
1436 | No_xSuf
1437 | No_qSuf)))
1438 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
1439
1440 i.suffix = 0;
1441 }
cd61ebfe 1442 }
24eab124 1443
29b0f896
AM
1444 if (i.tm.opcode_modifier & FWait)
1445 if (!add_prefix (FWAIT_OPCODE))
1446 return;
252b5132 1447
29b0f896
AM
1448 /* Check string instruction segment overrides. */
1449 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1450 {
1451 if (!check_string ())
5dd0794d 1452 return;
29b0f896 1453 }
5dd0794d 1454
29b0f896
AM
1455 if (!process_suffix ())
1456 return;
e413e4e9 1457
29b0f896
AM
1458 /* Make still unresolved immediate matches conform to size of immediate
1459 given in i.suffix. */
1460 if (!finalize_imm ())
1461 return;
252b5132 1462
29b0f896
AM
1463 if (i.types[0] & Imm1)
1464 i.imm_operands = 0; /* kludge for shift insns. */
1465 if (i.types[0] & ImplicitRegister)
1466 i.reg_operands--;
1467 if (i.types[1] & ImplicitRegister)
1468 i.reg_operands--;
1469 if (i.types[2] & ImplicitRegister)
1470 i.reg_operands--;
252b5132 1471
29b0f896
AM
1472 if (i.tm.opcode_modifier & ImmExt)
1473 {
02fc3089
L
1474 expressionS *exp;
1475
ca164297
L
1476 if ((i.tm.cpu_flags & CpuPNI) && i.operands > 0)
1477 {
67c1ffbe 1478 /* These Intel Prescott New Instructions have the fixed
ca164297
L
1479 operands with an opcode suffix which is coded in the same
1480 place as an 8-bit immediate field would be. Here we check
1481 those operands and remove them afterwards. */
1482 unsigned int x;
1483
a4622f40 1484 for (x = 0; x < i.operands; x++)
ca164297
L
1485 if (i.op[x].regs->reg_num != x)
1486 as_bad (_("can't use register '%%%s' as operand %d in '%s'."),
1487 i.op[x].regs->reg_name, x + 1, i.tm.name);
1488 i.operands = 0;
1489 }
1490
29b0f896
AM
1491 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1492 opcode suffix which is coded in the same place as an 8-bit
1493 immediate field would be. Here we fake an 8-bit immediate
1494 operand from the opcode suffix stored in tm.extension_opcode. */
252b5132 1495
29b0f896 1496 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
252b5132 1497
29b0f896
AM
1498 exp = &im_expressions[i.imm_operands++];
1499 i.op[i.operands].imms = exp;
1500 i.types[i.operands++] = Imm8;
1501 exp->X_op = O_constant;
1502 exp->X_add_number = i.tm.extension_opcode;
1503 i.tm.extension_opcode = None;
1504 }
252b5132 1505
29b0f896
AM
1506 /* For insns with operands there are more diddles to do to the opcode. */
1507 if (i.operands)
1508 {
1509 if (!process_operands ())
1510 return;
1511 }
1512 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1513 {
1514 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1515 as_warn (_("translating to `%sp'"), i.tm.name);
1516 }
252b5132 1517
29b0f896
AM
1518 /* Handle conversion of 'int $3' --> special int3 insn. */
1519 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1520 {
1521 i.tm.base_opcode = INT3_OPCODE;
1522 i.imm_operands = 0;
1523 }
252b5132 1524
29b0f896
AM
1525 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1526 && i.op[0].disps->X_op == O_constant)
1527 {
1528 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1529 the absolute address given by the constant. Since ix86 jumps and
1530 calls are pc relative, we need to generate a reloc. */
1531 i.op[0].disps->X_add_symbol = &abs_symbol;
1532 i.op[0].disps->X_op = O_symbol;
1533 }
252b5132 1534
29b0f896
AM
1535 if ((i.tm.opcode_modifier & Rex64) != 0)
1536 i.rex |= REX_MODE64;
252b5132 1537
29b0f896
AM
1538 /* For 8 bit registers we need an empty rex prefix. Also if the
1539 instruction already has a prefix, we need to convert old
1540 registers to new ones. */
773f551c 1541
29b0f896
AM
1542 if (((i.types[0] & Reg8) != 0
1543 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1544 || ((i.types[1] & Reg8) != 0
1545 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1546 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1547 && i.rex != 0))
1548 {
1549 int x;
726c5dcd 1550
29b0f896
AM
1551 i.rex |= REX_OPCODE;
1552 for (x = 0; x < 2; x++)
1553 {
1554 /* Look for 8 bit operand that uses old registers. */
1555 if ((i.types[x] & Reg8) != 0
1556 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 1557 {
29b0f896
AM
1558 /* In case it is "hi" register, give up. */
1559 if (i.op[x].regs->reg_num > 3)
0477af35 1560 as_bad (_("can't encode register '%%%s' in an instruction requiring REX prefix."),
29b0f896 1561 i.op[x].regs->reg_name);
773f551c 1562
29b0f896
AM
1563 /* Otherwise it is equivalent to the extended register.
1564 Since the encoding doesn't change this is merely
1565 cosmetic cleanup for debug output. */
1566
1567 i.op[x].regs = i.op[x].regs + 8;
773f551c 1568 }
29b0f896
AM
1569 }
1570 }
773f551c 1571
29b0f896
AM
1572 if (i.rex != 0)
1573 add_prefix (REX_OPCODE | i.rex);
1574
1575 /* We are ready to output the insn. */
1576 output_insn ();
1577}
1578
1579static char *
1580parse_insn (line, mnemonic)
1581 char *line;
1582 char *mnemonic;
1583{
1584 char *l = line;
1585 char *token_start = l;
1586 char *mnem_p;
5c6af06e
JB
1587 int supported;
1588 const template *t;
29b0f896
AM
1589
1590 /* Non-zero if we found a prefix only acceptable with string insns. */
1591 const char *expecting_string_instruction = NULL;
45288df1 1592
29b0f896
AM
1593 while (1)
1594 {
1595 mnem_p = mnemonic;
1596 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1597 {
1598 mnem_p++;
1599 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 1600 {
29b0f896
AM
1601 as_bad (_("no such instruction: `%s'"), token_start);
1602 return NULL;
1603 }
1604 l++;
1605 }
1606 if (!is_space_char (*l)
1607 && *l != END_OF_INSN
1608 && *l != PREFIX_SEPARATOR
1609 && *l != ',')
1610 {
1611 as_bad (_("invalid character %s in mnemonic"),
1612 output_invalid (*l));
1613 return NULL;
1614 }
1615 if (token_start == l)
1616 {
1617 if (*l == PREFIX_SEPARATOR)
1618 as_bad (_("expecting prefix; got nothing"));
1619 else
1620 as_bad (_("expecting mnemonic; got nothing"));
1621 return NULL;
1622 }
45288df1 1623
29b0f896
AM
1624 /* Look up instruction (or prefix) via hash table. */
1625 current_templates = hash_find (op_hash, mnemonic);
47926f60 1626
29b0f896
AM
1627 if (*l != END_OF_INSN
1628 && (!is_space_char (*l) || l[1] != END_OF_INSN)
1629 && current_templates
1630 && (current_templates->start->opcode_modifier & IsPrefix))
1631 {
1632 /* If we are in 16-bit mode, do not allow addr16 or data16.
1633 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1634 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1635 && flag_code != CODE_64BIT
1636 && (((current_templates->start->opcode_modifier & Size32) != 0)
1637 ^ (flag_code == CODE_16BIT)))
1638 {
1639 as_bad (_("redundant %s prefix"),
1640 current_templates->start->name);
1641 return NULL;
45288df1 1642 }
29b0f896
AM
1643 /* Add prefix, checking for repeated prefixes. */
1644 switch (add_prefix (current_templates->start->base_opcode))
1645 {
1646 case 0:
1647 return NULL;
1648 case 2:
1649 expecting_string_instruction = current_templates->start->name;
1650 break;
1651 }
1652 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1653 token_start = ++l;
1654 }
1655 else
1656 break;
1657 }
45288df1 1658
29b0f896
AM
1659 if (!current_templates)
1660 {
1661 /* See if we can get a match by trimming off a suffix. */
1662 switch (mnem_p[-1])
1663 {
1664 case WORD_MNEM_SUFFIX:
9306ca4a
JB
1665 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
1666 i.suffix = SHORT_MNEM_SUFFIX;
1667 else
29b0f896
AM
1668 case BYTE_MNEM_SUFFIX:
1669 case QWORD_MNEM_SUFFIX:
1670 i.suffix = mnem_p[-1];
1671 mnem_p[-1] = '\0';
1672 current_templates = hash_find (op_hash, mnemonic);
1673 break;
1674 case SHORT_MNEM_SUFFIX:
1675 case LONG_MNEM_SUFFIX:
1676 if (!intel_syntax)
1677 {
1678 i.suffix = mnem_p[-1];
1679 mnem_p[-1] = '\0';
1680 current_templates = hash_find (op_hash, mnemonic);
1681 }
1682 break;
252b5132 1683
29b0f896
AM
1684 /* Intel Syntax. */
1685 case 'd':
1686 if (intel_syntax)
1687 {
9306ca4a 1688 if (intel_float_operand (mnemonic) == 1)
29b0f896
AM
1689 i.suffix = SHORT_MNEM_SUFFIX;
1690 else
1691 i.suffix = LONG_MNEM_SUFFIX;
1692 mnem_p[-1] = '\0';
1693 current_templates = hash_find (op_hash, mnemonic);
1694 }
1695 break;
1696 }
1697 if (!current_templates)
1698 {
1699 as_bad (_("no such instruction: `%s'"), token_start);
1700 return NULL;
1701 }
1702 }
252b5132 1703
29b0f896
AM
1704 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
1705 {
1706 /* Check for a branch hint. We allow ",pt" and ",pn" for
1707 predict taken and predict not taken respectively.
1708 I'm not sure that branch hints actually do anything on loop
1709 and jcxz insns (JumpByte) for current Pentium4 chips. They
1710 may work in the future and it doesn't hurt to accept them
1711 now. */
1712 if (l[0] == ',' && l[1] == 'p')
1713 {
1714 if (l[2] == 't')
1715 {
1716 if (!add_prefix (DS_PREFIX_OPCODE))
1717 return NULL;
1718 l += 3;
1719 }
1720 else if (l[2] == 'n')
1721 {
1722 if (!add_prefix (CS_PREFIX_OPCODE))
1723 return NULL;
1724 l += 3;
1725 }
1726 }
1727 }
1728 /* Any other comma loses. */
1729 if (*l == ',')
1730 {
1731 as_bad (_("invalid character %s in mnemonic"),
1732 output_invalid (*l));
1733 return NULL;
1734 }
252b5132 1735
29b0f896 1736 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
1737 supported = 0;
1738 for (t = current_templates->start; t < current_templates->end; ++t)
1739 {
1740 if (!((t->cpu_flags & ~(Cpu64 | CpuNo64))
1741 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64))))
1742 supported |= 1;
1743 if (!(t->cpu_flags & (flag_code == CODE_64BIT ? CpuNo64 : Cpu64)))
1744 supported |= 2;
1745 }
1746 if (!(supported & 2))
1747 {
1748 as_bad (flag_code == CODE_64BIT
1749 ? _("`%s' is not supported in 64-bit mode")
1750 : _("`%s' is only supported in 64-bit mode"),
1751 current_templates->start->name);
1752 return NULL;
1753 }
1754 if (!(supported & 1))
29b0f896 1755 {
5c6af06e
JB
1756 as_warn (_("`%s' is not supported on `%s%s'"),
1757 current_templates->start->name,
1758 cpu_arch_name,
1759 cpu_sub_arch_name ? cpu_sub_arch_name : "");
29b0f896
AM
1760 }
1761 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1762 {
1763 as_warn (_("use .code16 to ensure correct addressing mode"));
1764 }
252b5132 1765
29b0f896
AM
1766 /* Check for rep/repne without a string instruction. */
1767 if (expecting_string_instruction
1768 && !(current_templates->start->opcode_modifier & IsString))
1769 {
1770 as_bad (_("expecting string instruction after `%s'"),
1771 expecting_string_instruction);
1772 return NULL;
1773 }
252b5132 1774
29b0f896
AM
1775 return l;
1776}
252b5132 1777
29b0f896
AM
1778static char *
1779parse_operands (l, mnemonic)
1780 char *l;
1781 const char *mnemonic;
1782{
1783 char *token_start;
3138f287 1784
29b0f896
AM
1785 /* 1 if operand is pending after ','. */
1786 unsigned int expecting_operand = 0;
252b5132 1787
29b0f896
AM
1788 /* Non-zero if operand parens not balanced. */
1789 unsigned int paren_not_balanced;
1790
1791 while (*l != END_OF_INSN)
1792 {
1793 /* Skip optional white space before operand. */
1794 if (is_space_char (*l))
1795 ++l;
1796 if (!is_operand_char (*l) && *l != END_OF_INSN)
1797 {
1798 as_bad (_("invalid character %s before operand %d"),
1799 output_invalid (*l),
1800 i.operands + 1);
1801 return NULL;
1802 }
1803 token_start = l; /* after white space */
1804 paren_not_balanced = 0;
1805 while (paren_not_balanced || *l != ',')
1806 {
1807 if (*l == END_OF_INSN)
1808 {
1809 if (paren_not_balanced)
1810 {
1811 if (!intel_syntax)
1812 as_bad (_("unbalanced parenthesis in operand %d."),
1813 i.operands + 1);
1814 else
1815 as_bad (_("unbalanced brackets in operand %d."),
1816 i.operands + 1);
1817 return NULL;
1818 }
1819 else
1820 break; /* we are done */
1821 }
1822 else if (!is_operand_char (*l) && !is_space_char (*l))
1823 {
1824 as_bad (_("invalid character %s in operand %d"),
1825 output_invalid (*l),
1826 i.operands + 1);
1827 return NULL;
1828 }
1829 if (!intel_syntax)
1830 {
1831 if (*l == '(')
1832 ++paren_not_balanced;
1833 if (*l == ')')
1834 --paren_not_balanced;
1835 }
1836 else
1837 {
1838 if (*l == '[')
1839 ++paren_not_balanced;
1840 if (*l == ']')
1841 --paren_not_balanced;
1842 }
1843 l++;
1844 }
1845 if (l != token_start)
1846 { /* Yes, we've read in another operand. */
1847 unsigned int operand_ok;
1848 this_operand = i.operands++;
1849 if (i.operands > MAX_OPERANDS)
1850 {
1851 as_bad (_("spurious operands; (%d operands/instruction max)"),
1852 MAX_OPERANDS);
1853 return NULL;
1854 }
1855 /* Now parse operand adding info to 'i' as we go along. */
1856 END_STRING_AND_SAVE (l);
1857
1858 if (intel_syntax)
1859 operand_ok =
1860 i386_intel_operand (token_start,
1861 intel_float_operand (mnemonic));
1862 else
1863 operand_ok = i386_operand (token_start);
1864
1865 RESTORE_END_STRING (l);
1866 if (!operand_ok)
1867 return NULL;
1868 }
1869 else
1870 {
1871 if (expecting_operand)
1872 {
1873 expecting_operand_after_comma:
1874 as_bad (_("expecting operand after ','; got nothing"));
1875 return NULL;
1876 }
1877 if (*l == ',')
1878 {
1879 as_bad (_("expecting operand before ','; got nothing"));
1880 return NULL;
1881 }
1882 }
7f3f1ea2 1883
29b0f896
AM
1884 /* Now *l must be either ',' or END_OF_INSN. */
1885 if (*l == ',')
1886 {
1887 if (*++l == END_OF_INSN)
1888 {
1889 /* Just skip it, if it's \n complain. */
1890 goto expecting_operand_after_comma;
1891 }
1892 expecting_operand = 1;
1893 }
1894 }
1895 return l;
1896}
7f3f1ea2 1897
29b0f896
AM
1898static void
1899swap_operands ()
1900{
1901 union i386_op temp_op;
1902 unsigned int temp_type;
f86103b7 1903 enum bfd_reloc_code_real temp_reloc;
29b0f896
AM
1904 int xchg1 = 0;
1905 int xchg2 = 0;
252b5132 1906
29b0f896
AM
1907 if (i.operands == 2)
1908 {
1909 xchg1 = 0;
1910 xchg2 = 1;
1911 }
1912 else if (i.operands == 3)
1913 {
1914 xchg1 = 0;
1915 xchg2 = 2;
1916 }
1917 temp_type = i.types[xchg2];
1918 i.types[xchg2] = i.types[xchg1];
1919 i.types[xchg1] = temp_type;
1920 temp_op = i.op[xchg2];
1921 i.op[xchg2] = i.op[xchg1];
1922 i.op[xchg1] = temp_op;
1923 temp_reloc = i.reloc[xchg2];
1924 i.reloc[xchg2] = i.reloc[xchg1];
1925 i.reloc[xchg1] = temp_reloc;
1926
1927 if (i.mem_operands == 2)
1928 {
1929 const seg_entry *temp_seg;
1930 temp_seg = i.seg[0];
1931 i.seg[0] = i.seg[1];
1932 i.seg[1] = temp_seg;
1933 }
1934}
252b5132 1935
29b0f896
AM
1936/* Try to ensure constant immediates are represented in the smallest
1937 opcode possible. */
1938static void
1939optimize_imm ()
1940{
1941 char guess_suffix = 0;
1942 int op;
252b5132 1943
29b0f896
AM
1944 if (i.suffix)
1945 guess_suffix = i.suffix;
1946 else if (i.reg_operands)
1947 {
1948 /* Figure out a suffix from the last register operand specified.
1949 We can't do this properly yet, ie. excluding InOutPortReg,
1950 but the following works for instructions with immediates.
1951 In any case, we can't set i.suffix yet. */
1952 for (op = i.operands; --op >= 0;)
1953 if (i.types[op] & Reg)
252b5132 1954 {
29b0f896
AM
1955 if (i.types[op] & Reg8)
1956 guess_suffix = BYTE_MNEM_SUFFIX;
1957 else if (i.types[op] & Reg16)
1958 guess_suffix = WORD_MNEM_SUFFIX;
1959 else if (i.types[op] & Reg32)
1960 guess_suffix = LONG_MNEM_SUFFIX;
1961 else if (i.types[op] & Reg64)
1962 guess_suffix = QWORD_MNEM_SUFFIX;
1963 break;
252b5132 1964 }
29b0f896
AM
1965 }
1966 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
1967 guess_suffix = WORD_MNEM_SUFFIX;
1968
1969 for (op = i.operands; --op >= 0;)
1970 if (i.types[op] & Imm)
1971 {
1972 switch (i.op[op].imms->X_op)
252b5132 1973 {
29b0f896
AM
1974 case O_constant:
1975 /* If a suffix is given, this operand may be shortened. */
1976 switch (guess_suffix)
252b5132 1977 {
29b0f896
AM
1978 case LONG_MNEM_SUFFIX:
1979 i.types[op] |= Imm32 | Imm64;
1980 break;
1981 case WORD_MNEM_SUFFIX:
1982 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1983 break;
1984 case BYTE_MNEM_SUFFIX:
1985 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1986 break;
252b5132 1987 }
252b5132 1988
29b0f896
AM
1989 /* If this operand is at most 16 bits, convert it
1990 to a signed 16 bit number before trying to see
1991 whether it will fit in an even smaller size.
1992 This allows a 16-bit operand such as $0xffe0 to
1993 be recognised as within Imm8S range. */
1994 if ((i.types[op] & Imm16)
1995 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 1996 {
29b0f896
AM
1997 i.op[op].imms->X_add_number =
1998 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1999 }
2000 if ((i.types[op] & Imm32)
2001 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
2002 == 0))
2003 {
2004 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
2005 ^ ((offsetT) 1 << 31))
2006 - ((offsetT) 1 << 31));
2007 }
2008 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
252b5132 2009
29b0f896
AM
2010 /* We must avoid matching of Imm32 templates when 64bit
2011 only immediate is available. */
2012 if (guess_suffix == QWORD_MNEM_SUFFIX)
2013 i.types[op] &= ~Imm32;
2014 break;
252b5132 2015
29b0f896
AM
2016 case O_absent:
2017 case O_register:
2018 abort ();
2019
2020 /* Symbols and expressions. */
2021 default:
2022 /* Convert symbolic operand to proper sizes for matching. */
2023 switch (guess_suffix)
2024 {
2025 case QWORD_MNEM_SUFFIX:
2026 i.types[op] = Imm64 | Imm32S;
2027 break;
2028 case LONG_MNEM_SUFFIX:
20f0a1fc 2029 i.types[op] = Imm32;
29b0f896
AM
2030 break;
2031 case WORD_MNEM_SUFFIX:
20f0a1fc 2032 i.types[op] = Imm16;
29b0f896
AM
2033 break;
2034 case BYTE_MNEM_SUFFIX:
20f0a1fc 2035 i.types[op] = Imm8 | Imm8S;
29b0f896 2036 break;
252b5132 2037 }
29b0f896 2038 break;
252b5132 2039 }
29b0f896
AM
2040 }
2041}
47926f60 2042
29b0f896
AM
2043/* Try to use the smallest displacement type too. */
2044static void
2045optimize_disp ()
2046{
2047 int op;
3e73aa7c 2048
29b0f896
AM
2049 for (op = i.operands; --op >= 0;)
2050 if ((i.types[op] & Disp) && i.op[op].disps->X_op == O_constant)
252b5132 2051 {
29b0f896
AM
2052 offsetT disp = i.op[op].disps->X_add_number;
2053
2054 if (i.types[op] & Disp16)
252b5132 2055 {
29b0f896
AM
2056 /* We know this operand is at most 16 bits, so
2057 convert to a signed 16 bit number before trying
2058 to see whether it will fit in an even smaller
2059 size. */
2060
2061 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
252b5132 2062 }
29b0f896 2063 else if (i.types[op] & Disp32)
252b5132 2064 {
29b0f896
AM
2065 /* We know this operand is at most 32 bits, so convert to a
2066 signed 32 bit number before trying to see whether it will
2067 fit in an even smaller size. */
2068 disp &= (((offsetT) 2 << 31) - 1);
2069 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 2070 }
29b0f896 2071 if (flag_code == CODE_64BIT)
252b5132 2072 {
29b0f896
AM
2073 if (fits_in_signed_long (disp))
2074 i.types[op] |= Disp32S;
2075 if (fits_in_unsigned_long (disp))
2076 i.types[op] |= Disp32;
252b5132 2077 }
29b0f896
AM
2078 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
2079 && fits_in_signed_byte (disp))
2080 i.types[op] |= Disp8;
252b5132 2081 }
29b0f896
AM
2082}
2083
2084static int
2085match_template ()
2086{
2087 /* Points to template once we've found it. */
2088 const template *t;
2089 unsigned int overlap0, overlap1, overlap2;
2090 unsigned int found_reverse_match;
2091 int suffix_check;
2092
2093#define MATCH(overlap, given, template) \
2094 ((overlap & ~JumpAbsolute) \
2095 && (((given) & (BaseIndex | JumpAbsolute)) \
2096 == ((overlap) & (BaseIndex | JumpAbsolute))))
2097
2098 /* If given types r0 and r1 are registers they must be of the same type
2099 unless the expected operand type register overlap is null.
2100 Note that Acc in a template matches every size of reg. */
2101#define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
2102 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
2103 || ((g0) & Reg) == ((g1) & Reg) \
2104 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
2105
2106 overlap0 = 0;
2107 overlap1 = 0;
2108 overlap2 = 0;
2109 found_reverse_match = 0;
2110 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
2111 ? No_bSuf
2112 : (i.suffix == WORD_MNEM_SUFFIX
2113 ? No_wSuf
2114 : (i.suffix == SHORT_MNEM_SUFFIX
2115 ? No_sSuf
2116 : (i.suffix == LONG_MNEM_SUFFIX
2117 ? No_lSuf
2118 : (i.suffix == QWORD_MNEM_SUFFIX
2119 ? No_qSuf
2120 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2121 ? No_xSuf : 0))))));
2122
20f0a1fc
NC
2123 t = current_templates->start;
2124 if (i.suffix == QWORD_MNEM_SUFFIX
2125 && flag_code != CODE_64BIT
9306ca4a
JB
2126 && (intel_syntax
2127 ? !(t->opcode_modifier & IgnoreSize)
2128 && !intel_float_operand (t->name)
2129 : intel_float_operand (t->name) != 2)
20f0a1fc
NC
2130 && (!(t->operand_types[0] & (RegMMX | RegXMM))
2131 || !(t->operand_types[t->operands > 1] & (RegMMX | RegXMM)))
2132 && (t->base_opcode != 0x0fc7
2133 || t->extension_opcode != 1 /* cmpxchg8b */))
2134 t = current_templates->end;
2135 for (; t < current_templates->end; t++)
29b0f896
AM
2136 {
2137 /* Must have right number of operands. */
2138 if (i.operands != t->operands)
2139 continue;
2140
2141 /* Check the suffix, except for some instructions in intel mode. */
2142 if ((t->opcode_modifier & suffix_check)
2143 && !(intel_syntax
9306ca4a 2144 && (t->opcode_modifier & IgnoreSize)))
29b0f896
AM
2145 continue;
2146
2147 /* Do not verify operands when there are none. */
2148 else if (!t->operands)
2149 {
2150 if (t->cpu_flags & ~cpu_arch_flags)
2151 continue;
2152 /* We've found a match; break out of loop. */
2153 break;
2154 }
252b5132 2155
29b0f896
AM
2156 overlap0 = i.types[0] & t->operand_types[0];
2157 switch (t->operands)
2158 {
2159 case 1:
2160 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
2161 continue;
2162 break;
2163 case 2:
2164 case 3:
2165 overlap1 = i.types[1] & t->operand_types[1];
2166 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
2167 || !MATCH (overlap1, i.types[1], t->operand_types[1])
2168 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2169 t->operand_types[0],
2170 overlap1, i.types[1],
2171 t->operand_types[1]))
2172 {
2173 /* Check if other direction is valid ... */
2174 if ((t->opcode_modifier & (D | FloatD)) == 0)
2175 continue;
2176
2177 /* Try reversing direction of operands. */
2178 overlap0 = i.types[0] & t->operand_types[1];
2179 overlap1 = i.types[1] & t->operand_types[0];
2180 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
2181 || !MATCH (overlap1, i.types[1], t->operand_types[0])
2182 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2183 t->operand_types[1],
2184 overlap1, i.types[1],
2185 t->operand_types[0]))
2186 {
2187 /* Does not match either direction. */
2188 continue;
2189 }
2190 /* found_reverse_match holds which of D or FloatDR
2191 we've found. */
2192 found_reverse_match = t->opcode_modifier & (D | FloatDR);
2193 }
2194 /* Found a forward 2 operand match here. */
2195 else if (t->operands == 3)
2196 {
2197 /* Here we make use of the fact that there are no
2198 reverse match 3 operand instructions, and all 3
2199 operand instructions only need to be checked for
2200 register consistency between operands 2 and 3. */
2201 overlap2 = i.types[2] & t->operand_types[2];
2202 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
2203 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
2204 t->operand_types[1],
2205 overlap2, i.types[2],
2206 t->operand_types[2]))
2207
2208 continue;
2209 }
2210 /* Found either forward/reverse 2 or 3 operand match here:
2211 slip through to break. */
2212 }
2213 if (t->cpu_flags & ~cpu_arch_flags)
2214 {
2215 found_reverse_match = 0;
2216 continue;
2217 }
2218 /* We've found a match; break out of loop. */
2219 break;
2220 }
2221
2222 if (t == current_templates->end)
2223 {
2224 /* We found no match. */
2225 as_bad (_("suffix or operands invalid for `%s'"),
2226 current_templates->start->name);
2227 return 0;
2228 }
252b5132 2229
29b0f896
AM
2230 if (!quiet_warnings)
2231 {
2232 if (!intel_syntax
2233 && ((i.types[0] & JumpAbsolute)
2234 != (t->operand_types[0] & JumpAbsolute)))
2235 {
2236 as_warn (_("indirect %s without `*'"), t->name);
2237 }
2238
2239 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2240 == (IsPrefix | IgnoreSize))
2241 {
2242 /* Warn them that a data or address size prefix doesn't
2243 affect assembly of the next line of code. */
2244 as_warn (_("stand-alone `%s' prefix"), t->name);
2245 }
2246 }
2247
2248 /* Copy the template we found. */
2249 i.tm = *t;
2250 if (found_reverse_match)
2251 {
2252 /* If we found a reverse match we must alter the opcode
2253 direction bit. found_reverse_match holds bits to change
2254 (different for int & float insns). */
2255
2256 i.tm.base_opcode ^= found_reverse_match;
2257
2258 i.tm.operand_types[0] = t->operand_types[1];
2259 i.tm.operand_types[1] = t->operand_types[0];
2260 }
2261
2262 return 1;
2263}
2264
2265static int
2266check_string ()
2267{
2268 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2269 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2270 {
2271 if (i.seg[0] != NULL && i.seg[0] != &es)
2272 {
2273 as_bad (_("`%s' operand %d must use `%%es' segment"),
2274 i.tm.name,
2275 mem_op + 1);
2276 return 0;
2277 }
2278 /* There's only ever one segment override allowed per instruction.
2279 This instruction possibly has a legal segment override on the
2280 second operand, so copy the segment to where non-string
2281 instructions store it, allowing common code. */
2282 i.seg[0] = i.seg[1];
2283 }
2284 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2285 {
2286 if (i.seg[1] != NULL && i.seg[1] != &es)
2287 {
2288 as_bad (_("`%s' operand %d must use `%%es' segment"),
2289 i.tm.name,
2290 mem_op + 2);
2291 return 0;
2292 }
2293 }
2294 return 1;
2295}
2296
2297static int
543613e9 2298process_suffix (void)
29b0f896
AM
2299{
2300 /* If matched instruction specifies an explicit instruction mnemonic
2301 suffix, use it. */
2302 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2303 {
2304 if (i.tm.opcode_modifier & Size16)
2305 i.suffix = WORD_MNEM_SUFFIX;
2306 else if (i.tm.opcode_modifier & Size64)
2307 i.suffix = QWORD_MNEM_SUFFIX;
2308 else
2309 i.suffix = LONG_MNEM_SUFFIX;
2310 }
2311 else if (i.reg_operands)
2312 {
2313 /* If there's no instruction mnemonic suffix we try to invent one
2314 based on register operands. */
2315 if (!i.suffix)
2316 {
2317 /* We take i.suffix from the last register operand specified,
2318 Destination register type is more significant than source
2319 register type. */
2320 int op;
543613e9 2321
29b0f896
AM
2322 for (op = i.operands; --op >= 0;)
2323 if ((i.types[op] & Reg)
2324 && !(i.tm.operand_types[op] & InOutPortReg))
2325 {
2326 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2327 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2328 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2329 LONG_MNEM_SUFFIX);
2330 break;
2331 }
2332 }
2333 else if (i.suffix == BYTE_MNEM_SUFFIX)
2334 {
2335 if (!check_byte_reg ())
2336 return 0;
2337 }
2338 else if (i.suffix == LONG_MNEM_SUFFIX)
2339 {
2340 if (!check_long_reg ())
2341 return 0;
2342 }
2343 else if (i.suffix == QWORD_MNEM_SUFFIX)
2344 {
2345 if (!check_qword_reg ())
2346 return 0;
2347 }
2348 else if (i.suffix == WORD_MNEM_SUFFIX)
2349 {
2350 if (!check_word_reg ())
2351 return 0;
2352 }
2353 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2354 /* Do nothing if the instruction is going to ignore the prefix. */
2355 ;
2356 else
2357 abort ();
2358 }
9306ca4a
JB
2359 else if ((i.tm.opcode_modifier & DefaultSize)
2360 && !i.suffix
2361 /* exclude fldenv/frstor/fsave/fstenv */
2362 && (i.tm.opcode_modifier & No_sSuf))
29b0f896
AM
2363 {
2364 i.suffix = stackop_size;
2365 }
9306ca4a
JB
2366 else if (intel_syntax
2367 && !i.suffix
2368 && ((i.tm.operand_types[0] & JumpAbsolute)
2369 || (i.tm.opcode_modifier & (JumpByte|JumpInterSegment))
2370 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
2371 && i.tm.extension_opcode <= 3)))
2372 {
2373 switch (flag_code)
2374 {
2375 case CODE_64BIT:
2376 if (!(i.tm.opcode_modifier & No_qSuf))
2377 {
2378 i.suffix = QWORD_MNEM_SUFFIX;
2379 break;
2380 }
2381 case CODE_32BIT:
2382 if (!(i.tm.opcode_modifier & No_lSuf))
2383 i.suffix = LONG_MNEM_SUFFIX;
2384 break;
2385 case CODE_16BIT:
2386 if (!(i.tm.opcode_modifier & No_wSuf))
2387 i.suffix = WORD_MNEM_SUFFIX;
2388 break;
2389 }
2390 }
252b5132 2391
9306ca4a 2392 if (!i.suffix)
29b0f896 2393 {
9306ca4a
JB
2394 if (!intel_syntax)
2395 {
2396 if (i.tm.opcode_modifier & W)
2397 {
2398 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2399 return 0;
2400 }
2401 }
2402 else
2403 {
2404 unsigned int suffixes = ~i.tm.opcode_modifier
2405 & (No_bSuf
2406 | No_wSuf
2407 | No_lSuf
2408 | No_sSuf
2409 | No_xSuf
2410 | No_qSuf);
2411
2412 if ((i.tm.opcode_modifier & W)
2413 || ((suffixes & (suffixes - 1))
2414 && !(i.tm.opcode_modifier & (DefaultSize | IgnoreSize))))
2415 {
2416 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2417 return 0;
2418 }
2419 }
29b0f896 2420 }
252b5132 2421
9306ca4a
JB
2422 /* Change the opcode based on the operand size given by i.suffix;
2423 We don't need to change things for byte insns. */
2424
29b0f896
AM
2425 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2426 {
2427 /* It's not a byte, select word/dword operation. */
2428 if (i.tm.opcode_modifier & W)
2429 {
2430 if (i.tm.opcode_modifier & ShortForm)
2431 i.tm.base_opcode |= 8;
2432 else
2433 i.tm.base_opcode |= 1;
2434 }
0f3f3d8b 2435
29b0f896
AM
2436 /* Now select between word & dword operations via the operand
2437 size prefix, except for instructions that will ignore this
2438 prefix anyway. */
2439 if (i.suffix != QWORD_MNEM_SUFFIX
9306ca4a
JB
2440 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
2441 && !(i.tm.opcode_modifier & (IgnoreSize | FloatMF))
9146926a
AM
2442 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2443 || (flag_code == CODE_64BIT
2444 && (i.tm.opcode_modifier & JumpByte))))
24eab124
AM
2445 {
2446 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 2447
29b0f896
AM
2448 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2449 prefix = ADDR_PREFIX_OPCODE;
252b5132 2450
29b0f896
AM
2451 if (!add_prefix (prefix))
2452 return 0;
24eab124 2453 }
252b5132 2454
29b0f896
AM
2455 /* Set mode64 for an operand. */
2456 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 2457 && flag_code == CODE_64BIT
29b0f896 2458 && (i.tm.opcode_modifier & NoRex64) == 0)
9146926a 2459 i.rex |= REX_MODE64;
3e73aa7c 2460
29b0f896
AM
2461 /* Size floating point instruction. */
2462 if (i.suffix == LONG_MNEM_SUFFIX)
543613e9
NC
2463 if (i.tm.opcode_modifier & FloatMF)
2464 i.tm.base_opcode ^= 4;
29b0f896 2465 }
7ecd2f8b 2466
29b0f896
AM
2467 return 1;
2468}
3e73aa7c 2469
29b0f896 2470static int
543613e9 2471check_byte_reg (void)
29b0f896
AM
2472{
2473 int op;
543613e9 2474
29b0f896
AM
2475 for (op = i.operands; --op >= 0;)
2476 {
2477 /* If this is an eight bit register, it's OK. If it's the 16 or
2478 32 bit version of an eight bit register, we will just use the
2479 low portion, and that's OK too. */
2480 if (i.types[op] & Reg8)
2481 continue;
2482
2483 /* movzx and movsx should not generate this warning. */
2484 if (intel_syntax
2485 && (i.tm.base_opcode == 0xfb7
2486 || i.tm.base_opcode == 0xfb6
2487 || i.tm.base_opcode == 0x63
2488 || i.tm.base_opcode == 0xfbe
2489 || i.tm.base_opcode == 0xfbf))
2490 continue;
2491
65ec77d2 2492 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4)
29b0f896
AM
2493 {
2494 /* Prohibit these changes in the 64bit mode, since the
2495 lowering is more complicated. */
2496 if (flag_code == CODE_64BIT
2497 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2498 {
0f3f3d8b 2499 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2500 i.op[op].regs->reg_name,
2501 i.suffix);
2502 return 0;
2503 }
2504#if REGISTER_WARNINGS
2505 if (!quiet_warnings
2506 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2507 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2508 (i.op[op].regs + (i.types[op] & Reg16
2509 ? REGNAM_AL - REGNAM_AX
2510 : REGNAM_AL - REGNAM_EAX))->reg_name,
2511 i.op[op].regs->reg_name,
2512 i.suffix);
2513#endif
2514 continue;
2515 }
2516 /* Any other register is bad. */
2517 if (i.types[op] & (Reg | RegMMX | RegXMM
2518 | SReg2 | SReg3
2519 | Control | Debug | Test
2520 | FloatReg | FloatAcc))
2521 {
2522 as_bad (_("`%%%s' not allowed with `%s%c'"),
2523 i.op[op].regs->reg_name,
2524 i.tm.name,
2525 i.suffix);
2526 return 0;
2527 }
2528 }
2529 return 1;
2530}
2531
2532static int
2533check_long_reg ()
2534{
2535 int op;
2536
2537 for (op = i.operands; --op >= 0;)
2538 /* Reject eight bit registers, except where the template requires
2539 them. (eg. movzb) */
2540 if ((i.types[op] & Reg8) != 0
2541 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2542 {
2543 as_bad (_("`%%%s' not allowed with `%s%c'"),
2544 i.op[op].regs->reg_name,
2545 i.tm.name,
2546 i.suffix);
2547 return 0;
2548 }
2549 /* Warn if the e prefix on a general reg is missing. */
2550 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2551 && (i.types[op] & Reg16) != 0
2552 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2553 {
2554 /* Prohibit these changes in the 64bit mode, since the
2555 lowering is more complicated. */
2556 if (flag_code == CODE_64BIT)
252b5132 2557 {
0f3f3d8b 2558 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2559 i.op[op].regs->reg_name,
2560 i.suffix);
2561 return 0;
252b5132 2562 }
29b0f896
AM
2563#if REGISTER_WARNINGS
2564 else
2565 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2566 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
2567 i.op[op].regs->reg_name,
2568 i.suffix);
2569#endif
252b5132 2570 }
29b0f896
AM
2571 /* Warn if the r prefix on a general reg is missing. */
2572 else if ((i.types[op] & Reg64) != 0
2573 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
252b5132 2574 {
0f3f3d8b 2575 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2576 i.op[op].regs->reg_name,
2577 i.suffix);
2578 return 0;
2579 }
2580 return 1;
2581}
252b5132 2582
29b0f896
AM
2583static int
2584check_qword_reg ()
2585{
2586 int op;
252b5132 2587
29b0f896
AM
2588 for (op = i.operands; --op >= 0; )
2589 /* Reject eight bit registers, except where the template requires
2590 them. (eg. movzb) */
2591 if ((i.types[op] & Reg8) != 0
2592 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2593 {
2594 as_bad (_("`%%%s' not allowed with `%s%c'"),
2595 i.op[op].regs->reg_name,
2596 i.tm.name,
2597 i.suffix);
2598 return 0;
2599 }
2600 /* Warn if the e prefix on a general reg is missing. */
2601 else if (((i.types[op] & Reg16) != 0
2602 || (i.types[op] & Reg32) != 0)
2603 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2604 {
2605 /* Prohibit these changes in the 64bit mode, since the
2606 lowering is more complicated. */
0f3f3d8b 2607 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2608 i.op[op].regs->reg_name,
2609 i.suffix);
2610 return 0;
252b5132 2611 }
29b0f896
AM
2612 return 1;
2613}
252b5132 2614
29b0f896
AM
2615static int
2616check_word_reg ()
2617{
2618 int op;
2619 for (op = i.operands; --op >= 0;)
2620 /* Reject eight bit registers, except where the template requires
2621 them. (eg. movzb) */
2622 if ((i.types[op] & Reg8) != 0
2623 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2624 {
2625 as_bad (_("`%%%s' not allowed with `%s%c'"),
2626 i.op[op].regs->reg_name,
2627 i.tm.name,
2628 i.suffix);
2629 return 0;
2630 }
2631 /* Warn if the e prefix on a general reg is present. */
2632 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2633 && (i.types[op] & Reg32) != 0
2634 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
252b5132 2635 {
29b0f896
AM
2636 /* Prohibit these changes in the 64bit mode, since the
2637 lowering is more complicated. */
2638 if (flag_code == CODE_64BIT)
252b5132 2639 {
0f3f3d8b 2640 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2641 i.op[op].regs->reg_name,
2642 i.suffix);
2643 return 0;
252b5132 2644 }
29b0f896
AM
2645 else
2646#if REGISTER_WARNINGS
2647 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2648 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
2649 i.op[op].regs->reg_name,
2650 i.suffix);
2651#endif
2652 }
2653 return 1;
2654}
252b5132 2655
29b0f896
AM
2656static int
2657finalize_imm ()
2658{
2659 unsigned int overlap0, overlap1, overlap2;
2660
2661 overlap0 = i.types[0] & i.tm.operand_types[0];
20f0a1fc 2662 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64))
29b0f896
AM
2663 && overlap0 != Imm8 && overlap0 != Imm8S
2664 && overlap0 != Imm16 && overlap0 != Imm32S
2665 && overlap0 != Imm32 && overlap0 != Imm64)
2666 {
2667 if (i.suffix)
2668 {
2669 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
2670 ? Imm8 | Imm8S
2671 : (i.suffix == WORD_MNEM_SUFFIX
2672 ? Imm16
2673 : (i.suffix == QWORD_MNEM_SUFFIX
2674 ? Imm64 | Imm32S
2675 : Imm32)));
2676 }
2677 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2678 || overlap0 == (Imm16 | Imm32)
2679 || overlap0 == (Imm16 | Imm32S))
2680 {
2681 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2682 ? Imm16 : Imm32S);
2683 }
2684 if (overlap0 != Imm8 && overlap0 != Imm8S
2685 && overlap0 != Imm16 && overlap0 != Imm32S
2686 && overlap0 != Imm32 && overlap0 != Imm64)
2687 {
2688 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2689 return 0;
2690 }
2691 }
2692 i.types[0] = overlap0;
2693
2694 overlap1 = i.types[1] & i.tm.operand_types[1];
37edbb65 2695 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32 | Imm64))
29b0f896
AM
2696 && overlap1 != Imm8 && overlap1 != Imm8S
2697 && overlap1 != Imm16 && overlap1 != Imm32S
2698 && overlap1 != Imm32 && overlap1 != Imm64)
2699 {
2700 if (i.suffix)
2701 {
2702 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
2703 ? Imm8 | Imm8S
2704 : (i.suffix == WORD_MNEM_SUFFIX
2705 ? Imm16
2706 : (i.suffix == QWORD_MNEM_SUFFIX
2707 ? Imm64 | Imm32S
2708 : Imm32)));
2709 }
2710 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2711 || overlap1 == (Imm16 | Imm32)
2712 || overlap1 == (Imm16 | Imm32S))
2713 {
2714 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2715 ? Imm16 : Imm32S);
2716 }
2717 if (overlap1 != Imm8 && overlap1 != Imm8S
2718 && overlap1 != Imm16 && overlap1 != Imm32S
2719 && overlap1 != Imm32 && overlap1 != Imm64)
2720 {
2721 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
2722 return 0;
2723 }
2724 }
2725 i.types[1] = overlap1;
2726
2727 overlap2 = i.types[2] & i.tm.operand_types[2];
2728 assert ((overlap2 & Imm) == 0);
2729 i.types[2] = overlap2;
2730
2731 return 1;
2732}
2733
2734static int
2735process_operands ()
2736{
2737 /* Default segment register this instruction will use for memory
2738 accesses. 0 means unknown. This is only for optimizing out
2739 unnecessary segment overrides. */
2740 const seg_entry *default_seg = 0;
2741
2742 /* The imul $imm, %reg instruction is converted into
2743 imul $imm, %reg, %reg, and the clr %reg instruction
2744 is converted into xor %reg, %reg. */
2745 if (i.tm.opcode_modifier & regKludge)
2746 {
2747 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
2748 /* Pretend we saw the extra register operand. */
2749 assert (i.op[first_reg_op + 1].regs == 0);
2750 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2751 i.types[first_reg_op + 1] = i.types[first_reg_op];
2752 i.reg_operands = 2;
2753 }
2754
2755 if (i.tm.opcode_modifier & ShortForm)
2756 {
2757 /* The register or float register operand is in operand 0 or 1. */
2758 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
2759 /* Register goes in low 3 bits of opcode. */
2760 i.tm.base_opcode |= i.op[op].regs->reg_num;
2761 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2762 i.rex |= REX_EXTZ;
2763 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2764 {
2765 /* Warn about some common errors, but press on regardless.
2766 The first case can be generated by gcc (<= 2.8.1). */
2767 if (i.operands == 2)
2768 {
2769 /* Reversed arguments on faddp, fsubp, etc. */
2770 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
2771 i.op[1].regs->reg_name,
2772 i.op[0].regs->reg_name);
2773 }
2774 else
2775 {
2776 /* Extraneous `l' suffix on fp insn. */
2777 as_warn (_("translating to `%s %%%s'"), i.tm.name,
2778 i.op[0].regs->reg_name);
2779 }
2780 }
2781 }
2782 else if (i.tm.opcode_modifier & Modrm)
2783 {
2784 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
2785 must be put into the modrm byte). Now, we make the modrm and
2786 index base bytes based on all the info we've collected. */
29b0f896
AM
2787
2788 default_seg = build_modrm_byte ();
2789 }
2790 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2791 {
2792 if (i.tm.base_opcode == POP_SEG_SHORT
2793 && i.op[0].regs->reg_num == 1)
2794 {
2795 as_bad (_("you can't `pop %%cs'"));
2796 return 0;
2797 }
2798 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2799 if ((i.op[0].regs->reg_flags & RegRex) != 0)
2800 i.rex |= REX_EXTZ;
2801 }
2802 else if ((i.tm.base_opcode & ~(D | W)) == MOV_AX_DISP32)
2803 {
2804 default_seg = &ds;
2805 }
2806 else if ((i.tm.opcode_modifier & IsString) != 0)
2807 {
2808 /* For the string instructions that allow a segment override
2809 on one of their operands, the default segment is ds. */
2810 default_seg = &ds;
2811 }
2812
52271982
AM
2813 if (i.tm.base_opcode == 0x8d /* lea */ && i.seg[0] && !quiet_warnings)
2814 as_warn (_("segment override on `lea' is ineffectual"));
2815
2816 /* If a segment was explicitly specified, and the specified segment
2817 is not the default, use an opcode prefix to select it. If we
2818 never figured out what the default segment is, then default_seg
2819 will be zero at this point, and the specified segment prefix will
2820 always be used. */
29b0f896
AM
2821 if ((i.seg[0]) && (i.seg[0] != default_seg))
2822 {
2823 if (!add_prefix (i.seg[0]->seg_prefix))
2824 return 0;
2825 }
2826 return 1;
2827}
2828
2829static const seg_entry *
2830build_modrm_byte ()
2831{
2832 const seg_entry *default_seg = 0;
2833
2834 /* i.reg_operands MUST be the number of real register operands;
2835 implicit registers do not count. */
2836 if (i.reg_operands == 2)
2837 {
2838 unsigned int source, dest;
2839 source = ((i.types[0]
2840 & (Reg | RegMMX | RegXMM
2841 | SReg2 | SReg3
2842 | Control | Debug | Test))
2843 ? 0 : 1);
2844 dest = source + 1;
2845
2846 i.rm.mode = 3;
2847 /* One of the register operands will be encoded in the i.tm.reg
2848 field, the other in the combined i.tm.mode and i.tm.regmem
2849 fields. If no form of this instruction supports a memory
2850 destination operand, then we assume the source operand may
2851 sometimes be a memory operand and so we need to store the
2852 destination in the i.rm.reg field. */
2853 if ((i.tm.operand_types[dest] & AnyMem) == 0)
2854 {
2855 i.rm.reg = i.op[dest].regs->reg_num;
2856 i.rm.regmem = i.op[source].regs->reg_num;
2857 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2858 i.rex |= REX_EXTX;
2859 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2860 i.rex |= REX_EXTZ;
2861 }
2862 else
2863 {
2864 i.rm.reg = i.op[source].regs->reg_num;
2865 i.rm.regmem = i.op[dest].regs->reg_num;
2866 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2867 i.rex |= REX_EXTZ;
2868 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2869 i.rex |= REX_EXTX;
2870 }
c4a530c5
JB
2871 if (flag_code != CODE_64BIT && (i.rex & (REX_EXTX | REX_EXTZ)))
2872 {
2873 if (!((i.types[0] | i.types[1]) & Control))
2874 abort ();
2875 i.rex &= ~(REX_EXTX | REX_EXTZ);
2876 add_prefix (LOCK_PREFIX_OPCODE);
2877 }
29b0f896
AM
2878 }
2879 else
2880 { /* If it's not 2 reg operands... */
2881 if (i.mem_operands)
2882 {
2883 unsigned int fake_zero_displacement = 0;
2884 unsigned int op = ((i.types[0] & AnyMem)
2885 ? 0
2886 : (i.types[1] & AnyMem) ? 1 : 2);
2887
2888 default_seg = &ds;
2889
2890 if (i.base_reg == 0)
2891 {
2892 i.rm.mode = 0;
2893 if (!i.disp_operands)
2894 fake_zero_displacement = 1;
2895 if (i.index_reg == 0)
2896 {
2897 /* Operand is just <disp> */
20f0a1fc 2898 if (flag_code == CODE_64BIT)
29b0f896
AM
2899 {
2900 /* 64bit mode overwrites the 32bit absolute
2901 addressing by RIP relative addressing and
2902 absolute addressing is encoded by one of the
2903 redundant SIB forms. */
2904 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2905 i.sib.base = NO_BASE_REGISTER;
2906 i.sib.index = NO_INDEX_REGISTER;
20f0a1fc
NC
2907 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0) ? Disp32S : Disp32);
2908 }
2909 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
2910 {
2911 i.rm.regmem = NO_BASE_REGISTER_16;
2912 i.types[op] = Disp16;
2913 }
2914 else
2915 {
2916 i.rm.regmem = NO_BASE_REGISTER;
2917 i.types[op] = Disp32;
29b0f896
AM
2918 }
2919 }
2920 else /* !i.base_reg && i.index_reg */
2921 {
2922 i.sib.index = i.index_reg->reg_num;
2923 i.sib.base = NO_BASE_REGISTER;
2924 i.sib.scale = i.log2_scale_factor;
2925 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2926 i.types[op] &= ~Disp;
2927 if (flag_code != CODE_64BIT)
2928 i.types[op] |= Disp32; /* Must be 32 bit */
2929 else
2930 i.types[op] |= Disp32S;
2931 if ((i.index_reg->reg_flags & RegRex) != 0)
2932 i.rex |= REX_EXTY;
2933 }
2934 }
2935 /* RIP addressing for 64bit mode. */
2936 else if (i.base_reg->reg_type == BaseIndex)
2937 {
2938 i.rm.regmem = NO_BASE_REGISTER;
20f0a1fc 2939 i.types[op] &= ~ Disp;
29b0f896
AM
2940 i.types[op] |= Disp32S;
2941 i.flags[op] = Operand_PCrel;
20f0a1fc
NC
2942 if (! i.disp_operands)
2943 fake_zero_displacement = 1;
29b0f896
AM
2944 }
2945 else if (i.base_reg->reg_type & Reg16)
2946 {
2947 switch (i.base_reg->reg_num)
2948 {
2949 case 3: /* (%bx) */
2950 if (i.index_reg == 0)
2951 i.rm.regmem = 7;
2952 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2953 i.rm.regmem = i.index_reg->reg_num - 6;
2954 break;
2955 case 5: /* (%bp) */
2956 default_seg = &ss;
2957 if (i.index_reg == 0)
2958 {
2959 i.rm.regmem = 6;
2960 if ((i.types[op] & Disp) == 0)
2961 {
2962 /* fake (%bp) into 0(%bp) */
2963 i.types[op] |= Disp8;
252b5132 2964 fake_zero_displacement = 1;
29b0f896
AM
2965 }
2966 }
2967 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2968 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2969 break;
2970 default: /* (%si) -> 4 or (%di) -> 5 */
2971 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2972 }
2973 i.rm.mode = mode_from_disp_size (i.types[op]);
2974 }
2975 else /* i.base_reg and 32/64 bit mode */
2976 {
2977 if (flag_code == CODE_64BIT
2978 && (i.types[op] & Disp))
20f0a1fc
NC
2979 i.types[op] = (i.types[op] & Disp8) | (i.prefix[ADDR_PREFIX] == 0 ? Disp32S : Disp32);
2980
29b0f896
AM
2981 i.rm.regmem = i.base_reg->reg_num;
2982 if ((i.base_reg->reg_flags & RegRex) != 0)
2983 i.rex |= REX_EXTZ;
2984 i.sib.base = i.base_reg->reg_num;
2985 /* x86-64 ignores REX prefix bit here to avoid decoder
2986 complications. */
2987 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
2988 {
2989 default_seg = &ss;
2990 if (i.disp_operands == 0)
2991 {
2992 fake_zero_displacement = 1;
2993 i.types[op] |= Disp8;
2994 }
2995 }
2996 else if (i.base_reg->reg_num == ESP_REG_NUM)
2997 {
2998 default_seg = &ss;
2999 }
3000 i.sib.scale = i.log2_scale_factor;
3001 if (i.index_reg == 0)
3002 {
3003 /* <disp>(%esp) becomes two byte modrm with no index
3004 register. We've already stored the code for esp
3005 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
3006 Any base register besides %esp will not use the
3007 extra modrm byte. */
3008 i.sib.index = NO_INDEX_REGISTER;
3009#if !SCALE1_WHEN_NO_INDEX
3010 /* Another case where we force the second modrm byte. */
3011 if (i.log2_scale_factor)
3012 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
252b5132 3013#endif
29b0f896
AM
3014 }
3015 else
3016 {
3017 i.sib.index = i.index_reg->reg_num;
3018 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3019 if ((i.index_reg->reg_flags & RegRex) != 0)
3020 i.rex |= REX_EXTY;
3021 }
3022 i.rm.mode = mode_from_disp_size (i.types[op]);
3023 }
252b5132 3024
29b0f896
AM
3025 if (fake_zero_displacement)
3026 {
3027 /* Fakes a zero displacement assuming that i.types[op]
3028 holds the correct displacement size. */
3029 expressionS *exp;
3030
3031 assert (i.op[op].disps == 0);
3032 exp = &disp_expressions[i.disp_operands++];
3033 i.op[op].disps = exp;
3034 exp->X_op = O_constant;
3035 exp->X_add_number = 0;
3036 exp->X_add_symbol = (symbolS *) 0;
3037 exp->X_op_symbol = (symbolS *) 0;
3038 }
3039 }
252b5132 3040
29b0f896
AM
3041 /* Fill in i.rm.reg or i.rm.regmem field with register operand
3042 (if any) based on i.tm.extension_opcode. Again, we must be
3043 careful to make sure that segment/control/debug/test/MMX
3044 registers are coded into the i.rm.reg field. */
3045 if (i.reg_operands)
3046 {
3047 unsigned int op =
3048 ((i.types[0]
3049 & (Reg | RegMMX | RegXMM
3050 | SReg2 | SReg3
3051 | Control | Debug | Test))
3052 ? 0
3053 : ((i.types[1]
3054 & (Reg | RegMMX | RegXMM
3055 | SReg2 | SReg3
3056 | Control | Debug | Test))
3057 ? 1
3058 : 2));
3059 /* If there is an extension opcode to put here, the register
3060 number must be put into the regmem field. */
3061 if (i.tm.extension_opcode != None)
3062 {
3063 i.rm.regmem = i.op[op].regs->reg_num;
3064 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3065 i.rex |= REX_EXTZ;
3066 }
3067 else
3068 {
3069 i.rm.reg = i.op[op].regs->reg_num;
3070 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3071 i.rex |= REX_EXTX;
3072 }
252b5132 3073
29b0f896
AM
3074 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
3075 must set it to 3 to indicate this is a register operand
3076 in the regmem field. */
3077 if (!i.mem_operands)
3078 i.rm.mode = 3;
3079 }
252b5132 3080
29b0f896
AM
3081 /* Fill in i.rm.reg field with extension opcode (if any). */
3082 if (i.tm.extension_opcode != None)
3083 i.rm.reg = i.tm.extension_opcode;
3084 }
3085 return default_seg;
3086}
252b5132 3087
29b0f896
AM
3088static void
3089output_branch ()
3090{
3091 char *p;
3092 int code16;
3093 int prefix;
3094 relax_substateT subtype;
3095 symbolS *sym;
3096 offsetT off;
3097
3098 code16 = 0;
3099 if (flag_code == CODE_16BIT)
3100 code16 = CODE16;
3101
3102 prefix = 0;
3103 if (i.prefix[DATA_PREFIX] != 0)
252b5132 3104 {
29b0f896
AM
3105 prefix = 1;
3106 i.prefixes -= 1;
3107 code16 ^= CODE16;
252b5132 3108 }
29b0f896
AM
3109 /* Pentium4 branch hints. */
3110 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3111 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 3112 {
29b0f896
AM
3113 prefix++;
3114 i.prefixes--;
3115 }
3116 if (i.prefix[REX_PREFIX] != 0)
3117 {
3118 prefix++;
3119 i.prefixes--;
2f66722d
AM
3120 }
3121
29b0f896
AM
3122 if (i.prefixes != 0 && !intel_syntax)
3123 as_warn (_("skipping prefixes on this instruction"));
3124
3125 /* It's always a symbol; End frag & setup for relax.
3126 Make sure there is enough room in this frag for the largest
3127 instruction we may generate in md_convert_frag. This is 2
3128 bytes for the opcode and room for the prefix and largest
3129 displacement. */
3130 frag_grow (prefix + 2 + 4);
3131 /* Prefix and 1 opcode byte go in fr_fix. */
3132 p = frag_more (prefix + 1);
3133 if (i.prefix[DATA_PREFIX] != 0)
3134 *p++ = DATA_PREFIX_OPCODE;
3135 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
3136 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
3137 *p++ = i.prefix[SEG_PREFIX];
3138 if (i.prefix[REX_PREFIX] != 0)
3139 *p++ = i.prefix[REX_PREFIX];
3140 *p = i.tm.base_opcode;
3141
3142 if ((unsigned char) *p == JUMP_PC_RELATIVE)
3143 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
3144 else if ((cpu_arch_flags & Cpu386) != 0)
3145 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
3146 else
3147 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
3148 subtype |= code16;
3e73aa7c 3149
29b0f896
AM
3150 sym = i.op[0].disps->X_add_symbol;
3151 off = i.op[0].disps->X_add_number;
3e73aa7c 3152
29b0f896
AM
3153 if (i.op[0].disps->X_op != O_constant
3154 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 3155 {
29b0f896
AM
3156 /* Handle complex expressions. */
3157 sym = make_expr_symbol (i.op[0].disps);
3158 off = 0;
3159 }
3e73aa7c 3160
29b0f896
AM
3161 /* 1 possible extra opcode + 4 byte displacement go in var part.
3162 Pass reloc in fr_var. */
3163 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
3164}
3e73aa7c 3165
29b0f896
AM
3166static void
3167output_jump ()
3168{
3169 char *p;
3170 int size;
3e02c1cc 3171 fixS *fixP;
29b0f896
AM
3172
3173 if (i.tm.opcode_modifier & JumpByte)
3174 {
3175 /* This is a loop or jecxz type instruction. */
3176 size = 1;
3177 if (i.prefix[ADDR_PREFIX] != 0)
3178 {
3179 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3180 i.prefixes -= 1;
3181 }
3182 /* Pentium4 branch hints. */
3183 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3184 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3185 {
3186 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3187 i.prefixes--;
3e73aa7c
JH
3188 }
3189 }
29b0f896
AM
3190 else
3191 {
3192 int code16;
3e73aa7c 3193
29b0f896
AM
3194 code16 = 0;
3195 if (flag_code == CODE_16BIT)
3196 code16 = CODE16;
3e73aa7c 3197
29b0f896
AM
3198 if (i.prefix[DATA_PREFIX] != 0)
3199 {
3200 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3201 i.prefixes -= 1;
3202 code16 ^= CODE16;
3203 }
252b5132 3204
29b0f896
AM
3205 size = 4;
3206 if (code16)
3207 size = 2;
3208 }
9fcc94b6 3209
29b0f896
AM
3210 if (i.prefix[REX_PREFIX] != 0)
3211 {
3212 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3213 i.prefixes -= 1;
3214 }
252b5132 3215
29b0f896
AM
3216 if (i.prefixes != 0 && !intel_syntax)
3217 as_warn (_("skipping prefixes on this instruction"));
e0890092 3218
29b0f896
AM
3219 p = frag_more (1 + size);
3220 *p++ = i.tm.base_opcode;
e0890092 3221
3e02c1cc
AM
3222 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3223 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3224
3225 /* All jumps handled here are signed, but don't use a signed limit
3226 check for 32 and 16 bit jumps as we want to allow wrap around at
3227 4G and 64k respectively. */
3228 if (size == 1)
3229 fixP->fx_signed = 1;
29b0f896 3230}
e0890092 3231
29b0f896
AM
3232static void
3233output_interseg_jump ()
3234{
3235 char *p;
3236 int size;
3237 int prefix;
3238 int code16;
252b5132 3239
29b0f896
AM
3240 code16 = 0;
3241 if (flag_code == CODE_16BIT)
3242 code16 = CODE16;
a217f122 3243
29b0f896
AM
3244 prefix = 0;
3245 if (i.prefix[DATA_PREFIX] != 0)
3246 {
3247 prefix = 1;
3248 i.prefixes -= 1;
3249 code16 ^= CODE16;
3250 }
3251 if (i.prefix[REX_PREFIX] != 0)
3252 {
3253 prefix++;
3254 i.prefixes -= 1;
3255 }
252b5132 3256
29b0f896
AM
3257 size = 4;
3258 if (code16)
3259 size = 2;
252b5132 3260
29b0f896
AM
3261 if (i.prefixes != 0 && !intel_syntax)
3262 as_warn (_("skipping prefixes on this instruction"));
252b5132 3263
29b0f896
AM
3264 /* 1 opcode; 2 segment; offset */
3265 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 3266
29b0f896
AM
3267 if (i.prefix[DATA_PREFIX] != 0)
3268 *p++ = DATA_PREFIX_OPCODE;
252b5132 3269
29b0f896
AM
3270 if (i.prefix[REX_PREFIX] != 0)
3271 *p++ = i.prefix[REX_PREFIX];
252b5132 3272
29b0f896
AM
3273 *p++ = i.tm.base_opcode;
3274 if (i.op[1].imms->X_op == O_constant)
3275 {
3276 offsetT n = i.op[1].imms->X_add_number;
252b5132 3277
29b0f896
AM
3278 if (size == 2
3279 && !fits_in_unsigned_word (n)
3280 && !fits_in_signed_word (n))
3281 {
3282 as_bad (_("16-bit jump out of range"));
3283 return;
3284 }
3285 md_number_to_chars (p, n, size);
3286 }
3287 else
3288 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3289 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3290 if (i.op[0].imms->X_op != O_constant)
3291 as_bad (_("can't handle non absolute segment in `%s'"),
3292 i.tm.name);
3293 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3294}
a217f122 3295
29b0f896
AM
3296static void
3297output_insn ()
3298{
2bbd9c25
JJ
3299 fragS *insn_start_frag;
3300 offsetT insn_start_off;
3301
29b0f896
AM
3302 /* Tie dwarf2 debug info to the address at the start of the insn.
3303 We can't do this after the insn has been output as the current
3304 frag may have been closed off. eg. by frag_var. */
3305 dwarf2_emit_insn (0);
3306
2bbd9c25
JJ
3307 insn_start_frag = frag_now;
3308 insn_start_off = frag_now_fix ();
3309
29b0f896
AM
3310 /* Output jumps. */
3311 if (i.tm.opcode_modifier & Jump)
3312 output_branch ();
3313 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
3314 output_jump ();
3315 else if (i.tm.opcode_modifier & JumpInterSegment)
3316 output_interseg_jump ();
3317 else
3318 {
3319 /* Output normal instructions here. */
3320 char *p;
3321 unsigned char *q;
252b5132 3322
bc4bd9ab
MK
3323 /* All opcodes on i386 have either 1 or 2 bytes. We may use one
3324 more higher byte to specify a prefix the instruction
3325 requires. */
3326 if ((i.tm.base_opcode & 0xff0000) != 0)
3327 {
3328 if ((i.tm.cpu_flags & CpuPadLock) != 0)
3329 {
3330 unsigned int prefix;
3331 prefix = (i.tm.base_opcode >> 16) & 0xff;
3332
3333 if (prefix != REPE_PREFIX_OPCODE
3334 || i.prefix[LOCKREP_PREFIX] != REPE_PREFIX_OPCODE)
3335 add_prefix (prefix);
3336 }
3337 else
3338 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
0f10071e 3339 }
252b5132 3340
29b0f896
AM
3341 /* The prefix bytes. */
3342 for (q = i.prefix;
3343 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
3344 q++)
3345 {
3346 if (*q)
3347 {
3348 p = frag_more (1);
3349 md_number_to_chars (p, (valueT) *q, 1);
3350 }
3351 }
252b5132 3352
29b0f896
AM
3353 /* Now the opcode; be careful about word order here! */
3354 if (fits_in_unsigned_byte (i.tm.base_opcode))
3355 {
3356 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
3357 }
3358 else
3359 {
bc4bd9ab 3360 p = frag_more (2);
0f10071e 3361
29b0f896
AM
3362 /* Put out high byte first: can't use md_number_to_chars! */
3363 *p++ = (i.tm.base_opcode >> 8) & 0xff;
3364 *p = i.tm.base_opcode & 0xff;
3365 }
3e73aa7c 3366
29b0f896
AM
3367 /* Now the modrm byte and sib byte (if present). */
3368 if (i.tm.opcode_modifier & Modrm)
3369 {
3370 p = frag_more (1);
3371 md_number_to_chars (p,
3372 (valueT) (i.rm.regmem << 0
3373 | i.rm.reg << 3
3374 | i.rm.mode << 6),
3375 1);
3376 /* If i.rm.regmem == ESP (4)
3377 && i.rm.mode != (Register mode)
3378 && not 16 bit
3379 ==> need second modrm byte. */
3380 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
3381 && i.rm.mode != 3
3382 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
3383 {
3384 p = frag_more (1);
3385 md_number_to_chars (p,
3386 (valueT) (i.sib.base << 0
3387 | i.sib.index << 3
3388 | i.sib.scale << 6),
3389 1);
3390 }
3391 }
3e73aa7c 3392
29b0f896 3393 if (i.disp_operands)
2bbd9c25 3394 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 3395
29b0f896 3396 if (i.imm_operands)
2bbd9c25 3397 output_imm (insn_start_frag, insn_start_off);
29b0f896 3398 }
252b5132 3399
29b0f896
AM
3400#ifdef DEBUG386
3401 if (flag_debug)
3402 {
3403 pi (line, &i);
3404 }
3405#endif /* DEBUG386 */
3406}
252b5132 3407
29b0f896 3408static void
2bbd9c25
JJ
3409output_disp (insn_start_frag, insn_start_off)
3410 fragS *insn_start_frag;
3411 offsetT insn_start_off;
29b0f896
AM
3412{
3413 char *p;
3414 unsigned int n;
252b5132 3415
29b0f896
AM
3416 for (n = 0; n < i.operands; n++)
3417 {
3418 if (i.types[n] & Disp)
3419 {
3420 if (i.op[n].disps->X_op == O_constant)
3421 {
3422 int size;
3423 offsetT val;
252b5132 3424
29b0f896
AM
3425 size = 4;
3426 if (i.types[n] & (Disp8 | Disp16 | Disp64))
3427 {
3428 size = 2;
3429 if (i.types[n] & Disp8)
3430 size = 1;
3431 if (i.types[n] & Disp64)
3432 size = 8;
3433 }
3434 val = offset_in_range (i.op[n].disps->X_add_number,
3435 size);
3436 p = frag_more (size);
3437 md_number_to_chars (p, val, size);
3438 }
3439 else
3440 {
f86103b7 3441 enum bfd_reloc_code_real reloc_type;
29b0f896
AM
3442 int size = 4;
3443 int sign = 0;
3444 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
3445
3446 /* The PC relative address is computed relative
3447 to the instruction boundary, so in case immediate
3448 fields follows, we need to adjust the value. */
3449 if (pcrel && i.imm_operands)
3450 {
3451 int imm_size = 4;
3452 unsigned int n1;
252b5132 3453
29b0f896
AM
3454 for (n1 = 0; n1 < i.operands; n1++)
3455 if (i.types[n1] & Imm)
252b5132 3456 {
29b0f896 3457 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
252b5132 3458 {
29b0f896
AM
3459 imm_size = 2;
3460 if (i.types[n1] & (Imm8 | Imm8S))
3461 imm_size = 1;
3462 if (i.types[n1] & Imm64)
3463 imm_size = 8;
252b5132 3464 }
29b0f896 3465 break;
252b5132 3466 }
29b0f896
AM
3467 /* We should find the immediate. */
3468 if (n1 == i.operands)
3469 abort ();
3470 i.op[n].disps->X_add_number -= imm_size;
3471 }
520dc8e8 3472
29b0f896
AM
3473 if (i.types[n] & Disp32S)
3474 sign = 1;
3e73aa7c 3475
29b0f896
AM
3476 if (i.types[n] & (Disp16 | Disp64))
3477 {
3478 size = 2;
3479 if (i.types[n] & Disp64)
3480 size = 8;
3481 }
520dc8e8 3482
29b0f896 3483 p = frag_more (size);
2bbd9c25 3484 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
2bbd9c25
JJ
3485 if (reloc_type == BFD_RELOC_32
3486 && GOT_symbol
3487 && GOT_symbol == i.op[n].disps->X_add_symbol
3488 && (i.op[n].disps->X_op == O_symbol
3489 || (i.op[n].disps->X_op == O_add
3490 && ((symbol_get_value_expression
3491 (i.op[n].disps->X_op_symbol)->X_op)
3492 == O_subtract))))
3493 {
3494 offsetT add;
3495
3496 if (insn_start_frag == frag_now)
3497 add = (p - frag_now->fr_literal) - insn_start_off;
3498 else
3499 {
3500 fragS *fr;
3501
3502 add = insn_start_frag->fr_fix - insn_start_off;
3503 for (fr = insn_start_frag->fr_next;
3504 fr && fr != frag_now; fr = fr->fr_next)
3505 add += fr->fr_fix;
3506 add += p - frag_now->fr_literal;
3507 }
3508
3509 /* We don't support dynamic linking on x86-64 yet. */
3510 if (flag_code == CODE_64BIT)
3511 abort ();
3512 reloc_type = BFD_RELOC_386_GOTPC;
3513 i.op[n].disps->X_add_number += add;
3514 }
062cd5e7 3515 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2bbd9c25 3516 i.op[n].disps, pcrel, reloc_type);
29b0f896
AM
3517 }
3518 }
3519 }
3520}
252b5132 3521
29b0f896 3522static void
2bbd9c25
JJ
3523output_imm (insn_start_frag, insn_start_off)
3524 fragS *insn_start_frag;
3525 offsetT insn_start_off;
29b0f896
AM
3526{
3527 char *p;
3528 unsigned int n;
252b5132 3529
29b0f896
AM
3530 for (n = 0; n < i.operands; n++)
3531 {
3532 if (i.types[n] & Imm)
3533 {
3534 if (i.op[n].imms->X_op == O_constant)
3535 {
3536 int size;
3537 offsetT val;
b4cac588 3538
29b0f896
AM
3539 size = 4;
3540 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3541 {
3542 size = 2;
3543 if (i.types[n] & (Imm8 | Imm8S))
3544 size = 1;
3545 else if (i.types[n] & Imm64)
3546 size = 8;
3547 }
3548 val = offset_in_range (i.op[n].imms->X_add_number,
3549 size);
3550 p = frag_more (size);
3551 md_number_to_chars (p, val, size);
3552 }
3553 else
3554 {
3555 /* Not absolute_section.
3556 Need a 32-bit fixup (don't support 8bit
3557 non-absolute imms). Try to support other
3558 sizes ... */
f86103b7 3559 enum bfd_reloc_code_real reloc_type;
29b0f896
AM
3560 int size = 4;
3561 int sign = 0;
3562
3563 if ((i.types[n] & (Imm32S))
a7d61044
JB
3564 && (i.suffix == QWORD_MNEM_SUFFIX
3565 || (!i.suffix && (i.tm.opcode_modifier & No_lSuf))))
29b0f896
AM
3566 sign = 1;
3567 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3568 {
3569 size = 2;
3570 if (i.types[n] & (Imm8 | Imm8S))
3571 size = 1;
3572 if (i.types[n] & Imm64)
3573 size = 8;
3574 }
520dc8e8 3575
29b0f896
AM
3576 p = frag_more (size);
3577 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 3578
2bbd9c25
JJ
3579 /* This is tough to explain. We end up with this one if we
3580 * have operands that look like
3581 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
3582 * obtain the absolute address of the GOT, and it is strongly
3583 * preferable from a performance point of view to avoid using
3584 * a runtime relocation for this. The actual sequence of
3585 * instructions often look something like:
3586 *
3587 * call .L66
3588 * .L66:
3589 * popl %ebx
3590 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
3591 *
3592 * The call and pop essentially return the absolute address
3593 * of the label .L66 and store it in %ebx. The linker itself
3594 * will ultimately change the first operand of the addl so
3595 * that %ebx points to the GOT, but to keep things simple, the
3596 * .o file must have this operand set so that it generates not
3597 * the absolute address of .L66, but the absolute address of
3598 * itself. This allows the linker itself simply treat a GOTPC
3599 * relocation as asking for a pcrel offset to the GOT to be
3600 * added in, and the addend of the relocation is stored in the
3601 * operand field for the instruction itself.
3602 *
3603 * Our job here is to fix the operand so that it would add
3604 * the correct offset so that %ebx would point to itself. The
3605 * thing that is tricky is that .-.L66 will point to the
3606 * beginning of the instruction, so we need to further modify
3607 * the operand so that it will point to itself. There are
3608 * other cases where you have something like:
3609 *
3610 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
3611 *
3612 * and here no correction would be required. Internally in
3613 * the assembler we treat operands of this form as not being
3614 * pcrel since the '.' is explicitly mentioned, and I wonder
3615 * whether it would simplify matters to do it this way. Who
3616 * knows. In earlier versions of the PIC patches, the
3617 * pcrel_adjust field was used to store the correction, but
3618 * since the expression is not pcrel, I felt it would be
3619 * confusing to do it this way. */
3620
29b0f896
AM
3621 if (reloc_type == BFD_RELOC_32
3622 && GOT_symbol
3623 && GOT_symbol == i.op[n].imms->X_add_symbol
3624 && (i.op[n].imms->X_op == O_symbol
3625 || (i.op[n].imms->X_op == O_add
3626 && ((symbol_get_value_expression
3627 (i.op[n].imms->X_op_symbol)->X_op)
3628 == O_subtract))))
3629 {
2bbd9c25
JJ
3630 offsetT add;
3631
3632 if (insn_start_frag == frag_now)
3633 add = (p - frag_now->fr_literal) - insn_start_off;
3634 else
3635 {
3636 fragS *fr;
3637
3638 add = insn_start_frag->fr_fix - insn_start_off;
3639 for (fr = insn_start_frag->fr_next;
3640 fr && fr != frag_now; fr = fr->fr_next)
3641 add += fr->fr_fix;
3642 add += p - frag_now->fr_literal;
3643 }
3644
29b0f896
AM
3645 /* We don't support dynamic linking on x86-64 yet. */
3646 if (flag_code == CODE_64BIT)
3647 abort ();
3648 reloc_type = BFD_RELOC_386_GOTPC;
2bbd9c25 3649 i.op[n].imms->X_add_number += add;
29b0f896 3650 }
29b0f896
AM
3651 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3652 i.op[n].imms, 0, reloc_type);
3653 }
3654 }
3655 }
252b5132
RH
3656}
3657\f
f3c180ae 3658#ifndef LEX_AT
f86103b7 3659static char *lex_got PARAMS ((enum bfd_reloc_code_real *, int *));
f3c180ae
AM
3660
3661/* Parse operands of the form
3662 <symbol>@GOTOFF+<nnn>
3663 and similar .plt or .got references.
3664
3665 If we find one, set up the correct relocation in RELOC and copy the
3666 input string, minus the `@GOTOFF' into a malloc'd buffer for
3667 parsing by the calling routine. Return this buffer, and if ADJUST
3668 is non-null set it to the length of the string we removed from the
3669 input line. Otherwise return NULL. */
3670static char *
3671lex_got (reloc, adjust)
f86103b7 3672 enum bfd_reloc_code_real *reloc;
f3c180ae
AM
3673 int *adjust;
3674{
3675 static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
3676 static const struct {
3677 const char *str;
f86103b7 3678 const enum bfd_reloc_code_real rel[NUM_FLAG_CODE];
f3c180ae 3679 } gotrel[] = {
13ae64f3
JJ
3680 { "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
3681 { "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, 0 } },
3682 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
bffbf940 3683 { "TLSGD", { BFD_RELOC_386_TLS_GD, 0, BFD_RELOC_X86_64_TLSGD } },
13ae64f3 3684 { "TLSLDM", { BFD_RELOC_386_TLS_LDM, 0, 0 } },
bffbf940
JJ
3685 { "TLSLD", { 0, 0, BFD_RELOC_X86_64_TLSLD } },
3686 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32, 0, BFD_RELOC_X86_64_GOTTPOFF } },
3687 { "TPOFF", { BFD_RELOC_386_TLS_LE_32, 0, BFD_RELOC_X86_64_TPOFF32 } },
13ae64f3 3688 { "NTPOFF", { BFD_RELOC_386_TLS_LE, 0, 0 } },
bffbf940 3689 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32, 0, BFD_RELOC_X86_64_DTPOFF32 } },
37e55690
JJ
3690 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE, 0, 0 } },
3691 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE, 0, 0 } },
13ae64f3 3692 { "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
f3c180ae
AM
3693 };
3694 char *cp;
3695 unsigned int j;
3696
3697 for (cp = input_line_pointer; *cp != '@'; cp++)
3698 if (is_end_of_line[(unsigned char) *cp])
3699 return NULL;
3700
3701 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3702 {
3703 int len;
3704
3705 len = strlen (gotrel[j].str);
28f81592 3706 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae
AM
3707 {
3708 if (gotrel[j].rel[(unsigned int) flag_code] != 0)
3709 {
28f81592
AM
3710 int first, second;
3711 char *tmpbuf, *past_reloc;
f3c180ae
AM
3712
3713 *reloc = gotrel[j].rel[(unsigned int) flag_code];
28f81592
AM
3714 if (adjust)
3715 *adjust = len;
f3c180ae
AM
3716
3717 if (GOT_symbol == NULL)
3718 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3719
3720 /* Replace the relocation token with ' ', so that
3721 errors like foo@GOTOFF1 will be detected. */
28f81592
AM
3722
3723 /* The length of the first part of our input line. */
f3c180ae 3724 first = cp - input_line_pointer;
28f81592
AM
3725
3726 /* The second part goes from after the reloc token until
3727 (and including) an end_of_line char. Don't use strlen
3728 here as the end_of_line char may not be a NUL. */
3729 past_reloc = cp + 1 + len;
3730 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
3731 ;
3732 second = cp - past_reloc;
3733
3734 /* Allocate and copy string. The trailing NUL shouldn't
3735 be necessary, but be safe. */
3736 tmpbuf = xmalloc (first + second + 2);
f3c180ae
AM
3737 memcpy (tmpbuf, input_line_pointer, first);
3738 tmpbuf[first] = ' ';
28f81592
AM
3739 memcpy (tmpbuf + first + 1, past_reloc, second);
3740 tmpbuf[first + second + 1] = '\0';
f3c180ae
AM
3741 return tmpbuf;
3742 }
3743
3744 as_bad (_("@%s reloc is not supported in %s bit mode"),
3745 gotrel[j].str, mode_name[(unsigned int) flag_code]);
3746 return NULL;
3747 }
3748 }
3749
3750 /* Might be a symbol version string. Don't as_bad here. */
3751 return NULL;
3752}
3753
3754/* x86_cons_fix_new is called via the expression parsing code when a
3755 reloc is needed. We use this hook to get the correct .got reloc. */
f86103b7 3756static enum bfd_reloc_code_real got_reloc = NO_RELOC;
f3c180ae
AM
3757
3758void
3759x86_cons_fix_new (frag, off, len, exp)
3760 fragS *frag;
3761 unsigned int off;
3762 unsigned int len;
3763 expressionS *exp;
3764{
f86103b7 3765 enum bfd_reloc_code_real r = reloc (len, 0, 0, got_reloc);
f3c180ae
AM
3766 got_reloc = NO_RELOC;
3767 fix_new_exp (frag, off, len, exp, 0, r);
3768}
3769
3770void
3771x86_cons (exp, size)
3772 expressionS *exp;
3773 int size;
3774{
3775 if (size == 4)
3776 {
3777 /* Handle @GOTOFF and the like in an expression. */
3778 char *save;
3779 char *gotfree_input_line;
3780 int adjust;
3781
3782 save = input_line_pointer;
3783 gotfree_input_line = lex_got (&got_reloc, &adjust);
3784 if (gotfree_input_line)
3785 input_line_pointer = gotfree_input_line;
3786
3787 expression (exp);
3788
3789 if (gotfree_input_line)
3790 {
3791 /* expression () has merrily parsed up to the end of line,
3792 or a comma - in the wrong buffer. Transfer how far
3793 input_line_pointer has moved to the right buffer. */
3794 input_line_pointer = (save
3795 + (input_line_pointer - gotfree_input_line)
3796 + adjust);
3797 free (gotfree_input_line);
3798 }
3799 }
3800 else
3801 expression (exp);
3802}
3803#endif
3804
6482c264
NC
3805#ifdef TE_PE
3806
6482c264
NC
3807void
3808x86_pe_cons_fix_new (frag, off, len, exp)
3809 fragS *frag;
3810 unsigned int off;
3811 unsigned int len;
3812 expressionS *exp;
3813{
3814 enum bfd_reloc_code_real r = reloc (len, 0, 0, NO_RELOC);
3815
3816 if (exp->X_op == O_secrel)
3817 {
3818 exp->X_op = O_symbol;
3819 r = BFD_RELOC_32_SECREL;
3820 }
3821
3822 fix_new_exp (frag, off, len, exp, 0, r);
3823}
3824
3825static void
3826pe_directive_secrel (dummy)
3827 int dummy ATTRIBUTE_UNUSED;
3828{
3829 expressionS exp;
3830
3831 do
3832 {
3833 expression (&exp);
3834 if (exp.X_op == O_symbol)
3835 exp.X_op = O_secrel;
3836
3837 emit_expr (&exp, 4);
3838 }
3839 while (*input_line_pointer++ == ',');
3840
3841 input_line_pointer--;
3842 demand_empty_rest_of_line ();
3843}
3844
3845#endif
3846
252b5132
RH
3847static int i386_immediate PARAMS ((char *));
3848
3849static int
3850i386_immediate (imm_start)
3851 char *imm_start;
3852{
3853 char *save_input_line_pointer;
f3c180ae
AM
3854#ifndef LEX_AT
3855 char *gotfree_input_line;
3856#endif
252b5132 3857 segT exp_seg = 0;
47926f60 3858 expressionS *exp;
252b5132
RH
3859
3860 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3861 {
d0b47220 3862 as_bad (_("only 1 or 2 immediate operands are allowed"));
252b5132
RH
3863 return 0;
3864 }
3865
3866 exp = &im_expressions[i.imm_operands++];
520dc8e8 3867 i.op[this_operand].imms = exp;
252b5132
RH
3868
3869 if (is_space_char (*imm_start))
3870 ++imm_start;
3871
3872 save_input_line_pointer = input_line_pointer;
3873 input_line_pointer = imm_start;
3874
3875#ifndef LEX_AT
f3c180ae
AM
3876 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3877 if (gotfree_input_line)
3878 input_line_pointer = gotfree_input_line;
252b5132
RH
3879#endif
3880
3881 exp_seg = expression (exp);
3882
83183c0c 3883 SKIP_WHITESPACE ();
252b5132 3884 if (*input_line_pointer)
f3c180ae 3885 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
3886
3887 input_line_pointer = save_input_line_pointer;
f3c180ae
AM
3888#ifndef LEX_AT
3889 if (gotfree_input_line)
3890 free (gotfree_input_line);
3891#endif
252b5132 3892
2daf4fd8 3893 if (exp->X_op == O_absent || exp->X_op == O_big)
252b5132 3894 {
47926f60 3895 /* Missing or bad expr becomes absolute 0. */
d0b47220 3896 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
24eab124 3897 imm_start);
252b5132
RH
3898 exp->X_op = O_constant;
3899 exp->X_add_number = 0;
3900 exp->X_add_symbol = (symbolS *) 0;
3901 exp->X_op_symbol = (symbolS *) 0;
252b5132 3902 }
3e73aa7c 3903 else if (exp->X_op == O_constant)
252b5132 3904 {
47926f60 3905 /* Size it properly later. */
3e73aa7c
JH
3906 i.types[this_operand] |= Imm64;
3907 /* If BFD64, sign extend val. */
3908 if (!use_rela_relocations)
3909 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3910 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 3911 }
4c63da97 3912#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 3913 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 3914 && exp_seg != absolute_section
47926f60 3915 && exp_seg != text_section
24eab124
AM
3916 && exp_seg != data_section
3917 && exp_seg != bss_section
3918 && exp_seg != undefined_section
f86103b7 3919 && !bfd_is_com_section (exp_seg))
252b5132 3920 {
d0b47220 3921 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
3922 return 0;
3923 }
3924#endif
3925 else
3926 {
3927 /* This is an address. The size of the address will be
24eab124 3928 determined later, depending on destination register,
3e73aa7c
JH
3929 suffix, or the default for the section. */
3930 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
252b5132
RH
3931 }
3932
3933 return 1;
3934}
3935
551c1ca1 3936static char *i386_scale PARAMS ((char *));
252b5132 3937
551c1ca1 3938static char *
252b5132
RH
3939i386_scale (scale)
3940 char *scale;
3941{
551c1ca1
AM
3942 offsetT val;
3943 char *save = input_line_pointer;
252b5132 3944
551c1ca1
AM
3945 input_line_pointer = scale;
3946 val = get_absolute_expression ();
3947
3948 switch (val)
252b5132 3949 {
551c1ca1 3950 case 1:
252b5132
RH
3951 i.log2_scale_factor = 0;
3952 break;
551c1ca1 3953 case 2:
252b5132
RH
3954 i.log2_scale_factor = 1;
3955 break;
551c1ca1 3956 case 4:
252b5132
RH
3957 i.log2_scale_factor = 2;
3958 break;
551c1ca1 3959 case 8:
252b5132
RH
3960 i.log2_scale_factor = 3;
3961 break;
3962 default:
a724f0f4
JB
3963 {
3964 char sep = *input_line_pointer;
3965
3966 *input_line_pointer = '\0';
3967 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
3968 scale);
3969 *input_line_pointer = sep;
3970 input_line_pointer = save;
3971 return NULL;
3972 }
252b5132 3973 }
29b0f896 3974 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
3975 {
3976 as_warn (_("scale factor of %d without an index register"),
24eab124 3977 1 << i.log2_scale_factor);
252b5132
RH
3978#if SCALE1_WHEN_NO_INDEX
3979 i.log2_scale_factor = 0;
3980#endif
3981 }
551c1ca1
AM
3982 scale = input_line_pointer;
3983 input_line_pointer = save;
3984 return scale;
252b5132
RH
3985}
3986
3987static int i386_displacement PARAMS ((char *, char *));
3988
3989static int
3990i386_displacement (disp_start, disp_end)
3991 char *disp_start;
3992 char *disp_end;
3993{
29b0f896 3994 expressionS *exp;
252b5132
RH
3995 segT exp_seg = 0;
3996 char *save_input_line_pointer;
f3c180ae
AM
3997#ifndef LEX_AT
3998 char *gotfree_input_line;
3999#endif
252b5132
RH
4000 int bigdisp = Disp32;
4001
3e73aa7c 4002 if (flag_code == CODE_64BIT)
7ecd2f8b 4003 {
29b0f896
AM
4004 if (i.prefix[ADDR_PREFIX] == 0)
4005 bigdisp = Disp64;
7ecd2f8b
JH
4006 }
4007 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4008 bigdisp = Disp16;
252b5132
RH
4009 i.types[this_operand] |= bigdisp;
4010
4011 exp = &disp_expressions[i.disp_operands];
520dc8e8 4012 i.op[this_operand].disps = exp;
252b5132
RH
4013 i.disp_operands++;
4014 save_input_line_pointer = input_line_pointer;
4015 input_line_pointer = disp_start;
4016 END_STRING_AND_SAVE (disp_end);
4017
4018#ifndef GCC_ASM_O_HACK
4019#define GCC_ASM_O_HACK 0
4020#endif
4021#if GCC_ASM_O_HACK
4022 END_STRING_AND_SAVE (disp_end + 1);
4023 if ((i.types[this_operand] & BaseIndex) != 0
24eab124 4024 && displacement_string_end[-1] == '+')
252b5132
RH
4025 {
4026 /* This hack is to avoid a warning when using the "o"
24eab124
AM
4027 constraint within gcc asm statements.
4028 For instance:
4029
4030 #define _set_tssldt_desc(n,addr,limit,type) \
4031 __asm__ __volatile__ ( \
4032 "movw %w2,%0\n\t" \
4033 "movw %w1,2+%0\n\t" \
4034 "rorl $16,%1\n\t" \
4035 "movb %b1,4+%0\n\t" \
4036 "movb %4,5+%0\n\t" \
4037 "movb $0,6+%0\n\t" \
4038 "movb %h1,7+%0\n\t" \
4039 "rorl $16,%1" \
4040 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
4041
4042 This works great except that the output assembler ends
4043 up looking a bit weird if it turns out that there is
4044 no offset. You end up producing code that looks like:
4045
4046 #APP
4047 movw $235,(%eax)
4048 movw %dx,2+(%eax)
4049 rorl $16,%edx
4050 movb %dl,4+(%eax)
4051 movb $137,5+(%eax)
4052 movb $0,6+(%eax)
4053 movb %dh,7+(%eax)
4054 rorl $16,%edx
4055 #NO_APP
4056
47926f60 4057 So here we provide the missing zero. */
24eab124
AM
4058
4059 *displacement_string_end = '0';
252b5132
RH
4060 }
4061#endif
4062#ifndef LEX_AT
f3c180ae
AM
4063 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
4064 if (gotfree_input_line)
4065 input_line_pointer = gotfree_input_line;
252b5132
RH
4066#endif
4067
24eab124 4068 exp_seg = expression (exp);
252b5132 4069
636c26b0
AM
4070 SKIP_WHITESPACE ();
4071 if (*input_line_pointer)
4072 as_bad (_("junk `%s' after expression"), input_line_pointer);
4073#if GCC_ASM_O_HACK
4074 RESTORE_END_STRING (disp_end + 1);
4075#endif
4076 RESTORE_END_STRING (disp_end);
4077 input_line_pointer = save_input_line_pointer;
4078#ifndef LEX_AT
4079 if (gotfree_input_line)
4080 free (gotfree_input_line);
4081#endif
4082
24eab124
AM
4083 /* We do this to make sure that the section symbol is in
4084 the symbol table. We will ultimately change the relocation
47926f60 4085 to be relative to the beginning of the section. */
1ae12ab7
AM
4086 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
4087 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
24eab124 4088 {
636c26b0
AM
4089 if (exp->X_op != O_symbol)
4090 {
4091 as_bad (_("bad expression used with @%s"),
4092 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4093 ? "GOTPCREL"
4094 : "GOTOFF"));
4095 return 0;
4096 }
4097
e5cb08ac 4098 if (S_IS_LOCAL (exp->X_add_symbol)
24eab124
AM
4099 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
4100 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
4101 exp->X_op = O_subtract;
4102 exp->X_op_symbol = GOT_symbol;
1ae12ab7 4103 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 4104 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
23df1078 4105 else
29b0f896 4106 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 4107 }
252b5132 4108
2daf4fd8
AM
4109 if (exp->X_op == O_absent || exp->X_op == O_big)
4110 {
47926f60 4111 /* Missing or bad expr becomes absolute 0. */
d0b47220 4112 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
2daf4fd8
AM
4113 disp_start);
4114 exp->X_op = O_constant;
4115 exp->X_add_number = 0;
4116 exp->X_add_symbol = (symbolS *) 0;
4117 exp->X_op_symbol = (symbolS *) 0;
4118 }
4119
4c63da97 4120#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
45288df1 4121 if (exp->X_op != O_constant
45288df1 4122 && OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 4123 && exp_seg != absolute_section
45288df1
AM
4124 && exp_seg != text_section
4125 && exp_seg != data_section
4126 && exp_seg != bss_section
31312f95 4127 && exp_seg != undefined_section
f86103b7 4128 && !bfd_is_com_section (exp_seg))
24eab124 4129 {
d0b47220 4130 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
24eab124
AM
4131 return 0;
4132 }
252b5132 4133#endif
3e73aa7c
JH
4134 else if (flag_code == CODE_64BIT)
4135 i.types[this_operand] |= Disp32S | Disp32;
252b5132
RH
4136 return 1;
4137}
4138
e5cb08ac 4139static int i386_index_check PARAMS ((const char *));
252b5132 4140
eecb386c 4141/* Make sure the memory operand we've been dealt is valid.
47926f60
KH
4142 Return 1 on success, 0 on a failure. */
4143
252b5132 4144static int
eecb386c
AM
4145i386_index_check (operand_string)
4146 const char *operand_string;
252b5132 4147{
3e73aa7c 4148 int ok;
24eab124 4149#if INFER_ADDR_PREFIX
eecb386c
AM
4150 int fudged = 0;
4151
24eab124
AM
4152 tryprefix:
4153#endif
3e73aa7c 4154 ok = 1;
20f0a1fc
NC
4155 if (flag_code == CODE_64BIT)
4156 {
4157 unsigned RegXX = (i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32);
4158
4159 if ((i.base_reg
4160 && ((i.base_reg->reg_type & RegXX) == 0)
4161 && (i.base_reg->reg_type != BaseIndex
4162 || i.index_reg))
4163 || (i.index_reg
4164 && ((i.index_reg->reg_type & (RegXX | BaseIndex))
4165 != (RegXX | BaseIndex))))
4166 ok = 0;
3e73aa7c
JH
4167 }
4168 else
4169 {
4170 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4171 {
4172 /* 16bit checks. */
4173 if ((i.base_reg
29b0f896
AM
4174 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
4175 != (Reg16 | BaseIndex)))
3e73aa7c 4176 || (i.index_reg
29b0f896
AM
4177 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
4178 != (Reg16 | BaseIndex))
4179 || !(i.base_reg
4180 && i.base_reg->reg_num < 6
4181 && i.index_reg->reg_num >= 6
4182 && i.log2_scale_factor == 0))))
3e73aa7c
JH
4183 ok = 0;
4184 }
4185 else
e5cb08ac 4186 {
3e73aa7c
JH
4187 /* 32bit checks. */
4188 if ((i.base_reg
4189 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
4190 || (i.index_reg
29b0f896
AM
4191 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4192 != (Reg32 | BaseIndex))))
e5cb08ac 4193 ok = 0;
3e73aa7c
JH
4194 }
4195 }
4196 if (!ok)
24eab124
AM
4197 {
4198#if INFER_ADDR_PREFIX
20f0a1fc 4199 if (i.prefix[ADDR_PREFIX] == 0)
24eab124
AM
4200 {
4201 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
4202 i.prefixes += 1;
b23bac36
AM
4203 /* Change the size of any displacement too. At most one of
4204 Disp16 or Disp32 is set.
4205 FIXME. There doesn't seem to be any real need for separate
4206 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
47926f60 4207 Removing them would probably clean up the code quite a lot. */
20f0a1fc 4208 if (flag_code != CODE_64BIT && (i.types[this_operand] & (Disp16 | Disp32)))
29b0f896 4209 i.types[this_operand] ^= (Disp16 | Disp32);
eecb386c 4210 fudged = 1;
24eab124
AM
4211 goto tryprefix;
4212 }
eecb386c
AM
4213 if (fudged)
4214 as_bad (_("`%s' is not a valid base/index expression"),
4215 operand_string);
4216 else
c388dee8 4217#endif
eecb386c
AM
4218 as_bad (_("`%s' is not a valid %s bit base/index expression"),
4219 operand_string,
3e73aa7c 4220 flag_code_names[flag_code]);
24eab124 4221 }
20f0a1fc 4222 return ok;
24eab124 4223}
252b5132 4224
252b5132 4225/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
47926f60 4226 on error. */
252b5132 4227
252b5132
RH
4228static int
4229i386_operand (operand_string)
4230 char *operand_string;
4231{
af6bdddf
AM
4232 const reg_entry *r;
4233 char *end_op;
24eab124 4234 char *op_string = operand_string;
252b5132 4235
24eab124 4236 if (is_space_char (*op_string))
252b5132
RH
4237 ++op_string;
4238
24eab124 4239 /* We check for an absolute prefix (differentiating,
47926f60 4240 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
4241 if (*op_string == ABSOLUTE_PREFIX)
4242 {
4243 ++op_string;
4244 if (is_space_char (*op_string))
4245 ++op_string;
4246 i.types[this_operand] |= JumpAbsolute;
4247 }
252b5132 4248
47926f60 4249 /* Check if operand is a register. */
af6bdddf
AM
4250 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
4251 && (r = parse_register (op_string, &end_op)) != NULL)
24eab124 4252 {
24eab124
AM
4253 /* Check for a segment override by searching for ':' after a
4254 segment register. */
4255 op_string = end_op;
4256 if (is_space_char (*op_string))
4257 ++op_string;
4258 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
4259 {
4260 switch (r->reg_num)
4261 {
4262 case 0:
4263 i.seg[i.mem_operands] = &es;
4264 break;
4265 case 1:
4266 i.seg[i.mem_operands] = &cs;
4267 break;
4268 case 2:
4269 i.seg[i.mem_operands] = &ss;
4270 break;
4271 case 3:
4272 i.seg[i.mem_operands] = &ds;
4273 break;
4274 case 4:
4275 i.seg[i.mem_operands] = &fs;
4276 break;
4277 case 5:
4278 i.seg[i.mem_operands] = &gs;
4279 break;
4280 }
252b5132 4281
24eab124 4282 /* Skip the ':' and whitespace. */
252b5132
RH
4283 ++op_string;
4284 if (is_space_char (*op_string))
24eab124 4285 ++op_string;
252b5132 4286
24eab124
AM
4287 if (!is_digit_char (*op_string)
4288 && !is_identifier_char (*op_string)
4289 && *op_string != '('
4290 && *op_string != ABSOLUTE_PREFIX)
4291 {
4292 as_bad (_("bad memory operand `%s'"), op_string);
4293 return 0;
4294 }
47926f60 4295 /* Handle case of %es:*foo. */
24eab124
AM
4296 if (*op_string == ABSOLUTE_PREFIX)
4297 {
4298 ++op_string;
4299 if (is_space_char (*op_string))
4300 ++op_string;
4301 i.types[this_operand] |= JumpAbsolute;
4302 }
4303 goto do_memory_reference;
4304 }
4305 if (*op_string)
4306 {
d0b47220 4307 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
4308 return 0;
4309 }
4310 i.types[this_operand] |= r->reg_type & ~BaseIndex;
520dc8e8 4311 i.op[this_operand].regs = r;
24eab124
AM
4312 i.reg_operands++;
4313 }
af6bdddf
AM
4314 else if (*op_string == REGISTER_PREFIX)
4315 {
4316 as_bad (_("bad register name `%s'"), op_string);
4317 return 0;
4318 }
24eab124 4319 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 4320 {
24eab124
AM
4321 ++op_string;
4322 if (i.types[this_operand] & JumpAbsolute)
4323 {
d0b47220 4324 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
4325 return 0;
4326 }
4327 if (!i386_immediate (op_string))
4328 return 0;
4329 }
4330 else if (is_digit_char (*op_string)
4331 || is_identifier_char (*op_string)
e5cb08ac 4332 || *op_string == '(')
24eab124 4333 {
47926f60 4334 /* This is a memory reference of some sort. */
af6bdddf 4335 char *base_string;
252b5132 4336
47926f60 4337 /* Start and end of displacement string expression (if found). */
eecb386c
AM
4338 char *displacement_string_start;
4339 char *displacement_string_end;
252b5132 4340
24eab124 4341 do_memory_reference:
24eab124
AM
4342 if ((i.mem_operands == 1
4343 && (current_templates->start->opcode_modifier & IsString) == 0)
4344 || i.mem_operands == 2)
4345 {
4346 as_bad (_("too many memory references for `%s'"),
4347 current_templates->start->name);
4348 return 0;
4349 }
252b5132 4350
24eab124
AM
4351 /* Check for base index form. We detect the base index form by
4352 looking for an ')' at the end of the operand, searching
4353 for the '(' matching it, and finding a REGISTER_PREFIX or ','
4354 after the '('. */
af6bdddf 4355 base_string = op_string + strlen (op_string);
c3332e24 4356
af6bdddf
AM
4357 --base_string;
4358 if (is_space_char (*base_string))
4359 --base_string;
252b5132 4360
47926f60 4361 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
4362 displacement_string_start = op_string;
4363 displacement_string_end = base_string + 1;
252b5132 4364
24eab124
AM
4365 if (*base_string == ')')
4366 {
af6bdddf 4367 char *temp_string;
24eab124
AM
4368 unsigned int parens_balanced = 1;
4369 /* We've already checked that the number of left & right ()'s are
47926f60 4370 equal, so this loop will not be infinite. */
24eab124
AM
4371 do
4372 {
4373 base_string--;
4374 if (*base_string == ')')
4375 parens_balanced++;
4376 if (*base_string == '(')
4377 parens_balanced--;
4378 }
4379 while (parens_balanced);
c3332e24 4380
af6bdddf 4381 temp_string = base_string;
c3332e24 4382
24eab124 4383 /* Skip past '(' and whitespace. */
252b5132
RH
4384 ++base_string;
4385 if (is_space_char (*base_string))
24eab124 4386 ++base_string;
252b5132 4387
af6bdddf
AM
4388 if (*base_string == ','
4389 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4390 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
252b5132 4391 {
af6bdddf 4392 displacement_string_end = temp_string;
252b5132 4393
af6bdddf 4394 i.types[this_operand] |= BaseIndex;
252b5132 4395
af6bdddf 4396 if (i.base_reg)
24eab124 4397 {
24eab124
AM
4398 base_string = end_op;
4399 if (is_space_char (*base_string))
4400 ++base_string;
af6bdddf
AM
4401 }
4402
4403 /* There may be an index reg or scale factor here. */
4404 if (*base_string == ',')
4405 {
4406 ++base_string;
4407 if (is_space_char (*base_string))
4408 ++base_string;
4409
4410 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4411 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
24eab124 4412 {
af6bdddf 4413 base_string = end_op;
24eab124
AM
4414 if (is_space_char (*base_string))
4415 ++base_string;
af6bdddf
AM
4416 if (*base_string == ',')
4417 {
4418 ++base_string;
4419 if (is_space_char (*base_string))
4420 ++base_string;
4421 }
e5cb08ac 4422 else if (*base_string != ')')
af6bdddf
AM
4423 {
4424 as_bad (_("expecting `,' or `)' after index register in `%s'"),
4425 operand_string);
4426 return 0;
4427 }
24eab124 4428 }
af6bdddf 4429 else if (*base_string == REGISTER_PREFIX)
24eab124 4430 {
af6bdddf 4431 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
4432 return 0;
4433 }
252b5132 4434
47926f60 4435 /* Check for scale factor. */
551c1ca1 4436 if (*base_string != ')')
af6bdddf 4437 {
551c1ca1
AM
4438 char *end_scale = i386_scale (base_string);
4439
4440 if (!end_scale)
af6bdddf 4441 return 0;
24eab124 4442
551c1ca1 4443 base_string = end_scale;
af6bdddf
AM
4444 if (is_space_char (*base_string))
4445 ++base_string;
4446 if (*base_string != ')')
4447 {
4448 as_bad (_("expecting `)' after scale factor in `%s'"),
4449 operand_string);
4450 return 0;
4451 }
4452 }
4453 else if (!i.index_reg)
24eab124 4454 {
af6bdddf
AM
4455 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
4456 *base_string);
24eab124
AM
4457 return 0;
4458 }
4459 }
af6bdddf 4460 else if (*base_string != ')')
24eab124 4461 {
af6bdddf
AM
4462 as_bad (_("expecting `,' or `)' after base register in `%s'"),
4463 operand_string);
24eab124
AM
4464 return 0;
4465 }
c3332e24 4466 }
af6bdddf 4467 else if (*base_string == REGISTER_PREFIX)
c3332e24 4468 {
af6bdddf 4469 as_bad (_("bad register name `%s'"), base_string);
24eab124 4470 return 0;
c3332e24 4471 }
24eab124
AM
4472 }
4473
4474 /* If there's an expression beginning the operand, parse it,
4475 assuming displacement_string_start and
4476 displacement_string_end are meaningful. */
4477 if (displacement_string_start != displacement_string_end)
4478 {
4479 if (!i386_displacement (displacement_string_start,
4480 displacement_string_end))
4481 return 0;
4482 }
4483
4484 /* Special case for (%dx) while doing input/output op. */
4485 if (i.base_reg
4486 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
4487 && i.index_reg == 0
4488 && i.log2_scale_factor == 0
4489 && i.seg[i.mem_operands] == 0
4490 && (i.types[this_operand] & Disp) == 0)
4491 {
4492 i.types[this_operand] = InOutPortReg;
4493 return 1;
4494 }
4495
eecb386c
AM
4496 if (i386_index_check (operand_string) == 0)
4497 return 0;
24eab124
AM
4498 i.mem_operands++;
4499 }
4500 else
ce8a8b2f
AM
4501 {
4502 /* It's not a memory operand; argh! */
24eab124
AM
4503 as_bad (_("invalid char %s beginning operand %d `%s'"),
4504 output_invalid (*op_string),
4505 this_operand + 1,
4506 op_string);
4507 return 0;
4508 }
47926f60 4509 return 1; /* Normal return. */
252b5132
RH
4510}
4511\f
ee7fcc42
AM
4512/* md_estimate_size_before_relax()
4513
4514 Called just before relax() for rs_machine_dependent frags. The x86
4515 assembler uses these frags to handle variable size jump
4516 instructions.
4517
4518 Any symbol that is now undefined will not become defined.
4519 Return the correct fr_subtype in the frag.
4520 Return the initial "guess for variable size of frag" to caller.
4521 The guess is actually the growth beyond the fixed part. Whatever
4522 we do to grow the fixed or variable part contributes to our
4523 returned value. */
4524
252b5132
RH
4525int
4526md_estimate_size_before_relax (fragP, segment)
29b0f896
AM
4527 fragS *fragP;
4528 segT segment;
252b5132 4529{
252b5132 4530 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
4531 check for un-relaxable symbols. On an ELF system, we can't relax
4532 an externally visible symbol, because it may be overridden by a
4533 shared library. */
4534 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 4535#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
31312f95
AM
4536 || (OUTPUT_FLAVOR == bfd_target_elf_flavour
4537 && (S_IS_EXTERNAL (fragP->fr_symbol)
4538 || S_IS_WEAK (fragP->fr_symbol)))
b98ef147
AM
4539#endif
4540 )
252b5132 4541 {
b98ef147
AM
4542 /* Symbol is undefined in this segment, or we need to keep a
4543 reloc so that weak symbols can be overridden. */
4544 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 4545 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
4546 unsigned char *opcode;
4547 int old_fr_fix;
f6af82bd 4548
ee7fcc42
AM
4549 if (fragP->fr_var != NO_RELOC)
4550 reloc_type = fragP->fr_var;
b98ef147 4551 else if (size == 2)
f6af82bd
AM
4552 reloc_type = BFD_RELOC_16_PCREL;
4553 else
4554 reloc_type = BFD_RELOC_32_PCREL;
252b5132 4555
ee7fcc42
AM
4556 old_fr_fix = fragP->fr_fix;
4557 opcode = (unsigned char *) fragP->fr_opcode;
4558
fddf5b5b 4559 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 4560 {
fddf5b5b
AM
4561 case UNCOND_JUMP:
4562 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 4563 opcode[0] = 0xe9;
252b5132 4564 fragP->fr_fix += size;
062cd5e7
AS
4565 fix_new (fragP, old_fr_fix, size,
4566 fragP->fr_symbol,
4567 fragP->fr_offset, 1,
4568 reloc_type);
252b5132
RH
4569 break;
4570
fddf5b5b 4571 case COND_JUMP86:
412167cb
AM
4572 if (size == 2
4573 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
4574 {
4575 /* Negate the condition, and branch past an
4576 unconditional jump. */
4577 opcode[0] ^= 1;
4578 opcode[1] = 3;
4579 /* Insert an unconditional jump. */
4580 opcode[2] = 0xe9;
4581 /* We added two extra opcode bytes, and have a two byte
4582 offset. */
4583 fragP->fr_fix += 2 + 2;
062cd5e7
AS
4584 fix_new (fragP, old_fr_fix + 2, 2,
4585 fragP->fr_symbol,
4586 fragP->fr_offset, 1,
4587 reloc_type);
fddf5b5b
AM
4588 break;
4589 }
4590 /* Fall through. */
4591
4592 case COND_JUMP:
412167cb
AM
4593 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
4594 {
3e02c1cc
AM
4595 fixS *fixP;
4596
412167cb 4597 fragP->fr_fix += 1;
3e02c1cc
AM
4598 fixP = fix_new (fragP, old_fr_fix, 1,
4599 fragP->fr_symbol,
4600 fragP->fr_offset, 1,
4601 BFD_RELOC_8_PCREL);
4602 fixP->fx_signed = 1;
412167cb
AM
4603 break;
4604 }
93c2a809 4605
24eab124 4606 /* This changes the byte-displacement jump 0x7N
fddf5b5b 4607 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 4608 opcode[1] = opcode[0] + 0x10;
f6af82bd 4609 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
4610 /* We've added an opcode byte. */
4611 fragP->fr_fix += 1 + size;
062cd5e7
AS
4612 fix_new (fragP, old_fr_fix + 1, size,
4613 fragP->fr_symbol,
4614 fragP->fr_offset, 1,
4615 reloc_type);
252b5132 4616 break;
fddf5b5b
AM
4617
4618 default:
4619 BAD_CASE (fragP->fr_subtype);
4620 break;
252b5132
RH
4621 }
4622 frag_wane (fragP);
ee7fcc42 4623 return fragP->fr_fix - old_fr_fix;
252b5132 4624 }
93c2a809 4625
93c2a809
AM
4626 /* Guess size depending on current relax state. Initially the relax
4627 state will correspond to a short jump and we return 1, because
4628 the variable part of the frag (the branch offset) is one byte
4629 long. However, we can relax a section more than once and in that
4630 case we must either set fr_subtype back to the unrelaxed state,
4631 or return the value for the appropriate branch. */
4632 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
4633}
4634
47926f60
KH
4635/* Called after relax() is finished.
4636
4637 In: Address of frag.
4638 fr_type == rs_machine_dependent.
4639 fr_subtype is what the address relaxed to.
4640
4641 Out: Any fixSs and constants are set up.
4642 Caller will turn frag into a ".space 0". */
4643
252b5132
RH
4644void
4645md_convert_frag (abfd, sec, fragP)
ab9da554
ILT
4646 bfd *abfd ATTRIBUTE_UNUSED;
4647 segT sec ATTRIBUTE_UNUSED;
29b0f896 4648 fragS *fragP;
252b5132 4649{
29b0f896 4650 unsigned char *opcode;
252b5132 4651 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
4652 offsetT target_address;
4653 offsetT opcode_address;
252b5132 4654 unsigned int extension = 0;
847f7ad4 4655 offsetT displacement_from_opcode_start;
252b5132
RH
4656
4657 opcode = (unsigned char *) fragP->fr_opcode;
4658
47926f60 4659 /* Address we want to reach in file space. */
252b5132 4660 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 4661
47926f60 4662 /* Address opcode resides at in file space. */
252b5132
RH
4663 opcode_address = fragP->fr_address + fragP->fr_fix;
4664
47926f60 4665 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
4666 displacement_from_opcode_start = target_address - opcode_address;
4667
fddf5b5b 4668 if ((fragP->fr_subtype & BIG) == 0)
252b5132 4669 {
47926f60
KH
4670 /* Don't have to change opcode. */
4671 extension = 1; /* 1 opcode + 1 displacement */
252b5132 4672 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
4673 }
4674 else
4675 {
4676 if (no_cond_jump_promotion
4677 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4678 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
252b5132 4679
fddf5b5b
AM
4680 switch (fragP->fr_subtype)
4681 {
4682 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4683 extension = 4; /* 1 opcode + 4 displacement */
4684 opcode[0] = 0xe9;
4685 where_to_put_displacement = &opcode[1];
4686 break;
252b5132 4687
fddf5b5b
AM
4688 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4689 extension = 2; /* 1 opcode + 2 displacement */
4690 opcode[0] = 0xe9;
4691 where_to_put_displacement = &opcode[1];
4692 break;
252b5132 4693
fddf5b5b
AM
4694 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4695 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4696 extension = 5; /* 2 opcode + 4 displacement */
4697 opcode[1] = opcode[0] + 0x10;
4698 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4699 where_to_put_displacement = &opcode[2];
4700 break;
252b5132 4701
fddf5b5b
AM
4702 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4703 extension = 3; /* 2 opcode + 2 displacement */
4704 opcode[1] = opcode[0] + 0x10;
4705 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4706 where_to_put_displacement = &opcode[2];
4707 break;
252b5132 4708
fddf5b5b
AM
4709 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4710 extension = 4;
4711 opcode[0] ^= 1;
4712 opcode[1] = 3;
4713 opcode[2] = 0xe9;
4714 where_to_put_displacement = &opcode[3];
4715 break;
4716
4717 default:
4718 BAD_CASE (fragP->fr_subtype);
4719 break;
4720 }
252b5132 4721 }
fddf5b5b 4722
47926f60 4723 /* Now put displacement after opcode. */
252b5132
RH
4724 md_number_to_chars ((char *) where_to_put_displacement,
4725 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 4726 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
4727 fragP->fr_fix += extension;
4728}
4729\f
47926f60
KH
4730/* Size of byte displacement jmp. */
4731int md_short_jump_size = 2;
4732
4733/* Size of dword displacement jmp. */
4734int md_long_jump_size = 5;
252b5132 4735
47926f60
KH
4736/* Size of relocation record. */
4737const int md_reloc_size = 8;
252b5132
RH
4738
4739void
4740md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4741 char *ptr;
4742 addressT from_addr, to_addr;
ab9da554
ILT
4743 fragS *frag ATTRIBUTE_UNUSED;
4744 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 4745{
847f7ad4 4746 offsetT offset;
252b5132
RH
4747
4748 offset = to_addr - (from_addr + 2);
47926f60
KH
4749 /* Opcode for byte-disp jump. */
4750 md_number_to_chars (ptr, (valueT) 0xeb, 1);
252b5132
RH
4751 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4752}
4753
4754void
4755md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4756 char *ptr;
4757 addressT from_addr, to_addr;
a38cf1db
AM
4758 fragS *frag ATTRIBUTE_UNUSED;
4759 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 4760{
847f7ad4 4761 offsetT offset;
252b5132 4762
a38cf1db
AM
4763 offset = to_addr - (from_addr + 5);
4764 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4765 md_number_to_chars (ptr + 1, (valueT) offset, 4);
252b5132
RH
4766}
4767\f
4768/* Apply a fixup (fixS) to segment data, once it has been determined
4769 by our caller that we have all the info we need to fix it up.
4770
4771 On the 386, immediates, displacements, and data pointers are all in
4772 the same (little-endian) format, so we don't need to care about which
4773 we are handling. */
4774
94f592af
NC
4775void
4776md_apply_fix3 (fixP, valP, seg)
47926f60
KH
4777 /* The fix we're to put in. */
4778 fixS *fixP;
47926f60 4779 /* Pointer to the value of the bits. */
c6682705 4780 valueT *valP;
47926f60
KH
4781 /* Segment fix is from. */
4782 segT seg ATTRIBUTE_UNUSED;
252b5132 4783{
94f592af 4784 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 4785 valueT value = *valP;
252b5132 4786
f86103b7 4787#if !defined (TE_Mach)
93382f6d
AM
4788 if (fixP->fx_pcrel)
4789 {
4790 switch (fixP->fx_r_type)
4791 {
5865bb77
ILT
4792 default:
4793 break;
4794
93382f6d 4795 case BFD_RELOC_32:
ae8887b5 4796 case BFD_RELOC_X86_64_32S:
93382f6d
AM
4797 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4798 break;
4799 case BFD_RELOC_16:
4800 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4801 break;
4802 case BFD_RELOC_8:
4803 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4804 break;
4805 }
4806 }
252b5132 4807
a161fe53 4808 if (fixP->fx_addsy != NULL
31312f95
AM
4809 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
4810 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4811 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
4812 && !use_rela_relocations)
252b5132 4813 {
31312f95
AM
4814 /* This is a hack. There should be a better way to handle this.
4815 This covers for the fact that bfd_install_relocation will
4816 subtract the current location (for partial_inplace, PC relative
4817 relocations); see more below. */
252b5132
RH
4818#ifndef OBJ_AOUT
4819 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4820#ifdef TE_PE
4821 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4822#endif
4823 )
4824 value += fixP->fx_where + fixP->fx_frag->fr_address;
4825#endif
4826#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2f66722d 4827 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
252b5132 4828 {
6539b54b 4829 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 4830
6539b54b 4831 if ((sym_seg == seg
2f66722d 4832 || (symbol_section_p (fixP->fx_addsy)
6539b54b 4833 && sym_seg != absolute_section))
ae6063d4 4834 && !generic_force_reloc (fixP))
2f66722d
AM
4835 {
4836 /* Yes, we add the values in twice. This is because
6539b54b
AM
4837 bfd_install_relocation subtracts them out again. I think
4838 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
4839 it. FIXME. */
4840 value += fixP->fx_where + fixP->fx_frag->fr_address;
4841 }
252b5132
RH
4842 }
4843#endif
4844#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
4845 /* For some reason, the PE format does not store a
4846 section address offset for a PC relative symbol. */
4847 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
4848#if defined(BFD_ASSEMBLER) || defined(S_IS_WEAK)
4849 || S_IS_WEAK (fixP->fx_addsy)
4850#endif
4851 )
252b5132
RH
4852 value += md_pcrel_from (fixP);
4853#endif
4854 }
4855
4856 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 4857 and we must not disappoint it. */
252b5132
RH
4858#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4859 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4860 && fixP->fx_addsy)
47926f60
KH
4861 switch (fixP->fx_r_type)
4862 {
4863 case BFD_RELOC_386_PLT32:
3e73aa7c 4864 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
4865 /* Make the jump instruction point to the address of the operand. At
4866 runtime we merely add the offset to the actual PLT entry. */
4867 value = -4;
4868 break;
31312f95 4869
13ae64f3
JJ
4870 case BFD_RELOC_386_TLS_GD:
4871 case BFD_RELOC_386_TLS_LDM:
13ae64f3 4872 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
4873 case BFD_RELOC_386_TLS_IE:
4874 case BFD_RELOC_386_TLS_GOTIE:
bffbf940
JJ
4875 case BFD_RELOC_X86_64_TLSGD:
4876 case BFD_RELOC_X86_64_TLSLD:
4877 case BFD_RELOC_X86_64_GOTTPOFF:
00f7efb6
JJ
4878 value = 0; /* Fully resolved at runtime. No addend. */
4879 /* Fallthrough */
4880 case BFD_RELOC_386_TLS_LE:
4881 case BFD_RELOC_386_TLS_LDO_32:
4882 case BFD_RELOC_386_TLS_LE_32:
4883 case BFD_RELOC_X86_64_DTPOFF32:
4884 case BFD_RELOC_X86_64_TPOFF32:
4885 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4886 break;
4887
4888 case BFD_RELOC_386_GOT32:
4889 case BFD_RELOC_X86_64_GOT32:
47926f60
KH
4890 value = 0; /* Fully resolved at runtime. No addend. */
4891 break;
47926f60
KH
4892
4893 case BFD_RELOC_VTABLE_INHERIT:
4894 case BFD_RELOC_VTABLE_ENTRY:
4895 fixP->fx_done = 0;
94f592af 4896 return;
47926f60
KH
4897
4898 default:
4899 break;
4900 }
4901#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 4902 *valP = value;
f86103b7 4903#endif /* !defined (TE_Mach) */
3e73aa7c 4904
3e73aa7c 4905 /* Are we finished with this relocation now? */
c6682705 4906 if (fixP->fx_addsy == NULL)
3e73aa7c
JH
4907 fixP->fx_done = 1;
4908 else if (use_rela_relocations)
4909 {
4910 fixP->fx_no_overflow = 1;
062cd5e7
AS
4911 /* Remember value for tc_gen_reloc. */
4912 fixP->fx_addnumber = value;
3e73aa7c
JH
4913 value = 0;
4914 }
f86103b7 4915
94f592af 4916 md_number_to_chars (p, value, fixP->fx_size);
252b5132 4917}
252b5132 4918\f
252b5132
RH
4919#define MAX_LITTLENUMS 6
4920
47926f60
KH
4921/* Turn the string pointed to by litP into a floating point constant
4922 of type TYPE, and emit the appropriate bytes. The number of
4923 LITTLENUMS emitted is stored in *SIZEP. An error message is
4924 returned, or NULL on OK. */
4925
252b5132
RH
4926char *
4927md_atof (type, litP, sizeP)
2ab9b79e 4928 int type;
252b5132
RH
4929 char *litP;
4930 int *sizeP;
4931{
4932 int prec;
4933 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4934 LITTLENUM_TYPE *wordP;
4935 char *t;
4936
4937 switch (type)
4938 {
4939 case 'f':
4940 case 'F':
4941 prec = 2;
4942 break;
4943
4944 case 'd':
4945 case 'D':
4946 prec = 4;
4947 break;
4948
4949 case 'x':
4950 case 'X':
4951 prec = 5;
4952 break;
4953
4954 default:
4955 *sizeP = 0;
4956 return _("Bad call to md_atof ()");
4957 }
4958 t = atof_ieee (input_line_pointer, type, words);
4959 if (t)
4960 input_line_pointer = t;
4961
4962 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4963 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4964 the bigendian 386. */
4965 for (wordP = words + prec - 1; prec--;)
4966 {
4967 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4968 litP += sizeof (LITTLENUM_TYPE);
4969 }
4970 return 0;
4971}
4972\f
4973char output_invalid_buf[8];
4974
252b5132
RH
4975static char *
4976output_invalid (c)
4977 int c;
4978{
3882b010 4979 if (ISPRINT (c))
252b5132
RH
4980 sprintf (output_invalid_buf, "'%c'", c);
4981 else
4982 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4983 return output_invalid_buf;
4984}
4985
af6bdddf 4986/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
4987
4988static const reg_entry *
4989parse_register (reg_string, end_op)
4990 char *reg_string;
4991 char **end_op;
4992{
af6bdddf
AM
4993 char *s = reg_string;
4994 char *p;
252b5132
RH
4995 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4996 const reg_entry *r;
4997
4998 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4999 if (*s == REGISTER_PREFIX)
5000 ++s;
5001
5002 if (is_space_char (*s))
5003 ++s;
5004
5005 p = reg_name_given;
af6bdddf 5006 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
5007 {
5008 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
5009 return (const reg_entry *) NULL;
5010 s++;
252b5132
RH
5011 }
5012
6588847e
DN
5013 /* For naked regs, make sure that we are not dealing with an identifier.
5014 This prevents confusing an identifier like `eax_var' with register
5015 `eax'. */
5016 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
5017 return (const reg_entry *) NULL;
5018
af6bdddf 5019 *end_op = s;
252b5132
RH
5020
5021 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
5022
5f47d35b 5023 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 5024 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 5025 {
5f47d35b
AM
5026 if (is_space_char (*s))
5027 ++s;
5028 if (*s == '(')
5029 {
af6bdddf 5030 ++s;
5f47d35b
AM
5031 if (is_space_char (*s))
5032 ++s;
5033 if (*s >= '0' && *s <= '7')
5034 {
5035 r = &i386_float_regtab[*s - '0'];
af6bdddf 5036 ++s;
5f47d35b
AM
5037 if (is_space_char (*s))
5038 ++s;
5039 if (*s == ')')
5040 {
5041 *end_op = s + 1;
5042 return r;
5043 }
5f47d35b 5044 }
47926f60 5045 /* We have "%st(" then garbage. */
5f47d35b
AM
5046 return (const reg_entry *) NULL;
5047 }
5048 }
5049
1ae00879 5050 if (r != NULL
20f0a1fc 5051 && ((r->reg_flags & (RegRex64 | RegRex)) | (r->reg_type & Reg64)) != 0
c4a530c5 5052 && (r->reg_type != Control || !(cpu_arch_flags & CpuSledgehammer))
1ae00879 5053 && flag_code != CODE_64BIT)
20f0a1fc 5054 return (const reg_entry *) NULL;
1ae00879 5055
252b5132
RH
5056 return r;
5057}
5058\f
4cc782b5 5059#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12b55ccc 5060const char *md_shortopts = "kVQ:sqn";
252b5132 5061#else
12b55ccc 5062const char *md_shortopts = "qn";
252b5132 5063#endif
6e0b89ee 5064
252b5132 5065struct option md_longopts[] = {
3e73aa7c
JH
5066#define OPTION_32 (OPTION_MD_BASE + 0)
5067 {"32", no_argument, NULL, OPTION_32},
6e0b89ee 5068#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3e73aa7c
JH
5069#define OPTION_64 (OPTION_MD_BASE + 1)
5070 {"64", no_argument, NULL, OPTION_64},
6e0b89ee 5071#endif
252b5132
RH
5072 {NULL, no_argument, NULL, 0}
5073};
5074size_t md_longopts_size = sizeof (md_longopts);
5075
5076int
5077md_parse_option (c, arg)
5078 int c;
ab9da554 5079 char *arg ATTRIBUTE_UNUSED;
252b5132
RH
5080{
5081 switch (c)
5082 {
12b55ccc
L
5083 case 'n':
5084 optimize_align_code = 0;
5085 break;
5086
a38cf1db
AM
5087 case 'q':
5088 quiet_warnings = 1;
252b5132
RH
5089 break;
5090
5091#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
5092 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
5093 should be emitted or not. FIXME: Not implemented. */
5094 case 'Q':
252b5132
RH
5095 break;
5096
5097 /* -V: SVR4 argument to print version ID. */
5098 case 'V':
5099 print_version_id ();
5100 break;
5101
a38cf1db
AM
5102 /* -k: Ignore for FreeBSD compatibility. */
5103 case 'k':
252b5132 5104 break;
4cc782b5
ILT
5105
5106 case 's':
5107 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 5108 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 5109 break;
6e0b89ee 5110
3e73aa7c
JH
5111 case OPTION_64:
5112 {
5113 const char **list, **l;
5114
3e73aa7c
JH
5115 list = bfd_target_list ();
5116 for (l = list; *l != NULL; l++)
6e0b89ee
AM
5117 if (strcmp (*l, "elf64-x86-64") == 0)
5118 {
5119 default_arch = "x86_64";
5120 break;
5121 }
3e73aa7c 5122 if (*l == NULL)
6e0b89ee 5123 as_fatal (_("No compiled in support for x86_64"));
3e73aa7c
JH
5124 free (list);
5125 }
5126 break;
5127#endif
252b5132 5128
6e0b89ee
AM
5129 case OPTION_32:
5130 default_arch = "i386";
5131 break;
5132
252b5132
RH
5133 default:
5134 return 0;
5135 }
5136 return 1;
5137}
5138
5139void
5140md_show_usage (stream)
5141 FILE *stream;
5142{
4cc782b5
ILT
5143#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5144 fprintf (stream, _("\
a38cf1db
AM
5145 -Q ignored\n\
5146 -V print assembler version number\n\
5147 -k ignored\n\
12b55ccc 5148 -n Do not optimize code alignment\n\
a38cf1db
AM
5149 -q quieten some warnings\n\
5150 -s ignored\n"));
5151#else
5152 fprintf (stream, _("\
12b55ccc 5153 -n Do not optimize code alignment\n\
a38cf1db 5154 -q quieten some warnings\n"));
4cc782b5 5155#endif
252b5132
RH
5156}
5157
3e73aa7c
JH
5158#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
5159 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
252b5132
RH
5160
5161/* Pick the target format to use. */
5162
47926f60 5163const char *
252b5132
RH
5164i386_target_format ()
5165{
3e73aa7c
JH
5166 if (!strcmp (default_arch, "x86_64"))
5167 set_code_flag (CODE_64BIT);
5168 else if (!strcmp (default_arch, "i386"))
5169 set_code_flag (CODE_32BIT);
5170 else
5171 as_fatal (_("Unknown architecture"));
252b5132
RH
5172 switch (OUTPUT_FLAVOR)
5173 {
4c63da97
AM
5174#ifdef OBJ_MAYBE_AOUT
5175 case bfd_target_aout_flavour:
47926f60 5176 return AOUT_TARGET_FORMAT;
4c63da97
AM
5177#endif
5178#ifdef OBJ_MAYBE_COFF
252b5132
RH
5179 case bfd_target_coff_flavour:
5180 return "coff-i386";
4c63da97 5181#endif
3e73aa7c 5182#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 5183 case bfd_target_elf_flavour:
3e73aa7c 5184 {
e5cb08ac
KH
5185 if (flag_code == CODE_64BIT)
5186 use_rela_relocations = 1;
4ada7262 5187 return flag_code == CODE_64BIT ? "elf64-x86-64" : ELF_TARGET_FORMAT;
3e73aa7c 5188 }
4c63da97 5189#endif
252b5132
RH
5190 default:
5191 abort ();
5192 return NULL;
5193 }
5194}
5195
47926f60 5196#endif /* OBJ_MAYBE_ more than one */
a847613f
AM
5197
5198#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5199void i386_elf_emit_arch_note ()
5200{
5201 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
5202 && cpu_arch_name != NULL)
5203 {
5204 char *p;
5205 asection *seg = now_seg;
5206 subsegT subseg = now_subseg;
5207 Elf_Internal_Note i_note;
5208 Elf_External_Note e_note;
5209 asection *note_secp;
5210 int len;
5211
5212 /* Create the .note section. */
5213 note_secp = subseg_new (".note", 0);
5214 bfd_set_section_flags (stdoutput,
5215 note_secp,
5216 SEC_HAS_CONTENTS | SEC_READONLY);
5217
5218 /* Process the arch string. */
5219 len = strlen (cpu_arch_name);
5220
5221 i_note.namesz = len + 1;
5222 i_note.descsz = 0;
5223 i_note.type = NT_ARCH;
5224 p = frag_more (sizeof (e_note.namesz));
5225 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
5226 p = frag_more (sizeof (e_note.descsz));
5227 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
5228 p = frag_more (sizeof (e_note.type));
5229 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
5230 p = frag_more (len + 1);
5231 strcpy (p, cpu_arch_name);
5232
5233 frag_align (2, 0, 0);
5234
5235 subseg_set (seg, subseg);
5236 }
5237}
5238#endif
252b5132 5239\f
252b5132
RH
5240symbolS *
5241md_undefined_symbol (name)
5242 char *name;
5243{
18dc2407
ILT
5244 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
5245 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
5246 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
5247 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
5248 {
5249 if (!GOT_symbol)
5250 {
5251 if (symbol_find (name))
5252 as_bad (_("GOT already in symbol table"));
5253 GOT_symbol = symbol_new (name, undefined_section,
5254 (valueT) 0, &zero_address_frag);
5255 };
5256 return GOT_symbol;
5257 }
252b5132
RH
5258 return 0;
5259}
5260
5261/* Round up a section size to the appropriate boundary. */
47926f60 5262
252b5132
RH
5263valueT
5264md_section_align (segment, size)
ab9da554 5265 segT segment ATTRIBUTE_UNUSED;
252b5132
RH
5266 valueT size;
5267{
4c63da97
AM
5268#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
5269 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
5270 {
5271 /* For a.out, force the section size to be aligned. If we don't do
5272 this, BFD will align it for us, but it will not write out the
5273 final bytes of the section. This may be a bug in BFD, but it is
5274 easier to fix it here since that is how the other a.out targets
5275 work. */
5276 int align;
5277
5278 align = bfd_get_section_alignment (stdoutput, segment);
5279 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
5280 }
252b5132
RH
5281#endif
5282
5283 return size;
5284}
5285
5286/* On the i386, PC-relative offsets are relative to the start of the
5287 next instruction. That is, the address of the offset, plus its
5288 size, since the offset is always the last part of the insn. */
5289
5290long
5291md_pcrel_from (fixP)
5292 fixS *fixP;
5293{
5294 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
5295}
5296
5297#ifndef I386COFF
5298
5299static void
5300s_bss (ignore)
ab9da554 5301 int ignore ATTRIBUTE_UNUSED;
252b5132 5302{
29b0f896 5303 int temp;
252b5132 5304
8a75718c
JB
5305#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5306 if (IS_ELF)
5307 obj_elf_section_change_hook ();
5308#endif
252b5132
RH
5309 temp = get_absolute_expression ();
5310 subseg_set (bss_section, (subsegT) temp);
5311 demand_empty_rest_of_line ();
5312}
5313
5314#endif
5315
252b5132
RH
5316void
5317i386_validate_fix (fixp)
5318 fixS *fixp;
5319{
5320 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
5321 {
3e73aa7c 5322 /* GOTOFF relocation are nonsense in 64bit mode. */
23df1078
JH
5323 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
5324 {
5325 if (flag_code != CODE_64BIT)
5326 abort ();
5327 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
5328 }
5329 else
5330 {
5331 if (flag_code == CODE_64BIT)
5332 abort ();
5333 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
5334 }
252b5132
RH
5335 fixp->fx_subsy = 0;
5336 }
5337}
5338
252b5132
RH
5339arelent *
5340tc_gen_reloc (section, fixp)
ab9da554 5341 asection *section ATTRIBUTE_UNUSED;
252b5132
RH
5342 fixS *fixp;
5343{
5344 arelent *rel;
5345 bfd_reloc_code_real_type code;
5346
5347 switch (fixp->fx_r_type)
5348 {
3e73aa7c
JH
5349 case BFD_RELOC_X86_64_PLT32:
5350 case BFD_RELOC_X86_64_GOT32:
5351 case BFD_RELOC_X86_64_GOTPCREL:
252b5132
RH
5352 case BFD_RELOC_386_PLT32:
5353 case BFD_RELOC_386_GOT32:
5354 case BFD_RELOC_386_GOTOFF:
5355 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
5356 case BFD_RELOC_386_TLS_GD:
5357 case BFD_RELOC_386_TLS_LDM:
5358 case BFD_RELOC_386_TLS_LDO_32:
5359 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
5360 case BFD_RELOC_386_TLS_IE:
5361 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
5362 case BFD_RELOC_386_TLS_LE_32:
5363 case BFD_RELOC_386_TLS_LE:
bffbf940
JJ
5364 case BFD_RELOC_X86_64_TLSGD:
5365 case BFD_RELOC_X86_64_TLSLD:
5366 case BFD_RELOC_X86_64_DTPOFF32:
5367 case BFD_RELOC_X86_64_GOTTPOFF:
5368 case BFD_RELOC_X86_64_TPOFF32:
252b5132
RH
5369 case BFD_RELOC_RVA:
5370 case BFD_RELOC_VTABLE_ENTRY:
5371 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
5372#ifdef TE_PE
5373 case BFD_RELOC_32_SECREL:
5374#endif
252b5132
RH
5375 code = fixp->fx_r_type;
5376 break;
dbbaec26
L
5377 case BFD_RELOC_X86_64_32S:
5378 if (!fixp->fx_pcrel)
5379 {
5380 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
5381 code = fixp->fx_r_type;
5382 break;
5383 }
252b5132 5384 default:
93382f6d 5385 if (fixp->fx_pcrel)
252b5132 5386 {
93382f6d
AM
5387 switch (fixp->fx_size)
5388 {
5389 default:
b091f402
AM
5390 as_bad_where (fixp->fx_file, fixp->fx_line,
5391 _("can not do %d byte pc-relative relocation"),
5392 fixp->fx_size);
93382f6d
AM
5393 code = BFD_RELOC_32_PCREL;
5394 break;
5395 case 1: code = BFD_RELOC_8_PCREL; break;
5396 case 2: code = BFD_RELOC_16_PCREL; break;
5397 case 4: code = BFD_RELOC_32_PCREL; break;
5398 }
5399 }
5400 else
5401 {
5402 switch (fixp->fx_size)
5403 {
5404 default:
b091f402
AM
5405 as_bad_where (fixp->fx_file, fixp->fx_line,
5406 _("can not do %d byte relocation"),
5407 fixp->fx_size);
93382f6d
AM
5408 code = BFD_RELOC_32;
5409 break;
5410 case 1: code = BFD_RELOC_8; break;
5411 case 2: code = BFD_RELOC_16; break;
5412 case 4: code = BFD_RELOC_32; break;
937149dd 5413#ifdef BFD64
3e73aa7c 5414 case 8: code = BFD_RELOC_64; break;
937149dd 5415#endif
93382f6d 5416 }
252b5132
RH
5417 }
5418 break;
5419 }
252b5132
RH
5420
5421 if (code == BFD_RELOC_32
5422 && GOT_symbol
5423 && fixp->fx_addsy == GOT_symbol)
3e73aa7c
JH
5424 {
5425 /* We don't support GOTPC on 64bit targets. */
5426 if (flag_code == CODE_64BIT)
bfb32b52 5427 abort ();
3e73aa7c
JH
5428 code = BFD_RELOC_386_GOTPC;
5429 }
252b5132
RH
5430
5431 rel = (arelent *) xmalloc (sizeof (arelent));
49309057
ILT
5432 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5433 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
5434
5435 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 5436
3e73aa7c
JH
5437 if (!use_rela_relocations)
5438 {
5439 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
5440 vtable entry to be used in the relocation's section offset. */
5441 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5442 rel->address = fixp->fx_offset;
252b5132 5443
c6682705 5444 rel->addend = 0;
3e73aa7c
JH
5445 }
5446 /* Use the rela in 64bit mode. */
252b5132 5447 else
3e73aa7c 5448 {
062cd5e7
AS
5449 if (!fixp->fx_pcrel)
5450 rel->addend = fixp->fx_offset;
5451 else
5452 switch (code)
5453 {
5454 case BFD_RELOC_X86_64_PLT32:
5455 case BFD_RELOC_X86_64_GOT32:
5456 case BFD_RELOC_X86_64_GOTPCREL:
bffbf940
JJ
5457 case BFD_RELOC_X86_64_TLSGD:
5458 case BFD_RELOC_X86_64_TLSLD:
5459 case BFD_RELOC_X86_64_GOTTPOFF:
062cd5e7
AS
5460 rel->addend = fixp->fx_offset - fixp->fx_size;
5461 break;
5462 default:
5463 rel->addend = (section->vma
5464 - fixp->fx_size
5465 + fixp->fx_addnumber
5466 + md_pcrel_from (fixp));
5467 break;
5468 }
3e73aa7c
JH
5469 }
5470
252b5132
RH
5471 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
5472 if (rel->howto == NULL)
5473 {
5474 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 5475 _("cannot represent relocation type %s"),
252b5132
RH
5476 bfd_get_reloc_code_name (code));
5477 /* Set howto to a garbage value so that we can keep going. */
5478 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
5479 assert (rel->howto != NULL);
5480 }
5481
5482 return rel;
5483}
5484
64a0c779
DN
5485\f
5486/* Parse operands using Intel syntax. This implements a recursive descent
5487 parser based on the BNF grammar published in Appendix B of the MASM 6.1
5488 Programmer's Guide.
5489
5490 FIXME: We do not recognize the full operand grammar defined in the MASM
5491 documentation. In particular, all the structure/union and
5492 high-level macro operands are missing.
5493
5494 Uppercase words are terminals, lower case words are non-terminals.
5495 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
5496 bars '|' denote choices. Most grammar productions are implemented in
5497 functions called 'intel_<production>'.
5498
5499 Initial production is 'expr'.
5500
9306ca4a 5501 addOp + | -
64a0c779
DN
5502
5503 alpha [a-zA-Z]
5504
9306ca4a
JB
5505 binOp & | AND | \| | OR | ^ | XOR
5506
64a0c779
DN
5507 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
5508
5509 constant digits [[ radixOverride ]]
5510
9306ca4a 5511 dataType BYTE | WORD | DWORD | FWORD | QWORD | TBYTE | OWORD | XMMWORD
64a0c779
DN
5512
5513 digits decdigit
b77a7acd
AJ
5514 | digits decdigit
5515 | digits hexdigit
64a0c779
DN
5516
5517 decdigit [0-9]
5518
9306ca4a
JB
5519 e04 e04 addOp e05
5520 | e05
5521
5522 e05 e05 binOp e06
b77a7acd 5523 | e06
64a0c779
DN
5524
5525 e06 e06 mulOp e09
b77a7acd 5526 | e09
64a0c779
DN
5527
5528 e09 OFFSET e10
a724f0f4
JB
5529 | SHORT e10
5530 | + e10
5531 | - e10
9306ca4a
JB
5532 | ~ e10
5533 | NOT e10
64a0c779
DN
5534 | e09 PTR e10
5535 | e09 : e10
5536 | e10
5537
5538 e10 e10 [ expr ]
b77a7acd 5539 | e11
64a0c779
DN
5540
5541 e11 ( expr )
b77a7acd 5542 | [ expr ]
64a0c779
DN
5543 | constant
5544 | dataType
5545 | id
5546 | $
5547 | register
5548
a724f0f4 5549 => expr expr cmpOp e04
9306ca4a 5550 | e04
64a0c779
DN
5551
5552 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
b77a7acd 5553 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
64a0c779
DN
5554
5555 hexdigit a | b | c | d | e | f
b77a7acd 5556 | A | B | C | D | E | F
64a0c779
DN
5557
5558 id alpha
b77a7acd 5559 | id alpha
64a0c779
DN
5560 | id decdigit
5561
9306ca4a 5562 mulOp * | / | % | MOD | << | SHL | >> | SHR
64a0c779
DN
5563
5564 quote " | '
5565
5566 register specialRegister
b77a7acd 5567 | gpRegister
64a0c779
DN
5568 | byteRegister
5569
5570 segmentRegister CS | DS | ES | FS | GS | SS
5571
9306ca4a 5572 specialRegister CR0 | CR2 | CR3 | CR4
b77a7acd 5573 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
64a0c779
DN
5574 | TR3 | TR4 | TR5 | TR6 | TR7
5575
64a0c779
DN
5576 We simplify the grammar in obvious places (e.g., register parsing is
5577 done by calling parse_register) and eliminate immediate left recursion
5578 to implement a recursive-descent parser.
5579
a724f0f4
JB
5580 expr e04 expr'
5581
5582 expr' cmpOp e04 expr'
5583 | Empty
9306ca4a
JB
5584
5585 e04 e05 e04'
5586
5587 e04' addOp e05 e04'
5588 | Empty
64a0c779
DN
5589
5590 e05 e06 e05'
5591
9306ca4a 5592 e05' binOp e06 e05'
b77a7acd 5593 | Empty
64a0c779
DN
5594
5595 e06 e09 e06'
5596
5597 e06' mulOp e09 e06'
b77a7acd 5598 | Empty
64a0c779
DN
5599
5600 e09 OFFSET e10 e09'
a724f0f4
JB
5601 | SHORT e10'
5602 | + e10'
5603 | - e10'
5604 | ~ e10'
5605 | NOT e10'
b77a7acd 5606 | e10 e09'
64a0c779
DN
5607
5608 e09' PTR e10 e09'
b77a7acd 5609 | : e10 e09'
64a0c779
DN
5610 | Empty
5611
5612 e10 e11 e10'
5613
5614 e10' [ expr ] e10'
b77a7acd 5615 | Empty
64a0c779
DN
5616
5617 e11 ( expr )
b77a7acd 5618 | [ expr ]
64a0c779
DN
5619 | BYTE
5620 | WORD
5621 | DWORD
9306ca4a 5622 | FWORD
64a0c779 5623 | QWORD
9306ca4a
JB
5624 | TBYTE
5625 | OWORD
5626 | XMMWORD
64a0c779
DN
5627 | .
5628 | $
5629 | register
5630 | id
5631 | constant */
5632
5633/* Parsing structure for the intel syntax parser. Used to implement the
5634 semantic actions for the operand grammar. */
5635struct intel_parser_s
5636 {
5637 char *op_string; /* The string being parsed. */
5638 int got_a_float; /* Whether the operand is a float. */
4a1805b1 5639 int op_modifier; /* Operand modifier. */
64a0c779 5640 int is_mem; /* 1 if operand is memory reference. */
a724f0f4
JB
5641 int in_offset; /* >=1 if parsing operand of offset. */
5642 int in_bracket; /* >=1 if parsing operand in brackets. */
64a0c779
DN
5643 const reg_entry *reg; /* Last register reference found. */
5644 char *disp; /* Displacement string being built. */
a724f0f4 5645 char *next_operand; /* Resume point when splitting operands. */
64a0c779
DN
5646 };
5647
5648static struct intel_parser_s intel_parser;
5649
5650/* Token structure for parsing intel syntax. */
5651struct intel_token
5652 {
5653 int code; /* Token code. */
5654 const reg_entry *reg; /* Register entry for register tokens. */
5655 char *str; /* String representation. */
5656 };
5657
5658static struct intel_token cur_token, prev_token;
5659
50705ef4
AM
5660/* Token codes for the intel parser. Since T_SHORT is already used
5661 by COFF, undefine it first to prevent a warning. */
64a0c779
DN
5662#define T_NIL -1
5663#define T_CONST 1
5664#define T_REG 2
5665#define T_BYTE 3
5666#define T_WORD 4
9306ca4a
JB
5667#define T_DWORD 5
5668#define T_FWORD 6
5669#define T_QWORD 7
5670#define T_TBYTE 8
5671#define T_XMMWORD 9
50705ef4 5672#undef T_SHORT
9306ca4a
JB
5673#define T_SHORT 10
5674#define T_OFFSET 11
5675#define T_PTR 12
5676#define T_ID 13
5677#define T_SHL 14
5678#define T_SHR 15
64a0c779
DN
5679
5680/* Prototypes for intel parser functions. */
5681static int intel_match_token PARAMS ((int code));
cce0cbdc
DN
5682static void intel_get_token PARAMS ((void));
5683static void intel_putback_token PARAMS ((void));
5684static int intel_expr PARAMS ((void));
9306ca4a 5685static int intel_e04 PARAMS ((void));
cce0cbdc 5686static int intel_e05 PARAMS ((void));
cce0cbdc 5687static int intel_e06 PARAMS ((void));
cce0cbdc 5688static int intel_e09 PARAMS ((void));
a724f0f4 5689static int intel_bracket_expr PARAMS ((void));
cce0cbdc 5690static int intel_e10 PARAMS ((void));
cce0cbdc 5691static int intel_e11 PARAMS ((void));
64a0c779 5692
64a0c779
DN
5693static int
5694i386_intel_operand (operand_string, got_a_float)
5695 char *operand_string;
5696 int got_a_float;
5697{
5698 int ret;
5699 char *p;
5700
a724f0f4
JB
5701 p = intel_parser.op_string = xstrdup (operand_string);
5702 intel_parser.disp = (char *) xmalloc (strlen (operand_string) + 1);
5703
5704 for (;;)
64a0c779 5705 {
a724f0f4
JB
5706 /* Initialize token holders. */
5707 cur_token.code = prev_token.code = T_NIL;
5708 cur_token.reg = prev_token.reg = NULL;
5709 cur_token.str = prev_token.str = NULL;
5710
5711 /* Initialize parser structure. */
5712 intel_parser.got_a_float = got_a_float;
5713 intel_parser.op_modifier = 0;
5714 intel_parser.is_mem = 0;
5715 intel_parser.in_offset = 0;
5716 intel_parser.in_bracket = 0;
5717 intel_parser.reg = NULL;
5718 intel_parser.disp[0] = '\0';
5719 intel_parser.next_operand = NULL;
5720
5721 /* Read the first token and start the parser. */
5722 intel_get_token ();
5723 ret = intel_expr ();
5724
5725 if (!ret)
5726 break;
5727
9306ca4a
JB
5728 if (cur_token.code != T_NIL)
5729 {
5730 as_bad (_("invalid operand for '%s' ('%s' unexpected)"),
5731 current_templates->start->name, cur_token.str);
5732 ret = 0;
5733 }
64a0c779
DN
5734 /* If we found a memory reference, hand it over to i386_displacement
5735 to fill in the rest of the operand fields. */
9306ca4a 5736 else if (intel_parser.is_mem)
64a0c779
DN
5737 {
5738 if ((i.mem_operands == 1
5739 && (current_templates->start->opcode_modifier & IsString) == 0)
5740 || i.mem_operands == 2)
5741 {
5742 as_bad (_("too many memory references for '%s'"),
5743 current_templates->start->name);
5744 ret = 0;
5745 }
5746 else
5747 {
5748 char *s = intel_parser.disp;
5749 i.mem_operands++;
5750
a724f0f4
JB
5751 if (!quiet_warnings && intel_parser.is_mem < 0)
5752 /* See the comments in intel_bracket_expr. */
5753 as_warn (_("Treating `%s' as memory reference"), operand_string);
5754
64a0c779
DN
5755 /* Add the displacement expression. */
5756 if (*s != '\0')
a4622f40
AM
5757 ret = i386_displacement (s, s + strlen (s));
5758 if (ret)
a724f0f4
JB
5759 {
5760 /* Swap base and index in 16-bit memory operands like
5761 [si+bx]. Since i386_index_check is also used in AT&T
5762 mode we have to do that here. */
5763 if (i.base_reg
5764 && i.index_reg
5765 && (i.base_reg->reg_type & Reg16)
5766 && (i.index_reg->reg_type & Reg16)
5767 && i.base_reg->reg_num >= 6
5768 && i.index_reg->reg_num < 6)
5769 {
5770 const reg_entry *base = i.index_reg;
5771
5772 i.index_reg = i.base_reg;
5773 i.base_reg = base;
5774 }
5775 ret = i386_index_check (operand_string);
5776 }
64a0c779
DN
5777 }
5778 }
5779
5780 /* Constant and OFFSET expressions are handled by i386_immediate. */
a724f0f4 5781 else if ((intel_parser.op_modifier & (1 << T_OFFSET))
64a0c779
DN
5782 || intel_parser.reg == NULL)
5783 ret = i386_immediate (intel_parser.disp);
a724f0f4
JB
5784
5785 if (intel_parser.next_operand && this_operand >= MAX_OPERANDS - 1)
5786 ret = 0;
5787 if (!ret || !intel_parser.next_operand)
5788 break;
5789 intel_parser.op_string = intel_parser.next_operand;
5790 this_operand = i.operands++;
64a0c779
DN
5791 }
5792
5793 free (p);
5794 free (intel_parser.disp);
5795
5796 return ret;
5797}
5798
a724f0f4
JB
5799#define NUM_ADDRESS_REGS (!!i.base_reg + !!i.index_reg)
5800
5801/* expr e04 expr'
5802
5803 expr' cmpOp e04 expr'
5804 | Empty */
64a0c779
DN
5805static int
5806intel_expr ()
5807{
a724f0f4
JB
5808 /* XXX Implement the comparison operators. */
5809 return intel_e04 ();
9306ca4a
JB
5810}
5811
a724f0f4 5812/* e04 e05 e04'
9306ca4a 5813
a724f0f4 5814 e04' addOp e05 e04'
9306ca4a
JB
5815 | Empty */
5816static int
5817intel_e04 ()
5818{
a724f0f4 5819 int nregs = -1;
9306ca4a 5820
a724f0f4 5821 for (;;)
9306ca4a 5822 {
a724f0f4
JB
5823 if (!intel_e05())
5824 return 0;
9306ca4a 5825
a724f0f4
JB
5826 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
5827 i.base_reg = i386_regtab + REGNAM_AL; /* al is invalid as base */
9306ca4a 5828
a724f0f4
JB
5829 if (cur_token.code == '+')
5830 nregs = -1;
5831 else if (cur_token.code == '-')
5832 nregs = NUM_ADDRESS_REGS;
5833 else
5834 return 1;
64a0c779 5835
a724f0f4
JB
5836 strcat (intel_parser.disp, cur_token.str);
5837 intel_match_token (cur_token.code);
5838 }
64a0c779
DN
5839}
5840
64a0c779
DN
5841/* e05 e06 e05'
5842
9306ca4a 5843 e05' binOp e06 e05'
64a0c779
DN
5844 | Empty */
5845static int
5846intel_e05 ()
5847{
a724f0f4 5848 int nregs = ~NUM_ADDRESS_REGS;
64a0c779 5849
a724f0f4 5850 for (;;)
64a0c779 5851 {
a724f0f4
JB
5852 if (!intel_e06())
5853 return 0;
5854
5855 if (cur_token.code == '&' || cur_token.code == '|' || cur_token.code == '^')
5856 {
5857 char str[2];
5858
5859 str[0] = cur_token.code;
5860 str[1] = 0;
5861 strcat (intel_parser.disp, str);
5862 }
5863 else
5864 break;
9306ca4a 5865
64a0c779
DN
5866 intel_match_token (cur_token.code);
5867
a724f0f4
JB
5868 if (nregs < 0)
5869 nregs = ~nregs;
64a0c779 5870 }
a724f0f4
JB
5871 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
5872 i.base_reg = i386_regtab + REGNAM_AL + 1; /* cl is invalid as base */
5873 return 1;
4a1805b1 5874}
64a0c779
DN
5875
5876/* e06 e09 e06'
5877
5878 e06' mulOp e09 e06'
b77a7acd 5879 | Empty */
64a0c779
DN
5880static int
5881intel_e06 ()
5882{
a724f0f4 5883 int nregs = ~NUM_ADDRESS_REGS;
64a0c779 5884
a724f0f4 5885 for (;;)
64a0c779 5886 {
a724f0f4
JB
5887 if (!intel_e09())
5888 return 0;
9306ca4a 5889
a724f0f4
JB
5890 if (cur_token.code == '*' || cur_token.code == '/' || cur_token.code == '%')
5891 {
5892 char str[2];
9306ca4a 5893
a724f0f4
JB
5894 str[0] = cur_token.code;
5895 str[1] = 0;
5896 strcat (intel_parser.disp, str);
5897 }
5898 else if (cur_token.code == T_SHL)
5899 strcat (intel_parser.disp, "<<");
5900 else if (cur_token.code == T_SHR)
5901 strcat (intel_parser.disp, ">>");
5902 else
5903 break;
9306ca4a 5904
a724f0f4 5905 intel_match_token (cur_token.code);
64a0c779 5906
a724f0f4
JB
5907 if (nregs < 0)
5908 nregs = ~nregs;
64a0c779 5909 }
a724f0f4
JB
5910 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
5911 i.base_reg = i386_regtab + REGNAM_AL + 2; /* dl is invalid as base */
5912 return 1;
64a0c779
DN
5913}
5914
a724f0f4
JB
5915/* e09 OFFSET e09
5916 | SHORT e09
5917 | + e09
5918 | - e09
5919 | ~ e09
5920 | NOT e09
9306ca4a
JB
5921 | e10 e09'
5922
64a0c779 5923 e09' PTR e10 e09'
b77a7acd 5924 | : e10 e09'
64a0c779
DN
5925 | Empty */
5926static int
5927intel_e09 ()
5928{
a724f0f4
JB
5929 int nregs = ~NUM_ADDRESS_REGS;
5930 int in_offset = 0;
5931
5932 for (;;)
64a0c779 5933 {
a724f0f4
JB
5934 /* Don't consume constants here. */
5935 if (cur_token.code == '+' || cur_token.code == '-')
5936 {
5937 /* Need to look one token ahead - if the next token
5938 is a constant, the current token is its sign. */
5939 int next_code;
5940
5941 intel_match_token (cur_token.code);
5942 next_code = cur_token.code;
5943 intel_putback_token ();
5944 if (next_code == T_CONST)
5945 break;
5946 }
5947
5948 /* e09 OFFSET e09 */
5949 if (cur_token.code == T_OFFSET)
5950 {
5951 if (!in_offset++)
5952 ++intel_parser.in_offset;
5953 }
5954
5955 /* e09 SHORT e09 */
5956 else if (cur_token.code == T_SHORT)
5957 intel_parser.op_modifier |= 1 << T_SHORT;
5958
5959 /* e09 + e09 */
5960 else if (cur_token.code == '+')
5961 strcat (intel_parser.disp, "+");
5962
5963 /* e09 - e09
5964 | ~ e09
5965 | NOT e09 */
5966 else if (cur_token.code == '-' || cur_token.code == '~')
5967 {
5968 char str[2];
64a0c779 5969
a724f0f4
JB
5970 if (nregs < 0)
5971 nregs = ~nregs;
5972 str[0] = cur_token.code;
5973 str[1] = 0;
5974 strcat (intel_parser.disp, str);
5975 }
5976
5977 /* e09 e10 e09' */
5978 else
5979 break;
5980
5981 intel_match_token (cur_token.code);
64a0c779
DN
5982 }
5983
a724f0f4 5984 for (;;)
9306ca4a 5985 {
a724f0f4
JB
5986 if (!intel_e10 ())
5987 return 0;
9306ca4a 5988
a724f0f4
JB
5989 /* e09' PTR e10 e09' */
5990 if (cur_token.code == T_PTR)
5991 {
5992 char suffix;
9306ca4a 5993
a724f0f4
JB
5994 if (prev_token.code == T_BYTE)
5995 suffix = BYTE_MNEM_SUFFIX;
9306ca4a 5996
a724f0f4
JB
5997 else if (prev_token.code == T_WORD)
5998 {
5999 if (current_templates->start->name[0] == 'l'
6000 && current_templates->start->name[2] == 's'
6001 && current_templates->start->name[3] == 0)
6002 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6003 else if (intel_parser.got_a_float == 2) /* "fi..." */
6004 suffix = SHORT_MNEM_SUFFIX;
6005 else
6006 suffix = WORD_MNEM_SUFFIX;
6007 }
64a0c779 6008
a724f0f4
JB
6009 else if (prev_token.code == T_DWORD)
6010 {
6011 if (current_templates->start->name[0] == 'l'
6012 && current_templates->start->name[2] == 's'
6013 && current_templates->start->name[3] == 0)
6014 suffix = WORD_MNEM_SUFFIX;
6015 else if (flag_code == CODE_16BIT
6016 && (current_templates->start->opcode_modifier
6017 & (Jump|JumpDword|JumpInterSegment)))
6018 suffix = LONG_DOUBLE_MNEM_SUFFIX;
6019 else if (intel_parser.got_a_float == 1) /* "f..." */
6020 suffix = SHORT_MNEM_SUFFIX;
6021 else
6022 suffix = LONG_MNEM_SUFFIX;
6023 }
9306ca4a 6024
a724f0f4
JB
6025 else if (prev_token.code == T_FWORD)
6026 {
6027 if (current_templates->start->name[0] == 'l'
6028 && current_templates->start->name[2] == 's'
6029 && current_templates->start->name[3] == 0)
6030 suffix = LONG_MNEM_SUFFIX;
6031 else if (!intel_parser.got_a_float)
6032 {
6033 if (flag_code == CODE_16BIT)
6034 add_prefix (DATA_PREFIX_OPCODE);
6035 suffix = LONG_DOUBLE_MNEM_SUFFIX;
6036 }
6037 else
6038 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6039 }
64a0c779 6040
a724f0f4
JB
6041 else if (prev_token.code == T_QWORD)
6042 {
6043 if (intel_parser.got_a_float == 1) /* "f..." */
6044 suffix = LONG_MNEM_SUFFIX;
6045 else
6046 suffix = QWORD_MNEM_SUFFIX;
6047 }
64a0c779 6048
a724f0f4
JB
6049 else if (prev_token.code == T_TBYTE)
6050 {
6051 if (intel_parser.got_a_float == 1)
6052 suffix = LONG_DOUBLE_MNEM_SUFFIX;
6053 else
6054 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6055 }
9306ca4a 6056
a724f0f4 6057 else if (prev_token.code == T_XMMWORD)
9306ca4a 6058 {
a724f0f4
JB
6059 /* XXX ignored for now, but accepted since gcc uses it */
6060 suffix = 0;
9306ca4a 6061 }
64a0c779 6062
f16b83df 6063 else
a724f0f4
JB
6064 {
6065 as_bad (_("Unknown operand modifier `%s'"), prev_token.str);
6066 return 0;
6067 }
6068
6069 if (current_templates->start->base_opcode == 0x8d /* lea */)
6070 ;
6071 else if (!i.suffix)
6072 i.suffix = suffix;
6073 else if (i.suffix != suffix)
6074 {
6075 as_bad (_("Conflicting operand modifiers"));
6076 return 0;
6077 }
64a0c779 6078
9306ca4a
JB
6079 }
6080
a724f0f4
JB
6081 /* e09' : e10 e09' */
6082 else if (cur_token.code == ':')
9306ca4a 6083 {
a724f0f4
JB
6084 if (prev_token.code != T_REG)
6085 {
6086 /* While {call,jmp} SSSS:OOOO is MASM syntax only when SSSS is a
6087 segment/group identifier (which we don't have), using comma
6088 as the operand separator there is even less consistent, since
6089 there all branches only have a single operand. */
6090 if (this_operand != 0
6091 || intel_parser.in_offset
6092 || intel_parser.in_bracket
6093 || (!(current_templates->start->opcode_modifier
6094 & (Jump|JumpDword|JumpInterSegment))
6095 && !(current_templates->start->operand_types[0]
6096 & JumpAbsolute)))
6097 return intel_match_token (T_NIL);
6098 /* Remember the start of the 2nd operand and terminate 1st
6099 operand here.
6100 XXX This isn't right, yet (when SSSS:OOOO is right operand of
6101 another expression), but it gets at least the simplest case
6102 (a plain number or symbol on the left side) right. */
6103 intel_parser.next_operand = intel_parser.op_string;
6104 *--intel_parser.op_string = '\0';
6105 return intel_match_token (':');
6106 }
9306ca4a 6107 }
64a0c779 6108
a724f0f4 6109 /* e09' Empty */
64a0c779 6110 else
a724f0f4 6111 break;
64a0c779 6112
a724f0f4
JB
6113 intel_match_token (cur_token.code);
6114
6115 }
6116
6117 if (in_offset)
6118 {
6119 --intel_parser.in_offset;
6120 if (nregs < 0)
6121 nregs = ~nregs;
6122 if (NUM_ADDRESS_REGS > nregs)
9306ca4a 6123 {
a724f0f4 6124 as_bad (_("Invalid operand to `OFFSET'"));
9306ca4a
JB
6125 return 0;
6126 }
a724f0f4
JB
6127 intel_parser.op_modifier |= 1 << T_OFFSET;
6128 }
9306ca4a 6129
a724f0f4
JB
6130 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6131 i.base_reg = i386_regtab + REGNAM_AL + 3; /* bl is invalid as base */
6132 return 1;
6133}
64a0c779 6134
a724f0f4
JB
6135static int
6136intel_bracket_expr ()
6137{
6138 int was_offset = intel_parser.op_modifier & (1 << T_OFFSET);
6139 const char *start = intel_parser.op_string;
6140 int len;
6141
6142 if (i.op[this_operand].regs)
6143 return intel_match_token (T_NIL);
6144
6145 intel_match_token ('[');
6146
6147 /* Mark as a memory operand only if it's not already known to be an
6148 offset expression. If it's an offset expression, we need to keep
6149 the brace in. */
6150 if (!intel_parser.in_offset)
6151 {
6152 ++intel_parser.in_bracket;
6153 /* Unfortunately gas always diverged from MASM in a respect that can't
6154 be easily fixed without risking to break code sequences likely to be
6155 encountered (the testsuite even check for this): MASM doesn't consider
6156 an expression inside brackets unconditionally as a memory reference.
6157 When that is e.g. a constant, an offset expression, or the sum of the
6158 two, this is still taken as a constant load. gas, however, always
6159 treated these as memory references. As a compromise, we'll try to make
6160 offset expressions inside brackets work the MASM way (since that's
6161 less likely to be found in real world code), but make constants alone
6162 continue to work the traditional gas way. In either case, issue a
6163 warning. */
6164 intel_parser.op_modifier &= ~was_offset;
64a0c779 6165 }
a724f0f4
JB
6166 else
6167 strcat (intel_parser.disp, "[");
6168
6169 /* Add a '+' to the displacement string if necessary. */
6170 if (*intel_parser.disp != '\0'
6171 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
6172 strcat (intel_parser.disp, "+");
64a0c779 6173
a724f0f4
JB
6174 if (intel_expr ()
6175 && (len = intel_parser.op_string - start - 1,
6176 intel_match_token (']')))
64a0c779 6177 {
a724f0f4
JB
6178 /* Preserve brackets when the operand is an offset expression. */
6179 if (intel_parser.in_offset)
6180 strcat (intel_parser.disp, "]");
6181 else
6182 {
6183 --intel_parser.in_bracket;
6184 if (i.base_reg || i.index_reg)
6185 intel_parser.is_mem = 1;
6186 if (!intel_parser.is_mem)
6187 {
6188 if (!(intel_parser.op_modifier & (1 << T_OFFSET)))
6189 /* Defer the warning until all of the operand was parsed. */
6190 intel_parser.is_mem = -1;
6191 else if (!quiet_warnings)
6192 as_warn (_("`[%.*s]' taken to mean just `%.*s'"), len, start, len, start);
6193 }
6194 }
6195 intel_parser.op_modifier |= was_offset;
64a0c779 6196
a724f0f4 6197 return 1;
64a0c779 6198 }
a724f0f4 6199 return 0;
64a0c779
DN
6200}
6201
6202/* e10 e11 e10'
6203
6204 e10' [ expr ] e10'
b77a7acd 6205 | Empty */
64a0c779
DN
6206static int
6207intel_e10 ()
6208{
a724f0f4
JB
6209 if (!intel_e11 ())
6210 return 0;
64a0c779 6211
a724f0f4 6212 while (cur_token.code == '[')
64a0c779 6213 {
a724f0f4 6214 if (!intel_bracket_expr ())
21d6c4af 6215 return 0;
64a0c779
DN
6216 }
6217
a724f0f4 6218 return 1;
64a0c779
DN
6219}
6220
64a0c779 6221/* e11 ( expr )
b77a7acd 6222 | [ expr ]
64a0c779
DN
6223 | BYTE
6224 | WORD
6225 | DWORD
9306ca4a 6226 | FWORD
64a0c779 6227 | QWORD
9306ca4a
JB
6228 | TBYTE
6229 | OWORD
6230 | XMMWORD
4a1805b1 6231 | $
64a0c779
DN
6232 | .
6233 | register
6234 | id
6235 | constant */
6236static int
6237intel_e11 ()
6238{
a724f0f4 6239 switch (cur_token.code)
64a0c779 6240 {
a724f0f4
JB
6241 /* e11 ( expr ) */
6242 case '(':
64a0c779
DN
6243 intel_match_token ('(');
6244 strcat (intel_parser.disp, "(");
6245
6246 if (intel_expr () && intel_match_token (')'))
e5cb08ac
KH
6247 {
6248 strcat (intel_parser.disp, ")");
6249 return 1;
6250 }
a724f0f4 6251 return 0;
4a1805b1 6252
a724f0f4
JB
6253 /* e11 [ expr ] */
6254 case '[':
6255 /* Operands for jump/call inside brackets denote absolute addresses.
6256 XXX This shouldn't be needed anymore (or if it should rather live
6257 in intel_bracket_expr). */
9306ca4a
JB
6258 if (current_templates->start->opcode_modifier
6259 & (Jump|JumpDword|JumpByte|JumpInterSegment))
64a0c779
DN
6260 i.types[this_operand] |= JumpAbsolute;
6261
a724f0f4 6262 return intel_bracket_expr ();
64a0c779 6263
a724f0f4
JB
6264 /* e11 $
6265 | . */
6266 case '.':
64a0c779
DN
6267 strcat (intel_parser.disp, cur_token.str);
6268 intel_match_token (cur_token.code);
21d6c4af
DN
6269
6270 /* Mark as a memory operand only if it's not already known to be an
6271 offset expression. */
a724f0f4 6272 if (!intel_parser.in_offset)
21d6c4af 6273 intel_parser.is_mem = 1;
64a0c779
DN
6274
6275 return 1;
64a0c779 6276
a724f0f4
JB
6277 /* e11 register */
6278 case T_REG:
6279 {
6280 const reg_entry *reg = intel_parser.reg = cur_token.reg;
64a0c779 6281
a724f0f4 6282 intel_match_token (T_REG);
64a0c779 6283
a724f0f4
JB
6284 /* Check for segment change. */
6285 if (cur_token.code == ':')
6286 {
6287 if (!(reg->reg_type & (SReg2 | SReg3)))
6288 {
6289 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
6290 return 0;
6291 }
6292 else if (i.seg[i.mem_operands])
6293 as_warn (_("Extra segment override ignored"));
6294 else
6295 {
6296 if (!intel_parser.in_offset)
6297 intel_parser.is_mem = 1;
6298 switch (reg->reg_num)
6299 {
6300 case 0:
6301 i.seg[i.mem_operands] = &es;
6302 break;
6303 case 1:
6304 i.seg[i.mem_operands] = &cs;
6305 break;
6306 case 2:
6307 i.seg[i.mem_operands] = &ss;
6308 break;
6309 case 3:
6310 i.seg[i.mem_operands] = &ds;
6311 break;
6312 case 4:
6313 i.seg[i.mem_operands] = &fs;
6314 break;
6315 case 5:
6316 i.seg[i.mem_operands] = &gs;
6317 break;
6318 }
6319 }
6320 }
64a0c779 6321
a724f0f4
JB
6322 /* Not a segment register. Check for register scaling. */
6323 else if (cur_token.code == '*')
6324 {
6325 if (!intel_parser.in_bracket)
6326 {
6327 as_bad (_("Register scaling only allowed in memory operands"));
6328 return 0;
6329 }
64a0c779 6330
a724f0f4
JB
6331 if (reg->reg_type & Reg16) /* Disallow things like [si*1]. */
6332 reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
6333 else if (i.index_reg)
6334 reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
64a0c779 6335
a724f0f4
JB
6336 /* What follows must be a valid scale. */
6337 intel_match_token ('*');
6338 i.index_reg = reg;
6339 i.types[this_operand] |= BaseIndex;
64a0c779 6340
a724f0f4
JB
6341 /* Set the scale after setting the register (otherwise,
6342 i386_scale will complain) */
6343 if (cur_token.code == '+' || cur_token.code == '-')
6344 {
6345 char *str, sign = cur_token.code;
6346 intel_match_token (cur_token.code);
6347 if (cur_token.code != T_CONST)
6348 {
6349 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
6350 cur_token.str);
6351 return 0;
6352 }
6353 str = (char *) xmalloc (strlen (cur_token.str) + 2);
6354 strcpy (str + 1, cur_token.str);
6355 *str = sign;
6356 if (!i386_scale (str))
6357 return 0;
6358 free (str);
6359 }
6360 else if (!i386_scale (cur_token.str))
64a0c779 6361 return 0;
a724f0f4
JB
6362 intel_match_token (cur_token.code);
6363 }
64a0c779 6364
a724f0f4
JB
6365 /* No scaling. If this is a memory operand, the register is either a
6366 base register (first occurrence) or an index register (second
6367 occurrence). */
6368 else if (intel_parser.in_bracket && !(reg->reg_type & (SReg2 | SReg3)))
6369 {
64a0c779 6370
a724f0f4
JB
6371 if (!i.base_reg)
6372 i.base_reg = reg;
6373 else if (!i.index_reg)
6374 i.index_reg = reg;
6375 else
6376 {
6377 as_bad (_("Too many register references in memory operand"));
6378 return 0;
6379 }
64a0c779 6380
a724f0f4
JB
6381 i.types[this_operand] |= BaseIndex;
6382 }
4a1805b1 6383
a724f0f4
JB
6384 /* Offset modifier. Add the register to the displacement string to be
6385 parsed as an immediate expression after we're done. */
6386 else if (intel_parser.in_offset)
6387 {
6388 as_warn (_("Using register names in OFFSET expressions is deprecated"));
6389 strcat (intel_parser.disp, reg->reg_name);
6390 }
64a0c779 6391
a724f0f4
JB
6392 /* It's neither base nor index nor offset. */
6393 else if (!intel_parser.is_mem)
6394 {
6395 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
6396 i.op[this_operand].regs = reg;
6397 i.reg_operands++;
6398 }
6399 else
6400 {
6401 as_bad (_("Invalid use of register"));
6402 return 0;
6403 }
64a0c779 6404
a724f0f4
JB
6405 /* Since registers are not part of the displacement string (except
6406 when we're parsing offset operands), we may need to remove any
6407 preceding '+' from the displacement string. */
6408 if (*intel_parser.disp != '\0'
6409 && !intel_parser.in_offset)
6410 {
6411 char *s = intel_parser.disp;
6412 s += strlen (s) - 1;
6413 if (*s == '+')
6414 *s = '\0';
6415 }
4a1805b1 6416
a724f0f4
JB
6417 return 1;
6418 }
6419
6420 /* e11 BYTE
6421 | WORD
6422 | DWORD
6423 | FWORD
6424 | QWORD
6425 | TBYTE
6426 | OWORD
6427 | XMMWORD */
6428 case T_BYTE:
6429 case T_WORD:
6430 case T_DWORD:
6431 case T_FWORD:
6432 case T_QWORD:
6433 case T_TBYTE:
6434 case T_XMMWORD:
6435 intel_match_token (cur_token.code);
64a0c779 6436
a724f0f4
JB
6437 if (cur_token.code == T_PTR)
6438 return 1;
6439
6440 /* It must have been an identifier. */
6441 intel_putback_token ();
6442 cur_token.code = T_ID;
6443 /* FALLTHRU */
6444
6445 /* e11 id
6446 | constant */
6447 case T_ID:
6448 if (!intel_parser.in_offset && intel_parser.is_mem <= 0)
9306ca4a
JB
6449 {
6450 symbolS *symbolP;
6451
a724f0f4
JB
6452 /* The identifier represents a memory reference only if it's not
6453 preceded by an offset modifier and if it's not an equate. */
9306ca4a
JB
6454 symbolP = symbol_find(cur_token.str);
6455 if (!symbolP || S_GET_SEGMENT(symbolP) != absolute_section)
6456 intel_parser.is_mem = 1;
6457 }
a724f0f4 6458 /* FALLTHRU */
64a0c779 6459
a724f0f4
JB
6460 case T_CONST:
6461 case '-':
6462 case '+':
6463 {
6464 char *save_str, sign = 0;
64a0c779 6465
a724f0f4
JB
6466 /* Allow constants that start with `+' or `-'. */
6467 if (cur_token.code == '-' || cur_token.code == '+')
6468 {
6469 sign = cur_token.code;
6470 intel_match_token (cur_token.code);
6471 if (cur_token.code != T_CONST)
6472 {
6473 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
6474 cur_token.str);
6475 return 0;
6476 }
6477 }
64a0c779 6478
a724f0f4
JB
6479 save_str = (char *) xmalloc (strlen (cur_token.str) + 2);
6480 strcpy (save_str + !!sign, cur_token.str);
6481 if (sign)
6482 *save_str = sign;
64a0c779 6483
a724f0f4
JB
6484 /* Get the next token to check for register scaling. */
6485 intel_match_token (cur_token.code);
64a0c779 6486
a724f0f4
JB
6487 /* Check if this constant is a scaling factor for an index register. */
6488 if (cur_token.code == '*')
6489 {
6490 if (intel_match_token ('*') && cur_token.code == T_REG)
6491 {
6492 const reg_entry *reg = cur_token.reg;
6493
6494 if (!intel_parser.in_bracket)
6495 {
6496 as_bad (_("Register scaling only allowed in memory operands"));
6497 return 0;
6498 }
6499
6500 if (reg->reg_type & Reg16) /* Disallow things like [1*si]. */
6501 reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
6502 else if (i.index_reg)
6503 reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
6504
6505 /* The constant is followed by `* reg', so it must be
6506 a valid scale. */
6507 i.index_reg = reg;
6508 i.types[this_operand] |= BaseIndex;
6509
6510 /* Set the scale after setting the register (otherwise,
6511 i386_scale will complain) */
6512 if (!i386_scale (save_str))
64a0c779 6513 return 0;
a724f0f4
JB
6514 intel_match_token (T_REG);
6515
6516 /* Since registers are not part of the displacement
6517 string, we may need to remove any preceding '+' from
6518 the displacement string. */
6519 if (*intel_parser.disp != '\0')
6520 {
6521 char *s = intel_parser.disp;
6522 s += strlen (s) - 1;
6523 if (*s == '+')
6524 *s = '\0';
6525 }
6526
6527 free (save_str);
6528
6529 return 1;
6530 }
64a0c779 6531
a724f0f4
JB
6532 /* The constant was not used for register scaling. Since we have
6533 already consumed the token following `*' we now need to put it
6534 back in the stream. */
64a0c779 6535 intel_putback_token ();
a724f0f4 6536 }
64a0c779 6537
a724f0f4
JB
6538 /* Add the constant to the displacement string. */
6539 strcat (intel_parser.disp, save_str);
6540 free (save_str);
64a0c779 6541
a724f0f4
JB
6542 return 1;
6543 }
64a0c779
DN
6544 }
6545
64a0c779
DN
6546 as_bad (_("Unrecognized token '%s'"), cur_token.str);
6547 return 0;
6548}
6549
64a0c779
DN
6550/* Match the given token against cur_token. If they match, read the next
6551 token from the operand string. */
6552static int
6553intel_match_token (code)
e5cb08ac 6554 int code;
64a0c779
DN
6555{
6556 if (cur_token.code == code)
6557 {
6558 intel_get_token ();
6559 return 1;
6560 }
6561 else
6562 {
0477af35 6563 as_bad (_("Unexpected token `%s'"), cur_token.str);
64a0c779
DN
6564 return 0;
6565 }
6566}
6567
64a0c779
DN
6568/* Read a new token from intel_parser.op_string and store it in cur_token. */
6569static void
6570intel_get_token ()
6571{
6572 char *end_op;
6573 const reg_entry *reg;
6574 struct intel_token new_token;
6575
6576 new_token.code = T_NIL;
6577 new_token.reg = NULL;
6578 new_token.str = NULL;
6579
4a1805b1 6580 /* Free the memory allocated to the previous token and move
64a0c779
DN
6581 cur_token to prev_token. */
6582 if (prev_token.str)
6583 free (prev_token.str);
6584
6585 prev_token = cur_token;
6586
6587 /* Skip whitespace. */
6588 while (is_space_char (*intel_parser.op_string))
6589 intel_parser.op_string++;
6590
6591 /* Return an empty token if we find nothing else on the line. */
6592 if (*intel_parser.op_string == '\0')
6593 {
6594 cur_token = new_token;
6595 return;
6596 }
6597
6598 /* The new token cannot be larger than the remainder of the operand
6599 string. */
a724f0f4 6600 new_token.str = (char *) xmalloc (strlen (intel_parser.op_string) + 1);
64a0c779
DN
6601 new_token.str[0] = '\0';
6602
6603 if (strchr ("0123456789", *intel_parser.op_string))
6604 {
6605 char *p = new_token.str;
6606 char *q = intel_parser.op_string;
6607 new_token.code = T_CONST;
6608
6609 /* Allow any kind of identifier char to encompass floating point and
6610 hexadecimal numbers. */
6611 while (is_identifier_char (*q))
6612 *p++ = *q++;
6613 *p = '\0';
6614
6615 /* Recognize special symbol names [0-9][bf]. */
6616 if (strlen (intel_parser.op_string) == 2
4a1805b1 6617 && (intel_parser.op_string[1] == 'b'
64a0c779
DN
6618 || intel_parser.op_string[1] == 'f'))
6619 new_token.code = T_ID;
6620 }
6621
64a0c779
DN
6622 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
6623 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
6624 {
6625 new_token.code = T_REG;
6626 new_token.reg = reg;
6627
6628 if (*intel_parser.op_string == REGISTER_PREFIX)
6629 {
6630 new_token.str[0] = REGISTER_PREFIX;
6631 new_token.str[1] = '\0';
6632 }
6633
6634 strcat (new_token.str, reg->reg_name);
6635 }
6636
6637 else if (is_identifier_char (*intel_parser.op_string))
6638 {
6639 char *p = new_token.str;
6640 char *q = intel_parser.op_string;
6641
6642 /* A '.' or '$' followed by an identifier char is an identifier.
6643 Otherwise, it's operator '.' followed by an expression. */
6644 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
6645 {
9306ca4a
JB
6646 new_token.code = '.';
6647 new_token.str[0] = '.';
64a0c779
DN
6648 new_token.str[1] = '\0';
6649 }
6650 else
6651 {
6652 while (is_identifier_char (*q) || *q == '@')
6653 *p++ = *q++;
6654 *p = '\0';
6655
9306ca4a
JB
6656 if (strcasecmp (new_token.str, "NOT") == 0)
6657 new_token.code = '~';
6658
6659 else if (strcasecmp (new_token.str, "MOD") == 0)
6660 new_token.code = '%';
6661
6662 else if (strcasecmp (new_token.str, "AND") == 0)
6663 new_token.code = '&';
6664
6665 else if (strcasecmp (new_token.str, "OR") == 0)
6666 new_token.code = '|';
6667
6668 else if (strcasecmp (new_token.str, "XOR") == 0)
6669 new_token.code = '^';
6670
6671 else if (strcasecmp (new_token.str, "SHL") == 0)
6672 new_token.code = T_SHL;
6673
6674 else if (strcasecmp (new_token.str, "SHR") == 0)
6675 new_token.code = T_SHR;
6676
6677 else if (strcasecmp (new_token.str, "BYTE") == 0)
64a0c779
DN
6678 new_token.code = T_BYTE;
6679
6680 else if (strcasecmp (new_token.str, "WORD") == 0)
6681 new_token.code = T_WORD;
6682
6683 else if (strcasecmp (new_token.str, "DWORD") == 0)
6684 new_token.code = T_DWORD;
6685
9306ca4a
JB
6686 else if (strcasecmp (new_token.str, "FWORD") == 0)
6687 new_token.code = T_FWORD;
6688
64a0c779
DN
6689 else if (strcasecmp (new_token.str, "QWORD") == 0)
6690 new_token.code = T_QWORD;
6691
9306ca4a
JB
6692 else if (strcasecmp (new_token.str, "TBYTE") == 0
6693 /* XXX remove (gcc still uses it) */
6694 || strcasecmp (new_token.str, "XWORD") == 0)
6695 new_token.code = T_TBYTE;
6696
6697 else if (strcasecmp (new_token.str, "XMMWORD") == 0
6698 || strcasecmp (new_token.str, "OWORD") == 0)
6699 new_token.code = T_XMMWORD;
64a0c779
DN
6700
6701 else if (strcasecmp (new_token.str, "PTR") == 0)
6702 new_token.code = T_PTR;
6703
6704 else if (strcasecmp (new_token.str, "SHORT") == 0)
6705 new_token.code = T_SHORT;
6706
6707 else if (strcasecmp (new_token.str, "OFFSET") == 0)
6708 {
6709 new_token.code = T_OFFSET;
6710
6711 /* ??? This is not mentioned in the MASM grammar but gcc
6712 makes use of it with -mintel-syntax. OFFSET may be
6713 followed by FLAT: */
6714 if (strncasecmp (q, " FLAT:", 6) == 0)
6715 strcat (new_token.str, " FLAT:");
6716 }
6717
6718 /* ??? This is not mentioned in the MASM grammar. */
6719 else if (strcasecmp (new_token.str, "FLAT") == 0)
a724f0f4
JB
6720 {
6721 new_token.code = T_OFFSET;
6722 if (*q == ':')
6723 strcat (new_token.str, ":");
6724 else
6725 as_bad (_("`:' expected"));
6726 }
64a0c779
DN
6727
6728 else
6729 new_token.code = T_ID;
6730 }
6731 }
6732
9306ca4a
JB
6733 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
6734 {
6735 new_token.code = *intel_parser.op_string;
6736 new_token.str[0] = *intel_parser.op_string;
6737 new_token.str[1] = '\0';
6738 }
6739
6740 else if (strchr ("<>", *intel_parser.op_string)
6741 && *intel_parser.op_string == *(intel_parser.op_string + 1))
6742 {
6743 new_token.code = *intel_parser.op_string == '<' ? T_SHL : T_SHR;
6744 new_token.str[0] = *intel_parser.op_string;
6745 new_token.str[1] = *intel_parser.op_string;
6746 new_token.str[2] = '\0';
6747 }
6748
64a0c779 6749 else
0477af35 6750 as_bad (_("Unrecognized token `%s'"), intel_parser.op_string);
64a0c779
DN
6751
6752 intel_parser.op_string += strlen (new_token.str);
6753 cur_token = new_token;
6754}
6755
64a0c779
DN
6756/* Put cur_token back into the token stream and make cur_token point to
6757 prev_token. */
6758static void
6759intel_putback_token ()
6760{
a724f0f4
JB
6761 if (cur_token.code != T_NIL)
6762 {
6763 intel_parser.op_string -= strlen (cur_token.str);
6764 free (cur_token.str);
6765 }
64a0c779 6766 cur_token = prev_token;
4a1805b1 6767
64a0c779
DN
6768 /* Forget prev_token. */
6769 prev_token.code = T_NIL;
6770 prev_token.reg = NULL;
6771 prev_token.str = NULL;
6772}
54cfded0 6773
a4447b93 6774int
54cfded0
AM
6775tc_x86_regname_to_dw2regnum (const char *regname)
6776{
6777 unsigned int regnum;
6778 unsigned int regnames_count;
6779 char *regnames_32[] =
6780 {
a4447b93
RH
6781 "eax", "ecx", "edx", "ebx",
6782 "esp", "ebp", "esi", "edi",
54cfded0
AM
6783 "eip"
6784 };
6785 char *regnames_64[] =
6786 {
6787 "rax", "rbx", "rcx", "rdx",
6788 "rdi", "rsi", "rbp", "rsp",
6789 "r8", "r9", "r10", "r11",
6790 "r12", "r13", "r14", "r15",
6791 "rip"
6792 };
6793 char **regnames;
6794
6795 if (flag_code == CODE_64BIT)
6796 {
6797 regnames = regnames_64;
0cea6190 6798 regnames_count = ARRAY_SIZE (regnames_64);
54cfded0
AM
6799 }
6800 else
6801 {
6802 regnames = regnames_32;
0cea6190 6803 regnames_count = ARRAY_SIZE (regnames_32);
54cfded0
AM
6804 }
6805
6806 for (regnum = 0; regnum < regnames_count; regnum++)
6807 if (strcmp (regname, regnames[regnum]) == 0)
6808 return regnum;
6809
54cfded0
AM
6810 return -1;
6811}
6812
6813void
6814tc_x86_frame_initial_instructions (void)
6815{
a4447b93
RH
6816 static unsigned int sp_regno;
6817
6818 if (!sp_regno)
6819 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
6820 ? "rsp" : "esp");
6821
6822 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
6823 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 6824}
d2b2c203
DJ
6825
6826int
6827i386_elf_section_type (const char *str, size_t len)
6828{
6829 if (flag_code == CODE_64BIT
6830 && len == sizeof ("unwind") - 1
6831 && strncmp (str, "unwind", 6) == 0)
6832 return SHT_X86_64_UNWIND;
6833
6834 return -1;
6835}
bb41ade5
AM
6836
6837#ifdef TE_PE
6838void
6839tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
6840{
6841 expressionS expr;
6842
6843 expr.X_op = O_secrel;
6844 expr.X_add_symbol = symbol;
6845 expr.X_add_number = 0;
6846 emit_expr (&expr, size);
6847}
6848#endif
This page took 0.730157 seconds and 4 git commands to generate.