Small tweaks to sse2 instructions.
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
252b5132 1/* i386.c -- Assemble code for the Intel 80386
f7e42eb4
NC
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001
47926f60 4 Free Software Foundation, Inc.
252b5132
RH
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
47926f60
KH
23/* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 25 x86_64 support by Jan Hubicka (jh@suse.cz)
47926f60
KH
26 Bugs & suggestions are completely welcome. This is free software.
27 Please help us make it better. */
252b5132
RH
28
29#include <ctype.h>
30
31#include "as.h"
32#include "subsegs.h"
316e2c05 33#include "dwarf2dbg.h"
252b5132
RH
34#include "opcode/i386.h"
35
252b5132
RH
36#ifndef REGISTER_WARNINGS
37#define REGISTER_WARNINGS 1
38#endif
39
c3332e24 40#ifndef INFER_ADDR_PREFIX
eecb386c 41#define INFER_ADDR_PREFIX 1
c3332e24
AM
42#endif
43
252b5132
RH
44#ifndef SCALE1_WHEN_NO_INDEX
45/* Specifying a scale factor besides 1 when there is no index is
46 futile. eg. `mov (%ebx,2),%al' does exactly the same as
47 `mov (%ebx),%al'. To slavishly follow what the programmer
48 specified, set SCALE1_WHEN_NO_INDEX to 0. */
49#define SCALE1_WHEN_NO_INDEX 1
50#endif
51
52#define true 1
53#define false 0
54
55static unsigned int mode_from_disp_size PARAMS ((unsigned int));
847f7ad4
AM
56static int fits_in_signed_byte PARAMS ((offsetT));
57static int fits_in_unsigned_byte PARAMS ((offsetT));
58static int fits_in_unsigned_word PARAMS ((offsetT));
59static int fits_in_signed_word PARAMS ((offsetT));
3e73aa7c
JH
60static int fits_in_unsigned_long PARAMS ((offsetT));
61static int fits_in_signed_long PARAMS ((offsetT));
847f7ad4
AM
62static int smallest_imm_type PARAMS ((offsetT));
63static offsetT offset_in_range PARAMS ((offsetT, int));
252b5132 64static int add_prefix PARAMS ((unsigned int));
3e73aa7c 65static void set_code_flag PARAMS ((int));
47926f60 66static void set_16bit_gcc_code_flag PARAMS ((int));
252b5132 67static void set_intel_syntax PARAMS ((int));
e413e4e9 68static void set_cpu_arch PARAMS ((int));
252b5132
RH
69
70#ifdef BFD_ASSEMBLER
71static bfd_reloc_code_real_type reloc
3e73aa7c 72 PARAMS ((int, int, int, bfd_reloc_code_real_type));
f3c180ae
AM
73#define RELOC_ENUM enum bfd_reloc_code_real
74#else
75#define RELOC_ENUM int
252b5132
RH
76#endif
77
3e73aa7c
JH
78#ifndef DEFAULT_ARCH
79#define DEFAULT_ARCH "i386"
80#endif
81static char *default_arch = DEFAULT_ARCH;
82
252b5132 83/* 'md_assemble ()' gathers together information and puts it into a
47926f60 84 i386_insn. */
252b5132 85
520dc8e8
AM
86union i386_op
87 {
88 expressionS *disps;
89 expressionS *imms;
90 const reg_entry *regs;
91 };
92
252b5132
RH
93struct _i386_insn
94 {
47926f60 95 /* TM holds the template for the insn were currently assembling. */
252b5132
RH
96 template tm;
97
98 /* SUFFIX holds the instruction mnemonic suffix if given.
99 (e.g. 'l' for 'movl') */
100 char suffix;
101
47926f60 102 /* OPERANDS gives the number of given operands. */
252b5132
RH
103 unsigned int operands;
104
105 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
106 of given register, displacement, memory operands and immediate
47926f60 107 operands. */
252b5132
RH
108 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
109
110 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 111 use OP[i] for the corresponding operand. */
252b5132
RH
112 unsigned int types[MAX_OPERANDS];
113
520dc8e8
AM
114 /* Displacement expression, immediate expression, or register for each
115 operand. */
116 union i386_op op[MAX_OPERANDS];
252b5132 117
3e73aa7c
JH
118 /* Flags for operands. */
119 unsigned int flags[MAX_OPERANDS];
120#define Operand_PCrel 1
121
252b5132 122 /* Relocation type for operand */
f3c180ae 123 RELOC_ENUM reloc[MAX_OPERANDS];
252b5132 124
252b5132
RH
125 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
126 the base index byte below. */
127 const reg_entry *base_reg;
128 const reg_entry *index_reg;
129 unsigned int log2_scale_factor;
130
131 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 132 explicit segment overrides are given. */
ce8a8b2f 133 const seg_entry *seg[2];
252b5132
RH
134
135 /* PREFIX holds all the given prefix opcodes (usually null).
136 PREFIXES is the number of prefix opcodes. */
137 unsigned int prefixes;
138 unsigned char prefix[MAX_PREFIXES];
139
140 /* RM and SIB are the modrm byte and the sib byte where the
141 addressing modes of this insn are encoded. */
142
143 modrm_byte rm;
3e73aa7c 144 rex_byte rex;
252b5132
RH
145 sib_byte sib;
146 };
147
148typedef struct _i386_insn i386_insn;
149
150/* List of chars besides those in app.c:symbol_chars that can start an
151 operand. Used to prevent the scrubber eating vital white-space. */
152#ifdef LEX_AT
153const char extra_symbol_chars[] = "*%-(@";
154#else
155const char extra_symbol_chars[] = "*%-(";
156#endif
157
158/* This array holds the chars that always start a comment. If the
ce8a8b2f 159 pre-processor is disabled, these aren't very useful. */
60bcf0fa 160#if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD))
252b5132
RH
161/* Putting '/' here makes it impossible to use the divide operator.
162 However, we need it for compatibility with SVR4 systems. */
163const char comment_chars[] = "#/";
164#define PREFIX_SEPARATOR '\\'
165#else
166const char comment_chars[] = "#";
167#define PREFIX_SEPARATOR '/'
168#endif
169
170/* This array holds the chars that only start a comment at the beginning of
171 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
172 .line and .file directives will appear in the pre-processed output.
173 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 174 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
175 #NO_APP at the beginning of its output.
176 Also note that comments started like this one will always work if
252b5132 177 '/' isn't otherwise defined. */
60bcf0fa 178#if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD))
252b5132
RH
179const char line_comment_chars[] = "";
180#else
181const char line_comment_chars[] = "/";
182#endif
183
63a0b638 184const char line_separator_chars[] = ";";
252b5132 185
ce8a8b2f
AM
186/* Chars that can be used to separate mant from exp in floating point
187 nums. */
252b5132
RH
188const char EXP_CHARS[] = "eE";
189
ce8a8b2f
AM
190/* Chars that mean this number is a floating point constant
191 As in 0f12.456
192 or 0d1.2345e12. */
252b5132
RH
193const char FLT_CHARS[] = "fFdDxX";
194
ce8a8b2f 195/* Tables for lexical analysis. */
252b5132
RH
196static char mnemonic_chars[256];
197static char register_chars[256];
198static char operand_chars[256];
199static char identifier_chars[256];
200static char digit_chars[256];
201
ce8a8b2f 202/* Lexical macros. */
252b5132
RH
203#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
204#define is_operand_char(x) (operand_chars[(unsigned char) x])
205#define is_register_char(x) (register_chars[(unsigned char) x])
206#define is_space_char(x) ((x) == ' ')
207#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
208#define is_digit_char(x) (digit_chars[(unsigned char) x])
209
ce8a8b2f 210/* All non-digit non-letter charcters that may occur in an operand. */
252b5132
RH
211static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
212
213/* md_assemble() always leaves the strings it's passed unaltered. To
214 effect this we maintain a stack of saved characters that we've smashed
215 with '\0's (indicating end of strings for various sub-fields of the
47926f60 216 assembler instruction). */
252b5132 217static char save_stack[32];
ce8a8b2f 218static char *save_stack_p;
252b5132
RH
219#define END_STRING_AND_SAVE(s) \
220 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
221#define RESTORE_END_STRING(s) \
222 do { *(s) = *--save_stack_p; } while (0)
223
47926f60 224/* The instruction we're assembling. */
252b5132
RH
225static i386_insn i;
226
227/* Possible templates for current insn. */
228static const templates *current_templates;
229
47926f60 230/* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
252b5132
RH
231static expressionS disp_expressions[2], im_expressions[2];
232
47926f60
KH
233/* Current operand we are working on. */
234static int this_operand;
252b5132 235
3e73aa7c
JH
236/* We support four different modes. FLAG_CODE variable is used to distinguish
237 these. */
238
239enum flag_code {
240 CODE_32BIT,
241 CODE_16BIT,
242 CODE_64BIT };
f3c180ae 243#define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
3e73aa7c
JH
244
245static enum flag_code flag_code;
246static int use_rela_relocations = 0;
247
248/* The names used to print error messages. */
b77a7acd 249static const char *flag_code_names[] =
3e73aa7c
JH
250 {
251 "32",
252 "16",
253 "64"
254 };
252b5132 255
47926f60
KH
256/* 1 for intel syntax,
257 0 if att syntax. */
258static int intel_syntax = 0;
252b5132 259
47926f60
KH
260/* 1 if register prefix % not required. */
261static int allow_naked_reg = 0;
252b5132 262
47926f60
KH
263/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
264 leave, push, and pop instructions so that gcc has the same stack
265 frame as in 32 bit mode. */
266static char stackop_size = '\0';
eecb386c 267
47926f60
KH
268/* Non-zero to quieten some warnings. */
269static int quiet_warnings = 0;
a38cf1db 270
47926f60
KH
271/* CPU name. */
272static const char *cpu_arch_name = NULL;
a38cf1db 273
47926f60 274/* CPU feature flags. */
3e73aa7c 275static unsigned int cpu_arch_flags = CpuUnknownFlags|CpuNo64;
a38cf1db 276
fddf5b5b
AM
277/* If set, conditional jumps are not automatically promoted to handle
278 larger than a byte offset. */
279static unsigned int no_cond_jump_promotion = 0;
280
252b5132 281/* Interface to relax_segment.
fddf5b5b
AM
282 There are 3 major relax states for 386 jump insns because the
283 different types of jumps add different sizes to frags when we're
284 figuring out what sort of jump to choose to reach a given label. */
252b5132 285
47926f60 286/* Types. */
fddf5b5b
AM
287#define UNCOND_JUMP 1
288#define COND_JUMP 2
289#define COND_JUMP86 3
290
47926f60 291/* Sizes. */
252b5132
RH
292#define CODE16 1
293#define SMALL 0
294#define SMALL16 (SMALL|CODE16)
295#define BIG 2
296#define BIG16 (BIG|CODE16)
297
298#ifndef INLINE
299#ifdef __GNUC__
300#define INLINE __inline__
301#else
302#define INLINE
303#endif
304#endif
305
fddf5b5b
AM
306#define ENCODE_RELAX_STATE(type, size) \
307 ((relax_substateT) (((type) << 2) | (size)))
308#define TYPE_FROM_RELAX_STATE(s) \
309 ((s) >> 2)
310#define DISP_SIZE_FROM_RELAX_STATE(s) \
311 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
312
313/* This table is used by relax_frag to promote short jumps to long
314 ones where necessary. SMALL (short) jumps may be promoted to BIG
315 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
316 don't allow a short jump in a 32 bit code segment to be promoted to
317 a 16 bit offset jump because it's slower (requires data size
318 prefix), and doesn't work, unless the destination is in the bottom
319 64k of the code segment (The top 16 bits of eip are zeroed). */
320
321const relax_typeS md_relax_table[] =
322{
24eab124
AM
323 /* The fields are:
324 1) most positive reach of this state,
325 2) most negative reach of this state,
326 3) how many bytes this mode will add to the size of the current frag
ce8a8b2f 327 4) which index into the table to try if we can't fit into this one. */
252b5132
RH
328 {1, 1, 0, 0},
329 {1, 1, 0, 0},
330 {1, 1, 0, 0},
331 {1, 1, 0, 0},
332
fddf5b5b
AM
333 /* UNCOND_JUMP states. */
334 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
335 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
336 /* dword jmp adds 3 bytes to frag:
337 0 extra opcode bytes, 3 extra displacement bytes. */
338 {0, 0, 3, 0},
339 /* word jmp adds 1 byte to frag:
340 0 extra opcode bytes, 1 extra displacement byte. */
341 {0, 0, 1, 0},
342
343 /* COND_JUMP states. */
252b5132
RH
344 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
345 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
346 /* dword conditionals adds 4 bytes to frag:
347 1 extra opcode byte, 3 extra displacement bytes. */
348 {0, 0, 4, 0},
349 /* word conditionals add 2 bytes to frag:
350 1 extra opcode byte, 1 extra displacement byte. */
351 {0, 0, 2, 0},
352
fddf5b5b
AM
353 /* COND_JUMP86 states. */
354 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
355 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
356 /* dword conditionals adds 4 bytes to frag:
357 1 extra opcode byte, 3 extra displacement bytes. */
358 {0, 0, 4, 0},
359 /* word conditionals add 3 bytes to frag:
360 1 extra opcode byte, 2 extra displacement bytes. */
361 {0, 0, 3, 0}
252b5132
RH
362};
363
e413e4e9
AM
364static const arch_entry cpu_arch[] = {
365 {"i8086", Cpu086 },
366 {"i186", Cpu086|Cpu186 },
367 {"i286", Cpu086|Cpu186|Cpu286 },
368 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
369 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
370 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
371 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
372 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
373 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
a167610d 374 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuSSE|CpuSSE2 },
3e73aa7c
JH
375 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
376 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|Cpu3dnow },
a167610d 377 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|Cpu3dnow|CpuSSE|CpuSSE2 },
e413e4e9
AM
378 {NULL, 0 }
379};
380
252b5132
RH
381void
382i386_align_code (fragP, count)
383 fragS *fragP;
384 int count;
385{
ce8a8b2f
AM
386 /* Various efficient no-op patterns for aligning code labels.
387 Note: Don't try to assemble the instructions in the comments.
388 0L and 0w are not legal. */
252b5132
RH
389 static const char f32_1[] =
390 {0x90}; /* nop */
391 static const char f32_2[] =
392 {0x89,0xf6}; /* movl %esi,%esi */
393 static const char f32_3[] =
394 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
395 static const char f32_4[] =
396 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
397 static const char f32_5[] =
398 {0x90, /* nop */
399 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
400 static const char f32_6[] =
401 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
402 static const char f32_7[] =
403 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
404 static const char f32_8[] =
405 {0x90, /* nop */
406 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
407 static const char f32_9[] =
408 {0x89,0xf6, /* movl %esi,%esi */
409 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
410 static const char f32_10[] =
411 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
412 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
413 static const char f32_11[] =
414 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
415 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
416 static const char f32_12[] =
417 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
418 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
419 static const char f32_13[] =
420 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
421 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
422 static const char f32_14[] =
423 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
424 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
425 static const char f32_15[] =
426 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
427 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
c3332e24
AM
428 static const char f16_3[] =
429 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
252b5132
RH
430 static const char f16_4[] =
431 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
432 static const char f16_5[] =
433 {0x90, /* nop */
434 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
435 static const char f16_6[] =
436 {0x89,0xf6, /* mov %si,%si */
437 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
438 static const char f16_7[] =
439 {0x8d,0x74,0x00, /* lea 0(%si),%si */
440 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
441 static const char f16_8[] =
442 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
443 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
444 static const char *const f32_patt[] = {
445 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
446 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
447 };
448 static const char *const f16_patt[] = {
c3332e24 449 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
252b5132
RH
450 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
451 };
452
3e73aa7c
JH
453 /* ??? We can't use these fillers for x86_64, since they often kills the
454 upper halves. Solve later. */
455 if (flag_code == CODE_64BIT)
456 count = 1;
457
252b5132
RH
458 if (count > 0 && count <= 15)
459 {
3e73aa7c 460 if (flag_code == CODE_16BIT)
252b5132 461 {
47926f60
KH
462 memcpy (fragP->fr_literal + fragP->fr_fix,
463 f16_patt[count - 1], count);
464 if (count > 8)
465 /* Adjust jump offset. */
252b5132
RH
466 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
467 }
468 else
47926f60
KH
469 memcpy (fragP->fr_literal + fragP->fr_fix,
470 f32_patt[count - 1], count);
252b5132
RH
471 fragP->fr_var = count;
472 }
473}
474
475static char *output_invalid PARAMS ((int c));
476static int i386_operand PARAMS ((char *operand_string));
477static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
478static const reg_entry *parse_register PARAMS ((char *reg_string,
479 char **end_op));
480
481#ifndef I386COFF
482static void s_bss PARAMS ((int));
483#endif
484
ce8a8b2f 485symbolS *GOT_symbol; /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
252b5132
RH
486
487static INLINE unsigned int
488mode_from_disp_size (t)
489 unsigned int t;
490{
3e73aa7c 491 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
252b5132
RH
492}
493
494static INLINE int
495fits_in_signed_byte (num)
847f7ad4 496 offsetT num;
252b5132
RH
497{
498 return (num >= -128) && (num <= 127);
47926f60 499}
252b5132
RH
500
501static INLINE int
502fits_in_unsigned_byte (num)
847f7ad4 503 offsetT num;
252b5132
RH
504{
505 return (num & 0xff) == num;
47926f60 506}
252b5132
RH
507
508static INLINE int
509fits_in_unsigned_word (num)
847f7ad4 510 offsetT num;
252b5132
RH
511{
512 return (num & 0xffff) == num;
47926f60 513}
252b5132
RH
514
515static INLINE int
516fits_in_signed_word (num)
847f7ad4 517 offsetT num;
252b5132
RH
518{
519 return (-32768 <= num) && (num <= 32767);
47926f60 520}
3e73aa7c
JH
521static INLINE int
522fits_in_signed_long (num)
523 offsetT num ATTRIBUTE_UNUSED;
524{
525#ifndef BFD64
526 return 1;
527#else
528 return (!(((offsetT) -1 << 31) & num)
529 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
530#endif
531} /* fits_in_signed_long() */
532static INLINE int
533fits_in_unsigned_long (num)
534 offsetT num ATTRIBUTE_UNUSED;
535{
536#ifndef BFD64
537 return 1;
538#else
539 return (num & (((offsetT) 2 << 31) - 1)) == num;
540#endif
541} /* fits_in_unsigned_long() */
252b5132
RH
542
543static int
544smallest_imm_type (num)
847f7ad4 545 offsetT num;
252b5132 546{
3e73aa7c
JH
547 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64)
548 && !(cpu_arch_flags & (CpuUnknown)))
e413e4e9
AM
549 {
550 /* This code is disabled on the 486 because all the Imm1 forms
551 in the opcode table are slower on the i486. They're the
552 versions with the implicitly specified single-position
553 displacement, which has another syntax if you really want to
554 use that form. */
555 if (num == 1)
3e73aa7c 556 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
e413e4e9 557 }
252b5132 558 return (fits_in_signed_byte (num)
3e73aa7c 559 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 560 : fits_in_unsigned_byte (num)
3e73aa7c 561 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 562 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
3e73aa7c
JH
563 ? (Imm16 | Imm32 | Imm32S | Imm64)
564 : fits_in_signed_long (num)
565 ? (Imm32 | Imm32S | Imm64)
566 : fits_in_unsigned_long (num)
567 ? (Imm32 | Imm64)
568 : Imm64);
47926f60 569}
252b5132 570
847f7ad4
AM
571static offsetT
572offset_in_range (val, size)
573 offsetT val;
574 int size;
575{
508866be 576 addressT mask;
ba2adb93 577
847f7ad4
AM
578 switch (size)
579 {
508866be
L
580 case 1: mask = ((addressT) 1 << 8) - 1; break;
581 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 582 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
583#ifdef BFD64
584 case 8: mask = ((addressT) 2 << 63) - 1; break;
585#endif
47926f60 586 default: abort ();
847f7ad4
AM
587 }
588
ba2adb93 589 /* If BFD64, sign extend val. */
3e73aa7c
JH
590 if (!use_rela_relocations)
591 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
592 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
ba2adb93 593
47926f60 594 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
595 {
596 char buf1[40], buf2[40];
597
598 sprint_value (buf1, val);
599 sprint_value (buf2, val & mask);
600 as_warn (_("%s shortened to %s"), buf1, buf2);
601 }
602 return val & mask;
603}
604
252b5132
RH
605/* Returns 0 if attempting to add a prefix where one from the same
606 class already exists, 1 if non rep/repne added, 2 if rep/repne
607 added. */
608static int
609add_prefix (prefix)
610 unsigned int prefix;
611{
612 int ret = 1;
613 int q;
614
3e73aa7c
JH
615 if (prefix >= 0x40 && prefix < 0x50 && flag_code == CODE_64BIT)
616 q = REX_PREFIX;
617 else
618 switch (prefix)
619 {
620 default:
621 abort ();
622
623 case CS_PREFIX_OPCODE:
624 case DS_PREFIX_OPCODE:
625 case ES_PREFIX_OPCODE:
626 case FS_PREFIX_OPCODE:
627 case GS_PREFIX_OPCODE:
628 case SS_PREFIX_OPCODE:
629 q = SEG_PREFIX;
630 break;
252b5132 631
3e73aa7c
JH
632 case REPNE_PREFIX_OPCODE:
633 case REPE_PREFIX_OPCODE:
634 ret = 2;
635 /* fall thru */
636 case LOCK_PREFIX_OPCODE:
637 q = LOCKREP_PREFIX;
638 break;
252b5132 639
3e73aa7c
JH
640 case FWAIT_OPCODE:
641 q = WAIT_PREFIX;
642 break;
252b5132 643
3e73aa7c
JH
644 case ADDR_PREFIX_OPCODE:
645 q = ADDR_PREFIX;
646 break;
252b5132 647
3e73aa7c
JH
648 case DATA_PREFIX_OPCODE:
649 q = DATA_PREFIX;
650 break;
651 }
252b5132
RH
652
653 if (i.prefix[q])
654 {
655 as_bad (_("same type of prefix used twice"));
656 return 0;
657 }
658
659 i.prefixes += 1;
660 i.prefix[q] = prefix;
661 return ret;
662}
663
664static void
3e73aa7c 665set_code_flag (value)
e5cb08ac 666 int value;
eecb386c 667{
3e73aa7c
JH
668 flag_code = value;
669 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
670 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
671 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
672 {
673 as_bad (_("64bit mode not supported on this CPU."));
674 }
675 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
676 {
677 as_bad (_("32bit mode not supported on this CPU."));
678 }
eecb386c
AM
679 stackop_size = '\0';
680}
681
682static void
3e73aa7c
JH
683set_16bit_gcc_code_flag (new_code_flag)
684 int new_code_flag;
252b5132 685{
3e73aa7c
JH
686 flag_code = new_code_flag;
687 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
688 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
689 stackop_size = 'l';
252b5132
RH
690}
691
692static void
693set_intel_syntax (syntax_flag)
eecb386c 694 int syntax_flag;
252b5132
RH
695{
696 /* Find out if register prefixing is specified. */
697 int ask_naked_reg = 0;
698
699 SKIP_WHITESPACE ();
700 if (! is_end_of_line[(unsigned char) *input_line_pointer])
701 {
702 char *string = input_line_pointer;
703 int e = get_symbol_end ();
704
47926f60 705 if (strcmp (string, "prefix") == 0)
252b5132 706 ask_naked_reg = 1;
47926f60 707 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
708 ask_naked_reg = -1;
709 else
d0b47220 710 as_bad (_("bad argument to syntax directive."));
252b5132
RH
711 *input_line_pointer = e;
712 }
713 demand_empty_rest_of_line ();
c3332e24 714
252b5132
RH
715 intel_syntax = syntax_flag;
716
717 if (ask_naked_reg == 0)
718 {
719#ifdef BFD_ASSEMBLER
720 allow_naked_reg = (intel_syntax
24eab124 721 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132 722#else
47926f60
KH
723 /* Conservative default. */
724 allow_naked_reg = 0;
252b5132
RH
725#endif
726 }
727 else
728 allow_naked_reg = (ask_naked_reg < 0);
729}
730
e413e4e9
AM
731static void
732set_cpu_arch (dummy)
47926f60 733 int dummy ATTRIBUTE_UNUSED;
e413e4e9 734{
47926f60 735 SKIP_WHITESPACE ();
e413e4e9
AM
736
737 if (! is_end_of_line[(unsigned char) *input_line_pointer])
738 {
739 char *string = input_line_pointer;
740 int e = get_symbol_end ();
741 int i;
742
743 for (i = 0; cpu_arch[i].name; i++)
744 {
745 if (strcmp (string, cpu_arch[i].name) == 0)
746 {
747 cpu_arch_name = cpu_arch[i].name;
fddf5b5b
AM
748 cpu_arch_flags = (cpu_arch[i].flags
749 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
e413e4e9
AM
750 break;
751 }
752 }
753 if (!cpu_arch[i].name)
754 as_bad (_("no such architecture: `%s'"), string);
755
756 *input_line_pointer = e;
757 }
758 else
759 as_bad (_("missing cpu architecture"));
760
fddf5b5b
AM
761 no_cond_jump_promotion = 0;
762 if (*input_line_pointer == ','
763 && ! is_end_of_line[(unsigned char) input_line_pointer[1]])
764 {
765 char *string = ++input_line_pointer;
766 int e = get_symbol_end ();
767
768 if (strcmp (string, "nojumps") == 0)
769 no_cond_jump_promotion = 1;
770 else if (strcmp (string, "jumps") == 0)
771 ;
772 else
773 as_bad (_("no such architecture modifier: `%s'"), string);
774
775 *input_line_pointer = e;
776 }
777
e413e4e9
AM
778 demand_empty_rest_of_line ();
779}
780
252b5132
RH
781const pseudo_typeS md_pseudo_table[] =
782{
252b5132
RH
783#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
784 {"align", s_align_bytes, 0},
785#else
786 {"align", s_align_ptwo, 0},
e413e4e9
AM
787#endif
788 {"arch", set_cpu_arch, 0},
789#ifndef I386COFF
790 {"bss", s_bss, 0},
252b5132
RH
791#endif
792 {"ffloat", float_cons, 'f'},
793 {"dfloat", float_cons, 'd'},
794 {"tfloat", float_cons, 'x'},
795 {"value", cons, 2},
796 {"noopt", s_ignore, 0},
797 {"optim", s_ignore, 0},
3e73aa7c
JH
798 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
799 {"code16", set_code_flag, CODE_16BIT},
800 {"code32", set_code_flag, CODE_32BIT},
801 {"code64", set_code_flag, CODE_64BIT},
252b5132
RH
802 {"intel_syntax", set_intel_syntax, 1},
803 {"att_syntax", set_intel_syntax, 0},
316e2c05
RH
804 {"file", dwarf2_directive_file, 0},
805 {"loc", dwarf2_directive_loc, 0},
252b5132
RH
806 {0, 0, 0}
807};
808
47926f60 809/* For interface with expression (). */
252b5132
RH
810extern char *input_line_pointer;
811
47926f60 812/* Hash table for instruction mnemonic lookup. */
252b5132 813static struct hash_control *op_hash;
47926f60
KH
814
815/* Hash table for register lookup. */
252b5132
RH
816static struct hash_control *reg_hash;
817\f
b9d79e03
JH
818#ifdef BFD_ASSEMBLER
819unsigned long
820i386_mach ()
821{
822 if (!strcmp (default_arch, "x86_64"))
823 return bfd_mach_x86_64;
824 else if (!strcmp (default_arch, "i386"))
825 return bfd_mach_i386_i386;
826 else
827 as_fatal (_("Unknown architecture"));
828}
829#endif
830\f
252b5132
RH
831void
832md_begin ()
833{
834 const char *hash_err;
835
47926f60 836 /* Initialize op_hash hash table. */
252b5132
RH
837 op_hash = hash_new ();
838
839 {
840 register const template *optab;
841 register templates *core_optab;
842
47926f60
KH
843 /* Setup for loop. */
844 optab = i386_optab;
252b5132
RH
845 core_optab = (templates *) xmalloc (sizeof (templates));
846 core_optab->start = optab;
847
848 while (1)
849 {
850 ++optab;
851 if (optab->name == NULL
852 || strcmp (optab->name, (optab - 1)->name) != 0)
853 {
854 /* different name --> ship out current template list;
47926f60 855 add to hash table; & begin anew. */
252b5132
RH
856 core_optab->end = optab;
857 hash_err = hash_insert (op_hash,
858 (optab - 1)->name,
859 (PTR) core_optab);
860 if (hash_err)
861 {
252b5132
RH
862 as_fatal (_("Internal Error: Can't hash %s: %s"),
863 (optab - 1)->name,
864 hash_err);
865 }
866 if (optab->name == NULL)
867 break;
868 core_optab = (templates *) xmalloc (sizeof (templates));
869 core_optab->start = optab;
870 }
871 }
872 }
873
47926f60 874 /* Initialize reg_hash hash table. */
252b5132
RH
875 reg_hash = hash_new ();
876 {
877 register const reg_entry *regtab;
878
879 for (regtab = i386_regtab;
880 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
881 regtab++)
882 {
883 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
884 if (hash_err)
3e73aa7c
JH
885 as_fatal (_("Internal Error: Can't hash %s: %s"),
886 regtab->reg_name,
887 hash_err);
252b5132
RH
888 }
889 }
890
47926f60 891 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132
RH
892 {
893 register int c;
894 register char *p;
895
896 for (c = 0; c < 256; c++)
897 {
898 if (isdigit (c))
899 {
900 digit_chars[c] = c;
901 mnemonic_chars[c] = c;
902 register_chars[c] = c;
903 operand_chars[c] = c;
904 }
905 else if (islower (c))
906 {
907 mnemonic_chars[c] = c;
908 register_chars[c] = c;
909 operand_chars[c] = c;
910 }
911 else if (isupper (c))
912 {
913 mnemonic_chars[c] = tolower (c);
914 register_chars[c] = mnemonic_chars[c];
915 operand_chars[c] = c;
916 }
917
918 if (isalpha (c) || isdigit (c))
919 identifier_chars[c] = c;
920 else if (c >= 128)
921 {
922 identifier_chars[c] = c;
923 operand_chars[c] = c;
924 }
925 }
926
927#ifdef LEX_AT
928 identifier_chars['@'] = '@';
929#endif
252b5132
RH
930 digit_chars['-'] = '-';
931 identifier_chars['_'] = '_';
932 identifier_chars['.'] = '.';
933
934 for (p = operand_special_chars; *p != '\0'; p++)
935 operand_chars[(unsigned char) *p] = *p;
936 }
937
938#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
939 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
940 {
941 record_alignment (text_section, 2);
942 record_alignment (data_section, 2);
943 record_alignment (bss_section, 2);
944 }
945#endif
946}
947
948void
949i386_print_statistics (file)
950 FILE *file;
951{
952 hash_print_statistics (file, "i386 opcode", op_hash);
953 hash_print_statistics (file, "i386 register", reg_hash);
954}
955\f
252b5132
RH
956#ifdef DEBUG386
957
ce8a8b2f 958/* Debugging routines for md_assemble. */
252b5132
RH
959static void pi PARAMS ((char *, i386_insn *));
960static void pte PARAMS ((template *));
961static void pt PARAMS ((unsigned int));
962static void pe PARAMS ((expressionS *));
963static void ps PARAMS ((symbolS *));
964
965static void
966pi (line, x)
967 char *line;
968 i386_insn *x;
969{
09f131f2 970 unsigned int i;
252b5132
RH
971
972 fprintf (stdout, "%s: template ", line);
973 pte (&x->tm);
09f131f2
JH
974 fprintf (stdout, " address: base %s index %s scale %x\n",
975 x->base_reg ? x->base_reg->reg_name : "none",
976 x->index_reg ? x->index_reg->reg_name : "none",
977 x->log2_scale_factor);
978 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 979 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
980 fprintf (stdout, " sib: base %x index %x scale %x\n",
981 x->sib.base, x->sib.index, x->sib.scale);
982 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
983 x->rex.mode64, x->rex.extX, x->rex.extY, x->rex.extZ);
252b5132
RH
984 for (i = 0; i < x->operands; i++)
985 {
986 fprintf (stdout, " #%d: ", i + 1);
987 pt (x->types[i]);
988 fprintf (stdout, "\n");
989 if (x->types[i]
3f4438ab 990 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
520dc8e8 991 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
252b5132 992 if (x->types[i] & Imm)
520dc8e8 993 pe (x->op[i].imms);
252b5132 994 if (x->types[i] & Disp)
520dc8e8 995 pe (x->op[i].disps);
252b5132
RH
996 }
997}
998
999static void
1000pte (t)
1001 template *t;
1002{
09f131f2 1003 unsigned int i;
252b5132 1004 fprintf (stdout, " %d operands ", t->operands);
47926f60 1005 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
1006 if (t->extension_opcode != None)
1007 fprintf (stdout, "ext %x ", t->extension_opcode);
1008 if (t->opcode_modifier & D)
1009 fprintf (stdout, "D");
1010 if (t->opcode_modifier & W)
1011 fprintf (stdout, "W");
1012 fprintf (stdout, "\n");
1013 for (i = 0; i < t->operands; i++)
1014 {
1015 fprintf (stdout, " #%d type ", i + 1);
1016 pt (t->operand_types[i]);
1017 fprintf (stdout, "\n");
1018 }
1019}
1020
1021static void
1022pe (e)
1023 expressionS *e;
1024{
24eab124 1025 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
1026 fprintf (stdout, " add_number %ld (%lx)\n",
1027 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
1028 if (e->X_add_symbol)
1029 {
1030 fprintf (stdout, " add_symbol ");
1031 ps (e->X_add_symbol);
1032 fprintf (stdout, "\n");
1033 }
1034 if (e->X_op_symbol)
1035 {
1036 fprintf (stdout, " op_symbol ");
1037 ps (e->X_op_symbol);
1038 fprintf (stdout, "\n");
1039 }
1040}
1041
1042static void
1043ps (s)
1044 symbolS *s;
1045{
1046 fprintf (stdout, "%s type %s%s",
1047 S_GET_NAME (s),
1048 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1049 segment_name (S_GET_SEGMENT (s)));
1050}
1051
1052struct type_name
1053 {
1054 unsigned int mask;
1055 char *tname;
1056 }
1057
1058type_names[] =
1059{
1060 { Reg8, "r8" },
1061 { Reg16, "r16" },
1062 { Reg32, "r32" },
09f131f2 1063 { Reg64, "r64" },
252b5132
RH
1064 { Imm8, "i8" },
1065 { Imm8S, "i8s" },
1066 { Imm16, "i16" },
1067 { Imm32, "i32" },
09f131f2
JH
1068 { Imm32S, "i32s" },
1069 { Imm64, "i64" },
252b5132
RH
1070 { Imm1, "i1" },
1071 { BaseIndex, "BaseIndex" },
1072 { Disp8, "d8" },
1073 { Disp16, "d16" },
1074 { Disp32, "d32" },
09f131f2
JH
1075 { Disp32S, "d32s" },
1076 { Disp64, "d64" },
252b5132
RH
1077 { InOutPortReg, "InOutPortReg" },
1078 { ShiftCount, "ShiftCount" },
1079 { Control, "control reg" },
1080 { Test, "test reg" },
1081 { Debug, "debug reg" },
1082 { FloatReg, "FReg" },
1083 { FloatAcc, "FAcc" },
1084 { SReg2, "SReg2" },
1085 { SReg3, "SReg3" },
1086 { Acc, "Acc" },
1087 { JumpAbsolute, "Jump Absolute" },
1088 { RegMMX, "rMMX" },
3f4438ab 1089 { RegXMM, "rXMM" },
252b5132
RH
1090 { EsSeg, "es" },
1091 { 0, "" }
1092};
1093
1094static void
1095pt (t)
1096 unsigned int t;
1097{
1098 register struct type_name *ty;
1099
09f131f2
JH
1100 for (ty = type_names; ty->mask; ty++)
1101 if (t & ty->mask)
1102 fprintf (stdout, "%s, ", ty->tname);
252b5132
RH
1103 fflush (stdout);
1104}
1105
1106#endif /* DEBUG386 */
1107\f
1108int
1109tc_i386_force_relocation (fixp)
1110 struct fix *fixp;
1111{
1112#ifdef BFD_ASSEMBLER
1113 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1114 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1115 return 1;
1116 return 0;
1117#else
ce8a8b2f 1118 /* For COFF. */
f6af82bd 1119 return fixp->fx_r_type == 7;
252b5132
RH
1120#endif
1121}
1122
1123#ifdef BFD_ASSEMBLER
252b5132
RH
1124
1125static bfd_reloc_code_real_type
3e73aa7c 1126reloc (size, pcrel, sign, other)
252b5132
RH
1127 int size;
1128 int pcrel;
3e73aa7c 1129 int sign;
252b5132
RH
1130 bfd_reloc_code_real_type other;
1131{
47926f60
KH
1132 if (other != NO_RELOC)
1133 return other;
252b5132
RH
1134
1135 if (pcrel)
1136 {
3e73aa7c 1137 if (!sign)
e5cb08ac 1138 as_bad (_("There are no unsigned pc-relative relocations"));
252b5132
RH
1139 switch (size)
1140 {
1141 case 1: return BFD_RELOC_8_PCREL;
1142 case 2: return BFD_RELOC_16_PCREL;
1143 case 4: return BFD_RELOC_32_PCREL;
1144 }
d0b47220 1145 as_bad (_("can not do %d byte pc-relative relocation"), size);
252b5132
RH
1146 }
1147 else
1148 {
3e73aa7c 1149 if (sign)
e5cb08ac 1150 switch (size)
3e73aa7c
JH
1151 {
1152 case 4: return BFD_RELOC_X86_64_32S;
1153 }
1154 else
1155 switch (size)
1156 {
1157 case 1: return BFD_RELOC_8;
1158 case 2: return BFD_RELOC_16;
1159 case 4: return BFD_RELOC_32;
1160 case 8: return BFD_RELOC_64;
1161 }
1162 as_bad (_("can not do %s %d byte relocation"),
1163 sign ? "signed" : "unsigned", size);
252b5132
RH
1164 }
1165
bfb32b52 1166 abort ();
252b5132
RH
1167 return BFD_RELOC_NONE;
1168}
1169
47926f60
KH
1170/* Here we decide which fixups can be adjusted to make them relative to
1171 the beginning of the section instead of the symbol. Basically we need
1172 to make sure that the dynamic relocations are done correctly, so in
1173 some cases we force the original symbol to be used. */
1174
252b5132 1175int
c0c949c7 1176tc_i386_fix_adjustable (fixP)
47926f60 1177 fixS *fixP;
252b5132 1178{
6d249963 1179#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
79d292aa
ILT
1180 /* Prevent all adjustments to global symbols, or else dynamic
1181 linking will not work correctly. */
b98ef147
AM
1182 if (S_IS_EXTERNAL (fixP->fx_addsy)
1183 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
1184 return 0;
1185#endif
ce8a8b2f 1186 /* adjust_reloc_syms doesn't know about the GOT. */
252b5132
RH
1187 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1188 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1189 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3e73aa7c
JH
1190 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1191 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 1192 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
252b5132
RH
1193 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1194 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1195 return 0;
1196 return 1;
1197}
1198#else
ec56dfb4
L
1199#define reloc(SIZE,PCREL,SIGN,OTHER) 0
1200#define BFD_RELOC_16 0
1201#define BFD_RELOC_32 0
1202#define BFD_RELOC_16_PCREL 0
1203#define BFD_RELOC_32_PCREL 0
1204#define BFD_RELOC_386_PLT32 0
1205#define BFD_RELOC_386_GOT32 0
1206#define BFD_RELOC_386_GOTOFF 0
1207#define BFD_RELOC_X86_64_PLT32 0
1208#define BFD_RELOC_X86_64_GOT32 0
1209#define BFD_RELOC_X86_64_GOTPCREL 0
252b5132
RH
1210#endif
1211
47926f60 1212static int intel_float_operand PARAMS ((char *mnemonic));
b4cac588
AM
1213
1214static int
252b5132
RH
1215intel_float_operand (mnemonic)
1216 char *mnemonic;
1217{
47926f60 1218 if (mnemonic[0] == 'f' && mnemonic[1] == 'i')
cc5ca5ce 1219 return 2;
252b5132
RH
1220
1221 if (mnemonic[0] == 'f')
1222 return 1;
1223
1224 return 0;
1225}
1226
1227/* This is the guts of the machine-dependent assembler. LINE points to a
1228 machine dependent instruction. This function is supposed to emit
1229 the frags/bytes it assembles to. */
1230
1231void
1232md_assemble (line)
1233 char *line;
1234{
47926f60 1235 /* Points to template once we've found it. */
252b5132
RH
1236 const template *t;
1237
fddf5b5b
AM
1238 /* Count the size of the instruction generated. Does not include
1239 variable part of jump insns before relax. */
252b5132
RH
1240 int insn_size = 0;
1241
1242 int j;
1243
1244 char mnemonic[MAX_MNEM_SIZE];
1245
47926f60 1246 /* Initialize globals. */
252b5132
RH
1247 memset (&i, '\0', sizeof (i));
1248 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 1249 i.reloc[j] = NO_RELOC;
252b5132
RH
1250 memset (disp_expressions, '\0', sizeof (disp_expressions));
1251 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 1252 save_stack_p = save_stack;
252b5132
RH
1253
1254 /* First parse an instruction mnemonic & call i386_operand for the operands.
1255 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 1256 start of a (possibly prefixed) mnemonic. */
252b5132
RH
1257 {
1258 char *l = line;
1259 char *token_start = l;
1260 char *mnem_p;
1261
47926f60 1262 /* Non-zero if we found a prefix only acceptable with string insns. */
252b5132
RH
1263 const char *expecting_string_instruction = NULL;
1264
1265 while (1)
1266 {
1267 mnem_p = mnemonic;
1268 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1269 {
1270 mnem_p++;
1271 if (mnem_p >= mnemonic + sizeof (mnemonic))
1272 {
e413e4e9 1273 as_bad (_("no such instruction: `%s'"), token_start);
252b5132
RH
1274 return;
1275 }
1276 l++;
1277 }
1278 if (!is_space_char (*l)
1279 && *l != END_OF_INSN
1280 && *l != PREFIX_SEPARATOR)
1281 {
1282 as_bad (_("invalid character %s in mnemonic"),
1283 output_invalid (*l));
1284 return;
1285 }
1286 if (token_start == l)
1287 {
1288 if (*l == PREFIX_SEPARATOR)
1289 as_bad (_("expecting prefix; got nothing"));
1290 else
1291 as_bad (_("expecting mnemonic; got nothing"));
1292 return;
1293 }
1294
1295 /* Look up instruction (or prefix) via hash table. */
1296 current_templates = hash_find (op_hash, mnemonic);
1297
1298 if (*l != END_OF_INSN
1299 && (! is_space_char (*l) || l[1] != END_OF_INSN)
1300 && current_templates
1301 && (current_templates->start->opcode_modifier & IsPrefix))
1302 {
1303 /* If we are in 16-bit mode, do not allow addr16 or data16.
1304 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1305 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1306 && (((current_templates->start->opcode_modifier & Size32) != 0)
3e73aa7c 1307 ^ (flag_code == CODE_16BIT)))
252b5132
RH
1308 {
1309 as_bad (_("redundant %s prefix"),
1310 current_templates->start->name);
1311 return;
1312 }
1313 /* Add prefix, checking for repeated prefixes. */
1314 switch (add_prefix (current_templates->start->base_opcode))
1315 {
1316 case 0:
1317 return;
1318 case 2:
47926f60 1319 expecting_string_instruction = current_templates->start->name;
252b5132
RH
1320 break;
1321 }
1322 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1323 token_start = ++l;
1324 }
1325 else
1326 break;
1327 }
1328
1329 if (!current_templates)
1330 {
24eab124 1331 /* See if we can get a match by trimming off a suffix. */
252b5132
RH
1332 switch (mnem_p[-1])
1333 {
252b5132
RH
1334 case WORD_MNEM_SUFFIX:
1335 case BYTE_MNEM_SUFFIX:
3e73aa7c 1336 case QWORD_MNEM_SUFFIX:
252b5132
RH
1337 i.suffix = mnem_p[-1];
1338 mnem_p[-1] = '\0';
1339 current_templates = hash_find (op_hash, mnemonic);
24eab124 1340 break;
f16b83df
JH
1341 case SHORT_MNEM_SUFFIX:
1342 case LONG_MNEM_SUFFIX:
1343 if (!intel_syntax)
1344 {
1345 i.suffix = mnem_p[-1];
1346 mnem_p[-1] = '\0';
1347 current_templates = hash_find (op_hash, mnemonic);
1348 }
1349 break;
24eab124 1350
ce8a8b2f 1351 /* Intel Syntax. */
f16b83df 1352 case 'd':
24eab124
AM
1353 if (intel_syntax)
1354 {
f16b83df
JH
1355 if (intel_float_operand (mnemonic))
1356 i.suffix = SHORT_MNEM_SUFFIX;
1357 else
1358 i.suffix = LONG_MNEM_SUFFIX;
24eab124
AM
1359 mnem_p[-1] = '\0';
1360 current_templates = hash_find (op_hash, mnemonic);
24eab124 1361 }
f16b83df 1362 break;
252b5132
RH
1363 }
1364 if (!current_templates)
1365 {
e413e4e9 1366 as_bad (_("no such instruction: `%s'"), token_start);
252b5132
RH
1367 return;
1368 }
1369 }
1370
e413e4e9
AM
1371 /* Check if instruction is supported on specified architecture. */
1372 if (cpu_arch_flags != 0)
1373 {
3e73aa7c
JH
1374 if ((current_templates->start->cpu_flags & ~(Cpu64 | CpuNo64))
1375 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64)))
e413e4e9
AM
1376 {
1377 as_warn (_("`%s' is not supported on `%s'"),
1378 current_templates->start->name, cpu_arch_name);
1379 }
3e73aa7c 1380 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
e413e4e9
AM
1381 {
1382 as_warn (_("use .code16 to ensure correct addressing mode"));
1383 }
1384 }
1385
ce8a8b2f 1386 /* Check for rep/repne without a string instruction. */
252b5132
RH
1387 if (expecting_string_instruction
1388 && !(current_templates->start->opcode_modifier & IsString))
1389 {
1390 as_bad (_("expecting string instruction after `%s'"),
1391 expecting_string_instruction);
1392 return;
1393 }
1394
47926f60 1395 /* There may be operands to parse. */
252b5132
RH
1396 if (*l != END_OF_INSN)
1397 {
47926f60 1398 /* 1 if operand is pending after ','. */
252b5132
RH
1399 unsigned int expecting_operand = 0;
1400
47926f60 1401 /* Non-zero if operand parens not balanced. */
252b5132
RH
1402 unsigned int paren_not_balanced;
1403
1404 do
1405 {
ce8a8b2f 1406 /* Skip optional white space before operand. */
252b5132
RH
1407 if (is_space_char (*l))
1408 ++l;
1409 if (!is_operand_char (*l) && *l != END_OF_INSN)
1410 {
1411 as_bad (_("invalid character %s before operand %d"),
1412 output_invalid (*l),
1413 i.operands + 1);
1414 return;
1415 }
1416 token_start = l; /* after white space */
1417 paren_not_balanced = 0;
1418 while (paren_not_balanced || *l != ',')
1419 {
1420 if (*l == END_OF_INSN)
1421 {
1422 if (paren_not_balanced)
1423 {
24eab124 1424 if (!intel_syntax)
252b5132
RH
1425 as_bad (_("unbalanced parenthesis in operand %d."),
1426 i.operands + 1);
24eab124 1427 else
252b5132
RH
1428 as_bad (_("unbalanced brackets in operand %d."),
1429 i.operands + 1);
1430 return;
1431 }
1432 else
1433 break; /* we are done */
1434 }
1435 else if (!is_operand_char (*l) && !is_space_char (*l))
1436 {
1437 as_bad (_("invalid character %s in operand %d"),
1438 output_invalid (*l),
1439 i.operands + 1);
1440 return;
1441 }
24eab124
AM
1442 if (!intel_syntax)
1443 {
252b5132
RH
1444 if (*l == '(')
1445 ++paren_not_balanced;
1446 if (*l == ')')
1447 --paren_not_balanced;
24eab124
AM
1448 }
1449 else
1450 {
252b5132
RH
1451 if (*l == '[')
1452 ++paren_not_balanced;
1453 if (*l == ']')
1454 --paren_not_balanced;
24eab124 1455 }
252b5132
RH
1456 l++;
1457 }
1458 if (l != token_start)
47926f60 1459 { /* Yes, we've read in another operand. */
252b5132
RH
1460 unsigned int operand_ok;
1461 this_operand = i.operands++;
1462 if (i.operands > MAX_OPERANDS)
1463 {
1464 as_bad (_("spurious operands; (%d operands/instruction max)"),
1465 MAX_OPERANDS);
1466 return;
1467 }
47926f60 1468 /* Now parse operand adding info to 'i' as we go along. */
252b5132
RH
1469 END_STRING_AND_SAVE (l);
1470
24eab124 1471 if (intel_syntax)
47926f60
KH
1472 operand_ok =
1473 i386_intel_operand (token_start,
1474 intel_float_operand (mnemonic));
24eab124
AM
1475 else
1476 operand_ok = i386_operand (token_start);
252b5132 1477
ce8a8b2f 1478 RESTORE_END_STRING (l);
252b5132
RH
1479 if (!operand_ok)
1480 return;
1481 }
1482 else
1483 {
1484 if (expecting_operand)
1485 {
1486 expecting_operand_after_comma:
1487 as_bad (_("expecting operand after ','; got nothing"));
1488 return;
1489 }
1490 if (*l == ',')
1491 {
1492 as_bad (_("expecting operand before ','; got nothing"));
1493 return;
1494 }
1495 }
1496
ce8a8b2f 1497 /* Now *l must be either ',' or END_OF_INSN. */
252b5132
RH
1498 if (*l == ',')
1499 {
1500 if (*++l == END_OF_INSN)
ce8a8b2f
AM
1501 {
1502 /* Just skip it, if it's \n complain. */
252b5132
RH
1503 goto expecting_operand_after_comma;
1504 }
1505 expecting_operand = 1;
1506 }
1507 }
ce8a8b2f 1508 while (*l != END_OF_INSN);
252b5132
RH
1509 }
1510 }
1511
1512 /* Now we've parsed the mnemonic into a set of templates, and have the
1513 operands at hand.
1514
1515 Next, we find a template that matches the given insn,
1516 making sure the overlap of the given operands types is consistent
47926f60 1517 with the template operand types. */
252b5132
RH
1518
1519#define MATCH(overlap, given, template) \
3138f287
AM
1520 ((overlap & ~JumpAbsolute) \
1521 && ((given) & (BaseIndex|JumpAbsolute)) == ((overlap) & (BaseIndex|JumpAbsolute)))
252b5132
RH
1522
1523 /* If given types r0 and r1 are registers they must be of the same type
1524 unless the expected operand type register overlap is null.
1525 Note that Acc in a template matches every size of reg. */
1526#define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
1527 ( ((g0) & Reg) == 0 || ((g1) & Reg) == 0 || \
1528 ((g0) & Reg) == ((g1) & Reg) || \
1529 ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
1530
1531 {
1532 register unsigned int overlap0, overlap1;
252b5132
RH
1533 unsigned int overlap2;
1534 unsigned int found_reverse_match;
1535 int suffix_check;
1536
cc5ca5ce
AM
1537 /* All intel opcodes have reversed operands except for "bound" and
1538 "enter". We also don't reverse intersegment "jmp" and "call"
1539 instructions with 2 immediate operands so that the immediate segment
1540 precedes the offset, as it does when in AT&T mode. "enter" and the
1541 intersegment "jmp" and "call" instructions are the only ones that
1542 have two immediate operands. */
520dc8e8 1543 if (intel_syntax && i.operands > 1
cc5ca5ce
AM
1544 && (strcmp (mnemonic, "bound") != 0)
1545 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
252b5132 1546 {
520dc8e8 1547 union i386_op temp_op;
24eab124 1548 unsigned int temp_type;
f3c180ae 1549 RELOC_ENUM temp_reloc;
24eab124 1550 int xchg1 = 0;
ab9da554 1551 int xchg2 = 0;
252b5132 1552
24eab124
AM
1553 if (i.operands == 2)
1554 {
1555 xchg1 = 0;
1556 xchg2 = 1;
1557 }
1558 else if (i.operands == 3)
1559 {
1560 xchg1 = 0;
1561 xchg2 = 2;
1562 }
520dc8e8
AM
1563 temp_type = i.types[xchg2];
1564 i.types[xchg2] = i.types[xchg1];
1565 i.types[xchg1] = temp_type;
1566 temp_op = i.op[xchg2];
1567 i.op[xchg2] = i.op[xchg1];
1568 i.op[xchg1] = temp_op;
1ae12ab7
AM
1569 temp_reloc = i.reloc[xchg2];
1570 i.reloc[xchg2] = i.reloc[xchg1];
1571 i.reloc[xchg1] = temp_reloc;
36bf8ab9
AM
1572
1573 if (i.mem_operands == 2)
1574 {
1575 const seg_entry *temp_seg;
1576 temp_seg = i.seg[0];
1577 i.seg[0] = i.seg[1];
1578 i.seg[1] = temp_seg;
1579 }
24eab124 1580 }
773f551c
AM
1581
1582 if (i.imm_operands)
1583 {
1584 /* Try to ensure constant immediates are represented in the smallest
1585 opcode possible. */
1586 char guess_suffix = 0;
1587 int op;
1588
1589 if (i.suffix)
1590 guess_suffix = i.suffix;
1591 else if (i.reg_operands)
1592 {
1593 /* Figure out a suffix from the last register operand specified.
1594 We can't do this properly yet, ie. excluding InOutPortReg,
1595 but the following works for instructions with immediates.
1596 In any case, we can't set i.suffix yet. */
47926f60 1597 for (op = i.operands; --op >= 0;)
773f551c
AM
1598 if (i.types[op] & Reg)
1599 {
1600 if (i.types[op] & Reg8)
1601 guess_suffix = BYTE_MNEM_SUFFIX;
1602 else if (i.types[op] & Reg16)
1603 guess_suffix = WORD_MNEM_SUFFIX;
3e73aa7c
JH
1604 else if (i.types[op] & Reg32)
1605 guess_suffix = LONG_MNEM_SUFFIX;
1606 else if (i.types[op] & Reg64)
1607 guess_suffix = QWORD_MNEM_SUFFIX;
773f551c
AM
1608 break;
1609 }
1610 }
3e73aa7c 1611 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
726c5dcd
AM
1612 guess_suffix = WORD_MNEM_SUFFIX;
1613
47926f60 1614 for (op = i.operands; --op >= 0;)
3e73aa7c 1615 if (i.types[op] & Imm)
773f551c 1616 {
3e73aa7c 1617 switch (i.op[op].imms->X_op)
e5cb08ac 1618 {
3e73aa7c
JH
1619 case O_constant:
1620 /* If a suffix is given, this operand may be shortened. */
1621 switch (guess_suffix)
1622 {
1623 case LONG_MNEM_SUFFIX:
1624 i.types[op] |= Imm32 | Imm64;
1625 break;
1626 case WORD_MNEM_SUFFIX:
1627 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1628 break;
1629 case BYTE_MNEM_SUFFIX:
1630 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1631 break;
1632 }
773f551c 1633
e5cb08ac
KH
1634 /* If this operand is at most 16 bits, convert it
1635 to a signed 16 bit number before trying to see
1636 whether it will fit in an even smaller size.
1637 This allows a 16-bit operand such as $0xffe0 to
1638 be recognised as within Imm8S range. */
3e73aa7c 1639 if ((i.types[op] & Imm16)
e5cb08ac 1640 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
3e73aa7c
JH
1641 {
1642 i.op[op].imms->X_add_number =
1643 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1644 }
1645 if ((i.types[op] & Imm32)
1646 && (i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1)) == 0)
1647 {
1648 i.op[op].imms->X_add_number =
1649 (i.op[op].imms->X_add_number ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1650 }
1651 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
1652 /* We must avoid matching of Imm32 templates when 64bit only immediate is available. */
1653 if (guess_suffix == QWORD_MNEM_SUFFIX)
1654 i.types[op] &= ~Imm32;
1655 break;
1656 case O_absent:
1657 case O_register:
bfb32b52 1658 abort ();
3e73aa7c
JH
1659 /* Symbols and expressions. */
1660 default:
1661 /* Convert symbolic operand to proper sizes for matching. */
1662 switch (guess_suffix)
1663 {
1664 case QWORD_MNEM_SUFFIX:
1665 i.types[op] = Imm64 | Imm32S;
1666 break;
1667 case LONG_MNEM_SUFFIX:
1668 i.types[op] = Imm32 | Imm64;
1669 break;
1670 case WORD_MNEM_SUFFIX:
1671 i.types[op] = Imm16 | Imm32 | Imm64;
1672 break;
1673 break;
1674 case BYTE_MNEM_SUFFIX:
1675 i.types[op] = Imm8 | Imm8S | Imm16 | Imm32S | Imm32;
1676 break;
1677 break;
1678 }
1679 break;
773f551c 1680 }
773f551c
AM
1681 }
1682 }
1683
45288df1
AM
1684 if (i.disp_operands)
1685 {
1686 /* Try to use the smallest displacement type too. */
1687 int op;
1688
47926f60 1689 for (op = i.operands; --op >= 0;)
45288df1 1690 if ((i.types[op] & Disp)
1ae12ab7 1691 && i.op[op].disps->X_op == O_constant)
45288df1
AM
1692 {
1693 offsetT disp = i.op[op].disps->X_add_number;
1694
1695 if (i.types[op] & Disp16)
1696 {
1697 /* We know this operand is at most 16 bits, so
1698 convert to a signed 16 bit number before trying
1699 to see whether it will fit in an even smaller
1700 size. */
47926f60 1701
45288df1
AM
1702 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
1703 }
3e73aa7c
JH
1704 else if (i.types[op] & Disp32)
1705 {
1706 /* We know this operand is at most 32 bits, so convert to a
1707 signed 32 bit number before trying to see whether it will
1708 fit in an even smaller size. */
1709 disp &= (((offsetT) 2 << 31) - 1);
1710 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1711 }
1712 if (flag_code == CODE_64BIT)
1713 {
1714 if (fits_in_signed_long (disp))
1715 i.types[op] |= Disp32S;
1716 if (fits_in_unsigned_long (disp))
1717 i.types[op] |= Disp32;
1718 }
1719 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
1720 && fits_in_signed_byte (disp))
45288df1
AM
1721 i.types[op] |= Disp8;
1722 }
1723 }
1724
252b5132
RH
1725 overlap0 = 0;
1726 overlap1 = 0;
1727 overlap2 = 0;
1728 found_reverse_match = 0;
1729 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
1730 ? No_bSuf
1731 : (i.suffix == WORD_MNEM_SUFFIX
1732 ? No_wSuf
1733 : (i.suffix == SHORT_MNEM_SUFFIX
1734 ? No_sSuf
1735 : (i.suffix == LONG_MNEM_SUFFIX
24eab124 1736 ? No_lSuf
3e73aa7c
JH
1737 : (i.suffix == QWORD_MNEM_SUFFIX
1738 ? No_qSuf
1739 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX ? No_xSuf : 0))))));
252b5132
RH
1740
1741 for (t = current_templates->start;
1742 t < current_templates->end;
1743 t++)
1744 {
47926f60 1745 /* Must have right number of operands. */
252b5132
RH
1746 if (i.operands != t->operands)
1747 continue;
1748
7f3f1ea2
AM
1749 /* Check the suffix, except for some instructions in intel mode. */
1750 if ((t->opcode_modifier & suffix_check)
fa2255cb
DN
1751 && !(intel_syntax
1752 && (t->opcode_modifier & IgnoreSize))
7f3f1ea2
AM
1753 && !(intel_syntax
1754 && t->base_opcode == 0xd9
ce8a8b2f
AM
1755 && (t->extension_opcode == 5 /* 0xd9,5 "fldcw" */
1756 || t->extension_opcode == 7))) /* 0xd9,7 "f{n}stcw" */
24eab124 1757 continue;
252b5132 1758
e2914f48 1759 /* Do not verify operands when there are none. */
252b5132 1760 else if (!t->operands)
e2914f48
JH
1761 {
1762 if (t->cpu_flags & ~cpu_arch_flags)
1763 continue;
1764 /* We've found a match; break out of loop. */
1765 break;
e5cb08ac 1766 }
252b5132
RH
1767
1768 overlap0 = i.types[0] & t->operand_types[0];
1769 switch (t->operands)
1770 {
1771 case 1:
1772 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
1773 continue;
1774 break;
1775 case 2:
1776 case 3:
1777 overlap1 = i.types[1] & t->operand_types[1];
1778 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
1779 || !MATCH (overlap1, i.types[1], t->operand_types[1])
1780 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1781 t->operand_types[0],
1782 overlap1, i.types[1],
1783 t->operand_types[1]))
1784 {
47926f60 1785 /* Check if other direction is valid ... */
252b5132
RH
1786 if ((t->opcode_modifier & (D|FloatD)) == 0)
1787 continue;
1788
47926f60 1789 /* Try reversing direction of operands. */
252b5132
RH
1790 overlap0 = i.types[0] & t->operand_types[1];
1791 overlap1 = i.types[1] & t->operand_types[0];
1792 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
1793 || !MATCH (overlap1, i.types[1], t->operand_types[0])
1794 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1795 t->operand_types[1],
1796 overlap1, i.types[1],
1797 t->operand_types[0]))
1798 {
47926f60 1799 /* Does not match either direction. */
252b5132
RH
1800 continue;
1801 }
1802 /* found_reverse_match holds which of D or FloatDR
1803 we've found. */
1804 found_reverse_match = t->opcode_modifier & (D|FloatDR);
252b5132 1805 }
47926f60 1806 /* Found a forward 2 operand match here. */
3e73aa7c 1807 else if (t->operands == 3)
252b5132
RH
1808 {
1809 /* Here we make use of the fact that there are no
1810 reverse match 3 operand instructions, and all 3
1811 operand instructions only need to be checked for
1812 register consistency between operands 2 and 3. */
1813 overlap2 = i.types[2] & t->operand_types[2];
1814 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
1815 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
1816 t->operand_types[1],
1817 overlap2, i.types[2],
24eab124 1818 t->operand_types[2]))
252b5132 1819
24eab124 1820 continue;
252b5132 1821 }
47926f60 1822 /* Found either forward/reverse 2 or 3 operand match here:
ce8a8b2f 1823 slip through to break. */
252b5132 1824 }
3e73aa7c
JH
1825 if (t->cpu_flags & ~cpu_arch_flags)
1826 {
1827 found_reverse_match = 0;
1828 continue;
1829 }
47926f60
KH
1830 /* We've found a match; break out of loop. */
1831 break;
ce8a8b2f 1832 }
252b5132 1833 if (t == current_templates->end)
47926f60
KH
1834 {
1835 /* We found no match. */
252b5132
RH
1836 as_bad (_("suffix or operands invalid for `%s'"),
1837 current_templates->start->name);
1838 return;
1839 }
1840
a38cf1db 1841 if (!quiet_warnings)
3138f287 1842 {
a38cf1db
AM
1843 if (!intel_syntax
1844 && ((i.types[0] & JumpAbsolute)
1845 != (t->operand_types[0] & JumpAbsolute)))
1846 {
1847 as_warn (_("indirect %s without `*'"), t->name);
1848 }
3138f287 1849
a38cf1db
AM
1850 if ((t->opcode_modifier & (IsPrefix|IgnoreSize))
1851 == (IsPrefix|IgnoreSize))
1852 {
1853 /* Warn them that a data or address size prefix doesn't
1854 affect assembly of the next line of code. */
1855 as_warn (_("stand-alone `%s' prefix"), t->name);
1856 }
252b5132
RH
1857 }
1858
1859 /* Copy the template we found. */
1860 i.tm = *t;
1861 if (found_reverse_match)
1862 {
7f3f1ea2
AM
1863 /* If we found a reverse match we must alter the opcode
1864 direction bit. found_reverse_match holds bits to change
1865 (different for int & float insns). */
1866
1867 i.tm.base_opcode ^= found_reverse_match;
1868
252b5132
RH
1869 i.tm.operand_types[0] = t->operand_types[1];
1870 i.tm.operand_types[1] = t->operand_types[0];
1871 }
1872
d0b47220 1873 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
e5cb08ac
KH
1874 if (SYSV386_COMPAT
1875 && intel_syntax
1876 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1877 i.tm.base_opcode ^= FloatR;
252b5132
RH
1878
1879 if (i.tm.opcode_modifier & FWait)
1880 if (! add_prefix (FWAIT_OPCODE))
1881 return;
1882
ce8a8b2f 1883 /* Check string instruction segment overrides. */
252b5132
RH
1884 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1885 {
1886 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
1887 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
1888 {
1889 if (i.seg[0] != NULL && i.seg[0] != &es)
1890 {
1891 as_bad (_("`%s' operand %d must use `%%es' segment"),
1892 i.tm.name,
1893 mem_op + 1);
1894 return;
1895 }
1896 /* There's only ever one segment override allowed per instruction.
1897 This instruction possibly has a legal segment override on the
1898 second operand, so copy the segment to where non-string
1899 instructions store it, allowing common code. */
1900 i.seg[0] = i.seg[1];
1901 }
1902 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
1903 {
1904 if (i.seg[1] != NULL && i.seg[1] != &es)
1905 {
1906 as_bad (_("`%s' operand %d must use `%%es' segment"),
1907 i.tm.name,
1908 mem_op + 2);
1909 return;
1910 }
1911 }
1912 }
1913
3e73aa7c
JH
1914 if (i.reg_operands && flag_code < CODE_64BIT)
1915 {
1916 int op;
e5cb08ac 1917 for (op = i.operands; --op >= 0;)
3e73aa7c
JH
1918 if ((i.types[op] & Reg)
1919 && (i.op[op].regs->reg_flags & (RegRex64|RegRex)))
b96d3a20
JH
1920 {
1921 as_bad (_("Extended register `%%%s' available only in 64bit mode."),
1922 i.op[op].regs->reg_name);
1923 return;
1924 }
3e73aa7c
JH
1925 }
1926
252b5132
RH
1927 /* If matched instruction specifies an explicit instruction mnemonic
1928 suffix, use it. */
3e73aa7c 1929 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
252b5132
RH
1930 {
1931 if (i.tm.opcode_modifier & Size16)
1932 i.suffix = WORD_MNEM_SUFFIX;
3e73aa7c
JH
1933 else if (i.tm.opcode_modifier & Size64)
1934 i.suffix = QWORD_MNEM_SUFFIX;
252b5132 1935 else
add0c677 1936 i.suffix = LONG_MNEM_SUFFIX;
252b5132
RH
1937 }
1938 else if (i.reg_operands)
1939 {
1940 /* If there's no instruction mnemonic suffix we try to invent one
47926f60 1941 based on register operands. */
252b5132
RH
1942 if (!i.suffix)
1943 {
1944 /* We take i.suffix from the last register operand specified,
1945 Destination register type is more significant than source
1946 register type. */
1947 int op;
47926f60 1948 for (op = i.operands; --op >= 0;)
cc5ca5ce
AM
1949 if ((i.types[op] & Reg)
1950 && !(i.tm.operand_types[op] & InOutPortReg))
252b5132
RH
1951 {
1952 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
1953 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
3e73aa7c 1954 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
add0c677 1955 LONG_MNEM_SUFFIX);
252b5132
RH
1956 break;
1957 }
1958 }
1959 else if (i.suffix == BYTE_MNEM_SUFFIX)
1960 {
1961 int op;
47926f60 1962 for (op = i.operands; --op >= 0;)
252b5132
RH
1963 {
1964 /* If this is an eight bit register, it's OK. If it's
1965 the 16 or 32 bit version of an eight bit register,
47926f60 1966 we will just use the low portion, and that's OK too. */
252b5132
RH
1967 if (i.types[op] & Reg8)
1968 continue;
1969
47926f60 1970 /* movzx and movsx should not generate this warning. */
24eab124
AM
1971 if (intel_syntax
1972 && (i.tm.base_opcode == 0xfb7
1973 || i.tm.base_opcode == 0xfb6
3e73aa7c 1974 || i.tm.base_opcode == 0x63
24eab124
AM
1975 || i.tm.base_opcode == 0xfbe
1976 || i.tm.base_opcode == 0xfbf))
1977 continue;
252b5132 1978
520dc8e8 1979 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
252b5132
RH
1980#if 0
1981 /* Check that the template allows eight bit regs
1982 This kills insns such as `orb $1,%edx', which
1983 maybe should be allowed. */
1984 && (i.tm.operand_types[op] & (Reg8|InOutPortReg))
1985#endif
1986 )
1987 {
3e73aa7c
JH
1988 /* Prohibit these changes in the 64bit mode, since
1989 the lowering is more complicated. */
1990 if (flag_code == CODE_64BIT
1991 && (i.tm.operand_types[op] & InOutPortReg) == 0)
1992 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
1993 i.op[op].regs->reg_name,
1994 i.suffix);
252b5132 1995#if REGISTER_WARNINGS
a38cf1db
AM
1996 if (!quiet_warnings
1997 && (i.tm.operand_types[op] & InOutPortReg) == 0)
252b5132 1998 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2e98d2de
AM
1999 (i.op[op].regs
2000 + (i.types[op] & Reg16
2001 ? REGNAM_AL - REGNAM_AX
2002 : REGNAM_AL - REGNAM_EAX))->reg_name,
520dc8e8 2003 i.op[op].regs->reg_name,
252b5132
RH
2004 i.suffix);
2005#endif
2006 continue;
2007 }
ce8a8b2f 2008 /* Any other register is bad. */
3f4438ab
AM
2009 if (i.types[op] & (Reg | RegMMX | RegXMM
2010 | SReg2 | SReg3
2011 | Control | Debug | Test
2012 | FloatReg | FloatAcc))
252b5132
RH
2013 {
2014 as_bad (_("`%%%s' not allowed with `%s%c'"),
520dc8e8 2015 i.op[op].regs->reg_name,
252b5132
RH
2016 i.tm.name,
2017 i.suffix);
2018 return;
2019 }
2020 }
2021 }
add0c677 2022 else if (i.suffix == LONG_MNEM_SUFFIX)
252b5132
RH
2023 {
2024 int op;
47926f60
KH
2025
2026 for (op = i.operands; --op >= 0;)
252b5132
RH
2027 /* Reject eight bit registers, except where the template
2028 requires them. (eg. movzb) */
2029 if ((i.types[op] & Reg8) != 0
47926f60 2030 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
252b5132
RH
2031 {
2032 as_bad (_("`%%%s' not allowed with `%s%c'"),
520dc8e8 2033 i.op[op].regs->reg_name,
252b5132
RH
2034 i.tm.name,
2035 i.suffix);
2036 return;
2037 }
252b5132 2038 /* Warn if the e prefix on a general reg is missing. */
3e73aa7c 2039 else if ((!quiet_warnings || flag_code == CODE_64BIT)
a38cf1db 2040 && (i.types[op] & Reg16) != 0
252b5132
RH
2041 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2042 {
3e73aa7c
JH
2043 /* Prohibit these changes in the 64bit mode, since
2044 the lowering is more complicated. */
2045 if (flag_code == CODE_64BIT)
2046 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2047 i.op[op].regs->reg_name,
2048 i.suffix);
2049#if REGISTER_WARNINGS
2050 else
2051 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2e98d2de 2052 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
3e73aa7c
JH
2053 i.op[op].regs->reg_name,
2054 i.suffix);
252b5132 2055#endif
3e73aa7c
JH
2056 }
2057 /* Warn if the r prefix on a general reg is missing. */
2058 else if ((i.types[op] & Reg64) != 0
2059 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2060 {
2061 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2062 i.op[op].regs->reg_name,
2063 i.suffix);
2064 }
2065 }
2066 else if (i.suffix == QWORD_MNEM_SUFFIX)
2067 {
2068 int op;
3e73aa7c
JH
2069
2070 for (op = i.operands; --op >= 0; )
2071 /* Reject eight bit registers, except where the template
2072 requires them. (eg. movzb) */
2073 if ((i.types[op] & Reg8) != 0
2074 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
2075 {
2076 as_bad (_("`%%%s' not allowed with `%s%c'"),
2077 i.op[op].regs->reg_name,
2078 i.tm.name,
2079 i.suffix);
2080 return;
2081 }
2082 /* Warn if the e prefix on a general reg is missing. */
2083 else if (((i.types[op] & Reg16) != 0
2084 || (i.types[op] & Reg32) != 0)
2085 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2086 {
2087 /* Prohibit these changes in the 64bit mode, since
2088 the lowering is more complicated. */
2089 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2090 i.op[op].regs->reg_name,
2091 i.suffix);
2092 }
252b5132
RH
2093 }
2094 else if (i.suffix == WORD_MNEM_SUFFIX)
2095 {
2096 int op;
47926f60 2097 for (op = i.operands; --op >= 0;)
252b5132
RH
2098 /* Reject eight bit registers, except where the template
2099 requires them. (eg. movzb) */
2100 if ((i.types[op] & Reg8) != 0
2101 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
2102 {
2103 as_bad (_("`%%%s' not allowed with `%s%c'"),
520dc8e8 2104 i.op[op].regs->reg_name,
252b5132
RH
2105 i.tm.name,
2106 i.suffix);
2107 return;
2108 }
252b5132 2109 /* Warn if the e prefix on a general reg is present. */
3e73aa7c 2110 else if ((!quiet_warnings || flag_code == CODE_64BIT)
a38cf1db 2111 && (i.types[op] & Reg32) != 0
252b5132
RH
2112 && (i.tm.operand_types[op] & (Reg16|Acc)) != 0)
2113 {
3e73aa7c
JH
2114 /* Prohibit these changes in the 64bit mode, since
2115 the lowering is more complicated. */
2116 if (flag_code == CODE_64BIT)
2117 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2118 i.op[op].regs->reg_name,
2119 i.suffix);
2120 else
2121#if REGISTER_WARNINGS
2122 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2e98d2de 2123 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
3e73aa7c
JH
2124 i.op[op].regs->reg_name,
2125 i.suffix);
252b5132 2126#endif
3e73aa7c 2127 }
252b5132 2128 }
fa2255cb
DN
2129 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2130 /* Do nothing if the instruction is going to ignore the prefix. */
2131 ;
252b5132 2132 else
47926f60 2133 abort ();
252b5132 2134 }
eecb386c
AM
2135 else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
2136 {
2137 i.suffix = stackop_size;
2138 }
252b5132
RH
2139 /* Make still unresolved immediate matches conform to size of immediate
2140 given in i.suffix. Note: overlap2 cannot be an immediate! */
3e73aa7c 2141 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S))
252b5132 2142 && overlap0 != Imm8 && overlap0 != Imm8S
e5cb08ac 2143 && overlap0 != Imm16 && overlap0 != Imm32S
b77a7acd 2144 && overlap0 != Imm32 && overlap0 != Imm64)
252b5132
RH
2145 {
2146 if (i.suffix)
2147 {
24eab124 2148 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
b77a7acd 2149 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 :
3e73aa7c 2150 (i.suffix == QWORD_MNEM_SUFFIX ? Imm64 | Imm32S : Imm32)));
252b5132 2151 }
3e73aa7c
JH
2152 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2153 || overlap0 == (Imm16 | Imm32)
2154 || overlap0 == (Imm16 | Imm32S))
252b5132 2155 {
24eab124 2156 overlap0 =
3e73aa7c 2157 ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32S;
252b5132 2158 }
3e73aa7c
JH
2159 if (overlap0 != Imm8 && overlap0 != Imm8S
2160 && overlap0 != Imm16 && overlap0 != Imm32S
2161 && overlap0 != Imm32 && overlap0 != Imm64)
252b5132
RH
2162 {
2163 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2164 return;
2165 }
2166 }
3e73aa7c 2167 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32))
252b5132 2168 && overlap1 != Imm8 && overlap1 != Imm8S
e5cb08ac 2169 && overlap1 != Imm16 && overlap1 != Imm32S
b77a7acd 2170 && overlap1 != Imm32 && overlap1 != Imm64)
252b5132
RH
2171 {
2172 if (i.suffix)
2173 {
24eab124 2174 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
b77a7acd
AJ
2175 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 :
2176 (i.suffix == QWORD_MNEM_SUFFIX ? Imm64 | Imm32S : Imm32)));
252b5132 2177 }
3e73aa7c
JH
2178 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2179 || overlap1 == (Imm16 | Imm32)
2180 || overlap1 == (Imm16 | Imm32S))
252b5132 2181 {
24eab124 2182 overlap1 =
3e73aa7c 2183 ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32S;
252b5132 2184 }
3e73aa7c
JH
2185 if (overlap1 != Imm8 && overlap1 != Imm8S
2186 && overlap1 != Imm16 && overlap1 != Imm32S
2187 && overlap1 != Imm32 && overlap1 != Imm64)
252b5132 2188 {
3e73aa7c 2189 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
252b5132
RH
2190 return;
2191 }
2192 }
2193 assert ((overlap2 & Imm) == 0);
2194
2195 i.types[0] = overlap0;
2196 if (overlap0 & ImplicitRegister)
2197 i.reg_operands--;
2198 if (overlap0 & Imm1)
ce8a8b2f 2199 i.imm_operands = 0; /* kludge for shift insns. */
252b5132
RH
2200
2201 i.types[1] = overlap1;
2202 if (overlap1 & ImplicitRegister)
2203 i.reg_operands--;
2204
2205 i.types[2] = overlap2;
2206 if (overlap2 & ImplicitRegister)
2207 i.reg_operands--;
2208
2209 /* Finalize opcode. First, we change the opcode based on the operand
2210 size given by i.suffix: We need not change things for byte insns. */
2211
2212 if (!i.suffix && (i.tm.opcode_modifier & W))
2213 {
2214 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2215 return;
2216 }
2217
ce8a8b2f 2218 /* For movzx and movsx, need to check the register type. */
252b5132 2219 if (intel_syntax
24eab124 2220 && (i.tm.base_opcode == 0xfb6 || i.tm.base_opcode == 0xfbe))
252b5132 2221 if (i.suffix && i.suffix == BYTE_MNEM_SUFFIX)
24eab124
AM
2222 {
2223 unsigned int prefix = DATA_PREFIX_OPCODE;
252b5132 2224
520dc8e8 2225 if ((i.op[1].regs->reg_type & Reg16) != 0)
24eab124
AM
2226 if (!add_prefix (prefix))
2227 return;
2228 }
252b5132
RH
2229
2230 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2231 {
2232 /* It's not a byte, select word/dword operation. */
2233 if (i.tm.opcode_modifier & W)
2234 {
2235 if (i.tm.opcode_modifier & ShortForm)
2236 i.tm.base_opcode |= 8;
2237 else
2238 i.tm.base_opcode |= 1;
2239 }
2240 /* Now select between word & dword operations via the operand
2241 size prefix, except for instructions that will ignore this
2242 prefix anyway. */
3e73aa7c
JH
2243 if (i.suffix != QWORD_MNEM_SUFFIX
2244 && (i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
252b5132
RH
2245 && !(i.tm.opcode_modifier & IgnoreSize))
2246 {
2247 unsigned int prefix = DATA_PREFIX_OPCODE;
2248 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2249 prefix = ADDR_PREFIX_OPCODE;
2250
2251 if (! add_prefix (prefix))
2252 return;
2253 }
3e73aa7c
JH
2254
2255 /* Set mode64 for an operand. */
2256 if (i.suffix == QWORD_MNEM_SUFFIX
2257 && !(i.tm.opcode_modifier & NoRex64))
b96d3a20 2258 {
3e73aa7c 2259 i.rex.mode64 = 1;
b96d3a20
JH
2260 if (flag_code < CODE_64BIT)
2261 {
e5cb08ac
KH
2262 as_bad (_("64bit operations available only in 64bit modes."));
2263 return;
b96d3a20
JH
2264 }
2265 }
3e73aa7c 2266
252b5132 2267 /* Size floating point instruction. */
f16b83df 2268 if (i.suffix == LONG_MNEM_SUFFIX)
252b5132
RH
2269 {
2270 if (i.tm.opcode_modifier & FloatMF)
2271 i.tm.base_opcode ^= 4;
2272 }
252b5132
RH
2273 }
2274
3f4438ab 2275 if (i.tm.opcode_modifier & ImmExt)
252b5132 2276 {
3f4438ab
AM
2277 /* These AMD 3DNow! and Intel Katmai New Instructions have an
2278 opcode suffix which is coded in the same place as an 8-bit
2279 immediate field would be. Here we fake an 8-bit immediate
2280 operand from the opcode suffix stored in tm.extension_opcode. */
252b5132
RH
2281
2282 expressionS *exp;
2283
47926f60 2284 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
252b5132
RH
2285
2286 exp = &im_expressions[i.imm_operands++];
520dc8e8 2287 i.op[i.operands].imms = exp;
252b5132
RH
2288 i.types[i.operands++] = Imm8;
2289 exp->X_op = O_constant;
2290 exp->X_add_number = i.tm.extension_opcode;
2291 i.tm.extension_opcode = None;
2292 }
2293
47926f60 2294 /* For insns with operands there are more diddles to do to the opcode. */
252b5132
RH
2295 if (i.operands)
2296 {
24eab124 2297 /* Default segment register this instruction will use
252b5132
RH
2298 for memory accesses. 0 means unknown.
2299 This is only for optimizing out unnecessary segment overrides. */
2300 const seg_entry *default_seg = 0;
2301
252b5132
RH
2302 /* The imul $imm, %reg instruction is converted into
2303 imul $imm, %reg, %reg, and the clr %reg instruction
2304 is converted into xor %reg, %reg. */
2305 if (i.tm.opcode_modifier & regKludge)
2306 {
2307 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
47926f60
KH
2308 /* Pretend we saw the extra register operand. */
2309 assert (i.op[first_reg_op + 1].regs == 0);
2310 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2311 i.types[first_reg_op + 1] = i.types[first_reg_op];
252b5132
RH
2312 i.reg_operands = 2;
2313 }
2314
2315 if (i.tm.opcode_modifier & ShortForm)
2316 {
47926f60 2317 /* The register or float register operand is in operand 0 or 1. */
252b5132 2318 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
47926f60 2319 /* Register goes in low 3 bits of opcode. */
520dc8e8 2320 i.tm.base_opcode |= i.op[op].regs->reg_num;
3e73aa7c 2321 if (i.op[op].regs->reg_flags & RegRex)
e5cb08ac 2322 i.rex.extZ = 1;
a38cf1db 2323 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
252b5132
RH
2324 {
2325 /* Warn about some common errors, but press on regardless.
2326 The first case can be generated by gcc (<= 2.8.1). */
2327 if (i.operands == 2)
2328 {
47926f60 2329 /* Reversed arguments on faddp, fsubp, etc. */
252b5132 2330 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
520dc8e8
AM
2331 i.op[1].regs->reg_name,
2332 i.op[0].regs->reg_name);
252b5132
RH
2333 }
2334 else
2335 {
47926f60 2336 /* Extraneous `l' suffix on fp insn. */
252b5132 2337 as_warn (_("translating to `%s %%%s'"), i.tm.name,
520dc8e8 2338 i.op[0].regs->reg_name);
252b5132
RH
2339 }
2340 }
2341 }
2342 else if (i.tm.opcode_modifier & Modrm)
2343 {
2344 /* The opcode is completed (modulo i.tm.extension_opcode which
2345 must be put into the modrm byte).
2346 Now, we make the modrm & index base bytes based on all the
47926f60 2347 info we've collected. */
252b5132
RH
2348
2349 /* i.reg_operands MUST be the number of real register operands;
47926f60 2350 implicit registers do not count. */
252b5132
RH
2351 if (i.reg_operands == 2)
2352 {
2353 unsigned int source, dest;
2354 source = ((i.types[0]
3f4438ab
AM
2355 & (Reg | RegMMX | RegXMM
2356 | SReg2 | SReg3
2357 | Control | Debug | Test))
252b5132
RH
2358 ? 0 : 1);
2359 dest = source + 1;
2360
252b5132 2361 i.rm.mode = 3;
3f4438ab
AM
2362 /* One of the register operands will be encoded in the
2363 i.tm.reg field, the other in the combined i.tm.mode
2364 and i.tm.regmem fields. If no form of this
2365 instruction supports a memory destination operand,
2366 then we assume the source operand may sometimes be
2367 a memory operand and so we need to store the
2368 destination in the i.rm.reg field. */
2369 if ((i.tm.operand_types[dest] & AnyMem) == 0)
252b5132 2370 {
520dc8e8
AM
2371 i.rm.reg = i.op[dest].regs->reg_num;
2372 i.rm.regmem = i.op[source].regs->reg_num;
3e73aa7c 2373 if (i.op[dest].regs->reg_flags & RegRex)
e5cb08ac 2374 i.rex.extX = 1;
3e73aa7c 2375 if (i.op[source].regs->reg_flags & RegRex)
e5cb08ac 2376 i.rex.extZ = 1;
252b5132
RH
2377 }
2378 else
2379 {
520dc8e8
AM
2380 i.rm.reg = i.op[source].regs->reg_num;
2381 i.rm.regmem = i.op[dest].regs->reg_num;
3e73aa7c 2382 if (i.op[dest].regs->reg_flags & RegRex)
e5cb08ac 2383 i.rex.extZ = 1;
3e73aa7c 2384 if (i.op[source].regs->reg_flags & RegRex)
e5cb08ac 2385 i.rex.extX = 1;
252b5132
RH
2386 }
2387 }
2388 else
47926f60 2389 { /* If it's not 2 reg operands... */
252b5132
RH
2390 if (i.mem_operands)
2391 {
2392 unsigned int fake_zero_displacement = 0;
2393 unsigned int op = ((i.types[0] & AnyMem)
2394 ? 0
2395 : (i.types[1] & AnyMem) ? 1 : 2);
2396
2397 default_seg = &ds;
2398
2399 if (! i.base_reg)
2400 {
2401 i.rm.mode = 0;
2402 if (! i.disp_operands)
2403 fake_zero_displacement = 1;
2404 if (! i.index_reg)
2405 {
47926f60 2406 /* Operand is just <disp> */
3e73aa7c 2407 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
252b5132
RH
2408 {
2409 i.rm.regmem = NO_BASE_REGISTER_16;
2410 i.types[op] &= ~Disp;
2411 i.types[op] |= Disp16;
2412 }
3e73aa7c 2413 else if (flag_code != CODE_64BIT)
252b5132
RH
2414 {
2415 i.rm.regmem = NO_BASE_REGISTER;
2416 i.types[op] &= ~Disp;
2417 i.types[op] |= Disp32;
2418 }
3e73aa7c
JH
2419 else
2420 {
e5cb08ac
KH
2421 /* 64bit mode overwrites the 32bit
2422 absolute addressing by RIP relative
2423 addressing and absolute addressing
2424 is encoded by one of the redundant
2425 SIB forms. */
3e73aa7c
JH
2426
2427 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2428 i.sib.base = NO_BASE_REGISTER;
2429 i.sib.index = NO_INDEX_REGISTER;
2430 i.types[op] &= ~Disp;
2431 i.types[op] |= Disp32S;
2432 }
252b5132 2433 }
47926f60 2434 else /* ! i.base_reg && i.index_reg */
252b5132
RH
2435 {
2436 i.sib.index = i.index_reg->reg_num;
2437 i.sib.base = NO_BASE_REGISTER;
2438 i.sib.scale = i.log2_scale_factor;
2439 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2440 i.types[op] &= ~Disp;
3e73aa7c
JH
2441 if (flag_code != CODE_64BIT)
2442 i.types[op] |= Disp32; /* Must be 32 bit */
2443 else
2444 i.types[op] |= Disp32S;
2445 if (i.index_reg->reg_flags & RegRex)
e5cb08ac 2446 i.rex.extY = 1;
252b5132
RH
2447 }
2448 }
3e73aa7c
JH
2449 /* RIP addressing for 64bit mode. */
2450 else if (i.base_reg->reg_type == BaseIndex)
2451 {
2452 i.rm.regmem = NO_BASE_REGISTER;
2453 i.types[op] &= ~Disp;
2454 i.types[op] |= Disp32S;
2455 i.flags[op] = Operand_PCrel;
2456 }
252b5132
RH
2457 else if (i.base_reg->reg_type & Reg16)
2458 {
2459 switch (i.base_reg->reg_num)
2460 {
47926f60 2461 case 3: /* (%bx) */
252b5132
RH
2462 if (! i.index_reg)
2463 i.rm.regmem = 7;
47926f60 2464 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
252b5132
RH
2465 i.rm.regmem = i.index_reg->reg_num - 6;
2466 break;
47926f60 2467 case 5: /* (%bp) */
252b5132
RH
2468 default_seg = &ss;
2469 if (! i.index_reg)
2470 {
2471 i.rm.regmem = 6;
2472 if ((i.types[op] & Disp) == 0)
2473 {
47926f60 2474 /* fake (%bp) into 0(%bp) */
252b5132
RH
2475 i.types[op] |= Disp8;
2476 fake_zero_displacement = 1;
2477 }
2478 }
47926f60 2479 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
252b5132
RH
2480 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2481 break;
47926f60 2482 default: /* (%si) -> 4 or (%di) -> 5 */
252b5132
RH
2483 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2484 }
2485 i.rm.mode = mode_from_disp_size (i.types[op]);
2486 }
3e73aa7c 2487 else /* i.base_reg and 32/64 bit mode */
252b5132 2488 {
3e73aa7c
JH
2489 if (flag_code == CODE_64BIT
2490 && (i.types[op] & Disp))
2491 {
2492 if (i.types[op] & Disp8)
2493 i.types[op] = Disp8 | Disp32S;
2494 else
2495 i.types[op] = Disp32S;
2496 }
252b5132 2497 i.rm.regmem = i.base_reg->reg_num;
3e73aa7c 2498 if (i.base_reg->reg_flags & RegRex)
e5cb08ac 2499 i.rex.extZ = 1;
252b5132 2500 i.sib.base = i.base_reg->reg_num;
3e73aa7c
JH
2501 /* x86-64 ignores REX prefix bit here to avoid
2502 decoder complications. */
2503 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
252b5132
RH
2504 {
2505 default_seg = &ss;
2506 if (i.disp_operands == 0)
2507 {
2508 fake_zero_displacement = 1;
2509 i.types[op] |= Disp8;
2510 }
2511 }
2512 else if (i.base_reg->reg_num == ESP_REG_NUM)
2513 {
2514 default_seg = &ss;
2515 }
2516 i.sib.scale = i.log2_scale_factor;
2517 if (! i.index_reg)
2518 {
2519 /* <disp>(%esp) becomes two byte modrm
2520 with no index register. We've already
2521 stored the code for esp in i.rm.regmem
2522 ie. ESCAPE_TO_TWO_BYTE_ADDRESSING. Any
2523 base register besides %esp will not use
2524 the extra modrm byte. */
2525 i.sib.index = NO_INDEX_REGISTER;
2526#if ! SCALE1_WHEN_NO_INDEX
2527 /* Another case where we force the second
2528 modrm byte. */
2529 if (i.log2_scale_factor)
2530 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2531#endif
2532 }
2533 else
2534 {
2535 i.sib.index = i.index_reg->reg_num;
2536 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3e73aa7c 2537 if (i.index_reg->reg_flags & RegRex)
e5cb08ac 2538 i.rex.extY = 1;
252b5132
RH
2539 }
2540 i.rm.mode = mode_from_disp_size (i.types[op]);
2541 }
2542
2543 if (fake_zero_displacement)
2544 {
2545 /* Fakes a zero displacement assuming that i.types[op]
47926f60 2546 holds the correct displacement size. */
b4cac588
AM
2547 expressionS *exp;
2548
520dc8e8 2549 assert (i.op[op].disps == 0);
252b5132 2550 exp = &disp_expressions[i.disp_operands++];
520dc8e8 2551 i.op[op].disps = exp;
252b5132
RH
2552 exp->X_op = O_constant;
2553 exp->X_add_number = 0;
2554 exp->X_add_symbol = (symbolS *) 0;
2555 exp->X_op_symbol = (symbolS *) 0;
2556 }
2557 }
2558
2559 /* Fill in i.rm.reg or i.rm.regmem field with register
2560 operand (if any) based on i.tm.extension_opcode.
2561 Again, we must be careful to make sure that
2562 segment/control/debug/test/MMX registers are coded
47926f60 2563 into the i.rm.reg field. */
252b5132
RH
2564 if (i.reg_operands)
2565 {
2566 unsigned int op =
2567 ((i.types[0]
3f4438ab
AM
2568 & (Reg | RegMMX | RegXMM
2569 | SReg2 | SReg3
2570 | Control | Debug | Test))
252b5132
RH
2571 ? 0
2572 : ((i.types[1]
3f4438ab
AM
2573 & (Reg | RegMMX | RegXMM
2574 | SReg2 | SReg3
2575 | Control | Debug | Test))
252b5132
RH
2576 ? 1
2577 : 2));
2578 /* If there is an extension opcode to put here, the
47926f60 2579 register number must be put into the regmem field. */
252b5132 2580 if (i.tm.extension_opcode != None)
3e73aa7c
JH
2581 {
2582 i.rm.regmem = i.op[op].regs->reg_num;
2583 if (i.op[op].regs->reg_flags & RegRex)
e5cb08ac 2584 i.rex.extZ = 1;
3e73aa7c 2585 }
252b5132 2586 else
3e73aa7c
JH
2587 {
2588 i.rm.reg = i.op[op].regs->reg_num;
2589 if (i.op[op].regs->reg_flags & RegRex)
e5cb08ac 2590 i.rex.extX = 1;
3e73aa7c 2591 }
252b5132
RH
2592
2593 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2
2594 we must set it to 3 to indicate this is a register
2595 operand in the regmem field. */
2596 if (!i.mem_operands)
2597 i.rm.mode = 3;
2598 }
2599
47926f60 2600 /* Fill in i.rm.reg field with extension opcode (if any). */
252b5132
RH
2601 if (i.tm.extension_opcode != None)
2602 i.rm.reg = i.tm.extension_opcode;
2603 }
2604 }
2605 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2606 {
47926f60
KH
2607 if (i.tm.base_opcode == POP_SEG_SHORT
2608 && i.op[0].regs->reg_num == 1)
252b5132
RH
2609 {
2610 as_bad (_("you can't `pop %%cs'"));
2611 return;
2612 }
520dc8e8 2613 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
3e73aa7c
JH
2614 if (i.op[0].regs->reg_flags & RegRex)
2615 i.rex.extZ = 1;
252b5132
RH
2616 }
2617 else if ((i.tm.base_opcode & ~(D|W)) == MOV_AX_DISP32)
2618 {
2619 default_seg = &ds;
2620 }
2621 else if ((i.tm.opcode_modifier & IsString) != 0)
2622 {
2623 /* For the string instructions that allow a segment override
2624 on one of their operands, the default segment is ds. */
2625 default_seg = &ds;
2626 }
2627
2628 /* If a segment was explicitly specified,
2629 and the specified segment is not the default,
2630 use an opcode prefix to select it.
2631 If we never figured out what the default segment is,
2632 then default_seg will be zero at this point,
2633 and the specified segment prefix will always be used. */
2634 if ((i.seg[0]) && (i.seg[0] != default_seg))
2635 {
2636 if (! add_prefix (i.seg[0]->seg_prefix))
2637 return;
2638 }
2639 }
a38cf1db 2640 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
252b5132 2641 {
24eab124
AM
2642 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
2643 as_warn (_("translating to `%sp'"), i.tm.name);
252b5132
RH
2644 }
2645 }
2646
47926f60 2647 /* Handle conversion of 'int $3' --> special int3 insn. */
520dc8e8 2648 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
252b5132
RH
2649 {
2650 i.tm.base_opcode = INT3_OPCODE;
2651 i.imm_operands = 0;
2652 }
2653
2f66722d 2654 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
520dc8e8 2655 && i.op[0].disps->X_op == O_constant)
2f66722d
AM
2656 {
2657 /* Convert "jmp constant" (and "call constant") to a jump (call) to
2658 the absolute address given by the constant. Since ix86 jumps and
2659 calls are pc relative, we need to generate a reloc. */
520dc8e8
AM
2660 i.op[0].disps->X_add_symbol = &abs_symbol;
2661 i.op[0].disps->X_op = O_symbol;
2f66722d
AM
2662 }
2663
3e73aa7c
JH
2664 if (i.tm.opcode_modifier & Rex64)
2665 i.rex.mode64 = 1;
2666
2667 /* For 8bit registers we would need an empty rex prefix.
2668 Also in the case instruction is already having prefix,
2669 we need to convert old registers to new ones. */
2670
2671 if (((i.types[0] & Reg8) && (i.op[0].regs->reg_flags & RegRex64))
2672 || ((i.types[1] & Reg8) && (i.op[1].regs->reg_flags & RegRex64))
2673 || ((i.rex.mode64 || i.rex.extX || i.rex.extY || i.rex.extZ || i.rex.empty)
2674 && ((i.types[0] & Reg8) || (i.types[1] & Reg8))))
2675 {
2676 int x;
e5cb08ac 2677 i.rex.empty = 1;
3e73aa7c
JH
2678 for (x = 0; x < 2; x++)
2679 {
2680 /* Look for 8bit operand that does use old registers. */
2681 if (i.types[x] & Reg8
2682 && !(i.op[x].regs->reg_flags & RegRex64))
2683 {
2684 /* In case it is "hi" register, give up. */
2685 if (i.op[x].regs->reg_num > 3)
2686 as_bad (_("Can't encode registers '%%%s' in the instruction requiring REX prefix.\n"),
2687 i.op[x].regs->reg_name);
2688
2689 /* Otherwise it is equivalent to the extended register.
2690 Since the encoding don't change this is merely cosmetical
2691 cleanup for debug output. */
2692
2693 i.op[x].regs = i.op[x].regs + 8;
2694 }
2695 }
2696 }
2697
2698 if (i.rex.mode64 || i.rex.extX || i.rex.extY || i.rex.extZ || i.rex.empty)
2699 add_prefix (0x40
2700 | (i.rex.mode64 ? 8 : 0)
2701 | (i.rex.extX ? 4 : 0)
2702 | (i.rex.extY ? 2 : 0)
2703 | (i.rex.extZ ? 1 : 0));
2704
47926f60 2705 /* We are ready to output the insn. */
252b5132
RH
2706 {
2707 register char *p;
2708
47926f60 2709 /* Output jumps. */
252b5132
RH
2710 if (i.tm.opcode_modifier & Jump)
2711 {
a217f122
AM
2712 int code16;
2713 int prefix;
252b5132 2714
a217f122 2715 code16 = 0;
3e73aa7c 2716 if (flag_code == CODE_16BIT)
a217f122
AM
2717 code16 = CODE16;
2718
2719 prefix = 0;
2720 if (i.prefix[DATA_PREFIX])
252b5132 2721 {
a217f122 2722 prefix = 1;
252b5132 2723 i.prefixes -= 1;
a217f122 2724 code16 ^= CODE16;
252b5132 2725 }
3e73aa7c
JH
2726 if (i.prefix[REX_PREFIX])
2727 {
2728 prefix++;
e5cb08ac 2729 i.prefixes--;
3e73aa7c 2730 }
252b5132 2731
a217f122 2732 if (i.prefixes != 0 && !intel_syntax)
252b5132
RH
2733 as_warn (_("skipping prefixes on this instruction"));
2734
2f66722d
AM
2735 /* It's always a symbol; End frag & setup for relax.
2736 Make sure there is enough room in this frag for the largest
2737 instruction we may generate in md_convert_frag. This is 2
2738 bytes for the opcode and room for the prefix and largest
2739 displacement. */
fddf5b5b 2740 frag_grow (prefix + 2 + 4);
2f66722d
AM
2741 insn_size += prefix + 1;
2742 /* Prefix and 1 opcode byte go in fr_fix. */
2743 p = frag_more (prefix + 1);
3e73aa7c 2744 if (i.prefix[DATA_PREFIX])
2f66722d 2745 *p++ = DATA_PREFIX_OPCODE;
3e73aa7c
JH
2746 if (i.prefix[REX_PREFIX])
2747 *p++ = i.prefix[REX_PREFIX];
2f66722d 2748 *p = i.tm.base_opcode;
ee7fcc42
AM
2749 /* 1 possible extra opcode + displacement go in var part.
2750 Pass reloc in fr_var. */
2f66722d 2751 frag_var (rs_machine_dependent,
fddf5b5b 2752 1 + 4,
1ae12ab7 2753 i.reloc[0],
2f66722d
AM
2754 ((unsigned char) *p == JUMP_PC_RELATIVE
2755 ? ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL) | code16
fddf5b5b
AM
2756 : ((cpu_arch_flags & Cpu386) != 0
2757 ? ENCODE_RELAX_STATE (COND_JUMP, SMALL) | code16
2758 : ENCODE_RELAX_STATE (COND_JUMP86, SMALL) | code16)),
520dc8e8
AM
2759 i.op[0].disps->X_add_symbol,
2760 i.op[0].disps->X_add_number,
2f66722d 2761 p);
252b5132
RH
2762 }
2763 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
2764 {
a217f122 2765 int size;
252b5132 2766
a217f122 2767 if (i.tm.opcode_modifier & JumpByte)
252b5132 2768 {
a217f122
AM
2769 /* This is a loop or jecxz type instruction. */
2770 size = 1;
252b5132
RH
2771 if (i.prefix[ADDR_PREFIX])
2772 {
2773 insn_size += 1;
2774 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
2775 i.prefixes -= 1;
2776 }
2777 }
2778 else
2779 {
a217f122
AM
2780 int code16;
2781
2782 code16 = 0;
3e73aa7c 2783 if (flag_code == CODE_16BIT)
a217f122 2784 code16 = CODE16;
252b5132
RH
2785
2786 if (i.prefix[DATA_PREFIX])
2787 {
2788 insn_size += 1;
2789 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
2790 i.prefixes -= 1;
a217f122 2791 code16 ^= CODE16;
252b5132 2792 }
252b5132 2793
a217f122 2794 size = 4;
252b5132
RH
2795 if (code16)
2796 size = 2;
2797 }
2798
3e73aa7c
JH
2799 if (i.prefix[REX_PREFIX])
2800 {
2801 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
2802 insn_size++;
2803 i.prefixes -= 1;
2804 }
2805
a217f122 2806 if (i.prefixes != 0 && !intel_syntax)
252b5132
RH
2807 as_warn (_("skipping prefixes on this instruction"));
2808
2809 if (fits_in_unsigned_byte (i.tm.base_opcode))
2810 {
2811 insn_size += 1 + size;
2812 p = frag_more (1 + size);
2813 }
2814 else
2815 {
47926f60 2816 /* Opcode can be at most two bytes. */
a217f122 2817 insn_size += 2 + size;
252b5132
RH
2818 p = frag_more (2 + size);
2819 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2820 }
2821 *p++ = i.tm.base_opcode & 0xff;
2822
2f66722d 2823 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
1ae12ab7 2824 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
252b5132
RH
2825 }
2826 else if (i.tm.opcode_modifier & JumpInterSegment)
2827 {
2828 int size;
a217f122
AM
2829 int prefix;
2830 int code16;
252b5132 2831
a217f122 2832 code16 = 0;
3e73aa7c 2833 if (flag_code == CODE_16BIT)
a217f122
AM
2834 code16 = CODE16;
2835
2836 prefix = 0;
2837 if (i.prefix[DATA_PREFIX])
252b5132 2838 {
a217f122 2839 prefix = 1;
252b5132 2840 i.prefixes -= 1;
a217f122 2841 code16 ^= CODE16;
252b5132 2842 }
3e73aa7c
JH
2843 if (i.prefix[REX_PREFIX])
2844 {
2845 prefix++;
2846 i.prefixes -= 1;
2847 }
252b5132
RH
2848
2849 size = 4;
252b5132 2850 if (code16)
f6af82bd 2851 size = 2;
252b5132 2852
a217f122 2853 if (i.prefixes != 0 && !intel_syntax)
252b5132
RH
2854 as_warn (_("skipping prefixes on this instruction"));
2855
47926f60
KH
2856 /* 1 opcode; 2 segment; offset */
2857 insn_size += prefix + 1 + 2 + size;
252b5132 2858 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c
JH
2859
2860 if (i.prefix[DATA_PREFIX])
252b5132 2861 *p++ = DATA_PREFIX_OPCODE;
3e73aa7c
JH
2862
2863 if (i.prefix[REX_PREFIX])
2864 *p++ = i.prefix[REX_PREFIX];
2865
252b5132 2866 *p++ = i.tm.base_opcode;
520dc8e8 2867 if (i.op[1].imms->X_op == O_constant)
252b5132 2868 {
847f7ad4 2869 offsetT n = i.op[1].imms->X_add_number;
252b5132 2870
773f551c
AM
2871 if (size == 2
2872 && !fits_in_unsigned_word (n)
2873 && !fits_in_signed_word (n))
252b5132
RH
2874 {
2875 as_bad (_("16-bit jump out of range"));
2876 return;
2877 }
847f7ad4 2878 md_number_to_chars (p, n, size);
252b5132
RH
2879 }
2880 else
2881 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
1ae12ab7 2882 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
520dc8e8 2883 if (i.op[0].imms->X_op != O_constant)
252b5132
RH
2884 as_bad (_("can't handle non absolute segment in `%s'"),
2885 i.tm.name);
520dc8e8 2886 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
252b5132
RH
2887 }
2888 else
2889 {
47926f60 2890 /* Output normal instructions here. */
252b5132
RH
2891 unsigned char *q;
2892
7bc70a8e
JH
2893 /* All opcodes on i386 have eighter 1 or 2 bytes. We may use third
2894 byte for the SSE instructions to specify prefix they require. */
2895 if (i.tm.base_opcode & 0xff0000)
2896 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
2897
47926f60 2898 /* The prefix bytes. */
252b5132
RH
2899 for (q = i.prefix;
2900 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
2901 q++)
2902 {
2903 if (*q)
2904 {
2905 insn_size += 1;
2906 p = frag_more (1);
2907 md_number_to_chars (p, (valueT) *q, 1);
2908 }
2909 }
2910
47926f60 2911 /* Now the opcode; be careful about word order here! */
252b5132
RH
2912 if (fits_in_unsigned_byte (i.tm.base_opcode))
2913 {
2914 insn_size += 1;
2915 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
2916 }
7bc70a8e 2917 else
252b5132
RH
2918 {
2919 insn_size += 2;
2920 p = frag_more (2);
47926f60 2921 /* Put out high byte first: can't use md_number_to_chars! */
252b5132
RH
2922 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2923 *p = i.tm.base_opcode & 0xff;
2924 }
252b5132
RH
2925
2926 /* Now the modrm byte and sib byte (if present). */
2927 if (i.tm.opcode_modifier & Modrm)
2928 {
2929 insn_size += 1;
2930 p = frag_more (1);
2931 md_number_to_chars (p,
2932 (valueT) (i.rm.regmem << 0
2933 | i.rm.reg << 3
2934 | i.rm.mode << 6),
2935 1);
2936 /* If i.rm.regmem == ESP (4)
2937 && i.rm.mode != (Register mode)
2938 && not 16 bit
2939 ==> need second modrm byte. */
2940 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
2941 && i.rm.mode != 3
2942 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
2943 {
2944 insn_size += 1;
2945 p = frag_more (1);
2946 md_number_to_chars (p,
2947 (valueT) (i.sib.base << 0
2948 | i.sib.index << 3
2949 | i.sib.scale << 6),
2950 1);
2951 }
2952 }
2953
2954 if (i.disp_operands)
2955 {
2956 register unsigned int n;
2957
2958 for (n = 0; n < i.operands; n++)
2959 {
520dc8e8 2960 if (i.types[n] & Disp)
252b5132 2961 {
520dc8e8 2962 if (i.op[n].disps->X_op == O_constant)
252b5132 2963 {
847f7ad4
AM
2964 int size;
2965 offsetT val;
b4cac588 2966
847f7ad4 2967 size = 4;
3e73aa7c 2968 if (i.types[n] & (Disp8 | Disp16 | Disp64))
252b5132 2969 {
b4cac588 2970 size = 2;
b4cac588 2971 if (i.types[n] & Disp8)
847f7ad4 2972 size = 1;
3e73aa7c
JH
2973 if (i.types[n] & Disp64)
2974 size = 8;
252b5132 2975 }
847f7ad4
AM
2976 val = offset_in_range (i.op[n].disps->X_add_number,
2977 size);
b4cac588
AM
2978 insn_size += size;
2979 p = frag_more (size);
847f7ad4 2980 md_number_to_chars (p, val, size);
252b5132 2981 }
252b5132 2982 else
520dc8e8
AM
2983 {
2984 int size = 4;
3e73aa7c
JH
2985 int sign = 0;
2986 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
2987
2988 /* The PC relative address is computed relative
2989 to the instruction boundary, so in case immediate
2990 fields follows, we need to adjust the value. */
2991 if (pcrel && i.imm_operands)
2992 {
2993 int imm_size = 4;
2994 register unsigned int n1;
2995
2996 for (n1 = 0; n1 < i.operands; n1++)
2997 if (i.types[n1] & Imm)
2998 {
2999 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
3000 {
3001 imm_size = 2;
3002 if (i.types[n1] & (Imm8 | Imm8S))
3003 imm_size = 1;
3004 if (i.types[n1] & Imm64)
3005 imm_size = 8;
3006 }
3007 break;
3008 }
3009 /* We should find the immediate. */
3010 if (n1 == i.operands)
bfb32b52 3011 abort ();
3e73aa7c
JH
3012 i.op[n].disps->X_add_number -= imm_size;
3013 }
520dc8e8 3014
3e73aa7c
JH
3015 if (i.types[n] & Disp32S)
3016 sign = 1;
3017
e5cb08ac 3018 if (i.types[n] & (Disp16 | Disp64))
3e73aa7c
JH
3019 {
3020 size = 2;
3021 if (i.types[n] & Disp64)
3022 size = 8;
3023 }
520dc8e8
AM
3024
3025 insn_size += size;
3026 p = frag_more (size);
3027 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3e73aa7c 3028 i.op[n].disps, pcrel,
1ae12ab7 3029 reloc (size, pcrel, sign, i.reloc[n]));
252b5132
RH
3030 }
3031 }
3032 }
ce8a8b2f 3033 }
252b5132 3034
47926f60 3035 /* Output immediate. */
252b5132
RH
3036 if (i.imm_operands)
3037 {
3038 register unsigned int n;
3039
3040 for (n = 0; n < i.operands; n++)
3041 {
520dc8e8 3042 if (i.types[n] & Imm)
252b5132 3043 {
520dc8e8 3044 if (i.op[n].imms->X_op == O_constant)
252b5132 3045 {
847f7ad4
AM
3046 int size;
3047 offsetT val;
b4cac588 3048
847f7ad4 3049 size = 4;
3e73aa7c 3050 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
252b5132 3051 {
b4cac588 3052 size = 2;
b4cac588 3053 if (i.types[n] & (Imm8 | Imm8S))
847f7ad4 3054 size = 1;
3e73aa7c
JH
3055 else if (i.types[n] & Imm64)
3056 size = 8;
252b5132 3057 }
847f7ad4
AM
3058 val = offset_in_range (i.op[n].imms->X_add_number,
3059 size);
b4cac588
AM
3060 insn_size += size;
3061 p = frag_more (size);
847f7ad4 3062 md_number_to_chars (p, val, size);
252b5132
RH
3063 }
3064 else
ce8a8b2f
AM
3065 {
3066 /* Not absolute_section.
3067 Need a 32-bit fixup (don't support 8bit
520dc8e8 3068 non-absolute imms). Try to support other
47926f60 3069 sizes ... */
f3c180ae 3070 RELOC_ENUM reloc_type;
520dc8e8 3071 int size = 4;
3e73aa7c 3072 int sign = 0;
252b5132 3073
3e73aa7c
JH
3074 if ((i.types[n] & (Imm32S))
3075 && i.suffix == QWORD_MNEM_SUFFIX)
3076 sign = 1;
3077 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3078 {
3079 size = 2;
3080 if (i.types[n] & (Imm8 | Imm8S))
3081 size = 1;
3082 if (i.types[n] & Imm64)
3083 size = 8;
3084 }
520dc8e8 3085
252b5132
RH
3086 insn_size += size;
3087 p = frag_more (size);
1ae12ab7 3088 reloc_type = reloc (size, 0, sign, i.reloc[n]);
252b5132 3089#ifdef BFD_ASSEMBLER
f6af82bd 3090 if (reloc_type == BFD_RELOC_32
252b5132 3091 && GOT_symbol
520dc8e8
AM
3092 && GOT_symbol == i.op[n].imms->X_add_symbol
3093 && (i.op[n].imms->X_op == O_symbol
3094 || (i.op[n].imms->X_op == O_add
49309057 3095 && ((symbol_get_value_expression
520dc8e8 3096 (i.op[n].imms->X_op_symbol)->X_op)
252b5132
RH
3097 == O_subtract))))
3098 {
3e73aa7c
JH
3099 /* We don't support dynamic linking on x86-64 yet. */
3100 if (flag_code == CODE_64BIT)
bfb32b52 3101 abort ();
f6af82bd 3102 reloc_type = BFD_RELOC_386_GOTPC;
520dc8e8 3103 i.op[n].imms->X_add_number += 3;
252b5132
RH
3104 }
3105#endif
3106 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
520dc8e8 3107 i.op[n].imms, 0, reloc_type);
252b5132
RH
3108 }
3109 }
3110 }
ce8a8b2f 3111 }
252b5132
RH
3112 }
3113
e346e481
RH
3114 dwarf2_emit_insn (insn_size);
3115
252b5132
RH
3116#ifdef DEBUG386
3117 if (flag_debug)
3118 {
3119 pi (line, &i);
3120 }
47926f60 3121#endif /* DEBUG386 */
252b5132
RH
3122 }
3123}
3124\f
f3c180ae
AM
3125#ifndef LEX_AT
3126static char *lex_got PARAMS ((RELOC_ENUM *, int *));
3127
3128/* Parse operands of the form
3129 <symbol>@GOTOFF+<nnn>
3130 and similar .plt or .got references.
3131
3132 If we find one, set up the correct relocation in RELOC and copy the
3133 input string, minus the `@GOTOFF' into a malloc'd buffer for
3134 parsing by the calling routine. Return this buffer, and if ADJUST
3135 is non-null set it to the length of the string we removed from the
3136 input line. Otherwise return NULL. */
3137static char *
3138lex_got (reloc, adjust)
3139 RELOC_ENUM *reloc;
3140 int *adjust;
3141{
3142 static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
3143 static const struct {
3144 const char *str;
3145 const RELOC_ENUM rel[NUM_FLAG_CODE];
3146 } gotrel[] = {
3147 { "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
3148 { "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, 0 } },
3149 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
3150 { "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
3151 };
3152 char *cp;
3153 unsigned int j;
3154
3155 for (cp = input_line_pointer; *cp != '@'; cp++)
3156 if (is_end_of_line[(unsigned char) *cp])
3157 return NULL;
3158
3159 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3160 {
3161 int len;
3162
3163 len = strlen (gotrel[j].str);
3164 if (strncmp (cp + 1, gotrel[j].str, len) == 0)
3165 {
3166 if (gotrel[j].rel[(unsigned int) flag_code] != 0)
3167 {
3168 int first;
3169 char *tmpbuf;
3170
3171 *reloc = gotrel[j].rel[(unsigned int) flag_code];
3172
3173 if (GOT_symbol == NULL)
3174 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3175
3176 /* Replace the relocation token with ' ', so that
3177 errors like foo@GOTOFF1 will be detected. */
3178 first = cp - input_line_pointer;
3179 tmpbuf = xmalloc (strlen (input_line_pointer));
3180 memcpy (tmpbuf, input_line_pointer, first);
3181 tmpbuf[first] = ' ';
3182 strcpy (tmpbuf + first + 1, cp + 1 + len);
3183 if (adjust)
3184 *adjust = len;
3185 return tmpbuf;
3186 }
3187
3188 as_bad (_("@%s reloc is not supported in %s bit mode"),
3189 gotrel[j].str, mode_name[(unsigned int) flag_code]);
3190 return NULL;
3191 }
3192 }
3193
3194 /* Might be a symbol version string. Don't as_bad here. */
3195 return NULL;
3196}
3197
3198/* x86_cons_fix_new is called via the expression parsing code when a
3199 reloc is needed. We use this hook to get the correct .got reloc. */
3200static RELOC_ENUM got_reloc = NO_RELOC;
3201
3202void
3203x86_cons_fix_new (frag, off, len, exp)
3204 fragS *frag;
3205 unsigned int off;
3206 unsigned int len;
3207 expressionS *exp;
3208{
3209 RELOC_ENUM r = reloc (len, 0, 0, got_reloc);
3210 got_reloc = NO_RELOC;
3211 fix_new_exp (frag, off, len, exp, 0, r);
3212}
3213
3214void
3215x86_cons (exp, size)
3216 expressionS *exp;
3217 int size;
3218{
3219 if (size == 4)
3220 {
3221 /* Handle @GOTOFF and the like in an expression. */
3222 char *save;
3223 char *gotfree_input_line;
3224 int adjust;
3225
3226 save = input_line_pointer;
3227 gotfree_input_line = lex_got (&got_reloc, &adjust);
3228 if (gotfree_input_line)
3229 input_line_pointer = gotfree_input_line;
3230
3231 expression (exp);
3232
3233 if (gotfree_input_line)
3234 {
3235 /* expression () has merrily parsed up to the end of line,
3236 or a comma - in the wrong buffer. Transfer how far
3237 input_line_pointer has moved to the right buffer. */
3238 input_line_pointer = (save
3239 + (input_line_pointer - gotfree_input_line)
3240 + adjust);
3241 free (gotfree_input_line);
3242 }
3243 }
3244 else
3245 expression (exp);
3246}
3247#endif
3248
252b5132
RH
3249static int i386_immediate PARAMS ((char *));
3250
3251static int
3252i386_immediate (imm_start)
3253 char *imm_start;
3254{
3255 char *save_input_line_pointer;
f3c180ae
AM
3256#ifndef LEX_AT
3257 char *gotfree_input_line;
3258#endif
252b5132 3259 segT exp_seg = 0;
47926f60 3260 expressionS *exp;
252b5132
RH
3261
3262 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3263 {
d0b47220 3264 as_bad (_("only 1 or 2 immediate operands are allowed"));
252b5132
RH
3265 return 0;
3266 }
3267
3268 exp = &im_expressions[i.imm_operands++];
520dc8e8 3269 i.op[this_operand].imms = exp;
252b5132
RH
3270
3271 if (is_space_char (*imm_start))
3272 ++imm_start;
3273
3274 save_input_line_pointer = input_line_pointer;
3275 input_line_pointer = imm_start;
3276
3277#ifndef LEX_AT
f3c180ae
AM
3278 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3279 if (gotfree_input_line)
3280 input_line_pointer = gotfree_input_line;
252b5132
RH
3281#endif
3282
3283 exp_seg = expression (exp);
3284
83183c0c 3285 SKIP_WHITESPACE ();
252b5132 3286 if (*input_line_pointer)
f3c180ae 3287 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
3288
3289 input_line_pointer = save_input_line_pointer;
f3c180ae
AM
3290#ifndef LEX_AT
3291 if (gotfree_input_line)
3292 free (gotfree_input_line);
3293#endif
252b5132 3294
2daf4fd8 3295 if (exp->X_op == O_absent || exp->X_op == O_big)
252b5132 3296 {
47926f60 3297 /* Missing or bad expr becomes absolute 0. */
d0b47220 3298 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
24eab124 3299 imm_start);
252b5132
RH
3300 exp->X_op = O_constant;
3301 exp->X_add_number = 0;
3302 exp->X_add_symbol = (symbolS *) 0;
3303 exp->X_op_symbol = (symbolS *) 0;
252b5132 3304 }
3e73aa7c 3305 else if (exp->X_op == O_constant)
252b5132 3306 {
47926f60 3307 /* Size it properly later. */
3e73aa7c
JH
3308 i.types[this_operand] |= Imm64;
3309 /* If BFD64, sign extend val. */
3310 if (!use_rela_relocations)
3311 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3312 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 3313 }
4c63da97 3314#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
47926f60 3315 else if (1
4c63da97 3316#ifdef BFD_ASSEMBLER
47926f60 3317 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4c63da97 3318#endif
47926f60 3319 && exp_seg != text_section
24eab124
AM
3320 && exp_seg != data_section
3321 && exp_seg != bss_section
3322 && exp_seg != undefined_section
252b5132 3323#ifdef BFD_ASSEMBLER
24eab124 3324 && !bfd_is_com_section (exp_seg)
252b5132 3325#endif
24eab124 3326 )
252b5132 3327 {
4c63da97 3328#ifdef BFD_ASSEMBLER
d0b47220 3329 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4c63da97 3330#else
d0b47220 3331 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
4c63da97 3332#endif
252b5132
RH
3333 return 0;
3334 }
3335#endif
3336 else
3337 {
3338 /* This is an address. The size of the address will be
24eab124 3339 determined later, depending on destination register,
3e73aa7c
JH
3340 suffix, or the default for the section. */
3341 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
252b5132
RH
3342 }
3343
3344 return 1;
3345}
3346
3347static int i386_scale PARAMS ((char *));
3348
3349static int
3350i386_scale (scale)
3351 char *scale;
3352{
3353 if (!isdigit (*scale))
3354 goto bad_scale;
3355
3356 switch (*scale)
3357 {
3358 case '0':
3359 case '1':
3360 i.log2_scale_factor = 0;
3361 break;
3362 case '2':
3363 i.log2_scale_factor = 1;
3364 break;
3365 case '4':
3366 i.log2_scale_factor = 2;
3367 break;
3368 case '8':
3369 i.log2_scale_factor = 3;
3370 break;
3371 default:
3372 bad_scale:
3373 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
24eab124 3374 scale);
252b5132
RH
3375 return 0;
3376 }
3377 if (i.log2_scale_factor != 0 && ! i.index_reg)
3378 {
3379 as_warn (_("scale factor of %d without an index register"),
24eab124 3380 1 << i.log2_scale_factor);
252b5132
RH
3381#if SCALE1_WHEN_NO_INDEX
3382 i.log2_scale_factor = 0;
3383#endif
3384 }
3385 return 1;
3386}
3387
3388static int i386_displacement PARAMS ((char *, char *));
3389
3390static int
3391i386_displacement (disp_start, disp_end)
3392 char *disp_start;
3393 char *disp_end;
3394{
3395 register expressionS *exp;
3396 segT exp_seg = 0;
3397 char *save_input_line_pointer;
f3c180ae
AM
3398#ifndef LEX_AT
3399 char *gotfree_input_line;
3400#endif
252b5132
RH
3401 int bigdisp = Disp32;
3402
3e73aa7c 3403 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
252b5132 3404 bigdisp = Disp16;
3e73aa7c
JH
3405 if (flag_code == CODE_64BIT)
3406 bigdisp = Disp64;
252b5132
RH
3407 i.types[this_operand] |= bigdisp;
3408
3409 exp = &disp_expressions[i.disp_operands];
520dc8e8 3410 i.op[this_operand].disps = exp;
252b5132
RH
3411 i.disp_operands++;
3412 save_input_line_pointer = input_line_pointer;
3413 input_line_pointer = disp_start;
3414 END_STRING_AND_SAVE (disp_end);
3415
3416#ifndef GCC_ASM_O_HACK
3417#define GCC_ASM_O_HACK 0
3418#endif
3419#if GCC_ASM_O_HACK
3420 END_STRING_AND_SAVE (disp_end + 1);
3421 if ((i.types[this_operand] & BaseIndex) != 0
24eab124 3422 && displacement_string_end[-1] == '+')
252b5132
RH
3423 {
3424 /* This hack is to avoid a warning when using the "o"
24eab124
AM
3425 constraint within gcc asm statements.
3426 For instance:
3427
3428 #define _set_tssldt_desc(n,addr,limit,type) \
3429 __asm__ __volatile__ ( \
3430 "movw %w2,%0\n\t" \
3431 "movw %w1,2+%0\n\t" \
3432 "rorl $16,%1\n\t" \
3433 "movb %b1,4+%0\n\t" \
3434 "movb %4,5+%0\n\t" \
3435 "movb $0,6+%0\n\t" \
3436 "movb %h1,7+%0\n\t" \
3437 "rorl $16,%1" \
3438 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
3439
3440 This works great except that the output assembler ends
3441 up looking a bit weird if it turns out that there is
3442 no offset. You end up producing code that looks like:
3443
3444 #APP
3445 movw $235,(%eax)
3446 movw %dx,2+(%eax)
3447 rorl $16,%edx
3448 movb %dl,4+(%eax)
3449 movb $137,5+(%eax)
3450 movb $0,6+(%eax)
3451 movb %dh,7+(%eax)
3452 rorl $16,%edx
3453 #NO_APP
3454
47926f60 3455 So here we provide the missing zero. */
24eab124
AM
3456
3457 *displacement_string_end = '0';
252b5132
RH
3458 }
3459#endif
3460#ifndef LEX_AT
f3c180ae
AM
3461 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3462 if (gotfree_input_line)
3463 input_line_pointer = gotfree_input_line;
252b5132
RH
3464#endif
3465
24eab124 3466 exp_seg = expression (exp);
252b5132
RH
3467
3468#ifdef BFD_ASSEMBLER
24eab124
AM
3469 /* We do this to make sure that the section symbol is in
3470 the symbol table. We will ultimately change the relocation
47926f60 3471 to be relative to the beginning of the section. */
1ae12ab7
AM
3472 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
3473 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
24eab124 3474 {
e5cb08ac 3475 if (S_IS_LOCAL (exp->X_add_symbol)
24eab124
AM
3476 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
3477 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
3478 assert (exp->X_op == O_symbol);
3479 exp->X_op = O_subtract;
3480 exp->X_op_symbol = GOT_symbol;
1ae12ab7
AM
3481 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3482 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
23df1078 3483 else
1ae12ab7 3484 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 3485 }
252b5132
RH
3486#endif
3487
24eab124
AM
3488 SKIP_WHITESPACE ();
3489 if (*input_line_pointer)
f3c180ae 3490 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132 3491#if GCC_ASM_O_HACK
24eab124 3492 RESTORE_END_STRING (disp_end + 1);
252b5132 3493#endif
24eab124
AM
3494 RESTORE_END_STRING (disp_end);
3495 input_line_pointer = save_input_line_pointer;
f3c180ae
AM
3496#ifndef LEX_AT
3497 if (gotfree_input_line)
3498 free (gotfree_input_line);
3499#endif
24eab124 3500
2daf4fd8
AM
3501 if (exp->X_op == O_absent || exp->X_op == O_big)
3502 {
47926f60 3503 /* Missing or bad expr becomes absolute 0. */
d0b47220 3504 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
2daf4fd8
AM
3505 disp_start);
3506 exp->X_op = O_constant;
3507 exp->X_add_number = 0;
3508 exp->X_add_symbol = (symbolS *) 0;
3509 exp->X_op_symbol = (symbolS *) 0;
3510 }
3511
4c63da97 3512#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
45288df1 3513 if (exp->X_op != O_constant
4c63da97 3514#ifdef BFD_ASSEMBLER
45288df1 3515 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4c63da97 3516#endif
45288df1
AM
3517 && exp_seg != text_section
3518 && exp_seg != data_section
3519 && exp_seg != bss_section
3520 && exp_seg != undefined_section)
24eab124 3521 {
4c63da97 3522#ifdef BFD_ASSEMBLER
d0b47220 3523 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4c63da97 3524#else
d0b47220 3525 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
4c63da97 3526#endif
24eab124
AM
3527 return 0;
3528 }
252b5132 3529#endif
3e73aa7c
JH
3530 else if (flag_code == CODE_64BIT)
3531 i.types[this_operand] |= Disp32S | Disp32;
252b5132
RH
3532 return 1;
3533}
3534
e5cb08ac 3535static int i386_index_check PARAMS ((const char *));
252b5132 3536
eecb386c 3537/* Make sure the memory operand we've been dealt is valid.
47926f60
KH
3538 Return 1 on success, 0 on a failure. */
3539
252b5132 3540static int
eecb386c
AM
3541i386_index_check (operand_string)
3542 const char *operand_string;
252b5132 3543{
3e73aa7c 3544 int ok;
24eab124 3545#if INFER_ADDR_PREFIX
eecb386c
AM
3546 int fudged = 0;
3547
24eab124
AM
3548 tryprefix:
3549#endif
3e73aa7c
JH
3550 ok = 1;
3551 if (flag_code == CODE_64BIT)
3552 {
3553 /* 64bit checks. */
3554 if ((i.base_reg
3555 && ((i.base_reg->reg_type & Reg64) == 0)
3556 && (i.base_reg->reg_type != BaseIndex
3557 || i.index_reg))
3558 || (i.index_reg
3559 && ((i.index_reg->reg_type & (Reg64|BaseIndex))
3560 != (Reg64|BaseIndex))))
3561 ok = 0;
3562 }
3563 else
3564 {
3565 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3566 {
3567 /* 16bit checks. */
3568 if ((i.base_reg
3569 && ((i.base_reg->reg_type & (Reg16|BaseIndex|RegRex))
3570 != (Reg16|BaseIndex)))
3571 || (i.index_reg
3572 && (((i.index_reg->reg_type & (Reg16|BaseIndex))
3573 != (Reg16|BaseIndex))
3574 || ! (i.base_reg
3575 && i.base_reg->reg_num < 6
3576 && i.index_reg->reg_num >= 6
3577 && i.log2_scale_factor == 0))))
3578 ok = 0;
3579 }
3580 else
e5cb08ac 3581 {
3e73aa7c
JH
3582 /* 32bit checks. */
3583 if ((i.base_reg
3584 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
3585 || (i.index_reg
3586 && ((i.index_reg->reg_type & (Reg32|BaseIndex|RegRex))
3587 != (Reg32|BaseIndex))))
e5cb08ac 3588 ok = 0;
3e73aa7c
JH
3589 }
3590 }
3591 if (!ok)
24eab124
AM
3592 {
3593#if INFER_ADDR_PREFIX
3e73aa7c
JH
3594 if (flag_code != CODE_64BIT
3595 && i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
24eab124
AM
3596 {
3597 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
3598 i.prefixes += 1;
b23bac36
AM
3599 /* Change the size of any displacement too. At most one of
3600 Disp16 or Disp32 is set.
3601 FIXME. There doesn't seem to be any real need for separate
3602 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
47926f60 3603 Removing them would probably clean up the code quite a lot. */
b23bac36
AM
3604 if (i.types[this_operand] & (Disp16|Disp32))
3605 i.types[this_operand] ^= (Disp16|Disp32);
eecb386c 3606 fudged = 1;
24eab124
AM
3607 goto tryprefix;
3608 }
eecb386c
AM
3609 if (fudged)
3610 as_bad (_("`%s' is not a valid base/index expression"),
3611 operand_string);
3612 else
c388dee8 3613#endif
eecb386c
AM
3614 as_bad (_("`%s' is not a valid %s bit base/index expression"),
3615 operand_string,
3e73aa7c 3616 flag_code_names[flag_code]);
eecb386c 3617 return 0;
24eab124
AM
3618 }
3619 return 1;
3620}
252b5132 3621
252b5132 3622/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
47926f60 3623 on error. */
252b5132 3624
252b5132
RH
3625static int
3626i386_operand (operand_string)
3627 char *operand_string;
3628{
af6bdddf
AM
3629 const reg_entry *r;
3630 char *end_op;
24eab124 3631 char *op_string = operand_string;
252b5132 3632
24eab124 3633 if (is_space_char (*op_string))
252b5132
RH
3634 ++op_string;
3635
24eab124 3636 /* We check for an absolute prefix (differentiating,
47926f60 3637 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
3638 if (*op_string == ABSOLUTE_PREFIX)
3639 {
3640 ++op_string;
3641 if (is_space_char (*op_string))
3642 ++op_string;
3643 i.types[this_operand] |= JumpAbsolute;
3644 }
252b5132 3645
47926f60 3646 /* Check if operand is a register. */
af6bdddf
AM
3647 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
3648 && (r = parse_register (op_string, &end_op)) != NULL)
24eab124 3649 {
24eab124
AM
3650 /* Check for a segment override by searching for ':' after a
3651 segment register. */
3652 op_string = end_op;
3653 if (is_space_char (*op_string))
3654 ++op_string;
3655 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
3656 {
3657 switch (r->reg_num)
3658 {
3659 case 0:
3660 i.seg[i.mem_operands] = &es;
3661 break;
3662 case 1:
3663 i.seg[i.mem_operands] = &cs;
3664 break;
3665 case 2:
3666 i.seg[i.mem_operands] = &ss;
3667 break;
3668 case 3:
3669 i.seg[i.mem_operands] = &ds;
3670 break;
3671 case 4:
3672 i.seg[i.mem_operands] = &fs;
3673 break;
3674 case 5:
3675 i.seg[i.mem_operands] = &gs;
3676 break;
3677 }
252b5132 3678
24eab124 3679 /* Skip the ':' and whitespace. */
252b5132
RH
3680 ++op_string;
3681 if (is_space_char (*op_string))
24eab124 3682 ++op_string;
252b5132 3683
24eab124
AM
3684 if (!is_digit_char (*op_string)
3685 && !is_identifier_char (*op_string)
3686 && *op_string != '('
3687 && *op_string != ABSOLUTE_PREFIX)
3688 {
3689 as_bad (_("bad memory operand `%s'"), op_string);
3690 return 0;
3691 }
47926f60 3692 /* Handle case of %es:*foo. */
24eab124
AM
3693 if (*op_string == ABSOLUTE_PREFIX)
3694 {
3695 ++op_string;
3696 if (is_space_char (*op_string))
3697 ++op_string;
3698 i.types[this_operand] |= JumpAbsolute;
3699 }
3700 goto do_memory_reference;
3701 }
3702 if (*op_string)
3703 {
d0b47220 3704 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
3705 return 0;
3706 }
3707 i.types[this_operand] |= r->reg_type & ~BaseIndex;
520dc8e8 3708 i.op[this_operand].regs = r;
24eab124
AM
3709 i.reg_operands++;
3710 }
af6bdddf
AM
3711 else if (*op_string == REGISTER_PREFIX)
3712 {
3713 as_bad (_("bad register name `%s'"), op_string);
3714 return 0;
3715 }
24eab124 3716 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 3717 {
24eab124
AM
3718 ++op_string;
3719 if (i.types[this_operand] & JumpAbsolute)
3720 {
d0b47220 3721 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
3722 return 0;
3723 }
3724 if (!i386_immediate (op_string))
3725 return 0;
3726 }
3727 else if (is_digit_char (*op_string)
3728 || is_identifier_char (*op_string)
e5cb08ac 3729 || *op_string == '(')
24eab124 3730 {
47926f60 3731 /* This is a memory reference of some sort. */
af6bdddf 3732 char *base_string;
252b5132 3733
47926f60 3734 /* Start and end of displacement string expression (if found). */
eecb386c
AM
3735 char *displacement_string_start;
3736 char *displacement_string_end;
252b5132 3737
24eab124 3738 do_memory_reference:
24eab124
AM
3739 if ((i.mem_operands == 1
3740 && (current_templates->start->opcode_modifier & IsString) == 0)
3741 || i.mem_operands == 2)
3742 {
3743 as_bad (_("too many memory references for `%s'"),
3744 current_templates->start->name);
3745 return 0;
3746 }
252b5132 3747
24eab124
AM
3748 /* Check for base index form. We detect the base index form by
3749 looking for an ')' at the end of the operand, searching
3750 for the '(' matching it, and finding a REGISTER_PREFIX or ','
3751 after the '('. */
af6bdddf 3752 base_string = op_string + strlen (op_string);
c3332e24 3753
af6bdddf
AM
3754 --base_string;
3755 if (is_space_char (*base_string))
3756 --base_string;
252b5132 3757
47926f60 3758 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
3759 displacement_string_start = op_string;
3760 displacement_string_end = base_string + 1;
252b5132 3761
24eab124
AM
3762 if (*base_string == ')')
3763 {
af6bdddf 3764 char *temp_string;
24eab124
AM
3765 unsigned int parens_balanced = 1;
3766 /* We've already checked that the number of left & right ()'s are
47926f60 3767 equal, so this loop will not be infinite. */
24eab124
AM
3768 do
3769 {
3770 base_string--;
3771 if (*base_string == ')')
3772 parens_balanced++;
3773 if (*base_string == '(')
3774 parens_balanced--;
3775 }
3776 while (parens_balanced);
c3332e24 3777
af6bdddf 3778 temp_string = base_string;
c3332e24 3779
24eab124 3780 /* Skip past '(' and whitespace. */
252b5132
RH
3781 ++base_string;
3782 if (is_space_char (*base_string))
24eab124 3783 ++base_string;
252b5132 3784
af6bdddf
AM
3785 if (*base_string == ','
3786 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3787 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
252b5132 3788 {
af6bdddf 3789 displacement_string_end = temp_string;
252b5132 3790
af6bdddf 3791 i.types[this_operand] |= BaseIndex;
252b5132 3792
af6bdddf 3793 if (i.base_reg)
24eab124 3794 {
24eab124
AM
3795 base_string = end_op;
3796 if (is_space_char (*base_string))
3797 ++base_string;
af6bdddf
AM
3798 }
3799
3800 /* There may be an index reg or scale factor here. */
3801 if (*base_string == ',')
3802 {
3803 ++base_string;
3804 if (is_space_char (*base_string))
3805 ++base_string;
3806
3807 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3808 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
24eab124 3809 {
af6bdddf 3810 base_string = end_op;
24eab124
AM
3811 if (is_space_char (*base_string))
3812 ++base_string;
af6bdddf
AM
3813 if (*base_string == ',')
3814 {
3815 ++base_string;
3816 if (is_space_char (*base_string))
3817 ++base_string;
3818 }
e5cb08ac 3819 else if (*base_string != ')')
af6bdddf
AM
3820 {
3821 as_bad (_("expecting `,' or `)' after index register in `%s'"),
3822 operand_string);
3823 return 0;
3824 }
24eab124 3825 }
af6bdddf 3826 else if (*base_string == REGISTER_PREFIX)
24eab124 3827 {
af6bdddf 3828 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
3829 return 0;
3830 }
252b5132 3831
47926f60 3832 /* Check for scale factor. */
af6bdddf
AM
3833 if (isdigit ((unsigned char) *base_string))
3834 {
3835 if (!i386_scale (base_string))
3836 return 0;
24eab124 3837
af6bdddf
AM
3838 ++base_string;
3839 if (is_space_char (*base_string))
3840 ++base_string;
3841 if (*base_string != ')')
3842 {
3843 as_bad (_("expecting `)' after scale factor in `%s'"),
3844 operand_string);
3845 return 0;
3846 }
3847 }
3848 else if (!i.index_reg)
24eab124 3849 {
af6bdddf
AM
3850 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
3851 *base_string);
24eab124
AM
3852 return 0;
3853 }
3854 }
af6bdddf 3855 else if (*base_string != ')')
24eab124 3856 {
af6bdddf
AM
3857 as_bad (_("expecting `,' or `)' after base register in `%s'"),
3858 operand_string);
24eab124
AM
3859 return 0;
3860 }
c3332e24 3861 }
af6bdddf 3862 else if (*base_string == REGISTER_PREFIX)
c3332e24 3863 {
af6bdddf 3864 as_bad (_("bad register name `%s'"), base_string);
24eab124 3865 return 0;
c3332e24 3866 }
24eab124
AM
3867 }
3868
3869 /* If there's an expression beginning the operand, parse it,
3870 assuming displacement_string_start and
3871 displacement_string_end are meaningful. */
3872 if (displacement_string_start != displacement_string_end)
3873 {
3874 if (!i386_displacement (displacement_string_start,
3875 displacement_string_end))
3876 return 0;
3877 }
3878
3879 /* Special case for (%dx) while doing input/output op. */
3880 if (i.base_reg
3881 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
3882 && i.index_reg == 0
3883 && i.log2_scale_factor == 0
3884 && i.seg[i.mem_operands] == 0
3885 && (i.types[this_operand] & Disp) == 0)
3886 {
3887 i.types[this_operand] = InOutPortReg;
3888 return 1;
3889 }
3890
eecb386c
AM
3891 if (i386_index_check (operand_string) == 0)
3892 return 0;
24eab124
AM
3893 i.mem_operands++;
3894 }
3895 else
ce8a8b2f
AM
3896 {
3897 /* It's not a memory operand; argh! */
24eab124
AM
3898 as_bad (_("invalid char %s beginning operand %d `%s'"),
3899 output_invalid (*op_string),
3900 this_operand + 1,
3901 op_string);
3902 return 0;
3903 }
47926f60 3904 return 1; /* Normal return. */
252b5132
RH
3905}
3906\f
ee7fcc42
AM
3907/* md_estimate_size_before_relax()
3908
3909 Called just before relax() for rs_machine_dependent frags. The x86
3910 assembler uses these frags to handle variable size jump
3911 instructions.
3912
3913 Any symbol that is now undefined will not become defined.
3914 Return the correct fr_subtype in the frag.
3915 Return the initial "guess for variable size of frag" to caller.
3916 The guess is actually the growth beyond the fixed part. Whatever
3917 we do to grow the fixed or variable part contributes to our
3918 returned value. */
3919
252b5132
RH
3920int
3921md_estimate_size_before_relax (fragP, segment)
3922 register fragS *fragP;
3923 register segT segment;
3924{
252b5132 3925 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
3926 check for un-relaxable symbols. On an ELF system, we can't relax
3927 an externally visible symbol, because it may be overridden by a
3928 shared library. */
3929 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 3930#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b98ef147
AM
3931 || S_IS_EXTERNAL (fragP->fr_symbol)
3932 || S_IS_WEAK (fragP->fr_symbol)
3933#endif
3934 )
252b5132 3935 {
b98ef147
AM
3936 /* Symbol is undefined in this segment, or we need to keep a
3937 reloc so that weak symbols can be overridden. */
3938 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f3c180ae 3939 RELOC_ENUM reloc_type;
ee7fcc42
AM
3940 unsigned char *opcode;
3941 int old_fr_fix;
f6af82bd 3942
ee7fcc42
AM
3943 if (fragP->fr_var != NO_RELOC)
3944 reloc_type = fragP->fr_var;
b98ef147 3945 else if (size == 2)
f6af82bd
AM
3946 reloc_type = BFD_RELOC_16_PCREL;
3947 else
3948 reloc_type = BFD_RELOC_32_PCREL;
252b5132 3949
ee7fcc42
AM
3950 old_fr_fix = fragP->fr_fix;
3951 opcode = (unsigned char *) fragP->fr_opcode;
3952
fddf5b5b 3953 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 3954 {
fddf5b5b
AM
3955 case UNCOND_JUMP:
3956 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 3957 opcode[0] = 0xe9;
252b5132
RH
3958 fragP->fr_fix += size;
3959 fix_new (fragP, old_fr_fix, size,
3960 fragP->fr_symbol,
3961 fragP->fr_offset, 1,
f6af82bd 3962 reloc_type);
252b5132
RH
3963 break;
3964
fddf5b5b
AM
3965 case COND_JUMP86:
3966 if (no_cond_jump_promotion)
3967 return 1;
3968 if (size == 2)
3969 {
3970 /* Negate the condition, and branch past an
3971 unconditional jump. */
3972 opcode[0] ^= 1;
3973 opcode[1] = 3;
3974 /* Insert an unconditional jump. */
3975 opcode[2] = 0xe9;
3976 /* We added two extra opcode bytes, and have a two byte
3977 offset. */
3978 fragP->fr_fix += 2 + 2;
3979 fix_new (fragP, old_fr_fix + 2, 2,
3980 fragP->fr_symbol,
3981 fragP->fr_offset, 1,
3982 reloc_type);
3983 break;
3984 }
3985 /* Fall through. */
3986
3987 case COND_JUMP:
3988 if (no_cond_jump_promotion)
3989 return 1;
24eab124 3990 /* This changes the byte-displacement jump 0x7N
fddf5b5b 3991 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 3992 opcode[1] = opcode[0] + 0x10;
f6af82bd 3993 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
3994 /* We've added an opcode byte. */
3995 fragP->fr_fix += 1 + size;
252b5132
RH
3996 fix_new (fragP, old_fr_fix + 1, size,
3997 fragP->fr_symbol,
3998 fragP->fr_offset, 1,
f6af82bd 3999 reloc_type);
252b5132 4000 break;
fddf5b5b
AM
4001
4002 default:
4003 BAD_CASE (fragP->fr_subtype);
4004 break;
252b5132
RH
4005 }
4006 frag_wane (fragP);
ee7fcc42 4007 return fragP->fr_fix - old_fr_fix;
252b5132 4008 }
47926f60
KH
4009 /* Guess a short jump. */
4010 return 1;
ee7fcc42
AM
4011}
4012
47926f60
KH
4013/* Called after relax() is finished.
4014
4015 In: Address of frag.
4016 fr_type == rs_machine_dependent.
4017 fr_subtype is what the address relaxed to.
4018
4019 Out: Any fixSs and constants are set up.
4020 Caller will turn frag into a ".space 0". */
4021
252b5132
RH
4022#ifndef BFD_ASSEMBLER
4023void
4024md_convert_frag (headers, sec, fragP)
a04b544b
ILT
4025 object_headers *headers ATTRIBUTE_UNUSED;
4026 segT sec ATTRIBUTE_UNUSED;
252b5132
RH
4027 register fragS *fragP;
4028#else
4029void
4030md_convert_frag (abfd, sec, fragP)
ab9da554
ILT
4031 bfd *abfd ATTRIBUTE_UNUSED;
4032 segT sec ATTRIBUTE_UNUSED;
252b5132
RH
4033 register fragS *fragP;
4034#endif
4035{
4036 register unsigned char *opcode;
4037 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
4038 offsetT target_address;
4039 offsetT opcode_address;
252b5132 4040 unsigned int extension = 0;
847f7ad4 4041 offsetT displacement_from_opcode_start;
252b5132
RH
4042
4043 opcode = (unsigned char *) fragP->fr_opcode;
4044
47926f60 4045 /* Address we want to reach in file space. */
252b5132 4046 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
47926f60
KH
4047#ifdef BFD_ASSEMBLER
4048 /* Not needed otherwise? */
49309057 4049 target_address += symbol_get_frag (fragP->fr_symbol)->fr_address;
252b5132
RH
4050#endif
4051
47926f60 4052 /* Address opcode resides at in file space. */
252b5132
RH
4053 opcode_address = fragP->fr_address + fragP->fr_fix;
4054
47926f60 4055 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
4056 displacement_from_opcode_start = target_address - opcode_address;
4057
fddf5b5b 4058 if ((fragP->fr_subtype & BIG) == 0)
252b5132 4059 {
47926f60
KH
4060 /* Don't have to change opcode. */
4061 extension = 1; /* 1 opcode + 1 displacement */
252b5132 4062 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
4063 }
4064 else
4065 {
4066 if (no_cond_jump_promotion
4067 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4068 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
252b5132 4069
fddf5b5b
AM
4070 switch (fragP->fr_subtype)
4071 {
4072 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4073 extension = 4; /* 1 opcode + 4 displacement */
4074 opcode[0] = 0xe9;
4075 where_to_put_displacement = &opcode[1];
4076 break;
252b5132 4077
fddf5b5b
AM
4078 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4079 extension = 2; /* 1 opcode + 2 displacement */
4080 opcode[0] = 0xe9;
4081 where_to_put_displacement = &opcode[1];
4082 break;
252b5132 4083
fddf5b5b
AM
4084 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4085 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4086 extension = 5; /* 2 opcode + 4 displacement */
4087 opcode[1] = opcode[0] + 0x10;
4088 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4089 where_to_put_displacement = &opcode[2];
4090 break;
252b5132 4091
fddf5b5b
AM
4092 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4093 extension = 3; /* 2 opcode + 2 displacement */
4094 opcode[1] = opcode[0] + 0x10;
4095 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4096 where_to_put_displacement = &opcode[2];
4097 break;
252b5132 4098
fddf5b5b
AM
4099 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4100 extension = 4;
4101 opcode[0] ^= 1;
4102 opcode[1] = 3;
4103 opcode[2] = 0xe9;
4104 where_to_put_displacement = &opcode[3];
4105 break;
4106
4107 default:
4108 BAD_CASE (fragP->fr_subtype);
4109 break;
4110 }
252b5132 4111 }
fddf5b5b 4112
47926f60 4113 /* Now put displacement after opcode. */
252b5132
RH
4114 md_number_to_chars ((char *) where_to_put_displacement,
4115 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 4116 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
4117 fragP->fr_fix += extension;
4118}
4119\f
47926f60
KH
4120/* Size of byte displacement jmp. */
4121int md_short_jump_size = 2;
4122
4123/* Size of dword displacement jmp. */
4124int md_long_jump_size = 5;
252b5132 4125
47926f60
KH
4126/* Size of relocation record. */
4127const int md_reloc_size = 8;
252b5132
RH
4128
4129void
4130md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4131 char *ptr;
4132 addressT from_addr, to_addr;
ab9da554
ILT
4133 fragS *frag ATTRIBUTE_UNUSED;
4134 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 4135{
847f7ad4 4136 offsetT offset;
252b5132
RH
4137
4138 offset = to_addr - (from_addr + 2);
47926f60
KH
4139 /* Opcode for byte-disp jump. */
4140 md_number_to_chars (ptr, (valueT) 0xeb, 1);
252b5132
RH
4141 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4142}
4143
4144void
4145md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4146 char *ptr;
4147 addressT from_addr, to_addr;
a38cf1db
AM
4148 fragS *frag ATTRIBUTE_UNUSED;
4149 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 4150{
847f7ad4 4151 offsetT offset;
252b5132 4152
a38cf1db
AM
4153 offset = to_addr - (from_addr + 5);
4154 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4155 md_number_to_chars (ptr + 1, (valueT) offset, 4);
252b5132
RH
4156}
4157\f
4158/* Apply a fixup (fixS) to segment data, once it has been determined
4159 by our caller that we have all the info we need to fix it up.
4160
4161 On the 386, immediates, displacements, and data pointers are all in
4162 the same (little-endian) format, so we don't need to care about which
4163 we are handling. */
4164
4165int
4166md_apply_fix3 (fixP, valp, seg)
47926f60
KH
4167 /* The fix we're to put in. */
4168 fixS *fixP;
4169
4170 /* Pointer to the value of the bits. */
4171 valueT *valp;
4172
4173 /* Segment fix is from. */
4174 segT seg ATTRIBUTE_UNUSED;
252b5132
RH
4175{
4176 register char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
4177 valueT value = *valp;
4178
e1b283bb 4179#if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
93382f6d
AM
4180 if (fixP->fx_pcrel)
4181 {
4182 switch (fixP->fx_r_type)
4183 {
5865bb77
ILT
4184 default:
4185 break;
4186
93382f6d
AM
4187 case BFD_RELOC_32:
4188 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4189 break;
4190 case BFD_RELOC_16:
4191 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4192 break;
4193 case BFD_RELOC_8:
4194 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4195 break;
4196 }
4197 }
252b5132 4198
0723899b
ILT
4199 /* This is a hack. There should be a better way to handle this.
4200 This covers for the fact that bfd_install_relocation will
4201 subtract the current location (for partial_inplace, PC relative
4202 relocations); see more below. */
93382f6d
AM
4203 if ((fixP->fx_r_type == BFD_RELOC_32_PCREL
4204 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4205 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
7c44d1d3 4206 && fixP->fx_addsy && !use_rela_relocations)
252b5132
RH
4207 {
4208#ifndef OBJ_AOUT
4209 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4210#ifdef TE_PE
4211 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4212#endif
4213 )
4214 value += fixP->fx_where + fixP->fx_frag->fr_address;
4215#endif
4216#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2f66722d 4217 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
252b5132 4218 {
2f66722d
AM
4219 segT fseg = S_GET_SEGMENT (fixP->fx_addsy);
4220
4221 if ((fseg == seg
4222 || (symbol_section_p (fixP->fx_addsy)
4223 && fseg != absolute_section))
4224 && ! S_IS_EXTERNAL (fixP->fx_addsy)
4225 && ! S_IS_WEAK (fixP->fx_addsy)
4226 && S_IS_DEFINED (fixP->fx_addsy)
4227 && ! S_IS_COMMON (fixP->fx_addsy))
4228 {
4229 /* Yes, we add the values in twice. This is because
4230 bfd_perform_relocation subtracts them out again. I think
4231 bfd_perform_relocation is broken, but I don't dare change
4232 it. FIXME. */
4233 value += fixP->fx_where + fixP->fx_frag->fr_address;
4234 }
252b5132
RH
4235 }
4236#endif
4237#if defined (OBJ_COFF) && defined (TE_PE)
4238 /* For some reason, the PE format does not store a section
24eab124 4239 address offset for a PC relative symbol. */
252b5132
RH
4240 if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
4241 value += md_pcrel_from (fixP);
4242#endif
4243 }
4244
4245 /* Fix a few things - the dynamic linker expects certain values here,
47926f60 4246 and we must not dissappoint it. */
252b5132
RH
4247#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4248 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4249 && fixP->fx_addsy)
47926f60
KH
4250 switch (fixP->fx_r_type)
4251 {
4252 case BFD_RELOC_386_PLT32:
3e73aa7c 4253 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
4254 /* Make the jump instruction point to the address of the operand. At
4255 runtime we merely add the offset to the actual PLT entry. */
4256 value = -4;
4257 break;
4258 case BFD_RELOC_386_GOTPC:
4259
4260/* This is tough to explain. We end up with this one if we have
252b5132
RH
4261 * operands that look like "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal
4262 * here is to obtain the absolute address of the GOT, and it is strongly
4263 * preferable from a performance point of view to avoid using a runtime
c3332e24 4264 * relocation for this. The actual sequence of instructions often look
252b5132 4265 * something like:
c3332e24 4266 *
24eab124 4267 * call .L66
252b5132 4268 * .L66:
24eab124
AM
4269 * popl %ebx
4270 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
c3332e24 4271 *
24eab124 4272 * The call and pop essentially return the absolute address of
252b5132
RH
4273 * the label .L66 and store it in %ebx. The linker itself will
4274 * ultimately change the first operand of the addl so that %ebx points to
4275 * the GOT, but to keep things simple, the .o file must have this operand
4276 * set so that it generates not the absolute address of .L66, but the
4277 * absolute address of itself. This allows the linker itself simply
4278 * treat a GOTPC relocation as asking for a pcrel offset to the GOT to be
4279 * added in, and the addend of the relocation is stored in the operand
4280 * field for the instruction itself.
c3332e24 4281 *
24eab124 4282 * Our job here is to fix the operand so that it would add the correct
252b5132
RH
4283 * offset so that %ebx would point to itself. The thing that is tricky is
4284 * that .-.L66 will point to the beginning of the instruction, so we need
4285 * to further modify the operand so that it will point to itself.
4286 * There are other cases where you have something like:
c3332e24 4287 *
24eab124 4288 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
c3332e24 4289 *
252b5132 4290 * and here no correction would be required. Internally in the assembler
c3332e24 4291 * we treat operands of this form as not being pcrel since the '.' is
252b5132
RH
4292 * explicitly mentioned, and I wonder whether it would simplify matters
4293 * to do it this way. Who knows. In earlier versions of the PIC patches,
4294 * the pcrel_adjust field was used to store the correction, but since the
47926f60
KH
4295 * expression is not pcrel, I felt it would be confusing to do it this
4296 * way. */
4297
4298 value -= 1;
4299 break;
4300 case BFD_RELOC_386_GOT32:
3e73aa7c 4301 case BFD_RELOC_X86_64_GOT32:
47926f60
KH
4302 value = 0; /* Fully resolved at runtime. No addend. */
4303 break;
4304 case BFD_RELOC_386_GOTOFF:
3e73aa7c 4305 case BFD_RELOC_X86_64_GOTPCREL:
47926f60
KH
4306 break;
4307
4308 case BFD_RELOC_VTABLE_INHERIT:
4309 case BFD_RELOC_VTABLE_ENTRY:
4310 fixP->fx_done = 0;
4311 return 1;
4312
4313 default:
4314 break;
4315 }
4316#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
93382f6d 4317 *valp = value;
47926f60 4318#endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */
3e73aa7c
JH
4319
4320#ifndef BFD_ASSEMBLER
252b5132 4321 md_number_to_chars (p, value, fixP->fx_size);
3e73aa7c
JH
4322#else
4323 /* Are we finished with this relocation now? */
4324 if (fixP->fx_addsy == 0 && fixP->fx_pcrel == 0)
4325 fixP->fx_done = 1;
4326 else if (use_rela_relocations)
4327 {
4328 fixP->fx_no_overflow = 1;
4329 value = 0;
4330 }
4331 md_number_to_chars (p, value, fixP->fx_size);
4332#endif
252b5132
RH
4333
4334 return 1;
4335}
252b5132 4336\f
252b5132
RH
4337#define MAX_LITTLENUMS 6
4338
47926f60
KH
4339/* Turn the string pointed to by litP into a floating point constant
4340 of type TYPE, and emit the appropriate bytes. The number of
4341 LITTLENUMS emitted is stored in *SIZEP. An error message is
4342 returned, or NULL on OK. */
4343
252b5132
RH
4344char *
4345md_atof (type, litP, sizeP)
2ab9b79e 4346 int type;
252b5132
RH
4347 char *litP;
4348 int *sizeP;
4349{
4350 int prec;
4351 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4352 LITTLENUM_TYPE *wordP;
4353 char *t;
4354
4355 switch (type)
4356 {
4357 case 'f':
4358 case 'F':
4359 prec = 2;
4360 break;
4361
4362 case 'd':
4363 case 'D':
4364 prec = 4;
4365 break;
4366
4367 case 'x':
4368 case 'X':
4369 prec = 5;
4370 break;
4371
4372 default:
4373 *sizeP = 0;
4374 return _("Bad call to md_atof ()");
4375 }
4376 t = atof_ieee (input_line_pointer, type, words);
4377 if (t)
4378 input_line_pointer = t;
4379
4380 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4381 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4382 the bigendian 386. */
4383 for (wordP = words + prec - 1; prec--;)
4384 {
4385 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4386 litP += sizeof (LITTLENUM_TYPE);
4387 }
4388 return 0;
4389}
4390\f
4391char output_invalid_buf[8];
4392
252b5132
RH
4393static char *
4394output_invalid (c)
4395 int c;
4396{
4397 if (isprint (c))
4398 sprintf (output_invalid_buf, "'%c'", c);
4399 else
4400 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4401 return output_invalid_buf;
4402}
4403
af6bdddf 4404/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
4405
4406static const reg_entry *
4407parse_register (reg_string, end_op)
4408 char *reg_string;
4409 char **end_op;
4410{
af6bdddf
AM
4411 char *s = reg_string;
4412 char *p;
252b5132
RH
4413 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4414 const reg_entry *r;
4415
4416 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4417 if (*s == REGISTER_PREFIX)
4418 ++s;
4419
4420 if (is_space_char (*s))
4421 ++s;
4422
4423 p = reg_name_given;
af6bdddf 4424 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
4425 {
4426 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
4427 return (const reg_entry *) NULL;
4428 s++;
252b5132
RH
4429 }
4430
6588847e
DN
4431 /* For naked regs, make sure that we are not dealing with an identifier.
4432 This prevents confusing an identifier like `eax_var' with register
4433 `eax'. */
4434 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
4435 return (const reg_entry *) NULL;
4436
af6bdddf 4437 *end_op = s;
252b5132
RH
4438
4439 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
4440
5f47d35b 4441 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 4442 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 4443 {
5f47d35b
AM
4444 if (is_space_char (*s))
4445 ++s;
4446 if (*s == '(')
4447 {
af6bdddf 4448 ++s;
5f47d35b
AM
4449 if (is_space_char (*s))
4450 ++s;
4451 if (*s >= '0' && *s <= '7')
4452 {
4453 r = &i386_float_regtab[*s - '0'];
af6bdddf 4454 ++s;
5f47d35b
AM
4455 if (is_space_char (*s))
4456 ++s;
4457 if (*s == ')')
4458 {
4459 *end_op = s + 1;
4460 return r;
4461 }
5f47d35b 4462 }
47926f60 4463 /* We have "%st(" then garbage. */
5f47d35b
AM
4464 return (const reg_entry *) NULL;
4465 }
4466 }
4467
252b5132
RH
4468 return r;
4469}
4470\f
4cc782b5 4471#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
65172ab8 4472const char *md_shortopts = "kVQ:sq";
252b5132 4473#else
65172ab8 4474const char *md_shortopts = "q";
252b5132 4475#endif
6e0b89ee 4476
252b5132 4477struct option md_longopts[] = {
3e73aa7c
JH
4478#define OPTION_32 (OPTION_MD_BASE + 0)
4479 {"32", no_argument, NULL, OPTION_32},
6e0b89ee 4480#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3e73aa7c
JH
4481#define OPTION_64 (OPTION_MD_BASE + 1)
4482 {"64", no_argument, NULL, OPTION_64},
6e0b89ee 4483#endif
252b5132
RH
4484 {NULL, no_argument, NULL, 0}
4485};
4486size_t md_longopts_size = sizeof (md_longopts);
4487
4488int
4489md_parse_option (c, arg)
4490 int c;
ab9da554 4491 char *arg ATTRIBUTE_UNUSED;
252b5132
RH
4492{
4493 switch (c)
4494 {
a38cf1db
AM
4495 case 'q':
4496 quiet_warnings = 1;
252b5132
RH
4497 break;
4498
4499#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
4500 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
4501 should be emitted or not. FIXME: Not implemented. */
4502 case 'Q':
252b5132
RH
4503 break;
4504
4505 /* -V: SVR4 argument to print version ID. */
4506 case 'V':
4507 print_version_id ();
4508 break;
4509
a38cf1db
AM
4510 /* -k: Ignore for FreeBSD compatibility. */
4511 case 'k':
252b5132 4512 break;
4cc782b5
ILT
4513
4514 case 's':
4515 /* -s: On i386 Solaris, this tells the native assembler to use
4516 .stab instead of .stab.excl. We always use .stab anyhow. */
4517 break;
6e0b89ee 4518
3e73aa7c
JH
4519 case OPTION_64:
4520 {
4521 const char **list, **l;
4522
3e73aa7c
JH
4523 list = bfd_target_list ();
4524 for (l = list; *l != NULL; l++)
6e0b89ee
AM
4525 if (strcmp (*l, "elf64-x86-64") == 0)
4526 {
4527 default_arch = "x86_64";
4528 break;
4529 }
3e73aa7c 4530 if (*l == NULL)
6e0b89ee 4531 as_fatal (_("No compiled in support for x86_64"));
3e73aa7c
JH
4532 free (list);
4533 }
4534 break;
4535#endif
252b5132 4536
6e0b89ee
AM
4537 case OPTION_32:
4538 default_arch = "i386";
4539 break;
4540
252b5132
RH
4541 default:
4542 return 0;
4543 }
4544 return 1;
4545}
4546
4547void
4548md_show_usage (stream)
4549 FILE *stream;
4550{
4cc782b5
ILT
4551#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4552 fprintf (stream, _("\
a38cf1db
AM
4553 -Q ignored\n\
4554 -V print assembler version number\n\
4555 -k ignored\n\
4556 -q quieten some warnings\n\
4557 -s ignored\n"));
4558#else
4559 fprintf (stream, _("\
4560 -q quieten some warnings\n"));
4cc782b5 4561#endif
252b5132
RH
4562}
4563
4564#ifdef BFD_ASSEMBLER
3e73aa7c
JH
4565#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
4566 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
252b5132
RH
4567
4568/* Pick the target format to use. */
4569
47926f60 4570const char *
252b5132
RH
4571i386_target_format ()
4572{
3e73aa7c
JH
4573 if (!strcmp (default_arch, "x86_64"))
4574 set_code_flag (CODE_64BIT);
4575 else if (!strcmp (default_arch, "i386"))
4576 set_code_flag (CODE_32BIT);
4577 else
4578 as_fatal (_("Unknown architecture"));
252b5132
RH
4579 switch (OUTPUT_FLAVOR)
4580 {
4c63da97
AM
4581#ifdef OBJ_MAYBE_AOUT
4582 case bfd_target_aout_flavour:
47926f60 4583 return AOUT_TARGET_FORMAT;
4c63da97
AM
4584#endif
4585#ifdef OBJ_MAYBE_COFF
252b5132
RH
4586 case bfd_target_coff_flavour:
4587 return "coff-i386";
4c63da97 4588#endif
3e73aa7c 4589#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 4590 case bfd_target_elf_flavour:
3e73aa7c 4591 {
e5cb08ac
KH
4592 if (flag_code == CODE_64BIT)
4593 use_rela_relocations = 1;
4594 return flag_code == CODE_64BIT ? "elf64-x86-64" : "elf32-i386";
3e73aa7c 4595 }
4c63da97 4596#endif
252b5132
RH
4597 default:
4598 abort ();
4599 return NULL;
4600 }
4601}
4602
47926f60
KH
4603#endif /* OBJ_MAYBE_ more than one */
4604#endif /* BFD_ASSEMBLER */
252b5132 4605\f
252b5132
RH
4606symbolS *
4607md_undefined_symbol (name)
4608 char *name;
4609{
18dc2407
ILT
4610 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
4611 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
4612 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
4613 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
4614 {
4615 if (!GOT_symbol)
4616 {
4617 if (symbol_find (name))
4618 as_bad (_("GOT already in symbol table"));
4619 GOT_symbol = symbol_new (name, undefined_section,
4620 (valueT) 0, &zero_address_frag);
4621 };
4622 return GOT_symbol;
4623 }
252b5132
RH
4624 return 0;
4625}
4626
4627/* Round up a section size to the appropriate boundary. */
47926f60 4628
252b5132
RH
4629valueT
4630md_section_align (segment, size)
ab9da554 4631 segT segment ATTRIBUTE_UNUSED;
252b5132
RH
4632 valueT size;
4633{
252b5132 4634#ifdef BFD_ASSEMBLER
4c63da97
AM
4635#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4636 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
4637 {
4638 /* For a.out, force the section size to be aligned. If we don't do
4639 this, BFD will align it for us, but it will not write out the
4640 final bytes of the section. This may be a bug in BFD, but it is
4641 easier to fix it here since that is how the other a.out targets
4642 work. */
4643 int align;
4644
4645 align = bfd_get_section_alignment (stdoutput, segment);
4646 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
4647 }
252b5132
RH
4648#endif
4649#endif
4650
4651 return size;
4652}
4653
4654/* On the i386, PC-relative offsets are relative to the start of the
4655 next instruction. That is, the address of the offset, plus its
4656 size, since the offset is always the last part of the insn. */
4657
4658long
4659md_pcrel_from (fixP)
4660 fixS *fixP;
4661{
4662 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
4663}
4664
4665#ifndef I386COFF
4666
4667static void
4668s_bss (ignore)
ab9da554 4669 int ignore ATTRIBUTE_UNUSED;
252b5132
RH
4670{
4671 register int temp;
4672
4673 temp = get_absolute_expression ();
4674 subseg_set (bss_section, (subsegT) temp);
4675 demand_empty_rest_of_line ();
4676}
4677
4678#endif
4679
252b5132
RH
4680#ifdef BFD_ASSEMBLER
4681
4682void
4683i386_validate_fix (fixp)
4684 fixS *fixp;
4685{
4686 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
4687 {
3e73aa7c 4688 /* GOTOFF relocation are nonsense in 64bit mode. */
23df1078
JH
4689 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
4690 {
4691 if (flag_code != CODE_64BIT)
4692 abort ();
4693 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
4694 }
4695 else
4696 {
4697 if (flag_code == CODE_64BIT)
4698 abort ();
4699 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
4700 }
252b5132
RH
4701 fixp->fx_subsy = 0;
4702 }
4703}
4704
252b5132
RH
4705arelent *
4706tc_gen_reloc (section, fixp)
ab9da554 4707 asection *section ATTRIBUTE_UNUSED;
252b5132
RH
4708 fixS *fixp;
4709{
4710 arelent *rel;
4711 bfd_reloc_code_real_type code;
4712
4713 switch (fixp->fx_r_type)
4714 {
3e73aa7c
JH
4715 case BFD_RELOC_X86_64_PLT32:
4716 case BFD_RELOC_X86_64_GOT32:
4717 case BFD_RELOC_X86_64_GOTPCREL:
252b5132
RH
4718 case BFD_RELOC_386_PLT32:
4719 case BFD_RELOC_386_GOT32:
4720 case BFD_RELOC_386_GOTOFF:
4721 case BFD_RELOC_386_GOTPC:
3e73aa7c 4722 case BFD_RELOC_X86_64_32S:
252b5132
RH
4723 case BFD_RELOC_RVA:
4724 case BFD_RELOC_VTABLE_ENTRY:
4725 case BFD_RELOC_VTABLE_INHERIT:
4726 code = fixp->fx_r_type;
4727 break;
4728 default:
93382f6d 4729 if (fixp->fx_pcrel)
252b5132 4730 {
93382f6d
AM
4731 switch (fixp->fx_size)
4732 {
4733 default:
d0b47220 4734 as_bad (_("can not do %d byte pc-relative relocation"),
93382f6d
AM
4735 fixp->fx_size);
4736 code = BFD_RELOC_32_PCREL;
4737 break;
4738 case 1: code = BFD_RELOC_8_PCREL; break;
4739 case 2: code = BFD_RELOC_16_PCREL; break;
4740 case 4: code = BFD_RELOC_32_PCREL; break;
4741 }
4742 }
4743 else
4744 {
4745 switch (fixp->fx_size)
4746 {
4747 default:
d0b47220 4748 as_bad (_("can not do %d byte relocation"), fixp->fx_size);
93382f6d
AM
4749 code = BFD_RELOC_32;
4750 break;
4751 case 1: code = BFD_RELOC_8; break;
4752 case 2: code = BFD_RELOC_16; break;
4753 case 4: code = BFD_RELOC_32; break;
3e73aa7c 4754 case 8: code = BFD_RELOC_64; break;
93382f6d 4755 }
252b5132
RH
4756 }
4757 break;
4758 }
252b5132
RH
4759
4760 if (code == BFD_RELOC_32
4761 && GOT_symbol
4762 && fixp->fx_addsy == GOT_symbol)
3e73aa7c
JH
4763 {
4764 /* We don't support GOTPC on 64bit targets. */
4765 if (flag_code == CODE_64BIT)
bfb32b52 4766 abort ();
3e73aa7c
JH
4767 code = BFD_RELOC_386_GOTPC;
4768 }
252b5132
RH
4769
4770 rel = (arelent *) xmalloc (sizeof (arelent));
49309057
ILT
4771 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
4772 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
4773
4774 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
3e73aa7c
JH
4775 if (!use_rela_relocations)
4776 {
4777 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
4778 vtable entry to be used in the relocation's section offset. */
4779 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
4780 rel->address = fixp->fx_offset;
252b5132 4781
3e73aa7c
JH
4782 if (fixp->fx_pcrel)
4783 rel->addend = fixp->fx_addnumber;
4784 else
4785 rel->addend = 0;
4786 }
4787 /* Use the rela in 64bit mode. */
252b5132 4788 else
3e73aa7c
JH
4789 {
4790 rel->addend = fixp->fx_offset;
3e73aa7c
JH
4791 if (fixp->fx_pcrel)
4792 rel->addend -= fixp->fx_size;
4793 }
4794
252b5132
RH
4795 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
4796 if (rel->howto == NULL)
4797 {
4798 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 4799 _("cannot represent relocation type %s"),
252b5132
RH
4800 bfd_get_reloc_code_name (code));
4801 /* Set howto to a garbage value so that we can keep going. */
4802 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
4803 assert (rel->howto != NULL);
4804 }
4805
4806 return rel;
4807}
4808
47926f60 4809#else /* ! BFD_ASSEMBLER */
252b5132
RH
4810
4811#if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
4812void
4813tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
4814 char *where;
4815 fixS *fixP;
4816 relax_addressT segment_address_in_file;
4817{
47926f60
KH
4818 /* In: length of relocation (or of address) in chars: 1, 2 or 4.
4819 Out: GNU LD relocation length code: 0, 1, or 2. */
252b5132 4820
47926f60 4821 static const unsigned char nbytes_r_length[] = { 42, 0, 1, 42, 2 };
252b5132
RH
4822 long r_symbolnum;
4823
4824 know (fixP->fx_addsy != NULL);
4825
4826 md_number_to_chars (where,
4827 (valueT) (fixP->fx_frag->fr_address
4828 + fixP->fx_where - segment_address_in_file),
4829 4);
4830
4831 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
4832 ? S_GET_TYPE (fixP->fx_addsy)
4833 : fixP->fx_addsy->sy_number);
4834
4835 where[6] = (r_symbolnum >> 16) & 0x0ff;
4836 where[5] = (r_symbolnum >> 8) & 0x0ff;
4837 where[4] = r_symbolnum & 0x0ff;
4838 where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
4839 | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
4840 | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
4841}
4842
47926f60 4843#endif /* OBJ_AOUT or OBJ_BOUT. */
252b5132
RH
4844
4845#if defined (I386COFF)
4846
4847short
4848tc_coff_fix2rtype (fixP)
4849 fixS *fixP;
4850{
4851 if (fixP->fx_r_type == R_IMAGEBASE)
4852 return R_IMAGEBASE;
4853
4854 return (fixP->fx_pcrel ?
4855 (fixP->fx_size == 1 ? R_PCRBYTE :
4856 fixP->fx_size == 2 ? R_PCRWORD :
4857 R_PCRLONG) :
4858 (fixP->fx_size == 1 ? R_RELBYTE :
4859 fixP->fx_size == 2 ? R_RELWORD :
4860 R_DIR32));
4861}
4862
4863int
4864tc_coff_sizemachdep (frag)
4865 fragS *frag;
4866{
4867 if (frag->fr_next)
4868 return (frag->fr_next->fr_address - frag->fr_address);
4869 else
4870 return 0;
4871}
4872
47926f60 4873#endif /* I386COFF */
252b5132 4874
47926f60 4875#endif /* ! BFD_ASSEMBLER */
64a0c779
DN
4876\f
4877/* Parse operands using Intel syntax. This implements a recursive descent
4878 parser based on the BNF grammar published in Appendix B of the MASM 6.1
4879 Programmer's Guide.
4880
4881 FIXME: We do not recognize the full operand grammar defined in the MASM
4882 documentation. In particular, all the structure/union and
4883 high-level macro operands are missing.
4884
4885 Uppercase words are terminals, lower case words are non-terminals.
4886 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
4887 bars '|' denote choices. Most grammar productions are implemented in
4888 functions called 'intel_<production>'.
4889
4890 Initial production is 'expr'.
4891
64a0c779
DN
4892 addOp + | -
4893
4894 alpha [a-zA-Z]
4895
4896 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
4897
4898 constant digits [[ radixOverride ]]
4899
4900 dataType BYTE | WORD | DWORD | QWORD | XWORD
4901
4902 digits decdigit
b77a7acd
AJ
4903 | digits decdigit
4904 | digits hexdigit
64a0c779
DN
4905
4906 decdigit [0-9]
4907
4908 e05 e05 addOp e06
b77a7acd 4909 | e06
64a0c779
DN
4910
4911 e06 e06 mulOp e09
b77a7acd 4912 | e09
64a0c779
DN
4913
4914 e09 OFFSET e10
4915 | e09 PTR e10
4916 | e09 : e10
4917 | e10
4918
4919 e10 e10 [ expr ]
b77a7acd 4920 | e11
64a0c779
DN
4921
4922 e11 ( expr )
b77a7acd 4923 | [ expr ]
64a0c779
DN
4924 | constant
4925 | dataType
4926 | id
4927 | $
4928 | register
4929
4930 => expr SHORT e05
b77a7acd 4931 | e05
64a0c779
DN
4932
4933 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
b77a7acd 4934 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
64a0c779
DN
4935
4936 hexdigit a | b | c | d | e | f
b77a7acd 4937 | A | B | C | D | E | F
64a0c779
DN
4938
4939 id alpha
b77a7acd 4940 | id alpha
64a0c779
DN
4941 | id decdigit
4942
4943 mulOp * | / | MOD
4944
4945 quote " | '
4946
4947 register specialRegister
b77a7acd 4948 | gpRegister
64a0c779
DN
4949 | byteRegister
4950
4951 segmentRegister CS | DS | ES | FS | GS | SS
4952
4953 specialRegister CR0 | CR2 | CR3
b77a7acd 4954 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
64a0c779
DN
4955 | TR3 | TR4 | TR5 | TR6 | TR7
4956
64a0c779
DN
4957 We simplify the grammar in obvious places (e.g., register parsing is
4958 done by calling parse_register) and eliminate immediate left recursion
4959 to implement a recursive-descent parser.
4960
4961 expr SHORT e05
b77a7acd 4962 | e05
64a0c779
DN
4963
4964 e05 e06 e05'
4965
4966 e05' addOp e06 e05'
b77a7acd 4967 | Empty
64a0c779
DN
4968
4969 e06 e09 e06'
4970
4971 e06' mulOp e09 e06'
b77a7acd 4972 | Empty
64a0c779
DN
4973
4974 e09 OFFSET e10 e09'
b77a7acd 4975 | e10 e09'
64a0c779
DN
4976
4977 e09' PTR e10 e09'
b77a7acd 4978 | : e10 e09'
64a0c779
DN
4979 | Empty
4980
4981 e10 e11 e10'
4982
4983 e10' [ expr ] e10'
b77a7acd 4984 | Empty
64a0c779
DN
4985
4986 e11 ( expr )
b77a7acd 4987 | [ expr ]
64a0c779
DN
4988 | BYTE
4989 | WORD
4990 | DWORD
4991 | QWORD
4992 | XWORD
4993 | .
4994 | $
4995 | register
4996 | id
4997 | constant */
4998
4999/* Parsing structure for the intel syntax parser. Used to implement the
5000 semantic actions for the operand grammar. */
5001struct intel_parser_s
5002 {
5003 char *op_string; /* The string being parsed. */
5004 int got_a_float; /* Whether the operand is a float. */
4a1805b1 5005 int op_modifier; /* Operand modifier. */
64a0c779
DN
5006 int is_mem; /* 1 if operand is memory reference. */
5007 const reg_entry *reg; /* Last register reference found. */
5008 char *disp; /* Displacement string being built. */
5009 };
5010
5011static struct intel_parser_s intel_parser;
5012
5013/* Token structure for parsing intel syntax. */
5014struct intel_token
5015 {
5016 int code; /* Token code. */
5017 const reg_entry *reg; /* Register entry for register tokens. */
5018 char *str; /* String representation. */
5019 };
5020
5021static struct intel_token cur_token, prev_token;
5022
50705ef4
AM
5023/* Token codes for the intel parser. Since T_SHORT is already used
5024 by COFF, undefine it first to prevent a warning. */
64a0c779
DN
5025#define T_NIL -1
5026#define T_CONST 1
5027#define T_REG 2
5028#define T_BYTE 3
5029#define T_WORD 4
5030#define T_DWORD 5
5031#define T_QWORD 6
5032#define T_XWORD 7
50705ef4 5033#undef T_SHORT
64a0c779
DN
5034#define T_SHORT 8
5035#define T_OFFSET 9
5036#define T_PTR 10
5037#define T_ID 11
5038
5039/* Prototypes for intel parser functions. */
5040static int intel_match_token PARAMS ((int code));
cce0cbdc
DN
5041static void intel_get_token PARAMS ((void));
5042static void intel_putback_token PARAMS ((void));
5043static int intel_expr PARAMS ((void));
5044static int intel_e05 PARAMS ((void));
5045static int intel_e05_1 PARAMS ((void));
5046static int intel_e06 PARAMS ((void));
5047static int intel_e06_1 PARAMS ((void));
5048static int intel_e09 PARAMS ((void));
5049static int intel_e09_1 PARAMS ((void));
5050static int intel_e10 PARAMS ((void));
5051static int intel_e10_1 PARAMS ((void));
5052static int intel_e11 PARAMS ((void));
64a0c779 5053
64a0c779
DN
5054static int
5055i386_intel_operand (operand_string, got_a_float)
5056 char *operand_string;
5057 int got_a_float;
5058{
5059 int ret;
5060 char *p;
5061
5062 /* Initialize token holders. */
5063 cur_token.code = prev_token.code = T_NIL;
5064 cur_token.reg = prev_token.reg = NULL;
5065 cur_token.str = prev_token.str = NULL;
5066
5067 /* Initialize parser structure. */
e5cb08ac 5068 p = intel_parser.op_string = (char *) malloc (strlen (operand_string) + 1);
64a0c779
DN
5069 if (p == NULL)
5070 abort ();
5071 strcpy (intel_parser.op_string, operand_string);
5072 intel_parser.got_a_float = got_a_float;
5073 intel_parser.op_modifier = -1;
5074 intel_parser.is_mem = 0;
5075 intel_parser.reg = NULL;
e5cb08ac 5076 intel_parser.disp = (char *) malloc (strlen (operand_string) + 1);
64a0c779
DN
5077 if (intel_parser.disp == NULL)
5078 abort ();
5079 intel_parser.disp[0] = '\0';
5080
5081 /* Read the first token and start the parser. */
5082 intel_get_token ();
5083 ret = intel_expr ();
5084
5085 if (ret)
5086 {
5087 /* If we found a memory reference, hand it over to i386_displacement
5088 to fill in the rest of the operand fields. */
5089 if (intel_parser.is_mem)
5090 {
5091 if ((i.mem_operands == 1
5092 && (current_templates->start->opcode_modifier & IsString) == 0)
5093 || i.mem_operands == 2)
5094 {
5095 as_bad (_("too many memory references for '%s'"),
5096 current_templates->start->name);
5097 ret = 0;
5098 }
5099 else
5100 {
5101 char *s = intel_parser.disp;
5102 i.mem_operands++;
5103
5104 /* Add the displacement expression. */
5105 if (*s != '\0')
5106 ret = i386_displacement (s, s + strlen (s))
5107 && i386_index_check (s);
5108 }
5109 }
5110
5111 /* Constant and OFFSET expressions are handled by i386_immediate. */
5112 else if (intel_parser.op_modifier == OFFSET_FLAT
5113 || intel_parser.reg == NULL)
5114 ret = i386_immediate (intel_parser.disp);
5115 }
5116
5117 free (p);
5118 free (intel_parser.disp);
5119
5120 return ret;
5121}
5122
64a0c779 5123/* expr SHORT e05
b77a7acd 5124 | e05 */
64a0c779
DN
5125static int
5126intel_expr ()
5127{
5128 /* expr SHORT e05 */
5129 if (cur_token.code == T_SHORT)
5130 {
5131 intel_parser.op_modifier = SHORT;
5132 intel_match_token (T_SHORT);
5133
5134 return (intel_e05 ());
5135 }
5136
5137 /* expr e05 */
5138 else
5139 return intel_e05 ();
5140}
5141
64a0c779
DN
5142/* e05 e06 e05'
5143
4a1805b1 5144 e05' addOp e06 e05'
64a0c779
DN
5145 | Empty */
5146static int
5147intel_e05 ()
5148{
5149 return (intel_e06 () && intel_e05_1 ());
5150}
5151
5152static int
5153intel_e05_1 ()
5154{
5155 /* e05' addOp e06 e05' */
5156 if (cur_token.code == '+' || cur_token.code == '-')
5157 {
5158 strcat (intel_parser.disp, cur_token.str);
5159 intel_match_token (cur_token.code);
5160
5161 return (intel_e06 () && intel_e05_1 ());
5162 }
5163
5164 /* e05' Empty */
5165 else
5166 return 1;
4a1805b1 5167}
64a0c779
DN
5168
5169/* e06 e09 e06'
5170
5171 e06' mulOp e09 e06'
b77a7acd 5172 | Empty */
64a0c779
DN
5173static int
5174intel_e06 ()
5175{
5176 return (intel_e09 () && intel_e06_1 ());
5177}
5178
5179static int
5180intel_e06_1 ()
5181{
5182 /* e06' mulOp e09 e06' */
5183 if (cur_token.code == '*' || cur_token.code == '/')
5184 {
5185 strcat (intel_parser.disp, cur_token.str);
5186 intel_match_token (cur_token.code);
5187
5188 return (intel_e09 () && intel_e06_1 ());
5189 }
4a1805b1 5190
64a0c779 5191 /* e06' Empty */
4a1805b1 5192 else
64a0c779
DN
5193 return 1;
5194}
5195
64a0c779 5196/* e09 OFFSET e10 e09'
b77a7acd 5197 | e10 e09'
64a0c779
DN
5198
5199 e09' PTR e10 e09'
b77a7acd 5200 | : e10 e09'
64a0c779
DN
5201 | Empty */
5202static int
5203intel_e09 ()
5204{
5205 /* e09 OFFSET e10 e09' */
5206 if (cur_token.code == T_OFFSET)
5207 {
5208 intel_parser.is_mem = 0;
5209 intel_parser.op_modifier = OFFSET_FLAT;
5210 intel_match_token (T_OFFSET);
5211
5212 return (intel_e10 () && intel_e09_1 ());
5213 }
5214
5215 /* e09 e10 e09' */
5216 else
5217 return (intel_e10 () && intel_e09_1 ());
5218}
5219
5220static int
5221intel_e09_1 ()
5222{
5223 /* e09' PTR e10 e09' */
5224 if (cur_token.code == T_PTR)
5225 {
5226 if (prev_token.code == T_BYTE)
5227 i.suffix = BYTE_MNEM_SUFFIX;
5228
5229 else if (prev_token.code == T_WORD)
5230 {
5231 if (intel_parser.got_a_float == 2) /* "fi..." */
5232 i.suffix = SHORT_MNEM_SUFFIX;
5233 else
5234 i.suffix = WORD_MNEM_SUFFIX;
5235 }
5236
5237 else if (prev_token.code == T_DWORD)
5238 {
5239 if (intel_parser.got_a_float == 1) /* "f..." */
5240 i.suffix = SHORT_MNEM_SUFFIX;
5241 else
5242 i.suffix = LONG_MNEM_SUFFIX;
5243 }
5244
5245 else if (prev_token.code == T_QWORD)
f16b83df
JH
5246 {
5247 if (intel_parser.got_a_float == 1) /* "f..." */
5248 i.suffix = LONG_MNEM_SUFFIX;
5249 else
3e73aa7c 5250 i.suffix = QWORD_MNEM_SUFFIX;
f16b83df 5251 }
64a0c779
DN
5252
5253 else if (prev_token.code == T_XWORD)
5254 i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
5255
5256 else
5257 {
5258 as_bad (_("Unknown operand modifier `%s'\n"), prev_token.str);
5259 return 0;
5260 }
5261
5262 intel_match_token (T_PTR);
5263
5264 return (intel_e10 () && intel_e09_1 ());
5265 }
5266
5267 /* e09 : e10 e09' */
5268 else if (cur_token.code == ':')
5269 {
21d6c4af
DN
5270 /* Mark as a memory operand only if it's not already known to be an
5271 offset expression. */
5272 if (intel_parser.op_modifier != OFFSET_FLAT)
5273 intel_parser.is_mem = 1;
64a0c779
DN
5274
5275 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
5276 }
5277
5278 /* e09' Empty */
5279 else
5280 return 1;
5281}
5282
5283/* e10 e11 e10'
5284
5285 e10' [ expr ] e10'
b77a7acd 5286 | Empty */
64a0c779
DN
5287static int
5288intel_e10 ()
5289{
5290 return (intel_e11 () && intel_e10_1 ());
5291}
5292
5293static int
5294intel_e10_1 ()
5295{
5296 /* e10' [ expr ] e10' */
5297 if (cur_token.code == '[')
5298 {
5299 intel_match_token ('[');
21d6c4af
DN
5300
5301 /* Mark as a memory operand only if it's not already known to be an
5302 offset expression. If it's an offset expression, we need to keep
5303 the brace in. */
5304 if (intel_parser.op_modifier != OFFSET_FLAT)
5305 intel_parser.is_mem = 1;
5306 else
5307 strcat (intel_parser.disp, "[");
4a1805b1 5308
64a0c779 5309 /* Add a '+' to the displacement string if necessary. */
21d6c4af
DN
5310 if (*intel_parser.disp != '\0'
5311 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
64a0c779
DN
5312 strcat (intel_parser.disp, "+");
5313
21d6c4af
DN
5314 if (intel_expr () && intel_match_token (']'))
5315 {
5316 /* Preserve brackets when the operand is an offset expression. */
5317 if (intel_parser.op_modifier == OFFSET_FLAT)
5318 strcat (intel_parser.disp, "]");
5319
5320 return intel_e10_1 ();
5321 }
5322 else
5323 return 0;
64a0c779
DN
5324 }
5325
5326 /* e10' Empty */
5327 else
5328 return 1;
5329}
5330
64a0c779 5331/* e11 ( expr )
b77a7acd 5332 | [ expr ]
64a0c779
DN
5333 | BYTE
5334 | WORD
5335 | DWORD
5336 | QWORD
5337 | XWORD
4a1805b1 5338 | $
64a0c779
DN
5339 | .
5340 | register
5341 | id
5342 | constant */
5343static int
5344intel_e11 ()
5345{
5346 /* e11 ( expr ) */
5347 if (cur_token.code == '(')
5348 {
5349 intel_match_token ('(');
5350 strcat (intel_parser.disp, "(");
5351
5352 if (intel_expr () && intel_match_token (')'))
e5cb08ac
KH
5353 {
5354 strcat (intel_parser.disp, ")");
5355 return 1;
5356 }
64a0c779
DN
5357 else
5358 return 0;
5359 }
5360
5361 /* e11 [ expr ] */
5362 else if (cur_token.code == '[')
5363 {
5364 intel_match_token ('[');
21d6c4af
DN
5365
5366 /* Mark as a memory operand only if it's not already known to be an
5367 offset expression. If it's an offset expression, we need to keep
5368 the brace in. */
5369 if (intel_parser.op_modifier != OFFSET_FLAT)
5370 intel_parser.is_mem = 1;
5371 else
5372 strcat (intel_parser.disp, "[");
4a1805b1 5373
64a0c779
DN
5374 /* Operands for jump/call inside brackets denote absolute addresses. */
5375 if (current_templates->start->opcode_modifier & Jump
5376 || current_templates->start->opcode_modifier & JumpDword
5377 || current_templates->start->opcode_modifier & JumpByte
5378 || current_templates->start->opcode_modifier & JumpInterSegment)
5379 i.types[this_operand] |= JumpAbsolute;
5380
5381 /* Add a '+' to the displacement string if necessary. */
21d6c4af
DN
5382 if (*intel_parser.disp != '\0'
5383 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
64a0c779
DN
5384 strcat (intel_parser.disp, "+");
5385
21d6c4af
DN
5386 if (intel_expr () && intel_match_token (']'))
5387 {
5388 /* Preserve brackets when the operand is an offset expression. */
5389 if (intel_parser.op_modifier == OFFSET_FLAT)
5390 strcat (intel_parser.disp, "]");
5391
5392 return 1;
5393 }
5394 else
5395 return 0;
64a0c779
DN
5396 }
5397
4a1805b1 5398 /* e11 BYTE
64a0c779
DN
5399 | WORD
5400 | DWORD
5401 | QWORD
5402 | XWORD */
5403 else if (cur_token.code == T_BYTE
5404 || cur_token.code == T_WORD
5405 || cur_token.code == T_DWORD
5406 || cur_token.code == T_QWORD
5407 || cur_token.code == T_XWORD)
5408 {
5409 intel_match_token (cur_token.code);
5410
5411 return 1;
5412 }
5413
5414 /* e11 $
5415 | . */
5416 else if (cur_token.code == '$' || cur_token.code == '.')
5417 {
5418 strcat (intel_parser.disp, cur_token.str);
5419 intel_match_token (cur_token.code);
21d6c4af
DN
5420
5421 /* Mark as a memory operand only if it's not already known to be an
5422 offset expression. */
5423 if (intel_parser.op_modifier != OFFSET_FLAT)
5424 intel_parser.is_mem = 1;
64a0c779
DN
5425
5426 return 1;
5427 }
5428
5429 /* e11 register */
5430 else if (cur_token.code == T_REG)
5431 {
5432 const reg_entry *reg = intel_parser.reg = cur_token.reg;
5433
5434 intel_match_token (T_REG);
5435
5436 /* Check for segment change. */
5437 if (cur_token.code == ':')
5438 {
5439 if (reg->reg_type & (SReg2 | SReg3))
5440 {
5441 switch (reg->reg_num)
5442 {
5443 case 0:
5444 i.seg[i.mem_operands] = &es;
5445 break;
5446 case 1:
5447 i.seg[i.mem_operands] = &cs;
5448 break;
5449 case 2:
5450 i.seg[i.mem_operands] = &ss;
5451 break;
5452 case 3:
5453 i.seg[i.mem_operands] = &ds;
5454 break;
5455 case 4:
5456 i.seg[i.mem_operands] = &fs;
5457 break;
5458 case 5:
5459 i.seg[i.mem_operands] = &gs;
5460 break;
5461 }
5462 }
5463 else
5464 {
5465 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
5466 return 0;
5467 }
5468 }
5469
5470 /* Not a segment register. Check for register scaling. */
5471 else if (cur_token.code == '*')
5472 {
5473 if (!intel_parser.is_mem)
5474 {
5475 as_bad (_("Register scaling only allowed in memory operands."));
5476 return 0;
5477 }
5478
4a1805b1 5479 /* What follows must be a valid scale. */
64a0c779
DN
5480 if (intel_match_token ('*')
5481 && strchr ("01248", *cur_token.str))
5482 {
5483 i.index_reg = reg;
5484 i.types[this_operand] |= BaseIndex;
5485
5486 /* Set the scale after setting the register (otherwise,
5487 i386_scale will complain) */
5488 i386_scale (cur_token.str);
5489 intel_match_token (T_CONST);
5490 }
5491 else
5492 {
5493 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
5494 cur_token.str);
5495 return 0;
5496 }
5497 }
5498
5499 /* No scaling. If this is a memory operand, the register is either a
5500 base register (first occurrence) or an index register (second
5501 occurrence). */
5502 else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
5503 {
5504 if (i.base_reg && i.index_reg)
5505 {
5506 as_bad (_("Too many register references in memory operand.\n"));
5507 return 0;
5508 }
5509
5510 if (i.base_reg == NULL)
5511 i.base_reg = reg;
5512 else
5513 i.index_reg = reg;
5514
5515 i.types[this_operand] |= BaseIndex;
5516 }
5517
5518 /* Offset modifier. Add the register to the displacement string to be
5519 parsed as an immediate expression after we're done. */
5520 else if (intel_parser.op_modifier == OFFSET_FLAT)
5521 strcat (intel_parser.disp, reg->reg_name);
4a1805b1 5522
64a0c779
DN
5523 /* It's neither base nor index nor offset. */
5524 else
5525 {
5526 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
5527 i.op[this_operand].regs = reg;
5528 i.reg_operands++;
5529 }
5530
5531 /* Since registers are not part of the displacement string (except
5532 when we're parsing offset operands), we may need to remove any
5533 preceding '+' from the displacement string. */
5534 if (*intel_parser.disp != '\0'
5535 && intel_parser.op_modifier != OFFSET_FLAT)
5536 {
5537 char *s = intel_parser.disp;
5538 s += strlen (s) - 1;
5539 if (*s == '+')
5540 *s = '\0';
5541 }
5542
5543 return 1;
5544 }
4a1805b1 5545
64a0c779
DN
5546 /* e11 id */
5547 else if (cur_token.code == T_ID)
5548 {
5549 /* Add the identifier to the displacement string. */
5550 strcat (intel_parser.disp, cur_token.str);
5551 intel_match_token (T_ID);
5552
5553 /* The identifier represents a memory reference only if it's not
5554 preceded by an offset modifier. */
21d6c4af 5555 if (intel_parser.op_modifier != OFFSET_FLAT)
64a0c779
DN
5556 intel_parser.is_mem = 1;
5557
5558 return 1;
5559 }
5560
5561 /* e11 constant */
5562 else if (cur_token.code == T_CONST
e5cb08ac 5563 || cur_token.code == '-'
64a0c779
DN
5564 || cur_token.code == '+')
5565 {
5566 char *save_str;
5567
5568 /* Allow constants that start with `+' or `-'. */
5569 if (cur_token.code == '-' || cur_token.code == '+')
5570 {
5571 strcat (intel_parser.disp, cur_token.str);
5572 intel_match_token (cur_token.code);
5573 if (cur_token.code != T_CONST)
5574 {
5575 as_bad (_("Syntax error. Expecting a constant. Got `%s'.\n"),
5576 cur_token.str);
5577 return 0;
5578 }
5579 }
5580
e5cb08ac 5581 save_str = (char *) malloc (strlen (cur_token.str) + 1);
64a0c779 5582 if (save_str == NULL)
bc805888 5583 abort ();
64a0c779
DN
5584 strcpy (save_str, cur_token.str);
5585
5586 /* Get the next token to check for register scaling. */
5587 intel_match_token (cur_token.code);
5588
5589 /* Check if this constant is a scaling factor for an index register. */
5590 if (cur_token.code == '*')
5591 {
5592 if (intel_match_token ('*') && cur_token.code == T_REG)
5593 {
5594 if (!intel_parser.is_mem)
5595 {
5596 as_bad (_("Register scaling only allowed in memory operands."));
5597 return 0;
5598 }
5599
4a1805b1 5600 /* The constant is followed by `* reg', so it must be
64a0c779
DN
5601 a valid scale. */
5602 if (strchr ("01248", *save_str))
5603 {
5604 i.index_reg = cur_token.reg;
5605 i.types[this_operand] |= BaseIndex;
5606
5607 /* Set the scale after setting the register (otherwise,
5608 i386_scale will complain) */
5609 i386_scale (save_str);
5610 intel_match_token (T_REG);
5611
5612 /* Since registers are not part of the displacement
5613 string, we may need to remove any preceding '+' from
5614 the displacement string. */
5615 if (*intel_parser.disp != '\0')
5616 {
5617 char *s = intel_parser.disp;
5618 s += strlen (s) - 1;
5619 if (*s == '+')
5620 *s = '\0';
5621 }
5622
5623 free (save_str);
5624
5625 return 1;
5626 }
5627 else
5628 return 0;
5629 }
5630
5631 /* The constant was not used for register scaling. Since we have
5632 already consumed the token following `*' we now need to put it
5633 back in the stream. */
5634 else
5635 intel_putback_token ();
5636 }
5637
5638 /* Add the constant to the displacement string. */
5639 strcat (intel_parser.disp, save_str);
5640 free (save_str);
5641
5642 return 1;
5643 }
5644
64a0c779
DN
5645 as_bad (_("Unrecognized token '%s'"), cur_token.str);
5646 return 0;
5647}
5648
64a0c779
DN
5649/* Match the given token against cur_token. If they match, read the next
5650 token from the operand string. */
5651static int
5652intel_match_token (code)
e5cb08ac 5653 int code;
64a0c779
DN
5654{
5655 if (cur_token.code == code)
5656 {
5657 intel_get_token ();
5658 return 1;
5659 }
5660 else
5661 {
5662 as_bad (_("Unexpected token `%s'\n"), cur_token.str);
5663 return 0;
5664 }
5665}
5666
64a0c779
DN
5667/* Read a new token from intel_parser.op_string and store it in cur_token. */
5668static void
5669intel_get_token ()
5670{
5671 char *end_op;
5672 const reg_entry *reg;
5673 struct intel_token new_token;
5674
5675 new_token.code = T_NIL;
5676 new_token.reg = NULL;
5677 new_token.str = NULL;
5678
4a1805b1 5679 /* Free the memory allocated to the previous token and move
64a0c779
DN
5680 cur_token to prev_token. */
5681 if (prev_token.str)
5682 free (prev_token.str);
5683
5684 prev_token = cur_token;
5685
5686 /* Skip whitespace. */
5687 while (is_space_char (*intel_parser.op_string))
5688 intel_parser.op_string++;
5689
5690 /* Return an empty token if we find nothing else on the line. */
5691 if (*intel_parser.op_string == '\0')
5692 {
5693 cur_token = new_token;
5694 return;
5695 }
5696
5697 /* The new token cannot be larger than the remainder of the operand
5698 string. */
e5cb08ac 5699 new_token.str = (char *) malloc (strlen (intel_parser.op_string) + 1);
64a0c779 5700 if (new_token.str == NULL)
bc805888 5701 abort ();
64a0c779
DN
5702 new_token.str[0] = '\0';
5703
5704 if (strchr ("0123456789", *intel_parser.op_string))
5705 {
5706 char *p = new_token.str;
5707 char *q = intel_parser.op_string;
5708 new_token.code = T_CONST;
5709
5710 /* Allow any kind of identifier char to encompass floating point and
5711 hexadecimal numbers. */
5712 while (is_identifier_char (*q))
5713 *p++ = *q++;
5714 *p = '\0';
5715
5716 /* Recognize special symbol names [0-9][bf]. */
5717 if (strlen (intel_parser.op_string) == 2
4a1805b1 5718 && (intel_parser.op_string[1] == 'b'
64a0c779
DN
5719 || intel_parser.op_string[1] == 'f'))
5720 new_token.code = T_ID;
5721 }
5722
5723 else if (strchr ("+-/*:[]()", *intel_parser.op_string))
5724 {
5725 new_token.code = *intel_parser.op_string;
5726 new_token.str[0] = *intel_parser.op_string;
5727 new_token.str[1] = '\0';
5728 }
5729
5730 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
5731 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
5732 {
5733 new_token.code = T_REG;
5734 new_token.reg = reg;
5735
5736 if (*intel_parser.op_string == REGISTER_PREFIX)
5737 {
5738 new_token.str[0] = REGISTER_PREFIX;
5739 new_token.str[1] = '\0';
5740 }
5741
5742 strcat (new_token.str, reg->reg_name);
5743 }
5744
5745 else if (is_identifier_char (*intel_parser.op_string))
5746 {
5747 char *p = new_token.str;
5748 char *q = intel_parser.op_string;
5749
5750 /* A '.' or '$' followed by an identifier char is an identifier.
5751 Otherwise, it's operator '.' followed by an expression. */
5752 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
5753 {
5754 new_token.code = *q;
5755 new_token.str[0] = *q;
5756 new_token.str[1] = '\0';
5757 }
5758 else
5759 {
5760 while (is_identifier_char (*q) || *q == '@')
5761 *p++ = *q++;
5762 *p = '\0';
5763
5764 if (strcasecmp (new_token.str, "BYTE") == 0)
5765 new_token.code = T_BYTE;
5766
5767 else if (strcasecmp (new_token.str, "WORD") == 0)
5768 new_token.code = T_WORD;
5769
5770 else if (strcasecmp (new_token.str, "DWORD") == 0)
5771 new_token.code = T_DWORD;
5772
5773 else if (strcasecmp (new_token.str, "QWORD") == 0)
5774 new_token.code = T_QWORD;
5775
5776 else if (strcasecmp (new_token.str, "XWORD") == 0)
5777 new_token.code = T_XWORD;
5778
5779 else if (strcasecmp (new_token.str, "PTR") == 0)
5780 new_token.code = T_PTR;
5781
5782 else if (strcasecmp (new_token.str, "SHORT") == 0)
5783 new_token.code = T_SHORT;
5784
5785 else if (strcasecmp (new_token.str, "OFFSET") == 0)
5786 {
5787 new_token.code = T_OFFSET;
5788
5789 /* ??? This is not mentioned in the MASM grammar but gcc
5790 makes use of it with -mintel-syntax. OFFSET may be
5791 followed by FLAT: */
5792 if (strncasecmp (q, " FLAT:", 6) == 0)
5793 strcat (new_token.str, " FLAT:");
5794 }
5795
5796 /* ??? This is not mentioned in the MASM grammar. */
5797 else if (strcasecmp (new_token.str, "FLAT") == 0)
5798 new_token.code = T_OFFSET;
5799
5800 else
5801 new_token.code = T_ID;
5802 }
5803 }
5804
5805 else
5806 as_bad (_("Unrecognized token `%s'\n"), intel_parser.op_string);
5807
5808 intel_parser.op_string += strlen (new_token.str);
5809 cur_token = new_token;
5810}
5811
64a0c779
DN
5812/* Put cur_token back into the token stream and make cur_token point to
5813 prev_token. */
5814static void
5815intel_putback_token ()
5816{
5817 intel_parser.op_string -= strlen (cur_token.str);
5818 free (cur_token.str);
5819 cur_token = prev_token;
4a1805b1 5820
64a0c779
DN
5821 /* Forget prev_token. */
5822 prev_token.code = T_NIL;
5823 prev_token.reg = NULL;
5824 prev_token.str = NULL;
5825}
This page took 0.560036 seconds and 4 git commands to generate.