x86: properly force / avoid forcing EVEX encoding
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
219d1afa 2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
252b5132
RH
36#ifndef REGISTER_WARNINGS
37#define REGISTER_WARNINGS 1
38#endif
39
c3332e24 40#ifndef INFER_ADDR_PREFIX
eecb386c 41#define INFER_ADDR_PREFIX 1
c3332e24
AM
42#endif
43
29b0f896
AM
44#ifndef DEFAULT_ARCH
45#define DEFAULT_ARCH "i386"
246fcdee 46#endif
252b5132 47
edde18a5
AM
48#ifndef INLINE
49#if __GNUC__ >= 2
50#define INLINE __inline__
51#else
52#define INLINE
53#endif
54#endif
55
6305a203
L
56/* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
61#define WAIT_PREFIX 0
62#define SEG_PREFIX 1
63#define ADDR_PREFIX 2
64#define DATA_PREFIX 3
c32fa91d 65#define REP_PREFIX 4
42164a71 66#define HLE_PREFIX REP_PREFIX
7e8b059b 67#define BND_PREFIX REP_PREFIX
c32fa91d 68#define LOCK_PREFIX 5
4e9ac44a
L
69#define REX_PREFIX 6 /* must come last. */
70#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
71
72/* we define the syntax here (modulo base,index,scale syntax) */
73#define REGISTER_PREFIX '%'
74#define IMMEDIATE_PREFIX '$'
75#define ABSOLUTE_PREFIX '*'
76
77/* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79#define WORD_MNEM_SUFFIX 'w'
80#define BYTE_MNEM_SUFFIX 'b'
81#define SHORT_MNEM_SUFFIX 's'
82#define LONG_MNEM_SUFFIX 'l'
83#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
84/* Intel Syntax. Use a non-ascii letter since since it never appears
85 in instructions. */
86#define LONG_DOUBLE_MNEM_SUFFIX '\1'
87
88#define END_OF_INSN '\0'
89
90/*
91 'templates' is for grouping together 'template' structures for opcodes
92 of the same name. This is only used for storing the insns in the grand
93 ole hash table of insns.
94 The templates themselves start at START and range up to (but not including)
95 END.
96 */
97typedef struct
98{
d3ce72d0
NC
99 const insn_template *start;
100 const insn_template *end;
6305a203
L
101}
102templates;
103
104/* 386 operand encoding bytes: see 386 book for details of this. */
105typedef struct
106{
107 unsigned int regmem; /* codes register or memory operand */
108 unsigned int reg; /* codes register operand (or extended opcode) */
109 unsigned int mode; /* how to interpret regmem & reg */
110}
111modrm_byte;
112
113/* x86-64 extension prefix. */
114typedef int rex_byte;
115
6305a203
L
116/* 386 opcode byte to code indirect addressing. */
117typedef struct
118{
119 unsigned base;
120 unsigned index;
121 unsigned scale;
122}
123sib_byte;
124
6305a203
L
125/* x86 arch names, types and features */
126typedef struct
127{
128 const char *name; /* arch name */
8a2c8fef 129 unsigned int len; /* arch string length */
6305a203
L
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 132 unsigned int skip; /* show_arch should skip this. */
6305a203
L
133}
134arch_entry;
135
293f5f65
L
136/* Used to turn off indicated flags. */
137typedef struct
138{
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 i386_cpu_flags flags; /* cpu feature flags */
142}
143noarch_entry;
144
78f12dd3 145static void update_code_flag (int, int);
e3bb37b5
L
146static void set_code_flag (int);
147static void set_16bit_gcc_code_flag (int);
148static void set_intel_syntax (int);
1efbbeb4 149static void set_intel_mnemonic (int);
db51cc60 150static void set_allow_index_reg (int);
7bab8ab5 151static void set_check (int);
e3bb37b5 152static void set_cpu_arch (int);
6482c264 153#ifdef TE_PE
e3bb37b5 154static void pe_directive_secrel (int);
6482c264 155#endif
e3bb37b5
L
156static void signed_cons (int);
157static char *output_invalid (int c);
ee86248c
JB
158static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
159 const char *);
160static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
161 const char *);
a7619375 162static int i386_att_operand (char *);
e3bb37b5 163static int i386_intel_operand (char *, int);
ee86248c
JB
164static int i386_intel_simplify (expressionS *);
165static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
166static const reg_entry *parse_register (char *, char **);
167static char *parse_insn (char *, char *);
168static char *parse_operands (char *, const char *);
169static void swap_operands (void);
4d456e3d 170static void swap_2_operands (int, int);
e3bb37b5
L
171static void optimize_imm (void);
172static void optimize_disp (void);
83b16ac6 173static const insn_template *match_template (char);
e3bb37b5
L
174static int check_string (void);
175static int process_suffix (void);
176static int check_byte_reg (void);
177static int check_long_reg (void);
178static int check_qword_reg (void);
179static int check_word_reg (void);
180static int finalize_imm (void);
181static int process_operands (void);
182static const seg_entry *build_modrm_byte (void);
183static void output_insn (void);
184static void output_imm (fragS *, offsetT);
185static void output_disp (fragS *, offsetT);
29b0f896 186#ifndef I386COFF
e3bb37b5 187static void s_bss (int);
252b5132 188#endif
17d4e2a2
L
189#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
190static void handle_large_common (int small ATTRIBUTE_UNUSED);
191#endif
252b5132 192
a847613f 193static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 194
43234a1e
L
195/* This struct describes rounding control and SAE in the instruction. */
196struct RC_Operation
197{
198 enum rc_type
199 {
200 rne = 0,
201 rd,
202 ru,
203 rz,
204 saeonly
205 } type;
206 int operand;
207};
208
209static struct RC_Operation rc_op;
210
211/* The struct describes masking, applied to OPERAND in the instruction.
212 MASK is a pointer to the corresponding mask register. ZEROING tells
213 whether merging or zeroing mask is used. */
214struct Mask_Operation
215{
216 const reg_entry *mask;
217 unsigned int zeroing;
218 /* The operand where this operation is associated. */
219 int operand;
220};
221
222static struct Mask_Operation mask_op;
223
224/* The struct describes broadcasting, applied to OPERAND. FACTOR is
225 broadcast factor. */
226struct Broadcast_Operation
227{
8e6e0792 228 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
229 int type;
230
231 /* Index of broadcasted operand. */
232 int operand;
233};
234
235static struct Broadcast_Operation broadcast_op;
236
c0f3af97
L
237/* VEX prefix. */
238typedef struct
239{
43234a1e
L
240 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
241 unsigned char bytes[4];
c0f3af97
L
242 unsigned int length;
243 /* Destination or source register specifier. */
244 const reg_entry *register_specifier;
245} vex_prefix;
246
252b5132 247/* 'md_assemble ()' gathers together information and puts it into a
47926f60 248 i386_insn. */
252b5132 249
520dc8e8
AM
250union i386_op
251 {
252 expressionS *disps;
253 expressionS *imms;
254 const reg_entry *regs;
255 };
256
a65babc9
L
257enum i386_error
258 {
86e026a4 259 operand_size_mismatch,
a65babc9
L
260 operand_type_mismatch,
261 register_type_mismatch,
262 number_of_operands_mismatch,
263 invalid_instruction_suffix,
264 bad_imm4,
a65babc9
L
265 unsupported_with_intel_mnemonic,
266 unsupported_syntax,
6c30d220
L
267 unsupported,
268 invalid_vsib_address,
7bab8ab5 269 invalid_vector_register_set,
43234a1e
L
270 unsupported_vector_index_register,
271 unsupported_broadcast,
272 broadcast_not_on_src_operand,
273 broadcast_needed,
274 unsupported_masking,
275 mask_not_on_destination,
276 no_default_mask,
277 unsupported_rc_sae,
278 rc_sae_operand_not_last_imm,
279 invalid_register_operand,
a65babc9
L
280 };
281
252b5132
RH
282struct _i386_insn
283 {
47926f60 284 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 285 insn_template tm;
252b5132 286
7d5e4556
L
287 /* SUFFIX holds the instruction size suffix for byte, word, dword
288 or qword, if given. */
252b5132
RH
289 char suffix;
290
47926f60 291 /* OPERANDS gives the number of given operands. */
252b5132
RH
292 unsigned int operands;
293
294 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
295 of given register, displacement, memory operands and immediate
47926f60 296 operands. */
252b5132
RH
297 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
298
299 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 300 use OP[i] for the corresponding operand. */
40fb9820 301 i386_operand_type types[MAX_OPERANDS];
252b5132 302
520dc8e8
AM
303 /* Displacement expression, immediate expression, or register for each
304 operand. */
305 union i386_op op[MAX_OPERANDS];
252b5132 306
3e73aa7c
JH
307 /* Flags for operands. */
308 unsigned int flags[MAX_OPERANDS];
309#define Operand_PCrel 1
310
252b5132 311 /* Relocation type for operand */
f86103b7 312 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 313
252b5132
RH
314 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
315 the base index byte below. */
316 const reg_entry *base_reg;
317 const reg_entry *index_reg;
318 unsigned int log2_scale_factor;
319
320 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 321 explicit segment overrides are given. */
ce8a8b2f 322 const seg_entry *seg[2];
252b5132 323
8325cc63
JB
324 /* Copied first memory operand string, for re-checking. */
325 char *memop1_string;
326
252b5132
RH
327 /* PREFIX holds all the given prefix opcodes (usually null).
328 PREFIXES is the number of prefix opcodes. */
329 unsigned int prefixes;
330 unsigned char prefix[MAX_PREFIXES];
331
332 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 333 addressing modes of this insn are encoded. */
252b5132 334 modrm_byte rm;
3e73aa7c 335 rex_byte rex;
43234a1e 336 rex_byte vrex;
252b5132 337 sib_byte sib;
c0f3af97 338 vex_prefix vex;
b6169b20 339
43234a1e
L
340 /* Masking attributes. */
341 struct Mask_Operation *mask;
342
343 /* Rounding control and SAE attributes. */
344 struct RC_Operation *rounding;
345
346 /* Broadcasting attributes. */
347 struct Broadcast_Operation *broadcast;
348
349 /* Compressed disp8*N attribute. */
350 unsigned int memshift;
351
86fa6981
L
352 /* Prefer load or store in encoding. */
353 enum
354 {
355 dir_encoding_default = 0,
356 dir_encoding_load,
357 dir_encoding_store
358 } dir_encoding;
891edac4 359
a501d77e
L
360 /* Prefer 8bit or 32bit displacement in encoding. */
361 enum
362 {
363 disp_encoding_default = 0,
364 disp_encoding_8bit,
365 disp_encoding_32bit
366 } disp_encoding;
f8a5c266 367
6b6b6807
L
368 /* Prefer the REX byte in encoding. */
369 bfd_boolean rex_encoding;
370
b6f8c7c4
L
371 /* Disable instruction size optimization. */
372 bfd_boolean no_optimize;
373
86fa6981
L
374 /* How to encode vector instructions. */
375 enum
376 {
377 vex_encoding_default = 0,
378 vex_encoding_vex2,
379 vex_encoding_vex3,
380 vex_encoding_evex
381 } vec_encoding;
382
d5de92cf
L
383 /* REP prefix. */
384 const char *rep_prefix;
385
165de32a
L
386 /* HLE prefix. */
387 const char *hle_prefix;
42164a71 388
7e8b059b
L
389 /* Have BND prefix. */
390 const char *bnd_prefix;
391
04ef582a
L
392 /* Have NOTRACK prefix. */
393 const char *notrack_prefix;
394
891edac4 395 /* Error message. */
a65babc9 396 enum i386_error error;
252b5132
RH
397 };
398
399typedef struct _i386_insn i386_insn;
400
43234a1e
L
401/* Link RC type with corresponding string, that'll be looked for in
402 asm. */
403struct RC_name
404{
405 enum rc_type type;
406 const char *name;
407 unsigned int len;
408};
409
410static const struct RC_name RC_NamesTable[] =
411{
412 { rne, STRING_COMMA_LEN ("rn-sae") },
413 { rd, STRING_COMMA_LEN ("rd-sae") },
414 { ru, STRING_COMMA_LEN ("ru-sae") },
415 { rz, STRING_COMMA_LEN ("rz-sae") },
416 { saeonly, STRING_COMMA_LEN ("sae") },
417};
418
252b5132
RH
419/* List of chars besides those in app.c:symbol_chars that can start an
420 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 421const char extra_symbol_chars[] = "*%-([{}"
252b5132 422#ifdef LEX_AT
32137342
NC
423 "@"
424#endif
425#ifdef LEX_QM
426 "?"
252b5132 427#endif
32137342 428 ;
252b5132 429
29b0f896
AM
430#if (defined (TE_I386AIX) \
431 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 432 && !defined (TE_GNU) \
29b0f896 433 && !defined (TE_LINUX) \
8d63c93e 434 && !defined (TE_NACL) \
29b0f896 435 && !defined (TE_FreeBSD) \
5b806d27 436 && !defined (TE_DragonFly) \
29b0f896 437 && !defined (TE_NetBSD)))
252b5132 438/* This array holds the chars that always start a comment. If the
b3b91714
AM
439 pre-processor is disabled, these aren't very useful. The option
440 --divide will remove '/' from this list. */
441const char *i386_comment_chars = "#/";
442#define SVR4_COMMENT_CHARS 1
252b5132 443#define PREFIX_SEPARATOR '\\'
252b5132 444
b3b91714
AM
445#else
446const char *i386_comment_chars = "#";
447#define PREFIX_SEPARATOR '/'
448#endif
449
252b5132
RH
450/* This array holds the chars that only start a comment at the beginning of
451 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
452 .line and .file directives will appear in the pre-processed output.
453 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 454 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
455 #NO_APP at the beginning of its output.
456 Also note that comments started like this one will always work if
252b5132 457 '/' isn't otherwise defined. */
b3b91714 458const char line_comment_chars[] = "#/";
252b5132 459
63a0b638 460const char line_separator_chars[] = ";";
252b5132 461
ce8a8b2f
AM
462/* Chars that can be used to separate mant from exp in floating point
463 nums. */
252b5132
RH
464const char EXP_CHARS[] = "eE";
465
ce8a8b2f
AM
466/* Chars that mean this number is a floating point constant
467 As in 0f12.456
468 or 0d1.2345e12. */
252b5132
RH
469const char FLT_CHARS[] = "fFdDxX";
470
ce8a8b2f 471/* Tables for lexical analysis. */
252b5132
RH
472static char mnemonic_chars[256];
473static char register_chars[256];
474static char operand_chars[256];
475static char identifier_chars[256];
476static char digit_chars[256];
477
ce8a8b2f 478/* Lexical macros. */
252b5132
RH
479#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
480#define is_operand_char(x) (operand_chars[(unsigned char) x])
481#define is_register_char(x) (register_chars[(unsigned char) x])
482#define is_space_char(x) ((x) == ' ')
483#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
484#define is_digit_char(x) (digit_chars[(unsigned char) x])
485
0234cb7c 486/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
487static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
488
489/* md_assemble() always leaves the strings it's passed unaltered. To
490 effect this we maintain a stack of saved characters that we've smashed
491 with '\0's (indicating end of strings for various sub-fields of the
47926f60 492 assembler instruction). */
252b5132 493static char save_stack[32];
ce8a8b2f 494static char *save_stack_p;
252b5132
RH
495#define END_STRING_AND_SAVE(s) \
496 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
497#define RESTORE_END_STRING(s) \
498 do { *(s) = *--save_stack_p; } while (0)
499
47926f60 500/* The instruction we're assembling. */
252b5132
RH
501static i386_insn i;
502
503/* Possible templates for current insn. */
504static const templates *current_templates;
505
31b2323c
L
506/* Per instruction expressionS buffers: max displacements & immediates. */
507static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
508static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 509
47926f60 510/* Current operand we are working on. */
ee86248c 511static int this_operand = -1;
252b5132 512
3e73aa7c
JH
513/* We support four different modes. FLAG_CODE variable is used to distinguish
514 these. */
515
516enum flag_code {
517 CODE_32BIT,
518 CODE_16BIT,
519 CODE_64BIT };
520
521static enum flag_code flag_code;
4fa24527 522static unsigned int object_64bit;
862be3fb 523static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
524static int use_rela_relocations = 0;
525
7af8ed2d
NC
526#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
527 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
528 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
529
351f65ca
L
530/* The ELF ABI to use. */
531enum x86_elf_abi
532{
533 I386_ABI,
7f56bc95
L
534 X86_64_ABI,
535 X86_64_X32_ABI
351f65ca
L
536};
537
538static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 539#endif
351f65ca 540
167ad85b
TG
541#if defined (TE_PE) || defined (TE_PEP)
542/* Use big object file format. */
543static int use_big_obj = 0;
544#endif
545
8dcea932
L
546#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
547/* 1 if generating code for a shared library. */
548static int shared = 0;
549#endif
550
47926f60
KH
551/* 1 for intel syntax,
552 0 if att syntax. */
553static int intel_syntax = 0;
252b5132 554
e89c5eaa
L
555/* 1 for Intel64 ISA,
556 0 if AMD64 ISA. */
557static int intel64;
558
1efbbeb4
L
559/* 1 for intel mnemonic,
560 0 if att mnemonic. */
561static int intel_mnemonic = !SYSV386_COMPAT;
562
a60de03c
JB
563/* 1 if pseudo registers are permitted. */
564static int allow_pseudo_reg = 0;
565
47926f60
KH
566/* 1 if register prefix % not required. */
567static int allow_naked_reg = 0;
252b5132 568
33eaf5de 569/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
570 instructions supporting it, even if this prefix wasn't specified
571 explicitly. */
572static int add_bnd_prefix = 0;
573
ba104c83 574/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
575static int allow_index_reg = 0;
576
d022bddd
IT
577/* 1 if the assembler should ignore LOCK prefix, even if it was
578 specified explicitly. */
579static int omit_lock_prefix = 0;
580
e4e00185
AS
581/* 1 if the assembler should encode lfence, mfence, and sfence as
582 "lock addl $0, (%{re}sp)". */
583static int avoid_fence = 0;
584
0cb4071e
L
585/* 1 if the assembler should generate relax relocations. */
586
587static int generate_relax_relocations
588 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
589
7bab8ab5 590static enum check_kind
daf50ae7 591 {
7bab8ab5
JB
592 check_none = 0,
593 check_warning,
594 check_error
daf50ae7 595 }
7bab8ab5 596sse_check, operand_check = check_warning;
daf50ae7 597
b6f8c7c4
L
598/* Optimization:
599 1. Clear the REX_W bit with register operand if possible.
600 2. Above plus use 128bit vector instruction to clear the full vector
601 register.
602 */
603static int optimize = 0;
604
605/* Optimization:
606 1. Clear the REX_W bit with register operand if possible.
607 2. Above plus use 128bit vector instruction to clear the full vector
608 register.
609 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
610 "testb $imm7,%r8".
611 */
612static int optimize_for_space = 0;
613
2ca3ace5
L
614/* Register prefix used for error message. */
615static const char *register_prefix = "%";
616
47926f60
KH
617/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
618 leave, push, and pop instructions so that gcc has the same stack
619 frame as in 32 bit mode. */
620static char stackop_size = '\0';
eecb386c 621
12b55ccc
L
622/* Non-zero to optimize code alignment. */
623int optimize_align_code = 1;
624
47926f60
KH
625/* Non-zero to quieten some warnings. */
626static int quiet_warnings = 0;
a38cf1db 627
47926f60
KH
628/* CPU name. */
629static const char *cpu_arch_name = NULL;
6305a203 630static char *cpu_sub_arch_name = NULL;
a38cf1db 631
47926f60 632/* CPU feature flags. */
40fb9820
L
633static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
634
ccc9c027
L
635/* If we have selected a cpu we are generating instructions for. */
636static int cpu_arch_tune_set = 0;
637
9103f4f4 638/* Cpu we are generating instructions for. */
fbf3f584 639enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
640
641/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 642static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 643
ccc9c027 644/* CPU instruction set architecture used. */
fbf3f584 645enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 646
9103f4f4 647/* CPU feature flags of instruction set architecture used. */
fbf3f584 648i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 649
fddf5b5b
AM
650/* If set, conditional jumps are not automatically promoted to handle
651 larger than a byte offset. */
652static unsigned int no_cond_jump_promotion = 0;
653
c0f3af97
L
654/* Encode SSE instructions with VEX prefix. */
655static unsigned int sse2avx;
656
539f890d
L
657/* Encode scalar AVX instructions with specific vector length. */
658static enum
659 {
660 vex128 = 0,
661 vex256
662 } avxscalar;
663
43234a1e
L
664/* Encode scalar EVEX LIG instructions with specific vector length. */
665static enum
666 {
667 evexl128 = 0,
668 evexl256,
669 evexl512
670 } evexlig;
671
672/* Encode EVEX WIG instructions with specific evex.w. */
673static enum
674 {
675 evexw0 = 0,
676 evexw1
677 } evexwig;
678
d3d3c6db
IT
679/* Value to encode in EVEX RC bits, for SAE-only instructions. */
680static enum rc_type evexrcig = rne;
681
29b0f896 682/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 683static symbolS *GOT_symbol;
29b0f896 684
a4447b93
RH
685/* The dwarf2 return column, adjusted for 32 or 64 bit. */
686unsigned int x86_dwarf2_return_column;
687
688/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
689int x86_cie_data_alignment;
690
252b5132 691/* Interface to relax_segment.
fddf5b5b
AM
692 There are 3 major relax states for 386 jump insns because the
693 different types of jumps add different sizes to frags when we're
694 figuring out what sort of jump to choose to reach a given label. */
252b5132 695
47926f60 696/* Types. */
93c2a809
AM
697#define UNCOND_JUMP 0
698#define COND_JUMP 1
699#define COND_JUMP86 2
fddf5b5b 700
47926f60 701/* Sizes. */
252b5132
RH
702#define CODE16 1
703#define SMALL 0
29b0f896 704#define SMALL16 (SMALL | CODE16)
252b5132 705#define BIG 2
29b0f896 706#define BIG16 (BIG | CODE16)
252b5132
RH
707
708#ifndef INLINE
709#ifdef __GNUC__
710#define INLINE __inline__
711#else
712#define INLINE
713#endif
714#endif
715
fddf5b5b
AM
716#define ENCODE_RELAX_STATE(type, size) \
717 ((relax_substateT) (((type) << 2) | (size)))
718#define TYPE_FROM_RELAX_STATE(s) \
719 ((s) >> 2)
720#define DISP_SIZE_FROM_RELAX_STATE(s) \
721 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
722
723/* This table is used by relax_frag to promote short jumps to long
724 ones where necessary. SMALL (short) jumps may be promoted to BIG
725 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
726 don't allow a short jump in a 32 bit code segment to be promoted to
727 a 16 bit offset jump because it's slower (requires data size
728 prefix), and doesn't work, unless the destination is in the bottom
729 64k of the code segment (The top 16 bits of eip are zeroed). */
730
731const relax_typeS md_relax_table[] =
732{
24eab124
AM
733 /* The fields are:
734 1) most positive reach of this state,
735 2) most negative reach of this state,
93c2a809 736 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 737 4) which index into the table to try if we can't fit into this one. */
252b5132 738
fddf5b5b 739 /* UNCOND_JUMP states. */
93c2a809
AM
740 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
741 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
742 /* dword jmp adds 4 bytes to frag:
743 0 extra opcode bytes, 4 displacement bytes. */
252b5132 744 {0, 0, 4, 0},
93c2a809
AM
745 /* word jmp adds 2 byte2 to frag:
746 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
747 {0, 0, 2, 0},
748
93c2a809
AM
749 /* COND_JUMP states. */
750 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
751 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
752 /* dword conditionals adds 5 bytes to frag:
753 1 extra opcode byte, 4 displacement bytes. */
754 {0, 0, 5, 0},
fddf5b5b 755 /* word conditionals add 3 bytes to frag:
93c2a809
AM
756 1 extra opcode byte, 2 displacement bytes. */
757 {0, 0, 3, 0},
758
759 /* COND_JUMP86 states. */
760 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
761 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
762 /* dword conditionals adds 5 bytes to frag:
763 1 extra opcode byte, 4 displacement bytes. */
764 {0, 0, 5, 0},
765 /* word conditionals add 4 bytes to frag:
766 1 displacement byte and a 3 byte long branch insn. */
767 {0, 0, 4, 0}
252b5132
RH
768};
769
9103f4f4
L
770static const arch_entry cpu_arch[] =
771{
89507696
JB
772 /* Do not replace the first two entries - i386_target_format()
773 relies on them being there in this order. */
8a2c8fef 774 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 775 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 776 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 777 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 778 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 779 CPU_NONE_FLAGS, 0 },
8a2c8fef 780 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 781 CPU_I186_FLAGS, 0 },
8a2c8fef 782 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 783 CPU_I286_FLAGS, 0 },
8a2c8fef 784 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 785 CPU_I386_FLAGS, 0 },
8a2c8fef 786 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 787 CPU_I486_FLAGS, 0 },
8a2c8fef 788 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 789 CPU_I586_FLAGS, 0 },
8a2c8fef 790 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 791 CPU_I686_FLAGS, 0 },
8a2c8fef 792 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 793 CPU_I586_FLAGS, 0 },
8a2c8fef 794 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 795 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 796 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 797 CPU_P2_FLAGS, 0 },
8a2c8fef 798 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 799 CPU_P3_FLAGS, 0 },
8a2c8fef 800 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 801 CPU_P4_FLAGS, 0 },
8a2c8fef 802 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 803 CPU_CORE_FLAGS, 0 },
8a2c8fef 804 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 805 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 806 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 807 CPU_CORE_FLAGS, 1 },
8a2c8fef 808 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 809 CPU_CORE_FLAGS, 0 },
8a2c8fef 810 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 811 CPU_CORE2_FLAGS, 1 },
8a2c8fef 812 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 813 CPU_CORE2_FLAGS, 0 },
8a2c8fef 814 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 815 CPU_COREI7_FLAGS, 0 },
8a2c8fef 816 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 817 CPU_L1OM_FLAGS, 0 },
7a9068fe 818 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 819 CPU_K1OM_FLAGS, 0 },
81486035 820 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 821 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 822 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 823 CPU_K6_FLAGS, 0 },
8a2c8fef 824 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 825 CPU_K6_2_FLAGS, 0 },
8a2c8fef 826 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 827 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 828 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 829 CPU_K8_FLAGS, 1 },
8a2c8fef 830 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 831 CPU_K8_FLAGS, 0 },
8a2c8fef 832 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 833 CPU_K8_FLAGS, 0 },
8a2c8fef 834 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 835 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 836 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 837 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 838 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 839 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 840 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 841 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 842 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 843 CPU_BDVER4_FLAGS, 0 },
029f3522 844 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 845 CPU_ZNVER1_FLAGS, 0 },
7b458c12 846 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 847 CPU_BTVER1_FLAGS, 0 },
7b458c12 848 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 849 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 850 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 851 CPU_8087_FLAGS, 0 },
8a2c8fef 852 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 853 CPU_287_FLAGS, 0 },
8a2c8fef 854 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 855 CPU_387_FLAGS, 0 },
1848e567
L
856 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
857 CPU_687_FLAGS, 0 },
8a2c8fef 858 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 859 CPU_MMX_FLAGS, 0 },
8a2c8fef 860 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 861 CPU_SSE_FLAGS, 0 },
8a2c8fef 862 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 863 CPU_SSE2_FLAGS, 0 },
8a2c8fef 864 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 865 CPU_SSE3_FLAGS, 0 },
8a2c8fef 866 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 867 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 868 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 869 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 870 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 871 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 872 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 873 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 874 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 875 CPU_AVX_FLAGS, 0 },
6c30d220 876 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 877 CPU_AVX2_FLAGS, 0 },
43234a1e 878 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 879 CPU_AVX512F_FLAGS, 0 },
43234a1e 880 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 881 CPU_AVX512CD_FLAGS, 0 },
43234a1e 882 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 883 CPU_AVX512ER_FLAGS, 0 },
43234a1e 884 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 885 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 886 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 887 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 888 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 889 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 890 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 891 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 892 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 893 CPU_VMX_FLAGS, 0 },
8729a6f6 894 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 895 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 896 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 897 CPU_SMX_FLAGS, 0 },
8a2c8fef 898 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 899 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 900 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 901 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 902 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 903 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 904 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 905 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 906 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 907 CPU_AES_FLAGS, 0 },
8a2c8fef 908 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 909 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 910 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 911 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 912 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 913 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 914 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 915 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 916 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 917 CPU_F16C_FLAGS, 0 },
6c30d220 918 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 919 CPU_BMI2_FLAGS, 0 },
8a2c8fef 920 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 921 CPU_FMA_FLAGS, 0 },
8a2c8fef 922 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 923 CPU_FMA4_FLAGS, 0 },
8a2c8fef 924 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 925 CPU_XOP_FLAGS, 0 },
8a2c8fef 926 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 927 CPU_LWP_FLAGS, 0 },
8a2c8fef 928 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 929 CPU_MOVBE_FLAGS, 0 },
60aa667e 930 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 931 CPU_CX16_FLAGS, 0 },
8a2c8fef 932 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 933 CPU_EPT_FLAGS, 0 },
6c30d220 934 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 935 CPU_LZCNT_FLAGS, 0 },
42164a71 936 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 937 CPU_HLE_FLAGS, 0 },
42164a71 938 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 939 CPU_RTM_FLAGS, 0 },
6c30d220 940 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 941 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 942 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 943 CPU_CLFLUSH_FLAGS, 0 },
22109423 944 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 945 CPU_NOP_FLAGS, 0 },
8a2c8fef 946 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 947 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 948 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 949 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 950 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 951 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 952 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 953 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 954 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 955 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 956 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 957 CPU_SVME_FLAGS, 1 },
8a2c8fef 958 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 959 CPU_SVME_FLAGS, 0 },
8a2c8fef 960 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 961 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 962 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 963 CPU_ABM_FLAGS, 0 },
87973e9f 964 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 965 CPU_BMI_FLAGS, 0 },
2a2a0f38 966 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 967 CPU_TBM_FLAGS, 0 },
e2e1fcde 968 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 969 CPU_ADX_FLAGS, 0 },
e2e1fcde 970 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 971 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 972 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 973 CPU_PRFCHW_FLAGS, 0 },
5c111e37 974 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 975 CPU_SMAP_FLAGS, 0 },
7e8b059b 976 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 977 CPU_MPX_FLAGS, 0 },
a0046408 978 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 979 CPU_SHA_FLAGS, 0 },
963f3586 980 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 981 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 982 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 983 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 984 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 985 CPU_SE1_FLAGS, 0 },
c5e7287a 986 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 987 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 988 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 989 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 990 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 991 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
992 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
993 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
994 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
995 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
996 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
997 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
998 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
999 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1000 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1001 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1002 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1003 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1004 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1005 CPU_CLZERO_FLAGS, 0 },
9916071f 1006 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1007 CPU_MWAITX_FLAGS, 0 },
8eab4136 1008 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1009 CPU_OSPKE_FLAGS, 0 },
8bc52696 1010 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1011 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1012 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1013 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1014 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1015 CPU_IBT_FLAGS, 0 },
1016 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1017 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1018 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1019 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1020 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1021 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1022 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1023 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1024 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1025 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1026 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1027 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1028 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1029 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1030 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1031 CPU_CLDEMOTE_FLAGS, 0 },
293f5f65
L
1032};
1033
1034static const noarch_entry cpu_noarch[] =
1035{
1036 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1037 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1038 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1039 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
293f5f65
L
1040 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1041 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1042 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1043 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1044 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1045 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1046 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1047 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1048 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1049 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1050 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1051 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1052 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1053 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1054 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1055 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1056 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1057 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1058 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1059 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1060 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1061 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1062 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1063 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1064 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1065 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1066 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
e413e4e9
AM
1067};
1068
704209c0 1069#ifdef I386COFF
a6c24e68
NC
1070/* Like s_lcomm_internal in gas/read.c but the alignment string
1071 is allowed to be optional. */
1072
1073static symbolS *
1074pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1075{
1076 addressT align = 0;
1077
1078 SKIP_WHITESPACE ();
1079
7ab9ffdd 1080 if (needs_align
a6c24e68
NC
1081 && *input_line_pointer == ',')
1082 {
1083 align = parse_align (needs_align - 1);
7ab9ffdd 1084
a6c24e68
NC
1085 if (align == (addressT) -1)
1086 return NULL;
1087 }
1088 else
1089 {
1090 if (size >= 8)
1091 align = 3;
1092 else if (size >= 4)
1093 align = 2;
1094 else if (size >= 2)
1095 align = 1;
1096 else
1097 align = 0;
1098 }
1099
1100 bss_alloc (symbolP, size, align);
1101 return symbolP;
1102}
1103
704209c0 1104static void
a6c24e68
NC
1105pe_lcomm (int needs_align)
1106{
1107 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1108}
704209c0 1109#endif
a6c24e68 1110
29b0f896
AM
1111const pseudo_typeS md_pseudo_table[] =
1112{
1113#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1114 {"align", s_align_bytes, 0},
1115#else
1116 {"align", s_align_ptwo, 0},
1117#endif
1118 {"arch", set_cpu_arch, 0},
1119#ifndef I386COFF
1120 {"bss", s_bss, 0},
a6c24e68
NC
1121#else
1122 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1123#endif
1124 {"ffloat", float_cons, 'f'},
1125 {"dfloat", float_cons, 'd'},
1126 {"tfloat", float_cons, 'x'},
1127 {"value", cons, 2},
d182319b 1128 {"slong", signed_cons, 4},
29b0f896
AM
1129 {"noopt", s_ignore, 0},
1130 {"optim", s_ignore, 0},
1131 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1132 {"code16", set_code_flag, CODE_16BIT},
1133 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1134#ifdef BFD64
29b0f896 1135 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1136#endif
29b0f896
AM
1137 {"intel_syntax", set_intel_syntax, 1},
1138 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1139 {"intel_mnemonic", set_intel_mnemonic, 1},
1140 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1141 {"allow_index_reg", set_allow_index_reg, 1},
1142 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1143 {"sse_check", set_check, 0},
1144 {"operand_check", set_check, 1},
3b22753a
L
1145#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1146 {"largecomm", handle_large_common, 0},
07a53e5c 1147#else
68d20676 1148 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1149 {"loc", dwarf2_directive_loc, 0},
1150 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1151#endif
6482c264
NC
1152#ifdef TE_PE
1153 {"secrel32", pe_directive_secrel, 0},
1154#endif
29b0f896
AM
1155 {0, 0, 0}
1156};
1157
1158/* For interface with expression (). */
1159extern char *input_line_pointer;
1160
1161/* Hash table for instruction mnemonic lookup. */
1162static struct hash_control *op_hash;
1163
1164/* Hash table for register lookup. */
1165static struct hash_control *reg_hash;
1166\f
ce8a8b2f
AM
1167 /* Various efficient no-op patterns for aligning code labels.
1168 Note: Don't try to assemble the instructions in the comments.
1169 0L and 0w are not legal. */
62a02d25
L
1170static const unsigned char f32_1[] =
1171 {0x90}; /* nop */
1172static const unsigned char f32_2[] =
1173 {0x66,0x90}; /* xchg %ax,%ax */
1174static const unsigned char f32_3[] =
1175 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1176static const unsigned char f32_4[] =
1177 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1178static const unsigned char f32_6[] =
1179 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1180static const unsigned char f32_7[] =
1181 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1182static const unsigned char f16_3[] =
3ae729d5 1183 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1184static const unsigned char f16_4[] =
3ae729d5
L
1185 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1186static const unsigned char jump_disp8[] =
1187 {0xeb}; /* jmp disp8 */
1188static const unsigned char jump32_disp32[] =
1189 {0xe9}; /* jmp disp32 */
1190static const unsigned char jump16_disp32[] =
1191 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1192/* 32-bit NOPs patterns. */
1193static const unsigned char *const f32_patt[] = {
3ae729d5 1194 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1195};
1196/* 16-bit NOPs patterns. */
1197static const unsigned char *const f16_patt[] = {
3ae729d5 1198 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1199};
1200/* nopl (%[re]ax) */
1201static const unsigned char alt_3[] =
1202 {0x0f,0x1f,0x00};
1203/* nopl 0(%[re]ax) */
1204static const unsigned char alt_4[] =
1205 {0x0f,0x1f,0x40,0x00};
1206/* nopl 0(%[re]ax,%[re]ax,1) */
1207static const unsigned char alt_5[] =
1208 {0x0f,0x1f,0x44,0x00,0x00};
1209/* nopw 0(%[re]ax,%[re]ax,1) */
1210static const unsigned char alt_6[] =
1211 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1212/* nopl 0L(%[re]ax) */
1213static const unsigned char alt_7[] =
1214 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1215/* nopl 0L(%[re]ax,%[re]ax,1) */
1216static const unsigned char alt_8[] =
1217 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1218/* nopw 0L(%[re]ax,%[re]ax,1) */
1219static const unsigned char alt_9[] =
1220 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1221/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1222static const unsigned char alt_10[] =
1223 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1224/* data16 nopw %cs:0L(%eax,%eax,1) */
1225static const unsigned char alt_11[] =
1226 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1227/* 32-bit and 64-bit NOPs patterns. */
1228static const unsigned char *const alt_patt[] = {
1229 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1230 alt_9, alt_10, alt_11
62a02d25
L
1231};
1232
1233/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1234 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1235
1236static void
1237i386_output_nops (char *where, const unsigned char *const *patt,
1238 int count, int max_single_nop_size)
1239
1240{
3ae729d5
L
1241 /* Place the longer NOP first. */
1242 int last;
1243 int offset;
1244 const unsigned char *nops = patt[max_single_nop_size - 1];
1245
1246 /* Use the smaller one if the requsted one isn't available. */
1247 if (nops == NULL)
62a02d25 1248 {
3ae729d5
L
1249 max_single_nop_size--;
1250 nops = patt[max_single_nop_size - 1];
62a02d25
L
1251 }
1252
3ae729d5
L
1253 last = count % max_single_nop_size;
1254
1255 count -= last;
1256 for (offset = 0; offset < count; offset += max_single_nop_size)
1257 memcpy (where + offset, nops, max_single_nop_size);
1258
1259 if (last)
1260 {
1261 nops = patt[last - 1];
1262 if (nops == NULL)
1263 {
1264 /* Use the smaller one plus one-byte NOP if the needed one
1265 isn't available. */
1266 last--;
1267 nops = patt[last - 1];
1268 memcpy (where + offset, nops, last);
1269 where[offset + last] = *patt[0];
1270 }
1271 else
1272 memcpy (where + offset, nops, last);
1273 }
62a02d25
L
1274}
1275
3ae729d5
L
1276static INLINE int
1277fits_in_imm7 (offsetT num)
1278{
1279 return (num & 0x7f) == num;
1280}
1281
1282static INLINE int
1283fits_in_imm31 (offsetT num)
1284{
1285 return (num & 0x7fffffff) == num;
1286}
62a02d25
L
1287
1288/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1289 single NOP instruction LIMIT. */
1290
1291void
3ae729d5 1292i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1293{
3ae729d5 1294 const unsigned char *const *patt = NULL;
62a02d25 1295 int max_single_nop_size;
3ae729d5
L
1296 /* Maximum number of NOPs before switching to jump over NOPs. */
1297 int max_number_of_nops;
62a02d25 1298
3ae729d5 1299 switch (fragP->fr_type)
62a02d25 1300 {
3ae729d5
L
1301 case rs_fill_nop:
1302 case rs_align_code:
1303 break;
1304 default:
62a02d25
L
1305 return;
1306 }
1307
ccc9c027
L
1308 /* We need to decide which NOP sequence to use for 32bit and
1309 64bit. When -mtune= is used:
4eed87de 1310
76bc74dc
L
1311 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1312 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1313 2. For the rest, alt_patt will be used.
1314
1315 When -mtune= isn't used, alt_patt will be used if
22109423 1316 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1317 be used.
ccc9c027
L
1318
1319 When -march= or .arch is used, we can't use anything beyond
1320 cpu_arch_isa_flags. */
1321
1322 if (flag_code == CODE_16BIT)
1323 {
3ae729d5
L
1324 patt = f16_patt;
1325 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1326 /* Limit number of NOPs to 2 in 16-bit mode. */
1327 max_number_of_nops = 2;
252b5132 1328 }
33fef721 1329 else
ccc9c027 1330 {
fbf3f584 1331 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1332 {
1333 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1334 switch (cpu_arch_tune)
1335 {
1336 case PROCESSOR_UNKNOWN:
1337 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1338 optimize with nops. */
1339 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1340 patt = alt_patt;
ccc9c027
L
1341 else
1342 patt = f32_patt;
1343 break;
ccc9c027
L
1344 case PROCESSOR_PENTIUM4:
1345 case PROCESSOR_NOCONA:
ef05d495 1346 case PROCESSOR_CORE:
76bc74dc 1347 case PROCESSOR_CORE2:
bd5295b2 1348 case PROCESSOR_COREI7:
3632d14b 1349 case PROCESSOR_L1OM:
7a9068fe 1350 case PROCESSOR_K1OM:
76bc74dc 1351 case PROCESSOR_GENERIC64:
ccc9c027
L
1352 case PROCESSOR_K6:
1353 case PROCESSOR_ATHLON:
1354 case PROCESSOR_K8:
4eed87de 1355 case PROCESSOR_AMDFAM10:
8aedb9fe 1356 case PROCESSOR_BD:
029f3522 1357 case PROCESSOR_ZNVER:
7b458c12 1358 case PROCESSOR_BT:
80b8656c 1359 patt = alt_patt;
ccc9c027 1360 break;
76bc74dc 1361 case PROCESSOR_I386:
ccc9c027
L
1362 case PROCESSOR_I486:
1363 case PROCESSOR_PENTIUM:
2dde1948 1364 case PROCESSOR_PENTIUMPRO:
81486035 1365 case PROCESSOR_IAMCU:
ccc9c027
L
1366 case PROCESSOR_GENERIC32:
1367 patt = f32_patt;
1368 break;
4eed87de 1369 }
ccc9c027
L
1370 }
1371 else
1372 {
fbf3f584 1373 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1374 {
1375 case PROCESSOR_UNKNOWN:
e6a14101 1376 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1377 PROCESSOR_UNKNOWN. */
1378 abort ();
1379 break;
1380
76bc74dc 1381 case PROCESSOR_I386:
ccc9c027
L
1382 case PROCESSOR_I486:
1383 case PROCESSOR_PENTIUM:
81486035 1384 case PROCESSOR_IAMCU:
ccc9c027
L
1385 case PROCESSOR_K6:
1386 case PROCESSOR_ATHLON:
1387 case PROCESSOR_K8:
4eed87de 1388 case PROCESSOR_AMDFAM10:
8aedb9fe 1389 case PROCESSOR_BD:
029f3522 1390 case PROCESSOR_ZNVER:
7b458c12 1391 case PROCESSOR_BT:
ccc9c027
L
1392 case PROCESSOR_GENERIC32:
1393 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1394 with nops. */
1395 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1396 patt = alt_patt;
ccc9c027
L
1397 else
1398 patt = f32_patt;
1399 break;
76bc74dc
L
1400 case PROCESSOR_PENTIUMPRO:
1401 case PROCESSOR_PENTIUM4:
1402 case PROCESSOR_NOCONA:
1403 case PROCESSOR_CORE:
ef05d495 1404 case PROCESSOR_CORE2:
bd5295b2 1405 case PROCESSOR_COREI7:
3632d14b 1406 case PROCESSOR_L1OM:
7a9068fe 1407 case PROCESSOR_K1OM:
22109423 1408 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1409 patt = alt_patt;
ccc9c027
L
1410 else
1411 patt = f32_patt;
1412 break;
1413 case PROCESSOR_GENERIC64:
80b8656c 1414 patt = alt_patt;
ccc9c027 1415 break;
4eed87de 1416 }
ccc9c027
L
1417 }
1418
76bc74dc
L
1419 if (patt == f32_patt)
1420 {
3ae729d5
L
1421 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1422 /* Limit number of NOPs to 2 for older processors. */
1423 max_number_of_nops = 2;
76bc74dc
L
1424 }
1425 else
1426 {
3ae729d5
L
1427 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1428 /* Limit number of NOPs to 7 for newer processors. */
1429 max_number_of_nops = 7;
1430 }
1431 }
1432
1433 if (limit == 0)
1434 limit = max_single_nop_size;
1435
1436 if (fragP->fr_type == rs_fill_nop)
1437 {
1438 /* Output NOPs for .nop directive. */
1439 if (limit > max_single_nop_size)
1440 {
1441 as_bad_where (fragP->fr_file, fragP->fr_line,
1442 _("invalid single nop size: %d "
1443 "(expect within [0, %d])"),
1444 limit, max_single_nop_size);
1445 return;
1446 }
1447 }
1448 else
1449 fragP->fr_var = count;
1450
1451 if ((count / max_single_nop_size) > max_number_of_nops)
1452 {
1453 /* Generate jump over NOPs. */
1454 offsetT disp = count - 2;
1455 if (fits_in_imm7 (disp))
1456 {
1457 /* Use "jmp disp8" if possible. */
1458 count = disp;
1459 where[0] = jump_disp8[0];
1460 where[1] = count;
1461 where += 2;
1462 }
1463 else
1464 {
1465 unsigned int size_of_jump;
1466
1467 if (flag_code == CODE_16BIT)
1468 {
1469 where[0] = jump16_disp32[0];
1470 where[1] = jump16_disp32[1];
1471 size_of_jump = 2;
1472 }
1473 else
1474 {
1475 where[0] = jump32_disp32[0];
1476 size_of_jump = 1;
1477 }
1478
1479 count -= size_of_jump + 4;
1480 if (!fits_in_imm31 (count))
1481 {
1482 as_bad_where (fragP->fr_file, fragP->fr_line,
1483 _("jump over nop padding out of range"));
1484 return;
1485 }
1486
1487 md_number_to_chars (where + size_of_jump, count, 4);
1488 where += size_of_jump + 4;
76bc74dc 1489 }
ccc9c027 1490 }
3ae729d5
L
1491
1492 /* Generate multiple NOPs. */
1493 i386_output_nops (where, patt, count, limit);
252b5132
RH
1494}
1495
c6fb90c8 1496static INLINE int
0dfbf9d7 1497operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1498{
0dfbf9d7 1499 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1500 {
1501 case 3:
0dfbf9d7 1502 if (x->array[2])
c6fb90c8 1503 return 0;
1a0670f3 1504 /* Fall through. */
c6fb90c8 1505 case 2:
0dfbf9d7 1506 if (x->array[1])
c6fb90c8 1507 return 0;
1a0670f3 1508 /* Fall through. */
c6fb90c8 1509 case 1:
0dfbf9d7 1510 return !x->array[0];
c6fb90c8
L
1511 default:
1512 abort ();
1513 }
40fb9820
L
1514}
1515
c6fb90c8 1516static INLINE void
0dfbf9d7 1517operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1518{
0dfbf9d7 1519 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1520 {
1521 case 3:
0dfbf9d7 1522 x->array[2] = v;
1a0670f3 1523 /* Fall through. */
c6fb90c8 1524 case 2:
0dfbf9d7 1525 x->array[1] = v;
1a0670f3 1526 /* Fall through. */
c6fb90c8 1527 case 1:
0dfbf9d7 1528 x->array[0] = v;
1a0670f3 1529 /* Fall through. */
c6fb90c8
L
1530 break;
1531 default:
1532 abort ();
1533 }
1534}
40fb9820 1535
c6fb90c8 1536static INLINE int
0dfbf9d7
L
1537operand_type_equal (const union i386_operand_type *x,
1538 const union i386_operand_type *y)
c6fb90c8 1539{
0dfbf9d7 1540 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1541 {
1542 case 3:
0dfbf9d7 1543 if (x->array[2] != y->array[2])
c6fb90c8 1544 return 0;
1a0670f3 1545 /* Fall through. */
c6fb90c8 1546 case 2:
0dfbf9d7 1547 if (x->array[1] != y->array[1])
c6fb90c8 1548 return 0;
1a0670f3 1549 /* Fall through. */
c6fb90c8 1550 case 1:
0dfbf9d7 1551 return x->array[0] == y->array[0];
c6fb90c8
L
1552 break;
1553 default:
1554 abort ();
1555 }
1556}
40fb9820 1557
0dfbf9d7
L
1558static INLINE int
1559cpu_flags_all_zero (const union i386_cpu_flags *x)
1560{
1561 switch (ARRAY_SIZE(x->array))
1562 {
53467f57
IT
1563 case 4:
1564 if (x->array[3])
1565 return 0;
1566 /* Fall through. */
0dfbf9d7
L
1567 case 3:
1568 if (x->array[2])
1569 return 0;
1a0670f3 1570 /* Fall through. */
0dfbf9d7
L
1571 case 2:
1572 if (x->array[1])
1573 return 0;
1a0670f3 1574 /* Fall through. */
0dfbf9d7
L
1575 case 1:
1576 return !x->array[0];
1577 default:
1578 abort ();
1579 }
1580}
1581
0dfbf9d7
L
1582static INLINE int
1583cpu_flags_equal (const union i386_cpu_flags *x,
1584 const union i386_cpu_flags *y)
1585{
1586 switch (ARRAY_SIZE(x->array))
1587 {
53467f57
IT
1588 case 4:
1589 if (x->array[3] != y->array[3])
1590 return 0;
1591 /* Fall through. */
0dfbf9d7
L
1592 case 3:
1593 if (x->array[2] != y->array[2])
1594 return 0;
1a0670f3 1595 /* Fall through. */
0dfbf9d7
L
1596 case 2:
1597 if (x->array[1] != y->array[1])
1598 return 0;
1a0670f3 1599 /* Fall through. */
0dfbf9d7
L
1600 case 1:
1601 return x->array[0] == y->array[0];
1602 break;
1603 default:
1604 abort ();
1605 }
1606}
c6fb90c8
L
1607
1608static INLINE int
1609cpu_flags_check_cpu64 (i386_cpu_flags f)
1610{
1611 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1612 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1613}
1614
c6fb90c8
L
1615static INLINE i386_cpu_flags
1616cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1617{
c6fb90c8
L
1618 switch (ARRAY_SIZE (x.array))
1619 {
53467f57
IT
1620 case 4:
1621 x.array [3] &= y.array [3];
1622 /* Fall through. */
c6fb90c8
L
1623 case 3:
1624 x.array [2] &= y.array [2];
1a0670f3 1625 /* Fall through. */
c6fb90c8
L
1626 case 2:
1627 x.array [1] &= y.array [1];
1a0670f3 1628 /* Fall through. */
c6fb90c8
L
1629 case 1:
1630 x.array [0] &= y.array [0];
1631 break;
1632 default:
1633 abort ();
1634 }
1635 return x;
1636}
40fb9820 1637
c6fb90c8
L
1638static INLINE i386_cpu_flags
1639cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1640{
c6fb90c8 1641 switch (ARRAY_SIZE (x.array))
40fb9820 1642 {
53467f57
IT
1643 case 4:
1644 x.array [3] |= y.array [3];
1645 /* Fall through. */
c6fb90c8
L
1646 case 3:
1647 x.array [2] |= y.array [2];
1a0670f3 1648 /* Fall through. */
c6fb90c8
L
1649 case 2:
1650 x.array [1] |= y.array [1];
1a0670f3 1651 /* Fall through. */
c6fb90c8
L
1652 case 1:
1653 x.array [0] |= y.array [0];
40fb9820
L
1654 break;
1655 default:
1656 abort ();
1657 }
40fb9820
L
1658 return x;
1659}
1660
309d3373
JB
1661static INLINE i386_cpu_flags
1662cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1663{
1664 switch (ARRAY_SIZE (x.array))
1665 {
53467f57
IT
1666 case 4:
1667 x.array [3] &= ~y.array [3];
1668 /* Fall through. */
309d3373
JB
1669 case 3:
1670 x.array [2] &= ~y.array [2];
1a0670f3 1671 /* Fall through. */
309d3373
JB
1672 case 2:
1673 x.array [1] &= ~y.array [1];
1a0670f3 1674 /* Fall through. */
309d3373
JB
1675 case 1:
1676 x.array [0] &= ~y.array [0];
1677 break;
1678 default:
1679 abort ();
1680 }
1681 return x;
1682}
1683
c0f3af97
L
1684#define CPU_FLAGS_ARCH_MATCH 0x1
1685#define CPU_FLAGS_64BIT_MATCH 0x2
1686
c0f3af97 1687#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1688 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1689
1690/* Return CPU flags match bits. */
3629bb00 1691
40fb9820 1692static int
d3ce72d0 1693cpu_flags_match (const insn_template *t)
40fb9820 1694{
c0f3af97
L
1695 i386_cpu_flags x = t->cpu_flags;
1696 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1697
1698 x.bitfield.cpu64 = 0;
1699 x.bitfield.cpuno64 = 0;
1700
0dfbf9d7 1701 if (cpu_flags_all_zero (&x))
c0f3af97
L
1702 {
1703 /* This instruction is available on all archs. */
db12e14e 1704 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1705 }
3629bb00
L
1706 else
1707 {
c0f3af97 1708 /* This instruction is available only on some archs. */
3629bb00
L
1709 i386_cpu_flags cpu = cpu_arch_flags;
1710
ab592e75
JB
1711 /* AVX512VL is no standalone feature - match it and then strip it. */
1712 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1713 return match;
1714 x.bitfield.cpuavx512vl = 0;
1715
3629bb00 1716 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1717 if (!cpu_flags_all_zero (&cpu))
1718 {
a5ff0eb2
L
1719 if (x.bitfield.cpuavx)
1720 {
929f69fa 1721 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1722 if (cpu.bitfield.cpuavx
1723 && (!t->opcode_modifier.sse2avx || sse2avx)
1724 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1725 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1726 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1727 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1728 }
929f69fa
JB
1729 else if (x.bitfield.cpuavx512f)
1730 {
1731 /* We need to check a few extra flags with AVX512F. */
1732 if (cpu.bitfield.cpuavx512f
1733 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1734 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1735 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1736 match |= CPU_FLAGS_ARCH_MATCH;
1737 }
a5ff0eb2 1738 else
db12e14e 1739 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1740 }
3629bb00 1741 }
c0f3af97 1742 return match;
40fb9820
L
1743}
1744
c6fb90c8
L
1745static INLINE i386_operand_type
1746operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1747{
c6fb90c8
L
1748 switch (ARRAY_SIZE (x.array))
1749 {
1750 case 3:
1751 x.array [2] &= y.array [2];
1a0670f3 1752 /* Fall through. */
c6fb90c8
L
1753 case 2:
1754 x.array [1] &= y.array [1];
1a0670f3 1755 /* Fall through. */
c6fb90c8
L
1756 case 1:
1757 x.array [0] &= y.array [0];
1758 break;
1759 default:
1760 abort ();
1761 }
1762 return x;
40fb9820
L
1763}
1764
73053c1f
JB
1765static INLINE i386_operand_type
1766operand_type_and_not (i386_operand_type x, i386_operand_type y)
1767{
1768 switch (ARRAY_SIZE (x.array))
1769 {
1770 case 3:
1771 x.array [2] &= ~y.array [2];
1772 /* Fall through. */
1773 case 2:
1774 x.array [1] &= ~y.array [1];
1775 /* Fall through. */
1776 case 1:
1777 x.array [0] &= ~y.array [0];
1778 break;
1779 default:
1780 abort ();
1781 }
1782 return x;
1783}
1784
c6fb90c8
L
1785static INLINE i386_operand_type
1786operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1787{
c6fb90c8 1788 switch (ARRAY_SIZE (x.array))
40fb9820 1789 {
c6fb90c8
L
1790 case 3:
1791 x.array [2] |= y.array [2];
1a0670f3 1792 /* Fall through. */
c6fb90c8
L
1793 case 2:
1794 x.array [1] |= y.array [1];
1a0670f3 1795 /* Fall through. */
c6fb90c8
L
1796 case 1:
1797 x.array [0] |= y.array [0];
40fb9820
L
1798 break;
1799 default:
1800 abort ();
1801 }
c6fb90c8
L
1802 return x;
1803}
40fb9820 1804
c6fb90c8
L
1805static INLINE i386_operand_type
1806operand_type_xor (i386_operand_type x, i386_operand_type y)
1807{
1808 switch (ARRAY_SIZE (x.array))
1809 {
1810 case 3:
1811 x.array [2] ^= y.array [2];
1a0670f3 1812 /* Fall through. */
c6fb90c8
L
1813 case 2:
1814 x.array [1] ^= y.array [1];
1a0670f3 1815 /* Fall through. */
c6fb90c8
L
1816 case 1:
1817 x.array [0] ^= y.array [0];
1818 break;
1819 default:
1820 abort ();
1821 }
40fb9820
L
1822 return x;
1823}
1824
1825static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1826static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1827static const i386_operand_type control = OPERAND_TYPE_CONTROL;
65da13b5
L
1828static const i386_operand_type inoutportreg
1829 = OPERAND_TYPE_INOUTPORTREG;
40fb9820
L
1830static const i386_operand_type reg16_inoutportreg
1831 = OPERAND_TYPE_REG16_INOUTPORTREG;
1832static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1833static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1834static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1835static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1836static const i386_operand_type anydisp
1837 = OPERAND_TYPE_ANYDISP;
40fb9820 1838static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 1839static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1840static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1841static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1842static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1843static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1844static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1845static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1846static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1847static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1848static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
a683cc34 1849static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
40fb9820
L
1850
1851enum operand_type
1852{
1853 reg,
40fb9820
L
1854 imm,
1855 disp,
1856 anymem
1857};
1858
c6fb90c8 1859static INLINE int
40fb9820
L
1860operand_type_check (i386_operand_type t, enum operand_type c)
1861{
1862 switch (c)
1863 {
1864 case reg:
dc821c5f 1865 return t.bitfield.reg;
40fb9820 1866
40fb9820
L
1867 case imm:
1868 return (t.bitfield.imm8
1869 || t.bitfield.imm8s
1870 || t.bitfield.imm16
1871 || t.bitfield.imm32
1872 || t.bitfield.imm32s
1873 || t.bitfield.imm64);
1874
1875 case disp:
1876 return (t.bitfield.disp8
1877 || t.bitfield.disp16
1878 || t.bitfield.disp32
1879 || t.bitfield.disp32s
1880 || t.bitfield.disp64);
1881
1882 case anymem:
1883 return (t.bitfield.disp8
1884 || t.bitfield.disp16
1885 || t.bitfield.disp32
1886 || t.bitfield.disp32s
1887 || t.bitfield.disp64
1888 || t.bitfield.baseindex);
1889
1890 default:
1891 abort ();
1892 }
2cfe26b6
AM
1893
1894 return 0;
40fb9820
L
1895}
1896
ca0d63fe 1897/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit on
5c07affc
L
1898 operand J for instruction template T. */
1899
1900static INLINE int
d3ce72d0 1901match_reg_size (const insn_template *t, unsigned int j)
5c07affc
L
1902{
1903 return !((i.types[j].bitfield.byte
1904 && !t->operand_types[j].bitfield.byte)
1905 || (i.types[j].bitfield.word
1906 && !t->operand_types[j].bitfield.word)
1907 || (i.types[j].bitfield.dword
1908 && !t->operand_types[j].bitfield.dword)
1909 || (i.types[j].bitfield.qword
ca0d63fe
JB
1910 && !t->operand_types[j].bitfield.qword)
1911 || (i.types[j].bitfield.tbyte
1912 && !t->operand_types[j].bitfield.tbyte));
5c07affc
L
1913}
1914
1b54b8d7
JB
1915/* Return 1 if there is no conflict in SIMD register on
1916 operand J for instruction template T. */
1917
1918static INLINE int
1919match_simd_size (const insn_template *t, unsigned int j)
1920{
1921 return !((i.types[j].bitfield.xmmword
1922 && !t->operand_types[j].bitfield.xmmword)
1923 || (i.types[j].bitfield.ymmword
1924 && !t->operand_types[j].bitfield.ymmword)
1925 || (i.types[j].bitfield.zmmword
1926 && !t->operand_types[j].bitfield.zmmword));
1927}
1928
5c07affc
L
1929/* Return 1 if there is no conflict in any size on operand J for
1930 instruction template T. */
1931
1932static INLINE int
d3ce72d0 1933match_mem_size (const insn_template *t, unsigned int j)
5c07affc
L
1934{
1935 return (match_reg_size (t, j)
1936 && !((i.types[j].bitfield.unspecified
af508cb9 1937 && !i.broadcast
5c07affc
L
1938 && !t->operand_types[j].bitfield.unspecified)
1939 || (i.types[j].bitfield.fword
1940 && !t->operand_types[j].bitfield.fword)
1b54b8d7
JB
1941 /* For scalar opcode templates to allow register and memory
1942 operands at the same time, some special casing is needed
d6793fa1
JB
1943 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
1944 down-conversion vpmov*. */
1b54b8d7
JB
1945 || ((t->operand_types[j].bitfield.regsimd
1946 && !t->opcode_modifier.broadcast
d6793fa1
JB
1947 && (t->operand_types[j].bitfield.byte
1948 || t->operand_types[j].bitfield.word
1949 || t->operand_types[j].bitfield.dword
1b54b8d7
JB
1950 || t->operand_types[j].bitfield.qword))
1951 ? (i.types[j].bitfield.xmmword
1952 || i.types[j].bitfield.ymmword
1953 || i.types[j].bitfield.zmmword)
1954 : !match_simd_size(t, j))));
5c07affc
L
1955}
1956
1957/* Return 1 if there is no size conflict on any operands for
1958 instruction template T. */
1959
1960static INLINE int
d3ce72d0 1961operand_size_match (const insn_template *t)
5c07affc
L
1962{
1963 unsigned int j;
1964 int match = 1;
1965
1966 /* Don't check jump instructions. */
1967 if (t->opcode_modifier.jump
1968 || t->opcode_modifier.jumpbyte
1969 || t->opcode_modifier.jumpdword
1970 || t->opcode_modifier.jumpintersegment)
1971 return match;
1972
1973 /* Check memory and accumulator operand size. */
1974 for (j = 0; j < i.operands; j++)
1975 {
1b54b8d7
JB
1976 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
1977 && t->operand_types[j].bitfield.anysize)
5c07affc
L
1978 continue;
1979
1b54b8d7 1980 if (t->operand_types[j].bitfield.reg
dc821c5f 1981 && !match_reg_size (t, j))
5c07affc
L
1982 {
1983 match = 0;
1984 break;
1985 }
1986
1b54b8d7
JB
1987 if (t->operand_types[j].bitfield.regsimd
1988 && !match_simd_size (t, j))
1989 {
1990 match = 0;
1991 break;
1992 }
1993
1994 if (t->operand_types[j].bitfield.acc
1995 && (!match_reg_size (t, j) || !match_simd_size (t, j)))
1996 {
1997 match = 0;
1998 break;
1999 }
2000
5c07affc
L
2001 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
2002 {
2003 match = 0;
2004 break;
2005 }
2006 }
2007
891edac4 2008 if (match)
5c07affc 2009 return match;
38e314eb 2010 else if (!t->opcode_modifier.d)
891edac4
L
2011 {
2012mismatch:
86e026a4 2013 i.error = operand_size_mismatch;
891edac4
L
2014 return 0;
2015 }
5c07affc
L
2016
2017 /* Check reverse. */
9c2799c2 2018 gas_assert (i.operands == 2);
5c07affc
L
2019
2020 match = 1;
2021 for (j = 0; j < 2; j++)
2022 {
dc821c5f
JB
2023 if ((t->operand_types[j].bitfield.reg
2024 || t->operand_types[j].bitfield.acc)
5c07affc 2025 && !match_reg_size (t, j ? 0 : 1))
891edac4 2026 goto mismatch;
5c07affc
L
2027
2028 if (i.types[j].bitfield.mem
2029 && !match_mem_size (t, j ? 0 : 1))
891edac4 2030 goto mismatch;
5c07affc
L
2031 }
2032
2033 return match;
2034}
2035
c6fb90c8 2036static INLINE int
40fb9820
L
2037operand_type_match (i386_operand_type overlap,
2038 i386_operand_type given)
2039{
2040 i386_operand_type temp = overlap;
2041
2042 temp.bitfield.jumpabsolute = 0;
7d5e4556 2043 temp.bitfield.unspecified = 0;
5c07affc
L
2044 temp.bitfield.byte = 0;
2045 temp.bitfield.word = 0;
2046 temp.bitfield.dword = 0;
2047 temp.bitfield.fword = 0;
2048 temp.bitfield.qword = 0;
2049 temp.bitfield.tbyte = 0;
2050 temp.bitfield.xmmword = 0;
c0f3af97 2051 temp.bitfield.ymmword = 0;
43234a1e 2052 temp.bitfield.zmmword = 0;
0dfbf9d7 2053 if (operand_type_all_zero (&temp))
891edac4 2054 goto mismatch;
40fb9820 2055
891edac4
L
2056 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2057 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2058 return 1;
2059
2060mismatch:
a65babc9 2061 i.error = operand_type_mismatch;
891edac4 2062 return 0;
40fb9820
L
2063}
2064
7d5e4556 2065/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2066 unless the expected operand type register overlap is null.
2067 Memory operand size of certain SIMD instructions is also being checked
2068 here. */
40fb9820 2069
c6fb90c8 2070static INLINE int
dc821c5f 2071operand_type_register_match (i386_operand_type g0,
40fb9820 2072 i386_operand_type t0,
40fb9820
L
2073 i386_operand_type g1,
2074 i386_operand_type t1)
2075{
10c17abd
JB
2076 if (!g0.bitfield.reg
2077 && !g0.bitfield.regsimd
2078 && (!operand_type_check (g0, anymem)
2079 || g0.bitfield.unspecified
2080 || !t0.bitfield.regsimd))
40fb9820
L
2081 return 1;
2082
10c17abd
JB
2083 if (!g1.bitfield.reg
2084 && !g1.bitfield.regsimd
2085 && (!operand_type_check (g1, anymem)
2086 || g1.bitfield.unspecified
2087 || !t1.bitfield.regsimd))
40fb9820
L
2088 return 1;
2089
dc821c5f
JB
2090 if (g0.bitfield.byte == g1.bitfield.byte
2091 && g0.bitfield.word == g1.bitfield.word
2092 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2093 && g0.bitfield.qword == g1.bitfield.qword
2094 && g0.bitfield.xmmword == g1.bitfield.xmmword
2095 && g0.bitfield.ymmword == g1.bitfield.ymmword
2096 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2097 return 1;
2098
dc821c5f
JB
2099 if (!(t0.bitfield.byte & t1.bitfield.byte)
2100 && !(t0.bitfield.word & t1.bitfield.word)
2101 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2102 && !(t0.bitfield.qword & t1.bitfield.qword)
2103 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2104 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2105 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2106 return 1;
2107
a65babc9 2108 i.error = register_type_mismatch;
891edac4
L
2109
2110 return 0;
40fb9820
L
2111}
2112
4c692bc7
JB
2113static INLINE unsigned int
2114register_number (const reg_entry *r)
2115{
2116 unsigned int nr = r->reg_num;
2117
2118 if (r->reg_flags & RegRex)
2119 nr += 8;
2120
200cbe0f
L
2121 if (r->reg_flags & RegVRex)
2122 nr += 16;
2123
4c692bc7
JB
2124 return nr;
2125}
2126
252b5132 2127static INLINE unsigned int
40fb9820 2128mode_from_disp_size (i386_operand_type t)
252b5132 2129{
b5014f7a 2130 if (t.bitfield.disp8)
40fb9820
L
2131 return 1;
2132 else if (t.bitfield.disp16
2133 || t.bitfield.disp32
2134 || t.bitfield.disp32s)
2135 return 2;
2136 else
2137 return 0;
252b5132
RH
2138}
2139
2140static INLINE int
65879393 2141fits_in_signed_byte (addressT num)
252b5132 2142{
65879393 2143 return num + 0x80 <= 0xff;
47926f60 2144}
252b5132
RH
2145
2146static INLINE int
65879393 2147fits_in_unsigned_byte (addressT num)
252b5132 2148{
65879393 2149 return num <= 0xff;
47926f60 2150}
252b5132
RH
2151
2152static INLINE int
65879393 2153fits_in_unsigned_word (addressT num)
252b5132 2154{
65879393 2155 return num <= 0xffff;
47926f60 2156}
252b5132
RH
2157
2158static INLINE int
65879393 2159fits_in_signed_word (addressT num)
252b5132 2160{
65879393 2161 return num + 0x8000 <= 0xffff;
47926f60 2162}
2a962e6d 2163
3e73aa7c 2164static INLINE int
65879393 2165fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2166{
2167#ifndef BFD64
2168 return 1;
2169#else
65879393 2170 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2171#endif
2172} /* fits_in_signed_long() */
2a962e6d 2173
3e73aa7c 2174static INLINE int
65879393 2175fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2176{
2177#ifndef BFD64
2178 return 1;
2179#else
65879393 2180 return num <= 0xffffffff;
3e73aa7c
JH
2181#endif
2182} /* fits_in_unsigned_long() */
252b5132 2183
43234a1e 2184static INLINE int
b5014f7a 2185fits_in_disp8 (offsetT num)
43234a1e
L
2186{
2187 int shift = i.memshift;
2188 unsigned int mask;
2189
2190 if (shift == -1)
2191 abort ();
2192
2193 mask = (1 << shift) - 1;
2194
2195 /* Return 0 if NUM isn't properly aligned. */
2196 if ((num & mask))
2197 return 0;
2198
2199 /* Check if NUM will fit in 8bit after shift. */
2200 return fits_in_signed_byte (num >> shift);
2201}
2202
a683cc34
SP
2203static INLINE int
2204fits_in_imm4 (offsetT num)
2205{
2206 return (num & 0xf) == num;
2207}
2208
40fb9820 2209static i386_operand_type
e3bb37b5 2210smallest_imm_type (offsetT num)
252b5132 2211{
40fb9820 2212 i386_operand_type t;
7ab9ffdd 2213
0dfbf9d7 2214 operand_type_set (&t, 0);
40fb9820
L
2215 t.bitfield.imm64 = 1;
2216
2217 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2218 {
2219 /* This code is disabled on the 486 because all the Imm1 forms
2220 in the opcode table are slower on the i486. They're the
2221 versions with the implicitly specified single-position
2222 displacement, which has another syntax if you really want to
2223 use that form. */
40fb9820
L
2224 t.bitfield.imm1 = 1;
2225 t.bitfield.imm8 = 1;
2226 t.bitfield.imm8s = 1;
2227 t.bitfield.imm16 = 1;
2228 t.bitfield.imm32 = 1;
2229 t.bitfield.imm32s = 1;
2230 }
2231 else if (fits_in_signed_byte (num))
2232 {
2233 t.bitfield.imm8 = 1;
2234 t.bitfield.imm8s = 1;
2235 t.bitfield.imm16 = 1;
2236 t.bitfield.imm32 = 1;
2237 t.bitfield.imm32s = 1;
2238 }
2239 else if (fits_in_unsigned_byte (num))
2240 {
2241 t.bitfield.imm8 = 1;
2242 t.bitfield.imm16 = 1;
2243 t.bitfield.imm32 = 1;
2244 t.bitfield.imm32s = 1;
2245 }
2246 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2247 {
2248 t.bitfield.imm16 = 1;
2249 t.bitfield.imm32 = 1;
2250 t.bitfield.imm32s = 1;
2251 }
2252 else if (fits_in_signed_long (num))
2253 {
2254 t.bitfield.imm32 = 1;
2255 t.bitfield.imm32s = 1;
2256 }
2257 else if (fits_in_unsigned_long (num))
2258 t.bitfield.imm32 = 1;
2259
2260 return t;
47926f60 2261}
252b5132 2262
847f7ad4 2263static offsetT
e3bb37b5 2264offset_in_range (offsetT val, int size)
847f7ad4 2265{
508866be 2266 addressT mask;
ba2adb93 2267
847f7ad4
AM
2268 switch (size)
2269 {
508866be
L
2270 case 1: mask = ((addressT) 1 << 8) - 1; break;
2271 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2272 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2273#ifdef BFD64
2274 case 8: mask = ((addressT) 2 << 63) - 1; break;
2275#endif
47926f60 2276 default: abort ();
847f7ad4
AM
2277 }
2278
9de868bf
L
2279#ifdef BFD64
2280 /* If BFD64, sign extend val for 32bit address mode. */
2281 if (flag_code != CODE_64BIT
2282 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2283 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2284 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2285#endif
ba2adb93 2286
47926f60 2287 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2288 {
2289 char buf1[40], buf2[40];
2290
2291 sprint_value (buf1, val);
2292 sprint_value (buf2, val & mask);
2293 as_warn (_("%s shortened to %s"), buf1, buf2);
2294 }
2295 return val & mask;
2296}
2297
c32fa91d
L
2298enum PREFIX_GROUP
2299{
2300 PREFIX_EXIST = 0,
2301 PREFIX_LOCK,
2302 PREFIX_REP,
04ef582a 2303 PREFIX_DS,
c32fa91d
L
2304 PREFIX_OTHER
2305};
2306
2307/* Returns
2308 a. PREFIX_EXIST if attempting to add a prefix where one from the
2309 same class already exists.
2310 b. PREFIX_LOCK if lock prefix is added.
2311 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2312 d. PREFIX_DS if ds prefix is added.
2313 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2314 */
2315
2316static enum PREFIX_GROUP
e3bb37b5 2317add_prefix (unsigned int prefix)
252b5132 2318{
c32fa91d 2319 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2320 unsigned int q;
252b5132 2321
29b0f896
AM
2322 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2323 && flag_code == CODE_64BIT)
b1905489 2324 {
161a04f6
L
2325 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2326 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2327 && (prefix & (REX_R | REX_X | REX_B))))
c32fa91d 2328 ret = PREFIX_EXIST;
b1905489
JB
2329 q = REX_PREFIX;
2330 }
3e73aa7c 2331 else
b1905489
JB
2332 {
2333 switch (prefix)
2334 {
2335 default:
2336 abort ();
2337
b1905489 2338 case DS_PREFIX_OPCODE:
04ef582a
L
2339 ret = PREFIX_DS;
2340 /* Fall through. */
2341 case CS_PREFIX_OPCODE:
b1905489
JB
2342 case ES_PREFIX_OPCODE:
2343 case FS_PREFIX_OPCODE:
2344 case GS_PREFIX_OPCODE:
2345 case SS_PREFIX_OPCODE:
2346 q = SEG_PREFIX;
2347 break;
2348
2349 case REPNE_PREFIX_OPCODE:
2350 case REPE_PREFIX_OPCODE:
c32fa91d
L
2351 q = REP_PREFIX;
2352 ret = PREFIX_REP;
2353 break;
2354
b1905489 2355 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2356 q = LOCK_PREFIX;
2357 ret = PREFIX_LOCK;
b1905489
JB
2358 break;
2359
2360 case FWAIT_OPCODE:
2361 q = WAIT_PREFIX;
2362 break;
2363
2364 case ADDR_PREFIX_OPCODE:
2365 q = ADDR_PREFIX;
2366 break;
2367
2368 case DATA_PREFIX_OPCODE:
2369 q = DATA_PREFIX;
2370 break;
2371 }
2372 if (i.prefix[q] != 0)
c32fa91d 2373 ret = PREFIX_EXIST;
b1905489 2374 }
252b5132 2375
b1905489 2376 if (ret)
252b5132 2377 {
b1905489
JB
2378 if (!i.prefix[q])
2379 ++i.prefixes;
2380 i.prefix[q] |= prefix;
252b5132 2381 }
b1905489
JB
2382 else
2383 as_bad (_("same type of prefix used twice"));
252b5132 2384
252b5132
RH
2385 return ret;
2386}
2387
2388static void
78f12dd3 2389update_code_flag (int value, int check)
eecb386c 2390{
78f12dd3
L
2391 PRINTF_LIKE ((*as_error));
2392
1e9cc1c2 2393 flag_code = (enum flag_code) value;
40fb9820
L
2394 if (flag_code == CODE_64BIT)
2395 {
2396 cpu_arch_flags.bitfield.cpu64 = 1;
2397 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2398 }
2399 else
2400 {
2401 cpu_arch_flags.bitfield.cpu64 = 0;
2402 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2403 }
2404 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2405 {
78f12dd3
L
2406 if (check)
2407 as_error = as_fatal;
2408 else
2409 as_error = as_bad;
2410 (*as_error) (_("64bit mode not supported on `%s'."),
2411 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2412 }
40fb9820 2413 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2414 {
78f12dd3
L
2415 if (check)
2416 as_error = as_fatal;
2417 else
2418 as_error = as_bad;
2419 (*as_error) (_("32bit mode not supported on `%s'."),
2420 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2421 }
eecb386c
AM
2422 stackop_size = '\0';
2423}
2424
78f12dd3
L
2425static void
2426set_code_flag (int value)
2427{
2428 update_code_flag (value, 0);
2429}
2430
eecb386c 2431static void
e3bb37b5 2432set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2433{
1e9cc1c2 2434 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2435 if (flag_code != CODE_16BIT)
2436 abort ();
2437 cpu_arch_flags.bitfield.cpu64 = 0;
2438 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2439 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2440}
2441
2442static void
e3bb37b5 2443set_intel_syntax (int syntax_flag)
252b5132
RH
2444{
2445 /* Find out if register prefixing is specified. */
2446 int ask_naked_reg = 0;
2447
2448 SKIP_WHITESPACE ();
29b0f896 2449 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2450 {
d02603dc
NC
2451 char *string;
2452 int e = get_symbol_name (&string);
252b5132 2453
47926f60 2454 if (strcmp (string, "prefix") == 0)
252b5132 2455 ask_naked_reg = 1;
47926f60 2456 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2457 ask_naked_reg = -1;
2458 else
d0b47220 2459 as_bad (_("bad argument to syntax directive."));
d02603dc 2460 (void) restore_line_pointer (e);
252b5132
RH
2461 }
2462 demand_empty_rest_of_line ();
c3332e24 2463
252b5132
RH
2464 intel_syntax = syntax_flag;
2465
2466 if (ask_naked_reg == 0)
f86103b7
AM
2467 allow_naked_reg = (intel_syntax
2468 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2469 else
2470 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2471
ee86248c 2472 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2473
e4a3b5a4 2474 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2475 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2476 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2477}
2478
1efbbeb4
L
2479static void
2480set_intel_mnemonic (int mnemonic_flag)
2481{
e1d4d893 2482 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2483}
2484
db51cc60
L
2485static void
2486set_allow_index_reg (int flag)
2487{
2488 allow_index_reg = flag;
2489}
2490
cb19c032 2491static void
7bab8ab5 2492set_check (int what)
cb19c032 2493{
7bab8ab5
JB
2494 enum check_kind *kind;
2495 const char *str;
2496
2497 if (what)
2498 {
2499 kind = &operand_check;
2500 str = "operand";
2501 }
2502 else
2503 {
2504 kind = &sse_check;
2505 str = "sse";
2506 }
2507
cb19c032
L
2508 SKIP_WHITESPACE ();
2509
2510 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2511 {
d02603dc
NC
2512 char *string;
2513 int e = get_symbol_name (&string);
cb19c032
L
2514
2515 if (strcmp (string, "none") == 0)
7bab8ab5 2516 *kind = check_none;
cb19c032 2517 else if (strcmp (string, "warning") == 0)
7bab8ab5 2518 *kind = check_warning;
cb19c032 2519 else if (strcmp (string, "error") == 0)
7bab8ab5 2520 *kind = check_error;
cb19c032 2521 else
7bab8ab5 2522 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2523 (void) restore_line_pointer (e);
cb19c032
L
2524 }
2525 else
7bab8ab5 2526 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2527
2528 demand_empty_rest_of_line ();
2529}
2530
8a9036a4
L
2531static void
2532check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2533 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2534{
2535#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2536 static const char *arch;
2537
2538 /* Intel LIOM is only supported on ELF. */
2539 if (!IS_ELF)
2540 return;
2541
2542 if (!arch)
2543 {
2544 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2545 use default_arch. */
2546 arch = cpu_arch_name;
2547 if (!arch)
2548 arch = default_arch;
2549 }
2550
81486035
L
2551 /* If we are targeting Intel MCU, we must enable it. */
2552 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2553 || new_flag.bitfield.cpuiamcu)
2554 return;
2555
3632d14b 2556 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2557 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2558 || new_flag.bitfield.cpul1om)
8a9036a4 2559 return;
76ba9986 2560
7a9068fe
L
2561 /* If we are targeting Intel K1OM, we must enable it. */
2562 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2563 || new_flag.bitfield.cpuk1om)
2564 return;
2565
8a9036a4
L
2566 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2567#endif
2568}
2569
e413e4e9 2570static void
e3bb37b5 2571set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2572{
47926f60 2573 SKIP_WHITESPACE ();
e413e4e9 2574
29b0f896 2575 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2576 {
d02603dc
NC
2577 char *string;
2578 int e = get_symbol_name (&string);
91d6fa6a 2579 unsigned int j;
40fb9820 2580 i386_cpu_flags flags;
e413e4e9 2581
91d6fa6a 2582 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2583 {
91d6fa6a 2584 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2585 {
91d6fa6a 2586 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2587
5c6af06e
JB
2588 if (*string != '.')
2589 {
91d6fa6a 2590 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2591 cpu_sub_arch_name = NULL;
91d6fa6a 2592 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2593 if (flag_code == CODE_64BIT)
2594 {
2595 cpu_arch_flags.bitfield.cpu64 = 1;
2596 cpu_arch_flags.bitfield.cpuno64 = 0;
2597 }
2598 else
2599 {
2600 cpu_arch_flags.bitfield.cpu64 = 0;
2601 cpu_arch_flags.bitfield.cpuno64 = 1;
2602 }
91d6fa6a
NC
2603 cpu_arch_isa = cpu_arch[j].type;
2604 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2605 if (!cpu_arch_tune_set)
2606 {
2607 cpu_arch_tune = cpu_arch_isa;
2608 cpu_arch_tune_flags = cpu_arch_isa_flags;
2609 }
5c6af06e
JB
2610 break;
2611 }
40fb9820 2612
293f5f65
L
2613 flags = cpu_flags_or (cpu_arch_flags,
2614 cpu_arch[j].flags);
81486035 2615
5b64d091 2616 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2617 {
6305a203
L
2618 if (cpu_sub_arch_name)
2619 {
2620 char *name = cpu_sub_arch_name;
2621 cpu_sub_arch_name = concat (name,
91d6fa6a 2622 cpu_arch[j].name,
1bf57e9f 2623 (const char *) NULL);
6305a203
L
2624 free (name);
2625 }
2626 else
91d6fa6a 2627 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2628 cpu_arch_flags = flags;
a586129e 2629 cpu_arch_isa_flags = flags;
5c6af06e 2630 }
0089dace
L
2631 else
2632 cpu_arch_isa_flags
2633 = cpu_flags_or (cpu_arch_isa_flags,
2634 cpu_arch[j].flags);
d02603dc 2635 (void) restore_line_pointer (e);
5c6af06e
JB
2636 demand_empty_rest_of_line ();
2637 return;
e413e4e9
AM
2638 }
2639 }
293f5f65
L
2640
2641 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2642 {
33eaf5de 2643 /* Disable an ISA extension. */
293f5f65
L
2644 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2645 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2646 {
2647 flags = cpu_flags_and_not (cpu_arch_flags,
2648 cpu_noarch[j].flags);
2649 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2650 {
2651 if (cpu_sub_arch_name)
2652 {
2653 char *name = cpu_sub_arch_name;
2654 cpu_sub_arch_name = concat (name, string,
2655 (const char *) NULL);
2656 free (name);
2657 }
2658 else
2659 cpu_sub_arch_name = xstrdup (string);
2660 cpu_arch_flags = flags;
2661 cpu_arch_isa_flags = flags;
2662 }
2663 (void) restore_line_pointer (e);
2664 demand_empty_rest_of_line ();
2665 return;
2666 }
2667
2668 j = ARRAY_SIZE (cpu_arch);
2669 }
2670
91d6fa6a 2671 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2672 as_bad (_("no such architecture: `%s'"), string);
2673
2674 *input_line_pointer = e;
2675 }
2676 else
2677 as_bad (_("missing cpu architecture"));
2678
fddf5b5b
AM
2679 no_cond_jump_promotion = 0;
2680 if (*input_line_pointer == ','
29b0f896 2681 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2682 {
d02603dc
NC
2683 char *string;
2684 char e;
2685
2686 ++input_line_pointer;
2687 e = get_symbol_name (&string);
fddf5b5b
AM
2688
2689 if (strcmp (string, "nojumps") == 0)
2690 no_cond_jump_promotion = 1;
2691 else if (strcmp (string, "jumps") == 0)
2692 ;
2693 else
2694 as_bad (_("no such architecture modifier: `%s'"), string);
2695
d02603dc 2696 (void) restore_line_pointer (e);
fddf5b5b
AM
2697 }
2698
e413e4e9
AM
2699 demand_empty_rest_of_line ();
2700}
2701
8a9036a4
L
2702enum bfd_architecture
2703i386_arch (void)
2704{
3632d14b 2705 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2706 {
2707 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2708 || flag_code != CODE_64BIT)
2709 as_fatal (_("Intel L1OM is 64bit ELF only"));
2710 return bfd_arch_l1om;
2711 }
7a9068fe
L
2712 else if (cpu_arch_isa == PROCESSOR_K1OM)
2713 {
2714 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2715 || flag_code != CODE_64BIT)
2716 as_fatal (_("Intel K1OM is 64bit ELF only"));
2717 return bfd_arch_k1om;
2718 }
81486035
L
2719 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2720 {
2721 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2722 || flag_code == CODE_64BIT)
2723 as_fatal (_("Intel MCU is 32bit ELF only"));
2724 return bfd_arch_iamcu;
2725 }
8a9036a4
L
2726 else
2727 return bfd_arch_i386;
2728}
2729
b9d79e03 2730unsigned long
7016a5d5 2731i386_mach (void)
b9d79e03 2732{
351f65ca 2733 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2734 {
3632d14b 2735 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2736 {
351f65ca
L
2737 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2738 || default_arch[6] != '\0')
8a9036a4
L
2739 as_fatal (_("Intel L1OM is 64bit ELF only"));
2740 return bfd_mach_l1om;
2741 }
7a9068fe
L
2742 else if (cpu_arch_isa == PROCESSOR_K1OM)
2743 {
2744 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2745 || default_arch[6] != '\0')
2746 as_fatal (_("Intel K1OM is 64bit ELF only"));
2747 return bfd_mach_k1om;
2748 }
351f65ca 2749 else if (default_arch[6] == '\0')
8a9036a4 2750 return bfd_mach_x86_64;
351f65ca
L
2751 else
2752 return bfd_mach_x64_32;
8a9036a4 2753 }
5197d474
L
2754 else if (!strcmp (default_arch, "i386")
2755 || !strcmp (default_arch, "iamcu"))
81486035
L
2756 {
2757 if (cpu_arch_isa == PROCESSOR_IAMCU)
2758 {
2759 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2760 as_fatal (_("Intel MCU is 32bit ELF only"));
2761 return bfd_mach_i386_iamcu;
2762 }
2763 else
2764 return bfd_mach_i386_i386;
2765 }
b9d79e03 2766 else
2b5d6a91 2767 as_fatal (_("unknown architecture"));
b9d79e03 2768}
b9d79e03 2769\f
252b5132 2770void
7016a5d5 2771md_begin (void)
252b5132
RH
2772{
2773 const char *hash_err;
2774
86fa6981
L
2775 /* Support pseudo prefixes like {disp32}. */
2776 lex_type ['{'] = LEX_BEGIN_NAME;
2777
47926f60 2778 /* Initialize op_hash hash table. */
252b5132
RH
2779 op_hash = hash_new ();
2780
2781 {
d3ce72d0 2782 const insn_template *optab;
29b0f896 2783 templates *core_optab;
252b5132 2784
47926f60
KH
2785 /* Setup for loop. */
2786 optab = i386_optab;
add39d23 2787 core_optab = XNEW (templates);
252b5132
RH
2788 core_optab->start = optab;
2789
2790 while (1)
2791 {
2792 ++optab;
2793 if (optab->name == NULL
2794 || strcmp (optab->name, (optab - 1)->name) != 0)
2795 {
2796 /* different name --> ship out current template list;
47926f60 2797 add to hash table; & begin anew. */
252b5132
RH
2798 core_optab->end = optab;
2799 hash_err = hash_insert (op_hash,
2800 (optab - 1)->name,
5a49b8ac 2801 (void *) core_optab);
252b5132
RH
2802 if (hash_err)
2803 {
b37df7c4 2804 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2805 (optab - 1)->name,
2806 hash_err);
2807 }
2808 if (optab->name == NULL)
2809 break;
add39d23 2810 core_optab = XNEW (templates);
252b5132
RH
2811 core_optab->start = optab;
2812 }
2813 }
2814 }
2815
47926f60 2816 /* Initialize reg_hash hash table. */
252b5132
RH
2817 reg_hash = hash_new ();
2818 {
29b0f896 2819 const reg_entry *regtab;
c3fe08fa 2820 unsigned int regtab_size = i386_regtab_size;
252b5132 2821
c3fe08fa 2822 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2823 {
5a49b8ac 2824 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2825 if (hash_err)
b37df7c4 2826 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2827 regtab->reg_name,
2828 hash_err);
252b5132
RH
2829 }
2830 }
2831
47926f60 2832 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2833 {
29b0f896
AM
2834 int c;
2835 char *p;
252b5132
RH
2836
2837 for (c = 0; c < 256; c++)
2838 {
3882b010 2839 if (ISDIGIT (c))
252b5132
RH
2840 {
2841 digit_chars[c] = c;
2842 mnemonic_chars[c] = c;
2843 register_chars[c] = c;
2844 operand_chars[c] = c;
2845 }
3882b010 2846 else if (ISLOWER (c))
252b5132
RH
2847 {
2848 mnemonic_chars[c] = c;
2849 register_chars[c] = c;
2850 operand_chars[c] = c;
2851 }
3882b010 2852 else if (ISUPPER (c))
252b5132 2853 {
3882b010 2854 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2855 register_chars[c] = mnemonic_chars[c];
2856 operand_chars[c] = c;
2857 }
43234a1e 2858 else if (c == '{' || c == '}')
86fa6981
L
2859 {
2860 mnemonic_chars[c] = c;
2861 operand_chars[c] = c;
2862 }
252b5132 2863
3882b010 2864 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2865 identifier_chars[c] = c;
2866 else if (c >= 128)
2867 {
2868 identifier_chars[c] = c;
2869 operand_chars[c] = c;
2870 }
2871 }
2872
2873#ifdef LEX_AT
2874 identifier_chars['@'] = '@';
32137342
NC
2875#endif
2876#ifdef LEX_QM
2877 identifier_chars['?'] = '?';
2878 operand_chars['?'] = '?';
252b5132 2879#endif
252b5132 2880 digit_chars['-'] = '-';
c0f3af97 2881 mnemonic_chars['_'] = '_';
791fe849 2882 mnemonic_chars['-'] = '-';
0003779b 2883 mnemonic_chars['.'] = '.';
252b5132
RH
2884 identifier_chars['_'] = '_';
2885 identifier_chars['.'] = '.';
2886
2887 for (p = operand_special_chars; *p != '\0'; p++)
2888 operand_chars[(unsigned char) *p] = *p;
2889 }
2890
a4447b93
RH
2891 if (flag_code == CODE_64BIT)
2892 {
ca19b261
KT
2893#if defined (OBJ_COFF) && defined (TE_PE)
2894 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2895 ? 32 : 16);
2896#else
a4447b93 2897 x86_dwarf2_return_column = 16;
ca19b261 2898#endif
61ff971f 2899 x86_cie_data_alignment = -8;
a4447b93
RH
2900 }
2901 else
2902 {
2903 x86_dwarf2_return_column = 8;
2904 x86_cie_data_alignment = -4;
2905 }
252b5132
RH
2906}
2907
2908void
e3bb37b5 2909i386_print_statistics (FILE *file)
252b5132
RH
2910{
2911 hash_print_statistics (file, "i386 opcode", op_hash);
2912 hash_print_statistics (file, "i386 register", reg_hash);
2913}
2914\f
252b5132
RH
2915#ifdef DEBUG386
2916
ce8a8b2f 2917/* Debugging routines for md_assemble. */
d3ce72d0 2918static void pte (insn_template *);
40fb9820 2919static void pt (i386_operand_type);
e3bb37b5
L
2920static void pe (expressionS *);
2921static void ps (symbolS *);
252b5132
RH
2922
2923static void
e3bb37b5 2924pi (char *line, i386_insn *x)
252b5132 2925{
09137c09 2926 unsigned int j;
252b5132
RH
2927
2928 fprintf (stdout, "%s: template ", line);
2929 pte (&x->tm);
09f131f2
JH
2930 fprintf (stdout, " address: base %s index %s scale %x\n",
2931 x->base_reg ? x->base_reg->reg_name : "none",
2932 x->index_reg ? x->index_reg->reg_name : "none",
2933 x->log2_scale_factor);
2934 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 2935 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
2936 fprintf (stdout, " sib: base %x index %x scale %x\n",
2937 x->sib.base, x->sib.index, x->sib.scale);
2938 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
2939 (x->rex & REX_W) != 0,
2940 (x->rex & REX_R) != 0,
2941 (x->rex & REX_X) != 0,
2942 (x->rex & REX_B) != 0);
09137c09 2943 for (j = 0; j < x->operands; j++)
252b5132 2944 {
09137c09
SP
2945 fprintf (stdout, " #%d: ", j + 1);
2946 pt (x->types[j]);
252b5132 2947 fprintf (stdout, "\n");
dc821c5f 2948 if (x->types[j].bitfield.reg
09137c09 2949 || x->types[j].bitfield.regmmx
1b54b8d7 2950 || x->types[j].bitfield.regsimd
09137c09
SP
2951 || x->types[j].bitfield.sreg2
2952 || x->types[j].bitfield.sreg3
2953 || x->types[j].bitfield.control
2954 || x->types[j].bitfield.debug
2955 || x->types[j].bitfield.test)
2956 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2957 if (operand_type_check (x->types[j], imm))
2958 pe (x->op[j].imms);
2959 if (operand_type_check (x->types[j], disp))
2960 pe (x->op[j].disps);
252b5132
RH
2961 }
2962}
2963
2964static void
d3ce72d0 2965pte (insn_template *t)
252b5132 2966{
09137c09 2967 unsigned int j;
252b5132 2968 fprintf (stdout, " %d operands ", t->operands);
47926f60 2969 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
2970 if (t->extension_opcode != None)
2971 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 2972 if (t->opcode_modifier.d)
252b5132 2973 fprintf (stdout, "D");
40fb9820 2974 if (t->opcode_modifier.w)
252b5132
RH
2975 fprintf (stdout, "W");
2976 fprintf (stdout, "\n");
09137c09 2977 for (j = 0; j < t->operands; j++)
252b5132 2978 {
09137c09
SP
2979 fprintf (stdout, " #%d type ", j + 1);
2980 pt (t->operand_types[j]);
252b5132
RH
2981 fprintf (stdout, "\n");
2982 }
2983}
2984
2985static void
e3bb37b5 2986pe (expressionS *e)
252b5132 2987{
24eab124 2988 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
2989 fprintf (stdout, " add_number %ld (%lx)\n",
2990 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
2991 if (e->X_add_symbol)
2992 {
2993 fprintf (stdout, " add_symbol ");
2994 ps (e->X_add_symbol);
2995 fprintf (stdout, "\n");
2996 }
2997 if (e->X_op_symbol)
2998 {
2999 fprintf (stdout, " op_symbol ");
3000 ps (e->X_op_symbol);
3001 fprintf (stdout, "\n");
3002 }
3003}
3004
3005static void
e3bb37b5 3006ps (symbolS *s)
252b5132
RH
3007{
3008 fprintf (stdout, "%s type %s%s",
3009 S_GET_NAME (s),
3010 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3011 segment_name (S_GET_SEGMENT (s)));
3012}
3013
7b81dfbb 3014static struct type_name
252b5132 3015 {
40fb9820
L
3016 i386_operand_type mask;
3017 const char *name;
252b5132 3018 }
7b81dfbb 3019const type_names[] =
252b5132 3020{
40fb9820
L
3021 { OPERAND_TYPE_REG8, "r8" },
3022 { OPERAND_TYPE_REG16, "r16" },
3023 { OPERAND_TYPE_REG32, "r32" },
3024 { OPERAND_TYPE_REG64, "r64" },
3025 { OPERAND_TYPE_IMM8, "i8" },
3026 { OPERAND_TYPE_IMM8, "i8s" },
3027 { OPERAND_TYPE_IMM16, "i16" },
3028 { OPERAND_TYPE_IMM32, "i32" },
3029 { OPERAND_TYPE_IMM32S, "i32s" },
3030 { OPERAND_TYPE_IMM64, "i64" },
3031 { OPERAND_TYPE_IMM1, "i1" },
3032 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3033 { OPERAND_TYPE_DISP8, "d8" },
3034 { OPERAND_TYPE_DISP16, "d16" },
3035 { OPERAND_TYPE_DISP32, "d32" },
3036 { OPERAND_TYPE_DISP32S, "d32s" },
3037 { OPERAND_TYPE_DISP64, "d64" },
3038 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3039 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3040 { OPERAND_TYPE_CONTROL, "control reg" },
3041 { OPERAND_TYPE_TEST, "test reg" },
3042 { OPERAND_TYPE_DEBUG, "debug reg" },
3043 { OPERAND_TYPE_FLOATREG, "FReg" },
3044 { OPERAND_TYPE_FLOATACC, "FAcc" },
3045 { OPERAND_TYPE_SREG2, "SReg2" },
3046 { OPERAND_TYPE_SREG3, "SReg3" },
3047 { OPERAND_TYPE_ACC, "Acc" },
3048 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3049 { OPERAND_TYPE_REGMMX, "rMMX" },
3050 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3051 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3052 { OPERAND_TYPE_REGZMM, "rZMM" },
3053 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 3054 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
3055};
3056
3057static void
40fb9820 3058pt (i386_operand_type t)
252b5132 3059{
40fb9820 3060 unsigned int j;
c6fb90c8 3061 i386_operand_type a;
252b5132 3062
40fb9820 3063 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3064 {
3065 a = operand_type_and (t, type_names[j].mask);
0349dc08 3066 if (!operand_type_all_zero (&a))
c6fb90c8
L
3067 fprintf (stdout, "%s, ", type_names[j].name);
3068 }
252b5132
RH
3069 fflush (stdout);
3070}
3071
3072#endif /* DEBUG386 */
3073\f
252b5132 3074static bfd_reloc_code_real_type
3956db08 3075reloc (unsigned int size,
64e74474
AM
3076 int pcrel,
3077 int sign,
3078 bfd_reloc_code_real_type other)
252b5132 3079{
47926f60 3080 if (other != NO_RELOC)
3956db08 3081 {
91d6fa6a 3082 reloc_howto_type *rel;
3956db08
JB
3083
3084 if (size == 8)
3085 switch (other)
3086 {
64e74474
AM
3087 case BFD_RELOC_X86_64_GOT32:
3088 return BFD_RELOC_X86_64_GOT64;
3089 break;
553d1284
L
3090 case BFD_RELOC_X86_64_GOTPLT64:
3091 return BFD_RELOC_X86_64_GOTPLT64;
3092 break;
64e74474
AM
3093 case BFD_RELOC_X86_64_PLTOFF64:
3094 return BFD_RELOC_X86_64_PLTOFF64;
3095 break;
3096 case BFD_RELOC_X86_64_GOTPC32:
3097 other = BFD_RELOC_X86_64_GOTPC64;
3098 break;
3099 case BFD_RELOC_X86_64_GOTPCREL:
3100 other = BFD_RELOC_X86_64_GOTPCREL64;
3101 break;
3102 case BFD_RELOC_X86_64_TPOFF32:
3103 other = BFD_RELOC_X86_64_TPOFF64;
3104 break;
3105 case BFD_RELOC_X86_64_DTPOFF32:
3106 other = BFD_RELOC_X86_64_DTPOFF64;
3107 break;
3108 default:
3109 break;
3956db08 3110 }
e05278af 3111
8ce3d284 3112#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3113 if (other == BFD_RELOC_SIZE32)
3114 {
3115 if (size == 8)
1ab668bf 3116 other = BFD_RELOC_SIZE64;
8fd4256d 3117 if (pcrel)
1ab668bf
AM
3118 {
3119 as_bad (_("there are no pc-relative size relocations"));
3120 return NO_RELOC;
3121 }
8fd4256d 3122 }
8ce3d284 3123#endif
8fd4256d 3124
e05278af 3125 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3126 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3127 sign = -1;
3128
91d6fa6a
NC
3129 rel = bfd_reloc_type_lookup (stdoutput, other);
3130 if (!rel)
3956db08 3131 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3132 else if (size != bfd_get_reloc_size (rel))
3956db08 3133 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3134 bfd_get_reloc_size (rel),
3956db08 3135 size);
91d6fa6a 3136 else if (pcrel && !rel->pc_relative)
3956db08 3137 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3138 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3139 && !sign)
91d6fa6a 3140 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3141 && sign > 0))
3956db08
JB
3142 as_bad (_("relocated field and relocation type differ in signedness"));
3143 else
3144 return other;
3145 return NO_RELOC;
3146 }
252b5132
RH
3147
3148 if (pcrel)
3149 {
3e73aa7c 3150 if (!sign)
3956db08 3151 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3152 switch (size)
3153 {
3154 case 1: return BFD_RELOC_8_PCREL;
3155 case 2: return BFD_RELOC_16_PCREL;
d258b828 3156 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3157 case 8: return BFD_RELOC_64_PCREL;
252b5132 3158 }
3956db08 3159 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3160 }
3161 else
3162 {
3956db08 3163 if (sign > 0)
e5cb08ac 3164 switch (size)
3e73aa7c
JH
3165 {
3166 case 4: return BFD_RELOC_X86_64_32S;
3167 }
3168 else
3169 switch (size)
3170 {
3171 case 1: return BFD_RELOC_8;
3172 case 2: return BFD_RELOC_16;
3173 case 4: return BFD_RELOC_32;
3174 case 8: return BFD_RELOC_64;
3175 }
3956db08
JB
3176 as_bad (_("cannot do %s %u byte relocation"),
3177 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3178 }
3179
0cc9e1d3 3180 return NO_RELOC;
252b5132
RH
3181}
3182
47926f60
KH
3183/* Here we decide which fixups can be adjusted to make them relative to
3184 the beginning of the section instead of the symbol. Basically we need
3185 to make sure that the dynamic relocations are done correctly, so in
3186 some cases we force the original symbol to be used. */
3187
252b5132 3188int
e3bb37b5 3189tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3190{
6d249963 3191#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3192 if (!IS_ELF)
31312f95
AM
3193 return 1;
3194
a161fe53
AM
3195 /* Don't adjust pc-relative references to merge sections in 64-bit
3196 mode. */
3197 if (use_rela_relocations
3198 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3199 && fixP->fx_pcrel)
252b5132 3200 return 0;
31312f95 3201
8d01d9a9
AJ
3202 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3203 and changed later by validate_fix. */
3204 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3205 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3206 return 0;
3207
8fd4256d
L
3208 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3209 for size relocations. */
3210 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3211 || fixP->fx_r_type == BFD_RELOC_SIZE64
3212 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3213 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3214 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3215 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3216 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3217 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3218 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3219 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3220 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3221 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3222 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3223 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3224 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3225 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3226 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3227 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3228 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3229 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3230 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3231 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3232 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3233 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3234 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3235 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3236 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3237 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3238 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3239 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3240 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3241 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3242 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3243 return 0;
31312f95 3244#endif
252b5132
RH
3245 return 1;
3246}
252b5132 3247
b4cac588 3248static int
e3bb37b5 3249intel_float_operand (const char *mnemonic)
252b5132 3250{
9306ca4a
JB
3251 /* Note that the value returned is meaningful only for opcodes with (memory)
3252 operands, hence the code here is free to improperly handle opcodes that
3253 have no operands (for better performance and smaller code). */
3254
3255 if (mnemonic[0] != 'f')
3256 return 0; /* non-math */
3257
3258 switch (mnemonic[1])
3259 {
3260 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3261 the fs segment override prefix not currently handled because no
3262 call path can make opcodes without operands get here */
3263 case 'i':
3264 return 2 /* integer op */;
3265 case 'l':
3266 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3267 return 3; /* fldcw/fldenv */
3268 break;
3269 case 'n':
3270 if (mnemonic[2] != 'o' /* fnop */)
3271 return 3; /* non-waiting control op */
3272 break;
3273 case 'r':
3274 if (mnemonic[2] == 's')
3275 return 3; /* frstor/frstpm */
3276 break;
3277 case 's':
3278 if (mnemonic[2] == 'a')
3279 return 3; /* fsave */
3280 if (mnemonic[2] == 't')
3281 {
3282 switch (mnemonic[3])
3283 {
3284 case 'c': /* fstcw */
3285 case 'd': /* fstdw */
3286 case 'e': /* fstenv */
3287 case 's': /* fsts[gw] */
3288 return 3;
3289 }
3290 }
3291 break;
3292 case 'x':
3293 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3294 return 0; /* fxsave/fxrstor are not really math ops */
3295 break;
3296 }
252b5132 3297
9306ca4a 3298 return 1;
252b5132
RH
3299}
3300
c0f3af97
L
3301/* Build the VEX prefix. */
3302
3303static void
d3ce72d0 3304build_vex_prefix (const insn_template *t)
c0f3af97
L
3305{
3306 unsigned int register_specifier;
3307 unsigned int implied_prefix;
3308 unsigned int vector_length;
3309
3310 /* Check register specifier. */
3311 if (i.vex.register_specifier)
43234a1e
L
3312 {
3313 register_specifier =
3314 ~register_number (i.vex.register_specifier) & 0xf;
3315 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3316 }
c0f3af97
L
3317 else
3318 register_specifier = 0xf;
3319
33eaf5de 3320 /* Use 2-byte VEX prefix by swapping destination and source
fa99fab2 3321 operand. */
86fa6981
L
3322 if (i.vec_encoding != vex_encoding_vex3
3323 && i.dir_encoding == dir_encoding_default
fa99fab2 3324 && i.operands == i.reg_operands
7f399153 3325 && i.tm.opcode_modifier.vexopcode == VEX0F
86fa6981 3326 && i.tm.opcode_modifier.load
fa99fab2
L
3327 && i.rex == REX_B)
3328 {
3329 unsigned int xchg = i.operands - 1;
3330 union i386_op temp_op;
3331 i386_operand_type temp_type;
3332
3333 temp_type = i.types[xchg];
3334 i.types[xchg] = i.types[0];
3335 i.types[0] = temp_type;
3336 temp_op = i.op[xchg];
3337 i.op[xchg] = i.op[0];
3338 i.op[0] = temp_op;
3339
9c2799c2 3340 gas_assert (i.rm.mode == 3);
fa99fab2
L
3341
3342 i.rex = REX_R;
3343 xchg = i.rm.regmem;
3344 i.rm.regmem = i.rm.reg;
3345 i.rm.reg = xchg;
3346
3347 /* Use the next insn. */
3348 i.tm = t[1];
3349 }
3350
539f890d
L
3351 if (i.tm.opcode_modifier.vex == VEXScalar)
3352 vector_length = avxscalar;
10c17abd
JB
3353 else if (i.tm.opcode_modifier.vex == VEX256)
3354 vector_length = 1;
539f890d 3355 else
10c17abd
JB
3356 {
3357 unsigned int op;
3358
3359 vector_length = 0;
3360 for (op = 0; op < t->operands; ++op)
3361 if (t->operand_types[op].bitfield.xmmword
3362 && t->operand_types[op].bitfield.ymmword
3363 && i.types[op].bitfield.ymmword)
3364 {
3365 vector_length = 1;
3366 break;
3367 }
3368 }
c0f3af97
L
3369
3370 switch ((i.tm.base_opcode >> 8) & 0xff)
3371 {
3372 case 0:
3373 implied_prefix = 0;
3374 break;
3375 case DATA_PREFIX_OPCODE:
3376 implied_prefix = 1;
3377 break;
3378 case REPE_PREFIX_OPCODE:
3379 implied_prefix = 2;
3380 break;
3381 case REPNE_PREFIX_OPCODE:
3382 implied_prefix = 3;
3383 break;
3384 default:
3385 abort ();
3386 }
3387
3388 /* Use 2-byte VEX prefix if possible. */
86fa6981
L
3389 if (i.vec_encoding != vex_encoding_vex3
3390 && i.tm.opcode_modifier.vexopcode == VEX0F
04251de0 3391 && i.tm.opcode_modifier.vexw != VEXW1
c0f3af97
L
3392 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3393 {
3394 /* 2-byte VEX prefix. */
3395 unsigned int r;
3396
3397 i.vex.length = 2;
3398 i.vex.bytes[0] = 0xc5;
3399
3400 /* Check the REX.R bit. */
3401 r = (i.rex & REX_R) ? 0 : 1;
3402 i.vex.bytes[1] = (r << 7
3403 | register_specifier << 3
3404 | vector_length << 2
3405 | implied_prefix);
3406 }
3407 else
3408 {
3409 /* 3-byte VEX prefix. */
3410 unsigned int m, w;
3411
f88c9eb0 3412 i.vex.length = 3;
f88c9eb0 3413
7f399153 3414 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3415 {
7f399153
L
3416 case VEX0F:
3417 m = 0x1;
80de6e00 3418 i.vex.bytes[0] = 0xc4;
7f399153
L
3419 break;
3420 case VEX0F38:
3421 m = 0x2;
80de6e00 3422 i.vex.bytes[0] = 0xc4;
7f399153
L
3423 break;
3424 case VEX0F3A:
3425 m = 0x3;
80de6e00 3426 i.vex.bytes[0] = 0xc4;
7f399153
L
3427 break;
3428 case XOP08:
5dd85c99
SP
3429 m = 0x8;
3430 i.vex.bytes[0] = 0x8f;
7f399153
L
3431 break;
3432 case XOP09:
f88c9eb0
SP
3433 m = 0x9;
3434 i.vex.bytes[0] = 0x8f;
7f399153
L
3435 break;
3436 case XOP0A:
f88c9eb0
SP
3437 m = 0xa;
3438 i.vex.bytes[0] = 0x8f;
7f399153
L
3439 break;
3440 default:
3441 abort ();
f88c9eb0 3442 }
c0f3af97 3443
c0f3af97
L
3444 /* The high 3 bits of the second VEX byte are 1's compliment
3445 of RXB bits from REX. */
3446 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3447
3448 /* Check the REX.W bit. */
3449 w = (i.rex & REX_W) ? 1 : 0;
b28d1bda
IT
3450 if (i.tm.opcode_modifier.vexw == VEXW1)
3451 w = 1;
c0f3af97
L
3452
3453 i.vex.bytes[2] = (w << 7
3454 | register_specifier << 3
3455 | vector_length << 2
3456 | implied_prefix);
3457 }
3458}
3459
e771e7c9
JB
3460static INLINE bfd_boolean
3461is_evex_encoding (const insn_template *t)
3462{
3463 return t->opcode_modifier.evex
3464 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3465 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3466}
3467
43234a1e
L
3468/* Build the EVEX prefix. */
3469
3470static void
3471build_evex_prefix (void)
3472{
3473 unsigned int register_specifier;
3474 unsigned int implied_prefix;
3475 unsigned int m, w;
3476 rex_byte vrex_used = 0;
3477
3478 /* Check register specifier. */
3479 if (i.vex.register_specifier)
3480 {
3481 gas_assert ((i.vrex & REX_X) == 0);
3482
3483 register_specifier = i.vex.register_specifier->reg_num;
3484 if ((i.vex.register_specifier->reg_flags & RegRex))
3485 register_specifier += 8;
3486 /* The upper 16 registers are encoded in the fourth byte of the
3487 EVEX prefix. */
3488 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3489 i.vex.bytes[3] = 0x8;
3490 register_specifier = ~register_specifier & 0xf;
3491 }
3492 else
3493 {
3494 register_specifier = 0xf;
3495
3496 /* Encode upper 16 vector index register in the fourth byte of
3497 the EVEX prefix. */
3498 if (!(i.vrex & REX_X))
3499 i.vex.bytes[3] = 0x8;
3500 else
3501 vrex_used |= REX_X;
3502 }
3503
3504 switch ((i.tm.base_opcode >> 8) & 0xff)
3505 {
3506 case 0:
3507 implied_prefix = 0;
3508 break;
3509 case DATA_PREFIX_OPCODE:
3510 implied_prefix = 1;
3511 break;
3512 case REPE_PREFIX_OPCODE:
3513 implied_prefix = 2;
3514 break;
3515 case REPNE_PREFIX_OPCODE:
3516 implied_prefix = 3;
3517 break;
3518 default:
3519 abort ();
3520 }
3521
3522 /* 4 byte EVEX prefix. */
3523 i.vex.length = 4;
3524 i.vex.bytes[0] = 0x62;
3525
3526 /* mmmm bits. */
3527 switch (i.tm.opcode_modifier.vexopcode)
3528 {
3529 case VEX0F:
3530 m = 1;
3531 break;
3532 case VEX0F38:
3533 m = 2;
3534 break;
3535 case VEX0F3A:
3536 m = 3;
3537 break;
3538 default:
3539 abort ();
3540 break;
3541 }
3542
3543 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3544 bits from REX. */
3545 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3546
3547 /* The fifth bit of the second EVEX byte is 1's compliment of the
3548 REX_R bit in VREX. */
3549 if (!(i.vrex & REX_R))
3550 i.vex.bytes[1] |= 0x10;
3551 else
3552 vrex_used |= REX_R;
3553
3554 if ((i.reg_operands + i.imm_operands) == i.operands)
3555 {
3556 /* When all operands are registers, the REX_X bit in REX is not
3557 used. We reuse it to encode the upper 16 registers, which is
3558 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3559 as 1's compliment. */
3560 if ((i.vrex & REX_B))
3561 {
3562 vrex_used |= REX_B;
3563 i.vex.bytes[1] &= ~0x40;
3564 }
3565 }
3566
3567 /* EVEX instructions shouldn't need the REX prefix. */
3568 i.vrex &= ~vrex_used;
3569 gas_assert (i.vrex == 0);
3570
3571 /* Check the REX.W bit. */
3572 w = (i.rex & REX_W) ? 1 : 0;
3573 if (i.tm.opcode_modifier.vexw)
3574 {
3575 if (i.tm.opcode_modifier.vexw == VEXW1)
3576 w = 1;
3577 }
3578 /* If w is not set it means we are dealing with WIG instruction. */
3579 else if (!w)
3580 {
3581 if (evexwig == evexw1)
3582 w = 1;
3583 }
3584
3585 /* Encode the U bit. */
3586 implied_prefix |= 0x4;
3587
3588 /* The third byte of the EVEX prefix. */
3589 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3590
3591 /* The fourth byte of the EVEX prefix. */
3592 /* The zeroing-masking bit. */
3593 if (i.mask && i.mask->zeroing)
3594 i.vex.bytes[3] |= 0x80;
3595
3596 /* Don't always set the broadcast bit if there is no RC. */
3597 if (!i.rounding)
3598 {
3599 /* Encode the vector length. */
3600 unsigned int vec_length;
3601
e771e7c9
JB
3602 if (!i.tm.opcode_modifier.evex
3603 || i.tm.opcode_modifier.evex == EVEXDYN)
3604 {
3605 unsigned int op;
3606
3607 vec_length = 0;
3608 for (op = 0; op < i.tm.operands; ++op)
3609 if (i.tm.operand_types[op].bitfield.xmmword
3610 + i.tm.operand_types[op].bitfield.ymmword
3611 + i.tm.operand_types[op].bitfield.zmmword > 1)
3612 {
3613 if (i.types[op].bitfield.zmmword)
3614 i.tm.opcode_modifier.evex = EVEX512;
3615 else if (i.types[op].bitfield.ymmword)
3616 i.tm.opcode_modifier.evex = EVEX256;
3617 else if (i.types[op].bitfield.xmmword)
3618 i.tm.opcode_modifier.evex = EVEX128;
3619 else
3620 continue;
3621 break;
3622 }
3623 }
3624
43234a1e
L
3625 switch (i.tm.opcode_modifier.evex)
3626 {
3627 case EVEXLIG: /* LL' is ignored */
3628 vec_length = evexlig << 5;
3629 break;
3630 case EVEX128:
3631 vec_length = 0 << 5;
3632 break;
3633 case EVEX256:
3634 vec_length = 1 << 5;
3635 break;
3636 case EVEX512:
3637 vec_length = 2 << 5;
3638 break;
3639 default:
3640 abort ();
3641 break;
3642 }
3643 i.vex.bytes[3] |= vec_length;
3644 /* Encode the broadcast bit. */
3645 if (i.broadcast)
3646 i.vex.bytes[3] |= 0x10;
3647 }
3648 else
3649 {
3650 if (i.rounding->type != saeonly)
3651 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3652 else
d3d3c6db 3653 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3654 }
3655
3656 if (i.mask && i.mask->mask)
3657 i.vex.bytes[3] |= i.mask->mask->reg_num;
3658}
3659
65da13b5
L
3660static void
3661process_immext (void)
3662{
3663 expressionS *exp;
3664
4c692bc7
JB
3665 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3666 && i.operands > 0)
65da13b5 3667 {
4c692bc7
JB
3668 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3669 with an opcode suffix which is coded in the same place as an
3670 8-bit immediate field would be.
3671 Here we check those operands and remove them afterwards. */
65da13b5
L
3672 unsigned int x;
3673
3674 for (x = 0; x < i.operands; x++)
4c692bc7 3675 if (register_number (i.op[x].regs) != x)
65da13b5 3676 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3677 register_prefix, i.op[x].regs->reg_name, x + 1,
3678 i.tm.name);
3679
3680 i.operands = 0;
65da13b5
L
3681 }
3682
9916071f
AP
3683 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3684 {
3685 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3686 suffix which is coded in the same place as an 8-bit immediate
3687 field would be.
3688 Here we check those operands and remove them afterwards. */
3689 unsigned int x;
3690
3691 if (i.operands != 3)
3692 abort();
3693
3694 for (x = 0; x < 2; x++)
3695 if (register_number (i.op[x].regs) != x)
3696 goto bad_register_operand;
3697
3698 /* Check for third operand for mwaitx/monitorx insn. */
3699 if (register_number (i.op[x].regs)
3700 != (x + (i.tm.extension_opcode == 0xfb)))
3701 {
3702bad_register_operand:
3703 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3704 register_prefix, i.op[x].regs->reg_name, x+1,
3705 i.tm.name);
3706 }
3707
3708 i.operands = 0;
3709 }
3710
c0f3af97 3711 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3712 which is coded in the same place as an 8-bit immediate field
3713 would be. Here we fake an 8-bit immediate operand from the
3714 opcode suffix stored in tm.extension_opcode.
3715
c1e679ec 3716 AVX instructions also use this encoding, for some of
c0f3af97 3717 3 argument instructions. */
65da13b5 3718
43234a1e 3719 gas_assert (i.imm_operands <= 1
7ab9ffdd 3720 && (i.operands <= 2
43234a1e 3721 || ((i.tm.opcode_modifier.vex
e771e7c9
JB
3722 || i.tm.opcode_modifier.vexopcode
3723 || is_evex_encoding (&i.tm))
7ab9ffdd 3724 && i.operands <= 4)));
65da13b5
L
3725
3726 exp = &im_expressions[i.imm_operands++];
3727 i.op[i.operands].imms = exp;
3728 i.types[i.operands] = imm8;
3729 i.operands++;
3730 exp->X_op = O_constant;
3731 exp->X_add_number = i.tm.extension_opcode;
3732 i.tm.extension_opcode = None;
3733}
3734
42164a71
L
3735
3736static int
3737check_hle (void)
3738{
3739 switch (i.tm.opcode_modifier.hleprefixok)
3740 {
3741 default:
3742 abort ();
82c2def5 3743 case HLEPrefixNone:
165de32a
L
3744 as_bad (_("invalid instruction `%s' after `%s'"),
3745 i.tm.name, i.hle_prefix);
42164a71 3746 return 0;
82c2def5 3747 case HLEPrefixLock:
42164a71
L
3748 if (i.prefix[LOCK_PREFIX])
3749 return 1;
165de32a 3750 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3751 return 0;
82c2def5 3752 case HLEPrefixAny:
42164a71 3753 return 1;
82c2def5 3754 case HLEPrefixRelease:
42164a71
L
3755 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3756 {
3757 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3758 i.tm.name);
3759 return 0;
3760 }
3761 if (i.mem_operands == 0
3762 || !operand_type_check (i.types[i.operands - 1], anymem))
3763 {
3764 as_bad (_("memory destination needed for instruction `%s'"
3765 " after `xrelease'"), i.tm.name);
3766 return 0;
3767 }
3768 return 1;
3769 }
3770}
3771
b6f8c7c4
L
3772/* Try the shortest encoding by shortening operand size. */
3773
3774static void
3775optimize_encoding (void)
3776{
3777 int j;
3778
3779 if (optimize_for_space
3780 && i.reg_operands == 1
3781 && i.imm_operands == 1
3782 && !i.types[1].bitfield.byte
3783 && i.op[0].imms->X_op == O_constant
3784 && fits_in_imm7 (i.op[0].imms->X_add_number)
3785 && ((i.tm.base_opcode == 0xa8
3786 && i.tm.extension_opcode == None)
3787 || (i.tm.base_opcode == 0xf6
3788 && i.tm.extension_opcode == 0x0)))
3789 {
3790 /* Optimize: -Os:
3791 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3792 */
3793 unsigned int base_regnum = i.op[1].regs->reg_num;
3794 if (flag_code == CODE_64BIT || base_regnum < 4)
3795 {
3796 i.types[1].bitfield.byte = 1;
3797 /* Ignore the suffix. */
3798 i.suffix = 0;
3799 if (base_regnum >= 4
3800 && !(i.op[1].regs->reg_flags & RegRex))
3801 {
3802 /* Handle SP, BP, SI and DI registers. */
3803 if (i.types[1].bitfield.word)
3804 j = 16;
3805 else if (i.types[1].bitfield.dword)
3806 j = 32;
3807 else
3808 j = 48;
3809 i.op[1].regs -= j;
3810 }
3811 }
3812 }
3813 else if (flag_code == CODE_64BIT
d3d50934
L
3814 && ((i.types[1].bitfield.qword
3815 && i.reg_operands == 1
b6f8c7c4
L
3816 && i.imm_operands == 1
3817 && i.op[0].imms->X_op == O_constant
3818 && ((i.tm.base_opcode == 0xb0
3819 && i.tm.extension_opcode == None
3820 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3821 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3822 && (((i.tm.base_opcode == 0x24
3823 || i.tm.base_opcode == 0xa8)
3824 && i.tm.extension_opcode == None)
3825 || (i.tm.base_opcode == 0x80
3826 && i.tm.extension_opcode == 0x4)
3827 || ((i.tm.base_opcode == 0xf6
3828 || i.tm.base_opcode == 0xc6)
3829 && i.tm.extension_opcode == 0x0)))))
d3d50934
L
3830 || (i.types[0].bitfield.qword
3831 && ((i.reg_operands == 2
3832 && i.op[0].regs == i.op[1].regs
3833 && ((i.tm.base_opcode == 0x30
3834 || i.tm.base_opcode == 0x28)
3835 && i.tm.extension_opcode == None))
3836 || (i.reg_operands == 1
3837 && i.operands == 1
3838 && i.tm.base_opcode == 0x30
3839 && i.tm.extension_opcode == None)))))
b6f8c7c4
L
3840 {
3841 /* Optimize: -O:
3842 andq $imm31, %r64 -> andl $imm31, %r32
3843 testq $imm31, %r64 -> testl $imm31, %r32
3844 xorq %r64, %r64 -> xorl %r32, %r32
3845 subq %r64, %r64 -> subl %r32, %r32
3846 movq $imm31, %r64 -> movl $imm31, %r32
3847 movq $imm32, %r64 -> movl $imm32, %r32
3848 */
3849 i.tm.opcode_modifier.norex64 = 1;
3850 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3851 {
3852 /* Handle
3853 movq $imm31, %r64 -> movl $imm31, %r32
3854 movq $imm32, %r64 -> movl $imm32, %r32
3855 */
3856 i.tm.operand_types[0].bitfield.imm32 = 1;
3857 i.tm.operand_types[0].bitfield.imm32s = 0;
3858 i.tm.operand_types[0].bitfield.imm64 = 0;
3859 i.types[0].bitfield.imm32 = 1;
3860 i.types[0].bitfield.imm32s = 0;
3861 i.types[0].bitfield.imm64 = 0;
3862 i.types[1].bitfield.dword = 1;
3863 i.types[1].bitfield.qword = 0;
3864 if (i.tm.base_opcode == 0xc6)
3865 {
3866 /* Handle
3867 movq $imm31, %r64 -> movl $imm31, %r32
3868 */
3869 i.tm.base_opcode = 0xb0;
3870 i.tm.extension_opcode = None;
3871 i.tm.opcode_modifier.shortform = 1;
3872 i.tm.opcode_modifier.modrm = 0;
3873 }
3874 }
3875 }
3876 else if (optimize > 1
3877 && i.reg_operands == 3
3878 && i.op[0].regs == i.op[1].regs
3879 && !i.types[2].bitfield.xmmword
3880 && (i.tm.opcode_modifier.vex
3881 || (!i.mask
3882 && !i.rounding
e771e7c9 3883 && is_evex_encoding (&i.tm)
80c34c38
L
3884 && (i.vec_encoding != vex_encoding_evex
3885 || i.tm.cpu_flags.bitfield.cpuavx512vl
0089dace 3886 || cpu_arch_isa_flags.bitfield.cpuavx512vl)))
b6f8c7c4
L
3887 && ((i.tm.base_opcode == 0x55
3888 || i.tm.base_opcode == 0x6655
3889 || i.tm.base_opcode == 0x66df
3890 || i.tm.base_opcode == 0x57
3891 || i.tm.base_opcode == 0x6657
8305403a
L
3892 || i.tm.base_opcode == 0x66ef
3893 || i.tm.base_opcode == 0x66f8
3894 || i.tm.base_opcode == 0x66f9
3895 || i.tm.base_opcode == 0x66fa
3896 || i.tm.base_opcode == 0x66fb)
b6f8c7c4
L
3897 && i.tm.extension_opcode == None))
3898 {
3899 /* Optimize: -O2:
8305403a
L
3900 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
3901 vpsubq and vpsubw:
b6f8c7c4
L
3902 EVEX VOP %zmmM, %zmmM, %zmmN
3903 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3904 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3905 EVEX VOP %ymmM, %ymmM, %ymmN
3906 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3907 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3908 VEX VOP %ymmM, %ymmM, %ymmN
3909 -> VEX VOP %xmmM, %xmmM, %xmmN
3910 VOP, one of vpandn and vpxor:
3911 VEX VOP %ymmM, %ymmM, %ymmN
3912 -> VEX VOP %xmmM, %xmmM, %xmmN
3913 VOP, one of vpandnd and vpandnq:
3914 EVEX VOP %zmmM, %zmmM, %zmmN
3915 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3916 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3917 EVEX VOP %ymmM, %ymmM, %ymmN
3918 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3919 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3920 VOP, one of vpxord and vpxorq:
3921 EVEX VOP %zmmM, %zmmM, %zmmN
3922 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3923 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3924 EVEX VOP %ymmM, %ymmM, %ymmN
3925 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3926 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3927 */
e771e7c9 3928 if (is_evex_encoding (&i.tm))
b6f8c7c4 3929 {
0089dace 3930 if (i.vec_encoding == vex_encoding_evex)
b6f8c7c4
L
3931 i.tm.opcode_modifier.evex = EVEX128;
3932 else
3933 {
3934 i.tm.opcode_modifier.vex = VEX128;
3935 i.tm.opcode_modifier.vexw = VEXW0;
3936 i.tm.opcode_modifier.evex = 0;
3937 }
3938 }
3939 else
3940 i.tm.opcode_modifier.vex = VEX128;
3941
3942 if (i.tm.opcode_modifier.vex)
3943 for (j = 0; j < 3; j++)
3944 {
3945 i.types[j].bitfield.xmmword = 1;
3946 i.types[j].bitfield.ymmword = 0;
3947 }
3948 }
3949}
3950
252b5132
RH
3951/* This is the guts of the machine-dependent assembler. LINE points to a
3952 machine dependent instruction. This function is supposed to emit
3953 the frags/bytes it assembles to. */
3954
3955void
65da13b5 3956md_assemble (char *line)
252b5132 3957{
40fb9820 3958 unsigned int j;
83b16ac6 3959 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 3960 const insn_template *t;
252b5132 3961
47926f60 3962 /* Initialize globals. */
252b5132
RH
3963 memset (&i, '\0', sizeof (i));
3964 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 3965 i.reloc[j] = NO_RELOC;
252b5132
RH
3966 memset (disp_expressions, '\0', sizeof (disp_expressions));
3967 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 3968 save_stack_p = save_stack;
252b5132
RH
3969
3970 /* First parse an instruction mnemonic & call i386_operand for the operands.
3971 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 3972 start of a (possibly prefixed) mnemonic. */
252b5132 3973
29b0f896
AM
3974 line = parse_insn (line, mnemonic);
3975 if (line == NULL)
3976 return;
83b16ac6 3977 mnem_suffix = i.suffix;
252b5132 3978
29b0f896 3979 line = parse_operands (line, mnemonic);
ee86248c 3980 this_operand = -1;
8325cc63
JB
3981 xfree (i.memop1_string);
3982 i.memop1_string = NULL;
29b0f896
AM
3983 if (line == NULL)
3984 return;
252b5132 3985
29b0f896
AM
3986 /* Now we've parsed the mnemonic into a set of templates, and have the
3987 operands at hand. */
3988
3989 /* All intel opcodes have reversed operands except for "bound" and
3990 "enter". We also don't reverse intersegment "jmp" and "call"
3991 instructions with 2 immediate operands so that the immediate segment
050dfa73 3992 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
3993 if (intel_syntax
3994 && i.operands > 1
29b0f896 3995 && (strcmp (mnemonic, "bound") != 0)
30123838 3996 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
3997 && !(operand_type_check (i.types[0], imm)
3998 && operand_type_check (i.types[1], imm)))
29b0f896
AM
3999 swap_operands ();
4000
ec56d5c0
JB
4001 /* The order of the immediates should be reversed
4002 for 2 immediates extrq and insertq instructions */
4003 if (i.imm_operands == 2
4004 && (strcmp (mnemonic, "extrq") == 0
4005 || strcmp (mnemonic, "insertq") == 0))
4006 swap_2_operands (0, 1);
4007
29b0f896
AM
4008 if (i.imm_operands)
4009 optimize_imm ();
4010
b300c311
L
4011 /* Don't optimize displacement for movabs since it only takes 64bit
4012 displacement. */
4013 if (i.disp_operands
a501d77e 4014 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4015 && (flag_code != CODE_64BIT
4016 || strcmp (mnemonic, "movabs") != 0))
4017 optimize_disp ();
29b0f896
AM
4018
4019 /* Next, we find a template that matches the given insn,
4020 making sure the overlap of the given operands types is consistent
4021 with the template operand types. */
252b5132 4022
83b16ac6 4023 if (!(t = match_template (mnem_suffix)))
29b0f896 4024 return;
252b5132 4025
7bab8ab5 4026 if (sse_check != check_none
81f8a913 4027 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4028 && !i.tm.cpu_flags.bitfield.cpuavx
daf50ae7
L
4029 && (i.tm.cpu_flags.bitfield.cpusse
4030 || i.tm.cpu_flags.bitfield.cpusse2
4031 || i.tm.cpu_flags.bitfield.cpusse3
4032 || i.tm.cpu_flags.bitfield.cpussse3
4033 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e
JB
4034 || i.tm.cpu_flags.bitfield.cpusse4_2
4035 || i.tm.cpu_flags.bitfield.cpupclmul
4036 || i.tm.cpu_flags.bitfield.cpuaes
4037 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4038 {
7bab8ab5 4039 (sse_check == check_warning
daf50ae7
L
4040 ? as_warn
4041 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4042 }
4043
321fd21e
L
4044 /* Zap movzx and movsx suffix. The suffix has been set from
4045 "word ptr" or "byte ptr" on the source operand in Intel syntax
4046 or extracted from mnemonic in AT&T syntax. But we'll use
4047 the destination register to choose the suffix for encoding. */
4048 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4049 {
321fd21e
L
4050 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4051 there is no suffix, the default will be byte extension. */
4052 if (i.reg_operands != 2
4053 && !i.suffix
7ab9ffdd 4054 && intel_syntax)
321fd21e
L
4055 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4056
4057 i.suffix = 0;
cd61ebfe 4058 }
24eab124 4059
40fb9820 4060 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4061 if (!add_prefix (FWAIT_OPCODE))
4062 return;
252b5132 4063
d5de92cf
L
4064 /* Check if REP prefix is OK. */
4065 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4066 {
4067 as_bad (_("invalid instruction `%s' after `%s'"),
4068 i.tm.name, i.rep_prefix);
4069 return;
4070 }
4071
c1ba0266
L
4072 /* Check for lock without a lockable instruction. Destination operand
4073 must be memory unless it is xchg (0x86). */
c32fa91d
L
4074 if (i.prefix[LOCK_PREFIX]
4075 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4076 || i.mem_operands == 0
4077 || (i.tm.base_opcode != 0x86
4078 && !operand_type_check (i.types[i.operands - 1], anymem))))
c32fa91d
L
4079 {
4080 as_bad (_("expecting lockable instruction after `lock'"));
4081 return;
4082 }
4083
42164a71 4084 /* Check if HLE prefix is OK. */
165de32a 4085 if (i.hle_prefix && !check_hle ())
42164a71
L
4086 return;
4087
7e8b059b
L
4088 /* Check BND prefix. */
4089 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4090 as_bad (_("expecting valid branch instruction after `bnd'"));
4091
04ef582a 4092 /* Check NOTRACK prefix. */
9fef80d6
L
4093 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4094 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4095
327e8c42
JB
4096 if (i.tm.cpu_flags.bitfield.cpumpx)
4097 {
4098 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4099 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4100 else if (flag_code != CODE_16BIT
4101 ? i.prefix[ADDR_PREFIX]
4102 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4103 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4104 }
7e8b059b
L
4105
4106 /* Insert BND prefix. */
4107 if (add_bnd_prefix
4108 && i.tm.opcode_modifier.bndprefixok
4109 && !i.prefix[BND_PREFIX])
4110 add_prefix (BND_PREFIX_OPCODE);
4111
29b0f896 4112 /* Check string instruction segment overrides. */
40fb9820 4113 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
4114 {
4115 if (!check_string ())
5dd0794d 4116 return;
fc0763e6 4117 i.disp_operands = 0;
29b0f896 4118 }
5dd0794d 4119
b6f8c7c4
L
4120 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4121 optimize_encoding ();
4122
29b0f896
AM
4123 if (!process_suffix ())
4124 return;
e413e4e9 4125
bc0844ae
L
4126 /* Update operand types. */
4127 for (j = 0; j < i.operands; j++)
4128 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4129
29b0f896
AM
4130 /* Make still unresolved immediate matches conform to size of immediate
4131 given in i.suffix. */
4132 if (!finalize_imm ())
4133 return;
252b5132 4134
40fb9820 4135 if (i.types[0].bitfield.imm1)
29b0f896 4136 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4137
9afe6eb8
L
4138 /* We only need to check those implicit registers for instructions
4139 with 3 operands or less. */
4140 if (i.operands <= 3)
4141 for (j = 0; j < i.operands; j++)
4142 if (i.types[j].bitfield.inoutportreg
4143 || i.types[j].bitfield.shiftcount
1b54b8d7 4144 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
9afe6eb8 4145 i.reg_operands--;
40fb9820 4146
c0f3af97
L
4147 /* ImmExt should be processed after SSE2AVX. */
4148 if (!i.tm.opcode_modifier.sse2avx
4149 && i.tm.opcode_modifier.immext)
65da13b5 4150 process_immext ();
252b5132 4151
29b0f896
AM
4152 /* For insns with operands there are more diddles to do to the opcode. */
4153 if (i.operands)
4154 {
4155 if (!process_operands ())
4156 return;
4157 }
40fb9820 4158 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4159 {
4160 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4161 as_warn (_("translating to `%sp'"), i.tm.name);
4162 }
252b5132 4163
e771e7c9
JB
4164 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.vexopcode
4165 || is_evex_encoding (&i.tm))
9e5e5283
L
4166 {
4167 if (flag_code == CODE_16BIT)
4168 {
4169 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4170 i.tm.name);
4171 return;
4172 }
c0f3af97 4173
9e5e5283
L
4174 if (i.tm.opcode_modifier.vex)
4175 build_vex_prefix (t);
4176 else
4177 build_evex_prefix ();
4178 }
43234a1e 4179
5dd85c99
SP
4180 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4181 instructions may define INT_OPCODE as well, so avoid this corner
4182 case for those instructions that use MODRM. */
4183 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4184 && !i.tm.opcode_modifier.modrm
4185 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4186 {
4187 i.tm.base_opcode = INT3_OPCODE;
4188 i.imm_operands = 0;
4189 }
252b5132 4190
40fb9820
L
4191 if ((i.tm.opcode_modifier.jump
4192 || i.tm.opcode_modifier.jumpbyte
4193 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
4194 && i.op[0].disps->X_op == O_constant)
4195 {
4196 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4197 the absolute address given by the constant. Since ix86 jumps and
4198 calls are pc relative, we need to generate a reloc. */
4199 i.op[0].disps->X_add_symbol = &abs_symbol;
4200 i.op[0].disps->X_op = O_symbol;
4201 }
252b5132 4202
40fb9820 4203 if (i.tm.opcode_modifier.rex64)
161a04f6 4204 i.rex |= REX_W;
252b5132 4205
29b0f896
AM
4206 /* For 8 bit registers we need an empty rex prefix. Also if the
4207 instruction already has a prefix, we need to convert old
4208 registers to new ones. */
773f551c 4209
dc821c5f 4210 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
29b0f896 4211 && (i.op[0].regs->reg_flags & RegRex64) != 0)
dc821c5f 4212 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
29b0f896 4213 && (i.op[1].regs->reg_flags & RegRex64) != 0)
dc821c5f
JB
4214 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4215 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
29b0f896
AM
4216 && i.rex != 0))
4217 {
4218 int x;
726c5dcd 4219
29b0f896
AM
4220 i.rex |= REX_OPCODE;
4221 for (x = 0; x < 2; x++)
4222 {
4223 /* Look for 8 bit operand that uses old registers. */
dc821c5f 4224 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
29b0f896 4225 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4226 {
29b0f896
AM
4227 /* In case it is "hi" register, give up. */
4228 if (i.op[x].regs->reg_num > 3)
a540244d 4229 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4230 "instruction requiring REX prefix."),
a540244d 4231 register_prefix, i.op[x].regs->reg_name);
773f551c 4232
29b0f896
AM
4233 /* Otherwise it is equivalent to the extended register.
4234 Since the encoding doesn't change this is merely
4235 cosmetic cleanup for debug output. */
4236
4237 i.op[x].regs = i.op[x].regs + 8;
773f551c 4238 }
29b0f896
AM
4239 }
4240 }
773f551c 4241
6b6b6807
L
4242 if (i.rex == 0 && i.rex_encoding)
4243 {
4244 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4245 that uses legacy register. If it is "hi" register, don't add
4246 the REX_OPCODE byte. */
4247 int x;
4248 for (x = 0; x < 2; x++)
4249 if (i.types[x].bitfield.reg
4250 && i.types[x].bitfield.byte
4251 && (i.op[x].regs->reg_flags & RegRex64) == 0
4252 && i.op[x].regs->reg_num > 3)
4253 {
4254 i.rex_encoding = FALSE;
4255 break;
4256 }
4257
4258 if (i.rex_encoding)
4259 i.rex = REX_OPCODE;
4260 }
4261
7ab9ffdd 4262 if (i.rex != 0)
29b0f896
AM
4263 add_prefix (REX_OPCODE | i.rex);
4264
4265 /* We are ready to output the insn. */
4266 output_insn ();
4267}
4268
4269static char *
e3bb37b5 4270parse_insn (char *line, char *mnemonic)
29b0f896
AM
4271{
4272 char *l = line;
4273 char *token_start = l;
4274 char *mnem_p;
5c6af06e 4275 int supported;
d3ce72d0 4276 const insn_template *t;
b6169b20 4277 char *dot_p = NULL;
29b0f896 4278
29b0f896
AM
4279 while (1)
4280 {
4281 mnem_p = mnemonic;
4282 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4283 {
b6169b20
L
4284 if (*mnem_p == '.')
4285 dot_p = mnem_p;
29b0f896
AM
4286 mnem_p++;
4287 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4288 {
29b0f896
AM
4289 as_bad (_("no such instruction: `%s'"), token_start);
4290 return NULL;
4291 }
4292 l++;
4293 }
4294 if (!is_space_char (*l)
4295 && *l != END_OF_INSN
e44823cf
JB
4296 && (intel_syntax
4297 || (*l != PREFIX_SEPARATOR
4298 && *l != ',')))
29b0f896
AM
4299 {
4300 as_bad (_("invalid character %s in mnemonic"),
4301 output_invalid (*l));
4302 return NULL;
4303 }
4304 if (token_start == l)
4305 {
e44823cf 4306 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4307 as_bad (_("expecting prefix; got nothing"));
4308 else
4309 as_bad (_("expecting mnemonic; got nothing"));
4310 return NULL;
4311 }
45288df1 4312
29b0f896 4313 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4314 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4315
29b0f896
AM
4316 if (*l != END_OF_INSN
4317 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4318 && current_templates
40fb9820 4319 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4320 {
c6fb90c8 4321 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4322 {
4323 as_bad ((flag_code != CODE_64BIT
4324 ? _("`%s' is only supported in 64-bit mode")
4325 : _("`%s' is not supported in 64-bit mode")),
4326 current_templates->start->name);
4327 return NULL;
4328 }
29b0f896
AM
4329 /* If we are in 16-bit mode, do not allow addr16 or data16.
4330 Similarly, in 32-bit mode, do not allow addr32 or data32. */
40fb9820
L
4331 if ((current_templates->start->opcode_modifier.size16
4332 || current_templates->start->opcode_modifier.size32)
29b0f896 4333 && flag_code != CODE_64BIT
40fb9820 4334 && (current_templates->start->opcode_modifier.size32
29b0f896
AM
4335 ^ (flag_code == CODE_16BIT)))
4336 {
4337 as_bad (_("redundant %s prefix"),
4338 current_templates->start->name);
4339 return NULL;
45288df1 4340 }
86fa6981 4341 if (current_templates->start->opcode_length == 0)
29b0f896 4342 {
86fa6981
L
4343 /* Handle pseudo prefixes. */
4344 switch (current_templates->start->base_opcode)
4345 {
4346 case 0x0:
4347 /* {disp8} */
4348 i.disp_encoding = disp_encoding_8bit;
4349 break;
4350 case 0x1:
4351 /* {disp32} */
4352 i.disp_encoding = disp_encoding_32bit;
4353 break;
4354 case 0x2:
4355 /* {load} */
4356 i.dir_encoding = dir_encoding_load;
4357 break;
4358 case 0x3:
4359 /* {store} */
4360 i.dir_encoding = dir_encoding_store;
4361 break;
4362 case 0x4:
4363 /* {vex2} */
4364 i.vec_encoding = vex_encoding_vex2;
4365 break;
4366 case 0x5:
4367 /* {vex3} */
4368 i.vec_encoding = vex_encoding_vex3;
4369 break;
4370 case 0x6:
4371 /* {evex} */
4372 i.vec_encoding = vex_encoding_evex;
4373 break;
6b6b6807
L
4374 case 0x7:
4375 /* {rex} */
4376 i.rex_encoding = TRUE;
4377 break;
b6f8c7c4
L
4378 case 0x8:
4379 /* {nooptimize} */
4380 i.no_optimize = TRUE;
4381 break;
86fa6981
L
4382 default:
4383 abort ();
4384 }
4385 }
4386 else
4387 {
4388 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4389 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4390 {
4e9ac44a
L
4391 case PREFIX_EXIST:
4392 return NULL;
4393 case PREFIX_DS:
d777820b 4394 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4395 i.notrack_prefix = current_templates->start->name;
4396 break;
4397 case PREFIX_REP:
4398 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4399 i.hle_prefix = current_templates->start->name;
4400 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4401 i.bnd_prefix = current_templates->start->name;
4402 else
4403 i.rep_prefix = current_templates->start->name;
4404 break;
4405 default:
4406 break;
86fa6981 4407 }
29b0f896
AM
4408 }
4409 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4410 token_start = ++l;
4411 }
4412 else
4413 break;
4414 }
45288df1 4415
30a55f88 4416 if (!current_templates)
b6169b20 4417 {
f8a5c266
L
4418 /* Check if we should swap operand or force 32bit displacement in
4419 encoding. */
30a55f88 4420 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
86fa6981 4421 i.dir_encoding = dir_encoding_store;
8d63c93e 4422 else if (mnem_p - 3 == dot_p
a501d77e
L
4423 && dot_p[1] == 'd'
4424 && dot_p[2] == '8')
4425 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4426 else if (mnem_p - 4 == dot_p
f8a5c266
L
4427 && dot_p[1] == 'd'
4428 && dot_p[2] == '3'
4429 && dot_p[3] == '2')
a501d77e 4430 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4431 else
4432 goto check_suffix;
4433 mnem_p = dot_p;
4434 *dot_p = '\0';
d3ce72d0 4435 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4436 }
4437
29b0f896
AM
4438 if (!current_templates)
4439 {
b6169b20 4440check_suffix:
29b0f896
AM
4441 /* See if we can get a match by trimming off a suffix. */
4442 switch (mnem_p[-1])
4443 {
4444 case WORD_MNEM_SUFFIX:
9306ca4a
JB
4445 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4446 i.suffix = SHORT_MNEM_SUFFIX;
4447 else
1a0670f3 4448 /* Fall through. */
29b0f896
AM
4449 case BYTE_MNEM_SUFFIX:
4450 case QWORD_MNEM_SUFFIX:
4451 i.suffix = mnem_p[-1];
4452 mnem_p[-1] = '\0';
d3ce72d0
NC
4453 current_templates = (const templates *) hash_find (op_hash,
4454 mnemonic);
29b0f896
AM
4455 break;
4456 case SHORT_MNEM_SUFFIX:
4457 case LONG_MNEM_SUFFIX:
4458 if (!intel_syntax)
4459 {
4460 i.suffix = mnem_p[-1];
4461 mnem_p[-1] = '\0';
d3ce72d0
NC
4462 current_templates = (const templates *) hash_find (op_hash,
4463 mnemonic);
29b0f896
AM
4464 }
4465 break;
252b5132 4466
29b0f896
AM
4467 /* Intel Syntax. */
4468 case 'd':
4469 if (intel_syntax)
4470 {
9306ca4a 4471 if (intel_float_operand (mnemonic) == 1)
29b0f896
AM
4472 i.suffix = SHORT_MNEM_SUFFIX;
4473 else
4474 i.suffix = LONG_MNEM_SUFFIX;
4475 mnem_p[-1] = '\0';
d3ce72d0
NC
4476 current_templates = (const templates *) hash_find (op_hash,
4477 mnemonic);
29b0f896
AM
4478 }
4479 break;
4480 }
4481 if (!current_templates)
4482 {
4483 as_bad (_("no such instruction: `%s'"), token_start);
4484 return NULL;
4485 }
4486 }
252b5132 4487
40fb9820
L
4488 if (current_templates->start->opcode_modifier.jump
4489 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
4490 {
4491 /* Check for a branch hint. We allow ",pt" and ",pn" for
4492 predict taken and predict not taken respectively.
4493 I'm not sure that branch hints actually do anything on loop
4494 and jcxz insns (JumpByte) for current Pentium4 chips. They
4495 may work in the future and it doesn't hurt to accept them
4496 now. */
4497 if (l[0] == ',' && l[1] == 'p')
4498 {
4499 if (l[2] == 't')
4500 {
4501 if (!add_prefix (DS_PREFIX_OPCODE))
4502 return NULL;
4503 l += 3;
4504 }
4505 else if (l[2] == 'n')
4506 {
4507 if (!add_prefix (CS_PREFIX_OPCODE))
4508 return NULL;
4509 l += 3;
4510 }
4511 }
4512 }
4513 /* Any other comma loses. */
4514 if (*l == ',')
4515 {
4516 as_bad (_("invalid character %s in mnemonic"),
4517 output_invalid (*l));
4518 return NULL;
4519 }
252b5132 4520
29b0f896 4521 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4522 supported = 0;
4523 for (t = current_templates->start; t < current_templates->end; ++t)
4524 {
c0f3af97
L
4525 supported |= cpu_flags_match (t);
4526 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4527 {
4528 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4529 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4530
548d0ee6
JB
4531 return l;
4532 }
29b0f896 4533 }
3629bb00 4534
548d0ee6
JB
4535 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4536 as_bad (flag_code == CODE_64BIT
4537 ? _("`%s' is not supported in 64-bit mode")
4538 : _("`%s' is only supported in 64-bit mode"),
4539 current_templates->start->name);
4540 else
4541 as_bad (_("`%s' is not supported on `%s%s'"),
4542 current_templates->start->name,
4543 cpu_arch_name ? cpu_arch_name : default_arch,
4544 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4545
548d0ee6 4546 return NULL;
29b0f896 4547}
252b5132 4548
29b0f896 4549static char *
e3bb37b5 4550parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4551{
4552 char *token_start;
3138f287 4553
29b0f896
AM
4554 /* 1 if operand is pending after ','. */
4555 unsigned int expecting_operand = 0;
252b5132 4556
29b0f896
AM
4557 /* Non-zero if operand parens not balanced. */
4558 unsigned int paren_not_balanced;
4559
4560 while (*l != END_OF_INSN)
4561 {
4562 /* Skip optional white space before operand. */
4563 if (is_space_char (*l))
4564 ++l;
d02603dc 4565 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4566 {
4567 as_bad (_("invalid character %s before operand %d"),
4568 output_invalid (*l),
4569 i.operands + 1);
4570 return NULL;
4571 }
d02603dc 4572 token_start = l; /* After white space. */
29b0f896
AM
4573 paren_not_balanced = 0;
4574 while (paren_not_balanced || *l != ',')
4575 {
4576 if (*l == END_OF_INSN)
4577 {
4578 if (paren_not_balanced)
4579 {
4580 if (!intel_syntax)
4581 as_bad (_("unbalanced parenthesis in operand %d."),
4582 i.operands + 1);
4583 else
4584 as_bad (_("unbalanced brackets in operand %d."),
4585 i.operands + 1);
4586 return NULL;
4587 }
4588 else
4589 break; /* we are done */
4590 }
d02603dc 4591 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4592 {
4593 as_bad (_("invalid character %s in operand %d"),
4594 output_invalid (*l),
4595 i.operands + 1);
4596 return NULL;
4597 }
4598 if (!intel_syntax)
4599 {
4600 if (*l == '(')
4601 ++paren_not_balanced;
4602 if (*l == ')')
4603 --paren_not_balanced;
4604 }
4605 else
4606 {
4607 if (*l == '[')
4608 ++paren_not_balanced;
4609 if (*l == ']')
4610 --paren_not_balanced;
4611 }
4612 l++;
4613 }
4614 if (l != token_start)
4615 { /* Yes, we've read in another operand. */
4616 unsigned int operand_ok;
4617 this_operand = i.operands++;
4618 if (i.operands > MAX_OPERANDS)
4619 {
4620 as_bad (_("spurious operands; (%d operands/instruction max)"),
4621 MAX_OPERANDS);
4622 return NULL;
4623 }
9d46ce34 4624 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4625 /* Now parse operand adding info to 'i' as we go along. */
4626 END_STRING_AND_SAVE (l);
4627
4628 if (intel_syntax)
4629 operand_ok =
4630 i386_intel_operand (token_start,
4631 intel_float_operand (mnemonic));
4632 else
a7619375 4633 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4634
4635 RESTORE_END_STRING (l);
4636 if (!operand_ok)
4637 return NULL;
4638 }
4639 else
4640 {
4641 if (expecting_operand)
4642 {
4643 expecting_operand_after_comma:
4644 as_bad (_("expecting operand after ','; got nothing"));
4645 return NULL;
4646 }
4647 if (*l == ',')
4648 {
4649 as_bad (_("expecting operand before ','; got nothing"));
4650 return NULL;
4651 }
4652 }
7f3f1ea2 4653
29b0f896
AM
4654 /* Now *l must be either ',' or END_OF_INSN. */
4655 if (*l == ',')
4656 {
4657 if (*++l == END_OF_INSN)
4658 {
4659 /* Just skip it, if it's \n complain. */
4660 goto expecting_operand_after_comma;
4661 }
4662 expecting_operand = 1;
4663 }
4664 }
4665 return l;
4666}
7f3f1ea2 4667
050dfa73 4668static void
4d456e3d 4669swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4670{
4671 union i386_op temp_op;
40fb9820 4672 i386_operand_type temp_type;
050dfa73 4673 enum bfd_reloc_code_real temp_reloc;
4eed87de 4674
050dfa73
MM
4675 temp_type = i.types[xchg2];
4676 i.types[xchg2] = i.types[xchg1];
4677 i.types[xchg1] = temp_type;
4678 temp_op = i.op[xchg2];
4679 i.op[xchg2] = i.op[xchg1];
4680 i.op[xchg1] = temp_op;
4681 temp_reloc = i.reloc[xchg2];
4682 i.reloc[xchg2] = i.reloc[xchg1];
4683 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4684
4685 if (i.mask)
4686 {
4687 if (i.mask->operand == xchg1)
4688 i.mask->operand = xchg2;
4689 else if (i.mask->operand == xchg2)
4690 i.mask->operand = xchg1;
4691 }
4692 if (i.broadcast)
4693 {
4694 if (i.broadcast->operand == xchg1)
4695 i.broadcast->operand = xchg2;
4696 else if (i.broadcast->operand == xchg2)
4697 i.broadcast->operand = xchg1;
4698 }
4699 if (i.rounding)
4700 {
4701 if (i.rounding->operand == xchg1)
4702 i.rounding->operand = xchg2;
4703 else if (i.rounding->operand == xchg2)
4704 i.rounding->operand = xchg1;
4705 }
050dfa73
MM
4706}
4707
29b0f896 4708static void
e3bb37b5 4709swap_operands (void)
29b0f896 4710{
b7c61d9a 4711 switch (i.operands)
050dfa73 4712 {
c0f3af97 4713 case 5:
b7c61d9a 4714 case 4:
4d456e3d 4715 swap_2_operands (1, i.operands - 2);
1a0670f3 4716 /* Fall through. */
b7c61d9a
L
4717 case 3:
4718 case 2:
4d456e3d 4719 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
4720 break;
4721 default:
4722 abort ();
29b0f896 4723 }
29b0f896
AM
4724
4725 if (i.mem_operands == 2)
4726 {
4727 const seg_entry *temp_seg;
4728 temp_seg = i.seg[0];
4729 i.seg[0] = i.seg[1];
4730 i.seg[1] = temp_seg;
4731 }
4732}
252b5132 4733
29b0f896
AM
4734/* Try to ensure constant immediates are represented in the smallest
4735 opcode possible. */
4736static void
e3bb37b5 4737optimize_imm (void)
29b0f896
AM
4738{
4739 char guess_suffix = 0;
4740 int op;
252b5132 4741
29b0f896
AM
4742 if (i.suffix)
4743 guess_suffix = i.suffix;
4744 else if (i.reg_operands)
4745 {
4746 /* Figure out a suffix from the last register operand specified.
4747 We can't do this properly yet, ie. excluding InOutPortReg,
4748 but the following works for instructions with immediates.
4749 In any case, we can't set i.suffix yet. */
4750 for (op = i.operands; --op >= 0;)
dc821c5f 4751 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
7ab9ffdd 4752 {
40fb9820
L
4753 guess_suffix = BYTE_MNEM_SUFFIX;
4754 break;
4755 }
dc821c5f 4756 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
252b5132 4757 {
40fb9820
L
4758 guess_suffix = WORD_MNEM_SUFFIX;
4759 break;
4760 }
dc821c5f 4761 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
40fb9820
L
4762 {
4763 guess_suffix = LONG_MNEM_SUFFIX;
4764 break;
4765 }
dc821c5f 4766 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
40fb9820
L
4767 {
4768 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 4769 break;
252b5132 4770 }
29b0f896
AM
4771 }
4772 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4773 guess_suffix = WORD_MNEM_SUFFIX;
4774
4775 for (op = i.operands; --op >= 0;)
40fb9820 4776 if (operand_type_check (i.types[op], imm))
29b0f896
AM
4777 {
4778 switch (i.op[op].imms->X_op)
252b5132 4779 {
29b0f896
AM
4780 case O_constant:
4781 /* If a suffix is given, this operand may be shortened. */
4782 switch (guess_suffix)
252b5132 4783 {
29b0f896 4784 case LONG_MNEM_SUFFIX:
40fb9820
L
4785 i.types[op].bitfield.imm32 = 1;
4786 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4787 break;
4788 case WORD_MNEM_SUFFIX:
40fb9820
L
4789 i.types[op].bitfield.imm16 = 1;
4790 i.types[op].bitfield.imm32 = 1;
4791 i.types[op].bitfield.imm32s = 1;
4792 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4793 break;
4794 case BYTE_MNEM_SUFFIX:
40fb9820
L
4795 i.types[op].bitfield.imm8 = 1;
4796 i.types[op].bitfield.imm8s = 1;
4797 i.types[op].bitfield.imm16 = 1;
4798 i.types[op].bitfield.imm32 = 1;
4799 i.types[op].bitfield.imm32s = 1;
4800 i.types[op].bitfield.imm64 = 1;
29b0f896 4801 break;
252b5132 4802 }
252b5132 4803
29b0f896
AM
4804 /* If this operand is at most 16 bits, convert it
4805 to a signed 16 bit number before trying to see
4806 whether it will fit in an even smaller size.
4807 This allows a 16-bit operand such as $0xffe0 to
4808 be recognised as within Imm8S range. */
40fb9820 4809 if ((i.types[op].bitfield.imm16)
29b0f896 4810 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 4811 {
29b0f896
AM
4812 i.op[op].imms->X_add_number =
4813 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4814 }
a28def75
L
4815#ifdef BFD64
4816 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 4817 if ((i.types[op].bitfield.imm32)
29b0f896
AM
4818 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4819 == 0))
4820 {
4821 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4822 ^ ((offsetT) 1 << 31))
4823 - ((offsetT) 1 << 31));
4824 }
a28def75 4825#endif
40fb9820 4826 i.types[op]
c6fb90c8
L
4827 = operand_type_or (i.types[op],
4828 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 4829
29b0f896
AM
4830 /* We must avoid matching of Imm32 templates when 64bit
4831 only immediate is available. */
4832 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 4833 i.types[op].bitfield.imm32 = 0;
29b0f896 4834 break;
252b5132 4835
29b0f896
AM
4836 case O_absent:
4837 case O_register:
4838 abort ();
4839
4840 /* Symbols and expressions. */
4841 default:
9cd96992
JB
4842 /* Convert symbolic operand to proper sizes for matching, but don't
4843 prevent matching a set of insns that only supports sizes other
4844 than those matching the insn suffix. */
4845 {
40fb9820 4846 i386_operand_type mask, allowed;
d3ce72d0 4847 const insn_template *t;
9cd96992 4848
0dfbf9d7
L
4849 operand_type_set (&mask, 0);
4850 operand_type_set (&allowed, 0);
40fb9820 4851
4eed87de
AM
4852 for (t = current_templates->start;
4853 t < current_templates->end;
4854 ++t)
c6fb90c8
L
4855 allowed = operand_type_or (allowed,
4856 t->operand_types[op]);
9cd96992
JB
4857 switch (guess_suffix)
4858 {
4859 case QWORD_MNEM_SUFFIX:
40fb9820
L
4860 mask.bitfield.imm64 = 1;
4861 mask.bitfield.imm32s = 1;
9cd96992
JB
4862 break;
4863 case LONG_MNEM_SUFFIX:
40fb9820 4864 mask.bitfield.imm32 = 1;
9cd96992
JB
4865 break;
4866 case WORD_MNEM_SUFFIX:
40fb9820 4867 mask.bitfield.imm16 = 1;
9cd96992
JB
4868 break;
4869 case BYTE_MNEM_SUFFIX:
40fb9820 4870 mask.bitfield.imm8 = 1;
9cd96992
JB
4871 break;
4872 default:
9cd96992
JB
4873 break;
4874 }
c6fb90c8 4875 allowed = operand_type_and (mask, allowed);
0dfbf9d7 4876 if (!operand_type_all_zero (&allowed))
c6fb90c8 4877 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 4878 }
29b0f896 4879 break;
252b5132 4880 }
29b0f896
AM
4881 }
4882}
47926f60 4883
29b0f896
AM
4884/* Try to use the smallest displacement type too. */
4885static void
e3bb37b5 4886optimize_disp (void)
29b0f896
AM
4887{
4888 int op;
3e73aa7c 4889
29b0f896 4890 for (op = i.operands; --op >= 0;)
40fb9820 4891 if (operand_type_check (i.types[op], disp))
252b5132 4892 {
b300c311 4893 if (i.op[op].disps->X_op == O_constant)
252b5132 4894 {
91d6fa6a 4895 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 4896
40fb9820 4897 if (i.types[op].bitfield.disp16
91d6fa6a 4898 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
4899 {
4900 /* If this operand is at most 16 bits, convert
4901 to a signed 16 bit number and don't use 64bit
4902 displacement. */
91d6fa6a 4903 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 4904 i.types[op].bitfield.disp64 = 0;
b300c311 4905 }
a28def75
L
4906#ifdef BFD64
4907 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 4908 if (i.types[op].bitfield.disp32
91d6fa6a 4909 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
4910 {
4911 /* If this operand is at most 32 bits, convert
4912 to a signed 32 bit number and don't use 64bit
4913 displacement. */
91d6fa6a
NC
4914 op_disp &= (((offsetT) 2 << 31) - 1);
4915 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 4916 i.types[op].bitfield.disp64 = 0;
b300c311 4917 }
a28def75 4918#endif
91d6fa6a 4919 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 4920 {
40fb9820
L
4921 i.types[op].bitfield.disp8 = 0;
4922 i.types[op].bitfield.disp16 = 0;
4923 i.types[op].bitfield.disp32 = 0;
4924 i.types[op].bitfield.disp32s = 0;
4925 i.types[op].bitfield.disp64 = 0;
b300c311
L
4926 i.op[op].disps = 0;
4927 i.disp_operands--;
4928 }
4929 else if (flag_code == CODE_64BIT)
4930 {
91d6fa6a 4931 if (fits_in_signed_long (op_disp))
28a9d8f5 4932 {
40fb9820
L
4933 i.types[op].bitfield.disp64 = 0;
4934 i.types[op].bitfield.disp32s = 1;
28a9d8f5 4935 }
0e1147d9 4936 if (i.prefix[ADDR_PREFIX]
91d6fa6a 4937 && fits_in_unsigned_long (op_disp))
40fb9820 4938 i.types[op].bitfield.disp32 = 1;
b300c311 4939 }
40fb9820
L
4940 if ((i.types[op].bitfield.disp32
4941 || i.types[op].bitfield.disp32s
4942 || i.types[op].bitfield.disp16)
b5014f7a 4943 && fits_in_disp8 (op_disp))
40fb9820 4944 i.types[op].bitfield.disp8 = 1;
252b5132 4945 }
67a4f2b7
AO
4946 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4947 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4948 {
4949 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4950 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
4951 i.types[op].bitfield.disp8 = 0;
4952 i.types[op].bitfield.disp16 = 0;
4953 i.types[op].bitfield.disp32 = 0;
4954 i.types[op].bitfield.disp32s = 0;
4955 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
4956 }
4957 else
b300c311 4958 /* We only support 64bit displacement on constants. */
40fb9820 4959 i.types[op].bitfield.disp64 = 0;
252b5132 4960 }
29b0f896
AM
4961}
4962
6c30d220
L
4963/* Check if operands are valid for the instruction. */
4964
4965static int
4966check_VecOperands (const insn_template *t)
4967{
43234a1e
L
4968 unsigned int op;
4969
6c30d220
L
4970 /* Without VSIB byte, we can't have a vector register for index. */
4971 if (!t->opcode_modifier.vecsib
4972 && i.index_reg
1b54b8d7
JB
4973 && (i.index_reg->reg_type.bitfield.xmmword
4974 || i.index_reg->reg_type.bitfield.ymmword
4975 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
4976 {
4977 i.error = unsupported_vector_index_register;
4978 return 1;
4979 }
4980
ad8ecc81
MZ
4981 /* Check if default mask is allowed. */
4982 if (t->opcode_modifier.nodefmask
4983 && (!i.mask || i.mask->mask->reg_num == 0))
4984 {
4985 i.error = no_default_mask;
4986 return 1;
4987 }
4988
7bab8ab5
JB
4989 /* For VSIB byte, we need a vector register for index, and all vector
4990 registers must be distinct. */
4991 if (t->opcode_modifier.vecsib)
4992 {
4993 if (!i.index_reg
6c30d220 4994 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 4995 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 4996 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 4997 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 4998 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 4999 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5000 {
5001 i.error = invalid_vsib_address;
5002 return 1;
5003 }
5004
43234a1e
L
5005 gas_assert (i.reg_operands == 2 || i.mask);
5006 if (i.reg_operands == 2 && !i.mask)
5007 {
1b54b8d7
JB
5008 gas_assert (i.types[0].bitfield.regsimd);
5009 gas_assert (i.types[0].bitfield.xmmword
5010 || i.types[0].bitfield.ymmword);
5011 gas_assert (i.types[2].bitfield.regsimd);
5012 gas_assert (i.types[2].bitfield.xmmword
5013 || i.types[2].bitfield.ymmword);
43234a1e
L
5014 if (operand_check == check_none)
5015 return 0;
5016 if (register_number (i.op[0].regs)
5017 != register_number (i.index_reg)
5018 && register_number (i.op[2].regs)
5019 != register_number (i.index_reg)
5020 && register_number (i.op[0].regs)
5021 != register_number (i.op[2].regs))
5022 return 0;
5023 if (operand_check == check_error)
5024 {
5025 i.error = invalid_vector_register_set;
5026 return 1;
5027 }
5028 as_warn (_("mask, index, and destination registers should be distinct"));
5029 }
8444f82a
MZ
5030 else if (i.reg_operands == 1 && i.mask)
5031 {
1b54b8d7
JB
5032 if (i.types[1].bitfield.regsimd
5033 && (i.types[1].bitfield.xmmword
5034 || i.types[1].bitfield.ymmword
5035 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5036 && (register_number (i.op[1].regs)
5037 == register_number (i.index_reg)))
5038 {
5039 if (operand_check == check_error)
5040 {
5041 i.error = invalid_vector_register_set;
5042 return 1;
5043 }
5044 if (operand_check != check_none)
5045 as_warn (_("index and destination registers should be distinct"));
5046 }
5047 }
43234a1e 5048 }
7bab8ab5 5049
43234a1e
L
5050 /* Check if broadcast is supported by the instruction and is applied
5051 to the memory operand. */
5052 if (i.broadcast)
5053 {
8e6e0792 5054 i386_operand_type type, overlap;
43234a1e
L
5055
5056 /* Check if specified broadcast is supported in this instruction,
c39e5b26 5057 and it's applied to memory operand of DWORD or QWORD type. */
32546502 5058 op = i.broadcast->operand;
8e6e0792 5059 if (!t->opcode_modifier.broadcast
32546502 5060 || !i.types[op].bitfield.mem
c39e5b26
JB
5061 || (!i.types[op].bitfield.unspecified
5062 && (t->operand_types[op].bitfield.dword
5063 ? !i.types[op].bitfield.dword
5064 : !i.types[op].bitfield.qword)))
43234a1e
L
5065 {
5066 bad_broadcast:
5067 i.error = unsupported_broadcast;
5068 return 1;
5069 }
8e6e0792
JB
5070
5071 operand_type_set (&type, 0);
c39e5b26 5072 switch ((t->operand_types[op].bitfield.dword ? 4 : 8) * i.broadcast->type)
8e6e0792
JB
5073 {
5074 case 8:
5075 type.bitfield.qword = 1;
5076 break;
5077 case 16:
5078 type.bitfield.xmmword = 1;
5079 break;
5080 case 32:
5081 type.bitfield.ymmword = 1;
5082 break;
5083 case 64:
5084 type.bitfield.zmmword = 1;
5085 break;
5086 default:
5087 goto bad_broadcast;
5088 }
5089
5090 overlap = operand_type_and (type, t->operand_types[op]);
5091 if (operand_type_all_zero (&overlap))
5092 goto bad_broadcast;
5093
5094 if (t->opcode_modifier.checkregsize)
5095 {
5096 unsigned int j;
5097
5098 for (j = 0; j < i.operands; ++j)
5099 {
5100 if (j != op
5101 && !operand_type_register_match(i.types[j],
5102 t->operand_types[j],
5103 type,
5104 t->operand_types[op]))
5105 goto bad_broadcast;
5106 }
5107 }
43234a1e
L
5108 }
5109 /* If broadcast is supported in this instruction, we need to check if
5110 operand of one-element size isn't specified without broadcast. */
5111 else if (t->opcode_modifier.broadcast && i.mem_operands)
5112 {
5113 /* Find memory operand. */
5114 for (op = 0; op < i.operands; op++)
5115 if (operand_type_check (i.types[op], anymem))
5116 break;
5117 gas_assert (op < i.operands);
5118 /* Check size of the memory operand. */
c39e5b26
JB
5119 if (t->operand_types[op].bitfield.dword
5120 ? i.types[op].bitfield.dword
5121 : i.types[op].bitfield.qword)
43234a1e
L
5122 {
5123 i.error = broadcast_needed;
5124 return 1;
5125 }
5126 }
c39e5b26
JB
5127 else
5128 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5129
5130 /* Check if requested masking is supported. */
5131 if (i.mask
5132 && (!t->opcode_modifier.masking
5133 || (i.mask->zeroing
5134 && t->opcode_modifier.masking == MERGING_MASKING)))
5135 {
5136 i.error = unsupported_masking;
5137 return 1;
5138 }
5139
5140 /* Check if masking is applied to dest operand. */
5141 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5142 {
5143 i.error = mask_not_on_destination;
5144 return 1;
5145 }
5146
43234a1e
L
5147 /* Check RC/SAE. */
5148 if (i.rounding)
5149 {
5150 if ((i.rounding->type != saeonly
5151 && !t->opcode_modifier.staticrounding)
5152 || (i.rounding->type == saeonly
5153 && (t->opcode_modifier.staticrounding
5154 || !t->opcode_modifier.sae)))
5155 {
5156 i.error = unsupported_rc_sae;
5157 return 1;
5158 }
5159 /* If the instruction has several immediate operands and one of
5160 them is rounding, the rounding operand should be the last
5161 immediate operand. */
5162 if (i.imm_operands > 1
5163 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5164 {
43234a1e 5165 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5166 return 1;
5167 }
6c30d220
L
5168 }
5169
43234a1e 5170 /* Check vector Disp8 operand. */
b5014f7a
JB
5171 if (t->opcode_modifier.disp8memshift
5172 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5173 {
5174 if (i.broadcast)
c39e5b26 5175 i.memshift = t->operand_types[op].bitfield.dword ? 2 : 3;
43234a1e
L
5176 else
5177 i.memshift = t->opcode_modifier.disp8memshift;
5178
5179 for (op = 0; op < i.operands; op++)
5180 if (operand_type_check (i.types[op], disp)
5181 && i.op[op].disps->X_op == O_constant)
5182 {
b5014f7a 5183 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5184 {
b5014f7a
JB
5185 i.types[op].bitfield.disp8 = 1;
5186 return 0;
43234a1e 5187 }
b5014f7a 5188 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5189 }
5190 }
b5014f7a
JB
5191
5192 i.memshift = 0;
43234a1e 5193
6c30d220
L
5194 return 0;
5195}
5196
43f3e2ee 5197/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5198 operand types. */
5199
5200static int
5201VEX_check_operands (const insn_template *t)
5202{
86fa6981 5203 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5204 {
86fa6981 5205 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 5206 if (!is_evex_encoding (t))
86fa6981
L
5207 {
5208 i.error = unsupported;
5209 return 1;
5210 }
5211 return 0;
43234a1e
L
5212 }
5213
a683cc34 5214 if (!t->opcode_modifier.vex)
86fa6981
L
5215 {
5216 /* This instruction template doesn't have VEX prefix. */
5217 if (i.vec_encoding != vex_encoding_default)
5218 {
5219 i.error = unsupported;
5220 return 1;
5221 }
5222 return 0;
5223 }
a683cc34
SP
5224
5225 /* Only check VEX_Imm4, which must be the first operand. */
5226 if (t->operand_types[0].bitfield.vec_imm4)
5227 {
5228 if (i.op[0].imms->X_op != O_constant
5229 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5230 {
a65babc9 5231 i.error = bad_imm4;
891edac4
L
5232 return 1;
5233 }
a683cc34
SP
5234
5235 /* Turn off Imm8 so that update_imm won't complain. */
5236 i.types[0] = vec_imm4;
5237 }
5238
5239 return 0;
5240}
5241
d3ce72d0 5242static const insn_template *
83b16ac6 5243match_template (char mnem_suffix)
29b0f896
AM
5244{
5245 /* Points to template once we've found it. */
d3ce72d0 5246 const insn_template *t;
40fb9820 5247 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5248 i386_operand_type overlap4;
29b0f896 5249 unsigned int found_reverse_match;
83b16ac6 5250 i386_opcode_modifier suffix_check, mnemsuf_check;
40fb9820 5251 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5252 int addr_prefix_disp;
a5c311ca 5253 unsigned int j;
3629bb00 5254 unsigned int found_cpu_match;
45664ddb 5255 unsigned int check_register;
5614d22c 5256 enum i386_error specific_error = 0;
29b0f896 5257
c0f3af97
L
5258#if MAX_OPERANDS != 5
5259# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5260#endif
5261
29b0f896 5262 found_reverse_match = 0;
539e75ad 5263 addr_prefix_disp = -1;
40fb9820
L
5264
5265 memset (&suffix_check, 0, sizeof (suffix_check));
5266 if (i.suffix == BYTE_MNEM_SUFFIX)
5267 suffix_check.no_bsuf = 1;
5268 else if (i.suffix == WORD_MNEM_SUFFIX)
5269 suffix_check.no_wsuf = 1;
5270 else if (i.suffix == SHORT_MNEM_SUFFIX)
5271 suffix_check.no_ssuf = 1;
5272 else if (i.suffix == LONG_MNEM_SUFFIX)
5273 suffix_check.no_lsuf = 1;
5274 else if (i.suffix == QWORD_MNEM_SUFFIX)
5275 suffix_check.no_qsuf = 1;
5276 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 5277 suffix_check.no_ldsuf = 1;
29b0f896 5278
83b16ac6
JB
5279 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5280 if (intel_syntax)
5281 {
5282 switch (mnem_suffix)
5283 {
5284 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5285 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5286 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5287 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5288 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5289 }
5290 }
5291
01559ecc
L
5292 /* Must have right number of operands. */
5293 i.error = number_of_operands_mismatch;
5294
45aa61fe 5295 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5296 {
539e75ad
L
5297 addr_prefix_disp = -1;
5298
29b0f896
AM
5299 if (i.operands != t->operands)
5300 continue;
5301
50aecf8c 5302 /* Check processor support. */
a65babc9 5303 i.error = unsupported;
c0f3af97
L
5304 found_cpu_match = (cpu_flags_match (t)
5305 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
5306 if (!found_cpu_match)
5307 continue;
5308
e1d4d893 5309 /* Check AT&T mnemonic. */
a65babc9 5310 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5311 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5312 continue;
5313
e92bae62 5314 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5315 i.error = unsupported_syntax;
5c07affc 5316 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5317 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5318 || (intel64 && t->opcode_modifier.amd64)
5319 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5320 continue;
5321
20592a94 5322 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 5323 i.error = invalid_instruction_suffix;
567e4e96
L
5324 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5325 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5326 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5327 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5328 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5329 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5330 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896 5331 continue;
83b16ac6
JB
5332 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5333 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5334 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5335 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5336 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5337 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5338 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5339 continue;
29b0f896 5340
5c07affc 5341 if (!operand_size_match (t))
7d5e4556 5342 continue;
539e75ad 5343
5c07affc
L
5344 for (j = 0; j < MAX_OPERANDS; j++)
5345 operand_types[j] = t->operand_types[j];
5346
45aa61fe
AM
5347 /* In general, don't allow 64-bit operands in 32-bit mode. */
5348 if (i.suffix == QWORD_MNEM_SUFFIX
5349 && flag_code != CODE_64BIT
5350 && (intel_syntax
40fb9820 5351 ? (!t->opcode_modifier.ignoresize
45aa61fe
AM
5352 && !intel_float_operand (t->name))
5353 : intel_float_operand (t->name) != 2)
40fb9820 5354 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5355 && !operand_types[0].bitfield.regsimd)
40fb9820 5356 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5357 && !operand_types[t->operands > 1].bitfield.regsimd))
45aa61fe
AM
5358 && (t->base_opcode != 0x0fc7
5359 || t->extension_opcode != 1 /* cmpxchg8b */))
5360 continue;
5361
192dc9c6
JB
5362 /* In general, don't allow 32-bit operands on pre-386. */
5363 else if (i.suffix == LONG_MNEM_SUFFIX
5364 && !cpu_arch_flags.bitfield.cpui386
5365 && (intel_syntax
5366 ? (!t->opcode_modifier.ignoresize
5367 && !intel_float_operand (t->name))
5368 : intel_float_operand (t->name) != 2)
5369 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5370 && !operand_types[0].bitfield.regsimd)
192dc9c6 5371 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5372 && !operand_types[t->operands > 1].bitfield.regsimd)))
192dc9c6
JB
5373 continue;
5374
29b0f896 5375 /* Do not verify operands when there are none. */
50aecf8c 5376 else
29b0f896 5377 {
c6fb90c8 5378 if (!t->operands)
2dbab7d5
L
5379 /* We've found a match; break out of loop. */
5380 break;
29b0f896 5381 }
252b5132 5382
539e75ad
L
5383 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5384 into Disp32/Disp16/Disp32 operand. */
5385 if (i.prefix[ADDR_PREFIX] != 0)
5386 {
40fb9820 5387 /* There should be only one Disp operand. */
539e75ad
L
5388 switch (flag_code)
5389 {
5390 case CODE_16BIT:
40fb9820
L
5391 for (j = 0; j < MAX_OPERANDS; j++)
5392 {
5393 if (operand_types[j].bitfield.disp16)
5394 {
5395 addr_prefix_disp = j;
5396 operand_types[j].bitfield.disp32 = 1;
5397 operand_types[j].bitfield.disp16 = 0;
5398 break;
5399 }
5400 }
539e75ad
L
5401 break;
5402 case CODE_32BIT:
40fb9820
L
5403 for (j = 0; j < MAX_OPERANDS; j++)
5404 {
5405 if (operand_types[j].bitfield.disp32)
5406 {
5407 addr_prefix_disp = j;
5408 operand_types[j].bitfield.disp32 = 0;
5409 operand_types[j].bitfield.disp16 = 1;
5410 break;
5411 }
5412 }
539e75ad
L
5413 break;
5414 case CODE_64BIT:
40fb9820
L
5415 for (j = 0; j < MAX_OPERANDS; j++)
5416 {
5417 if (operand_types[j].bitfield.disp64)
5418 {
5419 addr_prefix_disp = j;
5420 operand_types[j].bitfield.disp64 = 0;
5421 operand_types[j].bitfield.disp32 = 1;
5422 break;
5423 }
5424 }
539e75ad
L
5425 break;
5426 }
539e75ad
L
5427 }
5428
02a86693
L
5429 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5430 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5431 continue;
5432
56ffb741
L
5433 /* We check register size if needed. */
5434 check_register = t->opcode_modifier.checkregsize;
c6fb90c8 5435 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5436 switch (t->operands)
5437 {
5438 case 1:
40fb9820 5439 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5440 continue;
5441 break;
5442 case 2:
33eaf5de 5443 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5444 only in 32bit mode and we can use opcode 0x90. In 64bit
5445 mode, we can't use 0x90 for xchg %eax, %eax since it should
5446 zero-extend %eax to %rax. */
5447 if (flag_code == CODE_64BIT
5448 && t->base_opcode == 0x90
0dfbf9d7
L
5449 && operand_type_equal (&i.types [0], &acc32)
5450 && operand_type_equal (&i.types [1], &acc32))
8b38ad71 5451 continue;
1212781b
JB
5452 /* xrelease mov %eax, <disp> is another special case. It must not
5453 match the accumulator-only encoding of mov. */
5454 if (flag_code != CODE_64BIT
5455 && i.hle_prefix
5456 && t->base_opcode == 0xa0
5457 && i.types[0].bitfield.acc
5458 && operand_type_check (i.types[1], anymem))
5459 continue;
86fa6981
L
5460 /* If we want store form, we reverse direction of operands. */
5461 if (i.dir_encoding == dir_encoding_store
5462 && t->opcode_modifier.d)
5463 goto check_reverse;
1a0670f3 5464 /* Fall through. */
b6169b20 5465
29b0f896 5466 case 3:
86fa6981
L
5467 /* If we want store form, we skip the current load. */
5468 if (i.dir_encoding == dir_encoding_store
5469 && i.mem_operands == 0
5470 && t->opcode_modifier.load)
fa99fab2 5471 continue;
1a0670f3 5472 /* Fall through. */
f48ff2ae 5473 case 4:
c0f3af97 5474 case 5:
c6fb90c8 5475 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
5476 if (!operand_type_match (overlap0, i.types[0])
5477 || !operand_type_match (overlap1, i.types[1])
45664ddb 5478 || (check_register
dc821c5f 5479 && !operand_type_register_match (i.types[0],
40fb9820 5480 operand_types[0],
dc821c5f 5481 i.types[1],
40fb9820 5482 operand_types[1])))
29b0f896
AM
5483 {
5484 /* Check if other direction is valid ... */
38e314eb 5485 if (!t->opcode_modifier.d)
29b0f896
AM
5486 continue;
5487
b6169b20 5488check_reverse:
29b0f896 5489 /* Try reversing direction of operands. */
c6fb90c8
L
5490 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5491 overlap1 = operand_type_and (i.types[1], operand_types[0]);
40fb9820
L
5492 if (!operand_type_match (overlap0, i.types[0])
5493 || !operand_type_match (overlap1, i.types[1])
45664ddb 5494 || (check_register
dc821c5f 5495 && !operand_type_register_match (i.types[0],
45664ddb 5496 operand_types[1],
45664ddb
L
5497 i.types[1],
5498 operand_types[0])))
29b0f896
AM
5499 {
5500 /* Does not match either direction. */
5501 continue;
5502 }
38e314eb 5503 /* found_reverse_match holds which of D or FloatR
29b0f896 5504 we've found. */
38e314eb
JB
5505 if (!t->opcode_modifier.d)
5506 found_reverse_match = 0;
5507 else if (operand_types[0].bitfield.tbyte)
8a2ed489
L
5508 found_reverse_match = Opcode_FloatD;
5509 else
38e314eb 5510 found_reverse_match = Opcode_D;
40fb9820 5511 if (t->opcode_modifier.floatr)
8a2ed489 5512 found_reverse_match |= Opcode_FloatR;
29b0f896 5513 }
f48ff2ae 5514 else
29b0f896 5515 {
f48ff2ae 5516 /* Found a forward 2 operand match here. */
d1cbb4db
L
5517 switch (t->operands)
5518 {
c0f3af97
L
5519 case 5:
5520 overlap4 = operand_type_and (i.types[4],
5521 operand_types[4]);
1a0670f3 5522 /* Fall through. */
d1cbb4db 5523 case 4:
c6fb90c8
L
5524 overlap3 = operand_type_and (i.types[3],
5525 operand_types[3]);
1a0670f3 5526 /* Fall through. */
d1cbb4db 5527 case 3:
c6fb90c8
L
5528 overlap2 = operand_type_and (i.types[2],
5529 operand_types[2]);
d1cbb4db
L
5530 break;
5531 }
29b0f896 5532
f48ff2ae
L
5533 switch (t->operands)
5534 {
c0f3af97
L
5535 case 5:
5536 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 5537 || !operand_type_register_match (i.types[3],
c0f3af97 5538 operand_types[3],
c0f3af97
L
5539 i.types[4],
5540 operand_types[4]))
5541 continue;
1a0670f3 5542 /* Fall through. */
f48ff2ae 5543 case 4:
40fb9820 5544 if (!operand_type_match (overlap3, i.types[3])
45664ddb 5545 || (check_register
f7768225
JB
5546 && (!operand_type_register_match (i.types[1],
5547 operand_types[1],
5548 i.types[3],
5549 operand_types[3])
5550 || !operand_type_register_match (i.types[2],
5551 operand_types[2],
5552 i.types[3],
5553 operand_types[3]))))
f48ff2ae 5554 continue;
1a0670f3 5555 /* Fall through. */
f48ff2ae
L
5556 case 3:
5557 /* Here we make use of the fact that there are no
23e42951 5558 reverse match 3 operand instructions. */
40fb9820 5559 if (!operand_type_match (overlap2, i.types[2])
45664ddb 5560 || (check_register
23e42951
JB
5561 && (!operand_type_register_match (i.types[0],
5562 operand_types[0],
5563 i.types[2],
5564 operand_types[2])
5565 || !operand_type_register_match (i.types[1],
5566 operand_types[1],
5567 i.types[2],
5568 operand_types[2]))))
f48ff2ae
L
5569 continue;
5570 break;
5571 }
29b0f896 5572 }
f48ff2ae 5573 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
5574 slip through to break. */
5575 }
3629bb00 5576 if (!found_cpu_match)
29b0f896
AM
5577 {
5578 found_reverse_match = 0;
5579 continue;
5580 }
c0f3af97 5581
5614d22c
JB
5582 /* Check if vector and VEX operands are valid. */
5583 if (check_VecOperands (t) || VEX_check_operands (t))
5584 {
5585 specific_error = i.error;
5586 continue;
5587 }
a683cc34 5588
29b0f896
AM
5589 /* We've found a match; break out of loop. */
5590 break;
5591 }
5592
5593 if (t == current_templates->end)
5594 {
5595 /* We found no match. */
a65babc9 5596 const char *err_msg;
5614d22c 5597 switch (specific_error ? specific_error : i.error)
a65babc9
L
5598 {
5599 default:
5600 abort ();
86e026a4 5601 case operand_size_mismatch:
a65babc9
L
5602 err_msg = _("operand size mismatch");
5603 break;
5604 case operand_type_mismatch:
5605 err_msg = _("operand type mismatch");
5606 break;
5607 case register_type_mismatch:
5608 err_msg = _("register type mismatch");
5609 break;
5610 case number_of_operands_mismatch:
5611 err_msg = _("number of operands mismatch");
5612 break;
5613 case invalid_instruction_suffix:
5614 err_msg = _("invalid instruction suffix");
5615 break;
5616 case bad_imm4:
4a2608e3 5617 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 5618 break;
a65babc9
L
5619 case unsupported_with_intel_mnemonic:
5620 err_msg = _("unsupported with Intel mnemonic");
5621 break;
5622 case unsupported_syntax:
5623 err_msg = _("unsupported syntax");
5624 break;
5625 case unsupported:
35262a23 5626 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
5627 current_templates->start->name);
5628 return NULL;
6c30d220
L
5629 case invalid_vsib_address:
5630 err_msg = _("invalid VSIB address");
5631 break;
7bab8ab5
JB
5632 case invalid_vector_register_set:
5633 err_msg = _("mask, index, and destination registers must be distinct");
5634 break;
6c30d220
L
5635 case unsupported_vector_index_register:
5636 err_msg = _("unsupported vector index register");
5637 break;
43234a1e
L
5638 case unsupported_broadcast:
5639 err_msg = _("unsupported broadcast");
5640 break;
5641 case broadcast_not_on_src_operand:
5642 err_msg = _("broadcast not on source memory operand");
5643 break;
5644 case broadcast_needed:
5645 err_msg = _("broadcast is needed for operand of such type");
5646 break;
5647 case unsupported_masking:
5648 err_msg = _("unsupported masking");
5649 break;
5650 case mask_not_on_destination:
5651 err_msg = _("mask not on destination operand");
5652 break;
5653 case no_default_mask:
5654 err_msg = _("default mask isn't allowed");
5655 break;
5656 case unsupported_rc_sae:
5657 err_msg = _("unsupported static rounding/sae");
5658 break;
5659 case rc_sae_operand_not_last_imm:
5660 if (intel_syntax)
5661 err_msg = _("RC/SAE operand must precede immediate operands");
5662 else
5663 err_msg = _("RC/SAE operand must follow immediate operands");
5664 break;
5665 case invalid_register_operand:
5666 err_msg = _("invalid register operand");
5667 break;
a65babc9
L
5668 }
5669 as_bad (_("%s for `%s'"), err_msg,
891edac4 5670 current_templates->start->name);
fa99fab2 5671 return NULL;
29b0f896 5672 }
252b5132 5673
29b0f896
AM
5674 if (!quiet_warnings)
5675 {
5676 if (!intel_syntax
40fb9820
L
5677 && (i.types[0].bitfield.jumpabsolute
5678 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
5679 {
5680 as_warn (_("indirect %s without `*'"), t->name);
5681 }
5682
40fb9820
L
5683 if (t->opcode_modifier.isprefix
5684 && t->opcode_modifier.ignoresize)
29b0f896
AM
5685 {
5686 /* Warn them that a data or address size prefix doesn't
5687 affect assembly of the next line of code. */
5688 as_warn (_("stand-alone `%s' prefix"), t->name);
5689 }
5690 }
5691
5692 /* Copy the template we found. */
5693 i.tm = *t;
539e75ad
L
5694
5695 if (addr_prefix_disp != -1)
5696 i.tm.operand_types[addr_prefix_disp]
5697 = operand_types[addr_prefix_disp];
5698
29b0f896
AM
5699 if (found_reverse_match)
5700 {
5701 /* If we found a reverse match we must alter the opcode
5702 direction bit. found_reverse_match holds bits to change
5703 (different for int & float insns). */
5704
5705 i.tm.base_opcode ^= found_reverse_match;
5706
539e75ad
L
5707 i.tm.operand_types[0] = operand_types[1];
5708 i.tm.operand_types[1] = operand_types[0];
29b0f896
AM
5709 }
5710
fa99fab2 5711 return t;
29b0f896
AM
5712}
5713
5714static int
e3bb37b5 5715check_string (void)
29b0f896 5716{
40fb9820
L
5717 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5718 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
5719 {
5720 if (i.seg[0] != NULL && i.seg[0] != &es)
5721 {
a87af027 5722 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5723 i.tm.name,
a87af027
JB
5724 mem_op + 1,
5725 register_prefix);
29b0f896
AM
5726 return 0;
5727 }
5728 /* There's only ever one segment override allowed per instruction.
5729 This instruction possibly has a legal segment override on the
5730 second operand, so copy the segment to where non-string
5731 instructions store it, allowing common code. */
5732 i.seg[0] = i.seg[1];
5733 }
40fb9820 5734 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
5735 {
5736 if (i.seg[1] != NULL && i.seg[1] != &es)
5737 {
a87af027 5738 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5739 i.tm.name,
a87af027
JB
5740 mem_op + 2,
5741 register_prefix);
29b0f896
AM
5742 return 0;
5743 }
5744 }
5745 return 1;
5746}
5747
5748static int
543613e9 5749process_suffix (void)
29b0f896
AM
5750{
5751 /* If matched instruction specifies an explicit instruction mnemonic
5752 suffix, use it. */
40fb9820
L
5753 if (i.tm.opcode_modifier.size16)
5754 i.suffix = WORD_MNEM_SUFFIX;
5755 else if (i.tm.opcode_modifier.size32)
5756 i.suffix = LONG_MNEM_SUFFIX;
5757 else if (i.tm.opcode_modifier.size64)
5758 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
5759 else if (i.reg_operands)
5760 {
5761 /* If there's no instruction mnemonic suffix we try to invent one
5762 based on register operands. */
5763 if (!i.suffix)
5764 {
5765 /* We take i.suffix from the last register operand specified,
5766 Destination register type is more significant than source
381d071f
L
5767 register type. crc32 in SSE4.2 prefers source register
5768 type. */
5769 if (i.tm.base_opcode == 0xf20f38f1)
5770 {
dc821c5f 5771 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
40fb9820 5772 i.suffix = WORD_MNEM_SUFFIX;
dc821c5f 5773 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
40fb9820 5774 i.suffix = LONG_MNEM_SUFFIX;
dc821c5f 5775 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
40fb9820 5776 i.suffix = QWORD_MNEM_SUFFIX;
381d071f 5777 }
9344ff29 5778 else if (i.tm.base_opcode == 0xf20f38f0)
20592a94 5779 {
dc821c5f 5780 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
20592a94
L
5781 i.suffix = BYTE_MNEM_SUFFIX;
5782 }
381d071f
L
5783
5784 if (!i.suffix)
5785 {
5786 int op;
5787
20592a94
L
5788 if (i.tm.base_opcode == 0xf20f38f1
5789 || i.tm.base_opcode == 0xf20f38f0)
5790 {
5791 /* We have to know the operand size for crc32. */
5792 as_bad (_("ambiguous memory operand size for `%s`"),
5793 i.tm.name);
5794 return 0;
5795 }
5796
381d071f 5797 for (op = i.operands; --op >= 0;)
b76bc5d5
JB
5798 if (!i.tm.operand_types[op].bitfield.inoutportreg
5799 && !i.tm.operand_types[op].bitfield.shiftcount)
381d071f 5800 {
8819ada6
JB
5801 if (!i.types[op].bitfield.reg)
5802 continue;
5803 if (i.types[op].bitfield.byte)
5804 i.suffix = BYTE_MNEM_SUFFIX;
5805 else if (i.types[op].bitfield.word)
5806 i.suffix = WORD_MNEM_SUFFIX;
5807 else if (i.types[op].bitfield.dword)
5808 i.suffix = LONG_MNEM_SUFFIX;
5809 else if (i.types[op].bitfield.qword)
5810 i.suffix = QWORD_MNEM_SUFFIX;
5811 else
5812 continue;
5813 break;
381d071f
L
5814 }
5815 }
29b0f896
AM
5816 }
5817 else if (i.suffix == BYTE_MNEM_SUFFIX)
5818 {
2eb952a4
L
5819 if (intel_syntax
5820 && i.tm.opcode_modifier.ignoresize
5821 && i.tm.opcode_modifier.no_bsuf)
5822 i.suffix = 0;
5823 else if (!check_byte_reg ())
29b0f896
AM
5824 return 0;
5825 }
5826 else if (i.suffix == LONG_MNEM_SUFFIX)
5827 {
2eb952a4
L
5828 if (intel_syntax
5829 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
5830 && i.tm.opcode_modifier.no_lsuf
5831 && !i.tm.opcode_modifier.todword
5832 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
5833 i.suffix = 0;
5834 else if (!check_long_reg ())
29b0f896
AM
5835 return 0;
5836 }
5837 else if (i.suffix == QWORD_MNEM_SUFFIX)
5838 {
955e1e6a
L
5839 if (intel_syntax
5840 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
5841 && i.tm.opcode_modifier.no_qsuf
5842 && !i.tm.opcode_modifier.todword
5843 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
5844 i.suffix = 0;
5845 else if (!check_qword_reg ())
29b0f896
AM
5846 return 0;
5847 }
5848 else if (i.suffix == WORD_MNEM_SUFFIX)
5849 {
2eb952a4
L
5850 if (intel_syntax
5851 && i.tm.opcode_modifier.ignoresize
5852 && i.tm.opcode_modifier.no_wsuf)
5853 i.suffix = 0;
5854 else if (!check_word_reg ())
29b0f896
AM
5855 return 0;
5856 }
40fb9820 5857 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
5858 /* Do nothing if the instruction is going to ignore the prefix. */
5859 ;
5860 else
5861 abort ();
5862 }
40fb9820 5863 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
5864 && !i.suffix
5865 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 5866 && i.tm.opcode_modifier.no_ssuf)
29b0f896
AM
5867 {
5868 i.suffix = stackop_size;
5869 }
9306ca4a
JB
5870 else if (intel_syntax
5871 && !i.suffix
40fb9820
L
5872 && (i.tm.operand_types[0].bitfield.jumpabsolute
5873 || i.tm.opcode_modifier.jumpbyte
5874 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
5875 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5876 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
5877 {
5878 switch (flag_code)
5879 {
5880 case CODE_64BIT:
40fb9820 5881 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
5882 {
5883 i.suffix = QWORD_MNEM_SUFFIX;
5884 break;
5885 }
1a0670f3 5886 /* Fall through. */
9306ca4a 5887 case CODE_32BIT:
40fb9820 5888 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
5889 i.suffix = LONG_MNEM_SUFFIX;
5890 break;
5891 case CODE_16BIT:
40fb9820 5892 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
5893 i.suffix = WORD_MNEM_SUFFIX;
5894 break;
5895 }
5896 }
252b5132 5897
9306ca4a 5898 if (!i.suffix)
29b0f896 5899 {
9306ca4a
JB
5900 if (!intel_syntax)
5901 {
40fb9820 5902 if (i.tm.opcode_modifier.w)
9306ca4a 5903 {
4eed87de
AM
5904 as_bad (_("no instruction mnemonic suffix given and "
5905 "no register operands; can't size instruction"));
9306ca4a
JB
5906 return 0;
5907 }
5908 }
5909 else
5910 {
40fb9820 5911 unsigned int suffixes;
7ab9ffdd 5912
40fb9820
L
5913 suffixes = !i.tm.opcode_modifier.no_bsuf;
5914 if (!i.tm.opcode_modifier.no_wsuf)
5915 suffixes |= 1 << 1;
5916 if (!i.tm.opcode_modifier.no_lsuf)
5917 suffixes |= 1 << 2;
fc4adea1 5918 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
5919 suffixes |= 1 << 3;
5920 if (!i.tm.opcode_modifier.no_ssuf)
5921 suffixes |= 1 << 4;
c2b9da16 5922 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
5923 suffixes |= 1 << 5;
5924
5925 /* There are more than suffix matches. */
5926 if (i.tm.opcode_modifier.w
9306ca4a 5927 || ((suffixes & (suffixes - 1))
40fb9820
L
5928 && !i.tm.opcode_modifier.defaultsize
5929 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
5930 {
5931 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5932 return 0;
5933 }
5934 }
29b0f896 5935 }
252b5132 5936
d2224064
JB
5937 /* Change the opcode based on the operand size given by i.suffix. */
5938 switch (i.suffix)
29b0f896 5939 {
d2224064
JB
5940 /* Size floating point instruction. */
5941 case LONG_MNEM_SUFFIX:
5942 if (i.tm.opcode_modifier.floatmf)
5943 {
5944 i.tm.base_opcode ^= 4;
5945 break;
5946 }
5947 /* fall through */
5948 case WORD_MNEM_SUFFIX:
5949 case QWORD_MNEM_SUFFIX:
29b0f896 5950 /* It's not a byte, select word/dword operation. */
40fb9820 5951 if (i.tm.opcode_modifier.w)
29b0f896 5952 {
40fb9820 5953 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
5954 i.tm.base_opcode |= 8;
5955 else
5956 i.tm.base_opcode |= 1;
5957 }
d2224064
JB
5958 /* fall through */
5959 case SHORT_MNEM_SUFFIX:
29b0f896
AM
5960 /* Now select between word & dword operations via the operand
5961 size prefix, except for instructions that will ignore this
5962 prefix anyway. */
ca61edf2 5963 if (i.tm.opcode_modifier.addrprefixop0)
cb712a9e 5964 {
ca61edf2
L
5965 /* The address size override prefix changes the size of the
5966 first operand. */
40fb9820 5967 if ((flag_code == CODE_32BIT
dc821c5f 5968 && i.op->regs[0].reg_type.bitfield.word)
40fb9820 5969 || (flag_code != CODE_32BIT
dc821c5f 5970 && i.op->regs[0].reg_type.bitfield.dword))
cb712a9e
L
5971 if (!add_prefix (ADDR_PREFIX_OPCODE))
5972 return 0;
5973 }
5974 else if (i.suffix != QWORD_MNEM_SUFFIX
40fb9820
L
5975 && !i.tm.opcode_modifier.ignoresize
5976 && !i.tm.opcode_modifier.floatmf
cb712a9e
L
5977 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5978 || (flag_code == CODE_64BIT
40fb9820 5979 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
5980 {
5981 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 5982
40fb9820 5983 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 5984 prefix = ADDR_PREFIX_OPCODE;
252b5132 5985
29b0f896
AM
5986 if (!add_prefix (prefix))
5987 return 0;
24eab124 5988 }
252b5132 5989
29b0f896
AM
5990 /* Set mode64 for an operand. */
5991 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 5992 && flag_code == CODE_64BIT
d2224064 5993 && !i.tm.opcode_modifier.norex64
46e883c5 5994 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
5995 need rex64. */
5996 && ! (i.operands == 2
5997 && i.tm.base_opcode == 0x90
5998 && i.tm.extension_opcode == None
5999 && operand_type_equal (&i.types [0], &acc64)
6000 && operand_type_equal (&i.types [1], &acc64)))
6001 i.rex |= REX_W;
3e73aa7c 6002
d2224064 6003 break;
29b0f896 6004 }
7ecd2f8b 6005
29b0f896
AM
6006 return 1;
6007}
3e73aa7c 6008
29b0f896 6009static int
543613e9 6010check_byte_reg (void)
29b0f896
AM
6011{
6012 int op;
543613e9 6013
29b0f896
AM
6014 for (op = i.operands; --op >= 0;)
6015 {
dc821c5f
JB
6016 /* Skip non-register operands. */
6017 if (!i.types[op].bitfield.reg)
6018 continue;
6019
29b0f896
AM
6020 /* If this is an eight bit register, it's OK. If it's the 16 or
6021 32 bit version of an eight bit register, we will just use the
6022 low portion, and that's OK too. */
dc821c5f 6023 if (i.types[op].bitfield.byte)
29b0f896
AM
6024 continue;
6025
5a819eb9
JB
6026 /* I/O port address operands are OK too. */
6027 if (i.tm.operand_types[op].bitfield.inoutportreg)
6028 continue;
6029
9344ff29
L
6030 /* crc32 doesn't generate this warning. */
6031 if (i.tm.base_opcode == 0xf20f38f0)
6032 continue;
6033
dc821c5f
JB
6034 if ((i.types[op].bitfield.word
6035 || i.types[op].bitfield.dword
6036 || i.types[op].bitfield.qword)
5a819eb9
JB
6037 && i.op[op].regs->reg_num < 4
6038 /* Prohibit these changes in 64bit mode, since the lowering
6039 would be more complicated. */
6040 && flag_code != CODE_64BIT)
29b0f896 6041 {
29b0f896 6042#if REGISTER_WARNINGS
5a819eb9 6043 if (!quiet_warnings)
a540244d
L
6044 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6045 register_prefix,
dc821c5f 6046 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
6047 ? REGNAM_AL - REGNAM_AX
6048 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 6049 register_prefix,
29b0f896
AM
6050 i.op[op].regs->reg_name,
6051 i.suffix);
6052#endif
6053 continue;
6054 }
6055 /* Any other register is bad. */
dc821c5f 6056 if (i.types[op].bitfield.reg
40fb9820 6057 || i.types[op].bitfield.regmmx
1b54b8d7 6058 || i.types[op].bitfield.regsimd
40fb9820
L
6059 || i.types[op].bitfield.sreg2
6060 || i.types[op].bitfield.sreg3
6061 || i.types[op].bitfield.control
6062 || i.types[op].bitfield.debug
ca0d63fe 6063 || i.types[op].bitfield.test)
29b0f896 6064 {
a540244d
L
6065 as_bad (_("`%s%s' not allowed with `%s%c'"),
6066 register_prefix,
29b0f896
AM
6067 i.op[op].regs->reg_name,
6068 i.tm.name,
6069 i.suffix);
6070 return 0;
6071 }
6072 }
6073 return 1;
6074}
6075
6076static int
e3bb37b5 6077check_long_reg (void)
29b0f896
AM
6078{
6079 int op;
6080
6081 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6082 /* Skip non-register operands. */
6083 if (!i.types[op].bitfield.reg)
6084 continue;
29b0f896
AM
6085 /* Reject eight bit registers, except where the template requires
6086 them. (eg. movzb) */
dc821c5f
JB
6087 else if (i.types[op].bitfield.byte
6088 && (i.tm.operand_types[op].bitfield.reg
6089 || i.tm.operand_types[op].bitfield.acc)
6090 && (i.tm.operand_types[op].bitfield.word
6091 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6092 {
a540244d
L
6093 as_bad (_("`%s%s' not allowed with `%s%c'"),
6094 register_prefix,
29b0f896
AM
6095 i.op[op].regs->reg_name,
6096 i.tm.name,
6097 i.suffix);
6098 return 0;
6099 }
e4630f71 6100 /* Warn if the e prefix on a general reg is missing. */
29b0f896 6101 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6102 && i.types[op].bitfield.word
6103 && (i.tm.operand_types[op].bitfield.reg
6104 || i.tm.operand_types[op].bitfield.acc)
6105 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
6106 {
6107 /* Prohibit these changes in the 64bit mode, since the
6108 lowering is more complicated. */
6109 if (flag_code == CODE_64BIT)
252b5132 6110 {
2b5d6a91 6111 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6112 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6113 i.suffix);
6114 return 0;
252b5132 6115 }
29b0f896 6116#if REGISTER_WARNINGS
cecf1424
JB
6117 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6118 register_prefix,
6119 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6120 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 6121#endif
252b5132 6122 }
e4630f71 6123 /* Warn if the r prefix on a general reg is present. */
dc821c5f
JB
6124 else if (i.types[op].bitfield.qword
6125 && (i.tm.operand_types[op].bitfield.reg
6126 || i.tm.operand_types[op].bitfield.acc)
6127 && i.tm.operand_types[op].bitfield.dword)
252b5132 6128 {
34828aad 6129 if (intel_syntax
ca61edf2 6130 && i.tm.opcode_modifier.toqword
1b54b8d7 6131 && !i.types[0].bitfield.regsimd)
34828aad 6132 {
ca61edf2 6133 /* Convert to QWORD. We want REX byte. */
34828aad
L
6134 i.suffix = QWORD_MNEM_SUFFIX;
6135 }
6136 else
6137 {
2b5d6a91 6138 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6139 register_prefix, i.op[op].regs->reg_name,
6140 i.suffix);
6141 return 0;
6142 }
29b0f896
AM
6143 }
6144 return 1;
6145}
252b5132 6146
29b0f896 6147static int
e3bb37b5 6148check_qword_reg (void)
29b0f896
AM
6149{
6150 int op;
252b5132 6151
29b0f896 6152 for (op = i.operands; --op >= 0; )
dc821c5f
JB
6153 /* Skip non-register operands. */
6154 if (!i.types[op].bitfield.reg)
6155 continue;
29b0f896
AM
6156 /* Reject eight bit registers, except where the template requires
6157 them. (eg. movzb) */
dc821c5f
JB
6158 else if (i.types[op].bitfield.byte
6159 && (i.tm.operand_types[op].bitfield.reg
6160 || i.tm.operand_types[op].bitfield.acc)
6161 && (i.tm.operand_types[op].bitfield.word
6162 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6163 {
a540244d
L
6164 as_bad (_("`%s%s' not allowed with `%s%c'"),
6165 register_prefix,
29b0f896
AM
6166 i.op[op].regs->reg_name,
6167 i.tm.name,
6168 i.suffix);
6169 return 0;
6170 }
e4630f71 6171 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6172 else if ((i.types[op].bitfield.word
6173 || i.types[op].bitfield.dword)
6174 && (i.tm.operand_types[op].bitfield.reg
6175 || i.tm.operand_types[op].bitfield.acc)
6176 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6177 {
6178 /* Prohibit these changes in the 64bit mode, since the
6179 lowering is more complicated. */
34828aad 6180 if (intel_syntax
ca61edf2 6181 && i.tm.opcode_modifier.todword
1b54b8d7 6182 && !i.types[0].bitfield.regsimd)
34828aad 6183 {
ca61edf2 6184 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6185 i.suffix = LONG_MNEM_SUFFIX;
6186 }
6187 else
6188 {
2b5d6a91 6189 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6190 register_prefix, i.op[op].regs->reg_name,
6191 i.suffix);
6192 return 0;
6193 }
252b5132 6194 }
29b0f896
AM
6195 return 1;
6196}
252b5132 6197
29b0f896 6198static int
e3bb37b5 6199check_word_reg (void)
29b0f896
AM
6200{
6201 int op;
6202 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6203 /* Skip non-register operands. */
6204 if (!i.types[op].bitfield.reg)
6205 continue;
29b0f896
AM
6206 /* Reject eight bit registers, except where the template requires
6207 them. (eg. movzb) */
dc821c5f
JB
6208 else if (i.types[op].bitfield.byte
6209 && (i.tm.operand_types[op].bitfield.reg
6210 || i.tm.operand_types[op].bitfield.acc)
6211 && (i.tm.operand_types[op].bitfield.word
6212 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6213 {
a540244d
L
6214 as_bad (_("`%s%s' not allowed with `%s%c'"),
6215 register_prefix,
29b0f896
AM
6216 i.op[op].regs->reg_name,
6217 i.tm.name,
6218 i.suffix);
6219 return 0;
6220 }
e4630f71 6221 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6222 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6223 && (i.types[op].bitfield.dword
6224 || i.types[op].bitfield.qword)
6225 && (i.tm.operand_types[op].bitfield.reg
6226 || i.tm.operand_types[op].bitfield.acc)
6227 && i.tm.operand_types[op].bitfield.word)
252b5132 6228 {
29b0f896
AM
6229 /* Prohibit these changes in the 64bit mode, since the
6230 lowering is more complicated. */
6231 if (flag_code == CODE_64BIT)
252b5132 6232 {
2b5d6a91 6233 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6234 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6235 i.suffix);
6236 return 0;
252b5132 6237 }
29b0f896 6238#if REGISTER_WARNINGS
cecf1424
JB
6239 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6240 register_prefix,
6241 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6242 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6243#endif
6244 }
6245 return 1;
6246}
252b5132 6247
29b0f896 6248static int
40fb9820 6249update_imm (unsigned int j)
29b0f896 6250{
bc0844ae 6251 i386_operand_type overlap = i.types[j];
40fb9820
L
6252 if ((overlap.bitfield.imm8
6253 || overlap.bitfield.imm8s
6254 || overlap.bitfield.imm16
6255 || overlap.bitfield.imm32
6256 || overlap.bitfield.imm32s
6257 || overlap.bitfield.imm64)
0dfbf9d7
L
6258 && !operand_type_equal (&overlap, &imm8)
6259 && !operand_type_equal (&overlap, &imm8s)
6260 && !operand_type_equal (&overlap, &imm16)
6261 && !operand_type_equal (&overlap, &imm32)
6262 && !operand_type_equal (&overlap, &imm32s)
6263 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6264 {
6265 if (i.suffix)
6266 {
40fb9820
L
6267 i386_operand_type temp;
6268
0dfbf9d7 6269 operand_type_set (&temp, 0);
7ab9ffdd 6270 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6271 {
6272 temp.bitfield.imm8 = overlap.bitfield.imm8;
6273 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6274 }
6275 else if (i.suffix == WORD_MNEM_SUFFIX)
6276 temp.bitfield.imm16 = overlap.bitfield.imm16;
6277 else if (i.suffix == QWORD_MNEM_SUFFIX)
6278 {
6279 temp.bitfield.imm64 = overlap.bitfield.imm64;
6280 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6281 }
6282 else
6283 temp.bitfield.imm32 = overlap.bitfield.imm32;
6284 overlap = temp;
29b0f896 6285 }
0dfbf9d7
L
6286 else if (operand_type_equal (&overlap, &imm16_32_32s)
6287 || operand_type_equal (&overlap, &imm16_32)
6288 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6289 {
40fb9820 6290 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6291 overlap = imm16;
40fb9820 6292 else
65da13b5 6293 overlap = imm32s;
29b0f896 6294 }
0dfbf9d7
L
6295 if (!operand_type_equal (&overlap, &imm8)
6296 && !operand_type_equal (&overlap, &imm8s)
6297 && !operand_type_equal (&overlap, &imm16)
6298 && !operand_type_equal (&overlap, &imm32)
6299 && !operand_type_equal (&overlap, &imm32s)
6300 && !operand_type_equal (&overlap, &imm64))
29b0f896 6301 {
4eed87de
AM
6302 as_bad (_("no instruction mnemonic suffix given; "
6303 "can't determine immediate size"));
29b0f896
AM
6304 return 0;
6305 }
6306 }
40fb9820 6307 i.types[j] = overlap;
29b0f896 6308
40fb9820
L
6309 return 1;
6310}
6311
6312static int
6313finalize_imm (void)
6314{
bc0844ae 6315 unsigned int j, n;
29b0f896 6316
bc0844ae
L
6317 /* Update the first 2 immediate operands. */
6318 n = i.operands > 2 ? 2 : i.operands;
6319 if (n)
6320 {
6321 for (j = 0; j < n; j++)
6322 if (update_imm (j) == 0)
6323 return 0;
40fb9820 6324
bc0844ae
L
6325 /* The 3rd operand can't be immediate operand. */
6326 gas_assert (operand_type_check (i.types[2], imm) == 0);
6327 }
29b0f896
AM
6328
6329 return 1;
6330}
6331
6332static int
e3bb37b5 6333process_operands (void)
29b0f896
AM
6334{
6335 /* Default segment register this instruction will use for memory
6336 accesses. 0 means unknown. This is only for optimizing out
6337 unnecessary segment overrides. */
6338 const seg_entry *default_seg = 0;
6339
2426c15f 6340 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6341 {
91d6fa6a
NC
6342 unsigned int dupl = i.operands;
6343 unsigned int dest = dupl - 1;
9fcfb3d7
L
6344 unsigned int j;
6345
c0f3af97 6346 /* The destination must be an xmm register. */
9c2799c2 6347 gas_assert (i.reg_operands
91d6fa6a 6348 && MAX_OPERANDS > dupl
7ab9ffdd 6349 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6350
1b54b8d7
JB
6351 if (i.tm.operand_types[0].bitfield.acc
6352 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6353 {
8cd7925b 6354 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6355 {
6356 /* Keep xmm0 for instructions with VEX prefix and 3
6357 sources. */
1b54b8d7
JB
6358 i.tm.operand_types[0].bitfield.acc = 0;
6359 i.tm.operand_types[0].bitfield.regsimd = 1;
c0f3af97
L
6360 goto duplicate;
6361 }
e2ec9d29 6362 else
c0f3af97
L
6363 {
6364 /* We remove the first xmm0 and keep the number of
6365 operands unchanged, which in fact duplicates the
6366 destination. */
6367 for (j = 1; j < i.operands; j++)
6368 {
6369 i.op[j - 1] = i.op[j];
6370 i.types[j - 1] = i.types[j];
6371 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6372 }
6373 }
6374 }
6375 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6376 {
91d6fa6a 6377 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6378 && (i.tm.opcode_modifier.vexsources
6379 == VEX3SOURCES));
c0f3af97
L
6380
6381 /* Add the implicit xmm0 for instructions with VEX prefix
6382 and 3 sources. */
6383 for (j = i.operands; j > 0; j--)
6384 {
6385 i.op[j] = i.op[j - 1];
6386 i.types[j] = i.types[j - 1];
6387 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6388 }
6389 i.op[0].regs
6390 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6391 i.types[0] = regxmm;
c0f3af97
L
6392 i.tm.operand_types[0] = regxmm;
6393
6394 i.operands += 2;
6395 i.reg_operands += 2;
6396 i.tm.operands += 2;
6397
91d6fa6a 6398 dupl++;
c0f3af97 6399 dest++;
91d6fa6a
NC
6400 i.op[dupl] = i.op[dest];
6401 i.types[dupl] = i.types[dest];
6402 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
e2ec9d29 6403 }
c0f3af97
L
6404 else
6405 {
6406duplicate:
6407 i.operands++;
6408 i.reg_operands++;
6409 i.tm.operands++;
6410
91d6fa6a
NC
6411 i.op[dupl] = i.op[dest];
6412 i.types[dupl] = i.types[dest];
6413 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
c0f3af97
L
6414 }
6415
6416 if (i.tm.opcode_modifier.immext)
6417 process_immext ();
6418 }
1b54b8d7
JB
6419 else if (i.tm.operand_types[0].bitfield.acc
6420 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
6421 {
6422 unsigned int j;
6423
9fcfb3d7
L
6424 for (j = 1; j < i.operands; j++)
6425 {
6426 i.op[j - 1] = i.op[j];
6427 i.types[j - 1] = i.types[j];
6428
6429 /* We need to adjust fields in i.tm since they are used by
6430 build_modrm_byte. */
6431 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6432 }
6433
e2ec9d29
L
6434 i.operands--;
6435 i.reg_operands--;
e2ec9d29
L
6436 i.tm.operands--;
6437 }
920d2ddc
IT
6438 else if (i.tm.opcode_modifier.implicitquadgroup)
6439 {
a477a8c4
JB
6440 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6441
920d2ddc 6442 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
10c17abd 6443 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
a477a8c4
JB
6444 regnum = register_number (i.op[1].regs);
6445 first_reg_in_group = regnum & ~3;
6446 last_reg_in_group = first_reg_in_group + 3;
6447 if (regnum != first_reg_in_group)
6448 as_warn (_("source register `%s%s' implicitly denotes"
6449 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6450 register_prefix, i.op[1].regs->reg_name,
6451 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6452 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6453 i.tm.name);
6454 }
e2ec9d29
L
6455 else if (i.tm.opcode_modifier.regkludge)
6456 {
6457 /* The imul $imm, %reg instruction is converted into
6458 imul $imm, %reg, %reg, and the clr %reg instruction
6459 is converted into xor %reg, %reg. */
6460
6461 unsigned int first_reg_op;
6462
6463 if (operand_type_check (i.types[0], reg))
6464 first_reg_op = 0;
6465 else
6466 first_reg_op = 1;
6467 /* Pretend we saw the extra register operand. */
9c2799c2 6468 gas_assert (i.reg_operands == 1
7ab9ffdd 6469 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
6470 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6471 i.types[first_reg_op + 1] = i.types[first_reg_op];
6472 i.operands++;
6473 i.reg_operands++;
29b0f896
AM
6474 }
6475
40fb9820 6476 if (i.tm.opcode_modifier.shortform)
29b0f896 6477 {
40fb9820
L
6478 if (i.types[0].bitfield.sreg2
6479 || i.types[0].bitfield.sreg3)
29b0f896 6480 {
4eed87de
AM
6481 if (i.tm.base_opcode == POP_SEG_SHORT
6482 && i.op[0].regs->reg_num == 1)
29b0f896 6483 {
a87af027 6484 as_bad (_("you can't `pop %scs'"), register_prefix);
4eed87de 6485 return 0;
29b0f896 6486 }
4eed87de
AM
6487 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6488 if ((i.op[0].regs->reg_flags & RegRex) != 0)
161a04f6 6489 i.rex |= REX_B;
4eed87de
AM
6490 }
6491 else
6492 {
7ab9ffdd 6493 /* The register or float register operand is in operand
85f10a01 6494 0 or 1. */
40fb9820 6495 unsigned int op;
7ab9ffdd 6496
ca0d63fe 6497 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
7ab9ffdd
L
6498 || operand_type_check (i.types[0], reg))
6499 op = 0;
6500 else
6501 op = 1;
4eed87de
AM
6502 /* Register goes in low 3 bits of opcode. */
6503 i.tm.base_opcode |= i.op[op].regs->reg_num;
6504 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 6505 i.rex |= REX_B;
40fb9820 6506 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 6507 {
4eed87de
AM
6508 /* Warn about some common errors, but press on regardless.
6509 The first case can be generated by gcc (<= 2.8.1). */
6510 if (i.operands == 2)
6511 {
6512 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 6513 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
6514 register_prefix, i.op[!intel_syntax].regs->reg_name,
6515 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
6516 }
6517 else
6518 {
6519 /* Extraneous `l' suffix on fp insn. */
a540244d
L
6520 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6521 register_prefix, i.op[0].regs->reg_name);
4eed87de 6522 }
29b0f896
AM
6523 }
6524 }
6525 }
40fb9820 6526 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
6527 {
6528 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
6529 must be put into the modrm byte). Now, we make the modrm and
6530 index base bytes based on all the info we've collected. */
29b0f896
AM
6531
6532 default_seg = build_modrm_byte ();
6533 }
8a2ed489 6534 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
6535 {
6536 default_seg = &ds;
6537 }
40fb9820 6538 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
6539 {
6540 /* For the string instructions that allow a segment override
6541 on one of their operands, the default segment is ds. */
6542 default_seg = &ds;
6543 }
6544
75178d9d
L
6545 if (i.tm.base_opcode == 0x8d /* lea */
6546 && i.seg[0]
6547 && !quiet_warnings)
30123838 6548 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
6549
6550 /* If a segment was explicitly specified, and the specified segment
6551 is not the default, use an opcode prefix to select it. If we
6552 never figured out what the default segment is, then default_seg
6553 will be zero at this point, and the specified segment prefix will
6554 always be used. */
29b0f896
AM
6555 if ((i.seg[0]) && (i.seg[0] != default_seg))
6556 {
6557 if (!add_prefix (i.seg[0]->seg_prefix))
6558 return 0;
6559 }
6560 return 1;
6561}
6562
6563static const seg_entry *
e3bb37b5 6564build_modrm_byte (void)
29b0f896
AM
6565{
6566 const seg_entry *default_seg = 0;
c0f3af97 6567 unsigned int source, dest;
8cd7925b 6568 int vex_3_sources;
c0f3af97 6569
8cd7925b 6570 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
6571 if (vex_3_sources)
6572 {
91d6fa6a 6573 unsigned int nds, reg_slot;
4c2c6516 6574 expressionS *exp;
c0f3af97 6575
6b8d3588 6576 dest = i.operands - 1;
c0f3af97 6577 nds = dest - 1;
922d8de8 6578
a683cc34 6579 /* There are 2 kinds of instructions:
bed3d976
JB
6580 1. 5 operands: 4 register operands or 3 register operands
6581 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6582 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 6583 ZMM register.
bed3d976 6584 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 6585 plus 1 memory operand, with VexXDS. */
922d8de8 6586 gas_assert ((i.reg_operands == 4
bed3d976
JB
6587 || (i.reg_operands == 3 && i.mem_operands == 1))
6588 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323
JB
6589 && i.tm.opcode_modifier.vexw
6590 && i.tm.operand_types[dest].bitfield.regsimd);
a683cc34 6591
48db9223
JB
6592 /* If VexW1 is set, the first non-immediate operand is the source and
6593 the second non-immediate one is encoded in the immediate operand. */
6594 if (i.tm.opcode_modifier.vexw == VEXW1)
6595 {
6596 source = i.imm_operands;
6597 reg_slot = i.imm_operands + 1;
6598 }
6599 else
6600 {
6601 source = i.imm_operands + 1;
6602 reg_slot = i.imm_operands;
6603 }
6604
a683cc34 6605 if (i.imm_operands == 0)
bed3d976
JB
6606 {
6607 /* When there is no immediate operand, generate an 8bit
6608 immediate operand to encode the first operand. */
6609 exp = &im_expressions[i.imm_operands++];
6610 i.op[i.operands].imms = exp;
6611 i.types[i.operands] = imm8;
6612 i.operands++;
6613
6614 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6615 exp->X_op = O_constant;
6616 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
6617 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6618 }
922d8de8 6619 else
bed3d976
JB
6620 {
6621 unsigned int imm_slot;
a683cc34 6622
2f1bada2
JB
6623 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
6624
bed3d976
JB
6625 if (i.tm.opcode_modifier.immext)
6626 {
6627 /* When ImmExt is set, the immediate byte is the last
6628 operand. */
6629 imm_slot = i.operands - 1;
6630 source--;
6631 reg_slot--;
6632 }
6633 else
6634 {
6635 imm_slot = 0;
6636
6637 /* Turn on Imm8 so that output_imm will generate it. */
6638 i.types[imm_slot].bitfield.imm8 = 1;
6639 }
6640
6641 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6642 i.op[imm_slot].imms->X_add_number
6643 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 6644 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 6645 }
a683cc34 6646
10c17abd 6647 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
dae39acc 6648 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
6649 }
6650 else
6651 source = dest = 0;
29b0f896
AM
6652
6653 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
6654 implicit registers do not count. If there are 3 register
6655 operands, it must be a instruction with VexNDS. For a
6656 instruction with VexNDD, the destination register is encoded
6657 in VEX prefix. If there are 4 register operands, it must be
6658 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
6659 if (i.mem_operands == 0
6660 && ((i.reg_operands == 2
2426c15f 6661 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 6662 || (i.reg_operands == 3
2426c15f 6663 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 6664 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 6665 {
cab737b9
L
6666 switch (i.operands)
6667 {
6668 case 2:
6669 source = 0;
6670 break;
6671 case 3:
c81128dc
L
6672 /* When there are 3 operands, one of them may be immediate,
6673 which may be the first or the last operand. Otherwise,
c0f3af97
L
6674 the first operand must be shift count register (cl) or it
6675 is an instruction with VexNDS. */
9c2799c2 6676 gas_assert (i.imm_operands == 1
7ab9ffdd 6677 || (i.imm_operands == 0
2426c15f 6678 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 6679 || i.types[0].bitfield.shiftcount)));
40fb9820
L
6680 if (operand_type_check (i.types[0], imm)
6681 || i.types[0].bitfield.shiftcount)
6682 source = 1;
6683 else
6684 source = 0;
cab737b9
L
6685 break;
6686 case 4:
368d64cc
L
6687 /* When there are 4 operands, the first two must be 8bit
6688 immediate operands. The source operand will be the 3rd
c0f3af97
L
6689 one.
6690
6691 For instructions with VexNDS, if the first operand
6692 an imm8, the source operand is the 2nd one. If the last
6693 operand is imm8, the source operand is the first one. */
9c2799c2 6694 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
6695 && i.types[0].bitfield.imm8
6696 && i.types[1].bitfield.imm8)
2426c15f 6697 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
6698 && i.imm_operands == 1
6699 && (i.types[0].bitfield.imm8
43234a1e
L
6700 || i.types[i.operands - 1].bitfield.imm8
6701 || i.rounding)));
9f2670f2
L
6702 if (i.imm_operands == 2)
6703 source = 2;
6704 else
c0f3af97
L
6705 {
6706 if (i.types[0].bitfield.imm8)
6707 source = 1;
6708 else
6709 source = 0;
6710 }
c0f3af97
L
6711 break;
6712 case 5:
e771e7c9 6713 if (is_evex_encoding (&i.tm))
43234a1e
L
6714 {
6715 /* For EVEX instructions, when there are 5 operands, the
6716 first one must be immediate operand. If the second one
6717 is immediate operand, the source operand is the 3th
6718 one. If the last one is immediate operand, the source
6719 operand is the 2nd one. */
6720 gas_assert (i.imm_operands == 2
6721 && i.tm.opcode_modifier.sae
6722 && operand_type_check (i.types[0], imm));
6723 if (operand_type_check (i.types[1], imm))
6724 source = 2;
6725 else if (operand_type_check (i.types[4], imm))
6726 source = 1;
6727 else
6728 abort ();
6729 }
cab737b9
L
6730 break;
6731 default:
6732 abort ();
6733 }
6734
c0f3af97
L
6735 if (!vex_3_sources)
6736 {
6737 dest = source + 1;
6738
43234a1e
L
6739 /* RC/SAE operand could be between DEST and SRC. That happens
6740 when one operand is GPR and the other one is XMM/YMM/ZMM
6741 register. */
6742 if (i.rounding && i.rounding->operand == (int) dest)
6743 dest++;
6744
2426c15f 6745 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 6746 {
43234a1e 6747 /* For instructions with VexNDS, the register-only source
c5d0745b 6748 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
43234a1e
L
6749 register. It is encoded in VEX prefix. We need to
6750 clear RegMem bit before calling operand_type_equal. */
f12dc422
L
6751
6752 i386_operand_type op;
6753 unsigned int vvvv;
6754
6755 /* Check register-only source operand when two source
6756 operands are swapped. */
6757 if (!i.tm.operand_types[source].bitfield.baseindex
6758 && i.tm.operand_types[dest].bitfield.baseindex)
6759 {
6760 vvvv = source;
6761 source = dest;
6762 }
6763 else
6764 vvvv = dest;
6765
6766 op = i.tm.operand_types[vvvv];
fa99fab2 6767 op.bitfield.regmem = 0;
c0f3af97 6768 if ((dest + 1) >= i.operands
dc821c5f
JB
6769 || ((!op.bitfield.reg
6770 || (!op.bitfield.dword && !op.bitfield.qword))
10c17abd 6771 && !op.bitfield.regsimd
43234a1e 6772 && !operand_type_equal (&op, &regmask)))
c0f3af97 6773 abort ();
f12dc422 6774 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
6775 dest++;
6776 }
6777 }
29b0f896
AM
6778
6779 i.rm.mode = 3;
6780 /* One of the register operands will be encoded in the i.tm.reg
6781 field, the other in the combined i.tm.mode and i.tm.regmem
6782 fields. If no form of this instruction supports a memory
6783 destination operand, then we assume the source operand may
6784 sometimes be a memory operand and so we need to store the
6785 destination in the i.rm.reg field. */
40fb9820
L
6786 if (!i.tm.operand_types[dest].bitfield.regmem
6787 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
6788 {
6789 i.rm.reg = i.op[dest].regs->reg_num;
6790 i.rm.regmem = i.op[source].regs->reg_num;
6791 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6792 i.rex |= REX_R;
43234a1e
L
6793 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6794 i.vrex |= REX_R;
29b0f896 6795 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6796 i.rex |= REX_B;
43234a1e
L
6797 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6798 i.vrex |= REX_B;
29b0f896
AM
6799 }
6800 else
6801 {
6802 i.rm.reg = i.op[source].regs->reg_num;
6803 i.rm.regmem = i.op[dest].regs->reg_num;
6804 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6805 i.rex |= REX_B;
43234a1e
L
6806 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6807 i.vrex |= REX_B;
29b0f896 6808 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6809 i.rex |= REX_R;
43234a1e
L
6810 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6811 i.vrex |= REX_R;
29b0f896 6812 }
161a04f6 6813 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
c4a530c5 6814 {
40fb9820
L
6815 if (!i.types[0].bitfield.control
6816 && !i.types[1].bitfield.control)
c4a530c5 6817 abort ();
161a04f6 6818 i.rex &= ~(REX_R | REX_B);
c4a530c5
JB
6819 add_prefix (LOCK_PREFIX_OPCODE);
6820 }
29b0f896
AM
6821 }
6822 else
6823 { /* If it's not 2 reg operands... */
c0f3af97
L
6824 unsigned int mem;
6825
29b0f896
AM
6826 if (i.mem_operands)
6827 {
6828 unsigned int fake_zero_displacement = 0;
99018f42 6829 unsigned int op;
4eed87de 6830
7ab9ffdd
L
6831 for (op = 0; op < i.operands; op++)
6832 if (operand_type_check (i.types[op], anymem))
6833 break;
7ab9ffdd 6834 gas_assert (op < i.operands);
29b0f896 6835
6c30d220
L
6836 if (i.tm.opcode_modifier.vecsib)
6837 {
6838 if (i.index_reg->reg_num == RegEiz
6839 || i.index_reg->reg_num == RegRiz)
6840 abort ();
6841
6842 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6843 if (!i.base_reg)
6844 {
6845 i.sib.base = NO_BASE_REGISTER;
6846 i.sib.scale = i.log2_scale_factor;
6847 i.types[op].bitfield.disp8 = 0;
6848 i.types[op].bitfield.disp16 = 0;
6849 i.types[op].bitfield.disp64 = 0;
43083a50 6850 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
6851 {
6852 /* Must be 32 bit */
6853 i.types[op].bitfield.disp32 = 1;
6854 i.types[op].bitfield.disp32s = 0;
6855 }
6856 else
6857 {
6858 i.types[op].bitfield.disp32 = 0;
6859 i.types[op].bitfield.disp32s = 1;
6860 }
6861 }
6862 i.sib.index = i.index_reg->reg_num;
6863 if ((i.index_reg->reg_flags & RegRex) != 0)
6864 i.rex |= REX_X;
43234a1e
L
6865 if ((i.index_reg->reg_flags & RegVRex) != 0)
6866 i.vrex |= REX_X;
6c30d220
L
6867 }
6868
29b0f896
AM
6869 default_seg = &ds;
6870
6871 if (i.base_reg == 0)
6872 {
6873 i.rm.mode = 0;
6874 if (!i.disp_operands)
9bb129e8 6875 fake_zero_displacement = 1;
29b0f896
AM
6876 if (i.index_reg == 0)
6877 {
73053c1f
JB
6878 i386_operand_type newdisp;
6879
6c30d220 6880 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 6881 /* Operand is just <disp> */
20f0a1fc 6882 if (flag_code == CODE_64BIT)
29b0f896
AM
6883 {
6884 /* 64bit mode overwrites the 32bit absolute
6885 addressing by RIP relative addressing and
6886 absolute addressing is encoded by one of the
6887 redundant SIB forms. */
6888 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6889 i.sib.base = NO_BASE_REGISTER;
6890 i.sib.index = NO_INDEX_REGISTER;
73053c1f 6891 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 6892 }
fc225355
L
6893 else if ((flag_code == CODE_16BIT)
6894 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
6895 {
6896 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 6897 newdisp = disp16;
20f0a1fc
NC
6898 }
6899 else
6900 {
6901 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 6902 newdisp = disp32;
29b0f896 6903 }
73053c1f
JB
6904 i.types[op] = operand_type_and_not (i.types[op], anydisp);
6905 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 6906 }
6c30d220 6907 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 6908 {
6c30d220 6909 /* !i.base_reg && i.index_reg */
db51cc60
L
6910 if (i.index_reg->reg_num == RegEiz
6911 || i.index_reg->reg_num == RegRiz)
6912 i.sib.index = NO_INDEX_REGISTER;
6913 else
6914 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
6915 i.sib.base = NO_BASE_REGISTER;
6916 i.sib.scale = i.log2_scale_factor;
6917 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
6918 i.types[op].bitfield.disp8 = 0;
6919 i.types[op].bitfield.disp16 = 0;
6920 i.types[op].bitfield.disp64 = 0;
43083a50 6921 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
6922 {
6923 /* Must be 32 bit */
6924 i.types[op].bitfield.disp32 = 1;
6925 i.types[op].bitfield.disp32s = 0;
6926 }
29b0f896 6927 else
40fb9820
L
6928 {
6929 i.types[op].bitfield.disp32 = 0;
6930 i.types[op].bitfield.disp32s = 1;
6931 }
29b0f896 6932 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 6933 i.rex |= REX_X;
29b0f896
AM
6934 }
6935 }
6936 /* RIP addressing for 64bit mode. */
9a04903e
JB
6937 else if (i.base_reg->reg_num == RegRip ||
6938 i.base_reg->reg_num == RegEip)
29b0f896 6939 {
6c30d220 6940 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 6941 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
6942 i.types[op].bitfield.disp8 = 0;
6943 i.types[op].bitfield.disp16 = 0;
6944 i.types[op].bitfield.disp32 = 0;
6945 i.types[op].bitfield.disp32s = 1;
6946 i.types[op].bitfield.disp64 = 0;
71903a11 6947 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
6948 if (! i.disp_operands)
6949 fake_zero_displacement = 1;
29b0f896 6950 }
dc821c5f 6951 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 6952 {
6c30d220 6953 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
6954 switch (i.base_reg->reg_num)
6955 {
6956 case 3: /* (%bx) */
6957 if (i.index_reg == 0)
6958 i.rm.regmem = 7;
6959 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6960 i.rm.regmem = i.index_reg->reg_num - 6;
6961 break;
6962 case 5: /* (%bp) */
6963 default_seg = &ss;
6964 if (i.index_reg == 0)
6965 {
6966 i.rm.regmem = 6;
40fb9820 6967 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
6968 {
6969 /* fake (%bp) into 0(%bp) */
b5014f7a 6970 i.types[op].bitfield.disp8 = 1;
252b5132 6971 fake_zero_displacement = 1;
29b0f896
AM
6972 }
6973 }
6974 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6975 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6976 break;
6977 default: /* (%si) -> 4 or (%di) -> 5 */
6978 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6979 }
6980 i.rm.mode = mode_from_disp_size (i.types[op]);
6981 }
6982 else /* i.base_reg and 32/64 bit mode */
6983 {
6984 if (flag_code == CODE_64BIT
40fb9820
L
6985 && operand_type_check (i.types[op], disp))
6986 {
73053c1f
JB
6987 i.types[op].bitfield.disp16 = 0;
6988 i.types[op].bitfield.disp64 = 0;
40fb9820 6989 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
6990 {
6991 i.types[op].bitfield.disp32 = 0;
6992 i.types[op].bitfield.disp32s = 1;
6993 }
40fb9820 6994 else
73053c1f
JB
6995 {
6996 i.types[op].bitfield.disp32 = 1;
6997 i.types[op].bitfield.disp32s = 0;
6998 }
40fb9820 6999 }
20f0a1fc 7000
6c30d220
L
7001 if (!i.tm.opcode_modifier.vecsib)
7002 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7003 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7004 i.rex |= REX_B;
29b0f896
AM
7005 i.sib.base = i.base_reg->reg_num;
7006 /* x86-64 ignores REX prefix bit here to avoid decoder
7007 complications. */
848930b2
JB
7008 if (!(i.base_reg->reg_flags & RegRex)
7009 && (i.base_reg->reg_num == EBP_REG_NUM
7010 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7011 default_seg = &ss;
848930b2 7012 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7013 {
848930b2 7014 fake_zero_displacement = 1;
b5014f7a 7015 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7016 }
7017 i.sib.scale = i.log2_scale_factor;
7018 if (i.index_reg == 0)
7019 {
6c30d220 7020 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7021 /* <disp>(%esp) becomes two byte modrm with no index
7022 register. We've already stored the code for esp
7023 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7024 Any base register besides %esp will not use the
7025 extra modrm byte. */
7026 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7027 }
6c30d220 7028 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7029 {
db51cc60
L
7030 if (i.index_reg->reg_num == RegEiz
7031 || i.index_reg->reg_num == RegRiz)
7032 i.sib.index = NO_INDEX_REGISTER;
7033 else
7034 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7035 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7036 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7037 i.rex |= REX_X;
29b0f896 7038 }
67a4f2b7
AO
7039
7040 if (i.disp_operands
7041 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7042 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7043 i.rm.mode = 0;
7044 else
a501d77e
L
7045 {
7046 if (!fake_zero_displacement
7047 && !i.disp_operands
7048 && i.disp_encoding)
7049 {
7050 fake_zero_displacement = 1;
7051 if (i.disp_encoding == disp_encoding_8bit)
7052 i.types[op].bitfield.disp8 = 1;
7053 else
7054 i.types[op].bitfield.disp32 = 1;
7055 }
7056 i.rm.mode = mode_from_disp_size (i.types[op]);
7057 }
29b0f896 7058 }
252b5132 7059
29b0f896
AM
7060 if (fake_zero_displacement)
7061 {
7062 /* Fakes a zero displacement assuming that i.types[op]
7063 holds the correct displacement size. */
7064 expressionS *exp;
7065
9c2799c2 7066 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7067 exp = &disp_expressions[i.disp_operands++];
7068 i.op[op].disps = exp;
7069 exp->X_op = O_constant;
7070 exp->X_add_number = 0;
7071 exp->X_add_symbol = (symbolS *) 0;
7072 exp->X_op_symbol = (symbolS *) 0;
7073 }
c0f3af97
L
7074
7075 mem = op;
29b0f896 7076 }
c0f3af97
L
7077 else
7078 mem = ~0;
252b5132 7079
8c43a48b 7080 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7081 {
7082 if (operand_type_check (i.types[0], imm))
7083 i.vex.register_specifier = NULL;
7084 else
7085 {
7086 /* VEX.vvvv encodes one of the sources when the first
7087 operand is not an immediate. */
1ef99a7b 7088 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7089 i.vex.register_specifier = i.op[0].regs;
7090 else
7091 i.vex.register_specifier = i.op[1].regs;
7092 }
7093
7094 /* Destination is a XMM register encoded in the ModRM.reg
7095 and VEX.R bit. */
7096 i.rm.reg = i.op[2].regs->reg_num;
7097 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7098 i.rex |= REX_R;
7099
7100 /* ModRM.rm and VEX.B encodes the other source. */
7101 if (!i.mem_operands)
7102 {
7103 i.rm.mode = 3;
7104
1ef99a7b 7105 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7106 i.rm.regmem = i.op[1].regs->reg_num;
7107 else
7108 i.rm.regmem = i.op[0].regs->reg_num;
7109
7110 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7111 i.rex |= REX_B;
7112 }
7113 }
2426c15f 7114 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7115 {
7116 i.vex.register_specifier = i.op[2].regs;
7117 if (!i.mem_operands)
7118 {
7119 i.rm.mode = 3;
7120 i.rm.regmem = i.op[1].regs->reg_num;
7121 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7122 i.rex |= REX_B;
7123 }
7124 }
29b0f896
AM
7125 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7126 (if any) based on i.tm.extension_opcode. Again, we must be
7127 careful to make sure that segment/control/debug/test/MMX
7128 registers are coded into the i.rm.reg field. */
f88c9eb0 7129 else if (i.reg_operands)
29b0f896 7130 {
99018f42 7131 unsigned int op;
7ab9ffdd
L
7132 unsigned int vex_reg = ~0;
7133
7134 for (op = 0; op < i.operands; op++)
dc821c5f 7135 if (i.types[op].bitfield.reg
7ab9ffdd 7136 || i.types[op].bitfield.regmmx
1b54b8d7 7137 || i.types[op].bitfield.regsimd
7e8b059b 7138 || i.types[op].bitfield.regbnd
43234a1e 7139 || i.types[op].bitfield.regmask
7ab9ffdd
L
7140 || i.types[op].bitfield.sreg2
7141 || i.types[op].bitfield.sreg3
7142 || i.types[op].bitfield.control
7143 || i.types[op].bitfield.debug
7144 || i.types[op].bitfield.test)
7145 break;
c0209578 7146
7ab9ffdd
L
7147 if (vex_3_sources)
7148 op = dest;
2426c15f 7149 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7150 {
7151 /* For instructions with VexNDS, the register-only
7152 source operand is encoded in VEX prefix. */
7153 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7154
7ab9ffdd 7155 if (op > mem)
c0f3af97 7156 {
7ab9ffdd
L
7157 vex_reg = op++;
7158 gas_assert (op < i.operands);
c0f3af97
L
7159 }
7160 else
c0f3af97 7161 {
f12dc422
L
7162 /* Check register-only source operand when two source
7163 operands are swapped. */
7164 if (!i.tm.operand_types[op].bitfield.baseindex
7165 && i.tm.operand_types[op + 1].bitfield.baseindex)
7166 {
7167 vex_reg = op;
7168 op += 2;
7169 gas_assert (mem == (vex_reg + 1)
7170 && op < i.operands);
7171 }
7172 else
7173 {
7174 vex_reg = op + 1;
7175 gas_assert (vex_reg < i.operands);
7176 }
c0f3af97 7177 }
7ab9ffdd 7178 }
2426c15f 7179 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7180 {
f12dc422 7181 /* For instructions with VexNDD, the register destination
7ab9ffdd 7182 is encoded in VEX prefix. */
f12dc422
L
7183 if (i.mem_operands == 0)
7184 {
7185 /* There is no memory operand. */
7186 gas_assert ((op + 2) == i.operands);
7187 vex_reg = op + 1;
7188 }
7189 else
8d63c93e 7190 {
ed438a93
JB
7191 /* There are only 2 non-immediate operands. */
7192 gas_assert (op < i.imm_operands + 2
7193 && i.operands == i.imm_operands + 2);
7194 vex_reg = i.imm_operands + 1;
f12dc422 7195 }
7ab9ffdd
L
7196 }
7197 else
7198 gas_assert (op < i.operands);
99018f42 7199
7ab9ffdd
L
7200 if (vex_reg != (unsigned int) ~0)
7201 {
f12dc422 7202 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7203
dc821c5f
JB
7204 if ((!type->bitfield.reg
7205 || (!type->bitfield.dword && !type->bitfield.qword))
10c17abd 7206 && !type->bitfield.regsimd
43234a1e 7207 && !operand_type_equal (type, &regmask))
7ab9ffdd 7208 abort ();
f88c9eb0 7209
7ab9ffdd
L
7210 i.vex.register_specifier = i.op[vex_reg].regs;
7211 }
7212
1b9f0c97
L
7213 /* Don't set OP operand twice. */
7214 if (vex_reg != op)
7ab9ffdd 7215 {
1b9f0c97
L
7216 /* If there is an extension opcode to put here, the
7217 register number must be put into the regmem field. */
7218 if (i.tm.extension_opcode != None)
7219 {
7220 i.rm.regmem = i.op[op].regs->reg_num;
7221 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7222 i.rex |= REX_B;
43234a1e
L
7223 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7224 i.vrex |= REX_B;
1b9f0c97
L
7225 }
7226 else
7227 {
7228 i.rm.reg = i.op[op].regs->reg_num;
7229 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7230 i.rex |= REX_R;
43234a1e
L
7231 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7232 i.vrex |= REX_R;
1b9f0c97 7233 }
7ab9ffdd 7234 }
252b5132 7235
29b0f896
AM
7236 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7237 must set it to 3 to indicate this is a register operand
7238 in the regmem field. */
7239 if (!i.mem_operands)
7240 i.rm.mode = 3;
7241 }
252b5132 7242
29b0f896 7243 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7244 if (i.tm.extension_opcode != None)
29b0f896
AM
7245 i.rm.reg = i.tm.extension_opcode;
7246 }
7247 return default_seg;
7248}
252b5132 7249
29b0f896 7250static void
e3bb37b5 7251output_branch (void)
29b0f896
AM
7252{
7253 char *p;
f8a5c266 7254 int size;
29b0f896
AM
7255 int code16;
7256 int prefix;
7257 relax_substateT subtype;
7258 symbolS *sym;
7259 offsetT off;
7260
f8a5c266 7261 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7262 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7263
7264 prefix = 0;
7265 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7266 {
29b0f896
AM
7267 prefix = 1;
7268 i.prefixes -= 1;
7269 code16 ^= CODE16;
252b5132 7270 }
29b0f896
AM
7271 /* Pentium4 branch hints. */
7272 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7273 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7274 {
29b0f896
AM
7275 prefix++;
7276 i.prefixes--;
7277 }
7278 if (i.prefix[REX_PREFIX] != 0)
7279 {
7280 prefix++;
7281 i.prefixes--;
2f66722d
AM
7282 }
7283
7e8b059b
L
7284 /* BND prefixed jump. */
7285 if (i.prefix[BND_PREFIX] != 0)
7286 {
7287 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7288 i.prefixes -= 1;
7289 }
7290
29b0f896
AM
7291 if (i.prefixes != 0 && !intel_syntax)
7292 as_warn (_("skipping prefixes on this instruction"));
7293
7294 /* It's always a symbol; End frag & setup for relax.
7295 Make sure there is enough room in this frag for the largest
7296 instruction we may generate in md_convert_frag. This is 2
7297 bytes for the opcode and room for the prefix and largest
7298 displacement. */
7299 frag_grow (prefix + 2 + 4);
7300 /* Prefix and 1 opcode byte go in fr_fix. */
7301 p = frag_more (prefix + 1);
7302 if (i.prefix[DATA_PREFIX] != 0)
7303 *p++ = DATA_PREFIX_OPCODE;
7304 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7305 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7306 *p++ = i.prefix[SEG_PREFIX];
7307 if (i.prefix[REX_PREFIX] != 0)
7308 *p++ = i.prefix[REX_PREFIX];
7309 *p = i.tm.base_opcode;
7310
7311 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7312 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7313 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7314 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7315 else
f8a5c266 7316 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7317 subtype |= code16;
3e73aa7c 7318
29b0f896
AM
7319 sym = i.op[0].disps->X_add_symbol;
7320 off = i.op[0].disps->X_add_number;
3e73aa7c 7321
29b0f896
AM
7322 if (i.op[0].disps->X_op != O_constant
7323 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7324 {
29b0f896
AM
7325 /* Handle complex expressions. */
7326 sym = make_expr_symbol (i.op[0].disps);
7327 off = 0;
7328 }
3e73aa7c 7329
29b0f896
AM
7330 /* 1 possible extra opcode + 4 byte displacement go in var part.
7331 Pass reloc in fr_var. */
d258b828 7332 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7333}
3e73aa7c 7334
bd7ab16b
L
7335#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7336/* Return TRUE iff PLT32 relocation should be used for branching to
7337 symbol S. */
7338
7339static bfd_boolean
7340need_plt32_p (symbolS *s)
7341{
7342 /* PLT32 relocation is ELF only. */
7343 if (!IS_ELF)
7344 return FALSE;
7345
7346 /* Since there is no need to prepare for PLT branch on x86-64, we
7347 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7348 be used as a marker for 32-bit PC-relative branches. */
7349 if (!object_64bit)
7350 return FALSE;
7351
7352 /* Weak or undefined symbol need PLT32 relocation. */
7353 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7354 return TRUE;
7355
7356 /* Non-global symbol doesn't need PLT32 relocation. */
7357 if (! S_IS_EXTERNAL (s))
7358 return FALSE;
7359
7360 /* Other global symbols need PLT32 relocation. NB: Symbol with
7361 non-default visibilities are treated as normal global symbol
7362 so that PLT32 relocation can be used as a marker for 32-bit
7363 PC-relative branches. It is useful for linker relaxation. */
7364 return TRUE;
7365}
7366#endif
7367
29b0f896 7368static void
e3bb37b5 7369output_jump (void)
29b0f896
AM
7370{
7371 char *p;
7372 int size;
3e02c1cc 7373 fixS *fixP;
bd7ab16b 7374 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7375
40fb9820 7376 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
7377 {
7378 /* This is a loop or jecxz type instruction. */
7379 size = 1;
7380 if (i.prefix[ADDR_PREFIX] != 0)
7381 {
7382 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7383 i.prefixes -= 1;
7384 }
7385 /* Pentium4 branch hints. */
7386 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7387 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7388 {
7389 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7390 i.prefixes--;
3e73aa7c
JH
7391 }
7392 }
29b0f896
AM
7393 else
7394 {
7395 int code16;
3e73aa7c 7396
29b0f896
AM
7397 code16 = 0;
7398 if (flag_code == CODE_16BIT)
7399 code16 = CODE16;
3e73aa7c 7400
29b0f896
AM
7401 if (i.prefix[DATA_PREFIX] != 0)
7402 {
7403 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7404 i.prefixes -= 1;
7405 code16 ^= CODE16;
7406 }
252b5132 7407
29b0f896
AM
7408 size = 4;
7409 if (code16)
7410 size = 2;
7411 }
9fcc94b6 7412
29b0f896
AM
7413 if (i.prefix[REX_PREFIX] != 0)
7414 {
7415 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7416 i.prefixes -= 1;
7417 }
252b5132 7418
7e8b059b
L
7419 /* BND prefixed jump. */
7420 if (i.prefix[BND_PREFIX] != 0)
7421 {
7422 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7423 i.prefixes -= 1;
7424 }
7425
29b0f896
AM
7426 if (i.prefixes != 0 && !intel_syntax)
7427 as_warn (_("skipping prefixes on this instruction"));
e0890092 7428
42164a71
L
7429 p = frag_more (i.tm.opcode_length + size);
7430 switch (i.tm.opcode_length)
7431 {
7432 case 2:
7433 *p++ = i.tm.base_opcode >> 8;
1a0670f3 7434 /* Fall through. */
42164a71
L
7435 case 1:
7436 *p++ = i.tm.base_opcode;
7437 break;
7438 default:
7439 abort ();
7440 }
e0890092 7441
bd7ab16b
L
7442#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7443 if (size == 4
7444 && jump_reloc == NO_RELOC
7445 && need_plt32_p (i.op[0].disps->X_add_symbol))
7446 jump_reloc = BFD_RELOC_X86_64_PLT32;
7447#endif
7448
7449 jump_reloc = reloc (size, 1, 1, jump_reloc);
7450
3e02c1cc 7451 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 7452 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
7453
7454 /* All jumps handled here are signed, but don't use a signed limit
7455 check for 32 and 16 bit jumps as we want to allow wrap around at
7456 4G and 64k respectively. */
7457 if (size == 1)
7458 fixP->fx_signed = 1;
29b0f896 7459}
e0890092 7460
29b0f896 7461static void
e3bb37b5 7462output_interseg_jump (void)
29b0f896
AM
7463{
7464 char *p;
7465 int size;
7466 int prefix;
7467 int code16;
252b5132 7468
29b0f896
AM
7469 code16 = 0;
7470 if (flag_code == CODE_16BIT)
7471 code16 = CODE16;
a217f122 7472
29b0f896
AM
7473 prefix = 0;
7474 if (i.prefix[DATA_PREFIX] != 0)
7475 {
7476 prefix = 1;
7477 i.prefixes -= 1;
7478 code16 ^= CODE16;
7479 }
7480 if (i.prefix[REX_PREFIX] != 0)
7481 {
7482 prefix++;
7483 i.prefixes -= 1;
7484 }
252b5132 7485
29b0f896
AM
7486 size = 4;
7487 if (code16)
7488 size = 2;
252b5132 7489
29b0f896
AM
7490 if (i.prefixes != 0 && !intel_syntax)
7491 as_warn (_("skipping prefixes on this instruction"));
252b5132 7492
29b0f896
AM
7493 /* 1 opcode; 2 segment; offset */
7494 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 7495
29b0f896
AM
7496 if (i.prefix[DATA_PREFIX] != 0)
7497 *p++ = DATA_PREFIX_OPCODE;
252b5132 7498
29b0f896
AM
7499 if (i.prefix[REX_PREFIX] != 0)
7500 *p++ = i.prefix[REX_PREFIX];
252b5132 7501
29b0f896
AM
7502 *p++ = i.tm.base_opcode;
7503 if (i.op[1].imms->X_op == O_constant)
7504 {
7505 offsetT n = i.op[1].imms->X_add_number;
252b5132 7506
29b0f896
AM
7507 if (size == 2
7508 && !fits_in_unsigned_word (n)
7509 && !fits_in_signed_word (n))
7510 {
7511 as_bad (_("16-bit jump out of range"));
7512 return;
7513 }
7514 md_number_to_chars (p, n, size);
7515 }
7516 else
7517 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 7518 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
7519 if (i.op[0].imms->X_op != O_constant)
7520 as_bad (_("can't handle non absolute segment in `%s'"),
7521 i.tm.name);
7522 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7523}
a217f122 7524
29b0f896 7525static void
e3bb37b5 7526output_insn (void)
29b0f896 7527{
2bbd9c25
JJ
7528 fragS *insn_start_frag;
7529 offsetT insn_start_off;
7530
29b0f896
AM
7531 /* Tie dwarf2 debug info to the address at the start of the insn.
7532 We can't do this after the insn has been output as the current
7533 frag may have been closed off. eg. by frag_var. */
7534 dwarf2_emit_insn (0);
7535
2bbd9c25
JJ
7536 insn_start_frag = frag_now;
7537 insn_start_off = frag_now_fix ();
7538
29b0f896 7539 /* Output jumps. */
40fb9820 7540 if (i.tm.opcode_modifier.jump)
29b0f896 7541 output_branch ();
40fb9820
L
7542 else if (i.tm.opcode_modifier.jumpbyte
7543 || i.tm.opcode_modifier.jumpdword)
29b0f896 7544 output_jump ();
40fb9820 7545 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
7546 output_interseg_jump ();
7547 else
7548 {
7549 /* Output normal instructions here. */
7550 char *p;
7551 unsigned char *q;
47465058 7552 unsigned int j;
331d2d0d 7553 unsigned int prefix;
4dffcebc 7554
e4e00185
AS
7555 if (avoid_fence
7556 && i.tm.base_opcode == 0xfae
7557 && i.operands == 1
7558 && i.imm_operands == 1
7559 && (i.op[0].imms->X_add_number == 0xe8
7560 || i.op[0].imms->X_add_number == 0xf0
7561 || i.op[0].imms->X_add_number == 0xf8))
7562 {
7563 /* Encode lfence, mfence, and sfence as
7564 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7565 offsetT val = 0x240483f0ULL;
7566 p = frag_more (5);
7567 md_number_to_chars (p, val, 5);
7568 return;
7569 }
7570
d022bddd
IT
7571 /* Some processors fail on LOCK prefix. This options makes
7572 assembler ignore LOCK prefix and serves as a workaround. */
7573 if (omit_lock_prefix)
7574 {
7575 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7576 return;
7577 i.prefix[LOCK_PREFIX] = 0;
7578 }
7579
43234a1e
L
7580 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7581 don't need the explicit prefix. */
7582 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 7583 {
c0f3af97 7584 switch (i.tm.opcode_length)
bc4bd9ab 7585 {
c0f3af97
L
7586 case 3:
7587 if (i.tm.base_opcode & 0xff000000)
4dffcebc 7588 {
c0f3af97
L
7589 prefix = (i.tm.base_opcode >> 24) & 0xff;
7590 goto check_prefix;
7591 }
7592 break;
7593 case 2:
7594 if ((i.tm.base_opcode & 0xff0000) != 0)
7595 {
7596 prefix = (i.tm.base_opcode >> 16) & 0xff;
7597 if (i.tm.cpu_flags.bitfield.cpupadlock)
7598 {
4dffcebc 7599check_prefix:
c0f3af97 7600 if (prefix != REPE_PREFIX_OPCODE
c32fa91d 7601 || (i.prefix[REP_PREFIX]
c0f3af97
L
7602 != REPE_PREFIX_OPCODE))
7603 add_prefix (prefix);
7604 }
7605 else
4dffcebc
L
7606 add_prefix (prefix);
7607 }
c0f3af97
L
7608 break;
7609 case 1:
7610 break;
390c91cf
L
7611 case 0:
7612 /* Check for pseudo prefixes. */
7613 as_bad_where (insn_start_frag->fr_file,
7614 insn_start_frag->fr_line,
7615 _("pseudo prefix without instruction"));
7616 return;
c0f3af97
L
7617 default:
7618 abort ();
bc4bd9ab 7619 }
c0f3af97 7620
6d19a37a 7621#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
7622 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7623 R_X86_64_GOTTPOFF relocation so that linker can safely
7624 perform IE->LE optimization. */
7625 if (x86_elf_abi == X86_64_X32_ABI
7626 && i.operands == 2
7627 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7628 && i.prefix[REX_PREFIX] == 0)
7629 add_prefix (REX_OPCODE);
6d19a37a 7630#endif
cf61b747 7631
c0f3af97
L
7632 /* The prefix bytes. */
7633 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7634 if (*q)
7635 FRAG_APPEND_1_CHAR (*q);
0f10071e 7636 }
ae5c1c7b 7637 else
c0f3af97
L
7638 {
7639 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7640 if (*q)
7641 switch (j)
7642 {
7643 case REX_PREFIX:
7644 /* REX byte is encoded in VEX prefix. */
7645 break;
7646 case SEG_PREFIX:
7647 case ADDR_PREFIX:
7648 FRAG_APPEND_1_CHAR (*q);
7649 break;
7650 default:
7651 /* There should be no other prefixes for instructions
7652 with VEX prefix. */
7653 abort ();
7654 }
7655
43234a1e
L
7656 /* For EVEX instructions i.vrex should become 0 after
7657 build_evex_prefix. For VEX instructions upper 16 registers
7658 aren't available, so VREX should be 0. */
7659 if (i.vrex)
7660 abort ();
c0f3af97
L
7661 /* Now the VEX prefix. */
7662 p = frag_more (i.vex.length);
7663 for (j = 0; j < i.vex.length; j++)
7664 p[j] = i.vex.bytes[j];
7665 }
252b5132 7666
29b0f896 7667 /* Now the opcode; be careful about word order here! */
4dffcebc 7668 if (i.tm.opcode_length == 1)
29b0f896
AM
7669 {
7670 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7671 }
7672 else
7673 {
4dffcebc 7674 switch (i.tm.opcode_length)
331d2d0d 7675 {
43234a1e
L
7676 case 4:
7677 p = frag_more (4);
7678 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7679 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7680 break;
4dffcebc 7681 case 3:
331d2d0d
L
7682 p = frag_more (3);
7683 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
7684 break;
7685 case 2:
7686 p = frag_more (2);
7687 break;
7688 default:
7689 abort ();
7690 break;
331d2d0d 7691 }
0f10071e 7692
29b0f896
AM
7693 /* Put out high byte first: can't use md_number_to_chars! */
7694 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7695 *p = i.tm.base_opcode & 0xff;
7696 }
3e73aa7c 7697
29b0f896 7698 /* Now the modrm byte and sib byte (if present). */
40fb9820 7699 if (i.tm.opcode_modifier.modrm)
29b0f896 7700 {
4a3523fa
L
7701 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7702 | i.rm.reg << 3
7703 | i.rm.mode << 6));
29b0f896
AM
7704 /* If i.rm.regmem == ESP (4)
7705 && i.rm.mode != (Register mode)
7706 && not 16 bit
7707 ==> need second modrm byte. */
7708 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7709 && i.rm.mode != 3
dc821c5f 7710 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
7711 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7712 | i.sib.index << 3
7713 | i.sib.scale << 6));
29b0f896 7714 }
3e73aa7c 7715
29b0f896 7716 if (i.disp_operands)
2bbd9c25 7717 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 7718
29b0f896 7719 if (i.imm_operands)
2bbd9c25 7720 output_imm (insn_start_frag, insn_start_off);
29b0f896 7721 }
252b5132 7722
29b0f896
AM
7723#ifdef DEBUG386
7724 if (flag_debug)
7725 {
7b81dfbb 7726 pi ("" /*line*/, &i);
29b0f896
AM
7727 }
7728#endif /* DEBUG386 */
7729}
252b5132 7730
e205caa7
L
7731/* Return the size of the displacement operand N. */
7732
7733static int
7734disp_size (unsigned int n)
7735{
7736 int size = 4;
43234a1e 7737
b5014f7a 7738 if (i.types[n].bitfield.disp64)
40fb9820
L
7739 size = 8;
7740 else if (i.types[n].bitfield.disp8)
7741 size = 1;
7742 else if (i.types[n].bitfield.disp16)
7743 size = 2;
e205caa7
L
7744 return size;
7745}
7746
7747/* Return the size of the immediate operand N. */
7748
7749static int
7750imm_size (unsigned int n)
7751{
7752 int size = 4;
40fb9820
L
7753 if (i.types[n].bitfield.imm64)
7754 size = 8;
7755 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7756 size = 1;
7757 else if (i.types[n].bitfield.imm16)
7758 size = 2;
e205caa7
L
7759 return size;
7760}
7761
29b0f896 7762static void
64e74474 7763output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
7764{
7765 char *p;
7766 unsigned int n;
252b5132 7767
29b0f896
AM
7768 for (n = 0; n < i.operands; n++)
7769 {
b5014f7a 7770 if (operand_type_check (i.types[n], disp))
29b0f896
AM
7771 {
7772 if (i.op[n].disps->X_op == O_constant)
7773 {
e205caa7 7774 int size = disp_size (n);
43234a1e 7775 offsetT val = i.op[n].disps->X_add_number;
252b5132 7776
b5014f7a 7777 val = offset_in_range (val >> i.memshift, size);
29b0f896
AM
7778 p = frag_more (size);
7779 md_number_to_chars (p, val, size);
7780 }
7781 else
7782 {
f86103b7 7783 enum bfd_reloc_code_real reloc_type;
e205caa7 7784 int size = disp_size (n);
40fb9820 7785 int sign = i.types[n].bitfield.disp32s;
29b0f896 7786 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 7787 fixS *fixP;
29b0f896 7788
e205caa7 7789 /* We can't have 8 bit displacement here. */
9c2799c2 7790 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 7791
29b0f896
AM
7792 /* The PC relative address is computed relative
7793 to the instruction boundary, so in case immediate
7794 fields follows, we need to adjust the value. */
7795 if (pcrel && i.imm_operands)
7796 {
29b0f896 7797 unsigned int n1;
e205caa7 7798 int sz = 0;
252b5132 7799
29b0f896 7800 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 7801 if (operand_type_check (i.types[n1], imm))
252b5132 7802 {
e205caa7
L
7803 /* Only one immediate is allowed for PC
7804 relative address. */
9c2799c2 7805 gas_assert (sz == 0);
e205caa7
L
7806 sz = imm_size (n1);
7807 i.op[n].disps->X_add_number -= sz;
252b5132 7808 }
29b0f896 7809 /* We should find the immediate. */
9c2799c2 7810 gas_assert (sz != 0);
29b0f896 7811 }
520dc8e8 7812
29b0f896 7813 p = frag_more (size);
d258b828 7814 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 7815 if (GOT_symbol
2bbd9c25 7816 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 7817 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
7818 || reloc_type == BFD_RELOC_X86_64_32S
7819 || (reloc_type == BFD_RELOC_64
7820 && object_64bit))
d6ab8113
JB
7821 && (i.op[n].disps->X_op == O_symbol
7822 || (i.op[n].disps->X_op == O_add
7823 && ((symbol_get_value_expression
7824 (i.op[n].disps->X_op_symbol)->X_op)
7825 == O_subtract))))
7826 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25
JJ
7827 {
7828 offsetT add;
7829
7830 if (insn_start_frag == frag_now)
7831 add = (p - frag_now->fr_literal) - insn_start_off;
7832 else
7833 {
7834 fragS *fr;
7835
7836 add = insn_start_frag->fr_fix - insn_start_off;
7837 for (fr = insn_start_frag->fr_next;
7838 fr && fr != frag_now; fr = fr->fr_next)
7839 add += fr->fr_fix;
7840 add += p - frag_now->fr_literal;
7841 }
7842
4fa24527 7843 if (!object_64bit)
7b81dfbb
AJ
7844 {
7845 reloc_type = BFD_RELOC_386_GOTPC;
7846 i.op[n].imms->X_add_number += add;
7847 }
7848 else if (reloc_type == BFD_RELOC_64)
7849 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 7850 else
7b81dfbb
AJ
7851 /* Don't do the adjustment for x86-64, as there
7852 the pcrel addressing is relative to the _next_
7853 insn, and that is taken care of in other code. */
d6ab8113 7854 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 7855 }
02a86693
L
7856 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7857 size, i.op[n].disps, pcrel,
7858 reloc_type);
7859 /* Check for "call/jmp *mem", "mov mem, %reg",
7860 "test %reg, mem" and "binop mem, %reg" where binop
7861 is one of adc, add, and, cmp, or, sbb, sub, xor
0cb4071e
L
7862 instructions. Always generate R_386_GOT32X for
7863 "sym*GOT" operand in 32-bit mode. */
7864 if ((generate_relax_relocations
7865 || (!object_64bit
7866 && i.rm.mode == 0
7867 && i.rm.regmem == 5))
7868 && (i.rm.mode == 2
7869 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
7870 && ((i.operands == 1
7871 && i.tm.base_opcode == 0xff
7872 && (i.rm.reg == 2 || i.rm.reg == 4))
7873 || (i.operands == 2
7874 && (i.tm.base_opcode == 0x8b
7875 || i.tm.base_opcode == 0x85
7876 || (i.tm.base_opcode & 0xc7) == 0x03))))
7877 {
7878 if (object_64bit)
7879 {
7880 fixP->fx_tcbit = i.rex != 0;
7881 if (i.base_reg
7882 && (i.base_reg->reg_num == RegRip
7883 || i.base_reg->reg_num == RegEip))
7884 fixP->fx_tcbit2 = 1;
7885 }
7886 else
7887 fixP->fx_tcbit2 = 1;
7888 }
29b0f896
AM
7889 }
7890 }
7891 }
7892}
252b5132 7893
29b0f896 7894static void
64e74474 7895output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
7896{
7897 char *p;
7898 unsigned int n;
252b5132 7899
29b0f896
AM
7900 for (n = 0; n < i.operands; n++)
7901 {
43234a1e
L
7902 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7903 if (i.rounding && (int) n == i.rounding->operand)
7904 continue;
7905
40fb9820 7906 if (operand_type_check (i.types[n], imm))
29b0f896
AM
7907 {
7908 if (i.op[n].imms->X_op == O_constant)
7909 {
e205caa7 7910 int size = imm_size (n);
29b0f896 7911 offsetT val;
b4cac588 7912
29b0f896
AM
7913 val = offset_in_range (i.op[n].imms->X_add_number,
7914 size);
7915 p = frag_more (size);
7916 md_number_to_chars (p, val, size);
7917 }
7918 else
7919 {
7920 /* Not absolute_section.
7921 Need a 32-bit fixup (don't support 8bit
7922 non-absolute imms). Try to support other
7923 sizes ... */
f86103b7 7924 enum bfd_reloc_code_real reloc_type;
e205caa7
L
7925 int size = imm_size (n);
7926 int sign;
29b0f896 7927
40fb9820 7928 if (i.types[n].bitfield.imm32s
a7d61044 7929 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 7930 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 7931 sign = 1;
e205caa7
L
7932 else
7933 sign = 0;
520dc8e8 7934
29b0f896 7935 p = frag_more (size);
d258b828 7936 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 7937
2bbd9c25
JJ
7938 /* This is tough to explain. We end up with this one if we
7939 * have operands that look like
7940 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7941 * obtain the absolute address of the GOT, and it is strongly
7942 * preferable from a performance point of view to avoid using
7943 * a runtime relocation for this. The actual sequence of
7944 * instructions often look something like:
7945 *
7946 * call .L66
7947 * .L66:
7948 * popl %ebx
7949 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7950 *
7951 * The call and pop essentially return the absolute address
7952 * of the label .L66 and store it in %ebx. The linker itself
7953 * will ultimately change the first operand of the addl so
7954 * that %ebx points to the GOT, but to keep things simple, the
7955 * .o file must have this operand set so that it generates not
7956 * the absolute address of .L66, but the absolute address of
7957 * itself. This allows the linker itself simply treat a GOTPC
7958 * relocation as asking for a pcrel offset to the GOT to be
7959 * added in, and the addend of the relocation is stored in the
7960 * operand field for the instruction itself.
7961 *
7962 * Our job here is to fix the operand so that it would add
7963 * the correct offset so that %ebx would point to itself. The
7964 * thing that is tricky is that .-.L66 will point to the
7965 * beginning of the instruction, so we need to further modify
7966 * the operand so that it will point to itself. There are
7967 * other cases where you have something like:
7968 *
7969 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7970 *
7971 * and here no correction would be required. Internally in
7972 * the assembler we treat operands of this form as not being
7973 * pcrel since the '.' is explicitly mentioned, and I wonder
7974 * whether it would simplify matters to do it this way. Who
7975 * knows. In earlier versions of the PIC patches, the
7976 * pcrel_adjust field was used to store the correction, but
7977 * since the expression is not pcrel, I felt it would be
7978 * confusing to do it this way. */
7979
d6ab8113 7980 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
7981 || reloc_type == BFD_RELOC_X86_64_32S
7982 || reloc_type == BFD_RELOC_64)
29b0f896
AM
7983 && GOT_symbol
7984 && GOT_symbol == i.op[n].imms->X_add_symbol
7985 && (i.op[n].imms->X_op == O_symbol
7986 || (i.op[n].imms->X_op == O_add
7987 && ((symbol_get_value_expression
7988 (i.op[n].imms->X_op_symbol)->X_op)
7989 == O_subtract))))
7990 {
2bbd9c25
JJ
7991 offsetT add;
7992
7993 if (insn_start_frag == frag_now)
7994 add = (p - frag_now->fr_literal) - insn_start_off;
7995 else
7996 {
7997 fragS *fr;
7998
7999 add = insn_start_frag->fr_fix - insn_start_off;
8000 for (fr = insn_start_frag->fr_next;
8001 fr && fr != frag_now; fr = fr->fr_next)
8002 add += fr->fr_fix;
8003 add += p - frag_now->fr_literal;
8004 }
8005
4fa24527 8006 if (!object_64bit)
d6ab8113 8007 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 8008 else if (size == 4)
d6ab8113 8009 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
8010 else if (size == 8)
8011 reloc_type = BFD_RELOC_X86_64_GOTPC64;
2bbd9c25 8012 i.op[n].imms->X_add_number += add;
29b0f896 8013 }
29b0f896
AM
8014 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8015 i.op[n].imms, 0, reloc_type);
8016 }
8017 }
8018 }
252b5132
RH
8019}
8020\f
d182319b
JB
8021/* x86_cons_fix_new is called via the expression parsing code when a
8022 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
8023static int cons_sign = -1;
8024
8025void
e3bb37b5 8026x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 8027 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 8028{
d258b828 8029 r = reloc (len, 0, cons_sign, r);
d182319b
JB
8030
8031#ifdef TE_PE
8032 if (exp->X_op == O_secrel)
8033 {
8034 exp->X_op = O_symbol;
8035 r = BFD_RELOC_32_SECREL;
8036 }
8037#endif
8038
8039 fix_new_exp (frag, off, len, exp, 0, r);
8040}
8041
357d1bd8
L
8042/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8043 purpose of the `.dc.a' internal pseudo-op. */
8044
8045int
8046x86_address_bytes (void)
8047{
8048 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8049 return 4;
8050 return stdoutput->arch_info->bits_per_address / 8;
8051}
8052
d382c579
TG
8053#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8054 || defined (LEX_AT)
d258b828 8055# define lex_got(reloc, adjust, types) NULL
718ddfc0 8056#else
f3c180ae
AM
8057/* Parse operands of the form
8058 <symbol>@GOTOFF+<nnn>
8059 and similar .plt or .got references.
8060
8061 If we find one, set up the correct relocation in RELOC and copy the
8062 input string, minus the `@GOTOFF' into a malloc'd buffer for
8063 parsing by the calling routine. Return this buffer, and if ADJUST
8064 is non-null set it to the length of the string we removed from the
8065 input line. Otherwise return NULL. */
8066static char *
91d6fa6a 8067lex_got (enum bfd_reloc_code_real *rel,
64e74474 8068 int *adjust,
d258b828 8069 i386_operand_type *types)
f3c180ae 8070{
7b81dfbb
AJ
8071 /* Some of the relocations depend on the size of what field is to
8072 be relocated. But in our callers i386_immediate and i386_displacement
8073 we don't yet know the operand size (this will be set by insn
8074 matching). Hence we record the word32 relocation here,
8075 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
8076 static const struct {
8077 const char *str;
cff8d58a 8078 int len;
4fa24527 8079 const enum bfd_reloc_code_real rel[2];
40fb9820 8080 const i386_operand_type types64;
f3c180ae 8081 } gotrel[] = {
8ce3d284 8082#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
8083 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8084 BFD_RELOC_SIZE32 },
8085 OPERAND_TYPE_IMM32_64 },
8ce3d284 8086#endif
cff8d58a
L
8087 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8088 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 8089 OPERAND_TYPE_IMM64 },
cff8d58a
L
8090 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8091 BFD_RELOC_X86_64_PLT32 },
40fb9820 8092 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8093 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8094 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 8095 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8096 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8097 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 8098 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8099 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8100 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 8101 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8102 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8103 BFD_RELOC_X86_64_TLSGD },
40fb9820 8104 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8105 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8106 _dummy_first_bfd_reloc_code_real },
40fb9820 8107 OPERAND_TYPE_NONE },
cff8d58a
L
8108 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8109 BFD_RELOC_X86_64_TLSLD },
40fb9820 8110 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8111 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8112 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 8113 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8114 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8115 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 8116 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8117 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8118 _dummy_first_bfd_reloc_code_real },
40fb9820 8119 OPERAND_TYPE_NONE },
cff8d58a
L
8120 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8121 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 8122 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8123 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8124 _dummy_first_bfd_reloc_code_real },
40fb9820 8125 OPERAND_TYPE_NONE },
cff8d58a
L
8126 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8127 _dummy_first_bfd_reloc_code_real },
40fb9820 8128 OPERAND_TYPE_NONE },
cff8d58a
L
8129 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8130 BFD_RELOC_X86_64_GOT32 },
40fb9820 8131 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
8132 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8133 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 8134 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8135 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8136 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 8137 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
8138 };
8139 char *cp;
8140 unsigned int j;
8141
d382c579 8142#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
8143 if (!IS_ELF)
8144 return NULL;
d382c579 8145#endif
718ddfc0 8146
f3c180ae 8147 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 8148 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
8149 return NULL;
8150
47465058 8151 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 8152 {
cff8d58a 8153 int len = gotrel[j].len;
28f81592 8154 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 8155 {
4fa24527 8156 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 8157 {
28f81592
AM
8158 int first, second;
8159 char *tmpbuf, *past_reloc;
f3c180ae 8160
91d6fa6a 8161 *rel = gotrel[j].rel[object_64bit];
f3c180ae 8162
3956db08
JB
8163 if (types)
8164 {
8165 if (flag_code != CODE_64BIT)
40fb9820
L
8166 {
8167 types->bitfield.imm32 = 1;
8168 types->bitfield.disp32 = 1;
8169 }
3956db08
JB
8170 else
8171 *types = gotrel[j].types64;
8172 }
8173
8fd4256d 8174 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
8175 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8176
28f81592 8177 /* The length of the first part of our input line. */
f3c180ae 8178 first = cp - input_line_pointer;
28f81592
AM
8179
8180 /* The second part goes from after the reloc token until
67c11a9b 8181 (and including) an end_of_line char or comma. */
28f81592 8182 past_reloc = cp + 1 + len;
67c11a9b
AM
8183 cp = past_reloc;
8184 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8185 ++cp;
8186 second = cp + 1 - past_reloc;
28f81592
AM
8187
8188 /* Allocate and copy string. The trailing NUL shouldn't
8189 be necessary, but be safe. */
add39d23 8190 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 8191 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
8192 if (second != 0 && *past_reloc != ' ')
8193 /* Replace the relocation token with ' ', so that
8194 errors like foo@GOTOFF1 will be detected. */
8195 tmpbuf[first++] = ' ';
af89796a
L
8196 else
8197 /* Increment length by 1 if the relocation token is
8198 removed. */
8199 len++;
8200 if (adjust)
8201 *adjust = len;
0787a12d
AM
8202 memcpy (tmpbuf + first, past_reloc, second);
8203 tmpbuf[first + second] = '\0';
f3c180ae
AM
8204 return tmpbuf;
8205 }
8206
4fa24527
JB
8207 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8208 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
8209 return NULL;
8210 }
8211 }
8212
8213 /* Might be a symbol version string. Don't as_bad here. */
8214 return NULL;
8215}
4e4f7c87 8216#endif
f3c180ae 8217
a988325c
NC
8218#ifdef TE_PE
8219#ifdef lex_got
8220#undef lex_got
8221#endif
8222/* Parse operands of the form
8223 <symbol>@SECREL32+<nnn>
8224
8225 If we find one, set up the correct relocation in RELOC and copy the
8226 input string, minus the `@SECREL32' into a malloc'd buffer for
8227 parsing by the calling routine. Return this buffer, and if ADJUST
8228 is non-null set it to the length of the string we removed from the
34bca508
L
8229 input line. Otherwise return NULL.
8230
a988325c
NC
8231 This function is copied from the ELF version above adjusted for PE targets. */
8232
8233static char *
8234lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8235 int *adjust ATTRIBUTE_UNUSED,
d258b828 8236 i386_operand_type *types)
a988325c
NC
8237{
8238 static const struct
8239 {
8240 const char *str;
8241 int len;
8242 const enum bfd_reloc_code_real rel[2];
8243 const i386_operand_type types64;
8244 }
8245 gotrel[] =
8246 {
8247 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8248 BFD_RELOC_32_SECREL },
8249 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8250 };
8251
8252 char *cp;
8253 unsigned j;
8254
8255 for (cp = input_line_pointer; *cp != '@'; cp++)
8256 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8257 return NULL;
8258
8259 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8260 {
8261 int len = gotrel[j].len;
8262
8263 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8264 {
8265 if (gotrel[j].rel[object_64bit] != 0)
8266 {
8267 int first, second;
8268 char *tmpbuf, *past_reloc;
8269
8270 *rel = gotrel[j].rel[object_64bit];
8271 if (adjust)
8272 *adjust = len;
8273
8274 if (types)
8275 {
8276 if (flag_code != CODE_64BIT)
8277 {
8278 types->bitfield.imm32 = 1;
8279 types->bitfield.disp32 = 1;
8280 }
8281 else
8282 *types = gotrel[j].types64;
8283 }
8284
8285 /* The length of the first part of our input line. */
8286 first = cp - input_line_pointer;
8287
8288 /* The second part goes from after the reloc token until
8289 (and including) an end_of_line char or comma. */
8290 past_reloc = cp + 1 + len;
8291 cp = past_reloc;
8292 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8293 ++cp;
8294 second = cp + 1 - past_reloc;
8295
8296 /* Allocate and copy string. The trailing NUL shouldn't
8297 be necessary, but be safe. */
add39d23 8298 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
8299 memcpy (tmpbuf, input_line_pointer, first);
8300 if (second != 0 && *past_reloc != ' ')
8301 /* Replace the relocation token with ' ', so that
8302 errors like foo@SECLREL321 will be detected. */
8303 tmpbuf[first++] = ' ';
8304 memcpy (tmpbuf + first, past_reloc, second);
8305 tmpbuf[first + second] = '\0';
8306 return tmpbuf;
8307 }
8308
8309 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8310 gotrel[j].str, 1 << (5 + object_64bit));
8311 return NULL;
8312 }
8313 }
8314
8315 /* Might be a symbol version string. Don't as_bad here. */
8316 return NULL;
8317}
8318
8319#endif /* TE_PE */
8320
62ebcb5c 8321bfd_reloc_code_real_type
e3bb37b5 8322x86_cons (expressionS *exp, int size)
f3c180ae 8323{
62ebcb5c
AM
8324 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8325
ee86248c
JB
8326 intel_syntax = -intel_syntax;
8327
3c7b9c2c 8328 exp->X_md = 0;
4fa24527 8329 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
8330 {
8331 /* Handle @GOTOFF and the like in an expression. */
8332 char *save;
8333 char *gotfree_input_line;
4a57f2cf 8334 int adjust = 0;
f3c180ae
AM
8335
8336 save = input_line_pointer;
d258b828 8337 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
8338 if (gotfree_input_line)
8339 input_line_pointer = gotfree_input_line;
8340
8341 expression (exp);
8342
8343 if (gotfree_input_line)
8344 {
8345 /* expression () has merrily parsed up to the end of line,
8346 or a comma - in the wrong buffer. Transfer how far
8347 input_line_pointer has moved to the right buffer. */
8348 input_line_pointer = (save
8349 + (input_line_pointer - gotfree_input_line)
8350 + adjust);
8351 free (gotfree_input_line);
3992d3b7
AM
8352 if (exp->X_op == O_constant
8353 || exp->X_op == O_absent
8354 || exp->X_op == O_illegal
0398aac5 8355 || exp->X_op == O_register
3992d3b7
AM
8356 || exp->X_op == O_big)
8357 {
8358 char c = *input_line_pointer;
8359 *input_line_pointer = 0;
8360 as_bad (_("missing or invalid expression `%s'"), save);
8361 *input_line_pointer = c;
8362 }
f3c180ae
AM
8363 }
8364 }
8365 else
8366 expression (exp);
ee86248c
JB
8367
8368 intel_syntax = -intel_syntax;
8369
8370 if (intel_syntax)
8371 i386_intel_simplify (exp);
62ebcb5c
AM
8372
8373 return got_reloc;
f3c180ae 8374}
f3c180ae 8375
9f32dd5b
L
8376static void
8377signed_cons (int size)
6482c264 8378{
d182319b
JB
8379 if (flag_code == CODE_64BIT)
8380 cons_sign = 1;
8381 cons (size);
8382 cons_sign = -1;
6482c264
NC
8383}
8384
d182319b 8385#ifdef TE_PE
6482c264 8386static void
7016a5d5 8387pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
8388{
8389 expressionS exp;
8390
8391 do
8392 {
8393 expression (&exp);
8394 if (exp.X_op == O_symbol)
8395 exp.X_op = O_secrel;
8396
8397 emit_expr (&exp, 4);
8398 }
8399 while (*input_line_pointer++ == ',');
8400
8401 input_line_pointer--;
8402 demand_empty_rest_of_line ();
8403}
6482c264
NC
8404#endif
8405
43234a1e
L
8406/* Handle Vector operations. */
8407
8408static char *
8409check_VecOperations (char *op_string, char *op_end)
8410{
8411 const reg_entry *mask;
8412 const char *saved;
8413 char *end_op;
8414
8415 while (*op_string
8416 && (op_end == NULL || op_string < op_end))
8417 {
8418 saved = op_string;
8419 if (*op_string == '{')
8420 {
8421 op_string++;
8422
8423 /* Check broadcasts. */
8424 if (strncmp (op_string, "1to", 3) == 0)
8425 {
8426 int bcst_type;
8427
8428 if (i.broadcast)
8429 goto duplicated_vec_op;
8430
8431 op_string += 3;
8432 if (*op_string == '8')
8e6e0792 8433 bcst_type = 8;
b28d1bda 8434 else if (*op_string == '4')
8e6e0792 8435 bcst_type = 4;
b28d1bda 8436 else if (*op_string == '2')
8e6e0792 8437 bcst_type = 2;
43234a1e
L
8438 else if (*op_string == '1'
8439 && *(op_string+1) == '6')
8440 {
8e6e0792 8441 bcst_type = 16;
43234a1e
L
8442 op_string++;
8443 }
8444 else
8445 {
8446 as_bad (_("Unsupported broadcast: `%s'"), saved);
8447 return NULL;
8448 }
8449 op_string++;
8450
8451 broadcast_op.type = bcst_type;
8452 broadcast_op.operand = this_operand;
8453 i.broadcast = &broadcast_op;
8454 }
8455 /* Check masking operation. */
8456 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8457 {
8458 /* k0 can't be used for write mask. */
6d2cd6b2 8459 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
43234a1e 8460 {
6d2cd6b2
JB
8461 as_bad (_("`%s%s' can't be used for write mask"),
8462 register_prefix, mask->reg_name);
43234a1e
L
8463 return NULL;
8464 }
8465
8466 if (!i.mask)
8467 {
8468 mask_op.mask = mask;
8469 mask_op.zeroing = 0;
8470 mask_op.operand = this_operand;
8471 i.mask = &mask_op;
8472 }
8473 else
8474 {
8475 if (i.mask->mask)
8476 goto duplicated_vec_op;
8477
8478 i.mask->mask = mask;
8479
8480 /* Only "{z}" is allowed here. No need to check
8481 zeroing mask explicitly. */
8482 if (i.mask->operand != this_operand)
8483 {
8484 as_bad (_("invalid write mask `%s'"), saved);
8485 return NULL;
8486 }
8487 }
8488
8489 op_string = end_op;
8490 }
8491 /* Check zeroing-flag for masking operation. */
8492 else if (*op_string == 'z')
8493 {
8494 if (!i.mask)
8495 {
8496 mask_op.mask = NULL;
8497 mask_op.zeroing = 1;
8498 mask_op.operand = this_operand;
8499 i.mask = &mask_op;
8500 }
8501 else
8502 {
8503 if (i.mask->zeroing)
8504 {
8505 duplicated_vec_op:
8506 as_bad (_("duplicated `%s'"), saved);
8507 return NULL;
8508 }
8509
8510 i.mask->zeroing = 1;
8511
8512 /* Only "{%k}" is allowed here. No need to check mask
8513 register explicitly. */
8514 if (i.mask->operand != this_operand)
8515 {
8516 as_bad (_("invalid zeroing-masking `%s'"),
8517 saved);
8518 return NULL;
8519 }
8520 }
8521
8522 op_string++;
8523 }
8524 else
8525 goto unknown_vec_op;
8526
8527 if (*op_string != '}')
8528 {
8529 as_bad (_("missing `}' in `%s'"), saved);
8530 return NULL;
8531 }
8532 op_string++;
0ba3a731
L
8533
8534 /* Strip whitespace since the addition of pseudo prefixes
8535 changed how the scrubber treats '{'. */
8536 if (is_space_char (*op_string))
8537 ++op_string;
8538
43234a1e
L
8539 continue;
8540 }
8541 unknown_vec_op:
8542 /* We don't know this one. */
8543 as_bad (_("unknown vector operation: `%s'"), saved);
8544 return NULL;
8545 }
8546
6d2cd6b2
JB
8547 if (i.mask && i.mask->zeroing && !i.mask->mask)
8548 {
8549 as_bad (_("zeroing-masking only allowed with write mask"));
8550 return NULL;
8551 }
8552
43234a1e
L
8553 return op_string;
8554}
8555
252b5132 8556static int
70e41ade 8557i386_immediate (char *imm_start)
252b5132
RH
8558{
8559 char *save_input_line_pointer;
f3c180ae 8560 char *gotfree_input_line;
252b5132 8561 segT exp_seg = 0;
47926f60 8562 expressionS *exp;
40fb9820
L
8563 i386_operand_type types;
8564
0dfbf9d7 8565 operand_type_set (&types, ~0);
252b5132
RH
8566
8567 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8568 {
31b2323c
L
8569 as_bad (_("at most %d immediate operands are allowed"),
8570 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
8571 return 0;
8572 }
8573
8574 exp = &im_expressions[i.imm_operands++];
520dc8e8 8575 i.op[this_operand].imms = exp;
252b5132
RH
8576
8577 if (is_space_char (*imm_start))
8578 ++imm_start;
8579
8580 save_input_line_pointer = input_line_pointer;
8581 input_line_pointer = imm_start;
8582
d258b828 8583 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
8584 if (gotfree_input_line)
8585 input_line_pointer = gotfree_input_line;
252b5132
RH
8586
8587 exp_seg = expression (exp);
8588
83183c0c 8589 SKIP_WHITESPACE ();
43234a1e
L
8590
8591 /* Handle vector operations. */
8592 if (*input_line_pointer == '{')
8593 {
8594 input_line_pointer = check_VecOperations (input_line_pointer,
8595 NULL);
8596 if (input_line_pointer == NULL)
8597 return 0;
8598 }
8599
252b5132 8600 if (*input_line_pointer)
f3c180ae 8601 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
8602
8603 input_line_pointer = save_input_line_pointer;
f3c180ae 8604 if (gotfree_input_line)
ee86248c
JB
8605 {
8606 free (gotfree_input_line);
8607
8608 if (exp->X_op == O_constant || exp->X_op == O_register)
8609 exp->X_op = O_illegal;
8610 }
8611
8612 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8613}
252b5132 8614
ee86248c
JB
8615static int
8616i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8617 i386_operand_type types, const char *imm_start)
8618{
8619 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 8620 {
313c53d1
L
8621 if (imm_start)
8622 as_bad (_("missing or invalid immediate expression `%s'"),
8623 imm_start);
3992d3b7 8624 return 0;
252b5132 8625 }
3e73aa7c 8626 else if (exp->X_op == O_constant)
252b5132 8627 {
47926f60 8628 /* Size it properly later. */
40fb9820 8629 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
8630 /* If not 64bit, sign extend val. */
8631 if (flag_code != CODE_64BIT
4eed87de
AM
8632 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8633 exp->X_add_number
8634 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 8635 }
4c63da97 8636#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 8637 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 8638 && exp_seg != absolute_section
47926f60 8639 && exp_seg != text_section
24eab124
AM
8640 && exp_seg != data_section
8641 && exp_seg != bss_section
8642 && exp_seg != undefined_section
f86103b7 8643 && !bfd_is_com_section (exp_seg))
252b5132 8644 {
d0b47220 8645 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
8646 return 0;
8647 }
8648#endif
a841bdf5 8649 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 8650 {
313c53d1
L
8651 if (imm_start)
8652 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
8653 return 0;
8654 }
252b5132
RH
8655 else
8656 {
8657 /* This is an address. The size of the address will be
24eab124 8658 determined later, depending on destination register,
3e73aa7c 8659 suffix, or the default for the section. */
40fb9820
L
8660 i.types[this_operand].bitfield.imm8 = 1;
8661 i.types[this_operand].bitfield.imm16 = 1;
8662 i.types[this_operand].bitfield.imm32 = 1;
8663 i.types[this_operand].bitfield.imm32s = 1;
8664 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
8665 i.types[this_operand] = operand_type_and (i.types[this_operand],
8666 types);
252b5132
RH
8667 }
8668
8669 return 1;
8670}
8671
551c1ca1 8672static char *
e3bb37b5 8673i386_scale (char *scale)
252b5132 8674{
551c1ca1
AM
8675 offsetT val;
8676 char *save = input_line_pointer;
252b5132 8677
551c1ca1
AM
8678 input_line_pointer = scale;
8679 val = get_absolute_expression ();
8680
8681 switch (val)
252b5132 8682 {
551c1ca1 8683 case 1:
252b5132
RH
8684 i.log2_scale_factor = 0;
8685 break;
551c1ca1 8686 case 2:
252b5132
RH
8687 i.log2_scale_factor = 1;
8688 break;
551c1ca1 8689 case 4:
252b5132
RH
8690 i.log2_scale_factor = 2;
8691 break;
551c1ca1 8692 case 8:
252b5132
RH
8693 i.log2_scale_factor = 3;
8694 break;
8695 default:
a724f0f4
JB
8696 {
8697 char sep = *input_line_pointer;
8698
8699 *input_line_pointer = '\0';
8700 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8701 scale);
8702 *input_line_pointer = sep;
8703 input_line_pointer = save;
8704 return NULL;
8705 }
252b5132 8706 }
29b0f896 8707 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
8708 {
8709 as_warn (_("scale factor of %d without an index register"),
24eab124 8710 1 << i.log2_scale_factor);
252b5132 8711 i.log2_scale_factor = 0;
252b5132 8712 }
551c1ca1
AM
8713 scale = input_line_pointer;
8714 input_line_pointer = save;
8715 return scale;
252b5132
RH
8716}
8717
252b5132 8718static int
e3bb37b5 8719i386_displacement (char *disp_start, char *disp_end)
252b5132 8720{
29b0f896 8721 expressionS *exp;
252b5132
RH
8722 segT exp_seg = 0;
8723 char *save_input_line_pointer;
f3c180ae 8724 char *gotfree_input_line;
40fb9820
L
8725 int override;
8726 i386_operand_type bigdisp, types = anydisp;
3992d3b7 8727 int ret;
252b5132 8728
31b2323c
L
8729 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8730 {
8731 as_bad (_("at most %d displacement operands are allowed"),
8732 MAX_MEMORY_OPERANDS);
8733 return 0;
8734 }
8735
0dfbf9d7 8736 operand_type_set (&bigdisp, 0);
40fb9820
L
8737 if ((i.types[this_operand].bitfield.jumpabsolute)
8738 || (!current_templates->start->opcode_modifier.jump
8739 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 8740 {
40fb9820 8741 bigdisp.bitfield.disp32 = 1;
e05278af 8742 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
8743 if (flag_code == CODE_64BIT)
8744 {
8745 if (!override)
8746 {
8747 bigdisp.bitfield.disp32s = 1;
8748 bigdisp.bitfield.disp64 = 1;
8749 }
8750 }
8751 else if ((flag_code == CODE_16BIT) ^ override)
8752 {
8753 bigdisp.bitfield.disp32 = 0;
8754 bigdisp.bitfield.disp16 = 1;
8755 }
e05278af
JB
8756 }
8757 else
8758 {
8759 /* For PC-relative branches, the width of the displacement
8760 is dependent upon data size, not address size. */
e05278af 8761 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
8762 if (flag_code == CODE_64BIT)
8763 {
8764 if (override || i.suffix == WORD_MNEM_SUFFIX)
8765 bigdisp.bitfield.disp16 = 1;
8766 else
8767 {
8768 bigdisp.bitfield.disp32 = 1;
8769 bigdisp.bitfield.disp32s = 1;
8770 }
8771 }
8772 else
e05278af
JB
8773 {
8774 if (!override)
8775 override = (i.suffix == (flag_code != CODE_16BIT
8776 ? WORD_MNEM_SUFFIX
8777 : LONG_MNEM_SUFFIX));
40fb9820
L
8778 bigdisp.bitfield.disp32 = 1;
8779 if ((flag_code == CODE_16BIT) ^ override)
8780 {
8781 bigdisp.bitfield.disp32 = 0;
8782 bigdisp.bitfield.disp16 = 1;
8783 }
e05278af 8784 }
e05278af 8785 }
c6fb90c8
L
8786 i.types[this_operand] = operand_type_or (i.types[this_operand],
8787 bigdisp);
252b5132
RH
8788
8789 exp = &disp_expressions[i.disp_operands];
520dc8e8 8790 i.op[this_operand].disps = exp;
252b5132
RH
8791 i.disp_operands++;
8792 save_input_line_pointer = input_line_pointer;
8793 input_line_pointer = disp_start;
8794 END_STRING_AND_SAVE (disp_end);
8795
8796#ifndef GCC_ASM_O_HACK
8797#define GCC_ASM_O_HACK 0
8798#endif
8799#if GCC_ASM_O_HACK
8800 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 8801 if (i.types[this_operand].bitfield.baseIndex
24eab124 8802 && displacement_string_end[-1] == '+')
252b5132
RH
8803 {
8804 /* This hack is to avoid a warning when using the "o"
24eab124
AM
8805 constraint within gcc asm statements.
8806 For instance:
8807
8808 #define _set_tssldt_desc(n,addr,limit,type) \
8809 __asm__ __volatile__ ( \
8810 "movw %w2,%0\n\t" \
8811 "movw %w1,2+%0\n\t" \
8812 "rorl $16,%1\n\t" \
8813 "movb %b1,4+%0\n\t" \
8814 "movb %4,5+%0\n\t" \
8815 "movb $0,6+%0\n\t" \
8816 "movb %h1,7+%0\n\t" \
8817 "rorl $16,%1" \
8818 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8819
8820 This works great except that the output assembler ends
8821 up looking a bit weird if it turns out that there is
8822 no offset. You end up producing code that looks like:
8823
8824 #APP
8825 movw $235,(%eax)
8826 movw %dx,2+(%eax)
8827 rorl $16,%edx
8828 movb %dl,4+(%eax)
8829 movb $137,5+(%eax)
8830 movb $0,6+(%eax)
8831 movb %dh,7+(%eax)
8832 rorl $16,%edx
8833 #NO_APP
8834
47926f60 8835 So here we provide the missing zero. */
24eab124
AM
8836
8837 *displacement_string_end = '0';
252b5132
RH
8838 }
8839#endif
d258b828 8840 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
8841 if (gotfree_input_line)
8842 input_line_pointer = gotfree_input_line;
252b5132 8843
24eab124 8844 exp_seg = expression (exp);
252b5132 8845
636c26b0
AM
8846 SKIP_WHITESPACE ();
8847 if (*input_line_pointer)
8848 as_bad (_("junk `%s' after expression"), input_line_pointer);
8849#if GCC_ASM_O_HACK
8850 RESTORE_END_STRING (disp_end + 1);
8851#endif
636c26b0 8852 input_line_pointer = save_input_line_pointer;
636c26b0 8853 if (gotfree_input_line)
ee86248c
JB
8854 {
8855 free (gotfree_input_line);
8856
8857 if (exp->X_op == O_constant || exp->X_op == O_register)
8858 exp->X_op = O_illegal;
8859 }
8860
8861 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8862
8863 RESTORE_END_STRING (disp_end);
8864
8865 return ret;
8866}
8867
8868static int
8869i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8870 i386_operand_type types, const char *disp_start)
8871{
8872 i386_operand_type bigdisp;
8873 int ret = 1;
636c26b0 8874
24eab124
AM
8875 /* We do this to make sure that the section symbol is in
8876 the symbol table. We will ultimately change the relocation
47926f60 8877 to be relative to the beginning of the section. */
1ae12ab7 8878 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
8879 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8880 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 8881 {
636c26b0 8882 if (exp->X_op != O_symbol)
3992d3b7 8883 goto inv_disp;
636c26b0 8884
e5cb08ac 8885 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
8886 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8887 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 8888 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
8889 exp->X_op = O_subtract;
8890 exp->X_op_symbol = GOT_symbol;
1ae12ab7 8891 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 8892 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
8893 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8894 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 8895 else
29b0f896 8896 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 8897 }
252b5132 8898
3992d3b7
AM
8899 else if (exp->X_op == O_absent
8900 || exp->X_op == O_illegal
ee86248c 8901 || exp->X_op == O_big)
2daf4fd8 8902 {
3992d3b7
AM
8903 inv_disp:
8904 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 8905 disp_start);
3992d3b7 8906 ret = 0;
2daf4fd8
AM
8907 }
8908
0e1147d9
L
8909 else if (flag_code == CODE_64BIT
8910 && !i.prefix[ADDR_PREFIX]
8911 && exp->X_op == O_constant)
8912 {
8913 /* Since displacement is signed extended to 64bit, don't allow
8914 disp32 and turn off disp32s if they are out of range. */
8915 i.types[this_operand].bitfield.disp32 = 0;
8916 if (!fits_in_signed_long (exp->X_add_number))
8917 {
8918 i.types[this_operand].bitfield.disp32s = 0;
8919 if (i.types[this_operand].bitfield.baseindex)
8920 {
8921 as_bad (_("0x%lx out range of signed 32bit displacement"),
8922 (long) exp->X_add_number);
8923 ret = 0;
8924 }
8925 }
8926 }
8927
4c63da97 8928#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
8929 else if (exp->X_op != O_constant
8930 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8931 && exp_seg != absolute_section
8932 && exp_seg != text_section
8933 && exp_seg != data_section
8934 && exp_seg != bss_section
8935 && exp_seg != undefined_section
8936 && !bfd_is_com_section (exp_seg))
24eab124 8937 {
d0b47220 8938 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 8939 ret = 0;
24eab124 8940 }
252b5132 8941#endif
3956db08 8942
40fb9820
L
8943 /* Check if this is a displacement only operand. */
8944 bigdisp = i.types[this_operand];
8945 bigdisp.bitfield.disp8 = 0;
8946 bigdisp.bitfield.disp16 = 0;
8947 bigdisp.bitfield.disp32 = 0;
8948 bigdisp.bitfield.disp32s = 0;
8949 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 8950 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
8951 i.types[this_operand] = operand_type_and (i.types[this_operand],
8952 types);
3956db08 8953
3992d3b7 8954 return ret;
252b5132
RH
8955}
8956
2abc2bec
JB
8957/* Return the active addressing mode, taking address override and
8958 registers forming the address into consideration. Update the
8959 address override prefix if necessary. */
47926f60 8960
2abc2bec
JB
8961static enum flag_code
8962i386_addressing_mode (void)
252b5132 8963{
be05d201
L
8964 enum flag_code addr_mode;
8965
8966 if (i.prefix[ADDR_PREFIX])
8967 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8968 else
8969 {
8970 addr_mode = flag_code;
8971
24eab124 8972#if INFER_ADDR_PREFIX
be05d201
L
8973 if (i.mem_operands == 0)
8974 {
8975 /* Infer address prefix from the first memory operand. */
8976 const reg_entry *addr_reg = i.base_reg;
8977
8978 if (addr_reg == NULL)
8979 addr_reg = i.index_reg;
eecb386c 8980
be05d201
L
8981 if (addr_reg)
8982 {
8983 if (addr_reg->reg_num == RegEip
8984 || addr_reg->reg_num == RegEiz
dc821c5f 8985 || addr_reg->reg_type.bitfield.dword)
be05d201
L
8986 addr_mode = CODE_32BIT;
8987 else if (flag_code != CODE_64BIT
dc821c5f 8988 && addr_reg->reg_type.bitfield.word)
be05d201
L
8989 addr_mode = CODE_16BIT;
8990
8991 if (addr_mode != flag_code)
8992 {
8993 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8994 i.prefixes += 1;
8995 /* Change the size of any displacement too. At most one
8996 of Disp16 or Disp32 is set.
8997 FIXME. There doesn't seem to be any real need for
8998 separate Disp16 and Disp32 flags. The same goes for
8999 Imm16 and Imm32. Removing them would probably clean
9000 up the code quite a lot. */
9001 if (flag_code != CODE_64BIT
9002 && (i.types[this_operand].bitfield.disp16
9003 || i.types[this_operand].bitfield.disp32))
9004 i.types[this_operand]
9005 = operand_type_xor (i.types[this_operand], disp16_32);
9006 }
9007 }
9008 }
24eab124 9009#endif
be05d201
L
9010 }
9011
2abc2bec
JB
9012 return addr_mode;
9013}
9014
9015/* Make sure the memory operand we've been dealt is valid.
9016 Return 1 on success, 0 on a failure. */
9017
9018static int
9019i386_index_check (const char *operand_string)
9020{
9021 const char *kind = "base/index";
9022 enum flag_code addr_mode = i386_addressing_mode ();
9023
fc0763e6
JB
9024 if (current_templates->start->opcode_modifier.isstring
9025 && !current_templates->start->opcode_modifier.immext
9026 && (current_templates->end[-1].opcode_modifier.isstring
9027 || i.mem_operands))
9028 {
9029 /* Memory operands of string insns are special in that they only allow
9030 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
9031 const reg_entry *expected_reg;
9032 static const char *di_si[][2] =
9033 {
9034 { "esi", "edi" },
9035 { "si", "di" },
9036 { "rsi", "rdi" }
9037 };
9038 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
9039
9040 kind = "string address";
9041
8325cc63 9042 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6
JB
9043 {
9044 i386_operand_type type = current_templates->end[-1].operand_types[0];
9045
9046 if (!type.bitfield.baseindex
9047 || ((!i.mem_operands != !intel_syntax)
9048 && current_templates->end[-1].operand_types[1]
9049 .bitfield.baseindex))
9050 type = current_templates->end[-1].operand_types[1];
be05d201
L
9051 expected_reg = hash_find (reg_hash,
9052 di_si[addr_mode][type.bitfield.esseg]);
9053
fc0763e6
JB
9054 }
9055 else
be05d201 9056 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 9057
be05d201
L
9058 if (i.base_reg != expected_reg
9059 || i.index_reg
fc0763e6 9060 || operand_type_check (i.types[this_operand], disp))
fc0763e6 9061 {
be05d201
L
9062 /* The second memory operand must have the same size as
9063 the first one. */
9064 if (i.mem_operands
9065 && i.base_reg
9066 && !((addr_mode == CODE_64BIT
dc821c5f 9067 && i.base_reg->reg_type.bitfield.qword)
be05d201 9068 || (addr_mode == CODE_32BIT
dc821c5f
JB
9069 ? i.base_reg->reg_type.bitfield.dword
9070 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
9071 goto bad_address;
9072
fc0763e6
JB
9073 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9074 operand_string,
9075 intel_syntax ? '[' : '(',
9076 register_prefix,
be05d201 9077 expected_reg->reg_name,
fc0763e6 9078 intel_syntax ? ']' : ')');
be05d201 9079 return 1;
fc0763e6 9080 }
be05d201
L
9081 else
9082 return 1;
9083
9084bad_address:
9085 as_bad (_("`%s' is not a valid %s expression"),
9086 operand_string, kind);
9087 return 0;
3e73aa7c
JH
9088 }
9089 else
9090 {
be05d201
L
9091 if (addr_mode != CODE_16BIT)
9092 {
9093 /* 32-bit/64-bit checks. */
9094 if ((i.base_reg
9095 && (addr_mode == CODE_64BIT
dc821c5f
JB
9096 ? !i.base_reg->reg_type.bitfield.qword
9097 : !i.base_reg->reg_type.bitfield.dword)
be05d201
L
9098 && (i.index_reg
9099 || (i.base_reg->reg_num
9100 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
9101 || (i.index_reg
1b54b8d7
JB
9102 && !i.index_reg->reg_type.bitfield.xmmword
9103 && !i.index_reg->reg_type.bitfield.ymmword
9104 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 9105 && ((addr_mode == CODE_64BIT
dc821c5f 9106 ? !(i.index_reg->reg_type.bitfield.qword
be05d201 9107 || i.index_reg->reg_num == RegRiz)
dc821c5f 9108 : !(i.index_reg->reg_type.bitfield.dword
be05d201
L
9109 || i.index_reg->reg_num == RegEiz))
9110 || !i.index_reg->reg_type.bitfield.baseindex)))
9111 goto bad_address;
8178be5b
JB
9112
9113 /* bndmk, bndldx, and bndstx have special restrictions. */
9114 if (current_templates->start->base_opcode == 0xf30f1b
9115 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9116 {
9117 /* They cannot use RIP-relative addressing. */
9118 if (i.base_reg && i.base_reg->reg_num == RegRip)
9119 {
9120 as_bad (_("`%s' cannot be used here"), operand_string);
9121 return 0;
9122 }
9123
9124 /* bndldx and bndstx ignore their scale factor. */
9125 if (current_templates->start->base_opcode != 0xf30f1b
9126 && i.log2_scale_factor)
9127 as_warn (_("register scaling is being ignored here"));
9128 }
be05d201
L
9129 }
9130 else
3e73aa7c 9131 {
be05d201 9132 /* 16-bit checks. */
3e73aa7c 9133 if ((i.base_reg
dc821c5f 9134 && (!i.base_reg->reg_type.bitfield.word
40fb9820 9135 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 9136 || (i.index_reg
dc821c5f 9137 && (!i.index_reg->reg_type.bitfield.word
40fb9820 9138 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
9139 || !(i.base_reg
9140 && i.base_reg->reg_num < 6
9141 && i.index_reg->reg_num >= 6
9142 && i.log2_scale_factor == 0))))
be05d201 9143 goto bad_address;
3e73aa7c
JH
9144 }
9145 }
be05d201 9146 return 1;
24eab124 9147}
252b5132 9148
43234a1e
L
9149/* Handle vector immediates. */
9150
9151static int
9152RC_SAE_immediate (const char *imm_start)
9153{
9154 unsigned int match_found, j;
9155 const char *pstr = imm_start;
9156 expressionS *exp;
9157
9158 if (*pstr != '{')
9159 return 0;
9160
9161 pstr++;
9162 match_found = 0;
9163 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9164 {
9165 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9166 {
9167 if (!i.rounding)
9168 {
9169 rc_op.type = RC_NamesTable[j].type;
9170 rc_op.operand = this_operand;
9171 i.rounding = &rc_op;
9172 }
9173 else
9174 {
9175 as_bad (_("duplicated `%s'"), imm_start);
9176 return 0;
9177 }
9178 pstr += RC_NamesTable[j].len;
9179 match_found = 1;
9180 break;
9181 }
9182 }
9183 if (!match_found)
9184 return 0;
9185
9186 if (*pstr++ != '}')
9187 {
9188 as_bad (_("Missing '}': '%s'"), imm_start);
9189 return 0;
9190 }
9191 /* RC/SAE immediate string should contain nothing more. */;
9192 if (*pstr != 0)
9193 {
9194 as_bad (_("Junk after '}': '%s'"), imm_start);
9195 return 0;
9196 }
9197
9198 exp = &im_expressions[i.imm_operands++];
9199 i.op[this_operand].imms = exp;
9200
9201 exp->X_op = O_constant;
9202 exp->X_add_number = 0;
9203 exp->X_add_symbol = (symbolS *) 0;
9204 exp->X_op_symbol = (symbolS *) 0;
9205
9206 i.types[this_operand].bitfield.imm8 = 1;
9207 return 1;
9208}
9209
8325cc63
JB
9210/* Only string instructions can have a second memory operand, so
9211 reduce current_templates to just those if it contains any. */
9212static int
9213maybe_adjust_templates (void)
9214{
9215 const insn_template *t;
9216
9217 gas_assert (i.mem_operands == 1);
9218
9219 for (t = current_templates->start; t < current_templates->end; ++t)
9220 if (t->opcode_modifier.isstring)
9221 break;
9222
9223 if (t < current_templates->end)
9224 {
9225 static templates aux_templates;
9226 bfd_boolean recheck;
9227
9228 aux_templates.start = t;
9229 for (; t < current_templates->end; ++t)
9230 if (!t->opcode_modifier.isstring)
9231 break;
9232 aux_templates.end = t;
9233
9234 /* Determine whether to re-check the first memory operand. */
9235 recheck = (aux_templates.start != current_templates->start
9236 || t != current_templates->end);
9237
9238 current_templates = &aux_templates;
9239
9240 if (recheck)
9241 {
9242 i.mem_operands = 0;
9243 if (i.memop1_string != NULL
9244 && i386_index_check (i.memop1_string) == 0)
9245 return 0;
9246 i.mem_operands = 1;
9247 }
9248 }
9249
9250 return 1;
9251}
9252
fc0763e6 9253/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 9254 on error. */
252b5132 9255
252b5132 9256static int
a7619375 9257i386_att_operand (char *operand_string)
252b5132 9258{
af6bdddf
AM
9259 const reg_entry *r;
9260 char *end_op;
24eab124 9261 char *op_string = operand_string;
252b5132 9262
24eab124 9263 if (is_space_char (*op_string))
252b5132
RH
9264 ++op_string;
9265
24eab124 9266 /* We check for an absolute prefix (differentiating,
47926f60 9267 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
9268 if (*op_string == ABSOLUTE_PREFIX)
9269 {
9270 ++op_string;
9271 if (is_space_char (*op_string))
9272 ++op_string;
40fb9820 9273 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 9274 }
252b5132 9275
47926f60 9276 /* Check if operand is a register. */
4d1bb795 9277 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 9278 {
40fb9820
L
9279 i386_operand_type temp;
9280
24eab124
AM
9281 /* Check for a segment override by searching for ':' after a
9282 segment register. */
9283 op_string = end_op;
9284 if (is_space_char (*op_string))
9285 ++op_string;
40fb9820
L
9286 if (*op_string == ':'
9287 && (r->reg_type.bitfield.sreg2
9288 || r->reg_type.bitfield.sreg3))
24eab124
AM
9289 {
9290 switch (r->reg_num)
9291 {
9292 case 0:
9293 i.seg[i.mem_operands] = &es;
9294 break;
9295 case 1:
9296 i.seg[i.mem_operands] = &cs;
9297 break;
9298 case 2:
9299 i.seg[i.mem_operands] = &ss;
9300 break;
9301 case 3:
9302 i.seg[i.mem_operands] = &ds;
9303 break;
9304 case 4:
9305 i.seg[i.mem_operands] = &fs;
9306 break;
9307 case 5:
9308 i.seg[i.mem_operands] = &gs;
9309 break;
9310 }
252b5132 9311
24eab124 9312 /* Skip the ':' and whitespace. */
252b5132
RH
9313 ++op_string;
9314 if (is_space_char (*op_string))
24eab124 9315 ++op_string;
252b5132 9316
24eab124
AM
9317 if (!is_digit_char (*op_string)
9318 && !is_identifier_char (*op_string)
9319 && *op_string != '('
9320 && *op_string != ABSOLUTE_PREFIX)
9321 {
9322 as_bad (_("bad memory operand `%s'"), op_string);
9323 return 0;
9324 }
47926f60 9325 /* Handle case of %es:*foo. */
24eab124
AM
9326 if (*op_string == ABSOLUTE_PREFIX)
9327 {
9328 ++op_string;
9329 if (is_space_char (*op_string))
9330 ++op_string;
40fb9820 9331 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
9332 }
9333 goto do_memory_reference;
9334 }
43234a1e
L
9335
9336 /* Handle vector operations. */
9337 if (*op_string == '{')
9338 {
9339 op_string = check_VecOperations (op_string, NULL);
9340 if (op_string == NULL)
9341 return 0;
9342 }
9343
24eab124
AM
9344 if (*op_string)
9345 {
d0b47220 9346 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
9347 return 0;
9348 }
40fb9820
L
9349 temp = r->reg_type;
9350 temp.bitfield.baseindex = 0;
c6fb90c8
L
9351 i.types[this_operand] = operand_type_or (i.types[this_operand],
9352 temp);
7d5e4556 9353 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 9354 i.op[this_operand].regs = r;
24eab124
AM
9355 i.reg_operands++;
9356 }
af6bdddf
AM
9357 else if (*op_string == REGISTER_PREFIX)
9358 {
9359 as_bad (_("bad register name `%s'"), op_string);
9360 return 0;
9361 }
24eab124 9362 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 9363 {
24eab124 9364 ++op_string;
40fb9820 9365 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 9366 {
d0b47220 9367 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
9368 return 0;
9369 }
9370 if (!i386_immediate (op_string))
9371 return 0;
9372 }
43234a1e
L
9373 else if (RC_SAE_immediate (operand_string))
9374 {
9375 /* If it is a RC or SAE immediate, do nothing. */
9376 ;
9377 }
24eab124
AM
9378 else if (is_digit_char (*op_string)
9379 || is_identifier_char (*op_string)
d02603dc 9380 || *op_string == '"'
e5cb08ac 9381 || *op_string == '(')
24eab124 9382 {
47926f60 9383 /* This is a memory reference of some sort. */
af6bdddf 9384 char *base_string;
252b5132 9385
47926f60 9386 /* Start and end of displacement string expression (if found). */
eecb386c
AM
9387 char *displacement_string_start;
9388 char *displacement_string_end;
43234a1e 9389 char *vop_start;
252b5132 9390
24eab124 9391 do_memory_reference:
8325cc63
JB
9392 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9393 return 0;
24eab124 9394 if ((i.mem_operands == 1
40fb9820 9395 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
9396 || i.mem_operands == 2)
9397 {
9398 as_bad (_("too many memory references for `%s'"),
9399 current_templates->start->name);
9400 return 0;
9401 }
252b5132 9402
24eab124
AM
9403 /* Check for base index form. We detect the base index form by
9404 looking for an ')' at the end of the operand, searching
9405 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9406 after the '('. */
af6bdddf 9407 base_string = op_string + strlen (op_string);
c3332e24 9408
43234a1e
L
9409 /* Handle vector operations. */
9410 vop_start = strchr (op_string, '{');
9411 if (vop_start && vop_start < base_string)
9412 {
9413 if (check_VecOperations (vop_start, base_string) == NULL)
9414 return 0;
9415 base_string = vop_start;
9416 }
9417
af6bdddf
AM
9418 --base_string;
9419 if (is_space_char (*base_string))
9420 --base_string;
252b5132 9421
47926f60 9422 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
9423 displacement_string_start = op_string;
9424 displacement_string_end = base_string + 1;
252b5132 9425
24eab124
AM
9426 if (*base_string == ')')
9427 {
af6bdddf 9428 char *temp_string;
24eab124
AM
9429 unsigned int parens_balanced = 1;
9430 /* We've already checked that the number of left & right ()'s are
47926f60 9431 equal, so this loop will not be infinite. */
24eab124
AM
9432 do
9433 {
9434 base_string--;
9435 if (*base_string == ')')
9436 parens_balanced++;
9437 if (*base_string == '(')
9438 parens_balanced--;
9439 }
9440 while (parens_balanced);
c3332e24 9441
af6bdddf 9442 temp_string = base_string;
c3332e24 9443
24eab124 9444 /* Skip past '(' and whitespace. */
252b5132
RH
9445 ++base_string;
9446 if (is_space_char (*base_string))
24eab124 9447 ++base_string;
252b5132 9448
af6bdddf 9449 if (*base_string == ','
4eed87de
AM
9450 || ((i.base_reg = parse_register (base_string, &end_op))
9451 != NULL))
252b5132 9452 {
af6bdddf 9453 displacement_string_end = temp_string;
252b5132 9454
40fb9820 9455 i.types[this_operand].bitfield.baseindex = 1;
252b5132 9456
af6bdddf 9457 if (i.base_reg)
24eab124 9458 {
24eab124
AM
9459 base_string = end_op;
9460 if (is_space_char (*base_string))
9461 ++base_string;
af6bdddf
AM
9462 }
9463
9464 /* There may be an index reg or scale factor here. */
9465 if (*base_string == ',')
9466 {
9467 ++base_string;
9468 if (is_space_char (*base_string))
9469 ++base_string;
9470
4eed87de
AM
9471 if ((i.index_reg = parse_register (base_string, &end_op))
9472 != NULL)
24eab124 9473 {
af6bdddf 9474 base_string = end_op;
24eab124
AM
9475 if (is_space_char (*base_string))
9476 ++base_string;
af6bdddf
AM
9477 if (*base_string == ',')
9478 {
9479 ++base_string;
9480 if (is_space_char (*base_string))
9481 ++base_string;
9482 }
e5cb08ac 9483 else if (*base_string != ')')
af6bdddf 9484 {
4eed87de
AM
9485 as_bad (_("expecting `,' or `)' "
9486 "after index register in `%s'"),
af6bdddf
AM
9487 operand_string);
9488 return 0;
9489 }
24eab124 9490 }
af6bdddf 9491 else if (*base_string == REGISTER_PREFIX)
24eab124 9492 {
f76bf5e0
L
9493 end_op = strchr (base_string, ',');
9494 if (end_op)
9495 *end_op = '\0';
af6bdddf 9496 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
9497 return 0;
9498 }
252b5132 9499
47926f60 9500 /* Check for scale factor. */
551c1ca1 9501 if (*base_string != ')')
af6bdddf 9502 {
551c1ca1
AM
9503 char *end_scale = i386_scale (base_string);
9504
9505 if (!end_scale)
af6bdddf 9506 return 0;
24eab124 9507
551c1ca1 9508 base_string = end_scale;
af6bdddf
AM
9509 if (is_space_char (*base_string))
9510 ++base_string;
9511 if (*base_string != ')')
9512 {
4eed87de
AM
9513 as_bad (_("expecting `)' "
9514 "after scale factor in `%s'"),
af6bdddf
AM
9515 operand_string);
9516 return 0;
9517 }
9518 }
9519 else if (!i.index_reg)
24eab124 9520 {
4eed87de
AM
9521 as_bad (_("expecting index register or scale factor "
9522 "after `,'; got '%c'"),
af6bdddf 9523 *base_string);
24eab124
AM
9524 return 0;
9525 }
9526 }
af6bdddf 9527 else if (*base_string != ')')
24eab124 9528 {
4eed87de
AM
9529 as_bad (_("expecting `,' or `)' "
9530 "after base register in `%s'"),
af6bdddf 9531 operand_string);
24eab124
AM
9532 return 0;
9533 }
c3332e24 9534 }
af6bdddf 9535 else if (*base_string == REGISTER_PREFIX)
c3332e24 9536 {
f76bf5e0
L
9537 end_op = strchr (base_string, ',');
9538 if (end_op)
9539 *end_op = '\0';
af6bdddf 9540 as_bad (_("bad register name `%s'"), base_string);
24eab124 9541 return 0;
c3332e24 9542 }
24eab124
AM
9543 }
9544
9545 /* If there's an expression beginning the operand, parse it,
9546 assuming displacement_string_start and
9547 displacement_string_end are meaningful. */
9548 if (displacement_string_start != displacement_string_end)
9549 {
9550 if (!i386_displacement (displacement_string_start,
9551 displacement_string_end))
9552 return 0;
9553 }
9554
9555 /* Special case for (%dx) while doing input/output op. */
9556 if (i.base_reg
0dfbf9d7
L
9557 && operand_type_equal (&i.base_reg->reg_type,
9558 &reg16_inoutportreg)
24eab124
AM
9559 && i.index_reg == 0
9560 && i.log2_scale_factor == 0
9561 && i.seg[i.mem_operands] == 0
40fb9820 9562 && !operand_type_check (i.types[this_operand], disp))
24eab124 9563 {
65da13b5 9564 i.types[this_operand] = inoutportreg;
24eab124
AM
9565 return 1;
9566 }
9567
eecb386c
AM
9568 if (i386_index_check (operand_string) == 0)
9569 return 0;
5c07affc 9570 i.types[this_operand].bitfield.mem = 1;
8325cc63
JB
9571 if (i.mem_operands == 0)
9572 i.memop1_string = xstrdup (operand_string);
24eab124
AM
9573 i.mem_operands++;
9574 }
9575 else
ce8a8b2f
AM
9576 {
9577 /* It's not a memory operand; argh! */
24eab124
AM
9578 as_bad (_("invalid char %s beginning operand %d `%s'"),
9579 output_invalid (*op_string),
9580 this_operand + 1,
9581 op_string);
9582 return 0;
9583 }
47926f60 9584 return 1; /* Normal return. */
252b5132
RH
9585}
9586\f
fa94de6b
RM
9587/* Calculate the maximum variable size (i.e., excluding fr_fix)
9588 that an rs_machine_dependent frag may reach. */
9589
9590unsigned int
9591i386_frag_max_var (fragS *frag)
9592{
9593 /* The only relaxable frags are for jumps.
9594 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9595 gas_assert (frag->fr_type == rs_machine_dependent);
9596 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9597}
9598
b084df0b
L
9599#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9600static int
8dcea932 9601elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
9602{
9603 /* STT_GNU_IFUNC symbol must go through PLT. */
9604 if ((symbol_get_bfdsym (fr_symbol)->flags
9605 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9606 return 0;
9607
9608 if (!S_IS_EXTERNAL (fr_symbol))
9609 /* Symbol may be weak or local. */
9610 return !S_IS_WEAK (fr_symbol);
9611
8dcea932
L
9612 /* Global symbols with non-default visibility can't be preempted. */
9613 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9614 return 1;
9615
9616 if (fr_var != NO_RELOC)
9617 switch ((enum bfd_reloc_code_real) fr_var)
9618 {
9619 case BFD_RELOC_386_PLT32:
9620 case BFD_RELOC_X86_64_PLT32:
33eaf5de 9621 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
9622 return 0;
9623 default:
9624 abort ();
9625 }
9626
b084df0b
L
9627 /* Global symbols with default visibility in a shared library may be
9628 preempted by another definition. */
8dcea932 9629 return !shared;
b084df0b
L
9630}
9631#endif
9632
ee7fcc42
AM
9633/* md_estimate_size_before_relax()
9634
9635 Called just before relax() for rs_machine_dependent frags. The x86
9636 assembler uses these frags to handle variable size jump
9637 instructions.
9638
9639 Any symbol that is now undefined will not become defined.
9640 Return the correct fr_subtype in the frag.
9641 Return the initial "guess for variable size of frag" to caller.
9642 The guess is actually the growth beyond the fixed part. Whatever
9643 we do to grow the fixed or variable part contributes to our
9644 returned value. */
9645
252b5132 9646int
7016a5d5 9647md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 9648{
252b5132 9649 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
9650 check for un-relaxable symbols. On an ELF system, we can't relax
9651 an externally visible symbol, because it may be overridden by a
9652 shared library. */
9653 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 9654#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9655 || (IS_ELF
8dcea932
L
9656 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9657 fragP->fr_var))
fbeb56a4
DK
9658#endif
9659#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 9660 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 9661 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
9662#endif
9663 )
252b5132 9664 {
b98ef147
AM
9665 /* Symbol is undefined in this segment, or we need to keep a
9666 reloc so that weak symbols can be overridden. */
9667 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 9668 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
9669 unsigned char *opcode;
9670 int old_fr_fix;
f6af82bd 9671
ee7fcc42 9672 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 9673 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 9674 else if (size == 2)
f6af82bd 9675 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
9676#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9677 else if (need_plt32_p (fragP->fr_symbol))
9678 reloc_type = BFD_RELOC_X86_64_PLT32;
9679#endif
f6af82bd
AM
9680 else
9681 reloc_type = BFD_RELOC_32_PCREL;
252b5132 9682
ee7fcc42
AM
9683 old_fr_fix = fragP->fr_fix;
9684 opcode = (unsigned char *) fragP->fr_opcode;
9685
fddf5b5b 9686 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 9687 {
fddf5b5b
AM
9688 case UNCOND_JUMP:
9689 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 9690 opcode[0] = 0xe9;
252b5132 9691 fragP->fr_fix += size;
062cd5e7
AS
9692 fix_new (fragP, old_fr_fix, size,
9693 fragP->fr_symbol,
9694 fragP->fr_offset, 1,
9695 reloc_type);
252b5132
RH
9696 break;
9697
fddf5b5b 9698 case COND_JUMP86:
412167cb
AM
9699 if (size == 2
9700 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
9701 {
9702 /* Negate the condition, and branch past an
9703 unconditional jump. */
9704 opcode[0] ^= 1;
9705 opcode[1] = 3;
9706 /* Insert an unconditional jump. */
9707 opcode[2] = 0xe9;
9708 /* We added two extra opcode bytes, and have a two byte
9709 offset. */
9710 fragP->fr_fix += 2 + 2;
062cd5e7
AS
9711 fix_new (fragP, old_fr_fix + 2, 2,
9712 fragP->fr_symbol,
9713 fragP->fr_offset, 1,
9714 reloc_type);
fddf5b5b
AM
9715 break;
9716 }
9717 /* Fall through. */
9718
9719 case COND_JUMP:
412167cb
AM
9720 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9721 {
3e02c1cc
AM
9722 fixS *fixP;
9723
412167cb 9724 fragP->fr_fix += 1;
3e02c1cc
AM
9725 fixP = fix_new (fragP, old_fr_fix, 1,
9726 fragP->fr_symbol,
9727 fragP->fr_offset, 1,
9728 BFD_RELOC_8_PCREL);
9729 fixP->fx_signed = 1;
412167cb
AM
9730 break;
9731 }
93c2a809 9732
24eab124 9733 /* This changes the byte-displacement jump 0x7N
fddf5b5b 9734 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 9735 opcode[1] = opcode[0] + 0x10;
f6af82bd 9736 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
9737 /* We've added an opcode byte. */
9738 fragP->fr_fix += 1 + size;
062cd5e7
AS
9739 fix_new (fragP, old_fr_fix + 1, size,
9740 fragP->fr_symbol,
9741 fragP->fr_offset, 1,
9742 reloc_type);
252b5132 9743 break;
fddf5b5b
AM
9744
9745 default:
9746 BAD_CASE (fragP->fr_subtype);
9747 break;
252b5132
RH
9748 }
9749 frag_wane (fragP);
ee7fcc42 9750 return fragP->fr_fix - old_fr_fix;
252b5132 9751 }
93c2a809 9752
93c2a809
AM
9753 /* Guess size depending on current relax state. Initially the relax
9754 state will correspond to a short jump and we return 1, because
9755 the variable part of the frag (the branch offset) is one byte
9756 long. However, we can relax a section more than once and in that
9757 case we must either set fr_subtype back to the unrelaxed state,
9758 or return the value for the appropriate branch. */
9759 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
9760}
9761
47926f60
KH
9762/* Called after relax() is finished.
9763
9764 In: Address of frag.
9765 fr_type == rs_machine_dependent.
9766 fr_subtype is what the address relaxed to.
9767
9768 Out: Any fixSs and constants are set up.
9769 Caller will turn frag into a ".space 0". */
9770
252b5132 9771void
7016a5d5
TG
9772md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9773 fragS *fragP)
252b5132 9774{
29b0f896 9775 unsigned char *opcode;
252b5132 9776 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
9777 offsetT target_address;
9778 offsetT opcode_address;
252b5132 9779 unsigned int extension = 0;
847f7ad4 9780 offsetT displacement_from_opcode_start;
252b5132
RH
9781
9782 opcode = (unsigned char *) fragP->fr_opcode;
9783
47926f60 9784 /* Address we want to reach in file space. */
252b5132 9785 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 9786
47926f60 9787 /* Address opcode resides at in file space. */
252b5132
RH
9788 opcode_address = fragP->fr_address + fragP->fr_fix;
9789
47926f60 9790 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
9791 displacement_from_opcode_start = target_address - opcode_address;
9792
fddf5b5b 9793 if ((fragP->fr_subtype & BIG) == 0)
252b5132 9794 {
47926f60
KH
9795 /* Don't have to change opcode. */
9796 extension = 1; /* 1 opcode + 1 displacement */
252b5132 9797 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
9798 }
9799 else
9800 {
9801 if (no_cond_jump_promotion
9802 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
9803 as_warn_where (fragP->fr_file, fragP->fr_line,
9804 _("long jump required"));
252b5132 9805
fddf5b5b
AM
9806 switch (fragP->fr_subtype)
9807 {
9808 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9809 extension = 4; /* 1 opcode + 4 displacement */
9810 opcode[0] = 0xe9;
9811 where_to_put_displacement = &opcode[1];
9812 break;
252b5132 9813
fddf5b5b
AM
9814 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9815 extension = 2; /* 1 opcode + 2 displacement */
9816 opcode[0] = 0xe9;
9817 where_to_put_displacement = &opcode[1];
9818 break;
252b5132 9819
fddf5b5b
AM
9820 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9821 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9822 extension = 5; /* 2 opcode + 4 displacement */
9823 opcode[1] = opcode[0] + 0x10;
9824 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9825 where_to_put_displacement = &opcode[2];
9826 break;
252b5132 9827
fddf5b5b
AM
9828 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9829 extension = 3; /* 2 opcode + 2 displacement */
9830 opcode[1] = opcode[0] + 0x10;
9831 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9832 where_to_put_displacement = &opcode[2];
9833 break;
252b5132 9834
fddf5b5b
AM
9835 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9836 extension = 4;
9837 opcode[0] ^= 1;
9838 opcode[1] = 3;
9839 opcode[2] = 0xe9;
9840 where_to_put_displacement = &opcode[3];
9841 break;
9842
9843 default:
9844 BAD_CASE (fragP->fr_subtype);
9845 break;
9846 }
252b5132 9847 }
fddf5b5b 9848
7b81dfbb
AJ
9849 /* If size if less then four we are sure that the operand fits,
9850 but if it's 4, then it could be that the displacement is larger
9851 then -/+ 2GB. */
9852 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9853 && object_64bit
9854 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
9855 + ((addressT) 1 << 31))
9856 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
9857 {
9858 as_bad_where (fragP->fr_file, fragP->fr_line,
9859 _("jump target out of range"));
9860 /* Make us emit 0. */
9861 displacement_from_opcode_start = extension;
9862 }
47926f60 9863 /* Now put displacement after opcode. */
252b5132
RH
9864 md_number_to_chars ((char *) where_to_put_displacement,
9865 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 9866 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
9867 fragP->fr_fix += extension;
9868}
9869\f
7016a5d5 9870/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
9871 by our caller that we have all the info we need to fix it up.
9872
7016a5d5
TG
9873 Parameter valP is the pointer to the value of the bits.
9874
252b5132
RH
9875 On the 386, immediates, displacements, and data pointers are all in
9876 the same (little-endian) format, so we don't need to care about which
9877 we are handling. */
9878
94f592af 9879void
7016a5d5 9880md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 9881{
94f592af 9882 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 9883 valueT value = *valP;
252b5132 9884
f86103b7 9885#if !defined (TE_Mach)
93382f6d
AM
9886 if (fixP->fx_pcrel)
9887 {
9888 switch (fixP->fx_r_type)
9889 {
5865bb77
ILT
9890 default:
9891 break;
9892
d6ab8113
JB
9893 case BFD_RELOC_64:
9894 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9895 break;
93382f6d 9896 case BFD_RELOC_32:
ae8887b5 9897 case BFD_RELOC_X86_64_32S:
93382f6d
AM
9898 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9899 break;
9900 case BFD_RELOC_16:
9901 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9902 break;
9903 case BFD_RELOC_8:
9904 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9905 break;
9906 }
9907 }
252b5132 9908
a161fe53 9909 if (fixP->fx_addsy != NULL
31312f95 9910 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 9911 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 9912 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 9913 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 9914 && !use_rela_relocations)
252b5132 9915 {
31312f95
AM
9916 /* This is a hack. There should be a better way to handle this.
9917 This covers for the fact that bfd_install_relocation will
9918 subtract the current location (for partial_inplace, PC relative
9919 relocations); see more below. */
252b5132 9920#ifndef OBJ_AOUT
718ddfc0 9921 if (IS_ELF
252b5132
RH
9922#ifdef TE_PE
9923 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9924#endif
9925 )
9926 value += fixP->fx_where + fixP->fx_frag->fr_address;
9927#endif
9928#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9929 if (IS_ELF)
252b5132 9930 {
6539b54b 9931 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 9932
6539b54b 9933 if ((sym_seg == seg
2f66722d 9934 || (symbol_section_p (fixP->fx_addsy)
6539b54b 9935 && sym_seg != absolute_section))
af65af87 9936 && !generic_force_reloc (fixP))
2f66722d
AM
9937 {
9938 /* Yes, we add the values in twice. This is because
6539b54b
AM
9939 bfd_install_relocation subtracts them out again. I think
9940 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
9941 it. FIXME. */
9942 value += fixP->fx_where + fixP->fx_frag->fr_address;
9943 }
252b5132
RH
9944 }
9945#endif
9946#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
9947 /* For some reason, the PE format does not store a
9948 section address offset for a PC relative symbol. */
9949 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 9950 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
9951 value += md_pcrel_from (fixP);
9952#endif
9953 }
fbeb56a4 9954#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
9955 if (fixP->fx_addsy != NULL
9956 && S_IS_WEAK (fixP->fx_addsy)
9957 /* PR 16858: Do not modify weak function references. */
9958 && ! fixP->fx_pcrel)
fbeb56a4 9959 {
296a8689
NC
9960#if !defined (TE_PEP)
9961 /* For x86 PE weak function symbols are neither PC-relative
9962 nor do they set S_IS_FUNCTION. So the only reliable way
9963 to detect them is to check the flags of their containing
9964 section. */
9965 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9966 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9967 ;
9968 else
9969#endif
fbeb56a4
DK
9970 value -= S_GET_VALUE (fixP->fx_addsy);
9971 }
9972#endif
252b5132
RH
9973
9974 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 9975 and we must not disappoint it. */
252b5132 9976#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9977 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
9978 switch (fixP->fx_r_type)
9979 {
9980 case BFD_RELOC_386_PLT32:
3e73aa7c 9981 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
9982 /* Make the jump instruction point to the address of the operand. At
9983 runtime we merely add the offset to the actual PLT entry. */
9984 value = -4;
9985 break;
31312f95 9986
13ae64f3
JJ
9987 case BFD_RELOC_386_TLS_GD:
9988 case BFD_RELOC_386_TLS_LDM:
13ae64f3 9989 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
9990 case BFD_RELOC_386_TLS_IE:
9991 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 9992 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
9993 case BFD_RELOC_X86_64_TLSGD:
9994 case BFD_RELOC_X86_64_TLSLD:
9995 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 9996 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
9997 value = 0; /* Fully resolved at runtime. No addend. */
9998 /* Fallthrough */
9999 case BFD_RELOC_386_TLS_LE:
10000 case BFD_RELOC_386_TLS_LDO_32:
10001 case BFD_RELOC_386_TLS_LE_32:
10002 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 10003 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 10004 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 10005 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
10006 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10007 break;
10008
67a4f2b7
AO
10009 case BFD_RELOC_386_TLS_DESC_CALL:
10010 case BFD_RELOC_X86_64_TLSDESC_CALL:
10011 value = 0; /* Fully resolved at runtime. No addend. */
10012 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10013 fixP->fx_done = 0;
10014 return;
10015
47926f60
KH
10016 case BFD_RELOC_VTABLE_INHERIT:
10017 case BFD_RELOC_VTABLE_ENTRY:
10018 fixP->fx_done = 0;
94f592af 10019 return;
47926f60
KH
10020
10021 default:
10022 break;
10023 }
10024#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 10025 *valP = value;
f86103b7 10026#endif /* !defined (TE_Mach) */
3e73aa7c 10027
3e73aa7c 10028 /* Are we finished with this relocation now? */
c6682705 10029 if (fixP->fx_addsy == NULL)
3e73aa7c 10030 fixP->fx_done = 1;
fbeb56a4
DK
10031#if defined (OBJ_COFF) && defined (TE_PE)
10032 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10033 {
10034 fixP->fx_done = 0;
10035 /* Remember value for tc_gen_reloc. */
10036 fixP->fx_addnumber = value;
10037 /* Clear out the frag for now. */
10038 value = 0;
10039 }
10040#endif
3e73aa7c
JH
10041 else if (use_rela_relocations)
10042 {
10043 fixP->fx_no_overflow = 1;
062cd5e7
AS
10044 /* Remember value for tc_gen_reloc. */
10045 fixP->fx_addnumber = value;
3e73aa7c
JH
10046 value = 0;
10047 }
f86103b7 10048
94f592af 10049 md_number_to_chars (p, value, fixP->fx_size);
252b5132 10050}
252b5132 10051\f
6d4af3c2 10052const char *
499ac353 10053md_atof (int type, char *litP, int *sizeP)
252b5132 10054{
499ac353
NC
10055 /* This outputs the LITTLENUMs in REVERSE order;
10056 in accord with the bigendian 386. */
10057 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
10058}
10059\f
2d545b82 10060static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 10061
252b5132 10062static char *
e3bb37b5 10063output_invalid (int c)
252b5132 10064{
3882b010 10065 if (ISPRINT (c))
f9f21a03
L
10066 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10067 "'%c'", c);
252b5132 10068 else
f9f21a03 10069 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 10070 "(0x%x)", (unsigned char) c);
252b5132
RH
10071 return output_invalid_buf;
10072}
10073
af6bdddf 10074/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
10075
10076static const reg_entry *
4d1bb795 10077parse_real_register (char *reg_string, char **end_op)
252b5132 10078{
af6bdddf
AM
10079 char *s = reg_string;
10080 char *p;
252b5132
RH
10081 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10082 const reg_entry *r;
10083
10084 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10085 if (*s == REGISTER_PREFIX)
10086 ++s;
10087
10088 if (is_space_char (*s))
10089 ++s;
10090
10091 p = reg_name_given;
af6bdddf 10092 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
10093 {
10094 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
10095 return (const reg_entry *) NULL;
10096 s++;
252b5132
RH
10097 }
10098
6588847e
DN
10099 /* For naked regs, make sure that we are not dealing with an identifier.
10100 This prevents confusing an identifier like `eax_var' with register
10101 `eax'. */
10102 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10103 return (const reg_entry *) NULL;
10104
af6bdddf 10105 *end_op = s;
252b5132
RH
10106
10107 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10108
5f47d35b 10109 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 10110 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 10111 {
0e0eea78
JB
10112 if (!cpu_arch_flags.bitfield.cpu8087
10113 && !cpu_arch_flags.bitfield.cpu287
10114 && !cpu_arch_flags.bitfield.cpu387)
10115 return (const reg_entry *) NULL;
10116
5f47d35b
AM
10117 if (is_space_char (*s))
10118 ++s;
10119 if (*s == '(')
10120 {
af6bdddf 10121 ++s;
5f47d35b
AM
10122 if (is_space_char (*s))
10123 ++s;
10124 if (*s >= '0' && *s <= '7')
10125 {
db557034 10126 int fpr = *s - '0';
af6bdddf 10127 ++s;
5f47d35b
AM
10128 if (is_space_char (*s))
10129 ++s;
10130 if (*s == ')')
10131 {
10132 *end_op = s + 1;
1e9cc1c2 10133 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
10134 know (r);
10135 return r + fpr;
5f47d35b 10136 }
5f47d35b 10137 }
47926f60 10138 /* We have "%st(" then garbage. */
5f47d35b
AM
10139 return (const reg_entry *) NULL;
10140 }
10141 }
10142
a60de03c
JB
10143 if (r == NULL || allow_pseudo_reg)
10144 return r;
10145
0dfbf9d7 10146 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
10147 return (const reg_entry *) NULL;
10148
dc821c5f 10149 if ((r->reg_type.bitfield.dword
192dc9c6
JB
10150 || r->reg_type.bitfield.sreg3
10151 || r->reg_type.bitfield.control
10152 || r->reg_type.bitfield.debug
10153 || r->reg_type.bitfield.test)
10154 && !cpu_arch_flags.bitfield.cpui386)
10155 return (const reg_entry *) NULL;
10156
6e041cf4 10157 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
192dc9c6
JB
10158 return (const reg_entry *) NULL;
10159
6e041cf4
JB
10160 if (!cpu_arch_flags.bitfield.cpuavx512f)
10161 {
10162 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10163 return (const reg_entry *) NULL;
40f12533 10164
6e041cf4
JB
10165 if (!cpu_arch_flags.bitfield.cpuavx)
10166 {
10167 if (r->reg_type.bitfield.ymmword)
10168 return (const reg_entry *) NULL;
1848e567 10169
6e041cf4
JB
10170 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10171 return (const reg_entry *) NULL;
10172 }
10173 }
43234a1e 10174
1adf7f56
JB
10175 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10176 return (const reg_entry *) NULL;
10177
db51cc60 10178 /* Don't allow fake index register unless allow_index_reg isn't 0. */
a60de03c 10179 if (!allow_index_reg
db51cc60
L
10180 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
10181 return (const reg_entry *) NULL;
10182
1d3f8286
JB
10183 /* Upper 16 vector registers are only available with VREX in 64bit
10184 mode, and require EVEX encoding. */
10185 if (r->reg_flags & RegVRex)
43234a1e
L
10186 {
10187 if (!cpu_arch_flags.bitfield.cpuvrex
10188 || flag_code != CODE_64BIT)
10189 return (const reg_entry *) NULL;
1d3f8286
JB
10190
10191 i.vec_encoding = vex_encoding_evex;
43234a1e
L
10192 }
10193
a60de03c 10194 if (((r->reg_flags & (RegRex64 | RegRex))
dc821c5f 10195 || r->reg_type.bitfield.qword)
40fb9820 10196 && (!cpu_arch_flags.bitfield.cpulm
0dfbf9d7 10197 || !operand_type_equal (&r->reg_type, &control))
1ae00879 10198 && flag_code != CODE_64BIT)
20f0a1fc 10199 return (const reg_entry *) NULL;
1ae00879 10200
b7240065
JB
10201 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10202 return (const reg_entry *) NULL;
10203
252b5132
RH
10204 return r;
10205}
4d1bb795
JB
10206
10207/* REG_STRING starts *before* REGISTER_PREFIX. */
10208
10209static const reg_entry *
10210parse_register (char *reg_string, char **end_op)
10211{
10212 const reg_entry *r;
10213
10214 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10215 r = parse_real_register (reg_string, end_op);
10216 else
10217 r = NULL;
10218 if (!r)
10219 {
10220 char *save = input_line_pointer;
10221 char c;
10222 symbolS *symbolP;
10223
10224 input_line_pointer = reg_string;
d02603dc 10225 c = get_symbol_name (&reg_string);
4d1bb795
JB
10226 symbolP = symbol_find (reg_string);
10227 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10228 {
10229 const expressionS *e = symbol_get_value_expression (symbolP);
10230
0398aac5 10231 know (e->X_op == O_register);
4eed87de 10232 know (e->X_add_number >= 0
c3fe08fa 10233 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 10234 r = i386_regtab + e->X_add_number;
d3bb6b49 10235 if ((r->reg_flags & RegVRex))
86fa6981 10236 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
10237 *end_op = input_line_pointer;
10238 }
10239 *input_line_pointer = c;
10240 input_line_pointer = save;
10241 }
10242 return r;
10243}
10244
10245int
10246i386_parse_name (char *name, expressionS *e, char *nextcharP)
10247{
10248 const reg_entry *r;
10249 char *end = input_line_pointer;
10250
10251 *end = *nextcharP;
10252 r = parse_register (name, &input_line_pointer);
10253 if (r && end <= input_line_pointer)
10254 {
10255 *nextcharP = *input_line_pointer;
10256 *input_line_pointer = 0;
10257 e->X_op = O_register;
10258 e->X_add_number = r - i386_regtab;
10259 return 1;
10260 }
10261 input_line_pointer = end;
10262 *end = 0;
ee86248c 10263 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
10264}
10265
10266void
10267md_operand (expressionS *e)
10268{
ee86248c
JB
10269 char *end;
10270 const reg_entry *r;
4d1bb795 10271
ee86248c
JB
10272 switch (*input_line_pointer)
10273 {
10274 case REGISTER_PREFIX:
10275 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
10276 if (r)
10277 {
10278 e->X_op = O_register;
10279 e->X_add_number = r - i386_regtab;
10280 input_line_pointer = end;
10281 }
ee86248c
JB
10282 break;
10283
10284 case '[':
9c2799c2 10285 gas_assert (intel_syntax);
ee86248c
JB
10286 end = input_line_pointer++;
10287 expression (e);
10288 if (*input_line_pointer == ']')
10289 {
10290 ++input_line_pointer;
10291 e->X_op_symbol = make_expr_symbol (e);
10292 e->X_add_symbol = NULL;
10293 e->X_add_number = 0;
10294 e->X_op = O_index;
10295 }
10296 else
10297 {
10298 e->X_op = O_absent;
10299 input_line_pointer = end;
10300 }
10301 break;
4d1bb795
JB
10302 }
10303}
10304
252b5132 10305\f
4cc782b5 10306#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 10307const char *md_shortopts = "kVQ:sqnO::";
252b5132 10308#else
b6f8c7c4 10309const char *md_shortopts = "qnO::";
252b5132 10310#endif
6e0b89ee 10311
3e73aa7c 10312#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
10313#define OPTION_64 (OPTION_MD_BASE + 1)
10314#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
10315#define OPTION_MARCH (OPTION_MD_BASE + 3)
10316#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
10317#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10318#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10319#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10320#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 10321#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 10322#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 10323#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
10324#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10325#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10326#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 10327#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
10328#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10329#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 10330#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 10331#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 10332#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 10333#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
10334#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10335#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 10336#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b3b91714 10337
99ad8390
NC
10338struct option md_longopts[] =
10339{
3e73aa7c 10340 {"32", no_argument, NULL, OPTION_32},
321098a5 10341#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10342 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 10343 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
10344#endif
10345#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 10346 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 10347 {"mshared", no_argument, NULL, OPTION_MSHARED},
6e0b89ee 10348#endif
b3b91714 10349 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
10350 {"march", required_argument, NULL, OPTION_MARCH},
10351 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
10352 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10353 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10354 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10355 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 10356 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 10357 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 10358 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 10359 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
7e8b059b 10360 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
10361 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10362 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
10363# if defined (TE_PE) || defined (TE_PEP)
10364 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10365#endif
d1982f93 10366 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 10367 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 10368 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 10369 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
10370 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10371 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
10372 {NULL, no_argument, NULL, 0}
10373};
10374size_t md_longopts_size = sizeof (md_longopts);
10375
10376int
17b9d67d 10377md_parse_option (int c, const char *arg)
252b5132 10378{
91d6fa6a 10379 unsigned int j;
293f5f65 10380 char *arch, *next, *saved;
9103f4f4 10381
252b5132
RH
10382 switch (c)
10383 {
12b55ccc
L
10384 case 'n':
10385 optimize_align_code = 0;
10386 break;
10387
a38cf1db
AM
10388 case 'q':
10389 quiet_warnings = 1;
252b5132
RH
10390 break;
10391
10392#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
10393 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10394 should be emitted or not. FIXME: Not implemented. */
10395 case 'Q':
252b5132
RH
10396 break;
10397
10398 /* -V: SVR4 argument to print version ID. */
10399 case 'V':
10400 print_version_id ();
10401 break;
10402
a38cf1db
AM
10403 /* -k: Ignore for FreeBSD compatibility. */
10404 case 'k':
252b5132 10405 break;
4cc782b5
ILT
10406
10407 case 's':
10408 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 10409 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 10410 break;
8dcea932
L
10411
10412 case OPTION_MSHARED:
10413 shared = 1;
10414 break;
99ad8390 10415#endif
321098a5 10416#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10417 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
10418 case OPTION_64:
10419 {
10420 const char **list, **l;
10421
3e73aa7c
JH
10422 list = bfd_target_list ();
10423 for (l = list; *l != NULL; l++)
8620418b 10424 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
10425 || strcmp (*l, "coff-x86-64") == 0
10426 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
10427 || strcmp (*l, "pei-x86-64") == 0
10428 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
10429 {
10430 default_arch = "x86_64";
10431 break;
10432 }
3e73aa7c 10433 if (*l == NULL)
2b5d6a91 10434 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
10435 free (list);
10436 }
10437 break;
10438#endif
252b5132 10439
351f65ca 10440#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 10441 case OPTION_X32:
351f65ca
L
10442 if (IS_ELF)
10443 {
10444 const char **list, **l;
10445
10446 list = bfd_target_list ();
10447 for (l = list; *l != NULL; l++)
10448 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10449 {
10450 default_arch = "x86_64:32";
10451 break;
10452 }
10453 if (*l == NULL)
2b5d6a91 10454 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
10455 free (list);
10456 }
10457 else
10458 as_fatal (_("32bit x86_64 is only supported for ELF"));
10459 break;
10460#endif
10461
6e0b89ee
AM
10462 case OPTION_32:
10463 default_arch = "i386";
10464 break;
10465
b3b91714
AM
10466 case OPTION_DIVIDE:
10467#ifdef SVR4_COMMENT_CHARS
10468 {
10469 char *n, *t;
10470 const char *s;
10471
add39d23 10472 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
10473 t = n;
10474 for (s = i386_comment_chars; *s != '\0'; s++)
10475 if (*s != '/')
10476 *t++ = *s;
10477 *t = '\0';
10478 i386_comment_chars = n;
10479 }
10480#endif
10481 break;
10482
9103f4f4 10483 case OPTION_MARCH:
293f5f65
L
10484 saved = xstrdup (arg);
10485 arch = saved;
10486 /* Allow -march=+nosse. */
10487 if (*arch == '+')
10488 arch++;
6305a203 10489 do
9103f4f4 10490 {
6305a203 10491 if (*arch == '.')
2b5d6a91 10492 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
10493 next = strchr (arch, '+');
10494 if (next)
10495 *next++ = '\0';
91d6fa6a 10496 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 10497 {
91d6fa6a 10498 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 10499 {
6305a203 10500 /* Processor. */
1ded5609
JB
10501 if (! cpu_arch[j].flags.bitfield.cpui386)
10502 continue;
10503
91d6fa6a 10504 cpu_arch_name = cpu_arch[j].name;
6305a203 10505 cpu_sub_arch_name = NULL;
91d6fa6a
NC
10506 cpu_arch_flags = cpu_arch[j].flags;
10507 cpu_arch_isa = cpu_arch[j].type;
10508 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
10509 if (!cpu_arch_tune_set)
10510 {
10511 cpu_arch_tune = cpu_arch_isa;
10512 cpu_arch_tune_flags = cpu_arch_isa_flags;
10513 }
10514 break;
10515 }
91d6fa6a
NC
10516 else if (*cpu_arch [j].name == '.'
10517 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 10518 {
33eaf5de 10519 /* ISA extension. */
6305a203 10520 i386_cpu_flags flags;
309d3373 10521
293f5f65
L
10522 flags = cpu_flags_or (cpu_arch_flags,
10523 cpu_arch[j].flags);
81486035 10524
5b64d091 10525 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
10526 {
10527 if (cpu_sub_arch_name)
10528 {
10529 char *name = cpu_sub_arch_name;
10530 cpu_sub_arch_name = concat (name,
91d6fa6a 10531 cpu_arch[j].name,
1bf57e9f 10532 (const char *) NULL);
6305a203
L
10533 free (name);
10534 }
10535 else
91d6fa6a 10536 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 10537 cpu_arch_flags = flags;
a586129e 10538 cpu_arch_isa_flags = flags;
6305a203 10539 }
0089dace
L
10540 else
10541 cpu_arch_isa_flags
10542 = cpu_flags_or (cpu_arch_isa_flags,
10543 cpu_arch[j].flags);
6305a203 10544 break;
ccc9c027 10545 }
9103f4f4 10546 }
6305a203 10547
293f5f65
L
10548 if (j >= ARRAY_SIZE (cpu_arch))
10549 {
33eaf5de 10550 /* Disable an ISA extension. */
293f5f65
L
10551 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10552 if (strcmp (arch, cpu_noarch [j].name) == 0)
10553 {
10554 i386_cpu_flags flags;
10555
10556 flags = cpu_flags_and_not (cpu_arch_flags,
10557 cpu_noarch[j].flags);
10558 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10559 {
10560 if (cpu_sub_arch_name)
10561 {
10562 char *name = cpu_sub_arch_name;
10563 cpu_sub_arch_name = concat (arch,
10564 (const char *) NULL);
10565 free (name);
10566 }
10567 else
10568 cpu_sub_arch_name = xstrdup (arch);
10569 cpu_arch_flags = flags;
10570 cpu_arch_isa_flags = flags;
10571 }
10572 break;
10573 }
10574
10575 if (j >= ARRAY_SIZE (cpu_noarch))
10576 j = ARRAY_SIZE (cpu_arch);
10577 }
10578
91d6fa6a 10579 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 10580 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
10581
10582 arch = next;
9103f4f4 10583 }
293f5f65
L
10584 while (next != NULL);
10585 free (saved);
9103f4f4
L
10586 break;
10587
10588 case OPTION_MTUNE:
10589 if (*arg == '.')
2b5d6a91 10590 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 10591 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 10592 {
91d6fa6a 10593 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 10594 {
ccc9c027 10595 cpu_arch_tune_set = 1;
91d6fa6a
NC
10596 cpu_arch_tune = cpu_arch [j].type;
10597 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
10598 break;
10599 }
10600 }
91d6fa6a 10601 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 10602 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
10603 break;
10604
1efbbeb4
L
10605 case OPTION_MMNEMONIC:
10606 if (strcasecmp (arg, "att") == 0)
10607 intel_mnemonic = 0;
10608 else if (strcasecmp (arg, "intel") == 0)
10609 intel_mnemonic = 1;
10610 else
2b5d6a91 10611 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
10612 break;
10613
10614 case OPTION_MSYNTAX:
10615 if (strcasecmp (arg, "att") == 0)
10616 intel_syntax = 0;
10617 else if (strcasecmp (arg, "intel") == 0)
10618 intel_syntax = 1;
10619 else
2b5d6a91 10620 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
10621 break;
10622
10623 case OPTION_MINDEX_REG:
10624 allow_index_reg = 1;
10625 break;
10626
10627 case OPTION_MNAKED_REG:
10628 allow_naked_reg = 1;
10629 break;
10630
c0f3af97
L
10631 case OPTION_MSSE2AVX:
10632 sse2avx = 1;
10633 break;
10634
daf50ae7
L
10635 case OPTION_MSSE_CHECK:
10636 if (strcasecmp (arg, "error") == 0)
7bab8ab5 10637 sse_check = check_error;
daf50ae7 10638 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 10639 sse_check = check_warning;
daf50ae7 10640 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 10641 sse_check = check_none;
daf50ae7 10642 else
2b5d6a91 10643 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
10644 break;
10645
7bab8ab5
JB
10646 case OPTION_MOPERAND_CHECK:
10647 if (strcasecmp (arg, "error") == 0)
10648 operand_check = check_error;
10649 else if (strcasecmp (arg, "warning") == 0)
10650 operand_check = check_warning;
10651 else if (strcasecmp (arg, "none") == 0)
10652 operand_check = check_none;
10653 else
10654 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10655 break;
10656
539f890d
L
10657 case OPTION_MAVXSCALAR:
10658 if (strcasecmp (arg, "128") == 0)
10659 avxscalar = vex128;
10660 else if (strcasecmp (arg, "256") == 0)
10661 avxscalar = vex256;
10662 else
2b5d6a91 10663 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
10664 break;
10665
7e8b059b
L
10666 case OPTION_MADD_BND_PREFIX:
10667 add_bnd_prefix = 1;
10668 break;
10669
43234a1e
L
10670 case OPTION_MEVEXLIG:
10671 if (strcmp (arg, "128") == 0)
10672 evexlig = evexl128;
10673 else if (strcmp (arg, "256") == 0)
10674 evexlig = evexl256;
10675 else if (strcmp (arg, "512") == 0)
10676 evexlig = evexl512;
10677 else
10678 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10679 break;
10680
d3d3c6db
IT
10681 case OPTION_MEVEXRCIG:
10682 if (strcmp (arg, "rne") == 0)
10683 evexrcig = rne;
10684 else if (strcmp (arg, "rd") == 0)
10685 evexrcig = rd;
10686 else if (strcmp (arg, "ru") == 0)
10687 evexrcig = ru;
10688 else if (strcmp (arg, "rz") == 0)
10689 evexrcig = rz;
10690 else
10691 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10692 break;
10693
43234a1e
L
10694 case OPTION_MEVEXWIG:
10695 if (strcmp (arg, "0") == 0)
10696 evexwig = evexw0;
10697 else if (strcmp (arg, "1") == 0)
10698 evexwig = evexw1;
10699 else
10700 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10701 break;
10702
167ad85b
TG
10703# if defined (TE_PE) || defined (TE_PEP)
10704 case OPTION_MBIG_OBJ:
10705 use_big_obj = 1;
10706 break;
10707#endif
10708
d1982f93 10709 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
10710 if (strcasecmp (arg, "yes") == 0)
10711 omit_lock_prefix = 1;
10712 else if (strcasecmp (arg, "no") == 0)
10713 omit_lock_prefix = 0;
10714 else
10715 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10716 break;
10717
e4e00185
AS
10718 case OPTION_MFENCE_AS_LOCK_ADD:
10719 if (strcasecmp (arg, "yes") == 0)
10720 avoid_fence = 1;
10721 else if (strcasecmp (arg, "no") == 0)
10722 avoid_fence = 0;
10723 else
10724 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10725 break;
10726
0cb4071e
L
10727 case OPTION_MRELAX_RELOCATIONS:
10728 if (strcasecmp (arg, "yes") == 0)
10729 generate_relax_relocations = 1;
10730 else if (strcasecmp (arg, "no") == 0)
10731 generate_relax_relocations = 0;
10732 else
10733 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10734 break;
10735
5db04b09 10736 case OPTION_MAMD64:
e89c5eaa 10737 intel64 = 0;
5db04b09
L
10738 break;
10739
10740 case OPTION_MINTEL64:
e89c5eaa 10741 intel64 = 1;
5db04b09
L
10742 break;
10743
b6f8c7c4
L
10744 case 'O':
10745 if (arg == NULL)
10746 {
10747 optimize = 1;
10748 /* Turn off -Os. */
10749 optimize_for_space = 0;
10750 }
10751 else if (*arg == 's')
10752 {
10753 optimize_for_space = 1;
10754 /* Turn on all encoding optimizations. */
10755 optimize = -1;
10756 }
10757 else
10758 {
10759 optimize = atoi (arg);
10760 /* Turn off -Os. */
10761 optimize_for_space = 0;
10762 }
10763 break;
10764
252b5132
RH
10765 default:
10766 return 0;
10767 }
10768 return 1;
10769}
10770
8a2c8fef
L
10771#define MESSAGE_TEMPLATE \
10772" "
10773
293f5f65
L
10774static char *
10775output_message (FILE *stream, char *p, char *message, char *start,
10776 int *left_p, const char *name, int len)
10777{
10778 int size = sizeof (MESSAGE_TEMPLATE);
10779 int left = *left_p;
10780
10781 /* Reserve 2 spaces for ", " or ",\0" */
10782 left -= len + 2;
10783
10784 /* Check if there is any room. */
10785 if (left >= 0)
10786 {
10787 if (p != start)
10788 {
10789 *p++ = ',';
10790 *p++ = ' ';
10791 }
10792 p = mempcpy (p, name, len);
10793 }
10794 else
10795 {
10796 /* Output the current message now and start a new one. */
10797 *p++ = ',';
10798 *p = '\0';
10799 fprintf (stream, "%s\n", message);
10800 p = start;
10801 left = size - (start - message) - len - 2;
10802
10803 gas_assert (left >= 0);
10804
10805 p = mempcpy (p, name, len);
10806 }
10807
10808 *left_p = left;
10809 return p;
10810}
10811
8a2c8fef 10812static void
1ded5609 10813show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
10814{
10815 static char message[] = MESSAGE_TEMPLATE;
10816 char *start = message + 27;
10817 char *p;
10818 int size = sizeof (MESSAGE_TEMPLATE);
10819 int left;
10820 const char *name;
10821 int len;
10822 unsigned int j;
10823
10824 p = start;
10825 left = size - (start - message);
10826 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10827 {
10828 /* Should it be skipped? */
10829 if (cpu_arch [j].skip)
10830 continue;
10831
10832 name = cpu_arch [j].name;
10833 len = cpu_arch [j].len;
10834 if (*name == '.')
10835 {
10836 /* It is an extension. Skip if we aren't asked to show it. */
10837 if (ext)
10838 {
10839 name++;
10840 len--;
10841 }
10842 else
10843 continue;
10844 }
10845 else if (ext)
10846 {
10847 /* It is an processor. Skip if we show only extension. */
10848 continue;
10849 }
1ded5609
JB
10850 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10851 {
10852 /* It is an impossible processor - skip. */
10853 continue;
10854 }
8a2c8fef 10855
293f5f65 10856 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
10857 }
10858
293f5f65
L
10859 /* Display disabled extensions. */
10860 if (ext)
10861 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10862 {
10863 name = cpu_noarch [j].name;
10864 len = cpu_noarch [j].len;
10865 p = output_message (stream, p, message, start, &left, name,
10866 len);
10867 }
10868
8a2c8fef
L
10869 *p = '\0';
10870 fprintf (stream, "%s\n", message);
10871}
10872
252b5132 10873void
8a2c8fef 10874md_show_usage (FILE *stream)
252b5132 10875{
4cc782b5
ILT
10876#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10877 fprintf (stream, _("\
a38cf1db
AM
10878 -Q ignored\n\
10879 -V print assembler version number\n\
b3b91714
AM
10880 -k ignored\n"));
10881#endif
10882 fprintf (stream, _("\
12b55ccc 10883 -n Do not optimize code alignment\n\
b3b91714
AM
10884 -q quieten some warnings\n"));
10885#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10886 fprintf (stream, _("\
a38cf1db 10887 -s ignored\n"));
b3b91714 10888#endif
321098a5
L
10889#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10890 || defined (TE_PE) || defined (TE_PEP))
751d281c 10891 fprintf (stream, _("\
570561f7 10892 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 10893#endif
b3b91714
AM
10894#ifdef SVR4_COMMENT_CHARS
10895 fprintf (stream, _("\
10896 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
10897#else
10898 fprintf (stream, _("\
b3b91714 10899 --divide ignored\n"));
4cc782b5 10900#endif
9103f4f4 10901 fprintf (stream, _("\
6305a203 10902 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 10903 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 10904 show_arch (stream, 0, 1);
8a2c8fef
L
10905 fprintf (stream, _("\
10906 EXTENSION is combination of:\n"));
1ded5609 10907 show_arch (stream, 1, 0);
6305a203 10908 fprintf (stream, _("\
8a2c8fef 10909 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 10910 show_arch (stream, 0, 0);
ba104c83 10911 fprintf (stream, _("\
c0f3af97
L
10912 -msse2avx encode SSE instructions with VEX prefix\n"));
10913 fprintf (stream, _("\
daf50ae7
L
10914 -msse-check=[none|error|warning]\n\
10915 check SSE instructions\n"));
10916 fprintf (stream, _("\
7bab8ab5
JB
10917 -moperand-check=[none|error|warning]\n\
10918 check operand combinations for validity\n"));
10919 fprintf (stream, _("\
539f890d
L
10920 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10921 length\n"));
10922 fprintf (stream, _("\
43234a1e
L
10923 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10924 length\n"));
10925 fprintf (stream, _("\
10926 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10927 for EVEX.W bit ignored instructions\n"));
10928 fprintf (stream, _("\
d3d3c6db
IT
10929 -mevexrcig=[rne|rd|ru|rz]\n\
10930 encode EVEX instructions with specific EVEX.RC value\n\
10931 for SAE-only ignored instructions\n"));
10932 fprintf (stream, _("\
ba104c83
L
10933 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10934 fprintf (stream, _("\
10935 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10936 fprintf (stream, _("\
10937 -mindex-reg support pseudo index registers\n"));
10938 fprintf (stream, _("\
10939 -mnaked-reg don't require `%%' prefix for registers\n"));
10940 fprintf (stream, _("\
7e8b059b 10941 -madd-bnd-prefix add BND prefix for all valid branches\n"));
8dcea932
L
10942 fprintf (stream, _("\
10943 -mshared disable branch optimization for shared code\n"));
167ad85b
TG
10944# if defined (TE_PE) || defined (TE_PEP)
10945 fprintf (stream, _("\
10946 -mbig-obj generate big object files\n"));
10947#endif
d022bddd
IT
10948 fprintf (stream, _("\
10949 -momit-lock-prefix=[no|yes]\n\
10950 strip all lock prefixes\n"));
5db04b09 10951 fprintf (stream, _("\
e4e00185
AS
10952 -mfence-as-lock-add=[no|yes]\n\
10953 encode lfence, mfence and sfence as\n\
10954 lock addl $0x0, (%%{re}sp)\n"));
10955 fprintf (stream, _("\
0cb4071e
L
10956 -mrelax-relocations=[no|yes]\n\
10957 generate relax relocations\n"));
10958 fprintf (stream, _("\
5db04b09
L
10959 -mamd64 accept only AMD64 ISA\n"));
10960 fprintf (stream, _("\
10961 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
10962}
10963
3e73aa7c 10964#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 10965 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 10966 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
10967
10968/* Pick the target format to use. */
10969
47926f60 10970const char *
e3bb37b5 10971i386_target_format (void)
252b5132 10972{
351f65ca
L
10973 if (!strncmp (default_arch, "x86_64", 6))
10974 {
10975 update_code_flag (CODE_64BIT, 1);
10976 if (default_arch[6] == '\0')
7f56bc95 10977 x86_elf_abi = X86_64_ABI;
351f65ca 10978 else
7f56bc95 10979 x86_elf_abi = X86_64_X32_ABI;
351f65ca 10980 }
3e73aa7c 10981 else if (!strcmp (default_arch, "i386"))
78f12dd3 10982 update_code_flag (CODE_32BIT, 1);
5197d474
L
10983 else if (!strcmp (default_arch, "iamcu"))
10984 {
10985 update_code_flag (CODE_32BIT, 1);
10986 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
10987 {
10988 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
10989 cpu_arch_name = "iamcu";
10990 cpu_sub_arch_name = NULL;
10991 cpu_arch_flags = iamcu_flags;
10992 cpu_arch_isa = PROCESSOR_IAMCU;
10993 cpu_arch_isa_flags = iamcu_flags;
10994 if (!cpu_arch_tune_set)
10995 {
10996 cpu_arch_tune = cpu_arch_isa;
10997 cpu_arch_tune_flags = cpu_arch_isa_flags;
10998 }
10999 }
8d471ec1 11000 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
11001 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11002 cpu_arch_name);
11003 }
3e73aa7c 11004 else
2b5d6a91 11005 as_fatal (_("unknown architecture"));
89507696
JB
11006
11007 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11008 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11009 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11010 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11011
252b5132
RH
11012 switch (OUTPUT_FLAVOR)
11013 {
9384f2ff 11014#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 11015 case bfd_target_aout_flavour:
47926f60 11016 return AOUT_TARGET_FORMAT;
4c63da97 11017#endif
9384f2ff
AM
11018#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11019# if defined (TE_PE) || defined (TE_PEP)
11020 case bfd_target_coff_flavour:
167ad85b
TG
11021 if (flag_code == CODE_64BIT)
11022 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11023 else
11024 return "pe-i386";
9384f2ff 11025# elif defined (TE_GO32)
0561d57c
JK
11026 case bfd_target_coff_flavour:
11027 return "coff-go32";
9384f2ff 11028# else
252b5132
RH
11029 case bfd_target_coff_flavour:
11030 return "coff-i386";
9384f2ff 11031# endif
4c63da97 11032#endif
3e73aa7c 11033#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 11034 case bfd_target_elf_flavour:
3e73aa7c 11035 {
351f65ca
L
11036 const char *format;
11037
11038 switch (x86_elf_abi)
4fa24527 11039 {
351f65ca
L
11040 default:
11041 format = ELF_TARGET_FORMAT;
11042 break;
7f56bc95 11043 case X86_64_ABI:
351f65ca 11044 use_rela_relocations = 1;
4fa24527 11045 object_64bit = 1;
351f65ca
L
11046 format = ELF_TARGET_FORMAT64;
11047 break;
7f56bc95 11048 case X86_64_X32_ABI:
4fa24527 11049 use_rela_relocations = 1;
351f65ca 11050 object_64bit = 1;
862be3fb 11051 disallow_64bit_reloc = 1;
351f65ca
L
11052 format = ELF_TARGET_FORMAT32;
11053 break;
4fa24527 11054 }
3632d14b 11055 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 11056 {
7f56bc95 11057 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
11058 as_fatal (_("Intel L1OM is 64bit only"));
11059 return ELF_TARGET_L1OM_FORMAT;
11060 }
b49f93f6 11061 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
11062 {
11063 if (x86_elf_abi != X86_64_ABI)
11064 as_fatal (_("Intel K1OM is 64bit only"));
11065 return ELF_TARGET_K1OM_FORMAT;
11066 }
81486035
L
11067 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11068 {
11069 if (x86_elf_abi != I386_ABI)
11070 as_fatal (_("Intel MCU is 32bit only"));
11071 return ELF_TARGET_IAMCU_FORMAT;
11072 }
8a9036a4 11073 else
351f65ca 11074 return format;
3e73aa7c 11075 }
e57f8c65
TG
11076#endif
11077#if defined (OBJ_MACH_O)
11078 case bfd_target_mach_o_flavour:
d382c579
TG
11079 if (flag_code == CODE_64BIT)
11080 {
11081 use_rela_relocations = 1;
11082 object_64bit = 1;
11083 return "mach-o-x86-64";
11084 }
11085 else
11086 return "mach-o-i386";
4c63da97 11087#endif
252b5132
RH
11088 default:
11089 abort ();
11090 return NULL;
11091 }
11092}
11093
47926f60 11094#endif /* OBJ_MAYBE_ more than one */
252b5132 11095\f
252b5132 11096symbolS *
7016a5d5 11097md_undefined_symbol (char *name)
252b5132 11098{
18dc2407
ILT
11099 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11100 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11101 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11102 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
11103 {
11104 if (!GOT_symbol)
11105 {
11106 if (symbol_find (name))
11107 as_bad (_("GOT already in symbol table"));
11108 GOT_symbol = symbol_new (name, undefined_section,
11109 (valueT) 0, &zero_address_frag);
11110 };
11111 return GOT_symbol;
11112 }
252b5132
RH
11113 return 0;
11114}
11115
11116/* Round up a section size to the appropriate boundary. */
47926f60 11117
252b5132 11118valueT
7016a5d5 11119md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 11120{
4c63da97
AM
11121#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11122 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11123 {
11124 /* For a.out, force the section size to be aligned. If we don't do
11125 this, BFD will align it for us, but it will not write out the
11126 final bytes of the section. This may be a bug in BFD, but it is
11127 easier to fix it here since that is how the other a.out targets
11128 work. */
11129 int align;
11130
11131 align = bfd_get_section_alignment (stdoutput, segment);
8d3842cd 11132 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 11133 }
252b5132
RH
11134#endif
11135
11136 return size;
11137}
11138
11139/* On the i386, PC-relative offsets are relative to the start of the
11140 next instruction. That is, the address of the offset, plus its
11141 size, since the offset is always the last part of the insn. */
11142
11143long
e3bb37b5 11144md_pcrel_from (fixS *fixP)
252b5132
RH
11145{
11146 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11147}
11148
11149#ifndef I386COFF
11150
11151static void
e3bb37b5 11152s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 11153{
29b0f896 11154 int temp;
252b5132 11155
8a75718c
JB
11156#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11157 if (IS_ELF)
11158 obj_elf_section_change_hook ();
11159#endif
252b5132
RH
11160 temp = get_absolute_expression ();
11161 subseg_set (bss_section, (subsegT) temp);
11162 demand_empty_rest_of_line ();
11163}
11164
11165#endif
11166
252b5132 11167void
e3bb37b5 11168i386_validate_fix (fixS *fixp)
252b5132 11169{
02a86693 11170 if (fixp->fx_subsy)
252b5132 11171 {
02a86693 11172 if (fixp->fx_subsy == GOT_symbol)
23df1078 11173 {
02a86693
L
11174 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11175 {
11176 if (!object_64bit)
11177 abort ();
11178#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11179 if (fixp->fx_tcbit2)
56ceb5b5
L
11180 fixp->fx_r_type = (fixp->fx_tcbit
11181 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11182 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
11183 else
11184#endif
11185 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11186 }
d6ab8113 11187 else
02a86693
L
11188 {
11189 if (!object_64bit)
11190 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11191 else
11192 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11193 }
11194 fixp->fx_subsy = 0;
23df1078 11195 }
252b5132 11196 }
02a86693
L
11197#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11198 else if (!object_64bit)
11199 {
11200 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11201 && fixp->fx_tcbit2)
11202 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11203 }
11204#endif
252b5132
RH
11205}
11206
252b5132 11207arelent *
7016a5d5 11208tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
11209{
11210 arelent *rel;
11211 bfd_reloc_code_real_type code;
11212
11213 switch (fixp->fx_r_type)
11214 {
8ce3d284 11215#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
11216 case BFD_RELOC_SIZE32:
11217 case BFD_RELOC_SIZE64:
11218 if (S_IS_DEFINED (fixp->fx_addsy)
11219 && !S_IS_EXTERNAL (fixp->fx_addsy))
11220 {
11221 /* Resolve size relocation against local symbol to size of
11222 the symbol plus addend. */
11223 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11224 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11225 && !fits_in_unsigned_long (value))
11226 as_bad_where (fixp->fx_file, fixp->fx_line,
11227 _("symbol size computation overflow"));
11228 fixp->fx_addsy = NULL;
11229 fixp->fx_subsy = NULL;
11230 md_apply_fix (fixp, (valueT *) &value, NULL);
11231 return NULL;
11232 }
8ce3d284 11233#endif
1a0670f3 11234 /* Fall through. */
8fd4256d 11235
3e73aa7c
JH
11236 case BFD_RELOC_X86_64_PLT32:
11237 case BFD_RELOC_X86_64_GOT32:
11238 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11239 case BFD_RELOC_X86_64_GOTPCRELX:
11240 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
11241 case BFD_RELOC_386_PLT32:
11242 case BFD_RELOC_386_GOT32:
02a86693 11243 case BFD_RELOC_386_GOT32X:
252b5132
RH
11244 case BFD_RELOC_386_GOTOFF:
11245 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
11246 case BFD_RELOC_386_TLS_GD:
11247 case BFD_RELOC_386_TLS_LDM:
11248 case BFD_RELOC_386_TLS_LDO_32:
11249 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
11250 case BFD_RELOC_386_TLS_IE:
11251 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
11252 case BFD_RELOC_386_TLS_LE_32:
11253 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
11254 case BFD_RELOC_386_TLS_GOTDESC:
11255 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
11256 case BFD_RELOC_X86_64_TLSGD:
11257 case BFD_RELOC_X86_64_TLSLD:
11258 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 11259 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
11260 case BFD_RELOC_X86_64_GOTTPOFF:
11261 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
11262 case BFD_RELOC_X86_64_TPOFF64:
11263 case BFD_RELOC_X86_64_GOTOFF64:
11264 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
11265 case BFD_RELOC_X86_64_GOT64:
11266 case BFD_RELOC_X86_64_GOTPCREL64:
11267 case BFD_RELOC_X86_64_GOTPC64:
11268 case BFD_RELOC_X86_64_GOTPLT64:
11269 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
11270 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11271 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
11272 case BFD_RELOC_RVA:
11273 case BFD_RELOC_VTABLE_ENTRY:
11274 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
11275#ifdef TE_PE
11276 case BFD_RELOC_32_SECREL:
11277#endif
252b5132
RH
11278 code = fixp->fx_r_type;
11279 break;
dbbaec26
L
11280 case BFD_RELOC_X86_64_32S:
11281 if (!fixp->fx_pcrel)
11282 {
11283 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11284 code = fixp->fx_r_type;
11285 break;
11286 }
1a0670f3 11287 /* Fall through. */
252b5132 11288 default:
93382f6d 11289 if (fixp->fx_pcrel)
252b5132 11290 {
93382f6d
AM
11291 switch (fixp->fx_size)
11292 {
11293 default:
b091f402
AM
11294 as_bad_where (fixp->fx_file, fixp->fx_line,
11295 _("can not do %d byte pc-relative relocation"),
11296 fixp->fx_size);
93382f6d
AM
11297 code = BFD_RELOC_32_PCREL;
11298 break;
11299 case 1: code = BFD_RELOC_8_PCREL; break;
11300 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 11301 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
11302#ifdef BFD64
11303 case 8: code = BFD_RELOC_64_PCREL; break;
11304#endif
93382f6d
AM
11305 }
11306 }
11307 else
11308 {
11309 switch (fixp->fx_size)
11310 {
11311 default:
b091f402
AM
11312 as_bad_where (fixp->fx_file, fixp->fx_line,
11313 _("can not do %d byte relocation"),
11314 fixp->fx_size);
93382f6d
AM
11315 code = BFD_RELOC_32;
11316 break;
11317 case 1: code = BFD_RELOC_8; break;
11318 case 2: code = BFD_RELOC_16; break;
11319 case 4: code = BFD_RELOC_32; break;
937149dd 11320#ifdef BFD64
3e73aa7c 11321 case 8: code = BFD_RELOC_64; break;
937149dd 11322#endif
93382f6d 11323 }
252b5132
RH
11324 }
11325 break;
11326 }
252b5132 11327
d182319b
JB
11328 if ((code == BFD_RELOC_32
11329 || code == BFD_RELOC_32_PCREL
11330 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
11331 && GOT_symbol
11332 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 11333 {
4fa24527 11334 if (!object_64bit)
d6ab8113
JB
11335 code = BFD_RELOC_386_GOTPC;
11336 else
11337 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 11338 }
7b81dfbb
AJ
11339 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11340 && GOT_symbol
11341 && fixp->fx_addsy == GOT_symbol)
11342 {
11343 code = BFD_RELOC_X86_64_GOTPC64;
11344 }
252b5132 11345
add39d23
TS
11346 rel = XNEW (arelent);
11347 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 11348 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
11349
11350 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 11351
3e73aa7c
JH
11352 if (!use_rela_relocations)
11353 {
11354 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11355 vtable entry to be used in the relocation's section offset. */
11356 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11357 rel->address = fixp->fx_offset;
fbeb56a4
DK
11358#if defined (OBJ_COFF) && defined (TE_PE)
11359 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11360 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11361 else
11362#endif
c6682705 11363 rel->addend = 0;
3e73aa7c
JH
11364 }
11365 /* Use the rela in 64bit mode. */
252b5132 11366 else
3e73aa7c 11367 {
862be3fb
L
11368 if (disallow_64bit_reloc)
11369 switch (code)
11370 {
862be3fb
L
11371 case BFD_RELOC_X86_64_DTPOFF64:
11372 case BFD_RELOC_X86_64_TPOFF64:
11373 case BFD_RELOC_64_PCREL:
11374 case BFD_RELOC_X86_64_GOTOFF64:
11375 case BFD_RELOC_X86_64_GOT64:
11376 case BFD_RELOC_X86_64_GOTPCREL64:
11377 case BFD_RELOC_X86_64_GOTPC64:
11378 case BFD_RELOC_X86_64_GOTPLT64:
11379 case BFD_RELOC_X86_64_PLTOFF64:
11380 as_bad_where (fixp->fx_file, fixp->fx_line,
11381 _("cannot represent relocation type %s in x32 mode"),
11382 bfd_get_reloc_code_name (code));
11383 break;
11384 default:
11385 break;
11386 }
11387
062cd5e7
AS
11388 if (!fixp->fx_pcrel)
11389 rel->addend = fixp->fx_offset;
11390 else
11391 switch (code)
11392 {
11393 case BFD_RELOC_X86_64_PLT32:
11394 case BFD_RELOC_X86_64_GOT32:
11395 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11396 case BFD_RELOC_X86_64_GOTPCRELX:
11397 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
11398 case BFD_RELOC_X86_64_TLSGD:
11399 case BFD_RELOC_X86_64_TLSLD:
11400 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
11401 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11402 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
11403 rel->addend = fixp->fx_offset - fixp->fx_size;
11404 break;
11405 default:
11406 rel->addend = (section->vma
11407 - fixp->fx_size
11408 + fixp->fx_addnumber
11409 + md_pcrel_from (fixp));
11410 break;
11411 }
3e73aa7c
JH
11412 }
11413
252b5132
RH
11414 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11415 if (rel->howto == NULL)
11416 {
11417 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 11418 _("cannot represent relocation type %s"),
252b5132
RH
11419 bfd_get_reloc_code_name (code));
11420 /* Set howto to a garbage value so that we can keep going. */
11421 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 11422 gas_assert (rel->howto != NULL);
252b5132
RH
11423 }
11424
11425 return rel;
11426}
11427
ee86248c 11428#include "tc-i386-intel.c"
54cfded0 11429
a60de03c
JB
11430void
11431tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 11432{
a60de03c
JB
11433 int saved_naked_reg;
11434 char saved_register_dot;
54cfded0 11435
a60de03c
JB
11436 saved_naked_reg = allow_naked_reg;
11437 allow_naked_reg = 1;
11438 saved_register_dot = register_chars['.'];
11439 register_chars['.'] = '.';
11440 allow_pseudo_reg = 1;
11441 expression_and_evaluate (exp);
11442 allow_pseudo_reg = 0;
11443 register_chars['.'] = saved_register_dot;
11444 allow_naked_reg = saved_naked_reg;
11445
e96d56a1 11446 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 11447 {
a60de03c
JB
11448 if ((addressT) exp->X_add_number < i386_regtab_size)
11449 {
11450 exp->X_op = O_constant;
11451 exp->X_add_number = i386_regtab[exp->X_add_number]
11452 .dw2_regnum[flag_code >> 1];
11453 }
11454 else
11455 exp->X_op = O_illegal;
54cfded0 11456 }
54cfded0
AM
11457}
11458
11459void
11460tc_x86_frame_initial_instructions (void)
11461{
a60de03c
JB
11462 static unsigned int sp_regno[2];
11463
11464 if (!sp_regno[flag_code >> 1])
11465 {
11466 char *saved_input = input_line_pointer;
11467 char sp[][4] = {"esp", "rsp"};
11468 expressionS exp;
a4447b93 11469
a60de03c
JB
11470 input_line_pointer = sp[flag_code >> 1];
11471 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 11472 gas_assert (exp.X_op == O_constant);
a60de03c
JB
11473 sp_regno[flag_code >> 1] = exp.X_add_number;
11474 input_line_pointer = saved_input;
11475 }
a4447b93 11476
61ff971f
L
11477 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11478 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 11479}
d2b2c203 11480
d7921315
L
11481int
11482x86_dwarf2_addr_size (void)
11483{
11484#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11485 if (x86_elf_abi == X86_64_X32_ABI)
11486 return 4;
11487#endif
11488 return bfd_arch_bits_per_address (stdoutput) / 8;
11489}
11490
d2b2c203
DJ
11491int
11492i386_elf_section_type (const char *str, size_t len)
11493{
11494 if (flag_code == CODE_64BIT
11495 && len == sizeof ("unwind") - 1
11496 && strncmp (str, "unwind", 6) == 0)
11497 return SHT_X86_64_UNWIND;
11498
11499 return -1;
11500}
bb41ade5 11501
ad5fec3b
EB
11502#ifdef TE_SOLARIS
11503void
11504i386_solaris_fix_up_eh_frame (segT sec)
11505{
11506 if (flag_code == CODE_64BIT)
11507 elf_section_type (sec) = SHT_X86_64_UNWIND;
11508}
11509#endif
11510
bb41ade5
AM
11511#ifdef TE_PE
11512void
11513tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11514{
91d6fa6a 11515 expressionS exp;
bb41ade5 11516
91d6fa6a
NC
11517 exp.X_op = O_secrel;
11518 exp.X_add_symbol = symbol;
11519 exp.X_add_number = 0;
11520 emit_expr (&exp, size);
bb41ade5
AM
11521}
11522#endif
3b22753a
L
11523
11524#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11525/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11526
01e1a5bc 11527bfd_vma
6d4af3c2 11528x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
11529{
11530 if (flag_code == CODE_64BIT)
11531 {
11532 if (letter == 'l')
11533 return SHF_X86_64_LARGE;
11534
8f3bae45 11535 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 11536 }
3b22753a 11537 else
8f3bae45 11538 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
11539 return -1;
11540}
11541
01e1a5bc 11542bfd_vma
3b22753a
L
11543x86_64_section_word (char *str, size_t len)
11544{
8620418b 11545 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
11546 return SHF_X86_64_LARGE;
11547
11548 return -1;
11549}
11550
11551static void
11552handle_large_common (int small ATTRIBUTE_UNUSED)
11553{
11554 if (flag_code != CODE_64BIT)
11555 {
11556 s_comm_internal (0, elf_common_parse);
11557 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11558 }
11559 else
11560 {
11561 static segT lbss_section;
11562 asection *saved_com_section_ptr = elf_com_section_ptr;
11563 asection *saved_bss_section = bss_section;
11564
11565 if (lbss_section == NULL)
11566 {
11567 flagword applicable;
11568 segT seg = now_seg;
11569 subsegT subseg = now_subseg;
11570
11571 /* The .lbss section is for local .largecomm symbols. */
11572 lbss_section = subseg_new (".lbss", 0);
11573 applicable = bfd_applicable_section_flags (stdoutput);
11574 bfd_set_section_flags (stdoutput, lbss_section,
11575 applicable & SEC_ALLOC);
11576 seg_info (lbss_section)->bss = 1;
11577
11578 subseg_set (seg, subseg);
11579 }
11580
11581 elf_com_section_ptr = &_bfd_elf_large_com_section;
11582 bss_section = lbss_section;
11583
11584 s_comm_internal (0, elf_common_parse);
11585
11586 elf_com_section_ptr = saved_com_section_ptr;
11587 bss_section = saved_bss_section;
11588 }
11589}
11590#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 2.462123 seconds and 4 git commands to generate.