x86: convert RegSIMD and RegMMX from bitfield to enumerator
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
82704155 2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
41fd2579
L
36#ifdef HAVE_LIMITS_H
37#include <limits.h>
38#else
39#ifdef HAVE_SYS_PARAM_H
40#include <sys/param.h>
41#endif
42#ifndef INT_MAX
43#define INT_MAX (int) (((unsigned) (-1)) >> 1)
44#endif
45#endif
46
252b5132
RH
47#ifndef REGISTER_WARNINGS
48#define REGISTER_WARNINGS 1
49#endif
50
c3332e24 51#ifndef INFER_ADDR_PREFIX
eecb386c 52#define INFER_ADDR_PREFIX 1
c3332e24
AM
53#endif
54
29b0f896
AM
55#ifndef DEFAULT_ARCH
56#define DEFAULT_ARCH "i386"
246fcdee 57#endif
252b5132 58
edde18a5
AM
59#ifndef INLINE
60#if __GNUC__ >= 2
61#define INLINE __inline__
62#else
63#define INLINE
64#endif
65#endif
66
6305a203
L
67/* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
72#define WAIT_PREFIX 0
73#define SEG_PREFIX 1
74#define ADDR_PREFIX 2
75#define DATA_PREFIX 3
c32fa91d 76#define REP_PREFIX 4
42164a71 77#define HLE_PREFIX REP_PREFIX
7e8b059b 78#define BND_PREFIX REP_PREFIX
c32fa91d 79#define LOCK_PREFIX 5
4e9ac44a
L
80#define REX_PREFIX 6 /* must come last. */
81#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
82
83/* we define the syntax here (modulo base,index,scale syntax) */
84#define REGISTER_PREFIX '%'
85#define IMMEDIATE_PREFIX '$'
86#define ABSOLUTE_PREFIX '*'
87
88/* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90#define WORD_MNEM_SUFFIX 'w'
91#define BYTE_MNEM_SUFFIX 'b'
92#define SHORT_MNEM_SUFFIX 's'
93#define LONG_MNEM_SUFFIX 'l'
94#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
95/* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97#define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99#define END_OF_INSN '\0'
100
79dec6b7
JB
101/* This matches the C -> StaticRounding alias in the opcode table. */
102#define commutative staticrounding
103
6305a203
L
104/*
105 'templates' is for grouping together 'template' structures for opcodes
106 of the same name. This is only used for storing the insns in the grand
107 ole hash table of insns.
108 The templates themselves start at START and range up to (but not including)
109 END.
110 */
111typedef struct
112{
d3ce72d0
NC
113 const insn_template *start;
114 const insn_template *end;
6305a203
L
115}
116templates;
117
118/* 386 operand encoding bytes: see 386 book for details of this. */
119typedef struct
120{
121 unsigned int regmem; /* codes register or memory operand */
122 unsigned int reg; /* codes register operand (or extended opcode) */
123 unsigned int mode; /* how to interpret regmem & reg */
124}
125modrm_byte;
126
127/* x86-64 extension prefix. */
128typedef int rex_byte;
129
6305a203
L
130/* 386 opcode byte to code indirect addressing. */
131typedef struct
132{
133 unsigned base;
134 unsigned index;
135 unsigned scale;
136}
137sib_byte;
138
6305a203
L
139/* x86 arch names, types and features */
140typedef struct
141{
142 const char *name; /* arch name */
8a2c8fef 143 unsigned int len; /* arch string length */
6305a203
L
144 enum processor_type type; /* arch type */
145 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 146 unsigned int skip; /* show_arch should skip this. */
6305a203
L
147}
148arch_entry;
149
293f5f65
L
150/* Used to turn off indicated flags. */
151typedef struct
152{
153 const char *name; /* arch name */
154 unsigned int len; /* arch string length */
155 i386_cpu_flags flags; /* cpu feature flags */
156}
157noarch_entry;
158
78f12dd3 159static void update_code_flag (int, int);
e3bb37b5
L
160static void set_code_flag (int);
161static void set_16bit_gcc_code_flag (int);
162static void set_intel_syntax (int);
1efbbeb4 163static void set_intel_mnemonic (int);
db51cc60 164static void set_allow_index_reg (int);
7bab8ab5 165static void set_check (int);
e3bb37b5 166static void set_cpu_arch (int);
6482c264 167#ifdef TE_PE
e3bb37b5 168static void pe_directive_secrel (int);
6482c264 169#endif
e3bb37b5
L
170static void signed_cons (int);
171static char *output_invalid (int c);
ee86248c
JB
172static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
173 const char *);
174static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
175 const char *);
a7619375 176static int i386_att_operand (char *);
e3bb37b5 177static int i386_intel_operand (char *, int);
ee86248c
JB
178static int i386_intel_simplify (expressionS *);
179static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
180static const reg_entry *parse_register (char *, char **);
181static char *parse_insn (char *, char *);
182static char *parse_operands (char *, const char *);
183static void swap_operands (void);
4d456e3d 184static void swap_2_operands (int, int);
e3bb37b5
L
185static void optimize_imm (void);
186static void optimize_disp (void);
83b16ac6 187static const insn_template *match_template (char);
e3bb37b5
L
188static int check_string (void);
189static int process_suffix (void);
190static int check_byte_reg (void);
191static int check_long_reg (void);
192static int check_qword_reg (void);
193static int check_word_reg (void);
194static int finalize_imm (void);
195static int process_operands (void);
196static const seg_entry *build_modrm_byte (void);
197static void output_insn (void);
198static void output_imm (fragS *, offsetT);
199static void output_disp (fragS *, offsetT);
29b0f896 200#ifndef I386COFF
e3bb37b5 201static void s_bss (int);
252b5132 202#endif
17d4e2a2
L
203#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
204static void handle_large_common (int small ATTRIBUTE_UNUSED);
b4a3a7b4
L
205
206/* GNU_PROPERTY_X86_ISA_1_USED. */
207static unsigned int x86_isa_1_used;
208/* GNU_PROPERTY_X86_FEATURE_2_USED. */
209static unsigned int x86_feature_2_used;
210/* Generate x86 used ISA and feature properties. */
211static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
17d4e2a2 212#endif
252b5132 213
a847613f 214static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 215
43234a1e
L
216/* This struct describes rounding control and SAE in the instruction. */
217struct RC_Operation
218{
219 enum rc_type
220 {
221 rne = 0,
222 rd,
223 ru,
224 rz,
225 saeonly
226 } type;
227 int operand;
228};
229
230static struct RC_Operation rc_op;
231
232/* The struct describes masking, applied to OPERAND in the instruction.
233 MASK is a pointer to the corresponding mask register. ZEROING tells
234 whether merging or zeroing mask is used. */
235struct Mask_Operation
236{
237 const reg_entry *mask;
238 unsigned int zeroing;
239 /* The operand where this operation is associated. */
240 int operand;
241};
242
243static struct Mask_Operation mask_op;
244
245/* The struct describes broadcasting, applied to OPERAND. FACTOR is
246 broadcast factor. */
247struct Broadcast_Operation
248{
8e6e0792 249 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
250 int type;
251
252 /* Index of broadcasted operand. */
253 int operand;
4a1b91ea
L
254
255 /* Number of bytes to broadcast. */
256 int bytes;
43234a1e
L
257};
258
259static struct Broadcast_Operation broadcast_op;
260
c0f3af97
L
261/* VEX prefix. */
262typedef struct
263{
43234a1e
L
264 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
265 unsigned char bytes[4];
c0f3af97
L
266 unsigned int length;
267 /* Destination or source register specifier. */
268 const reg_entry *register_specifier;
269} vex_prefix;
270
252b5132 271/* 'md_assemble ()' gathers together information and puts it into a
47926f60 272 i386_insn. */
252b5132 273
520dc8e8
AM
274union i386_op
275 {
276 expressionS *disps;
277 expressionS *imms;
278 const reg_entry *regs;
279 };
280
a65babc9
L
281enum i386_error
282 {
86e026a4 283 operand_size_mismatch,
a65babc9
L
284 operand_type_mismatch,
285 register_type_mismatch,
286 number_of_operands_mismatch,
287 invalid_instruction_suffix,
288 bad_imm4,
a65babc9
L
289 unsupported_with_intel_mnemonic,
290 unsupported_syntax,
6c30d220
L
291 unsupported,
292 invalid_vsib_address,
7bab8ab5 293 invalid_vector_register_set,
43234a1e
L
294 unsupported_vector_index_register,
295 unsupported_broadcast,
43234a1e
L
296 broadcast_needed,
297 unsupported_masking,
298 mask_not_on_destination,
299 no_default_mask,
300 unsupported_rc_sae,
301 rc_sae_operand_not_last_imm,
302 invalid_register_operand,
a65babc9
L
303 };
304
252b5132
RH
305struct _i386_insn
306 {
47926f60 307 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 308 insn_template tm;
252b5132 309
7d5e4556
L
310 /* SUFFIX holds the instruction size suffix for byte, word, dword
311 or qword, if given. */
252b5132
RH
312 char suffix;
313
47926f60 314 /* OPERANDS gives the number of given operands. */
252b5132
RH
315 unsigned int operands;
316
317 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
318 of given register, displacement, memory operands and immediate
47926f60 319 operands. */
252b5132
RH
320 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
321
322 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 323 use OP[i] for the corresponding operand. */
40fb9820 324 i386_operand_type types[MAX_OPERANDS];
252b5132 325
520dc8e8
AM
326 /* Displacement expression, immediate expression, or register for each
327 operand. */
328 union i386_op op[MAX_OPERANDS];
252b5132 329
3e73aa7c
JH
330 /* Flags for operands. */
331 unsigned int flags[MAX_OPERANDS];
332#define Operand_PCrel 1
c48dadc9 333#define Operand_Mem 2
3e73aa7c 334
252b5132 335 /* Relocation type for operand */
f86103b7 336 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 337
252b5132
RH
338 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
339 the base index byte below. */
340 const reg_entry *base_reg;
341 const reg_entry *index_reg;
342 unsigned int log2_scale_factor;
343
344 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 345 explicit segment overrides are given. */
ce8a8b2f 346 const seg_entry *seg[2];
252b5132 347
8325cc63
JB
348 /* Copied first memory operand string, for re-checking. */
349 char *memop1_string;
350
252b5132
RH
351 /* PREFIX holds all the given prefix opcodes (usually null).
352 PREFIXES is the number of prefix opcodes. */
353 unsigned int prefixes;
354 unsigned char prefix[MAX_PREFIXES];
355
b4a3a7b4
L
356 /* Has MMX register operands. */
357 bfd_boolean has_regmmx;
358
359 /* Has XMM register operands. */
360 bfd_boolean has_regxmm;
361
362 /* Has YMM register operands. */
363 bfd_boolean has_regymm;
364
365 /* Has ZMM register operands. */
366 bfd_boolean has_regzmm;
367
252b5132 368 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 369 addressing modes of this insn are encoded. */
252b5132 370 modrm_byte rm;
3e73aa7c 371 rex_byte rex;
43234a1e 372 rex_byte vrex;
252b5132 373 sib_byte sib;
c0f3af97 374 vex_prefix vex;
b6169b20 375
43234a1e
L
376 /* Masking attributes. */
377 struct Mask_Operation *mask;
378
379 /* Rounding control and SAE attributes. */
380 struct RC_Operation *rounding;
381
382 /* Broadcasting attributes. */
383 struct Broadcast_Operation *broadcast;
384
385 /* Compressed disp8*N attribute. */
386 unsigned int memshift;
387
86fa6981
L
388 /* Prefer load or store in encoding. */
389 enum
390 {
391 dir_encoding_default = 0,
392 dir_encoding_load,
64c49ab3
JB
393 dir_encoding_store,
394 dir_encoding_swap
86fa6981 395 } dir_encoding;
891edac4 396
a501d77e
L
397 /* Prefer 8bit or 32bit displacement in encoding. */
398 enum
399 {
400 disp_encoding_default = 0,
401 disp_encoding_8bit,
402 disp_encoding_32bit
403 } disp_encoding;
f8a5c266 404
6b6b6807
L
405 /* Prefer the REX byte in encoding. */
406 bfd_boolean rex_encoding;
407
b6f8c7c4
L
408 /* Disable instruction size optimization. */
409 bfd_boolean no_optimize;
410
86fa6981
L
411 /* How to encode vector instructions. */
412 enum
413 {
414 vex_encoding_default = 0,
415 vex_encoding_vex2,
416 vex_encoding_vex3,
417 vex_encoding_evex
418 } vec_encoding;
419
d5de92cf
L
420 /* REP prefix. */
421 const char *rep_prefix;
422
165de32a
L
423 /* HLE prefix. */
424 const char *hle_prefix;
42164a71 425
7e8b059b
L
426 /* Have BND prefix. */
427 const char *bnd_prefix;
428
04ef582a
L
429 /* Have NOTRACK prefix. */
430 const char *notrack_prefix;
431
891edac4 432 /* Error message. */
a65babc9 433 enum i386_error error;
252b5132
RH
434 };
435
436typedef struct _i386_insn i386_insn;
437
43234a1e
L
438/* Link RC type with corresponding string, that'll be looked for in
439 asm. */
440struct RC_name
441{
442 enum rc_type type;
443 const char *name;
444 unsigned int len;
445};
446
447static const struct RC_name RC_NamesTable[] =
448{
449 { rne, STRING_COMMA_LEN ("rn-sae") },
450 { rd, STRING_COMMA_LEN ("rd-sae") },
451 { ru, STRING_COMMA_LEN ("ru-sae") },
452 { rz, STRING_COMMA_LEN ("rz-sae") },
453 { saeonly, STRING_COMMA_LEN ("sae") },
454};
455
252b5132
RH
456/* List of chars besides those in app.c:symbol_chars that can start an
457 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 458const char extra_symbol_chars[] = "*%-([{}"
252b5132 459#ifdef LEX_AT
32137342
NC
460 "@"
461#endif
462#ifdef LEX_QM
463 "?"
252b5132 464#endif
32137342 465 ;
252b5132 466
29b0f896
AM
467#if (defined (TE_I386AIX) \
468 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 469 && !defined (TE_GNU) \
29b0f896 470 && !defined (TE_LINUX) \
8d63c93e 471 && !defined (TE_NACL) \
29b0f896 472 && !defined (TE_FreeBSD) \
5b806d27 473 && !defined (TE_DragonFly) \
29b0f896 474 && !defined (TE_NetBSD)))
252b5132 475/* This array holds the chars that always start a comment. If the
b3b91714
AM
476 pre-processor is disabled, these aren't very useful. The option
477 --divide will remove '/' from this list. */
478const char *i386_comment_chars = "#/";
479#define SVR4_COMMENT_CHARS 1
252b5132 480#define PREFIX_SEPARATOR '\\'
252b5132 481
b3b91714
AM
482#else
483const char *i386_comment_chars = "#";
484#define PREFIX_SEPARATOR '/'
485#endif
486
252b5132
RH
487/* This array holds the chars that only start a comment at the beginning of
488 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
489 .line and .file directives will appear in the pre-processed output.
490 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 491 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
492 #NO_APP at the beginning of its output.
493 Also note that comments started like this one will always work if
252b5132 494 '/' isn't otherwise defined. */
b3b91714 495const char line_comment_chars[] = "#/";
252b5132 496
63a0b638 497const char line_separator_chars[] = ";";
252b5132 498
ce8a8b2f
AM
499/* Chars that can be used to separate mant from exp in floating point
500 nums. */
252b5132
RH
501const char EXP_CHARS[] = "eE";
502
ce8a8b2f
AM
503/* Chars that mean this number is a floating point constant
504 As in 0f12.456
505 or 0d1.2345e12. */
252b5132
RH
506const char FLT_CHARS[] = "fFdDxX";
507
ce8a8b2f 508/* Tables for lexical analysis. */
252b5132
RH
509static char mnemonic_chars[256];
510static char register_chars[256];
511static char operand_chars[256];
512static char identifier_chars[256];
513static char digit_chars[256];
514
ce8a8b2f 515/* Lexical macros. */
252b5132
RH
516#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
517#define is_operand_char(x) (operand_chars[(unsigned char) x])
518#define is_register_char(x) (register_chars[(unsigned char) x])
519#define is_space_char(x) ((x) == ' ')
520#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
521#define is_digit_char(x) (digit_chars[(unsigned char) x])
522
0234cb7c 523/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
524static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
525
526/* md_assemble() always leaves the strings it's passed unaltered. To
527 effect this we maintain a stack of saved characters that we've smashed
528 with '\0's (indicating end of strings for various sub-fields of the
47926f60 529 assembler instruction). */
252b5132 530static char save_stack[32];
ce8a8b2f 531static char *save_stack_p;
252b5132
RH
532#define END_STRING_AND_SAVE(s) \
533 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
534#define RESTORE_END_STRING(s) \
535 do { *(s) = *--save_stack_p; } while (0)
536
47926f60 537/* The instruction we're assembling. */
252b5132
RH
538static i386_insn i;
539
540/* Possible templates for current insn. */
541static const templates *current_templates;
542
31b2323c
L
543/* Per instruction expressionS buffers: max displacements & immediates. */
544static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
545static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 546
47926f60 547/* Current operand we are working on. */
ee86248c 548static int this_operand = -1;
252b5132 549
3e73aa7c
JH
550/* We support four different modes. FLAG_CODE variable is used to distinguish
551 these. */
552
553enum flag_code {
554 CODE_32BIT,
555 CODE_16BIT,
556 CODE_64BIT };
557
558static enum flag_code flag_code;
4fa24527 559static unsigned int object_64bit;
862be3fb 560static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
561static int use_rela_relocations = 0;
562
7af8ed2d
NC
563#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
564 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
565 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
566
351f65ca
L
567/* The ELF ABI to use. */
568enum x86_elf_abi
569{
570 I386_ABI,
7f56bc95
L
571 X86_64_ABI,
572 X86_64_X32_ABI
351f65ca
L
573};
574
575static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 576#endif
351f65ca 577
167ad85b
TG
578#if defined (TE_PE) || defined (TE_PEP)
579/* Use big object file format. */
580static int use_big_obj = 0;
581#endif
582
8dcea932
L
583#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
584/* 1 if generating code for a shared library. */
585static int shared = 0;
586#endif
587
47926f60
KH
588/* 1 for intel syntax,
589 0 if att syntax. */
590static int intel_syntax = 0;
252b5132 591
e89c5eaa
L
592/* 1 for Intel64 ISA,
593 0 if AMD64 ISA. */
594static int intel64;
595
1efbbeb4
L
596/* 1 for intel mnemonic,
597 0 if att mnemonic. */
598static int intel_mnemonic = !SYSV386_COMPAT;
599
a60de03c
JB
600/* 1 if pseudo registers are permitted. */
601static int allow_pseudo_reg = 0;
602
47926f60
KH
603/* 1 if register prefix % not required. */
604static int allow_naked_reg = 0;
252b5132 605
33eaf5de 606/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
607 instructions supporting it, even if this prefix wasn't specified
608 explicitly. */
609static int add_bnd_prefix = 0;
610
ba104c83 611/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
612static int allow_index_reg = 0;
613
d022bddd
IT
614/* 1 if the assembler should ignore LOCK prefix, even if it was
615 specified explicitly. */
616static int omit_lock_prefix = 0;
617
e4e00185
AS
618/* 1 if the assembler should encode lfence, mfence, and sfence as
619 "lock addl $0, (%{re}sp)". */
620static int avoid_fence = 0;
621
0cb4071e
L
622/* 1 if the assembler should generate relax relocations. */
623
624static int generate_relax_relocations
625 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
626
7bab8ab5 627static enum check_kind
daf50ae7 628 {
7bab8ab5
JB
629 check_none = 0,
630 check_warning,
631 check_error
daf50ae7 632 }
7bab8ab5 633sse_check, operand_check = check_warning;
daf50ae7 634
b6f8c7c4
L
635/* Optimization:
636 1. Clear the REX_W bit with register operand if possible.
637 2. Above plus use 128bit vector instruction to clear the full vector
638 register.
639 */
640static int optimize = 0;
641
642/* Optimization:
643 1. Clear the REX_W bit with register operand if possible.
644 2. Above plus use 128bit vector instruction to clear the full vector
645 register.
646 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
647 "testb $imm7,%r8".
648 */
649static int optimize_for_space = 0;
650
2ca3ace5
L
651/* Register prefix used for error message. */
652static const char *register_prefix = "%";
653
47926f60
KH
654/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
655 leave, push, and pop instructions so that gcc has the same stack
656 frame as in 32 bit mode. */
657static char stackop_size = '\0';
eecb386c 658
12b55ccc
L
659/* Non-zero to optimize code alignment. */
660int optimize_align_code = 1;
661
47926f60
KH
662/* Non-zero to quieten some warnings. */
663static int quiet_warnings = 0;
a38cf1db 664
47926f60
KH
665/* CPU name. */
666static const char *cpu_arch_name = NULL;
6305a203 667static char *cpu_sub_arch_name = NULL;
a38cf1db 668
47926f60 669/* CPU feature flags. */
40fb9820
L
670static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
671
ccc9c027
L
672/* If we have selected a cpu we are generating instructions for. */
673static int cpu_arch_tune_set = 0;
674
9103f4f4 675/* Cpu we are generating instructions for. */
fbf3f584 676enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
677
678/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 679static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 680
ccc9c027 681/* CPU instruction set architecture used. */
fbf3f584 682enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 683
9103f4f4 684/* CPU feature flags of instruction set architecture used. */
fbf3f584 685i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 686
fddf5b5b
AM
687/* If set, conditional jumps are not automatically promoted to handle
688 larger than a byte offset. */
689static unsigned int no_cond_jump_promotion = 0;
690
c0f3af97
L
691/* Encode SSE instructions with VEX prefix. */
692static unsigned int sse2avx;
693
539f890d
L
694/* Encode scalar AVX instructions with specific vector length. */
695static enum
696 {
697 vex128 = 0,
698 vex256
699 } avxscalar;
700
03751133
L
701/* Encode VEX WIG instructions with specific vex.w. */
702static enum
703 {
704 vexw0 = 0,
705 vexw1
706 } vexwig;
707
43234a1e
L
708/* Encode scalar EVEX LIG instructions with specific vector length. */
709static enum
710 {
711 evexl128 = 0,
712 evexl256,
713 evexl512
714 } evexlig;
715
716/* Encode EVEX WIG instructions with specific evex.w. */
717static enum
718 {
719 evexw0 = 0,
720 evexw1
721 } evexwig;
722
d3d3c6db
IT
723/* Value to encode in EVEX RC bits, for SAE-only instructions. */
724static enum rc_type evexrcig = rne;
725
29b0f896 726/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 727static symbolS *GOT_symbol;
29b0f896 728
a4447b93
RH
729/* The dwarf2 return column, adjusted for 32 or 64 bit. */
730unsigned int x86_dwarf2_return_column;
731
732/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
733int x86_cie_data_alignment;
734
252b5132 735/* Interface to relax_segment.
fddf5b5b
AM
736 There are 3 major relax states for 386 jump insns because the
737 different types of jumps add different sizes to frags when we're
738 figuring out what sort of jump to choose to reach a given label. */
252b5132 739
47926f60 740/* Types. */
93c2a809
AM
741#define UNCOND_JUMP 0
742#define COND_JUMP 1
743#define COND_JUMP86 2
fddf5b5b 744
47926f60 745/* Sizes. */
252b5132
RH
746#define CODE16 1
747#define SMALL 0
29b0f896 748#define SMALL16 (SMALL | CODE16)
252b5132 749#define BIG 2
29b0f896 750#define BIG16 (BIG | CODE16)
252b5132
RH
751
752#ifndef INLINE
753#ifdef __GNUC__
754#define INLINE __inline__
755#else
756#define INLINE
757#endif
758#endif
759
fddf5b5b
AM
760#define ENCODE_RELAX_STATE(type, size) \
761 ((relax_substateT) (((type) << 2) | (size)))
762#define TYPE_FROM_RELAX_STATE(s) \
763 ((s) >> 2)
764#define DISP_SIZE_FROM_RELAX_STATE(s) \
765 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
766
767/* This table is used by relax_frag to promote short jumps to long
768 ones where necessary. SMALL (short) jumps may be promoted to BIG
769 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
770 don't allow a short jump in a 32 bit code segment to be promoted to
771 a 16 bit offset jump because it's slower (requires data size
772 prefix), and doesn't work, unless the destination is in the bottom
773 64k of the code segment (The top 16 bits of eip are zeroed). */
774
775const relax_typeS md_relax_table[] =
776{
24eab124
AM
777 /* The fields are:
778 1) most positive reach of this state,
779 2) most negative reach of this state,
93c2a809 780 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 781 4) which index into the table to try if we can't fit into this one. */
252b5132 782
fddf5b5b 783 /* UNCOND_JUMP states. */
93c2a809
AM
784 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
785 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
786 /* dword jmp adds 4 bytes to frag:
787 0 extra opcode bytes, 4 displacement bytes. */
252b5132 788 {0, 0, 4, 0},
93c2a809
AM
789 /* word jmp adds 2 byte2 to frag:
790 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
791 {0, 0, 2, 0},
792
93c2a809
AM
793 /* COND_JUMP states. */
794 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
795 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
796 /* dword conditionals adds 5 bytes to frag:
797 1 extra opcode byte, 4 displacement bytes. */
798 {0, 0, 5, 0},
fddf5b5b 799 /* word conditionals add 3 bytes to frag:
93c2a809
AM
800 1 extra opcode byte, 2 displacement bytes. */
801 {0, 0, 3, 0},
802
803 /* COND_JUMP86 states. */
804 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
805 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
806 /* dword conditionals adds 5 bytes to frag:
807 1 extra opcode byte, 4 displacement bytes. */
808 {0, 0, 5, 0},
809 /* word conditionals add 4 bytes to frag:
810 1 displacement byte and a 3 byte long branch insn. */
811 {0, 0, 4, 0}
252b5132
RH
812};
813
9103f4f4
L
814static const arch_entry cpu_arch[] =
815{
89507696
JB
816 /* Do not replace the first two entries - i386_target_format()
817 relies on them being there in this order. */
8a2c8fef 818 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 819 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 820 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 821 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 822 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 823 CPU_NONE_FLAGS, 0 },
8a2c8fef 824 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 825 CPU_I186_FLAGS, 0 },
8a2c8fef 826 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 827 CPU_I286_FLAGS, 0 },
8a2c8fef 828 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 829 CPU_I386_FLAGS, 0 },
8a2c8fef 830 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 831 CPU_I486_FLAGS, 0 },
8a2c8fef 832 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 833 CPU_I586_FLAGS, 0 },
8a2c8fef 834 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 835 CPU_I686_FLAGS, 0 },
8a2c8fef 836 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 837 CPU_I586_FLAGS, 0 },
8a2c8fef 838 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 839 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 840 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 841 CPU_P2_FLAGS, 0 },
8a2c8fef 842 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 843 CPU_P3_FLAGS, 0 },
8a2c8fef 844 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 845 CPU_P4_FLAGS, 0 },
8a2c8fef 846 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 847 CPU_CORE_FLAGS, 0 },
8a2c8fef 848 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 849 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 850 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 851 CPU_CORE_FLAGS, 1 },
8a2c8fef 852 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 853 CPU_CORE_FLAGS, 0 },
8a2c8fef 854 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 855 CPU_CORE2_FLAGS, 1 },
8a2c8fef 856 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 857 CPU_CORE2_FLAGS, 0 },
8a2c8fef 858 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 859 CPU_COREI7_FLAGS, 0 },
8a2c8fef 860 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 861 CPU_L1OM_FLAGS, 0 },
7a9068fe 862 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 863 CPU_K1OM_FLAGS, 0 },
81486035 864 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 865 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 866 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 867 CPU_K6_FLAGS, 0 },
8a2c8fef 868 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 869 CPU_K6_2_FLAGS, 0 },
8a2c8fef 870 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 871 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 872 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 873 CPU_K8_FLAGS, 1 },
8a2c8fef 874 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 875 CPU_K8_FLAGS, 0 },
8a2c8fef 876 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 877 CPU_K8_FLAGS, 0 },
8a2c8fef 878 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 879 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 880 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 881 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 882 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 883 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 884 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 885 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 886 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 887 CPU_BDVER4_FLAGS, 0 },
029f3522 888 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 889 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
890 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
891 CPU_ZNVER2_FLAGS, 0 },
7b458c12 892 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 893 CPU_BTVER1_FLAGS, 0 },
7b458c12 894 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 895 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 896 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 897 CPU_8087_FLAGS, 0 },
8a2c8fef 898 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 899 CPU_287_FLAGS, 0 },
8a2c8fef 900 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 901 CPU_387_FLAGS, 0 },
1848e567
L
902 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
903 CPU_687_FLAGS, 0 },
d871f3f4
L
904 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
905 CPU_CMOV_FLAGS, 0 },
906 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
907 CPU_FXSR_FLAGS, 0 },
8a2c8fef 908 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 909 CPU_MMX_FLAGS, 0 },
8a2c8fef 910 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 911 CPU_SSE_FLAGS, 0 },
8a2c8fef 912 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 913 CPU_SSE2_FLAGS, 0 },
8a2c8fef 914 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 915 CPU_SSE3_FLAGS, 0 },
8a2c8fef 916 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 917 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 918 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 919 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 920 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 921 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 922 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 923 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 924 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 925 CPU_AVX_FLAGS, 0 },
6c30d220 926 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 927 CPU_AVX2_FLAGS, 0 },
43234a1e 928 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 929 CPU_AVX512F_FLAGS, 0 },
43234a1e 930 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 931 CPU_AVX512CD_FLAGS, 0 },
43234a1e 932 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 933 CPU_AVX512ER_FLAGS, 0 },
43234a1e 934 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 935 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 936 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 937 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 938 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 939 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 940 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 941 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 942 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 943 CPU_VMX_FLAGS, 0 },
8729a6f6 944 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 945 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 946 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 947 CPU_SMX_FLAGS, 0 },
8a2c8fef 948 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 949 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 950 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 951 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 952 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 953 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 954 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 955 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 956 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 957 CPU_AES_FLAGS, 0 },
8a2c8fef 958 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 959 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 960 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 961 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 962 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 963 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 964 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 965 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 966 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 967 CPU_F16C_FLAGS, 0 },
6c30d220 968 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 969 CPU_BMI2_FLAGS, 0 },
8a2c8fef 970 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 971 CPU_FMA_FLAGS, 0 },
8a2c8fef 972 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 973 CPU_FMA4_FLAGS, 0 },
8a2c8fef 974 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 975 CPU_XOP_FLAGS, 0 },
8a2c8fef 976 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 977 CPU_LWP_FLAGS, 0 },
8a2c8fef 978 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 979 CPU_MOVBE_FLAGS, 0 },
60aa667e 980 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 981 CPU_CX16_FLAGS, 0 },
8a2c8fef 982 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 983 CPU_EPT_FLAGS, 0 },
6c30d220 984 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 985 CPU_LZCNT_FLAGS, 0 },
42164a71 986 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 987 CPU_HLE_FLAGS, 0 },
42164a71 988 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 989 CPU_RTM_FLAGS, 0 },
6c30d220 990 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 991 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 992 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 993 CPU_CLFLUSH_FLAGS, 0 },
22109423 994 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 995 CPU_NOP_FLAGS, 0 },
8a2c8fef 996 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 997 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 998 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 999 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 1000 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 1001 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 1002 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 1003 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 1004 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 1005 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 1006 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 1007 CPU_SVME_FLAGS, 1 },
8a2c8fef 1008 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 1009 CPU_SVME_FLAGS, 0 },
8a2c8fef 1010 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 1011 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 1012 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 1013 CPU_ABM_FLAGS, 0 },
87973e9f 1014 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 1015 CPU_BMI_FLAGS, 0 },
2a2a0f38 1016 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 1017 CPU_TBM_FLAGS, 0 },
e2e1fcde 1018 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 1019 CPU_ADX_FLAGS, 0 },
e2e1fcde 1020 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 1021 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 1022 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 1023 CPU_PRFCHW_FLAGS, 0 },
5c111e37 1024 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 1025 CPU_SMAP_FLAGS, 0 },
7e8b059b 1026 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 1027 CPU_MPX_FLAGS, 0 },
a0046408 1028 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 1029 CPU_SHA_FLAGS, 0 },
963f3586 1030 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 1031 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 1032 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 1033 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 1034 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 1035 CPU_SE1_FLAGS, 0 },
c5e7287a 1036 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 1037 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 1038 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 1039 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 1040 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 1041 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
1042 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1043 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
1044 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1045 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1046 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1047 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1048 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1049 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1050 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1051 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1052 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1053 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1054 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1055 CPU_CLZERO_FLAGS, 0 },
9916071f 1056 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1057 CPU_MWAITX_FLAGS, 0 },
8eab4136 1058 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1059 CPU_OSPKE_FLAGS, 0 },
8bc52696 1060 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1061 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1062 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1063 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1064 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1065 CPU_IBT_FLAGS, 0 },
1066 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1067 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1068 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1069 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1070 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1071 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1072 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1073 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1074 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1075 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1076 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1077 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1078 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1079 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1080 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1081 CPU_CLDEMOTE_FLAGS, 0 },
c0a30a9f
L
1082 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1083 CPU_MOVDIRI_FLAGS, 0 },
1084 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1085 CPU_MOVDIR64B_FLAGS, 0 },
d6aab7a1
XG
1086 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1087 CPU_AVX512_BF16_FLAGS, 0 },
9186c494
L
1088 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1089 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
dd455cf5
L
1090 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1091 CPU_ENQCMD_FLAGS, 0 },
142861df
JB
1092 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1093 CPU_RDPRU_FLAGS, 0 },
1094 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1095 CPU_MCOMMIT_FLAGS, 0 },
293f5f65
L
1096};
1097
1098static const noarch_entry cpu_noarch[] =
1099{
1100 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1101 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1102 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1103 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
d871f3f4
L
1104 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1105 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
293f5f65
L
1106 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1107 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1108 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1109 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1110 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1111 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1112 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1113 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1114 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1115 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1116 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1117 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1118 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1119 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1120 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1121 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1122 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1123 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1124 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1125 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1126 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1127 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1128 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1129 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1130 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1131 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1132 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
c0a30a9f
L
1133 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1134 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
d6aab7a1 1135 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
9186c494 1136 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
dd455cf5 1137 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
e413e4e9
AM
1138};
1139
704209c0 1140#ifdef I386COFF
a6c24e68
NC
1141/* Like s_lcomm_internal in gas/read.c but the alignment string
1142 is allowed to be optional. */
1143
1144static symbolS *
1145pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1146{
1147 addressT align = 0;
1148
1149 SKIP_WHITESPACE ();
1150
7ab9ffdd 1151 if (needs_align
a6c24e68
NC
1152 && *input_line_pointer == ',')
1153 {
1154 align = parse_align (needs_align - 1);
7ab9ffdd 1155
a6c24e68
NC
1156 if (align == (addressT) -1)
1157 return NULL;
1158 }
1159 else
1160 {
1161 if (size >= 8)
1162 align = 3;
1163 else if (size >= 4)
1164 align = 2;
1165 else if (size >= 2)
1166 align = 1;
1167 else
1168 align = 0;
1169 }
1170
1171 bss_alloc (symbolP, size, align);
1172 return symbolP;
1173}
1174
704209c0 1175static void
a6c24e68
NC
1176pe_lcomm (int needs_align)
1177{
1178 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1179}
704209c0 1180#endif
a6c24e68 1181
29b0f896
AM
1182const pseudo_typeS md_pseudo_table[] =
1183{
1184#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1185 {"align", s_align_bytes, 0},
1186#else
1187 {"align", s_align_ptwo, 0},
1188#endif
1189 {"arch", set_cpu_arch, 0},
1190#ifndef I386COFF
1191 {"bss", s_bss, 0},
a6c24e68
NC
1192#else
1193 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1194#endif
1195 {"ffloat", float_cons, 'f'},
1196 {"dfloat", float_cons, 'd'},
1197 {"tfloat", float_cons, 'x'},
1198 {"value", cons, 2},
d182319b 1199 {"slong", signed_cons, 4},
29b0f896
AM
1200 {"noopt", s_ignore, 0},
1201 {"optim", s_ignore, 0},
1202 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1203 {"code16", set_code_flag, CODE_16BIT},
1204 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1205#ifdef BFD64
29b0f896 1206 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1207#endif
29b0f896
AM
1208 {"intel_syntax", set_intel_syntax, 1},
1209 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1210 {"intel_mnemonic", set_intel_mnemonic, 1},
1211 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1212 {"allow_index_reg", set_allow_index_reg, 1},
1213 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1214 {"sse_check", set_check, 0},
1215 {"operand_check", set_check, 1},
3b22753a
L
1216#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1217 {"largecomm", handle_large_common, 0},
07a53e5c 1218#else
68d20676 1219 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1220 {"loc", dwarf2_directive_loc, 0},
1221 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1222#endif
6482c264
NC
1223#ifdef TE_PE
1224 {"secrel32", pe_directive_secrel, 0},
1225#endif
29b0f896
AM
1226 {0, 0, 0}
1227};
1228
1229/* For interface with expression (). */
1230extern char *input_line_pointer;
1231
1232/* Hash table for instruction mnemonic lookup. */
1233static struct hash_control *op_hash;
1234
1235/* Hash table for register lookup. */
1236static struct hash_control *reg_hash;
1237\f
ce8a8b2f
AM
1238 /* Various efficient no-op patterns for aligning code labels.
1239 Note: Don't try to assemble the instructions in the comments.
1240 0L and 0w are not legal. */
62a02d25
L
1241static const unsigned char f32_1[] =
1242 {0x90}; /* nop */
1243static const unsigned char f32_2[] =
1244 {0x66,0x90}; /* xchg %ax,%ax */
1245static const unsigned char f32_3[] =
1246 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1247static const unsigned char f32_4[] =
1248 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1249static const unsigned char f32_6[] =
1250 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1251static const unsigned char f32_7[] =
1252 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1253static const unsigned char f16_3[] =
3ae729d5 1254 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1255static const unsigned char f16_4[] =
3ae729d5
L
1256 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1257static const unsigned char jump_disp8[] =
1258 {0xeb}; /* jmp disp8 */
1259static const unsigned char jump32_disp32[] =
1260 {0xe9}; /* jmp disp32 */
1261static const unsigned char jump16_disp32[] =
1262 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1263/* 32-bit NOPs patterns. */
1264static const unsigned char *const f32_patt[] = {
3ae729d5 1265 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1266};
1267/* 16-bit NOPs patterns. */
1268static const unsigned char *const f16_patt[] = {
3ae729d5 1269 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1270};
1271/* nopl (%[re]ax) */
1272static const unsigned char alt_3[] =
1273 {0x0f,0x1f,0x00};
1274/* nopl 0(%[re]ax) */
1275static const unsigned char alt_4[] =
1276 {0x0f,0x1f,0x40,0x00};
1277/* nopl 0(%[re]ax,%[re]ax,1) */
1278static const unsigned char alt_5[] =
1279 {0x0f,0x1f,0x44,0x00,0x00};
1280/* nopw 0(%[re]ax,%[re]ax,1) */
1281static const unsigned char alt_6[] =
1282 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1283/* nopl 0L(%[re]ax) */
1284static const unsigned char alt_7[] =
1285 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1286/* nopl 0L(%[re]ax,%[re]ax,1) */
1287static const unsigned char alt_8[] =
1288 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1289/* nopw 0L(%[re]ax,%[re]ax,1) */
1290static const unsigned char alt_9[] =
1291 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1292/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1293static const unsigned char alt_10[] =
1294 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1295/* data16 nopw %cs:0L(%eax,%eax,1) */
1296static const unsigned char alt_11[] =
1297 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1298/* 32-bit and 64-bit NOPs patterns. */
1299static const unsigned char *const alt_patt[] = {
1300 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1301 alt_9, alt_10, alt_11
62a02d25
L
1302};
1303
1304/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1305 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1306
1307static void
1308i386_output_nops (char *where, const unsigned char *const *patt,
1309 int count, int max_single_nop_size)
1310
1311{
3ae729d5
L
1312 /* Place the longer NOP first. */
1313 int last;
1314 int offset;
3076e594
NC
1315 const unsigned char *nops;
1316
1317 if (max_single_nop_size < 1)
1318 {
1319 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1320 max_single_nop_size);
1321 return;
1322 }
1323
1324 nops = patt[max_single_nop_size - 1];
3ae729d5
L
1325
1326 /* Use the smaller one if the requsted one isn't available. */
1327 if (nops == NULL)
62a02d25 1328 {
3ae729d5
L
1329 max_single_nop_size--;
1330 nops = patt[max_single_nop_size - 1];
62a02d25
L
1331 }
1332
3ae729d5
L
1333 last = count % max_single_nop_size;
1334
1335 count -= last;
1336 for (offset = 0; offset < count; offset += max_single_nop_size)
1337 memcpy (where + offset, nops, max_single_nop_size);
1338
1339 if (last)
1340 {
1341 nops = patt[last - 1];
1342 if (nops == NULL)
1343 {
1344 /* Use the smaller one plus one-byte NOP if the needed one
1345 isn't available. */
1346 last--;
1347 nops = patt[last - 1];
1348 memcpy (where + offset, nops, last);
1349 where[offset + last] = *patt[0];
1350 }
1351 else
1352 memcpy (where + offset, nops, last);
1353 }
62a02d25
L
1354}
1355
3ae729d5
L
1356static INLINE int
1357fits_in_imm7 (offsetT num)
1358{
1359 return (num & 0x7f) == num;
1360}
1361
1362static INLINE int
1363fits_in_imm31 (offsetT num)
1364{
1365 return (num & 0x7fffffff) == num;
1366}
62a02d25
L
1367
1368/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1369 single NOP instruction LIMIT. */
1370
1371void
3ae729d5 1372i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1373{
3ae729d5 1374 const unsigned char *const *patt = NULL;
62a02d25 1375 int max_single_nop_size;
3ae729d5
L
1376 /* Maximum number of NOPs before switching to jump over NOPs. */
1377 int max_number_of_nops;
62a02d25 1378
3ae729d5 1379 switch (fragP->fr_type)
62a02d25 1380 {
3ae729d5
L
1381 case rs_fill_nop:
1382 case rs_align_code:
1383 break;
1384 default:
62a02d25
L
1385 return;
1386 }
1387
ccc9c027
L
1388 /* We need to decide which NOP sequence to use for 32bit and
1389 64bit. When -mtune= is used:
4eed87de 1390
76bc74dc
L
1391 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1392 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1393 2. For the rest, alt_patt will be used.
1394
1395 When -mtune= isn't used, alt_patt will be used if
22109423 1396 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1397 be used.
ccc9c027
L
1398
1399 When -march= or .arch is used, we can't use anything beyond
1400 cpu_arch_isa_flags. */
1401
1402 if (flag_code == CODE_16BIT)
1403 {
3ae729d5
L
1404 patt = f16_patt;
1405 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1406 /* Limit number of NOPs to 2 in 16-bit mode. */
1407 max_number_of_nops = 2;
252b5132 1408 }
33fef721 1409 else
ccc9c027 1410 {
fbf3f584 1411 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1412 {
1413 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1414 switch (cpu_arch_tune)
1415 {
1416 case PROCESSOR_UNKNOWN:
1417 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1418 optimize with nops. */
1419 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1420 patt = alt_patt;
ccc9c027
L
1421 else
1422 patt = f32_patt;
1423 break;
ccc9c027
L
1424 case PROCESSOR_PENTIUM4:
1425 case PROCESSOR_NOCONA:
ef05d495 1426 case PROCESSOR_CORE:
76bc74dc 1427 case PROCESSOR_CORE2:
bd5295b2 1428 case PROCESSOR_COREI7:
3632d14b 1429 case PROCESSOR_L1OM:
7a9068fe 1430 case PROCESSOR_K1OM:
76bc74dc 1431 case PROCESSOR_GENERIC64:
ccc9c027
L
1432 case PROCESSOR_K6:
1433 case PROCESSOR_ATHLON:
1434 case PROCESSOR_K8:
4eed87de 1435 case PROCESSOR_AMDFAM10:
8aedb9fe 1436 case PROCESSOR_BD:
029f3522 1437 case PROCESSOR_ZNVER:
7b458c12 1438 case PROCESSOR_BT:
80b8656c 1439 patt = alt_patt;
ccc9c027 1440 break;
76bc74dc 1441 case PROCESSOR_I386:
ccc9c027
L
1442 case PROCESSOR_I486:
1443 case PROCESSOR_PENTIUM:
2dde1948 1444 case PROCESSOR_PENTIUMPRO:
81486035 1445 case PROCESSOR_IAMCU:
ccc9c027
L
1446 case PROCESSOR_GENERIC32:
1447 patt = f32_patt;
1448 break;
4eed87de 1449 }
ccc9c027
L
1450 }
1451 else
1452 {
fbf3f584 1453 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1454 {
1455 case PROCESSOR_UNKNOWN:
e6a14101 1456 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1457 PROCESSOR_UNKNOWN. */
1458 abort ();
1459 break;
1460
76bc74dc 1461 case PROCESSOR_I386:
ccc9c027
L
1462 case PROCESSOR_I486:
1463 case PROCESSOR_PENTIUM:
81486035 1464 case PROCESSOR_IAMCU:
ccc9c027
L
1465 case PROCESSOR_K6:
1466 case PROCESSOR_ATHLON:
1467 case PROCESSOR_K8:
4eed87de 1468 case PROCESSOR_AMDFAM10:
8aedb9fe 1469 case PROCESSOR_BD:
029f3522 1470 case PROCESSOR_ZNVER:
7b458c12 1471 case PROCESSOR_BT:
ccc9c027
L
1472 case PROCESSOR_GENERIC32:
1473 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1474 with nops. */
1475 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1476 patt = alt_patt;
ccc9c027
L
1477 else
1478 patt = f32_patt;
1479 break;
76bc74dc
L
1480 case PROCESSOR_PENTIUMPRO:
1481 case PROCESSOR_PENTIUM4:
1482 case PROCESSOR_NOCONA:
1483 case PROCESSOR_CORE:
ef05d495 1484 case PROCESSOR_CORE2:
bd5295b2 1485 case PROCESSOR_COREI7:
3632d14b 1486 case PROCESSOR_L1OM:
7a9068fe 1487 case PROCESSOR_K1OM:
22109423 1488 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1489 patt = alt_patt;
ccc9c027
L
1490 else
1491 patt = f32_patt;
1492 break;
1493 case PROCESSOR_GENERIC64:
80b8656c 1494 patt = alt_patt;
ccc9c027 1495 break;
4eed87de 1496 }
ccc9c027
L
1497 }
1498
76bc74dc
L
1499 if (patt == f32_patt)
1500 {
3ae729d5
L
1501 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1502 /* Limit number of NOPs to 2 for older processors. */
1503 max_number_of_nops = 2;
76bc74dc
L
1504 }
1505 else
1506 {
3ae729d5
L
1507 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1508 /* Limit number of NOPs to 7 for newer processors. */
1509 max_number_of_nops = 7;
1510 }
1511 }
1512
1513 if (limit == 0)
1514 limit = max_single_nop_size;
1515
1516 if (fragP->fr_type == rs_fill_nop)
1517 {
1518 /* Output NOPs for .nop directive. */
1519 if (limit > max_single_nop_size)
1520 {
1521 as_bad_where (fragP->fr_file, fragP->fr_line,
1522 _("invalid single nop size: %d "
1523 "(expect within [0, %d])"),
1524 limit, max_single_nop_size);
1525 return;
1526 }
1527 }
1528 else
1529 fragP->fr_var = count;
1530
1531 if ((count / max_single_nop_size) > max_number_of_nops)
1532 {
1533 /* Generate jump over NOPs. */
1534 offsetT disp = count - 2;
1535 if (fits_in_imm7 (disp))
1536 {
1537 /* Use "jmp disp8" if possible. */
1538 count = disp;
1539 where[0] = jump_disp8[0];
1540 where[1] = count;
1541 where += 2;
1542 }
1543 else
1544 {
1545 unsigned int size_of_jump;
1546
1547 if (flag_code == CODE_16BIT)
1548 {
1549 where[0] = jump16_disp32[0];
1550 where[1] = jump16_disp32[1];
1551 size_of_jump = 2;
1552 }
1553 else
1554 {
1555 where[0] = jump32_disp32[0];
1556 size_of_jump = 1;
1557 }
1558
1559 count -= size_of_jump + 4;
1560 if (!fits_in_imm31 (count))
1561 {
1562 as_bad_where (fragP->fr_file, fragP->fr_line,
1563 _("jump over nop padding out of range"));
1564 return;
1565 }
1566
1567 md_number_to_chars (where + size_of_jump, count, 4);
1568 where += size_of_jump + 4;
76bc74dc 1569 }
ccc9c027 1570 }
3ae729d5
L
1571
1572 /* Generate multiple NOPs. */
1573 i386_output_nops (where, patt, count, limit);
252b5132
RH
1574}
1575
c6fb90c8 1576static INLINE int
0dfbf9d7 1577operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1578{
0dfbf9d7 1579 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1580 {
1581 case 3:
0dfbf9d7 1582 if (x->array[2])
c6fb90c8 1583 return 0;
1a0670f3 1584 /* Fall through. */
c6fb90c8 1585 case 2:
0dfbf9d7 1586 if (x->array[1])
c6fb90c8 1587 return 0;
1a0670f3 1588 /* Fall through. */
c6fb90c8 1589 case 1:
0dfbf9d7 1590 return !x->array[0];
c6fb90c8
L
1591 default:
1592 abort ();
1593 }
40fb9820
L
1594}
1595
c6fb90c8 1596static INLINE void
0dfbf9d7 1597operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1598{
0dfbf9d7 1599 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1600 {
1601 case 3:
0dfbf9d7 1602 x->array[2] = v;
1a0670f3 1603 /* Fall through. */
c6fb90c8 1604 case 2:
0dfbf9d7 1605 x->array[1] = v;
1a0670f3 1606 /* Fall through. */
c6fb90c8 1607 case 1:
0dfbf9d7 1608 x->array[0] = v;
1a0670f3 1609 /* Fall through. */
c6fb90c8
L
1610 break;
1611 default:
1612 abort ();
1613 }
bab6aec1
JB
1614
1615 x->bitfield.class = ClassNone;
c6fb90c8 1616}
40fb9820 1617
c6fb90c8 1618static INLINE int
0dfbf9d7
L
1619operand_type_equal (const union i386_operand_type *x,
1620 const union i386_operand_type *y)
c6fb90c8 1621{
0dfbf9d7 1622 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1623 {
1624 case 3:
0dfbf9d7 1625 if (x->array[2] != y->array[2])
c6fb90c8 1626 return 0;
1a0670f3 1627 /* Fall through. */
c6fb90c8 1628 case 2:
0dfbf9d7 1629 if (x->array[1] != y->array[1])
c6fb90c8 1630 return 0;
1a0670f3 1631 /* Fall through. */
c6fb90c8 1632 case 1:
0dfbf9d7 1633 return x->array[0] == y->array[0];
c6fb90c8
L
1634 break;
1635 default:
1636 abort ();
1637 }
1638}
40fb9820 1639
0dfbf9d7
L
1640static INLINE int
1641cpu_flags_all_zero (const union i386_cpu_flags *x)
1642{
1643 switch (ARRAY_SIZE(x->array))
1644 {
53467f57
IT
1645 case 4:
1646 if (x->array[3])
1647 return 0;
1648 /* Fall through. */
0dfbf9d7
L
1649 case 3:
1650 if (x->array[2])
1651 return 0;
1a0670f3 1652 /* Fall through. */
0dfbf9d7
L
1653 case 2:
1654 if (x->array[1])
1655 return 0;
1a0670f3 1656 /* Fall through. */
0dfbf9d7
L
1657 case 1:
1658 return !x->array[0];
1659 default:
1660 abort ();
1661 }
1662}
1663
0dfbf9d7
L
1664static INLINE int
1665cpu_flags_equal (const union i386_cpu_flags *x,
1666 const union i386_cpu_flags *y)
1667{
1668 switch (ARRAY_SIZE(x->array))
1669 {
53467f57
IT
1670 case 4:
1671 if (x->array[3] != y->array[3])
1672 return 0;
1673 /* Fall through. */
0dfbf9d7
L
1674 case 3:
1675 if (x->array[2] != y->array[2])
1676 return 0;
1a0670f3 1677 /* Fall through. */
0dfbf9d7
L
1678 case 2:
1679 if (x->array[1] != y->array[1])
1680 return 0;
1a0670f3 1681 /* Fall through. */
0dfbf9d7
L
1682 case 1:
1683 return x->array[0] == y->array[0];
1684 break;
1685 default:
1686 abort ();
1687 }
1688}
c6fb90c8
L
1689
1690static INLINE int
1691cpu_flags_check_cpu64 (i386_cpu_flags f)
1692{
1693 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1694 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1695}
1696
c6fb90c8
L
1697static INLINE i386_cpu_flags
1698cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1699{
c6fb90c8
L
1700 switch (ARRAY_SIZE (x.array))
1701 {
53467f57
IT
1702 case 4:
1703 x.array [3] &= y.array [3];
1704 /* Fall through. */
c6fb90c8
L
1705 case 3:
1706 x.array [2] &= y.array [2];
1a0670f3 1707 /* Fall through. */
c6fb90c8
L
1708 case 2:
1709 x.array [1] &= y.array [1];
1a0670f3 1710 /* Fall through. */
c6fb90c8
L
1711 case 1:
1712 x.array [0] &= y.array [0];
1713 break;
1714 default:
1715 abort ();
1716 }
1717 return x;
1718}
40fb9820 1719
c6fb90c8
L
1720static INLINE i386_cpu_flags
1721cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1722{
c6fb90c8 1723 switch (ARRAY_SIZE (x.array))
40fb9820 1724 {
53467f57
IT
1725 case 4:
1726 x.array [3] |= y.array [3];
1727 /* Fall through. */
c6fb90c8
L
1728 case 3:
1729 x.array [2] |= y.array [2];
1a0670f3 1730 /* Fall through. */
c6fb90c8
L
1731 case 2:
1732 x.array [1] |= y.array [1];
1a0670f3 1733 /* Fall through. */
c6fb90c8
L
1734 case 1:
1735 x.array [0] |= y.array [0];
40fb9820
L
1736 break;
1737 default:
1738 abort ();
1739 }
40fb9820
L
1740 return x;
1741}
1742
309d3373
JB
1743static INLINE i386_cpu_flags
1744cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1745{
1746 switch (ARRAY_SIZE (x.array))
1747 {
53467f57
IT
1748 case 4:
1749 x.array [3] &= ~y.array [3];
1750 /* Fall through. */
309d3373
JB
1751 case 3:
1752 x.array [2] &= ~y.array [2];
1a0670f3 1753 /* Fall through. */
309d3373
JB
1754 case 2:
1755 x.array [1] &= ~y.array [1];
1a0670f3 1756 /* Fall through. */
309d3373
JB
1757 case 1:
1758 x.array [0] &= ~y.array [0];
1759 break;
1760 default:
1761 abort ();
1762 }
1763 return x;
1764}
1765
c0f3af97
L
1766#define CPU_FLAGS_ARCH_MATCH 0x1
1767#define CPU_FLAGS_64BIT_MATCH 0x2
1768
c0f3af97 1769#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1770 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1771
1772/* Return CPU flags match bits. */
3629bb00 1773
40fb9820 1774static int
d3ce72d0 1775cpu_flags_match (const insn_template *t)
40fb9820 1776{
c0f3af97
L
1777 i386_cpu_flags x = t->cpu_flags;
1778 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1779
1780 x.bitfield.cpu64 = 0;
1781 x.bitfield.cpuno64 = 0;
1782
0dfbf9d7 1783 if (cpu_flags_all_zero (&x))
c0f3af97
L
1784 {
1785 /* This instruction is available on all archs. */
db12e14e 1786 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1787 }
3629bb00
L
1788 else
1789 {
c0f3af97 1790 /* This instruction is available only on some archs. */
3629bb00
L
1791 i386_cpu_flags cpu = cpu_arch_flags;
1792
ab592e75
JB
1793 /* AVX512VL is no standalone feature - match it and then strip it. */
1794 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1795 return match;
1796 x.bitfield.cpuavx512vl = 0;
1797
3629bb00 1798 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1799 if (!cpu_flags_all_zero (&cpu))
1800 {
a5ff0eb2
L
1801 if (x.bitfield.cpuavx)
1802 {
929f69fa 1803 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1804 if (cpu.bitfield.cpuavx
1805 && (!t->opcode_modifier.sse2avx || sse2avx)
1806 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1807 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1808 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1809 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1810 }
929f69fa
JB
1811 else if (x.bitfield.cpuavx512f)
1812 {
1813 /* We need to check a few extra flags with AVX512F. */
1814 if (cpu.bitfield.cpuavx512f
1815 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1816 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1817 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1818 match |= CPU_FLAGS_ARCH_MATCH;
1819 }
a5ff0eb2 1820 else
db12e14e 1821 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1822 }
3629bb00 1823 }
c0f3af97 1824 return match;
40fb9820
L
1825}
1826
c6fb90c8
L
1827static INLINE i386_operand_type
1828operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1829{
bab6aec1
JB
1830 if (x.bitfield.class != y.bitfield.class)
1831 x.bitfield.class = ClassNone;
1832
c6fb90c8
L
1833 switch (ARRAY_SIZE (x.array))
1834 {
1835 case 3:
1836 x.array [2] &= y.array [2];
1a0670f3 1837 /* Fall through. */
c6fb90c8
L
1838 case 2:
1839 x.array [1] &= y.array [1];
1a0670f3 1840 /* Fall through. */
c6fb90c8
L
1841 case 1:
1842 x.array [0] &= y.array [0];
1843 break;
1844 default:
1845 abort ();
1846 }
1847 return x;
40fb9820
L
1848}
1849
73053c1f
JB
1850static INLINE i386_operand_type
1851operand_type_and_not (i386_operand_type x, i386_operand_type y)
1852{
bab6aec1
JB
1853 gas_assert (y.bitfield.class == ClassNone);
1854
73053c1f
JB
1855 switch (ARRAY_SIZE (x.array))
1856 {
1857 case 3:
1858 x.array [2] &= ~y.array [2];
1859 /* Fall through. */
1860 case 2:
1861 x.array [1] &= ~y.array [1];
1862 /* Fall through. */
1863 case 1:
1864 x.array [0] &= ~y.array [0];
1865 break;
1866 default:
1867 abort ();
1868 }
1869 return x;
1870}
1871
c6fb90c8
L
1872static INLINE i386_operand_type
1873operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1874{
bab6aec1
JB
1875 gas_assert (x.bitfield.class == ClassNone ||
1876 y.bitfield.class == ClassNone ||
1877 x.bitfield.class == y.bitfield.class);
1878
c6fb90c8 1879 switch (ARRAY_SIZE (x.array))
40fb9820 1880 {
c6fb90c8
L
1881 case 3:
1882 x.array [2] |= y.array [2];
1a0670f3 1883 /* Fall through. */
c6fb90c8
L
1884 case 2:
1885 x.array [1] |= y.array [1];
1a0670f3 1886 /* Fall through. */
c6fb90c8
L
1887 case 1:
1888 x.array [0] |= y.array [0];
40fb9820
L
1889 break;
1890 default:
1891 abort ();
1892 }
c6fb90c8
L
1893 return x;
1894}
40fb9820 1895
c6fb90c8
L
1896static INLINE i386_operand_type
1897operand_type_xor (i386_operand_type x, i386_operand_type y)
1898{
bab6aec1
JB
1899 gas_assert (y.bitfield.class == ClassNone);
1900
c6fb90c8
L
1901 switch (ARRAY_SIZE (x.array))
1902 {
1903 case 3:
1904 x.array [2] ^= y.array [2];
1a0670f3 1905 /* Fall through. */
c6fb90c8
L
1906 case 2:
1907 x.array [1] ^= y.array [1];
1a0670f3 1908 /* Fall through. */
c6fb90c8
L
1909 case 1:
1910 x.array [0] ^= y.array [0];
1911 break;
1912 default:
1913 abort ();
1914 }
40fb9820
L
1915 return x;
1916}
1917
40fb9820
L
1918static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1919static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1920static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1921static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
bab6aec1
JB
1922static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
1923static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
40fb9820 1924static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 1925static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1926static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1927static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1928static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1929static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1930static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1931static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1932static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1933static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1934static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1935
1936enum operand_type
1937{
1938 reg,
40fb9820
L
1939 imm,
1940 disp,
1941 anymem
1942};
1943
c6fb90c8 1944static INLINE int
40fb9820
L
1945operand_type_check (i386_operand_type t, enum operand_type c)
1946{
1947 switch (c)
1948 {
1949 case reg:
bab6aec1 1950 return t.bitfield.class == Reg;
40fb9820 1951
40fb9820
L
1952 case imm:
1953 return (t.bitfield.imm8
1954 || t.bitfield.imm8s
1955 || t.bitfield.imm16
1956 || t.bitfield.imm32
1957 || t.bitfield.imm32s
1958 || t.bitfield.imm64);
1959
1960 case disp:
1961 return (t.bitfield.disp8
1962 || t.bitfield.disp16
1963 || t.bitfield.disp32
1964 || t.bitfield.disp32s
1965 || t.bitfield.disp64);
1966
1967 case anymem:
1968 return (t.bitfield.disp8
1969 || t.bitfield.disp16
1970 || t.bitfield.disp32
1971 || t.bitfield.disp32s
1972 || t.bitfield.disp64
1973 || t.bitfield.baseindex);
1974
1975 default:
1976 abort ();
1977 }
2cfe26b6
AM
1978
1979 return 0;
40fb9820
L
1980}
1981
7a54636a
L
1982/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1983 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
1984
1985static INLINE int
7a54636a
L
1986match_operand_size (const insn_template *t, unsigned int wanted,
1987 unsigned int given)
5c07affc 1988{
3ac21baa
JB
1989 return !((i.types[given].bitfield.byte
1990 && !t->operand_types[wanted].bitfield.byte)
1991 || (i.types[given].bitfield.word
1992 && !t->operand_types[wanted].bitfield.word)
1993 || (i.types[given].bitfield.dword
1994 && !t->operand_types[wanted].bitfield.dword)
1995 || (i.types[given].bitfield.qword
1996 && !t->operand_types[wanted].bitfield.qword)
1997 || (i.types[given].bitfield.tbyte
1998 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
1999}
2000
dd40ce22
L
2001/* Return 1 if there is no conflict in SIMD register between operand
2002 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
2003
2004static INLINE int
dd40ce22
L
2005match_simd_size (const insn_template *t, unsigned int wanted,
2006 unsigned int given)
1b54b8d7 2007{
3ac21baa
JB
2008 return !((i.types[given].bitfield.xmmword
2009 && !t->operand_types[wanted].bitfield.xmmword)
2010 || (i.types[given].bitfield.ymmword
2011 && !t->operand_types[wanted].bitfield.ymmword)
2012 || (i.types[given].bitfield.zmmword
2013 && !t->operand_types[wanted].bitfield.zmmword));
1b54b8d7
JB
2014}
2015
7a54636a
L
2016/* Return 1 if there is no conflict in any size between operand GIVEN
2017 and opeand WANTED for instruction template T. */
5c07affc
L
2018
2019static INLINE int
dd40ce22
L
2020match_mem_size (const insn_template *t, unsigned int wanted,
2021 unsigned int given)
5c07affc 2022{
7a54636a 2023 return (match_operand_size (t, wanted, given)
3ac21baa 2024 && !((i.types[given].bitfield.unspecified
af508cb9 2025 && !i.broadcast
3ac21baa
JB
2026 && !t->operand_types[wanted].bitfield.unspecified)
2027 || (i.types[given].bitfield.fword
2028 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
2029 /* For scalar opcode templates to allow register and memory
2030 operands at the same time, some special casing is needed
d6793fa1
JB
2031 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2032 down-conversion vpmov*. */
3528c362 2033 || ((t->operand_types[wanted].bitfield.class == RegSIMD
1b54b8d7 2034 && !t->opcode_modifier.broadcast
3ac21baa
JB
2035 && (t->operand_types[wanted].bitfield.byte
2036 || t->operand_types[wanted].bitfield.word
2037 || t->operand_types[wanted].bitfield.dword
2038 || t->operand_types[wanted].bitfield.qword))
2039 ? (i.types[given].bitfield.xmmword
2040 || i.types[given].bitfield.ymmword
2041 || i.types[given].bitfield.zmmword)
2042 : !match_simd_size(t, wanted, given))));
5c07affc
L
2043}
2044
3ac21baa
JB
2045/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2046 operands for instruction template T, and it has MATCH_REVERSE set if there
2047 is no size conflict on any operands for the template with operands reversed
2048 (and the template allows for reversing in the first place). */
5c07affc 2049
3ac21baa
JB
2050#define MATCH_STRAIGHT 1
2051#define MATCH_REVERSE 2
2052
2053static INLINE unsigned int
d3ce72d0 2054operand_size_match (const insn_template *t)
5c07affc 2055{
3ac21baa 2056 unsigned int j, match = MATCH_STRAIGHT;
5c07affc
L
2057
2058 /* Don't check jump instructions. */
2059 if (t->opcode_modifier.jump
2060 || t->opcode_modifier.jumpbyte
2061 || t->opcode_modifier.jumpdword
2062 || t->opcode_modifier.jumpintersegment)
2063 return match;
2064
2065 /* Check memory and accumulator operand size. */
2066 for (j = 0; j < i.operands; j++)
2067 {
3528c362
JB
2068 if (i.types[j].bitfield.class != Reg
2069 && i.types[j].bitfield.class != RegSIMD
1b54b8d7 2070 && t->operand_types[j].bitfield.anysize)
5c07affc
L
2071 continue;
2072
bab6aec1 2073 if (t->operand_types[j].bitfield.class == Reg
7a54636a 2074 && !match_operand_size (t, j, j))
5c07affc
L
2075 {
2076 match = 0;
2077 break;
2078 }
2079
3528c362 2080 if (t->operand_types[j].bitfield.class == RegSIMD
3ac21baa 2081 && !match_simd_size (t, j, j))
1b54b8d7
JB
2082 {
2083 match = 0;
2084 break;
2085 }
2086
2087 if (t->operand_types[j].bitfield.acc
7a54636a 2088 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2089 {
2090 match = 0;
2091 break;
2092 }
2093
c48dadc9 2094 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
5c07affc
L
2095 {
2096 match = 0;
2097 break;
2098 }
2099 }
2100
3ac21baa 2101 if (!t->opcode_modifier.d)
891edac4
L
2102 {
2103mismatch:
3ac21baa
JB
2104 if (!match)
2105 i.error = operand_size_mismatch;
2106 return match;
891edac4 2107 }
5c07affc
L
2108
2109 /* Check reverse. */
f5eb1d70 2110 gas_assert (i.operands >= 2 && i.operands <= 3);
5c07affc 2111
f5eb1d70 2112 for (j = 0; j < i.operands; j++)
5c07affc 2113 {
f5eb1d70
JB
2114 unsigned int given = i.operands - j - 1;
2115
bab6aec1 2116 if (t->operand_types[j].bitfield.class == Reg
f5eb1d70 2117 && !match_operand_size (t, j, given))
891edac4 2118 goto mismatch;
5c07affc 2119
3528c362 2120 if (t->operand_types[j].bitfield.class == RegSIMD
f5eb1d70 2121 && !match_simd_size (t, j, given))
dbbc8b7e
JB
2122 goto mismatch;
2123
2124 if (t->operand_types[j].bitfield.acc
f5eb1d70
JB
2125 && (!match_operand_size (t, j, given)
2126 || !match_simd_size (t, j, given)))
dbbc8b7e
JB
2127 goto mismatch;
2128
f5eb1d70 2129 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
891edac4 2130 goto mismatch;
5c07affc
L
2131 }
2132
3ac21baa 2133 return match | MATCH_REVERSE;
5c07affc
L
2134}
2135
c6fb90c8 2136static INLINE int
40fb9820
L
2137operand_type_match (i386_operand_type overlap,
2138 i386_operand_type given)
2139{
2140 i386_operand_type temp = overlap;
2141
2142 temp.bitfield.jumpabsolute = 0;
7d5e4556 2143 temp.bitfield.unspecified = 0;
5c07affc
L
2144 temp.bitfield.byte = 0;
2145 temp.bitfield.word = 0;
2146 temp.bitfield.dword = 0;
2147 temp.bitfield.fword = 0;
2148 temp.bitfield.qword = 0;
2149 temp.bitfield.tbyte = 0;
2150 temp.bitfield.xmmword = 0;
c0f3af97 2151 temp.bitfield.ymmword = 0;
43234a1e 2152 temp.bitfield.zmmword = 0;
0dfbf9d7 2153 if (operand_type_all_zero (&temp))
891edac4 2154 goto mismatch;
40fb9820 2155
891edac4
L
2156 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2157 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2158 return 1;
2159
2160mismatch:
a65babc9 2161 i.error = operand_type_mismatch;
891edac4 2162 return 0;
40fb9820
L
2163}
2164
7d5e4556 2165/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2166 unless the expected operand type register overlap is null.
2167 Memory operand size of certain SIMD instructions is also being checked
2168 here. */
40fb9820 2169
c6fb90c8 2170static INLINE int
dc821c5f 2171operand_type_register_match (i386_operand_type g0,
40fb9820 2172 i386_operand_type t0,
40fb9820
L
2173 i386_operand_type g1,
2174 i386_operand_type t1)
2175{
bab6aec1 2176 if (g0.bitfield.class != Reg
3528c362 2177 && g0.bitfield.class != RegSIMD
10c17abd
JB
2178 && (!operand_type_check (g0, anymem)
2179 || g0.bitfield.unspecified
3528c362 2180 || t0.bitfield.class != RegSIMD))
40fb9820
L
2181 return 1;
2182
bab6aec1 2183 if (g1.bitfield.class != Reg
3528c362 2184 && g1.bitfield.class != RegSIMD
10c17abd
JB
2185 && (!operand_type_check (g1, anymem)
2186 || g1.bitfield.unspecified
3528c362 2187 || t1.bitfield.class != RegSIMD))
40fb9820
L
2188 return 1;
2189
dc821c5f
JB
2190 if (g0.bitfield.byte == g1.bitfield.byte
2191 && g0.bitfield.word == g1.bitfield.word
2192 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2193 && g0.bitfield.qword == g1.bitfield.qword
2194 && g0.bitfield.xmmword == g1.bitfield.xmmword
2195 && g0.bitfield.ymmword == g1.bitfield.ymmword
2196 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2197 return 1;
2198
dc821c5f
JB
2199 if (!(t0.bitfield.byte & t1.bitfield.byte)
2200 && !(t0.bitfield.word & t1.bitfield.word)
2201 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2202 && !(t0.bitfield.qword & t1.bitfield.qword)
2203 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2204 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2205 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2206 return 1;
2207
a65babc9 2208 i.error = register_type_mismatch;
891edac4
L
2209
2210 return 0;
40fb9820
L
2211}
2212
4c692bc7
JB
2213static INLINE unsigned int
2214register_number (const reg_entry *r)
2215{
2216 unsigned int nr = r->reg_num;
2217
2218 if (r->reg_flags & RegRex)
2219 nr += 8;
2220
200cbe0f
L
2221 if (r->reg_flags & RegVRex)
2222 nr += 16;
2223
4c692bc7
JB
2224 return nr;
2225}
2226
252b5132 2227static INLINE unsigned int
40fb9820 2228mode_from_disp_size (i386_operand_type t)
252b5132 2229{
b5014f7a 2230 if (t.bitfield.disp8)
40fb9820
L
2231 return 1;
2232 else if (t.bitfield.disp16
2233 || t.bitfield.disp32
2234 || t.bitfield.disp32s)
2235 return 2;
2236 else
2237 return 0;
252b5132
RH
2238}
2239
2240static INLINE int
65879393 2241fits_in_signed_byte (addressT num)
252b5132 2242{
65879393 2243 return num + 0x80 <= 0xff;
47926f60 2244}
252b5132
RH
2245
2246static INLINE int
65879393 2247fits_in_unsigned_byte (addressT num)
252b5132 2248{
65879393 2249 return num <= 0xff;
47926f60 2250}
252b5132
RH
2251
2252static INLINE int
65879393 2253fits_in_unsigned_word (addressT num)
252b5132 2254{
65879393 2255 return num <= 0xffff;
47926f60 2256}
252b5132
RH
2257
2258static INLINE int
65879393 2259fits_in_signed_word (addressT num)
252b5132 2260{
65879393 2261 return num + 0x8000 <= 0xffff;
47926f60 2262}
2a962e6d 2263
3e73aa7c 2264static INLINE int
65879393 2265fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2266{
2267#ifndef BFD64
2268 return 1;
2269#else
65879393 2270 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2271#endif
2272} /* fits_in_signed_long() */
2a962e6d 2273
3e73aa7c 2274static INLINE int
65879393 2275fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2276{
2277#ifndef BFD64
2278 return 1;
2279#else
65879393 2280 return num <= 0xffffffff;
3e73aa7c
JH
2281#endif
2282} /* fits_in_unsigned_long() */
252b5132 2283
43234a1e 2284static INLINE int
b5014f7a 2285fits_in_disp8 (offsetT num)
43234a1e
L
2286{
2287 int shift = i.memshift;
2288 unsigned int mask;
2289
2290 if (shift == -1)
2291 abort ();
2292
2293 mask = (1 << shift) - 1;
2294
2295 /* Return 0 if NUM isn't properly aligned. */
2296 if ((num & mask))
2297 return 0;
2298
2299 /* Check if NUM will fit in 8bit after shift. */
2300 return fits_in_signed_byte (num >> shift);
2301}
2302
a683cc34
SP
2303static INLINE int
2304fits_in_imm4 (offsetT num)
2305{
2306 return (num & 0xf) == num;
2307}
2308
40fb9820 2309static i386_operand_type
e3bb37b5 2310smallest_imm_type (offsetT num)
252b5132 2311{
40fb9820 2312 i386_operand_type t;
7ab9ffdd 2313
0dfbf9d7 2314 operand_type_set (&t, 0);
40fb9820
L
2315 t.bitfield.imm64 = 1;
2316
2317 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2318 {
2319 /* This code is disabled on the 486 because all the Imm1 forms
2320 in the opcode table are slower on the i486. They're the
2321 versions with the implicitly specified single-position
2322 displacement, which has another syntax if you really want to
2323 use that form. */
40fb9820
L
2324 t.bitfield.imm1 = 1;
2325 t.bitfield.imm8 = 1;
2326 t.bitfield.imm8s = 1;
2327 t.bitfield.imm16 = 1;
2328 t.bitfield.imm32 = 1;
2329 t.bitfield.imm32s = 1;
2330 }
2331 else if (fits_in_signed_byte (num))
2332 {
2333 t.bitfield.imm8 = 1;
2334 t.bitfield.imm8s = 1;
2335 t.bitfield.imm16 = 1;
2336 t.bitfield.imm32 = 1;
2337 t.bitfield.imm32s = 1;
2338 }
2339 else if (fits_in_unsigned_byte (num))
2340 {
2341 t.bitfield.imm8 = 1;
2342 t.bitfield.imm16 = 1;
2343 t.bitfield.imm32 = 1;
2344 t.bitfield.imm32s = 1;
2345 }
2346 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2347 {
2348 t.bitfield.imm16 = 1;
2349 t.bitfield.imm32 = 1;
2350 t.bitfield.imm32s = 1;
2351 }
2352 else if (fits_in_signed_long (num))
2353 {
2354 t.bitfield.imm32 = 1;
2355 t.bitfield.imm32s = 1;
2356 }
2357 else if (fits_in_unsigned_long (num))
2358 t.bitfield.imm32 = 1;
2359
2360 return t;
47926f60 2361}
252b5132 2362
847f7ad4 2363static offsetT
e3bb37b5 2364offset_in_range (offsetT val, int size)
847f7ad4 2365{
508866be 2366 addressT mask;
ba2adb93 2367
847f7ad4
AM
2368 switch (size)
2369 {
508866be
L
2370 case 1: mask = ((addressT) 1 << 8) - 1; break;
2371 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2372 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2373#ifdef BFD64
2374 case 8: mask = ((addressT) 2 << 63) - 1; break;
2375#endif
47926f60 2376 default: abort ();
847f7ad4
AM
2377 }
2378
9de868bf
L
2379#ifdef BFD64
2380 /* If BFD64, sign extend val for 32bit address mode. */
2381 if (flag_code != CODE_64BIT
2382 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2383 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2384 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2385#endif
ba2adb93 2386
47926f60 2387 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2388 {
2389 char buf1[40], buf2[40];
2390
2391 sprint_value (buf1, val);
2392 sprint_value (buf2, val & mask);
2393 as_warn (_("%s shortened to %s"), buf1, buf2);
2394 }
2395 return val & mask;
2396}
2397
c32fa91d
L
2398enum PREFIX_GROUP
2399{
2400 PREFIX_EXIST = 0,
2401 PREFIX_LOCK,
2402 PREFIX_REP,
04ef582a 2403 PREFIX_DS,
c32fa91d
L
2404 PREFIX_OTHER
2405};
2406
2407/* Returns
2408 a. PREFIX_EXIST if attempting to add a prefix where one from the
2409 same class already exists.
2410 b. PREFIX_LOCK if lock prefix is added.
2411 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2412 d. PREFIX_DS if ds prefix is added.
2413 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2414 */
2415
2416static enum PREFIX_GROUP
e3bb37b5 2417add_prefix (unsigned int prefix)
252b5132 2418{
c32fa91d 2419 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2420 unsigned int q;
252b5132 2421
29b0f896
AM
2422 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2423 && flag_code == CODE_64BIT)
b1905489 2424 {
161a04f6 2425 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2426 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2427 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2428 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2429 ret = PREFIX_EXIST;
b1905489
JB
2430 q = REX_PREFIX;
2431 }
3e73aa7c 2432 else
b1905489
JB
2433 {
2434 switch (prefix)
2435 {
2436 default:
2437 abort ();
2438
b1905489 2439 case DS_PREFIX_OPCODE:
04ef582a
L
2440 ret = PREFIX_DS;
2441 /* Fall through. */
2442 case CS_PREFIX_OPCODE:
b1905489
JB
2443 case ES_PREFIX_OPCODE:
2444 case FS_PREFIX_OPCODE:
2445 case GS_PREFIX_OPCODE:
2446 case SS_PREFIX_OPCODE:
2447 q = SEG_PREFIX;
2448 break;
2449
2450 case REPNE_PREFIX_OPCODE:
2451 case REPE_PREFIX_OPCODE:
c32fa91d
L
2452 q = REP_PREFIX;
2453 ret = PREFIX_REP;
2454 break;
2455
b1905489 2456 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2457 q = LOCK_PREFIX;
2458 ret = PREFIX_LOCK;
b1905489
JB
2459 break;
2460
2461 case FWAIT_OPCODE:
2462 q = WAIT_PREFIX;
2463 break;
2464
2465 case ADDR_PREFIX_OPCODE:
2466 q = ADDR_PREFIX;
2467 break;
2468
2469 case DATA_PREFIX_OPCODE:
2470 q = DATA_PREFIX;
2471 break;
2472 }
2473 if (i.prefix[q] != 0)
c32fa91d 2474 ret = PREFIX_EXIST;
b1905489 2475 }
252b5132 2476
b1905489 2477 if (ret)
252b5132 2478 {
b1905489
JB
2479 if (!i.prefix[q])
2480 ++i.prefixes;
2481 i.prefix[q] |= prefix;
252b5132 2482 }
b1905489
JB
2483 else
2484 as_bad (_("same type of prefix used twice"));
252b5132 2485
252b5132
RH
2486 return ret;
2487}
2488
2489static void
78f12dd3 2490update_code_flag (int value, int check)
eecb386c 2491{
78f12dd3
L
2492 PRINTF_LIKE ((*as_error));
2493
1e9cc1c2 2494 flag_code = (enum flag_code) value;
40fb9820
L
2495 if (flag_code == CODE_64BIT)
2496 {
2497 cpu_arch_flags.bitfield.cpu64 = 1;
2498 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2499 }
2500 else
2501 {
2502 cpu_arch_flags.bitfield.cpu64 = 0;
2503 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2504 }
2505 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2506 {
78f12dd3
L
2507 if (check)
2508 as_error = as_fatal;
2509 else
2510 as_error = as_bad;
2511 (*as_error) (_("64bit mode not supported on `%s'."),
2512 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2513 }
40fb9820 2514 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2515 {
78f12dd3
L
2516 if (check)
2517 as_error = as_fatal;
2518 else
2519 as_error = as_bad;
2520 (*as_error) (_("32bit mode not supported on `%s'."),
2521 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2522 }
eecb386c
AM
2523 stackop_size = '\0';
2524}
2525
78f12dd3
L
2526static void
2527set_code_flag (int value)
2528{
2529 update_code_flag (value, 0);
2530}
2531
eecb386c 2532static void
e3bb37b5 2533set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2534{
1e9cc1c2 2535 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2536 if (flag_code != CODE_16BIT)
2537 abort ();
2538 cpu_arch_flags.bitfield.cpu64 = 0;
2539 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2540 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2541}
2542
2543static void
e3bb37b5 2544set_intel_syntax (int syntax_flag)
252b5132
RH
2545{
2546 /* Find out if register prefixing is specified. */
2547 int ask_naked_reg = 0;
2548
2549 SKIP_WHITESPACE ();
29b0f896 2550 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2551 {
d02603dc
NC
2552 char *string;
2553 int e = get_symbol_name (&string);
252b5132 2554
47926f60 2555 if (strcmp (string, "prefix") == 0)
252b5132 2556 ask_naked_reg = 1;
47926f60 2557 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2558 ask_naked_reg = -1;
2559 else
d0b47220 2560 as_bad (_("bad argument to syntax directive."));
d02603dc 2561 (void) restore_line_pointer (e);
252b5132
RH
2562 }
2563 demand_empty_rest_of_line ();
c3332e24 2564
252b5132
RH
2565 intel_syntax = syntax_flag;
2566
2567 if (ask_naked_reg == 0)
f86103b7
AM
2568 allow_naked_reg = (intel_syntax
2569 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2570 else
2571 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2572
ee86248c 2573 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2574
e4a3b5a4 2575 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2576 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2577 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2578}
2579
1efbbeb4
L
2580static void
2581set_intel_mnemonic (int mnemonic_flag)
2582{
e1d4d893 2583 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2584}
2585
db51cc60
L
2586static void
2587set_allow_index_reg (int flag)
2588{
2589 allow_index_reg = flag;
2590}
2591
cb19c032 2592static void
7bab8ab5 2593set_check (int what)
cb19c032 2594{
7bab8ab5
JB
2595 enum check_kind *kind;
2596 const char *str;
2597
2598 if (what)
2599 {
2600 kind = &operand_check;
2601 str = "operand";
2602 }
2603 else
2604 {
2605 kind = &sse_check;
2606 str = "sse";
2607 }
2608
cb19c032
L
2609 SKIP_WHITESPACE ();
2610
2611 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2612 {
d02603dc
NC
2613 char *string;
2614 int e = get_symbol_name (&string);
cb19c032
L
2615
2616 if (strcmp (string, "none") == 0)
7bab8ab5 2617 *kind = check_none;
cb19c032 2618 else if (strcmp (string, "warning") == 0)
7bab8ab5 2619 *kind = check_warning;
cb19c032 2620 else if (strcmp (string, "error") == 0)
7bab8ab5 2621 *kind = check_error;
cb19c032 2622 else
7bab8ab5 2623 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2624 (void) restore_line_pointer (e);
cb19c032
L
2625 }
2626 else
7bab8ab5 2627 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2628
2629 demand_empty_rest_of_line ();
2630}
2631
8a9036a4
L
2632static void
2633check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2634 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2635{
2636#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2637 static const char *arch;
2638
2639 /* Intel LIOM is only supported on ELF. */
2640 if (!IS_ELF)
2641 return;
2642
2643 if (!arch)
2644 {
2645 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2646 use default_arch. */
2647 arch = cpu_arch_name;
2648 if (!arch)
2649 arch = default_arch;
2650 }
2651
81486035
L
2652 /* If we are targeting Intel MCU, we must enable it. */
2653 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2654 || new_flag.bitfield.cpuiamcu)
2655 return;
2656
3632d14b 2657 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2658 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2659 || new_flag.bitfield.cpul1om)
8a9036a4 2660 return;
76ba9986 2661
7a9068fe
L
2662 /* If we are targeting Intel K1OM, we must enable it. */
2663 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2664 || new_flag.bitfield.cpuk1om)
2665 return;
2666
8a9036a4
L
2667 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2668#endif
2669}
2670
e413e4e9 2671static void
e3bb37b5 2672set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2673{
47926f60 2674 SKIP_WHITESPACE ();
e413e4e9 2675
29b0f896 2676 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2677 {
d02603dc
NC
2678 char *string;
2679 int e = get_symbol_name (&string);
91d6fa6a 2680 unsigned int j;
40fb9820 2681 i386_cpu_flags flags;
e413e4e9 2682
91d6fa6a 2683 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2684 {
91d6fa6a 2685 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2686 {
91d6fa6a 2687 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2688
5c6af06e
JB
2689 if (*string != '.')
2690 {
91d6fa6a 2691 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2692 cpu_sub_arch_name = NULL;
91d6fa6a 2693 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2694 if (flag_code == CODE_64BIT)
2695 {
2696 cpu_arch_flags.bitfield.cpu64 = 1;
2697 cpu_arch_flags.bitfield.cpuno64 = 0;
2698 }
2699 else
2700 {
2701 cpu_arch_flags.bitfield.cpu64 = 0;
2702 cpu_arch_flags.bitfield.cpuno64 = 1;
2703 }
91d6fa6a
NC
2704 cpu_arch_isa = cpu_arch[j].type;
2705 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2706 if (!cpu_arch_tune_set)
2707 {
2708 cpu_arch_tune = cpu_arch_isa;
2709 cpu_arch_tune_flags = cpu_arch_isa_flags;
2710 }
5c6af06e
JB
2711 break;
2712 }
40fb9820 2713
293f5f65
L
2714 flags = cpu_flags_or (cpu_arch_flags,
2715 cpu_arch[j].flags);
81486035 2716
5b64d091 2717 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2718 {
6305a203
L
2719 if (cpu_sub_arch_name)
2720 {
2721 char *name = cpu_sub_arch_name;
2722 cpu_sub_arch_name = concat (name,
91d6fa6a 2723 cpu_arch[j].name,
1bf57e9f 2724 (const char *) NULL);
6305a203
L
2725 free (name);
2726 }
2727 else
91d6fa6a 2728 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2729 cpu_arch_flags = flags;
a586129e 2730 cpu_arch_isa_flags = flags;
5c6af06e 2731 }
0089dace
L
2732 else
2733 cpu_arch_isa_flags
2734 = cpu_flags_or (cpu_arch_isa_flags,
2735 cpu_arch[j].flags);
d02603dc 2736 (void) restore_line_pointer (e);
5c6af06e
JB
2737 demand_empty_rest_of_line ();
2738 return;
e413e4e9
AM
2739 }
2740 }
293f5f65
L
2741
2742 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2743 {
33eaf5de 2744 /* Disable an ISA extension. */
293f5f65
L
2745 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2746 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2747 {
2748 flags = cpu_flags_and_not (cpu_arch_flags,
2749 cpu_noarch[j].flags);
2750 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2751 {
2752 if (cpu_sub_arch_name)
2753 {
2754 char *name = cpu_sub_arch_name;
2755 cpu_sub_arch_name = concat (name, string,
2756 (const char *) NULL);
2757 free (name);
2758 }
2759 else
2760 cpu_sub_arch_name = xstrdup (string);
2761 cpu_arch_flags = flags;
2762 cpu_arch_isa_flags = flags;
2763 }
2764 (void) restore_line_pointer (e);
2765 demand_empty_rest_of_line ();
2766 return;
2767 }
2768
2769 j = ARRAY_SIZE (cpu_arch);
2770 }
2771
91d6fa6a 2772 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2773 as_bad (_("no such architecture: `%s'"), string);
2774
2775 *input_line_pointer = e;
2776 }
2777 else
2778 as_bad (_("missing cpu architecture"));
2779
fddf5b5b
AM
2780 no_cond_jump_promotion = 0;
2781 if (*input_line_pointer == ','
29b0f896 2782 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2783 {
d02603dc
NC
2784 char *string;
2785 char e;
2786
2787 ++input_line_pointer;
2788 e = get_symbol_name (&string);
fddf5b5b
AM
2789
2790 if (strcmp (string, "nojumps") == 0)
2791 no_cond_jump_promotion = 1;
2792 else if (strcmp (string, "jumps") == 0)
2793 ;
2794 else
2795 as_bad (_("no such architecture modifier: `%s'"), string);
2796
d02603dc 2797 (void) restore_line_pointer (e);
fddf5b5b
AM
2798 }
2799
e413e4e9
AM
2800 demand_empty_rest_of_line ();
2801}
2802
8a9036a4
L
2803enum bfd_architecture
2804i386_arch (void)
2805{
3632d14b 2806 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2807 {
2808 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2809 || flag_code != CODE_64BIT)
2810 as_fatal (_("Intel L1OM is 64bit ELF only"));
2811 return bfd_arch_l1om;
2812 }
7a9068fe
L
2813 else if (cpu_arch_isa == PROCESSOR_K1OM)
2814 {
2815 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2816 || flag_code != CODE_64BIT)
2817 as_fatal (_("Intel K1OM is 64bit ELF only"));
2818 return bfd_arch_k1om;
2819 }
81486035
L
2820 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2821 {
2822 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2823 || flag_code == CODE_64BIT)
2824 as_fatal (_("Intel MCU is 32bit ELF only"));
2825 return bfd_arch_iamcu;
2826 }
8a9036a4
L
2827 else
2828 return bfd_arch_i386;
2829}
2830
b9d79e03 2831unsigned long
7016a5d5 2832i386_mach (void)
b9d79e03 2833{
351f65ca 2834 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2835 {
3632d14b 2836 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2837 {
351f65ca
L
2838 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2839 || default_arch[6] != '\0')
8a9036a4
L
2840 as_fatal (_("Intel L1OM is 64bit ELF only"));
2841 return bfd_mach_l1om;
2842 }
7a9068fe
L
2843 else if (cpu_arch_isa == PROCESSOR_K1OM)
2844 {
2845 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2846 || default_arch[6] != '\0')
2847 as_fatal (_("Intel K1OM is 64bit ELF only"));
2848 return bfd_mach_k1om;
2849 }
351f65ca 2850 else if (default_arch[6] == '\0')
8a9036a4 2851 return bfd_mach_x86_64;
351f65ca
L
2852 else
2853 return bfd_mach_x64_32;
8a9036a4 2854 }
5197d474
L
2855 else if (!strcmp (default_arch, "i386")
2856 || !strcmp (default_arch, "iamcu"))
81486035
L
2857 {
2858 if (cpu_arch_isa == PROCESSOR_IAMCU)
2859 {
2860 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2861 as_fatal (_("Intel MCU is 32bit ELF only"));
2862 return bfd_mach_i386_iamcu;
2863 }
2864 else
2865 return bfd_mach_i386_i386;
2866 }
b9d79e03 2867 else
2b5d6a91 2868 as_fatal (_("unknown architecture"));
b9d79e03 2869}
b9d79e03 2870\f
252b5132 2871void
7016a5d5 2872md_begin (void)
252b5132
RH
2873{
2874 const char *hash_err;
2875
86fa6981
L
2876 /* Support pseudo prefixes like {disp32}. */
2877 lex_type ['{'] = LEX_BEGIN_NAME;
2878
47926f60 2879 /* Initialize op_hash hash table. */
252b5132
RH
2880 op_hash = hash_new ();
2881
2882 {
d3ce72d0 2883 const insn_template *optab;
29b0f896 2884 templates *core_optab;
252b5132 2885
47926f60
KH
2886 /* Setup for loop. */
2887 optab = i386_optab;
add39d23 2888 core_optab = XNEW (templates);
252b5132
RH
2889 core_optab->start = optab;
2890
2891 while (1)
2892 {
2893 ++optab;
2894 if (optab->name == NULL
2895 || strcmp (optab->name, (optab - 1)->name) != 0)
2896 {
2897 /* different name --> ship out current template list;
47926f60 2898 add to hash table; & begin anew. */
252b5132
RH
2899 core_optab->end = optab;
2900 hash_err = hash_insert (op_hash,
2901 (optab - 1)->name,
5a49b8ac 2902 (void *) core_optab);
252b5132
RH
2903 if (hash_err)
2904 {
b37df7c4 2905 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2906 (optab - 1)->name,
2907 hash_err);
2908 }
2909 if (optab->name == NULL)
2910 break;
add39d23 2911 core_optab = XNEW (templates);
252b5132
RH
2912 core_optab->start = optab;
2913 }
2914 }
2915 }
2916
47926f60 2917 /* Initialize reg_hash hash table. */
252b5132
RH
2918 reg_hash = hash_new ();
2919 {
29b0f896 2920 const reg_entry *regtab;
c3fe08fa 2921 unsigned int regtab_size = i386_regtab_size;
252b5132 2922
c3fe08fa 2923 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2924 {
5a49b8ac 2925 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2926 if (hash_err)
b37df7c4 2927 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2928 regtab->reg_name,
2929 hash_err);
252b5132
RH
2930 }
2931 }
2932
47926f60 2933 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2934 {
29b0f896
AM
2935 int c;
2936 char *p;
252b5132
RH
2937
2938 for (c = 0; c < 256; c++)
2939 {
3882b010 2940 if (ISDIGIT (c))
252b5132
RH
2941 {
2942 digit_chars[c] = c;
2943 mnemonic_chars[c] = c;
2944 register_chars[c] = c;
2945 operand_chars[c] = c;
2946 }
3882b010 2947 else if (ISLOWER (c))
252b5132
RH
2948 {
2949 mnemonic_chars[c] = c;
2950 register_chars[c] = c;
2951 operand_chars[c] = c;
2952 }
3882b010 2953 else if (ISUPPER (c))
252b5132 2954 {
3882b010 2955 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2956 register_chars[c] = mnemonic_chars[c];
2957 operand_chars[c] = c;
2958 }
43234a1e 2959 else if (c == '{' || c == '}')
86fa6981
L
2960 {
2961 mnemonic_chars[c] = c;
2962 operand_chars[c] = c;
2963 }
252b5132 2964
3882b010 2965 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2966 identifier_chars[c] = c;
2967 else if (c >= 128)
2968 {
2969 identifier_chars[c] = c;
2970 operand_chars[c] = c;
2971 }
2972 }
2973
2974#ifdef LEX_AT
2975 identifier_chars['@'] = '@';
32137342
NC
2976#endif
2977#ifdef LEX_QM
2978 identifier_chars['?'] = '?';
2979 operand_chars['?'] = '?';
252b5132 2980#endif
252b5132 2981 digit_chars['-'] = '-';
c0f3af97 2982 mnemonic_chars['_'] = '_';
791fe849 2983 mnemonic_chars['-'] = '-';
0003779b 2984 mnemonic_chars['.'] = '.';
252b5132
RH
2985 identifier_chars['_'] = '_';
2986 identifier_chars['.'] = '.';
2987
2988 for (p = operand_special_chars; *p != '\0'; p++)
2989 operand_chars[(unsigned char) *p] = *p;
2990 }
2991
a4447b93
RH
2992 if (flag_code == CODE_64BIT)
2993 {
ca19b261
KT
2994#if defined (OBJ_COFF) && defined (TE_PE)
2995 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2996 ? 32 : 16);
2997#else
a4447b93 2998 x86_dwarf2_return_column = 16;
ca19b261 2999#endif
61ff971f 3000 x86_cie_data_alignment = -8;
a4447b93
RH
3001 }
3002 else
3003 {
3004 x86_dwarf2_return_column = 8;
3005 x86_cie_data_alignment = -4;
3006 }
252b5132
RH
3007}
3008
3009void
e3bb37b5 3010i386_print_statistics (FILE *file)
252b5132
RH
3011{
3012 hash_print_statistics (file, "i386 opcode", op_hash);
3013 hash_print_statistics (file, "i386 register", reg_hash);
3014}
3015\f
252b5132
RH
3016#ifdef DEBUG386
3017
ce8a8b2f 3018/* Debugging routines for md_assemble. */
d3ce72d0 3019static void pte (insn_template *);
40fb9820 3020static void pt (i386_operand_type);
e3bb37b5
L
3021static void pe (expressionS *);
3022static void ps (symbolS *);
252b5132
RH
3023
3024static void
2c703856 3025pi (const char *line, i386_insn *x)
252b5132 3026{
09137c09 3027 unsigned int j;
252b5132
RH
3028
3029 fprintf (stdout, "%s: template ", line);
3030 pte (&x->tm);
09f131f2
JH
3031 fprintf (stdout, " address: base %s index %s scale %x\n",
3032 x->base_reg ? x->base_reg->reg_name : "none",
3033 x->index_reg ? x->index_reg->reg_name : "none",
3034 x->log2_scale_factor);
3035 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 3036 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
3037 fprintf (stdout, " sib: base %x index %x scale %x\n",
3038 x->sib.base, x->sib.index, x->sib.scale);
3039 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
3040 (x->rex & REX_W) != 0,
3041 (x->rex & REX_R) != 0,
3042 (x->rex & REX_X) != 0,
3043 (x->rex & REX_B) != 0);
09137c09 3044 for (j = 0; j < x->operands; j++)
252b5132 3045 {
09137c09
SP
3046 fprintf (stdout, " #%d: ", j + 1);
3047 pt (x->types[j]);
252b5132 3048 fprintf (stdout, "\n");
bab6aec1 3049 if (x->types[j].bitfield.class == Reg
3528c362
JB
3050 || x->types[j].bitfield.class == RegMMX
3051 || x->types[j].bitfield.class == RegSIMD
00cee14f 3052 || x->types[j].bitfield.class == SReg
4a5c67ed
JB
3053 || x->types[j].bitfield.class == RegCR
3054 || x->types[j].bitfield.class == RegDR
3055 || x->types[j].bitfield.class == RegTR)
09137c09
SP
3056 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3057 if (operand_type_check (x->types[j], imm))
3058 pe (x->op[j].imms);
3059 if (operand_type_check (x->types[j], disp))
3060 pe (x->op[j].disps);
252b5132
RH
3061 }
3062}
3063
3064static void
d3ce72d0 3065pte (insn_template *t)
252b5132 3066{
09137c09 3067 unsigned int j;
252b5132 3068 fprintf (stdout, " %d operands ", t->operands);
47926f60 3069 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
3070 if (t->extension_opcode != None)
3071 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 3072 if (t->opcode_modifier.d)
252b5132 3073 fprintf (stdout, "D");
40fb9820 3074 if (t->opcode_modifier.w)
252b5132
RH
3075 fprintf (stdout, "W");
3076 fprintf (stdout, "\n");
09137c09 3077 for (j = 0; j < t->operands; j++)
252b5132 3078 {
09137c09
SP
3079 fprintf (stdout, " #%d type ", j + 1);
3080 pt (t->operand_types[j]);
252b5132
RH
3081 fprintf (stdout, "\n");
3082 }
3083}
3084
3085static void
e3bb37b5 3086pe (expressionS *e)
252b5132 3087{
24eab124 3088 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
3089 fprintf (stdout, " add_number %ld (%lx)\n",
3090 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
3091 if (e->X_add_symbol)
3092 {
3093 fprintf (stdout, " add_symbol ");
3094 ps (e->X_add_symbol);
3095 fprintf (stdout, "\n");
3096 }
3097 if (e->X_op_symbol)
3098 {
3099 fprintf (stdout, " op_symbol ");
3100 ps (e->X_op_symbol);
3101 fprintf (stdout, "\n");
3102 }
3103}
3104
3105static void
e3bb37b5 3106ps (symbolS *s)
252b5132
RH
3107{
3108 fprintf (stdout, "%s type %s%s",
3109 S_GET_NAME (s),
3110 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3111 segment_name (S_GET_SEGMENT (s)));
3112}
3113
7b81dfbb 3114static struct type_name
252b5132 3115 {
40fb9820
L
3116 i386_operand_type mask;
3117 const char *name;
252b5132 3118 }
7b81dfbb 3119const type_names[] =
252b5132 3120{
40fb9820
L
3121 { OPERAND_TYPE_REG8, "r8" },
3122 { OPERAND_TYPE_REG16, "r16" },
3123 { OPERAND_TYPE_REG32, "r32" },
3124 { OPERAND_TYPE_REG64, "r64" },
2c703856
JB
3125 { OPERAND_TYPE_ACC8, "acc8" },
3126 { OPERAND_TYPE_ACC16, "acc16" },
3127 { OPERAND_TYPE_ACC32, "acc32" },
3128 { OPERAND_TYPE_ACC64, "acc64" },
40fb9820
L
3129 { OPERAND_TYPE_IMM8, "i8" },
3130 { OPERAND_TYPE_IMM8, "i8s" },
3131 { OPERAND_TYPE_IMM16, "i16" },
3132 { OPERAND_TYPE_IMM32, "i32" },
3133 { OPERAND_TYPE_IMM32S, "i32s" },
3134 { OPERAND_TYPE_IMM64, "i64" },
3135 { OPERAND_TYPE_IMM1, "i1" },
3136 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3137 { OPERAND_TYPE_DISP8, "d8" },
3138 { OPERAND_TYPE_DISP16, "d16" },
3139 { OPERAND_TYPE_DISP32, "d32" },
3140 { OPERAND_TYPE_DISP32S, "d32s" },
3141 { OPERAND_TYPE_DISP64, "d64" },
3142 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3143 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3144 { OPERAND_TYPE_CONTROL, "control reg" },
3145 { OPERAND_TYPE_TEST, "test reg" },
3146 { OPERAND_TYPE_DEBUG, "debug reg" },
3147 { OPERAND_TYPE_FLOATREG, "FReg" },
3148 { OPERAND_TYPE_FLOATACC, "FAcc" },
21df382b 3149 { OPERAND_TYPE_SREG, "SReg" },
40fb9820
L
3150 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3151 { OPERAND_TYPE_REGMMX, "rMMX" },
3152 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3153 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3154 { OPERAND_TYPE_REGZMM, "rZMM" },
3155 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 3156 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
3157};
3158
3159static void
40fb9820 3160pt (i386_operand_type t)
252b5132 3161{
40fb9820 3162 unsigned int j;
c6fb90c8 3163 i386_operand_type a;
252b5132 3164
40fb9820 3165 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3166 {
3167 a = operand_type_and (t, type_names[j].mask);
2c703856 3168 if (operand_type_equal (&a, &type_names[j].mask))
c6fb90c8
L
3169 fprintf (stdout, "%s, ", type_names[j].name);
3170 }
252b5132
RH
3171 fflush (stdout);
3172}
3173
3174#endif /* DEBUG386 */
3175\f
252b5132 3176static bfd_reloc_code_real_type
3956db08 3177reloc (unsigned int size,
64e74474
AM
3178 int pcrel,
3179 int sign,
3180 bfd_reloc_code_real_type other)
252b5132 3181{
47926f60 3182 if (other != NO_RELOC)
3956db08 3183 {
91d6fa6a 3184 reloc_howto_type *rel;
3956db08
JB
3185
3186 if (size == 8)
3187 switch (other)
3188 {
64e74474
AM
3189 case BFD_RELOC_X86_64_GOT32:
3190 return BFD_RELOC_X86_64_GOT64;
3191 break;
553d1284
L
3192 case BFD_RELOC_X86_64_GOTPLT64:
3193 return BFD_RELOC_X86_64_GOTPLT64;
3194 break;
64e74474
AM
3195 case BFD_RELOC_X86_64_PLTOFF64:
3196 return BFD_RELOC_X86_64_PLTOFF64;
3197 break;
3198 case BFD_RELOC_X86_64_GOTPC32:
3199 other = BFD_RELOC_X86_64_GOTPC64;
3200 break;
3201 case BFD_RELOC_X86_64_GOTPCREL:
3202 other = BFD_RELOC_X86_64_GOTPCREL64;
3203 break;
3204 case BFD_RELOC_X86_64_TPOFF32:
3205 other = BFD_RELOC_X86_64_TPOFF64;
3206 break;
3207 case BFD_RELOC_X86_64_DTPOFF32:
3208 other = BFD_RELOC_X86_64_DTPOFF64;
3209 break;
3210 default:
3211 break;
3956db08 3212 }
e05278af 3213
8ce3d284 3214#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3215 if (other == BFD_RELOC_SIZE32)
3216 {
3217 if (size == 8)
1ab668bf 3218 other = BFD_RELOC_SIZE64;
8fd4256d 3219 if (pcrel)
1ab668bf
AM
3220 {
3221 as_bad (_("there are no pc-relative size relocations"));
3222 return NO_RELOC;
3223 }
8fd4256d 3224 }
8ce3d284 3225#endif
8fd4256d 3226
e05278af 3227 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3228 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3229 sign = -1;
3230
91d6fa6a
NC
3231 rel = bfd_reloc_type_lookup (stdoutput, other);
3232 if (!rel)
3956db08 3233 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3234 else if (size != bfd_get_reloc_size (rel))
3956db08 3235 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3236 bfd_get_reloc_size (rel),
3956db08 3237 size);
91d6fa6a 3238 else if (pcrel && !rel->pc_relative)
3956db08 3239 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3240 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3241 && !sign)
91d6fa6a 3242 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3243 && sign > 0))
3956db08
JB
3244 as_bad (_("relocated field and relocation type differ in signedness"));
3245 else
3246 return other;
3247 return NO_RELOC;
3248 }
252b5132
RH
3249
3250 if (pcrel)
3251 {
3e73aa7c 3252 if (!sign)
3956db08 3253 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3254 switch (size)
3255 {
3256 case 1: return BFD_RELOC_8_PCREL;
3257 case 2: return BFD_RELOC_16_PCREL;
d258b828 3258 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3259 case 8: return BFD_RELOC_64_PCREL;
252b5132 3260 }
3956db08 3261 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3262 }
3263 else
3264 {
3956db08 3265 if (sign > 0)
e5cb08ac 3266 switch (size)
3e73aa7c
JH
3267 {
3268 case 4: return BFD_RELOC_X86_64_32S;
3269 }
3270 else
3271 switch (size)
3272 {
3273 case 1: return BFD_RELOC_8;
3274 case 2: return BFD_RELOC_16;
3275 case 4: return BFD_RELOC_32;
3276 case 8: return BFD_RELOC_64;
3277 }
3956db08
JB
3278 as_bad (_("cannot do %s %u byte relocation"),
3279 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3280 }
3281
0cc9e1d3 3282 return NO_RELOC;
252b5132
RH
3283}
3284
47926f60
KH
3285/* Here we decide which fixups can be adjusted to make them relative to
3286 the beginning of the section instead of the symbol. Basically we need
3287 to make sure that the dynamic relocations are done correctly, so in
3288 some cases we force the original symbol to be used. */
3289
252b5132 3290int
e3bb37b5 3291tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3292{
6d249963 3293#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3294 if (!IS_ELF)
31312f95
AM
3295 return 1;
3296
a161fe53
AM
3297 /* Don't adjust pc-relative references to merge sections in 64-bit
3298 mode. */
3299 if (use_rela_relocations
3300 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3301 && fixP->fx_pcrel)
252b5132 3302 return 0;
31312f95 3303
8d01d9a9
AJ
3304 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3305 and changed later by validate_fix. */
3306 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3307 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3308 return 0;
3309
8fd4256d
L
3310 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3311 for size relocations. */
3312 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3313 || fixP->fx_r_type == BFD_RELOC_SIZE64
3314 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3315 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3316 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3317 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3318 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3319 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3320 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3321 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3322 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3323 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3324 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3325 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3326 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3327 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3328 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3329 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3330 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3331 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3332 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3333 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3334 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3335 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3336 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3337 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3338 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3339 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3340 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3341 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3342 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3343 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3344 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3345 return 0;
31312f95 3346#endif
252b5132
RH
3347 return 1;
3348}
252b5132 3349
b4cac588 3350static int
e3bb37b5 3351intel_float_operand (const char *mnemonic)
252b5132 3352{
9306ca4a
JB
3353 /* Note that the value returned is meaningful only for opcodes with (memory)
3354 operands, hence the code here is free to improperly handle opcodes that
3355 have no operands (for better performance and smaller code). */
3356
3357 if (mnemonic[0] != 'f')
3358 return 0; /* non-math */
3359
3360 switch (mnemonic[1])
3361 {
3362 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3363 the fs segment override prefix not currently handled because no
3364 call path can make opcodes without operands get here */
3365 case 'i':
3366 return 2 /* integer op */;
3367 case 'l':
3368 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3369 return 3; /* fldcw/fldenv */
3370 break;
3371 case 'n':
3372 if (mnemonic[2] != 'o' /* fnop */)
3373 return 3; /* non-waiting control op */
3374 break;
3375 case 'r':
3376 if (mnemonic[2] == 's')
3377 return 3; /* frstor/frstpm */
3378 break;
3379 case 's':
3380 if (mnemonic[2] == 'a')
3381 return 3; /* fsave */
3382 if (mnemonic[2] == 't')
3383 {
3384 switch (mnemonic[3])
3385 {
3386 case 'c': /* fstcw */
3387 case 'd': /* fstdw */
3388 case 'e': /* fstenv */
3389 case 's': /* fsts[gw] */
3390 return 3;
3391 }
3392 }
3393 break;
3394 case 'x':
3395 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3396 return 0; /* fxsave/fxrstor are not really math ops */
3397 break;
3398 }
252b5132 3399
9306ca4a 3400 return 1;
252b5132
RH
3401}
3402
c0f3af97
L
3403/* Build the VEX prefix. */
3404
3405static void
d3ce72d0 3406build_vex_prefix (const insn_template *t)
c0f3af97
L
3407{
3408 unsigned int register_specifier;
3409 unsigned int implied_prefix;
3410 unsigned int vector_length;
03751133 3411 unsigned int w;
c0f3af97
L
3412
3413 /* Check register specifier. */
3414 if (i.vex.register_specifier)
43234a1e
L
3415 {
3416 register_specifier =
3417 ~register_number (i.vex.register_specifier) & 0xf;
3418 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3419 }
c0f3af97
L
3420 else
3421 register_specifier = 0xf;
3422
79f0fa25
L
3423 /* Use 2-byte VEX prefix by swapping destination and source operand
3424 if there are more than 1 register operand. */
3425 if (i.reg_operands > 1
3426 && i.vec_encoding != vex_encoding_vex3
86fa6981 3427 && i.dir_encoding == dir_encoding_default
fa99fab2 3428 && i.operands == i.reg_operands
dbbc8b7e 3429 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
7f399153 3430 && i.tm.opcode_modifier.vexopcode == VEX0F
dbbc8b7e 3431 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
fa99fab2
L
3432 && i.rex == REX_B)
3433 {
3434 unsigned int xchg = i.operands - 1;
3435 union i386_op temp_op;
3436 i386_operand_type temp_type;
3437
3438 temp_type = i.types[xchg];
3439 i.types[xchg] = i.types[0];
3440 i.types[0] = temp_type;
3441 temp_op = i.op[xchg];
3442 i.op[xchg] = i.op[0];
3443 i.op[0] = temp_op;
3444
9c2799c2 3445 gas_assert (i.rm.mode == 3);
fa99fab2
L
3446
3447 i.rex = REX_R;
3448 xchg = i.rm.regmem;
3449 i.rm.regmem = i.rm.reg;
3450 i.rm.reg = xchg;
3451
dbbc8b7e
JB
3452 if (i.tm.opcode_modifier.d)
3453 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3454 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3455 else /* Use the next insn. */
3456 i.tm = t[1];
fa99fab2
L
3457 }
3458
79dec6b7
JB
3459 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3460 are no memory operands and at least 3 register ones. */
3461 if (i.reg_operands >= 3
3462 && i.vec_encoding != vex_encoding_vex3
3463 && i.reg_operands == i.operands - i.imm_operands
3464 && i.tm.opcode_modifier.vex
3465 && i.tm.opcode_modifier.commutative
3466 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3467 && i.rex == REX_B
3468 && i.vex.register_specifier
3469 && !(i.vex.register_specifier->reg_flags & RegRex))
3470 {
3471 unsigned int xchg = i.operands - i.reg_operands;
3472 union i386_op temp_op;
3473 i386_operand_type temp_type;
3474
3475 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3476 gas_assert (!i.tm.opcode_modifier.sae);
3477 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3478 &i.types[i.operands - 3]));
3479 gas_assert (i.rm.mode == 3);
3480
3481 temp_type = i.types[xchg];
3482 i.types[xchg] = i.types[xchg + 1];
3483 i.types[xchg + 1] = temp_type;
3484 temp_op = i.op[xchg];
3485 i.op[xchg] = i.op[xchg + 1];
3486 i.op[xchg + 1] = temp_op;
3487
3488 i.rex = 0;
3489 xchg = i.rm.regmem | 8;
3490 i.rm.regmem = ~register_specifier & 0xf;
3491 gas_assert (!(i.rm.regmem & 8));
3492 i.vex.register_specifier += xchg - i.rm.regmem;
3493 register_specifier = ~xchg & 0xf;
3494 }
3495
539f890d
L
3496 if (i.tm.opcode_modifier.vex == VEXScalar)
3497 vector_length = avxscalar;
10c17abd
JB
3498 else if (i.tm.opcode_modifier.vex == VEX256)
3499 vector_length = 1;
539f890d 3500 else
10c17abd 3501 {
56522fc5 3502 unsigned int op;
10c17abd 3503
c7213af9
L
3504 /* Determine vector length from the last multi-length vector
3505 operand. */
10c17abd 3506 vector_length = 0;
56522fc5 3507 for (op = t->operands; op--;)
10c17abd
JB
3508 if (t->operand_types[op].bitfield.xmmword
3509 && t->operand_types[op].bitfield.ymmword
3510 && i.types[op].bitfield.ymmword)
3511 {
3512 vector_length = 1;
3513 break;
3514 }
3515 }
c0f3af97
L
3516
3517 switch ((i.tm.base_opcode >> 8) & 0xff)
3518 {
3519 case 0:
3520 implied_prefix = 0;
3521 break;
3522 case DATA_PREFIX_OPCODE:
3523 implied_prefix = 1;
3524 break;
3525 case REPE_PREFIX_OPCODE:
3526 implied_prefix = 2;
3527 break;
3528 case REPNE_PREFIX_OPCODE:
3529 implied_prefix = 3;
3530 break;
3531 default:
3532 abort ();
3533 }
3534
03751133
L
3535 /* Check the REX.W bit and VEXW. */
3536 if (i.tm.opcode_modifier.vexw == VEXWIG)
3537 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3538 else if (i.tm.opcode_modifier.vexw)
3539 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3540 else
931d03b7 3541 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
03751133 3542
c0f3af97 3543 /* Use 2-byte VEX prefix if possible. */
03751133
L
3544 if (w == 0
3545 && i.vec_encoding != vex_encoding_vex3
86fa6981 3546 && i.tm.opcode_modifier.vexopcode == VEX0F
c0f3af97
L
3547 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3548 {
3549 /* 2-byte VEX prefix. */
3550 unsigned int r;
3551
3552 i.vex.length = 2;
3553 i.vex.bytes[0] = 0xc5;
3554
3555 /* Check the REX.R bit. */
3556 r = (i.rex & REX_R) ? 0 : 1;
3557 i.vex.bytes[1] = (r << 7
3558 | register_specifier << 3
3559 | vector_length << 2
3560 | implied_prefix);
3561 }
3562 else
3563 {
3564 /* 3-byte VEX prefix. */
03751133 3565 unsigned int m;
c0f3af97 3566
f88c9eb0 3567 i.vex.length = 3;
f88c9eb0 3568
7f399153 3569 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3570 {
7f399153
L
3571 case VEX0F:
3572 m = 0x1;
80de6e00 3573 i.vex.bytes[0] = 0xc4;
7f399153
L
3574 break;
3575 case VEX0F38:
3576 m = 0x2;
80de6e00 3577 i.vex.bytes[0] = 0xc4;
7f399153
L
3578 break;
3579 case VEX0F3A:
3580 m = 0x3;
80de6e00 3581 i.vex.bytes[0] = 0xc4;
7f399153
L
3582 break;
3583 case XOP08:
5dd85c99
SP
3584 m = 0x8;
3585 i.vex.bytes[0] = 0x8f;
7f399153
L
3586 break;
3587 case XOP09:
f88c9eb0
SP
3588 m = 0x9;
3589 i.vex.bytes[0] = 0x8f;
7f399153
L
3590 break;
3591 case XOP0A:
f88c9eb0
SP
3592 m = 0xa;
3593 i.vex.bytes[0] = 0x8f;
7f399153
L
3594 break;
3595 default:
3596 abort ();
f88c9eb0 3597 }
c0f3af97 3598
c0f3af97
L
3599 /* The high 3 bits of the second VEX byte are 1's compliment
3600 of RXB bits from REX. */
3601 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3602
c0f3af97
L
3603 i.vex.bytes[2] = (w << 7
3604 | register_specifier << 3
3605 | vector_length << 2
3606 | implied_prefix);
3607 }
3608}
3609
e771e7c9
JB
3610static INLINE bfd_boolean
3611is_evex_encoding (const insn_template *t)
3612{
7091c612 3613 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
e771e7c9 3614 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
a80195f1 3615 || t->opcode_modifier.sae;
e771e7c9
JB
3616}
3617
7a8655d2
JB
3618static INLINE bfd_boolean
3619is_any_vex_encoding (const insn_template *t)
3620{
3621 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3622 || is_evex_encoding (t);
3623}
3624
43234a1e
L
3625/* Build the EVEX prefix. */
3626
3627static void
3628build_evex_prefix (void)
3629{
3630 unsigned int register_specifier;
3631 unsigned int implied_prefix;
3632 unsigned int m, w;
3633 rex_byte vrex_used = 0;
3634
3635 /* Check register specifier. */
3636 if (i.vex.register_specifier)
3637 {
3638 gas_assert ((i.vrex & REX_X) == 0);
3639
3640 register_specifier = i.vex.register_specifier->reg_num;
3641 if ((i.vex.register_specifier->reg_flags & RegRex))
3642 register_specifier += 8;
3643 /* The upper 16 registers are encoded in the fourth byte of the
3644 EVEX prefix. */
3645 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3646 i.vex.bytes[3] = 0x8;
3647 register_specifier = ~register_specifier & 0xf;
3648 }
3649 else
3650 {
3651 register_specifier = 0xf;
3652
3653 /* Encode upper 16 vector index register in the fourth byte of
3654 the EVEX prefix. */
3655 if (!(i.vrex & REX_X))
3656 i.vex.bytes[3] = 0x8;
3657 else
3658 vrex_used |= REX_X;
3659 }
3660
3661 switch ((i.tm.base_opcode >> 8) & 0xff)
3662 {
3663 case 0:
3664 implied_prefix = 0;
3665 break;
3666 case DATA_PREFIX_OPCODE:
3667 implied_prefix = 1;
3668 break;
3669 case REPE_PREFIX_OPCODE:
3670 implied_prefix = 2;
3671 break;
3672 case REPNE_PREFIX_OPCODE:
3673 implied_prefix = 3;
3674 break;
3675 default:
3676 abort ();
3677 }
3678
3679 /* 4 byte EVEX prefix. */
3680 i.vex.length = 4;
3681 i.vex.bytes[0] = 0x62;
3682
3683 /* mmmm bits. */
3684 switch (i.tm.opcode_modifier.vexopcode)
3685 {
3686 case VEX0F:
3687 m = 1;
3688 break;
3689 case VEX0F38:
3690 m = 2;
3691 break;
3692 case VEX0F3A:
3693 m = 3;
3694 break;
3695 default:
3696 abort ();
3697 break;
3698 }
3699
3700 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3701 bits from REX. */
3702 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3703
3704 /* The fifth bit of the second EVEX byte is 1's compliment of the
3705 REX_R bit in VREX. */
3706 if (!(i.vrex & REX_R))
3707 i.vex.bytes[1] |= 0x10;
3708 else
3709 vrex_used |= REX_R;
3710
3711 if ((i.reg_operands + i.imm_operands) == i.operands)
3712 {
3713 /* When all operands are registers, the REX_X bit in REX is not
3714 used. We reuse it to encode the upper 16 registers, which is
3715 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3716 as 1's compliment. */
3717 if ((i.vrex & REX_B))
3718 {
3719 vrex_used |= REX_B;
3720 i.vex.bytes[1] &= ~0x40;
3721 }
3722 }
3723
3724 /* EVEX instructions shouldn't need the REX prefix. */
3725 i.vrex &= ~vrex_used;
3726 gas_assert (i.vrex == 0);
3727
6865c043
L
3728 /* Check the REX.W bit and VEXW. */
3729 if (i.tm.opcode_modifier.vexw == VEXWIG)
3730 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3731 else if (i.tm.opcode_modifier.vexw)
3732 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3733 else
931d03b7 3734 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
43234a1e
L
3735
3736 /* Encode the U bit. */
3737 implied_prefix |= 0x4;
3738
3739 /* The third byte of the EVEX prefix. */
3740 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3741
3742 /* The fourth byte of the EVEX prefix. */
3743 /* The zeroing-masking bit. */
3744 if (i.mask && i.mask->zeroing)
3745 i.vex.bytes[3] |= 0x80;
3746
3747 /* Don't always set the broadcast bit if there is no RC. */
3748 if (!i.rounding)
3749 {
3750 /* Encode the vector length. */
3751 unsigned int vec_length;
3752
e771e7c9
JB
3753 if (!i.tm.opcode_modifier.evex
3754 || i.tm.opcode_modifier.evex == EVEXDYN)
3755 {
56522fc5 3756 unsigned int op;
e771e7c9 3757
c7213af9
L
3758 /* Determine vector length from the last multi-length vector
3759 operand. */
e771e7c9 3760 vec_length = 0;
56522fc5 3761 for (op = i.operands; op--;)
e771e7c9
JB
3762 if (i.tm.operand_types[op].bitfield.xmmword
3763 + i.tm.operand_types[op].bitfield.ymmword
3764 + i.tm.operand_types[op].bitfield.zmmword > 1)
3765 {
3766 if (i.types[op].bitfield.zmmword)
c7213af9
L
3767 {
3768 i.tm.opcode_modifier.evex = EVEX512;
3769 break;
3770 }
e771e7c9 3771 else if (i.types[op].bitfield.ymmword)
c7213af9
L
3772 {
3773 i.tm.opcode_modifier.evex = EVEX256;
3774 break;
3775 }
e771e7c9 3776 else if (i.types[op].bitfield.xmmword)
c7213af9
L
3777 {
3778 i.tm.opcode_modifier.evex = EVEX128;
3779 break;
3780 }
625cbd7a
JB
3781 else if (i.broadcast && (int) op == i.broadcast->operand)
3782 {
4a1b91ea 3783 switch (i.broadcast->bytes)
625cbd7a
JB
3784 {
3785 case 64:
3786 i.tm.opcode_modifier.evex = EVEX512;
3787 break;
3788 case 32:
3789 i.tm.opcode_modifier.evex = EVEX256;
3790 break;
3791 case 16:
3792 i.tm.opcode_modifier.evex = EVEX128;
3793 break;
3794 default:
c7213af9 3795 abort ();
625cbd7a 3796 }
c7213af9 3797 break;
625cbd7a 3798 }
e771e7c9 3799 }
c7213af9 3800
56522fc5 3801 if (op >= MAX_OPERANDS)
c7213af9 3802 abort ();
e771e7c9
JB
3803 }
3804
43234a1e
L
3805 switch (i.tm.opcode_modifier.evex)
3806 {
3807 case EVEXLIG: /* LL' is ignored */
3808 vec_length = evexlig << 5;
3809 break;
3810 case EVEX128:
3811 vec_length = 0 << 5;
3812 break;
3813 case EVEX256:
3814 vec_length = 1 << 5;
3815 break;
3816 case EVEX512:
3817 vec_length = 2 << 5;
3818 break;
3819 default:
3820 abort ();
3821 break;
3822 }
3823 i.vex.bytes[3] |= vec_length;
3824 /* Encode the broadcast bit. */
3825 if (i.broadcast)
3826 i.vex.bytes[3] |= 0x10;
3827 }
3828 else
3829 {
3830 if (i.rounding->type != saeonly)
3831 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3832 else
d3d3c6db 3833 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3834 }
3835
3836 if (i.mask && i.mask->mask)
3837 i.vex.bytes[3] |= i.mask->mask->reg_num;
3838}
3839
65da13b5
L
3840static void
3841process_immext (void)
3842{
3843 expressionS *exp;
3844
4c692bc7
JB
3845 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3846 && i.operands > 0)
65da13b5 3847 {
4c692bc7
JB
3848 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3849 with an opcode suffix which is coded in the same place as an
3850 8-bit immediate field would be.
3851 Here we check those operands and remove them afterwards. */
65da13b5
L
3852 unsigned int x;
3853
3854 for (x = 0; x < i.operands; x++)
4c692bc7 3855 if (register_number (i.op[x].regs) != x)
65da13b5 3856 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3857 register_prefix, i.op[x].regs->reg_name, x + 1,
3858 i.tm.name);
3859
3860 i.operands = 0;
65da13b5
L
3861 }
3862
9916071f
AP
3863 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3864 {
3865 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3866 suffix which is coded in the same place as an 8-bit immediate
3867 field would be.
3868 Here we check those operands and remove them afterwards. */
3869 unsigned int x;
3870
3871 if (i.operands != 3)
3872 abort();
3873
3874 for (x = 0; x < 2; x++)
3875 if (register_number (i.op[x].regs) != x)
3876 goto bad_register_operand;
3877
3878 /* Check for third operand for mwaitx/monitorx insn. */
3879 if (register_number (i.op[x].regs)
3880 != (x + (i.tm.extension_opcode == 0xfb)))
3881 {
3882bad_register_operand:
3883 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3884 register_prefix, i.op[x].regs->reg_name, x+1,
3885 i.tm.name);
3886 }
3887
3888 i.operands = 0;
3889 }
3890
c0f3af97 3891 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3892 which is coded in the same place as an 8-bit immediate field
3893 would be. Here we fake an 8-bit immediate operand from the
3894 opcode suffix stored in tm.extension_opcode.
3895
c1e679ec 3896 AVX instructions also use this encoding, for some of
c0f3af97 3897 3 argument instructions. */
65da13b5 3898
43234a1e 3899 gas_assert (i.imm_operands <= 1
7ab9ffdd 3900 && (i.operands <= 2
7a8655d2 3901 || (is_any_vex_encoding (&i.tm)
7ab9ffdd 3902 && i.operands <= 4)));
65da13b5
L
3903
3904 exp = &im_expressions[i.imm_operands++];
3905 i.op[i.operands].imms = exp;
3906 i.types[i.operands] = imm8;
3907 i.operands++;
3908 exp->X_op = O_constant;
3909 exp->X_add_number = i.tm.extension_opcode;
3910 i.tm.extension_opcode = None;
3911}
3912
42164a71
L
3913
3914static int
3915check_hle (void)
3916{
3917 switch (i.tm.opcode_modifier.hleprefixok)
3918 {
3919 default:
3920 abort ();
82c2def5 3921 case HLEPrefixNone:
165de32a
L
3922 as_bad (_("invalid instruction `%s' after `%s'"),
3923 i.tm.name, i.hle_prefix);
42164a71 3924 return 0;
82c2def5 3925 case HLEPrefixLock:
42164a71
L
3926 if (i.prefix[LOCK_PREFIX])
3927 return 1;
165de32a 3928 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3929 return 0;
82c2def5 3930 case HLEPrefixAny:
42164a71 3931 return 1;
82c2def5 3932 case HLEPrefixRelease:
42164a71
L
3933 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3934 {
3935 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3936 i.tm.name);
3937 return 0;
3938 }
8dc0818e 3939 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
42164a71
L
3940 {
3941 as_bad (_("memory destination needed for instruction `%s'"
3942 " after `xrelease'"), i.tm.name);
3943 return 0;
3944 }
3945 return 1;
3946 }
3947}
3948
b6f8c7c4
L
3949/* Try the shortest encoding by shortening operand size. */
3950
3951static void
3952optimize_encoding (void)
3953{
a0a1771e 3954 unsigned int j;
b6f8c7c4
L
3955
3956 if (optimize_for_space
3957 && i.reg_operands == 1
3958 && i.imm_operands == 1
3959 && !i.types[1].bitfield.byte
3960 && i.op[0].imms->X_op == O_constant
3961 && fits_in_imm7 (i.op[0].imms->X_add_number)
3962 && ((i.tm.base_opcode == 0xa8
3963 && i.tm.extension_opcode == None)
3964 || (i.tm.base_opcode == 0xf6
3965 && i.tm.extension_opcode == 0x0)))
3966 {
3967 /* Optimize: -Os:
3968 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3969 */
3970 unsigned int base_regnum = i.op[1].regs->reg_num;
3971 if (flag_code == CODE_64BIT || base_regnum < 4)
3972 {
3973 i.types[1].bitfield.byte = 1;
3974 /* Ignore the suffix. */
3975 i.suffix = 0;
3976 if (base_regnum >= 4
3977 && !(i.op[1].regs->reg_flags & RegRex))
3978 {
3979 /* Handle SP, BP, SI and DI registers. */
3980 if (i.types[1].bitfield.word)
3981 j = 16;
3982 else if (i.types[1].bitfield.dword)
3983 j = 32;
3984 else
3985 j = 48;
3986 i.op[1].regs -= j;
3987 }
3988 }
3989 }
3990 else if (flag_code == CODE_64BIT
d3d50934
L
3991 && ((i.types[1].bitfield.qword
3992 && i.reg_operands == 1
b6f8c7c4
L
3993 && i.imm_operands == 1
3994 && i.op[0].imms->X_op == O_constant
507916b8 3995 && ((i.tm.base_opcode == 0xb8
b6f8c7c4
L
3996 && i.tm.extension_opcode == None
3997 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3998 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3999 && (((i.tm.base_opcode == 0x24
4000 || i.tm.base_opcode == 0xa8)
4001 && i.tm.extension_opcode == None)
4002 || (i.tm.base_opcode == 0x80
4003 && i.tm.extension_opcode == 0x4)
4004 || ((i.tm.base_opcode == 0xf6
507916b8 4005 || (i.tm.base_opcode | 1) == 0xc7)
b8364fa7
JB
4006 && i.tm.extension_opcode == 0x0)))
4007 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4008 && i.tm.base_opcode == 0x83
4009 && i.tm.extension_opcode == 0x4)))
d3d50934
L
4010 || (i.types[0].bitfield.qword
4011 && ((i.reg_operands == 2
4012 && i.op[0].regs == i.op[1].regs
4013 && ((i.tm.base_opcode == 0x30
4014 || i.tm.base_opcode == 0x28)
4015 && i.tm.extension_opcode == None))
4016 || (i.reg_operands == 1
4017 && i.operands == 1
4018 && i.tm.base_opcode == 0x30
4019 && i.tm.extension_opcode == None)))))
b6f8c7c4
L
4020 {
4021 /* Optimize: -O:
4022 andq $imm31, %r64 -> andl $imm31, %r32
b8364fa7 4023 andq $imm7, %r64 -> andl $imm7, %r32
b6f8c7c4
L
4024 testq $imm31, %r64 -> testl $imm31, %r32
4025 xorq %r64, %r64 -> xorl %r32, %r32
4026 subq %r64, %r64 -> subl %r32, %r32
4027 movq $imm31, %r64 -> movl $imm31, %r32
4028 movq $imm32, %r64 -> movl $imm32, %r32
4029 */
4030 i.tm.opcode_modifier.norex64 = 1;
507916b8 4031 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
4032 {
4033 /* Handle
4034 movq $imm31, %r64 -> movl $imm31, %r32
4035 movq $imm32, %r64 -> movl $imm32, %r32
4036 */
4037 i.tm.operand_types[0].bitfield.imm32 = 1;
4038 i.tm.operand_types[0].bitfield.imm32s = 0;
4039 i.tm.operand_types[0].bitfield.imm64 = 0;
4040 i.types[0].bitfield.imm32 = 1;
4041 i.types[0].bitfield.imm32s = 0;
4042 i.types[0].bitfield.imm64 = 0;
4043 i.types[1].bitfield.dword = 1;
4044 i.types[1].bitfield.qword = 0;
507916b8 4045 if ((i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
4046 {
4047 /* Handle
4048 movq $imm31, %r64 -> movl $imm31, %r32
4049 */
507916b8 4050 i.tm.base_opcode = 0xb8;
b6f8c7c4 4051 i.tm.extension_opcode = None;
507916b8 4052 i.tm.opcode_modifier.w = 0;
b6f8c7c4
L
4053 i.tm.opcode_modifier.shortform = 1;
4054 i.tm.opcode_modifier.modrm = 0;
4055 }
4056 }
4057 }
5641ec01
JB
4058 else if (optimize > 1
4059 && !optimize_for_space
4060 && i.reg_operands == 2
4061 && i.op[0].regs == i.op[1].regs
4062 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4063 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4064 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4065 {
4066 /* Optimize: -O2:
4067 andb %rN, %rN -> testb %rN, %rN
4068 andw %rN, %rN -> testw %rN, %rN
4069 andq %rN, %rN -> testq %rN, %rN
4070 orb %rN, %rN -> testb %rN, %rN
4071 orw %rN, %rN -> testw %rN, %rN
4072 orq %rN, %rN -> testq %rN, %rN
4073
4074 and outside of 64-bit mode
4075
4076 andl %rN, %rN -> testl %rN, %rN
4077 orl %rN, %rN -> testl %rN, %rN
4078 */
4079 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4080 }
99112332 4081 else if (i.reg_operands == 3
b6f8c7c4
L
4082 && i.op[0].regs == i.op[1].regs
4083 && !i.types[2].bitfield.xmmword
4084 && (i.tm.opcode_modifier.vex
7a69eac3 4085 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 4086 && !i.rounding
e771e7c9 4087 && is_evex_encoding (&i.tm)
80c34c38 4088 && (i.vec_encoding != vex_encoding_evex
dd22218c 4089 || cpu_arch_isa_flags.bitfield.cpuavx512vl
80c34c38 4090 || i.tm.cpu_flags.bitfield.cpuavx512vl
7091c612 4091 || (i.tm.operand_types[2].bitfield.zmmword
dd22218c 4092 && i.types[2].bitfield.ymmword))))
b6f8c7c4
L
4093 && ((i.tm.base_opcode == 0x55
4094 || i.tm.base_opcode == 0x6655
4095 || i.tm.base_opcode == 0x66df
4096 || i.tm.base_opcode == 0x57
4097 || i.tm.base_opcode == 0x6657
8305403a
L
4098 || i.tm.base_opcode == 0x66ef
4099 || i.tm.base_opcode == 0x66f8
4100 || i.tm.base_opcode == 0x66f9
4101 || i.tm.base_opcode == 0x66fa
1424ad86
JB
4102 || i.tm.base_opcode == 0x66fb
4103 || i.tm.base_opcode == 0x42
4104 || i.tm.base_opcode == 0x6642
4105 || i.tm.base_opcode == 0x47
4106 || i.tm.base_opcode == 0x6647)
b6f8c7c4
L
4107 && i.tm.extension_opcode == None))
4108 {
99112332 4109 /* Optimize: -O1:
8305403a
L
4110 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4111 vpsubq and vpsubw:
b6f8c7c4
L
4112 EVEX VOP %zmmM, %zmmM, %zmmN
4113 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4114 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4115 EVEX VOP %ymmM, %ymmM, %ymmN
4116 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4117 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4118 VEX VOP %ymmM, %ymmM, %ymmN
4119 -> VEX VOP %xmmM, %xmmM, %xmmN
4120 VOP, one of vpandn and vpxor:
4121 VEX VOP %ymmM, %ymmM, %ymmN
4122 -> VEX VOP %xmmM, %xmmM, %xmmN
4123 VOP, one of vpandnd and vpandnq:
4124 EVEX VOP %zmmM, %zmmM, %zmmN
4125 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4126 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4127 EVEX VOP %ymmM, %ymmM, %ymmN
4128 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4129 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4130 VOP, one of vpxord and vpxorq:
4131 EVEX VOP %zmmM, %zmmM, %zmmN
4132 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4133 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4134 EVEX VOP %ymmM, %ymmM, %ymmN
4135 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4136 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
1424ad86
JB
4137 VOP, one of kxord and kxorq:
4138 VEX VOP %kM, %kM, %kN
4139 -> VEX kxorw %kM, %kM, %kN
4140 VOP, one of kandnd and kandnq:
4141 VEX VOP %kM, %kM, %kN
4142 -> VEX kandnw %kM, %kM, %kN
b6f8c7c4 4143 */
e771e7c9 4144 if (is_evex_encoding (&i.tm))
b6f8c7c4 4145 {
7b1d7ca1 4146 if (i.vec_encoding != vex_encoding_evex)
b6f8c7c4
L
4147 {
4148 i.tm.opcode_modifier.vex = VEX128;
4149 i.tm.opcode_modifier.vexw = VEXW0;
4150 i.tm.opcode_modifier.evex = 0;
4151 }
7b1d7ca1 4152 else if (optimize > 1)
dd22218c
L
4153 i.tm.opcode_modifier.evex = EVEX128;
4154 else
4155 return;
b6f8c7c4 4156 }
1424ad86
JB
4157 else if (i.tm.operand_types[0].bitfield.regmask)
4158 {
4159 i.tm.base_opcode &= 0xff;
4160 i.tm.opcode_modifier.vexw = VEXW0;
4161 }
b6f8c7c4
L
4162 else
4163 i.tm.opcode_modifier.vex = VEX128;
4164
4165 if (i.tm.opcode_modifier.vex)
4166 for (j = 0; j < 3; j++)
4167 {
4168 i.types[j].bitfield.xmmword = 1;
4169 i.types[j].bitfield.ymmword = 0;
4170 }
4171 }
392a5972 4172 else if (i.vec_encoding != vex_encoding_evex
97ed31ae 4173 && !i.types[0].bitfield.zmmword
392a5972 4174 && !i.types[1].bitfield.zmmword
97ed31ae 4175 && !i.mask
a0a1771e 4176 && !i.broadcast
97ed31ae 4177 && is_evex_encoding (&i.tm)
392a5972
L
4178 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4179 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
a0a1771e
JB
4180 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4181 || (i.tm.base_opcode & ~4) == 0x66db
4182 || (i.tm.base_opcode & ~4) == 0x66eb)
97ed31ae
L
4183 && i.tm.extension_opcode == None)
4184 {
4185 /* Optimize: -O1:
4186 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4187 vmovdqu32 and vmovdqu64:
4188 EVEX VOP %xmmM, %xmmN
4189 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4190 EVEX VOP %ymmM, %ymmN
4191 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4192 EVEX VOP %xmmM, mem
4193 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4194 EVEX VOP %ymmM, mem
4195 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4196 EVEX VOP mem, %xmmN
4197 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4198 EVEX VOP mem, %ymmN
4199 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
a0a1771e
JB
4200 VOP, one of vpand, vpandn, vpor, vpxor:
4201 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4202 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4203 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4204 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4205 EVEX VOP{d,q} mem, %xmmM, %xmmN
4206 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4207 EVEX VOP{d,q} mem, %ymmM, %ymmN
4208 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
97ed31ae 4209 */
a0a1771e 4210 for (j = 0; j < i.operands; j++)
392a5972
L
4211 if (operand_type_check (i.types[j], disp)
4212 && i.op[j].disps->X_op == O_constant)
4213 {
4214 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4215 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4216 bytes, we choose EVEX Disp8 over VEX Disp32. */
4217 int evex_disp8, vex_disp8;
4218 unsigned int memshift = i.memshift;
4219 offsetT n = i.op[j].disps->X_add_number;
4220
4221 evex_disp8 = fits_in_disp8 (n);
4222 i.memshift = 0;
4223 vex_disp8 = fits_in_disp8 (n);
4224 if (evex_disp8 != vex_disp8)
4225 {
4226 i.memshift = memshift;
4227 return;
4228 }
4229
4230 i.types[j].bitfield.disp8 = vex_disp8;
4231 break;
4232 }
4233 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4234 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
97ed31ae
L
4235 i.tm.opcode_modifier.vex
4236 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4237 i.tm.opcode_modifier.vexw = VEXW0;
79dec6b7
JB
4238 /* VPAND, VPOR, and VPXOR are commutative. */
4239 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4240 i.tm.opcode_modifier.commutative = 1;
97ed31ae
L
4241 i.tm.opcode_modifier.evex = 0;
4242 i.tm.opcode_modifier.masking = 0;
a0a1771e 4243 i.tm.opcode_modifier.broadcast = 0;
97ed31ae
L
4244 i.tm.opcode_modifier.disp8memshift = 0;
4245 i.memshift = 0;
a0a1771e
JB
4246 if (j < i.operands)
4247 i.types[j].bitfield.disp8
4248 = fits_in_disp8 (i.op[j].disps->X_add_number);
97ed31ae 4249 }
b6f8c7c4
L
4250}
4251
252b5132
RH
4252/* This is the guts of the machine-dependent assembler. LINE points to a
4253 machine dependent instruction. This function is supposed to emit
4254 the frags/bytes it assembles to. */
4255
4256void
65da13b5 4257md_assemble (char *line)
252b5132 4258{
40fb9820 4259 unsigned int j;
83b16ac6 4260 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 4261 const insn_template *t;
252b5132 4262
47926f60 4263 /* Initialize globals. */
252b5132
RH
4264 memset (&i, '\0', sizeof (i));
4265 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 4266 i.reloc[j] = NO_RELOC;
252b5132
RH
4267 memset (disp_expressions, '\0', sizeof (disp_expressions));
4268 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 4269 save_stack_p = save_stack;
252b5132
RH
4270
4271 /* First parse an instruction mnemonic & call i386_operand for the operands.
4272 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 4273 start of a (possibly prefixed) mnemonic. */
252b5132 4274
29b0f896
AM
4275 line = parse_insn (line, mnemonic);
4276 if (line == NULL)
4277 return;
83b16ac6 4278 mnem_suffix = i.suffix;
252b5132 4279
29b0f896 4280 line = parse_operands (line, mnemonic);
ee86248c 4281 this_operand = -1;
8325cc63
JB
4282 xfree (i.memop1_string);
4283 i.memop1_string = NULL;
29b0f896
AM
4284 if (line == NULL)
4285 return;
252b5132 4286
29b0f896
AM
4287 /* Now we've parsed the mnemonic into a set of templates, and have the
4288 operands at hand. */
4289
4290 /* All intel opcodes have reversed operands except for "bound" and
4291 "enter". We also don't reverse intersegment "jmp" and "call"
4292 instructions with 2 immediate operands so that the immediate segment
050dfa73 4293 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
4294 if (intel_syntax
4295 && i.operands > 1
29b0f896 4296 && (strcmp (mnemonic, "bound") != 0)
30123838 4297 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
4298 && !(operand_type_check (i.types[0], imm)
4299 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4300 swap_operands ();
4301
ec56d5c0
JB
4302 /* The order of the immediates should be reversed
4303 for 2 immediates extrq and insertq instructions */
4304 if (i.imm_operands == 2
4305 && (strcmp (mnemonic, "extrq") == 0
4306 || strcmp (mnemonic, "insertq") == 0))
4307 swap_2_operands (0, 1);
4308
29b0f896
AM
4309 if (i.imm_operands)
4310 optimize_imm ();
4311
b300c311
L
4312 /* Don't optimize displacement for movabs since it only takes 64bit
4313 displacement. */
4314 if (i.disp_operands
a501d77e 4315 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4316 && (flag_code != CODE_64BIT
4317 || strcmp (mnemonic, "movabs") != 0))
4318 optimize_disp ();
29b0f896
AM
4319
4320 /* Next, we find a template that matches the given insn,
4321 making sure the overlap of the given operands types is consistent
4322 with the template operand types. */
252b5132 4323
83b16ac6 4324 if (!(t = match_template (mnem_suffix)))
29b0f896 4325 return;
252b5132 4326
7bab8ab5 4327 if (sse_check != check_none
81f8a913 4328 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4329 && !i.tm.cpu_flags.bitfield.cpuavx
daf50ae7
L
4330 && (i.tm.cpu_flags.bitfield.cpusse
4331 || i.tm.cpu_flags.bitfield.cpusse2
4332 || i.tm.cpu_flags.bitfield.cpusse3
4333 || i.tm.cpu_flags.bitfield.cpussse3
4334 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e
JB
4335 || i.tm.cpu_flags.bitfield.cpusse4_2
4336 || i.tm.cpu_flags.bitfield.cpupclmul
4337 || i.tm.cpu_flags.bitfield.cpuaes
4338 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4339 {
7bab8ab5 4340 (sse_check == check_warning
daf50ae7
L
4341 ? as_warn
4342 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4343 }
4344
321fd21e
L
4345 /* Zap movzx and movsx suffix. The suffix has been set from
4346 "word ptr" or "byte ptr" on the source operand in Intel syntax
4347 or extracted from mnemonic in AT&T syntax. But we'll use
4348 the destination register to choose the suffix for encoding. */
4349 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4350 {
321fd21e
L
4351 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4352 there is no suffix, the default will be byte extension. */
4353 if (i.reg_operands != 2
4354 && !i.suffix
7ab9ffdd 4355 && intel_syntax)
321fd21e
L
4356 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4357
4358 i.suffix = 0;
cd61ebfe 4359 }
24eab124 4360
40fb9820 4361 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4362 if (!add_prefix (FWAIT_OPCODE))
4363 return;
252b5132 4364
d5de92cf
L
4365 /* Check if REP prefix is OK. */
4366 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4367 {
4368 as_bad (_("invalid instruction `%s' after `%s'"),
4369 i.tm.name, i.rep_prefix);
4370 return;
4371 }
4372
c1ba0266
L
4373 /* Check for lock without a lockable instruction. Destination operand
4374 must be memory unless it is xchg (0x86). */
c32fa91d
L
4375 if (i.prefix[LOCK_PREFIX]
4376 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4377 || i.mem_operands == 0
4378 || (i.tm.base_opcode != 0x86
8dc0818e 4379 && !(i.flags[i.operands - 1] & Operand_Mem))))
c32fa91d
L
4380 {
4381 as_bad (_("expecting lockable instruction after `lock'"));
4382 return;
4383 }
4384
7a8655d2
JB
4385 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4386 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4387 {
4388 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4389 return;
4390 }
4391
42164a71 4392 /* Check if HLE prefix is OK. */
165de32a 4393 if (i.hle_prefix && !check_hle ())
42164a71
L
4394 return;
4395
7e8b059b
L
4396 /* Check BND prefix. */
4397 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4398 as_bad (_("expecting valid branch instruction after `bnd'"));
4399
04ef582a 4400 /* Check NOTRACK prefix. */
9fef80d6
L
4401 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4402 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4403
327e8c42
JB
4404 if (i.tm.cpu_flags.bitfield.cpumpx)
4405 {
4406 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4407 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4408 else if (flag_code != CODE_16BIT
4409 ? i.prefix[ADDR_PREFIX]
4410 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4411 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4412 }
7e8b059b
L
4413
4414 /* Insert BND prefix. */
76d3a78a
JB
4415 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4416 {
4417 if (!i.prefix[BND_PREFIX])
4418 add_prefix (BND_PREFIX_OPCODE);
4419 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4420 {
4421 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4422 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4423 }
4424 }
7e8b059b 4425
29b0f896 4426 /* Check string instruction segment overrides. */
40fb9820 4427 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
4428 {
4429 if (!check_string ())
5dd0794d 4430 return;
fc0763e6 4431 i.disp_operands = 0;
29b0f896 4432 }
5dd0794d 4433
b6f8c7c4
L
4434 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4435 optimize_encoding ();
4436
29b0f896
AM
4437 if (!process_suffix ())
4438 return;
e413e4e9 4439
bc0844ae
L
4440 /* Update operand types. */
4441 for (j = 0; j < i.operands; j++)
4442 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4443
29b0f896
AM
4444 /* Make still unresolved immediate matches conform to size of immediate
4445 given in i.suffix. */
4446 if (!finalize_imm ())
4447 return;
252b5132 4448
40fb9820 4449 if (i.types[0].bitfield.imm1)
29b0f896 4450 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4451
9afe6eb8
L
4452 /* We only need to check those implicit registers for instructions
4453 with 3 operands or less. */
4454 if (i.operands <= 3)
4455 for (j = 0; j < i.operands; j++)
4456 if (i.types[j].bitfield.inoutportreg
4457 || i.types[j].bitfield.shiftcount
1b54b8d7 4458 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
9afe6eb8 4459 i.reg_operands--;
40fb9820 4460
c0f3af97
L
4461 /* ImmExt should be processed after SSE2AVX. */
4462 if (!i.tm.opcode_modifier.sse2avx
4463 && i.tm.opcode_modifier.immext)
65da13b5 4464 process_immext ();
252b5132 4465
29b0f896
AM
4466 /* For insns with operands there are more diddles to do to the opcode. */
4467 if (i.operands)
4468 {
4469 if (!process_operands ())
4470 return;
4471 }
40fb9820 4472 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4473 {
4474 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4475 as_warn (_("translating to `%sp'"), i.tm.name);
4476 }
252b5132 4477
7a8655d2 4478 if (is_any_vex_encoding (&i.tm))
9e5e5283 4479 {
c1dc7af5 4480 if (!cpu_arch_flags.bitfield.cpui286)
9e5e5283 4481 {
c1dc7af5 4482 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
9e5e5283
L
4483 i.tm.name);
4484 return;
4485 }
c0f3af97 4486
9e5e5283
L
4487 if (i.tm.opcode_modifier.vex)
4488 build_vex_prefix (t);
4489 else
4490 build_evex_prefix ();
4491 }
43234a1e 4492
5dd85c99
SP
4493 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4494 instructions may define INT_OPCODE as well, so avoid this corner
4495 case for those instructions that use MODRM. */
4496 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4497 && !i.tm.opcode_modifier.modrm
4498 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4499 {
4500 i.tm.base_opcode = INT3_OPCODE;
4501 i.imm_operands = 0;
4502 }
252b5132 4503
40fb9820
L
4504 if ((i.tm.opcode_modifier.jump
4505 || i.tm.opcode_modifier.jumpbyte
4506 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
4507 && i.op[0].disps->X_op == O_constant)
4508 {
4509 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4510 the absolute address given by the constant. Since ix86 jumps and
4511 calls are pc relative, we need to generate a reloc. */
4512 i.op[0].disps->X_add_symbol = &abs_symbol;
4513 i.op[0].disps->X_op = O_symbol;
4514 }
252b5132 4515
40fb9820 4516 if (i.tm.opcode_modifier.rex64)
161a04f6 4517 i.rex |= REX_W;
252b5132 4518
29b0f896
AM
4519 /* For 8 bit registers we need an empty rex prefix. Also if the
4520 instruction already has a prefix, we need to convert old
4521 registers to new ones. */
773f551c 4522
bab6aec1 4523 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
29b0f896 4524 && (i.op[0].regs->reg_flags & RegRex64) != 0)
bab6aec1 4525 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
29b0f896 4526 && (i.op[1].regs->reg_flags & RegRex64) != 0)
bab6aec1
JB
4527 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4528 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
29b0f896
AM
4529 && i.rex != 0))
4530 {
4531 int x;
726c5dcd 4532
29b0f896
AM
4533 i.rex |= REX_OPCODE;
4534 for (x = 0; x < 2; x++)
4535 {
4536 /* Look for 8 bit operand that uses old registers. */
bab6aec1 4537 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
29b0f896 4538 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4539 {
29b0f896
AM
4540 /* In case it is "hi" register, give up. */
4541 if (i.op[x].regs->reg_num > 3)
a540244d 4542 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4543 "instruction requiring REX prefix."),
a540244d 4544 register_prefix, i.op[x].regs->reg_name);
773f551c 4545
29b0f896
AM
4546 /* Otherwise it is equivalent to the extended register.
4547 Since the encoding doesn't change this is merely
4548 cosmetic cleanup for debug output. */
4549
4550 i.op[x].regs = i.op[x].regs + 8;
773f551c 4551 }
29b0f896
AM
4552 }
4553 }
773f551c 4554
6b6b6807
L
4555 if (i.rex == 0 && i.rex_encoding)
4556 {
4557 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4558 that uses legacy register. If it is "hi" register, don't add
4559 the REX_OPCODE byte. */
4560 int x;
4561 for (x = 0; x < 2; x++)
bab6aec1 4562 if (i.types[x].bitfield.class == Reg
6b6b6807
L
4563 && i.types[x].bitfield.byte
4564 && (i.op[x].regs->reg_flags & RegRex64) == 0
4565 && i.op[x].regs->reg_num > 3)
4566 {
4567 i.rex_encoding = FALSE;
4568 break;
4569 }
4570
4571 if (i.rex_encoding)
4572 i.rex = REX_OPCODE;
4573 }
4574
7ab9ffdd 4575 if (i.rex != 0)
29b0f896
AM
4576 add_prefix (REX_OPCODE | i.rex);
4577
4578 /* We are ready to output the insn. */
4579 output_insn ();
4580}
4581
4582static char *
e3bb37b5 4583parse_insn (char *line, char *mnemonic)
29b0f896
AM
4584{
4585 char *l = line;
4586 char *token_start = l;
4587 char *mnem_p;
5c6af06e 4588 int supported;
d3ce72d0 4589 const insn_template *t;
b6169b20 4590 char *dot_p = NULL;
29b0f896 4591
29b0f896
AM
4592 while (1)
4593 {
4594 mnem_p = mnemonic;
4595 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4596 {
b6169b20
L
4597 if (*mnem_p == '.')
4598 dot_p = mnem_p;
29b0f896
AM
4599 mnem_p++;
4600 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4601 {
29b0f896
AM
4602 as_bad (_("no such instruction: `%s'"), token_start);
4603 return NULL;
4604 }
4605 l++;
4606 }
4607 if (!is_space_char (*l)
4608 && *l != END_OF_INSN
e44823cf
JB
4609 && (intel_syntax
4610 || (*l != PREFIX_SEPARATOR
4611 && *l != ',')))
29b0f896
AM
4612 {
4613 as_bad (_("invalid character %s in mnemonic"),
4614 output_invalid (*l));
4615 return NULL;
4616 }
4617 if (token_start == l)
4618 {
e44823cf 4619 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4620 as_bad (_("expecting prefix; got nothing"));
4621 else
4622 as_bad (_("expecting mnemonic; got nothing"));
4623 return NULL;
4624 }
45288df1 4625
29b0f896 4626 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4627 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4628
29b0f896
AM
4629 if (*l != END_OF_INSN
4630 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4631 && current_templates
40fb9820 4632 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4633 {
c6fb90c8 4634 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4635 {
4636 as_bad ((flag_code != CODE_64BIT
4637 ? _("`%s' is only supported in 64-bit mode")
4638 : _("`%s' is not supported in 64-bit mode")),
4639 current_templates->start->name);
4640 return NULL;
4641 }
29b0f896
AM
4642 /* If we are in 16-bit mode, do not allow addr16 or data16.
4643 Similarly, in 32-bit mode, do not allow addr32 or data32. */
673fe0f0
JB
4644 if ((current_templates->start->opcode_modifier.size == SIZE16
4645 || current_templates->start->opcode_modifier.size == SIZE32)
29b0f896 4646 && flag_code != CODE_64BIT
673fe0f0 4647 && ((current_templates->start->opcode_modifier.size == SIZE32)
29b0f896
AM
4648 ^ (flag_code == CODE_16BIT)))
4649 {
4650 as_bad (_("redundant %s prefix"),
4651 current_templates->start->name);
4652 return NULL;
45288df1 4653 }
86fa6981 4654 if (current_templates->start->opcode_length == 0)
29b0f896 4655 {
86fa6981
L
4656 /* Handle pseudo prefixes. */
4657 switch (current_templates->start->base_opcode)
4658 {
4659 case 0x0:
4660 /* {disp8} */
4661 i.disp_encoding = disp_encoding_8bit;
4662 break;
4663 case 0x1:
4664 /* {disp32} */
4665 i.disp_encoding = disp_encoding_32bit;
4666 break;
4667 case 0x2:
4668 /* {load} */
4669 i.dir_encoding = dir_encoding_load;
4670 break;
4671 case 0x3:
4672 /* {store} */
4673 i.dir_encoding = dir_encoding_store;
4674 break;
4675 case 0x4:
4676 /* {vex2} */
4677 i.vec_encoding = vex_encoding_vex2;
4678 break;
4679 case 0x5:
4680 /* {vex3} */
4681 i.vec_encoding = vex_encoding_vex3;
4682 break;
4683 case 0x6:
4684 /* {evex} */
4685 i.vec_encoding = vex_encoding_evex;
4686 break;
6b6b6807
L
4687 case 0x7:
4688 /* {rex} */
4689 i.rex_encoding = TRUE;
4690 break;
b6f8c7c4
L
4691 case 0x8:
4692 /* {nooptimize} */
4693 i.no_optimize = TRUE;
4694 break;
86fa6981
L
4695 default:
4696 abort ();
4697 }
4698 }
4699 else
4700 {
4701 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4702 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4703 {
4e9ac44a
L
4704 case PREFIX_EXIST:
4705 return NULL;
4706 case PREFIX_DS:
d777820b 4707 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4708 i.notrack_prefix = current_templates->start->name;
4709 break;
4710 case PREFIX_REP:
4711 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4712 i.hle_prefix = current_templates->start->name;
4713 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4714 i.bnd_prefix = current_templates->start->name;
4715 else
4716 i.rep_prefix = current_templates->start->name;
4717 break;
4718 default:
4719 break;
86fa6981 4720 }
29b0f896
AM
4721 }
4722 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4723 token_start = ++l;
4724 }
4725 else
4726 break;
4727 }
45288df1 4728
30a55f88 4729 if (!current_templates)
b6169b20 4730 {
07d5e953
JB
4731 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4732 Check if we should swap operand or force 32bit displacement in
f8a5c266 4733 encoding. */
30a55f88 4734 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
64c49ab3 4735 i.dir_encoding = dir_encoding_swap;
8d63c93e 4736 else if (mnem_p - 3 == dot_p
a501d77e
L
4737 && dot_p[1] == 'd'
4738 && dot_p[2] == '8')
4739 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4740 else if (mnem_p - 4 == dot_p
f8a5c266
L
4741 && dot_p[1] == 'd'
4742 && dot_p[2] == '3'
4743 && dot_p[3] == '2')
a501d77e 4744 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4745 else
4746 goto check_suffix;
4747 mnem_p = dot_p;
4748 *dot_p = '\0';
d3ce72d0 4749 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4750 }
4751
29b0f896
AM
4752 if (!current_templates)
4753 {
b6169b20 4754check_suffix:
1c529385 4755 if (mnem_p > mnemonic)
29b0f896 4756 {
1c529385
LH
4757 /* See if we can get a match by trimming off a suffix. */
4758 switch (mnem_p[-1])
29b0f896 4759 {
1c529385
LH
4760 case WORD_MNEM_SUFFIX:
4761 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
29b0f896
AM
4762 i.suffix = SHORT_MNEM_SUFFIX;
4763 else
1c529385
LH
4764 /* Fall through. */
4765 case BYTE_MNEM_SUFFIX:
4766 case QWORD_MNEM_SUFFIX:
4767 i.suffix = mnem_p[-1];
29b0f896 4768 mnem_p[-1] = '\0';
d3ce72d0 4769 current_templates = (const templates *) hash_find (op_hash,
1c529385
LH
4770 mnemonic);
4771 break;
4772 case SHORT_MNEM_SUFFIX:
4773 case LONG_MNEM_SUFFIX:
4774 if (!intel_syntax)
4775 {
4776 i.suffix = mnem_p[-1];
4777 mnem_p[-1] = '\0';
4778 current_templates = (const templates *) hash_find (op_hash,
4779 mnemonic);
4780 }
4781 break;
4782
4783 /* Intel Syntax. */
4784 case 'd':
4785 if (intel_syntax)
4786 {
4787 if (intel_float_operand (mnemonic) == 1)
4788 i.suffix = SHORT_MNEM_SUFFIX;
4789 else
4790 i.suffix = LONG_MNEM_SUFFIX;
4791 mnem_p[-1] = '\0';
4792 current_templates = (const templates *) hash_find (op_hash,
4793 mnemonic);
4794 }
4795 break;
29b0f896 4796 }
29b0f896 4797 }
1c529385 4798
29b0f896
AM
4799 if (!current_templates)
4800 {
4801 as_bad (_("no such instruction: `%s'"), token_start);
4802 return NULL;
4803 }
4804 }
252b5132 4805
40fb9820
L
4806 if (current_templates->start->opcode_modifier.jump
4807 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
4808 {
4809 /* Check for a branch hint. We allow ",pt" and ",pn" for
4810 predict taken and predict not taken respectively.
4811 I'm not sure that branch hints actually do anything on loop
4812 and jcxz insns (JumpByte) for current Pentium4 chips. They
4813 may work in the future and it doesn't hurt to accept them
4814 now. */
4815 if (l[0] == ',' && l[1] == 'p')
4816 {
4817 if (l[2] == 't')
4818 {
4819 if (!add_prefix (DS_PREFIX_OPCODE))
4820 return NULL;
4821 l += 3;
4822 }
4823 else if (l[2] == 'n')
4824 {
4825 if (!add_prefix (CS_PREFIX_OPCODE))
4826 return NULL;
4827 l += 3;
4828 }
4829 }
4830 }
4831 /* Any other comma loses. */
4832 if (*l == ',')
4833 {
4834 as_bad (_("invalid character %s in mnemonic"),
4835 output_invalid (*l));
4836 return NULL;
4837 }
252b5132 4838
29b0f896 4839 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4840 supported = 0;
4841 for (t = current_templates->start; t < current_templates->end; ++t)
4842 {
c0f3af97
L
4843 supported |= cpu_flags_match (t);
4844 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4845 {
4846 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4847 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4848
548d0ee6
JB
4849 return l;
4850 }
29b0f896 4851 }
3629bb00 4852
548d0ee6
JB
4853 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4854 as_bad (flag_code == CODE_64BIT
4855 ? _("`%s' is not supported in 64-bit mode")
4856 : _("`%s' is only supported in 64-bit mode"),
4857 current_templates->start->name);
4858 else
4859 as_bad (_("`%s' is not supported on `%s%s'"),
4860 current_templates->start->name,
4861 cpu_arch_name ? cpu_arch_name : default_arch,
4862 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4863
548d0ee6 4864 return NULL;
29b0f896 4865}
252b5132 4866
29b0f896 4867static char *
e3bb37b5 4868parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4869{
4870 char *token_start;
3138f287 4871
29b0f896
AM
4872 /* 1 if operand is pending after ','. */
4873 unsigned int expecting_operand = 0;
252b5132 4874
29b0f896
AM
4875 /* Non-zero if operand parens not balanced. */
4876 unsigned int paren_not_balanced;
4877
4878 while (*l != END_OF_INSN)
4879 {
4880 /* Skip optional white space before operand. */
4881 if (is_space_char (*l))
4882 ++l;
d02603dc 4883 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4884 {
4885 as_bad (_("invalid character %s before operand %d"),
4886 output_invalid (*l),
4887 i.operands + 1);
4888 return NULL;
4889 }
d02603dc 4890 token_start = l; /* After white space. */
29b0f896
AM
4891 paren_not_balanced = 0;
4892 while (paren_not_balanced || *l != ',')
4893 {
4894 if (*l == END_OF_INSN)
4895 {
4896 if (paren_not_balanced)
4897 {
4898 if (!intel_syntax)
4899 as_bad (_("unbalanced parenthesis in operand %d."),
4900 i.operands + 1);
4901 else
4902 as_bad (_("unbalanced brackets in operand %d."),
4903 i.operands + 1);
4904 return NULL;
4905 }
4906 else
4907 break; /* we are done */
4908 }
d02603dc 4909 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4910 {
4911 as_bad (_("invalid character %s in operand %d"),
4912 output_invalid (*l),
4913 i.operands + 1);
4914 return NULL;
4915 }
4916 if (!intel_syntax)
4917 {
4918 if (*l == '(')
4919 ++paren_not_balanced;
4920 if (*l == ')')
4921 --paren_not_balanced;
4922 }
4923 else
4924 {
4925 if (*l == '[')
4926 ++paren_not_balanced;
4927 if (*l == ']')
4928 --paren_not_balanced;
4929 }
4930 l++;
4931 }
4932 if (l != token_start)
4933 { /* Yes, we've read in another operand. */
4934 unsigned int operand_ok;
4935 this_operand = i.operands++;
4936 if (i.operands > MAX_OPERANDS)
4937 {
4938 as_bad (_("spurious operands; (%d operands/instruction max)"),
4939 MAX_OPERANDS);
4940 return NULL;
4941 }
9d46ce34 4942 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4943 /* Now parse operand adding info to 'i' as we go along. */
4944 END_STRING_AND_SAVE (l);
4945
1286ab78
L
4946 if (i.mem_operands > 1)
4947 {
4948 as_bad (_("too many memory references for `%s'"),
4949 mnemonic);
4950 return 0;
4951 }
4952
29b0f896
AM
4953 if (intel_syntax)
4954 operand_ok =
4955 i386_intel_operand (token_start,
4956 intel_float_operand (mnemonic));
4957 else
a7619375 4958 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4959
4960 RESTORE_END_STRING (l);
4961 if (!operand_ok)
4962 return NULL;
4963 }
4964 else
4965 {
4966 if (expecting_operand)
4967 {
4968 expecting_operand_after_comma:
4969 as_bad (_("expecting operand after ','; got nothing"));
4970 return NULL;
4971 }
4972 if (*l == ',')
4973 {
4974 as_bad (_("expecting operand before ','; got nothing"));
4975 return NULL;
4976 }
4977 }
7f3f1ea2 4978
29b0f896
AM
4979 /* Now *l must be either ',' or END_OF_INSN. */
4980 if (*l == ',')
4981 {
4982 if (*++l == END_OF_INSN)
4983 {
4984 /* Just skip it, if it's \n complain. */
4985 goto expecting_operand_after_comma;
4986 }
4987 expecting_operand = 1;
4988 }
4989 }
4990 return l;
4991}
7f3f1ea2 4992
050dfa73 4993static void
4d456e3d 4994swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4995{
4996 union i386_op temp_op;
40fb9820 4997 i386_operand_type temp_type;
c48dadc9 4998 unsigned int temp_flags;
050dfa73 4999 enum bfd_reloc_code_real temp_reloc;
4eed87de 5000
050dfa73
MM
5001 temp_type = i.types[xchg2];
5002 i.types[xchg2] = i.types[xchg1];
5003 i.types[xchg1] = temp_type;
c48dadc9
JB
5004
5005 temp_flags = i.flags[xchg2];
5006 i.flags[xchg2] = i.flags[xchg1];
5007 i.flags[xchg1] = temp_flags;
5008
050dfa73
MM
5009 temp_op = i.op[xchg2];
5010 i.op[xchg2] = i.op[xchg1];
5011 i.op[xchg1] = temp_op;
c48dadc9 5012
050dfa73
MM
5013 temp_reloc = i.reloc[xchg2];
5014 i.reloc[xchg2] = i.reloc[xchg1];
5015 i.reloc[xchg1] = temp_reloc;
43234a1e
L
5016
5017 if (i.mask)
5018 {
5019 if (i.mask->operand == xchg1)
5020 i.mask->operand = xchg2;
5021 else if (i.mask->operand == xchg2)
5022 i.mask->operand = xchg1;
5023 }
5024 if (i.broadcast)
5025 {
5026 if (i.broadcast->operand == xchg1)
5027 i.broadcast->operand = xchg2;
5028 else if (i.broadcast->operand == xchg2)
5029 i.broadcast->operand = xchg1;
5030 }
5031 if (i.rounding)
5032 {
5033 if (i.rounding->operand == xchg1)
5034 i.rounding->operand = xchg2;
5035 else if (i.rounding->operand == xchg2)
5036 i.rounding->operand = xchg1;
5037 }
050dfa73
MM
5038}
5039
29b0f896 5040static void
e3bb37b5 5041swap_operands (void)
29b0f896 5042{
b7c61d9a 5043 switch (i.operands)
050dfa73 5044 {
c0f3af97 5045 case 5:
b7c61d9a 5046 case 4:
4d456e3d 5047 swap_2_operands (1, i.operands - 2);
1a0670f3 5048 /* Fall through. */
b7c61d9a
L
5049 case 3:
5050 case 2:
4d456e3d 5051 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
5052 break;
5053 default:
5054 abort ();
29b0f896 5055 }
29b0f896
AM
5056
5057 if (i.mem_operands == 2)
5058 {
5059 const seg_entry *temp_seg;
5060 temp_seg = i.seg[0];
5061 i.seg[0] = i.seg[1];
5062 i.seg[1] = temp_seg;
5063 }
5064}
252b5132 5065
29b0f896
AM
5066/* Try to ensure constant immediates are represented in the smallest
5067 opcode possible. */
5068static void
e3bb37b5 5069optimize_imm (void)
29b0f896
AM
5070{
5071 char guess_suffix = 0;
5072 int op;
252b5132 5073
29b0f896
AM
5074 if (i.suffix)
5075 guess_suffix = i.suffix;
5076 else if (i.reg_operands)
5077 {
5078 /* Figure out a suffix from the last register operand specified.
5079 We can't do this properly yet, ie. excluding InOutPortReg,
5080 but the following works for instructions with immediates.
5081 In any case, we can't set i.suffix yet. */
5082 for (op = i.operands; --op >= 0;)
bab6aec1
JB
5083 if (i.types[op].bitfield.class != Reg)
5084 continue;
5085 else if (i.types[op].bitfield.byte)
7ab9ffdd 5086 {
40fb9820
L
5087 guess_suffix = BYTE_MNEM_SUFFIX;
5088 break;
5089 }
bab6aec1 5090 else if (i.types[op].bitfield.word)
252b5132 5091 {
40fb9820
L
5092 guess_suffix = WORD_MNEM_SUFFIX;
5093 break;
5094 }
bab6aec1 5095 else if (i.types[op].bitfield.dword)
40fb9820
L
5096 {
5097 guess_suffix = LONG_MNEM_SUFFIX;
5098 break;
5099 }
bab6aec1 5100 else if (i.types[op].bitfield.qword)
40fb9820
L
5101 {
5102 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 5103 break;
252b5132 5104 }
29b0f896
AM
5105 }
5106 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5107 guess_suffix = WORD_MNEM_SUFFIX;
5108
5109 for (op = i.operands; --op >= 0;)
40fb9820 5110 if (operand_type_check (i.types[op], imm))
29b0f896
AM
5111 {
5112 switch (i.op[op].imms->X_op)
252b5132 5113 {
29b0f896
AM
5114 case O_constant:
5115 /* If a suffix is given, this operand may be shortened. */
5116 switch (guess_suffix)
252b5132 5117 {
29b0f896 5118 case LONG_MNEM_SUFFIX:
40fb9820
L
5119 i.types[op].bitfield.imm32 = 1;
5120 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5121 break;
5122 case WORD_MNEM_SUFFIX:
40fb9820
L
5123 i.types[op].bitfield.imm16 = 1;
5124 i.types[op].bitfield.imm32 = 1;
5125 i.types[op].bitfield.imm32s = 1;
5126 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5127 break;
5128 case BYTE_MNEM_SUFFIX:
40fb9820
L
5129 i.types[op].bitfield.imm8 = 1;
5130 i.types[op].bitfield.imm8s = 1;
5131 i.types[op].bitfield.imm16 = 1;
5132 i.types[op].bitfield.imm32 = 1;
5133 i.types[op].bitfield.imm32s = 1;
5134 i.types[op].bitfield.imm64 = 1;
29b0f896 5135 break;
252b5132 5136 }
252b5132 5137
29b0f896
AM
5138 /* If this operand is at most 16 bits, convert it
5139 to a signed 16 bit number before trying to see
5140 whether it will fit in an even smaller size.
5141 This allows a 16-bit operand such as $0xffe0 to
5142 be recognised as within Imm8S range. */
40fb9820 5143 if ((i.types[op].bitfield.imm16)
29b0f896 5144 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 5145 {
29b0f896
AM
5146 i.op[op].imms->X_add_number =
5147 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5148 }
a28def75
L
5149#ifdef BFD64
5150 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 5151 if ((i.types[op].bitfield.imm32)
29b0f896
AM
5152 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5153 == 0))
5154 {
5155 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5156 ^ ((offsetT) 1 << 31))
5157 - ((offsetT) 1 << 31));
5158 }
a28def75 5159#endif
40fb9820 5160 i.types[op]
c6fb90c8
L
5161 = operand_type_or (i.types[op],
5162 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 5163
29b0f896
AM
5164 /* We must avoid matching of Imm32 templates when 64bit
5165 only immediate is available. */
5166 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 5167 i.types[op].bitfield.imm32 = 0;
29b0f896 5168 break;
252b5132 5169
29b0f896
AM
5170 case O_absent:
5171 case O_register:
5172 abort ();
5173
5174 /* Symbols and expressions. */
5175 default:
9cd96992
JB
5176 /* Convert symbolic operand to proper sizes for matching, but don't
5177 prevent matching a set of insns that only supports sizes other
5178 than those matching the insn suffix. */
5179 {
40fb9820 5180 i386_operand_type mask, allowed;
d3ce72d0 5181 const insn_template *t;
9cd96992 5182
0dfbf9d7
L
5183 operand_type_set (&mask, 0);
5184 operand_type_set (&allowed, 0);
40fb9820 5185
4eed87de
AM
5186 for (t = current_templates->start;
5187 t < current_templates->end;
5188 ++t)
bab6aec1
JB
5189 {
5190 allowed = operand_type_or (allowed, t->operand_types[op]);
5191 allowed = operand_type_and (allowed, anyimm);
5192 }
9cd96992
JB
5193 switch (guess_suffix)
5194 {
5195 case QWORD_MNEM_SUFFIX:
40fb9820
L
5196 mask.bitfield.imm64 = 1;
5197 mask.bitfield.imm32s = 1;
9cd96992
JB
5198 break;
5199 case LONG_MNEM_SUFFIX:
40fb9820 5200 mask.bitfield.imm32 = 1;
9cd96992
JB
5201 break;
5202 case WORD_MNEM_SUFFIX:
40fb9820 5203 mask.bitfield.imm16 = 1;
9cd96992
JB
5204 break;
5205 case BYTE_MNEM_SUFFIX:
40fb9820 5206 mask.bitfield.imm8 = 1;
9cd96992
JB
5207 break;
5208 default:
9cd96992
JB
5209 break;
5210 }
c6fb90c8 5211 allowed = operand_type_and (mask, allowed);
0dfbf9d7 5212 if (!operand_type_all_zero (&allowed))
c6fb90c8 5213 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 5214 }
29b0f896 5215 break;
252b5132 5216 }
29b0f896
AM
5217 }
5218}
47926f60 5219
29b0f896
AM
5220/* Try to use the smallest displacement type too. */
5221static void
e3bb37b5 5222optimize_disp (void)
29b0f896
AM
5223{
5224 int op;
3e73aa7c 5225
29b0f896 5226 for (op = i.operands; --op >= 0;)
40fb9820 5227 if (operand_type_check (i.types[op], disp))
252b5132 5228 {
b300c311 5229 if (i.op[op].disps->X_op == O_constant)
252b5132 5230 {
91d6fa6a 5231 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 5232
40fb9820 5233 if (i.types[op].bitfield.disp16
91d6fa6a 5234 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
5235 {
5236 /* If this operand is at most 16 bits, convert
5237 to a signed 16 bit number and don't use 64bit
5238 displacement. */
91d6fa6a 5239 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 5240 i.types[op].bitfield.disp64 = 0;
b300c311 5241 }
a28def75
L
5242#ifdef BFD64
5243 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 5244 if (i.types[op].bitfield.disp32
91d6fa6a 5245 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
5246 {
5247 /* If this operand is at most 32 bits, convert
5248 to a signed 32 bit number and don't use 64bit
5249 displacement. */
91d6fa6a
NC
5250 op_disp &= (((offsetT) 2 << 31) - 1);
5251 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 5252 i.types[op].bitfield.disp64 = 0;
b300c311 5253 }
a28def75 5254#endif
91d6fa6a 5255 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 5256 {
40fb9820
L
5257 i.types[op].bitfield.disp8 = 0;
5258 i.types[op].bitfield.disp16 = 0;
5259 i.types[op].bitfield.disp32 = 0;
5260 i.types[op].bitfield.disp32s = 0;
5261 i.types[op].bitfield.disp64 = 0;
b300c311
L
5262 i.op[op].disps = 0;
5263 i.disp_operands--;
5264 }
5265 else if (flag_code == CODE_64BIT)
5266 {
91d6fa6a 5267 if (fits_in_signed_long (op_disp))
28a9d8f5 5268 {
40fb9820
L
5269 i.types[op].bitfield.disp64 = 0;
5270 i.types[op].bitfield.disp32s = 1;
28a9d8f5 5271 }
0e1147d9 5272 if (i.prefix[ADDR_PREFIX]
91d6fa6a 5273 && fits_in_unsigned_long (op_disp))
40fb9820 5274 i.types[op].bitfield.disp32 = 1;
b300c311 5275 }
40fb9820
L
5276 if ((i.types[op].bitfield.disp32
5277 || i.types[op].bitfield.disp32s
5278 || i.types[op].bitfield.disp16)
b5014f7a 5279 && fits_in_disp8 (op_disp))
40fb9820 5280 i.types[op].bitfield.disp8 = 1;
252b5132 5281 }
67a4f2b7
AO
5282 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5283 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5284 {
5285 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5286 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
5287 i.types[op].bitfield.disp8 = 0;
5288 i.types[op].bitfield.disp16 = 0;
5289 i.types[op].bitfield.disp32 = 0;
5290 i.types[op].bitfield.disp32s = 0;
5291 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
5292 }
5293 else
b300c311 5294 /* We only support 64bit displacement on constants. */
40fb9820 5295 i.types[op].bitfield.disp64 = 0;
252b5132 5296 }
29b0f896
AM
5297}
5298
4a1b91ea
L
5299/* Return 1 if there is a match in broadcast bytes between operand
5300 GIVEN and instruction template T. */
5301
5302static INLINE int
5303match_broadcast_size (const insn_template *t, unsigned int given)
5304{
5305 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5306 && i.types[given].bitfield.byte)
5307 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5308 && i.types[given].bitfield.word)
5309 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5310 && i.types[given].bitfield.dword)
5311 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5312 && i.types[given].bitfield.qword));
5313}
5314
6c30d220
L
5315/* Check if operands are valid for the instruction. */
5316
5317static int
5318check_VecOperands (const insn_template *t)
5319{
43234a1e 5320 unsigned int op;
e2195274
JB
5321 i386_cpu_flags cpu;
5322 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5323
5324 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5325 any one operand are implicity requiring AVX512VL support if the actual
5326 operand size is YMMword or XMMword. Since this function runs after
5327 template matching, there's no need to check for YMMword/XMMword in
5328 the template. */
5329 cpu = cpu_flags_and (t->cpu_flags, avx512);
5330 if (!cpu_flags_all_zero (&cpu)
5331 && !t->cpu_flags.bitfield.cpuavx512vl
5332 && !cpu_arch_flags.bitfield.cpuavx512vl)
5333 {
5334 for (op = 0; op < t->operands; ++op)
5335 {
5336 if (t->operand_types[op].bitfield.zmmword
5337 && (i.types[op].bitfield.ymmword
5338 || i.types[op].bitfield.xmmword))
5339 {
5340 i.error = unsupported;
5341 return 1;
5342 }
5343 }
5344 }
43234a1e 5345
6c30d220
L
5346 /* Without VSIB byte, we can't have a vector register for index. */
5347 if (!t->opcode_modifier.vecsib
5348 && i.index_reg
1b54b8d7
JB
5349 && (i.index_reg->reg_type.bitfield.xmmword
5350 || i.index_reg->reg_type.bitfield.ymmword
5351 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5352 {
5353 i.error = unsupported_vector_index_register;
5354 return 1;
5355 }
5356
ad8ecc81
MZ
5357 /* Check if default mask is allowed. */
5358 if (t->opcode_modifier.nodefmask
5359 && (!i.mask || i.mask->mask->reg_num == 0))
5360 {
5361 i.error = no_default_mask;
5362 return 1;
5363 }
5364
7bab8ab5
JB
5365 /* For VSIB byte, we need a vector register for index, and all vector
5366 registers must be distinct. */
5367 if (t->opcode_modifier.vecsib)
5368 {
5369 if (!i.index_reg
6c30d220 5370 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 5371 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 5372 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 5373 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 5374 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 5375 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5376 {
5377 i.error = invalid_vsib_address;
5378 return 1;
5379 }
5380
43234a1e
L
5381 gas_assert (i.reg_operands == 2 || i.mask);
5382 if (i.reg_operands == 2 && !i.mask)
5383 {
3528c362 5384 gas_assert (i.types[0].bitfield.class == RegSIMD);
1b54b8d7
JB
5385 gas_assert (i.types[0].bitfield.xmmword
5386 || i.types[0].bitfield.ymmword);
3528c362 5387 gas_assert (i.types[2].bitfield.class == RegSIMD);
1b54b8d7
JB
5388 gas_assert (i.types[2].bitfield.xmmword
5389 || i.types[2].bitfield.ymmword);
43234a1e
L
5390 if (operand_check == check_none)
5391 return 0;
5392 if (register_number (i.op[0].regs)
5393 != register_number (i.index_reg)
5394 && register_number (i.op[2].regs)
5395 != register_number (i.index_reg)
5396 && register_number (i.op[0].regs)
5397 != register_number (i.op[2].regs))
5398 return 0;
5399 if (operand_check == check_error)
5400 {
5401 i.error = invalid_vector_register_set;
5402 return 1;
5403 }
5404 as_warn (_("mask, index, and destination registers should be distinct"));
5405 }
8444f82a
MZ
5406 else if (i.reg_operands == 1 && i.mask)
5407 {
3528c362 5408 if (i.types[1].bitfield.class == RegSIMD
1b54b8d7
JB
5409 && (i.types[1].bitfield.xmmword
5410 || i.types[1].bitfield.ymmword
5411 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5412 && (register_number (i.op[1].regs)
5413 == register_number (i.index_reg)))
5414 {
5415 if (operand_check == check_error)
5416 {
5417 i.error = invalid_vector_register_set;
5418 return 1;
5419 }
5420 if (operand_check != check_none)
5421 as_warn (_("index and destination registers should be distinct"));
5422 }
5423 }
43234a1e 5424 }
7bab8ab5 5425
43234a1e
L
5426 /* Check if broadcast is supported by the instruction and is applied
5427 to the memory operand. */
5428 if (i.broadcast)
5429 {
8e6e0792 5430 i386_operand_type type, overlap;
43234a1e
L
5431
5432 /* Check if specified broadcast is supported in this instruction,
4a1b91ea 5433 and its broadcast bytes match the memory operand. */
32546502 5434 op = i.broadcast->operand;
8e6e0792 5435 if (!t->opcode_modifier.broadcast
c48dadc9 5436 || !(i.flags[op] & Operand_Mem)
c39e5b26 5437 || (!i.types[op].bitfield.unspecified
4a1b91ea 5438 && !match_broadcast_size (t, op)))
43234a1e
L
5439 {
5440 bad_broadcast:
5441 i.error = unsupported_broadcast;
5442 return 1;
5443 }
8e6e0792 5444
4a1b91ea
L
5445 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5446 * i.broadcast->type);
8e6e0792 5447 operand_type_set (&type, 0);
4a1b91ea 5448 switch (i.broadcast->bytes)
8e6e0792 5449 {
4a1b91ea
L
5450 case 2:
5451 type.bitfield.word = 1;
5452 break;
5453 case 4:
5454 type.bitfield.dword = 1;
5455 break;
8e6e0792
JB
5456 case 8:
5457 type.bitfield.qword = 1;
5458 break;
5459 case 16:
5460 type.bitfield.xmmword = 1;
5461 break;
5462 case 32:
5463 type.bitfield.ymmword = 1;
5464 break;
5465 case 64:
5466 type.bitfield.zmmword = 1;
5467 break;
5468 default:
5469 goto bad_broadcast;
5470 }
5471
5472 overlap = operand_type_and (type, t->operand_types[op]);
5473 if (operand_type_all_zero (&overlap))
5474 goto bad_broadcast;
5475
5476 if (t->opcode_modifier.checkregsize)
5477 {
5478 unsigned int j;
5479
e2195274 5480 type.bitfield.baseindex = 1;
8e6e0792
JB
5481 for (j = 0; j < i.operands; ++j)
5482 {
5483 if (j != op
5484 && !operand_type_register_match(i.types[j],
5485 t->operand_types[j],
5486 type,
5487 t->operand_types[op]))
5488 goto bad_broadcast;
5489 }
5490 }
43234a1e
L
5491 }
5492 /* If broadcast is supported in this instruction, we need to check if
5493 operand of one-element size isn't specified without broadcast. */
5494 else if (t->opcode_modifier.broadcast && i.mem_operands)
5495 {
5496 /* Find memory operand. */
5497 for (op = 0; op < i.operands; op++)
8dc0818e 5498 if (i.flags[op] & Operand_Mem)
43234a1e
L
5499 break;
5500 gas_assert (op < i.operands);
5501 /* Check size of the memory operand. */
4a1b91ea 5502 if (match_broadcast_size (t, op))
43234a1e
L
5503 {
5504 i.error = broadcast_needed;
5505 return 1;
5506 }
5507 }
c39e5b26
JB
5508 else
5509 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5510
5511 /* Check if requested masking is supported. */
ae2387fe 5512 if (i.mask)
43234a1e 5513 {
ae2387fe
JB
5514 switch (t->opcode_modifier.masking)
5515 {
5516 case BOTH_MASKING:
5517 break;
5518 case MERGING_MASKING:
5519 if (i.mask->zeroing)
5520 {
5521 case 0:
5522 i.error = unsupported_masking;
5523 return 1;
5524 }
5525 break;
5526 case DYNAMIC_MASKING:
5527 /* Memory destinations allow only merging masking. */
5528 if (i.mask->zeroing && i.mem_operands)
5529 {
5530 /* Find memory operand. */
5531 for (op = 0; op < i.operands; op++)
c48dadc9 5532 if (i.flags[op] & Operand_Mem)
ae2387fe
JB
5533 break;
5534 gas_assert (op < i.operands);
5535 if (op == i.operands - 1)
5536 {
5537 i.error = unsupported_masking;
5538 return 1;
5539 }
5540 }
5541 break;
5542 default:
5543 abort ();
5544 }
43234a1e
L
5545 }
5546
5547 /* Check if masking is applied to dest operand. */
5548 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5549 {
5550 i.error = mask_not_on_destination;
5551 return 1;
5552 }
5553
43234a1e
L
5554 /* Check RC/SAE. */
5555 if (i.rounding)
5556 {
a80195f1
JB
5557 if (!t->opcode_modifier.sae
5558 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
43234a1e
L
5559 {
5560 i.error = unsupported_rc_sae;
5561 return 1;
5562 }
5563 /* If the instruction has several immediate operands and one of
5564 them is rounding, the rounding operand should be the last
5565 immediate operand. */
5566 if (i.imm_operands > 1
5567 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5568 {
43234a1e 5569 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5570 return 1;
5571 }
6c30d220
L
5572 }
5573
43234a1e 5574 /* Check vector Disp8 operand. */
b5014f7a
JB
5575 if (t->opcode_modifier.disp8memshift
5576 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5577 {
5578 if (i.broadcast)
4a1b91ea 5579 i.memshift = t->opcode_modifier.broadcast - 1;
7091c612 5580 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 5581 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
5582 else
5583 {
5584 const i386_operand_type *type = NULL;
5585
5586 i.memshift = 0;
5587 for (op = 0; op < i.operands; op++)
8dc0818e 5588 if (i.flags[op] & Operand_Mem)
7091c612 5589 {
4174bfff
JB
5590 if (t->opcode_modifier.evex == EVEXLIG)
5591 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5592 else if (t->operand_types[op].bitfield.xmmword
5593 + t->operand_types[op].bitfield.ymmword
5594 + t->operand_types[op].bitfield.zmmword <= 1)
7091c612
JB
5595 type = &t->operand_types[op];
5596 else if (!i.types[op].bitfield.unspecified)
5597 type = &i.types[op];
5598 }
3528c362 5599 else if (i.types[op].bitfield.class == RegSIMD
4174bfff 5600 && t->opcode_modifier.evex != EVEXLIG)
7091c612
JB
5601 {
5602 if (i.types[op].bitfield.zmmword)
5603 i.memshift = 6;
5604 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5605 i.memshift = 5;
5606 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5607 i.memshift = 4;
5608 }
5609
5610 if (type)
5611 {
5612 if (type->bitfield.zmmword)
5613 i.memshift = 6;
5614 else if (type->bitfield.ymmword)
5615 i.memshift = 5;
5616 else if (type->bitfield.xmmword)
5617 i.memshift = 4;
5618 }
5619
5620 /* For the check in fits_in_disp8(). */
5621 if (i.memshift == 0)
5622 i.memshift = -1;
5623 }
43234a1e
L
5624
5625 for (op = 0; op < i.operands; op++)
5626 if (operand_type_check (i.types[op], disp)
5627 && i.op[op].disps->X_op == O_constant)
5628 {
b5014f7a 5629 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5630 {
b5014f7a
JB
5631 i.types[op].bitfield.disp8 = 1;
5632 return 0;
43234a1e 5633 }
b5014f7a 5634 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5635 }
5636 }
b5014f7a
JB
5637
5638 i.memshift = 0;
43234a1e 5639
6c30d220
L
5640 return 0;
5641}
5642
43f3e2ee 5643/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5644 operand types. */
5645
5646static int
5647VEX_check_operands (const insn_template *t)
5648{
86fa6981 5649 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5650 {
86fa6981 5651 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 5652 if (!is_evex_encoding (t))
86fa6981
L
5653 {
5654 i.error = unsupported;
5655 return 1;
5656 }
5657 return 0;
43234a1e
L
5658 }
5659
a683cc34 5660 if (!t->opcode_modifier.vex)
86fa6981
L
5661 {
5662 /* This instruction template doesn't have VEX prefix. */
5663 if (i.vec_encoding != vex_encoding_default)
5664 {
5665 i.error = unsupported;
5666 return 1;
5667 }
5668 return 0;
5669 }
a683cc34 5670
9d3bf266
JB
5671 /* Check the special Imm4 cases; must be the first operand. */
5672 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
a683cc34
SP
5673 {
5674 if (i.op[0].imms->X_op != O_constant
5675 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5676 {
a65babc9 5677 i.error = bad_imm4;
891edac4
L
5678 return 1;
5679 }
a683cc34 5680
9d3bf266
JB
5681 /* Turn off Imm<N> so that update_imm won't complain. */
5682 operand_type_set (&i.types[0], 0);
a683cc34
SP
5683 }
5684
5685 return 0;
5686}
5687
d3ce72d0 5688static const insn_template *
83b16ac6 5689match_template (char mnem_suffix)
29b0f896
AM
5690{
5691 /* Points to template once we've found it. */
d3ce72d0 5692 const insn_template *t;
40fb9820 5693 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5694 i386_operand_type overlap4;
29b0f896 5695 unsigned int found_reverse_match;
83b16ac6 5696 i386_opcode_modifier suffix_check, mnemsuf_check;
40fb9820 5697 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5698 int addr_prefix_disp;
a5c311ca 5699 unsigned int j;
3ac21baa 5700 unsigned int found_cpu_match, size_match;
45664ddb 5701 unsigned int check_register;
5614d22c 5702 enum i386_error specific_error = 0;
29b0f896 5703
c0f3af97
L
5704#if MAX_OPERANDS != 5
5705# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5706#endif
5707
29b0f896 5708 found_reverse_match = 0;
539e75ad 5709 addr_prefix_disp = -1;
40fb9820
L
5710
5711 memset (&suffix_check, 0, sizeof (suffix_check));
e2195274
JB
5712 if (intel_syntax && i.broadcast)
5713 /* nothing */;
5714 else if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
5715 suffix_check.no_bsuf = 1;
5716 else if (i.suffix == WORD_MNEM_SUFFIX)
5717 suffix_check.no_wsuf = 1;
5718 else if (i.suffix == SHORT_MNEM_SUFFIX)
5719 suffix_check.no_ssuf = 1;
5720 else if (i.suffix == LONG_MNEM_SUFFIX)
5721 suffix_check.no_lsuf = 1;
5722 else if (i.suffix == QWORD_MNEM_SUFFIX)
5723 suffix_check.no_qsuf = 1;
5724 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 5725 suffix_check.no_ldsuf = 1;
29b0f896 5726
83b16ac6
JB
5727 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5728 if (intel_syntax)
5729 {
5730 switch (mnem_suffix)
5731 {
5732 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5733 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5734 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5735 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5736 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5737 }
5738 }
5739
01559ecc
L
5740 /* Must have right number of operands. */
5741 i.error = number_of_operands_mismatch;
5742
45aa61fe 5743 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5744 {
539e75ad 5745 addr_prefix_disp = -1;
dbbc8b7e 5746 found_reverse_match = 0;
539e75ad 5747
29b0f896
AM
5748 if (i.operands != t->operands)
5749 continue;
5750
50aecf8c 5751 /* Check processor support. */
a65babc9 5752 i.error = unsupported;
c0f3af97
L
5753 found_cpu_match = (cpu_flags_match (t)
5754 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
5755 if (!found_cpu_match)
5756 continue;
5757
e1d4d893 5758 /* Check AT&T mnemonic. */
a65babc9 5759 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5760 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5761 continue;
5762
e92bae62 5763 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5764 i.error = unsupported_syntax;
5c07affc 5765 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5766 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5767 || (intel64 && t->opcode_modifier.amd64)
5768 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5769 continue;
5770
20592a94 5771 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 5772 i.error = invalid_instruction_suffix;
567e4e96
L
5773 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5774 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5775 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5776 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5777 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5778 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5779 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896 5780 continue;
83b16ac6
JB
5781 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5782 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5783 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5784 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5785 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5786 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5787 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5788 continue;
29b0f896 5789
3ac21baa
JB
5790 size_match = operand_size_match (t);
5791 if (!size_match)
7d5e4556 5792 continue;
539e75ad 5793
5c07affc
L
5794 for (j = 0; j < MAX_OPERANDS; j++)
5795 operand_types[j] = t->operand_types[j];
5796
45aa61fe
AM
5797 /* In general, don't allow 64-bit operands in 32-bit mode. */
5798 if (i.suffix == QWORD_MNEM_SUFFIX
5799 && flag_code != CODE_64BIT
5800 && (intel_syntax
40fb9820 5801 ? (!t->opcode_modifier.ignoresize
625cbd7a 5802 && !t->opcode_modifier.broadcast
45aa61fe
AM
5803 && !intel_float_operand (t->name))
5804 : intel_float_operand (t->name) != 2)
3528c362
JB
5805 && ((operand_types[0].bitfield.class != RegMMX
5806 && operand_types[0].bitfield.class != RegSIMD)
5807 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5808 && operand_types[t->operands > 1].bitfield.class != RegSIMD))
45aa61fe
AM
5809 && (t->base_opcode != 0x0fc7
5810 || t->extension_opcode != 1 /* cmpxchg8b */))
5811 continue;
5812
192dc9c6
JB
5813 /* In general, don't allow 32-bit operands on pre-386. */
5814 else if (i.suffix == LONG_MNEM_SUFFIX
5815 && !cpu_arch_flags.bitfield.cpui386
5816 && (intel_syntax
5817 ? (!t->opcode_modifier.ignoresize
5818 && !intel_float_operand (t->name))
5819 : intel_float_operand (t->name) != 2)
3528c362
JB
5820 && ((operand_types[0].bitfield.class != RegMMX
5821 && operand_types[0].bitfield.class != RegSIMD)
5822 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5823 && operand_types[t->operands > 1].bitfield.class
5824 != RegSIMD)))
192dc9c6
JB
5825 continue;
5826
29b0f896 5827 /* Do not verify operands when there are none. */
50aecf8c 5828 else
29b0f896 5829 {
c6fb90c8 5830 if (!t->operands)
2dbab7d5
L
5831 /* We've found a match; break out of loop. */
5832 break;
29b0f896 5833 }
252b5132 5834
539e75ad
L
5835 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5836 into Disp32/Disp16/Disp32 operand. */
5837 if (i.prefix[ADDR_PREFIX] != 0)
5838 {
40fb9820 5839 /* There should be only one Disp operand. */
539e75ad
L
5840 switch (flag_code)
5841 {
5842 case CODE_16BIT:
40fb9820
L
5843 for (j = 0; j < MAX_OPERANDS; j++)
5844 {
5845 if (operand_types[j].bitfield.disp16)
5846 {
5847 addr_prefix_disp = j;
5848 operand_types[j].bitfield.disp32 = 1;
5849 operand_types[j].bitfield.disp16 = 0;
5850 break;
5851 }
5852 }
539e75ad
L
5853 break;
5854 case CODE_32BIT:
40fb9820
L
5855 for (j = 0; j < MAX_OPERANDS; j++)
5856 {
5857 if (operand_types[j].bitfield.disp32)
5858 {
5859 addr_prefix_disp = j;
5860 operand_types[j].bitfield.disp32 = 0;
5861 operand_types[j].bitfield.disp16 = 1;
5862 break;
5863 }
5864 }
539e75ad
L
5865 break;
5866 case CODE_64BIT:
40fb9820
L
5867 for (j = 0; j < MAX_OPERANDS; j++)
5868 {
5869 if (operand_types[j].bitfield.disp64)
5870 {
5871 addr_prefix_disp = j;
5872 operand_types[j].bitfield.disp64 = 0;
5873 operand_types[j].bitfield.disp32 = 1;
5874 break;
5875 }
5876 }
539e75ad
L
5877 break;
5878 }
539e75ad
L
5879 }
5880
02a86693
L
5881 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5882 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5883 continue;
5884
56ffb741 5885 /* We check register size if needed. */
e2195274
JB
5886 if (t->opcode_modifier.checkregsize)
5887 {
5888 check_register = (1 << t->operands) - 1;
5889 if (i.broadcast)
5890 check_register &= ~(1 << i.broadcast->operand);
5891 }
5892 else
5893 check_register = 0;
5894
c6fb90c8 5895 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5896 switch (t->operands)
5897 {
5898 case 1:
40fb9820 5899 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5900 continue;
5901 break;
5902 case 2:
33eaf5de 5903 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5904 only in 32bit mode and we can use opcode 0x90. In 64bit
5905 mode, we can't use 0x90 for xchg %eax, %eax since it should
5906 zero-extend %eax to %rax. */
5907 if (flag_code == CODE_64BIT
5908 && t->base_opcode == 0x90
2c703856
JB
5909 && i.types[0].bitfield.acc && i.types[0].bitfield.dword
5910 && i.types[1].bitfield.acc && i.types[1].bitfield.dword)
8b38ad71 5911 continue;
1212781b
JB
5912 /* xrelease mov %eax, <disp> is another special case. It must not
5913 match the accumulator-only encoding of mov. */
5914 if (flag_code != CODE_64BIT
5915 && i.hle_prefix
5916 && t->base_opcode == 0xa0
5917 && i.types[0].bitfield.acc
8dc0818e 5918 && (i.flags[1] & Operand_Mem))
1212781b 5919 continue;
f5eb1d70
JB
5920 /* Fall through. */
5921
5922 case 3:
3ac21baa
JB
5923 if (!(size_match & MATCH_STRAIGHT))
5924 goto check_reverse;
64c49ab3
JB
5925 /* Reverse direction of operands if swapping is possible in the first
5926 place (operands need to be symmetric) and
5927 - the load form is requested, and the template is a store form,
5928 - the store form is requested, and the template is a load form,
5929 - the non-default (swapped) form is requested. */
5930 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
f5eb1d70 5931 if (t->opcode_modifier.d && i.reg_operands == i.operands
64c49ab3
JB
5932 && !operand_type_all_zero (&overlap1))
5933 switch (i.dir_encoding)
5934 {
5935 case dir_encoding_load:
5936 if (operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 5937 || t->opcode_modifier.regmem)
64c49ab3
JB
5938 goto check_reverse;
5939 break;
5940
5941 case dir_encoding_store:
5942 if (!operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 5943 && !t->opcode_modifier.regmem)
64c49ab3
JB
5944 goto check_reverse;
5945 break;
5946
5947 case dir_encoding_swap:
5948 goto check_reverse;
5949
5950 case dir_encoding_default:
5951 break;
5952 }
86fa6981 5953 /* If we want store form, we skip the current load. */
64c49ab3
JB
5954 if ((i.dir_encoding == dir_encoding_store
5955 || i.dir_encoding == dir_encoding_swap)
86fa6981
L
5956 && i.mem_operands == 0
5957 && t->opcode_modifier.load)
fa99fab2 5958 continue;
1a0670f3 5959 /* Fall through. */
f48ff2ae 5960 case 4:
c0f3af97 5961 case 5:
c6fb90c8 5962 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
5963 if (!operand_type_match (overlap0, i.types[0])
5964 || !operand_type_match (overlap1, i.types[1])
e2195274 5965 || ((check_register & 3) == 3
dc821c5f 5966 && !operand_type_register_match (i.types[0],
40fb9820 5967 operand_types[0],
dc821c5f 5968 i.types[1],
40fb9820 5969 operand_types[1])))
29b0f896
AM
5970 {
5971 /* Check if other direction is valid ... */
38e314eb 5972 if (!t->opcode_modifier.d)
29b0f896
AM
5973 continue;
5974
b6169b20 5975check_reverse:
3ac21baa
JB
5976 if (!(size_match & MATCH_REVERSE))
5977 continue;
29b0f896 5978 /* Try reversing direction of operands. */
f5eb1d70
JB
5979 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5980 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
40fb9820 5981 if (!operand_type_match (overlap0, i.types[0])
f5eb1d70 5982 || !operand_type_match (overlap1, i.types[i.operands - 1])
45664ddb 5983 || (check_register
dc821c5f 5984 && !operand_type_register_match (i.types[0],
f5eb1d70
JB
5985 operand_types[i.operands - 1],
5986 i.types[i.operands - 1],
45664ddb 5987 operand_types[0])))
29b0f896
AM
5988 {
5989 /* Does not match either direction. */
5990 continue;
5991 }
38e314eb 5992 /* found_reverse_match holds which of D or FloatR
29b0f896 5993 we've found. */
38e314eb
JB
5994 if (!t->opcode_modifier.d)
5995 found_reverse_match = 0;
5996 else if (operand_types[0].bitfield.tbyte)
8a2ed489 5997 found_reverse_match = Opcode_FloatD;
dbbc8b7e 5998 else if (operand_types[0].bitfield.xmmword
f5eb1d70 5999 || operand_types[i.operands - 1].bitfield.xmmword
3528c362
JB
6000 || operand_types[0].bitfield.class == RegMMX
6001 || operand_types[i.operands - 1].bitfield.class == RegMMX
dbbc8b7e
JB
6002 || is_any_vex_encoding(t))
6003 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6004 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
8a2ed489 6005 else
38e314eb 6006 found_reverse_match = Opcode_D;
40fb9820 6007 if (t->opcode_modifier.floatr)
8a2ed489 6008 found_reverse_match |= Opcode_FloatR;
29b0f896 6009 }
f48ff2ae 6010 else
29b0f896 6011 {
f48ff2ae 6012 /* Found a forward 2 operand match here. */
d1cbb4db
L
6013 switch (t->operands)
6014 {
c0f3af97
L
6015 case 5:
6016 overlap4 = operand_type_and (i.types[4],
6017 operand_types[4]);
1a0670f3 6018 /* Fall through. */
d1cbb4db 6019 case 4:
c6fb90c8
L
6020 overlap3 = operand_type_and (i.types[3],
6021 operand_types[3]);
1a0670f3 6022 /* Fall through. */
d1cbb4db 6023 case 3:
c6fb90c8
L
6024 overlap2 = operand_type_and (i.types[2],
6025 operand_types[2]);
d1cbb4db
L
6026 break;
6027 }
29b0f896 6028
f48ff2ae
L
6029 switch (t->operands)
6030 {
c0f3af97
L
6031 case 5:
6032 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 6033 || !operand_type_register_match (i.types[3],
c0f3af97 6034 operand_types[3],
c0f3af97
L
6035 i.types[4],
6036 operand_types[4]))
6037 continue;
1a0670f3 6038 /* Fall through. */
f48ff2ae 6039 case 4:
40fb9820 6040 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
6041 || ((check_register & 0xa) == 0xa
6042 && !operand_type_register_match (i.types[1],
f7768225
JB
6043 operand_types[1],
6044 i.types[3],
e2195274
JB
6045 operand_types[3]))
6046 || ((check_register & 0xc) == 0xc
6047 && !operand_type_register_match (i.types[2],
6048 operand_types[2],
6049 i.types[3],
6050 operand_types[3])))
f48ff2ae 6051 continue;
1a0670f3 6052 /* Fall through. */
f48ff2ae
L
6053 case 3:
6054 /* Here we make use of the fact that there are no
23e42951 6055 reverse match 3 operand instructions. */
40fb9820 6056 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
6057 || ((check_register & 5) == 5
6058 && !operand_type_register_match (i.types[0],
23e42951
JB
6059 operand_types[0],
6060 i.types[2],
e2195274
JB
6061 operand_types[2]))
6062 || ((check_register & 6) == 6
6063 && !operand_type_register_match (i.types[1],
6064 operand_types[1],
6065 i.types[2],
6066 operand_types[2])))
f48ff2ae
L
6067 continue;
6068 break;
6069 }
29b0f896 6070 }
f48ff2ae 6071 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
6072 slip through to break. */
6073 }
3629bb00 6074 if (!found_cpu_match)
dbbc8b7e 6075 continue;
c0f3af97 6076
5614d22c
JB
6077 /* Check if vector and VEX operands are valid. */
6078 if (check_VecOperands (t) || VEX_check_operands (t))
6079 {
6080 specific_error = i.error;
6081 continue;
6082 }
a683cc34 6083
29b0f896
AM
6084 /* We've found a match; break out of loop. */
6085 break;
6086 }
6087
6088 if (t == current_templates->end)
6089 {
6090 /* We found no match. */
a65babc9 6091 const char *err_msg;
5614d22c 6092 switch (specific_error ? specific_error : i.error)
a65babc9
L
6093 {
6094 default:
6095 abort ();
86e026a4 6096 case operand_size_mismatch:
a65babc9
L
6097 err_msg = _("operand size mismatch");
6098 break;
6099 case operand_type_mismatch:
6100 err_msg = _("operand type mismatch");
6101 break;
6102 case register_type_mismatch:
6103 err_msg = _("register type mismatch");
6104 break;
6105 case number_of_operands_mismatch:
6106 err_msg = _("number of operands mismatch");
6107 break;
6108 case invalid_instruction_suffix:
6109 err_msg = _("invalid instruction suffix");
6110 break;
6111 case bad_imm4:
4a2608e3 6112 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 6113 break;
a65babc9
L
6114 case unsupported_with_intel_mnemonic:
6115 err_msg = _("unsupported with Intel mnemonic");
6116 break;
6117 case unsupported_syntax:
6118 err_msg = _("unsupported syntax");
6119 break;
6120 case unsupported:
35262a23 6121 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
6122 current_templates->start->name);
6123 return NULL;
6c30d220
L
6124 case invalid_vsib_address:
6125 err_msg = _("invalid VSIB address");
6126 break;
7bab8ab5
JB
6127 case invalid_vector_register_set:
6128 err_msg = _("mask, index, and destination registers must be distinct");
6129 break;
6c30d220
L
6130 case unsupported_vector_index_register:
6131 err_msg = _("unsupported vector index register");
6132 break;
43234a1e
L
6133 case unsupported_broadcast:
6134 err_msg = _("unsupported broadcast");
6135 break;
43234a1e
L
6136 case broadcast_needed:
6137 err_msg = _("broadcast is needed for operand of such type");
6138 break;
6139 case unsupported_masking:
6140 err_msg = _("unsupported masking");
6141 break;
6142 case mask_not_on_destination:
6143 err_msg = _("mask not on destination operand");
6144 break;
6145 case no_default_mask:
6146 err_msg = _("default mask isn't allowed");
6147 break;
6148 case unsupported_rc_sae:
6149 err_msg = _("unsupported static rounding/sae");
6150 break;
6151 case rc_sae_operand_not_last_imm:
6152 if (intel_syntax)
6153 err_msg = _("RC/SAE operand must precede immediate operands");
6154 else
6155 err_msg = _("RC/SAE operand must follow immediate operands");
6156 break;
6157 case invalid_register_operand:
6158 err_msg = _("invalid register operand");
6159 break;
a65babc9
L
6160 }
6161 as_bad (_("%s for `%s'"), err_msg,
891edac4 6162 current_templates->start->name);
fa99fab2 6163 return NULL;
29b0f896 6164 }
252b5132 6165
29b0f896
AM
6166 if (!quiet_warnings)
6167 {
6168 if (!intel_syntax
40fb9820
L
6169 && (i.types[0].bitfield.jumpabsolute
6170 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
6171 {
6172 as_warn (_("indirect %s without `*'"), t->name);
6173 }
6174
40fb9820
L
6175 if (t->opcode_modifier.isprefix
6176 && t->opcode_modifier.ignoresize)
29b0f896
AM
6177 {
6178 /* Warn them that a data or address size prefix doesn't
6179 affect assembly of the next line of code. */
6180 as_warn (_("stand-alone `%s' prefix"), t->name);
6181 }
6182 }
6183
6184 /* Copy the template we found. */
6185 i.tm = *t;
539e75ad
L
6186
6187 if (addr_prefix_disp != -1)
6188 i.tm.operand_types[addr_prefix_disp]
6189 = operand_types[addr_prefix_disp];
6190
29b0f896
AM
6191 if (found_reverse_match)
6192 {
dfd69174
JB
6193 /* If we found a reverse match we must alter the opcode direction
6194 bit and clear/flip the regmem modifier one. found_reverse_match
6195 holds bits to change (different for int & float insns). */
29b0f896
AM
6196
6197 i.tm.base_opcode ^= found_reverse_match;
6198
f5eb1d70
JB
6199 i.tm.operand_types[0] = operand_types[i.operands - 1];
6200 i.tm.operand_types[i.operands - 1] = operand_types[0];
dfd69174
JB
6201
6202 /* Certain SIMD insns have their load forms specified in the opcode
6203 table, and hence we need to _set_ RegMem instead of clearing it.
6204 We need to avoid setting the bit though on insns like KMOVW. */
6205 i.tm.opcode_modifier.regmem
6206 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6207 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6208 && !i.tm.opcode_modifier.regmem;
29b0f896
AM
6209 }
6210
fa99fab2 6211 return t;
29b0f896
AM
6212}
6213
6214static int
e3bb37b5 6215check_string (void)
29b0f896 6216{
8dc0818e
JB
6217 unsigned int mem_op = i.flags[0] & Operand_Mem ? 0 : 1;
6218
40fb9820 6219 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
6220 {
6221 if (i.seg[0] != NULL && i.seg[0] != &es)
6222 {
a87af027 6223 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 6224 i.tm.name,
d241b910 6225 intel_syntax ? i.tm.operands - mem_op : mem_op + 1,
a87af027 6226 register_prefix);
29b0f896
AM
6227 return 0;
6228 }
6229 /* There's only ever one segment override allowed per instruction.
6230 This instruction possibly has a legal segment override on the
6231 second operand, so copy the segment to where non-string
6232 instructions store it, allowing common code. */
6233 i.seg[0] = i.seg[1];
6234 }
40fb9820 6235 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
6236 {
6237 if (i.seg[1] != NULL && i.seg[1] != &es)
6238 {
a87af027 6239 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 6240 i.tm.name,
d241b910 6241 intel_syntax ? i.tm.operands - mem_op - 1 : mem_op + 2,
a87af027 6242 register_prefix);
29b0f896
AM
6243 return 0;
6244 }
6245 }
6246 return 1;
6247}
6248
6249static int
543613e9 6250process_suffix (void)
29b0f896
AM
6251{
6252 /* If matched instruction specifies an explicit instruction mnemonic
6253 suffix, use it. */
673fe0f0 6254 if (i.tm.opcode_modifier.size == SIZE16)
40fb9820 6255 i.suffix = WORD_MNEM_SUFFIX;
673fe0f0 6256 else if (i.tm.opcode_modifier.size == SIZE32)
40fb9820 6257 i.suffix = LONG_MNEM_SUFFIX;
673fe0f0 6258 else if (i.tm.opcode_modifier.size == SIZE64)
40fb9820 6259 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
6260 else if (i.reg_operands)
6261 {
6262 /* If there's no instruction mnemonic suffix we try to invent one
6263 based on register operands. */
6264 if (!i.suffix)
6265 {
6266 /* We take i.suffix from the last register operand specified,
6267 Destination register type is more significant than source
381d071f
L
6268 register type. crc32 in SSE4.2 prefers source register
6269 type. */
bab6aec1
JB
6270 if (i.tm.base_opcode == 0xf20f38f0
6271 && i.types[0].bitfield.class == Reg)
381d071f 6272 {
556059dd
JB
6273 if (i.types[0].bitfield.byte)
6274 i.suffix = BYTE_MNEM_SUFFIX;
6275 else if (i.types[0].bitfield.word)
40fb9820 6276 i.suffix = WORD_MNEM_SUFFIX;
556059dd 6277 else if (i.types[0].bitfield.dword)
40fb9820 6278 i.suffix = LONG_MNEM_SUFFIX;
556059dd 6279 else if (i.types[0].bitfield.qword)
40fb9820 6280 i.suffix = QWORD_MNEM_SUFFIX;
381d071f
L
6281 }
6282
6283 if (!i.suffix)
6284 {
6285 int op;
6286
556059dd 6287 if (i.tm.base_opcode == 0xf20f38f0)
20592a94
L
6288 {
6289 /* We have to know the operand size for crc32. */
6290 as_bad (_("ambiguous memory operand size for `%s`"),
6291 i.tm.name);
6292 return 0;
6293 }
6294
381d071f 6295 for (op = i.operands; --op >= 0;)
b76bc5d5
JB
6296 if (!i.tm.operand_types[op].bitfield.inoutportreg
6297 && !i.tm.operand_types[op].bitfield.shiftcount)
381d071f 6298 {
bab6aec1 6299 if (i.types[op].bitfield.class != Reg)
8819ada6
JB
6300 continue;
6301 if (i.types[op].bitfield.byte)
6302 i.suffix = BYTE_MNEM_SUFFIX;
6303 else if (i.types[op].bitfield.word)
6304 i.suffix = WORD_MNEM_SUFFIX;
6305 else if (i.types[op].bitfield.dword)
6306 i.suffix = LONG_MNEM_SUFFIX;
6307 else if (i.types[op].bitfield.qword)
6308 i.suffix = QWORD_MNEM_SUFFIX;
6309 else
6310 continue;
6311 break;
381d071f
L
6312 }
6313 }
29b0f896
AM
6314 }
6315 else if (i.suffix == BYTE_MNEM_SUFFIX)
6316 {
2eb952a4
L
6317 if (intel_syntax
6318 && i.tm.opcode_modifier.ignoresize
6319 && i.tm.opcode_modifier.no_bsuf)
6320 i.suffix = 0;
6321 else if (!check_byte_reg ())
29b0f896
AM
6322 return 0;
6323 }
6324 else if (i.suffix == LONG_MNEM_SUFFIX)
6325 {
2eb952a4
L
6326 if (intel_syntax
6327 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6328 && i.tm.opcode_modifier.no_lsuf
6329 && !i.tm.opcode_modifier.todword
6330 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
6331 i.suffix = 0;
6332 else if (!check_long_reg ())
29b0f896
AM
6333 return 0;
6334 }
6335 else if (i.suffix == QWORD_MNEM_SUFFIX)
6336 {
955e1e6a
L
6337 if (intel_syntax
6338 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6339 && i.tm.opcode_modifier.no_qsuf
6340 && !i.tm.opcode_modifier.todword
6341 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
6342 i.suffix = 0;
6343 else if (!check_qword_reg ())
29b0f896
AM
6344 return 0;
6345 }
6346 else if (i.suffix == WORD_MNEM_SUFFIX)
6347 {
2eb952a4
L
6348 if (intel_syntax
6349 && i.tm.opcode_modifier.ignoresize
6350 && i.tm.opcode_modifier.no_wsuf)
6351 i.suffix = 0;
6352 else if (!check_word_reg ())
29b0f896
AM
6353 return 0;
6354 }
40fb9820 6355 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
6356 /* Do nothing if the instruction is going to ignore the prefix. */
6357 ;
6358 else
6359 abort ();
6360 }
40fb9820 6361 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
6362 && !i.suffix
6363 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 6364 && i.tm.opcode_modifier.no_ssuf)
29b0f896 6365 {
06f74c5c
L
6366 if (stackop_size == LONG_MNEM_SUFFIX
6367 && i.tm.base_opcode == 0xcf)
6368 {
6369 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6370 .code16gcc directive to support 16-bit mode with
6371 32-bit address. For IRET without a suffix, generate
6372 16-bit IRET (opcode 0xcf) to return from an interrupt
6373 handler. */
6374 i.suffix = WORD_MNEM_SUFFIX;
6375 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6376 }
6377 else
6378 i.suffix = stackop_size;
29b0f896 6379 }
9306ca4a
JB
6380 else if (intel_syntax
6381 && !i.suffix
40fb9820
L
6382 && (i.tm.operand_types[0].bitfield.jumpabsolute
6383 || i.tm.opcode_modifier.jumpbyte
6384 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
6385 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6386 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
6387 {
6388 switch (flag_code)
6389 {
6390 case CODE_64BIT:
40fb9820 6391 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
6392 {
6393 i.suffix = QWORD_MNEM_SUFFIX;
6394 break;
6395 }
1a0670f3 6396 /* Fall through. */
9306ca4a 6397 case CODE_32BIT:
40fb9820 6398 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
6399 i.suffix = LONG_MNEM_SUFFIX;
6400 break;
6401 case CODE_16BIT:
40fb9820 6402 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
6403 i.suffix = WORD_MNEM_SUFFIX;
6404 break;
6405 }
6406 }
252b5132 6407
9306ca4a 6408 if (!i.suffix)
29b0f896 6409 {
9306ca4a
JB
6410 if (!intel_syntax)
6411 {
40fb9820 6412 if (i.tm.opcode_modifier.w)
9306ca4a 6413 {
4eed87de
AM
6414 as_bad (_("no instruction mnemonic suffix given and "
6415 "no register operands; can't size instruction"));
9306ca4a
JB
6416 return 0;
6417 }
6418 }
6419 else
6420 {
40fb9820 6421 unsigned int suffixes;
7ab9ffdd 6422
40fb9820
L
6423 suffixes = !i.tm.opcode_modifier.no_bsuf;
6424 if (!i.tm.opcode_modifier.no_wsuf)
6425 suffixes |= 1 << 1;
6426 if (!i.tm.opcode_modifier.no_lsuf)
6427 suffixes |= 1 << 2;
fc4adea1 6428 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
6429 suffixes |= 1 << 3;
6430 if (!i.tm.opcode_modifier.no_ssuf)
6431 suffixes |= 1 << 4;
c2b9da16 6432 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
6433 suffixes |= 1 << 5;
6434
6435 /* There are more than suffix matches. */
6436 if (i.tm.opcode_modifier.w
9306ca4a 6437 || ((suffixes & (suffixes - 1))
40fb9820
L
6438 && !i.tm.opcode_modifier.defaultsize
6439 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
6440 {
6441 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6442 return 0;
6443 }
6444 }
29b0f896 6445 }
252b5132 6446
d2224064
JB
6447 /* Change the opcode based on the operand size given by i.suffix. */
6448 switch (i.suffix)
29b0f896 6449 {
d2224064
JB
6450 /* Size floating point instruction. */
6451 case LONG_MNEM_SUFFIX:
6452 if (i.tm.opcode_modifier.floatmf)
6453 {
6454 i.tm.base_opcode ^= 4;
6455 break;
6456 }
6457 /* fall through */
6458 case WORD_MNEM_SUFFIX:
6459 case QWORD_MNEM_SUFFIX:
29b0f896 6460 /* It's not a byte, select word/dword operation. */
40fb9820 6461 if (i.tm.opcode_modifier.w)
29b0f896 6462 {
40fb9820 6463 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
6464 i.tm.base_opcode |= 8;
6465 else
6466 i.tm.base_opcode |= 1;
6467 }
d2224064
JB
6468 /* fall through */
6469 case SHORT_MNEM_SUFFIX:
29b0f896
AM
6470 /* Now select between word & dword operations via the operand
6471 size prefix, except for instructions that will ignore this
6472 prefix anyway. */
75c0a438 6473 if (i.reg_operands > 0
bab6aec1 6474 && i.types[0].bitfield.class == Reg
75c0a438
L
6475 && i.tm.opcode_modifier.addrprefixopreg
6476 && (i.tm.opcode_modifier.immext
6477 || i.operands == 1))
cb712a9e 6478 {
ca61edf2
L
6479 /* The address size override prefix changes the size of the
6480 first operand. */
40fb9820 6481 if ((flag_code == CODE_32BIT
75c0a438 6482 && i.op[0].regs->reg_type.bitfield.word)
40fb9820 6483 || (flag_code != CODE_32BIT
75c0a438 6484 && i.op[0].regs->reg_type.bitfield.dword))
cb712a9e
L
6485 if (!add_prefix (ADDR_PREFIX_OPCODE))
6486 return 0;
6487 }
6488 else if (i.suffix != QWORD_MNEM_SUFFIX
40fb9820
L
6489 && !i.tm.opcode_modifier.ignoresize
6490 && !i.tm.opcode_modifier.floatmf
a38d7118 6491 && !is_any_vex_encoding (&i.tm)
cb712a9e
L
6492 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6493 || (flag_code == CODE_64BIT
40fb9820 6494 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
6495 {
6496 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 6497
40fb9820 6498 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 6499 prefix = ADDR_PREFIX_OPCODE;
252b5132 6500
29b0f896
AM
6501 if (!add_prefix (prefix))
6502 return 0;
24eab124 6503 }
252b5132 6504
29b0f896
AM
6505 /* Set mode64 for an operand. */
6506 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 6507 && flag_code == CODE_64BIT
d2224064 6508 && !i.tm.opcode_modifier.norex64
46e883c5 6509 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
6510 need rex64. */
6511 && ! (i.operands == 2
6512 && i.tm.base_opcode == 0x90
6513 && i.tm.extension_opcode == None
2c703856
JB
6514 && i.types[0].bitfield.acc && i.types[0].bitfield.qword
6515 && i.types[1].bitfield.acc && i.types[1].bitfield.qword))
d2224064 6516 i.rex |= REX_W;
3e73aa7c 6517
d2224064 6518 break;
29b0f896 6519 }
7ecd2f8b 6520
c0a30a9f
L
6521 if (i.reg_operands != 0
6522 && i.operands > 1
6523 && i.tm.opcode_modifier.addrprefixopreg
6524 && !i.tm.opcode_modifier.immext)
6525 {
6526 /* Check invalid register operand when the address size override
6527 prefix changes the size of register operands. */
6528 unsigned int op;
6529 enum { need_word, need_dword, need_qword } need;
6530
6531 if (flag_code == CODE_32BIT)
6532 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6533 else
6534 {
6535 if (i.prefix[ADDR_PREFIX])
6536 need = need_dword;
6537 else
6538 need = flag_code == CODE_64BIT ? need_qword : need_word;
6539 }
6540
6541 for (op = 0; op < i.operands; op++)
bab6aec1 6542 if (i.types[op].bitfield.class == Reg
c0a30a9f
L
6543 && ((need == need_word
6544 && !i.op[op].regs->reg_type.bitfield.word)
6545 || (need == need_dword
6546 && !i.op[op].regs->reg_type.bitfield.dword)
6547 || (need == need_qword
6548 && !i.op[op].regs->reg_type.bitfield.qword)))
6549 {
6550 as_bad (_("invalid register operand size for `%s'"),
6551 i.tm.name);
6552 return 0;
6553 }
6554 }
6555
29b0f896
AM
6556 return 1;
6557}
3e73aa7c 6558
29b0f896 6559static int
543613e9 6560check_byte_reg (void)
29b0f896
AM
6561{
6562 int op;
543613e9 6563
29b0f896
AM
6564 for (op = i.operands; --op >= 0;)
6565 {
dc821c5f 6566 /* Skip non-register operands. */
bab6aec1 6567 if (i.types[op].bitfield.class != Reg)
dc821c5f
JB
6568 continue;
6569
29b0f896
AM
6570 /* If this is an eight bit register, it's OK. If it's the 16 or
6571 32 bit version of an eight bit register, we will just use the
6572 low portion, and that's OK too. */
dc821c5f 6573 if (i.types[op].bitfield.byte)
29b0f896
AM
6574 continue;
6575
5a819eb9
JB
6576 /* I/O port address operands are OK too. */
6577 if (i.tm.operand_types[op].bitfield.inoutportreg)
6578 continue;
6579
9344ff29
L
6580 /* crc32 doesn't generate this warning. */
6581 if (i.tm.base_opcode == 0xf20f38f0)
6582 continue;
6583
dc821c5f
JB
6584 if ((i.types[op].bitfield.word
6585 || i.types[op].bitfield.dword
6586 || i.types[op].bitfield.qword)
5a819eb9
JB
6587 && i.op[op].regs->reg_num < 4
6588 /* Prohibit these changes in 64bit mode, since the lowering
6589 would be more complicated. */
6590 && flag_code != CODE_64BIT)
29b0f896 6591 {
29b0f896 6592#if REGISTER_WARNINGS
5a819eb9 6593 if (!quiet_warnings)
a540244d
L
6594 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6595 register_prefix,
dc821c5f 6596 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
6597 ? REGNAM_AL - REGNAM_AX
6598 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 6599 register_prefix,
29b0f896
AM
6600 i.op[op].regs->reg_name,
6601 i.suffix);
6602#endif
6603 continue;
6604 }
6605 /* Any other register is bad. */
bab6aec1 6606 if (i.types[op].bitfield.class == Reg
3528c362
JB
6607 || i.types[op].bitfield.class == RegMMX
6608 || i.types[op].bitfield.class == RegSIMD
00cee14f 6609 || i.types[op].bitfield.class == SReg
4a5c67ed
JB
6610 || i.types[op].bitfield.class == RegCR
6611 || i.types[op].bitfield.class == RegDR
6612 || i.types[op].bitfield.class == RegTR)
29b0f896 6613 {
a540244d
L
6614 as_bad (_("`%s%s' not allowed with `%s%c'"),
6615 register_prefix,
29b0f896
AM
6616 i.op[op].regs->reg_name,
6617 i.tm.name,
6618 i.suffix);
6619 return 0;
6620 }
6621 }
6622 return 1;
6623}
6624
6625static int
e3bb37b5 6626check_long_reg (void)
29b0f896
AM
6627{
6628 int op;
6629
6630 for (op = i.operands; --op >= 0;)
dc821c5f 6631 /* Skip non-register operands. */
bab6aec1 6632 if (i.types[op].bitfield.class != Reg)
dc821c5f 6633 continue;
29b0f896
AM
6634 /* Reject eight bit registers, except where the template requires
6635 them. (eg. movzb) */
dc821c5f 6636 else if (i.types[op].bitfield.byte
bab6aec1 6637 && (i.tm.operand_types[op].bitfield.class == Reg
dc821c5f
JB
6638 || i.tm.operand_types[op].bitfield.acc)
6639 && (i.tm.operand_types[op].bitfield.word
6640 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6641 {
a540244d
L
6642 as_bad (_("`%s%s' not allowed with `%s%c'"),
6643 register_prefix,
29b0f896
AM
6644 i.op[op].regs->reg_name,
6645 i.tm.name,
6646 i.suffix);
6647 return 0;
6648 }
e4630f71 6649 /* Warn if the e prefix on a general reg is missing. */
29b0f896 6650 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f 6651 && i.types[op].bitfield.word
bab6aec1 6652 && (i.tm.operand_types[op].bitfield.class == Reg
dc821c5f
JB
6653 || i.tm.operand_types[op].bitfield.acc)
6654 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
6655 {
6656 /* Prohibit these changes in the 64bit mode, since the
6657 lowering is more complicated. */
6658 if (flag_code == CODE_64BIT)
252b5132 6659 {
2b5d6a91 6660 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6661 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6662 i.suffix);
6663 return 0;
252b5132 6664 }
29b0f896 6665#if REGISTER_WARNINGS
cecf1424
JB
6666 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6667 register_prefix,
6668 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6669 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 6670#endif
252b5132 6671 }
e4630f71 6672 /* Warn if the r prefix on a general reg is present. */
dc821c5f 6673 else if (i.types[op].bitfield.qword
bab6aec1 6674 && (i.tm.operand_types[op].bitfield.class == Reg
dc821c5f
JB
6675 || i.tm.operand_types[op].bitfield.acc)
6676 && i.tm.operand_types[op].bitfield.dword)
252b5132 6677 {
34828aad 6678 if (intel_syntax
ca61edf2 6679 && i.tm.opcode_modifier.toqword
3528c362 6680 && i.types[0].bitfield.class != RegSIMD)
34828aad 6681 {
ca61edf2 6682 /* Convert to QWORD. We want REX byte. */
34828aad
L
6683 i.suffix = QWORD_MNEM_SUFFIX;
6684 }
6685 else
6686 {
2b5d6a91 6687 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6688 register_prefix, i.op[op].regs->reg_name,
6689 i.suffix);
6690 return 0;
6691 }
29b0f896
AM
6692 }
6693 return 1;
6694}
252b5132 6695
29b0f896 6696static int
e3bb37b5 6697check_qword_reg (void)
29b0f896
AM
6698{
6699 int op;
252b5132 6700
29b0f896 6701 for (op = i.operands; --op >= 0; )
dc821c5f 6702 /* Skip non-register operands. */
bab6aec1 6703 if (i.types[op].bitfield.class != Reg)
dc821c5f 6704 continue;
29b0f896
AM
6705 /* Reject eight bit registers, except where the template requires
6706 them. (eg. movzb) */
dc821c5f 6707 else if (i.types[op].bitfield.byte
bab6aec1 6708 && (i.tm.operand_types[op].bitfield.class == Reg
dc821c5f
JB
6709 || i.tm.operand_types[op].bitfield.acc)
6710 && (i.tm.operand_types[op].bitfield.word
6711 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6712 {
a540244d
L
6713 as_bad (_("`%s%s' not allowed with `%s%c'"),
6714 register_prefix,
29b0f896
AM
6715 i.op[op].regs->reg_name,
6716 i.tm.name,
6717 i.suffix);
6718 return 0;
6719 }
e4630f71 6720 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6721 else if ((i.types[op].bitfield.word
6722 || i.types[op].bitfield.dword)
bab6aec1 6723 && (i.tm.operand_types[op].bitfield.class == Reg
dc821c5f
JB
6724 || i.tm.operand_types[op].bitfield.acc)
6725 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6726 {
6727 /* Prohibit these changes in the 64bit mode, since the
6728 lowering is more complicated. */
34828aad 6729 if (intel_syntax
ca61edf2 6730 && i.tm.opcode_modifier.todword
3528c362 6731 && i.types[0].bitfield.class != RegSIMD)
34828aad 6732 {
ca61edf2 6733 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6734 i.suffix = LONG_MNEM_SUFFIX;
6735 }
6736 else
6737 {
2b5d6a91 6738 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6739 register_prefix, i.op[op].regs->reg_name,
6740 i.suffix);
6741 return 0;
6742 }
252b5132 6743 }
29b0f896
AM
6744 return 1;
6745}
252b5132 6746
29b0f896 6747static int
e3bb37b5 6748check_word_reg (void)
29b0f896
AM
6749{
6750 int op;
6751 for (op = i.operands; --op >= 0;)
dc821c5f 6752 /* Skip non-register operands. */
bab6aec1 6753 if (i.types[op].bitfield.class != Reg)
dc821c5f 6754 continue;
29b0f896
AM
6755 /* Reject eight bit registers, except where the template requires
6756 them. (eg. movzb) */
dc821c5f 6757 else if (i.types[op].bitfield.byte
bab6aec1 6758 && (i.tm.operand_types[op].bitfield.class == Reg
dc821c5f
JB
6759 || i.tm.operand_types[op].bitfield.acc)
6760 && (i.tm.operand_types[op].bitfield.word
6761 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6762 {
a540244d
L
6763 as_bad (_("`%s%s' not allowed with `%s%c'"),
6764 register_prefix,
29b0f896
AM
6765 i.op[op].regs->reg_name,
6766 i.tm.name,
6767 i.suffix);
6768 return 0;
6769 }
e4630f71 6770 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6771 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6772 && (i.types[op].bitfield.dword
6773 || i.types[op].bitfield.qword)
bab6aec1 6774 && (i.tm.operand_types[op].bitfield.class == Reg
dc821c5f
JB
6775 || i.tm.operand_types[op].bitfield.acc)
6776 && i.tm.operand_types[op].bitfield.word)
252b5132 6777 {
29b0f896
AM
6778 /* Prohibit these changes in the 64bit mode, since the
6779 lowering is more complicated. */
6780 if (flag_code == CODE_64BIT)
252b5132 6781 {
2b5d6a91 6782 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6783 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6784 i.suffix);
6785 return 0;
252b5132 6786 }
29b0f896 6787#if REGISTER_WARNINGS
cecf1424
JB
6788 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6789 register_prefix,
6790 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6791 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6792#endif
6793 }
6794 return 1;
6795}
252b5132 6796
29b0f896 6797static int
40fb9820 6798update_imm (unsigned int j)
29b0f896 6799{
bc0844ae 6800 i386_operand_type overlap = i.types[j];
40fb9820
L
6801 if ((overlap.bitfield.imm8
6802 || overlap.bitfield.imm8s
6803 || overlap.bitfield.imm16
6804 || overlap.bitfield.imm32
6805 || overlap.bitfield.imm32s
6806 || overlap.bitfield.imm64)
0dfbf9d7
L
6807 && !operand_type_equal (&overlap, &imm8)
6808 && !operand_type_equal (&overlap, &imm8s)
6809 && !operand_type_equal (&overlap, &imm16)
6810 && !operand_type_equal (&overlap, &imm32)
6811 && !operand_type_equal (&overlap, &imm32s)
6812 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6813 {
6814 if (i.suffix)
6815 {
40fb9820
L
6816 i386_operand_type temp;
6817
0dfbf9d7 6818 operand_type_set (&temp, 0);
7ab9ffdd 6819 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6820 {
6821 temp.bitfield.imm8 = overlap.bitfield.imm8;
6822 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6823 }
6824 else if (i.suffix == WORD_MNEM_SUFFIX)
6825 temp.bitfield.imm16 = overlap.bitfield.imm16;
6826 else if (i.suffix == QWORD_MNEM_SUFFIX)
6827 {
6828 temp.bitfield.imm64 = overlap.bitfield.imm64;
6829 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6830 }
6831 else
6832 temp.bitfield.imm32 = overlap.bitfield.imm32;
6833 overlap = temp;
29b0f896 6834 }
0dfbf9d7
L
6835 else if (operand_type_equal (&overlap, &imm16_32_32s)
6836 || operand_type_equal (&overlap, &imm16_32)
6837 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6838 {
40fb9820 6839 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6840 overlap = imm16;
40fb9820 6841 else
65da13b5 6842 overlap = imm32s;
29b0f896 6843 }
0dfbf9d7
L
6844 if (!operand_type_equal (&overlap, &imm8)
6845 && !operand_type_equal (&overlap, &imm8s)
6846 && !operand_type_equal (&overlap, &imm16)
6847 && !operand_type_equal (&overlap, &imm32)
6848 && !operand_type_equal (&overlap, &imm32s)
6849 && !operand_type_equal (&overlap, &imm64))
29b0f896 6850 {
4eed87de
AM
6851 as_bad (_("no instruction mnemonic suffix given; "
6852 "can't determine immediate size"));
29b0f896
AM
6853 return 0;
6854 }
6855 }
40fb9820 6856 i.types[j] = overlap;
29b0f896 6857
40fb9820
L
6858 return 1;
6859}
6860
6861static int
6862finalize_imm (void)
6863{
bc0844ae 6864 unsigned int j, n;
29b0f896 6865
bc0844ae
L
6866 /* Update the first 2 immediate operands. */
6867 n = i.operands > 2 ? 2 : i.operands;
6868 if (n)
6869 {
6870 for (j = 0; j < n; j++)
6871 if (update_imm (j) == 0)
6872 return 0;
40fb9820 6873
bc0844ae
L
6874 /* The 3rd operand can't be immediate operand. */
6875 gas_assert (operand_type_check (i.types[2], imm) == 0);
6876 }
29b0f896
AM
6877
6878 return 1;
6879}
6880
6881static int
e3bb37b5 6882process_operands (void)
29b0f896
AM
6883{
6884 /* Default segment register this instruction will use for memory
6885 accesses. 0 means unknown. This is only for optimizing out
6886 unnecessary segment overrides. */
6887 const seg_entry *default_seg = 0;
6888
2426c15f 6889 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6890 {
91d6fa6a
NC
6891 unsigned int dupl = i.operands;
6892 unsigned int dest = dupl - 1;
9fcfb3d7
L
6893 unsigned int j;
6894
c0f3af97 6895 /* The destination must be an xmm register. */
9c2799c2 6896 gas_assert (i.reg_operands
91d6fa6a 6897 && MAX_OPERANDS > dupl
7ab9ffdd 6898 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6899
1b54b8d7
JB
6900 if (i.tm.operand_types[0].bitfield.acc
6901 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6902 {
8cd7925b 6903 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6904 {
6905 /* Keep xmm0 for instructions with VEX prefix and 3
6906 sources. */
1b54b8d7 6907 i.tm.operand_types[0].bitfield.acc = 0;
3528c362 6908 i.tm.operand_types[0].bitfield.class = RegSIMD;
c0f3af97
L
6909 goto duplicate;
6910 }
e2ec9d29 6911 else
c0f3af97
L
6912 {
6913 /* We remove the first xmm0 and keep the number of
6914 operands unchanged, which in fact duplicates the
6915 destination. */
6916 for (j = 1; j < i.operands; j++)
6917 {
6918 i.op[j - 1] = i.op[j];
6919 i.types[j - 1] = i.types[j];
6920 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
8dc0818e 6921 i.flags[j - 1] = i.flags[j];
c0f3af97
L
6922 }
6923 }
6924 }
6925 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6926 {
91d6fa6a 6927 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6928 && (i.tm.opcode_modifier.vexsources
6929 == VEX3SOURCES));
c0f3af97
L
6930
6931 /* Add the implicit xmm0 for instructions with VEX prefix
6932 and 3 sources. */
6933 for (j = i.operands; j > 0; j--)
6934 {
6935 i.op[j] = i.op[j - 1];
6936 i.types[j] = i.types[j - 1];
6937 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
8dc0818e 6938 i.flags[j] = i.flags[j - 1];
c0f3af97
L
6939 }
6940 i.op[0].regs
6941 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6942 i.types[0] = regxmm;
c0f3af97
L
6943 i.tm.operand_types[0] = regxmm;
6944
6945 i.operands += 2;
6946 i.reg_operands += 2;
6947 i.tm.operands += 2;
6948
91d6fa6a 6949 dupl++;
c0f3af97 6950 dest++;
91d6fa6a
NC
6951 i.op[dupl] = i.op[dest];
6952 i.types[dupl] = i.types[dest];
6953 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 6954 i.flags[dupl] = i.flags[dest];
e2ec9d29 6955 }
c0f3af97
L
6956 else
6957 {
6958duplicate:
6959 i.operands++;
6960 i.reg_operands++;
6961 i.tm.operands++;
6962
91d6fa6a
NC
6963 i.op[dupl] = i.op[dest];
6964 i.types[dupl] = i.types[dest];
6965 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 6966 i.flags[dupl] = i.flags[dest];
c0f3af97
L
6967 }
6968
6969 if (i.tm.opcode_modifier.immext)
6970 process_immext ();
6971 }
1b54b8d7
JB
6972 else if (i.tm.operand_types[0].bitfield.acc
6973 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
6974 {
6975 unsigned int j;
6976
9fcfb3d7
L
6977 for (j = 1; j < i.operands; j++)
6978 {
6979 i.op[j - 1] = i.op[j];
6980 i.types[j - 1] = i.types[j];
6981
6982 /* We need to adjust fields in i.tm since they are used by
6983 build_modrm_byte. */
6984 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
8dc0818e
JB
6985
6986 i.flags[j - 1] = i.flags[j];
9fcfb3d7
L
6987 }
6988
e2ec9d29
L
6989 i.operands--;
6990 i.reg_operands--;
e2ec9d29
L
6991 i.tm.operands--;
6992 }
920d2ddc
IT
6993 else if (i.tm.opcode_modifier.implicitquadgroup)
6994 {
a477a8c4
JB
6995 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6996
920d2ddc 6997 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
3528c362 6998 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
a477a8c4
JB
6999 regnum = register_number (i.op[1].regs);
7000 first_reg_in_group = regnum & ~3;
7001 last_reg_in_group = first_reg_in_group + 3;
7002 if (regnum != first_reg_in_group)
7003 as_warn (_("source register `%s%s' implicitly denotes"
7004 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7005 register_prefix, i.op[1].regs->reg_name,
7006 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7007 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7008 i.tm.name);
7009 }
e2ec9d29
L
7010 else if (i.tm.opcode_modifier.regkludge)
7011 {
7012 /* The imul $imm, %reg instruction is converted into
7013 imul $imm, %reg, %reg, and the clr %reg instruction
7014 is converted into xor %reg, %reg. */
7015
7016 unsigned int first_reg_op;
7017
7018 if (operand_type_check (i.types[0], reg))
7019 first_reg_op = 0;
7020 else
7021 first_reg_op = 1;
7022 /* Pretend we saw the extra register operand. */
9c2799c2 7023 gas_assert (i.reg_operands == 1
7ab9ffdd 7024 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
7025 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7026 i.types[first_reg_op + 1] = i.types[first_reg_op];
7027 i.operands++;
7028 i.reg_operands++;
29b0f896
AM
7029 }
7030
85b80b0f 7031 if (i.tm.opcode_modifier.modrm)
29b0f896
AM
7032 {
7033 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
7034 must be put into the modrm byte). Now, we make the modrm and
7035 index base bytes based on all the info we've collected. */
29b0f896
AM
7036
7037 default_seg = build_modrm_byte ();
7038 }
00cee14f 7039 else if (i.types[0].bitfield.class == SReg)
85b80b0f
JB
7040 {
7041 if (flag_code != CODE_64BIT
7042 ? i.tm.base_opcode == POP_SEG_SHORT
7043 && i.op[0].regs->reg_num == 1
7044 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7045 && i.op[0].regs->reg_num < 4)
7046 {
7047 as_bad (_("you can't `%s %s%s'"),
7048 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7049 return 0;
7050 }
7051 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7052 {
7053 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7054 i.tm.opcode_length = 2;
7055 }
7056 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7057 }
8a2ed489 7058 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
7059 {
7060 default_seg = &ds;
7061 }
40fb9820 7062 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
7063 {
7064 /* For the string instructions that allow a segment override
7065 on one of their operands, the default segment is ds. */
7066 default_seg = &ds;
7067 }
85b80b0f
JB
7068 else if (i.tm.opcode_modifier.shortform)
7069 {
7070 /* The register or float register operand is in operand
7071 0 or 1. */
bab6aec1 7072 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
85b80b0f
JB
7073
7074 /* Register goes in low 3 bits of opcode. */
7075 i.tm.base_opcode |= i.op[op].regs->reg_num;
7076 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7077 i.rex |= REX_B;
7078 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7079 {
7080 /* Warn about some common errors, but press on regardless.
7081 The first case can be generated by gcc (<= 2.8.1). */
7082 if (i.operands == 2)
7083 {
7084 /* Reversed arguments on faddp, fsubp, etc. */
7085 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7086 register_prefix, i.op[!intel_syntax].regs->reg_name,
7087 register_prefix, i.op[intel_syntax].regs->reg_name);
7088 }
7089 else
7090 {
7091 /* Extraneous `l' suffix on fp insn. */
7092 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7093 register_prefix, i.op[0].regs->reg_name);
7094 }
7095 }
7096 }
29b0f896 7097
75178d9d
L
7098 if (i.tm.base_opcode == 0x8d /* lea */
7099 && i.seg[0]
7100 && !quiet_warnings)
30123838 7101 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
7102
7103 /* If a segment was explicitly specified, and the specified segment
7104 is not the default, use an opcode prefix to select it. If we
7105 never figured out what the default segment is, then default_seg
7106 will be zero at this point, and the specified segment prefix will
7107 always be used. */
29b0f896
AM
7108 if ((i.seg[0]) && (i.seg[0] != default_seg))
7109 {
7110 if (!add_prefix (i.seg[0]->seg_prefix))
7111 return 0;
7112 }
7113 return 1;
7114}
7115
7116static const seg_entry *
e3bb37b5 7117build_modrm_byte (void)
29b0f896
AM
7118{
7119 const seg_entry *default_seg = 0;
c0f3af97 7120 unsigned int source, dest;
8cd7925b 7121 int vex_3_sources;
c0f3af97 7122
8cd7925b 7123 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
7124 if (vex_3_sources)
7125 {
91d6fa6a 7126 unsigned int nds, reg_slot;
4c2c6516 7127 expressionS *exp;
c0f3af97 7128
6b8d3588 7129 dest = i.operands - 1;
c0f3af97 7130 nds = dest - 1;
922d8de8 7131
a683cc34 7132 /* There are 2 kinds of instructions:
bed3d976 7133 1. 5 operands: 4 register operands or 3 register operands
9d3bf266 7134 plus 1 memory operand plus one Imm4 operand, VexXDS, and
bed3d976 7135 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 7136 ZMM register.
bed3d976 7137 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 7138 plus 1 memory operand, with VexXDS. */
922d8de8 7139 gas_assert ((i.reg_operands == 4
bed3d976
JB
7140 || (i.reg_operands == 3 && i.mem_operands == 1))
7141 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323 7142 && i.tm.opcode_modifier.vexw
3528c362 7143 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
a683cc34 7144
48db9223
JB
7145 /* If VexW1 is set, the first non-immediate operand is the source and
7146 the second non-immediate one is encoded in the immediate operand. */
7147 if (i.tm.opcode_modifier.vexw == VEXW1)
7148 {
7149 source = i.imm_operands;
7150 reg_slot = i.imm_operands + 1;
7151 }
7152 else
7153 {
7154 source = i.imm_operands + 1;
7155 reg_slot = i.imm_operands;
7156 }
7157
a683cc34 7158 if (i.imm_operands == 0)
bed3d976
JB
7159 {
7160 /* When there is no immediate operand, generate an 8bit
7161 immediate operand to encode the first operand. */
7162 exp = &im_expressions[i.imm_operands++];
7163 i.op[i.operands].imms = exp;
7164 i.types[i.operands] = imm8;
7165 i.operands++;
7166
3528c362 7167 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
bed3d976
JB
7168 exp->X_op = O_constant;
7169 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
7170 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7171 }
922d8de8 7172 else
bed3d976 7173 {
9d3bf266
JB
7174 gas_assert (i.imm_operands == 1);
7175 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7176 gas_assert (!i.tm.opcode_modifier.immext);
a683cc34 7177
9d3bf266
JB
7178 /* Turn on Imm8 again so that output_imm will generate it. */
7179 i.types[0].bitfield.imm8 = 1;
bed3d976 7180
3528c362 7181 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
9d3bf266 7182 i.op[0].imms->X_add_number
bed3d976 7183 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 7184 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 7185 }
a683cc34 7186
3528c362 7187 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
dae39acc 7188 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
7189 }
7190 else
7191 source = dest = 0;
29b0f896
AM
7192
7193 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
7194 implicit registers do not count. If there are 3 register
7195 operands, it must be a instruction with VexNDS. For a
7196 instruction with VexNDD, the destination register is encoded
7197 in VEX prefix. If there are 4 register operands, it must be
7198 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
7199 if (i.mem_operands == 0
7200 && ((i.reg_operands == 2
2426c15f 7201 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 7202 || (i.reg_operands == 3
2426c15f 7203 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 7204 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 7205 {
cab737b9
L
7206 switch (i.operands)
7207 {
7208 case 2:
7209 source = 0;
7210 break;
7211 case 3:
c81128dc
L
7212 /* When there are 3 operands, one of them may be immediate,
7213 which may be the first or the last operand. Otherwise,
c0f3af97
L
7214 the first operand must be shift count register (cl) or it
7215 is an instruction with VexNDS. */
9c2799c2 7216 gas_assert (i.imm_operands == 1
7ab9ffdd 7217 || (i.imm_operands == 0
2426c15f 7218 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 7219 || i.types[0].bitfield.shiftcount)));
40fb9820
L
7220 if (operand_type_check (i.types[0], imm)
7221 || i.types[0].bitfield.shiftcount)
7222 source = 1;
7223 else
7224 source = 0;
cab737b9
L
7225 break;
7226 case 4:
368d64cc
L
7227 /* When there are 4 operands, the first two must be 8bit
7228 immediate operands. The source operand will be the 3rd
c0f3af97
L
7229 one.
7230
7231 For instructions with VexNDS, if the first operand
7232 an imm8, the source operand is the 2nd one. If the last
7233 operand is imm8, the source operand is the first one. */
9c2799c2 7234 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
7235 && i.types[0].bitfield.imm8
7236 && i.types[1].bitfield.imm8)
2426c15f 7237 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
7238 && i.imm_operands == 1
7239 && (i.types[0].bitfield.imm8
43234a1e
L
7240 || i.types[i.operands - 1].bitfield.imm8
7241 || i.rounding)));
9f2670f2
L
7242 if (i.imm_operands == 2)
7243 source = 2;
7244 else
c0f3af97
L
7245 {
7246 if (i.types[0].bitfield.imm8)
7247 source = 1;
7248 else
7249 source = 0;
7250 }
c0f3af97
L
7251 break;
7252 case 5:
e771e7c9 7253 if (is_evex_encoding (&i.tm))
43234a1e
L
7254 {
7255 /* For EVEX instructions, when there are 5 operands, the
7256 first one must be immediate operand. If the second one
7257 is immediate operand, the source operand is the 3th
7258 one. If the last one is immediate operand, the source
7259 operand is the 2nd one. */
7260 gas_assert (i.imm_operands == 2
7261 && i.tm.opcode_modifier.sae
7262 && operand_type_check (i.types[0], imm));
7263 if (operand_type_check (i.types[1], imm))
7264 source = 2;
7265 else if (operand_type_check (i.types[4], imm))
7266 source = 1;
7267 else
7268 abort ();
7269 }
cab737b9
L
7270 break;
7271 default:
7272 abort ();
7273 }
7274
c0f3af97
L
7275 if (!vex_3_sources)
7276 {
7277 dest = source + 1;
7278
43234a1e
L
7279 /* RC/SAE operand could be between DEST and SRC. That happens
7280 when one operand is GPR and the other one is XMM/YMM/ZMM
7281 register. */
7282 if (i.rounding && i.rounding->operand == (int) dest)
7283 dest++;
7284
2426c15f 7285 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 7286 {
43234a1e 7287 /* For instructions with VexNDS, the register-only source
c5d0745b 7288 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
dfd69174 7289 register. It is encoded in VEX prefix. */
f12dc422
L
7290
7291 i386_operand_type op;
7292 unsigned int vvvv;
7293
7294 /* Check register-only source operand when two source
7295 operands are swapped. */
7296 if (!i.tm.operand_types[source].bitfield.baseindex
7297 && i.tm.operand_types[dest].bitfield.baseindex)
7298 {
7299 vvvv = source;
7300 source = dest;
7301 }
7302 else
7303 vvvv = dest;
7304
7305 op = i.tm.operand_types[vvvv];
c0f3af97 7306 if ((dest + 1) >= i.operands
bab6aec1 7307 || ((op.bitfield.class != Reg
dc821c5f 7308 || (!op.bitfield.dword && !op.bitfield.qword))
3528c362 7309 && op.bitfield.class != RegSIMD
43234a1e 7310 && !operand_type_equal (&op, &regmask)))
c0f3af97 7311 abort ();
f12dc422 7312 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
7313 dest++;
7314 }
7315 }
29b0f896
AM
7316
7317 i.rm.mode = 3;
dfd69174
JB
7318 /* One of the register operands will be encoded in the i.rm.reg
7319 field, the other in the combined i.rm.mode and i.rm.regmem
29b0f896
AM
7320 fields. If no form of this instruction supports a memory
7321 destination operand, then we assume the source operand may
7322 sometimes be a memory operand and so we need to store the
7323 destination in the i.rm.reg field. */
dfd69174 7324 if (!i.tm.opcode_modifier.regmem
40fb9820 7325 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
7326 {
7327 i.rm.reg = i.op[dest].regs->reg_num;
7328 i.rm.regmem = i.op[source].regs->reg_num;
3528c362
JB
7329 if (i.op[dest].regs->reg_type.bitfield.class == RegMMX
7330 || i.op[source].regs->reg_type.bitfield.class == RegMMX)
b4a3a7b4 7331 i.has_regmmx = TRUE;
3528c362
JB
7332 else if (i.op[dest].regs->reg_type.bitfield.class == RegSIMD
7333 || i.op[source].regs->reg_type.bitfield.class == RegSIMD)
b4a3a7b4
L
7334 {
7335 if (i.types[dest].bitfield.zmmword
7336 || i.types[source].bitfield.zmmword)
7337 i.has_regzmm = TRUE;
7338 else if (i.types[dest].bitfield.ymmword
7339 || i.types[source].bitfield.ymmword)
7340 i.has_regymm = TRUE;
7341 else
7342 i.has_regxmm = TRUE;
7343 }
29b0f896 7344 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7345 i.rex |= REX_R;
43234a1e
L
7346 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7347 i.vrex |= REX_R;
29b0f896 7348 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7349 i.rex |= REX_B;
43234a1e
L
7350 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7351 i.vrex |= REX_B;
29b0f896
AM
7352 }
7353 else
7354 {
7355 i.rm.reg = i.op[source].regs->reg_num;
7356 i.rm.regmem = i.op[dest].regs->reg_num;
7357 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7358 i.rex |= REX_B;
43234a1e
L
7359 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7360 i.vrex |= REX_B;
29b0f896 7361 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7362 i.rex |= REX_R;
43234a1e
L
7363 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7364 i.vrex |= REX_R;
29b0f896 7365 }
e0c7f900 7366 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 7367 {
4a5c67ed 7368 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
c4a530c5 7369 abort ();
e0c7f900 7370 i.rex &= ~REX_R;
c4a530c5
JB
7371 add_prefix (LOCK_PREFIX_OPCODE);
7372 }
29b0f896
AM
7373 }
7374 else
7375 { /* If it's not 2 reg operands... */
c0f3af97
L
7376 unsigned int mem;
7377
29b0f896
AM
7378 if (i.mem_operands)
7379 {
7380 unsigned int fake_zero_displacement = 0;
99018f42 7381 unsigned int op;
4eed87de 7382
7ab9ffdd 7383 for (op = 0; op < i.operands; op++)
8dc0818e 7384 if (i.flags[op] & Operand_Mem)
7ab9ffdd 7385 break;
7ab9ffdd 7386 gas_assert (op < i.operands);
29b0f896 7387
6c30d220
L
7388 if (i.tm.opcode_modifier.vecsib)
7389 {
e968fc9b 7390 if (i.index_reg->reg_num == RegIZ)
6c30d220
L
7391 abort ();
7392
7393 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7394 if (!i.base_reg)
7395 {
7396 i.sib.base = NO_BASE_REGISTER;
7397 i.sib.scale = i.log2_scale_factor;
7398 i.types[op].bitfield.disp8 = 0;
7399 i.types[op].bitfield.disp16 = 0;
7400 i.types[op].bitfield.disp64 = 0;
43083a50 7401 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
7402 {
7403 /* Must be 32 bit */
7404 i.types[op].bitfield.disp32 = 1;
7405 i.types[op].bitfield.disp32s = 0;
7406 }
7407 else
7408 {
7409 i.types[op].bitfield.disp32 = 0;
7410 i.types[op].bitfield.disp32s = 1;
7411 }
7412 }
7413 i.sib.index = i.index_reg->reg_num;
7414 if ((i.index_reg->reg_flags & RegRex) != 0)
7415 i.rex |= REX_X;
43234a1e
L
7416 if ((i.index_reg->reg_flags & RegVRex) != 0)
7417 i.vrex |= REX_X;
6c30d220
L
7418 }
7419
29b0f896
AM
7420 default_seg = &ds;
7421
7422 if (i.base_reg == 0)
7423 {
7424 i.rm.mode = 0;
7425 if (!i.disp_operands)
9bb129e8 7426 fake_zero_displacement = 1;
29b0f896
AM
7427 if (i.index_reg == 0)
7428 {
73053c1f
JB
7429 i386_operand_type newdisp;
7430
6c30d220 7431 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7432 /* Operand is just <disp> */
20f0a1fc 7433 if (flag_code == CODE_64BIT)
29b0f896
AM
7434 {
7435 /* 64bit mode overwrites the 32bit absolute
7436 addressing by RIP relative addressing and
7437 absolute addressing is encoded by one of the
7438 redundant SIB forms. */
7439 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7440 i.sib.base = NO_BASE_REGISTER;
7441 i.sib.index = NO_INDEX_REGISTER;
73053c1f 7442 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 7443 }
fc225355
L
7444 else if ((flag_code == CODE_16BIT)
7445 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
7446 {
7447 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 7448 newdisp = disp16;
20f0a1fc
NC
7449 }
7450 else
7451 {
7452 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 7453 newdisp = disp32;
29b0f896 7454 }
73053c1f
JB
7455 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7456 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 7457 }
6c30d220 7458 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7459 {
6c30d220 7460 /* !i.base_reg && i.index_reg */
e968fc9b 7461 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7462 i.sib.index = NO_INDEX_REGISTER;
7463 else
7464 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7465 i.sib.base = NO_BASE_REGISTER;
7466 i.sib.scale = i.log2_scale_factor;
7467 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
7468 i.types[op].bitfield.disp8 = 0;
7469 i.types[op].bitfield.disp16 = 0;
7470 i.types[op].bitfield.disp64 = 0;
43083a50 7471 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
7472 {
7473 /* Must be 32 bit */
7474 i.types[op].bitfield.disp32 = 1;
7475 i.types[op].bitfield.disp32s = 0;
7476 }
29b0f896 7477 else
40fb9820
L
7478 {
7479 i.types[op].bitfield.disp32 = 0;
7480 i.types[op].bitfield.disp32s = 1;
7481 }
29b0f896 7482 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7483 i.rex |= REX_X;
29b0f896
AM
7484 }
7485 }
7486 /* RIP addressing for 64bit mode. */
e968fc9b 7487 else if (i.base_reg->reg_num == RegIP)
29b0f896 7488 {
6c30d220 7489 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7490 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
7491 i.types[op].bitfield.disp8 = 0;
7492 i.types[op].bitfield.disp16 = 0;
7493 i.types[op].bitfield.disp32 = 0;
7494 i.types[op].bitfield.disp32s = 1;
7495 i.types[op].bitfield.disp64 = 0;
71903a11 7496 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
7497 if (! i.disp_operands)
7498 fake_zero_displacement = 1;
29b0f896 7499 }
dc821c5f 7500 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 7501 {
6c30d220 7502 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7503 switch (i.base_reg->reg_num)
7504 {
7505 case 3: /* (%bx) */
7506 if (i.index_reg == 0)
7507 i.rm.regmem = 7;
7508 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7509 i.rm.regmem = i.index_reg->reg_num - 6;
7510 break;
7511 case 5: /* (%bp) */
7512 default_seg = &ss;
7513 if (i.index_reg == 0)
7514 {
7515 i.rm.regmem = 6;
40fb9820 7516 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
7517 {
7518 /* fake (%bp) into 0(%bp) */
b5014f7a 7519 i.types[op].bitfield.disp8 = 1;
252b5132 7520 fake_zero_displacement = 1;
29b0f896
AM
7521 }
7522 }
7523 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7524 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7525 break;
7526 default: /* (%si) -> 4 or (%di) -> 5 */
7527 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7528 }
7529 i.rm.mode = mode_from_disp_size (i.types[op]);
7530 }
7531 else /* i.base_reg and 32/64 bit mode */
7532 {
7533 if (flag_code == CODE_64BIT
40fb9820
L
7534 && operand_type_check (i.types[op], disp))
7535 {
73053c1f
JB
7536 i.types[op].bitfield.disp16 = 0;
7537 i.types[op].bitfield.disp64 = 0;
40fb9820 7538 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
7539 {
7540 i.types[op].bitfield.disp32 = 0;
7541 i.types[op].bitfield.disp32s = 1;
7542 }
40fb9820 7543 else
73053c1f
JB
7544 {
7545 i.types[op].bitfield.disp32 = 1;
7546 i.types[op].bitfield.disp32s = 0;
7547 }
40fb9820 7548 }
20f0a1fc 7549
6c30d220
L
7550 if (!i.tm.opcode_modifier.vecsib)
7551 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7552 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7553 i.rex |= REX_B;
29b0f896
AM
7554 i.sib.base = i.base_reg->reg_num;
7555 /* x86-64 ignores REX prefix bit here to avoid decoder
7556 complications. */
848930b2
JB
7557 if (!(i.base_reg->reg_flags & RegRex)
7558 && (i.base_reg->reg_num == EBP_REG_NUM
7559 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7560 default_seg = &ss;
848930b2 7561 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7562 {
848930b2 7563 fake_zero_displacement = 1;
b5014f7a 7564 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7565 }
7566 i.sib.scale = i.log2_scale_factor;
7567 if (i.index_reg == 0)
7568 {
6c30d220 7569 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7570 /* <disp>(%esp) becomes two byte modrm with no index
7571 register. We've already stored the code for esp
7572 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7573 Any base register besides %esp will not use the
7574 extra modrm byte. */
7575 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7576 }
6c30d220 7577 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7578 {
e968fc9b 7579 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7580 i.sib.index = NO_INDEX_REGISTER;
7581 else
7582 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7583 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7584 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7585 i.rex |= REX_X;
29b0f896 7586 }
67a4f2b7
AO
7587
7588 if (i.disp_operands
7589 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7590 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7591 i.rm.mode = 0;
7592 else
a501d77e
L
7593 {
7594 if (!fake_zero_displacement
7595 && !i.disp_operands
7596 && i.disp_encoding)
7597 {
7598 fake_zero_displacement = 1;
7599 if (i.disp_encoding == disp_encoding_8bit)
7600 i.types[op].bitfield.disp8 = 1;
7601 else
7602 i.types[op].bitfield.disp32 = 1;
7603 }
7604 i.rm.mode = mode_from_disp_size (i.types[op]);
7605 }
29b0f896 7606 }
252b5132 7607
29b0f896
AM
7608 if (fake_zero_displacement)
7609 {
7610 /* Fakes a zero displacement assuming that i.types[op]
7611 holds the correct displacement size. */
7612 expressionS *exp;
7613
9c2799c2 7614 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7615 exp = &disp_expressions[i.disp_operands++];
7616 i.op[op].disps = exp;
7617 exp->X_op = O_constant;
7618 exp->X_add_number = 0;
7619 exp->X_add_symbol = (symbolS *) 0;
7620 exp->X_op_symbol = (symbolS *) 0;
7621 }
c0f3af97
L
7622
7623 mem = op;
29b0f896 7624 }
c0f3af97
L
7625 else
7626 mem = ~0;
252b5132 7627
8c43a48b 7628 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7629 {
7630 if (operand_type_check (i.types[0], imm))
7631 i.vex.register_specifier = NULL;
7632 else
7633 {
7634 /* VEX.vvvv encodes one of the sources when the first
7635 operand is not an immediate. */
1ef99a7b 7636 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7637 i.vex.register_specifier = i.op[0].regs;
7638 else
7639 i.vex.register_specifier = i.op[1].regs;
7640 }
7641
7642 /* Destination is a XMM register encoded in the ModRM.reg
7643 and VEX.R bit. */
7644 i.rm.reg = i.op[2].regs->reg_num;
7645 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7646 i.rex |= REX_R;
7647
7648 /* ModRM.rm and VEX.B encodes the other source. */
7649 if (!i.mem_operands)
7650 {
7651 i.rm.mode = 3;
7652
1ef99a7b 7653 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7654 i.rm.regmem = i.op[1].regs->reg_num;
7655 else
7656 i.rm.regmem = i.op[0].regs->reg_num;
7657
7658 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7659 i.rex |= REX_B;
7660 }
7661 }
2426c15f 7662 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7663 {
7664 i.vex.register_specifier = i.op[2].regs;
7665 if (!i.mem_operands)
7666 {
7667 i.rm.mode = 3;
7668 i.rm.regmem = i.op[1].regs->reg_num;
7669 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7670 i.rex |= REX_B;
7671 }
7672 }
29b0f896
AM
7673 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7674 (if any) based on i.tm.extension_opcode. Again, we must be
7675 careful to make sure that segment/control/debug/test/MMX
7676 registers are coded into the i.rm.reg field. */
f88c9eb0 7677 else if (i.reg_operands)
29b0f896 7678 {
99018f42 7679 unsigned int op;
7ab9ffdd
L
7680 unsigned int vex_reg = ~0;
7681
7682 for (op = 0; op < i.operands; op++)
b4a3a7b4 7683 {
bab6aec1 7684 if (i.types[op].bitfield.class == Reg
b4a3a7b4
L
7685 || i.types[op].bitfield.regbnd
7686 || i.types[op].bitfield.regmask
00cee14f 7687 || i.types[op].bitfield.class == SReg
4a5c67ed
JB
7688 || i.types[op].bitfield.class == RegCR
7689 || i.types[op].bitfield.class == RegDR
7690 || i.types[op].bitfield.class == RegTR)
b4a3a7b4 7691 break;
3528c362 7692 if (i.types[op].bitfield.class == RegSIMD)
b4a3a7b4
L
7693 {
7694 if (i.types[op].bitfield.zmmword)
7695 i.has_regzmm = TRUE;
7696 else if (i.types[op].bitfield.ymmword)
7697 i.has_regymm = TRUE;
7698 else
7699 i.has_regxmm = TRUE;
7700 break;
7701 }
3528c362 7702 if (i.types[op].bitfield.class == RegMMX)
b4a3a7b4
L
7703 {
7704 i.has_regmmx = TRUE;
7705 break;
7706 }
7707 }
c0209578 7708
7ab9ffdd
L
7709 if (vex_3_sources)
7710 op = dest;
2426c15f 7711 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7712 {
7713 /* For instructions with VexNDS, the register-only
7714 source operand is encoded in VEX prefix. */
7715 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7716
7ab9ffdd 7717 if (op > mem)
c0f3af97 7718 {
7ab9ffdd
L
7719 vex_reg = op++;
7720 gas_assert (op < i.operands);
c0f3af97
L
7721 }
7722 else
c0f3af97 7723 {
f12dc422
L
7724 /* Check register-only source operand when two source
7725 operands are swapped. */
7726 if (!i.tm.operand_types[op].bitfield.baseindex
7727 && i.tm.operand_types[op + 1].bitfield.baseindex)
7728 {
7729 vex_reg = op;
7730 op += 2;
7731 gas_assert (mem == (vex_reg + 1)
7732 && op < i.operands);
7733 }
7734 else
7735 {
7736 vex_reg = op + 1;
7737 gas_assert (vex_reg < i.operands);
7738 }
c0f3af97 7739 }
7ab9ffdd 7740 }
2426c15f 7741 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7742 {
f12dc422 7743 /* For instructions with VexNDD, the register destination
7ab9ffdd 7744 is encoded in VEX prefix. */
f12dc422
L
7745 if (i.mem_operands == 0)
7746 {
7747 /* There is no memory operand. */
7748 gas_assert ((op + 2) == i.operands);
7749 vex_reg = op + 1;
7750 }
7751 else
8d63c93e 7752 {
ed438a93
JB
7753 /* There are only 2 non-immediate operands. */
7754 gas_assert (op < i.imm_operands + 2
7755 && i.operands == i.imm_operands + 2);
7756 vex_reg = i.imm_operands + 1;
f12dc422 7757 }
7ab9ffdd
L
7758 }
7759 else
7760 gas_assert (op < i.operands);
99018f42 7761
7ab9ffdd
L
7762 if (vex_reg != (unsigned int) ~0)
7763 {
f12dc422 7764 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7765
bab6aec1 7766 if ((type->bitfield.class != Reg
dc821c5f 7767 || (!type->bitfield.dword && !type->bitfield.qword))
3528c362 7768 && type->bitfield.class != RegSIMD
43234a1e 7769 && !operand_type_equal (type, &regmask))
7ab9ffdd 7770 abort ();
f88c9eb0 7771
7ab9ffdd
L
7772 i.vex.register_specifier = i.op[vex_reg].regs;
7773 }
7774
1b9f0c97
L
7775 /* Don't set OP operand twice. */
7776 if (vex_reg != op)
7ab9ffdd 7777 {
1b9f0c97
L
7778 /* If there is an extension opcode to put here, the
7779 register number must be put into the regmem field. */
7780 if (i.tm.extension_opcode != None)
7781 {
7782 i.rm.regmem = i.op[op].regs->reg_num;
7783 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7784 i.rex |= REX_B;
43234a1e
L
7785 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7786 i.vrex |= REX_B;
1b9f0c97
L
7787 }
7788 else
7789 {
7790 i.rm.reg = i.op[op].regs->reg_num;
7791 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7792 i.rex |= REX_R;
43234a1e
L
7793 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7794 i.vrex |= REX_R;
1b9f0c97 7795 }
7ab9ffdd 7796 }
252b5132 7797
29b0f896
AM
7798 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7799 must set it to 3 to indicate this is a register operand
7800 in the regmem field. */
7801 if (!i.mem_operands)
7802 i.rm.mode = 3;
7803 }
252b5132 7804
29b0f896 7805 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7806 if (i.tm.extension_opcode != None)
29b0f896
AM
7807 i.rm.reg = i.tm.extension_opcode;
7808 }
7809 return default_seg;
7810}
252b5132 7811
29b0f896 7812static void
e3bb37b5 7813output_branch (void)
29b0f896
AM
7814{
7815 char *p;
f8a5c266 7816 int size;
29b0f896
AM
7817 int code16;
7818 int prefix;
7819 relax_substateT subtype;
7820 symbolS *sym;
7821 offsetT off;
7822
f8a5c266 7823 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7824 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7825
7826 prefix = 0;
7827 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7828 {
29b0f896
AM
7829 prefix = 1;
7830 i.prefixes -= 1;
7831 code16 ^= CODE16;
252b5132 7832 }
29b0f896
AM
7833 /* Pentium4 branch hints. */
7834 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7835 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7836 {
29b0f896
AM
7837 prefix++;
7838 i.prefixes--;
7839 }
7840 if (i.prefix[REX_PREFIX] != 0)
7841 {
7842 prefix++;
7843 i.prefixes--;
2f66722d
AM
7844 }
7845
7e8b059b
L
7846 /* BND prefixed jump. */
7847 if (i.prefix[BND_PREFIX] != 0)
7848 {
7849 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7850 i.prefixes -= 1;
7851 }
7852
29b0f896
AM
7853 if (i.prefixes != 0 && !intel_syntax)
7854 as_warn (_("skipping prefixes on this instruction"));
7855
7856 /* It's always a symbol; End frag & setup for relax.
7857 Make sure there is enough room in this frag for the largest
7858 instruction we may generate in md_convert_frag. This is 2
7859 bytes for the opcode and room for the prefix and largest
7860 displacement. */
7861 frag_grow (prefix + 2 + 4);
7862 /* Prefix and 1 opcode byte go in fr_fix. */
7863 p = frag_more (prefix + 1);
7864 if (i.prefix[DATA_PREFIX] != 0)
7865 *p++ = DATA_PREFIX_OPCODE;
7866 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7867 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7868 *p++ = i.prefix[SEG_PREFIX];
7869 if (i.prefix[REX_PREFIX] != 0)
7870 *p++ = i.prefix[REX_PREFIX];
7871 *p = i.tm.base_opcode;
7872
7873 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7874 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7875 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7876 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7877 else
f8a5c266 7878 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7879 subtype |= code16;
3e73aa7c 7880
29b0f896
AM
7881 sym = i.op[0].disps->X_add_symbol;
7882 off = i.op[0].disps->X_add_number;
3e73aa7c 7883
29b0f896
AM
7884 if (i.op[0].disps->X_op != O_constant
7885 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7886 {
29b0f896
AM
7887 /* Handle complex expressions. */
7888 sym = make_expr_symbol (i.op[0].disps);
7889 off = 0;
7890 }
3e73aa7c 7891
29b0f896
AM
7892 /* 1 possible extra opcode + 4 byte displacement go in var part.
7893 Pass reloc in fr_var. */
d258b828 7894 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7895}
3e73aa7c 7896
bd7ab16b
L
7897#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7898/* Return TRUE iff PLT32 relocation should be used for branching to
7899 symbol S. */
7900
7901static bfd_boolean
7902need_plt32_p (symbolS *s)
7903{
7904 /* PLT32 relocation is ELF only. */
7905 if (!IS_ELF)
7906 return FALSE;
7907
a5def729
RO
7908#ifdef TE_SOLARIS
7909 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7910 krtld support it. */
7911 return FALSE;
7912#endif
7913
bd7ab16b
L
7914 /* Since there is no need to prepare for PLT branch on x86-64, we
7915 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7916 be used as a marker for 32-bit PC-relative branches. */
7917 if (!object_64bit)
7918 return FALSE;
7919
7920 /* Weak or undefined symbol need PLT32 relocation. */
7921 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7922 return TRUE;
7923
7924 /* Non-global symbol doesn't need PLT32 relocation. */
7925 if (! S_IS_EXTERNAL (s))
7926 return FALSE;
7927
7928 /* Other global symbols need PLT32 relocation. NB: Symbol with
7929 non-default visibilities are treated as normal global symbol
7930 so that PLT32 relocation can be used as a marker for 32-bit
7931 PC-relative branches. It is useful for linker relaxation. */
7932 return TRUE;
7933}
7934#endif
7935
29b0f896 7936static void
e3bb37b5 7937output_jump (void)
29b0f896
AM
7938{
7939 char *p;
7940 int size;
3e02c1cc 7941 fixS *fixP;
bd7ab16b 7942 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7943
40fb9820 7944 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
7945 {
7946 /* This is a loop or jecxz type instruction. */
7947 size = 1;
7948 if (i.prefix[ADDR_PREFIX] != 0)
7949 {
7950 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7951 i.prefixes -= 1;
7952 }
7953 /* Pentium4 branch hints. */
7954 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7955 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7956 {
7957 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7958 i.prefixes--;
3e73aa7c
JH
7959 }
7960 }
29b0f896
AM
7961 else
7962 {
7963 int code16;
3e73aa7c 7964
29b0f896
AM
7965 code16 = 0;
7966 if (flag_code == CODE_16BIT)
7967 code16 = CODE16;
3e73aa7c 7968
29b0f896
AM
7969 if (i.prefix[DATA_PREFIX] != 0)
7970 {
7971 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7972 i.prefixes -= 1;
7973 code16 ^= CODE16;
7974 }
252b5132 7975
29b0f896
AM
7976 size = 4;
7977 if (code16)
7978 size = 2;
7979 }
9fcc94b6 7980
29b0f896
AM
7981 if (i.prefix[REX_PREFIX] != 0)
7982 {
7983 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7984 i.prefixes -= 1;
7985 }
252b5132 7986
7e8b059b
L
7987 /* BND prefixed jump. */
7988 if (i.prefix[BND_PREFIX] != 0)
7989 {
7990 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7991 i.prefixes -= 1;
7992 }
7993
29b0f896
AM
7994 if (i.prefixes != 0 && !intel_syntax)
7995 as_warn (_("skipping prefixes on this instruction"));
e0890092 7996
42164a71
L
7997 p = frag_more (i.tm.opcode_length + size);
7998 switch (i.tm.opcode_length)
7999 {
8000 case 2:
8001 *p++ = i.tm.base_opcode >> 8;
1a0670f3 8002 /* Fall through. */
42164a71
L
8003 case 1:
8004 *p++ = i.tm.base_opcode;
8005 break;
8006 default:
8007 abort ();
8008 }
e0890092 8009
bd7ab16b
L
8010#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8011 if (size == 4
8012 && jump_reloc == NO_RELOC
8013 && need_plt32_p (i.op[0].disps->X_add_symbol))
8014 jump_reloc = BFD_RELOC_X86_64_PLT32;
8015#endif
8016
8017 jump_reloc = reloc (size, 1, 1, jump_reloc);
8018
3e02c1cc 8019 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 8020 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
8021
8022 /* All jumps handled here are signed, but don't use a signed limit
8023 check for 32 and 16 bit jumps as we want to allow wrap around at
8024 4G and 64k respectively. */
8025 if (size == 1)
8026 fixP->fx_signed = 1;
29b0f896 8027}
e0890092 8028
29b0f896 8029static void
e3bb37b5 8030output_interseg_jump (void)
29b0f896
AM
8031{
8032 char *p;
8033 int size;
8034 int prefix;
8035 int code16;
252b5132 8036
29b0f896
AM
8037 code16 = 0;
8038 if (flag_code == CODE_16BIT)
8039 code16 = CODE16;
a217f122 8040
29b0f896
AM
8041 prefix = 0;
8042 if (i.prefix[DATA_PREFIX] != 0)
8043 {
8044 prefix = 1;
8045 i.prefixes -= 1;
8046 code16 ^= CODE16;
8047 }
8048 if (i.prefix[REX_PREFIX] != 0)
8049 {
8050 prefix++;
8051 i.prefixes -= 1;
8052 }
252b5132 8053
29b0f896
AM
8054 size = 4;
8055 if (code16)
8056 size = 2;
252b5132 8057
29b0f896
AM
8058 if (i.prefixes != 0 && !intel_syntax)
8059 as_warn (_("skipping prefixes on this instruction"));
252b5132 8060
29b0f896
AM
8061 /* 1 opcode; 2 segment; offset */
8062 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 8063
29b0f896
AM
8064 if (i.prefix[DATA_PREFIX] != 0)
8065 *p++ = DATA_PREFIX_OPCODE;
252b5132 8066
29b0f896
AM
8067 if (i.prefix[REX_PREFIX] != 0)
8068 *p++ = i.prefix[REX_PREFIX];
252b5132 8069
29b0f896
AM
8070 *p++ = i.tm.base_opcode;
8071 if (i.op[1].imms->X_op == O_constant)
8072 {
8073 offsetT n = i.op[1].imms->X_add_number;
252b5132 8074
29b0f896
AM
8075 if (size == 2
8076 && !fits_in_unsigned_word (n)
8077 && !fits_in_signed_word (n))
8078 {
8079 as_bad (_("16-bit jump out of range"));
8080 return;
8081 }
8082 md_number_to_chars (p, n, size);
8083 }
8084 else
8085 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 8086 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
8087 if (i.op[0].imms->X_op != O_constant)
8088 as_bad (_("can't handle non absolute segment in `%s'"),
8089 i.tm.name);
8090 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8091}
a217f122 8092
b4a3a7b4
L
8093#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8094void
8095x86_cleanup (void)
8096{
8097 char *p;
8098 asection *seg = now_seg;
8099 subsegT subseg = now_subseg;
8100 asection *sec;
8101 unsigned int alignment, align_size_1;
8102 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8103 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8104 unsigned int padding;
8105
8106 if (!IS_ELF || !x86_used_note)
8107 return;
8108
b4a3a7b4
L
8109 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8110
8111 /* The .note.gnu.property section layout:
8112
8113 Field Length Contents
8114 ---- ---- ----
8115 n_namsz 4 4
8116 n_descsz 4 The note descriptor size
8117 n_type 4 NT_GNU_PROPERTY_TYPE_0
8118 n_name 4 "GNU"
8119 n_desc n_descsz The program property array
8120 .... .... ....
8121 */
8122
8123 /* Create the .note.gnu.property section. */
8124 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
fd361982 8125 bfd_set_section_flags (sec,
b4a3a7b4
L
8126 (SEC_ALLOC
8127 | SEC_LOAD
8128 | SEC_DATA
8129 | SEC_HAS_CONTENTS
8130 | SEC_READONLY));
8131
8132 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8133 {
8134 align_size_1 = 7;
8135 alignment = 3;
8136 }
8137 else
8138 {
8139 align_size_1 = 3;
8140 alignment = 2;
8141 }
8142
fd361982 8143 bfd_set_section_alignment (sec, alignment);
b4a3a7b4
L
8144 elf_section_type (sec) = SHT_NOTE;
8145
8146 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8147 + 4-byte data */
8148 isa_1_descsz_raw = 4 + 4 + 4;
8149 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8150 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8151
8152 feature_2_descsz_raw = isa_1_descsz;
8153 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8154 + 4-byte data */
8155 feature_2_descsz_raw += 4 + 4 + 4;
8156 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8157 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8158 & ~align_size_1);
8159
8160 descsz = feature_2_descsz;
8161 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8162 p = frag_more (4 + 4 + 4 + 4 + descsz);
8163
8164 /* Write n_namsz. */
8165 md_number_to_chars (p, (valueT) 4, 4);
8166
8167 /* Write n_descsz. */
8168 md_number_to_chars (p + 4, (valueT) descsz, 4);
8169
8170 /* Write n_type. */
8171 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8172
8173 /* Write n_name. */
8174 memcpy (p + 4 * 3, "GNU", 4);
8175
8176 /* Write 4-byte type. */
8177 md_number_to_chars (p + 4 * 4,
8178 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8179
8180 /* Write 4-byte data size. */
8181 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8182
8183 /* Write 4-byte data. */
8184 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8185
8186 /* Zero out paddings. */
8187 padding = isa_1_descsz - isa_1_descsz_raw;
8188 if (padding)
8189 memset (p + 4 * 7, 0, padding);
8190
8191 /* Write 4-byte type. */
8192 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8193 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8194
8195 /* Write 4-byte data size. */
8196 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8197
8198 /* Write 4-byte data. */
8199 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8200 (valueT) x86_feature_2_used, 4);
8201
8202 /* Zero out paddings. */
8203 padding = feature_2_descsz - feature_2_descsz_raw;
8204 if (padding)
8205 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8206
8207 /* We probably can't restore the current segment, for there likely
8208 isn't one yet... */
8209 if (seg && subseg)
8210 subseg_set (seg, subseg);
8211}
8212#endif
8213
9c33702b
JB
8214static unsigned int
8215encoding_length (const fragS *start_frag, offsetT start_off,
8216 const char *frag_now_ptr)
8217{
8218 unsigned int len = 0;
8219
8220 if (start_frag != frag_now)
8221 {
8222 const fragS *fr = start_frag;
8223
8224 do {
8225 len += fr->fr_fix;
8226 fr = fr->fr_next;
8227 } while (fr && fr != frag_now);
8228 }
8229
8230 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8231}
8232
29b0f896 8233static void
e3bb37b5 8234output_insn (void)
29b0f896 8235{
2bbd9c25
JJ
8236 fragS *insn_start_frag;
8237 offsetT insn_start_off;
8238
b4a3a7b4
L
8239#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8240 if (IS_ELF && x86_used_note)
8241 {
8242 if (i.tm.cpu_flags.bitfield.cpucmov)
8243 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8244 if (i.tm.cpu_flags.bitfield.cpusse)
8245 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8246 if (i.tm.cpu_flags.bitfield.cpusse2)
8247 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8248 if (i.tm.cpu_flags.bitfield.cpusse3)
8249 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8250 if (i.tm.cpu_flags.bitfield.cpussse3)
8251 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8252 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8253 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8254 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8255 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8256 if (i.tm.cpu_flags.bitfield.cpuavx)
8257 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8258 if (i.tm.cpu_flags.bitfield.cpuavx2)
8259 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8260 if (i.tm.cpu_flags.bitfield.cpufma)
8261 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8262 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8263 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8264 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8265 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8266 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8267 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8268 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8269 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8270 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8271 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8272 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8273 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8274 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8275 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8276 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8277 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8278 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8279 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8280 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8281 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8282 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8283 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8284 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8285 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8286 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8287 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8288 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8289 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
462cac58
L
8290 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8291 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
b4a3a7b4
L
8292
8293 if (i.tm.cpu_flags.bitfield.cpu8087
8294 || i.tm.cpu_flags.bitfield.cpu287
8295 || i.tm.cpu_flags.bitfield.cpu387
8296 || i.tm.cpu_flags.bitfield.cpu687
8297 || i.tm.cpu_flags.bitfield.cpufisttp)
8298 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8299 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8300 Xfence instructions. */
8301 if (i.tm.base_opcode != 0xf18
8302 && i.tm.base_opcode != 0xf0d
c3949f43 8303 && i.tm.base_opcode != 0xfaef8
b4a3a7b4
L
8304 && (i.has_regmmx
8305 || i.tm.cpu_flags.bitfield.cpummx
8306 || i.tm.cpu_flags.bitfield.cpua3dnow
8307 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8308 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8309 if (i.has_regxmm)
8310 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8311 if (i.has_regymm)
8312 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8313 if (i.has_regzmm)
8314 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8315 if (i.tm.cpu_flags.bitfield.cpufxsr)
8316 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8317 if (i.tm.cpu_flags.bitfield.cpuxsave)
8318 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8319 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8320 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8321 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8322 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8323 }
8324#endif
8325
29b0f896
AM
8326 /* Tie dwarf2 debug info to the address at the start of the insn.
8327 We can't do this after the insn has been output as the current
8328 frag may have been closed off. eg. by frag_var. */
8329 dwarf2_emit_insn (0);
8330
2bbd9c25
JJ
8331 insn_start_frag = frag_now;
8332 insn_start_off = frag_now_fix ();
8333
29b0f896 8334 /* Output jumps. */
40fb9820 8335 if (i.tm.opcode_modifier.jump)
29b0f896 8336 output_branch ();
40fb9820
L
8337 else if (i.tm.opcode_modifier.jumpbyte
8338 || i.tm.opcode_modifier.jumpdword)
29b0f896 8339 output_jump ();
40fb9820 8340 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
8341 output_interseg_jump ();
8342 else
8343 {
8344 /* Output normal instructions here. */
8345 char *p;
8346 unsigned char *q;
47465058 8347 unsigned int j;
331d2d0d 8348 unsigned int prefix;
4dffcebc 8349
e4e00185 8350 if (avoid_fence
c3949f43
JB
8351 && (i.tm.base_opcode == 0xfaee8
8352 || i.tm.base_opcode == 0xfaef0
8353 || i.tm.base_opcode == 0xfaef8))
e4e00185
AS
8354 {
8355 /* Encode lfence, mfence, and sfence as
8356 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8357 offsetT val = 0x240483f0ULL;
8358 p = frag_more (5);
8359 md_number_to_chars (p, val, 5);
8360 return;
8361 }
8362
d022bddd
IT
8363 /* Some processors fail on LOCK prefix. This options makes
8364 assembler ignore LOCK prefix and serves as a workaround. */
8365 if (omit_lock_prefix)
8366 {
8367 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8368 return;
8369 i.prefix[LOCK_PREFIX] = 0;
8370 }
8371
43234a1e
L
8372 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8373 don't need the explicit prefix. */
8374 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 8375 {
c0f3af97 8376 switch (i.tm.opcode_length)
bc4bd9ab 8377 {
c0f3af97
L
8378 case 3:
8379 if (i.tm.base_opcode & 0xff000000)
4dffcebc 8380 {
c0f3af97 8381 prefix = (i.tm.base_opcode >> 24) & 0xff;
c3949f43
JB
8382 if (!i.tm.cpu_flags.bitfield.cpupadlock
8383 || prefix != REPE_PREFIX_OPCODE
8384 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8385 add_prefix (prefix);
c0f3af97
L
8386 }
8387 break;
8388 case 2:
8389 if ((i.tm.base_opcode & 0xff0000) != 0)
8390 {
8391 prefix = (i.tm.base_opcode >> 16) & 0xff;
c3949f43 8392 add_prefix (prefix);
4dffcebc 8393 }
c0f3af97
L
8394 break;
8395 case 1:
8396 break;
390c91cf
L
8397 case 0:
8398 /* Check for pseudo prefixes. */
8399 as_bad_where (insn_start_frag->fr_file,
8400 insn_start_frag->fr_line,
8401 _("pseudo prefix without instruction"));
8402 return;
c0f3af97
L
8403 default:
8404 abort ();
bc4bd9ab 8405 }
c0f3af97 8406
6d19a37a 8407#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
8408 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8409 R_X86_64_GOTTPOFF relocation so that linker can safely
8410 perform IE->LE optimization. */
8411 if (x86_elf_abi == X86_64_X32_ABI
8412 && i.operands == 2
8413 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8414 && i.prefix[REX_PREFIX] == 0)
8415 add_prefix (REX_OPCODE);
6d19a37a 8416#endif
cf61b747 8417
c0f3af97
L
8418 /* The prefix bytes. */
8419 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8420 if (*q)
8421 FRAG_APPEND_1_CHAR (*q);
0f10071e 8422 }
ae5c1c7b 8423 else
c0f3af97
L
8424 {
8425 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8426 if (*q)
8427 switch (j)
8428 {
8429 case REX_PREFIX:
8430 /* REX byte is encoded in VEX prefix. */
8431 break;
8432 case SEG_PREFIX:
8433 case ADDR_PREFIX:
8434 FRAG_APPEND_1_CHAR (*q);
8435 break;
8436 default:
8437 /* There should be no other prefixes for instructions
8438 with VEX prefix. */
8439 abort ();
8440 }
8441
43234a1e
L
8442 /* For EVEX instructions i.vrex should become 0 after
8443 build_evex_prefix. For VEX instructions upper 16 registers
8444 aren't available, so VREX should be 0. */
8445 if (i.vrex)
8446 abort ();
c0f3af97
L
8447 /* Now the VEX prefix. */
8448 p = frag_more (i.vex.length);
8449 for (j = 0; j < i.vex.length; j++)
8450 p[j] = i.vex.bytes[j];
8451 }
252b5132 8452
29b0f896 8453 /* Now the opcode; be careful about word order here! */
4dffcebc 8454 if (i.tm.opcode_length == 1)
29b0f896
AM
8455 {
8456 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8457 }
8458 else
8459 {
4dffcebc 8460 switch (i.tm.opcode_length)
331d2d0d 8461 {
43234a1e
L
8462 case 4:
8463 p = frag_more (4);
8464 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8465 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8466 break;
4dffcebc 8467 case 3:
331d2d0d
L
8468 p = frag_more (3);
8469 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
8470 break;
8471 case 2:
8472 p = frag_more (2);
8473 break;
8474 default:
8475 abort ();
8476 break;
331d2d0d 8477 }
0f10071e 8478
29b0f896
AM
8479 /* Put out high byte first: can't use md_number_to_chars! */
8480 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8481 *p = i.tm.base_opcode & 0xff;
8482 }
3e73aa7c 8483
29b0f896 8484 /* Now the modrm byte and sib byte (if present). */
40fb9820 8485 if (i.tm.opcode_modifier.modrm)
29b0f896 8486 {
4a3523fa
L
8487 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8488 | i.rm.reg << 3
8489 | i.rm.mode << 6));
29b0f896
AM
8490 /* If i.rm.regmem == ESP (4)
8491 && i.rm.mode != (Register mode)
8492 && not 16 bit
8493 ==> need second modrm byte. */
8494 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8495 && i.rm.mode != 3
dc821c5f 8496 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
8497 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8498 | i.sib.index << 3
8499 | i.sib.scale << 6));
29b0f896 8500 }
3e73aa7c 8501
29b0f896 8502 if (i.disp_operands)
2bbd9c25 8503 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 8504
29b0f896 8505 if (i.imm_operands)
2bbd9c25 8506 output_imm (insn_start_frag, insn_start_off);
9c33702b
JB
8507
8508 /*
8509 * frag_now_fix () returning plain abs_section_offset when we're in the
8510 * absolute section, and abs_section_offset not getting updated as data
8511 * gets added to the frag breaks the logic below.
8512 */
8513 if (now_seg != absolute_section)
8514 {
8515 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8516 if (j > 15)
8517 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8518 j);
8519 }
29b0f896 8520 }
252b5132 8521
29b0f896
AM
8522#ifdef DEBUG386
8523 if (flag_debug)
8524 {
7b81dfbb 8525 pi ("" /*line*/, &i);
29b0f896
AM
8526 }
8527#endif /* DEBUG386 */
8528}
252b5132 8529
e205caa7
L
8530/* Return the size of the displacement operand N. */
8531
8532static int
8533disp_size (unsigned int n)
8534{
8535 int size = 4;
43234a1e 8536
b5014f7a 8537 if (i.types[n].bitfield.disp64)
40fb9820
L
8538 size = 8;
8539 else if (i.types[n].bitfield.disp8)
8540 size = 1;
8541 else if (i.types[n].bitfield.disp16)
8542 size = 2;
e205caa7
L
8543 return size;
8544}
8545
8546/* Return the size of the immediate operand N. */
8547
8548static int
8549imm_size (unsigned int n)
8550{
8551 int size = 4;
40fb9820
L
8552 if (i.types[n].bitfield.imm64)
8553 size = 8;
8554 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8555 size = 1;
8556 else if (i.types[n].bitfield.imm16)
8557 size = 2;
e205caa7
L
8558 return size;
8559}
8560
29b0f896 8561static void
64e74474 8562output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8563{
8564 char *p;
8565 unsigned int n;
252b5132 8566
29b0f896
AM
8567 for (n = 0; n < i.operands; n++)
8568 {
b5014f7a 8569 if (operand_type_check (i.types[n], disp))
29b0f896
AM
8570 {
8571 if (i.op[n].disps->X_op == O_constant)
8572 {
e205caa7 8573 int size = disp_size (n);
43234a1e 8574 offsetT val = i.op[n].disps->X_add_number;
252b5132 8575
629cfaf1
JB
8576 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8577 size);
29b0f896
AM
8578 p = frag_more (size);
8579 md_number_to_chars (p, val, size);
8580 }
8581 else
8582 {
f86103b7 8583 enum bfd_reloc_code_real reloc_type;
e205caa7 8584 int size = disp_size (n);
40fb9820 8585 int sign = i.types[n].bitfield.disp32s;
29b0f896 8586 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 8587 fixS *fixP;
29b0f896 8588
e205caa7 8589 /* We can't have 8 bit displacement here. */
9c2799c2 8590 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 8591
29b0f896
AM
8592 /* The PC relative address is computed relative
8593 to the instruction boundary, so in case immediate
8594 fields follows, we need to adjust the value. */
8595 if (pcrel && i.imm_operands)
8596 {
29b0f896 8597 unsigned int n1;
e205caa7 8598 int sz = 0;
252b5132 8599
29b0f896 8600 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 8601 if (operand_type_check (i.types[n1], imm))
252b5132 8602 {
e205caa7
L
8603 /* Only one immediate is allowed for PC
8604 relative address. */
9c2799c2 8605 gas_assert (sz == 0);
e205caa7
L
8606 sz = imm_size (n1);
8607 i.op[n].disps->X_add_number -= sz;
252b5132 8608 }
29b0f896 8609 /* We should find the immediate. */
9c2799c2 8610 gas_assert (sz != 0);
29b0f896 8611 }
520dc8e8 8612
29b0f896 8613 p = frag_more (size);
d258b828 8614 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 8615 if (GOT_symbol
2bbd9c25 8616 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 8617 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8618 || reloc_type == BFD_RELOC_X86_64_32S
8619 || (reloc_type == BFD_RELOC_64
8620 && object_64bit))
d6ab8113
JB
8621 && (i.op[n].disps->X_op == O_symbol
8622 || (i.op[n].disps->X_op == O_add
8623 && ((symbol_get_value_expression
8624 (i.op[n].disps->X_op_symbol)->X_op)
8625 == O_subtract))))
8626 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25 8627 {
4fa24527 8628 if (!object_64bit)
7b81dfbb
AJ
8629 {
8630 reloc_type = BFD_RELOC_386_GOTPC;
d583596c
JB
8631 i.op[n].imms->X_add_number +=
8632 encoding_length (insn_start_frag, insn_start_off, p);
7b81dfbb
AJ
8633 }
8634 else if (reloc_type == BFD_RELOC_64)
8635 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 8636 else
7b81dfbb
AJ
8637 /* Don't do the adjustment for x86-64, as there
8638 the pcrel addressing is relative to the _next_
8639 insn, and that is taken care of in other code. */
d6ab8113 8640 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 8641 }
02a86693
L
8642 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8643 size, i.op[n].disps, pcrel,
8644 reloc_type);
8645 /* Check for "call/jmp *mem", "mov mem, %reg",
8646 "test %reg, mem" and "binop mem, %reg" where binop
8647 is one of adc, add, and, cmp, or, sbb, sub, xor
e60f4d3b
L
8648 instructions without data prefix. Always generate
8649 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
8650 if (i.prefix[DATA_PREFIX] == 0
8651 && (generate_relax_relocations
8652 || (!object_64bit
8653 && i.rm.mode == 0
8654 && i.rm.regmem == 5))
0cb4071e
L
8655 && (i.rm.mode == 2
8656 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
8657 && ((i.operands == 1
8658 && i.tm.base_opcode == 0xff
8659 && (i.rm.reg == 2 || i.rm.reg == 4))
8660 || (i.operands == 2
8661 && (i.tm.base_opcode == 0x8b
8662 || i.tm.base_opcode == 0x85
8663 || (i.tm.base_opcode & 0xc7) == 0x03))))
8664 {
8665 if (object_64bit)
8666 {
8667 fixP->fx_tcbit = i.rex != 0;
8668 if (i.base_reg
e968fc9b 8669 && (i.base_reg->reg_num == RegIP))
02a86693
L
8670 fixP->fx_tcbit2 = 1;
8671 }
8672 else
8673 fixP->fx_tcbit2 = 1;
8674 }
29b0f896
AM
8675 }
8676 }
8677 }
8678}
252b5132 8679
29b0f896 8680static void
64e74474 8681output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8682{
8683 char *p;
8684 unsigned int n;
252b5132 8685
29b0f896
AM
8686 for (n = 0; n < i.operands; n++)
8687 {
43234a1e
L
8688 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8689 if (i.rounding && (int) n == i.rounding->operand)
8690 continue;
8691
40fb9820 8692 if (operand_type_check (i.types[n], imm))
29b0f896
AM
8693 {
8694 if (i.op[n].imms->X_op == O_constant)
8695 {
e205caa7 8696 int size = imm_size (n);
29b0f896 8697 offsetT val;
b4cac588 8698
29b0f896
AM
8699 val = offset_in_range (i.op[n].imms->X_add_number,
8700 size);
8701 p = frag_more (size);
8702 md_number_to_chars (p, val, size);
8703 }
8704 else
8705 {
8706 /* Not absolute_section.
8707 Need a 32-bit fixup (don't support 8bit
8708 non-absolute imms). Try to support other
8709 sizes ... */
f86103b7 8710 enum bfd_reloc_code_real reloc_type;
e205caa7
L
8711 int size = imm_size (n);
8712 int sign;
29b0f896 8713
40fb9820 8714 if (i.types[n].bitfield.imm32s
a7d61044 8715 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 8716 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 8717 sign = 1;
e205caa7
L
8718 else
8719 sign = 0;
520dc8e8 8720
29b0f896 8721 p = frag_more (size);
d258b828 8722 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 8723
2bbd9c25
JJ
8724 /* This is tough to explain. We end up with this one if we
8725 * have operands that look like
8726 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8727 * obtain the absolute address of the GOT, and it is strongly
8728 * preferable from a performance point of view to avoid using
8729 * a runtime relocation for this. The actual sequence of
8730 * instructions often look something like:
8731 *
8732 * call .L66
8733 * .L66:
8734 * popl %ebx
8735 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8736 *
8737 * The call and pop essentially return the absolute address
8738 * of the label .L66 and store it in %ebx. The linker itself
8739 * will ultimately change the first operand of the addl so
8740 * that %ebx points to the GOT, but to keep things simple, the
8741 * .o file must have this operand set so that it generates not
8742 * the absolute address of .L66, but the absolute address of
8743 * itself. This allows the linker itself simply treat a GOTPC
8744 * relocation as asking for a pcrel offset to the GOT to be
8745 * added in, and the addend of the relocation is stored in the
8746 * operand field for the instruction itself.
8747 *
8748 * Our job here is to fix the operand so that it would add
8749 * the correct offset so that %ebx would point to itself. The
8750 * thing that is tricky is that .-.L66 will point to the
8751 * beginning of the instruction, so we need to further modify
8752 * the operand so that it will point to itself. There are
8753 * other cases where you have something like:
8754 *
8755 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8756 *
8757 * and here no correction would be required. Internally in
8758 * the assembler we treat operands of this form as not being
8759 * pcrel since the '.' is explicitly mentioned, and I wonder
8760 * whether it would simplify matters to do it this way. Who
8761 * knows. In earlier versions of the PIC patches, the
8762 * pcrel_adjust field was used to store the correction, but
8763 * since the expression is not pcrel, I felt it would be
8764 * confusing to do it this way. */
8765
d6ab8113 8766 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8767 || reloc_type == BFD_RELOC_X86_64_32S
8768 || reloc_type == BFD_RELOC_64)
29b0f896
AM
8769 && GOT_symbol
8770 && GOT_symbol == i.op[n].imms->X_add_symbol
8771 && (i.op[n].imms->X_op == O_symbol
8772 || (i.op[n].imms->X_op == O_add
8773 && ((symbol_get_value_expression
8774 (i.op[n].imms->X_op_symbol)->X_op)
8775 == O_subtract))))
8776 {
4fa24527 8777 if (!object_64bit)
d6ab8113 8778 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 8779 else if (size == 4)
d6ab8113 8780 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
8781 else if (size == 8)
8782 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d583596c
JB
8783 i.op[n].imms->X_add_number +=
8784 encoding_length (insn_start_frag, insn_start_off, p);
29b0f896 8785 }
29b0f896
AM
8786 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8787 i.op[n].imms, 0, reloc_type);
8788 }
8789 }
8790 }
252b5132
RH
8791}
8792\f
d182319b
JB
8793/* x86_cons_fix_new is called via the expression parsing code when a
8794 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
8795static int cons_sign = -1;
8796
8797void
e3bb37b5 8798x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 8799 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 8800{
d258b828 8801 r = reloc (len, 0, cons_sign, r);
d182319b
JB
8802
8803#ifdef TE_PE
8804 if (exp->X_op == O_secrel)
8805 {
8806 exp->X_op = O_symbol;
8807 r = BFD_RELOC_32_SECREL;
8808 }
8809#endif
8810
8811 fix_new_exp (frag, off, len, exp, 0, r);
8812}
8813
357d1bd8
L
8814/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8815 purpose of the `.dc.a' internal pseudo-op. */
8816
8817int
8818x86_address_bytes (void)
8819{
8820 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8821 return 4;
8822 return stdoutput->arch_info->bits_per_address / 8;
8823}
8824
d382c579
TG
8825#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8826 || defined (LEX_AT)
d258b828 8827# define lex_got(reloc, adjust, types) NULL
718ddfc0 8828#else
f3c180ae
AM
8829/* Parse operands of the form
8830 <symbol>@GOTOFF+<nnn>
8831 and similar .plt or .got references.
8832
8833 If we find one, set up the correct relocation in RELOC and copy the
8834 input string, minus the `@GOTOFF' into a malloc'd buffer for
8835 parsing by the calling routine. Return this buffer, and if ADJUST
8836 is non-null set it to the length of the string we removed from the
8837 input line. Otherwise return NULL. */
8838static char *
91d6fa6a 8839lex_got (enum bfd_reloc_code_real *rel,
64e74474 8840 int *adjust,
d258b828 8841 i386_operand_type *types)
f3c180ae 8842{
7b81dfbb
AJ
8843 /* Some of the relocations depend on the size of what field is to
8844 be relocated. But in our callers i386_immediate and i386_displacement
8845 we don't yet know the operand size (this will be set by insn
8846 matching). Hence we record the word32 relocation here,
8847 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
8848 static const struct {
8849 const char *str;
cff8d58a 8850 int len;
4fa24527 8851 const enum bfd_reloc_code_real rel[2];
40fb9820 8852 const i386_operand_type types64;
f3c180ae 8853 } gotrel[] = {
8ce3d284 8854#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
8855 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8856 BFD_RELOC_SIZE32 },
8857 OPERAND_TYPE_IMM32_64 },
8ce3d284 8858#endif
cff8d58a
L
8859 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8860 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 8861 OPERAND_TYPE_IMM64 },
cff8d58a
L
8862 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8863 BFD_RELOC_X86_64_PLT32 },
40fb9820 8864 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8865 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8866 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 8867 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8868 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8869 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 8870 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8871 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8872 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 8873 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8874 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8875 BFD_RELOC_X86_64_TLSGD },
40fb9820 8876 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8877 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8878 _dummy_first_bfd_reloc_code_real },
40fb9820 8879 OPERAND_TYPE_NONE },
cff8d58a
L
8880 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8881 BFD_RELOC_X86_64_TLSLD },
40fb9820 8882 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8883 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8884 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 8885 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8886 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8887 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 8888 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8889 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8890 _dummy_first_bfd_reloc_code_real },
40fb9820 8891 OPERAND_TYPE_NONE },
cff8d58a
L
8892 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8893 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 8894 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8895 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8896 _dummy_first_bfd_reloc_code_real },
40fb9820 8897 OPERAND_TYPE_NONE },
cff8d58a
L
8898 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8899 _dummy_first_bfd_reloc_code_real },
40fb9820 8900 OPERAND_TYPE_NONE },
cff8d58a
L
8901 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8902 BFD_RELOC_X86_64_GOT32 },
40fb9820 8903 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
8904 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8905 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 8906 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8907 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8908 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 8909 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
8910 };
8911 char *cp;
8912 unsigned int j;
8913
d382c579 8914#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
8915 if (!IS_ELF)
8916 return NULL;
d382c579 8917#endif
718ddfc0 8918
f3c180ae 8919 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 8920 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
8921 return NULL;
8922
47465058 8923 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 8924 {
cff8d58a 8925 int len = gotrel[j].len;
28f81592 8926 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 8927 {
4fa24527 8928 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 8929 {
28f81592
AM
8930 int first, second;
8931 char *tmpbuf, *past_reloc;
f3c180ae 8932
91d6fa6a 8933 *rel = gotrel[j].rel[object_64bit];
f3c180ae 8934
3956db08
JB
8935 if (types)
8936 {
8937 if (flag_code != CODE_64BIT)
40fb9820
L
8938 {
8939 types->bitfield.imm32 = 1;
8940 types->bitfield.disp32 = 1;
8941 }
3956db08
JB
8942 else
8943 *types = gotrel[j].types64;
8944 }
8945
8fd4256d 8946 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
8947 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8948
28f81592 8949 /* The length of the first part of our input line. */
f3c180ae 8950 first = cp - input_line_pointer;
28f81592
AM
8951
8952 /* The second part goes from after the reloc token until
67c11a9b 8953 (and including) an end_of_line char or comma. */
28f81592 8954 past_reloc = cp + 1 + len;
67c11a9b
AM
8955 cp = past_reloc;
8956 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8957 ++cp;
8958 second = cp + 1 - past_reloc;
28f81592
AM
8959
8960 /* Allocate and copy string. The trailing NUL shouldn't
8961 be necessary, but be safe. */
add39d23 8962 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 8963 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
8964 if (second != 0 && *past_reloc != ' ')
8965 /* Replace the relocation token with ' ', so that
8966 errors like foo@GOTOFF1 will be detected. */
8967 tmpbuf[first++] = ' ';
af89796a
L
8968 else
8969 /* Increment length by 1 if the relocation token is
8970 removed. */
8971 len++;
8972 if (adjust)
8973 *adjust = len;
0787a12d
AM
8974 memcpy (tmpbuf + first, past_reloc, second);
8975 tmpbuf[first + second] = '\0';
f3c180ae
AM
8976 return tmpbuf;
8977 }
8978
4fa24527
JB
8979 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8980 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
8981 return NULL;
8982 }
8983 }
8984
8985 /* Might be a symbol version string. Don't as_bad here. */
8986 return NULL;
8987}
4e4f7c87 8988#endif
f3c180ae 8989
a988325c
NC
8990#ifdef TE_PE
8991#ifdef lex_got
8992#undef lex_got
8993#endif
8994/* Parse operands of the form
8995 <symbol>@SECREL32+<nnn>
8996
8997 If we find one, set up the correct relocation in RELOC and copy the
8998 input string, minus the `@SECREL32' into a malloc'd buffer for
8999 parsing by the calling routine. Return this buffer, and if ADJUST
9000 is non-null set it to the length of the string we removed from the
34bca508
L
9001 input line. Otherwise return NULL.
9002
a988325c
NC
9003 This function is copied from the ELF version above adjusted for PE targets. */
9004
9005static char *
9006lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
9007 int *adjust ATTRIBUTE_UNUSED,
d258b828 9008 i386_operand_type *types)
a988325c
NC
9009{
9010 static const struct
9011 {
9012 const char *str;
9013 int len;
9014 const enum bfd_reloc_code_real rel[2];
9015 const i386_operand_type types64;
9016 }
9017 gotrel[] =
9018 {
9019 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
9020 BFD_RELOC_32_SECREL },
9021 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9022 };
9023
9024 char *cp;
9025 unsigned j;
9026
9027 for (cp = input_line_pointer; *cp != '@'; cp++)
9028 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9029 return NULL;
9030
9031 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9032 {
9033 int len = gotrel[j].len;
9034
9035 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9036 {
9037 if (gotrel[j].rel[object_64bit] != 0)
9038 {
9039 int first, second;
9040 char *tmpbuf, *past_reloc;
9041
9042 *rel = gotrel[j].rel[object_64bit];
9043 if (adjust)
9044 *adjust = len;
9045
9046 if (types)
9047 {
9048 if (flag_code != CODE_64BIT)
9049 {
9050 types->bitfield.imm32 = 1;
9051 types->bitfield.disp32 = 1;
9052 }
9053 else
9054 *types = gotrel[j].types64;
9055 }
9056
9057 /* The length of the first part of our input line. */
9058 first = cp - input_line_pointer;
9059
9060 /* The second part goes from after the reloc token until
9061 (and including) an end_of_line char or comma. */
9062 past_reloc = cp + 1 + len;
9063 cp = past_reloc;
9064 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9065 ++cp;
9066 second = cp + 1 - past_reloc;
9067
9068 /* Allocate and copy string. The trailing NUL shouldn't
9069 be necessary, but be safe. */
add39d23 9070 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
9071 memcpy (tmpbuf, input_line_pointer, first);
9072 if (second != 0 && *past_reloc != ' ')
9073 /* Replace the relocation token with ' ', so that
9074 errors like foo@SECLREL321 will be detected. */
9075 tmpbuf[first++] = ' ';
9076 memcpy (tmpbuf + first, past_reloc, second);
9077 tmpbuf[first + second] = '\0';
9078 return tmpbuf;
9079 }
9080
9081 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9082 gotrel[j].str, 1 << (5 + object_64bit));
9083 return NULL;
9084 }
9085 }
9086
9087 /* Might be a symbol version string. Don't as_bad here. */
9088 return NULL;
9089}
9090
9091#endif /* TE_PE */
9092
62ebcb5c 9093bfd_reloc_code_real_type
e3bb37b5 9094x86_cons (expressionS *exp, int size)
f3c180ae 9095{
62ebcb5c
AM
9096 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9097
ee86248c
JB
9098 intel_syntax = -intel_syntax;
9099
3c7b9c2c 9100 exp->X_md = 0;
4fa24527 9101 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
9102 {
9103 /* Handle @GOTOFF and the like in an expression. */
9104 char *save;
9105 char *gotfree_input_line;
4a57f2cf 9106 int adjust = 0;
f3c180ae
AM
9107
9108 save = input_line_pointer;
d258b828 9109 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
9110 if (gotfree_input_line)
9111 input_line_pointer = gotfree_input_line;
9112
9113 expression (exp);
9114
9115 if (gotfree_input_line)
9116 {
9117 /* expression () has merrily parsed up to the end of line,
9118 or a comma - in the wrong buffer. Transfer how far
9119 input_line_pointer has moved to the right buffer. */
9120 input_line_pointer = (save
9121 + (input_line_pointer - gotfree_input_line)
9122 + adjust);
9123 free (gotfree_input_line);
3992d3b7
AM
9124 if (exp->X_op == O_constant
9125 || exp->X_op == O_absent
9126 || exp->X_op == O_illegal
0398aac5 9127 || exp->X_op == O_register
3992d3b7
AM
9128 || exp->X_op == O_big)
9129 {
9130 char c = *input_line_pointer;
9131 *input_line_pointer = 0;
9132 as_bad (_("missing or invalid expression `%s'"), save);
9133 *input_line_pointer = c;
9134 }
b9519cfe
L
9135 else if ((got_reloc == BFD_RELOC_386_PLT32
9136 || got_reloc == BFD_RELOC_X86_64_PLT32)
9137 && exp->X_op != O_symbol)
9138 {
9139 char c = *input_line_pointer;
9140 *input_line_pointer = 0;
9141 as_bad (_("invalid PLT expression `%s'"), save);
9142 *input_line_pointer = c;
9143 }
f3c180ae
AM
9144 }
9145 }
9146 else
9147 expression (exp);
ee86248c
JB
9148
9149 intel_syntax = -intel_syntax;
9150
9151 if (intel_syntax)
9152 i386_intel_simplify (exp);
62ebcb5c
AM
9153
9154 return got_reloc;
f3c180ae 9155}
f3c180ae 9156
9f32dd5b
L
9157static void
9158signed_cons (int size)
6482c264 9159{
d182319b
JB
9160 if (flag_code == CODE_64BIT)
9161 cons_sign = 1;
9162 cons (size);
9163 cons_sign = -1;
6482c264
NC
9164}
9165
d182319b 9166#ifdef TE_PE
6482c264 9167static void
7016a5d5 9168pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
9169{
9170 expressionS exp;
9171
9172 do
9173 {
9174 expression (&exp);
9175 if (exp.X_op == O_symbol)
9176 exp.X_op = O_secrel;
9177
9178 emit_expr (&exp, 4);
9179 }
9180 while (*input_line_pointer++ == ',');
9181
9182 input_line_pointer--;
9183 demand_empty_rest_of_line ();
9184}
6482c264
NC
9185#endif
9186
43234a1e
L
9187/* Handle Vector operations. */
9188
9189static char *
9190check_VecOperations (char *op_string, char *op_end)
9191{
9192 const reg_entry *mask;
9193 const char *saved;
9194 char *end_op;
9195
9196 while (*op_string
9197 && (op_end == NULL || op_string < op_end))
9198 {
9199 saved = op_string;
9200 if (*op_string == '{')
9201 {
9202 op_string++;
9203
9204 /* Check broadcasts. */
9205 if (strncmp (op_string, "1to", 3) == 0)
9206 {
9207 int bcst_type;
9208
9209 if (i.broadcast)
9210 goto duplicated_vec_op;
9211
9212 op_string += 3;
9213 if (*op_string == '8')
8e6e0792 9214 bcst_type = 8;
b28d1bda 9215 else if (*op_string == '4')
8e6e0792 9216 bcst_type = 4;
b28d1bda 9217 else if (*op_string == '2')
8e6e0792 9218 bcst_type = 2;
43234a1e
L
9219 else if (*op_string == '1'
9220 && *(op_string+1) == '6')
9221 {
8e6e0792 9222 bcst_type = 16;
43234a1e
L
9223 op_string++;
9224 }
9225 else
9226 {
9227 as_bad (_("Unsupported broadcast: `%s'"), saved);
9228 return NULL;
9229 }
9230 op_string++;
9231
9232 broadcast_op.type = bcst_type;
9233 broadcast_op.operand = this_operand;
1f75763a 9234 broadcast_op.bytes = 0;
43234a1e
L
9235 i.broadcast = &broadcast_op;
9236 }
9237 /* Check masking operation. */
9238 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9239 {
9240 /* k0 can't be used for write mask. */
6d2cd6b2 9241 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
43234a1e 9242 {
6d2cd6b2
JB
9243 as_bad (_("`%s%s' can't be used for write mask"),
9244 register_prefix, mask->reg_name);
43234a1e
L
9245 return NULL;
9246 }
9247
9248 if (!i.mask)
9249 {
9250 mask_op.mask = mask;
9251 mask_op.zeroing = 0;
9252 mask_op.operand = this_operand;
9253 i.mask = &mask_op;
9254 }
9255 else
9256 {
9257 if (i.mask->mask)
9258 goto duplicated_vec_op;
9259
9260 i.mask->mask = mask;
9261
9262 /* Only "{z}" is allowed here. No need to check
9263 zeroing mask explicitly. */
9264 if (i.mask->operand != this_operand)
9265 {
9266 as_bad (_("invalid write mask `%s'"), saved);
9267 return NULL;
9268 }
9269 }
9270
9271 op_string = end_op;
9272 }
9273 /* Check zeroing-flag for masking operation. */
9274 else if (*op_string == 'z')
9275 {
9276 if (!i.mask)
9277 {
9278 mask_op.mask = NULL;
9279 mask_op.zeroing = 1;
9280 mask_op.operand = this_operand;
9281 i.mask = &mask_op;
9282 }
9283 else
9284 {
9285 if (i.mask->zeroing)
9286 {
9287 duplicated_vec_op:
9288 as_bad (_("duplicated `%s'"), saved);
9289 return NULL;
9290 }
9291
9292 i.mask->zeroing = 1;
9293
9294 /* Only "{%k}" is allowed here. No need to check mask
9295 register explicitly. */
9296 if (i.mask->operand != this_operand)
9297 {
9298 as_bad (_("invalid zeroing-masking `%s'"),
9299 saved);
9300 return NULL;
9301 }
9302 }
9303
9304 op_string++;
9305 }
9306 else
9307 goto unknown_vec_op;
9308
9309 if (*op_string != '}')
9310 {
9311 as_bad (_("missing `}' in `%s'"), saved);
9312 return NULL;
9313 }
9314 op_string++;
0ba3a731
L
9315
9316 /* Strip whitespace since the addition of pseudo prefixes
9317 changed how the scrubber treats '{'. */
9318 if (is_space_char (*op_string))
9319 ++op_string;
9320
43234a1e
L
9321 continue;
9322 }
9323 unknown_vec_op:
9324 /* We don't know this one. */
9325 as_bad (_("unknown vector operation: `%s'"), saved);
9326 return NULL;
9327 }
9328
6d2cd6b2
JB
9329 if (i.mask && i.mask->zeroing && !i.mask->mask)
9330 {
9331 as_bad (_("zeroing-masking only allowed with write mask"));
9332 return NULL;
9333 }
9334
43234a1e
L
9335 return op_string;
9336}
9337
252b5132 9338static int
70e41ade 9339i386_immediate (char *imm_start)
252b5132
RH
9340{
9341 char *save_input_line_pointer;
f3c180ae 9342 char *gotfree_input_line;
252b5132 9343 segT exp_seg = 0;
47926f60 9344 expressionS *exp;
40fb9820
L
9345 i386_operand_type types;
9346
0dfbf9d7 9347 operand_type_set (&types, ~0);
252b5132
RH
9348
9349 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9350 {
31b2323c
L
9351 as_bad (_("at most %d immediate operands are allowed"),
9352 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
9353 return 0;
9354 }
9355
9356 exp = &im_expressions[i.imm_operands++];
520dc8e8 9357 i.op[this_operand].imms = exp;
252b5132
RH
9358
9359 if (is_space_char (*imm_start))
9360 ++imm_start;
9361
9362 save_input_line_pointer = input_line_pointer;
9363 input_line_pointer = imm_start;
9364
d258b828 9365 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9366 if (gotfree_input_line)
9367 input_line_pointer = gotfree_input_line;
252b5132
RH
9368
9369 exp_seg = expression (exp);
9370
83183c0c 9371 SKIP_WHITESPACE ();
43234a1e
L
9372
9373 /* Handle vector operations. */
9374 if (*input_line_pointer == '{')
9375 {
9376 input_line_pointer = check_VecOperations (input_line_pointer,
9377 NULL);
9378 if (input_line_pointer == NULL)
9379 return 0;
9380 }
9381
252b5132 9382 if (*input_line_pointer)
f3c180ae 9383 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
9384
9385 input_line_pointer = save_input_line_pointer;
f3c180ae 9386 if (gotfree_input_line)
ee86248c
JB
9387 {
9388 free (gotfree_input_line);
9389
9390 if (exp->X_op == O_constant || exp->X_op == O_register)
9391 exp->X_op = O_illegal;
9392 }
9393
9394 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9395}
252b5132 9396
ee86248c
JB
9397static int
9398i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9399 i386_operand_type types, const char *imm_start)
9400{
9401 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 9402 {
313c53d1
L
9403 if (imm_start)
9404 as_bad (_("missing or invalid immediate expression `%s'"),
9405 imm_start);
3992d3b7 9406 return 0;
252b5132 9407 }
3e73aa7c 9408 else if (exp->X_op == O_constant)
252b5132 9409 {
47926f60 9410 /* Size it properly later. */
40fb9820 9411 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
9412 /* If not 64bit, sign extend val. */
9413 if (flag_code != CODE_64BIT
4eed87de
AM
9414 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9415 exp->X_add_number
9416 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 9417 }
4c63da97 9418#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 9419 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 9420 && exp_seg != absolute_section
47926f60 9421 && exp_seg != text_section
24eab124
AM
9422 && exp_seg != data_section
9423 && exp_seg != bss_section
9424 && exp_seg != undefined_section
f86103b7 9425 && !bfd_is_com_section (exp_seg))
252b5132 9426 {
d0b47220 9427 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
9428 return 0;
9429 }
9430#endif
a841bdf5 9431 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 9432 {
313c53d1
L
9433 if (imm_start)
9434 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
9435 return 0;
9436 }
252b5132
RH
9437 else
9438 {
9439 /* This is an address. The size of the address will be
24eab124 9440 determined later, depending on destination register,
3e73aa7c 9441 suffix, or the default for the section. */
40fb9820
L
9442 i.types[this_operand].bitfield.imm8 = 1;
9443 i.types[this_operand].bitfield.imm16 = 1;
9444 i.types[this_operand].bitfield.imm32 = 1;
9445 i.types[this_operand].bitfield.imm32s = 1;
9446 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
9447 i.types[this_operand] = operand_type_and (i.types[this_operand],
9448 types);
252b5132
RH
9449 }
9450
9451 return 1;
9452}
9453
551c1ca1 9454static char *
e3bb37b5 9455i386_scale (char *scale)
252b5132 9456{
551c1ca1
AM
9457 offsetT val;
9458 char *save = input_line_pointer;
252b5132 9459
551c1ca1
AM
9460 input_line_pointer = scale;
9461 val = get_absolute_expression ();
9462
9463 switch (val)
252b5132 9464 {
551c1ca1 9465 case 1:
252b5132
RH
9466 i.log2_scale_factor = 0;
9467 break;
551c1ca1 9468 case 2:
252b5132
RH
9469 i.log2_scale_factor = 1;
9470 break;
551c1ca1 9471 case 4:
252b5132
RH
9472 i.log2_scale_factor = 2;
9473 break;
551c1ca1 9474 case 8:
252b5132
RH
9475 i.log2_scale_factor = 3;
9476 break;
9477 default:
a724f0f4
JB
9478 {
9479 char sep = *input_line_pointer;
9480
9481 *input_line_pointer = '\0';
9482 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9483 scale);
9484 *input_line_pointer = sep;
9485 input_line_pointer = save;
9486 return NULL;
9487 }
252b5132 9488 }
29b0f896 9489 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
9490 {
9491 as_warn (_("scale factor of %d without an index register"),
24eab124 9492 1 << i.log2_scale_factor);
252b5132 9493 i.log2_scale_factor = 0;
252b5132 9494 }
551c1ca1
AM
9495 scale = input_line_pointer;
9496 input_line_pointer = save;
9497 return scale;
252b5132
RH
9498}
9499
252b5132 9500static int
e3bb37b5 9501i386_displacement (char *disp_start, char *disp_end)
252b5132 9502{
29b0f896 9503 expressionS *exp;
252b5132
RH
9504 segT exp_seg = 0;
9505 char *save_input_line_pointer;
f3c180ae 9506 char *gotfree_input_line;
40fb9820
L
9507 int override;
9508 i386_operand_type bigdisp, types = anydisp;
3992d3b7 9509 int ret;
252b5132 9510
31b2323c
L
9511 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9512 {
9513 as_bad (_("at most %d displacement operands are allowed"),
9514 MAX_MEMORY_OPERANDS);
9515 return 0;
9516 }
9517
0dfbf9d7 9518 operand_type_set (&bigdisp, 0);
40fb9820
L
9519 if ((i.types[this_operand].bitfield.jumpabsolute)
9520 || (!current_templates->start->opcode_modifier.jump
9521 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 9522 {
40fb9820 9523 bigdisp.bitfield.disp32 = 1;
e05278af 9524 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
9525 if (flag_code == CODE_64BIT)
9526 {
9527 if (!override)
9528 {
9529 bigdisp.bitfield.disp32s = 1;
9530 bigdisp.bitfield.disp64 = 1;
9531 }
9532 }
9533 else if ((flag_code == CODE_16BIT) ^ override)
9534 {
9535 bigdisp.bitfield.disp32 = 0;
9536 bigdisp.bitfield.disp16 = 1;
9537 }
e05278af
JB
9538 }
9539 else
9540 {
9541 /* For PC-relative branches, the width of the displacement
9542 is dependent upon data size, not address size. */
e05278af 9543 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
9544 if (flag_code == CODE_64BIT)
9545 {
9546 if (override || i.suffix == WORD_MNEM_SUFFIX)
9547 bigdisp.bitfield.disp16 = 1;
9548 else
9549 {
9550 bigdisp.bitfield.disp32 = 1;
9551 bigdisp.bitfield.disp32s = 1;
9552 }
9553 }
9554 else
e05278af
JB
9555 {
9556 if (!override)
9557 override = (i.suffix == (flag_code != CODE_16BIT
9558 ? WORD_MNEM_SUFFIX
9559 : LONG_MNEM_SUFFIX));
40fb9820
L
9560 bigdisp.bitfield.disp32 = 1;
9561 if ((flag_code == CODE_16BIT) ^ override)
9562 {
9563 bigdisp.bitfield.disp32 = 0;
9564 bigdisp.bitfield.disp16 = 1;
9565 }
e05278af 9566 }
e05278af 9567 }
c6fb90c8
L
9568 i.types[this_operand] = operand_type_or (i.types[this_operand],
9569 bigdisp);
252b5132
RH
9570
9571 exp = &disp_expressions[i.disp_operands];
520dc8e8 9572 i.op[this_operand].disps = exp;
252b5132
RH
9573 i.disp_operands++;
9574 save_input_line_pointer = input_line_pointer;
9575 input_line_pointer = disp_start;
9576 END_STRING_AND_SAVE (disp_end);
9577
9578#ifndef GCC_ASM_O_HACK
9579#define GCC_ASM_O_HACK 0
9580#endif
9581#if GCC_ASM_O_HACK
9582 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 9583 if (i.types[this_operand].bitfield.baseIndex
24eab124 9584 && displacement_string_end[-1] == '+')
252b5132
RH
9585 {
9586 /* This hack is to avoid a warning when using the "o"
24eab124
AM
9587 constraint within gcc asm statements.
9588 For instance:
9589
9590 #define _set_tssldt_desc(n,addr,limit,type) \
9591 __asm__ __volatile__ ( \
9592 "movw %w2,%0\n\t" \
9593 "movw %w1,2+%0\n\t" \
9594 "rorl $16,%1\n\t" \
9595 "movb %b1,4+%0\n\t" \
9596 "movb %4,5+%0\n\t" \
9597 "movb $0,6+%0\n\t" \
9598 "movb %h1,7+%0\n\t" \
9599 "rorl $16,%1" \
9600 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9601
9602 This works great except that the output assembler ends
9603 up looking a bit weird if it turns out that there is
9604 no offset. You end up producing code that looks like:
9605
9606 #APP
9607 movw $235,(%eax)
9608 movw %dx,2+(%eax)
9609 rorl $16,%edx
9610 movb %dl,4+(%eax)
9611 movb $137,5+(%eax)
9612 movb $0,6+(%eax)
9613 movb %dh,7+(%eax)
9614 rorl $16,%edx
9615 #NO_APP
9616
47926f60 9617 So here we provide the missing zero. */
24eab124
AM
9618
9619 *displacement_string_end = '0';
252b5132
RH
9620 }
9621#endif
d258b828 9622 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9623 if (gotfree_input_line)
9624 input_line_pointer = gotfree_input_line;
252b5132 9625
24eab124 9626 exp_seg = expression (exp);
252b5132 9627
636c26b0
AM
9628 SKIP_WHITESPACE ();
9629 if (*input_line_pointer)
9630 as_bad (_("junk `%s' after expression"), input_line_pointer);
9631#if GCC_ASM_O_HACK
9632 RESTORE_END_STRING (disp_end + 1);
9633#endif
636c26b0 9634 input_line_pointer = save_input_line_pointer;
636c26b0 9635 if (gotfree_input_line)
ee86248c
JB
9636 {
9637 free (gotfree_input_line);
9638
9639 if (exp->X_op == O_constant || exp->X_op == O_register)
9640 exp->X_op = O_illegal;
9641 }
9642
9643 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9644
9645 RESTORE_END_STRING (disp_end);
9646
9647 return ret;
9648}
9649
9650static int
9651i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9652 i386_operand_type types, const char *disp_start)
9653{
9654 i386_operand_type bigdisp;
9655 int ret = 1;
636c26b0 9656
24eab124
AM
9657 /* We do this to make sure that the section symbol is in
9658 the symbol table. We will ultimately change the relocation
47926f60 9659 to be relative to the beginning of the section. */
1ae12ab7 9660 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
9661 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9662 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 9663 {
636c26b0 9664 if (exp->X_op != O_symbol)
3992d3b7 9665 goto inv_disp;
636c26b0 9666
e5cb08ac 9667 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
9668 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9669 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 9670 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
9671 exp->X_op = O_subtract;
9672 exp->X_op_symbol = GOT_symbol;
1ae12ab7 9673 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 9674 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
9675 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9676 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 9677 else
29b0f896 9678 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 9679 }
252b5132 9680
3992d3b7
AM
9681 else if (exp->X_op == O_absent
9682 || exp->X_op == O_illegal
ee86248c 9683 || exp->X_op == O_big)
2daf4fd8 9684 {
3992d3b7
AM
9685 inv_disp:
9686 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 9687 disp_start);
3992d3b7 9688 ret = 0;
2daf4fd8
AM
9689 }
9690
0e1147d9
L
9691 else if (flag_code == CODE_64BIT
9692 && !i.prefix[ADDR_PREFIX]
9693 && exp->X_op == O_constant)
9694 {
9695 /* Since displacement is signed extended to 64bit, don't allow
9696 disp32 and turn off disp32s if they are out of range. */
9697 i.types[this_operand].bitfield.disp32 = 0;
9698 if (!fits_in_signed_long (exp->X_add_number))
9699 {
9700 i.types[this_operand].bitfield.disp32s = 0;
9701 if (i.types[this_operand].bitfield.baseindex)
9702 {
9703 as_bad (_("0x%lx out range of signed 32bit displacement"),
9704 (long) exp->X_add_number);
9705 ret = 0;
9706 }
9707 }
9708 }
9709
4c63da97 9710#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
9711 else if (exp->X_op != O_constant
9712 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9713 && exp_seg != absolute_section
9714 && exp_seg != text_section
9715 && exp_seg != data_section
9716 && exp_seg != bss_section
9717 && exp_seg != undefined_section
9718 && !bfd_is_com_section (exp_seg))
24eab124 9719 {
d0b47220 9720 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 9721 ret = 0;
24eab124 9722 }
252b5132 9723#endif
3956db08 9724
40fb9820
L
9725 /* Check if this is a displacement only operand. */
9726 bigdisp = i.types[this_operand];
9727 bigdisp.bitfield.disp8 = 0;
9728 bigdisp.bitfield.disp16 = 0;
9729 bigdisp.bitfield.disp32 = 0;
9730 bigdisp.bitfield.disp32s = 0;
9731 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 9732 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
9733 i.types[this_operand] = operand_type_and (i.types[this_operand],
9734 types);
3956db08 9735
3992d3b7 9736 return ret;
252b5132
RH
9737}
9738
2abc2bec
JB
9739/* Return the active addressing mode, taking address override and
9740 registers forming the address into consideration. Update the
9741 address override prefix if necessary. */
47926f60 9742
2abc2bec
JB
9743static enum flag_code
9744i386_addressing_mode (void)
252b5132 9745{
be05d201
L
9746 enum flag_code addr_mode;
9747
9748 if (i.prefix[ADDR_PREFIX])
9749 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9750 else
9751 {
9752 addr_mode = flag_code;
9753
24eab124 9754#if INFER_ADDR_PREFIX
be05d201
L
9755 if (i.mem_operands == 0)
9756 {
9757 /* Infer address prefix from the first memory operand. */
9758 const reg_entry *addr_reg = i.base_reg;
9759
9760 if (addr_reg == NULL)
9761 addr_reg = i.index_reg;
eecb386c 9762
be05d201
L
9763 if (addr_reg)
9764 {
e968fc9b 9765 if (addr_reg->reg_type.bitfield.dword)
be05d201
L
9766 addr_mode = CODE_32BIT;
9767 else if (flag_code != CODE_64BIT
dc821c5f 9768 && addr_reg->reg_type.bitfield.word)
be05d201
L
9769 addr_mode = CODE_16BIT;
9770
9771 if (addr_mode != flag_code)
9772 {
9773 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9774 i.prefixes += 1;
9775 /* Change the size of any displacement too. At most one
9776 of Disp16 or Disp32 is set.
9777 FIXME. There doesn't seem to be any real need for
9778 separate Disp16 and Disp32 flags. The same goes for
9779 Imm16 and Imm32. Removing them would probably clean
9780 up the code quite a lot. */
9781 if (flag_code != CODE_64BIT
9782 && (i.types[this_operand].bitfield.disp16
9783 || i.types[this_operand].bitfield.disp32))
9784 i.types[this_operand]
9785 = operand_type_xor (i.types[this_operand], disp16_32);
9786 }
9787 }
9788 }
24eab124 9789#endif
be05d201
L
9790 }
9791
2abc2bec
JB
9792 return addr_mode;
9793}
9794
9795/* Make sure the memory operand we've been dealt is valid.
9796 Return 1 on success, 0 on a failure. */
9797
9798static int
9799i386_index_check (const char *operand_string)
9800{
9801 const char *kind = "base/index";
9802 enum flag_code addr_mode = i386_addressing_mode ();
9803
fc0763e6 9804 if (current_templates->start->opcode_modifier.isstring
c3949f43 9805 && !current_templates->start->cpu_flags.bitfield.cpupadlock
fc0763e6
JB
9806 && (current_templates->end[-1].opcode_modifier.isstring
9807 || i.mem_operands))
9808 {
9809 /* Memory operands of string insns are special in that they only allow
9810 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
9811 const reg_entry *expected_reg;
9812 static const char *di_si[][2] =
9813 {
9814 { "esi", "edi" },
9815 { "si", "di" },
9816 { "rsi", "rdi" }
9817 };
9818 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
9819
9820 kind = "string address";
9821
8325cc63 9822 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6
JB
9823 {
9824 i386_operand_type type = current_templates->end[-1].operand_types[0];
9825
9826 if (!type.bitfield.baseindex
9827 || ((!i.mem_operands != !intel_syntax)
9828 && current_templates->end[-1].operand_types[1]
9829 .bitfield.baseindex))
9830 type = current_templates->end[-1].operand_types[1];
be05d201
L
9831 expected_reg = hash_find (reg_hash,
9832 di_si[addr_mode][type.bitfield.esseg]);
9833
fc0763e6
JB
9834 }
9835 else
be05d201 9836 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 9837
be05d201
L
9838 if (i.base_reg != expected_reg
9839 || i.index_reg
fc0763e6 9840 || operand_type_check (i.types[this_operand], disp))
fc0763e6 9841 {
be05d201
L
9842 /* The second memory operand must have the same size as
9843 the first one. */
9844 if (i.mem_operands
9845 && i.base_reg
9846 && !((addr_mode == CODE_64BIT
dc821c5f 9847 && i.base_reg->reg_type.bitfield.qword)
be05d201 9848 || (addr_mode == CODE_32BIT
dc821c5f
JB
9849 ? i.base_reg->reg_type.bitfield.dword
9850 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
9851 goto bad_address;
9852
fc0763e6
JB
9853 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9854 operand_string,
9855 intel_syntax ? '[' : '(',
9856 register_prefix,
be05d201 9857 expected_reg->reg_name,
fc0763e6 9858 intel_syntax ? ']' : ')');
be05d201 9859 return 1;
fc0763e6 9860 }
be05d201
L
9861 else
9862 return 1;
9863
9864bad_address:
9865 as_bad (_("`%s' is not a valid %s expression"),
9866 operand_string, kind);
9867 return 0;
3e73aa7c
JH
9868 }
9869 else
9870 {
be05d201
L
9871 if (addr_mode != CODE_16BIT)
9872 {
9873 /* 32-bit/64-bit checks. */
9874 if ((i.base_reg
e968fc9b
JB
9875 && ((addr_mode == CODE_64BIT
9876 ? !i.base_reg->reg_type.bitfield.qword
9877 : !i.base_reg->reg_type.bitfield.dword)
9878 || (i.index_reg && i.base_reg->reg_num == RegIP)
9879 || i.base_reg->reg_num == RegIZ))
be05d201 9880 || (i.index_reg
1b54b8d7
JB
9881 && !i.index_reg->reg_type.bitfield.xmmword
9882 && !i.index_reg->reg_type.bitfield.ymmword
9883 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 9884 && ((addr_mode == CODE_64BIT
e968fc9b
JB
9885 ? !i.index_reg->reg_type.bitfield.qword
9886 : !i.index_reg->reg_type.bitfield.dword)
be05d201
L
9887 || !i.index_reg->reg_type.bitfield.baseindex)))
9888 goto bad_address;
8178be5b
JB
9889
9890 /* bndmk, bndldx, and bndstx have special restrictions. */
9891 if (current_templates->start->base_opcode == 0xf30f1b
9892 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9893 {
9894 /* They cannot use RIP-relative addressing. */
e968fc9b 9895 if (i.base_reg && i.base_reg->reg_num == RegIP)
8178be5b
JB
9896 {
9897 as_bad (_("`%s' cannot be used here"), operand_string);
9898 return 0;
9899 }
9900
9901 /* bndldx and bndstx ignore their scale factor. */
9902 if (current_templates->start->base_opcode != 0xf30f1b
9903 && i.log2_scale_factor)
9904 as_warn (_("register scaling is being ignored here"));
9905 }
be05d201
L
9906 }
9907 else
3e73aa7c 9908 {
be05d201 9909 /* 16-bit checks. */
3e73aa7c 9910 if ((i.base_reg
dc821c5f 9911 && (!i.base_reg->reg_type.bitfield.word
40fb9820 9912 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 9913 || (i.index_reg
dc821c5f 9914 && (!i.index_reg->reg_type.bitfield.word
40fb9820 9915 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
9916 || !(i.base_reg
9917 && i.base_reg->reg_num < 6
9918 && i.index_reg->reg_num >= 6
9919 && i.log2_scale_factor == 0))))
be05d201 9920 goto bad_address;
3e73aa7c
JH
9921 }
9922 }
be05d201 9923 return 1;
24eab124 9924}
252b5132 9925
43234a1e
L
9926/* Handle vector immediates. */
9927
9928static int
9929RC_SAE_immediate (const char *imm_start)
9930{
9931 unsigned int match_found, j;
9932 const char *pstr = imm_start;
9933 expressionS *exp;
9934
9935 if (*pstr != '{')
9936 return 0;
9937
9938 pstr++;
9939 match_found = 0;
9940 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9941 {
9942 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9943 {
9944 if (!i.rounding)
9945 {
9946 rc_op.type = RC_NamesTable[j].type;
9947 rc_op.operand = this_operand;
9948 i.rounding = &rc_op;
9949 }
9950 else
9951 {
9952 as_bad (_("duplicated `%s'"), imm_start);
9953 return 0;
9954 }
9955 pstr += RC_NamesTable[j].len;
9956 match_found = 1;
9957 break;
9958 }
9959 }
9960 if (!match_found)
9961 return 0;
9962
9963 if (*pstr++ != '}')
9964 {
9965 as_bad (_("Missing '}': '%s'"), imm_start);
9966 return 0;
9967 }
9968 /* RC/SAE immediate string should contain nothing more. */;
9969 if (*pstr != 0)
9970 {
9971 as_bad (_("Junk after '}': '%s'"), imm_start);
9972 return 0;
9973 }
9974
9975 exp = &im_expressions[i.imm_operands++];
9976 i.op[this_operand].imms = exp;
9977
9978 exp->X_op = O_constant;
9979 exp->X_add_number = 0;
9980 exp->X_add_symbol = (symbolS *) 0;
9981 exp->X_op_symbol = (symbolS *) 0;
9982
9983 i.types[this_operand].bitfield.imm8 = 1;
9984 return 1;
9985}
9986
8325cc63
JB
9987/* Only string instructions can have a second memory operand, so
9988 reduce current_templates to just those if it contains any. */
9989static int
9990maybe_adjust_templates (void)
9991{
9992 const insn_template *t;
9993
9994 gas_assert (i.mem_operands == 1);
9995
9996 for (t = current_templates->start; t < current_templates->end; ++t)
9997 if (t->opcode_modifier.isstring)
9998 break;
9999
10000 if (t < current_templates->end)
10001 {
10002 static templates aux_templates;
10003 bfd_boolean recheck;
10004
10005 aux_templates.start = t;
10006 for (; t < current_templates->end; ++t)
10007 if (!t->opcode_modifier.isstring)
10008 break;
10009 aux_templates.end = t;
10010
10011 /* Determine whether to re-check the first memory operand. */
10012 recheck = (aux_templates.start != current_templates->start
10013 || t != current_templates->end);
10014
10015 current_templates = &aux_templates;
10016
10017 if (recheck)
10018 {
10019 i.mem_operands = 0;
10020 if (i.memop1_string != NULL
10021 && i386_index_check (i.memop1_string) == 0)
10022 return 0;
10023 i.mem_operands = 1;
10024 }
10025 }
10026
10027 return 1;
10028}
10029
fc0763e6 10030/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 10031 on error. */
252b5132 10032
252b5132 10033static int
a7619375 10034i386_att_operand (char *operand_string)
252b5132 10035{
af6bdddf
AM
10036 const reg_entry *r;
10037 char *end_op;
24eab124 10038 char *op_string = operand_string;
252b5132 10039
24eab124 10040 if (is_space_char (*op_string))
252b5132
RH
10041 ++op_string;
10042
24eab124 10043 /* We check for an absolute prefix (differentiating,
47926f60 10044 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
10045 if (*op_string == ABSOLUTE_PREFIX)
10046 {
10047 ++op_string;
10048 if (is_space_char (*op_string))
10049 ++op_string;
40fb9820 10050 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 10051 }
252b5132 10052
47926f60 10053 /* Check if operand is a register. */
4d1bb795 10054 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 10055 {
40fb9820
L
10056 i386_operand_type temp;
10057
24eab124
AM
10058 /* Check for a segment override by searching for ':' after a
10059 segment register. */
10060 op_string = end_op;
10061 if (is_space_char (*op_string))
10062 ++op_string;
00cee14f 10063 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
24eab124
AM
10064 {
10065 switch (r->reg_num)
10066 {
10067 case 0:
10068 i.seg[i.mem_operands] = &es;
10069 break;
10070 case 1:
10071 i.seg[i.mem_operands] = &cs;
10072 break;
10073 case 2:
10074 i.seg[i.mem_operands] = &ss;
10075 break;
10076 case 3:
10077 i.seg[i.mem_operands] = &ds;
10078 break;
10079 case 4:
10080 i.seg[i.mem_operands] = &fs;
10081 break;
10082 case 5:
10083 i.seg[i.mem_operands] = &gs;
10084 break;
10085 }
252b5132 10086
24eab124 10087 /* Skip the ':' and whitespace. */
252b5132
RH
10088 ++op_string;
10089 if (is_space_char (*op_string))
24eab124 10090 ++op_string;
252b5132 10091
24eab124
AM
10092 if (!is_digit_char (*op_string)
10093 && !is_identifier_char (*op_string)
10094 && *op_string != '('
10095 && *op_string != ABSOLUTE_PREFIX)
10096 {
10097 as_bad (_("bad memory operand `%s'"), op_string);
10098 return 0;
10099 }
47926f60 10100 /* Handle case of %es:*foo. */
24eab124
AM
10101 if (*op_string == ABSOLUTE_PREFIX)
10102 {
10103 ++op_string;
10104 if (is_space_char (*op_string))
10105 ++op_string;
40fb9820 10106 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
10107 }
10108 goto do_memory_reference;
10109 }
43234a1e
L
10110
10111 /* Handle vector operations. */
10112 if (*op_string == '{')
10113 {
10114 op_string = check_VecOperations (op_string, NULL);
10115 if (op_string == NULL)
10116 return 0;
10117 }
10118
24eab124
AM
10119 if (*op_string)
10120 {
d0b47220 10121 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
10122 return 0;
10123 }
40fb9820
L
10124 temp = r->reg_type;
10125 temp.bitfield.baseindex = 0;
c6fb90c8
L
10126 i.types[this_operand] = operand_type_or (i.types[this_operand],
10127 temp);
7d5e4556 10128 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 10129 i.op[this_operand].regs = r;
24eab124
AM
10130 i.reg_operands++;
10131 }
af6bdddf
AM
10132 else if (*op_string == REGISTER_PREFIX)
10133 {
10134 as_bad (_("bad register name `%s'"), op_string);
10135 return 0;
10136 }
24eab124 10137 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 10138 {
24eab124 10139 ++op_string;
40fb9820 10140 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 10141 {
d0b47220 10142 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
10143 return 0;
10144 }
10145 if (!i386_immediate (op_string))
10146 return 0;
10147 }
43234a1e
L
10148 else if (RC_SAE_immediate (operand_string))
10149 {
10150 /* If it is a RC or SAE immediate, do nothing. */
10151 ;
10152 }
24eab124
AM
10153 else if (is_digit_char (*op_string)
10154 || is_identifier_char (*op_string)
d02603dc 10155 || *op_string == '"'
e5cb08ac 10156 || *op_string == '(')
24eab124 10157 {
47926f60 10158 /* This is a memory reference of some sort. */
af6bdddf 10159 char *base_string;
252b5132 10160
47926f60 10161 /* Start and end of displacement string expression (if found). */
eecb386c
AM
10162 char *displacement_string_start;
10163 char *displacement_string_end;
43234a1e 10164 char *vop_start;
252b5132 10165
24eab124 10166 do_memory_reference:
8325cc63
JB
10167 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10168 return 0;
24eab124 10169 if ((i.mem_operands == 1
40fb9820 10170 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
10171 || i.mem_operands == 2)
10172 {
10173 as_bad (_("too many memory references for `%s'"),
10174 current_templates->start->name);
10175 return 0;
10176 }
252b5132 10177
24eab124
AM
10178 /* Check for base index form. We detect the base index form by
10179 looking for an ')' at the end of the operand, searching
10180 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10181 after the '('. */
af6bdddf 10182 base_string = op_string + strlen (op_string);
c3332e24 10183
43234a1e
L
10184 /* Handle vector operations. */
10185 vop_start = strchr (op_string, '{');
10186 if (vop_start && vop_start < base_string)
10187 {
10188 if (check_VecOperations (vop_start, base_string) == NULL)
10189 return 0;
10190 base_string = vop_start;
10191 }
10192
af6bdddf
AM
10193 --base_string;
10194 if (is_space_char (*base_string))
10195 --base_string;
252b5132 10196
47926f60 10197 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
10198 displacement_string_start = op_string;
10199 displacement_string_end = base_string + 1;
252b5132 10200
24eab124
AM
10201 if (*base_string == ')')
10202 {
af6bdddf 10203 char *temp_string;
24eab124
AM
10204 unsigned int parens_balanced = 1;
10205 /* We've already checked that the number of left & right ()'s are
47926f60 10206 equal, so this loop will not be infinite. */
24eab124
AM
10207 do
10208 {
10209 base_string--;
10210 if (*base_string == ')')
10211 parens_balanced++;
10212 if (*base_string == '(')
10213 parens_balanced--;
10214 }
10215 while (parens_balanced);
c3332e24 10216
af6bdddf 10217 temp_string = base_string;
c3332e24 10218
24eab124 10219 /* Skip past '(' and whitespace. */
252b5132
RH
10220 ++base_string;
10221 if (is_space_char (*base_string))
24eab124 10222 ++base_string;
252b5132 10223
af6bdddf 10224 if (*base_string == ','
4eed87de
AM
10225 || ((i.base_reg = parse_register (base_string, &end_op))
10226 != NULL))
252b5132 10227 {
af6bdddf 10228 displacement_string_end = temp_string;
252b5132 10229
40fb9820 10230 i.types[this_operand].bitfield.baseindex = 1;
252b5132 10231
af6bdddf 10232 if (i.base_reg)
24eab124 10233 {
24eab124
AM
10234 base_string = end_op;
10235 if (is_space_char (*base_string))
10236 ++base_string;
af6bdddf
AM
10237 }
10238
10239 /* There may be an index reg or scale factor here. */
10240 if (*base_string == ',')
10241 {
10242 ++base_string;
10243 if (is_space_char (*base_string))
10244 ++base_string;
10245
4eed87de
AM
10246 if ((i.index_reg = parse_register (base_string, &end_op))
10247 != NULL)
24eab124 10248 {
af6bdddf 10249 base_string = end_op;
24eab124
AM
10250 if (is_space_char (*base_string))
10251 ++base_string;
af6bdddf
AM
10252 if (*base_string == ',')
10253 {
10254 ++base_string;
10255 if (is_space_char (*base_string))
10256 ++base_string;
10257 }
e5cb08ac 10258 else if (*base_string != ')')
af6bdddf 10259 {
4eed87de
AM
10260 as_bad (_("expecting `,' or `)' "
10261 "after index register in `%s'"),
af6bdddf
AM
10262 operand_string);
10263 return 0;
10264 }
24eab124 10265 }
af6bdddf 10266 else if (*base_string == REGISTER_PREFIX)
24eab124 10267 {
f76bf5e0
L
10268 end_op = strchr (base_string, ',');
10269 if (end_op)
10270 *end_op = '\0';
af6bdddf 10271 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
10272 return 0;
10273 }
252b5132 10274
47926f60 10275 /* Check for scale factor. */
551c1ca1 10276 if (*base_string != ')')
af6bdddf 10277 {
551c1ca1
AM
10278 char *end_scale = i386_scale (base_string);
10279
10280 if (!end_scale)
af6bdddf 10281 return 0;
24eab124 10282
551c1ca1 10283 base_string = end_scale;
af6bdddf
AM
10284 if (is_space_char (*base_string))
10285 ++base_string;
10286 if (*base_string != ')')
10287 {
4eed87de
AM
10288 as_bad (_("expecting `)' "
10289 "after scale factor in `%s'"),
af6bdddf
AM
10290 operand_string);
10291 return 0;
10292 }
10293 }
10294 else if (!i.index_reg)
24eab124 10295 {
4eed87de
AM
10296 as_bad (_("expecting index register or scale factor "
10297 "after `,'; got '%c'"),
af6bdddf 10298 *base_string);
24eab124
AM
10299 return 0;
10300 }
10301 }
af6bdddf 10302 else if (*base_string != ')')
24eab124 10303 {
4eed87de
AM
10304 as_bad (_("expecting `,' or `)' "
10305 "after base register in `%s'"),
af6bdddf 10306 operand_string);
24eab124
AM
10307 return 0;
10308 }
c3332e24 10309 }
af6bdddf 10310 else if (*base_string == REGISTER_PREFIX)
c3332e24 10311 {
f76bf5e0
L
10312 end_op = strchr (base_string, ',');
10313 if (end_op)
10314 *end_op = '\0';
af6bdddf 10315 as_bad (_("bad register name `%s'"), base_string);
24eab124 10316 return 0;
c3332e24 10317 }
24eab124
AM
10318 }
10319
10320 /* If there's an expression beginning the operand, parse it,
10321 assuming displacement_string_start and
10322 displacement_string_end are meaningful. */
10323 if (displacement_string_start != displacement_string_end)
10324 {
10325 if (!i386_displacement (displacement_string_start,
10326 displacement_string_end))
10327 return 0;
10328 }
10329
10330 /* Special case for (%dx) while doing input/output op. */
10331 if (i.base_reg
2fb5be8d 10332 && i.base_reg->reg_type.bitfield.inoutportreg
24eab124
AM
10333 && i.index_reg == 0
10334 && i.log2_scale_factor == 0
10335 && i.seg[i.mem_operands] == 0
40fb9820 10336 && !operand_type_check (i.types[this_operand], disp))
24eab124 10337 {
2fb5be8d 10338 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
10339 return 1;
10340 }
10341
eecb386c
AM
10342 if (i386_index_check (operand_string) == 0)
10343 return 0;
c48dadc9 10344 i.flags[this_operand] |= Operand_Mem;
8325cc63
JB
10345 if (i.mem_operands == 0)
10346 i.memop1_string = xstrdup (operand_string);
24eab124
AM
10347 i.mem_operands++;
10348 }
10349 else
ce8a8b2f
AM
10350 {
10351 /* It's not a memory operand; argh! */
24eab124
AM
10352 as_bad (_("invalid char %s beginning operand %d `%s'"),
10353 output_invalid (*op_string),
10354 this_operand + 1,
10355 op_string);
10356 return 0;
10357 }
47926f60 10358 return 1; /* Normal return. */
252b5132
RH
10359}
10360\f
fa94de6b
RM
10361/* Calculate the maximum variable size (i.e., excluding fr_fix)
10362 that an rs_machine_dependent frag may reach. */
10363
10364unsigned int
10365i386_frag_max_var (fragS *frag)
10366{
10367 /* The only relaxable frags are for jumps.
10368 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10369 gas_assert (frag->fr_type == rs_machine_dependent);
10370 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10371}
10372
b084df0b
L
10373#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10374static int
8dcea932 10375elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
10376{
10377 /* STT_GNU_IFUNC symbol must go through PLT. */
10378 if ((symbol_get_bfdsym (fr_symbol)->flags
10379 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10380 return 0;
10381
10382 if (!S_IS_EXTERNAL (fr_symbol))
10383 /* Symbol may be weak or local. */
10384 return !S_IS_WEAK (fr_symbol);
10385
8dcea932
L
10386 /* Global symbols with non-default visibility can't be preempted. */
10387 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10388 return 1;
10389
10390 if (fr_var != NO_RELOC)
10391 switch ((enum bfd_reloc_code_real) fr_var)
10392 {
10393 case BFD_RELOC_386_PLT32:
10394 case BFD_RELOC_X86_64_PLT32:
33eaf5de 10395 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
10396 return 0;
10397 default:
10398 abort ();
10399 }
10400
b084df0b
L
10401 /* Global symbols with default visibility in a shared library may be
10402 preempted by another definition. */
8dcea932 10403 return !shared;
b084df0b
L
10404}
10405#endif
10406
ee7fcc42
AM
10407/* md_estimate_size_before_relax()
10408
10409 Called just before relax() for rs_machine_dependent frags. The x86
10410 assembler uses these frags to handle variable size jump
10411 instructions.
10412
10413 Any symbol that is now undefined will not become defined.
10414 Return the correct fr_subtype in the frag.
10415 Return the initial "guess for variable size of frag" to caller.
10416 The guess is actually the growth beyond the fixed part. Whatever
10417 we do to grow the fixed or variable part contributes to our
10418 returned value. */
10419
252b5132 10420int
7016a5d5 10421md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 10422{
252b5132 10423 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
10424 check for un-relaxable symbols. On an ELF system, we can't relax
10425 an externally visible symbol, because it may be overridden by a
10426 shared library. */
10427 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 10428#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10429 || (IS_ELF
8dcea932
L
10430 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10431 fragP->fr_var))
fbeb56a4
DK
10432#endif
10433#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 10434 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 10435 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
10436#endif
10437 )
252b5132 10438 {
b98ef147
AM
10439 /* Symbol is undefined in this segment, or we need to keep a
10440 reloc so that weak symbols can be overridden. */
10441 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 10442 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
10443 unsigned char *opcode;
10444 int old_fr_fix;
f6af82bd 10445
ee7fcc42 10446 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 10447 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 10448 else if (size == 2)
f6af82bd 10449 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
10450#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10451 else if (need_plt32_p (fragP->fr_symbol))
10452 reloc_type = BFD_RELOC_X86_64_PLT32;
10453#endif
f6af82bd
AM
10454 else
10455 reloc_type = BFD_RELOC_32_PCREL;
252b5132 10456
ee7fcc42
AM
10457 old_fr_fix = fragP->fr_fix;
10458 opcode = (unsigned char *) fragP->fr_opcode;
10459
fddf5b5b 10460 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 10461 {
fddf5b5b
AM
10462 case UNCOND_JUMP:
10463 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 10464 opcode[0] = 0xe9;
252b5132 10465 fragP->fr_fix += size;
062cd5e7
AS
10466 fix_new (fragP, old_fr_fix, size,
10467 fragP->fr_symbol,
10468 fragP->fr_offset, 1,
10469 reloc_type);
252b5132
RH
10470 break;
10471
fddf5b5b 10472 case COND_JUMP86:
412167cb
AM
10473 if (size == 2
10474 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
10475 {
10476 /* Negate the condition, and branch past an
10477 unconditional jump. */
10478 opcode[0] ^= 1;
10479 opcode[1] = 3;
10480 /* Insert an unconditional jump. */
10481 opcode[2] = 0xe9;
10482 /* We added two extra opcode bytes, and have a two byte
10483 offset. */
10484 fragP->fr_fix += 2 + 2;
062cd5e7
AS
10485 fix_new (fragP, old_fr_fix + 2, 2,
10486 fragP->fr_symbol,
10487 fragP->fr_offset, 1,
10488 reloc_type);
fddf5b5b
AM
10489 break;
10490 }
10491 /* Fall through. */
10492
10493 case COND_JUMP:
412167cb
AM
10494 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10495 {
3e02c1cc
AM
10496 fixS *fixP;
10497
412167cb 10498 fragP->fr_fix += 1;
3e02c1cc
AM
10499 fixP = fix_new (fragP, old_fr_fix, 1,
10500 fragP->fr_symbol,
10501 fragP->fr_offset, 1,
10502 BFD_RELOC_8_PCREL);
10503 fixP->fx_signed = 1;
412167cb
AM
10504 break;
10505 }
93c2a809 10506
24eab124 10507 /* This changes the byte-displacement jump 0x7N
fddf5b5b 10508 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 10509 opcode[1] = opcode[0] + 0x10;
f6af82bd 10510 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
10511 /* We've added an opcode byte. */
10512 fragP->fr_fix += 1 + size;
062cd5e7
AS
10513 fix_new (fragP, old_fr_fix + 1, size,
10514 fragP->fr_symbol,
10515 fragP->fr_offset, 1,
10516 reloc_type);
252b5132 10517 break;
fddf5b5b
AM
10518
10519 default:
10520 BAD_CASE (fragP->fr_subtype);
10521 break;
252b5132
RH
10522 }
10523 frag_wane (fragP);
ee7fcc42 10524 return fragP->fr_fix - old_fr_fix;
252b5132 10525 }
93c2a809 10526
93c2a809
AM
10527 /* Guess size depending on current relax state. Initially the relax
10528 state will correspond to a short jump and we return 1, because
10529 the variable part of the frag (the branch offset) is one byte
10530 long. However, we can relax a section more than once and in that
10531 case we must either set fr_subtype back to the unrelaxed state,
10532 or return the value for the appropriate branch. */
10533 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
10534}
10535
47926f60
KH
10536/* Called after relax() is finished.
10537
10538 In: Address of frag.
10539 fr_type == rs_machine_dependent.
10540 fr_subtype is what the address relaxed to.
10541
10542 Out: Any fixSs and constants are set up.
10543 Caller will turn frag into a ".space 0". */
10544
252b5132 10545void
7016a5d5
TG
10546md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10547 fragS *fragP)
252b5132 10548{
29b0f896 10549 unsigned char *opcode;
252b5132 10550 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
10551 offsetT target_address;
10552 offsetT opcode_address;
252b5132 10553 unsigned int extension = 0;
847f7ad4 10554 offsetT displacement_from_opcode_start;
252b5132
RH
10555
10556 opcode = (unsigned char *) fragP->fr_opcode;
10557
47926f60 10558 /* Address we want to reach in file space. */
252b5132 10559 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 10560
47926f60 10561 /* Address opcode resides at in file space. */
252b5132
RH
10562 opcode_address = fragP->fr_address + fragP->fr_fix;
10563
47926f60 10564 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
10565 displacement_from_opcode_start = target_address - opcode_address;
10566
fddf5b5b 10567 if ((fragP->fr_subtype & BIG) == 0)
252b5132 10568 {
47926f60
KH
10569 /* Don't have to change opcode. */
10570 extension = 1; /* 1 opcode + 1 displacement */
252b5132 10571 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
10572 }
10573 else
10574 {
10575 if (no_cond_jump_promotion
10576 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
10577 as_warn_where (fragP->fr_file, fragP->fr_line,
10578 _("long jump required"));
252b5132 10579
fddf5b5b
AM
10580 switch (fragP->fr_subtype)
10581 {
10582 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10583 extension = 4; /* 1 opcode + 4 displacement */
10584 opcode[0] = 0xe9;
10585 where_to_put_displacement = &opcode[1];
10586 break;
252b5132 10587
fddf5b5b
AM
10588 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10589 extension = 2; /* 1 opcode + 2 displacement */
10590 opcode[0] = 0xe9;
10591 where_to_put_displacement = &opcode[1];
10592 break;
252b5132 10593
fddf5b5b
AM
10594 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10595 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10596 extension = 5; /* 2 opcode + 4 displacement */
10597 opcode[1] = opcode[0] + 0x10;
10598 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10599 where_to_put_displacement = &opcode[2];
10600 break;
252b5132 10601
fddf5b5b
AM
10602 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10603 extension = 3; /* 2 opcode + 2 displacement */
10604 opcode[1] = opcode[0] + 0x10;
10605 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10606 where_to_put_displacement = &opcode[2];
10607 break;
252b5132 10608
fddf5b5b
AM
10609 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10610 extension = 4;
10611 opcode[0] ^= 1;
10612 opcode[1] = 3;
10613 opcode[2] = 0xe9;
10614 where_to_put_displacement = &opcode[3];
10615 break;
10616
10617 default:
10618 BAD_CASE (fragP->fr_subtype);
10619 break;
10620 }
252b5132 10621 }
fddf5b5b 10622
7b81dfbb
AJ
10623 /* If size if less then four we are sure that the operand fits,
10624 but if it's 4, then it could be that the displacement is larger
10625 then -/+ 2GB. */
10626 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10627 && object_64bit
10628 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
10629 + ((addressT) 1 << 31))
10630 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
10631 {
10632 as_bad_where (fragP->fr_file, fragP->fr_line,
10633 _("jump target out of range"));
10634 /* Make us emit 0. */
10635 displacement_from_opcode_start = extension;
10636 }
47926f60 10637 /* Now put displacement after opcode. */
252b5132
RH
10638 md_number_to_chars ((char *) where_to_put_displacement,
10639 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 10640 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
10641 fragP->fr_fix += extension;
10642}
10643\f
7016a5d5 10644/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
10645 by our caller that we have all the info we need to fix it up.
10646
7016a5d5
TG
10647 Parameter valP is the pointer to the value of the bits.
10648
252b5132
RH
10649 On the 386, immediates, displacements, and data pointers are all in
10650 the same (little-endian) format, so we don't need to care about which
10651 we are handling. */
10652
94f592af 10653void
7016a5d5 10654md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 10655{
94f592af 10656 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 10657 valueT value = *valP;
252b5132 10658
f86103b7 10659#if !defined (TE_Mach)
93382f6d
AM
10660 if (fixP->fx_pcrel)
10661 {
10662 switch (fixP->fx_r_type)
10663 {
5865bb77
ILT
10664 default:
10665 break;
10666
d6ab8113
JB
10667 case BFD_RELOC_64:
10668 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10669 break;
93382f6d 10670 case BFD_RELOC_32:
ae8887b5 10671 case BFD_RELOC_X86_64_32S:
93382f6d
AM
10672 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10673 break;
10674 case BFD_RELOC_16:
10675 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10676 break;
10677 case BFD_RELOC_8:
10678 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10679 break;
10680 }
10681 }
252b5132 10682
a161fe53 10683 if (fixP->fx_addsy != NULL
31312f95 10684 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 10685 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 10686 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 10687 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 10688 && !use_rela_relocations)
252b5132 10689 {
31312f95
AM
10690 /* This is a hack. There should be a better way to handle this.
10691 This covers for the fact that bfd_install_relocation will
10692 subtract the current location (for partial_inplace, PC relative
10693 relocations); see more below. */
252b5132 10694#ifndef OBJ_AOUT
718ddfc0 10695 if (IS_ELF
252b5132
RH
10696#ifdef TE_PE
10697 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10698#endif
10699 )
10700 value += fixP->fx_where + fixP->fx_frag->fr_address;
10701#endif
10702#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10703 if (IS_ELF)
252b5132 10704 {
6539b54b 10705 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 10706
6539b54b 10707 if ((sym_seg == seg
2f66722d 10708 || (symbol_section_p (fixP->fx_addsy)
6539b54b 10709 && sym_seg != absolute_section))
af65af87 10710 && !generic_force_reloc (fixP))
2f66722d
AM
10711 {
10712 /* Yes, we add the values in twice. This is because
6539b54b
AM
10713 bfd_install_relocation subtracts them out again. I think
10714 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
10715 it. FIXME. */
10716 value += fixP->fx_where + fixP->fx_frag->fr_address;
10717 }
252b5132
RH
10718 }
10719#endif
10720#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
10721 /* For some reason, the PE format does not store a
10722 section address offset for a PC relative symbol. */
10723 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 10724 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
10725 value += md_pcrel_from (fixP);
10726#endif
10727 }
fbeb56a4 10728#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
10729 if (fixP->fx_addsy != NULL
10730 && S_IS_WEAK (fixP->fx_addsy)
10731 /* PR 16858: Do not modify weak function references. */
10732 && ! fixP->fx_pcrel)
fbeb56a4 10733 {
296a8689
NC
10734#if !defined (TE_PEP)
10735 /* For x86 PE weak function symbols are neither PC-relative
10736 nor do they set S_IS_FUNCTION. So the only reliable way
10737 to detect them is to check the flags of their containing
10738 section. */
10739 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10740 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10741 ;
10742 else
10743#endif
fbeb56a4
DK
10744 value -= S_GET_VALUE (fixP->fx_addsy);
10745 }
10746#endif
252b5132
RH
10747
10748 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 10749 and we must not disappoint it. */
252b5132 10750#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10751 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
10752 switch (fixP->fx_r_type)
10753 {
10754 case BFD_RELOC_386_PLT32:
3e73aa7c 10755 case BFD_RELOC_X86_64_PLT32:
b9519cfe
L
10756 /* Make the jump instruction point to the address of the operand.
10757 At runtime we merely add the offset to the actual PLT entry.
10758 NB: Subtract the offset size only for jump instructions. */
10759 if (fixP->fx_pcrel)
10760 value = -4;
47926f60 10761 break;
31312f95 10762
13ae64f3
JJ
10763 case BFD_RELOC_386_TLS_GD:
10764 case BFD_RELOC_386_TLS_LDM:
13ae64f3 10765 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
10766 case BFD_RELOC_386_TLS_IE:
10767 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 10768 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
10769 case BFD_RELOC_X86_64_TLSGD:
10770 case BFD_RELOC_X86_64_TLSLD:
10771 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 10772 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
10773 value = 0; /* Fully resolved at runtime. No addend. */
10774 /* Fallthrough */
10775 case BFD_RELOC_386_TLS_LE:
10776 case BFD_RELOC_386_TLS_LDO_32:
10777 case BFD_RELOC_386_TLS_LE_32:
10778 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 10779 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 10780 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 10781 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
10782 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10783 break;
10784
67a4f2b7
AO
10785 case BFD_RELOC_386_TLS_DESC_CALL:
10786 case BFD_RELOC_X86_64_TLSDESC_CALL:
10787 value = 0; /* Fully resolved at runtime. No addend. */
10788 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10789 fixP->fx_done = 0;
10790 return;
10791
47926f60
KH
10792 case BFD_RELOC_VTABLE_INHERIT:
10793 case BFD_RELOC_VTABLE_ENTRY:
10794 fixP->fx_done = 0;
94f592af 10795 return;
47926f60
KH
10796
10797 default:
10798 break;
10799 }
10800#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 10801 *valP = value;
f86103b7 10802#endif /* !defined (TE_Mach) */
3e73aa7c 10803
3e73aa7c 10804 /* Are we finished with this relocation now? */
c6682705 10805 if (fixP->fx_addsy == NULL)
3e73aa7c 10806 fixP->fx_done = 1;
fbeb56a4
DK
10807#if defined (OBJ_COFF) && defined (TE_PE)
10808 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10809 {
10810 fixP->fx_done = 0;
10811 /* Remember value for tc_gen_reloc. */
10812 fixP->fx_addnumber = value;
10813 /* Clear out the frag for now. */
10814 value = 0;
10815 }
10816#endif
3e73aa7c
JH
10817 else if (use_rela_relocations)
10818 {
10819 fixP->fx_no_overflow = 1;
062cd5e7
AS
10820 /* Remember value for tc_gen_reloc. */
10821 fixP->fx_addnumber = value;
3e73aa7c
JH
10822 value = 0;
10823 }
f86103b7 10824
94f592af 10825 md_number_to_chars (p, value, fixP->fx_size);
252b5132 10826}
252b5132 10827\f
6d4af3c2 10828const char *
499ac353 10829md_atof (int type, char *litP, int *sizeP)
252b5132 10830{
499ac353
NC
10831 /* This outputs the LITTLENUMs in REVERSE order;
10832 in accord with the bigendian 386. */
10833 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
10834}
10835\f
2d545b82 10836static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 10837
252b5132 10838static char *
e3bb37b5 10839output_invalid (int c)
252b5132 10840{
3882b010 10841 if (ISPRINT (c))
f9f21a03
L
10842 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10843 "'%c'", c);
252b5132 10844 else
f9f21a03 10845 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 10846 "(0x%x)", (unsigned char) c);
252b5132
RH
10847 return output_invalid_buf;
10848}
10849
af6bdddf 10850/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
10851
10852static const reg_entry *
4d1bb795 10853parse_real_register (char *reg_string, char **end_op)
252b5132 10854{
af6bdddf
AM
10855 char *s = reg_string;
10856 char *p;
252b5132
RH
10857 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10858 const reg_entry *r;
10859
10860 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10861 if (*s == REGISTER_PREFIX)
10862 ++s;
10863
10864 if (is_space_char (*s))
10865 ++s;
10866
10867 p = reg_name_given;
af6bdddf 10868 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
10869 {
10870 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
10871 return (const reg_entry *) NULL;
10872 s++;
252b5132
RH
10873 }
10874
6588847e
DN
10875 /* For naked regs, make sure that we are not dealing with an identifier.
10876 This prevents confusing an identifier like `eax_var' with register
10877 `eax'. */
10878 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10879 return (const reg_entry *) NULL;
10880
af6bdddf 10881 *end_op = s;
252b5132
RH
10882
10883 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10884
5f47d35b 10885 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 10886 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 10887 {
0e0eea78
JB
10888 if (!cpu_arch_flags.bitfield.cpu8087
10889 && !cpu_arch_flags.bitfield.cpu287
10890 && !cpu_arch_flags.bitfield.cpu387)
10891 return (const reg_entry *) NULL;
10892
5f47d35b
AM
10893 if (is_space_char (*s))
10894 ++s;
10895 if (*s == '(')
10896 {
af6bdddf 10897 ++s;
5f47d35b
AM
10898 if (is_space_char (*s))
10899 ++s;
10900 if (*s >= '0' && *s <= '7')
10901 {
db557034 10902 int fpr = *s - '0';
af6bdddf 10903 ++s;
5f47d35b
AM
10904 if (is_space_char (*s))
10905 ++s;
10906 if (*s == ')')
10907 {
10908 *end_op = s + 1;
1e9cc1c2 10909 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
10910 know (r);
10911 return r + fpr;
5f47d35b 10912 }
5f47d35b 10913 }
47926f60 10914 /* We have "%st(" then garbage. */
5f47d35b
AM
10915 return (const reg_entry *) NULL;
10916 }
10917 }
10918
a60de03c
JB
10919 if (r == NULL || allow_pseudo_reg)
10920 return r;
10921
0dfbf9d7 10922 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
10923 return (const reg_entry *) NULL;
10924
dc821c5f 10925 if ((r->reg_type.bitfield.dword
00cee14f 10926 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
4a5c67ed
JB
10927 || r->reg_type.bitfield.class == RegCR
10928 || r->reg_type.bitfield.class == RegDR
10929 || r->reg_type.bitfield.class == RegTR)
192dc9c6
JB
10930 && !cpu_arch_flags.bitfield.cpui386)
10931 return (const reg_entry *) NULL;
10932
3528c362 10933 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
192dc9c6
JB
10934 return (const reg_entry *) NULL;
10935
6e041cf4
JB
10936 if (!cpu_arch_flags.bitfield.cpuavx512f)
10937 {
10938 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10939 return (const reg_entry *) NULL;
40f12533 10940
6e041cf4
JB
10941 if (!cpu_arch_flags.bitfield.cpuavx)
10942 {
10943 if (r->reg_type.bitfield.ymmword)
10944 return (const reg_entry *) NULL;
1848e567 10945
6e041cf4
JB
10946 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10947 return (const reg_entry *) NULL;
10948 }
10949 }
43234a1e 10950
1adf7f56
JB
10951 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10952 return (const reg_entry *) NULL;
10953
db51cc60 10954 /* Don't allow fake index register unless allow_index_reg isn't 0. */
e968fc9b 10955 if (!allow_index_reg && r->reg_num == RegIZ)
db51cc60
L
10956 return (const reg_entry *) NULL;
10957
1d3f8286
JB
10958 /* Upper 16 vector registers are only available with VREX in 64bit
10959 mode, and require EVEX encoding. */
10960 if (r->reg_flags & RegVRex)
43234a1e 10961 {
e951d5ca 10962 if (!cpu_arch_flags.bitfield.cpuavx512f
43234a1e
L
10963 || flag_code != CODE_64BIT)
10964 return (const reg_entry *) NULL;
1d3f8286
JB
10965
10966 i.vec_encoding = vex_encoding_evex;
43234a1e
L
10967 }
10968
4787f4a5 10969 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
4a5c67ed 10970 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
1ae00879 10971 && flag_code != CODE_64BIT)
20f0a1fc 10972 return (const reg_entry *) NULL;
1ae00879 10973
00cee14f
JB
10974 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
10975 && !intel_syntax)
b7240065
JB
10976 return (const reg_entry *) NULL;
10977
252b5132
RH
10978 return r;
10979}
4d1bb795
JB
10980
10981/* REG_STRING starts *before* REGISTER_PREFIX. */
10982
10983static const reg_entry *
10984parse_register (char *reg_string, char **end_op)
10985{
10986 const reg_entry *r;
10987
10988 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10989 r = parse_real_register (reg_string, end_op);
10990 else
10991 r = NULL;
10992 if (!r)
10993 {
10994 char *save = input_line_pointer;
10995 char c;
10996 symbolS *symbolP;
10997
10998 input_line_pointer = reg_string;
d02603dc 10999 c = get_symbol_name (&reg_string);
4d1bb795
JB
11000 symbolP = symbol_find (reg_string);
11001 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
11002 {
11003 const expressionS *e = symbol_get_value_expression (symbolP);
11004
0398aac5 11005 know (e->X_op == O_register);
4eed87de 11006 know (e->X_add_number >= 0
c3fe08fa 11007 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 11008 r = i386_regtab + e->X_add_number;
d3bb6b49 11009 if ((r->reg_flags & RegVRex))
86fa6981 11010 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
11011 *end_op = input_line_pointer;
11012 }
11013 *input_line_pointer = c;
11014 input_line_pointer = save;
11015 }
11016 return r;
11017}
11018
11019int
11020i386_parse_name (char *name, expressionS *e, char *nextcharP)
11021{
11022 const reg_entry *r;
11023 char *end = input_line_pointer;
11024
11025 *end = *nextcharP;
11026 r = parse_register (name, &input_line_pointer);
11027 if (r && end <= input_line_pointer)
11028 {
11029 *nextcharP = *input_line_pointer;
11030 *input_line_pointer = 0;
11031 e->X_op = O_register;
11032 e->X_add_number = r - i386_regtab;
11033 return 1;
11034 }
11035 input_line_pointer = end;
11036 *end = 0;
ee86248c 11037 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
11038}
11039
11040void
11041md_operand (expressionS *e)
11042{
ee86248c
JB
11043 char *end;
11044 const reg_entry *r;
4d1bb795 11045
ee86248c
JB
11046 switch (*input_line_pointer)
11047 {
11048 case REGISTER_PREFIX:
11049 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
11050 if (r)
11051 {
11052 e->X_op = O_register;
11053 e->X_add_number = r - i386_regtab;
11054 input_line_pointer = end;
11055 }
ee86248c
JB
11056 break;
11057
11058 case '[':
9c2799c2 11059 gas_assert (intel_syntax);
ee86248c
JB
11060 end = input_line_pointer++;
11061 expression (e);
11062 if (*input_line_pointer == ']')
11063 {
11064 ++input_line_pointer;
11065 e->X_op_symbol = make_expr_symbol (e);
11066 e->X_add_symbol = NULL;
11067 e->X_add_number = 0;
11068 e->X_op = O_index;
11069 }
11070 else
11071 {
11072 e->X_op = O_absent;
11073 input_line_pointer = end;
11074 }
11075 break;
4d1bb795
JB
11076 }
11077}
11078
252b5132 11079\f
4cc782b5 11080#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 11081const char *md_shortopts = "kVQ:sqnO::";
252b5132 11082#else
b6f8c7c4 11083const char *md_shortopts = "qnO::";
252b5132 11084#endif
6e0b89ee 11085
3e73aa7c 11086#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
11087#define OPTION_64 (OPTION_MD_BASE + 1)
11088#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
11089#define OPTION_MARCH (OPTION_MD_BASE + 3)
11090#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
11091#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
11092#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
11093#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
11094#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 11095#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 11096#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 11097#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
11098#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
11099#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
11100#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 11101#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
11102#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
11103#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 11104#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 11105#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 11106#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 11107#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
11108#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
11109#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 11110#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b4a3a7b4 11111#define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
03751133 11112#define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
b3b91714 11113
99ad8390
NC
11114struct option md_longopts[] =
11115{
3e73aa7c 11116 {"32", no_argument, NULL, OPTION_32},
321098a5 11117#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 11118 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 11119 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
11120#endif
11121#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 11122 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 11123 {"mshared", no_argument, NULL, OPTION_MSHARED},
b4a3a7b4 11124 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
6e0b89ee 11125#endif
b3b91714 11126 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
11127 {"march", required_argument, NULL, OPTION_MARCH},
11128 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
11129 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
11130 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
11131 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
11132 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 11133 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 11134 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 11135 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 11136 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
03751133 11137 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
7e8b059b 11138 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
11139 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
11140 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
11141# if defined (TE_PE) || defined (TE_PEP)
11142 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
11143#endif
d1982f93 11144 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 11145 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 11146 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 11147 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
11148 {"mamd64", no_argument, NULL, OPTION_MAMD64},
11149 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
11150 {NULL, no_argument, NULL, 0}
11151};
11152size_t md_longopts_size = sizeof (md_longopts);
11153
11154int
17b9d67d 11155md_parse_option (int c, const char *arg)
252b5132 11156{
91d6fa6a 11157 unsigned int j;
293f5f65 11158 char *arch, *next, *saved;
9103f4f4 11159
252b5132
RH
11160 switch (c)
11161 {
12b55ccc
L
11162 case 'n':
11163 optimize_align_code = 0;
11164 break;
11165
a38cf1db
AM
11166 case 'q':
11167 quiet_warnings = 1;
252b5132
RH
11168 break;
11169
11170#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
11171 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
11172 should be emitted or not. FIXME: Not implemented. */
11173 case 'Q':
d4693039
JB
11174 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
11175 return 0;
252b5132
RH
11176 break;
11177
11178 /* -V: SVR4 argument to print version ID. */
11179 case 'V':
11180 print_version_id ();
11181 break;
11182
a38cf1db
AM
11183 /* -k: Ignore for FreeBSD compatibility. */
11184 case 'k':
252b5132 11185 break;
4cc782b5
ILT
11186
11187 case 's':
11188 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 11189 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 11190 break;
8dcea932
L
11191
11192 case OPTION_MSHARED:
11193 shared = 1;
11194 break;
b4a3a7b4
L
11195
11196 case OPTION_X86_USED_NOTE:
11197 if (strcasecmp (arg, "yes") == 0)
11198 x86_used_note = 1;
11199 else if (strcasecmp (arg, "no") == 0)
11200 x86_used_note = 0;
11201 else
11202 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
11203 break;
11204
11205
99ad8390 11206#endif
321098a5 11207#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 11208 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
11209 case OPTION_64:
11210 {
11211 const char **list, **l;
11212
3e73aa7c
JH
11213 list = bfd_target_list ();
11214 for (l = list; *l != NULL; l++)
8620418b 11215 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
11216 || strcmp (*l, "coff-x86-64") == 0
11217 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
11218 || strcmp (*l, "pei-x86-64") == 0
11219 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
11220 {
11221 default_arch = "x86_64";
11222 break;
11223 }
3e73aa7c 11224 if (*l == NULL)
2b5d6a91 11225 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
11226 free (list);
11227 }
11228 break;
11229#endif
252b5132 11230
351f65ca 11231#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 11232 case OPTION_X32:
351f65ca
L
11233 if (IS_ELF)
11234 {
11235 const char **list, **l;
11236
11237 list = bfd_target_list ();
11238 for (l = list; *l != NULL; l++)
11239 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11240 {
11241 default_arch = "x86_64:32";
11242 break;
11243 }
11244 if (*l == NULL)
2b5d6a91 11245 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
11246 free (list);
11247 }
11248 else
11249 as_fatal (_("32bit x86_64 is only supported for ELF"));
11250 break;
11251#endif
11252
6e0b89ee
AM
11253 case OPTION_32:
11254 default_arch = "i386";
11255 break;
11256
b3b91714
AM
11257 case OPTION_DIVIDE:
11258#ifdef SVR4_COMMENT_CHARS
11259 {
11260 char *n, *t;
11261 const char *s;
11262
add39d23 11263 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
11264 t = n;
11265 for (s = i386_comment_chars; *s != '\0'; s++)
11266 if (*s != '/')
11267 *t++ = *s;
11268 *t = '\0';
11269 i386_comment_chars = n;
11270 }
11271#endif
11272 break;
11273
9103f4f4 11274 case OPTION_MARCH:
293f5f65
L
11275 saved = xstrdup (arg);
11276 arch = saved;
11277 /* Allow -march=+nosse. */
11278 if (*arch == '+')
11279 arch++;
6305a203 11280 do
9103f4f4 11281 {
6305a203 11282 if (*arch == '.')
2b5d6a91 11283 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11284 next = strchr (arch, '+');
11285 if (next)
11286 *next++ = '\0';
91d6fa6a 11287 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11288 {
91d6fa6a 11289 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 11290 {
6305a203 11291 /* Processor. */
1ded5609
JB
11292 if (! cpu_arch[j].flags.bitfield.cpui386)
11293 continue;
11294
91d6fa6a 11295 cpu_arch_name = cpu_arch[j].name;
6305a203 11296 cpu_sub_arch_name = NULL;
91d6fa6a
NC
11297 cpu_arch_flags = cpu_arch[j].flags;
11298 cpu_arch_isa = cpu_arch[j].type;
11299 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
11300 if (!cpu_arch_tune_set)
11301 {
11302 cpu_arch_tune = cpu_arch_isa;
11303 cpu_arch_tune_flags = cpu_arch_isa_flags;
11304 }
11305 break;
11306 }
91d6fa6a
NC
11307 else if (*cpu_arch [j].name == '.'
11308 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 11309 {
33eaf5de 11310 /* ISA extension. */
6305a203 11311 i386_cpu_flags flags;
309d3373 11312
293f5f65
L
11313 flags = cpu_flags_or (cpu_arch_flags,
11314 cpu_arch[j].flags);
81486035 11315
5b64d091 11316 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
11317 {
11318 if (cpu_sub_arch_name)
11319 {
11320 char *name = cpu_sub_arch_name;
11321 cpu_sub_arch_name = concat (name,
91d6fa6a 11322 cpu_arch[j].name,
1bf57e9f 11323 (const char *) NULL);
6305a203
L
11324 free (name);
11325 }
11326 else
91d6fa6a 11327 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 11328 cpu_arch_flags = flags;
a586129e 11329 cpu_arch_isa_flags = flags;
6305a203 11330 }
0089dace
L
11331 else
11332 cpu_arch_isa_flags
11333 = cpu_flags_or (cpu_arch_isa_flags,
11334 cpu_arch[j].flags);
6305a203 11335 break;
ccc9c027 11336 }
9103f4f4 11337 }
6305a203 11338
293f5f65
L
11339 if (j >= ARRAY_SIZE (cpu_arch))
11340 {
33eaf5de 11341 /* Disable an ISA extension. */
293f5f65
L
11342 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11343 if (strcmp (arch, cpu_noarch [j].name) == 0)
11344 {
11345 i386_cpu_flags flags;
11346
11347 flags = cpu_flags_and_not (cpu_arch_flags,
11348 cpu_noarch[j].flags);
11349 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11350 {
11351 if (cpu_sub_arch_name)
11352 {
11353 char *name = cpu_sub_arch_name;
11354 cpu_sub_arch_name = concat (arch,
11355 (const char *) NULL);
11356 free (name);
11357 }
11358 else
11359 cpu_sub_arch_name = xstrdup (arch);
11360 cpu_arch_flags = flags;
11361 cpu_arch_isa_flags = flags;
11362 }
11363 break;
11364 }
11365
11366 if (j >= ARRAY_SIZE (cpu_noarch))
11367 j = ARRAY_SIZE (cpu_arch);
11368 }
11369
91d6fa6a 11370 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11371 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11372
11373 arch = next;
9103f4f4 11374 }
293f5f65
L
11375 while (next != NULL);
11376 free (saved);
9103f4f4
L
11377 break;
11378
11379 case OPTION_MTUNE:
11380 if (*arg == '.')
2b5d6a91 11381 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 11382 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11383 {
91d6fa6a 11384 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 11385 {
ccc9c027 11386 cpu_arch_tune_set = 1;
91d6fa6a
NC
11387 cpu_arch_tune = cpu_arch [j].type;
11388 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
11389 break;
11390 }
11391 }
91d6fa6a 11392 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11393 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
11394 break;
11395
1efbbeb4
L
11396 case OPTION_MMNEMONIC:
11397 if (strcasecmp (arg, "att") == 0)
11398 intel_mnemonic = 0;
11399 else if (strcasecmp (arg, "intel") == 0)
11400 intel_mnemonic = 1;
11401 else
2b5d6a91 11402 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
11403 break;
11404
11405 case OPTION_MSYNTAX:
11406 if (strcasecmp (arg, "att") == 0)
11407 intel_syntax = 0;
11408 else if (strcasecmp (arg, "intel") == 0)
11409 intel_syntax = 1;
11410 else
2b5d6a91 11411 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
11412 break;
11413
11414 case OPTION_MINDEX_REG:
11415 allow_index_reg = 1;
11416 break;
11417
11418 case OPTION_MNAKED_REG:
11419 allow_naked_reg = 1;
11420 break;
11421
c0f3af97
L
11422 case OPTION_MSSE2AVX:
11423 sse2avx = 1;
11424 break;
11425
daf50ae7
L
11426 case OPTION_MSSE_CHECK:
11427 if (strcasecmp (arg, "error") == 0)
7bab8ab5 11428 sse_check = check_error;
daf50ae7 11429 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 11430 sse_check = check_warning;
daf50ae7 11431 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 11432 sse_check = check_none;
daf50ae7 11433 else
2b5d6a91 11434 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
11435 break;
11436
7bab8ab5
JB
11437 case OPTION_MOPERAND_CHECK:
11438 if (strcasecmp (arg, "error") == 0)
11439 operand_check = check_error;
11440 else if (strcasecmp (arg, "warning") == 0)
11441 operand_check = check_warning;
11442 else if (strcasecmp (arg, "none") == 0)
11443 operand_check = check_none;
11444 else
11445 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11446 break;
11447
539f890d
L
11448 case OPTION_MAVXSCALAR:
11449 if (strcasecmp (arg, "128") == 0)
11450 avxscalar = vex128;
11451 else if (strcasecmp (arg, "256") == 0)
11452 avxscalar = vex256;
11453 else
2b5d6a91 11454 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
11455 break;
11456
03751133
L
11457 case OPTION_MVEXWIG:
11458 if (strcmp (arg, "0") == 0)
40c9c8de 11459 vexwig = vexw0;
03751133 11460 else if (strcmp (arg, "1") == 0)
40c9c8de 11461 vexwig = vexw1;
03751133
L
11462 else
11463 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
11464 break;
11465
7e8b059b
L
11466 case OPTION_MADD_BND_PREFIX:
11467 add_bnd_prefix = 1;
11468 break;
11469
43234a1e
L
11470 case OPTION_MEVEXLIG:
11471 if (strcmp (arg, "128") == 0)
11472 evexlig = evexl128;
11473 else if (strcmp (arg, "256") == 0)
11474 evexlig = evexl256;
11475 else if (strcmp (arg, "512") == 0)
11476 evexlig = evexl512;
11477 else
11478 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11479 break;
11480
d3d3c6db
IT
11481 case OPTION_MEVEXRCIG:
11482 if (strcmp (arg, "rne") == 0)
11483 evexrcig = rne;
11484 else if (strcmp (arg, "rd") == 0)
11485 evexrcig = rd;
11486 else if (strcmp (arg, "ru") == 0)
11487 evexrcig = ru;
11488 else if (strcmp (arg, "rz") == 0)
11489 evexrcig = rz;
11490 else
11491 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11492 break;
11493
43234a1e
L
11494 case OPTION_MEVEXWIG:
11495 if (strcmp (arg, "0") == 0)
11496 evexwig = evexw0;
11497 else if (strcmp (arg, "1") == 0)
11498 evexwig = evexw1;
11499 else
11500 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11501 break;
11502
167ad85b
TG
11503# if defined (TE_PE) || defined (TE_PEP)
11504 case OPTION_MBIG_OBJ:
11505 use_big_obj = 1;
11506 break;
11507#endif
11508
d1982f93 11509 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
11510 if (strcasecmp (arg, "yes") == 0)
11511 omit_lock_prefix = 1;
11512 else if (strcasecmp (arg, "no") == 0)
11513 omit_lock_prefix = 0;
11514 else
11515 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11516 break;
11517
e4e00185
AS
11518 case OPTION_MFENCE_AS_LOCK_ADD:
11519 if (strcasecmp (arg, "yes") == 0)
11520 avoid_fence = 1;
11521 else if (strcasecmp (arg, "no") == 0)
11522 avoid_fence = 0;
11523 else
11524 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11525 break;
11526
0cb4071e
L
11527 case OPTION_MRELAX_RELOCATIONS:
11528 if (strcasecmp (arg, "yes") == 0)
11529 generate_relax_relocations = 1;
11530 else if (strcasecmp (arg, "no") == 0)
11531 generate_relax_relocations = 0;
11532 else
11533 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11534 break;
11535
5db04b09 11536 case OPTION_MAMD64:
e89c5eaa 11537 intel64 = 0;
5db04b09
L
11538 break;
11539
11540 case OPTION_MINTEL64:
e89c5eaa 11541 intel64 = 1;
5db04b09
L
11542 break;
11543
b6f8c7c4
L
11544 case 'O':
11545 if (arg == NULL)
11546 {
11547 optimize = 1;
11548 /* Turn off -Os. */
11549 optimize_for_space = 0;
11550 }
11551 else if (*arg == 's')
11552 {
11553 optimize_for_space = 1;
11554 /* Turn on all encoding optimizations. */
41fd2579 11555 optimize = INT_MAX;
b6f8c7c4
L
11556 }
11557 else
11558 {
11559 optimize = atoi (arg);
11560 /* Turn off -Os. */
11561 optimize_for_space = 0;
11562 }
11563 break;
11564
252b5132
RH
11565 default:
11566 return 0;
11567 }
11568 return 1;
11569}
11570
8a2c8fef
L
11571#define MESSAGE_TEMPLATE \
11572" "
11573
293f5f65
L
11574static char *
11575output_message (FILE *stream, char *p, char *message, char *start,
11576 int *left_p, const char *name, int len)
11577{
11578 int size = sizeof (MESSAGE_TEMPLATE);
11579 int left = *left_p;
11580
11581 /* Reserve 2 spaces for ", " or ",\0" */
11582 left -= len + 2;
11583
11584 /* Check if there is any room. */
11585 if (left >= 0)
11586 {
11587 if (p != start)
11588 {
11589 *p++ = ',';
11590 *p++ = ' ';
11591 }
11592 p = mempcpy (p, name, len);
11593 }
11594 else
11595 {
11596 /* Output the current message now and start a new one. */
11597 *p++ = ',';
11598 *p = '\0';
11599 fprintf (stream, "%s\n", message);
11600 p = start;
11601 left = size - (start - message) - len - 2;
11602
11603 gas_assert (left >= 0);
11604
11605 p = mempcpy (p, name, len);
11606 }
11607
11608 *left_p = left;
11609 return p;
11610}
11611
8a2c8fef 11612static void
1ded5609 11613show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
11614{
11615 static char message[] = MESSAGE_TEMPLATE;
11616 char *start = message + 27;
11617 char *p;
11618 int size = sizeof (MESSAGE_TEMPLATE);
11619 int left;
11620 const char *name;
11621 int len;
11622 unsigned int j;
11623
11624 p = start;
11625 left = size - (start - message);
11626 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11627 {
11628 /* Should it be skipped? */
11629 if (cpu_arch [j].skip)
11630 continue;
11631
11632 name = cpu_arch [j].name;
11633 len = cpu_arch [j].len;
11634 if (*name == '.')
11635 {
11636 /* It is an extension. Skip if we aren't asked to show it. */
11637 if (ext)
11638 {
11639 name++;
11640 len--;
11641 }
11642 else
11643 continue;
11644 }
11645 else if (ext)
11646 {
11647 /* It is an processor. Skip if we show only extension. */
11648 continue;
11649 }
1ded5609
JB
11650 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11651 {
11652 /* It is an impossible processor - skip. */
11653 continue;
11654 }
8a2c8fef 11655
293f5f65 11656 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
11657 }
11658
293f5f65
L
11659 /* Display disabled extensions. */
11660 if (ext)
11661 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11662 {
11663 name = cpu_noarch [j].name;
11664 len = cpu_noarch [j].len;
11665 p = output_message (stream, p, message, start, &left, name,
11666 len);
11667 }
11668
8a2c8fef
L
11669 *p = '\0';
11670 fprintf (stream, "%s\n", message);
11671}
11672
252b5132 11673void
8a2c8fef 11674md_show_usage (FILE *stream)
252b5132 11675{
4cc782b5
ILT
11676#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11677 fprintf (stream, _("\
d4693039 11678 -Qy, -Qn ignored\n\
a38cf1db 11679 -V print assembler version number\n\
b3b91714
AM
11680 -k ignored\n"));
11681#endif
11682 fprintf (stream, _("\
12b55ccc 11683 -n Do not optimize code alignment\n\
b3b91714
AM
11684 -q quieten some warnings\n"));
11685#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11686 fprintf (stream, _("\
a38cf1db 11687 -s ignored\n"));
b3b91714 11688#endif
d7f449c0
L
11689#if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11690 || defined (TE_PE) || defined (TE_PEP))
751d281c 11691 fprintf (stream, _("\
570561f7 11692 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 11693#endif
b3b91714
AM
11694#ifdef SVR4_COMMENT_CHARS
11695 fprintf (stream, _("\
11696 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
11697#else
11698 fprintf (stream, _("\
b3b91714 11699 --divide ignored\n"));
4cc782b5 11700#endif
9103f4f4 11701 fprintf (stream, _("\
6305a203 11702 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 11703 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 11704 show_arch (stream, 0, 1);
8a2c8fef
L
11705 fprintf (stream, _("\
11706 EXTENSION is combination of:\n"));
1ded5609 11707 show_arch (stream, 1, 0);
6305a203 11708 fprintf (stream, _("\
8a2c8fef 11709 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 11710 show_arch (stream, 0, 0);
ba104c83 11711 fprintf (stream, _("\
c0f3af97
L
11712 -msse2avx encode SSE instructions with VEX prefix\n"));
11713 fprintf (stream, _("\
7c5c05ef 11714 -msse-check=[none|error|warning] (default: warning)\n\
daf50ae7
L
11715 check SSE instructions\n"));
11716 fprintf (stream, _("\
7c5c05ef 11717 -moperand-check=[none|error|warning] (default: warning)\n\
7bab8ab5
JB
11718 check operand combinations for validity\n"));
11719 fprintf (stream, _("\
7c5c05ef
L
11720 -mavxscalar=[128|256] (default: 128)\n\
11721 encode scalar AVX instructions with specific vector\n\
539f890d
L
11722 length\n"));
11723 fprintf (stream, _("\
03751133
L
11724 -mvexwig=[0|1] (default: 0)\n\
11725 encode VEX instructions with specific VEX.W value\n\
11726 for VEX.W bit ignored instructions\n"));
11727 fprintf (stream, _("\
7c5c05ef
L
11728 -mevexlig=[128|256|512] (default: 128)\n\
11729 encode scalar EVEX instructions with specific vector\n\
43234a1e
L
11730 length\n"));
11731 fprintf (stream, _("\
7c5c05ef
L
11732 -mevexwig=[0|1] (default: 0)\n\
11733 encode EVEX instructions with specific EVEX.W value\n\
43234a1e
L
11734 for EVEX.W bit ignored instructions\n"));
11735 fprintf (stream, _("\
7c5c05ef 11736 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
d3d3c6db
IT
11737 encode EVEX instructions with specific EVEX.RC value\n\
11738 for SAE-only ignored instructions\n"));
11739 fprintf (stream, _("\
7c5c05ef
L
11740 -mmnemonic=[att|intel] "));
11741 if (SYSV386_COMPAT)
11742 fprintf (stream, _("(default: att)\n"));
11743 else
11744 fprintf (stream, _("(default: intel)\n"));
11745 fprintf (stream, _("\
11746 use AT&T/Intel mnemonic\n"));
ba104c83 11747 fprintf (stream, _("\
7c5c05ef
L
11748 -msyntax=[att|intel] (default: att)\n\
11749 use AT&T/Intel syntax\n"));
ba104c83
L
11750 fprintf (stream, _("\
11751 -mindex-reg support pseudo index registers\n"));
11752 fprintf (stream, _("\
11753 -mnaked-reg don't require `%%' prefix for registers\n"));
11754 fprintf (stream, _("\
7e8b059b 11755 -madd-bnd-prefix add BND prefix for all valid branches\n"));
b4a3a7b4 11756#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8dcea932
L
11757 fprintf (stream, _("\
11758 -mshared disable branch optimization for shared code\n"));
b4a3a7b4
L
11759 fprintf (stream, _("\
11760 -mx86-used-note=[no|yes] "));
11761 if (DEFAULT_X86_USED_NOTE)
11762 fprintf (stream, _("(default: yes)\n"));
11763 else
11764 fprintf (stream, _("(default: no)\n"));
11765 fprintf (stream, _("\
11766 generate x86 used ISA and feature properties\n"));
11767#endif
11768#if defined (TE_PE) || defined (TE_PEP)
167ad85b
TG
11769 fprintf (stream, _("\
11770 -mbig-obj generate big object files\n"));
11771#endif
d022bddd 11772 fprintf (stream, _("\
7c5c05ef 11773 -momit-lock-prefix=[no|yes] (default: no)\n\
d022bddd 11774 strip all lock prefixes\n"));
5db04b09 11775 fprintf (stream, _("\
7c5c05ef 11776 -mfence-as-lock-add=[no|yes] (default: no)\n\
e4e00185
AS
11777 encode lfence, mfence and sfence as\n\
11778 lock addl $0x0, (%%{re}sp)\n"));
11779 fprintf (stream, _("\
7c5c05ef
L
11780 -mrelax-relocations=[no|yes] "));
11781 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11782 fprintf (stream, _("(default: yes)\n"));
11783 else
11784 fprintf (stream, _("(default: no)\n"));
11785 fprintf (stream, _("\
0cb4071e
L
11786 generate relax relocations\n"));
11787 fprintf (stream, _("\
7c5c05ef 11788 -mamd64 accept only AMD64 ISA [default]\n"));
5db04b09
L
11789 fprintf (stream, _("\
11790 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
11791}
11792
3e73aa7c 11793#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 11794 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 11795 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
11796
11797/* Pick the target format to use. */
11798
47926f60 11799const char *
e3bb37b5 11800i386_target_format (void)
252b5132 11801{
351f65ca
L
11802 if (!strncmp (default_arch, "x86_64", 6))
11803 {
11804 update_code_flag (CODE_64BIT, 1);
11805 if (default_arch[6] == '\0')
7f56bc95 11806 x86_elf_abi = X86_64_ABI;
351f65ca 11807 else
7f56bc95 11808 x86_elf_abi = X86_64_X32_ABI;
351f65ca 11809 }
3e73aa7c 11810 else if (!strcmp (default_arch, "i386"))
78f12dd3 11811 update_code_flag (CODE_32BIT, 1);
5197d474
L
11812 else if (!strcmp (default_arch, "iamcu"))
11813 {
11814 update_code_flag (CODE_32BIT, 1);
11815 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11816 {
11817 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11818 cpu_arch_name = "iamcu";
11819 cpu_sub_arch_name = NULL;
11820 cpu_arch_flags = iamcu_flags;
11821 cpu_arch_isa = PROCESSOR_IAMCU;
11822 cpu_arch_isa_flags = iamcu_flags;
11823 if (!cpu_arch_tune_set)
11824 {
11825 cpu_arch_tune = cpu_arch_isa;
11826 cpu_arch_tune_flags = cpu_arch_isa_flags;
11827 }
11828 }
8d471ec1 11829 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
11830 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11831 cpu_arch_name);
11832 }
3e73aa7c 11833 else
2b5d6a91 11834 as_fatal (_("unknown architecture"));
89507696
JB
11835
11836 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11837 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11838 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11839 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11840
252b5132
RH
11841 switch (OUTPUT_FLAVOR)
11842 {
9384f2ff 11843#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 11844 case bfd_target_aout_flavour:
47926f60 11845 return AOUT_TARGET_FORMAT;
4c63da97 11846#endif
9384f2ff
AM
11847#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11848# if defined (TE_PE) || defined (TE_PEP)
11849 case bfd_target_coff_flavour:
167ad85b
TG
11850 if (flag_code == CODE_64BIT)
11851 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11852 else
11853 return "pe-i386";
9384f2ff 11854# elif defined (TE_GO32)
0561d57c
JK
11855 case bfd_target_coff_flavour:
11856 return "coff-go32";
9384f2ff 11857# else
252b5132
RH
11858 case bfd_target_coff_flavour:
11859 return "coff-i386";
9384f2ff 11860# endif
4c63da97 11861#endif
3e73aa7c 11862#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 11863 case bfd_target_elf_flavour:
3e73aa7c 11864 {
351f65ca
L
11865 const char *format;
11866
11867 switch (x86_elf_abi)
4fa24527 11868 {
351f65ca
L
11869 default:
11870 format = ELF_TARGET_FORMAT;
11871 break;
7f56bc95 11872 case X86_64_ABI:
351f65ca 11873 use_rela_relocations = 1;
4fa24527 11874 object_64bit = 1;
351f65ca
L
11875 format = ELF_TARGET_FORMAT64;
11876 break;
7f56bc95 11877 case X86_64_X32_ABI:
4fa24527 11878 use_rela_relocations = 1;
351f65ca 11879 object_64bit = 1;
862be3fb 11880 disallow_64bit_reloc = 1;
351f65ca
L
11881 format = ELF_TARGET_FORMAT32;
11882 break;
4fa24527 11883 }
3632d14b 11884 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 11885 {
7f56bc95 11886 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
11887 as_fatal (_("Intel L1OM is 64bit only"));
11888 return ELF_TARGET_L1OM_FORMAT;
11889 }
b49f93f6 11890 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
11891 {
11892 if (x86_elf_abi != X86_64_ABI)
11893 as_fatal (_("Intel K1OM is 64bit only"));
11894 return ELF_TARGET_K1OM_FORMAT;
11895 }
81486035
L
11896 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11897 {
11898 if (x86_elf_abi != I386_ABI)
11899 as_fatal (_("Intel MCU is 32bit only"));
11900 return ELF_TARGET_IAMCU_FORMAT;
11901 }
8a9036a4 11902 else
351f65ca 11903 return format;
3e73aa7c 11904 }
e57f8c65
TG
11905#endif
11906#if defined (OBJ_MACH_O)
11907 case bfd_target_mach_o_flavour:
d382c579
TG
11908 if (flag_code == CODE_64BIT)
11909 {
11910 use_rela_relocations = 1;
11911 object_64bit = 1;
11912 return "mach-o-x86-64";
11913 }
11914 else
11915 return "mach-o-i386";
4c63da97 11916#endif
252b5132
RH
11917 default:
11918 abort ();
11919 return NULL;
11920 }
11921}
11922
47926f60 11923#endif /* OBJ_MAYBE_ more than one */
252b5132 11924\f
252b5132 11925symbolS *
7016a5d5 11926md_undefined_symbol (char *name)
252b5132 11927{
18dc2407
ILT
11928 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11929 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11930 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11931 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
11932 {
11933 if (!GOT_symbol)
11934 {
11935 if (symbol_find (name))
11936 as_bad (_("GOT already in symbol table"));
11937 GOT_symbol = symbol_new (name, undefined_section,
11938 (valueT) 0, &zero_address_frag);
11939 };
11940 return GOT_symbol;
11941 }
252b5132
RH
11942 return 0;
11943}
11944
11945/* Round up a section size to the appropriate boundary. */
47926f60 11946
252b5132 11947valueT
7016a5d5 11948md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 11949{
4c63da97
AM
11950#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11951 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11952 {
11953 /* For a.out, force the section size to be aligned. If we don't do
11954 this, BFD will align it for us, but it will not write out the
11955 final bytes of the section. This may be a bug in BFD, but it is
11956 easier to fix it here since that is how the other a.out targets
11957 work. */
11958 int align;
11959
fd361982 11960 align = bfd_section_alignment (segment);
8d3842cd 11961 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 11962 }
252b5132
RH
11963#endif
11964
11965 return size;
11966}
11967
11968/* On the i386, PC-relative offsets are relative to the start of the
11969 next instruction. That is, the address of the offset, plus its
11970 size, since the offset is always the last part of the insn. */
11971
11972long
e3bb37b5 11973md_pcrel_from (fixS *fixP)
252b5132
RH
11974{
11975 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11976}
11977
11978#ifndef I386COFF
11979
11980static void
e3bb37b5 11981s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 11982{
29b0f896 11983 int temp;
252b5132 11984
8a75718c
JB
11985#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11986 if (IS_ELF)
11987 obj_elf_section_change_hook ();
11988#endif
252b5132
RH
11989 temp = get_absolute_expression ();
11990 subseg_set (bss_section, (subsegT) temp);
11991 demand_empty_rest_of_line ();
11992}
11993
11994#endif
11995
252b5132 11996void
e3bb37b5 11997i386_validate_fix (fixS *fixp)
252b5132 11998{
02a86693 11999 if (fixp->fx_subsy)
252b5132 12000 {
02a86693 12001 if (fixp->fx_subsy == GOT_symbol)
23df1078 12002 {
02a86693
L
12003 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
12004 {
12005 if (!object_64bit)
12006 abort ();
12007#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12008 if (fixp->fx_tcbit2)
56ceb5b5
L
12009 fixp->fx_r_type = (fixp->fx_tcbit
12010 ? BFD_RELOC_X86_64_REX_GOTPCRELX
12011 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
12012 else
12013#endif
12014 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
12015 }
d6ab8113 12016 else
02a86693
L
12017 {
12018 if (!object_64bit)
12019 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
12020 else
12021 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
12022 }
12023 fixp->fx_subsy = 0;
23df1078 12024 }
252b5132 12025 }
02a86693
L
12026#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12027 else if (!object_64bit)
12028 {
12029 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
12030 && fixp->fx_tcbit2)
12031 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
12032 }
12033#endif
252b5132
RH
12034}
12035
252b5132 12036arelent *
7016a5d5 12037tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
12038{
12039 arelent *rel;
12040 bfd_reloc_code_real_type code;
12041
12042 switch (fixp->fx_r_type)
12043 {
8ce3d284 12044#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
12045 case BFD_RELOC_SIZE32:
12046 case BFD_RELOC_SIZE64:
12047 if (S_IS_DEFINED (fixp->fx_addsy)
12048 && !S_IS_EXTERNAL (fixp->fx_addsy))
12049 {
12050 /* Resolve size relocation against local symbol to size of
12051 the symbol plus addend. */
12052 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
12053 if (fixp->fx_r_type == BFD_RELOC_SIZE32
12054 && !fits_in_unsigned_long (value))
12055 as_bad_where (fixp->fx_file, fixp->fx_line,
12056 _("symbol size computation overflow"));
12057 fixp->fx_addsy = NULL;
12058 fixp->fx_subsy = NULL;
12059 md_apply_fix (fixp, (valueT *) &value, NULL);
12060 return NULL;
12061 }
8ce3d284 12062#endif
1a0670f3 12063 /* Fall through. */
8fd4256d 12064
3e73aa7c
JH
12065 case BFD_RELOC_X86_64_PLT32:
12066 case BFD_RELOC_X86_64_GOT32:
12067 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
12068 case BFD_RELOC_X86_64_GOTPCRELX:
12069 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
12070 case BFD_RELOC_386_PLT32:
12071 case BFD_RELOC_386_GOT32:
02a86693 12072 case BFD_RELOC_386_GOT32X:
252b5132
RH
12073 case BFD_RELOC_386_GOTOFF:
12074 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
12075 case BFD_RELOC_386_TLS_GD:
12076 case BFD_RELOC_386_TLS_LDM:
12077 case BFD_RELOC_386_TLS_LDO_32:
12078 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
12079 case BFD_RELOC_386_TLS_IE:
12080 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
12081 case BFD_RELOC_386_TLS_LE_32:
12082 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
12083 case BFD_RELOC_386_TLS_GOTDESC:
12084 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
12085 case BFD_RELOC_X86_64_TLSGD:
12086 case BFD_RELOC_X86_64_TLSLD:
12087 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 12088 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
12089 case BFD_RELOC_X86_64_GOTTPOFF:
12090 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
12091 case BFD_RELOC_X86_64_TPOFF64:
12092 case BFD_RELOC_X86_64_GOTOFF64:
12093 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
12094 case BFD_RELOC_X86_64_GOT64:
12095 case BFD_RELOC_X86_64_GOTPCREL64:
12096 case BFD_RELOC_X86_64_GOTPC64:
12097 case BFD_RELOC_X86_64_GOTPLT64:
12098 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
12099 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12100 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
12101 case BFD_RELOC_RVA:
12102 case BFD_RELOC_VTABLE_ENTRY:
12103 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
12104#ifdef TE_PE
12105 case BFD_RELOC_32_SECREL:
12106#endif
252b5132
RH
12107 code = fixp->fx_r_type;
12108 break;
dbbaec26
L
12109 case BFD_RELOC_X86_64_32S:
12110 if (!fixp->fx_pcrel)
12111 {
12112 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
12113 code = fixp->fx_r_type;
12114 break;
12115 }
1a0670f3 12116 /* Fall through. */
252b5132 12117 default:
93382f6d 12118 if (fixp->fx_pcrel)
252b5132 12119 {
93382f6d
AM
12120 switch (fixp->fx_size)
12121 {
12122 default:
b091f402
AM
12123 as_bad_where (fixp->fx_file, fixp->fx_line,
12124 _("can not do %d byte pc-relative relocation"),
12125 fixp->fx_size);
93382f6d
AM
12126 code = BFD_RELOC_32_PCREL;
12127 break;
12128 case 1: code = BFD_RELOC_8_PCREL; break;
12129 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 12130 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
12131#ifdef BFD64
12132 case 8: code = BFD_RELOC_64_PCREL; break;
12133#endif
93382f6d
AM
12134 }
12135 }
12136 else
12137 {
12138 switch (fixp->fx_size)
12139 {
12140 default:
b091f402
AM
12141 as_bad_where (fixp->fx_file, fixp->fx_line,
12142 _("can not do %d byte relocation"),
12143 fixp->fx_size);
93382f6d
AM
12144 code = BFD_RELOC_32;
12145 break;
12146 case 1: code = BFD_RELOC_8; break;
12147 case 2: code = BFD_RELOC_16; break;
12148 case 4: code = BFD_RELOC_32; break;
937149dd 12149#ifdef BFD64
3e73aa7c 12150 case 8: code = BFD_RELOC_64; break;
937149dd 12151#endif
93382f6d 12152 }
252b5132
RH
12153 }
12154 break;
12155 }
252b5132 12156
d182319b
JB
12157 if ((code == BFD_RELOC_32
12158 || code == BFD_RELOC_32_PCREL
12159 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
12160 && GOT_symbol
12161 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 12162 {
4fa24527 12163 if (!object_64bit)
d6ab8113
JB
12164 code = BFD_RELOC_386_GOTPC;
12165 else
12166 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 12167 }
7b81dfbb
AJ
12168 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
12169 && GOT_symbol
12170 && fixp->fx_addsy == GOT_symbol)
12171 {
12172 code = BFD_RELOC_X86_64_GOTPC64;
12173 }
252b5132 12174
add39d23
TS
12175 rel = XNEW (arelent);
12176 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 12177 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
12178
12179 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 12180
3e73aa7c
JH
12181 if (!use_rela_relocations)
12182 {
12183 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
12184 vtable entry to be used in the relocation's section offset. */
12185 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12186 rel->address = fixp->fx_offset;
fbeb56a4
DK
12187#if defined (OBJ_COFF) && defined (TE_PE)
12188 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
12189 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
12190 else
12191#endif
c6682705 12192 rel->addend = 0;
3e73aa7c
JH
12193 }
12194 /* Use the rela in 64bit mode. */
252b5132 12195 else
3e73aa7c 12196 {
862be3fb
L
12197 if (disallow_64bit_reloc)
12198 switch (code)
12199 {
862be3fb
L
12200 case BFD_RELOC_X86_64_DTPOFF64:
12201 case BFD_RELOC_X86_64_TPOFF64:
12202 case BFD_RELOC_64_PCREL:
12203 case BFD_RELOC_X86_64_GOTOFF64:
12204 case BFD_RELOC_X86_64_GOT64:
12205 case BFD_RELOC_X86_64_GOTPCREL64:
12206 case BFD_RELOC_X86_64_GOTPC64:
12207 case BFD_RELOC_X86_64_GOTPLT64:
12208 case BFD_RELOC_X86_64_PLTOFF64:
12209 as_bad_where (fixp->fx_file, fixp->fx_line,
12210 _("cannot represent relocation type %s in x32 mode"),
12211 bfd_get_reloc_code_name (code));
12212 break;
12213 default:
12214 break;
12215 }
12216
062cd5e7
AS
12217 if (!fixp->fx_pcrel)
12218 rel->addend = fixp->fx_offset;
12219 else
12220 switch (code)
12221 {
12222 case BFD_RELOC_X86_64_PLT32:
12223 case BFD_RELOC_X86_64_GOT32:
12224 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
12225 case BFD_RELOC_X86_64_GOTPCRELX:
12226 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
12227 case BFD_RELOC_X86_64_TLSGD:
12228 case BFD_RELOC_X86_64_TLSLD:
12229 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
12230 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12231 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
12232 rel->addend = fixp->fx_offset - fixp->fx_size;
12233 break;
12234 default:
12235 rel->addend = (section->vma
12236 - fixp->fx_size
12237 + fixp->fx_addnumber
12238 + md_pcrel_from (fixp));
12239 break;
12240 }
3e73aa7c
JH
12241 }
12242
252b5132
RH
12243 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12244 if (rel->howto == NULL)
12245 {
12246 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 12247 _("cannot represent relocation type %s"),
252b5132
RH
12248 bfd_get_reloc_code_name (code));
12249 /* Set howto to a garbage value so that we can keep going. */
12250 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 12251 gas_assert (rel->howto != NULL);
252b5132
RH
12252 }
12253
12254 return rel;
12255}
12256
ee86248c 12257#include "tc-i386-intel.c"
54cfded0 12258
a60de03c
JB
12259void
12260tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 12261{
a60de03c
JB
12262 int saved_naked_reg;
12263 char saved_register_dot;
54cfded0 12264
a60de03c
JB
12265 saved_naked_reg = allow_naked_reg;
12266 allow_naked_reg = 1;
12267 saved_register_dot = register_chars['.'];
12268 register_chars['.'] = '.';
12269 allow_pseudo_reg = 1;
12270 expression_and_evaluate (exp);
12271 allow_pseudo_reg = 0;
12272 register_chars['.'] = saved_register_dot;
12273 allow_naked_reg = saved_naked_reg;
12274
e96d56a1 12275 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 12276 {
a60de03c
JB
12277 if ((addressT) exp->X_add_number < i386_regtab_size)
12278 {
12279 exp->X_op = O_constant;
12280 exp->X_add_number = i386_regtab[exp->X_add_number]
12281 .dw2_regnum[flag_code >> 1];
12282 }
12283 else
12284 exp->X_op = O_illegal;
54cfded0 12285 }
54cfded0
AM
12286}
12287
12288void
12289tc_x86_frame_initial_instructions (void)
12290{
a60de03c
JB
12291 static unsigned int sp_regno[2];
12292
12293 if (!sp_regno[flag_code >> 1])
12294 {
12295 char *saved_input = input_line_pointer;
12296 char sp[][4] = {"esp", "rsp"};
12297 expressionS exp;
a4447b93 12298
a60de03c
JB
12299 input_line_pointer = sp[flag_code >> 1];
12300 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 12301 gas_assert (exp.X_op == O_constant);
a60de03c
JB
12302 sp_regno[flag_code >> 1] = exp.X_add_number;
12303 input_line_pointer = saved_input;
12304 }
a4447b93 12305
61ff971f
L
12306 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12307 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 12308}
d2b2c203 12309
d7921315
L
12310int
12311x86_dwarf2_addr_size (void)
12312{
12313#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12314 if (x86_elf_abi == X86_64_X32_ABI)
12315 return 4;
12316#endif
12317 return bfd_arch_bits_per_address (stdoutput) / 8;
12318}
12319
d2b2c203
DJ
12320int
12321i386_elf_section_type (const char *str, size_t len)
12322{
12323 if (flag_code == CODE_64BIT
12324 && len == sizeof ("unwind") - 1
12325 && strncmp (str, "unwind", 6) == 0)
12326 return SHT_X86_64_UNWIND;
12327
12328 return -1;
12329}
bb41ade5 12330
ad5fec3b
EB
12331#ifdef TE_SOLARIS
12332void
12333i386_solaris_fix_up_eh_frame (segT sec)
12334{
12335 if (flag_code == CODE_64BIT)
12336 elf_section_type (sec) = SHT_X86_64_UNWIND;
12337}
12338#endif
12339
bb41ade5
AM
12340#ifdef TE_PE
12341void
12342tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12343{
91d6fa6a 12344 expressionS exp;
bb41ade5 12345
91d6fa6a
NC
12346 exp.X_op = O_secrel;
12347 exp.X_add_symbol = symbol;
12348 exp.X_add_number = 0;
12349 emit_expr (&exp, size);
bb41ade5
AM
12350}
12351#endif
3b22753a
L
12352
12353#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12354/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12355
01e1a5bc 12356bfd_vma
6d4af3c2 12357x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
12358{
12359 if (flag_code == CODE_64BIT)
12360 {
12361 if (letter == 'l')
12362 return SHF_X86_64_LARGE;
12363
8f3bae45 12364 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 12365 }
3b22753a 12366 else
8f3bae45 12367 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
12368 return -1;
12369}
12370
01e1a5bc 12371bfd_vma
3b22753a
L
12372x86_64_section_word (char *str, size_t len)
12373{
8620418b 12374 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
12375 return SHF_X86_64_LARGE;
12376
12377 return -1;
12378}
12379
12380static void
12381handle_large_common (int small ATTRIBUTE_UNUSED)
12382{
12383 if (flag_code != CODE_64BIT)
12384 {
12385 s_comm_internal (0, elf_common_parse);
12386 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12387 }
12388 else
12389 {
12390 static segT lbss_section;
12391 asection *saved_com_section_ptr = elf_com_section_ptr;
12392 asection *saved_bss_section = bss_section;
12393
12394 if (lbss_section == NULL)
12395 {
12396 flagword applicable;
12397 segT seg = now_seg;
12398 subsegT subseg = now_subseg;
12399
12400 /* The .lbss section is for local .largecomm symbols. */
12401 lbss_section = subseg_new (".lbss", 0);
12402 applicable = bfd_applicable_section_flags (stdoutput);
fd361982 12403 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
3b22753a
L
12404 seg_info (lbss_section)->bss = 1;
12405
12406 subseg_set (seg, subseg);
12407 }
12408
12409 elf_com_section_ptr = &_bfd_elf_large_com_section;
12410 bss_section = lbss_section;
12411
12412 s_comm_internal (0, elf_common_parse);
12413
12414 elf_com_section_ptr = saved_com_section_ptr;
12415 bss_section = saved_bss_section;
12416 }
12417}
12418#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 2.44259 seconds and 4 git commands to generate.