PR gdb/10565
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
f7e42eb4 2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
0bfee649 3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
47926f60 4 Free Software Foundation, Inc.
252b5132
RH
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
ec2655a6 10 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
252b5132 22
47926f60
KH
23/* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 25 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
252b5132 29
252b5132 30#include "as.h"
3882b010 31#include "safe-ctype.h"
252b5132 32#include "subsegs.h"
316e2c05 33#include "dwarf2dbg.h"
54cfded0 34#include "dw2gencfi.h"
d2b2c203 35#include "elf/x86-64.h"
40fb9820 36#include "opcodes/i386-init.h"
252b5132 37
252b5132
RH
38#ifndef REGISTER_WARNINGS
39#define REGISTER_WARNINGS 1
40#endif
41
c3332e24 42#ifndef INFER_ADDR_PREFIX
eecb386c 43#define INFER_ADDR_PREFIX 1
c3332e24
AM
44#endif
45
29b0f896
AM
46#ifndef DEFAULT_ARCH
47#define DEFAULT_ARCH "i386"
246fcdee 48#endif
252b5132 49
edde18a5
AM
50#ifndef INLINE
51#if __GNUC__ >= 2
52#define INLINE __inline__
53#else
54#define INLINE
55#endif
56#endif
57
6305a203
L
58/* Prefixes will be emitted in the order defined below.
59 WAIT_PREFIX must be the first prefix since FWAIT is really is an
60 instruction, and so must come before any prefixes.
61 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
62 LOCKREP_PREFIX. */
63#define WAIT_PREFIX 0
64#define SEG_PREFIX 1
65#define ADDR_PREFIX 2
66#define DATA_PREFIX 3
67#define LOCKREP_PREFIX 4
68#define REX_PREFIX 5 /* must come last. */
69#define MAX_PREFIXES 6 /* max prefixes per opcode */
70
71/* we define the syntax here (modulo base,index,scale syntax) */
72#define REGISTER_PREFIX '%'
73#define IMMEDIATE_PREFIX '$'
74#define ABSOLUTE_PREFIX '*'
75
76/* these are the instruction mnemonic suffixes in AT&T syntax or
77 memory operand size in Intel syntax. */
78#define WORD_MNEM_SUFFIX 'w'
79#define BYTE_MNEM_SUFFIX 'b'
80#define SHORT_MNEM_SUFFIX 's'
81#define LONG_MNEM_SUFFIX 'l'
82#define QWORD_MNEM_SUFFIX 'q'
83#define XMMWORD_MNEM_SUFFIX 'x'
c0f3af97 84#define YMMWORD_MNEM_SUFFIX 'y'
6305a203
L
85/* Intel Syntax. Use a non-ascii letter since since it never appears
86 in instructions. */
87#define LONG_DOUBLE_MNEM_SUFFIX '\1'
88
89#define END_OF_INSN '\0'
90
91/*
92 'templates' is for grouping together 'template' structures for opcodes
93 of the same name. This is only used for storing the insns in the grand
94 ole hash table of insns.
95 The templates themselves start at START and range up to (but not including)
96 END.
97 */
98typedef struct
99{
100 const template *start;
101 const template *end;
102}
103templates;
104
105/* 386 operand encoding bytes: see 386 book for details of this. */
106typedef struct
107{
108 unsigned int regmem; /* codes register or memory operand */
109 unsigned int reg; /* codes register operand (or extended opcode) */
110 unsigned int mode; /* how to interpret regmem & reg */
111}
112modrm_byte;
113
114/* x86-64 extension prefix. */
115typedef int rex_byte;
116
6305a203
L
117/* 386 opcode byte to code indirect addressing. */
118typedef struct
119{
120 unsigned base;
121 unsigned index;
122 unsigned scale;
123}
124sib_byte;
125
6305a203
L
126/* x86 arch names, types and features */
127typedef struct
128{
129 const char *name; /* arch name */
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
132}
133arch_entry;
134
e3bb37b5
L
135static void set_code_flag (int);
136static void set_16bit_gcc_code_flag (int);
137static void set_intel_syntax (int);
1efbbeb4 138static void set_intel_mnemonic (int);
db51cc60 139static void set_allow_index_reg (int);
cb19c032 140static void set_sse_check (int);
e3bb37b5 141static void set_cpu_arch (int);
6482c264 142#ifdef TE_PE
e3bb37b5 143static void pe_directive_secrel (int);
6482c264 144#endif
e3bb37b5
L
145static void signed_cons (int);
146static char *output_invalid (int c);
ee86248c
JB
147static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
148 const char *);
149static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
150 const char *);
a7619375 151static int i386_att_operand (char *);
e3bb37b5 152static int i386_intel_operand (char *, int);
ee86248c
JB
153static int i386_intel_simplify (expressionS *);
154static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
155static const reg_entry *parse_register (char *, char **);
156static char *parse_insn (char *, char *);
157static char *parse_operands (char *, const char *);
158static void swap_operands (void);
4d456e3d 159static void swap_2_operands (int, int);
e3bb37b5
L
160static void optimize_imm (void);
161static void optimize_disp (void);
fa99fab2 162static const template *match_template (void);
e3bb37b5
L
163static int check_string (void);
164static int process_suffix (void);
165static int check_byte_reg (void);
166static int check_long_reg (void);
167static int check_qword_reg (void);
168static int check_word_reg (void);
169static int finalize_imm (void);
170static int process_operands (void);
171static const seg_entry *build_modrm_byte (void);
172static void output_insn (void);
173static void output_imm (fragS *, offsetT);
174static void output_disp (fragS *, offsetT);
29b0f896 175#ifndef I386COFF
e3bb37b5 176static void s_bss (int);
252b5132 177#endif
17d4e2a2
L
178#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
179static void handle_large_common (int small ATTRIBUTE_UNUSED);
180#endif
252b5132 181
a847613f 182static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 183
c0f3af97
L
184/* VEX prefix. */
185typedef struct
186{
187 /* VEX prefix is either 2 byte or 3 byte. */
188 unsigned char bytes[3];
189 unsigned int length;
190 /* Destination or source register specifier. */
191 const reg_entry *register_specifier;
192} vex_prefix;
193
252b5132 194/* 'md_assemble ()' gathers together information and puts it into a
47926f60 195 i386_insn. */
252b5132 196
520dc8e8
AM
197union i386_op
198 {
199 expressionS *disps;
200 expressionS *imms;
201 const reg_entry *regs;
202 };
203
252b5132
RH
204struct _i386_insn
205 {
47926f60 206 /* TM holds the template for the insn were currently assembling. */
252b5132
RH
207 template tm;
208
7d5e4556
L
209 /* SUFFIX holds the instruction size suffix for byte, word, dword
210 or qword, if given. */
252b5132
RH
211 char suffix;
212
47926f60 213 /* OPERANDS gives the number of given operands. */
252b5132
RH
214 unsigned int operands;
215
216 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
217 of given register, displacement, memory operands and immediate
47926f60 218 operands. */
252b5132
RH
219 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
220
221 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 222 use OP[i] for the corresponding operand. */
40fb9820 223 i386_operand_type types[MAX_OPERANDS];
252b5132 224
520dc8e8
AM
225 /* Displacement expression, immediate expression, or register for each
226 operand. */
227 union i386_op op[MAX_OPERANDS];
252b5132 228
3e73aa7c
JH
229 /* Flags for operands. */
230 unsigned int flags[MAX_OPERANDS];
231#define Operand_PCrel 1
232
252b5132 233 /* Relocation type for operand */
f86103b7 234 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 235
252b5132
RH
236 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
237 the base index byte below. */
238 const reg_entry *base_reg;
239 const reg_entry *index_reg;
240 unsigned int log2_scale_factor;
241
242 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 243 explicit segment overrides are given. */
ce8a8b2f 244 const seg_entry *seg[2];
252b5132
RH
245
246 /* PREFIX holds all the given prefix opcodes (usually null).
247 PREFIXES is the number of prefix opcodes. */
248 unsigned int prefixes;
249 unsigned char prefix[MAX_PREFIXES];
250
251 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 252 addressing modes of this insn are encoded. */
252b5132 253 modrm_byte rm;
3e73aa7c 254 rex_byte rex;
252b5132 255 sib_byte sib;
c0f3af97 256 vex_prefix vex;
b6169b20
L
257
258 /* Swap operand in encoding. */
259 unsigned int swap_operand : 1;
252b5132
RH
260 };
261
262typedef struct _i386_insn i386_insn;
263
264/* List of chars besides those in app.c:symbol_chars that can start an
265 operand. Used to prevent the scrubber eating vital white-space. */
32137342 266const char extra_symbol_chars[] = "*%-(["
252b5132 267#ifdef LEX_AT
32137342
NC
268 "@"
269#endif
270#ifdef LEX_QM
271 "?"
252b5132 272#endif
32137342 273 ;
252b5132 274
29b0f896
AM
275#if (defined (TE_I386AIX) \
276 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 277 && !defined (TE_GNU) \
29b0f896 278 && !defined (TE_LINUX) \
32137342 279 && !defined (TE_NETWARE) \
29b0f896
AM
280 && !defined (TE_FreeBSD) \
281 && !defined (TE_NetBSD)))
252b5132 282/* This array holds the chars that always start a comment. If the
b3b91714
AM
283 pre-processor is disabled, these aren't very useful. The option
284 --divide will remove '/' from this list. */
285const char *i386_comment_chars = "#/";
286#define SVR4_COMMENT_CHARS 1
252b5132 287#define PREFIX_SEPARATOR '\\'
252b5132 288
b3b91714
AM
289#else
290const char *i386_comment_chars = "#";
291#define PREFIX_SEPARATOR '/'
292#endif
293
252b5132
RH
294/* This array holds the chars that only start a comment at the beginning of
295 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
296 .line and .file directives will appear in the pre-processed output.
297 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 298 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
299 #NO_APP at the beginning of its output.
300 Also note that comments started like this one will always work if
252b5132 301 '/' isn't otherwise defined. */
b3b91714 302const char line_comment_chars[] = "#/";
252b5132 303
63a0b638 304const char line_separator_chars[] = ";";
252b5132 305
ce8a8b2f
AM
306/* Chars that can be used to separate mant from exp in floating point
307 nums. */
252b5132
RH
308const char EXP_CHARS[] = "eE";
309
ce8a8b2f
AM
310/* Chars that mean this number is a floating point constant
311 As in 0f12.456
312 or 0d1.2345e12. */
252b5132
RH
313const char FLT_CHARS[] = "fFdDxX";
314
ce8a8b2f 315/* Tables for lexical analysis. */
252b5132
RH
316static char mnemonic_chars[256];
317static char register_chars[256];
318static char operand_chars[256];
319static char identifier_chars[256];
320static char digit_chars[256];
321
ce8a8b2f 322/* Lexical macros. */
252b5132
RH
323#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
324#define is_operand_char(x) (operand_chars[(unsigned char) x])
325#define is_register_char(x) (register_chars[(unsigned char) x])
326#define is_space_char(x) ((x) == ' ')
327#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
328#define is_digit_char(x) (digit_chars[(unsigned char) x])
329
0234cb7c 330/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
331static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
332
333/* md_assemble() always leaves the strings it's passed unaltered. To
334 effect this we maintain a stack of saved characters that we've smashed
335 with '\0's (indicating end of strings for various sub-fields of the
47926f60 336 assembler instruction). */
252b5132 337static char save_stack[32];
ce8a8b2f 338static char *save_stack_p;
252b5132
RH
339#define END_STRING_AND_SAVE(s) \
340 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
341#define RESTORE_END_STRING(s) \
342 do { *(s) = *--save_stack_p; } while (0)
343
47926f60 344/* The instruction we're assembling. */
252b5132
RH
345static i386_insn i;
346
347/* Possible templates for current insn. */
348static const templates *current_templates;
349
31b2323c
L
350/* Per instruction expressionS buffers: max displacements & immediates. */
351static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
352static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 353
47926f60 354/* Current operand we are working on. */
ee86248c 355static int this_operand = -1;
252b5132 356
3e73aa7c
JH
357/* We support four different modes. FLAG_CODE variable is used to distinguish
358 these. */
359
360enum flag_code {
361 CODE_32BIT,
362 CODE_16BIT,
363 CODE_64BIT };
364
365static enum flag_code flag_code;
4fa24527 366static unsigned int object_64bit;
3e73aa7c
JH
367static int use_rela_relocations = 0;
368
369/* The names used to print error messages. */
b77a7acd 370static const char *flag_code_names[] =
3e73aa7c
JH
371 {
372 "32",
373 "16",
374 "64"
375 };
252b5132 376
47926f60
KH
377/* 1 for intel syntax,
378 0 if att syntax. */
379static int intel_syntax = 0;
252b5132 380
1efbbeb4
L
381/* 1 for intel mnemonic,
382 0 if att mnemonic. */
383static int intel_mnemonic = !SYSV386_COMPAT;
384
5209009a 385/* 1 if support old (<= 2.8.1) versions of gcc. */
1efbbeb4
L
386static int old_gcc = OLDGCC_COMPAT;
387
a60de03c
JB
388/* 1 if pseudo registers are permitted. */
389static int allow_pseudo_reg = 0;
390
47926f60
KH
391/* 1 if register prefix % not required. */
392static int allow_naked_reg = 0;
252b5132 393
ba104c83 394/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
395static int allow_index_reg = 0;
396
daf50ae7
L
397static enum
398 {
399 sse_check_none = 0,
400 sse_check_warning,
401 sse_check_error
402 }
403sse_check;
404
2ca3ace5
L
405/* Register prefix used for error message. */
406static const char *register_prefix = "%";
407
47926f60
KH
408/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
409 leave, push, and pop instructions so that gcc has the same stack
410 frame as in 32 bit mode. */
411static char stackop_size = '\0';
eecb386c 412
12b55ccc
L
413/* Non-zero to optimize code alignment. */
414int optimize_align_code = 1;
415
47926f60
KH
416/* Non-zero to quieten some warnings. */
417static int quiet_warnings = 0;
a38cf1db 418
47926f60
KH
419/* CPU name. */
420static const char *cpu_arch_name = NULL;
6305a203 421static char *cpu_sub_arch_name = NULL;
a38cf1db 422
47926f60 423/* CPU feature flags. */
40fb9820
L
424static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
425
ccc9c027
L
426/* If we have selected a cpu we are generating instructions for. */
427static int cpu_arch_tune_set = 0;
428
9103f4f4 429/* Cpu we are generating instructions for. */
fbf3f584 430enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
431
432/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 433static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 434
ccc9c027 435/* CPU instruction set architecture used. */
fbf3f584 436enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 437
9103f4f4 438/* CPU feature flags of instruction set architecture used. */
fbf3f584 439i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 440
fddf5b5b
AM
441/* If set, conditional jumps are not automatically promoted to handle
442 larger than a byte offset. */
443static unsigned int no_cond_jump_promotion = 0;
444
c0f3af97
L
445/* Encode SSE instructions with VEX prefix. */
446static unsigned int sse2avx;
447
29b0f896 448/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 449static symbolS *GOT_symbol;
29b0f896 450
a4447b93
RH
451/* The dwarf2 return column, adjusted for 32 or 64 bit. */
452unsigned int x86_dwarf2_return_column;
453
454/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
455int x86_cie_data_alignment;
456
252b5132 457/* Interface to relax_segment.
fddf5b5b
AM
458 There are 3 major relax states for 386 jump insns because the
459 different types of jumps add different sizes to frags when we're
460 figuring out what sort of jump to choose to reach a given label. */
252b5132 461
47926f60 462/* Types. */
93c2a809
AM
463#define UNCOND_JUMP 0
464#define COND_JUMP 1
465#define COND_JUMP86 2
fddf5b5b 466
47926f60 467/* Sizes. */
252b5132
RH
468#define CODE16 1
469#define SMALL 0
29b0f896 470#define SMALL16 (SMALL | CODE16)
252b5132 471#define BIG 2
29b0f896 472#define BIG16 (BIG | CODE16)
252b5132
RH
473
474#ifndef INLINE
475#ifdef __GNUC__
476#define INLINE __inline__
477#else
478#define INLINE
479#endif
480#endif
481
fddf5b5b
AM
482#define ENCODE_RELAX_STATE(type, size) \
483 ((relax_substateT) (((type) << 2) | (size)))
484#define TYPE_FROM_RELAX_STATE(s) \
485 ((s) >> 2)
486#define DISP_SIZE_FROM_RELAX_STATE(s) \
487 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
488
489/* This table is used by relax_frag to promote short jumps to long
490 ones where necessary. SMALL (short) jumps may be promoted to BIG
491 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
492 don't allow a short jump in a 32 bit code segment to be promoted to
493 a 16 bit offset jump because it's slower (requires data size
494 prefix), and doesn't work, unless the destination is in the bottom
495 64k of the code segment (The top 16 bits of eip are zeroed). */
496
497const relax_typeS md_relax_table[] =
498{
24eab124
AM
499 /* The fields are:
500 1) most positive reach of this state,
501 2) most negative reach of this state,
93c2a809 502 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 503 4) which index into the table to try if we can't fit into this one. */
252b5132 504
fddf5b5b 505 /* UNCOND_JUMP states. */
93c2a809
AM
506 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
507 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
508 /* dword jmp adds 4 bytes to frag:
509 0 extra opcode bytes, 4 displacement bytes. */
252b5132 510 {0, 0, 4, 0},
93c2a809
AM
511 /* word jmp adds 2 byte2 to frag:
512 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
513 {0, 0, 2, 0},
514
93c2a809
AM
515 /* COND_JUMP states. */
516 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
517 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
518 /* dword conditionals adds 5 bytes to frag:
519 1 extra opcode byte, 4 displacement bytes. */
520 {0, 0, 5, 0},
fddf5b5b 521 /* word conditionals add 3 bytes to frag:
93c2a809
AM
522 1 extra opcode byte, 2 displacement bytes. */
523 {0, 0, 3, 0},
524
525 /* COND_JUMP86 states. */
526 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
527 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
528 /* dword conditionals adds 5 bytes to frag:
529 1 extra opcode byte, 4 displacement bytes. */
530 {0, 0, 5, 0},
531 /* word conditionals add 4 bytes to frag:
532 1 displacement byte and a 3 byte long branch insn. */
533 {0, 0, 4, 0}
252b5132
RH
534};
535
9103f4f4
L
536static const arch_entry cpu_arch[] =
537{
6305a203
L
538 { "generic32", PROCESSOR_GENERIC32,
539 CPU_GENERIC32_FLAGS },
540 { "generic64", PROCESSOR_GENERIC64,
541 CPU_GENERIC64_FLAGS },
542 { "i8086", PROCESSOR_UNKNOWN,
543 CPU_NONE_FLAGS },
544 { "i186", PROCESSOR_UNKNOWN,
545 CPU_I186_FLAGS },
546 { "i286", PROCESSOR_UNKNOWN,
547 CPU_I286_FLAGS },
548 { "i386", PROCESSOR_I386,
549 CPU_I386_FLAGS },
550 { "i486", PROCESSOR_I486,
551 CPU_I486_FLAGS },
552 { "i586", PROCESSOR_PENTIUM,
553 CPU_I586_FLAGS },
554 { "i686", PROCESSOR_PENTIUMPRO,
555 CPU_I686_FLAGS },
556 { "pentium", PROCESSOR_PENTIUM,
557 CPU_I586_FLAGS },
558 { "pentiumpro", PROCESSOR_PENTIUMPRO,
559 CPU_I686_FLAGS },
560 { "pentiumii", PROCESSOR_PENTIUMPRO,
561 CPU_P2_FLAGS },
562 { "pentiumiii",PROCESSOR_PENTIUMPRO,
563 CPU_P3_FLAGS },
564 { "pentium4", PROCESSOR_PENTIUM4,
565 CPU_P4_FLAGS },
566 { "prescott", PROCESSOR_NOCONA,
567 CPU_CORE_FLAGS },
568 { "nocona", PROCESSOR_NOCONA,
569 CPU_NOCONA_FLAGS },
570 { "yonah", PROCESSOR_CORE,
571 CPU_CORE_FLAGS },
572 { "core", PROCESSOR_CORE,
573 CPU_CORE_FLAGS },
574 { "merom", PROCESSOR_CORE2,
575 CPU_CORE2_FLAGS },
576 { "core2", PROCESSOR_CORE2,
577 CPU_CORE2_FLAGS },
bd5295b2
L
578 { "corei7", PROCESSOR_COREI7,
579 CPU_COREI7_FLAGS },
8a9036a4
L
580 { "l1om", PROCESSOR_GENERIC64,
581 CPU_L1OM_FLAGS },
6305a203
L
582 { "k6", PROCESSOR_K6,
583 CPU_K6_FLAGS },
584 { "k6_2", PROCESSOR_K6,
585 CPU_K6_2_FLAGS },
586 { "athlon", PROCESSOR_ATHLON,
587 CPU_ATHLON_FLAGS },
588 { "sledgehammer", PROCESSOR_K8,
589 CPU_K8_FLAGS },
590 { "opteron", PROCESSOR_K8,
591 CPU_K8_FLAGS },
592 { "k8", PROCESSOR_K8,
593 CPU_K8_FLAGS },
594 { "amdfam10", PROCESSOR_AMDFAM10,
595 CPU_AMDFAM10_FLAGS },
309d3373
JB
596 { ".8087", PROCESSOR_UNKNOWN,
597 CPU_8087_FLAGS },
598 { ".287", PROCESSOR_UNKNOWN,
599 CPU_287_FLAGS },
600 { ".387", PROCESSOR_UNKNOWN,
601 CPU_387_FLAGS },
602 { ".no87", PROCESSOR_UNKNOWN,
603 CPU_ANY87_FLAGS },
6305a203
L
604 { ".mmx", PROCESSOR_UNKNOWN,
605 CPU_MMX_FLAGS },
309d3373
JB
606 { ".nommx", PROCESSOR_UNKNOWN,
607 CPU_3DNOWA_FLAGS },
6305a203
L
608 { ".sse", PROCESSOR_UNKNOWN,
609 CPU_SSE_FLAGS },
610 { ".sse2", PROCESSOR_UNKNOWN,
611 CPU_SSE2_FLAGS },
612 { ".sse3", PROCESSOR_UNKNOWN,
613 CPU_SSE3_FLAGS },
614 { ".ssse3", PROCESSOR_UNKNOWN,
615 CPU_SSSE3_FLAGS },
616 { ".sse4.1", PROCESSOR_UNKNOWN,
617 CPU_SSE4_1_FLAGS },
618 { ".sse4.2", PROCESSOR_UNKNOWN,
619 CPU_SSE4_2_FLAGS },
620 { ".sse4", PROCESSOR_UNKNOWN,
621 CPU_SSE4_2_FLAGS },
309d3373
JB
622 { ".nosse", PROCESSOR_UNKNOWN,
623 CPU_ANY_SSE_FLAGS },
c0f3af97
L
624 { ".avx", PROCESSOR_UNKNOWN,
625 CPU_AVX_FLAGS },
309d3373
JB
626 { ".noavx", PROCESSOR_UNKNOWN,
627 CPU_ANY_AVX_FLAGS },
6305a203
L
628 { ".vmx", PROCESSOR_UNKNOWN,
629 CPU_VMX_FLAGS },
630 { ".smx", PROCESSOR_UNKNOWN,
631 CPU_SMX_FLAGS },
f03fe4c1
L
632 { ".xsave", PROCESSOR_UNKNOWN,
633 CPU_XSAVE_FLAGS },
c0f3af97
L
634 { ".aes", PROCESSOR_UNKNOWN,
635 CPU_AES_FLAGS },
594ab6a3
L
636 { ".pclmul", PROCESSOR_UNKNOWN,
637 CPU_PCLMUL_FLAGS },
c0f3af97 638 { ".clmul", PROCESSOR_UNKNOWN,
594ab6a3 639 CPU_PCLMUL_FLAGS },
c0f3af97
L
640 { ".fma", PROCESSOR_UNKNOWN,
641 CPU_FMA_FLAGS },
922d8de8
DR
642 { ".fma4", PROCESSOR_UNKNOWN,
643 CPU_FMA4_FLAGS },
f1f8f695
L
644 { ".movbe", PROCESSOR_UNKNOWN,
645 CPU_MOVBE_FLAGS },
646 { ".ept", PROCESSOR_UNKNOWN,
647 CPU_EPT_FLAGS },
bd5295b2
L
648 { ".clflush", PROCESSOR_UNKNOWN,
649 CPU_CLFLUSH_FLAGS },
650 { ".syscall", PROCESSOR_UNKNOWN,
651 CPU_SYSCALL_FLAGS },
1b7f3fb0
L
652 { ".rdtscp", PROCESSOR_UNKNOWN,
653 CPU_RDTSCP_FLAGS },
6305a203
L
654 { ".3dnow", PROCESSOR_UNKNOWN,
655 CPU_3DNOW_FLAGS },
656 { ".3dnowa", PROCESSOR_UNKNOWN,
657 CPU_3DNOWA_FLAGS },
658 { ".padlock", PROCESSOR_UNKNOWN,
659 CPU_PADLOCK_FLAGS },
660 { ".pacifica", PROCESSOR_UNKNOWN,
661 CPU_SVME_FLAGS },
662 { ".svme", PROCESSOR_UNKNOWN,
663 CPU_SVME_FLAGS },
664 { ".sse4a", PROCESSOR_UNKNOWN,
665 CPU_SSE4A_FLAGS },
666 { ".abm", PROCESSOR_UNKNOWN,
667 CPU_ABM_FLAGS },
e413e4e9
AM
668};
669
704209c0 670#ifdef I386COFF
a6c24e68
NC
671/* Like s_lcomm_internal in gas/read.c but the alignment string
672 is allowed to be optional. */
673
674static symbolS *
675pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
676{
677 addressT align = 0;
678
679 SKIP_WHITESPACE ();
680
7ab9ffdd 681 if (needs_align
a6c24e68
NC
682 && *input_line_pointer == ',')
683 {
684 align = parse_align (needs_align - 1);
7ab9ffdd 685
a6c24e68
NC
686 if (align == (addressT) -1)
687 return NULL;
688 }
689 else
690 {
691 if (size >= 8)
692 align = 3;
693 else if (size >= 4)
694 align = 2;
695 else if (size >= 2)
696 align = 1;
697 else
698 align = 0;
699 }
700
701 bss_alloc (symbolP, size, align);
702 return symbolP;
703}
704
704209c0 705static void
a6c24e68
NC
706pe_lcomm (int needs_align)
707{
708 s_comm_internal (needs_align * 2, pe_lcomm_internal);
709}
704209c0 710#endif
a6c24e68 711
29b0f896
AM
712const pseudo_typeS md_pseudo_table[] =
713{
714#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
715 {"align", s_align_bytes, 0},
716#else
717 {"align", s_align_ptwo, 0},
718#endif
719 {"arch", set_cpu_arch, 0},
720#ifndef I386COFF
721 {"bss", s_bss, 0},
a6c24e68
NC
722#else
723 {"lcomm", pe_lcomm, 1},
29b0f896
AM
724#endif
725 {"ffloat", float_cons, 'f'},
726 {"dfloat", float_cons, 'd'},
727 {"tfloat", float_cons, 'x'},
728 {"value", cons, 2},
d182319b 729 {"slong", signed_cons, 4},
29b0f896
AM
730 {"noopt", s_ignore, 0},
731 {"optim", s_ignore, 0},
732 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
733 {"code16", set_code_flag, CODE_16BIT},
734 {"code32", set_code_flag, CODE_32BIT},
735 {"code64", set_code_flag, CODE_64BIT},
736 {"intel_syntax", set_intel_syntax, 1},
737 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
738 {"intel_mnemonic", set_intel_mnemonic, 1},
739 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
740 {"allow_index_reg", set_allow_index_reg, 1},
741 {"disallow_index_reg", set_allow_index_reg, 0},
cb19c032 742 {"sse_check", set_sse_check, 0},
3b22753a
L
743#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
744 {"largecomm", handle_large_common, 0},
07a53e5c 745#else
e3bb37b5 746 {"file", (void (*) (int)) dwarf2_directive_file, 0},
07a53e5c
RH
747 {"loc", dwarf2_directive_loc, 0},
748 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 749#endif
6482c264
NC
750#ifdef TE_PE
751 {"secrel32", pe_directive_secrel, 0},
752#endif
29b0f896
AM
753 {0, 0, 0}
754};
755
756/* For interface with expression (). */
757extern char *input_line_pointer;
758
759/* Hash table for instruction mnemonic lookup. */
760static struct hash_control *op_hash;
761
762/* Hash table for register lookup. */
763static struct hash_control *reg_hash;
764\f
252b5132 765void
e3bb37b5 766i386_align_code (fragS *fragP, int count)
252b5132 767{
ce8a8b2f
AM
768 /* Various efficient no-op patterns for aligning code labels.
769 Note: Don't try to assemble the instructions in the comments.
770 0L and 0w are not legal. */
252b5132
RH
771 static const char f32_1[] =
772 {0x90}; /* nop */
773 static const char f32_2[] =
ccc9c027 774 {0x66,0x90}; /* xchg %ax,%ax */
252b5132
RH
775 static const char f32_3[] =
776 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
777 static const char f32_4[] =
778 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
779 static const char f32_5[] =
780 {0x90, /* nop */
781 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
782 static const char f32_6[] =
783 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
784 static const char f32_7[] =
785 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
786 static const char f32_8[] =
787 {0x90, /* nop */
788 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
789 static const char f32_9[] =
790 {0x89,0xf6, /* movl %esi,%esi */
791 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
792 static const char f32_10[] =
793 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
794 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
795 static const char f32_11[] =
796 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
797 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
798 static const char f32_12[] =
799 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
800 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
801 static const char f32_13[] =
802 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
803 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
804 static const char f32_14[] =
805 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
806 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
c3332e24
AM
807 static const char f16_3[] =
808 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
252b5132
RH
809 static const char f16_4[] =
810 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
811 static const char f16_5[] =
812 {0x90, /* nop */
813 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
814 static const char f16_6[] =
815 {0x89,0xf6, /* mov %si,%si */
816 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
817 static const char f16_7[] =
818 {0x8d,0x74,0x00, /* lea 0(%si),%si */
819 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
820 static const char f16_8[] =
821 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
822 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
76bc74dc
L
823 static const char jump_31[] =
824 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
825 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
826 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
827 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
252b5132
RH
828 static const char *const f32_patt[] = {
829 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
76bc74dc 830 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
252b5132
RH
831 };
832 static const char *const f16_patt[] = {
76bc74dc 833 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
252b5132 834 };
ccc9c027
L
835 /* nopl (%[re]ax) */
836 static const char alt_3[] =
837 {0x0f,0x1f,0x00};
838 /* nopl 0(%[re]ax) */
839 static const char alt_4[] =
840 {0x0f,0x1f,0x40,0x00};
841 /* nopl 0(%[re]ax,%[re]ax,1) */
842 static const char alt_5[] =
843 {0x0f,0x1f,0x44,0x00,0x00};
844 /* nopw 0(%[re]ax,%[re]ax,1) */
845 static const char alt_6[] =
846 {0x66,0x0f,0x1f,0x44,0x00,0x00};
847 /* nopl 0L(%[re]ax) */
848 static const char alt_7[] =
849 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
850 /* nopl 0L(%[re]ax,%[re]ax,1) */
851 static const char alt_8[] =
852 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
853 /* nopw 0L(%[re]ax,%[re]ax,1) */
854 static const char alt_9[] =
855 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
856 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
857 static const char alt_10[] =
858 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
859 /* data16
860 nopw %cs:0L(%[re]ax,%[re]ax,1) */
861 static const char alt_long_11[] =
862 {0x66,
863 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
864 /* data16
865 data16
866 nopw %cs:0L(%[re]ax,%[re]ax,1) */
867 static const char alt_long_12[] =
868 {0x66,
869 0x66,
870 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
871 /* data16
872 data16
873 data16
874 nopw %cs:0L(%[re]ax,%[re]ax,1) */
875 static const char alt_long_13[] =
876 {0x66,
877 0x66,
878 0x66,
879 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
880 /* data16
881 data16
882 data16
883 data16
884 nopw %cs:0L(%[re]ax,%[re]ax,1) */
885 static const char alt_long_14[] =
886 {0x66,
887 0x66,
888 0x66,
889 0x66,
890 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
891 /* data16
892 data16
893 data16
894 data16
895 data16
896 nopw %cs:0L(%[re]ax,%[re]ax,1) */
897 static const char alt_long_15[] =
898 {0x66,
899 0x66,
900 0x66,
901 0x66,
902 0x66,
903 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
904 /* nopl 0(%[re]ax,%[re]ax,1)
905 nopw 0(%[re]ax,%[re]ax,1) */
906 static const char alt_short_11[] =
907 {0x0f,0x1f,0x44,0x00,0x00,
908 0x66,0x0f,0x1f,0x44,0x00,0x00};
909 /* nopw 0(%[re]ax,%[re]ax,1)
910 nopw 0(%[re]ax,%[re]ax,1) */
911 static const char alt_short_12[] =
912 {0x66,0x0f,0x1f,0x44,0x00,0x00,
913 0x66,0x0f,0x1f,0x44,0x00,0x00};
914 /* nopw 0(%[re]ax,%[re]ax,1)
915 nopl 0L(%[re]ax) */
916 static const char alt_short_13[] =
917 {0x66,0x0f,0x1f,0x44,0x00,0x00,
918 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
919 /* nopl 0L(%[re]ax)
920 nopl 0L(%[re]ax) */
921 static const char alt_short_14[] =
922 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
923 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
924 /* nopl 0L(%[re]ax)
925 nopl 0L(%[re]ax,%[re]ax,1) */
926 static const char alt_short_15[] =
927 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
928 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
929 static const char *const alt_short_patt[] = {
930 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
931 alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
932 alt_short_14, alt_short_15
933 };
934 static const char *const alt_long_patt[] = {
935 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
936 alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
937 alt_long_14, alt_long_15
938 };
252b5132 939
76bc74dc
L
940 /* Only align for at least a positive non-zero boundary. */
941 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
33fef721 942 return;
3e73aa7c 943
ccc9c027
L
944 /* We need to decide which NOP sequence to use for 32bit and
945 64bit. When -mtune= is used:
4eed87de 946
76bc74dc
L
947 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
948 PROCESSOR_GENERIC32, f32_patt will be used.
949 2. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
bd5295b2
L
950 PROCESSOR_CORE, PROCESSOR_CORE2, PROCESSOR_COREI7, and
951 PROCESSOR_GENERIC64, alt_long_patt will be used.
76bc74dc
L
952 3. For PROCESSOR_ATHLON, PROCESSOR_K6, PROCESSOR_K8 and
953 PROCESSOR_AMDFAM10, alt_short_patt will be used.
ccc9c027 954
76bc74dc
L
955 When -mtune= isn't used, alt_long_patt will be used if
956 cpu_arch_isa_flags has Cpu686. Otherwise, f32_patt will
957 be used.
ccc9c027
L
958
959 When -march= or .arch is used, we can't use anything beyond
960 cpu_arch_isa_flags. */
961
962 if (flag_code == CODE_16BIT)
963 {
ccc9c027 964 if (count > 8)
33fef721 965 {
76bc74dc
L
966 memcpy (fragP->fr_literal + fragP->fr_fix,
967 jump_31, count);
968 /* Adjust jump offset. */
969 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
252b5132 970 }
76bc74dc
L
971 else
972 memcpy (fragP->fr_literal + fragP->fr_fix,
973 f16_patt[count - 1], count);
252b5132 974 }
33fef721 975 else
ccc9c027
L
976 {
977 const char *const *patt = NULL;
978
fbf3f584 979 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
980 {
981 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
982 switch (cpu_arch_tune)
983 {
984 case PROCESSOR_UNKNOWN:
985 /* We use cpu_arch_isa_flags to check if we SHOULD
986 optimize for Cpu686. */
fbf3f584 987 if (fragP->tc_frag_data.isa_flags.bitfield.cpui686)
76bc74dc 988 patt = alt_long_patt;
ccc9c027
L
989 else
990 patt = f32_patt;
991 break;
ccc9c027
L
992 case PROCESSOR_PENTIUMPRO:
993 case PROCESSOR_PENTIUM4:
994 case PROCESSOR_NOCONA:
ef05d495 995 case PROCESSOR_CORE:
76bc74dc 996 case PROCESSOR_CORE2:
bd5295b2 997 case PROCESSOR_COREI7:
76bc74dc
L
998 case PROCESSOR_GENERIC64:
999 patt = alt_long_patt;
1000 break;
ccc9c027
L
1001 case PROCESSOR_K6:
1002 case PROCESSOR_ATHLON:
1003 case PROCESSOR_K8:
4eed87de 1004 case PROCESSOR_AMDFAM10:
ccc9c027
L
1005 patt = alt_short_patt;
1006 break;
76bc74dc 1007 case PROCESSOR_I386:
ccc9c027
L
1008 case PROCESSOR_I486:
1009 case PROCESSOR_PENTIUM:
1010 case PROCESSOR_GENERIC32:
1011 patt = f32_patt;
1012 break;
4eed87de 1013 }
ccc9c027
L
1014 }
1015 else
1016 {
fbf3f584 1017 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1018 {
1019 case PROCESSOR_UNKNOWN:
e6a14101 1020 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1021 PROCESSOR_UNKNOWN. */
1022 abort ();
1023 break;
1024
76bc74dc 1025 case PROCESSOR_I386:
ccc9c027
L
1026 case PROCESSOR_I486:
1027 case PROCESSOR_PENTIUM:
ccc9c027
L
1028 case PROCESSOR_K6:
1029 case PROCESSOR_ATHLON:
1030 case PROCESSOR_K8:
4eed87de 1031 case PROCESSOR_AMDFAM10:
ccc9c027
L
1032 case PROCESSOR_GENERIC32:
1033 /* We use cpu_arch_isa_flags to check if we CAN optimize
1034 for Cpu686. */
fbf3f584 1035 if (fragP->tc_frag_data.isa_flags.bitfield.cpui686)
ccc9c027
L
1036 patt = alt_short_patt;
1037 else
1038 patt = f32_patt;
1039 break;
76bc74dc
L
1040 case PROCESSOR_PENTIUMPRO:
1041 case PROCESSOR_PENTIUM4:
1042 case PROCESSOR_NOCONA:
1043 case PROCESSOR_CORE:
ef05d495 1044 case PROCESSOR_CORE2:
bd5295b2 1045 case PROCESSOR_COREI7:
fbf3f584 1046 if (fragP->tc_frag_data.isa_flags.bitfield.cpui686)
ccc9c027
L
1047 patt = alt_long_patt;
1048 else
1049 patt = f32_patt;
1050 break;
1051 case PROCESSOR_GENERIC64:
76bc74dc 1052 patt = alt_long_patt;
ccc9c027 1053 break;
4eed87de 1054 }
ccc9c027
L
1055 }
1056
76bc74dc
L
1057 if (patt == f32_patt)
1058 {
1059 /* If the padding is less than 15 bytes, we use the normal
1060 ones. Otherwise, we use a jump instruction and adjust
711eedef
L
1061 its offset. */
1062 int limit;
1063
1064 /* For 64bit, the limit is 3 bytes. */
1065 if (flag_code == CODE_64BIT
1066 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1067 limit = 3;
1068 else
1069 limit = 15;
1070 if (count < limit)
76bc74dc
L
1071 memcpy (fragP->fr_literal + fragP->fr_fix,
1072 patt[count - 1], count);
1073 else
1074 {
1075 memcpy (fragP->fr_literal + fragP->fr_fix,
1076 jump_31, count);
1077 /* Adjust jump offset. */
1078 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1079 }
1080 }
1081 else
1082 {
1083 /* Maximum length of an instruction is 15 byte. If the
1084 padding is greater than 15 bytes and we don't use jump,
1085 we have to break it into smaller pieces. */
1086 int padding = count;
1087 while (padding > 15)
1088 {
1089 padding -= 15;
1090 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1091 patt [14], 15);
1092 }
1093
1094 if (padding)
1095 memcpy (fragP->fr_literal + fragP->fr_fix,
1096 patt [padding - 1], padding);
1097 }
ccc9c027 1098 }
33fef721 1099 fragP->fr_var = count;
252b5132
RH
1100}
1101
c6fb90c8 1102static INLINE int
0dfbf9d7 1103operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1104{
0dfbf9d7 1105 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1106 {
1107 case 3:
0dfbf9d7 1108 if (x->array[2])
c6fb90c8
L
1109 return 0;
1110 case 2:
0dfbf9d7 1111 if (x->array[1])
c6fb90c8
L
1112 return 0;
1113 case 1:
0dfbf9d7 1114 return !x->array[0];
c6fb90c8
L
1115 default:
1116 abort ();
1117 }
40fb9820
L
1118}
1119
c6fb90c8 1120static INLINE void
0dfbf9d7 1121operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1122{
0dfbf9d7 1123 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1124 {
1125 case 3:
0dfbf9d7 1126 x->array[2] = v;
c6fb90c8 1127 case 2:
0dfbf9d7 1128 x->array[1] = v;
c6fb90c8 1129 case 1:
0dfbf9d7 1130 x->array[0] = v;
c6fb90c8
L
1131 break;
1132 default:
1133 abort ();
1134 }
1135}
40fb9820 1136
c6fb90c8 1137static INLINE int
0dfbf9d7
L
1138operand_type_equal (const union i386_operand_type *x,
1139 const union i386_operand_type *y)
c6fb90c8 1140{
0dfbf9d7 1141 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1142 {
1143 case 3:
0dfbf9d7 1144 if (x->array[2] != y->array[2])
c6fb90c8
L
1145 return 0;
1146 case 2:
0dfbf9d7 1147 if (x->array[1] != y->array[1])
c6fb90c8
L
1148 return 0;
1149 case 1:
0dfbf9d7 1150 return x->array[0] == y->array[0];
c6fb90c8
L
1151 break;
1152 default:
1153 abort ();
1154 }
1155}
40fb9820 1156
0dfbf9d7
L
1157static INLINE int
1158cpu_flags_all_zero (const union i386_cpu_flags *x)
1159{
1160 switch (ARRAY_SIZE(x->array))
1161 {
1162 case 3:
1163 if (x->array[2])
1164 return 0;
1165 case 2:
1166 if (x->array[1])
1167 return 0;
1168 case 1:
1169 return !x->array[0];
1170 default:
1171 abort ();
1172 }
1173}
1174
1175static INLINE void
1176cpu_flags_set (union i386_cpu_flags *x, unsigned int v)
1177{
1178 switch (ARRAY_SIZE(x->array))
1179 {
1180 case 3:
1181 x->array[2] = v;
1182 case 2:
1183 x->array[1] = v;
1184 case 1:
1185 x->array[0] = v;
1186 break;
1187 default:
1188 abort ();
1189 }
1190}
1191
1192static INLINE int
1193cpu_flags_equal (const union i386_cpu_flags *x,
1194 const union i386_cpu_flags *y)
1195{
1196 switch (ARRAY_SIZE(x->array))
1197 {
1198 case 3:
1199 if (x->array[2] != y->array[2])
1200 return 0;
1201 case 2:
1202 if (x->array[1] != y->array[1])
1203 return 0;
1204 case 1:
1205 return x->array[0] == y->array[0];
1206 break;
1207 default:
1208 abort ();
1209 }
1210}
c6fb90c8
L
1211
1212static INLINE int
1213cpu_flags_check_cpu64 (i386_cpu_flags f)
1214{
1215 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1216 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1217}
1218
c6fb90c8
L
1219static INLINE i386_cpu_flags
1220cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1221{
c6fb90c8
L
1222 switch (ARRAY_SIZE (x.array))
1223 {
1224 case 3:
1225 x.array [2] &= y.array [2];
1226 case 2:
1227 x.array [1] &= y.array [1];
1228 case 1:
1229 x.array [0] &= y.array [0];
1230 break;
1231 default:
1232 abort ();
1233 }
1234 return x;
1235}
40fb9820 1236
c6fb90c8
L
1237static INLINE i386_cpu_flags
1238cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1239{
c6fb90c8 1240 switch (ARRAY_SIZE (x.array))
40fb9820 1241 {
c6fb90c8
L
1242 case 3:
1243 x.array [2] |= y.array [2];
1244 case 2:
1245 x.array [1] |= y.array [1];
1246 case 1:
1247 x.array [0] |= y.array [0];
40fb9820
L
1248 break;
1249 default:
1250 abort ();
1251 }
40fb9820
L
1252 return x;
1253}
1254
309d3373
JB
1255static INLINE i386_cpu_flags
1256cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1257{
1258 switch (ARRAY_SIZE (x.array))
1259 {
1260 case 3:
1261 x.array [2] &= ~y.array [2];
1262 case 2:
1263 x.array [1] &= ~y.array [1];
1264 case 1:
1265 x.array [0] &= ~y.array [0];
1266 break;
1267 default:
1268 abort ();
1269 }
1270 return x;
1271}
1272
c0f3af97
L
1273#define CPU_FLAGS_ARCH_MATCH 0x1
1274#define CPU_FLAGS_64BIT_MATCH 0x2
a5ff0eb2 1275#define CPU_FLAGS_AES_MATCH 0x4
ce2f5b3c
L
1276#define CPU_FLAGS_PCLMUL_MATCH 0x8
1277#define CPU_FLAGS_AVX_MATCH 0x10
c0f3af97 1278
a5ff0eb2 1279#define CPU_FLAGS_32BIT_MATCH \
ce2f5b3c
L
1280 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1281 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
c0f3af97
L
1282#define CPU_FLAGS_PERFECT_MATCH \
1283 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1284
1285/* Return CPU flags match bits. */
3629bb00 1286
40fb9820 1287static int
c0f3af97 1288cpu_flags_match (const template *t)
40fb9820 1289{
c0f3af97
L
1290 i386_cpu_flags x = t->cpu_flags;
1291 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1292
1293 x.bitfield.cpu64 = 0;
1294 x.bitfield.cpuno64 = 0;
1295
0dfbf9d7 1296 if (cpu_flags_all_zero (&x))
c0f3af97
L
1297 {
1298 /* This instruction is available on all archs. */
1299 match |= CPU_FLAGS_32BIT_MATCH;
1300 }
3629bb00
L
1301 else
1302 {
c0f3af97 1303 /* This instruction is available only on some archs. */
3629bb00
L
1304 i386_cpu_flags cpu = cpu_arch_flags;
1305
1306 cpu.bitfield.cpu64 = 0;
1307 cpu.bitfield.cpuno64 = 0;
1308 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1309 if (!cpu_flags_all_zero (&cpu))
1310 {
a5ff0eb2
L
1311 if (x.bitfield.cpuavx)
1312 {
ce2f5b3c 1313 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
a5ff0eb2
L
1314 if (cpu.bitfield.cpuavx)
1315 {
1316 /* Check SSE2AVX. */
1317 if (!t->opcode_modifier.sse2avx|| sse2avx)
1318 {
1319 match |= (CPU_FLAGS_ARCH_MATCH
1320 | CPU_FLAGS_AVX_MATCH);
1321 /* Check AES. */
1322 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1323 match |= CPU_FLAGS_AES_MATCH;
ce2f5b3c
L
1324 /* Check PCLMUL. */
1325 if (!x.bitfield.cpupclmul
1326 || cpu.bitfield.cpupclmul)
1327 match |= CPU_FLAGS_PCLMUL_MATCH;
a5ff0eb2
L
1328 }
1329 }
1330 else
1331 match |= CPU_FLAGS_ARCH_MATCH;
1332 }
1333 else
c0f3af97
L
1334 match |= CPU_FLAGS_32BIT_MATCH;
1335 }
3629bb00 1336 }
c0f3af97 1337 return match;
40fb9820
L
1338}
1339
c6fb90c8
L
1340static INLINE i386_operand_type
1341operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1342{
c6fb90c8
L
1343 switch (ARRAY_SIZE (x.array))
1344 {
1345 case 3:
1346 x.array [2] &= y.array [2];
1347 case 2:
1348 x.array [1] &= y.array [1];
1349 case 1:
1350 x.array [0] &= y.array [0];
1351 break;
1352 default:
1353 abort ();
1354 }
1355 return x;
40fb9820
L
1356}
1357
c6fb90c8
L
1358static INLINE i386_operand_type
1359operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1360{
c6fb90c8 1361 switch (ARRAY_SIZE (x.array))
40fb9820 1362 {
c6fb90c8
L
1363 case 3:
1364 x.array [2] |= y.array [2];
1365 case 2:
1366 x.array [1] |= y.array [1];
1367 case 1:
1368 x.array [0] |= y.array [0];
40fb9820
L
1369 break;
1370 default:
1371 abort ();
1372 }
c6fb90c8
L
1373 return x;
1374}
40fb9820 1375
c6fb90c8
L
1376static INLINE i386_operand_type
1377operand_type_xor (i386_operand_type x, i386_operand_type y)
1378{
1379 switch (ARRAY_SIZE (x.array))
1380 {
1381 case 3:
1382 x.array [2] ^= y.array [2];
1383 case 2:
1384 x.array [1] ^= y.array [1];
1385 case 1:
1386 x.array [0] ^= y.array [0];
1387 break;
1388 default:
1389 abort ();
1390 }
40fb9820
L
1391 return x;
1392}
1393
1394static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1395static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1396static const i386_operand_type control = OPERAND_TYPE_CONTROL;
65da13b5
L
1397static const i386_operand_type inoutportreg
1398 = OPERAND_TYPE_INOUTPORTREG;
40fb9820
L
1399static const i386_operand_type reg16_inoutportreg
1400 = OPERAND_TYPE_REG16_INOUTPORTREG;
1401static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1402static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1403static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1404static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1405static const i386_operand_type anydisp
1406 = OPERAND_TYPE_ANYDISP;
40fb9820 1407static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
c0f3af97 1408static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
40fb9820
L
1409static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1410static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1411static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1412static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1413static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1414static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1415static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1416static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1417static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1418
1419enum operand_type
1420{
1421 reg,
40fb9820
L
1422 imm,
1423 disp,
1424 anymem
1425};
1426
c6fb90c8 1427static INLINE int
40fb9820
L
1428operand_type_check (i386_operand_type t, enum operand_type c)
1429{
1430 switch (c)
1431 {
1432 case reg:
1433 return (t.bitfield.reg8
1434 || t.bitfield.reg16
1435 || t.bitfield.reg32
1436 || t.bitfield.reg64);
1437
40fb9820
L
1438 case imm:
1439 return (t.bitfield.imm8
1440 || t.bitfield.imm8s
1441 || t.bitfield.imm16
1442 || t.bitfield.imm32
1443 || t.bitfield.imm32s
1444 || t.bitfield.imm64);
1445
1446 case disp:
1447 return (t.bitfield.disp8
1448 || t.bitfield.disp16
1449 || t.bitfield.disp32
1450 || t.bitfield.disp32s
1451 || t.bitfield.disp64);
1452
1453 case anymem:
1454 return (t.bitfield.disp8
1455 || t.bitfield.disp16
1456 || t.bitfield.disp32
1457 || t.bitfield.disp32s
1458 || t.bitfield.disp64
1459 || t.bitfield.baseindex);
1460
1461 default:
1462 abort ();
1463 }
2cfe26b6
AM
1464
1465 return 0;
40fb9820
L
1466}
1467
5c07affc
L
1468/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1469 operand J for instruction template T. */
1470
1471static INLINE int
1472match_reg_size (const template *t, unsigned int j)
1473{
1474 return !((i.types[j].bitfield.byte
1475 && !t->operand_types[j].bitfield.byte)
1476 || (i.types[j].bitfield.word
1477 && !t->operand_types[j].bitfield.word)
1478 || (i.types[j].bitfield.dword
1479 && !t->operand_types[j].bitfield.dword)
1480 || (i.types[j].bitfield.qword
1481 && !t->operand_types[j].bitfield.qword));
1482}
1483
1484/* Return 1 if there is no conflict in any size on operand J for
1485 instruction template T. */
1486
1487static INLINE int
1488match_mem_size (const template *t, unsigned int j)
1489{
1490 return (match_reg_size (t, j)
1491 && !((i.types[j].bitfield.unspecified
1492 && !t->operand_types[j].bitfield.unspecified)
1493 || (i.types[j].bitfield.fword
1494 && !t->operand_types[j].bitfield.fword)
1495 || (i.types[j].bitfield.tbyte
1496 && !t->operand_types[j].bitfield.tbyte)
1497 || (i.types[j].bitfield.xmmword
c0f3af97
L
1498 && !t->operand_types[j].bitfield.xmmword)
1499 || (i.types[j].bitfield.ymmword
1500 && !t->operand_types[j].bitfield.ymmword)));
5c07affc
L
1501}
1502
1503/* Return 1 if there is no size conflict on any operands for
1504 instruction template T. */
1505
1506static INLINE int
1507operand_size_match (const template *t)
1508{
1509 unsigned int j;
1510 int match = 1;
1511
1512 /* Don't check jump instructions. */
1513 if (t->opcode_modifier.jump
1514 || t->opcode_modifier.jumpbyte
1515 || t->opcode_modifier.jumpdword
1516 || t->opcode_modifier.jumpintersegment)
1517 return match;
1518
1519 /* Check memory and accumulator operand size. */
1520 for (j = 0; j < i.operands; j++)
1521 {
1522 if (t->operand_types[j].bitfield.anysize)
1523 continue;
1524
1525 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1526 {
1527 match = 0;
1528 break;
1529 }
1530
1531 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1532 {
1533 match = 0;
1534 break;
1535 }
1536 }
1537
1538 if (match
1539 || (!t->opcode_modifier.d && !t->opcode_modifier.floatd))
1540 return match;
1541
1542 /* Check reverse. */
9c2799c2 1543 gas_assert (i.operands == 2);
5c07affc
L
1544
1545 match = 1;
1546 for (j = 0; j < 2; j++)
1547 {
1548 if (t->operand_types[j].bitfield.acc
1549 && !match_reg_size (t, j ? 0 : 1))
1550 {
1551 match = 0;
1552 break;
1553 }
1554
1555 if (i.types[j].bitfield.mem
1556 && !match_mem_size (t, j ? 0 : 1))
1557 {
1558 match = 0;
1559 break;
1560 }
1561 }
1562
1563 return match;
1564}
1565
c6fb90c8 1566static INLINE int
40fb9820
L
1567operand_type_match (i386_operand_type overlap,
1568 i386_operand_type given)
1569{
1570 i386_operand_type temp = overlap;
1571
1572 temp.bitfield.jumpabsolute = 0;
7d5e4556 1573 temp.bitfield.unspecified = 0;
5c07affc
L
1574 temp.bitfield.byte = 0;
1575 temp.bitfield.word = 0;
1576 temp.bitfield.dword = 0;
1577 temp.bitfield.fword = 0;
1578 temp.bitfield.qword = 0;
1579 temp.bitfield.tbyte = 0;
1580 temp.bitfield.xmmword = 0;
c0f3af97 1581 temp.bitfield.ymmword = 0;
0dfbf9d7 1582 if (operand_type_all_zero (&temp))
40fb9820
L
1583 return 0;
1584
1585 return (given.bitfield.baseindex == overlap.bitfield.baseindex
1586 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute);
1587}
1588
7d5e4556 1589/* If given types g0 and g1 are registers they must be of the same type
40fb9820
L
1590 unless the expected operand type register overlap is null.
1591 Note that Acc in a template matches every size of reg. */
1592
c6fb90c8 1593static INLINE int
40fb9820
L
1594operand_type_register_match (i386_operand_type m0,
1595 i386_operand_type g0,
1596 i386_operand_type t0,
1597 i386_operand_type m1,
1598 i386_operand_type g1,
1599 i386_operand_type t1)
1600{
1601 if (!operand_type_check (g0, reg))
1602 return 1;
1603
1604 if (!operand_type_check (g1, reg))
1605 return 1;
1606
1607 if (g0.bitfield.reg8 == g1.bitfield.reg8
1608 && g0.bitfield.reg16 == g1.bitfield.reg16
1609 && g0.bitfield.reg32 == g1.bitfield.reg32
1610 && g0.bitfield.reg64 == g1.bitfield.reg64)
1611 return 1;
1612
1613 if (m0.bitfield.acc)
1614 {
1615 t0.bitfield.reg8 = 1;
1616 t0.bitfield.reg16 = 1;
1617 t0.bitfield.reg32 = 1;
1618 t0.bitfield.reg64 = 1;
1619 }
1620
1621 if (m1.bitfield.acc)
1622 {
1623 t1.bitfield.reg8 = 1;
1624 t1.bitfield.reg16 = 1;
1625 t1.bitfield.reg32 = 1;
1626 t1.bitfield.reg64 = 1;
1627 }
1628
1629 return (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1630 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1631 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1632 && !(t0.bitfield.reg64 & t1.bitfield.reg64));
1633}
1634
252b5132 1635static INLINE unsigned int
40fb9820 1636mode_from_disp_size (i386_operand_type t)
252b5132 1637{
40fb9820
L
1638 if (t.bitfield.disp8)
1639 return 1;
1640 else if (t.bitfield.disp16
1641 || t.bitfield.disp32
1642 || t.bitfield.disp32s)
1643 return 2;
1644 else
1645 return 0;
252b5132
RH
1646}
1647
1648static INLINE int
e3bb37b5 1649fits_in_signed_byte (offsetT num)
252b5132
RH
1650{
1651 return (num >= -128) && (num <= 127);
47926f60 1652}
252b5132
RH
1653
1654static INLINE int
e3bb37b5 1655fits_in_unsigned_byte (offsetT num)
252b5132
RH
1656{
1657 return (num & 0xff) == num;
47926f60 1658}
252b5132
RH
1659
1660static INLINE int
e3bb37b5 1661fits_in_unsigned_word (offsetT num)
252b5132
RH
1662{
1663 return (num & 0xffff) == num;
47926f60 1664}
252b5132
RH
1665
1666static INLINE int
e3bb37b5 1667fits_in_signed_word (offsetT num)
252b5132
RH
1668{
1669 return (-32768 <= num) && (num <= 32767);
47926f60 1670}
2a962e6d 1671
3e73aa7c 1672static INLINE int
e3bb37b5 1673fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
1674{
1675#ifndef BFD64
1676 return 1;
1677#else
1678 return (!(((offsetT) -1 << 31) & num)
1679 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
1680#endif
1681} /* fits_in_signed_long() */
2a962e6d 1682
3e73aa7c 1683static INLINE int
e3bb37b5 1684fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
1685{
1686#ifndef BFD64
1687 return 1;
1688#else
1689 return (num & (((offsetT) 2 << 31) - 1)) == num;
1690#endif
1691} /* fits_in_unsigned_long() */
252b5132 1692
40fb9820 1693static i386_operand_type
e3bb37b5 1694smallest_imm_type (offsetT num)
252b5132 1695{
40fb9820 1696 i386_operand_type t;
7ab9ffdd 1697
0dfbf9d7 1698 operand_type_set (&t, 0);
40fb9820
L
1699 t.bitfield.imm64 = 1;
1700
1701 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
1702 {
1703 /* This code is disabled on the 486 because all the Imm1 forms
1704 in the opcode table are slower on the i486. They're the
1705 versions with the implicitly specified single-position
1706 displacement, which has another syntax if you really want to
1707 use that form. */
40fb9820
L
1708 t.bitfield.imm1 = 1;
1709 t.bitfield.imm8 = 1;
1710 t.bitfield.imm8s = 1;
1711 t.bitfield.imm16 = 1;
1712 t.bitfield.imm32 = 1;
1713 t.bitfield.imm32s = 1;
1714 }
1715 else if (fits_in_signed_byte (num))
1716 {
1717 t.bitfield.imm8 = 1;
1718 t.bitfield.imm8s = 1;
1719 t.bitfield.imm16 = 1;
1720 t.bitfield.imm32 = 1;
1721 t.bitfield.imm32s = 1;
1722 }
1723 else if (fits_in_unsigned_byte (num))
1724 {
1725 t.bitfield.imm8 = 1;
1726 t.bitfield.imm16 = 1;
1727 t.bitfield.imm32 = 1;
1728 t.bitfield.imm32s = 1;
1729 }
1730 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
1731 {
1732 t.bitfield.imm16 = 1;
1733 t.bitfield.imm32 = 1;
1734 t.bitfield.imm32s = 1;
1735 }
1736 else if (fits_in_signed_long (num))
1737 {
1738 t.bitfield.imm32 = 1;
1739 t.bitfield.imm32s = 1;
1740 }
1741 else if (fits_in_unsigned_long (num))
1742 t.bitfield.imm32 = 1;
1743
1744 return t;
47926f60 1745}
252b5132 1746
847f7ad4 1747static offsetT
e3bb37b5 1748offset_in_range (offsetT val, int size)
847f7ad4 1749{
508866be 1750 addressT mask;
ba2adb93 1751
847f7ad4
AM
1752 switch (size)
1753 {
508866be
L
1754 case 1: mask = ((addressT) 1 << 8) - 1; break;
1755 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 1756 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
1757#ifdef BFD64
1758 case 8: mask = ((addressT) 2 << 63) - 1; break;
1759#endif
47926f60 1760 default: abort ();
847f7ad4
AM
1761 }
1762
ba2adb93 1763 /* If BFD64, sign extend val. */
3e73aa7c
JH
1764 if (!use_rela_relocations)
1765 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
1766 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
ba2adb93 1767
47926f60 1768 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
1769 {
1770 char buf1[40], buf2[40];
1771
1772 sprint_value (buf1, val);
1773 sprint_value (buf2, val & mask);
1774 as_warn (_("%s shortened to %s"), buf1, buf2);
1775 }
1776 return val & mask;
1777}
1778
252b5132
RH
1779/* Returns 0 if attempting to add a prefix where one from the same
1780 class already exists, 1 if non rep/repne added, 2 if rep/repne
1781 added. */
1782static int
e3bb37b5 1783add_prefix (unsigned int prefix)
252b5132
RH
1784{
1785 int ret = 1;
b1905489 1786 unsigned int q;
252b5132 1787
29b0f896
AM
1788 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
1789 && flag_code == CODE_64BIT)
b1905489 1790 {
161a04f6
L
1791 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
1792 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
1793 && (prefix & (REX_R | REX_X | REX_B))))
b1905489
JB
1794 ret = 0;
1795 q = REX_PREFIX;
1796 }
3e73aa7c 1797 else
b1905489
JB
1798 {
1799 switch (prefix)
1800 {
1801 default:
1802 abort ();
1803
1804 case CS_PREFIX_OPCODE:
1805 case DS_PREFIX_OPCODE:
1806 case ES_PREFIX_OPCODE:
1807 case FS_PREFIX_OPCODE:
1808 case GS_PREFIX_OPCODE:
1809 case SS_PREFIX_OPCODE:
1810 q = SEG_PREFIX;
1811 break;
1812
1813 case REPNE_PREFIX_OPCODE:
1814 case REPE_PREFIX_OPCODE:
1815 ret = 2;
1816 /* fall thru */
1817 case LOCK_PREFIX_OPCODE:
1818 q = LOCKREP_PREFIX;
1819 break;
1820
1821 case FWAIT_OPCODE:
1822 q = WAIT_PREFIX;
1823 break;
1824
1825 case ADDR_PREFIX_OPCODE:
1826 q = ADDR_PREFIX;
1827 break;
1828
1829 case DATA_PREFIX_OPCODE:
1830 q = DATA_PREFIX;
1831 break;
1832 }
1833 if (i.prefix[q] != 0)
1834 ret = 0;
1835 }
252b5132 1836
b1905489 1837 if (ret)
252b5132 1838 {
b1905489
JB
1839 if (!i.prefix[q])
1840 ++i.prefixes;
1841 i.prefix[q] |= prefix;
252b5132 1842 }
b1905489
JB
1843 else
1844 as_bad (_("same type of prefix used twice"));
252b5132 1845
252b5132
RH
1846 return ret;
1847}
1848
1849static void
e3bb37b5 1850set_code_flag (int value)
eecb386c 1851{
3e73aa7c 1852 flag_code = value;
40fb9820
L
1853 if (flag_code == CODE_64BIT)
1854 {
1855 cpu_arch_flags.bitfield.cpu64 = 1;
1856 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
1857 }
1858 else
1859 {
1860 cpu_arch_flags.bitfield.cpu64 = 0;
1861 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
1862 }
1863 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c
JH
1864 {
1865 as_bad (_("64bit mode not supported on this CPU."));
1866 }
40fb9820 1867 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c
JH
1868 {
1869 as_bad (_("32bit mode not supported on this CPU."));
1870 }
eecb386c
AM
1871 stackop_size = '\0';
1872}
1873
1874static void
e3bb37b5 1875set_16bit_gcc_code_flag (int new_code_flag)
252b5132 1876{
3e73aa7c 1877 flag_code = new_code_flag;
40fb9820
L
1878 if (flag_code != CODE_16BIT)
1879 abort ();
1880 cpu_arch_flags.bitfield.cpu64 = 0;
1881 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 1882 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
1883}
1884
1885static void
e3bb37b5 1886set_intel_syntax (int syntax_flag)
252b5132
RH
1887{
1888 /* Find out if register prefixing is specified. */
1889 int ask_naked_reg = 0;
1890
1891 SKIP_WHITESPACE ();
29b0f896 1892 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132
RH
1893 {
1894 char *string = input_line_pointer;
1895 int e = get_symbol_end ();
1896
47926f60 1897 if (strcmp (string, "prefix") == 0)
252b5132 1898 ask_naked_reg = 1;
47926f60 1899 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
1900 ask_naked_reg = -1;
1901 else
d0b47220 1902 as_bad (_("bad argument to syntax directive."));
252b5132
RH
1903 *input_line_pointer = e;
1904 }
1905 demand_empty_rest_of_line ();
c3332e24 1906
252b5132
RH
1907 intel_syntax = syntax_flag;
1908
1909 if (ask_naked_reg == 0)
f86103b7
AM
1910 allow_naked_reg = (intel_syntax
1911 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
1912 else
1913 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 1914
ee86248c 1915 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 1916
e4a3b5a4 1917 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 1918 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 1919 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
1920}
1921
1efbbeb4
L
1922static void
1923set_intel_mnemonic (int mnemonic_flag)
1924{
e1d4d893 1925 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
1926}
1927
db51cc60
L
1928static void
1929set_allow_index_reg (int flag)
1930{
1931 allow_index_reg = flag;
1932}
1933
cb19c032
L
1934static void
1935set_sse_check (int dummy ATTRIBUTE_UNUSED)
1936{
1937 SKIP_WHITESPACE ();
1938
1939 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1940 {
1941 char *string = input_line_pointer;
1942 int e = get_symbol_end ();
1943
1944 if (strcmp (string, "none") == 0)
1945 sse_check = sse_check_none;
1946 else if (strcmp (string, "warning") == 0)
1947 sse_check = sse_check_warning;
1948 else if (strcmp (string, "error") == 0)
1949 sse_check = sse_check_error;
1950 else
1951 as_bad (_("bad argument to sse_check directive."));
1952 *input_line_pointer = e;
1953 }
1954 else
1955 as_bad (_("missing argument for sse_check directive"));
1956
1957 demand_empty_rest_of_line ();
1958}
1959
8a9036a4
L
1960static void
1961check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1962 i386_cpu_flags new ATTRIBUTE_UNUSED)
1963{
1964#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1965 static const char *arch;
1966
1967 /* Intel LIOM is only supported on ELF. */
1968 if (!IS_ELF)
1969 return;
1970
1971 if (!arch)
1972 {
1973 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
1974 use default_arch. */
1975 arch = cpu_arch_name;
1976 if (!arch)
1977 arch = default_arch;
1978 }
1979
1980 /* If we are targeting Intel L1OM, wm must enable it. */
1981 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1982 || new.bitfield.cpul1om)
1983 return;
1984
1985 as_bad (_("`%s' is not supported on `%s'"), name, arch);
1986#endif
1987}
1988
e413e4e9 1989static void
e3bb37b5 1990set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 1991{
47926f60 1992 SKIP_WHITESPACE ();
e413e4e9 1993
29b0f896 1994 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9
AM
1995 {
1996 char *string = input_line_pointer;
1997 int e = get_symbol_end ();
9103f4f4 1998 unsigned int i;
40fb9820 1999 i386_cpu_flags flags;
e413e4e9 2000
9103f4f4 2001 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
e413e4e9
AM
2002 {
2003 if (strcmp (string, cpu_arch[i].name) == 0)
2004 {
8a9036a4
L
2005 check_cpu_arch_compatible (string, cpu_arch[i].flags);
2006
5c6af06e
JB
2007 if (*string != '.')
2008 {
2009 cpu_arch_name = cpu_arch[i].name;
2010 cpu_sub_arch_name = NULL;
40fb9820
L
2011 cpu_arch_flags = cpu_arch[i].flags;
2012 if (flag_code == CODE_64BIT)
2013 {
2014 cpu_arch_flags.bitfield.cpu64 = 1;
2015 cpu_arch_flags.bitfield.cpuno64 = 0;
2016 }
2017 else
2018 {
2019 cpu_arch_flags.bitfield.cpu64 = 0;
2020 cpu_arch_flags.bitfield.cpuno64 = 1;
2021 }
ccc9c027 2022 cpu_arch_isa = cpu_arch[i].type;
9103f4f4 2023 cpu_arch_isa_flags = cpu_arch[i].flags;
ccc9c027
L
2024 if (!cpu_arch_tune_set)
2025 {
2026 cpu_arch_tune = cpu_arch_isa;
2027 cpu_arch_tune_flags = cpu_arch_isa_flags;
2028 }
5c6af06e
JB
2029 break;
2030 }
40fb9820 2031
309d3373
JB
2032 if (strncmp (string + 1, "no", 2))
2033 flags = cpu_flags_or (cpu_arch_flags,
2034 cpu_arch[i].flags);
2035 else
2036 flags = cpu_flags_and_not (cpu_arch_flags,
2037 cpu_arch[i].flags);
0dfbf9d7 2038 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2039 {
6305a203
L
2040 if (cpu_sub_arch_name)
2041 {
2042 char *name = cpu_sub_arch_name;
2043 cpu_sub_arch_name = concat (name,
2044 cpu_arch[i].name,
1bf57e9f 2045 (const char *) NULL);
6305a203
L
2046 free (name);
2047 }
2048 else
2049 cpu_sub_arch_name = xstrdup (cpu_arch[i].name);
40fb9820 2050 cpu_arch_flags = flags;
5c6af06e
JB
2051 }
2052 *input_line_pointer = e;
2053 demand_empty_rest_of_line ();
2054 return;
e413e4e9
AM
2055 }
2056 }
9103f4f4 2057 if (i >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2058 as_bad (_("no such architecture: `%s'"), string);
2059
2060 *input_line_pointer = e;
2061 }
2062 else
2063 as_bad (_("missing cpu architecture"));
2064
fddf5b5b
AM
2065 no_cond_jump_promotion = 0;
2066 if (*input_line_pointer == ','
29b0f896 2067 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b
AM
2068 {
2069 char *string = ++input_line_pointer;
2070 int e = get_symbol_end ();
2071
2072 if (strcmp (string, "nojumps") == 0)
2073 no_cond_jump_promotion = 1;
2074 else if (strcmp (string, "jumps") == 0)
2075 ;
2076 else
2077 as_bad (_("no such architecture modifier: `%s'"), string);
2078
2079 *input_line_pointer = e;
2080 }
2081
e413e4e9
AM
2082 demand_empty_rest_of_line ();
2083}
2084
8a9036a4
L
2085enum bfd_architecture
2086i386_arch (void)
2087{
2088 if (cpu_arch_isa_flags.bitfield.cpul1om)
2089 {
2090 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2091 || flag_code != CODE_64BIT)
2092 as_fatal (_("Intel L1OM is 64bit ELF only"));
2093 return bfd_arch_l1om;
2094 }
2095 else
2096 return bfd_arch_i386;
2097}
2098
b9d79e03
JH
2099unsigned long
2100i386_mach ()
2101{
2102 if (!strcmp (default_arch, "x86_64"))
8a9036a4
L
2103 {
2104 if (cpu_arch_isa_flags.bitfield.cpul1om)
2105 {
2106 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2107 as_fatal (_("Intel L1OM is 64bit ELF only"));
2108 return bfd_mach_l1om;
2109 }
2110 else
2111 return bfd_mach_x86_64;
2112 }
b9d79e03
JH
2113 else if (!strcmp (default_arch, "i386"))
2114 return bfd_mach_i386_i386;
2115 else
2116 as_fatal (_("Unknown architecture"));
2117}
b9d79e03 2118\f
252b5132
RH
2119void
2120md_begin ()
2121{
2122 const char *hash_err;
2123
47926f60 2124 /* Initialize op_hash hash table. */
252b5132
RH
2125 op_hash = hash_new ();
2126
2127 {
29b0f896
AM
2128 const template *optab;
2129 templates *core_optab;
252b5132 2130
47926f60
KH
2131 /* Setup for loop. */
2132 optab = i386_optab;
252b5132
RH
2133 core_optab = (templates *) xmalloc (sizeof (templates));
2134 core_optab->start = optab;
2135
2136 while (1)
2137 {
2138 ++optab;
2139 if (optab->name == NULL
2140 || strcmp (optab->name, (optab - 1)->name) != 0)
2141 {
2142 /* different name --> ship out current template list;
47926f60 2143 add to hash table; & begin anew. */
252b5132
RH
2144 core_optab->end = optab;
2145 hash_err = hash_insert (op_hash,
2146 (optab - 1)->name,
5a49b8ac 2147 (void *) core_optab);
252b5132
RH
2148 if (hash_err)
2149 {
252b5132
RH
2150 as_fatal (_("Internal Error: Can't hash %s: %s"),
2151 (optab - 1)->name,
2152 hash_err);
2153 }
2154 if (optab->name == NULL)
2155 break;
2156 core_optab = (templates *) xmalloc (sizeof (templates));
2157 core_optab->start = optab;
2158 }
2159 }
2160 }
2161
47926f60 2162 /* Initialize reg_hash hash table. */
252b5132
RH
2163 reg_hash = hash_new ();
2164 {
29b0f896 2165 const reg_entry *regtab;
c3fe08fa 2166 unsigned int regtab_size = i386_regtab_size;
252b5132 2167
c3fe08fa 2168 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2169 {
5a49b8ac 2170 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2171 if (hash_err)
3e73aa7c
JH
2172 as_fatal (_("Internal Error: Can't hash %s: %s"),
2173 regtab->reg_name,
2174 hash_err);
252b5132
RH
2175 }
2176 }
2177
47926f60 2178 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2179 {
29b0f896
AM
2180 int c;
2181 char *p;
252b5132
RH
2182
2183 for (c = 0; c < 256; c++)
2184 {
3882b010 2185 if (ISDIGIT (c))
252b5132
RH
2186 {
2187 digit_chars[c] = c;
2188 mnemonic_chars[c] = c;
2189 register_chars[c] = c;
2190 operand_chars[c] = c;
2191 }
3882b010 2192 else if (ISLOWER (c))
252b5132
RH
2193 {
2194 mnemonic_chars[c] = c;
2195 register_chars[c] = c;
2196 operand_chars[c] = c;
2197 }
3882b010 2198 else if (ISUPPER (c))
252b5132 2199 {
3882b010 2200 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2201 register_chars[c] = mnemonic_chars[c];
2202 operand_chars[c] = c;
2203 }
2204
3882b010 2205 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2206 identifier_chars[c] = c;
2207 else if (c >= 128)
2208 {
2209 identifier_chars[c] = c;
2210 operand_chars[c] = c;
2211 }
2212 }
2213
2214#ifdef LEX_AT
2215 identifier_chars['@'] = '@';
32137342
NC
2216#endif
2217#ifdef LEX_QM
2218 identifier_chars['?'] = '?';
2219 operand_chars['?'] = '?';
252b5132 2220#endif
252b5132 2221 digit_chars['-'] = '-';
c0f3af97 2222 mnemonic_chars['_'] = '_';
791fe849 2223 mnemonic_chars['-'] = '-';
0003779b 2224 mnemonic_chars['.'] = '.';
252b5132
RH
2225 identifier_chars['_'] = '_';
2226 identifier_chars['.'] = '.';
2227
2228 for (p = operand_special_chars; *p != '\0'; p++)
2229 operand_chars[(unsigned char) *p] = *p;
2230 }
2231
2232#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 2233 if (IS_ELF)
252b5132
RH
2234 {
2235 record_alignment (text_section, 2);
2236 record_alignment (data_section, 2);
2237 record_alignment (bss_section, 2);
2238 }
2239#endif
a4447b93
RH
2240
2241 if (flag_code == CODE_64BIT)
2242 {
2243 x86_dwarf2_return_column = 16;
2244 x86_cie_data_alignment = -8;
2245 }
2246 else
2247 {
2248 x86_dwarf2_return_column = 8;
2249 x86_cie_data_alignment = -4;
2250 }
252b5132
RH
2251}
2252
2253void
e3bb37b5 2254i386_print_statistics (FILE *file)
252b5132
RH
2255{
2256 hash_print_statistics (file, "i386 opcode", op_hash);
2257 hash_print_statistics (file, "i386 register", reg_hash);
2258}
2259\f
252b5132
RH
2260#ifdef DEBUG386
2261
ce8a8b2f 2262/* Debugging routines for md_assemble. */
e3bb37b5 2263static void pte (template *);
40fb9820 2264static void pt (i386_operand_type);
e3bb37b5
L
2265static void pe (expressionS *);
2266static void ps (symbolS *);
252b5132
RH
2267
2268static void
e3bb37b5 2269pi (char *line, i386_insn *x)
252b5132 2270{
09f131f2 2271 unsigned int i;
252b5132
RH
2272
2273 fprintf (stdout, "%s: template ", line);
2274 pte (&x->tm);
09f131f2
JH
2275 fprintf (stdout, " address: base %s index %s scale %x\n",
2276 x->base_reg ? x->base_reg->reg_name : "none",
2277 x->index_reg ? x->index_reg->reg_name : "none",
2278 x->log2_scale_factor);
2279 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 2280 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
2281 fprintf (stdout, " sib: base %x index %x scale %x\n",
2282 x->sib.base, x->sib.index, x->sib.scale);
2283 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
2284 (x->rex & REX_W) != 0,
2285 (x->rex & REX_R) != 0,
2286 (x->rex & REX_X) != 0,
2287 (x->rex & REX_B) != 0);
252b5132
RH
2288 for (i = 0; i < x->operands; i++)
2289 {
2290 fprintf (stdout, " #%d: ", i + 1);
2291 pt (x->types[i]);
2292 fprintf (stdout, "\n");
40fb9820
L
2293 if (x->types[i].bitfield.reg8
2294 || x->types[i].bitfield.reg16
2295 || x->types[i].bitfield.reg32
2296 || x->types[i].bitfield.reg64
2297 || x->types[i].bitfield.regmmx
2298 || x->types[i].bitfield.regxmm
c0f3af97 2299 || x->types[i].bitfield.regymm
40fb9820
L
2300 || x->types[i].bitfield.sreg2
2301 || x->types[i].bitfield.sreg3
2302 || x->types[i].bitfield.control
2303 || x->types[i].bitfield.debug
2304 || x->types[i].bitfield.test)
520dc8e8 2305 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
40fb9820 2306 if (operand_type_check (x->types[i], imm))
520dc8e8 2307 pe (x->op[i].imms);
40fb9820 2308 if (operand_type_check (x->types[i], disp))
520dc8e8 2309 pe (x->op[i].disps);
252b5132
RH
2310 }
2311}
2312
2313static void
e3bb37b5 2314pte (template *t)
252b5132 2315{
09f131f2 2316 unsigned int i;
252b5132 2317 fprintf (stdout, " %d operands ", t->operands);
47926f60 2318 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
2319 if (t->extension_opcode != None)
2320 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 2321 if (t->opcode_modifier.d)
252b5132 2322 fprintf (stdout, "D");
40fb9820 2323 if (t->opcode_modifier.w)
252b5132
RH
2324 fprintf (stdout, "W");
2325 fprintf (stdout, "\n");
2326 for (i = 0; i < t->operands; i++)
2327 {
2328 fprintf (stdout, " #%d type ", i + 1);
2329 pt (t->operand_types[i]);
2330 fprintf (stdout, "\n");
2331 }
2332}
2333
2334static void
e3bb37b5 2335pe (expressionS *e)
252b5132 2336{
24eab124 2337 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
2338 fprintf (stdout, " add_number %ld (%lx)\n",
2339 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
2340 if (e->X_add_symbol)
2341 {
2342 fprintf (stdout, " add_symbol ");
2343 ps (e->X_add_symbol);
2344 fprintf (stdout, "\n");
2345 }
2346 if (e->X_op_symbol)
2347 {
2348 fprintf (stdout, " op_symbol ");
2349 ps (e->X_op_symbol);
2350 fprintf (stdout, "\n");
2351 }
2352}
2353
2354static void
e3bb37b5 2355ps (symbolS *s)
252b5132
RH
2356{
2357 fprintf (stdout, "%s type %s%s",
2358 S_GET_NAME (s),
2359 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2360 segment_name (S_GET_SEGMENT (s)));
2361}
2362
7b81dfbb 2363static struct type_name
252b5132 2364 {
40fb9820
L
2365 i386_operand_type mask;
2366 const char *name;
252b5132 2367 }
7b81dfbb 2368const type_names[] =
252b5132 2369{
40fb9820
L
2370 { OPERAND_TYPE_REG8, "r8" },
2371 { OPERAND_TYPE_REG16, "r16" },
2372 { OPERAND_TYPE_REG32, "r32" },
2373 { OPERAND_TYPE_REG64, "r64" },
2374 { OPERAND_TYPE_IMM8, "i8" },
2375 { OPERAND_TYPE_IMM8, "i8s" },
2376 { OPERAND_TYPE_IMM16, "i16" },
2377 { OPERAND_TYPE_IMM32, "i32" },
2378 { OPERAND_TYPE_IMM32S, "i32s" },
2379 { OPERAND_TYPE_IMM64, "i64" },
2380 { OPERAND_TYPE_IMM1, "i1" },
2381 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2382 { OPERAND_TYPE_DISP8, "d8" },
2383 { OPERAND_TYPE_DISP16, "d16" },
2384 { OPERAND_TYPE_DISP32, "d32" },
2385 { OPERAND_TYPE_DISP32S, "d32s" },
2386 { OPERAND_TYPE_DISP64, "d64" },
2387 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2388 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2389 { OPERAND_TYPE_CONTROL, "control reg" },
2390 { OPERAND_TYPE_TEST, "test reg" },
2391 { OPERAND_TYPE_DEBUG, "debug reg" },
2392 { OPERAND_TYPE_FLOATREG, "FReg" },
2393 { OPERAND_TYPE_FLOATACC, "FAcc" },
2394 { OPERAND_TYPE_SREG2, "SReg2" },
2395 { OPERAND_TYPE_SREG3, "SReg3" },
2396 { OPERAND_TYPE_ACC, "Acc" },
2397 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2398 { OPERAND_TYPE_REGMMX, "rMMX" },
2399 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 2400 { OPERAND_TYPE_REGYMM, "rYMM" },
40fb9820 2401 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
2402};
2403
2404static void
40fb9820 2405pt (i386_operand_type t)
252b5132 2406{
40fb9820 2407 unsigned int j;
c6fb90c8 2408 i386_operand_type a;
252b5132 2409
40fb9820 2410 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
2411 {
2412 a = operand_type_and (t, type_names[j].mask);
0349dc08 2413 if (!operand_type_all_zero (&a))
c6fb90c8
L
2414 fprintf (stdout, "%s, ", type_names[j].name);
2415 }
252b5132
RH
2416 fflush (stdout);
2417}
2418
2419#endif /* DEBUG386 */
2420\f
252b5132 2421static bfd_reloc_code_real_type
3956db08 2422reloc (unsigned int size,
64e74474
AM
2423 int pcrel,
2424 int sign,
2425 bfd_reloc_code_real_type other)
252b5132 2426{
47926f60 2427 if (other != NO_RELOC)
3956db08
JB
2428 {
2429 reloc_howto_type *reloc;
2430
2431 if (size == 8)
2432 switch (other)
2433 {
64e74474
AM
2434 case BFD_RELOC_X86_64_GOT32:
2435 return BFD_RELOC_X86_64_GOT64;
2436 break;
2437 case BFD_RELOC_X86_64_PLTOFF64:
2438 return BFD_RELOC_X86_64_PLTOFF64;
2439 break;
2440 case BFD_RELOC_X86_64_GOTPC32:
2441 other = BFD_RELOC_X86_64_GOTPC64;
2442 break;
2443 case BFD_RELOC_X86_64_GOTPCREL:
2444 other = BFD_RELOC_X86_64_GOTPCREL64;
2445 break;
2446 case BFD_RELOC_X86_64_TPOFF32:
2447 other = BFD_RELOC_X86_64_TPOFF64;
2448 break;
2449 case BFD_RELOC_X86_64_DTPOFF32:
2450 other = BFD_RELOC_X86_64_DTPOFF64;
2451 break;
2452 default:
2453 break;
3956db08 2454 }
e05278af
JB
2455
2456 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
2457 if (size == 4 && flag_code != CODE_64BIT)
2458 sign = -1;
2459
3956db08
JB
2460 reloc = bfd_reloc_type_lookup (stdoutput, other);
2461 if (!reloc)
2462 as_bad (_("unknown relocation (%u)"), other);
2463 else if (size != bfd_get_reloc_size (reloc))
2464 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
2465 bfd_get_reloc_size (reloc),
2466 size);
2467 else if (pcrel && !reloc->pc_relative)
2468 as_bad (_("non-pc-relative relocation for pc-relative field"));
2469 else if ((reloc->complain_on_overflow == complain_overflow_signed
2470 && !sign)
2471 || (reloc->complain_on_overflow == complain_overflow_unsigned
64e74474 2472 && sign > 0))
3956db08
JB
2473 as_bad (_("relocated field and relocation type differ in signedness"));
2474 else
2475 return other;
2476 return NO_RELOC;
2477 }
252b5132
RH
2478
2479 if (pcrel)
2480 {
3e73aa7c 2481 if (!sign)
3956db08 2482 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
2483 switch (size)
2484 {
2485 case 1: return BFD_RELOC_8_PCREL;
2486 case 2: return BFD_RELOC_16_PCREL;
2487 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 2488 case 8: return BFD_RELOC_64_PCREL;
252b5132 2489 }
3956db08 2490 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
2491 }
2492 else
2493 {
3956db08 2494 if (sign > 0)
e5cb08ac 2495 switch (size)
3e73aa7c
JH
2496 {
2497 case 4: return BFD_RELOC_X86_64_32S;
2498 }
2499 else
2500 switch (size)
2501 {
2502 case 1: return BFD_RELOC_8;
2503 case 2: return BFD_RELOC_16;
2504 case 4: return BFD_RELOC_32;
2505 case 8: return BFD_RELOC_64;
2506 }
3956db08
JB
2507 as_bad (_("cannot do %s %u byte relocation"),
2508 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
2509 }
2510
0cc9e1d3 2511 return NO_RELOC;
252b5132
RH
2512}
2513
47926f60
KH
2514/* Here we decide which fixups can be adjusted to make them relative to
2515 the beginning of the section instead of the symbol. Basically we need
2516 to make sure that the dynamic relocations are done correctly, so in
2517 some cases we force the original symbol to be used. */
2518
252b5132 2519int
e3bb37b5 2520tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 2521{
6d249963 2522#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 2523 if (!IS_ELF)
31312f95
AM
2524 return 1;
2525
a161fe53
AM
2526 /* Don't adjust pc-relative references to merge sections in 64-bit
2527 mode. */
2528 if (use_rela_relocations
2529 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
2530 && fixP->fx_pcrel)
252b5132 2531 return 0;
31312f95 2532
8d01d9a9
AJ
2533 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2534 and changed later by validate_fix. */
2535 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
2536 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
2537 return 0;
2538
ce8a8b2f 2539 /* adjust_reloc_syms doesn't know about the GOT. */
252b5132
RH
2540 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
2541 || fixP->fx_r_type == BFD_RELOC_386_PLT32
2542 || fixP->fx_r_type == BFD_RELOC_386_GOT32
13ae64f3
JJ
2543 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
2544 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
2545 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
2546 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
2547 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
2548 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
2549 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
2550 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
2551 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
2552 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
2553 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
2554 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 2555 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
bffbf940
JJ
2556 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
2557 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
2558 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 2559 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
2560 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
2561 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
2562 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
2563 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
2564 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
2565 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
2566 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2567 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2568 return 0;
31312f95 2569#endif
252b5132
RH
2570 return 1;
2571}
252b5132 2572
b4cac588 2573static int
e3bb37b5 2574intel_float_operand (const char *mnemonic)
252b5132 2575{
9306ca4a
JB
2576 /* Note that the value returned is meaningful only for opcodes with (memory)
2577 operands, hence the code here is free to improperly handle opcodes that
2578 have no operands (for better performance and smaller code). */
2579
2580 if (mnemonic[0] != 'f')
2581 return 0; /* non-math */
2582
2583 switch (mnemonic[1])
2584 {
2585 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
2586 the fs segment override prefix not currently handled because no
2587 call path can make opcodes without operands get here */
2588 case 'i':
2589 return 2 /* integer op */;
2590 case 'l':
2591 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
2592 return 3; /* fldcw/fldenv */
2593 break;
2594 case 'n':
2595 if (mnemonic[2] != 'o' /* fnop */)
2596 return 3; /* non-waiting control op */
2597 break;
2598 case 'r':
2599 if (mnemonic[2] == 's')
2600 return 3; /* frstor/frstpm */
2601 break;
2602 case 's':
2603 if (mnemonic[2] == 'a')
2604 return 3; /* fsave */
2605 if (mnemonic[2] == 't')
2606 {
2607 switch (mnemonic[3])
2608 {
2609 case 'c': /* fstcw */
2610 case 'd': /* fstdw */
2611 case 'e': /* fstenv */
2612 case 's': /* fsts[gw] */
2613 return 3;
2614 }
2615 }
2616 break;
2617 case 'x':
2618 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
2619 return 0; /* fxsave/fxrstor are not really math ops */
2620 break;
2621 }
252b5132 2622
9306ca4a 2623 return 1;
252b5132
RH
2624}
2625
c0f3af97
L
2626/* Build the VEX prefix. */
2627
2628static void
fa99fab2 2629build_vex_prefix (const template *t)
c0f3af97
L
2630{
2631 unsigned int register_specifier;
2632 unsigned int implied_prefix;
2633 unsigned int vector_length;
2634
2635 /* Check register specifier. */
2636 if (i.vex.register_specifier)
2637 {
2638 register_specifier = i.vex.register_specifier->reg_num;
2639 if ((i.vex.register_specifier->reg_flags & RegRex))
2640 register_specifier += 8;
2641 register_specifier = ~register_specifier & 0xf;
2642 }
2643 else
2644 register_specifier = 0xf;
2645
fa99fab2
L
2646 /* Use 2-byte VEX prefix by swappping destination and source
2647 operand. */
2648 if (!i.swap_operand
2649 && i.operands == i.reg_operands
2650 && i.tm.opcode_modifier.vex0f
2651 && i.tm.opcode_modifier.s
2652 && i.rex == REX_B)
2653 {
2654 unsigned int xchg = i.operands - 1;
2655 union i386_op temp_op;
2656 i386_operand_type temp_type;
2657
2658 temp_type = i.types[xchg];
2659 i.types[xchg] = i.types[0];
2660 i.types[0] = temp_type;
2661 temp_op = i.op[xchg];
2662 i.op[xchg] = i.op[0];
2663 i.op[0] = temp_op;
2664
9c2799c2 2665 gas_assert (i.rm.mode == 3);
fa99fab2
L
2666
2667 i.rex = REX_R;
2668 xchg = i.rm.regmem;
2669 i.rm.regmem = i.rm.reg;
2670 i.rm.reg = xchg;
2671
2672 /* Use the next insn. */
2673 i.tm = t[1];
2674 }
2675
c0f3af97
L
2676 vector_length = i.tm.opcode_modifier.vex256 ? 1 : 0;
2677
2678 switch ((i.tm.base_opcode >> 8) & 0xff)
2679 {
2680 case 0:
2681 implied_prefix = 0;
2682 break;
2683 case DATA_PREFIX_OPCODE:
2684 implied_prefix = 1;
2685 break;
2686 case REPE_PREFIX_OPCODE:
2687 implied_prefix = 2;
2688 break;
2689 case REPNE_PREFIX_OPCODE:
2690 implied_prefix = 3;
2691 break;
2692 default:
2693 abort ();
2694 }
2695
2696 /* Use 2-byte VEX prefix if possible. */
2697 if (i.tm.opcode_modifier.vex0f
2698 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
2699 {
2700 /* 2-byte VEX prefix. */
2701 unsigned int r;
2702
2703 i.vex.length = 2;
2704 i.vex.bytes[0] = 0xc5;
2705
2706 /* Check the REX.R bit. */
2707 r = (i.rex & REX_R) ? 0 : 1;
2708 i.vex.bytes[1] = (r << 7
2709 | register_specifier << 3
2710 | vector_length << 2
2711 | implied_prefix);
2712 }
2713 else
2714 {
2715 /* 3-byte VEX prefix. */
2716 unsigned int m, w;
2717
2718 if (i.tm.opcode_modifier.vex0f)
2719 m = 0x1;
2720 else if (i.tm.opcode_modifier.vex0f38)
2721 m = 0x2;
2722 else if (i.tm.opcode_modifier.vex0f3a)
2723 m = 0x3;
2724 else
2725 abort ();
2726
2727 i.vex.length = 3;
2728 i.vex.bytes[0] = 0xc4;
2729
2730 /* The high 3 bits of the second VEX byte are 1's compliment
2731 of RXB bits from REX. */
2732 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
2733
2734 /* Check the REX.W bit. */
2735 w = (i.rex & REX_W) ? 1 : 0;
2736 if (i.tm.opcode_modifier.vexw0 || i.tm.opcode_modifier.vexw1)
2737 {
2738 if (w)
2739 abort ();
2740
2741 if (i.tm.opcode_modifier.vexw1)
2742 w = 1;
2743 }
2744
2745 i.vex.bytes[2] = (w << 7
2746 | register_specifier << 3
2747 | vector_length << 2
2748 | implied_prefix);
2749 }
2750}
2751
65da13b5
L
2752static void
2753process_immext (void)
2754{
2755 expressionS *exp;
2756
2757 if (i.tm.cpu_flags.bitfield.cpusse3 && i.operands > 0)
2758 {
1fed0ba1
L
2759 /* SSE3 Instructions have the fixed operands with an opcode
2760 suffix which is coded in the same place as an 8-bit immediate
2761 field would be. Here we check those operands and remove them
2762 afterwards. */
65da13b5
L
2763 unsigned int x;
2764
2765 for (x = 0; x < i.operands; x++)
2766 if (i.op[x].regs->reg_num != x)
2767 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
2768 register_prefix, i.op[x].regs->reg_name, x + 1,
2769 i.tm.name);
2770
2771 i.operands = 0;
65da13b5
L
2772 }
2773
c0f3af97 2774 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
2775 which is coded in the same place as an 8-bit immediate field
2776 would be. Here we fake an 8-bit immediate operand from the
2777 opcode suffix stored in tm.extension_opcode.
2778
c1e679ec 2779 AVX instructions also use this encoding, for some of
c0f3af97 2780 3 argument instructions. */
65da13b5 2781
9c2799c2 2782 gas_assert (i.imm_operands == 0
7ab9ffdd
L
2783 && (i.operands <= 2
2784 || (i.tm.opcode_modifier.vex
2785 && i.operands <= 4)));
65da13b5
L
2786
2787 exp = &im_expressions[i.imm_operands++];
2788 i.op[i.operands].imms = exp;
2789 i.types[i.operands] = imm8;
2790 i.operands++;
2791 exp->X_op = O_constant;
2792 exp->X_add_number = i.tm.extension_opcode;
2793 i.tm.extension_opcode = None;
2794}
2795
252b5132
RH
2796/* This is the guts of the machine-dependent assembler. LINE points to a
2797 machine dependent instruction. This function is supposed to emit
2798 the frags/bytes it assembles to. */
2799
2800void
65da13b5 2801md_assemble (char *line)
252b5132 2802{
40fb9820 2803 unsigned int j;
252b5132 2804 char mnemonic[MAX_MNEM_SIZE];
fa99fab2 2805 const template *t;
252b5132 2806
47926f60 2807 /* Initialize globals. */
252b5132
RH
2808 memset (&i, '\0', sizeof (i));
2809 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 2810 i.reloc[j] = NO_RELOC;
252b5132
RH
2811 memset (disp_expressions, '\0', sizeof (disp_expressions));
2812 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 2813 save_stack_p = save_stack;
252b5132
RH
2814
2815 /* First parse an instruction mnemonic & call i386_operand for the operands.
2816 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 2817 start of a (possibly prefixed) mnemonic. */
252b5132 2818
29b0f896
AM
2819 line = parse_insn (line, mnemonic);
2820 if (line == NULL)
2821 return;
252b5132 2822
29b0f896 2823 line = parse_operands (line, mnemonic);
ee86248c 2824 this_operand = -1;
29b0f896
AM
2825 if (line == NULL)
2826 return;
252b5132 2827
29b0f896
AM
2828 /* Now we've parsed the mnemonic into a set of templates, and have the
2829 operands at hand. */
2830
2831 /* All intel opcodes have reversed operands except for "bound" and
2832 "enter". We also don't reverse intersegment "jmp" and "call"
2833 instructions with 2 immediate operands so that the immediate segment
050dfa73 2834 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
2835 if (intel_syntax
2836 && i.operands > 1
29b0f896 2837 && (strcmp (mnemonic, "bound") != 0)
30123838 2838 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
2839 && !(operand_type_check (i.types[0], imm)
2840 && operand_type_check (i.types[1], imm)))
29b0f896
AM
2841 swap_operands ();
2842
ec56d5c0
JB
2843 /* The order of the immediates should be reversed
2844 for 2 immediates extrq and insertq instructions */
2845 if (i.imm_operands == 2
2846 && (strcmp (mnemonic, "extrq") == 0
2847 || strcmp (mnemonic, "insertq") == 0))
2848 swap_2_operands (0, 1);
2849
29b0f896
AM
2850 if (i.imm_operands)
2851 optimize_imm ();
2852
b300c311
L
2853 /* Don't optimize displacement for movabs since it only takes 64bit
2854 displacement. */
2855 if (i.disp_operands
2856 && (flag_code != CODE_64BIT
2857 || strcmp (mnemonic, "movabs") != 0))
29b0f896
AM
2858 optimize_disp ();
2859
2860 /* Next, we find a template that matches the given insn,
2861 making sure the overlap of the given operands types is consistent
2862 with the template operand types. */
252b5132 2863
fa99fab2 2864 if (!(t = match_template ()))
29b0f896 2865 return;
252b5132 2866
daf50ae7 2867 if (sse_check != sse_check_none
81f8a913 2868 && !i.tm.opcode_modifier.noavx
daf50ae7
L
2869 && (i.tm.cpu_flags.bitfield.cpusse
2870 || i.tm.cpu_flags.bitfield.cpusse2
2871 || i.tm.cpu_flags.bitfield.cpusse3
2872 || i.tm.cpu_flags.bitfield.cpussse3
2873 || i.tm.cpu_flags.bitfield.cpusse4_1
2874 || i.tm.cpu_flags.bitfield.cpusse4_2))
2875 {
2876 (sse_check == sse_check_warning
2877 ? as_warn
2878 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
2879 }
2880
321fd21e
L
2881 /* Zap movzx and movsx suffix. The suffix has been set from
2882 "word ptr" or "byte ptr" on the source operand in Intel syntax
2883 or extracted from mnemonic in AT&T syntax. But we'll use
2884 the destination register to choose the suffix for encoding. */
2885 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 2886 {
321fd21e
L
2887 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
2888 there is no suffix, the default will be byte extension. */
2889 if (i.reg_operands != 2
2890 && !i.suffix
7ab9ffdd 2891 && intel_syntax)
321fd21e
L
2892 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2893
2894 i.suffix = 0;
cd61ebfe 2895 }
24eab124 2896
40fb9820 2897 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
2898 if (!add_prefix (FWAIT_OPCODE))
2899 return;
252b5132 2900
29b0f896 2901 /* Check string instruction segment overrides. */
40fb9820 2902 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
2903 {
2904 if (!check_string ())
5dd0794d 2905 return;
fc0763e6 2906 i.disp_operands = 0;
29b0f896 2907 }
5dd0794d 2908
29b0f896
AM
2909 if (!process_suffix ())
2910 return;
e413e4e9 2911
bc0844ae
L
2912 /* Update operand types. */
2913 for (j = 0; j < i.operands; j++)
2914 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
2915
29b0f896
AM
2916 /* Make still unresolved immediate matches conform to size of immediate
2917 given in i.suffix. */
2918 if (!finalize_imm ())
2919 return;
252b5132 2920
40fb9820 2921 if (i.types[0].bitfield.imm1)
29b0f896 2922 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 2923
9afe6eb8
L
2924 /* We only need to check those implicit registers for instructions
2925 with 3 operands or less. */
2926 if (i.operands <= 3)
2927 for (j = 0; j < i.operands; j++)
2928 if (i.types[j].bitfield.inoutportreg
2929 || i.types[j].bitfield.shiftcount
2930 || i.types[j].bitfield.acc
2931 || i.types[j].bitfield.floatacc)
2932 i.reg_operands--;
40fb9820 2933
c0f3af97
L
2934 /* ImmExt should be processed after SSE2AVX. */
2935 if (!i.tm.opcode_modifier.sse2avx
2936 && i.tm.opcode_modifier.immext)
65da13b5 2937 process_immext ();
252b5132 2938
29b0f896
AM
2939 /* For insns with operands there are more diddles to do to the opcode. */
2940 if (i.operands)
2941 {
2942 if (!process_operands ())
2943 return;
2944 }
40fb9820 2945 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
2946 {
2947 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
2948 as_warn (_("translating to `%sp'"), i.tm.name);
2949 }
252b5132 2950
c0f3af97 2951 if (i.tm.opcode_modifier.vex)
fa99fab2 2952 build_vex_prefix (t);
c0f3af97 2953
29b0f896
AM
2954 /* Handle conversion of 'int $3' --> special int3 insn. */
2955 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
2956 {
2957 i.tm.base_opcode = INT3_OPCODE;
2958 i.imm_operands = 0;
2959 }
252b5132 2960
40fb9820
L
2961 if ((i.tm.opcode_modifier.jump
2962 || i.tm.opcode_modifier.jumpbyte
2963 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
2964 && i.op[0].disps->X_op == O_constant)
2965 {
2966 /* Convert "jmp constant" (and "call constant") to a jump (call) to
2967 the absolute address given by the constant. Since ix86 jumps and
2968 calls are pc relative, we need to generate a reloc. */
2969 i.op[0].disps->X_add_symbol = &abs_symbol;
2970 i.op[0].disps->X_op = O_symbol;
2971 }
252b5132 2972
40fb9820 2973 if (i.tm.opcode_modifier.rex64)
161a04f6 2974 i.rex |= REX_W;
252b5132 2975
29b0f896
AM
2976 /* For 8 bit registers we need an empty rex prefix. Also if the
2977 instruction already has a prefix, we need to convert old
2978 registers to new ones. */
773f551c 2979
40fb9820 2980 if ((i.types[0].bitfield.reg8
29b0f896 2981 && (i.op[0].regs->reg_flags & RegRex64) != 0)
40fb9820 2982 || (i.types[1].bitfield.reg8
29b0f896 2983 && (i.op[1].regs->reg_flags & RegRex64) != 0)
40fb9820
L
2984 || ((i.types[0].bitfield.reg8
2985 || i.types[1].bitfield.reg8)
29b0f896
AM
2986 && i.rex != 0))
2987 {
2988 int x;
726c5dcd 2989
29b0f896
AM
2990 i.rex |= REX_OPCODE;
2991 for (x = 0; x < 2; x++)
2992 {
2993 /* Look for 8 bit operand that uses old registers. */
40fb9820 2994 if (i.types[x].bitfield.reg8
29b0f896 2995 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 2996 {
29b0f896
AM
2997 /* In case it is "hi" register, give up. */
2998 if (i.op[x].regs->reg_num > 3)
a540244d 2999 as_bad (_("can't encode register '%s%s' in an "
4eed87de 3000 "instruction requiring REX prefix."),
a540244d 3001 register_prefix, i.op[x].regs->reg_name);
773f551c 3002
29b0f896
AM
3003 /* Otherwise it is equivalent to the extended register.
3004 Since the encoding doesn't change this is merely
3005 cosmetic cleanup for debug output. */
3006
3007 i.op[x].regs = i.op[x].regs + 8;
773f551c 3008 }
29b0f896
AM
3009 }
3010 }
773f551c 3011
7ab9ffdd 3012 if (i.rex != 0)
29b0f896
AM
3013 add_prefix (REX_OPCODE | i.rex);
3014
3015 /* We are ready to output the insn. */
3016 output_insn ();
3017}
3018
3019static char *
e3bb37b5 3020parse_insn (char *line, char *mnemonic)
29b0f896
AM
3021{
3022 char *l = line;
3023 char *token_start = l;
3024 char *mnem_p;
5c6af06e
JB
3025 int supported;
3026 const template *t;
b6169b20 3027 char *dot_p = NULL;
29b0f896
AM
3028
3029 /* Non-zero if we found a prefix only acceptable with string insns. */
3030 const char *expecting_string_instruction = NULL;
45288df1 3031
29b0f896
AM
3032 while (1)
3033 {
3034 mnem_p = mnemonic;
3035 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3036 {
b6169b20
L
3037 if (*mnem_p == '.')
3038 dot_p = mnem_p;
29b0f896
AM
3039 mnem_p++;
3040 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 3041 {
29b0f896
AM
3042 as_bad (_("no such instruction: `%s'"), token_start);
3043 return NULL;
3044 }
3045 l++;
3046 }
3047 if (!is_space_char (*l)
3048 && *l != END_OF_INSN
e44823cf
JB
3049 && (intel_syntax
3050 || (*l != PREFIX_SEPARATOR
3051 && *l != ',')))
29b0f896
AM
3052 {
3053 as_bad (_("invalid character %s in mnemonic"),
3054 output_invalid (*l));
3055 return NULL;
3056 }
3057 if (token_start == l)
3058 {
e44823cf 3059 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
3060 as_bad (_("expecting prefix; got nothing"));
3061 else
3062 as_bad (_("expecting mnemonic; got nothing"));
3063 return NULL;
3064 }
45288df1 3065
29b0f896
AM
3066 /* Look up instruction (or prefix) via hash table. */
3067 current_templates = hash_find (op_hash, mnemonic);
47926f60 3068
29b0f896
AM
3069 if (*l != END_OF_INSN
3070 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3071 && current_templates
40fb9820 3072 && current_templates->start->opcode_modifier.isprefix)
29b0f896 3073 {
c6fb90c8 3074 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
3075 {
3076 as_bad ((flag_code != CODE_64BIT
3077 ? _("`%s' is only supported in 64-bit mode")
3078 : _("`%s' is not supported in 64-bit mode")),
3079 current_templates->start->name);
3080 return NULL;
3081 }
29b0f896
AM
3082 /* If we are in 16-bit mode, do not allow addr16 or data16.
3083 Similarly, in 32-bit mode, do not allow addr32 or data32. */
40fb9820
L
3084 if ((current_templates->start->opcode_modifier.size16
3085 || current_templates->start->opcode_modifier.size32)
29b0f896 3086 && flag_code != CODE_64BIT
40fb9820 3087 && (current_templates->start->opcode_modifier.size32
29b0f896
AM
3088 ^ (flag_code == CODE_16BIT)))
3089 {
3090 as_bad (_("redundant %s prefix"),
3091 current_templates->start->name);
3092 return NULL;
45288df1 3093 }
29b0f896
AM
3094 /* Add prefix, checking for repeated prefixes. */
3095 switch (add_prefix (current_templates->start->base_opcode))
3096 {
3097 case 0:
3098 return NULL;
3099 case 2:
3100 expecting_string_instruction = current_templates->start->name;
3101 break;
3102 }
3103 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3104 token_start = ++l;
3105 }
3106 else
3107 break;
3108 }
45288df1 3109
30a55f88 3110 if (!current_templates)
b6169b20 3111 {
30a55f88
L
3112 /* Check if we should swap operand in encoding. */
3113 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3114 i.swap_operand = 1;
3115 else
3116 goto check_suffix;
3117 mnem_p = dot_p;
3118 *dot_p = '\0';
3119 current_templates = hash_find (op_hash, mnemonic);
b6169b20
L
3120 }
3121
29b0f896
AM
3122 if (!current_templates)
3123 {
b6169b20 3124check_suffix:
29b0f896
AM
3125 /* See if we can get a match by trimming off a suffix. */
3126 switch (mnem_p[-1])
3127 {
3128 case WORD_MNEM_SUFFIX:
9306ca4a
JB
3129 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
3130 i.suffix = SHORT_MNEM_SUFFIX;
3131 else
29b0f896
AM
3132 case BYTE_MNEM_SUFFIX:
3133 case QWORD_MNEM_SUFFIX:
3134 i.suffix = mnem_p[-1];
3135 mnem_p[-1] = '\0';
3136 current_templates = hash_find (op_hash, mnemonic);
3137 break;
3138 case SHORT_MNEM_SUFFIX:
3139 case LONG_MNEM_SUFFIX:
3140 if (!intel_syntax)
3141 {
3142 i.suffix = mnem_p[-1];
3143 mnem_p[-1] = '\0';
3144 current_templates = hash_find (op_hash, mnemonic);
3145 }
3146 break;
252b5132 3147
29b0f896
AM
3148 /* Intel Syntax. */
3149 case 'd':
3150 if (intel_syntax)
3151 {
9306ca4a 3152 if (intel_float_operand (mnemonic) == 1)
29b0f896
AM
3153 i.suffix = SHORT_MNEM_SUFFIX;
3154 else
3155 i.suffix = LONG_MNEM_SUFFIX;
3156 mnem_p[-1] = '\0';
3157 current_templates = hash_find (op_hash, mnemonic);
3158 }
3159 break;
3160 }
3161 if (!current_templates)
3162 {
3163 as_bad (_("no such instruction: `%s'"), token_start);
3164 return NULL;
3165 }
3166 }
252b5132 3167
40fb9820
L
3168 if (current_templates->start->opcode_modifier.jump
3169 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
3170 {
3171 /* Check for a branch hint. We allow ",pt" and ",pn" for
3172 predict taken and predict not taken respectively.
3173 I'm not sure that branch hints actually do anything on loop
3174 and jcxz insns (JumpByte) for current Pentium4 chips. They
3175 may work in the future and it doesn't hurt to accept them
3176 now. */
3177 if (l[0] == ',' && l[1] == 'p')
3178 {
3179 if (l[2] == 't')
3180 {
3181 if (!add_prefix (DS_PREFIX_OPCODE))
3182 return NULL;
3183 l += 3;
3184 }
3185 else if (l[2] == 'n')
3186 {
3187 if (!add_prefix (CS_PREFIX_OPCODE))
3188 return NULL;
3189 l += 3;
3190 }
3191 }
3192 }
3193 /* Any other comma loses. */
3194 if (*l == ',')
3195 {
3196 as_bad (_("invalid character %s in mnemonic"),
3197 output_invalid (*l));
3198 return NULL;
3199 }
252b5132 3200
29b0f896 3201 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
3202 supported = 0;
3203 for (t = current_templates->start; t < current_templates->end; ++t)
3204 {
c0f3af97
L
3205 supported |= cpu_flags_match (t);
3206 if (supported == CPU_FLAGS_PERFECT_MATCH)
3629bb00 3207 goto skip;
5c6af06e 3208 }
3629bb00 3209
c0f3af97 3210 if (!(supported & CPU_FLAGS_64BIT_MATCH))
5c6af06e
JB
3211 {
3212 as_bad (flag_code == CODE_64BIT
3213 ? _("`%s' is not supported in 64-bit mode")
3214 : _("`%s' is only supported in 64-bit mode"),
3215 current_templates->start->name);
3216 return NULL;
3217 }
c0f3af97 3218 if (supported != CPU_FLAGS_PERFECT_MATCH)
29b0f896 3219 {
3629bb00 3220 as_bad (_("`%s' is not supported on `%s%s'"),
7ab9ffdd 3221 current_templates->start->name,
41aacd83 3222 cpu_arch_name ? cpu_arch_name : default_arch,
3629bb00
L
3223 cpu_sub_arch_name ? cpu_sub_arch_name : "");
3224 return NULL;
29b0f896 3225 }
3629bb00
L
3226
3227skip:
3228 if (!cpu_arch_flags.bitfield.cpui386
40fb9820 3229 && (flag_code != CODE_16BIT))
29b0f896
AM
3230 {
3231 as_warn (_("use .code16 to ensure correct addressing mode"));
3232 }
252b5132 3233
29b0f896 3234 /* Check for rep/repne without a string instruction. */
f41bbced 3235 if (expecting_string_instruction)
29b0f896 3236 {
f41bbced
JB
3237 static templates override;
3238
3239 for (t = current_templates->start; t < current_templates->end; ++t)
40fb9820 3240 if (t->opcode_modifier.isstring)
f41bbced
JB
3241 break;
3242 if (t >= current_templates->end)
3243 {
3244 as_bad (_("expecting string instruction after `%s'"),
64e74474 3245 expecting_string_instruction);
f41bbced
JB
3246 return NULL;
3247 }
3248 for (override.start = t; t < current_templates->end; ++t)
40fb9820 3249 if (!t->opcode_modifier.isstring)
f41bbced
JB
3250 break;
3251 override.end = t;
3252 current_templates = &override;
29b0f896 3253 }
252b5132 3254
29b0f896
AM
3255 return l;
3256}
252b5132 3257
29b0f896 3258static char *
e3bb37b5 3259parse_operands (char *l, const char *mnemonic)
29b0f896
AM
3260{
3261 char *token_start;
3138f287 3262
29b0f896
AM
3263 /* 1 if operand is pending after ','. */
3264 unsigned int expecting_operand = 0;
252b5132 3265
29b0f896
AM
3266 /* Non-zero if operand parens not balanced. */
3267 unsigned int paren_not_balanced;
3268
3269 while (*l != END_OF_INSN)
3270 {
3271 /* Skip optional white space before operand. */
3272 if (is_space_char (*l))
3273 ++l;
3274 if (!is_operand_char (*l) && *l != END_OF_INSN)
3275 {
3276 as_bad (_("invalid character %s before operand %d"),
3277 output_invalid (*l),
3278 i.operands + 1);
3279 return NULL;
3280 }
3281 token_start = l; /* after white space */
3282 paren_not_balanced = 0;
3283 while (paren_not_balanced || *l != ',')
3284 {
3285 if (*l == END_OF_INSN)
3286 {
3287 if (paren_not_balanced)
3288 {
3289 if (!intel_syntax)
3290 as_bad (_("unbalanced parenthesis in operand %d."),
3291 i.operands + 1);
3292 else
3293 as_bad (_("unbalanced brackets in operand %d."),
3294 i.operands + 1);
3295 return NULL;
3296 }
3297 else
3298 break; /* we are done */
3299 }
3300 else if (!is_operand_char (*l) && !is_space_char (*l))
3301 {
3302 as_bad (_("invalid character %s in operand %d"),
3303 output_invalid (*l),
3304 i.operands + 1);
3305 return NULL;
3306 }
3307 if (!intel_syntax)
3308 {
3309 if (*l == '(')
3310 ++paren_not_balanced;
3311 if (*l == ')')
3312 --paren_not_balanced;
3313 }
3314 else
3315 {
3316 if (*l == '[')
3317 ++paren_not_balanced;
3318 if (*l == ']')
3319 --paren_not_balanced;
3320 }
3321 l++;
3322 }
3323 if (l != token_start)
3324 { /* Yes, we've read in another operand. */
3325 unsigned int operand_ok;
3326 this_operand = i.operands++;
7d5e4556 3327 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
3328 if (i.operands > MAX_OPERANDS)
3329 {
3330 as_bad (_("spurious operands; (%d operands/instruction max)"),
3331 MAX_OPERANDS);
3332 return NULL;
3333 }
3334 /* Now parse operand adding info to 'i' as we go along. */
3335 END_STRING_AND_SAVE (l);
3336
3337 if (intel_syntax)
3338 operand_ok =
3339 i386_intel_operand (token_start,
3340 intel_float_operand (mnemonic));
3341 else
a7619375 3342 operand_ok = i386_att_operand (token_start);
29b0f896
AM
3343
3344 RESTORE_END_STRING (l);
3345 if (!operand_ok)
3346 return NULL;
3347 }
3348 else
3349 {
3350 if (expecting_operand)
3351 {
3352 expecting_operand_after_comma:
3353 as_bad (_("expecting operand after ','; got nothing"));
3354 return NULL;
3355 }
3356 if (*l == ',')
3357 {
3358 as_bad (_("expecting operand before ','; got nothing"));
3359 return NULL;
3360 }
3361 }
7f3f1ea2 3362
29b0f896
AM
3363 /* Now *l must be either ',' or END_OF_INSN. */
3364 if (*l == ',')
3365 {
3366 if (*++l == END_OF_INSN)
3367 {
3368 /* Just skip it, if it's \n complain. */
3369 goto expecting_operand_after_comma;
3370 }
3371 expecting_operand = 1;
3372 }
3373 }
3374 return l;
3375}
7f3f1ea2 3376
050dfa73 3377static void
4d456e3d 3378swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
3379{
3380 union i386_op temp_op;
40fb9820 3381 i386_operand_type temp_type;
050dfa73 3382 enum bfd_reloc_code_real temp_reloc;
4eed87de 3383
050dfa73
MM
3384 temp_type = i.types[xchg2];
3385 i.types[xchg2] = i.types[xchg1];
3386 i.types[xchg1] = temp_type;
3387 temp_op = i.op[xchg2];
3388 i.op[xchg2] = i.op[xchg1];
3389 i.op[xchg1] = temp_op;
3390 temp_reloc = i.reloc[xchg2];
3391 i.reloc[xchg2] = i.reloc[xchg1];
3392 i.reloc[xchg1] = temp_reloc;
3393}
3394
29b0f896 3395static void
e3bb37b5 3396swap_operands (void)
29b0f896 3397{
b7c61d9a 3398 switch (i.operands)
050dfa73 3399 {
c0f3af97 3400 case 5:
b7c61d9a 3401 case 4:
4d456e3d 3402 swap_2_operands (1, i.operands - 2);
b7c61d9a
L
3403 case 3:
3404 case 2:
4d456e3d 3405 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
3406 break;
3407 default:
3408 abort ();
29b0f896 3409 }
29b0f896
AM
3410
3411 if (i.mem_operands == 2)
3412 {
3413 const seg_entry *temp_seg;
3414 temp_seg = i.seg[0];
3415 i.seg[0] = i.seg[1];
3416 i.seg[1] = temp_seg;
3417 }
3418}
252b5132 3419
29b0f896
AM
3420/* Try to ensure constant immediates are represented in the smallest
3421 opcode possible. */
3422static void
e3bb37b5 3423optimize_imm (void)
29b0f896
AM
3424{
3425 char guess_suffix = 0;
3426 int op;
252b5132 3427
29b0f896
AM
3428 if (i.suffix)
3429 guess_suffix = i.suffix;
3430 else if (i.reg_operands)
3431 {
3432 /* Figure out a suffix from the last register operand specified.
3433 We can't do this properly yet, ie. excluding InOutPortReg,
3434 but the following works for instructions with immediates.
3435 In any case, we can't set i.suffix yet. */
3436 for (op = i.operands; --op >= 0;)
40fb9820 3437 if (i.types[op].bitfield.reg8)
7ab9ffdd 3438 {
40fb9820
L
3439 guess_suffix = BYTE_MNEM_SUFFIX;
3440 break;
3441 }
3442 else if (i.types[op].bitfield.reg16)
252b5132 3443 {
40fb9820
L
3444 guess_suffix = WORD_MNEM_SUFFIX;
3445 break;
3446 }
3447 else if (i.types[op].bitfield.reg32)
3448 {
3449 guess_suffix = LONG_MNEM_SUFFIX;
3450 break;
3451 }
3452 else if (i.types[op].bitfield.reg64)
3453 {
3454 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 3455 break;
252b5132 3456 }
29b0f896
AM
3457 }
3458 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
3459 guess_suffix = WORD_MNEM_SUFFIX;
3460
3461 for (op = i.operands; --op >= 0;)
40fb9820 3462 if (operand_type_check (i.types[op], imm))
29b0f896
AM
3463 {
3464 switch (i.op[op].imms->X_op)
252b5132 3465 {
29b0f896
AM
3466 case O_constant:
3467 /* If a suffix is given, this operand may be shortened. */
3468 switch (guess_suffix)
252b5132 3469 {
29b0f896 3470 case LONG_MNEM_SUFFIX:
40fb9820
L
3471 i.types[op].bitfield.imm32 = 1;
3472 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
3473 break;
3474 case WORD_MNEM_SUFFIX:
40fb9820
L
3475 i.types[op].bitfield.imm16 = 1;
3476 i.types[op].bitfield.imm32 = 1;
3477 i.types[op].bitfield.imm32s = 1;
3478 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
3479 break;
3480 case BYTE_MNEM_SUFFIX:
40fb9820
L
3481 i.types[op].bitfield.imm8 = 1;
3482 i.types[op].bitfield.imm8s = 1;
3483 i.types[op].bitfield.imm16 = 1;
3484 i.types[op].bitfield.imm32 = 1;
3485 i.types[op].bitfield.imm32s = 1;
3486 i.types[op].bitfield.imm64 = 1;
29b0f896 3487 break;
252b5132 3488 }
252b5132 3489
29b0f896
AM
3490 /* If this operand is at most 16 bits, convert it
3491 to a signed 16 bit number before trying to see
3492 whether it will fit in an even smaller size.
3493 This allows a 16-bit operand such as $0xffe0 to
3494 be recognised as within Imm8S range. */
40fb9820 3495 if ((i.types[op].bitfield.imm16)
29b0f896 3496 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 3497 {
29b0f896
AM
3498 i.op[op].imms->X_add_number =
3499 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
3500 }
40fb9820 3501 if ((i.types[op].bitfield.imm32)
29b0f896
AM
3502 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
3503 == 0))
3504 {
3505 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
3506 ^ ((offsetT) 1 << 31))
3507 - ((offsetT) 1 << 31));
3508 }
40fb9820 3509 i.types[op]
c6fb90c8
L
3510 = operand_type_or (i.types[op],
3511 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 3512
29b0f896
AM
3513 /* We must avoid matching of Imm32 templates when 64bit
3514 only immediate is available. */
3515 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 3516 i.types[op].bitfield.imm32 = 0;
29b0f896 3517 break;
252b5132 3518
29b0f896
AM
3519 case O_absent:
3520 case O_register:
3521 abort ();
3522
3523 /* Symbols and expressions. */
3524 default:
9cd96992
JB
3525 /* Convert symbolic operand to proper sizes for matching, but don't
3526 prevent matching a set of insns that only supports sizes other
3527 than those matching the insn suffix. */
3528 {
40fb9820 3529 i386_operand_type mask, allowed;
9cd96992
JB
3530 const template *t;
3531
0dfbf9d7
L
3532 operand_type_set (&mask, 0);
3533 operand_type_set (&allowed, 0);
40fb9820 3534
4eed87de
AM
3535 for (t = current_templates->start;
3536 t < current_templates->end;
3537 ++t)
c6fb90c8
L
3538 allowed = operand_type_or (allowed,
3539 t->operand_types[op]);
9cd96992
JB
3540 switch (guess_suffix)
3541 {
3542 case QWORD_MNEM_SUFFIX:
40fb9820
L
3543 mask.bitfield.imm64 = 1;
3544 mask.bitfield.imm32s = 1;
9cd96992
JB
3545 break;
3546 case LONG_MNEM_SUFFIX:
40fb9820 3547 mask.bitfield.imm32 = 1;
9cd96992
JB
3548 break;
3549 case WORD_MNEM_SUFFIX:
40fb9820 3550 mask.bitfield.imm16 = 1;
9cd96992
JB
3551 break;
3552 case BYTE_MNEM_SUFFIX:
40fb9820 3553 mask.bitfield.imm8 = 1;
9cd96992
JB
3554 break;
3555 default:
9cd96992
JB
3556 break;
3557 }
c6fb90c8 3558 allowed = operand_type_and (mask, allowed);
0dfbf9d7 3559 if (!operand_type_all_zero (&allowed))
c6fb90c8 3560 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 3561 }
29b0f896 3562 break;
252b5132 3563 }
29b0f896
AM
3564 }
3565}
47926f60 3566
29b0f896
AM
3567/* Try to use the smallest displacement type too. */
3568static void
e3bb37b5 3569optimize_disp (void)
29b0f896
AM
3570{
3571 int op;
3e73aa7c 3572
29b0f896 3573 for (op = i.operands; --op >= 0;)
40fb9820 3574 if (operand_type_check (i.types[op], disp))
252b5132 3575 {
b300c311 3576 if (i.op[op].disps->X_op == O_constant)
252b5132 3577 {
b300c311 3578 offsetT disp = i.op[op].disps->X_add_number;
29b0f896 3579
40fb9820 3580 if (i.types[op].bitfield.disp16
b300c311
L
3581 && (disp & ~(offsetT) 0xffff) == 0)
3582 {
3583 /* If this operand is at most 16 bits, convert
3584 to a signed 16 bit number and don't use 64bit
3585 displacement. */
3586 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 3587 i.types[op].bitfield.disp64 = 0;
b300c311 3588 }
40fb9820 3589 if (i.types[op].bitfield.disp32
b300c311
L
3590 && (disp & ~(((offsetT) 2 << 31) - 1)) == 0)
3591 {
3592 /* If this operand is at most 32 bits, convert
3593 to a signed 32 bit number and don't use 64bit
3594 displacement. */
3595 disp &= (((offsetT) 2 << 31) - 1);
3596 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 3597 i.types[op].bitfield.disp64 = 0;
b300c311 3598 }
40fb9820 3599 if (!disp && i.types[op].bitfield.baseindex)
b300c311 3600 {
40fb9820
L
3601 i.types[op].bitfield.disp8 = 0;
3602 i.types[op].bitfield.disp16 = 0;
3603 i.types[op].bitfield.disp32 = 0;
3604 i.types[op].bitfield.disp32s = 0;
3605 i.types[op].bitfield.disp64 = 0;
b300c311
L
3606 i.op[op].disps = 0;
3607 i.disp_operands--;
3608 }
3609 else if (flag_code == CODE_64BIT)
3610 {
3611 if (fits_in_signed_long (disp))
28a9d8f5 3612 {
40fb9820
L
3613 i.types[op].bitfield.disp64 = 0;
3614 i.types[op].bitfield.disp32s = 1;
28a9d8f5 3615 }
b300c311 3616 if (fits_in_unsigned_long (disp))
40fb9820 3617 i.types[op].bitfield.disp32 = 1;
b300c311 3618 }
40fb9820
L
3619 if ((i.types[op].bitfield.disp32
3620 || i.types[op].bitfield.disp32s
3621 || i.types[op].bitfield.disp16)
b300c311 3622 && fits_in_signed_byte (disp))
40fb9820 3623 i.types[op].bitfield.disp8 = 1;
252b5132 3624 }
67a4f2b7
AO
3625 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
3626 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
3627 {
3628 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
3629 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
3630 i.types[op].bitfield.disp8 = 0;
3631 i.types[op].bitfield.disp16 = 0;
3632 i.types[op].bitfield.disp32 = 0;
3633 i.types[op].bitfield.disp32s = 0;
3634 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
3635 }
3636 else
b300c311 3637 /* We only support 64bit displacement on constants. */
40fb9820 3638 i.types[op].bitfield.disp64 = 0;
252b5132 3639 }
29b0f896
AM
3640}
3641
fa99fab2 3642static const template *
e3bb37b5 3643match_template (void)
29b0f896
AM
3644{
3645 /* Points to template once we've found it. */
3646 const template *t;
40fb9820 3647 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 3648 i386_operand_type overlap4;
29b0f896 3649 unsigned int found_reverse_match;
40fb9820
L
3650 i386_opcode_modifier suffix_check;
3651 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 3652 int addr_prefix_disp;
a5c311ca 3653 unsigned int j;
3629bb00 3654 unsigned int found_cpu_match;
45664ddb 3655 unsigned int check_register;
29b0f896 3656
c0f3af97
L
3657#if MAX_OPERANDS != 5
3658# error "MAX_OPERANDS must be 5."
f48ff2ae
L
3659#endif
3660
29b0f896 3661 found_reverse_match = 0;
539e75ad 3662 addr_prefix_disp = -1;
40fb9820
L
3663
3664 memset (&suffix_check, 0, sizeof (suffix_check));
3665 if (i.suffix == BYTE_MNEM_SUFFIX)
3666 suffix_check.no_bsuf = 1;
3667 else if (i.suffix == WORD_MNEM_SUFFIX)
3668 suffix_check.no_wsuf = 1;
3669 else if (i.suffix == SHORT_MNEM_SUFFIX)
3670 suffix_check.no_ssuf = 1;
3671 else if (i.suffix == LONG_MNEM_SUFFIX)
3672 suffix_check.no_lsuf = 1;
3673 else if (i.suffix == QWORD_MNEM_SUFFIX)
3674 suffix_check.no_qsuf = 1;
3675 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 3676 suffix_check.no_ldsuf = 1;
29b0f896 3677
45aa61fe 3678 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 3679 {
539e75ad
L
3680 addr_prefix_disp = -1;
3681
29b0f896
AM
3682 /* Must have right number of operands. */
3683 if (i.operands != t->operands)
3684 continue;
3685
50aecf8c 3686 /* Check processor support. */
c0f3af97
L
3687 found_cpu_match = (cpu_flags_match (t)
3688 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
3689 if (!found_cpu_match)
3690 continue;
3691
e1d4d893
L
3692 /* Check old gcc support. */
3693 if (!old_gcc && t->opcode_modifier.oldgcc)
3694 continue;
3695
3696 /* Check AT&T mnemonic. */
3697 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
3698 continue;
3699
5c07affc
L
3700 /* Check AT&T syntax Intel syntax. */
3701 if ((intel_syntax && t->opcode_modifier.attsyntax)
3702 || (!intel_syntax && t->opcode_modifier.intelsyntax))
1efbbeb4
L
3703 continue;
3704
20592a94 3705 /* Check the suffix, except for some instructions in intel mode. */
567e4e96
L
3706 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
3707 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
3708 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
3709 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
3710 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
3711 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
3712 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896
AM
3713 continue;
3714
5c07affc 3715 if (!operand_size_match (t))
7d5e4556 3716 continue;
539e75ad 3717
5c07affc
L
3718 for (j = 0; j < MAX_OPERANDS; j++)
3719 operand_types[j] = t->operand_types[j];
3720
45aa61fe
AM
3721 /* In general, don't allow 64-bit operands in 32-bit mode. */
3722 if (i.suffix == QWORD_MNEM_SUFFIX
3723 && flag_code != CODE_64BIT
3724 && (intel_syntax
40fb9820 3725 ? (!t->opcode_modifier.ignoresize
45aa61fe
AM
3726 && !intel_float_operand (t->name))
3727 : intel_float_operand (t->name) != 2)
40fb9820 3728 && ((!operand_types[0].bitfield.regmmx
c0f3af97
L
3729 && !operand_types[0].bitfield.regxmm
3730 && !operand_types[0].bitfield.regymm)
40fb9820 3731 || (!operand_types[t->operands > 1].bitfield.regmmx
c0f3af97
L
3732 && !!operand_types[t->operands > 1].bitfield.regxmm
3733 && !!operand_types[t->operands > 1].bitfield.regymm))
45aa61fe
AM
3734 && (t->base_opcode != 0x0fc7
3735 || t->extension_opcode != 1 /* cmpxchg8b */))
3736 continue;
3737
192dc9c6
JB
3738 /* In general, don't allow 32-bit operands on pre-386. */
3739 else if (i.suffix == LONG_MNEM_SUFFIX
3740 && !cpu_arch_flags.bitfield.cpui386
3741 && (intel_syntax
3742 ? (!t->opcode_modifier.ignoresize
3743 && !intel_float_operand (t->name))
3744 : intel_float_operand (t->name) != 2)
3745 && ((!operand_types[0].bitfield.regmmx
3746 && !operand_types[0].bitfield.regxmm)
3747 || (!operand_types[t->operands > 1].bitfield.regmmx
3748 && !!operand_types[t->operands > 1].bitfield.regxmm)))
3749 continue;
3750
29b0f896 3751 /* Do not verify operands when there are none. */
50aecf8c 3752 else
29b0f896 3753 {
c6fb90c8 3754 if (!t->operands)
2dbab7d5
L
3755 /* We've found a match; break out of loop. */
3756 break;
29b0f896 3757 }
252b5132 3758
539e75ad
L
3759 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
3760 into Disp32/Disp16/Disp32 operand. */
3761 if (i.prefix[ADDR_PREFIX] != 0)
3762 {
40fb9820 3763 /* There should be only one Disp operand. */
539e75ad
L
3764 switch (flag_code)
3765 {
3766 case CODE_16BIT:
40fb9820
L
3767 for (j = 0; j < MAX_OPERANDS; j++)
3768 {
3769 if (operand_types[j].bitfield.disp16)
3770 {
3771 addr_prefix_disp = j;
3772 operand_types[j].bitfield.disp32 = 1;
3773 operand_types[j].bitfield.disp16 = 0;
3774 break;
3775 }
3776 }
539e75ad
L
3777 break;
3778 case CODE_32BIT:
40fb9820
L
3779 for (j = 0; j < MAX_OPERANDS; j++)
3780 {
3781 if (operand_types[j].bitfield.disp32)
3782 {
3783 addr_prefix_disp = j;
3784 operand_types[j].bitfield.disp32 = 0;
3785 operand_types[j].bitfield.disp16 = 1;
3786 break;
3787 }
3788 }
539e75ad
L
3789 break;
3790 case CODE_64BIT:
40fb9820
L
3791 for (j = 0; j < MAX_OPERANDS; j++)
3792 {
3793 if (operand_types[j].bitfield.disp64)
3794 {
3795 addr_prefix_disp = j;
3796 operand_types[j].bitfield.disp64 = 0;
3797 operand_types[j].bitfield.disp32 = 1;
3798 break;
3799 }
3800 }
539e75ad
L
3801 break;
3802 }
539e75ad
L
3803 }
3804
45664ddb
L
3805 /* We check register size only if size of operands can be
3806 encoded the canonical way. */
3807 check_register = t->opcode_modifier.w;
c6fb90c8 3808 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
3809 switch (t->operands)
3810 {
3811 case 1:
40fb9820 3812 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
3813 continue;
3814 break;
3815 case 2:
8b38ad71
L
3816 /* xchg %eax, %eax is a special case. It is an aliase for nop
3817 only in 32bit mode and we can use opcode 0x90. In 64bit
3818 mode, we can't use 0x90 for xchg %eax, %eax since it should
3819 zero-extend %eax to %rax. */
3820 if (flag_code == CODE_64BIT
3821 && t->base_opcode == 0x90
0dfbf9d7
L
3822 && operand_type_equal (&i.types [0], &acc32)
3823 && operand_type_equal (&i.types [1], &acc32))
8b38ad71 3824 continue;
b6169b20
L
3825 if (i.swap_operand)
3826 {
3827 /* If we swap operand in encoding, we either match
3828 the next one or reverse direction of operands. */
3829 if (t->opcode_modifier.s)
3830 continue;
3831 else if (t->opcode_modifier.d)
3832 goto check_reverse;
3833 }
3834
29b0f896 3835 case 3:
fa99fab2
L
3836 /* If we swap operand in encoding, we match the next one. */
3837 if (i.swap_operand && t->opcode_modifier.s)
3838 continue;
f48ff2ae 3839 case 4:
c0f3af97 3840 case 5:
c6fb90c8 3841 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
3842 if (!operand_type_match (overlap0, i.types[0])
3843 || !operand_type_match (overlap1, i.types[1])
45664ddb
L
3844 || (check_register
3845 && !operand_type_register_match (overlap0, i.types[0],
40fb9820
L
3846 operand_types[0],
3847 overlap1, i.types[1],
3848 operand_types[1])))
29b0f896
AM
3849 {
3850 /* Check if other direction is valid ... */
40fb9820 3851 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
29b0f896
AM
3852 continue;
3853
b6169b20 3854check_reverse:
29b0f896 3855 /* Try reversing direction of operands. */
c6fb90c8
L
3856 overlap0 = operand_type_and (i.types[0], operand_types[1]);
3857 overlap1 = operand_type_and (i.types[1], operand_types[0]);
40fb9820
L
3858 if (!operand_type_match (overlap0, i.types[0])
3859 || !operand_type_match (overlap1, i.types[1])
45664ddb
L
3860 || (check_register
3861 && !operand_type_register_match (overlap0,
3862 i.types[0],
3863 operand_types[1],
3864 overlap1,
3865 i.types[1],
3866 operand_types[0])))
29b0f896
AM
3867 {
3868 /* Does not match either direction. */
3869 continue;
3870 }
3871 /* found_reverse_match holds which of D or FloatDR
3872 we've found. */
40fb9820 3873 if (t->opcode_modifier.d)
8a2ed489 3874 found_reverse_match = Opcode_D;
40fb9820 3875 else if (t->opcode_modifier.floatd)
8a2ed489
L
3876 found_reverse_match = Opcode_FloatD;
3877 else
3878 found_reverse_match = 0;
40fb9820 3879 if (t->opcode_modifier.floatr)
8a2ed489 3880 found_reverse_match |= Opcode_FloatR;
29b0f896 3881 }
f48ff2ae 3882 else
29b0f896 3883 {
f48ff2ae 3884 /* Found a forward 2 operand match here. */
d1cbb4db
L
3885 switch (t->operands)
3886 {
c0f3af97
L
3887 case 5:
3888 overlap4 = operand_type_and (i.types[4],
3889 operand_types[4]);
d1cbb4db 3890 case 4:
c6fb90c8
L
3891 overlap3 = operand_type_and (i.types[3],
3892 operand_types[3]);
d1cbb4db 3893 case 3:
c6fb90c8
L
3894 overlap2 = operand_type_and (i.types[2],
3895 operand_types[2]);
d1cbb4db
L
3896 break;
3897 }
29b0f896 3898
f48ff2ae
L
3899 switch (t->operands)
3900 {
c0f3af97
L
3901 case 5:
3902 if (!operand_type_match (overlap4, i.types[4])
3903 || !operand_type_register_match (overlap3,
3904 i.types[3],
3905 operand_types[3],
3906 overlap4,
3907 i.types[4],
3908 operand_types[4]))
3909 continue;
f48ff2ae 3910 case 4:
40fb9820 3911 if (!operand_type_match (overlap3, i.types[3])
45664ddb
L
3912 || (check_register
3913 && !operand_type_register_match (overlap2,
3914 i.types[2],
3915 operand_types[2],
3916 overlap3,
3917 i.types[3],
3918 operand_types[3])))
f48ff2ae
L
3919 continue;
3920 case 3:
3921 /* Here we make use of the fact that there are no
3922 reverse match 3 operand instructions, and all 3
3923 operand instructions only need to be checked for
3924 register consistency between operands 2 and 3. */
40fb9820 3925 if (!operand_type_match (overlap2, i.types[2])
45664ddb
L
3926 || (check_register
3927 && !operand_type_register_match (overlap1,
3928 i.types[1],
3929 operand_types[1],
3930 overlap2,
3931 i.types[2],
3932 operand_types[2])))
f48ff2ae
L
3933 continue;
3934 break;
3935 }
29b0f896 3936 }
f48ff2ae 3937 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
3938 slip through to break. */
3939 }
3629bb00 3940 if (!found_cpu_match)
29b0f896
AM
3941 {
3942 found_reverse_match = 0;
3943 continue;
3944 }
c0f3af97 3945
29b0f896
AM
3946 /* We've found a match; break out of loop. */
3947 break;
3948 }
3949
3950 if (t == current_templates->end)
3951 {
3952 /* We found no match. */
95f283e8
L
3953 if (intel_syntax)
3954 as_bad (_("ambiguous operand size or operands invalid for `%s'"),
3955 current_templates->start->name);
3956 else
3957 as_bad (_("suffix or operands invalid for `%s'"),
3958 current_templates->start->name);
fa99fab2 3959 return NULL;
29b0f896 3960 }
252b5132 3961
29b0f896
AM
3962 if (!quiet_warnings)
3963 {
3964 if (!intel_syntax
40fb9820
L
3965 && (i.types[0].bitfield.jumpabsolute
3966 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
3967 {
3968 as_warn (_("indirect %s without `*'"), t->name);
3969 }
3970
40fb9820
L
3971 if (t->opcode_modifier.isprefix
3972 && t->opcode_modifier.ignoresize)
29b0f896
AM
3973 {
3974 /* Warn them that a data or address size prefix doesn't
3975 affect assembly of the next line of code. */
3976 as_warn (_("stand-alone `%s' prefix"), t->name);
3977 }
3978 }
3979
3980 /* Copy the template we found. */
3981 i.tm = *t;
539e75ad
L
3982
3983 if (addr_prefix_disp != -1)
3984 i.tm.operand_types[addr_prefix_disp]
3985 = operand_types[addr_prefix_disp];
3986
29b0f896
AM
3987 if (found_reverse_match)
3988 {
3989 /* If we found a reverse match we must alter the opcode
3990 direction bit. found_reverse_match holds bits to change
3991 (different for int & float insns). */
3992
3993 i.tm.base_opcode ^= found_reverse_match;
3994
539e75ad
L
3995 i.tm.operand_types[0] = operand_types[1];
3996 i.tm.operand_types[1] = operand_types[0];
29b0f896
AM
3997 }
3998
fa99fab2 3999 return t;
29b0f896
AM
4000}
4001
4002static int
e3bb37b5 4003check_string (void)
29b0f896 4004{
40fb9820
L
4005 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
4006 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
4007 {
4008 if (i.seg[0] != NULL && i.seg[0] != &es)
4009 {
a87af027 4010 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 4011 i.tm.name,
a87af027
JB
4012 mem_op + 1,
4013 register_prefix);
29b0f896
AM
4014 return 0;
4015 }
4016 /* There's only ever one segment override allowed per instruction.
4017 This instruction possibly has a legal segment override on the
4018 second operand, so copy the segment to where non-string
4019 instructions store it, allowing common code. */
4020 i.seg[0] = i.seg[1];
4021 }
40fb9820 4022 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
4023 {
4024 if (i.seg[1] != NULL && i.seg[1] != &es)
4025 {
a87af027 4026 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 4027 i.tm.name,
a87af027
JB
4028 mem_op + 2,
4029 register_prefix);
29b0f896
AM
4030 return 0;
4031 }
4032 }
4033 return 1;
4034}
4035
4036static int
543613e9 4037process_suffix (void)
29b0f896
AM
4038{
4039 /* If matched instruction specifies an explicit instruction mnemonic
4040 suffix, use it. */
40fb9820
L
4041 if (i.tm.opcode_modifier.size16)
4042 i.suffix = WORD_MNEM_SUFFIX;
4043 else if (i.tm.opcode_modifier.size32)
4044 i.suffix = LONG_MNEM_SUFFIX;
4045 else if (i.tm.opcode_modifier.size64)
4046 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
4047 else if (i.reg_operands)
4048 {
4049 /* If there's no instruction mnemonic suffix we try to invent one
4050 based on register operands. */
4051 if (!i.suffix)
4052 {
4053 /* We take i.suffix from the last register operand specified,
4054 Destination register type is more significant than source
381d071f
L
4055 register type. crc32 in SSE4.2 prefers source register
4056 type. */
4057 if (i.tm.base_opcode == 0xf20f38f1)
4058 {
40fb9820
L
4059 if (i.types[0].bitfield.reg16)
4060 i.suffix = WORD_MNEM_SUFFIX;
4061 else if (i.types[0].bitfield.reg32)
4062 i.suffix = LONG_MNEM_SUFFIX;
4063 else if (i.types[0].bitfield.reg64)
4064 i.suffix = QWORD_MNEM_SUFFIX;
381d071f 4065 }
9344ff29 4066 else if (i.tm.base_opcode == 0xf20f38f0)
20592a94 4067 {
40fb9820 4068 if (i.types[0].bitfield.reg8)
20592a94
L
4069 i.suffix = BYTE_MNEM_SUFFIX;
4070 }
381d071f
L
4071
4072 if (!i.suffix)
4073 {
4074 int op;
4075
20592a94
L
4076 if (i.tm.base_opcode == 0xf20f38f1
4077 || i.tm.base_opcode == 0xf20f38f0)
4078 {
4079 /* We have to know the operand size for crc32. */
4080 as_bad (_("ambiguous memory operand size for `%s`"),
4081 i.tm.name);
4082 return 0;
4083 }
4084
381d071f 4085 for (op = i.operands; --op >= 0;)
40fb9820 4086 if (!i.tm.operand_types[op].bitfield.inoutportreg)
381d071f 4087 {
40fb9820
L
4088 if (i.types[op].bitfield.reg8)
4089 {
4090 i.suffix = BYTE_MNEM_SUFFIX;
4091 break;
4092 }
4093 else if (i.types[op].bitfield.reg16)
4094 {
4095 i.suffix = WORD_MNEM_SUFFIX;
4096 break;
4097 }
4098 else if (i.types[op].bitfield.reg32)
4099 {
4100 i.suffix = LONG_MNEM_SUFFIX;
4101 break;
4102 }
4103 else if (i.types[op].bitfield.reg64)
4104 {
4105 i.suffix = QWORD_MNEM_SUFFIX;
4106 break;
4107 }
381d071f
L
4108 }
4109 }
29b0f896
AM
4110 }
4111 else if (i.suffix == BYTE_MNEM_SUFFIX)
4112 {
4113 if (!check_byte_reg ())
4114 return 0;
4115 }
4116 else if (i.suffix == LONG_MNEM_SUFFIX)
4117 {
4118 if (!check_long_reg ())
4119 return 0;
4120 }
4121 else if (i.suffix == QWORD_MNEM_SUFFIX)
4122 {
955e1e6a
L
4123 if (intel_syntax
4124 && i.tm.opcode_modifier.ignoresize
4125 && i.tm.opcode_modifier.no_qsuf)
4126 i.suffix = 0;
4127 else if (!check_qword_reg ())
29b0f896
AM
4128 return 0;
4129 }
4130 else if (i.suffix == WORD_MNEM_SUFFIX)
4131 {
4132 if (!check_word_reg ())
4133 return 0;
4134 }
c0f3af97
L
4135 else if (i.suffix == XMMWORD_MNEM_SUFFIX
4136 || i.suffix == YMMWORD_MNEM_SUFFIX)
582d5edd 4137 {
c0f3af97 4138 /* Skip if the instruction has x/y suffix. match_template
582d5edd
L
4139 should check if it is a valid suffix. */
4140 }
40fb9820 4141 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
4142 /* Do nothing if the instruction is going to ignore the prefix. */
4143 ;
4144 else
4145 abort ();
4146 }
40fb9820 4147 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
4148 && !i.suffix
4149 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 4150 && i.tm.opcode_modifier.no_ssuf)
29b0f896
AM
4151 {
4152 i.suffix = stackop_size;
4153 }
9306ca4a
JB
4154 else if (intel_syntax
4155 && !i.suffix
40fb9820
L
4156 && (i.tm.operand_types[0].bitfield.jumpabsolute
4157 || i.tm.opcode_modifier.jumpbyte
4158 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
4159 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
4160 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
4161 {
4162 switch (flag_code)
4163 {
4164 case CODE_64BIT:
40fb9820 4165 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
4166 {
4167 i.suffix = QWORD_MNEM_SUFFIX;
4168 break;
4169 }
4170 case CODE_32BIT:
40fb9820 4171 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
4172 i.suffix = LONG_MNEM_SUFFIX;
4173 break;
4174 case CODE_16BIT:
40fb9820 4175 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
4176 i.suffix = WORD_MNEM_SUFFIX;
4177 break;
4178 }
4179 }
252b5132 4180
9306ca4a 4181 if (!i.suffix)
29b0f896 4182 {
9306ca4a
JB
4183 if (!intel_syntax)
4184 {
40fb9820 4185 if (i.tm.opcode_modifier.w)
9306ca4a 4186 {
4eed87de
AM
4187 as_bad (_("no instruction mnemonic suffix given and "
4188 "no register operands; can't size instruction"));
9306ca4a
JB
4189 return 0;
4190 }
4191 }
4192 else
4193 {
40fb9820 4194 unsigned int suffixes;
7ab9ffdd 4195
40fb9820
L
4196 suffixes = !i.tm.opcode_modifier.no_bsuf;
4197 if (!i.tm.opcode_modifier.no_wsuf)
4198 suffixes |= 1 << 1;
4199 if (!i.tm.opcode_modifier.no_lsuf)
4200 suffixes |= 1 << 2;
fc4adea1 4201 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
4202 suffixes |= 1 << 3;
4203 if (!i.tm.opcode_modifier.no_ssuf)
4204 suffixes |= 1 << 4;
4205 if (!i.tm.opcode_modifier.no_qsuf)
4206 suffixes |= 1 << 5;
4207
4208 /* There are more than suffix matches. */
4209 if (i.tm.opcode_modifier.w
9306ca4a 4210 || ((suffixes & (suffixes - 1))
40fb9820
L
4211 && !i.tm.opcode_modifier.defaultsize
4212 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
4213 {
4214 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4215 return 0;
4216 }
4217 }
29b0f896 4218 }
252b5132 4219
9306ca4a
JB
4220 /* Change the opcode based on the operand size given by i.suffix;
4221 We don't need to change things for byte insns. */
4222
582d5edd
L
4223 if (i.suffix
4224 && i.suffix != BYTE_MNEM_SUFFIX
c0f3af97
L
4225 && i.suffix != XMMWORD_MNEM_SUFFIX
4226 && i.suffix != YMMWORD_MNEM_SUFFIX)
29b0f896
AM
4227 {
4228 /* It's not a byte, select word/dword operation. */
40fb9820 4229 if (i.tm.opcode_modifier.w)
29b0f896 4230 {
40fb9820 4231 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
4232 i.tm.base_opcode |= 8;
4233 else
4234 i.tm.base_opcode |= 1;
4235 }
0f3f3d8b 4236
29b0f896
AM
4237 /* Now select between word & dword operations via the operand
4238 size prefix, except for instructions that will ignore this
4239 prefix anyway. */
ca61edf2 4240 if (i.tm.opcode_modifier.addrprefixop0)
cb712a9e 4241 {
ca61edf2
L
4242 /* The address size override prefix changes the size of the
4243 first operand. */
40fb9820
L
4244 if ((flag_code == CODE_32BIT
4245 && i.op->regs[0].reg_type.bitfield.reg16)
4246 || (flag_code != CODE_32BIT
4247 && i.op->regs[0].reg_type.bitfield.reg32))
cb712a9e
L
4248 if (!add_prefix (ADDR_PREFIX_OPCODE))
4249 return 0;
4250 }
4251 else if (i.suffix != QWORD_MNEM_SUFFIX
4252 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
40fb9820
L
4253 && !i.tm.opcode_modifier.ignoresize
4254 && !i.tm.opcode_modifier.floatmf
cb712a9e
L
4255 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
4256 || (flag_code == CODE_64BIT
40fb9820 4257 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
4258 {
4259 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 4260
40fb9820 4261 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 4262 prefix = ADDR_PREFIX_OPCODE;
252b5132 4263
29b0f896
AM
4264 if (!add_prefix (prefix))
4265 return 0;
24eab124 4266 }
252b5132 4267
29b0f896
AM
4268 /* Set mode64 for an operand. */
4269 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 4270 && flag_code == CODE_64BIT
40fb9820 4271 && !i.tm.opcode_modifier.norex64)
46e883c5
L
4272 {
4273 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d9a5e5e5
L
4274 need rex64. cmpxchg8b is also a special case. */
4275 if (! (i.operands == 2
4276 && i.tm.base_opcode == 0x90
4277 && i.tm.extension_opcode == None
0dfbf9d7
L
4278 && operand_type_equal (&i.types [0], &acc64)
4279 && operand_type_equal (&i.types [1], &acc64))
d9a5e5e5
L
4280 && ! (i.operands == 1
4281 && i.tm.base_opcode == 0xfc7
4282 && i.tm.extension_opcode == 1
40fb9820
L
4283 && !operand_type_check (i.types [0], reg)
4284 && operand_type_check (i.types [0], anymem)))
f6bee062 4285 i.rex |= REX_W;
46e883c5 4286 }
3e73aa7c 4287
29b0f896
AM
4288 /* Size floating point instruction. */
4289 if (i.suffix == LONG_MNEM_SUFFIX)
40fb9820 4290 if (i.tm.opcode_modifier.floatmf)
543613e9 4291 i.tm.base_opcode ^= 4;
29b0f896 4292 }
7ecd2f8b 4293
29b0f896
AM
4294 return 1;
4295}
3e73aa7c 4296
29b0f896 4297static int
543613e9 4298check_byte_reg (void)
29b0f896
AM
4299{
4300 int op;
543613e9 4301
29b0f896
AM
4302 for (op = i.operands; --op >= 0;)
4303 {
4304 /* If this is an eight bit register, it's OK. If it's the 16 or
4305 32 bit version of an eight bit register, we will just use the
4306 low portion, and that's OK too. */
40fb9820 4307 if (i.types[op].bitfield.reg8)
29b0f896
AM
4308 continue;
4309
ca61edf2
L
4310 /* Don't generate this warning if not needed. */
4311 if (intel_syntax && i.tm.opcode_modifier.byteokintel)
29b0f896
AM
4312 continue;
4313
9344ff29
L
4314 /* crc32 doesn't generate this warning. */
4315 if (i.tm.base_opcode == 0xf20f38f0)
4316 continue;
4317
40fb9820
L
4318 if ((i.types[op].bitfield.reg16
4319 || i.types[op].bitfield.reg32
4320 || i.types[op].bitfield.reg64)
4321 && i.op[op].regs->reg_num < 4)
29b0f896
AM
4322 {
4323 /* Prohibit these changes in the 64bit mode, since the
4324 lowering is more complicated. */
4325 if (flag_code == CODE_64BIT
40fb9820 4326 && !i.tm.operand_types[op].bitfield.inoutportreg)
29b0f896 4327 {
2ca3ace5
L
4328 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4329 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
4330 i.suffix);
4331 return 0;
4332 }
4333#if REGISTER_WARNINGS
4334 if (!quiet_warnings
40fb9820 4335 && !i.tm.operand_types[op].bitfield.inoutportreg)
a540244d
L
4336 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4337 register_prefix,
40fb9820 4338 (i.op[op].regs + (i.types[op].bitfield.reg16
29b0f896
AM
4339 ? REGNAM_AL - REGNAM_AX
4340 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 4341 register_prefix,
29b0f896
AM
4342 i.op[op].regs->reg_name,
4343 i.suffix);
4344#endif
4345 continue;
4346 }
4347 /* Any other register is bad. */
40fb9820
L
4348 if (i.types[op].bitfield.reg16
4349 || i.types[op].bitfield.reg32
4350 || i.types[op].bitfield.reg64
4351 || i.types[op].bitfield.regmmx
4352 || i.types[op].bitfield.regxmm
c0f3af97 4353 || i.types[op].bitfield.regymm
40fb9820
L
4354 || i.types[op].bitfield.sreg2
4355 || i.types[op].bitfield.sreg3
4356 || i.types[op].bitfield.control
4357 || i.types[op].bitfield.debug
4358 || i.types[op].bitfield.test
4359 || i.types[op].bitfield.floatreg
4360 || i.types[op].bitfield.floatacc)
29b0f896 4361 {
a540244d
L
4362 as_bad (_("`%s%s' not allowed with `%s%c'"),
4363 register_prefix,
29b0f896
AM
4364 i.op[op].regs->reg_name,
4365 i.tm.name,
4366 i.suffix);
4367 return 0;
4368 }
4369 }
4370 return 1;
4371}
4372
4373static int
e3bb37b5 4374check_long_reg (void)
29b0f896
AM
4375{
4376 int op;
4377
4378 for (op = i.operands; --op >= 0;)
4379 /* Reject eight bit registers, except where the template requires
4380 them. (eg. movzb) */
40fb9820
L
4381 if (i.types[op].bitfield.reg8
4382 && (i.tm.operand_types[op].bitfield.reg16
4383 || i.tm.operand_types[op].bitfield.reg32
4384 || i.tm.operand_types[op].bitfield.acc))
29b0f896 4385 {
a540244d
L
4386 as_bad (_("`%s%s' not allowed with `%s%c'"),
4387 register_prefix,
29b0f896
AM
4388 i.op[op].regs->reg_name,
4389 i.tm.name,
4390 i.suffix);
4391 return 0;
4392 }
4393 /* Warn if the e prefix on a general reg is missing. */
4394 else if ((!quiet_warnings || flag_code == CODE_64BIT)
40fb9820
L
4395 && i.types[op].bitfield.reg16
4396 && (i.tm.operand_types[op].bitfield.reg32
4397 || i.tm.operand_types[op].bitfield.acc))
29b0f896
AM
4398 {
4399 /* Prohibit these changes in the 64bit mode, since the
4400 lowering is more complicated. */
4401 if (flag_code == CODE_64BIT)
252b5132 4402 {
2ca3ace5
L
4403 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4404 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
4405 i.suffix);
4406 return 0;
252b5132 4407 }
29b0f896
AM
4408#if REGISTER_WARNINGS
4409 else
a540244d
L
4410 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4411 register_prefix,
29b0f896 4412 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
a540244d 4413 register_prefix,
29b0f896
AM
4414 i.op[op].regs->reg_name,
4415 i.suffix);
4416#endif
252b5132 4417 }
29b0f896 4418 /* Warn if the r prefix on a general reg is missing. */
40fb9820
L
4419 else if (i.types[op].bitfield.reg64
4420 && (i.tm.operand_types[op].bitfield.reg32
4421 || i.tm.operand_types[op].bitfield.acc))
252b5132 4422 {
34828aad 4423 if (intel_syntax
ca61edf2 4424 && i.tm.opcode_modifier.toqword
40fb9820 4425 && !i.types[0].bitfield.regxmm)
34828aad 4426 {
ca61edf2 4427 /* Convert to QWORD. We want REX byte. */
34828aad
L
4428 i.suffix = QWORD_MNEM_SUFFIX;
4429 }
4430 else
4431 {
4432 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4433 register_prefix, i.op[op].regs->reg_name,
4434 i.suffix);
4435 return 0;
4436 }
29b0f896
AM
4437 }
4438 return 1;
4439}
252b5132 4440
29b0f896 4441static int
e3bb37b5 4442check_qword_reg (void)
29b0f896
AM
4443{
4444 int op;
252b5132 4445
29b0f896
AM
4446 for (op = i.operands; --op >= 0; )
4447 /* Reject eight bit registers, except where the template requires
4448 them. (eg. movzb) */
40fb9820
L
4449 if (i.types[op].bitfield.reg8
4450 && (i.tm.operand_types[op].bitfield.reg16
4451 || i.tm.operand_types[op].bitfield.reg32
4452 || i.tm.operand_types[op].bitfield.acc))
29b0f896 4453 {
a540244d
L
4454 as_bad (_("`%s%s' not allowed with `%s%c'"),
4455 register_prefix,
29b0f896
AM
4456 i.op[op].regs->reg_name,
4457 i.tm.name,
4458 i.suffix);
4459 return 0;
4460 }
4461 /* Warn if the e prefix on a general reg is missing. */
40fb9820
L
4462 else if ((i.types[op].bitfield.reg16
4463 || i.types[op].bitfield.reg32)
4464 && (i.tm.operand_types[op].bitfield.reg32
4465 || i.tm.operand_types[op].bitfield.acc))
29b0f896
AM
4466 {
4467 /* Prohibit these changes in the 64bit mode, since the
4468 lowering is more complicated. */
34828aad 4469 if (intel_syntax
ca61edf2 4470 && i.tm.opcode_modifier.todword
40fb9820 4471 && !i.types[0].bitfield.regxmm)
34828aad 4472 {
ca61edf2 4473 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
4474 i.suffix = LONG_MNEM_SUFFIX;
4475 }
4476 else
4477 {
4478 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4479 register_prefix, i.op[op].regs->reg_name,
4480 i.suffix);
4481 return 0;
4482 }
252b5132 4483 }
29b0f896
AM
4484 return 1;
4485}
252b5132 4486
29b0f896 4487static int
e3bb37b5 4488check_word_reg (void)
29b0f896
AM
4489{
4490 int op;
4491 for (op = i.operands; --op >= 0;)
4492 /* Reject eight bit registers, except where the template requires
4493 them. (eg. movzb) */
40fb9820
L
4494 if (i.types[op].bitfield.reg8
4495 && (i.tm.operand_types[op].bitfield.reg16
4496 || i.tm.operand_types[op].bitfield.reg32
4497 || i.tm.operand_types[op].bitfield.acc))
29b0f896 4498 {
a540244d
L
4499 as_bad (_("`%s%s' not allowed with `%s%c'"),
4500 register_prefix,
29b0f896
AM
4501 i.op[op].regs->reg_name,
4502 i.tm.name,
4503 i.suffix);
4504 return 0;
4505 }
4506 /* Warn if the e prefix on a general reg is present. */
4507 else if ((!quiet_warnings || flag_code == CODE_64BIT)
40fb9820
L
4508 && i.types[op].bitfield.reg32
4509 && (i.tm.operand_types[op].bitfield.reg16
4510 || i.tm.operand_types[op].bitfield.acc))
252b5132 4511 {
29b0f896
AM
4512 /* Prohibit these changes in the 64bit mode, since the
4513 lowering is more complicated. */
4514 if (flag_code == CODE_64BIT)
252b5132 4515 {
2ca3ace5
L
4516 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4517 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
4518 i.suffix);
4519 return 0;
252b5132 4520 }
29b0f896
AM
4521 else
4522#if REGISTER_WARNINGS
a540244d
L
4523 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4524 register_prefix,
29b0f896 4525 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
a540244d 4526 register_prefix,
29b0f896
AM
4527 i.op[op].regs->reg_name,
4528 i.suffix);
4529#endif
4530 }
4531 return 1;
4532}
252b5132 4533
29b0f896 4534static int
40fb9820 4535update_imm (unsigned int j)
29b0f896 4536{
bc0844ae 4537 i386_operand_type overlap = i.types[j];
40fb9820
L
4538 if ((overlap.bitfield.imm8
4539 || overlap.bitfield.imm8s
4540 || overlap.bitfield.imm16
4541 || overlap.bitfield.imm32
4542 || overlap.bitfield.imm32s
4543 || overlap.bitfield.imm64)
0dfbf9d7
L
4544 && !operand_type_equal (&overlap, &imm8)
4545 && !operand_type_equal (&overlap, &imm8s)
4546 && !operand_type_equal (&overlap, &imm16)
4547 && !operand_type_equal (&overlap, &imm32)
4548 && !operand_type_equal (&overlap, &imm32s)
4549 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
4550 {
4551 if (i.suffix)
4552 {
40fb9820
L
4553 i386_operand_type temp;
4554
0dfbf9d7 4555 operand_type_set (&temp, 0);
7ab9ffdd 4556 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
4557 {
4558 temp.bitfield.imm8 = overlap.bitfield.imm8;
4559 temp.bitfield.imm8s = overlap.bitfield.imm8s;
4560 }
4561 else if (i.suffix == WORD_MNEM_SUFFIX)
4562 temp.bitfield.imm16 = overlap.bitfield.imm16;
4563 else if (i.suffix == QWORD_MNEM_SUFFIX)
4564 {
4565 temp.bitfield.imm64 = overlap.bitfield.imm64;
4566 temp.bitfield.imm32s = overlap.bitfield.imm32s;
4567 }
4568 else
4569 temp.bitfield.imm32 = overlap.bitfield.imm32;
4570 overlap = temp;
29b0f896 4571 }
0dfbf9d7
L
4572 else if (operand_type_equal (&overlap, &imm16_32_32s)
4573 || operand_type_equal (&overlap, &imm16_32)
4574 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 4575 {
40fb9820 4576 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 4577 overlap = imm16;
40fb9820 4578 else
65da13b5 4579 overlap = imm32s;
29b0f896 4580 }
0dfbf9d7
L
4581 if (!operand_type_equal (&overlap, &imm8)
4582 && !operand_type_equal (&overlap, &imm8s)
4583 && !operand_type_equal (&overlap, &imm16)
4584 && !operand_type_equal (&overlap, &imm32)
4585 && !operand_type_equal (&overlap, &imm32s)
4586 && !operand_type_equal (&overlap, &imm64))
29b0f896 4587 {
4eed87de
AM
4588 as_bad (_("no instruction mnemonic suffix given; "
4589 "can't determine immediate size"));
29b0f896
AM
4590 return 0;
4591 }
4592 }
40fb9820 4593 i.types[j] = overlap;
29b0f896 4594
40fb9820
L
4595 return 1;
4596}
4597
4598static int
4599finalize_imm (void)
4600{
bc0844ae 4601 unsigned int j, n;
29b0f896 4602
bc0844ae
L
4603 /* Update the first 2 immediate operands. */
4604 n = i.operands > 2 ? 2 : i.operands;
4605 if (n)
4606 {
4607 for (j = 0; j < n; j++)
4608 if (update_imm (j) == 0)
4609 return 0;
40fb9820 4610
bc0844ae
L
4611 /* The 3rd operand can't be immediate operand. */
4612 gas_assert (operand_type_check (i.types[2], imm) == 0);
4613 }
29b0f896
AM
4614
4615 return 1;
4616}
4617
c0f3af97
L
4618static int
4619bad_implicit_operand (int xmm)
4620{
4621 const char *reg = xmm ? "xmm0" : "ymm0";
4622 if (intel_syntax)
4623 as_bad (_("the last operand of `%s' must be `%s%s'"),
4624 i.tm.name, register_prefix, reg);
4625 else
4626 as_bad (_("the first operand of `%s' must be `%s%s'"),
4627 i.tm.name, register_prefix, reg);
4628 return 0;
4629}
4630
29b0f896 4631static int
e3bb37b5 4632process_operands (void)
29b0f896
AM
4633{
4634 /* Default segment register this instruction will use for memory
4635 accesses. 0 means unknown. This is only for optimizing out
4636 unnecessary segment overrides. */
4637 const seg_entry *default_seg = 0;
4638
c0f3af97
L
4639 if (i.tm.opcode_modifier.sse2avx
4640 && (i.tm.opcode_modifier.vexnds
4641 || i.tm.opcode_modifier.vexndd))
29b0f896 4642 {
c0f3af97
L
4643 unsigned int dup = i.operands;
4644 unsigned int dest = dup - 1;
9fcfb3d7
L
4645 unsigned int j;
4646
c0f3af97 4647 /* The destination must be an xmm register. */
9c2799c2 4648 gas_assert (i.reg_operands
7ab9ffdd
L
4649 && MAX_OPERANDS > dup
4650 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97
L
4651
4652 if (i.tm.opcode_modifier.firstxmm0)
e2ec9d29 4653 {
c0f3af97 4654 /* The first operand is implicit and must be xmm0. */
9c2799c2 4655 gas_assert (operand_type_equal (&i.types[0], &regxmm));
c0f3af97
L
4656 if (i.op[0].regs->reg_num != 0)
4657 return bad_implicit_operand (1);
4658
4659 if (i.tm.opcode_modifier.vex3sources)
4660 {
4661 /* Keep xmm0 for instructions with VEX prefix and 3
4662 sources. */
4663 goto duplicate;
4664 }
e2ec9d29 4665 else
c0f3af97
L
4666 {
4667 /* We remove the first xmm0 and keep the number of
4668 operands unchanged, which in fact duplicates the
4669 destination. */
4670 for (j = 1; j < i.operands; j++)
4671 {
4672 i.op[j - 1] = i.op[j];
4673 i.types[j - 1] = i.types[j];
4674 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
4675 }
4676 }
4677 }
4678 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 4679 {
9c2799c2 4680 gas_assert ((MAX_OPERANDS - 1) > dup
7ab9ffdd 4681 && i.tm.opcode_modifier.vex3sources);
c0f3af97
L
4682
4683 /* Add the implicit xmm0 for instructions with VEX prefix
4684 and 3 sources. */
4685 for (j = i.operands; j > 0; j--)
4686 {
4687 i.op[j] = i.op[j - 1];
4688 i.types[j] = i.types[j - 1];
4689 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
4690 }
4691 i.op[0].regs
4692 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 4693 i.types[0] = regxmm;
c0f3af97
L
4694 i.tm.operand_types[0] = regxmm;
4695
4696 i.operands += 2;
4697 i.reg_operands += 2;
4698 i.tm.operands += 2;
4699
4700 dup++;
4701 dest++;
4702 i.op[dup] = i.op[dest];
4703 i.types[dup] = i.types[dest];
4704 i.tm.operand_types[dup] = i.tm.operand_types[dest];
e2ec9d29 4705 }
c0f3af97
L
4706 else
4707 {
4708duplicate:
4709 i.operands++;
4710 i.reg_operands++;
4711 i.tm.operands++;
4712
4713 i.op[dup] = i.op[dest];
4714 i.types[dup] = i.types[dest];
4715 i.tm.operand_types[dup] = i.tm.operand_types[dest];
4716 }
4717
4718 if (i.tm.opcode_modifier.immext)
4719 process_immext ();
4720 }
4721 else if (i.tm.opcode_modifier.firstxmm0)
4722 {
4723 unsigned int j;
4724
4725 /* The first operand is implicit and must be xmm0/ymm0. */
9c2799c2 4726 gas_assert (i.reg_operands
7ab9ffdd
L
4727 && (operand_type_equal (&i.types[0], &regxmm)
4728 || operand_type_equal (&i.types[0], &regymm)));
c0f3af97
L
4729 if (i.op[0].regs->reg_num != 0)
4730 return bad_implicit_operand (i.types[0].bitfield.regxmm);
9fcfb3d7
L
4731
4732 for (j = 1; j < i.operands; j++)
4733 {
4734 i.op[j - 1] = i.op[j];
4735 i.types[j - 1] = i.types[j];
4736
4737 /* We need to adjust fields in i.tm since they are used by
4738 build_modrm_byte. */
4739 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
4740 }
4741
e2ec9d29
L
4742 i.operands--;
4743 i.reg_operands--;
e2ec9d29
L
4744 i.tm.operands--;
4745 }
4746 else if (i.tm.opcode_modifier.regkludge)
4747 {
4748 /* The imul $imm, %reg instruction is converted into
4749 imul $imm, %reg, %reg, and the clr %reg instruction
4750 is converted into xor %reg, %reg. */
4751
4752 unsigned int first_reg_op;
4753
4754 if (operand_type_check (i.types[0], reg))
4755 first_reg_op = 0;
4756 else
4757 first_reg_op = 1;
4758 /* Pretend we saw the extra register operand. */
9c2799c2 4759 gas_assert (i.reg_operands == 1
7ab9ffdd 4760 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
4761 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
4762 i.types[first_reg_op + 1] = i.types[first_reg_op];
4763 i.operands++;
4764 i.reg_operands++;
29b0f896
AM
4765 }
4766
40fb9820 4767 if (i.tm.opcode_modifier.shortform)
29b0f896 4768 {
40fb9820
L
4769 if (i.types[0].bitfield.sreg2
4770 || i.types[0].bitfield.sreg3)
29b0f896 4771 {
4eed87de
AM
4772 if (i.tm.base_opcode == POP_SEG_SHORT
4773 && i.op[0].regs->reg_num == 1)
29b0f896 4774 {
a87af027 4775 as_bad (_("you can't `pop %scs'"), register_prefix);
4eed87de 4776 return 0;
29b0f896 4777 }
4eed87de
AM
4778 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
4779 if ((i.op[0].regs->reg_flags & RegRex) != 0)
161a04f6 4780 i.rex |= REX_B;
4eed87de
AM
4781 }
4782 else
4783 {
7ab9ffdd 4784 /* The register or float register operand is in operand
85f10a01 4785 0 or 1. */
40fb9820 4786 unsigned int op;
7ab9ffdd
L
4787
4788 if (i.types[0].bitfield.floatreg
4789 || operand_type_check (i.types[0], reg))
4790 op = 0;
4791 else
4792 op = 1;
4eed87de
AM
4793 /* Register goes in low 3 bits of opcode. */
4794 i.tm.base_opcode |= i.op[op].regs->reg_num;
4795 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 4796 i.rex |= REX_B;
40fb9820 4797 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 4798 {
4eed87de
AM
4799 /* Warn about some common errors, but press on regardless.
4800 The first case can be generated by gcc (<= 2.8.1). */
4801 if (i.operands == 2)
4802 {
4803 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 4804 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
4805 register_prefix, i.op[!intel_syntax].regs->reg_name,
4806 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
4807 }
4808 else
4809 {
4810 /* Extraneous `l' suffix on fp insn. */
a540244d
L
4811 as_warn (_("translating to `%s %s%s'"), i.tm.name,
4812 register_prefix, i.op[0].regs->reg_name);
4eed87de 4813 }
29b0f896
AM
4814 }
4815 }
4816 }
40fb9820 4817 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
4818 {
4819 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
4820 must be put into the modrm byte). Now, we make the modrm and
4821 index base bytes based on all the info we've collected. */
29b0f896
AM
4822
4823 default_seg = build_modrm_byte ();
4824 }
8a2ed489 4825 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
4826 {
4827 default_seg = &ds;
4828 }
40fb9820 4829 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
4830 {
4831 /* For the string instructions that allow a segment override
4832 on one of their operands, the default segment is ds. */
4833 default_seg = &ds;
4834 }
4835
75178d9d
L
4836 if (i.tm.base_opcode == 0x8d /* lea */
4837 && i.seg[0]
4838 && !quiet_warnings)
30123838 4839 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
4840
4841 /* If a segment was explicitly specified, and the specified segment
4842 is not the default, use an opcode prefix to select it. If we
4843 never figured out what the default segment is, then default_seg
4844 will be zero at this point, and the specified segment prefix will
4845 always be used. */
29b0f896
AM
4846 if ((i.seg[0]) && (i.seg[0] != default_seg))
4847 {
4848 if (!add_prefix (i.seg[0]->seg_prefix))
4849 return 0;
4850 }
4851 return 1;
4852}
4853
4854static const seg_entry *
e3bb37b5 4855build_modrm_byte (void)
29b0f896
AM
4856{
4857 const seg_entry *default_seg = 0;
c0f3af97 4858 unsigned int source, dest;
7ab9ffdd 4859 int vex_3_sources;
c0f3af97
L
4860
4861 /* The first operand of instructions with VEX prefix and 3 sources
4862 must be VEX_Imm4. */
4863 vex_3_sources = i.tm.opcode_modifier.vex3sources;
4864 if (vex_3_sources)
4865 {
4866 unsigned int nds, reg;
4867
922d8de8
DR
4868 if (i.tm.opcode_modifier.veximmext
4869 && i.tm.opcode_modifier.immext)
4870 {
4871 dest = i.operands - 2;
4872 gas_assert (dest == 3);
4873 }
4874 else
0bfee649 4875 dest = i.operands - 1;
c0f3af97 4876 nds = dest - 1;
922d8de8
DR
4877
4878 /* This instruction must have 4 register operands
4879 or 3 register operands plus 1 memory operand.
4880 It must have VexNDS and VexImmExt. */
4881 gas_assert ((i.reg_operands == 4
7ab9ffdd
L
4882 || (i.reg_operands == 3 && i.mem_operands == 1))
4883 && i.tm.opcode_modifier.vexnds
4884 && i.tm.opcode_modifier.veximmext
922d8de8
DR
4885 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
4886 || operand_type_equal (&i.tm.operand_types[dest], &regymm)));
c0f3af97 4887
0bfee649
L
4888 /* Generate an 8bit immediate operand to encode the register
4889 operand. */
4890 expressionS *exp = &im_expressions[i.imm_operands++];
4891 i.op[i.operands].imms = exp;
4892 i.types[i.operands] = imm8;
4893 i.operands++;
922d8de8
DR
4894 /* If VexW1 is set, the first operand is the source and
4895 the second operand is encoded in the immediate operand. */
4896 if (i.tm.opcode_modifier.vexw1)
4897 {
4898 source = 0;
4899 reg = 1;
4900 }
4901 else
4902 {
4903 source = 1;
4904 reg = 0;
4905 }
4906 /* FMA4 swaps REG and NDS. */
4907 if (i.tm.cpu_flags.bitfield.cpufma4)
4908 {
4909 unsigned int tmp;
4910 tmp = reg;
4911 reg = nds;
4912 nds = tmp;
4913 }
4914 gas_assert ((operand_type_equal (&i.tm.operand_types[reg], &regxmm)
4915 || operand_type_equal (&i.tm.operand_types[reg],
4916 &regymm))
4917 && (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
4918 || operand_type_equal (&i.tm.operand_types[nds],
4919 &regymm)));
0bfee649
L
4920 exp->X_op = O_constant;
4921 exp->X_add_number
922d8de8
DR
4922 = ((i.op[reg].regs->reg_num
4923 + ((i.op[reg].regs->reg_flags & RegRex) ? 8 : 0)) << 4);
dae39acc 4924 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
4925 }
4926 else
4927 source = dest = 0;
29b0f896
AM
4928
4929 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
4930 implicit registers do not count. If there are 3 register
4931 operands, it must be a instruction with VexNDS. For a
4932 instruction with VexNDD, the destination register is encoded
4933 in VEX prefix. If there are 4 register operands, it must be
4934 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
4935 if (i.mem_operands == 0
4936 && ((i.reg_operands == 2
4937 && !i.tm.opcode_modifier.vexndd)
4938 || (i.reg_operands == 3
4939 && i.tm.opcode_modifier.vexnds)
4940 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 4941 {
cab737b9
L
4942 switch (i.operands)
4943 {
4944 case 2:
4945 source = 0;
4946 break;
4947 case 3:
c81128dc
L
4948 /* When there are 3 operands, one of them may be immediate,
4949 which may be the first or the last operand. Otherwise,
c0f3af97
L
4950 the first operand must be shift count register (cl) or it
4951 is an instruction with VexNDS. */
9c2799c2 4952 gas_assert (i.imm_operands == 1
7ab9ffdd
L
4953 || (i.imm_operands == 0
4954 && (i.tm.opcode_modifier.vexnds
4955 || i.types[0].bitfield.shiftcount)));
40fb9820
L
4956 if (operand_type_check (i.types[0], imm)
4957 || i.types[0].bitfield.shiftcount)
4958 source = 1;
4959 else
4960 source = 0;
cab737b9
L
4961 break;
4962 case 4:
368d64cc
L
4963 /* When there are 4 operands, the first two must be 8bit
4964 immediate operands. The source operand will be the 3rd
c0f3af97
L
4965 one.
4966
4967 For instructions with VexNDS, if the first operand
4968 an imm8, the source operand is the 2nd one. If the last
4969 operand is imm8, the source operand is the first one. */
9c2799c2 4970 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
4971 && i.types[0].bitfield.imm8
4972 && i.types[1].bitfield.imm8)
4973 || (i.tm.opcode_modifier.vexnds
4974 && i.imm_operands == 1
4975 && (i.types[0].bitfield.imm8
4976 || i.types[i.operands - 1].bitfield.imm8)));
c0f3af97
L
4977 if (i.tm.opcode_modifier.vexnds)
4978 {
4979 if (i.types[0].bitfield.imm8)
4980 source = 1;
4981 else
4982 source = 0;
4983 }
4984 else
4985 source = 2;
4986 break;
4987 case 5:
cab737b9
L
4988 break;
4989 default:
4990 abort ();
4991 }
4992
c0f3af97
L
4993 if (!vex_3_sources)
4994 {
4995 dest = source + 1;
4996
4997 if (i.tm.opcode_modifier.vexnds)
4998 {
4999 /* For instructions with VexNDS, the register-only
5000 source operand must be XMM or YMM register. It is
fa99fab2
L
5001 encoded in VEX prefix. We need to clear RegMem bit
5002 before calling operand_type_equal. */
5003 i386_operand_type op = i.tm.operand_types[dest];
5004 op.bitfield.regmem = 0;
c0f3af97 5005 if ((dest + 1) >= i.operands
fa99fab2
L
5006 || (!operand_type_equal (&op, &regxmm)
5007 && !operand_type_equal (&op, &regymm)))
c0f3af97
L
5008 abort ();
5009 i.vex.register_specifier = i.op[dest].regs;
5010 dest++;
5011 }
5012 }
29b0f896
AM
5013
5014 i.rm.mode = 3;
5015 /* One of the register operands will be encoded in the i.tm.reg
5016 field, the other in the combined i.tm.mode and i.tm.regmem
5017 fields. If no form of this instruction supports a memory
5018 destination operand, then we assume the source operand may
5019 sometimes be a memory operand and so we need to store the
5020 destination in the i.rm.reg field. */
40fb9820
L
5021 if (!i.tm.operand_types[dest].bitfield.regmem
5022 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
5023 {
5024 i.rm.reg = i.op[dest].regs->reg_num;
5025 i.rm.regmem = i.op[source].regs->reg_num;
5026 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 5027 i.rex |= REX_R;
29b0f896 5028 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 5029 i.rex |= REX_B;
29b0f896
AM
5030 }
5031 else
5032 {
5033 i.rm.reg = i.op[source].regs->reg_num;
5034 i.rm.regmem = i.op[dest].regs->reg_num;
5035 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 5036 i.rex |= REX_B;
29b0f896 5037 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 5038 i.rex |= REX_R;
29b0f896 5039 }
161a04f6 5040 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
c4a530c5 5041 {
40fb9820
L
5042 if (!i.types[0].bitfield.control
5043 && !i.types[1].bitfield.control)
c4a530c5 5044 abort ();
161a04f6 5045 i.rex &= ~(REX_R | REX_B);
c4a530c5
JB
5046 add_prefix (LOCK_PREFIX_OPCODE);
5047 }
29b0f896
AM
5048 }
5049 else
5050 { /* If it's not 2 reg operands... */
c0f3af97
L
5051 unsigned int mem;
5052
29b0f896
AM
5053 if (i.mem_operands)
5054 {
5055 unsigned int fake_zero_displacement = 0;
99018f42 5056 unsigned int op;
4eed87de 5057
7ab9ffdd
L
5058 for (op = 0; op < i.operands; op++)
5059 if (operand_type_check (i.types[op], anymem))
5060 break;
7ab9ffdd 5061 gas_assert (op < i.operands);
29b0f896
AM
5062
5063 default_seg = &ds;
5064
5065 if (i.base_reg == 0)
5066 {
5067 i.rm.mode = 0;
5068 if (!i.disp_operands)
5069 fake_zero_displacement = 1;
5070 if (i.index_reg == 0)
5071 {
5072 /* Operand is just <disp> */
20f0a1fc 5073 if (flag_code == CODE_64BIT)
29b0f896
AM
5074 {
5075 /* 64bit mode overwrites the 32bit absolute
5076 addressing by RIP relative addressing and
5077 absolute addressing is encoded by one of the
5078 redundant SIB forms. */
5079 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
5080 i.sib.base = NO_BASE_REGISTER;
5081 i.sib.index = NO_INDEX_REGISTER;
fc225355 5082 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
40fb9820 5083 ? disp32s : disp32);
20f0a1fc 5084 }
fc225355
L
5085 else if ((flag_code == CODE_16BIT)
5086 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
5087 {
5088 i.rm.regmem = NO_BASE_REGISTER_16;
40fb9820 5089 i.types[op] = disp16;
20f0a1fc
NC
5090 }
5091 else
5092 {
5093 i.rm.regmem = NO_BASE_REGISTER;
40fb9820 5094 i.types[op] = disp32;
29b0f896
AM
5095 }
5096 }
5097 else /* !i.base_reg && i.index_reg */
5098 {
db51cc60
L
5099 if (i.index_reg->reg_num == RegEiz
5100 || i.index_reg->reg_num == RegRiz)
5101 i.sib.index = NO_INDEX_REGISTER;
5102 else
5103 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
5104 i.sib.base = NO_BASE_REGISTER;
5105 i.sib.scale = i.log2_scale_factor;
5106 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
5107 i.types[op].bitfield.disp8 = 0;
5108 i.types[op].bitfield.disp16 = 0;
5109 i.types[op].bitfield.disp64 = 0;
29b0f896 5110 if (flag_code != CODE_64BIT)
40fb9820
L
5111 {
5112 /* Must be 32 bit */
5113 i.types[op].bitfield.disp32 = 1;
5114 i.types[op].bitfield.disp32s = 0;
5115 }
29b0f896 5116 else
40fb9820
L
5117 {
5118 i.types[op].bitfield.disp32 = 0;
5119 i.types[op].bitfield.disp32s = 1;
5120 }
29b0f896 5121 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 5122 i.rex |= REX_X;
29b0f896
AM
5123 }
5124 }
5125 /* RIP addressing for 64bit mode. */
9a04903e
JB
5126 else if (i.base_reg->reg_num == RegRip ||
5127 i.base_reg->reg_num == RegEip)
29b0f896
AM
5128 {
5129 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
5130 i.types[op].bitfield.disp8 = 0;
5131 i.types[op].bitfield.disp16 = 0;
5132 i.types[op].bitfield.disp32 = 0;
5133 i.types[op].bitfield.disp32s = 1;
5134 i.types[op].bitfield.disp64 = 0;
71903a11 5135 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
5136 if (! i.disp_operands)
5137 fake_zero_displacement = 1;
29b0f896 5138 }
40fb9820 5139 else if (i.base_reg->reg_type.bitfield.reg16)
29b0f896
AM
5140 {
5141 switch (i.base_reg->reg_num)
5142 {
5143 case 3: /* (%bx) */
5144 if (i.index_reg == 0)
5145 i.rm.regmem = 7;
5146 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
5147 i.rm.regmem = i.index_reg->reg_num - 6;
5148 break;
5149 case 5: /* (%bp) */
5150 default_seg = &ss;
5151 if (i.index_reg == 0)
5152 {
5153 i.rm.regmem = 6;
40fb9820 5154 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
5155 {
5156 /* fake (%bp) into 0(%bp) */
40fb9820 5157 i.types[op].bitfield.disp8 = 1;
252b5132 5158 fake_zero_displacement = 1;
29b0f896
AM
5159 }
5160 }
5161 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
5162 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
5163 break;
5164 default: /* (%si) -> 4 or (%di) -> 5 */
5165 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
5166 }
5167 i.rm.mode = mode_from_disp_size (i.types[op]);
5168 }
5169 else /* i.base_reg and 32/64 bit mode */
5170 {
5171 if (flag_code == CODE_64BIT
40fb9820
L
5172 && operand_type_check (i.types[op], disp))
5173 {
5174 i386_operand_type temp;
0dfbf9d7 5175 operand_type_set (&temp, 0);
40fb9820
L
5176 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
5177 i.types[op] = temp;
5178 if (i.prefix[ADDR_PREFIX] == 0)
5179 i.types[op].bitfield.disp32s = 1;
5180 else
5181 i.types[op].bitfield.disp32 = 1;
5182 }
20f0a1fc 5183
29b0f896
AM
5184 i.rm.regmem = i.base_reg->reg_num;
5185 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 5186 i.rex |= REX_B;
29b0f896
AM
5187 i.sib.base = i.base_reg->reg_num;
5188 /* x86-64 ignores REX prefix bit here to avoid decoder
5189 complications. */
5190 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
5191 {
5192 default_seg = &ss;
5193 if (i.disp_operands == 0)
5194 {
5195 fake_zero_displacement = 1;
40fb9820 5196 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
5197 }
5198 }
5199 else if (i.base_reg->reg_num == ESP_REG_NUM)
5200 {
5201 default_seg = &ss;
5202 }
5203 i.sib.scale = i.log2_scale_factor;
5204 if (i.index_reg == 0)
5205 {
5206 /* <disp>(%esp) becomes two byte modrm with no index
5207 register. We've already stored the code for esp
5208 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
5209 Any base register besides %esp will not use the
5210 extra modrm byte. */
5211 i.sib.index = NO_INDEX_REGISTER;
29b0f896
AM
5212 }
5213 else
5214 {
db51cc60
L
5215 if (i.index_reg->reg_num == RegEiz
5216 || i.index_reg->reg_num == RegRiz)
5217 i.sib.index = NO_INDEX_REGISTER;
5218 else
5219 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
5220 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
5221 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 5222 i.rex |= REX_X;
29b0f896 5223 }
67a4f2b7
AO
5224
5225 if (i.disp_operands
5226 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5227 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
5228 i.rm.mode = 0;
5229 else
5230 i.rm.mode = mode_from_disp_size (i.types[op]);
29b0f896 5231 }
252b5132 5232
29b0f896
AM
5233 if (fake_zero_displacement)
5234 {
5235 /* Fakes a zero displacement assuming that i.types[op]
5236 holds the correct displacement size. */
5237 expressionS *exp;
5238
9c2799c2 5239 gas_assert (i.op[op].disps == 0);
29b0f896
AM
5240 exp = &disp_expressions[i.disp_operands++];
5241 i.op[op].disps = exp;
5242 exp->X_op = O_constant;
5243 exp->X_add_number = 0;
5244 exp->X_add_symbol = (symbolS *) 0;
5245 exp->X_op_symbol = (symbolS *) 0;
5246 }
c0f3af97
L
5247
5248 mem = op;
29b0f896 5249 }
c0f3af97
L
5250 else
5251 mem = ~0;
252b5132 5252
29b0f896
AM
5253 /* Fill in i.rm.reg or i.rm.regmem field with register operand
5254 (if any) based on i.tm.extension_opcode. Again, we must be
5255 careful to make sure that segment/control/debug/test/MMX
5256 registers are coded into the i.rm.reg field. */
5257 if (i.reg_operands)
5258 {
99018f42 5259 unsigned int op;
7ab9ffdd
L
5260 unsigned int vex_reg = ~0;
5261
5262 for (op = 0; op < i.operands; op++)
5263 if (i.types[op].bitfield.reg8
5264 || i.types[op].bitfield.reg16
5265 || i.types[op].bitfield.reg32
5266 || i.types[op].bitfield.reg64
5267 || i.types[op].bitfield.regmmx
5268 || i.types[op].bitfield.regxmm
5269 || i.types[op].bitfield.regymm
5270 || i.types[op].bitfield.sreg2
5271 || i.types[op].bitfield.sreg3
5272 || i.types[op].bitfield.control
5273 || i.types[op].bitfield.debug
5274 || i.types[op].bitfield.test)
5275 break;
c0209578 5276
7ab9ffdd
L
5277 if (vex_3_sources)
5278 op = dest;
5279 else if (i.tm.opcode_modifier.vexnds)
5280 {
5281 /* For instructions with VexNDS, the register-only
5282 source operand is encoded in VEX prefix. */
5283 gas_assert (mem != (unsigned int) ~0);
c0f3af97 5284
7ab9ffdd 5285 if (op > mem)
c0f3af97 5286 {
7ab9ffdd
L
5287 vex_reg = op++;
5288 gas_assert (op < i.operands);
c0f3af97
L
5289 }
5290 else
c0f3af97 5291 {
7ab9ffdd
L
5292 vex_reg = op + 1;
5293 gas_assert (vex_reg < i.operands);
c0f3af97 5294 }
7ab9ffdd
L
5295 }
5296 else if (i.tm.opcode_modifier.vexndd)
5297 {
5298 /* For instructions with VexNDD, there should be
5299 no memory operand and the register destination
5300 is encoded in VEX prefix. */
5301 gas_assert (i.mem_operands == 0
5302 && (op + 2) == i.operands);
5303 vex_reg = op + 1;
5304 }
5305 else
5306 gas_assert (op < i.operands);
99018f42 5307
7ab9ffdd
L
5308 if (vex_reg != (unsigned int) ~0)
5309 {
5310 gas_assert (i.reg_operands == 2);
5311
5312 if (!operand_type_equal (&i.tm.operand_types[vex_reg],
5313 & regxmm)
5314 && !operand_type_equal (&i.tm.operand_types[vex_reg],
5315 &regymm))
5316 abort ();
5317 i.vex.register_specifier = i.op[vex_reg].regs;
5318 }
5319
5320 /* If there is an extension opcode to put here, the
5321 register number must be put into the regmem field. */
5322 if (i.tm.extension_opcode != None)
5323 {
5324 i.rm.regmem = i.op[op].regs->reg_num;
5325 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5326 i.rex |= REX_B;
5327 }
5328 else
5329 {
5330 i.rm.reg = i.op[op].regs->reg_num;
5331 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5332 i.rex |= REX_R;
5333 }
252b5132 5334
29b0f896
AM
5335 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
5336 must set it to 3 to indicate this is a register operand
5337 in the regmem field. */
5338 if (!i.mem_operands)
5339 i.rm.mode = 3;
5340 }
252b5132 5341
29b0f896 5342 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 5343 if (i.tm.extension_opcode != None)
29b0f896
AM
5344 i.rm.reg = i.tm.extension_opcode;
5345 }
5346 return default_seg;
5347}
252b5132 5348
29b0f896 5349static void
e3bb37b5 5350output_branch (void)
29b0f896
AM
5351{
5352 char *p;
5353 int code16;
5354 int prefix;
5355 relax_substateT subtype;
5356 symbolS *sym;
5357 offsetT off;
5358
5359 code16 = 0;
5360 if (flag_code == CODE_16BIT)
5361 code16 = CODE16;
5362
5363 prefix = 0;
5364 if (i.prefix[DATA_PREFIX] != 0)
252b5132 5365 {
29b0f896
AM
5366 prefix = 1;
5367 i.prefixes -= 1;
5368 code16 ^= CODE16;
252b5132 5369 }
29b0f896
AM
5370 /* Pentium4 branch hints. */
5371 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
5372 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 5373 {
29b0f896
AM
5374 prefix++;
5375 i.prefixes--;
5376 }
5377 if (i.prefix[REX_PREFIX] != 0)
5378 {
5379 prefix++;
5380 i.prefixes--;
2f66722d
AM
5381 }
5382
29b0f896
AM
5383 if (i.prefixes != 0 && !intel_syntax)
5384 as_warn (_("skipping prefixes on this instruction"));
5385
5386 /* It's always a symbol; End frag & setup for relax.
5387 Make sure there is enough room in this frag for the largest
5388 instruction we may generate in md_convert_frag. This is 2
5389 bytes for the opcode and room for the prefix and largest
5390 displacement. */
5391 frag_grow (prefix + 2 + 4);
5392 /* Prefix and 1 opcode byte go in fr_fix. */
5393 p = frag_more (prefix + 1);
5394 if (i.prefix[DATA_PREFIX] != 0)
5395 *p++ = DATA_PREFIX_OPCODE;
5396 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
5397 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
5398 *p++ = i.prefix[SEG_PREFIX];
5399 if (i.prefix[REX_PREFIX] != 0)
5400 *p++ = i.prefix[REX_PREFIX];
5401 *p = i.tm.base_opcode;
5402
5403 if ((unsigned char) *p == JUMP_PC_RELATIVE)
5404 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
40fb9820 5405 else if (cpu_arch_flags.bitfield.cpui386)
29b0f896
AM
5406 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
5407 else
5408 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
5409 subtype |= code16;
3e73aa7c 5410
29b0f896
AM
5411 sym = i.op[0].disps->X_add_symbol;
5412 off = i.op[0].disps->X_add_number;
3e73aa7c 5413
29b0f896
AM
5414 if (i.op[0].disps->X_op != O_constant
5415 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 5416 {
29b0f896
AM
5417 /* Handle complex expressions. */
5418 sym = make_expr_symbol (i.op[0].disps);
5419 off = 0;
5420 }
3e73aa7c 5421
29b0f896
AM
5422 /* 1 possible extra opcode + 4 byte displacement go in var part.
5423 Pass reloc in fr_var. */
5424 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
5425}
3e73aa7c 5426
29b0f896 5427static void
e3bb37b5 5428output_jump (void)
29b0f896
AM
5429{
5430 char *p;
5431 int size;
3e02c1cc 5432 fixS *fixP;
29b0f896 5433
40fb9820 5434 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
5435 {
5436 /* This is a loop or jecxz type instruction. */
5437 size = 1;
5438 if (i.prefix[ADDR_PREFIX] != 0)
5439 {
5440 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
5441 i.prefixes -= 1;
5442 }
5443 /* Pentium4 branch hints. */
5444 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
5445 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
5446 {
5447 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
5448 i.prefixes--;
3e73aa7c
JH
5449 }
5450 }
29b0f896
AM
5451 else
5452 {
5453 int code16;
3e73aa7c 5454
29b0f896
AM
5455 code16 = 0;
5456 if (flag_code == CODE_16BIT)
5457 code16 = CODE16;
3e73aa7c 5458
29b0f896
AM
5459 if (i.prefix[DATA_PREFIX] != 0)
5460 {
5461 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
5462 i.prefixes -= 1;
5463 code16 ^= CODE16;
5464 }
252b5132 5465
29b0f896
AM
5466 size = 4;
5467 if (code16)
5468 size = 2;
5469 }
9fcc94b6 5470
29b0f896
AM
5471 if (i.prefix[REX_PREFIX] != 0)
5472 {
5473 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
5474 i.prefixes -= 1;
5475 }
252b5132 5476
29b0f896
AM
5477 if (i.prefixes != 0 && !intel_syntax)
5478 as_warn (_("skipping prefixes on this instruction"));
e0890092 5479
29b0f896
AM
5480 p = frag_more (1 + size);
5481 *p++ = i.tm.base_opcode;
e0890092 5482
3e02c1cc
AM
5483 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5484 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
5485
5486 /* All jumps handled here are signed, but don't use a signed limit
5487 check for 32 and 16 bit jumps as we want to allow wrap around at
5488 4G and 64k respectively. */
5489 if (size == 1)
5490 fixP->fx_signed = 1;
29b0f896 5491}
e0890092 5492
29b0f896 5493static void
e3bb37b5 5494output_interseg_jump (void)
29b0f896
AM
5495{
5496 char *p;
5497 int size;
5498 int prefix;
5499 int code16;
252b5132 5500
29b0f896
AM
5501 code16 = 0;
5502 if (flag_code == CODE_16BIT)
5503 code16 = CODE16;
a217f122 5504
29b0f896
AM
5505 prefix = 0;
5506 if (i.prefix[DATA_PREFIX] != 0)
5507 {
5508 prefix = 1;
5509 i.prefixes -= 1;
5510 code16 ^= CODE16;
5511 }
5512 if (i.prefix[REX_PREFIX] != 0)
5513 {
5514 prefix++;
5515 i.prefixes -= 1;
5516 }
252b5132 5517
29b0f896
AM
5518 size = 4;
5519 if (code16)
5520 size = 2;
252b5132 5521
29b0f896
AM
5522 if (i.prefixes != 0 && !intel_syntax)
5523 as_warn (_("skipping prefixes on this instruction"));
252b5132 5524
29b0f896
AM
5525 /* 1 opcode; 2 segment; offset */
5526 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 5527
29b0f896
AM
5528 if (i.prefix[DATA_PREFIX] != 0)
5529 *p++ = DATA_PREFIX_OPCODE;
252b5132 5530
29b0f896
AM
5531 if (i.prefix[REX_PREFIX] != 0)
5532 *p++ = i.prefix[REX_PREFIX];
252b5132 5533
29b0f896
AM
5534 *p++ = i.tm.base_opcode;
5535 if (i.op[1].imms->X_op == O_constant)
5536 {
5537 offsetT n = i.op[1].imms->X_add_number;
252b5132 5538
29b0f896
AM
5539 if (size == 2
5540 && !fits_in_unsigned_word (n)
5541 && !fits_in_signed_word (n))
5542 {
5543 as_bad (_("16-bit jump out of range"));
5544 return;
5545 }
5546 md_number_to_chars (p, n, size);
5547 }
5548 else
5549 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5550 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
5551 if (i.op[0].imms->X_op != O_constant)
5552 as_bad (_("can't handle non absolute segment in `%s'"),
5553 i.tm.name);
5554 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
5555}
a217f122 5556
29b0f896 5557static void
e3bb37b5 5558output_insn (void)
29b0f896 5559{
2bbd9c25
JJ
5560 fragS *insn_start_frag;
5561 offsetT insn_start_off;
5562
29b0f896
AM
5563 /* Tie dwarf2 debug info to the address at the start of the insn.
5564 We can't do this after the insn has been output as the current
5565 frag may have been closed off. eg. by frag_var. */
5566 dwarf2_emit_insn (0);
5567
2bbd9c25
JJ
5568 insn_start_frag = frag_now;
5569 insn_start_off = frag_now_fix ();
5570
29b0f896 5571 /* Output jumps. */
40fb9820 5572 if (i.tm.opcode_modifier.jump)
29b0f896 5573 output_branch ();
40fb9820
L
5574 else if (i.tm.opcode_modifier.jumpbyte
5575 || i.tm.opcode_modifier.jumpdword)
29b0f896 5576 output_jump ();
40fb9820 5577 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
5578 output_interseg_jump ();
5579 else
5580 {
5581 /* Output normal instructions here. */
5582 char *p;
5583 unsigned char *q;
47465058 5584 unsigned int j;
331d2d0d 5585 unsigned int prefix;
4dffcebc 5586
c0f3af97
L
5587 /* Since the VEX prefix contains the implicit prefix, we don't
5588 need the explicit prefix. */
5589 if (!i.tm.opcode_modifier.vex)
bc4bd9ab 5590 {
c0f3af97 5591 switch (i.tm.opcode_length)
bc4bd9ab 5592 {
c0f3af97
L
5593 case 3:
5594 if (i.tm.base_opcode & 0xff000000)
4dffcebc 5595 {
c0f3af97
L
5596 prefix = (i.tm.base_opcode >> 24) & 0xff;
5597 goto check_prefix;
5598 }
5599 break;
5600 case 2:
5601 if ((i.tm.base_opcode & 0xff0000) != 0)
5602 {
5603 prefix = (i.tm.base_opcode >> 16) & 0xff;
5604 if (i.tm.cpu_flags.bitfield.cpupadlock)
5605 {
4dffcebc 5606check_prefix:
c0f3af97
L
5607 if (prefix != REPE_PREFIX_OPCODE
5608 || (i.prefix[LOCKREP_PREFIX]
5609 != REPE_PREFIX_OPCODE))
5610 add_prefix (prefix);
5611 }
5612 else
4dffcebc
L
5613 add_prefix (prefix);
5614 }
c0f3af97
L
5615 break;
5616 case 1:
5617 break;
5618 default:
5619 abort ();
bc4bd9ab 5620 }
c0f3af97
L
5621
5622 /* The prefix bytes. */
5623 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
5624 if (*q)
5625 FRAG_APPEND_1_CHAR (*q);
0f10071e 5626 }
252b5132 5627
c0f3af97
L
5628 if (i.tm.opcode_modifier.vex)
5629 {
5630 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
5631 if (*q)
5632 switch (j)
5633 {
5634 case REX_PREFIX:
5635 /* REX byte is encoded in VEX prefix. */
5636 break;
5637 case SEG_PREFIX:
5638 case ADDR_PREFIX:
5639 FRAG_APPEND_1_CHAR (*q);
5640 break;
5641 default:
5642 /* There should be no other prefixes for instructions
5643 with VEX prefix. */
5644 abort ();
5645 }
5646
5647 /* Now the VEX prefix. */
5648 p = frag_more (i.vex.length);
5649 for (j = 0; j < i.vex.length; j++)
5650 p[j] = i.vex.bytes[j];
5651 }
252b5132 5652
29b0f896 5653 /* Now the opcode; be careful about word order here! */
4dffcebc 5654 if (i.tm.opcode_length == 1)
29b0f896
AM
5655 {
5656 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
5657 }
5658 else
5659 {
4dffcebc 5660 switch (i.tm.opcode_length)
331d2d0d 5661 {
4dffcebc 5662 case 3:
331d2d0d
L
5663 p = frag_more (3);
5664 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
5665 break;
5666 case 2:
5667 p = frag_more (2);
5668 break;
5669 default:
5670 abort ();
5671 break;
331d2d0d 5672 }
0f10071e 5673
29b0f896
AM
5674 /* Put out high byte first: can't use md_number_to_chars! */
5675 *p++ = (i.tm.base_opcode >> 8) & 0xff;
5676 *p = i.tm.base_opcode & 0xff;
5677 }
3e73aa7c 5678
29b0f896 5679 /* Now the modrm byte and sib byte (if present). */
40fb9820 5680 if (i.tm.opcode_modifier.modrm)
29b0f896 5681 {
4a3523fa
L
5682 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
5683 | i.rm.reg << 3
5684 | i.rm.mode << 6));
29b0f896
AM
5685 /* If i.rm.regmem == ESP (4)
5686 && i.rm.mode != (Register mode)
5687 && not 16 bit
5688 ==> need second modrm byte. */
5689 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
5690 && i.rm.mode != 3
40fb9820 5691 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
4a3523fa
L
5692 FRAG_APPEND_1_CHAR ((i.sib.base << 0
5693 | i.sib.index << 3
5694 | i.sib.scale << 6));
29b0f896 5695 }
3e73aa7c 5696
29b0f896 5697 if (i.disp_operands)
2bbd9c25 5698 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 5699
29b0f896 5700 if (i.imm_operands)
2bbd9c25 5701 output_imm (insn_start_frag, insn_start_off);
29b0f896 5702 }
252b5132 5703
29b0f896
AM
5704#ifdef DEBUG386
5705 if (flag_debug)
5706 {
7b81dfbb 5707 pi ("" /*line*/, &i);
29b0f896
AM
5708 }
5709#endif /* DEBUG386 */
5710}
252b5132 5711
e205caa7
L
5712/* Return the size of the displacement operand N. */
5713
5714static int
5715disp_size (unsigned int n)
5716{
5717 int size = 4;
40fb9820
L
5718 if (i.types[n].bitfield.disp64)
5719 size = 8;
5720 else if (i.types[n].bitfield.disp8)
5721 size = 1;
5722 else if (i.types[n].bitfield.disp16)
5723 size = 2;
e205caa7
L
5724 return size;
5725}
5726
5727/* Return the size of the immediate operand N. */
5728
5729static int
5730imm_size (unsigned int n)
5731{
5732 int size = 4;
40fb9820
L
5733 if (i.types[n].bitfield.imm64)
5734 size = 8;
5735 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
5736 size = 1;
5737 else if (i.types[n].bitfield.imm16)
5738 size = 2;
e205caa7
L
5739 return size;
5740}
5741
29b0f896 5742static void
64e74474 5743output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
5744{
5745 char *p;
5746 unsigned int n;
252b5132 5747
29b0f896
AM
5748 for (n = 0; n < i.operands; n++)
5749 {
40fb9820 5750 if (operand_type_check (i.types[n], disp))
29b0f896
AM
5751 {
5752 if (i.op[n].disps->X_op == O_constant)
5753 {
e205caa7 5754 int size = disp_size (n);
29b0f896 5755 offsetT val;
252b5132 5756
29b0f896
AM
5757 val = offset_in_range (i.op[n].disps->X_add_number,
5758 size);
5759 p = frag_more (size);
5760 md_number_to_chars (p, val, size);
5761 }
5762 else
5763 {
f86103b7 5764 enum bfd_reloc_code_real reloc_type;
e205caa7 5765 int size = disp_size (n);
40fb9820 5766 int sign = i.types[n].bitfield.disp32s;
29b0f896
AM
5767 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
5768
e205caa7 5769 /* We can't have 8 bit displacement here. */
9c2799c2 5770 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 5771
29b0f896
AM
5772 /* The PC relative address is computed relative
5773 to the instruction boundary, so in case immediate
5774 fields follows, we need to adjust the value. */
5775 if (pcrel && i.imm_operands)
5776 {
29b0f896 5777 unsigned int n1;
e205caa7 5778 int sz = 0;
252b5132 5779
29b0f896 5780 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 5781 if (operand_type_check (i.types[n1], imm))
252b5132 5782 {
e205caa7
L
5783 /* Only one immediate is allowed for PC
5784 relative address. */
9c2799c2 5785 gas_assert (sz == 0);
e205caa7
L
5786 sz = imm_size (n1);
5787 i.op[n].disps->X_add_number -= sz;
252b5132 5788 }
29b0f896 5789 /* We should find the immediate. */
9c2799c2 5790 gas_assert (sz != 0);
29b0f896 5791 }
520dc8e8 5792
29b0f896 5793 p = frag_more (size);
2bbd9c25 5794 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 5795 if (GOT_symbol
2bbd9c25 5796 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 5797 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
5798 || reloc_type == BFD_RELOC_X86_64_32S
5799 || (reloc_type == BFD_RELOC_64
5800 && object_64bit))
d6ab8113
JB
5801 && (i.op[n].disps->X_op == O_symbol
5802 || (i.op[n].disps->X_op == O_add
5803 && ((symbol_get_value_expression
5804 (i.op[n].disps->X_op_symbol)->X_op)
5805 == O_subtract))))
5806 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25
JJ
5807 {
5808 offsetT add;
5809
5810 if (insn_start_frag == frag_now)
5811 add = (p - frag_now->fr_literal) - insn_start_off;
5812 else
5813 {
5814 fragS *fr;
5815
5816 add = insn_start_frag->fr_fix - insn_start_off;
5817 for (fr = insn_start_frag->fr_next;
5818 fr && fr != frag_now; fr = fr->fr_next)
5819 add += fr->fr_fix;
5820 add += p - frag_now->fr_literal;
5821 }
5822
4fa24527 5823 if (!object_64bit)
7b81dfbb
AJ
5824 {
5825 reloc_type = BFD_RELOC_386_GOTPC;
5826 i.op[n].imms->X_add_number += add;
5827 }
5828 else if (reloc_type == BFD_RELOC_64)
5829 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 5830 else
7b81dfbb
AJ
5831 /* Don't do the adjustment for x86-64, as there
5832 the pcrel addressing is relative to the _next_
5833 insn, and that is taken care of in other code. */
d6ab8113 5834 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 5835 }
062cd5e7 5836 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2bbd9c25 5837 i.op[n].disps, pcrel, reloc_type);
29b0f896
AM
5838 }
5839 }
5840 }
5841}
252b5132 5842
29b0f896 5843static void
64e74474 5844output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
5845{
5846 char *p;
5847 unsigned int n;
252b5132 5848
29b0f896
AM
5849 for (n = 0; n < i.operands; n++)
5850 {
40fb9820 5851 if (operand_type_check (i.types[n], imm))
29b0f896
AM
5852 {
5853 if (i.op[n].imms->X_op == O_constant)
5854 {
e205caa7 5855 int size = imm_size (n);
29b0f896 5856 offsetT val;
b4cac588 5857
29b0f896
AM
5858 val = offset_in_range (i.op[n].imms->X_add_number,
5859 size);
5860 p = frag_more (size);
5861 md_number_to_chars (p, val, size);
5862 }
5863 else
5864 {
5865 /* Not absolute_section.
5866 Need a 32-bit fixup (don't support 8bit
5867 non-absolute imms). Try to support other
5868 sizes ... */
f86103b7 5869 enum bfd_reloc_code_real reloc_type;
e205caa7
L
5870 int size = imm_size (n);
5871 int sign;
29b0f896 5872
40fb9820 5873 if (i.types[n].bitfield.imm32s
a7d61044 5874 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 5875 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 5876 sign = 1;
e205caa7
L
5877 else
5878 sign = 0;
520dc8e8 5879
29b0f896
AM
5880 p = frag_more (size);
5881 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 5882
2bbd9c25
JJ
5883 /* This is tough to explain. We end up with this one if we
5884 * have operands that look like
5885 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
5886 * obtain the absolute address of the GOT, and it is strongly
5887 * preferable from a performance point of view to avoid using
5888 * a runtime relocation for this. The actual sequence of
5889 * instructions often look something like:
5890 *
5891 * call .L66
5892 * .L66:
5893 * popl %ebx
5894 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
5895 *
5896 * The call and pop essentially return the absolute address
5897 * of the label .L66 and store it in %ebx. The linker itself
5898 * will ultimately change the first operand of the addl so
5899 * that %ebx points to the GOT, but to keep things simple, the
5900 * .o file must have this operand set so that it generates not
5901 * the absolute address of .L66, but the absolute address of
5902 * itself. This allows the linker itself simply treat a GOTPC
5903 * relocation as asking for a pcrel offset to the GOT to be
5904 * added in, and the addend of the relocation is stored in the
5905 * operand field for the instruction itself.
5906 *
5907 * Our job here is to fix the operand so that it would add
5908 * the correct offset so that %ebx would point to itself. The
5909 * thing that is tricky is that .-.L66 will point to the
5910 * beginning of the instruction, so we need to further modify
5911 * the operand so that it will point to itself. There are
5912 * other cases where you have something like:
5913 *
5914 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
5915 *
5916 * and here no correction would be required. Internally in
5917 * the assembler we treat operands of this form as not being
5918 * pcrel since the '.' is explicitly mentioned, and I wonder
5919 * whether it would simplify matters to do it this way. Who
5920 * knows. In earlier versions of the PIC patches, the
5921 * pcrel_adjust field was used to store the correction, but
5922 * since the expression is not pcrel, I felt it would be
5923 * confusing to do it this way. */
5924
d6ab8113 5925 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
5926 || reloc_type == BFD_RELOC_X86_64_32S
5927 || reloc_type == BFD_RELOC_64)
29b0f896
AM
5928 && GOT_symbol
5929 && GOT_symbol == i.op[n].imms->X_add_symbol
5930 && (i.op[n].imms->X_op == O_symbol
5931 || (i.op[n].imms->X_op == O_add
5932 && ((symbol_get_value_expression
5933 (i.op[n].imms->X_op_symbol)->X_op)
5934 == O_subtract))))
5935 {
2bbd9c25
JJ
5936 offsetT add;
5937
5938 if (insn_start_frag == frag_now)
5939 add = (p - frag_now->fr_literal) - insn_start_off;
5940 else
5941 {
5942 fragS *fr;
5943
5944 add = insn_start_frag->fr_fix - insn_start_off;
5945 for (fr = insn_start_frag->fr_next;
5946 fr && fr != frag_now; fr = fr->fr_next)
5947 add += fr->fr_fix;
5948 add += p - frag_now->fr_literal;
5949 }
5950
4fa24527 5951 if (!object_64bit)
d6ab8113 5952 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 5953 else if (size == 4)
d6ab8113 5954 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
5955 else if (size == 8)
5956 reloc_type = BFD_RELOC_X86_64_GOTPC64;
2bbd9c25 5957 i.op[n].imms->X_add_number += add;
29b0f896 5958 }
29b0f896
AM
5959 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5960 i.op[n].imms, 0, reloc_type);
5961 }
5962 }
5963 }
252b5132
RH
5964}
5965\f
d182319b
JB
5966/* x86_cons_fix_new is called via the expression parsing code when a
5967 reloc is needed. We use this hook to get the correct .got reloc. */
5968static enum bfd_reloc_code_real got_reloc = NO_RELOC;
5969static int cons_sign = -1;
5970
5971void
e3bb37b5 5972x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
64e74474 5973 expressionS *exp)
d182319b
JB
5974{
5975 enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, got_reloc);
5976
5977 got_reloc = NO_RELOC;
5978
5979#ifdef TE_PE
5980 if (exp->X_op == O_secrel)
5981 {
5982 exp->X_op = O_symbol;
5983 r = BFD_RELOC_32_SECREL;
5984 }
5985#endif
5986
5987 fix_new_exp (frag, off, len, exp, 0, r);
5988}
5989
718ddfc0
JB
5990#if (!defined (OBJ_ELF) && !defined (OBJ_MAYBE_ELF)) || defined (LEX_AT)
5991# define lex_got(reloc, adjust, types) NULL
5992#else
f3c180ae
AM
5993/* Parse operands of the form
5994 <symbol>@GOTOFF+<nnn>
5995 and similar .plt or .got references.
5996
5997 If we find one, set up the correct relocation in RELOC and copy the
5998 input string, minus the `@GOTOFF' into a malloc'd buffer for
5999 parsing by the calling routine. Return this buffer, and if ADJUST
6000 is non-null set it to the length of the string we removed from the
6001 input line. Otherwise return NULL. */
6002static char *
3956db08 6003lex_got (enum bfd_reloc_code_real *reloc,
64e74474 6004 int *adjust,
40fb9820 6005 i386_operand_type *types)
f3c180ae 6006{
7b81dfbb
AJ
6007 /* Some of the relocations depend on the size of what field is to
6008 be relocated. But in our callers i386_immediate and i386_displacement
6009 we don't yet know the operand size (this will be set by insn
6010 matching). Hence we record the word32 relocation here,
6011 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
6012 static const struct {
6013 const char *str;
4fa24527 6014 const enum bfd_reloc_code_real rel[2];
40fb9820 6015 const i386_operand_type types64;
f3c180ae 6016 } gotrel[] = {
4eed87de
AM
6017 { "PLTOFF", { 0,
6018 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 6019 OPERAND_TYPE_IMM64 },
4eed87de
AM
6020 { "PLT", { BFD_RELOC_386_PLT32,
6021 BFD_RELOC_X86_64_PLT32 },
40fb9820 6022 OPERAND_TYPE_IMM32_32S_DISP32 },
4eed87de
AM
6023 { "GOTPLT", { 0,
6024 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 6025 OPERAND_TYPE_IMM64_DISP64 },
4eed87de
AM
6026 { "GOTOFF", { BFD_RELOC_386_GOTOFF,
6027 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 6028 OPERAND_TYPE_IMM64_DISP64 },
4eed87de
AM
6029 { "GOTPCREL", { 0,
6030 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 6031 OPERAND_TYPE_IMM32_32S_DISP32 },
4eed87de
AM
6032 { "TLSGD", { BFD_RELOC_386_TLS_GD,
6033 BFD_RELOC_X86_64_TLSGD },
40fb9820 6034 OPERAND_TYPE_IMM32_32S_DISP32 },
4eed87de
AM
6035 { "TLSLDM", { BFD_RELOC_386_TLS_LDM,
6036 0 },
40fb9820 6037 OPERAND_TYPE_NONE },
4eed87de
AM
6038 { "TLSLD", { 0,
6039 BFD_RELOC_X86_64_TLSLD },
40fb9820 6040 OPERAND_TYPE_IMM32_32S_DISP32 },
4eed87de
AM
6041 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32,
6042 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 6043 OPERAND_TYPE_IMM32_32S_DISP32 },
4eed87de
AM
6044 { "TPOFF", { BFD_RELOC_386_TLS_LE_32,
6045 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 6046 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
4eed87de
AM
6047 { "NTPOFF", { BFD_RELOC_386_TLS_LE,
6048 0 },
40fb9820 6049 OPERAND_TYPE_NONE },
4eed87de
AM
6050 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32,
6051 BFD_RELOC_X86_64_DTPOFF32 },
7ab9ffdd 6052
40fb9820 6053 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
4eed87de
AM
6054 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE,
6055 0 },
40fb9820 6056 OPERAND_TYPE_NONE },
4eed87de
AM
6057 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE,
6058 0 },
40fb9820 6059 OPERAND_TYPE_NONE },
4eed87de
AM
6060 { "GOT", { BFD_RELOC_386_GOT32,
6061 BFD_RELOC_X86_64_GOT32 },
40fb9820 6062 OPERAND_TYPE_IMM32_32S_64_DISP32 },
4eed87de
AM
6063 { "TLSDESC", { BFD_RELOC_386_TLS_GOTDESC,
6064 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 6065 OPERAND_TYPE_IMM32_32S_DISP32 },
4eed87de
AM
6066 { "TLSCALL", { BFD_RELOC_386_TLS_DESC_CALL,
6067 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 6068 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
6069 };
6070 char *cp;
6071 unsigned int j;
6072
718ddfc0
JB
6073 if (!IS_ELF)
6074 return NULL;
6075
f3c180ae 6076 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 6077 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
6078 return NULL;
6079
47465058 6080 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae
AM
6081 {
6082 int len;
6083
6084 len = strlen (gotrel[j].str);
28f81592 6085 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 6086 {
4fa24527 6087 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 6088 {
28f81592
AM
6089 int first, second;
6090 char *tmpbuf, *past_reloc;
f3c180ae 6091
4fa24527 6092 *reloc = gotrel[j].rel[object_64bit];
28f81592
AM
6093 if (adjust)
6094 *adjust = len;
f3c180ae 6095
3956db08
JB
6096 if (types)
6097 {
6098 if (flag_code != CODE_64BIT)
40fb9820
L
6099 {
6100 types->bitfield.imm32 = 1;
6101 types->bitfield.disp32 = 1;
6102 }
3956db08
JB
6103 else
6104 *types = gotrel[j].types64;
6105 }
6106
f3c180ae
AM
6107 if (GOT_symbol == NULL)
6108 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
6109
28f81592 6110 /* The length of the first part of our input line. */
f3c180ae 6111 first = cp - input_line_pointer;
28f81592
AM
6112
6113 /* The second part goes from after the reloc token until
67c11a9b 6114 (and including) an end_of_line char or comma. */
28f81592 6115 past_reloc = cp + 1 + len;
67c11a9b
AM
6116 cp = past_reloc;
6117 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
6118 ++cp;
6119 second = cp + 1 - past_reloc;
28f81592
AM
6120
6121 /* Allocate and copy string. The trailing NUL shouldn't
6122 be necessary, but be safe. */
6123 tmpbuf = xmalloc (first + second + 2);
f3c180ae 6124 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
6125 if (second != 0 && *past_reloc != ' ')
6126 /* Replace the relocation token with ' ', so that
6127 errors like foo@GOTOFF1 will be detected. */
6128 tmpbuf[first++] = ' ';
6129 memcpy (tmpbuf + first, past_reloc, second);
6130 tmpbuf[first + second] = '\0';
f3c180ae
AM
6131 return tmpbuf;
6132 }
6133
4fa24527
JB
6134 as_bad (_("@%s reloc is not supported with %d-bit output format"),
6135 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
6136 return NULL;
6137 }
6138 }
6139
6140 /* Might be a symbol version string. Don't as_bad here. */
6141 return NULL;
6142}
6143
f3c180ae 6144void
e3bb37b5 6145x86_cons (expressionS *exp, int size)
f3c180ae 6146{
ee86248c
JB
6147 intel_syntax = -intel_syntax;
6148
4fa24527 6149 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
6150 {
6151 /* Handle @GOTOFF and the like in an expression. */
6152 char *save;
6153 char *gotfree_input_line;
6154 int adjust;
6155
6156 save = input_line_pointer;
3956db08 6157 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
6158 if (gotfree_input_line)
6159 input_line_pointer = gotfree_input_line;
6160
6161 expression (exp);
6162
6163 if (gotfree_input_line)
6164 {
6165 /* expression () has merrily parsed up to the end of line,
6166 or a comma - in the wrong buffer. Transfer how far
6167 input_line_pointer has moved to the right buffer. */
6168 input_line_pointer = (save
6169 + (input_line_pointer - gotfree_input_line)
6170 + adjust);
6171 free (gotfree_input_line);
3992d3b7
AM
6172 if (exp->X_op == O_constant
6173 || exp->X_op == O_absent
6174 || exp->X_op == O_illegal
6175 || exp->X_op == O_register
6176 || exp->X_op == O_big)
6177 {
6178 char c = *input_line_pointer;
6179 *input_line_pointer = 0;
6180 as_bad (_("missing or invalid expression `%s'"), save);
6181 *input_line_pointer = c;
6182 }
f3c180ae
AM
6183 }
6184 }
6185 else
6186 expression (exp);
ee86248c
JB
6187
6188 intel_syntax = -intel_syntax;
6189
6190 if (intel_syntax)
6191 i386_intel_simplify (exp);
f3c180ae
AM
6192}
6193#endif
6194
d182319b 6195static void signed_cons (int size)
6482c264 6196{
d182319b
JB
6197 if (flag_code == CODE_64BIT)
6198 cons_sign = 1;
6199 cons (size);
6200 cons_sign = -1;
6482c264
NC
6201}
6202
d182319b 6203#ifdef TE_PE
6482c264
NC
6204static void
6205pe_directive_secrel (dummy)
6206 int dummy ATTRIBUTE_UNUSED;
6207{
6208 expressionS exp;
6209
6210 do
6211 {
6212 expression (&exp);
6213 if (exp.X_op == O_symbol)
6214 exp.X_op = O_secrel;
6215
6216 emit_expr (&exp, 4);
6217 }
6218 while (*input_line_pointer++ == ',');
6219
6220 input_line_pointer--;
6221 demand_empty_rest_of_line ();
6222}
6482c264
NC
6223#endif
6224
252b5132 6225static int
70e41ade 6226i386_immediate (char *imm_start)
252b5132
RH
6227{
6228 char *save_input_line_pointer;
f3c180ae 6229 char *gotfree_input_line;
252b5132 6230 segT exp_seg = 0;
47926f60 6231 expressionS *exp;
40fb9820
L
6232 i386_operand_type types;
6233
0dfbf9d7 6234 operand_type_set (&types, ~0);
252b5132
RH
6235
6236 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
6237 {
31b2323c
L
6238 as_bad (_("at most %d immediate operands are allowed"),
6239 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
6240 return 0;
6241 }
6242
6243 exp = &im_expressions[i.imm_operands++];
520dc8e8 6244 i.op[this_operand].imms = exp;
252b5132
RH
6245
6246 if (is_space_char (*imm_start))
6247 ++imm_start;
6248
6249 save_input_line_pointer = input_line_pointer;
6250 input_line_pointer = imm_start;
6251
3956db08 6252 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
6253 if (gotfree_input_line)
6254 input_line_pointer = gotfree_input_line;
252b5132
RH
6255
6256 exp_seg = expression (exp);
6257
83183c0c 6258 SKIP_WHITESPACE ();
252b5132 6259 if (*input_line_pointer)
f3c180ae 6260 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
6261
6262 input_line_pointer = save_input_line_pointer;
f3c180ae 6263 if (gotfree_input_line)
ee86248c
JB
6264 {
6265 free (gotfree_input_line);
6266
6267 if (exp->X_op == O_constant || exp->X_op == O_register)
6268 exp->X_op = O_illegal;
6269 }
6270
6271 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
6272}
252b5132 6273
ee86248c
JB
6274static int
6275i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
6276 i386_operand_type types, const char *imm_start)
6277{
6278 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 6279 {
3992d3b7 6280 as_bad (_("missing or invalid immediate expression `%s'"),
24eab124 6281 imm_start);
3992d3b7 6282 return 0;
252b5132 6283 }
3e73aa7c 6284 else if (exp->X_op == O_constant)
252b5132 6285 {
47926f60 6286 /* Size it properly later. */
40fb9820 6287 i.types[this_operand].bitfield.imm64 = 1;
3e73aa7c 6288 /* If BFD64, sign extend val. */
4eed87de
AM
6289 if (!use_rela_relocations
6290 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
6291 exp->X_add_number
6292 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 6293 }
4c63da97 6294#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 6295 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 6296 && exp_seg != absolute_section
47926f60 6297 && exp_seg != text_section
24eab124
AM
6298 && exp_seg != data_section
6299 && exp_seg != bss_section
6300 && exp_seg != undefined_section
f86103b7 6301 && !bfd_is_com_section (exp_seg))
252b5132 6302 {
d0b47220 6303 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
6304 return 0;
6305 }
6306#endif
bb8f5920
L
6307 else if (!intel_syntax && exp->X_op == O_register)
6308 {
6309 as_bad (_("illegal immediate register operand %s"), imm_start);
6310 return 0;
6311 }
252b5132
RH
6312 else
6313 {
6314 /* This is an address. The size of the address will be
24eab124 6315 determined later, depending on destination register,
3e73aa7c 6316 suffix, or the default for the section. */
40fb9820
L
6317 i.types[this_operand].bitfield.imm8 = 1;
6318 i.types[this_operand].bitfield.imm16 = 1;
6319 i.types[this_operand].bitfield.imm32 = 1;
6320 i.types[this_operand].bitfield.imm32s = 1;
6321 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
6322 i.types[this_operand] = operand_type_and (i.types[this_operand],
6323 types);
252b5132
RH
6324 }
6325
6326 return 1;
6327}
6328
551c1ca1 6329static char *
e3bb37b5 6330i386_scale (char *scale)
252b5132 6331{
551c1ca1
AM
6332 offsetT val;
6333 char *save = input_line_pointer;
252b5132 6334
551c1ca1
AM
6335 input_line_pointer = scale;
6336 val = get_absolute_expression ();
6337
6338 switch (val)
252b5132 6339 {
551c1ca1 6340 case 1:
252b5132
RH
6341 i.log2_scale_factor = 0;
6342 break;
551c1ca1 6343 case 2:
252b5132
RH
6344 i.log2_scale_factor = 1;
6345 break;
551c1ca1 6346 case 4:
252b5132
RH
6347 i.log2_scale_factor = 2;
6348 break;
551c1ca1 6349 case 8:
252b5132
RH
6350 i.log2_scale_factor = 3;
6351 break;
6352 default:
a724f0f4
JB
6353 {
6354 char sep = *input_line_pointer;
6355
6356 *input_line_pointer = '\0';
6357 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
6358 scale);
6359 *input_line_pointer = sep;
6360 input_line_pointer = save;
6361 return NULL;
6362 }
252b5132 6363 }
29b0f896 6364 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
6365 {
6366 as_warn (_("scale factor of %d without an index register"),
24eab124 6367 1 << i.log2_scale_factor);
252b5132 6368 i.log2_scale_factor = 0;
252b5132 6369 }
551c1ca1
AM
6370 scale = input_line_pointer;
6371 input_line_pointer = save;
6372 return scale;
252b5132
RH
6373}
6374
252b5132 6375static int
e3bb37b5 6376i386_displacement (char *disp_start, char *disp_end)
252b5132 6377{
29b0f896 6378 expressionS *exp;
252b5132
RH
6379 segT exp_seg = 0;
6380 char *save_input_line_pointer;
f3c180ae 6381 char *gotfree_input_line;
40fb9820
L
6382 int override;
6383 i386_operand_type bigdisp, types = anydisp;
3992d3b7 6384 int ret;
252b5132 6385
31b2323c
L
6386 if (i.disp_operands == MAX_MEMORY_OPERANDS)
6387 {
6388 as_bad (_("at most %d displacement operands are allowed"),
6389 MAX_MEMORY_OPERANDS);
6390 return 0;
6391 }
6392
0dfbf9d7 6393 operand_type_set (&bigdisp, 0);
40fb9820
L
6394 if ((i.types[this_operand].bitfield.jumpabsolute)
6395 || (!current_templates->start->opcode_modifier.jump
6396 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 6397 {
40fb9820 6398 bigdisp.bitfield.disp32 = 1;
e05278af 6399 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
6400 if (flag_code == CODE_64BIT)
6401 {
6402 if (!override)
6403 {
6404 bigdisp.bitfield.disp32s = 1;
6405 bigdisp.bitfield.disp64 = 1;
6406 }
6407 }
6408 else if ((flag_code == CODE_16BIT) ^ override)
6409 {
6410 bigdisp.bitfield.disp32 = 0;
6411 bigdisp.bitfield.disp16 = 1;
6412 }
e05278af
JB
6413 }
6414 else
6415 {
6416 /* For PC-relative branches, the width of the displacement
6417 is dependent upon data size, not address size. */
e05278af 6418 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
6419 if (flag_code == CODE_64BIT)
6420 {
6421 if (override || i.suffix == WORD_MNEM_SUFFIX)
6422 bigdisp.bitfield.disp16 = 1;
6423 else
6424 {
6425 bigdisp.bitfield.disp32 = 1;
6426 bigdisp.bitfield.disp32s = 1;
6427 }
6428 }
6429 else
e05278af
JB
6430 {
6431 if (!override)
6432 override = (i.suffix == (flag_code != CODE_16BIT
6433 ? WORD_MNEM_SUFFIX
6434 : LONG_MNEM_SUFFIX));
40fb9820
L
6435 bigdisp.bitfield.disp32 = 1;
6436 if ((flag_code == CODE_16BIT) ^ override)
6437 {
6438 bigdisp.bitfield.disp32 = 0;
6439 bigdisp.bitfield.disp16 = 1;
6440 }
e05278af 6441 }
e05278af 6442 }
c6fb90c8
L
6443 i.types[this_operand] = operand_type_or (i.types[this_operand],
6444 bigdisp);
252b5132
RH
6445
6446 exp = &disp_expressions[i.disp_operands];
520dc8e8 6447 i.op[this_operand].disps = exp;
252b5132
RH
6448 i.disp_operands++;
6449 save_input_line_pointer = input_line_pointer;
6450 input_line_pointer = disp_start;
6451 END_STRING_AND_SAVE (disp_end);
6452
6453#ifndef GCC_ASM_O_HACK
6454#define GCC_ASM_O_HACK 0
6455#endif
6456#if GCC_ASM_O_HACK
6457 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 6458 if (i.types[this_operand].bitfield.baseIndex
24eab124 6459 && displacement_string_end[-1] == '+')
252b5132
RH
6460 {
6461 /* This hack is to avoid a warning when using the "o"
24eab124
AM
6462 constraint within gcc asm statements.
6463 For instance:
6464
6465 #define _set_tssldt_desc(n,addr,limit,type) \
6466 __asm__ __volatile__ ( \
6467 "movw %w2,%0\n\t" \
6468 "movw %w1,2+%0\n\t" \
6469 "rorl $16,%1\n\t" \
6470 "movb %b1,4+%0\n\t" \
6471 "movb %4,5+%0\n\t" \
6472 "movb $0,6+%0\n\t" \
6473 "movb %h1,7+%0\n\t" \
6474 "rorl $16,%1" \
6475 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
6476
6477 This works great except that the output assembler ends
6478 up looking a bit weird if it turns out that there is
6479 no offset. You end up producing code that looks like:
6480
6481 #APP
6482 movw $235,(%eax)
6483 movw %dx,2+(%eax)
6484 rorl $16,%edx
6485 movb %dl,4+(%eax)
6486 movb $137,5+(%eax)
6487 movb $0,6+(%eax)
6488 movb %dh,7+(%eax)
6489 rorl $16,%edx
6490 #NO_APP
6491
47926f60 6492 So here we provide the missing zero. */
24eab124
AM
6493
6494 *displacement_string_end = '0';
252b5132
RH
6495 }
6496#endif
3956db08 6497 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
6498 if (gotfree_input_line)
6499 input_line_pointer = gotfree_input_line;
252b5132 6500
24eab124 6501 exp_seg = expression (exp);
252b5132 6502
636c26b0
AM
6503 SKIP_WHITESPACE ();
6504 if (*input_line_pointer)
6505 as_bad (_("junk `%s' after expression"), input_line_pointer);
6506#if GCC_ASM_O_HACK
6507 RESTORE_END_STRING (disp_end + 1);
6508#endif
636c26b0 6509 input_line_pointer = save_input_line_pointer;
636c26b0 6510 if (gotfree_input_line)
ee86248c
JB
6511 {
6512 free (gotfree_input_line);
6513
6514 if (exp->X_op == O_constant || exp->X_op == O_register)
6515 exp->X_op = O_illegal;
6516 }
6517
6518 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
6519
6520 RESTORE_END_STRING (disp_end);
6521
6522 return ret;
6523}
6524
6525static int
6526i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
6527 i386_operand_type types, const char *disp_start)
6528{
6529 i386_operand_type bigdisp;
6530 int ret = 1;
636c26b0 6531
24eab124
AM
6532 /* We do this to make sure that the section symbol is in
6533 the symbol table. We will ultimately change the relocation
47926f60 6534 to be relative to the beginning of the section. */
1ae12ab7 6535 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
6536 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
6537 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 6538 {
636c26b0 6539 if (exp->X_op != O_symbol)
3992d3b7 6540 goto inv_disp;
636c26b0 6541
e5cb08ac 6542 if (S_IS_LOCAL (exp->X_add_symbol)
24eab124
AM
6543 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
6544 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
6545 exp->X_op = O_subtract;
6546 exp->X_op_symbol = GOT_symbol;
1ae12ab7 6547 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 6548 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
6549 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
6550 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 6551 else
29b0f896 6552 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 6553 }
252b5132 6554
3992d3b7
AM
6555 else if (exp->X_op == O_absent
6556 || exp->X_op == O_illegal
ee86248c 6557 || exp->X_op == O_big)
2daf4fd8 6558 {
3992d3b7
AM
6559 inv_disp:
6560 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 6561 disp_start);
3992d3b7 6562 ret = 0;
2daf4fd8
AM
6563 }
6564
4c63da97 6565#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
6566 else if (exp->X_op != O_constant
6567 && OUTPUT_FLAVOR == bfd_target_aout_flavour
6568 && exp_seg != absolute_section
6569 && exp_seg != text_section
6570 && exp_seg != data_section
6571 && exp_seg != bss_section
6572 && exp_seg != undefined_section
6573 && !bfd_is_com_section (exp_seg))
24eab124 6574 {
d0b47220 6575 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 6576 ret = 0;
24eab124 6577 }
252b5132 6578#endif
3956db08 6579
40fb9820
L
6580 /* Check if this is a displacement only operand. */
6581 bigdisp = i.types[this_operand];
6582 bigdisp.bitfield.disp8 = 0;
6583 bigdisp.bitfield.disp16 = 0;
6584 bigdisp.bitfield.disp32 = 0;
6585 bigdisp.bitfield.disp32s = 0;
6586 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 6587 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
6588 i.types[this_operand] = operand_type_and (i.types[this_operand],
6589 types);
3956db08 6590
3992d3b7 6591 return ret;
252b5132
RH
6592}
6593
eecb386c 6594/* Make sure the memory operand we've been dealt is valid.
47926f60
KH
6595 Return 1 on success, 0 on a failure. */
6596
252b5132 6597static int
e3bb37b5 6598i386_index_check (const char *operand_string)
252b5132 6599{
3e73aa7c 6600 int ok;
fc0763e6 6601 const char *kind = "base/index";
24eab124 6602#if INFER_ADDR_PREFIX
eecb386c
AM
6603 int fudged = 0;
6604
24eab124
AM
6605 tryprefix:
6606#endif
3e73aa7c 6607 ok = 1;
fc0763e6
JB
6608 if (current_templates->start->opcode_modifier.isstring
6609 && !current_templates->start->opcode_modifier.immext
6610 && (current_templates->end[-1].opcode_modifier.isstring
6611 || i.mem_operands))
6612 {
6613 /* Memory operands of string insns are special in that they only allow
6614 a single register (rDI, rSI, or rBX) as their memory address. */
6615 unsigned int expected;
6616
6617 kind = "string address";
6618
6619 if (current_templates->start->opcode_modifier.w)
6620 {
6621 i386_operand_type type = current_templates->end[-1].operand_types[0];
6622
6623 if (!type.bitfield.baseindex
6624 || ((!i.mem_operands != !intel_syntax)
6625 && current_templates->end[-1].operand_types[1]
6626 .bitfield.baseindex))
6627 type = current_templates->end[-1].operand_types[1];
6628 expected = type.bitfield.esseg ? 7 /* rDI */ : 6 /* rSI */;
6629 }
6630 else
6631 expected = 3 /* rBX */;
6632
6633 if (!i.base_reg || i.index_reg
6634 || operand_type_check (i.types[this_operand], disp))
6635 ok = -1;
6636 else if (!(flag_code == CODE_64BIT
6637 ? i.prefix[ADDR_PREFIX]
6638 ? i.base_reg->reg_type.bitfield.reg32
6639 : i.base_reg->reg_type.bitfield.reg64
6640 : (flag_code == CODE_16BIT) ^ !i.prefix[ADDR_PREFIX]
6641 ? i.base_reg->reg_type.bitfield.reg32
6642 : i.base_reg->reg_type.bitfield.reg16))
6643 ok = 0;
6644 else if (i.base_reg->reg_num != expected)
6645 ok = -1;
6646
6647 if (ok < 0)
6648 {
6649 unsigned int j;
6650
6651 for (j = 0; j < i386_regtab_size; ++j)
6652 if ((flag_code == CODE_64BIT
6653 ? i.prefix[ADDR_PREFIX]
6654 ? i386_regtab[j].reg_type.bitfield.reg32
6655 : i386_regtab[j].reg_type.bitfield.reg64
6656 : (flag_code == CODE_16BIT) ^ !i.prefix[ADDR_PREFIX]
6657 ? i386_regtab[j].reg_type.bitfield.reg32
6658 : i386_regtab[j].reg_type.bitfield.reg16)
6659 && i386_regtab[j].reg_num == expected)
6660 break;
9c2799c2 6661 gas_assert (j < i386_regtab_size);
fc0763e6
JB
6662 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
6663 operand_string,
6664 intel_syntax ? '[' : '(',
6665 register_prefix,
6666 i386_regtab[j].reg_name,
6667 intel_syntax ? ']' : ')');
6668 ok = 1;
6669 }
6670 }
6671 else if (flag_code == CODE_64BIT)
64e74474 6672 {
64e74474 6673 if ((i.base_reg
40fb9820
L
6674 && ((i.prefix[ADDR_PREFIX] == 0
6675 && !i.base_reg->reg_type.bitfield.reg64)
6676 || (i.prefix[ADDR_PREFIX]
6677 && !i.base_reg->reg_type.bitfield.reg32))
6678 && (i.index_reg
9a04903e
JB
6679 || i.base_reg->reg_num !=
6680 (i.prefix[ADDR_PREFIX] == 0 ? RegRip : RegEip)))
64e74474 6681 || (i.index_reg
40fb9820
L
6682 && (!i.index_reg->reg_type.bitfield.baseindex
6683 || (i.prefix[ADDR_PREFIX] == 0
db51cc60
L
6684 && i.index_reg->reg_num != RegRiz
6685 && !i.index_reg->reg_type.bitfield.reg64
6686 )
40fb9820 6687 || (i.prefix[ADDR_PREFIX]
db51cc60 6688 && i.index_reg->reg_num != RegEiz
40fb9820 6689 && !i.index_reg->reg_type.bitfield.reg32))))
64e74474 6690 ok = 0;
3e73aa7c
JH
6691 }
6692 else
6693 {
6694 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
6695 {
6696 /* 16bit checks. */
6697 if ((i.base_reg
40fb9820
L
6698 && (!i.base_reg->reg_type.bitfield.reg16
6699 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 6700 || (i.index_reg
40fb9820
L
6701 && (!i.index_reg->reg_type.bitfield.reg16
6702 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
6703 || !(i.base_reg
6704 && i.base_reg->reg_num < 6
6705 && i.index_reg->reg_num >= 6
6706 && i.log2_scale_factor == 0))))
3e73aa7c
JH
6707 ok = 0;
6708 }
6709 else
e5cb08ac 6710 {
3e73aa7c
JH
6711 /* 32bit checks. */
6712 if ((i.base_reg
40fb9820 6713 && !i.base_reg->reg_type.bitfield.reg32)
3e73aa7c 6714 || (i.index_reg
db51cc60
L
6715 && ((!i.index_reg->reg_type.bitfield.reg32
6716 && i.index_reg->reg_num != RegEiz)
40fb9820 6717 || !i.index_reg->reg_type.bitfield.baseindex)))
e5cb08ac 6718 ok = 0;
3e73aa7c
JH
6719 }
6720 }
6721 if (!ok)
24eab124
AM
6722 {
6723#if INFER_ADDR_PREFIX
fc0763e6 6724 if (!i.mem_operands && !i.prefix[ADDR_PREFIX])
24eab124
AM
6725 {
6726 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
6727 i.prefixes += 1;
b23bac36
AM
6728 /* Change the size of any displacement too. At most one of
6729 Disp16 or Disp32 is set.
6730 FIXME. There doesn't seem to be any real need for separate
6731 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
47926f60 6732 Removing them would probably clean up the code quite a lot. */
4eed87de 6733 if (flag_code != CODE_64BIT
40fb9820
L
6734 && (i.types[this_operand].bitfield.disp16
6735 || i.types[this_operand].bitfield.disp32))
6736 i.types[this_operand]
c6fb90c8 6737 = operand_type_xor (i.types[this_operand], disp16_32);
eecb386c 6738 fudged = 1;
24eab124
AM
6739 goto tryprefix;
6740 }
eecb386c 6741 if (fudged)
fc0763e6
JB
6742 as_bad (_("`%s' is not a valid %s expression"),
6743 operand_string,
6744 kind);
eecb386c 6745 else
c388dee8 6746#endif
fc0763e6 6747 as_bad (_("`%s' is not a valid %s-bit %s expression"),
eecb386c 6748 operand_string,
fc0763e6
JB
6749 flag_code_names[i.prefix[ADDR_PREFIX]
6750 ? flag_code == CODE_32BIT
6751 ? CODE_16BIT
6752 : CODE_32BIT
6753 : flag_code],
6754 kind);
24eab124 6755 }
20f0a1fc 6756 return ok;
24eab124 6757}
252b5132 6758
fc0763e6 6759/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 6760 on error. */
252b5132 6761
252b5132 6762static int
a7619375 6763i386_att_operand (char *operand_string)
252b5132 6764{
af6bdddf
AM
6765 const reg_entry *r;
6766 char *end_op;
24eab124 6767 char *op_string = operand_string;
252b5132 6768
24eab124 6769 if (is_space_char (*op_string))
252b5132
RH
6770 ++op_string;
6771
24eab124 6772 /* We check for an absolute prefix (differentiating,
47926f60 6773 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
6774 if (*op_string == ABSOLUTE_PREFIX)
6775 {
6776 ++op_string;
6777 if (is_space_char (*op_string))
6778 ++op_string;
40fb9820 6779 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 6780 }
252b5132 6781
47926f60 6782 /* Check if operand is a register. */
4d1bb795 6783 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 6784 {
40fb9820
L
6785 i386_operand_type temp;
6786
24eab124
AM
6787 /* Check for a segment override by searching for ':' after a
6788 segment register. */
6789 op_string = end_op;
6790 if (is_space_char (*op_string))
6791 ++op_string;
40fb9820
L
6792 if (*op_string == ':'
6793 && (r->reg_type.bitfield.sreg2
6794 || r->reg_type.bitfield.sreg3))
24eab124
AM
6795 {
6796 switch (r->reg_num)
6797 {
6798 case 0:
6799 i.seg[i.mem_operands] = &es;
6800 break;
6801 case 1:
6802 i.seg[i.mem_operands] = &cs;
6803 break;
6804 case 2:
6805 i.seg[i.mem_operands] = &ss;
6806 break;
6807 case 3:
6808 i.seg[i.mem_operands] = &ds;
6809 break;
6810 case 4:
6811 i.seg[i.mem_operands] = &fs;
6812 break;
6813 case 5:
6814 i.seg[i.mem_operands] = &gs;
6815 break;
6816 }
252b5132 6817
24eab124 6818 /* Skip the ':' and whitespace. */
252b5132
RH
6819 ++op_string;
6820 if (is_space_char (*op_string))
24eab124 6821 ++op_string;
252b5132 6822
24eab124
AM
6823 if (!is_digit_char (*op_string)
6824 && !is_identifier_char (*op_string)
6825 && *op_string != '('
6826 && *op_string != ABSOLUTE_PREFIX)
6827 {
6828 as_bad (_("bad memory operand `%s'"), op_string);
6829 return 0;
6830 }
47926f60 6831 /* Handle case of %es:*foo. */
24eab124
AM
6832 if (*op_string == ABSOLUTE_PREFIX)
6833 {
6834 ++op_string;
6835 if (is_space_char (*op_string))
6836 ++op_string;
40fb9820 6837 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
6838 }
6839 goto do_memory_reference;
6840 }
6841 if (*op_string)
6842 {
d0b47220 6843 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
6844 return 0;
6845 }
40fb9820
L
6846 temp = r->reg_type;
6847 temp.bitfield.baseindex = 0;
c6fb90c8
L
6848 i.types[this_operand] = operand_type_or (i.types[this_operand],
6849 temp);
7d5e4556 6850 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 6851 i.op[this_operand].regs = r;
24eab124
AM
6852 i.reg_operands++;
6853 }
af6bdddf
AM
6854 else if (*op_string == REGISTER_PREFIX)
6855 {
6856 as_bad (_("bad register name `%s'"), op_string);
6857 return 0;
6858 }
24eab124 6859 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 6860 {
24eab124 6861 ++op_string;
40fb9820 6862 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 6863 {
d0b47220 6864 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
6865 return 0;
6866 }
6867 if (!i386_immediate (op_string))
6868 return 0;
6869 }
6870 else if (is_digit_char (*op_string)
6871 || is_identifier_char (*op_string)
e5cb08ac 6872 || *op_string == '(')
24eab124 6873 {
47926f60 6874 /* This is a memory reference of some sort. */
af6bdddf 6875 char *base_string;
252b5132 6876
47926f60 6877 /* Start and end of displacement string expression (if found). */
eecb386c
AM
6878 char *displacement_string_start;
6879 char *displacement_string_end;
252b5132 6880
24eab124 6881 do_memory_reference:
24eab124 6882 if ((i.mem_operands == 1
40fb9820 6883 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
6884 || i.mem_operands == 2)
6885 {
6886 as_bad (_("too many memory references for `%s'"),
6887 current_templates->start->name);
6888 return 0;
6889 }
252b5132 6890
24eab124
AM
6891 /* Check for base index form. We detect the base index form by
6892 looking for an ')' at the end of the operand, searching
6893 for the '(' matching it, and finding a REGISTER_PREFIX or ','
6894 after the '('. */
af6bdddf 6895 base_string = op_string + strlen (op_string);
c3332e24 6896
af6bdddf
AM
6897 --base_string;
6898 if (is_space_char (*base_string))
6899 --base_string;
252b5132 6900
47926f60 6901 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
6902 displacement_string_start = op_string;
6903 displacement_string_end = base_string + 1;
252b5132 6904
24eab124
AM
6905 if (*base_string == ')')
6906 {
af6bdddf 6907 char *temp_string;
24eab124
AM
6908 unsigned int parens_balanced = 1;
6909 /* We've already checked that the number of left & right ()'s are
47926f60 6910 equal, so this loop will not be infinite. */
24eab124
AM
6911 do
6912 {
6913 base_string--;
6914 if (*base_string == ')')
6915 parens_balanced++;
6916 if (*base_string == '(')
6917 parens_balanced--;
6918 }
6919 while (parens_balanced);
c3332e24 6920
af6bdddf 6921 temp_string = base_string;
c3332e24 6922
24eab124 6923 /* Skip past '(' and whitespace. */
252b5132
RH
6924 ++base_string;
6925 if (is_space_char (*base_string))
24eab124 6926 ++base_string;
252b5132 6927
af6bdddf 6928 if (*base_string == ','
4eed87de
AM
6929 || ((i.base_reg = parse_register (base_string, &end_op))
6930 != NULL))
252b5132 6931 {
af6bdddf 6932 displacement_string_end = temp_string;
252b5132 6933
40fb9820 6934 i.types[this_operand].bitfield.baseindex = 1;
252b5132 6935
af6bdddf 6936 if (i.base_reg)
24eab124 6937 {
24eab124
AM
6938 base_string = end_op;
6939 if (is_space_char (*base_string))
6940 ++base_string;
af6bdddf
AM
6941 }
6942
6943 /* There may be an index reg or scale factor here. */
6944 if (*base_string == ',')
6945 {
6946 ++base_string;
6947 if (is_space_char (*base_string))
6948 ++base_string;
6949
4eed87de
AM
6950 if ((i.index_reg = parse_register (base_string, &end_op))
6951 != NULL)
24eab124 6952 {
af6bdddf 6953 base_string = end_op;
24eab124
AM
6954 if (is_space_char (*base_string))
6955 ++base_string;
af6bdddf
AM
6956 if (*base_string == ',')
6957 {
6958 ++base_string;
6959 if (is_space_char (*base_string))
6960 ++base_string;
6961 }
e5cb08ac 6962 else if (*base_string != ')')
af6bdddf 6963 {
4eed87de
AM
6964 as_bad (_("expecting `,' or `)' "
6965 "after index register in `%s'"),
af6bdddf
AM
6966 operand_string);
6967 return 0;
6968 }
24eab124 6969 }
af6bdddf 6970 else if (*base_string == REGISTER_PREFIX)
24eab124 6971 {
af6bdddf 6972 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
6973 return 0;
6974 }
252b5132 6975
47926f60 6976 /* Check for scale factor. */
551c1ca1 6977 if (*base_string != ')')
af6bdddf 6978 {
551c1ca1
AM
6979 char *end_scale = i386_scale (base_string);
6980
6981 if (!end_scale)
af6bdddf 6982 return 0;
24eab124 6983
551c1ca1 6984 base_string = end_scale;
af6bdddf
AM
6985 if (is_space_char (*base_string))
6986 ++base_string;
6987 if (*base_string != ')')
6988 {
4eed87de
AM
6989 as_bad (_("expecting `)' "
6990 "after scale factor in `%s'"),
af6bdddf
AM
6991 operand_string);
6992 return 0;
6993 }
6994 }
6995 else if (!i.index_reg)
24eab124 6996 {
4eed87de
AM
6997 as_bad (_("expecting index register or scale factor "
6998 "after `,'; got '%c'"),
af6bdddf 6999 *base_string);
24eab124
AM
7000 return 0;
7001 }
7002 }
af6bdddf 7003 else if (*base_string != ')')
24eab124 7004 {
4eed87de
AM
7005 as_bad (_("expecting `,' or `)' "
7006 "after base register in `%s'"),
af6bdddf 7007 operand_string);
24eab124
AM
7008 return 0;
7009 }
c3332e24 7010 }
af6bdddf 7011 else if (*base_string == REGISTER_PREFIX)
c3332e24 7012 {
af6bdddf 7013 as_bad (_("bad register name `%s'"), base_string);
24eab124 7014 return 0;
c3332e24 7015 }
24eab124
AM
7016 }
7017
7018 /* If there's an expression beginning the operand, parse it,
7019 assuming displacement_string_start and
7020 displacement_string_end are meaningful. */
7021 if (displacement_string_start != displacement_string_end)
7022 {
7023 if (!i386_displacement (displacement_string_start,
7024 displacement_string_end))
7025 return 0;
7026 }
7027
7028 /* Special case for (%dx) while doing input/output op. */
7029 if (i.base_reg
0dfbf9d7
L
7030 && operand_type_equal (&i.base_reg->reg_type,
7031 &reg16_inoutportreg)
24eab124
AM
7032 && i.index_reg == 0
7033 && i.log2_scale_factor == 0
7034 && i.seg[i.mem_operands] == 0
40fb9820 7035 && !operand_type_check (i.types[this_operand], disp))
24eab124 7036 {
65da13b5 7037 i.types[this_operand] = inoutportreg;
24eab124
AM
7038 return 1;
7039 }
7040
eecb386c
AM
7041 if (i386_index_check (operand_string) == 0)
7042 return 0;
5c07affc 7043 i.types[this_operand].bitfield.mem = 1;
24eab124
AM
7044 i.mem_operands++;
7045 }
7046 else
ce8a8b2f
AM
7047 {
7048 /* It's not a memory operand; argh! */
24eab124
AM
7049 as_bad (_("invalid char %s beginning operand %d `%s'"),
7050 output_invalid (*op_string),
7051 this_operand + 1,
7052 op_string);
7053 return 0;
7054 }
47926f60 7055 return 1; /* Normal return. */
252b5132
RH
7056}
7057\f
ee7fcc42
AM
7058/* md_estimate_size_before_relax()
7059
7060 Called just before relax() for rs_machine_dependent frags. The x86
7061 assembler uses these frags to handle variable size jump
7062 instructions.
7063
7064 Any symbol that is now undefined will not become defined.
7065 Return the correct fr_subtype in the frag.
7066 Return the initial "guess for variable size of frag" to caller.
7067 The guess is actually the growth beyond the fixed part. Whatever
7068 we do to grow the fixed or variable part contributes to our
7069 returned value. */
7070
252b5132
RH
7071int
7072md_estimate_size_before_relax (fragP, segment)
29b0f896
AM
7073 fragS *fragP;
7074 segT segment;
252b5132 7075{
252b5132 7076 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
7077 check for un-relaxable symbols. On an ELF system, we can't relax
7078 an externally visible symbol, because it may be overridden by a
7079 shared library. */
7080 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 7081#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 7082 || (IS_ELF
31312f95 7083 && (S_IS_EXTERNAL (fragP->fr_symbol)
915bcca5
L
7084 || S_IS_WEAK (fragP->fr_symbol)
7085 || ((symbol_get_bfdsym (fragP->fr_symbol)->flags
7086 & BSF_GNU_INDIRECT_FUNCTION))))
fbeb56a4
DK
7087#endif
7088#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 7089 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 7090 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
7091#endif
7092 )
252b5132 7093 {
b98ef147
AM
7094 /* Symbol is undefined in this segment, or we need to keep a
7095 reloc so that weak symbols can be overridden. */
7096 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 7097 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
7098 unsigned char *opcode;
7099 int old_fr_fix;
f6af82bd 7100
ee7fcc42
AM
7101 if (fragP->fr_var != NO_RELOC)
7102 reloc_type = fragP->fr_var;
b98ef147 7103 else if (size == 2)
f6af82bd
AM
7104 reloc_type = BFD_RELOC_16_PCREL;
7105 else
7106 reloc_type = BFD_RELOC_32_PCREL;
252b5132 7107
ee7fcc42
AM
7108 old_fr_fix = fragP->fr_fix;
7109 opcode = (unsigned char *) fragP->fr_opcode;
7110
fddf5b5b 7111 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 7112 {
fddf5b5b
AM
7113 case UNCOND_JUMP:
7114 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 7115 opcode[0] = 0xe9;
252b5132 7116 fragP->fr_fix += size;
062cd5e7
AS
7117 fix_new (fragP, old_fr_fix, size,
7118 fragP->fr_symbol,
7119 fragP->fr_offset, 1,
7120 reloc_type);
252b5132
RH
7121 break;
7122
fddf5b5b 7123 case COND_JUMP86:
412167cb
AM
7124 if (size == 2
7125 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
7126 {
7127 /* Negate the condition, and branch past an
7128 unconditional jump. */
7129 opcode[0] ^= 1;
7130 opcode[1] = 3;
7131 /* Insert an unconditional jump. */
7132 opcode[2] = 0xe9;
7133 /* We added two extra opcode bytes, and have a two byte
7134 offset. */
7135 fragP->fr_fix += 2 + 2;
062cd5e7
AS
7136 fix_new (fragP, old_fr_fix + 2, 2,
7137 fragP->fr_symbol,
7138 fragP->fr_offset, 1,
7139 reloc_type);
fddf5b5b
AM
7140 break;
7141 }
7142 /* Fall through. */
7143
7144 case COND_JUMP:
412167cb
AM
7145 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
7146 {
3e02c1cc
AM
7147 fixS *fixP;
7148
412167cb 7149 fragP->fr_fix += 1;
3e02c1cc
AM
7150 fixP = fix_new (fragP, old_fr_fix, 1,
7151 fragP->fr_symbol,
7152 fragP->fr_offset, 1,
7153 BFD_RELOC_8_PCREL);
7154 fixP->fx_signed = 1;
412167cb
AM
7155 break;
7156 }
93c2a809 7157
24eab124 7158 /* This changes the byte-displacement jump 0x7N
fddf5b5b 7159 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 7160 opcode[1] = opcode[0] + 0x10;
f6af82bd 7161 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
7162 /* We've added an opcode byte. */
7163 fragP->fr_fix += 1 + size;
062cd5e7
AS
7164 fix_new (fragP, old_fr_fix + 1, size,
7165 fragP->fr_symbol,
7166 fragP->fr_offset, 1,
7167 reloc_type);
252b5132 7168 break;
fddf5b5b
AM
7169
7170 default:
7171 BAD_CASE (fragP->fr_subtype);
7172 break;
252b5132
RH
7173 }
7174 frag_wane (fragP);
ee7fcc42 7175 return fragP->fr_fix - old_fr_fix;
252b5132 7176 }
93c2a809 7177
93c2a809
AM
7178 /* Guess size depending on current relax state. Initially the relax
7179 state will correspond to a short jump and we return 1, because
7180 the variable part of the frag (the branch offset) is one byte
7181 long. However, we can relax a section more than once and in that
7182 case we must either set fr_subtype back to the unrelaxed state,
7183 or return the value for the appropriate branch. */
7184 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
7185}
7186
47926f60
KH
7187/* Called after relax() is finished.
7188
7189 In: Address of frag.
7190 fr_type == rs_machine_dependent.
7191 fr_subtype is what the address relaxed to.
7192
7193 Out: Any fixSs and constants are set up.
7194 Caller will turn frag into a ".space 0". */
7195
252b5132
RH
7196void
7197md_convert_frag (abfd, sec, fragP)
ab9da554
ILT
7198 bfd *abfd ATTRIBUTE_UNUSED;
7199 segT sec ATTRIBUTE_UNUSED;
29b0f896 7200 fragS *fragP;
252b5132 7201{
29b0f896 7202 unsigned char *opcode;
252b5132 7203 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
7204 offsetT target_address;
7205 offsetT opcode_address;
252b5132 7206 unsigned int extension = 0;
847f7ad4 7207 offsetT displacement_from_opcode_start;
252b5132
RH
7208
7209 opcode = (unsigned char *) fragP->fr_opcode;
7210
47926f60 7211 /* Address we want to reach in file space. */
252b5132 7212 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 7213
47926f60 7214 /* Address opcode resides at in file space. */
252b5132
RH
7215 opcode_address = fragP->fr_address + fragP->fr_fix;
7216
47926f60 7217 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
7218 displacement_from_opcode_start = target_address - opcode_address;
7219
fddf5b5b 7220 if ((fragP->fr_subtype & BIG) == 0)
252b5132 7221 {
47926f60
KH
7222 /* Don't have to change opcode. */
7223 extension = 1; /* 1 opcode + 1 displacement */
252b5132 7224 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
7225 }
7226 else
7227 {
7228 if (no_cond_jump_promotion
7229 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
7230 as_warn_where (fragP->fr_file, fragP->fr_line,
7231 _("long jump required"));
252b5132 7232
fddf5b5b
AM
7233 switch (fragP->fr_subtype)
7234 {
7235 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
7236 extension = 4; /* 1 opcode + 4 displacement */
7237 opcode[0] = 0xe9;
7238 where_to_put_displacement = &opcode[1];
7239 break;
252b5132 7240
fddf5b5b
AM
7241 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
7242 extension = 2; /* 1 opcode + 2 displacement */
7243 opcode[0] = 0xe9;
7244 where_to_put_displacement = &opcode[1];
7245 break;
252b5132 7246
fddf5b5b
AM
7247 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
7248 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
7249 extension = 5; /* 2 opcode + 4 displacement */
7250 opcode[1] = opcode[0] + 0x10;
7251 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
7252 where_to_put_displacement = &opcode[2];
7253 break;
252b5132 7254
fddf5b5b
AM
7255 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
7256 extension = 3; /* 2 opcode + 2 displacement */
7257 opcode[1] = opcode[0] + 0x10;
7258 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
7259 where_to_put_displacement = &opcode[2];
7260 break;
252b5132 7261
fddf5b5b
AM
7262 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
7263 extension = 4;
7264 opcode[0] ^= 1;
7265 opcode[1] = 3;
7266 opcode[2] = 0xe9;
7267 where_to_put_displacement = &opcode[3];
7268 break;
7269
7270 default:
7271 BAD_CASE (fragP->fr_subtype);
7272 break;
7273 }
252b5132 7274 }
fddf5b5b 7275
7b81dfbb
AJ
7276 /* If size if less then four we are sure that the operand fits,
7277 but if it's 4, then it could be that the displacement is larger
7278 then -/+ 2GB. */
7279 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
7280 && object_64bit
7281 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
7282 + ((addressT) 1 << 31))
7283 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
7284 {
7285 as_bad_where (fragP->fr_file, fragP->fr_line,
7286 _("jump target out of range"));
7287 /* Make us emit 0. */
7288 displacement_from_opcode_start = extension;
7289 }
47926f60 7290 /* Now put displacement after opcode. */
252b5132
RH
7291 md_number_to_chars ((char *) where_to_put_displacement,
7292 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 7293 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
7294 fragP->fr_fix += extension;
7295}
7296\f
252b5132
RH
7297/* Apply a fixup (fixS) to segment data, once it has been determined
7298 by our caller that we have all the info we need to fix it up.
7299
7300 On the 386, immediates, displacements, and data pointers are all in
7301 the same (little-endian) format, so we don't need to care about which
7302 we are handling. */
7303
94f592af 7304void
55cf6793 7305md_apply_fix (fixP, valP, seg)
47926f60
KH
7306 /* The fix we're to put in. */
7307 fixS *fixP;
47926f60 7308 /* Pointer to the value of the bits. */
c6682705 7309 valueT *valP;
47926f60
KH
7310 /* Segment fix is from. */
7311 segT seg ATTRIBUTE_UNUSED;
252b5132 7312{
94f592af 7313 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 7314 valueT value = *valP;
252b5132 7315
f86103b7 7316#if !defined (TE_Mach)
93382f6d
AM
7317 if (fixP->fx_pcrel)
7318 {
7319 switch (fixP->fx_r_type)
7320 {
5865bb77
ILT
7321 default:
7322 break;
7323
d6ab8113
JB
7324 case BFD_RELOC_64:
7325 fixP->fx_r_type = BFD_RELOC_64_PCREL;
7326 break;
93382f6d 7327 case BFD_RELOC_32:
ae8887b5 7328 case BFD_RELOC_X86_64_32S:
93382f6d
AM
7329 fixP->fx_r_type = BFD_RELOC_32_PCREL;
7330 break;
7331 case BFD_RELOC_16:
7332 fixP->fx_r_type = BFD_RELOC_16_PCREL;
7333 break;
7334 case BFD_RELOC_8:
7335 fixP->fx_r_type = BFD_RELOC_8_PCREL;
7336 break;
7337 }
7338 }
252b5132 7339
a161fe53 7340 if (fixP->fx_addsy != NULL
31312f95 7341 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 7342 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95
AM
7343 || fixP->fx_r_type == BFD_RELOC_16_PCREL
7344 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
7345 && !use_rela_relocations)
252b5132 7346 {
31312f95
AM
7347 /* This is a hack. There should be a better way to handle this.
7348 This covers for the fact that bfd_install_relocation will
7349 subtract the current location (for partial_inplace, PC relative
7350 relocations); see more below. */
252b5132 7351#ifndef OBJ_AOUT
718ddfc0 7352 if (IS_ELF
252b5132
RH
7353#ifdef TE_PE
7354 || OUTPUT_FLAVOR == bfd_target_coff_flavour
7355#endif
7356 )
7357 value += fixP->fx_where + fixP->fx_frag->fr_address;
7358#endif
7359#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 7360 if (IS_ELF)
252b5132 7361 {
6539b54b 7362 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 7363
6539b54b 7364 if ((sym_seg == seg
2f66722d 7365 || (symbol_section_p (fixP->fx_addsy)
6539b54b 7366 && sym_seg != absolute_section))
af65af87 7367 && !generic_force_reloc (fixP))
2f66722d
AM
7368 {
7369 /* Yes, we add the values in twice. This is because
6539b54b
AM
7370 bfd_install_relocation subtracts them out again. I think
7371 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
7372 it. FIXME. */
7373 value += fixP->fx_where + fixP->fx_frag->fr_address;
7374 }
252b5132
RH
7375 }
7376#endif
7377#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
7378 /* For some reason, the PE format does not store a
7379 section address offset for a PC relative symbol. */
7380 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 7381 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
7382 value += md_pcrel_from (fixP);
7383#endif
7384 }
fbeb56a4
DK
7385#if defined (OBJ_COFF) && defined (TE_PE)
7386 if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
7387 {
7388 value -= S_GET_VALUE (fixP->fx_addsy);
7389 }
7390#endif
252b5132
RH
7391
7392 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 7393 and we must not disappoint it. */
252b5132 7394#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 7395 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
7396 switch (fixP->fx_r_type)
7397 {
7398 case BFD_RELOC_386_PLT32:
3e73aa7c 7399 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
7400 /* Make the jump instruction point to the address of the operand. At
7401 runtime we merely add the offset to the actual PLT entry. */
7402 value = -4;
7403 break;
31312f95 7404
13ae64f3
JJ
7405 case BFD_RELOC_386_TLS_GD:
7406 case BFD_RELOC_386_TLS_LDM:
13ae64f3 7407 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
7408 case BFD_RELOC_386_TLS_IE:
7409 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 7410 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
7411 case BFD_RELOC_X86_64_TLSGD:
7412 case BFD_RELOC_X86_64_TLSLD:
7413 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 7414 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
7415 value = 0; /* Fully resolved at runtime. No addend. */
7416 /* Fallthrough */
7417 case BFD_RELOC_386_TLS_LE:
7418 case BFD_RELOC_386_TLS_LDO_32:
7419 case BFD_RELOC_386_TLS_LE_32:
7420 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 7421 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 7422 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 7423 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
7424 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7425 break;
7426
67a4f2b7
AO
7427 case BFD_RELOC_386_TLS_DESC_CALL:
7428 case BFD_RELOC_X86_64_TLSDESC_CALL:
7429 value = 0; /* Fully resolved at runtime. No addend. */
7430 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7431 fixP->fx_done = 0;
7432 return;
7433
00f7efb6
JJ
7434 case BFD_RELOC_386_GOT32:
7435 case BFD_RELOC_X86_64_GOT32:
47926f60
KH
7436 value = 0; /* Fully resolved at runtime. No addend. */
7437 break;
47926f60
KH
7438
7439 case BFD_RELOC_VTABLE_INHERIT:
7440 case BFD_RELOC_VTABLE_ENTRY:
7441 fixP->fx_done = 0;
94f592af 7442 return;
47926f60
KH
7443
7444 default:
7445 break;
7446 }
7447#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 7448 *valP = value;
f86103b7 7449#endif /* !defined (TE_Mach) */
3e73aa7c 7450
3e73aa7c 7451 /* Are we finished with this relocation now? */
c6682705 7452 if (fixP->fx_addsy == NULL)
3e73aa7c 7453 fixP->fx_done = 1;
fbeb56a4
DK
7454#if defined (OBJ_COFF) && defined (TE_PE)
7455 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
7456 {
7457 fixP->fx_done = 0;
7458 /* Remember value for tc_gen_reloc. */
7459 fixP->fx_addnumber = value;
7460 /* Clear out the frag for now. */
7461 value = 0;
7462 }
7463#endif
3e73aa7c
JH
7464 else if (use_rela_relocations)
7465 {
7466 fixP->fx_no_overflow = 1;
062cd5e7
AS
7467 /* Remember value for tc_gen_reloc. */
7468 fixP->fx_addnumber = value;
3e73aa7c
JH
7469 value = 0;
7470 }
f86103b7 7471
94f592af 7472 md_number_to_chars (p, value, fixP->fx_size);
252b5132 7473}
252b5132 7474\f
252b5132 7475char *
499ac353 7476md_atof (int type, char *litP, int *sizeP)
252b5132 7477{
499ac353
NC
7478 /* This outputs the LITTLENUMs in REVERSE order;
7479 in accord with the bigendian 386. */
7480 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
7481}
7482\f
2d545b82 7483static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 7484
252b5132 7485static char *
e3bb37b5 7486output_invalid (int c)
252b5132 7487{
3882b010 7488 if (ISPRINT (c))
f9f21a03
L
7489 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
7490 "'%c'", c);
252b5132 7491 else
f9f21a03 7492 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 7493 "(0x%x)", (unsigned char) c);
252b5132
RH
7494 return output_invalid_buf;
7495}
7496
af6bdddf 7497/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
7498
7499static const reg_entry *
4d1bb795 7500parse_real_register (char *reg_string, char **end_op)
252b5132 7501{
af6bdddf
AM
7502 char *s = reg_string;
7503 char *p;
252b5132
RH
7504 char reg_name_given[MAX_REG_NAME_SIZE + 1];
7505 const reg_entry *r;
7506
7507 /* Skip possible REGISTER_PREFIX and possible whitespace. */
7508 if (*s == REGISTER_PREFIX)
7509 ++s;
7510
7511 if (is_space_char (*s))
7512 ++s;
7513
7514 p = reg_name_given;
af6bdddf 7515 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
7516 {
7517 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
7518 return (const reg_entry *) NULL;
7519 s++;
252b5132
RH
7520 }
7521
6588847e
DN
7522 /* For naked regs, make sure that we are not dealing with an identifier.
7523 This prevents confusing an identifier like `eax_var' with register
7524 `eax'. */
7525 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
7526 return (const reg_entry *) NULL;
7527
af6bdddf 7528 *end_op = s;
252b5132
RH
7529
7530 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
7531
5f47d35b 7532 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 7533 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 7534 {
5f47d35b
AM
7535 if (is_space_char (*s))
7536 ++s;
7537 if (*s == '(')
7538 {
af6bdddf 7539 ++s;
5f47d35b
AM
7540 if (is_space_char (*s))
7541 ++s;
7542 if (*s >= '0' && *s <= '7')
7543 {
db557034 7544 int fpr = *s - '0';
af6bdddf 7545 ++s;
5f47d35b
AM
7546 if (is_space_char (*s))
7547 ++s;
7548 if (*s == ')')
7549 {
7550 *end_op = s + 1;
db557034
AM
7551 r = hash_find (reg_hash, "st(0)");
7552 know (r);
7553 return r + fpr;
5f47d35b 7554 }
5f47d35b 7555 }
47926f60 7556 /* We have "%st(" then garbage. */
5f47d35b
AM
7557 return (const reg_entry *) NULL;
7558 }
7559 }
7560
a60de03c
JB
7561 if (r == NULL || allow_pseudo_reg)
7562 return r;
7563
0dfbf9d7 7564 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
7565 return (const reg_entry *) NULL;
7566
192dc9c6
JB
7567 if ((r->reg_type.bitfield.reg32
7568 || r->reg_type.bitfield.sreg3
7569 || r->reg_type.bitfield.control
7570 || r->reg_type.bitfield.debug
7571 || r->reg_type.bitfield.test)
7572 && !cpu_arch_flags.bitfield.cpui386)
7573 return (const reg_entry *) NULL;
7574
309d3373
JB
7575 if (r->reg_type.bitfield.floatreg
7576 && !cpu_arch_flags.bitfield.cpu8087
7577 && !cpu_arch_flags.bitfield.cpu287
7578 && !cpu_arch_flags.bitfield.cpu387)
7579 return (const reg_entry *) NULL;
7580
192dc9c6
JB
7581 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
7582 return (const reg_entry *) NULL;
7583
7584 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpusse)
7585 return (const reg_entry *) NULL;
7586
40f12533
L
7587 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuavx)
7588 return (const reg_entry *) NULL;
7589
db51cc60 7590 /* Don't allow fake index register unless allow_index_reg isn't 0. */
a60de03c 7591 if (!allow_index_reg
db51cc60
L
7592 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
7593 return (const reg_entry *) NULL;
7594
a60de03c
JB
7595 if (((r->reg_flags & (RegRex64 | RegRex))
7596 || r->reg_type.bitfield.reg64)
40fb9820 7597 && (!cpu_arch_flags.bitfield.cpulm
0dfbf9d7 7598 || !operand_type_equal (&r->reg_type, &control))
1ae00879 7599 && flag_code != CODE_64BIT)
20f0a1fc 7600 return (const reg_entry *) NULL;
1ae00879 7601
b7240065
JB
7602 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
7603 return (const reg_entry *) NULL;
7604
252b5132
RH
7605 return r;
7606}
4d1bb795
JB
7607
7608/* REG_STRING starts *before* REGISTER_PREFIX. */
7609
7610static const reg_entry *
7611parse_register (char *reg_string, char **end_op)
7612{
7613 const reg_entry *r;
7614
7615 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
7616 r = parse_real_register (reg_string, end_op);
7617 else
7618 r = NULL;
7619 if (!r)
7620 {
7621 char *save = input_line_pointer;
7622 char c;
7623 symbolS *symbolP;
7624
7625 input_line_pointer = reg_string;
7626 c = get_symbol_end ();
7627 symbolP = symbol_find (reg_string);
7628 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
7629 {
7630 const expressionS *e = symbol_get_value_expression (symbolP);
7631
7632 know (e->X_op == O_register);
4eed87de 7633 know (e->X_add_number >= 0
c3fe08fa 7634 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795
JB
7635 r = i386_regtab + e->X_add_number;
7636 *end_op = input_line_pointer;
7637 }
7638 *input_line_pointer = c;
7639 input_line_pointer = save;
7640 }
7641 return r;
7642}
7643
7644int
7645i386_parse_name (char *name, expressionS *e, char *nextcharP)
7646{
7647 const reg_entry *r;
7648 char *end = input_line_pointer;
7649
7650 *end = *nextcharP;
7651 r = parse_register (name, &input_line_pointer);
7652 if (r && end <= input_line_pointer)
7653 {
7654 *nextcharP = *input_line_pointer;
7655 *input_line_pointer = 0;
7656 e->X_op = O_register;
7657 e->X_add_number = r - i386_regtab;
7658 return 1;
7659 }
7660 input_line_pointer = end;
7661 *end = 0;
ee86248c 7662 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
7663}
7664
7665void
7666md_operand (expressionS *e)
7667{
ee86248c
JB
7668 char *end;
7669 const reg_entry *r;
4d1bb795 7670
ee86248c
JB
7671 switch (*input_line_pointer)
7672 {
7673 case REGISTER_PREFIX:
7674 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
7675 if (r)
7676 {
7677 e->X_op = O_register;
7678 e->X_add_number = r - i386_regtab;
7679 input_line_pointer = end;
7680 }
ee86248c
JB
7681 break;
7682
7683 case '[':
9c2799c2 7684 gas_assert (intel_syntax);
ee86248c
JB
7685 end = input_line_pointer++;
7686 expression (e);
7687 if (*input_line_pointer == ']')
7688 {
7689 ++input_line_pointer;
7690 e->X_op_symbol = make_expr_symbol (e);
7691 e->X_add_symbol = NULL;
7692 e->X_add_number = 0;
7693 e->X_op = O_index;
7694 }
7695 else
7696 {
7697 e->X_op = O_absent;
7698 input_line_pointer = end;
7699 }
7700 break;
4d1bb795
JB
7701 }
7702}
7703
252b5132 7704\f
4cc782b5 7705#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12b55ccc 7706const char *md_shortopts = "kVQ:sqn";
252b5132 7707#else
12b55ccc 7708const char *md_shortopts = "qn";
252b5132 7709#endif
6e0b89ee 7710
3e73aa7c 7711#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
7712#define OPTION_64 (OPTION_MD_BASE + 1)
7713#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
7714#define OPTION_MARCH (OPTION_MD_BASE + 3)
7715#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
7716#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
7717#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
7718#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
7719#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
7720#define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
c0f3af97 7721#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 7722#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
b3b91714 7723
99ad8390
NC
7724struct option md_longopts[] =
7725{
3e73aa7c 7726 {"32", no_argument, NULL, OPTION_32},
321098a5
L
7727#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
7728 || defined (TE_PE) || defined (TE_PEP))
3e73aa7c 7729 {"64", no_argument, NULL, OPTION_64},
6e0b89ee 7730#endif
b3b91714 7731 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
7732 {"march", required_argument, NULL, OPTION_MARCH},
7733 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
7734 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
7735 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
7736 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
7737 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
7738 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
c0f3af97 7739 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 7740 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
252b5132
RH
7741 {NULL, no_argument, NULL, 0}
7742};
7743size_t md_longopts_size = sizeof (md_longopts);
7744
7745int
9103f4f4 7746md_parse_option (int c, char *arg)
252b5132 7747{
9103f4f4 7748 unsigned int i;
6305a203 7749 char *arch, *next;
9103f4f4 7750
252b5132
RH
7751 switch (c)
7752 {
12b55ccc
L
7753 case 'n':
7754 optimize_align_code = 0;
7755 break;
7756
a38cf1db
AM
7757 case 'q':
7758 quiet_warnings = 1;
252b5132
RH
7759 break;
7760
7761#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
7762 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
7763 should be emitted or not. FIXME: Not implemented. */
7764 case 'Q':
252b5132
RH
7765 break;
7766
7767 /* -V: SVR4 argument to print version ID. */
7768 case 'V':
7769 print_version_id ();
7770 break;
7771
a38cf1db
AM
7772 /* -k: Ignore for FreeBSD compatibility. */
7773 case 'k':
252b5132 7774 break;
4cc782b5
ILT
7775
7776 case 's':
7777 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 7778 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 7779 break;
99ad8390 7780#endif
321098a5
L
7781#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
7782 || defined (TE_PE) || defined (TE_PEP))
3e73aa7c
JH
7783 case OPTION_64:
7784 {
7785 const char **list, **l;
7786
3e73aa7c
JH
7787 list = bfd_target_list ();
7788 for (l = list; *l != NULL; l++)
8620418b 7789 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
7790 || strcmp (*l, "coff-x86-64") == 0
7791 || strcmp (*l, "pe-x86-64") == 0
7792 || strcmp (*l, "pei-x86-64") == 0)
6e0b89ee
AM
7793 {
7794 default_arch = "x86_64";
7795 break;
7796 }
3e73aa7c 7797 if (*l == NULL)
6e0b89ee 7798 as_fatal (_("No compiled in support for x86_64"));
3e73aa7c
JH
7799 free (list);
7800 }
7801 break;
7802#endif
252b5132 7803
6e0b89ee
AM
7804 case OPTION_32:
7805 default_arch = "i386";
7806 break;
7807
b3b91714
AM
7808 case OPTION_DIVIDE:
7809#ifdef SVR4_COMMENT_CHARS
7810 {
7811 char *n, *t;
7812 const char *s;
7813
7814 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
7815 t = n;
7816 for (s = i386_comment_chars; *s != '\0'; s++)
7817 if (*s != '/')
7818 *t++ = *s;
7819 *t = '\0';
7820 i386_comment_chars = n;
7821 }
7822#endif
7823 break;
7824
9103f4f4 7825 case OPTION_MARCH:
6305a203
L
7826 arch = xstrdup (arg);
7827 do
9103f4f4 7828 {
6305a203
L
7829 if (*arch == '.')
7830 as_fatal (_("Invalid -march= option: `%s'"), arg);
7831 next = strchr (arch, '+');
7832 if (next)
7833 *next++ = '\0';
7834 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
9103f4f4 7835 {
6305a203 7836 if (strcmp (arch, cpu_arch [i].name) == 0)
ccc9c027 7837 {
6305a203
L
7838 /* Processor. */
7839 cpu_arch_name = cpu_arch[i].name;
7840 cpu_sub_arch_name = NULL;
7841 cpu_arch_flags = cpu_arch[i].flags;
7842 cpu_arch_isa = cpu_arch[i].type;
7843 cpu_arch_isa_flags = cpu_arch[i].flags;
7844 if (!cpu_arch_tune_set)
7845 {
7846 cpu_arch_tune = cpu_arch_isa;
7847 cpu_arch_tune_flags = cpu_arch_isa_flags;
7848 }
7849 break;
7850 }
7851 else if (*cpu_arch [i].name == '.'
7852 && strcmp (arch, cpu_arch [i].name + 1) == 0)
7853 {
7854 /* ISA entension. */
7855 i386_cpu_flags flags;
309d3373
JB
7856
7857 if (strncmp (arch, "no", 2))
7858 flags = cpu_flags_or (cpu_arch_flags,
7859 cpu_arch[i].flags);
7860 else
7861 flags = cpu_flags_and_not (cpu_arch_flags,
7862 cpu_arch[i].flags);
0dfbf9d7 7863 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
7864 {
7865 if (cpu_sub_arch_name)
7866 {
7867 char *name = cpu_sub_arch_name;
7868 cpu_sub_arch_name = concat (name,
7869 cpu_arch[i].name,
1bf57e9f 7870 (const char *) NULL);
6305a203
L
7871 free (name);
7872 }
7873 else
7874 cpu_sub_arch_name = xstrdup (cpu_arch[i].name);
7875 cpu_arch_flags = flags;
7876 }
7877 break;
ccc9c027 7878 }
9103f4f4 7879 }
6305a203
L
7880
7881 if (i >= ARRAY_SIZE (cpu_arch))
7882 as_fatal (_("Invalid -march= option: `%s'"), arg);
7883
7884 arch = next;
9103f4f4 7885 }
6305a203 7886 while (next != NULL );
9103f4f4
L
7887 break;
7888
7889 case OPTION_MTUNE:
7890 if (*arg == '.')
7891 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
7892 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
7893 {
7894 if (strcmp (arg, cpu_arch [i].name) == 0)
7895 {
ccc9c027 7896 cpu_arch_tune_set = 1;
9103f4f4
L
7897 cpu_arch_tune = cpu_arch [i].type;
7898 cpu_arch_tune_flags = cpu_arch[i].flags;
7899 break;
7900 }
7901 }
7902 if (i >= ARRAY_SIZE (cpu_arch))
7903 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
7904 break;
7905
1efbbeb4
L
7906 case OPTION_MMNEMONIC:
7907 if (strcasecmp (arg, "att") == 0)
7908 intel_mnemonic = 0;
7909 else if (strcasecmp (arg, "intel") == 0)
7910 intel_mnemonic = 1;
7911 else
7912 as_fatal (_("Invalid -mmnemonic= option: `%s'"), arg);
7913 break;
7914
7915 case OPTION_MSYNTAX:
7916 if (strcasecmp (arg, "att") == 0)
7917 intel_syntax = 0;
7918 else if (strcasecmp (arg, "intel") == 0)
7919 intel_syntax = 1;
7920 else
7921 as_fatal (_("Invalid -msyntax= option: `%s'"), arg);
7922 break;
7923
7924 case OPTION_MINDEX_REG:
7925 allow_index_reg = 1;
7926 break;
7927
7928 case OPTION_MNAKED_REG:
7929 allow_naked_reg = 1;
7930 break;
7931
7932 case OPTION_MOLD_GCC:
7933 old_gcc = 1;
1efbbeb4
L
7934 break;
7935
c0f3af97
L
7936 case OPTION_MSSE2AVX:
7937 sse2avx = 1;
7938 break;
7939
daf50ae7
L
7940 case OPTION_MSSE_CHECK:
7941 if (strcasecmp (arg, "error") == 0)
7942 sse_check = sse_check_error;
7943 else if (strcasecmp (arg, "warning") == 0)
7944 sse_check = sse_check_warning;
7945 else if (strcasecmp (arg, "none") == 0)
7946 sse_check = sse_check_none;
7947 else
7948 as_fatal (_("Invalid -msse-check= option: `%s'"), arg);
7949 break;
7950
252b5132
RH
7951 default:
7952 return 0;
7953 }
7954 return 1;
7955}
7956
7957void
7958md_show_usage (stream)
7959 FILE *stream;
7960{
4cc782b5
ILT
7961#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7962 fprintf (stream, _("\
a38cf1db
AM
7963 -Q ignored\n\
7964 -V print assembler version number\n\
b3b91714
AM
7965 -k ignored\n"));
7966#endif
7967 fprintf (stream, _("\
12b55ccc 7968 -n Do not optimize code alignment\n\
b3b91714
AM
7969 -q quieten some warnings\n"));
7970#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7971 fprintf (stream, _("\
a38cf1db 7972 -s ignored\n"));
b3b91714 7973#endif
321098a5
L
7974#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
7975 || defined (TE_PE) || defined (TE_PEP))
751d281c
L
7976 fprintf (stream, _("\
7977 --32/--64 generate 32bit/64bit code\n"));
7978#endif
b3b91714
AM
7979#ifdef SVR4_COMMENT_CHARS
7980 fprintf (stream, _("\
7981 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
7982#else
7983 fprintf (stream, _("\
b3b91714 7984 --divide ignored\n"));
4cc782b5 7985#endif
9103f4f4 7986 fprintf (stream, _("\
6305a203
L
7987 -march=CPU[,+EXTENSION...]\n\
7988 generate code for CPU and EXTENSION, CPU is one of:\n\
2cb4f3d5
L
7989 i8086, i186, i286, i386, i486, pentium, pentiumpro,\n\
7990 pentiumii, pentiumiii, pentium4, prescott, nocona,\n\
8a9036a4
L
7991 core, core2, corei7, l1om, k6, k6_2, athlon, k8,\n\
7992 amdfam10, generic32, generic64\n\
599121aa 7993 EXTENSION is combination of:\n\
309d3373
JB
7994 8087, 287, 387, no87, mmx, nommx, sse, sse2, sse3,\n\
7995 ssse3, sse4.1, sse4.2, sse4, nosse, avx, noavx,\n\
7996 vmx, smx, xsave, movbe, ept, aes, pclmul, fma,\n\
bd5295b2 7997 clflush, syscall, rdtscp, 3dnow, 3dnowa, sse4a,\n\
922d8de8 7998 svme, abm, padlock, fma4\n"));
6305a203 7999 fprintf (stream, _("\
2cb4f3d5
L
8000 -mtune=CPU optimize for CPU, CPU is one of:\n\
8001 i8086, i186, i286, i386, i486, pentium, pentiumpro,\n\
8002 pentiumii, pentiumiii, pentium4, prescott, nocona,\n\
8a9036a4
L
8003 core, core2, corei7, l1om, k6, k6_2, athlon, k8,\n\
8004 amdfam10, generic32, generic64\n"));
ba104c83 8005 fprintf (stream, _("\
c0f3af97
L
8006 -msse2avx encode SSE instructions with VEX prefix\n"));
8007 fprintf (stream, _("\
daf50ae7
L
8008 -msse-check=[none|error|warning]\n\
8009 check SSE instructions\n"));
8010 fprintf (stream, _("\
ba104c83
L
8011 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
8012 fprintf (stream, _("\
8013 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
8014 fprintf (stream, _("\
8015 -mindex-reg support pseudo index registers\n"));
8016 fprintf (stream, _("\
8017 -mnaked-reg don't require `%%' prefix for registers\n"));
8018 fprintf (stream, _("\
8019 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
252b5132
RH
8020}
8021
3e73aa7c 8022#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 8023 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 8024 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
8025
8026/* Pick the target format to use. */
8027
47926f60 8028const char *
e3bb37b5 8029i386_target_format (void)
252b5132 8030{
3e73aa7c 8031 if (!strcmp (default_arch, "x86_64"))
9103f4f4
L
8032 {
8033 set_code_flag (CODE_64BIT);
0dfbf9d7 8034 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
40fb9820
L
8035 {
8036 cpu_arch_isa_flags.bitfield.cpui186 = 1;
8037 cpu_arch_isa_flags.bitfield.cpui286 = 1;
8038 cpu_arch_isa_flags.bitfield.cpui386 = 1;
8039 cpu_arch_isa_flags.bitfield.cpui486 = 1;
8040 cpu_arch_isa_flags.bitfield.cpui586 = 1;
8041 cpu_arch_isa_flags.bitfield.cpui686 = 1;
bd5295b2 8042 cpu_arch_isa_flags.bitfield.cpuclflush = 1;
40fb9820 8043 cpu_arch_isa_flags.bitfield.cpummx= 1;
40fb9820
L
8044 cpu_arch_isa_flags.bitfield.cpusse = 1;
8045 cpu_arch_isa_flags.bitfield.cpusse2 = 1;
711eedef 8046 cpu_arch_isa_flags.bitfield.cpulm = 1;
40fb9820 8047 }
0dfbf9d7 8048 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
40fb9820
L
8049 {
8050 cpu_arch_tune_flags.bitfield.cpui186 = 1;
8051 cpu_arch_tune_flags.bitfield.cpui286 = 1;
8052 cpu_arch_tune_flags.bitfield.cpui386 = 1;
8053 cpu_arch_tune_flags.bitfield.cpui486 = 1;
8054 cpu_arch_tune_flags.bitfield.cpui586 = 1;
8055 cpu_arch_tune_flags.bitfield.cpui686 = 1;
bd5295b2 8056 cpu_arch_tune_flags.bitfield.cpuclflush = 1;
40fb9820 8057 cpu_arch_tune_flags.bitfield.cpummx= 1;
40fb9820
L
8058 cpu_arch_tune_flags.bitfield.cpusse = 1;
8059 cpu_arch_tune_flags.bitfield.cpusse2 = 1;
8060 }
9103f4f4 8061 }
3e73aa7c 8062 else if (!strcmp (default_arch, "i386"))
9103f4f4
L
8063 {
8064 set_code_flag (CODE_32BIT);
0dfbf9d7 8065 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
40fb9820
L
8066 {
8067 cpu_arch_isa_flags.bitfield.cpui186 = 1;
8068 cpu_arch_isa_flags.bitfield.cpui286 = 1;
8069 cpu_arch_isa_flags.bitfield.cpui386 = 1;
8070 }
0dfbf9d7 8071 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
40fb9820
L
8072 {
8073 cpu_arch_tune_flags.bitfield.cpui186 = 1;
8074 cpu_arch_tune_flags.bitfield.cpui286 = 1;
8075 cpu_arch_tune_flags.bitfield.cpui386 = 1;
8076 }
9103f4f4 8077 }
3e73aa7c
JH
8078 else
8079 as_fatal (_("Unknown architecture"));
252b5132
RH
8080 switch (OUTPUT_FLAVOR)
8081 {
321098a5 8082#if defined (TE_PE) || defined (TE_PEP)
872ce6ff 8083 case bfd_target_coff_flavour:
321098a5 8084 return flag_code == CODE_64BIT ? "pe-x86-64" : "pe-i386";
872ce6ff 8085#endif
4c63da97
AM
8086#ifdef OBJ_MAYBE_AOUT
8087 case bfd_target_aout_flavour:
47926f60 8088 return AOUT_TARGET_FORMAT;
4c63da97 8089#endif
0561d57c
JK
8090#ifdef TE_GO32
8091 case bfd_target_coff_flavour:
8092 return "coff-go32";
8093#elif defined (OBJ_MAYBE_COFF)
252b5132
RH
8094 case bfd_target_coff_flavour:
8095 return "coff-i386";
4c63da97 8096#endif
3e73aa7c 8097#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 8098 case bfd_target_elf_flavour:
3e73aa7c 8099 {
e5cb08ac 8100 if (flag_code == CODE_64BIT)
4fa24527
JB
8101 {
8102 object_64bit = 1;
8103 use_rela_relocations = 1;
8104 }
8a9036a4
L
8105 if (cpu_arch_isa_flags.bitfield.cpul1om)
8106 {
8107 if (flag_code != CODE_64BIT)
8108 as_fatal (_("Intel L1OM is 64bit only"));
8109 return ELF_TARGET_L1OM_FORMAT;
8110 }
8111 else
8112 return (flag_code == CODE_64BIT
8113 ? ELF_TARGET_FORMAT64 : ELF_TARGET_FORMAT);
3e73aa7c 8114 }
e57f8c65
TG
8115#endif
8116#if defined (OBJ_MACH_O)
8117 case bfd_target_mach_o_flavour:
8118 return flag_code == CODE_64BIT ? "mach-o-x86-64" : "mach-o-i386";
4c63da97 8119#endif
252b5132
RH
8120 default:
8121 abort ();
8122 return NULL;
8123 }
8124}
8125
47926f60 8126#endif /* OBJ_MAYBE_ more than one */
a847613f
AM
8127
8128#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
e3bb37b5
L
8129void
8130i386_elf_emit_arch_note (void)
a847613f 8131{
718ddfc0 8132 if (IS_ELF && cpu_arch_name != NULL)
a847613f
AM
8133 {
8134 char *p;
8135 asection *seg = now_seg;
8136 subsegT subseg = now_subseg;
8137 Elf_Internal_Note i_note;
8138 Elf_External_Note e_note;
8139 asection *note_secp;
8140 int len;
8141
8142 /* Create the .note section. */
8143 note_secp = subseg_new (".note", 0);
8144 bfd_set_section_flags (stdoutput,
8145 note_secp,
8146 SEC_HAS_CONTENTS | SEC_READONLY);
8147
8148 /* Process the arch string. */
8149 len = strlen (cpu_arch_name);
8150
8151 i_note.namesz = len + 1;
8152 i_note.descsz = 0;
8153 i_note.type = NT_ARCH;
8154 p = frag_more (sizeof (e_note.namesz));
8155 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
8156 p = frag_more (sizeof (e_note.descsz));
8157 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
8158 p = frag_more (sizeof (e_note.type));
8159 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
8160 p = frag_more (len + 1);
8161 strcpy (p, cpu_arch_name);
8162
8163 frag_align (2, 0, 0);
8164
8165 subseg_set (seg, subseg);
8166 }
8167}
8168#endif
252b5132 8169\f
252b5132
RH
8170symbolS *
8171md_undefined_symbol (name)
8172 char *name;
8173{
18dc2407
ILT
8174 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
8175 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
8176 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
8177 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
8178 {
8179 if (!GOT_symbol)
8180 {
8181 if (symbol_find (name))
8182 as_bad (_("GOT already in symbol table"));
8183 GOT_symbol = symbol_new (name, undefined_section,
8184 (valueT) 0, &zero_address_frag);
8185 };
8186 return GOT_symbol;
8187 }
252b5132
RH
8188 return 0;
8189}
8190
8191/* Round up a section size to the appropriate boundary. */
47926f60 8192
252b5132
RH
8193valueT
8194md_section_align (segment, size)
ab9da554 8195 segT segment ATTRIBUTE_UNUSED;
252b5132
RH
8196 valueT size;
8197{
4c63da97
AM
8198#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8199 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
8200 {
8201 /* For a.out, force the section size to be aligned. If we don't do
8202 this, BFD will align it for us, but it will not write out the
8203 final bytes of the section. This may be a bug in BFD, but it is
8204 easier to fix it here since that is how the other a.out targets
8205 work. */
8206 int align;
8207
8208 align = bfd_get_section_alignment (stdoutput, segment);
8209 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
8210 }
252b5132
RH
8211#endif
8212
8213 return size;
8214}
8215
8216/* On the i386, PC-relative offsets are relative to the start of the
8217 next instruction. That is, the address of the offset, plus its
8218 size, since the offset is always the last part of the insn. */
8219
8220long
e3bb37b5 8221md_pcrel_from (fixS *fixP)
252b5132
RH
8222{
8223 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
8224}
8225
8226#ifndef I386COFF
8227
8228static void
e3bb37b5 8229s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 8230{
29b0f896 8231 int temp;
252b5132 8232
8a75718c
JB
8233#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8234 if (IS_ELF)
8235 obj_elf_section_change_hook ();
8236#endif
252b5132
RH
8237 temp = get_absolute_expression ();
8238 subseg_set (bss_section, (subsegT) temp);
8239 demand_empty_rest_of_line ();
8240}
8241
8242#endif
8243
252b5132 8244void
e3bb37b5 8245i386_validate_fix (fixS *fixp)
252b5132
RH
8246{
8247 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
8248 {
23df1078
JH
8249 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
8250 {
4fa24527 8251 if (!object_64bit)
23df1078
JH
8252 abort ();
8253 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
8254 }
8255 else
8256 {
4fa24527 8257 if (!object_64bit)
d6ab8113
JB
8258 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
8259 else
8260 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
23df1078 8261 }
252b5132
RH
8262 fixp->fx_subsy = 0;
8263 }
8264}
8265
252b5132
RH
8266arelent *
8267tc_gen_reloc (section, fixp)
ab9da554 8268 asection *section ATTRIBUTE_UNUSED;
252b5132
RH
8269 fixS *fixp;
8270{
8271 arelent *rel;
8272 bfd_reloc_code_real_type code;
8273
8274 switch (fixp->fx_r_type)
8275 {
3e73aa7c
JH
8276 case BFD_RELOC_X86_64_PLT32:
8277 case BFD_RELOC_X86_64_GOT32:
8278 case BFD_RELOC_X86_64_GOTPCREL:
252b5132
RH
8279 case BFD_RELOC_386_PLT32:
8280 case BFD_RELOC_386_GOT32:
8281 case BFD_RELOC_386_GOTOFF:
8282 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
8283 case BFD_RELOC_386_TLS_GD:
8284 case BFD_RELOC_386_TLS_LDM:
8285 case BFD_RELOC_386_TLS_LDO_32:
8286 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
8287 case BFD_RELOC_386_TLS_IE:
8288 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
8289 case BFD_RELOC_386_TLS_LE_32:
8290 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
8291 case BFD_RELOC_386_TLS_GOTDESC:
8292 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
8293 case BFD_RELOC_X86_64_TLSGD:
8294 case BFD_RELOC_X86_64_TLSLD:
8295 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 8296 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
8297 case BFD_RELOC_X86_64_GOTTPOFF:
8298 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
8299 case BFD_RELOC_X86_64_TPOFF64:
8300 case BFD_RELOC_X86_64_GOTOFF64:
8301 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
8302 case BFD_RELOC_X86_64_GOT64:
8303 case BFD_RELOC_X86_64_GOTPCREL64:
8304 case BFD_RELOC_X86_64_GOTPC64:
8305 case BFD_RELOC_X86_64_GOTPLT64:
8306 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
8307 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
8308 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
8309 case BFD_RELOC_RVA:
8310 case BFD_RELOC_VTABLE_ENTRY:
8311 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
8312#ifdef TE_PE
8313 case BFD_RELOC_32_SECREL:
8314#endif
252b5132
RH
8315 code = fixp->fx_r_type;
8316 break;
dbbaec26
L
8317 case BFD_RELOC_X86_64_32S:
8318 if (!fixp->fx_pcrel)
8319 {
8320 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
8321 code = fixp->fx_r_type;
8322 break;
8323 }
252b5132 8324 default:
93382f6d 8325 if (fixp->fx_pcrel)
252b5132 8326 {
93382f6d
AM
8327 switch (fixp->fx_size)
8328 {
8329 default:
b091f402
AM
8330 as_bad_where (fixp->fx_file, fixp->fx_line,
8331 _("can not do %d byte pc-relative relocation"),
8332 fixp->fx_size);
93382f6d
AM
8333 code = BFD_RELOC_32_PCREL;
8334 break;
8335 case 1: code = BFD_RELOC_8_PCREL; break;
8336 case 2: code = BFD_RELOC_16_PCREL; break;
8337 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
8338#ifdef BFD64
8339 case 8: code = BFD_RELOC_64_PCREL; break;
8340#endif
93382f6d
AM
8341 }
8342 }
8343 else
8344 {
8345 switch (fixp->fx_size)
8346 {
8347 default:
b091f402
AM
8348 as_bad_where (fixp->fx_file, fixp->fx_line,
8349 _("can not do %d byte relocation"),
8350 fixp->fx_size);
93382f6d
AM
8351 code = BFD_RELOC_32;
8352 break;
8353 case 1: code = BFD_RELOC_8; break;
8354 case 2: code = BFD_RELOC_16; break;
8355 case 4: code = BFD_RELOC_32; break;
937149dd 8356#ifdef BFD64
3e73aa7c 8357 case 8: code = BFD_RELOC_64; break;
937149dd 8358#endif
93382f6d 8359 }
252b5132
RH
8360 }
8361 break;
8362 }
252b5132 8363
d182319b
JB
8364 if ((code == BFD_RELOC_32
8365 || code == BFD_RELOC_32_PCREL
8366 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
8367 && GOT_symbol
8368 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 8369 {
4fa24527 8370 if (!object_64bit)
d6ab8113
JB
8371 code = BFD_RELOC_386_GOTPC;
8372 else
8373 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 8374 }
7b81dfbb
AJ
8375 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
8376 && GOT_symbol
8377 && fixp->fx_addsy == GOT_symbol)
8378 {
8379 code = BFD_RELOC_X86_64_GOTPC64;
8380 }
252b5132
RH
8381
8382 rel = (arelent *) xmalloc (sizeof (arelent));
49309057
ILT
8383 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
8384 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
8385
8386 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 8387
3e73aa7c
JH
8388 if (!use_rela_relocations)
8389 {
8390 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
8391 vtable entry to be used in the relocation's section offset. */
8392 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
8393 rel->address = fixp->fx_offset;
fbeb56a4
DK
8394#if defined (OBJ_COFF) && defined (TE_PE)
8395 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
8396 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
8397 else
8398#endif
c6682705 8399 rel->addend = 0;
3e73aa7c
JH
8400 }
8401 /* Use the rela in 64bit mode. */
252b5132 8402 else
3e73aa7c 8403 {
062cd5e7
AS
8404 if (!fixp->fx_pcrel)
8405 rel->addend = fixp->fx_offset;
8406 else
8407 switch (code)
8408 {
8409 case BFD_RELOC_X86_64_PLT32:
8410 case BFD_RELOC_X86_64_GOT32:
8411 case BFD_RELOC_X86_64_GOTPCREL:
bffbf940
JJ
8412 case BFD_RELOC_X86_64_TLSGD:
8413 case BFD_RELOC_X86_64_TLSLD:
8414 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
8415 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
8416 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
8417 rel->addend = fixp->fx_offset - fixp->fx_size;
8418 break;
8419 default:
8420 rel->addend = (section->vma
8421 - fixp->fx_size
8422 + fixp->fx_addnumber
8423 + md_pcrel_from (fixp));
8424 break;
8425 }
3e73aa7c
JH
8426 }
8427
252b5132
RH
8428 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
8429 if (rel->howto == NULL)
8430 {
8431 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 8432 _("cannot represent relocation type %s"),
252b5132
RH
8433 bfd_get_reloc_code_name (code));
8434 /* Set howto to a garbage value so that we can keep going. */
8435 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 8436 gas_assert (rel->howto != NULL);
252b5132
RH
8437 }
8438
8439 return rel;
8440}
8441
ee86248c 8442#include "tc-i386-intel.c"
54cfded0 8443
a60de03c
JB
8444void
8445tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 8446{
a60de03c
JB
8447 int saved_naked_reg;
8448 char saved_register_dot;
54cfded0 8449
a60de03c
JB
8450 saved_naked_reg = allow_naked_reg;
8451 allow_naked_reg = 1;
8452 saved_register_dot = register_chars['.'];
8453 register_chars['.'] = '.';
8454 allow_pseudo_reg = 1;
8455 expression_and_evaluate (exp);
8456 allow_pseudo_reg = 0;
8457 register_chars['.'] = saved_register_dot;
8458 allow_naked_reg = saved_naked_reg;
8459
8460 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 8461 {
a60de03c
JB
8462 if ((addressT) exp->X_add_number < i386_regtab_size)
8463 {
8464 exp->X_op = O_constant;
8465 exp->X_add_number = i386_regtab[exp->X_add_number]
8466 .dw2_regnum[flag_code >> 1];
8467 }
8468 else
8469 exp->X_op = O_illegal;
54cfded0 8470 }
54cfded0
AM
8471}
8472
8473void
8474tc_x86_frame_initial_instructions (void)
8475{
a60de03c
JB
8476 static unsigned int sp_regno[2];
8477
8478 if (!sp_regno[flag_code >> 1])
8479 {
8480 char *saved_input = input_line_pointer;
8481 char sp[][4] = {"esp", "rsp"};
8482 expressionS exp;
a4447b93 8483
a60de03c
JB
8484 input_line_pointer = sp[flag_code >> 1];
8485 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 8486 gas_assert (exp.X_op == O_constant);
a60de03c
JB
8487 sp_regno[flag_code >> 1] = exp.X_add_number;
8488 input_line_pointer = saved_input;
8489 }
a4447b93 8490
a60de03c 8491 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
a4447b93 8492 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 8493}
d2b2c203
DJ
8494
8495int
8496i386_elf_section_type (const char *str, size_t len)
8497{
8498 if (flag_code == CODE_64BIT
8499 && len == sizeof ("unwind") - 1
8500 && strncmp (str, "unwind", 6) == 0)
8501 return SHT_X86_64_UNWIND;
8502
8503 return -1;
8504}
bb41ade5 8505
ad5fec3b
EB
8506#ifdef TE_SOLARIS
8507void
8508i386_solaris_fix_up_eh_frame (segT sec)
8509{
8510 if (flag_code == CODE_64BIT)
8511 elf_section_type (sec) = SHT_X86_64_UNWIND;
8512}
8513#endif
8514
bb41ade5
AM
8515#ifdef TE_PE
8516void
8517tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
8518{
8519 expressionS expr;
8520
8521 expr.X_op = O_secrel;
8522 expr.X_add_symbol = symbol;
8523 expr.X_add_number = 0;
8524 emit_expr (&expr, size);
8525}
8526#endif
3b22753a
L
8527
8528#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8529/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
8530
01e1a5bc 8531bfd_vma
3b22753a
L
8532x86_64_section_letter (int letter, char **ptr_msg)
8533{
8534 if (flag_code == CODE_64BIT)
8535 {
8536 if (letter == 'l')
8537 return SHF_X86_64_LARGE;
8538
8539 *ptr_msg = _("Bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 8540 }
3b22753a 8541 else
64e74474 8542 *ptr_msg = _("Bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
8543 return -1;
8544}
8545
01e1a5bc 8546bfd_vma
3b22753a
L
8547x86_64_section_word (char *str, size_t len)
8548{
8620418b 8549 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
8550 return SHF_X86_64_LARGE;
8551
8552 return -1;
8553}
8554
8555static void
8556handle_large_common (int small ATTRIBUTE_UNUSED)
8557{
8558 if (flag_code != CODE_64BIT)
8559 {
8560 s_comm_internal (0, elf_common_parse);
8561 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
8562 }
8563 else
8564 {
8565 static segT lbss_section;
8566 asection *saved_com_section_ptr = elf_com_section_ptr;
8567 asection *saved_bss_section = bss_section;
8568
8569 if (lbss_section == NULL)
8570 {
8571 flagword applicable;
8572 segT seg = now_seg;
8573 subsegT subseg = now_subseg;
8574
8575 /* The .lbss section is for local .largecomm symbols. */
8576 lbss_section = subseg_new (".lbss", 0);
8577 applicable = bfd_applicable_section_flags (stdoutput);
8578 bfd_set_section_flags (stdoutput, lbss_section,
8579 applicable & SEC_ALLOC);
8580 seg_info (lbss_section)->bss = 1;
8581
8582 subseg_set (seg, subseg);
8583 }
8584
8585 elf_com_section_ptr = &_bfd_elf_large_com_section;
8586 bss_section = lbss_section;
8587
8588 s_comm_internal (0, elf_common_parse);
8589
8590 elf_com_section_ptr = saved_com_section_ptr;
8591 bss_section = saved_bss_section;
8592 }
8593}
8594#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 1.328196 seconds and 4 git commands to generate.