x86: re-arrange process_operands()
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
82704155 2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
41fd2579
L
36#ifdef HAVE_LIMITS_H
37#include <limits.h>
38#else
39#ifdef HAVE_SYS_PARAM_H
40#include <sys/param.h>
41#endif
42#ifndef INT_MAX
43#define INT_MAX (int) (((unsigned) (-1)) >> 1)
44#endif
45#endif
46
252b5132
RH
47#ifndef REGISTER_WARNINGS
48#define REGISTER_WARNINGS 1
49#endif
50
c3332e24 51#ifndef INFER_ADDR_PREFIX
eecb386c 52#define INFER_ADDR_PREFIX 1
c3332e24
AM
53#endif
54
29b0f896
AM
55#ifndef DEFAULT_ARCH
56#define DEFAULT_ARCH "i386"
246fcdee 57#endif
252b5132 58
edde18a5
AM
59#ifndef INLINE
60#if __GNUC__ >= 2
61#define INLINE __inline__
62#else
63#define INLINE
64#endif
65#endif
66
6305a203
L
67/* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
72#define WAIT_PREFIX 0
73#define SEG_PREFIX 1
74#define ADDR_PREFIX 2
75#define DATA_PREFIX 3
c32fa91d 76#define REP_PREFIX 4
42164a71 77#define HLE_PREFIX REP_PREFIX
7e8b059b 78#define BND_PREFIX REP_PREFIX
c32fa91d 79#define LOCK_PREFIX 5
4e9ac44a
L
80#define REX_PREFIX 6 /* must come last. */
81#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
82
83/* we define the syntax here (modulo base,index,scale syntax) */
84#define REGISTER_PREFIX '%'
85#define IMMEDIATE_PREFIX '$'
86#define ABSOLUTE_PREFIX '*'
87
88/* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90#define WORD_MNEM_SUFFIX 'w'
91#define BYTE_MNEM_SUFFIX 'b'
92#define SHORT_MNEM_SUFFIX 's'
93#define LONG_MNEM_SUFFIX 'l'
94#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
95/* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97#define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99#define END_OF_INSN '\0'
100
79dec6b7
JB
101/* This matches the C -> StaticRounding alias in the opcode table. */
102#define commutative staticrounding
103
6305a203
L
104/*
105 'templates' is for grouping together 'template' structures for opcodes
106 of the same name. This is only used for storing the insns in the grand
107 ole hash table of insns.
108 The templates themselves start at START and range up to (but not including)
109 END.
110 */
111typedef struct
112{
d3ce72d0
NC
113 const insn_template *start;
114 const insn_template *end;
6305a203
L
115}
116templates;
117
118/* 386 operand encoding bytes: see 386 book for details of this. */
119typedef struct
120{
121 unsigned int regmem; /* codes register or memory operand */
122 unsigned int reg; /* codes register operand (or extended opcode) */
123 unsigned int mode; /* how to interpret regmem & reg */
124}
125modrm_byte;
126
127/* x86-64 extension prefix. */
128typedef int rex_byte;
129
6305a203
L
130/* 386 opcode byte to code indirect addressing. */
131typedef struct
132{
133 unsigned base;
134 unsigned index;
135 unsigned scale;
136}
137sib_byte;
138
6305a203
L
139/* x86 arch names, types and features */
140typedef struct
141{
142 const char *name; /* arch name */
8a2c8fef 143 unsigned int len; /* arch string length */
6305a203
L
144 enum processor_type type; /* arch type */
145 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 146 unsigned int skip; /* show_arch should skip this. */
6305a203
L
147}
148arch_entry;
149
293f5f65
L
150/* Used to turn off indicated flags. */
151typedef struct
152{
153 const char *name; /* arch name */
154 unsigned int len; /* arch string length */
155 i386_cpu_flags flags; /* cpu feature flags */
156}
157noarch_entry;
158
78f12dd3 159static void update_code_flag (int, int);
e3bb37b5
L
160static void set_code_flag (int);
161static void set_16bit_gcc_code_flag (int);
162static void set_intel_syntax (int);
1efbbeb4 163static void set_intel_mnemonic (int);
db51cc60 164static void set_allow_index_reg (int);
7bab8ab5 165static void set_check (int);
e3bb37b5 166static void set_cpu_arch (int);
6482c264 167#ifdef TE_PE
e3bb37b5 168static void pe_directive_secrel (int);
6482c264 169#endif
e3bb37b5
L
170static void signed_cons (int);
171static char *output_invalid (int c);
ee86248c
JB
172static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
173 const char *);
174static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
175 const char *);
a7619375 176static int i386_att_operand (char *);
e3bb37b5 177static int i386_intel_operand (char *, int);
ee86248c
JB
178static int i386_intel_simplify (expressionS *);
179static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
180static const reg_entry *parse_register (char *, char **);
181static char *parse_insn (char *, char *);
182static char *parse_operands (char *, const char *);
183static void swap_operands (void);
4d456e3d 184static void swap_2_operands (int, int);
e3bb37b5
L
185static void optimize_imm (void);
186static void optimize_disp (void);
83b16ac6 187static const insn_template *match_template (char);
e3bb37b5
L
188static int check_string (void);
189static int process_suffix (void);
190static int check_byte_reg (void);
191static int check_long_reg (void);
192static int check_qword_reg (void);
193static int check_word_reg (void);
194static int finalize_imm (void);
195static int process_operands (void);
196static const seg_entry *build_modrm_byte (void);
197static void output_insn (void);
198static void output_imm (fragS *, offsetT);
199static void output_disp (fragS *, offsetT);
29b0f896 200#ifndef I386COFF
e3bb37b5 201static void s_bss (int);
252b5132 202#endif
17d4e2a2
L
203#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
204static void handle_large_common (int small ATTRIBUTE_UNUSED);
b4a3a7b4
L
205
206/* GNU_PROPERTY_X86_ISA_1_USED. */
207static unsigned int x86_isa_1_used;
208/* GNU_PROPERTY_X86_FEATURE_2_USED. */
209static unsigned int x86_feature_2_used;
210/* Generate x86 used ISA and feature properties. */
211static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
17d4e2a2 212#endif
252b5132 213
a847613f 214static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 215
43234a1e
L
216/* This struct describes rounding control and SAE in the instruction. */
217struct RC_Operation
218{
219 enum rc_type
220 {
221 rne = 0,
222 rd,
223 ru,
224 rz,
225 saeonly
226 } type;
227 int operand;
228};
229
230static struct RC_Operation rc_op;
231
232/* The struct describes masking, applied to OPERAND in the instruction.
233 MASK is a pointer to the corresponding mask register. ZEROING tells
234 whether merging or zeroing mask is used. */
235struct Mask_Operation
236{
237 const reg_entry *mask;
238 unsigned int zeroing;
239 /* The operand where this operation is associated. */
240 int operand;
241};
242
243static struct Mask_Operation mask_op;
244
245/* The struct describes broadcasting, applied to OPERAND. FACTOR is
246 broadcast factor. */
247struct Broadcast_Operation
248{
8e6e0792 249 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
250 int type;
251
252 /* Index of broadcasted operand. */
253 int operand;
4a1b91ea
L
254
255 /* Number of bytes to broadcast. */
256 int bytes;
43234a1e
L
257};
258
259static struct Broadcast_Operation broadcast_op;
260
c0f3af97
L
261/* VEX prefix. */
262typedef struct
263{
43234a1e
L
264 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
265 unsigned char bytes[4];
c0f3af97
L
266 unsigned int length;
267 /* Destination or source register specifier. */
268 const reg_entry *register_specifier;
269} vex_prefix;
270
252b5132 271/* 'md_assemble ()' gathers together information and puts it into a
47926f60 272 i386_insn. */
252b5132 273
520dc8e8
AM
274union i386_op
275 {
276 expressionS *disps;
277 expressionS *imms;
278 const reg_entry *regs;
279 };
280
a65babc9
L
281enum i386_error
282 {
86e026a4 283 operand_size_mismatch,
a65babc9
L
284 operand_type_mismatch,
285 register_type_mismatch,
286 number_of_operands_mismatch,
287 invalid_instruction_suffix,
288 bad_imm4,
a65babc9
L
289 unsupported_with_intel_mnemonic,
290 unsupported_syntax,
6c30d220
L
291 unsupported,
292 invalid_vsib_address,
7bab8ab5 293 invalid_vector_register_set,
43234a1e
L
294 unsupported_vector_index_register,
295 unsupported_broadcast,
43234a1e
L
296 broadcast_needed,
297 unsupported_masking,
298 mask_not_on_destination,
299 no_default_mask,
300 unsupported_rc_sae,
301 rc_sae_operand_not_last_imm,
302 invalid_register_operand,
a65babc9
L
303 };
304
252b5132
RH
305struct _i386_insn
306 {
47926f60 307 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 308 insn_template tm;
252b5132 309
7d5e4556
L
310 /* SUFFIX holds the instruction size suffix for byte, word, dword
311 or qword, if given. */
252b5132
RH
312 char suffix;
313
47926f60 314 /* OPERANDS gives the number of given operands. */
252b5132
RH
315 unsigned int operands;
316
317 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
318 of given register, displacement, memory operands and immediate
47926f60 319 operands. */
252b5132
RH
320 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
321
322 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 323 use OP[i] for the corresponding operand. */
40fb9820 324 i386_operand_type types[MAX_OPERANDS];
252b5132 325
520dc8e8
AM
326 /* Displacement expression, immediate expression, or register for each
327 operand. */
328 union i386_op op[MAX_OPERANDS];
252b5132 329
3e73aa7c
JH
330 /* Flags for operands. */
331 unsigned int flags[MAX_OPERANDS];
332#define Operand_PCrel 1
c48dadc9 333#define Operand_Mem 2
3e73aa7c 334
252b5132 335 /* Relocation type for operand */
f86103b7 336 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 337
252b5132
RH
338 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
339 the base index byte below. */
340 const reg_entry *base_reg;
341 const reg_entry *index_reg;
342 unsigned int log2_scale_factor;
343
344 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 345 explicit segment overrides are given. */
ce8a8b2f 346 const seg_entry *seg[2];
252b5132 347
8325cc63
JB
348 /* Copied first memory operand string, for re-checking. */
349 char *memop1_string;
350
252b5132
RH
351 /* PREFIX holds all the given prefix opcodes (usually null).
352 PREFIXES is the number of prefix opcodes. */
353 unsigned int prefixes;
354 unsigned char prefix[MAX_PREFIXES];
355
b4a3a7b4
L
356 /* Has MMX register operands. */
357 bfd_boolean has_regmmx;
358
359 /* Has XMM register operands. */
360 bfd_boolean has_regxmm;
361
362 /* Has YMM register operands. */
363 bfd_boolean has_regymm;
364
365 /* Has ZMM register operands. */
366 bfd_boolean has_regzmm;
367
252b5132 368 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 369 addressing modes of this insn are encoded. */
252b5132 370 modrm_byte rm;
3e73aa7c 371 rex_byte rex;
43234a1e 372 rex_byte vrex;
252b5132 373 sib_byte sib;
c0f3af97 374 vex_prefix vex;
b6169b20 375
43234a1e
L
376 /* Masking attributes. */
377 struct Mask_Operation *mask;
378
379 /* Rounding control and SAE attributes. */
380 struct RC_Operation *rounding;
381
382 /* Broadcasting attributes. */
383 struct Broadcast_Operation *broadcast;
384
385 /* Compressed disp8*N attribute. */
386 unsigned int memshift;
387
86fa6981
L
388 /* Prefer load or store in encoding. */
389 enum
390 {
391 dir_encoding_default = 0,
392 dir_encoding_load,
64c49ab3
JB
393 dir_encoding_store,
394 dir_encoding_swap
86fa6981 395 } dir_encoding;
891edac4 396
a501d77e
L
397 /* Prefer 8bit or 32bit displacement in encoding. */
398 enum
399 {
400 disp_encoding_default = 0,
401 disp_encoding_8bit,
402 disp_encoding_32bit
403 } disp_encoding;
f8a5c266 404
6b6b6807
L
405 /* Prefer the REX byte in encoding. */
406 bfd_boolean rex_encoding;
407
b6f8c7c4
L
408 /* Disable instruction size optimization. */
409 bfd_boolean no_optimize;
410
86fa6981
L
411 /* How to encode vector instructions. */
412 enum
413 {
414 vex_encoding_default = 0,
415 vex_encoding_vex2,
416 vex_encoding_vex3,
417 vex_encoding_evex
418 } vec_encoding;
419
d5de92cf
L
420 /* REP prefix. */
421 const char *rep_prefix;
422
165de32a
L
423 /* HLE prefix. */
424 const char *hle_prefix;
42164a71 425
7e8b059b
L
426 /* Have BND prefix. */
427 const char *bnd_prefix;
428
04ef582a
L
429 /* Have NOTRACK prefix. */
430 const char *notrack_prefix;
431
891edac4 432 /* Error message. */
a65babc9 433 enum i386_error error;
252b5132
RH
434 };
435
436typedef struct _i386_insn i386_insn;
437
43234a1e
L
438/* Link RC type with corresponding string, that'll be looked for in
439 asm. */
440struct RC_name
441{
442 enum rc_type type;
443 const char *name;
444 unsigned int len;
445};
446
447static const struct RC_name RC_NamesTable[] =
448{
449 { rne, STRING_COMMA_LEN ("rn-sae") },
450 { rd, STRING_COMMA_LEN ("rd-sae") },
451 { ru, STRING_COMMA_LEN ("ru-sae") },
452 { rz, STRING_COMMA_LEN ("rz-sae") },
453 { saeonly, STRING_COMMA_LEN ("sae") },
454};
455
252b5132
RH
456/* List of chars besides those in app.c:symbol_chars that can start an
457 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 458const char extra_symbol_chars[] = "*%-([{}"
252b5132 459#ifdef LEX_AT
32137342
NC
460 "@"
461#endif
462#ifdef LEX_QM
463 "?"
252b5132 464#endif
32137342 465 ;
252b5132 466
29b0f896
AM
467#if (defined (TE_I386AIX) \
468 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 469 && !defined (TE_GNU) \
29b0f896 470 && !defined (TE_LINUX) \
8d63c93e 471 && !defined (TE_NACL) \
29b0f896 472 && !defined (TE_FreeBSD) \
5b806d27 473 && !defined (TE_DragonFly) \
29b0f896 474 && !defined (TE_NetBSD)))
252b5132 475/* This array holds the chars that always start a comment. If the
b3b91714
AM
476 pre-processor is disabled, these aren't very useful. The option
477 --divide will remove '/' from this list. */
478const char *i386_comment_chars = "#/";
479#define SVR4_COMMENT_CHARS 1
252b5132 480#define PREFIX_SEPARATOR '\\'
252b5132 481
b3b91714
AM
482#else
483const char *i386_comment_chars = "#";
484#define PREFIX_SEPARATOR '/'
485#endif
486
252b5132
RH
487/* This array holds the chars that only start a comment at the beginning of
488 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
489 .line and .file directives will appear in the pre-processed output.
490 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 491 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
492 #NO_APP at the beginning of its output.
493 Also note that comments started like this one will always work if
252b5132 494 '/' isn't otherwise defined. */
b3b91714 495const char line_comment_chars[] = "#/";
252b5132 496
63a0b638 497const char line_separator_chars[] = ";";
252b5132 498
ce8a8b2f
AM
499/* Chars that can be used to separate mant from exp in floating point
500 nums. */
252b5132
RH
501const char EXP_CHARS[] = "eE";
502
ce8a8b2f
AM
503/* Chars that mean this number is a floating point constant
504 As in 0f12.456
505 or 0d1.2345e12. */
252b5132
RH
506const char FLT_CHARS[] = "fFdDxX";
507
ce8a8b2f 508/* Tables for lexical analysis. */
252b5132
RH
509static char mnemonic_chars[256];
510static char register_chars[256];
511static char operand_chars[256];
512static char identifier_chars[256];
513static char digit_chars[256];
514
ce8a8b2f 515/* Lexical macros. */
252b5132
RH
516#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
517#define is_operand_char(x) (operand_chars[(unsigned char) x])
518#define is_register_char(x) (register_chars[(unsigned char) x])
519#define is_space_char(x) ((x) == ' ')
520#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
521#define is_digit_char(x) (digit_chars[(unsigned char) x])
522
0234cb7c 523/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
524static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
525
526/* md_assemble() always leaves the strings it's passed unaltered. To
527 effect this we maintain a stack of saved characters that we've smashed
528 with '\0's (indicating end of strings for various sub-fields of the
47926f60 529 assembler instruction). */
252b5132 530static char save_stack[32];
ce8a8b2f 531static char *save_stack_p;
252b5132
RH
532#define END_STRING_AND_SAVE(s) \
533 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
534#define RESTORE_END_STRING(s) \
535 do { *(s) = *--save_stack_p; } while (0)
536
47926f60 537/* The instruction we're assembling. */
252b5132
RH
538static i386_insn i;
539
540/* Possible templates for current insn. */
541static const templates *current_templates;
542
31b2323c
L
543/* Per instruction expressionS buffers: max displacements & immediates. */
544static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
545static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 546
47926f60 547/* Current operand we are working on. */
ee86248c 548static int this_operand = -1;
252b5132 549
3e73aa7c
JH
550/* We support four different modes. FLAG_CODE variable is used to distinguish
551 these. */
552
553enum flag_code {
554 CODE_32BIT,
555 CODE_16BIT,
556 CODE_64BIT };
557
558static enum flag_code flag_code;
4fa24527 559static unsigned int object_64bit;
862be3fb 560static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
561static int use_rela_relocations = 0;
562
7af8ed2d
NC
563#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
564 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
565 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
566
351f65ca
L
567/* The ELF ABI to use. */
568enum x86_elf_abi
569{
570 I386_ABI,
7f56bc95
L
571 X86_64_ABI,
572 X86_64_X32_ABI
351f65ca
L
573};
574
575static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 576#endif
351f65ca 577
167ad85b
TG
578#if defined (TE_PE) || defined (TE_PEP)
579/* Use big object file format. */
580static int use_big_obj = 0;
581#endif
582
8dcea932
L
583#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
584/* 1 if generating code for a shared library. */
585static int shared = 0;
586#endif
587
47926f60
KH
588/* 1 for intel syntax,
589 0 if att syntax. */
590static int intel_syntax = 0;
252b5132 591
e89c5eaa
L
592/* 1 for Intel64 ISA,
593 0 if AMD64 ISA. */
594static int intel64;
595
1efbbeb4
L
596/* 1 for intel mnemonic,
597 0 if att mnemonic. */
598static int intel_mnemonic = !SYSV386_COMPAT;
599
a60de03c
JB
600/* 1 if pseudo registers are permitted. */
601static int allow_pseudo_reg = 0;
602
47926f60
KH
603/* 1 if register prefix % not required. */
604static int allow_naked_reg = 0;
252b5132 605
33eaf5de 606/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
607 instructions supporting it, even if this prefix wasn't specified
608 explicitly. */
609static int add_bnd_prefix = 0;
610
ba104c83 611/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
612static int allow_index_reg = 0;
613
d022bddd
IT
614/* 1 if the assembler should ignore LOCK prefix, even if it was
615 specified explicitly. */
616static int omit_lock_prefix = 0;
617
e4e00185
AS
618/* 1 if the assembler should encode lfence, mfence, and sfence as
619 "lock addl $0, (%{re}sp)". */
620static int avoid_fence = 0;
621
0cb4071e
L
622/* 1 if the assembler should generate relax relocations. */
623
624static int generate_relax_relocations
625 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
626
7bab8ab5 627static enum check_kind
daf50ae7 628 {
7bab8ab5
JB
629 check_none = 0,
630 check_warning,
631 check_error
daf50ae7 632 }
7bab8ab5 633sse_check, operand_check = check_warning;
daf50ae7 634
b6f8c7c4
L
635/* Optimization:
636 1. Clear the REX_W bit with register operand if possible.
637 2. Above plus use 128bit vector instruction to clear the full vector
638 register.
639 */
640static int optimize = 0;
641
642/* Optimization:
643 1. Clear the REX_W bit with register operand if possible.
644 2. Above plus use 128bit vector instruction to clear the full vector
645 register.
646 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
647 "testb $imm7,%r8".
648 */
649static int optimize_for_space = 0;
650
2ca3ace5
L
651/* Register prefix used for error message. */
652static const char *register_prefix = "%";
653
47926f60
KH
654/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
655 leave, push, and pop instructions so that gcc has the same stack
656 frame as in 32 bit mode. */
657static char stackop_size = '\0';
eecb386c 658
12b55ccc
L
659/* Non-zero to optimize code alignment. */
660int optimize_align_code = 1;
661
47926f60
KH
662/* Non-zero to quieten some warnings. */
663static int quiet_warnings = 0;
a38cf1db 664
47926f60
KH
665/* CPU name. */
666static const char *cpu_arch_name = NULL;
6305a203 667static char *cpu_sub_arch_name = NULL;
a38cf1db 668
47926f60 669/* CPU feature flags. */
40fb9820
L
670static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
671
ccc9c027
L
672/* If we have selected a cpu we are generating instructions for. */
673static int cpu_arch_tune_set = 0;
674
9103f4f4 675/* Cpu we are generating instructions for. */
fbf3f584 676enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
677
678/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 679static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 680
ccc9c027 681/* CPU instruction set architecture used. */
fbf3f584 682enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 683
9103f4f4 684/* CPU feature flags of instruction set architecture used. */
fbf3f584 685i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 686
fddf5b5b
AM
687/* If set, conditional jumps are not automatically promoted to handle
688 larger than a byte offset. */
689static unsigned int no_cond_jump_promotion = 0;
690
c0f3af97
L
691/* Encode SSE instructions with VEX prefix. */
692static unsigned int sse2avx;
693
539f890d
L
694/* Encode scalar AVX instructions with specific vector length. */
695static enum
696 {
697 vex128 = 0,
698 vex256
699 } avxscalar;
700
03751133
L
701/* Encode VEX WIG instructions with specific vex.w. */
702static enum
703 {
704 vexw0 = 0,
705 vexw1
706 } vexwig;
707
43234a1e
L
708/* Encode scalar EVEX LIG instructions with specific vector length. */
709static enum
710 {
711 evexl128 = 0,
712 evexl256,
713 evexl512
714 } evexlig;
715
716/* Encode EVEX WIG instructions with specific evex.w. */
717static enum
718 {
719 evexw0 = 0,
720 evexw1
721 } evexwig;
722
d3d3c6db
IT
723/* Value to encode in EVEX RC bits, for SAE-only instructions. */
724static enum rc_type evexrcig = rne;
725
29b0f896 726/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 727static symbolS *GOT_symbol;
29b0f896 728
a4447b93
RH
729/* The dwarf2 return column, adjusted for 32 or 64 bit. */
730unsigned int x86_dwarf2_return_column;
731
732/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
733int x86_cie_data_alignment;
734
252b5132 735/* Interface to relax_segment.
fddf5b5b
AM
736 There are 3 major relax states for 386 jump insns because the
737 different types of jumps add different sizes to frags when we're
738 figuring out what sort of jump to choose to reach a given label. */
252b5132 739
47926f60 740/* Types. */
93c2a809
AM
741#define UNCOND_JUMP 0
742#define COND_JUMP 1
743#define COND_JUMP86 2
fddf5b5b 744
47926f60 745/* Sizes. */
252b5132
RH
746#define CODE16 1
747#define SMALL 0
29b0f896 748#define SMALL16 (SMALL | CODE16)
252b5132 749#define BIG 2
29b0f896 750#define BIG16 (BIG | CODE16)
252b5132
RH
751
752#ifndef INLINE
753#ifdef __GNUC__
754#define INLINE __inline__
755#else
756#define INLINE
757#endif
758#endif
759
fddf5b5b
AM
760#define ENCODE_RELAX_STATE(type, size) \
761 ((relax_substateT) (((type) << 2) | (size)))
762#define TYPE_FROM_RELAX_STATE(s) \
763 ((s) >> 2)
764#define DISP_SIZE_FROM_RELAX_STATE(s) \
765 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
766
767/* This table is used by relax_frag to promote short jumps to long
768 ones where necessary. SMALL (short) jumps may be promoted to BIG
769 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
770 don't allow a short jump in a 32 bit code segment to be promoted to
771 a 16 bit offset jump because it's slower (requires data size
772 prefix), and doesn't work, unless the destination is in the bottom
773 64k of the code segment (The top 16 bits of eip are zeroed). */
774
775const relax_typeS md_relax_table[] =
776{
24eab124
AM
777 /* The fields are:
778 1) most positive reach of this state,
779 2) most negative reach of this state,
93c2a809 780 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 781 4) which index into the table to try if we can't fit into this one. */
252b5132 782
fddf5b5b 783 /* UNCOND_JUMP states. */
93c2a809
AM
784 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
785 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
786 /* dword jmp adds 4 bytes to frag:
787 0 extra opcode bytes, 4 displacement bytes. */
252b5132 788 {0, 0, 4, 0},
93c2a809
AM
789 /* word jmp adds 2 byte2 to frag:
790 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
791 {0, 0, 2, 0},
792
93c2a809
AM
793 /* COND_JUMP states. */
794 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
795 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
796 /* dword conditionals adds 5 bytes to frag:
797 1 extra opcode byte, 4 displacement bytes. */
798 {0, 0, 5, 0},
fddf5b5b 799 /* word conditionals add 3 bytes to frag:
93c2a809
AM
800 1 extra opcode byte, 2 displacement bytes. */
801 {0, 0, 3, 0},
802
803 /* COND_JUMP86 states. */
804 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
805 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
806 /* dword conditionals adds 5 bytes to frag:
807 1 extra opcode byte, 4 displacement bytes. */
808 {0, 0, 5, 0},
809 /* word conditionals add 4 bytes to frag:
810 1 displacement byte and a 3 byte long branch insn. */
811 {0, 0, 4, 0}
252b5132
RH
812};
813
9103f4f4
L
814static const arch_entry cpu_arch[] =
815{
89507696
JB
816 /* Do not replace the first two entries - i386_target_format()
817 relies on them being there in this order. */
8a2c8fef 818 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 819 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 820 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 821 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 822 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 823 CPU_NONE_FLAGS, 0 },
8a2c8fef 824 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 825 CPU_I186_FLAGS, 0 },
8a2c8fef 826 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 827 CPU_I286_FLAGS, 0 },
8a2c8fef 828 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 829 CPU_I386_FLAGS, 0 },
8a2c8fef 830 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 831 CPU_I486_FLAGS, 0 },
8a2c8fef 832 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 833 CPU_I586_FLAGS, 0 },
8a2c8fef 834 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 835 CPU_I686_FLAGS, 0 },
8a2c8fef 836 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 837 CPU_I586_FLAGS, 0 },
8a2c8fef 838 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 839 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 840 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 841 CPU_P2_FLAGS, 0 },
8a2c8fef 842 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 843 CPU_P3_FLAGS, 0 },
8a2c8fef 844 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 845 CPU_P4_FLAGS, 0 },
8a2c8fef 846 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 847 CPU_CORE_FLAGS, 0 },
8a2c8fef 848 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 849 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 850 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 851 CPU_CORE_FLAGS, 1 },
8a2c8fef 852 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 853 CPU_CORE_FLAGS, 0 },
8a2c8fef 854 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 855 CPU_CORE2_FLAGS, 1 },
8a2c8fef 856 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 857 CPU_CORE2_FLAGS, 0 },
8a2c8fef 858 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 859 CPU_COREI7_FLAGS, 0 },
8a2c8fef 860 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 861 CPU_L1OM_FLAGS, 0 },
7a9068fe 862 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 863 CPU_K1OM_FLAGS, 0 },
81486035 864 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 865 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 866 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 867 CPU_K6_FLAGS, 0 },
8a2c8fef 868 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 869 CPU_K6_2_FLAGS, 0 },
8a2c8fef 870 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 871 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 872 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 873 CPU_K8_FLAGS, 1 },
8a2c8fef 874 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 875 CPU_K8_FLAGS, 0 },
8a2c8fef 876 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 877 CPU_K8_FLAGS, 0 },
8a2c8fef 878 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 879 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 880 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 881 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 882 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 883 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 884 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 885 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 886 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 887 CPU_BDVER4_FLAGS, 0 },
029f3522 888 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 889 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
890 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
891 CPU_ZNVER2_FLAGS, 0 },
7b458c12 892 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 893 CPU_BTVER1_FLAGS, 0 },
7b458c12 894 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 895 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 896 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 897 CPU_8087_FLAGS, 0 },
8a2c8fef 898 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 899 CPU_287_FLAGS, 0 },
8a2c8fef 900 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 901 CPU_387_FLAGS, 0 },
1848e567
L
902 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
903 CPU_687_FLAGS, 0 },
d871f3f4
L
904 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
905 CPU_CMOV_FLAGS, 0 },
906 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
907 CPU_FXSR_FLAGS, 0 },
8a2c8fef 908 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 909 CPU_MMX_FLAGS, 0 },
8a2c8fef 910 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 911 CPU_SSE_FLAGS, 0 },
8a2c8fef 912 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 913 CPU_SSE2_FLAGS, 0 },
8a2c8fef 914 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 915 CPU_SSE3_FLAGS, 0 },
8a2c8fef 916 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 917 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 918 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 919 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 920 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 921 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 922 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 923 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 924 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 925 CPU_AVX_FLAGS, 0 },
6c30d220 926 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 927 CPU_AVX2_FLAGS, 0 },
43234a1e 928 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 929 CPU_AVX512F_FLAGS, 0 },
43234a1e 930 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 931 CPU_AVX512CD_FLAGS, 0 },
43234a1e 932 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 933 CPU_AVX512ER_FLAGS, 0 },
43234a1e 934 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 935 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 936 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 937 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 938 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 939 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 940 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 941 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 942 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 943 CPU_VMX_FLAGS, 0 },
8729a6f6 944 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 945 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 946 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 947 CPU_SMX_FLAGS, 0 },
8a2c8fef 948 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 949 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 950 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 951 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 952 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 953 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 954 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 955 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 956 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 957 CPU_AES_FLAGS, 0 },
8a2c8fef 958 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 959 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 960 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 961 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 962 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 963 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 964 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 965 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 966 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 967 CPU_F16C_FLAGS, 0 },
6c30d220 968 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 969 CPU_BMI2_FLAGS, 0 },
8a2c8fef 970 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 971 CPU_FMA_FLAGS, 0 },
8a2c8fef 972 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 973 CPU_FMA4_FLAGS, 0 },
8a2c8fef 974 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 975 CPU_XOP_FLAGS, 0 },
8a2c8fef 976 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 977 CPU_LWP_FLAGS, 0 },
8a2c8fef 978 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 979 CPU_MOVBE_FLAGS, 0 },
60aa667e 980 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 981 CPU_CX16_FLAGS, 0 },
8a2c8fef 982 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 983 CPU_EPT_FLAGS, 0 },
6c30d220 984 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 985 CPU_LZCNT_FLAGS, 0 },
42164a71 986 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 987 CPU_HLE_FLAGS, 0 },
42164a71 988 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 989 CPU_RTM_FLAGS, 0 },
6c30d220 990 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 991 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 992 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 993 CPU_CLFLUSH_FLAGS, 0 },
22109423 994 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 995 CPU_NOP_FLAGS, 0 },
8a2c8fef 996 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 997 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 998 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 999 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 1000 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 1001 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 1002 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 1003 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 1004 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 1005 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 1006 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 1007 CPU_SVME_FLAGS, 1 },
8a2c8fef 1008 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 1009 CPU_SVME_FLAGS, 0 },
8a2c8fef 1010 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 1011 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 1012 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 1013 CPU_ABM_FLAGS, 0 },
87973e9f 1014 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 1015 CPU_BMI_FLAGS, 0 },
2a2a0f38 1016 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 1017 CPU_TBM_FLAGS, 0 },
e2e1fcde 1018 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 1019 CPU_ADX_FLAGS, 0 },
e2e1fcde 1020 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 1021 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 1022 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 1023 CPU_PRFCHW_FLAGS, 0 },
5c111e37 1024 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 1025 CPU_SMAP_FLAGS, 0 },
7e8b059b 1026 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 1027 CPU_MPX_FLAGS, 0 },
a0046408 1028 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 1029 CPU_SHA_FLAGS, 0 },
963f3586 1030 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 1031 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 1032 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 1033 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 1034 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 1035 CPU_SE1_FLAGS, 0 },
c5e7287a 1036 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 1037 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 1038 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 1039 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 1040 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 1041 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
1042 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1043 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
1044 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1045 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1046 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1047 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1048 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1049 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1050 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1051 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1052 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1053 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1054 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1055 CPU_CLZERO_FLAGS, 0 },
9916071f 1056 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1057 CPU_MWAITX_FLAGS, 0 },
8eab4136 1058 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1059 CPU_OSPKE_FLAGS, 0 },
8bc52696 1060 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1061 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1062 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1063 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1064 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1065 CPU_IBT_FLAGS, 0 },
1066 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1067 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1068 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1069 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1070 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1071 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1072 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1073 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1074 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1075 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1076 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1077 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1078 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1079 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1080 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1081 CPU_CLDEMOTE_FLAGS, 0 },
c0a30a9f
L
1082 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1083 CPU_MOVDIRI_FLAGS, 0 },
1084 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1085 CPU_MOVDIR64B_FLAGS, 0 },
d6aab7a1
XG
1086 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1087 CPU_AVX512_BF16_FLAGS, 0 },
9186c494
L
1088 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1089 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
dd455cf5
L
1090 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1091 CPU_ENQCMD_FLAGS, 0 },
293f5f65
L
1092};
1093
1094static const noarch_entry cpu_noarch[] =
1095{
1096 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1097 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1098 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1099 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
d871f3f4
L
1100 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1101 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
293f5f65
L
1102 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1103 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1104 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1105 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1106 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1107 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1108 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1109 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1110 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1111 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1112 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1113 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1114 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1115 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1116 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1117 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1118 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1119 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1120 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1121 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1122 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1123 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1124 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1125 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1126 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1127 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1128 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
c0a30a9f
L
1129 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1130 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
d6aab7a1 1131 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
9186c494 1132 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
dd455cf5 1133 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
e413e4e9
AM
1134};
1135
704209c0 1136#ifdef I386COFF
a6c24e68
NC
1137/* Like s_lcomm_internal in gas/read.c but the alignment string
1138 is allowed to be optional. */
1139
1140static symbolS *
1141pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1142{
1143 addressT align = 0;
1144
1145 SKIP_WHITESPACE ();
1146
7ab9ffdd 1147 if (needs_align
a6c24e68
NC
1148 && *input_line_pointer == ',')
1149 {
1150 align = parse_align (needs_align - 1);
7ab9ffdd 1151
a6c24e68
NC
1152 if (align == (addressT) -1)
1153 return NULL;
1154 }
1155 else
1156 {
1157 if (size >= 8)
1158 align = 3;
1159 else if (size >= 4)
1160 align = 2;
1161 else if (size >= 2)
1162 align = 1;
1163 else
1164 align = 0;
1165 }
1166
1167 bss_alloc (symbolP, size, align);
1168 return symbolP;
1169}
1170
704209c0 1171static void
a6c24e68
NC
1172pe_lcomm (int needs_align)
1173{
1174 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1175}
704209c0 1176#endif
a6c24e68 1177
29b0f896
AM
1178const pseudo_typeS md_pseudo_table[] =
1179{
1180#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1181 {"align", s_align_bytes, 0},
1182#else
1183 {"align", s_align_ptwo, 0},
1184#endif
1185 {"arch", set_cpu_arch, 0},
1186#ifndef I386COFF
1187 {"bss", s_bss, 0},
a6c24e68
NC
1188#else
1189 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1190#endif
1191 {"ffloat", float_cons, 'f'},
1192 {"dfloat", float_cons, 'd'},
1193 {"tfloat", float_cons, 'x'},
1194 {"value", cons, 2},
d182319b 1195 {"slong", signed_cons, 4},
29b0f896
AM
1196 {"noopt", s_ignore, 0},
1197 {"optim", s_ignore, 0},
1198 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1199 {"code16", set_code_flag, CODE_16BIT},
1200 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1201#ifdef BFD64
29b0f896 1202 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1203#endif
29b0f896
AM
1204 {"intel_syntax", set_intel_syntax, 1},
1205 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1206 {"intel_mnemonic", set_intel_mnemonic, 1},
1207 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1208 {"allow_index_reg", set_allow_index_reg, 1},
1209 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1210 {"sse_check", set_check, 0},
1211 {"operand_check", set_check, 1},
3b22753a
L
1212#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1213 {"largecomm", handle_large_common, 0},
07a53e5c 1214#else
68d20676 1215 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1216 {"loc", dwarf2_directive_loc, 0},
1217 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1218#endif
6482c264
NC
1219#ifdef TE_PE
1220 {"secrel32", pe_directive_secrel, 0},
1221#endif
29b0f896
AM
1222 {0, 0, 0}
1223};
1224
1225/* For interface with expression (). */
1226extern char *input_line_pointer;
1227
1228/* Hash table for instruction mnemonic lookup. */
1229static struct hash_control *op_hash;
1230
1231/* Hash table for register lookup. */
1232static struct hash_control *reg_hash;
1233\f
ce8a8b2f
AM
1234 /* Various efficient no-op patterns for aligning code labels.
1235 Note: Don't try to assemble the instructions in the comments.
1236 0L and 0w are not legal. */
62a02d25
L
1237static const unsigned char f32_1[] =
1238 {0x90}; /* nop */
1239static const unsigned char f32_2[] =
1240 {0x66,0x90}; /* xchg %ax,%ax */
1241static const unsigned char f32_3[] =
1242 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1243static const unsigned char f32_4[] =
1244 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1245static const unsigned char f32_6[] =
1246 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1247static const unsigned char f32_7[] =
1248 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1249static const unsigned char f16_3[] =
3ae729d5 1250 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1251static const unsigned char f16_4[] =
3ae729d5
L
1252 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1253static const unsigned char jump_disp8[] =
1254 {0xeb}; /* jmp disp8 */
1255static const unsigned char jump32_disp32[] =
1256 {0xe9}; /* jmp disp32 */
1257static const unsigned char jump16_disp32[] =
1258 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1259/* 32-bit NOPs patterns. */
1260static const unsigned char *const f32_patt[] = {
3ae729d5 1261 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1262};
1263/* 16-bit NOPs patterns. */
1264static const unsigned char *const f16_patt[] = {
3ae729d5 1265 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1266};
1267/* nopl (%[re]ax) */
1268static const unsigned char alt_3[] =
1269 {0x0f,0x1f,0x00};
1270/* nopl 0(%[re]ax) */
1271static const unsigned char alt_4[] =
1272 {0x0f,0x1f,0x40,0x00};
1273/* nopl 0(%[re]ax,%[re]ax,1) */
1274static const unsigned char alt_5[] =
1275 {0x0f,0x1f,0x44,0x00,0x00};
1276/* nopw 0(%[re]ax,%[re]ax,1) */
1277static const unsigned char alt_6[] =
1278 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1279/* nopl 0L(%[re]ax) */
1280static const unsigned char alt_7[] =
1281 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1282/* nopl 0L(%[re]ax,%[re]ax,1) */
1283static const unsigned char alt_8[] =
1284 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1285/* nopw 0L(%[re]ax,%[re]ax,1) */
1286static const unsigned char alt_9[] =
1287 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1288/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1289static const unsigned char alt_10[] =
1290 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1291/* data16 nopw %cs:0L(%eax,%eax,1) */
1292static const unsigned char alt_11[] =
1293 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1294/* 32-bit and 64-bit NOPs patterns. */
1295static const unsigned char *const alt_patt[] = {
1296 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1297 alt_9, alt_10, alt_11
62a02d25
L
1298};
1299
1300/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1301 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1302
1303static void
1304i386_output_nops (char *where, const unsigned char *const *patt,
1305 int count, int max_single_nop_size)
1306
1307{
3ae729d5
L
1308 /* Place the longer NOP first. */
1309 int last;
1310 int offset;
3076e594
NC
1311 const unsigned char *nops;
1312
1313 if (max_single_nop_size < 1)
1314 {
1315 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1316 max_single_nop_size);
1317 return;
1318 }
1319
1320 nops = patt[max_single_nop_size - 1];
3ae729d5
L
1321
1322 /* Use the smaller one if the requsted one isn't available. */
1323 if (nops == NULL)
62a02d25 1324 {
3ae729d5
L
1325 max_single_nop_size--;
1326 nops = patt[max_single_nop_size - 1];
62a02d25
L
1327 }
1328
3ae729d5
L
1329 last = count % max_single_nop_size;
1330
1331 count -= last;
1332 for (offset = 0; offset < count; offset += max_single_nop_size)
1333 memcpy (where + offset, nops, max_single_nop_size);
1334
1335 if (last)
1336 {
1337 nops = patt[last - 1];
1338 if (nops == NULL)
1339 {
1340 /* Use the smaller one plus one-byte NOP if the needed one
1341 isn't available. */
1342 last--;
1343 nops = patt[last - 1];
1344 memcpy (where + offset, nops, last);
1345 where[offset + last] = *patt[0];
1346 }
1347 else
1348 memcpy (where + offset, nops, last);
1349 }
62a02d25
L
1350}
1351
3ae729d5
L
1352static INLINE int
1353fits_in_imm7 (offsetT num)
1354{
1355 return (num & 0x7f) == num;
1356}
1357
1358static INLINE int
1359fits_in_imm31 (offsetT num)
1360{
1361 return (num & 0x7fffffff) == num;
1362}
62a02d25
L
1363
1364/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1365 single NOP instruction LIMIT. */
1366
1367void
3ae729d5 1368i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1369{
3ae729d5 1370 const unsigned char *const *patt = NULL;
62a02d25 1371 int max_single_nop_size;
3ae729d5
L
1372 /* Maximum number of NOPs before switching to jump over NOPs. */
1373 int max_number_of_nops;
62a02d25 1374
3ae729d5 1375 switch (fragP->fr_type)
62a02d25 1376 {
3ae729d5
L
1377 case rs_fill_nop:
1378 case rs_align_code:
1379 break;
1380 default:
62a02d25
L
1381 return;
1382 }
1383
ccc9c027
L
1384 /* We need to decide which NOP sequence to use for 32bit and
1385 64bit. When -mtune= is used:
4eed87de 1386
76bc74dc
L
1387 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1388 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1389 2. For the rest, alt_patt will be used.
1390
1391 When -mtune= isn't used, alt_patt will be used if
22109423 1392 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1393 be used.
ccc9c027
L
1394
1395 When -march= or .arch is used, we can't use anything beyond
1396 cpu_arch_isa_flags. */
1397
1398 if (flag_code == CODE_16BIT)
1399 {
3ae729d5
L
1400 patt = f16_patt;
1401 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1402 /* Limit number of NOPs to 2 in 16-bit mode. */
1403 max_number_of_nops = 2;
252b5132 1404 }
33fef721 1405 else
ccc9c027 1406 {
fbf3f584 1407 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1408 {
1409 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1410 switch (cpu_arch_tune)
1411 {
1412 case PROCESSOR_UNKNOWN:
1413 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1414 optimize with nops. */
1415 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1416 patt = alt_patt;
ccc9c027
L
1417 else
1418 patt = f32_patt;
1419 break;
ccc9c027
L
1420 case PROCESSOR_PENTIUM4:
1421 case PROCESSOR_NOCONA:
ef05d495 1422 case PROCESSOR_CORE:
76bc74dc 1423 case PROCESSOR_CORE2:
bd5295b2 1424 case PROCESSOR_COREI7:
3632d14b 1425 case PROCESSOR_L1OM:
7a9068fe 1426 case PROCESSOR_K1OM:
76bc74dc 1427 case PROCESSOR_GENERIC64:
ccc9c027
L
1428 case PROCESSOR_K6:
1429 case PROCESSOR_ATHLON:
1430 case PROCESSOR_K8:
4eed87de 1431 case PROCESSOR_AMDFAM10:
8aedb9fe 1432 case PROCESSOR_BD:
029f3522 1433 case PROCESSOR_ZNVER:
7b458c12 1434 case PROCESSOR_BT:
80b8656c 1435 patt = alt_patt;
ccc9c027 1436 break;
76bc74dc 1437 case PROCESSOR_I386:
ccc9c027
L
1438 case PROCESSOR_I486:
1439 case PROCESSOR_PENTIUM:
2dde1948 1440 case PROCESSOR_PENTIUMPRO:
81486035 1441 case PROCESSOR_IAMCU:
ccc9c027
L
1442 case PROCESSOR_GENERIC32:
1443 patt = f32_patt;
1444 break;
4eed87de 1445 }
ccc9c027
L
1446 }
1447 else
1448 {
fbf3f584 1449 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1450 {
1451 case PROCESSOR_UNKNOWN:
e6a14101 1452 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1453 PROCESSOR_UNKNOWN. */
1454 abort ();
1455 break;
1456
76bc74dc 1457 case PROCESSOR_I386:
ccc9c027
L
1458 case PROCESSOR_I486:
1459 case PROCESSOR_PENTIUM:
81486035 1460 case PROCESSOR_IAMCU:
ccc9c027
L
1461 case PROCESSOR_K6:
1462 case PROCESSOR_ATHLON:
1463 case PROCESSOR_K8:
4eed87de 1464 case PROCESSOR_AMDFAM10:
8aedb9fe 1465 case PROCESSOR_BD:
029f3522 1466 case PROCESSOR_ZNVER:
7b458c12 1467 case PROCESSOR_BT:
ccc9c027
L
1468 case PROCESSOR_GENERIC32:
1469 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1470 with nops. */
1471 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1472 patt = alt_patt;
ccc9c027
L
1473 else
1474 patt = f32_patt;
1475 break;
76bc74dc
L
1476 case PROCESSOR_PENTIUMPRO:
1477 case PROCESSOR_PENTIUM4:
1478 case PROCESSOR_NOCONA:
1479 case PROCESSOR_CORE:
ef05d495 1480 case PROCESSOR_CORE2:
bd5295b2 1481 case PROCESSOR_COREI7:
3632d14b 1482 case PROCESSOR_L1OM:
7a9068fe 1483 case PROCESSOR_K1OM:
22109423 1484 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1485 patt = alt_patt;
ccc9c027
L
1486 else
1487 patt = f32_patt;
1488 break;
1489 case PROCESSOR_GENERIC64:
80b8656c 1490 patt = alt_patt;
ccc9c027 1491 break;
4eed87de 1492 }
ccc9c027
L
1493 }
1494
76bc74dc
L
1495 if (patt == f32_patt)
1496 {
3ae729d5
L
1497 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1498 /* Limit number of NOPs to 2 for older processors. */
1499 max_number_of_nops = 2;
76bc74dc
L
1500 }
1501 else
1502 {
3ae729d5
L
1503 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1504 /* Limit number of NOPs to 7 for newer processors. */
1505 max_number_of_nops = 7;
1506 }
1507 }
1508
1509 if (limit == 0)
1510 limit = max_single_nop_size;
1511
1512 if (fragP->fr_type == rs_fill_nop)
1513 {
1514 /* Output NOPs for .nop directive. */
1515 if (limit > max_single_nop_size)
1516 {
1517 as_bad_where (fragP->fr_file, fragP->fr_line,
1518 _("invalid single nop size: %d "
1519 "(expect within [0, %d])"),
1520 limit, max_single_nop_size);
1521 return;
1522 }
1523 }
1524 else
1525 fragP->fr_var = count;
1526
1527 if ((count / max_single_nop_size) > max_number_of_nops)
1528 {
1529 /* Generate jump over NOPs. */
1530 offsetT disp = count - 2;
1531 if (fits_in_imm7 (disp))
1532 {
1533 /* Use "jmp disp8" if possible. */
1534 count = disp;
1535 where[0] = jump_disp8[0];
1536 where[1] = count;
1537 where += 2;
1538 }
1539 else
1540 {
1541 unsigned int size_of_jump;
1542
1543 if (flag_code == CODE_16BIT)
1544 {
1545 where[0] = jump16_disp32[0];
1546 where[1] = jump16_disp32[1];
1547 size_of_jump = 2;
1548 }
1549 else
1550 {
1551 where[0] = jump32_disp32[0];
1552 size_of_jump = 1;
1553 }
1554
1555 count -= size_of_jump + 4;
1556 if (!fits_in_imm31 (count))
1557 {
1558 as_bad_where (fragP->fr_file, fragP->fr_line,
1559 _("jump over nop padding out of range"));
1560 return;
1561 }
1562
1563 md_number_to_chars (where + size_of_jump, count, 4);
1564 where += size_of_jump + 4;
76bc74dc 1565 }
ccc9c027 1566 }
3ae729d5
L
1567
1568 /* Generate multiple NOPs. */
1569 i386_output_nops (where, patt, count, limit);
252b5132
RH
1570}
1571
c6fb90c8 1572static INLINE int
0dfbf9d7 1573operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1574{
0dfbf9d7 1575 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1576 {
1577 case 3:
0dfbf9d7 1578 if (x->array[2])
c6fb90c8 1579 return 0;
1a0670f3 1580 /* Fall through. */
c6fb90c8 1581 case 2:
0dfbf9d7 1582 if (x->array[1])
c6fb90c8 1583 return 0;
1a0670f3 1584 /* Fall through. */
c6fb90c8 1585 case 1:
0dfbf9d7 1586 return !x->array[0];
c6fb90c8
L
1587 default:
1588 abort ();
1589 }
40fb9820
L
1590}
1591
c6fb90c8 1592static INLINE void
0dfbf9d7 1593operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1594{
0dfbf9d7 1595 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1596 {
1597 case 3:
0dfbf9d7 1598 x->array[2] = v;
1a0670f3 1599 /* Fall through. */
c6fb90c8 1600 case 2:
0dfbf9d7 1601 x->array[1] = v;
1a0670f3 1602 /* Fall through. */
c6fb90c8 1603 case 1:
0dfbf9d7 1604 x->array[0] = v;
1a0670f3 1605 /* Fall through. */
c6fb90c8
L
1606 break;
1607 default:
1608 abort ();
1609 }
1610}
40fb9820 1611
c6fb90c8 1612static INLINE int
0dfbf9d7
L
1613operand_type_equal (const union i386_operand_type *x,
1614 const union i386_operand_type *y)
c6fb90c8 1615{
0dfbf9d7 1616 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1617 {
1618 case 3:
0dfbf9d7 1619 if (x->array[2] != y->array[2])
c6fb90c8 1620 return 0;
1a0670f3 1621 /* Fall through. */
c6fb90c8 1622 case 2:
0dfbf9d7 1623 if (x->array[1] != y->array[1])
c6fb90c8 1624 return 0;
1a0670f3 1625 /* Fall through. */
c6fb90c8 1626 case 1:
0dfbf9d7 1627 return x->array[0] == y->array[0];
c6fb90c8
L
1628 break;
1629 default:
1630 abort ();
1631 }
1632}
40fb9820 1633
0dfbf9d7
L
1634static INLINE int
1635cpu_flags_all_zero (const union i386_cpu_flags *x)
1636{
1637 switch (ARRAY_SIZE(x->array))
1638 {
53467f57
IT
1639 case 4:
1640 if (x->array[3])
1641 return 0;
1642 /* Fall through. */
0dfbf9d7
L
1643 case 3:
1644 if (x->array[2])
1645 return 0;
1a0670f3 1646 /* Fall through. */
0dfbf9d7
L
1647 case 2:
1648 if (x->array[1])
1649 return 0;
1a0670f3 1650 /* Fall through. */
0dfbf9d7
L
1651 case 1:
1652 return !x->array[0];
1653 default:
1654 abort ();
1655 }
1656}
1657
0dfbf9d7
L
1658static INLINE int
1659cpu_flags_equal (const union i386_cpu_flags *x,
1660 const union i386_cpu_flags *y)
1661{
1662 switch (ARRAY_SIZE(x->array))
1663 {
53467f57
IT
1664 case 4:
1665 if (x->array[3] != y->array[3])
1666 return 0;
1667 /* Fall through. */
0dfbf9d7
L
1668 case 3:
1669 if (x->array[2] != y->array[2])
1670 return 0;
1a0670f3 1671 /* Fall through. */
0dfbf9d7
L
1672 case 2:
1673 if (x->array[1] != y->array[1])
1674 return 0;
1a0670f3 1675 /* Fall through. */
0dfbf9d7
L
1676 case 1:
1677 return x->array[0] == y->array[0];
1678 break;
1679 default:
1680 abort ();
1681 }
1682}
c6fb90c8
L
1683
1684static INLINE int
1685cpu_flags_check_cpu64 (i386_cpu_flags f)
1686{
1687 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1688 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1689}
1690
c6fb90c8
L
1691static INLINE i386_cpu_flags
1692cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1693{
c6fb90c8
L
1694 switch (ARRAY_SIZE (x.array))
1695 {
53467f57
IT
1696 case 4:
1697 x.array [3] &= y.array [3];
1698 /* Fall through. */
c6fb90c8
L
1699 case 3:
1700 x.array [2] &= y.array [2];
1a0670f3 1701 /* Fall through. */
c6fb90c8
L
1702 case 2:
1703 x.array [1] &= y.array [1];
1a0670f3 1704 /* Fall through. */
c6fb90c8
L
1705 case 1:
1706 x.array [0] &= y.array [0];
1707 break;
1708 default:
1709 abort ();
1710 }
1711 return x;
1712}
40fb9820 1713
c6fb90c8
L
1714static INLINE i386_cpu_flags
1715cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1716{
c6fb90c8 1717 switch (ARRAY_SIZE (x.array))
40fb9820 1718 {
53467f57
IT
1719 case 4:
1720 x.array [3] |= y.array [3];
1721 /* Fall through. */
c6fb90c8
L
1722 case 3:
1723 x.array [2] |= y.array [2];
1a0670f3 1724 /* Fall through. */
c6fb90c8
L
1725 case 2:
1726 x.array [1] |= y.array [1];
1a0670f3 1727 /* Fall through. */
c6fb90c8
L
1728 case 1:
1729 x.array [0] |= y.array [0];
40fb9820
L
1730 break;
1731 default:
1732 abort ();
1733 }
40fb9820
L
1734 return x;
1735}
1736
309d3373
JB
1737static INLINE i386_cpu_flags
1738cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1739{
1740 switch (ARRAY_SIZE (x.array))
1741 {
53467f57
IT
1742 case 4:
1743 x.array [3] &= ~y.array [3];
1744 /* Fall through. */
309d3373
JB
1745 case 3:
1746 x.array [2] &= ~y.array [2];
1a0670f3 1747 /* Fall through. */
309d3373
JB
1748 case 2:
1749 x.array [1] &= ~y.array [1];
1a0670f3 1750 /* Fall through. */
309d3373
JB
1751 case 1:
1752 x.array [0] &= ~y.array [0];
1753 break;
1754 default:
1755 abort ();
1756 }
1757 return x;
1758}
1759
c0f3af97
L
1760#define CPU_FLAGS_ARCH_MATCH 0x1
1761#define CPU_FLAGS_64BIT_MATCH 0x2
1762
c0f3af97 1763#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1764 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1765
1766/* Return CPU flags match bits. */
3629bb00 1767
40fb9820 1768static int
d3ce72d0 1769cpu_flags_match (const insn_template *t)
40fb9820 1770{
c0f3af97
L
1771 i386_cpu_flags x = t->cpu_flags;
1772 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1773
1774 x.bitfield.cpu64 = 0;
1775 x.bitfield.cpuno64 = 0;
1776
0dfbf9d7 1777 if (cpu_flags_all_zero (&x))
c0f3af97
L
1778 {
1779 /* This instruction is available on all archs. */
db12e14e 1780 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1781 }
3629bb00
L
1782 else
1783 {
c0f3af97 1784 /* This instruction is available only on some archs. */
3629bb00
L
1785 i386_cpu_flags cpu = cpu_arch_flags;
1786
ab592e75
JB
1787 /* AVX512VL is no standalone feature - match it and then strip it. */
1788 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1789 return match;
1790 x.bitfield.cpuavx512vl = 0;
1791
3629bb00 1792 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1793 if (!cpu_flags_all_zero (&cpu))
1794 {
a5ff0eb2
L
1795 if (x.bitfield.cpuavx)
1796 {
929f69fa 1797 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1798 if (cpu.bitfield.cpuavx
1799 && (!t->opcode_modifier.sse2avx || sse2avx)
1800 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1801 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1802 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1803 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1804 }
929f69fa
JB
1805 else if (x.bitfield.cpuavx512f)
1806 {
1807 /* We need to check a few extra flags with AVX512F. */
1808 if (cpu.bitfield.cpuavx512f
1809 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1810 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1811 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1812 match |= CPU_FLAGS_ARCH_MATCH;
1813 }
a5ff0eb2 1814 else
db12e14e 1815 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1816 }
3629bb00 1817 }
c0f3af97 1818 return match;
40fb9820
L
1819}
1820
c6fb90c8
L
1821static INLINE i386_operand_type
1822operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1823{
c6fb90c8
L
1824 switch (ARRAY_SIZE (x.array))
1825 {
1826 case 3:
1827 x.array [2] &= y.array [2];
1a0670f3 1828 /* Fall through. */
c6fb90c8
L
1829 case 2:
1830 x.array [1] &= y.array [1];
1a0670f3 1831 /* Fall through. */
c6fb90c8
L
1832 case 1:
1833 x.array [0] &= y.array [0];
1834 break;
1835 default:
1836 abort ();
1837 }
1838 return x;
40fb9820
L
1839}
1840
73053c1f
JB
1841static INLINE i386_operand_type
1842operand_type_and_not (i386_operand_type x, i386_operand_type y)
1843{
1844 switch (ARRAY_SIZE (x.array))
1845 {
1846 case 3:
1847 x.array [2] &= ~y.array [2];
1848 /* Fall through. */
1849 case 2:
1850 x.array [1] &= ~y.array [1];
1851 /* Fall through. */
1852 case 1:
1853 x.array [0] &= ~y.array [0];
1854 break;
1855 default:
1856 abort ();
1857 }
1858 return x;
1859}
1860
c6fb90c8
L
1861static INLINE i386_operand_type
1862operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1863{
c6fb90c8 1864 switch (ARRAY_SIZE (x.array))
40fb9820 1865 {
c6fb90c8
L
1866 case 3:
1867 x.array [2] |= y.array [2];
1a0670f3 1868 /* Fall through. */
c6fb90c8
L
1869 case 2:
1870 x.array [1] |= y.array [1];
1a0670f3 1871 /* Fall through. */
c6fb90c8
L
1872 case 1:
1873 x.array [0] |= y.array [0];
40fb9820
L
1874 break;
1875 default:
1876 abort ();
1877 }
c6fb90c8
L
1878 return x;
1879}
40fb9820 1880
c6fb90c8
L
1881static INLINE i386_operand_type
1882operand_type_xor (i386_operand_type x, i386_operand_type y)
1883{
1884 switch (ARRAY_SIZE (x.array))
1885 {
1886 case 3:
1887 x.array [2] ^= y.array [2];
1a0670f3 1888 /* Fall through. */
c6fb90c8
L
1889 case 2:
1890 x.array [1] ^= y.array [1];
1a0670f3 1891 /* Fall through. */
c6fb90c8
L
1892 case 1:
1893 x.array [0] ^= y.array [0];
1894 break;
1895 default:
1896 abort ();
1897 }
40fb9820
L
1898 return x;
1899}
1900
40fb9820
L
1901static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1902static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1903static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1904static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1905static const i386_operand_type anydisp
1906 = OPERAND_TYPE_ANYDISP;
40fb9820 1907static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 1908static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1909static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1910static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1911static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1912static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1913static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1914static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1915static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1916static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1917static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1918
1919enum operand_type
1920{
1921 reg,
40fb9820
L
1922 imm,
1923 disp,
1924 anymem
1925};
1926
c6fb90c8 1927static INLINE int
40fb9820
L
1928operand_type_check (i386_operand_type t, enum operand_type c)
1929{
1930 switch (c)
1931 {
1932 case reg:
dc821c5f 1933 return t.bitfield.reg;
40fb9820 1934
40fb9820
L
1935 case imm:
1936 return (t.bitfield.imm8
1937 || t.bitfield.imm8s
1938 || t.bitfield.imm16
1939 || t.bitfield.imm32
1940 || t.bitfield.imm32s
1941 || t.bitfield.imm64);
1942
1943 case disp:
1944 return (t.bitfield.disp8
1945 || t.bitfield.disp16
1946 || t.bitfield.disp32
1947 || t.bitfield.disp32s
1948 || t.bitfield.disp64);
1949
1950 case anymem:
1951 return (t.bitfield.disp8
1952 || t.bitfield.disp16
1953 || t.bitfield.disp32
1954 || t.bitfield.disp32s
1955 || t.bitfield.disp64
1956 || t.bitfield.baseindex);
1957
1958 default:
1959 abort ();
1960 }
2cfe26b6
AM
1961
1962 return 0;
40fb9820
L
1963}
1964
7a54636a
L
1965/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1966 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
1967
1968static INLINE int
7a54636a
L
1969match_operand_size (const insn_template *t, unsigned int wanted,
1970 unsigned int given)
5c07affc 1971{
3ac21baa
JB
1972 return !((i.types[given].bitfield.byte
1973 && !t->operand_types[wanted].bitfield.byte)
1974 || (i.types[given].bitfield.word
1975 && !t->operand_types[wanted].bitfield.word)
1976 || (i.types[given].bitfield.dword
1977 && !t->operand_types[wanted].bitfield.dword)
1978 || (i.types[given].bitfield.qword
1979 && !t->operand_types[wanted].bitfield.qword)
1980 || (i.types[given].bitfield.tbyte
1981 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
1982}
1983
dd40ce22
L
1984/* Return 1 if there is no conflict in SIMD register between operand
1985 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
1986
1987static INLINE int
dd40ce22
L
1988match_simd_size (const insn_template *t, unsigned int wanted,
1989 unsigned int given)
1b54b8d7 1990{
3ac21baa
JB
1991 return !((i.types[given].bitfield.xmmword
1992 && !t->operand_types[wanted].bitfield.xmmword)
1993 || (i.types[given].bitfield.ymmword
1994 && !t->operand_types[wanted].bitfield.ymmword)
1995 || (i.types[given].bitfield.zmmword
1996 && !t->operand_types[wanted].bitfield.zmmword));
1b54b8d7
JB
1997}
1998
7a54636a
L
1999/* Return 1 if there is no conflict in any size between operand GIVEN
2000 and opeand WANTED for instruction template T. */
5c07affc
L
2001
2002static INLINE int
dd40ce22
L
2003match_mem_size (const insn_template *t, unsigned int wanted,
2004 unsigned int given)
5c07affc 2005{
7a54636a 2006 return (match_operand_size (t, wanted, given)
3ac21baa 2007 && !((i.types[given].bitfield.unspecified
af508cb9 2008 && !i.broadcast
3ac21baa
JB
2009 && !t->operand_types[wanted].bitfield.unspecified)
2010 || (i.types[given].bitfield.fword
2011 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
2012 /* For scalar opcode templates to allow register and memory
2013 operands at the same time, some special casing is needed
d6793fa1
JB
2014 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2015 down-conversion vpmov*. */
3ac21baa 2016 || ((t->operand_types[wanted].bitfield.regsimd
1b54b8d7 2017 && !t->opcode_modifier.broadcast
3ac21baa
JB
2018 && (t->operand_types[wanted].bitfield.byte
2019 || t->operand_types[wanted].bitfield.word
2020 || t->operand_types[wanted].bitfield.dword
2021 || t->operand_types[wanted].bitfield.qword))
2022 ? (i.types[given].bitfield.xmmword
2023 || i.types[given].bitfield.ymmword
2024 || i.types[given].bitfield.zmmword)
2025 : !match_simd_size(t, wanted, given))));
5c07affc
L
2026}
2027
3ac21baa
JB
2028/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2029 operands for instruction template T, and it has MATCH_REVERSE set if there
2030 is no size conflict on any operands for the template with operands reversed
2031 (and the template allows for reversing in the first place). */
5c07affc 2032
3ac21baa
JB
2033#define MATCH_STRAIGHT 1
2034#define MATCH_REVERSE 2
2035
2036static INLINE unsigned int
d3ce72d0 2037operand_size_match (const insn_template *t)
5c07affc 2038{
3ac21baa 2039 unsigned int j, match = MATCH_STRAIGHT;
5c07affc
L
2040
2041 /* Don't check jump instructions. */
2042 if (t->opcode_modifier.jump
2043 || t->opcode_modifier.jumpbyte
2044 || t->opcode_modifier.jumpdword
2045 || t->opcode_modifier.jumpintersegment)
2046 return match;
2047
2048 /* Check memory and accumulator operand size. */
2049 for (j = 0; j < i.operands; j++)
2050 {
1b54b8d7
JB
2051 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
2052 && t->operand_types[j].bitfield.anysize)
5c07affc
L
2053 continue;
2054
1b54b8d7 2055 if (t->operand_types[j].bitfield.reg
7a54636a 2056 && !match_operand_size (t, j, j))
5c07affc
L
2057 {
2058 match = 0;
2059 break;
2060 }
2061
1b54b8d7 2062 if (t->operand_types[j].bitfield.regsimd
3ac21baa 2063 && !match_simd_size (t, j, j))
1b54b8d7
JB
2064 {
2065 match = 0;
2066 break;
2067 }
2068
2069 if (t->operand_types[j].bitfield.acc
7a54636a 2070 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2071 {
2072 match = 0;
2073 break;
2074 }
2075
c48dadc9 2076 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
5c07affc
L
2077 {
2078 match = 0;
2079 break;
2080 }
2081 }
2082
3ac21baa 2083 if (!t->opcode_modifier.d)
891edac4
L
2084 {
2085mismatch:
3ac21baa
JB
2086 if (!match)
2087 i.error = operand_size_mismatch;
2088 return match;
891edac4 2089 }
5c07affc
L
2090
2091 /* Check reverse. */
f5eb1d70 2092 gas_assert (i.operands >= 2 && i.operands <= 3);
5c07affc 2093
f5eb1d70 2094 for (j = 0; j < i.operands; j++)
5c07affc 2095 {
f5eb1d70
JB
2096 unsigned int given = i.operands - j - 1;
2097
dbbc8b7e 2098 if (t->operand_types[j].bitfield.reg
f5eb1d70 2099 && !match_operand_size (t, j, given))
891edac4 2100 goto mismatch;
5c07affc 2101
dbbc8b7e 2102 if (t->operand_types[j].bitfield.regsimd
f5eb1d70 2103 && !match_simd_size (t, j, given))
dbbc8b7e
JB
2104 goto mismatch;
2105
2106 if (t->operand_types[j].bitfield.acc
f5eb1d70
JB
2107 && (!match_operand_size (t, j, given)
2108 || !match_simd_size (t, j, given)))
dbbc8b7e
JB
2109 goto mismatch;
2110
f5eb1d70 2111 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
891edac4 2112 goto mismatch;
5c07affc
L
2113 }
2114
3ac21baa 2115 return match | MATCH_REVERSE;
5c07affc
L
2116}
2117
c6fb90c8 2118static INLINE int
40fb9820
L
2119operand_type_match (i386_operand_type overlap,
2120 i386_operand_type given)
2121{
2122 i386_operand_type temp = overlap;
2123
2124 temp.bitfield.jumpabsolute = 0;
7d5e4556 2125 temp.bitfield.unspecified = 0;
5c07affc
L
2126 temp.bitfield.byte = 0;
2127 temp.bitfield.word = 0;
2128 temp.bitfield.dword = 0;
2129 temp.bitfield.fword = 0;
2130 temp.bitfield.qword = 0;
2131 temp.bitfield.tbyte = 0;
2132 temp.bitfield.xmmword = 0;
c0f3af97 2133 temp.bitfield.ymmword = 0;
43234a1e 2134 temp.bitfield.zmmword = 0;
0dfbf9d7 2135 if (operand_type_all_zero (&temp))
891edac4 2136 goto mismatch;
40fb9820 2137
891edac4
L
2138 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2139 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2140 return 1;
2141
2142mismatch:
a65babc9 2143 i.error = operand_type_mismatch;
891edac4 2144 return 0;
40fb9820
L
2145}
2146
7d5e4556 2147/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2148 unless the expected operand type register overlap is null.
2149 Memory operand size of certain SIMD instructions is also being checked
2150 here. */
40fb9820 2151
c6fb90c8 2152static INLINE int
dc821c5f 2153operand_type_register_match (i386_operand_type g0,
40fb9820 2154 i386_operand_type t0,
40fb9820
L
2155 i386_operand_type g1,
2156 i386_operand_type t1)
2157{
10c17abd
JB
2158 if (!g0.bitfield.reg
2159 && !g0.bitfield.regsimd
2160 && (!operand_type_check (g0, anymem)
2161 || g0.bitfield.unspecified
2162 || !t0.bitfield.regsimd))
40fb9820
L
2163 return 1;
2164
10c17abd
JB
2165 if (!g1.bitfield.reg
2166 && !g1.bitfield.regsimd
2167 && (!operand_type_check (g1, anymem)
2168 || g1.bitfield.unspecified
2169 || !t1.bitfield.regsimd))
40fb9820
L
2170 return 1;
2171
dc821c5f
JB
2172 if (g0.bitfield.byte == g1.bitfield.byte
2173 && g0.bitfield.word == g1.bitfield.word
2174 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2175 && g0.bitfield.qword == g1.bitfield.qword
2176 && g0.bitfield.xmmword == g1.bitfield.xmmword
2177 && g0.bitfield.ymmword == g1.bitfield.ymmword
2178 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2179 return 1;
2180
dc821c5f
JB
2181 if (!(t0.bitfield.byte & t1.bitfield.byte)
2182 && !(t0.bitfield.word & t1.bitfield.word)
2183 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2184 && !(t0.bitfield.qword & t1.bitfield.qword)
2185 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2186 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2187 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2188 return 1;
2189
a65babc9 2190 i.error = register_type_mismatch;
891edac4
L
2191
2192 return 0;
40fb9820
L
2193}
2194
4c692bc7
JB
2195static INLINE unsigned int
2196register_number (const reg_entry *r)
2197{
2198 unsigned int nr = r->reg_num;
2199
2200 if (r->reg_flags & RegRex)
2201 nr += 8;
2202
200cbe0f
L
2203 if (r->reg_flags & RegVRex)
2204 nr += 16;
2205
4c692bc7
JB
2206 return nr;
2207}
2208
252b5132 2209static INLINE unsigned int
40fb9820 2210mode_from_disp_size (i386_operand_type t)
252b5132 2211{
b5014f7a 2212 if (t.bitfield.disp8)
40fb9820
L
2213 return 1;
2214 else if (t.bitfield.disp16
2215 || t.bitfield.disp32
2216 || t.bitfield.disp32s)
2217 return 2;
2218 else
2219 return 0;
252b5132
RH
2220}
2221
2222static INLINE int
65879393 2223fits_in_signed_byte (addressT num)
252b5132 2224{
65879393 2225 return num + 0x80 <= 0xff;
47926f60 2226}
252b5132
RH
2227
2228static INLINE int
65879393 2229fits_in_unsigned_byte (addressT num)
252b5132 2230{
65879393 2231 return num <= 0xff;
47926f60 2232}
252b5132
RH
2233
2234static INLINE int
65879393 2235fits_in_unsigned_word (addressT num)
252b5132 2236{
65879393 2237 return num <= 0xffff;
47926f60 2238}
252b5132
RH
2239
2240static INLINE int
65879393 2241fits_in_signed_word (addressT num)
252b5132 2242{
65879393 2243 return num + 0x8000 <= 0xffff;
47926f60 2244}
2a962e6d 2245
3e73aa7c 2246static INLINE int
65879393 2247fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2248{
2249#ifndef BFD64
2250 return 1;
2251#else
65879393 2252 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2253#endif
2254} /* fits_in_signed_long() */
2a962e6d 2255
3e73aa7c 2256static INLINE int
65879393 2257fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2258{
2259#ifndef BFD64
2260 return 1;
2261#else
65879393 2262 return num <= 0xffffffff;
3e73aa7c
JH
2263#endif
2264} /* fits_in_unsigned_long() */
252b5132 2265
43234a1e 2266static INLINE int
b5014f7a 2267fits_in_disp8 (offsetT num)
43234a1e
L
2268{
2269 int shift = i.memshift;
2270 unsigned int mask;
2271
2272 if (shift == -1)
2273 abort ();
2274
2275 mask = (1 << shift) - 1;
2276
2277 /* Return 0 if NUM isn't properly aligned. */
2278 if ((num & mask))
2279 return 0;
2280
2281 /* Check if NUM will fit in 8bit after shift. */
2282 return fits_in_signed_byte (num >> shift);
2283}
2284
a683cc34
SP
2285static INLINE int
2286fits_in_imm4 (offsetT num)
2287{
2288 return (num & 0xf) == num;
2289}
2290
40fb9820 2291static i386_operand_type
e3bb37b5 2292smallest_imm_type (offsetT num)
252b5132 2293{
40fb9820 2294 i386_operand_type t;
7ab9ffdd 2295
0dfbf9d7 2296 operand_type_set (&t, 0);
40fb9820
L
2297 t.bitfield.imm64 = 1;
2298
2299 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2300 {
2301 /* This code is disabled on the 486 because all the Imm1 forms
2302 in the opcode table are slower on the i486. They're the
2303 versions with the implicitly specified single-position
2304 displacement, which has another syntax if you really want to
2305 use that form. */
40fb9820
L
2306 t.bitfield.imm1 = 1;
2307 t.bitfield.imm8 = 1;
2308 t.bitfield.imm8s = 1;
2309 t.bitfield.imm16 = 1;
2310 t.bitfield.imm32 = 1;
2311 t.bitfield.imm32s = 1;
2312 }
2313 else if (fits_in_signed_byte (num))
2314 {
2315 t.bitfield.imm8 = 1;
2316 t.bitfield.imm8s = 1;
2317 t.bitfield.imm16 = 1;
2318 t.bitfield.imm32 = 1;
2319 t.bitfield.imm32s = 1;
2320 }
2321 else if (fits_in_unsigned_byte (num))
2322 {
2323 t.bitfield.imm8 = 1;
2324 t.bitfield.imm16 = 1;
2325 t.bitfield.imm32 = 1;
2326 t.bitfield.imm32s = 1;
2327 }
2328 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2329 {
2330 t.bitfield.imm16 = 1;
2331 t.bitfield.imm32 = 1;
2332 t.bitfield.imm32s = 1;
2333 }
2334 else if (fits_in_signed_long (num))
2335 {
2336 t.bitfield.imm32 = 1;
2337 t.bitfield.imm32s = 1;
2338 }
2339 else if (fits_in_unsigned_long (num))
2340 t.bitfield.imm32 = 1;
2341
2342 return t;
47926f60 2343}
252b5132 2344
847f7ad4 2345static offsetT
e3bb37b5 2346offset_in_range (offsetT val, int size)
847f7ad4 2347{
508866be 2348 addressT mask;
ba2adb93 2349
847f7ad4
AM
2350 switch (size)
2351 {
508866be
L
2352 case 1: mask = ((addressT) 1 << 8) - 1; break;
2353 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2354 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2355#ifdef BFD64
2356 case 8: mask = ((addressT) 2 << 63) - 1; break;
2357#endif
47926f60 2358 default: abort ();
847f7ad4
AM
2359 }
2360
9de868bf
L
2361#ifdef BFD64
2362 /* If BFD64, sign extend val for 32bit address mode. */
2363 if (flag_code != CODE_64BIT
2364 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2365 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2366 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2367#endif
ba2adb93 2368
47926f60 2369 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2370 {
2371 char buf1[40], buf2[40];
2372
2373 sprint_value (buf1, val);
2374 sprint_value (buf2, val & mask);
2375 as_warn (_("%s shortened to %s"), buf1, buf2);
2376 }
2377 return val & mask;
2378}
2379
c32fa91d
L
2380enum PREFIX_GROUP
2381{
2382 PREFIX_EXIST = 0,
2383 PREFIX_LOCK,
2384 PREFIX_REP,
04ef582a 2385 PREFIX_DS,
c32fa91d
L
2386 PREFIX_OTHER
2387};
2388
2389/* Returns
2390 a. PREFIX_EXIST if attempting to add a prefix where one from the
2391 same class already exists.
2392 b. PREFIX_LOCK if lock prefix is added.
2393 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2394 d. PREFIX_DS if ds prefix is added.
2395 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2396 */
2397
2398static enum PREFIX_GROUP
e3bb37b5 2399add_prefix (unsigned int prefix)
252b5132 2400{
c32fa91d 2401 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2402 unsigned int q;
252b5132 2403
29b0f896
AM
2404 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2405 && flag_code == CODE_64BIT)
b1905489 2406 {
161a04f6 2407 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2408 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2409 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2410 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2411 ret = PREFIX_EXIST;
b1905489
JB
2412 q = REX_PREFIX;
2413 }
3e73aa7c 2414 else
b1905489
JB
2415 {
2416 switch (prefix)
2417 {
2418 default:
2419 abort ();
2420
b1905489 2421 case DS_PREFIX_OPCODE:
04ef582a
L
2422 ret = PREFIX_DS;
2423 /* Fall through. */
2424 case CS_PREFIX_OPCODE:
b1905489
JB
2425 case ES_PREFIX_OPCODE:
2426 case FS_PREFIX_OPCODE:
2427 case GS_PREFIX_OPCODE:
2428 case SS_PREFIX_OPCODE:
2429 q = SEG_PREFIX;
2430 break;
2431
2432 case REPNE_PREFIX_OPCODE:
2433 case REPE_PREFIX_OPCODE:
c32fa91d
L
2434 q = REP_PREFIX;
2435 ret = PREFIX_REP;
2436 break;
2437
b1905489 2438 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2439 q = LOCK_PREFIX;
2440 ret = PREFIX_LOCK;
b1905489
JB
2441 break;
2442
2443 case FWAIT_OPCODE:
2444 q = WAIT_PREFIX;
2445 break;
2446
2447 case ADDR_PREFIX_OPCODE:
2448 q = ADDR_PREFIX;
2449 break;
2450
2451 case DATA_PREFIX_OPCODE:
2452 q = DATA_PREFIX;
2453 break;
2454 }
2455 if (i.prefix[q] != 0)
c32fa91d 2456 ret = PREFIX_EXIST;
b1905489 2457 }
252b5132 2458
b1905489 2459 if (ret)
252b5132 2460 {
b1905489
JB
2461 if (!i.prefix[q])
2462 ++i.prefixes;
2463 i.prefix[q] |= prefix;
252b5132 2464 }
b1905489
JB
2465 else
2466 as_bad (_("same type of prefix used twice"));
252b5132 2467
252b5132
RH
2468 return ret;
2469}
2470
2471static void
78f12dd3 2472update_code_flag (int value, int check)
eecb386c 2473{
78f12dd3
L
2474 PRINTF_LIKE ((*as_error));
2475
1e9cc1c2 2476 flag_code = (enum flag_code) value;
40fb9820
L
2477 if (flag_code == CODE_64BIT)
2478 {
2479 cpu_arch_flags.bitfield.cpu64 = 1;
2480 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2481 }
2482 else
2483 {
2484 cpu_arch_flags.bitfield.cpu64 = 0;
2485 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2486 }
2487 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2488 {
78f12dd3
L
2489 if (check)
2490 as_error = as_fatal;
2491 else
2492 as_error = as_bad;
2493 (*as_error) (_("64bit mode not supported on `%s'."),
2494 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2495 }
40fb9820 2496 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2497 {
78f12dd3
L
2498 if (check)
2499 as_error = as_fatal;
2500 else
2501 as_error = as_bad;
2502 (*as_error) (_("32bit mode not supported on `%s'."),
2503 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2504 }
eecb386c
AM
2505 stackop_size = '\0';
2506}
2507
78f12dd3
L
2508static void
2509set_code_flag (int value)
2510{
2511 update_code_flag (value, 0);
2512}
2513
eecb386c 2514static void
e3bb37b5 2515set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2516{
1e9cc1c2 2517 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2518 if (flag_code != CODE_16BIT)
2519 abort ();
2520 cpu_arch_flags.bitfield.cpu64 = 0;
2521 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2522 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2523}
2524
2525static void
e3bb37b5 2526set_intel_syntax (int syntax_flag)
252b5132
RH
2527{
2528 /* Find out if register prefixing is specified. */
2529 int ask_naked_reg = 0;
2530
2531 SKIP_WHITESPACE ();
29b0f896 2532 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2533 {
d02603dc
NC
2534 char *string;
2535 int e = get_symbol_name (&string);
252b5132 2536
47926f60 2537 if (strcmp (string, "prefix") == 0)
252b5132 2538 ask_naked_reg = 1;
47926f60 2539 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2540 ask_naked_reg = -1;
2541 else
d0b47220 2542 as_bad (_("bad argument to syntax directive."));
d02603dc 2543 (void) restore_line_pointer (e);
252b5132
RH
2544 }
2545 demand_empty_rest_of_line ();
c3332e24 2546
252b5132
RH
2547 intel_syntax = syntax_flag;
2548
2549 if (ask_naked_reg == 0)
f86103b7
AM
2550 allow_naked_reg = (intel_syntax
2551 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2552 else
2553 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2554
ee86248c 2555 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2556
e4a3b5a4 2557 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2558 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2559 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2560}
2561
1efbbeb4
L
2562static void
2563set_intel_mnemonic (int mnemonic_flag)
2564{
e1d4d893 2565 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2566}
2567
db51cc60
L
2568static void
2569set_allow_index_reg (int flag)
2570{
2571 allow_index_reg = flag;
2572}
2573
cb19c032 2574static void
7bab8ab5 2575set_check (int what)
cb19c032 2576{
7bab8ab5
JB
2577 enum check_kind *kind;
2578 const char *str;
2579
2580 if (what)
2581 {
2582 kind = &operand_check;
2583 str = "operand";
2584 }
2585 else
2586 {
2587 kind = &sse_check;
2588 str = "sse";
2589 }
2590
cb19c032
L
2591 SKIP_WHITESPACE ();
2592
2593 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2594 {
d02603dc
NC
2595 char *string;
2596 int e = get_symbol_name (&string);
cb19c032
L
2597
2598 if (strcmp (string, "none") == 0)
7bab8ab5 2599 *kind = check_none;
cb19c032 2600 else if (strcmp (string, "warning") == 0)
7bab8ab5 2601 *kind = check_warning;
cb19c032 2602 else if (strcmp (string, "error") == 0)
7bab8ab5 2603 *kind = check_error;
cb19c032 2604 else
7bab8ab5 2605 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2606 (void) restore_line_pointer (e);
cb19c032
L
2607 }
2608 else
7bab8ab5 2609 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2610
2611 demand_empty_rest_of_line ();
2612}
2613
8a9036a4
L
2614static void
2615check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2616 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2617{
2618#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2619 static const char *arch;
2620
2621 /* Intel LIOM is only supported on ELF. */
2622 if (!IS_ELF)
2623 return;
2624
2625 if (!arch)
2626 {
2627 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2628 use default_arch. */
2629 arch = cpu_arch_name;
2630 if (!arch)
2631 arch = default_arch;
2632 }
2633
81486035
L
2634 /* If we are targeting Intel MCU, we must enable it. */
2635 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2636 || new_flag.bitfield.cpuiamcu)
2637 return;
2638
3632d14b 2639 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2640 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2641 || new_flag.bitfield.cpul1om)
8a9036a4 2642 return;
76ba9986 2643
7a9068fe
L
2644 /* If we are targeting Intel K1OM, we must enable it. */
2645 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2646 || new_flag.bitfield.cpuk1om)
2647 return;
2648
8a9036a4
L
2649 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2650#endif
2651}
2652
e413e4e9 2653static void
e3bb37b5 2654set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2655{
47926f60 2656 SKIP_WHITESPACE ();
e413e4e9 2657
29b0f896 2658 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2659 {
d02603dc
NC
2660 char *string;
2661 int e = get_symbol_name (&string);
91d6fa6a 2662 unsigned int j;
40fb9820 2663 i386_cpu_flags flags;
e413e4e9 2664
91d6fa6a 2665 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2666 {
91d6fa6a 2667 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2668 {
91d6fa6a 2669 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2670
5c6af06e
JB
2671 if (*string != '.')
2672 {
91d6fa6a 2673 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2674 cpu_sub_arch_name = NULL;
91d6fa6a 2675 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2676 if (flag_code == CODE_64BIT)
2677 {
2678 cpu_arch_flags.bitfield.cpu64 = 1;
2679 cpu_arch_flags.bitfield.cpuno64 = 0;
2680 }
2681 else
2682 {
2683 cpu_arch_flags.bitfield.cpu64 = 0;
2684 cpu_arch_flags.bitfield.cpuno64 = 1;
2685 }
91d6fa6a
NC
2686 cpu_arch_isa = cpu_arch[j].type;
2687 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2688 if (!cpu_arch_tune_set)
2689 {
2690 cpu_arch_tune = cpu_arch_isa;
2691 cpu_arch_tune_flags = cpu_arch_isa_flags;
2692 }
5c6af06e
JB
2693 break;
2694 }
40fb9820 2695
293f5f65
L
2696 flags = cpu_flags_or (cpu_arch_flags,
2697 cpu_arch[j].flags);
81486035 2698
5b64d091 2699 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2700 {
6305a203
L
2701 if (cpu_sub_arch_name)
2702 {
2703 char *name = cpu_sub_arch_name;
2704 cpu_sub_arch_name = concat (name,
91d6fa6a 2705 cpu_arch[j].name,
1bf57e9f 2706 (const char *) NULL);
6305a203
L
2707 free (name);
2708 }
2709 else
91d6fa6a 2710 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2711 cpu_arch_flags = flags;
a586129e 2712 cpu_arch_isa_flags = flags;
5c6af06e 2713 }
0089dace
L
2714 else
2715 cpu_arch_isa_flags
2716 = cpu_flags_or (cpu_arch_isa_flags,
2717 cpu_arch[j].flags);
d02603dc 2718 (void) restore_line_pointer (e);
5c6af06e
JB
2719 demand_empty_rest_of_line ();
2720 return;
e413e4e9
AM
2721 }
2722 }
293f5f65
L
2723
2724 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2725 {
33eaf5de 2726 /* Disable an ISA extension. */
293f5f65
L
2727 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2728 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2729 {
2730 flags = cpu_flags_and_not (cpu_arch_flags,
2731 cpu_noarch[j].flags);
2732 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2733 {
2734 if (cpu_sub_arch_name)
2735 {
2736 char *name = cpu_sub_arch_name;
2737 cpu_sub_arch_name = concat (name, string,
2738 (const char *) NULL);
2739 free (name);
2740 }
2741 else
2742 cpu_sub_arch_name = xstrdup (string);
2743 cpu_arch_flags = flags;
2744 cpu_arch_isa_flags = flags;
2745 }
2746 (void) restore_line_pointer (e);
2747 demand_empty_rest_of_line ();
2748 return;
2749 }
2750
2751 j = ARRAY_SIZE (cpu_arch);
2752 }
2753
91d6fa6a 2754 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2755 as_bad (_("no such architecture: `%s'"), string);
2756
2757 *input_line_pointer = e;
2758 }
2759 else
2760 as_bad (_("missing cpu architecture"));
2761
fddf5b5b
AM
2762 no_cond_jump_promotion = 0;
2763 if (*input_line_pointer == ','
29b0f896 2764 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2765 {
d02603dc
NC
2766 char *string;
2767 char e;
2768
2769 ++input_line_pointer;
2770 e = get_symbol_name (&string);
fddf5b5b
AM
2771
2772 if (strcmp (string, "nojumps") == 0)
2773 no_cond_jump_promotion = 1;
2774 else if (strcmp (string, "jumps") == 0)
2775 ;
2776 else
2777 as_bad (_("no such architecture modifier: `%s'"), string);
2778
d02603dc 2779 (void) restore_line_pointer (e);
fddf5b5b
AM
2780 }
2781
e413e4e9
AM
2782 demand_empty_rest_of_line ();
2783}
2784
8a9036a4
L
2785enum bfd_architecture
2786i386_arch (void)
2787{
3632d14b 2788 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2789 {
2790 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2791 || flag_code != CODE_64BIT)
2792 as_fatal (_("Intel L1OM is 64bit ELF only"));
2793 return bfd_arch_l1om;
2794 }
7a9068fe
L
2795 else if (cpu_arch_isa == PROCESSOR_K1OM)
2796 {
2797 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2798 || flag_code != CODE_64BIT)
2799 as_fatal (_("Intel K1OM is 64bit ELF only"));
2800 return bfd_arch_k1om;
2801 }
81486035
L
2802 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2803 {
2804 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2805 || flag_code == CODE_64BIT)
2806 as_fatal (_("Intel MCU is 32bit ELF only"));
2807 return bfd_arch_iamcu;
2808 }
8a9036a4
L
2809 else
2810 return bfd_arch_i386;
2811}
2812
b9d79e03 2813unsigned long
7016a5d5 2814i386_mach (void)
b9d79e03 2815{
351f65ca 2816 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2817 {
3632d14b 2818 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2819 {
351f65ca
L
2820 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2821 || default_arch[6] != '\0')
8a9036a4
L
2822 as_fatal (_("Intel L1OM is 64bit ELF only"));
2823 return bfd_mach_l1om;
2824 }
7a9068fe
L
2825 else if (cpu_arch_isa == PROCESSOR_K1OM)
2826 {
2827 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2828 || default_arch[6] != '\0')
2829 as_fatal (_("Intel K1OM is 64bit ELF only"));
2830 return bfd_mach_k1om;
2831 }
351f65ca 2832 else if (default_arch[6] == '\0')
8a9036a4 2833 return bfd_mach_x86_64;
351f65ca
L
2834 else
2835 return bfd_mach_x64_32;
8a9036a4 2836 }
5197d474
L
2837 else if (!strcmp (default_arch, "i386")
2838 || !strcmp (default_arch, "iamcu"))
81486035
L
2839 {
2840 if (cpu_arch_isa == PROCESSOR_IAMCU)
2841 {
2842 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2843 as_fatal (_("Intel MCU is 32bit ELF only"));
2844 return bfd_mach_i386_iamcu;
2845 }
2846 else
2847 return bfd_mach_i386_i386;
2848 }
b9d79e03 2849 else
2b5d6a91 2850 as_fatal (_("unknown architecture"));
b9d79e03 2851}
b9d79e03 2852\f
252b5132 2853void
7016a5d5 2854md_begin (void)
252b5132
RH
2855{
2856 const char *hash_err;
2857
86fa6981
L
2858 /* Support pseudo prefixes like {disp32}. */
2859 lex_type ['{'] = LEX_BEGIN_NAME;
2860
47926f60 2861 /* Initialize op_hash hash table. */
252b5132
RH
2862 op_hash = hash_new ();
2863
2864 {
d3ce72d0 2865 const insn_template *optab;
29b0f896 2866 templates *core_optab;
252b5132 2867
47926f60
KH
2868 /* Setup for loop. */
2869 optab = i386_optab;
add39d23 2870 core_optab = XNEW (templates);
252b5132
RH
2871 core_optab->start = optab;
2872
2873 while (1)
2874 {
2875 ++optab;
2876 if (optab->name == NULL
2877 || strcmp (optab->name, (optab - 1)->name) != 0)
2878 {
2879 /* different name --> ship out current template list;
47926f60 2880 add to hash table; & begin anew. */
252b5132
RH
2881 core_optab->end = optab;
2882 hash_err = hash_insert (op_hash,
2883 (optab - 1)->name,
5a49b8ac 2884 (void *) core_optab);
252b5132
RH
2885 if (hash_err)
2886 {
b37df7c4 2887 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2888 (optab - 1)->name,
2889 hash_err);
2890 }
2891 if (optab->name == NULL)
2892 break;
add39d23 2893 core_optab = XNEW (templates);
252b5132
RH
2894 core_optab->start = optab;
2895 }
2896 }
2897 }
2898
47926f60 2899 /* Initialize reg_hash hash table. */
252b5132
RH
2900 reg_hash = hash_new ();
2901 {
29b0f896 2902 const reg_entry *regtab;
c3fe08fa 2903 unsigned int regtab_size = i386_regtab_size;
252b5132 2904
c3fe08fa 2905 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2906 {
5a49b8ac 2907 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2908 if (hash_err)
b37df7c4 2909 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2910 regtab->reg_name,
2911 hash_err);
252b5132
RH
2912 }
2913 }
2914
47926f60 2915 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2916 {
29b0f896
AM
2917 int c;
2918 char *p;
252b5132
RH
2919
2920 for (c = 0; c < 256; c++)
2921 {
3882b010 2922 if (ISDIGIT (c))
252b5132
RH
2923 {
2924 digit_chars[c] = c;
2925 mnemonic_chars[c] = c;
2926 register_chars[c] = c;
2927 operand_chars[c] = c;
2928 }
3882b010 2929 else if (ISLOWER (c))
252b5132
RH
2930 {
2931 mnemonic_chars[c] = c;
2932 register_chars[c] = c;
2933 operand_chars[c] = c;
2934 }
3882b010 2935 else if (ISUPPER (c))
252b5132 2936 {
3882b010 2937 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2938 register_chars[c] = mnemonic_chars[c];
2939 operand_chars[c] = c;
2940 }
43234a1e 2941 else if (c == '{' || c == '}')
86fa6981
L
2942 {
2943 mnemonic_chars[c] = c;
2944 operand_chars[c] = c;
2945 }
252b5132 2946
3882b010 2947 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2948 identifier_chars[c] = c;
2949 else if (c >= 128)
2950 {
2951 identifier_chars[c] = c;
2952 operand_chars[c] = c;
2953 }
2954 }
2955
2956#ifdef LEX_AT
2957 identifier_chars['@'] = '@';
32137342
NC
2958#endif
2959#ifdef LEX_QM
2960 identifier_chars['?'] = '?';
2961 operand_chars['?'] = '?';
252b5132 2962#endif
252b5132 2963 digit_chars['-'] = '-';
c0f3af97 2964 mnemonic_chars['_'] = '_';
791fe849 2965 mnemonic_chars['-'] = '-';
0003779b 2966 mnemonic_chars['.'] = '.';
252b5132
RH
2967 identifier_chars['_'] = '_';
2968 identifier_chars['.'] = '.';
2969
2970 for (p = operand_special_chars; *p != '\0'; p++)
2971 operand_chars[(unsigned char) *p] = *p;
2972 }
2973
a4447b93
RH
2974 if (flag_code == CODE_64BIT)
2975 {
ca19b261
KT
2976#if defined (OBJ_COFF) && defined (TE_PE)
2977 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2978 ? 32 : 16);
2979#else
a4447b93 2980 x86_dwarf2_return_column = 16;
ca19b261 2981#endif
61ff971f 2982 x86_cie_data_alignment = -8;
a4447b93
RH
2983 }
2984 else
2985 {
2986 x86_dwarf2_return_column = 8;
2987 x86_cie_data_alignment = -4;
2988 }
252b5132
RH
2989}
2990
2991void
e3bb37b5 2992i386_print_statistics (FILE *file)
252b5132
RH
2993{
2994 hash_print_statistics (file, "i386 opcode", op_hash);
2995 hash_print_statistics (file, "i386 register", reg_hash);
2996}
2997\f
252b5132
RH
2998#ifdef DEBUG386
2999
ce8a8b2f 3000/* Debugging routines for md_assemble. */
d3ce72d0 3001static void pte (insn_template *);
40fb9820 3002static void pt (i386_operand_type);
e3bb37b5
L
3003static void pe (expressionS *);
3004static void ps (symbolS *);
252b5132
RH
3005
3006static void
2c703856 3007pi (const char *line, i386_insn *x)
252b5132 3008{
09137c09 3009 unsigned int j;
252b5132
RH
3010
3011 fprintf (stdout, "%s: template ", line);
3012 pte (&x->tm);
09f131f2
JH
3013 fprintf (stdout, " address: base %s index %s scale %x\n",
3014 x->base_reg ? x->base_reg->reg_name : "none",
3015 x->index_reg ? x->index_reg->reg_name : "none",
3016 x->log2_scale_factor);
3017 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 3018 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
3019 fprintf (stdout, " sib: base %x index %x scale %x\n",
3020 x->sib.base, x->sib.index, x->sib.scale);
3021 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
3022 (x->rex & REX_W) != 0,
3023 (x->rex & REX_R) != 0,
3024 (x->rex & REX_X) != 0,
3025 (x->rex & REX_B) != 0);
09137c09 3026 for (j = 0; j < x->operands; j++)
252b5132 3027 {
09137c09
SP
3028 fprintf (stdout, " #%d: ", j + 1);
3029 pt (x->types[j]);
252b5132 3030 fprintf (stdout, "\n");
dc821c5f 3031 if (x->types[j].bitfield.reg
09137c09 3032 || x->types[j].bitfield.regmmx
1b54b8d7 3033 || x->types[j].bitfield.regsimd
21df382b 3034 || x->types[j].bitfield.sreg
09137c09
SP
3035 || x->types[j].bitfield.control
3036 || x->types[j].bitfield.debug
3037 || x->types[j].bitfield.test)
3038 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3039 if (operand_type_check (x->types[j], imm))
3040 pe (x->op[j].imms);
3041 if (operand_type_check (x->types[j], disp))
3042 pe (x->op[j].disps);
252b5132
RH
3043 }
3044}
3045
3046static void
d3ce72d0 3047pte (insn_template *t)
252b5132 3048{
09137c09 3049 unsigned int j;
252b5132 3050 fprintf (stdout, " %d operands ", t->operands);
47926f60 3051 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
3052 if (t->extension_opcode != None)
3053 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 3054 if (t->opcode_modifier.d)
252b5132 3055 fprintf (stdout, "D");
40fb9820 3056 if (t->opcode_modifier.w)
252b5132
RH
3057 fprintf (stdout, "W");
3058 fprintf (stdout, "\n");
09137c09 3059 for (j = 0; j < t->operands; j++)
252b5132 3060 {
09137c09
SP
3061 fprintf (stdout, " #%d type ", j + 1);
3062 pt (t->operand_types[j]);
252b5132
RH
3063 fprintf (stdout, "\n");
3064 }
3065}
3066
3067static void
e3bb37b5 3068pe (expressionS *e)
252b5132 3069{
24eab124 3070 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
3071 fprintf (stdout, " add_number %ld (%lx)\n",
3072 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
3073 if (e->X_add_symbol)
3074 {
3075 fprintf (stdout, " add_symbol ");
3076 ps (e->X_add_symbol);
3077 fprintf (stdout, "\n");
3078 }
3079 if (e->X_op_symbol)
3080 {
3081 fprintf (stdout, " op_symbol ");
3082 ps (e->X_op_symbol);
3083 fprintf (stdout, "\n");
3084 }
3085}
3086
3087static void
e3bb37b5 3088ps (symbolS *s)
252b5132
RH
3089{
3090 fprintf (stdout, "%s type %s%s",
3091 S_GET_NAME (s),
3092 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3093 segment_name (S_GET_SEGMENT (s)));
3094}
3095
7b81dfbb 3096static struct type_name
252b5132 3097 {
40fb9820
L
3098 i386_operand_type mask;
3099 const char *name;
252b5132 3100 }
7b81dfbb 3101const type_names[] =
252b5132 3102{
40fb9820
L
3103 { OPERAND_TYPE_REG8, "r8" },
3104 { OPERAND_TYPE_REG16, "r16" },
3105 { OPERAND_TYPE_REG32, "r32" },
3106 { OPERAND_TYPE_REG64, "r64" },
2c703856
JB
3107 { OPERAND_TYPE_ACC8, "acc8" },
3108 { OPERAND_TYPE_ACC16, "acc16" },
3109 { OPERAND_TYPE_ACC32, "acc32" },
3110 { OPERAND_TYPE_ACC64, "acc64" },
40fb9820
L
3111 { OPERAND_TYPE_IMM8, "i8" },
3112 { OPERAND_TYPE_IMM8, "i8s" },
3113 { OPERAND_TYPE_IMM16, "i16" },
3114 { OPERAND_TYPE_IMM32, "i32" },
3115 { OPERAND_TYPE_IMM32S, "i32s" },
3116 { OPERAND_TYPE_IMM64, "i64" },
3117 { OPERAND_TYPE_IMM1, "i1" },
3118 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3119 { OPERAND_TYPE_DISP8, "d8" },
3120 { OPERAND_TYPE_DISP16, "d16" },
3121 { OPERAND_TYPE_DISP32, "d32" },
3122 { OPERAND_TYPE_DISP32S, "d32s" },
3123 { OPERAND_TYPE_DISP64, "d64" },
3124 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3125 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3126 { OPERAND_TYPE_CONTROL, "control reg" },
3127 { OPERAND_TYPE_TEST, "test reg" },
3128 { OPERAND_TYPE_DEBUG, "debug reg" },
3129 { OPERAND_TYPE_FLOATREG, "FReg" },
3130 { OPERAND_TYPE_FLOATACC, "FAcc" },
21df382b 3131 { OPERAND_TYPE_SREG, "SReg" },
40fb9820
L
3132 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3133 { OPERAND_TYPE_REGMMX, "rMMX" },
3134 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3135 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3136 { OPERAND_TYPE_REGZMM, "rZMM" },
3137 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 3138 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
3139};
3140
3141static void
40fb9820 3142pt (i386_operand_type t)
252b5132 3143{
40fb9820 3144 unsigned int j;
c6fb90c8 3145 i386_operand_type a;
252b5132 3146
40fb9820 3147 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3148 {
3149 a = operand_type_and (t, type_names[j].mask);
2c703856 3150 if (operand_type_equal (&a, &type_names[j].mask))
c6fb90c8
L
3151 fprintf (stdout, "%s, ", type_names[j].name);
3152 }
252b5132
RH
3153 fflush (stdout);
3154}
3155
3156#endif /* DEBUG386 */
3157\f
252b5132 3158static bfd_reloc_code_real_type
3956db08 3159reloc (unsigned int size,
64e74474
AM
3160 int pcrel,
3161 int sign,
3162 bfd_reloc_code_real_type other)
252b5132 3163{
47926f60 3164 if (other != NO_RELOC)
3956db08 3165 {
91d6fa6a 3166 reloc_howto_type *rel;
3956db08
JB
3167
3168 if (size == 8)
3169 switch (other)
3170 {
64e74474
AM
3171 case BFD_RELOC_X86_64_GOT32:
3172 return BFD_RELOC_X86_64_GOT64;
3173 break;
553d1284
L
3174 case BFD_RELOC_X86_64_GOTPLT64:
3175 return BFD_RELOC_X86_64_GOTPLT64;
3176 break;
64e74474
AM
3177 case BFD_RELOC_X86_64_PLTOFF64:
3178 return BFD_RELOC_X86_64_PLTOFF64;
3179 break;
3180 case BFD_RELOC_X86_64_GOTPC32:
3181 other = BFD_RELOC_X86_64_GOTPC64;
3182 break;
3183 case BFD_RELOC_X86_64_GOTPCREL:
3184 other = BFD_RELOC_X86_64_GOTPCREL64;
3185 break;
3186 case BFD_RELOC_X86_64_TPOFF32:
3187 other = BFD_RELOC_X86_64_TPOFF64;
3188 break;
3189 case BFD_RELOC_X86_64_DTPOFF32:
3190 other = BFD_RELOC_X86_64_DTPOFF64;
3191 break;
3192 default:
3193 break;
3956db08 3194 }
e05278af 3195
8ce3d284 3196#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3197 if (other == BFD_RELOC_SIZE32)
3198 {
3199 if (size == 8)
1ab668bf 3200 other = BFD_RELOC_SIZE64;
8fd4256d 3201 if (pcrel)
1ab668bf
AM
3202 {
3203 as_bad (_("there are no pc-relative size relocations"));
3204 return NO_RELOC;
3205 }
8fd4256d 3206 }
8ce3d284 3207#endif
8fd4256d 3208
e05278af 3209 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3210 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3211 sign = -1;
3212
91d6fa6a
NC
3213 rel = bfd_reloc_type_lookup (stdoutput, other);
3214 if (!rel)
3956db08 3215 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3216 else if (size != bfd_get_reloc_size (rel))
3956db08 3217 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3218 bfd_get_reloc_size (rel),
3956db08 3219 size);
91d6fa6a 3220 else if (pcrel && !rel->pc_relative)
3956db08 3221 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3222 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3223 && !sign)
91d6fa6a 3224 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3225 && sign > 0))
3956db08
JB
3226 as_bad (_("relocated field and relocation type differ in signedness"));
3227 else
3228 return other;
3229 return NO_RELOC;
3230 }
252b5132
RH
3231
3232 if (pcrel)
3233 {
3e73aa7c 3234 if (!sign)
3956db08 3235 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3236 switch (size)
3237 {
3238 case 1: return BFD_RELOC_8_PCREL;
3239 case 2: return BFD_RELOC_16_PCREL;
d258b828 3240 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3241 case 8: return BFD_RELOC_64_PCREL;
252b5132 3242 }
3956db08 3243 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3244 }
3245 else
3246 {
3956db08 3247 if (sign > 0)
e5cb08ac 3248 switch (size)
3e73aa7c
JH
3249 {
3250 case 4: return BFD_RELOC_X86_64_32S;
3251 }
3252 else
3253 switch (size)
3254 {
3255 case 1: return BFD_RELOC_8;
3256 case 2: return BFD_RELOC_16;
3257 case 4: return BFD_RELOC_32;
3258 case 8: return BFD_RELOC_64;
3259 }
3956db08
JB
3260 as_bad (_("cannot do %s %u byte relocation"),
3261 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3262 }
3263
0cc9e1d3 3264 return NO_RELOC;
252b5132
RH
3265}
3266
47926f60
KH
3267/* Here we decide which fixups can be adjusted to make them relative to
3268 the beginning of the section instead of the symbol. Basically we need
3269 to make sure that the dynamic relocations are done correctly, so in
3270 some cases we force the original symbol to be used. */
3271
252b5132 3272int
e3bb37b5 3273tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3274{
6d249963 3275#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3276 if (!IS_ELF)
31312f95
AM
3277 return 1;
3278
a161fe53
AM
3279 /* Don't adjust pc-relative references to merge sections in 64-bit
3280 mode. */
3281 if (use_rela_relocations
3282 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3283 && fixP->fx_pcrel)
252b5132 3284 return 0;
31312f95 3285
8d01d9a9
AJ
3286 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3287 and changed later by validate_fix. */
3288 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3289 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3290 return 0;
3291
8fd4256d
L
3292 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3293 for size relocations. */
3294 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3295 || fixP->fx_r_type == BFD_RELOC_SIZE64
3296 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3297 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3298 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3299 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3300 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3301 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3302 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3303 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3304 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3305 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3306 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3307 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3308 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3309 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3310 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3311 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3312 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3313 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3314 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3315 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3316 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3317 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3318 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3319 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3320 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3321 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3322 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3323 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3324 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3325 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3326 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3327 return 0;
31312f95 3328#endif
252b5132
RH
3329 return 1;
3330}
252b5132 3331
b4cac588 3332static int
e3bb37b5 3333intel_float_operand (const char *mnemonic)
252b5132 3334{
9306ca4a
JB
3335 /* Note that the value returned is meaningful only for opcodes with (memory)
3336 operands, hence the code here is free to improperly handle opcodes that
3337 have no operands (for better performance and smaller code). */
3338
3339 if (mnemonic[0] != 'f')
3340 return 0; /* non-math */
3341
3342 switch (mnemonic[1])
3343 {
3344 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3345 the fs segment override prefix not currently handled because no
3346 call path can make opcodes without operands get here */
3347 case 'i':
3348 return 2 /* integer op */;
3349 case 'l':
3350 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3351 return 3; /* fldcw/fldenv */
3352 break;
3353 case 'n':
3354 if (mnemonic[2] != 'o' /* fnop */)
3355 return 3; /* non-waiting control op */
3356 break;
3357 case 'r':
3358 if (mnemonic[2] == 's')
3359 return 3; /* frstor/frstpm */
3360 break;
3361 case 's':
3362 if (mnemonic[2] == 'a')
3363 return 3; /* fsave */
3364 if (mnemonic[2] == 't')
3365 {
3366 switch (mnemonic[3])
3367 {
3368 case 'c': /* fstcw */
3369 case 'd': /* fstdw */
3370 case 'e': /* fstenv */
3371 case 's': /* fsts[gw] */
3372 return 3;
3373 }
3374 }
3375 break;
3376 case 'x':
3377 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3378 return 0; /* fxsave/fxrstor are not really math ops */
3379 break;
3380 }
252b5132 3381
9306ca4a 3382 return 1;
252b5132
RH
3383}
3384
c0f3af97
L
3385/* Build the VEX prefix. */
3386
3387static void
d3ce72d0 3388build_vex_prefix (const insn_template *t)
c0f3af97
L
3389{
3390 unsigned int register_specifier;
3391 unsigned int implied_prefix;
3392 unsigned int vector_length;
03751133 3393 unsigned int w;
c0f3af97
L
3394
3395 /* Check register specifier. */
3396 if (i.vex.register_specifier)
43234a1e
L
3397 {
3398 register_specifier =
3399 ~register_number (i.vex.register_specifier) & 0xf;
3400 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3401 }
c0f3af97
L
3402 else
3403 register_specifier = 0xf;
3404
79f0fa25
L
3405 /* Use 2-byte VEX prefix by swapping destination and source operand
3406 if there are more than 1 register operand. */
3407 if (i.reg_operands > 1
3408 && i.vec_encoding != vex_encoding_vex3
86fa6981 3409 && i.dir_encoding == dir_encoding_default
fa99fab2 3410 && i.operands == i.reg_operands
dbbc8b7e 3411 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
7f399153 3412 && i.tm.opcode_modifier.vexopcode == VEX0F
dbbc8b7e 3413 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
fa99fab2
L
3414 && i.rex == REX_B)
3415 {
3416 unsigned int xchg = i.operands - 1;
3417 union i386_op temp_op;
3418 i386_operand_type temp_type;
3419
3420 temp_type = i.types[xchg];
3421 i.types[xchg] = i.types[0];
3422 i.types[0] = temp_type;
3423 temp_op = i.op[xchg];
3424 i.op[xchg] = i.op[0];
3425 i.op[0] = temp_op;
3426
9c2799c2 3427 gas_assert (i.rm.mode == 3);
fa99fab2
L
3428
3429 i.rex = REX_R;
3430 xchg = i.rm.regmem;
3431 i.rm.regmem = i.rm.reg;
3432 i.rm.reg = xchg;
3433
dbbc8b7e
JB
3434 if (i.tm.opcode_modifier.d)
3435 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3436 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3437 else /* Use the next insn. */
3438 i.tm = t[1];
fa99fab2
L
3439 }
3440
79dec6b7
JB
3441 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3442 are no memory operands and at least 3 register ones. */
3443 if (i.reg_operands >= 3
3444 && i.vec_encoding != vex_encoding_vex3
3445 && i.reg_operands == i.operands - i.imm_operands
3446 && i.tm.opcode_modifier.vex
3447 && i.tm.opcode_modifier.commutative
3448 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3449 && i.rex == REX_B
3450 && i.vex.register_specifier
3451 && !(i.vex.register_specifier->reg_flags & RegRex))
3452 {
3453 unsigned int xchg = i.operands - i.reg_operands;
3454 union i386_op temp_op;
3455 i386_operand_type temp_type;
3456
3457 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3458 gas_assert (!i.tm.opcode_modifier.sae);
3459 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3460 &i.types[i.operands - 3]));
3461 gas_assert (i.rm.mode == 3);
3462
3463 temp_type = i.types[xchg];
3464 i.types[xchg] = i.types[xchg + 1];
3465 i.types[xchg + 1] = temp_type;
3466 temp_op = i.op[xchg];
3467 i.op[xchg] = i.op[xchg + 1];
3468 i.op[xchg + 1] = temp_op;
3469
3470 i.rex = 0;
3471 xchg = i.rm.regmem | 8;
3472 i.rm.regmem = ~register_specifier & 0xf;
3473 gas_assert (!(i.rm.regmem & 8));
3474 i.vex.register_specifier += xchg - i.rm.regmem;
3475 register_specifier = ~xchg & 0xf;
3476 }
3477
539f890d
L
3478 if (i.tm.opcode_modifier.vex == VEXScalar)
3479 vector_length = avxscalar;
10c17abd
JB
3480 else if (i.tm.opcode_modifier.vex == VEX256)
3481 vector_length = 1;
539f890d 3482 else
10c17abd 3483 {
56522fc5 3484 unsigned int op;
10c17abd 3485
c7213af9
L
3486 /* Determine vector length from the last multi-length vector
3487 operand. */
10c17abd 3488 vector_length = 0;
56522fc5 3489 for (op = t->operands; op--;)
10c17abd
JB
3490 if (t->operand_types[op].bitfield.xmmword
3491 && t->operand_types[op].bitfield.ymmword
3492 && i.types[op].bitfield.ymmword)
3493 {
3494 vector_length = 1;
3495 break;
3496 }
3497 }
c0f3af97
L
3498
3499 switch ((i.tm.base_opcode >> 8) & 0xff)
3500 {
3501 case 0:
3502 implied_prefix = 0;
3503 break;
3504 case DATA_PREFIX_OPCODE:
3505 implied_prefix = 1;
3506 break;
3507 case REPE_PREFIX_OPCODE:
3508 implied_prefix = 2;
3509 break;
3510 case REPNE_PREFIX_OPCODE:
3511 implied_prefix = 3;
3512 break;
3513 default:
3514 abort ();
3515 }
3516
03751133
L
3517 /* Check the REX.W bit and VEXW. */
3518 if (i.tm.opcode_modifier.vexw == VEXWIG)
3519 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3520 else if (i.tm.opcode_modifier.vexw)
3521 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3522 else
931d03b7 3523 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
03751133 3524
c0f3af97 3525 /* Use 2-byte VEX prefix if possible. */
03751133
L
3526 if (w == 0
3527 && i.vec_encoding != vex_encoding_vex3
86fa6981 3528 && i.tm.opcode_modifier.vexopcode == VEX0F
c0f3af97
L
3529 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3530 {
3531 /* 2-byte VEX prefix. */
3532 unsigned int r;
3533
3534 i.vex.length = 2;
3535 i.vex.bytes[0] = 0xc5;
3536
3537 /* Check the REX.R bit. */
3538 r = (i.rex & REX_R) ? 0 : 1;
3539 i.vex.bytes[1] = (r << 7
3540 | register_specifier << 3
3541 | vector_length << 2
3542 | implied_prefix);
3543 }
3544 else
3545 {
3546 /* 3-byte VEX prefix. */
03751133 3547 unsigned int m;
c0f3af97 3548
f88c9eb0 3549 i.vex.length = 3;
f88c9eb0 3550
7f399153 3551 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3552 {
7f399153
L
3553 case VEX0F:
3554 m = 0x1;
80de6e00 3555 i.vex.bytes[0] = 0xc4;
7f399153
L
3556 break;
3557 case VEX0F38:
3558 m = 0x2;
80de6e00 3559 i.vex.bytes[0] = 0xc4;
7f399153
L
3560 break;
3561 case VEX0F3A:
3562 m = 0x3;
80de6e00 3563 i.vex.bytes[0] = 0xc4;
7f399153
L
3564 break;
3565 case XOP08:
5dd85c99
SP
3566 m = 0x8;
3567 i.vex.bytes[0] = 0x8f;
7f399153
L
3568 break;
3569 case XOP09:
f88c9eb0
SP
3570 m = 0x9;
3571 i.vex.bytes[0] = 0x8f;
7f399153
L
3572 break;
3573 case XOP0A:
f88c9eb0
SP
3574 m = 0xa;
3575 i.vex.bytes[0] = 0x8f;
7f399153
L
3576 break;
3577 default:
3578 abort ();
f88c9eb0 3579 }
c0f3af97 3580
c0f3af97
L
3581 /* The high 3 bits of the second VEX byte are 1's compliment
3582 of RXB bits from REX. */
3583 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3584
c0f3af97
L
3585 i.vex.bytes[2] = (w << 7
3586 | register_specifier << 3
3587 | vector_length << 2
3588 | implied_prefix);
3589 }
3590}
3591
e771e7c9
JB
3592static INLINE bfd_boolean
3593is_evex_encoding (const insn_template *t)
3594{
7091c612 3595 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
e771e7c9 3596 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
a80195f1 3597 || t->opcode_modifier.sae;
e771e7c9
JB
3598}
3599
7a8655d2
JB
3600static INLINE bfd_boolean
3601is_any_vex_encoding (const insn_template *t)
3602{
3603 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3604 || is_evex_encoding (t);
3605}
3606
43234a1e
L
3607/* Build the EVEX prefix. */
3608
3609static void
3610build_evex_prefix (void)
3611{
3612 unsigned int register_specifier;
3613 unsigned int implied_prefix;
3614 unsigned int m, w;
3615 rex_byte vrex_used = 0;
3616
3617 /* Check register specifier. */
3618 if (i.vex.register_specifier)
3619 {
3620 gas_assert ((i.vrex & REX_X) == 0);
3621
3622 register_specifier = i.vex.register_specifier->reg_num;
3623 if ((i.vex.register_specifier->reg_flags & RegRex))
3624 register_specifier += 8;
3625 /* The upper 16 registers are encoded in the fourth byte of the
3626 EVEX prefix. */
3627 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3628 i.vex.bytes[3] = 0x8;
3629 register_specifier = ~register_specifier & 0xf;
3630 }
3631 else
3632 {
3633 register_specifier = 0xf;
3634
3635 /* Encode upper 16 vector index register in the fourth byte of
3636 the EVEX prefix. */
3637 if (!(i.vrex & REX_X))
3638 i.vex.bytes[3] = 0x8;
3639 else
3640 vrex_used |= REX_X;
3641 }
3642
3643 switch ((i.tm.base_opcode >> 8) & 0xff)
3644 {
3645 case 0:
3646 implied_prefix = 0;
3647 break;
3648 case DATA_PREFIX_OPCODE:
3649 implied_prefix = 1;
3650 break;
3651 case REPE_PREFIX_OPCODE:
3652 implied_prefix = 2;
3653 break;
3654 case REPNE_PREFIX_OPCODE:
3655 implied_prefix = 3;
3656 break;
3657 default:
3658 abort ();
3659 }
3660
3661 /* 4 byte EVEX prefix. */
3662 i.vex.length = 4;
3663 i.vex.bytes[0] = 0x62;
3664
3665 /* mmmm bits. */
3666 switch (i.tm.opcode_modifier.vexopcode)
3667 {
3668 case VEX0F:
3669 m = 1;
3670 break;
3671 case VEX0F38:
3672 m = 2;
3673 break;
3674 case VEX0F3A:
3675 m = 3;
3676 break;
3677 default:
3678 abort ();
3679 break;
3680 }
3681
3682 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3683 bits from REX. */
3684 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3685
3686 /* The fifth bit of the second EVEX byte is 1's compliment of the
3687 REX_R bit in VREX. */
3688 if (!(i.vrex & REX_R))
3689 i.vex.bytes[1] |= 0x10;
3690 else
3691 vrex_used |= REX_R;
3692
3693 if ((i.reg_operands + i.imm_operands) == i.operands)
3694 {
3695 /* When all operands are registers, the REX_X bit in REX is not
3696 used. We reuse it to encode the upper 16 registers, which is
3697 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3698 as 1's compliment. */
3699 if ((i.vrex & REX_B))
3700 {
3701 vrex_used |= REX_B;
3702 i.vex.bytes[1] &= ~0x40;
3703 }
3704 }
3705
3706 /* EVEX instructions shouldn't need the REX prefix. */
3707 i.vrex &= ~vrex_used;
3708 gas_assert (i.vrex == 0);
3709
6865c043
L
3710 /* Check the REX.W bit and VEXW. */
3711 if (i.tm.opcode_modifier.vexw == VEXWIG)
3712 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3713 else if (i.tm.opcode_modifier.vexw)
3714 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3715 else
931d03b7 3716 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
43234a1e
L
3717
3718 /* Encode the U bit. */
3719 implied_prefix |= 0x4;
3720
3721 /* The third byte of the EVEX prefix. */
3722 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3723
3724 /* The fourth byte of the EVEX prefix. */
3725 /* The zeroing-masking bit. */
3726 if (i.mask && i.mask->zeroing)
3727 i.vex.bytes[3] |= 0x80;
3728
3729 /* Don't always set the broadcast bit if there is no RC. */
3730 if (!i.rounding)
3731 {
3732 /* Encode the vector length. */
3733 unsigned int vec_length;
3734
e771e7c9
JB
3735 if (!i.tm.opcode_modifier.evex
3736 || i.tm.opcode_modifier.evex == EVEXDYN)
3737 {
56522fc5 3738 unsigned int op;
e771e7c9 3739
c7213af9
L
3740 /* Determine vector length from the last multi-length vector
3741 operand. */
e771e7c9 3742 vec_length = 0;
56522fc5 3743 for (op = i.operands; op--;)
e771e7c9
JB
3744 if (i.tm.operand_types[op].bitfield.xmmword
3745 + i.tm.operand_types[op].bitfield.ymmword
3746 + i.tm.operand_types[op].bitfield.zmmword > 1)
3747 {
3748 if (i.types[op].bitfield.zmmword)
c7213af9
L
3749 {
3750 i.tm.opcode_modifier.evex = EVEX512;
3751 break;
3752 }
e771e7c9 3753 else if (i.types[op].bitfield.ymmword)
c7213af9
L
3754 {
3755 i.tm.opcode_modifier.evex = EVEX256;
3756 break;
3757 }
e771e7c9 3758 else if (i.types[op].bitfield.xmmword)
c7213af9
L
3759 {
3760 i.tm.opcode_modifier.evex = EVEX128;
3761 break;
3762 }
625cbd7a
JB
3763 else if (i.broadcast && (int) op == i.broadcast->operand)
3764 {
4a1b91ea 3765 switch (i.broadcast->bytes)
625cbd7a
JB
3766 {
3767 case 64:
3768 i.tm.opcode_modifier.evex = EVEX512;
3769 break;
3770 case 32:
3771 i.tm.opcode_modifier.evex = EVEX256;
3772 break;
3773 case 16:
3774 i.tm.opcode_modifier.evex = EVEX128;
3775 break;
3776 default:
c7213af9 3777 abort ();
625cbd7a 3778 }
c7213af9 3779 break;
625cbd7a 3780 }
e771e7c9 3781 }
c7213af9 3782
56522fc5 3783 if (op >= MAX_OPERANDS)
c7213af9 3784 abort ();
e771e7c9
JB
3785 }
3786
43234a1e
L
3787 switch (i.tm.opcode_modifier.evex)
3788 {
3789 case EVEXLIG: /* LL' is ignored */
3790 vec_length = evexlig << 5;
3791 break;
3792 case EVEX128:
3793 vec_length = 0 << 5;
3794 break;
3795 case EVEX256:
3796 vec_length = 1 << 5;
3797 break;
3798 case EVEX512:
3799 vec_length = 2 << 5;
3800 break;
3801 default:
3802 abort ();
3803 break;
3804 }
3805 i.vex.bytes[3] |= vec_length;
3806 /* Encode the broadcast bit. */
3807 if (i.broadcast)
3808 i.vex.bytes[3] |= 0x10;
3809 }
3810 else
3811 {
3812 if (i.rounding->type != saeonly)
3813 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3814 else
d3d3c6db 3815 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3816 }
3817
3818 if (i.mask && i.mask->mask)
3819 i.vex.bytes[3] |= i.mask->mask->reg_num;
3820}
3821
65da13b5
L
3822static void
3823process_immext (void)
3824{
3825 expressionS *exp;
3826
4c692bc7
JB
3827 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3828 && i.operands > 0)
65da13b5 3829 {
4c692bc7
JB
3830 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3831 with an opcode suffix which is coded in the same place as an
3832 8-bit immediate field would be.
3833 Here we check those operands and remove them afterwards. */
65da13b5
L
3834 unsigned int x;
3835
3836 for (x = 0; x < i.operands; x++)
4c692bc7 3837 if (register_number (i.op[x].regs) != x)
65da13b5 3838 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3839 register_prefix, i.op[x].regs->reg_name, x + 1,
3840 i.tm.name);
3841
3842 i.operands = 0;
65da13b5
L
3843 }
3844
9916071f
AP
3845 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3846 {
3847 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3848 suffix which is coded in the same place as an 8-bit immediate
3849 field would be.
3850 Here we check those operands and remove them afterwards. */
3851 unsigned int x;
3852
3853 if (i.operands != 3)
3854 abort();
3855
3856 for (x = 0; x < 2; x++)
3857 if (register_number (i.op[x].regs) != x)
3858 goto bad_register_operand;
3859
3860 /* Check for third operand for mwaitx/monitorx insn. */
3861 if (register_number (i.op[x].regs)
3862 != (x + (i.tm.extension_opcode == 0xfb)))
3863 {
3864bad_register_operand:
3865 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3866 register_prefix, i.op[x].regs->reg_name, x+1,
3867 i.tm.name);
3868 }
3869
3870 i.operands = 0;
3871 }
3872
c0f3af97 3873 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3874 which is coded in the same place as an 8-bit immediate field
3875 would be. Here we fake an 8-bit immediate operand from the
3876 opcode suffix stored in tm.extension_opcode.
3877
c1e679ec 3878 AVX instructions also use this encoding, for some of
c0f3af97 3879 3 argument instructions. */
65da13b5 3880
43234a1e 3881 gas_assert (i.imm_operands <= 1
7ab9ffdd 3882 && (i.operands <= 2
7a8655d2 3883 || (is_any_vex_encoding (&i.tm)
7ab9ffdd 3884 && i.operands <= 4)));
65da13b5
L
3885
3886 exp = &im_expressions[i.imm_operands++];
3887 i.op[i.operands].imms = exp;
3888 i.types[i.operands] = imm8;
3889 i.operands++;
3890 exp->X_op = O_constant;
3891 exp->X_add_number = i.tm.extension_opcode;
3892 i.tm.extension_opcode = None;
3893}
3894
42164a71
L
3895
3896static int
3897check_hle (void)
3898{
3899 switch (i.tm.opcode_modifier.hleprefixok)
3900 {
3901 default:
3902 abort ();
82c2def5 3903 case HLEPrefixNone:
165de32a
L
3904 as_bad (_("invalid instruction `%s' after `%s'"),
3905 i.tm.name, i.hle_prefix);
42164a71 3906 return 0;
82c2def5 3907 case HLEPrefixLock:
42164a71
L
3908 if (i.prefix[LOCK_PREFIX])
3909 return 1;
165de32a 3910 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3911 return 0;
82c2def5 3912 case HLEPrefixAny:
42164a71 3913 return 1;
82c2def5 3914 case HLEPrefixRelease:
42164a71
L
3915 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3916 {
3917 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3918 i.tm.name);
3919 return 0;
3920 }
8dc0818e 3921 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
42164a71
L
3922 {
3923 as_bad (_("memory destination needed for instruction `%s'"
3924 " after `xrelease'"), i.tm.name);
3925 return 0;
3926 }
3927 return 1;
3928 }
3929}
3930
b6f8c7c4
L
3931/* Try the shortest encoding by shortening operand size. */
3932
3933static void
3934optimize_encoding (void)
3935{
a0a1771e 3936 unsigned int j;
b6f8c7c4
L
3937
3938 if (optimize_for_space
3939 && i.reg_operands == 1
3940 && i.imm_operands == 1
3941 && !i.types[1].bitfield.byte
3942 && i.op[0].imms->X_op == O_constant
3943 && fits_in_imm7 (i.op[0].imms->X_add_number)
3944 && ((i.tm.base_opcode == 0xa8
3945 && i.tm.extension_opcode == None)
3946 || (i.tm.base_opcode == 0xf6
3947 && i.tm.extension_opcode == 0x0)))
3948 {
3949 /* Optimize: -Os:
3950 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3951 */
3952 unsigned int base_regnum = i.op[1].regs->reg_num;
3953 if (flag_code == CODE_64BIT || base_regnum < 4)
3954 {
3955 i.types[1].bitfield.byte = 1;
3956 /* Ignore the suffix. */
3957 i.suffix = 0;
3958 if (base_regnum >= 4
3959 && !(i.op[1].regs->reg_flags & RegRex))
3960 {
3961 /* Handle SP, BP, SI and DI registers. */
3962 if (i.types[1].bitfield.word)
3963 j = 16;
3964 else if (i.types[1].bitfield.dword)
3965 j = 32;
3966 else
3967 j = 48;
3968 i.op[1].regs -= j;
3969 }
3970 }
3971 }
3972 else if (flag_code == CODE_64BIT
d3d50934
L
3973 && ((i.types[1].bitfield.qword
3974 && i.reg_operands == 1
b6f8c7c4
L
3975 && i.imm_operands == 1
3976 && i.op[0].imms->X_op == O_constant
507916b8 3977 && ((i.tm.base_opcode == 0xb8
b6f8c7c4
L
3978 && i.tm.extension_opcode == None
3979 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3980 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3981 && (((i.tm.base_opcode == 0x24
3982 || i.tm.base_opcode == 0xa8)
3983 && i.tm.extension_opcode == None)
3984 || (i.tm.base_opcode == 0x80
3985 && i.tm.extension_opcode == 0x4)
3986 || ((i.tm.base_opcode == 0xf6
507916b8 3987 || (i.tm.base_opcode | 1) == 0xc7)
b8364fa7
JB
3988 && i.tm.extension_opcode == 0x0)))
3989 || (fits_in_imm7 (i.op[0].imms->X_add_number)
3990 && i.tm.base_opcode == 0x83
3991 && i.tm.extension_opcode == 0x4)))
d3d50934
L
3992 || (i.types[0].bitfield.qword
3993 && ((i.reg_operands == 2
3994 && i.op[0].regs == i.op[1].regs
3995 && ((i.tm.base_opcode == 0x30
3996 || i.tm.base_opcode == 0x28)
3997 && i.tm.extension_opcode == None))
3998 || (i.reg_operands == 1
3999 && i.operands == 1
4000 && i.tm.base_opcode == 0x30
4001 && i.tm.extension_opcode == None)))))
b6f8c7c4
L
4002 {
4003 /* Optimize: -O:
4004 andq $imm31, %r64 -> andl $imm31, %r32
b8364fa7 4005 andq $imm7, %r64 -> andl $imm7, %r32
b6f8c7c4
L
4006 testq $imm31, %r64 -> testl $imm31, %r32
4007 xorq %r64, %r64 -> xorl %r32, %r32
4008 subq %r64, %r64 -> subl %r32, %r32
4009 movq $imm31, %r64 -> movl $imm31, %r32
4010 movq $imm32, %r64 -> movl $imm32, %r32
4011 */
4012 i.tm.opcode_modifier.norex64 = 1;
507916b8 4013 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
4014 {
4015 /* Handle
4016 movq $imm31, %r64 -> movl $imm31, %r32
4017 movq $imm32, %r64 -> movl $imm32, %r32
4018 */
4019 i.tm.operand_types[0].bitfield.imm32 = 1;
4020 i.tm.operand_types[0].bitfield.imm32s = 0;
4021 i.tm.operand_types[0].bitfield.imm64 = 0;
4022 i.types[0].bitfield.imm32 = 1;
4023 i.types[0].bitfield.imm32s = 0;
4024 i.types[0].bitfield.imm64 = 0;
4025 i.types[1].bitfield.dword = 1;
4026 i.types[1].bitfield.qword = 0;
507916b8 4027 if ((i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
4028 {
4029 /* Handle
4030 movq $imm31, %r64 -> movl $imm31, %r32
4031 */
507916b8 4032 i.tm.base_opcode = 0xb8;
b6f8c7c4 4033 i.tm.extension_opcode = None;
507916b8 4034 i.tm.opcode_modifier.w = 0;
b6f8c7c4
L
4035 i.tm.opcode_modifier.shortform = 1;
4036 i.tm.opcode_modifier.modrm = 0;
4037 }
4038 }
4039 }
5641ec01
JB
4040 else if (optimize > 1
4041 && !optimize_for_space
4042 && i.reg_operands == 2
4043 && i.op[0].regs == i.op[1].regs
4044 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4045 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4046 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4047 {
4048 /* Optimize: -O2:
4049 andb %rN, %rN -> testb %rN, %rN
4050 andw %rN, %rN -> testw %rN, %rN
4051 andq %rN, %rN -> testq %rN, %rN
4052 orb %rN, %rN -> testb %rN, %rN
4053 orw %rN, %rN -> testw %rN, %rN
4054 orq %rN, %rN -> testq %rN, %rN
4055
4056 and outside of 64-bit mode
4057
4058 andl %rN, %rN -> testl %rN, %rN
4059 orl %rN, %rN -> testl %rN, %rN
4060 */
4061 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4062 }
99112332 4063 else if (i.reg_operands == 3
b6f8c7c4
L
4064 && i.op[0].regs == i.op[1].regs
4065 && !i.types[2].bitfield.xmmword
4066 && (i.tm.opcode_modifier.vex
7a69eac3 4067 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 4068 && !i.rounding
e771e7c9 4069 && is_evex_encoding (&i.tm)
80c34c38 4070 && (i.vec_encoding != vex_encoding_evex
dd22218c 4071 || cpu_arch_isa_flags.bitfield.cpuavx512vl
80c34c38 4072 || i.tm.cpu_flags.bitfield.cpuavx512vl
7091c612 4073 || (i.tm.operand_types[2].bitfield.zmmword
dd22218c 4074 && i.types[2].bitfield.ymmword))))
b6f8c7c4
L
4075 && ((i.tm.base_opcode == 0x55
4076 || i.tm.base_opcode == 0x6655
4077 || i.tm.base_opcode == 0x66df
4078 || i.tm.base_opcode == 0x57
4079 || i.tm.base_opcode == 0x6657
8305403a
L
4080 || i.tm.base_opcode == 0x66ef
4081 || i.tm.base_opcode == 0x66f8
4082 || i.tm.base_opcode == 0x66f9
4083 || i.tm.base_opcode == 0x66fa
1424ad86
JB
4084 || i.tm.base_opcode == 0x66fb
4085 || i.tm.base_opcode == 0x42
4086 || i.tm.base_opcode == 0x6642
4087 || i.tm.base_opcode == 0x47
4088 || i.tm.base_opcode == 0x6647)
b6f8c7c4
L
4089 && i.tm.extension_opcode == None))
4090 {
99112332 4091 /* Optimize: -O1:
8305403a
L
4092 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4093 vpsubq and vpsubw:
b6f8c7c4
L
4094 EVEX VOP %zmmM, %zmmM, %zmmN
4095 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4096 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4097 EVEX VOP %ymmM, %ymmM, %ymmN
4098 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4099 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4100 VEX VOP %ymmM, %ymmM, %ymmN
4101 -> VEX VOP %xmmM, %xmmM, %xmmN
4102 VOP, one of vpandn and vpxor:
4103 VEX VOP %ymmM, %ymmM, %ymmN
4104 -> VEX VOP %xmmM, %xmmM, %xmmN
4105 VOP, one of vpandnd and vpandnq:
4106 EVEX VOP %zmmM, %zmmM, %zmmN
4107 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4108 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4109 EVEX VOP %ymmM, %ymmM, %ymmN
4110 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4111 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4112 VOP, one of vpxord and vpxorq:
4113 EVEX VOP %zmmM, %zmmM, %zmmN
4114 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4115 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4116 EVEX VOP %ymmM, %ymmM, %ymmN
4117 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4118 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
1424ad86
JB
4119 VOP, one of kxord and kxorq:
4120 VEX VOP %kM, %kM, %kN
4121 -> VEX kxorw %kM, %kM, %kN
4122 VOP, one of kandnd and kandnq:
4123 VEX VOP %kM, %kM, %kN
4124 -> VEX kandnw %kM, %kM, %kN
b6f8c7c4 4125 */
e771e7c9 4126 if (is_evex_encoding (&i.tm))
b6f8c7c4 4127 {
7b1d7ca1 4128 if (i.vec_encoding != vex_encoding_evex)
b6f8c7c4
L
4129 {
4130 i.tm.opcode_modifier.vex = VEX128;
4131 i.tm.opcode_modifier.vexw = VEXW0;
4132 i.tm.opcode_modifier.evex = 0;
4133 }
7b1d7ca1 4134 else if (optimize > 1)
dd22218c
L
4135 i.tm.opcode_modifier.evex = EVEX128;
4136 else
4137 return;
b6f8c7c4 4138 }
1424ad86
JB
4139 else if (i.tm.operand_types[0].bitfield.regmask)
4140 {
4141 i.tm.base_opcode &= 0xff;
4142 i.tm.opcode_modifier.vexw = VEXW0;
4143 }
b6f8c7c4
L
4144 else
4145 i.tm.opcode_modifier.vex = VEX128;
4146
4147 if (i.tm.opcode_modifier.vex)
4148 for (j = 0; j < 3; j++)
4149 {
4150 i.types[j].bitfield.xmmword = 1;
4151 i.types[j].bitfield.ymmword = 0;
4152 }
4153 }
392a5972 4154 else if (i.vec_encoding != vex_encoding_evex
97ed31ae 4155 && !i.types[0].bitfield.zmmword
392a5972 4156 && !i.types[1].bitfield.zmmword
97ed31ae 4157 && !i.mask
a0a1771e 4158 && !i.broadcast
97ed31ae 4159 && is_evex_encoding (&i.tm)
392a5972
L
4160 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4161 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
a0a1771e
JB
4162 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4163 || (i.tm.base_opcode & ~4) == 0x66db
4164 || (i.tm.base_opcode & ~4) == 0x66eb)
97ed31ae
L
4165 && i.tm.extension_opcode == None)
4166 {
4167 /* Optimize: -O1:
4168 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4169 vmovdqu32 and vmovdqu64:
4170 EVEX VOP %xmmM, %xmmN
4171 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4172 EVEX VOP %ymmM, %ymmN
4173 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4174 EVEX VOP %xmmM, mem
4175 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4176 EVEX VOP %ymmM, mem
4177 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4178 EVEX VOP mem, %xmmN
4179 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4180 EVEX VOP mem, %ymmN
4181 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
a0a1771e
JB
4182 VOP, one of vpand, vpandn, vpor, vpxor:
4183 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4184 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4185 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4186 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4187 EVEX VOP{d,q} mem, %xmmM, %xmmN
4188 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4189 EVEX VOP{d,q} mem, %ymmM, %ymmN
4190 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
97ed31ae 4191 */
a0a1771e 4192 for (j = 0; j < i.operands; j++)
392a5972
L
4193 if (operand_type_check (i.types[j], disp)
4194 && i.op[j].disps->X_op == O_constant)
4195 {
4196 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4197 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4198 bytes, we choose EVEX Disp8 over VEX Disp32. */
4199 int evex_disp8, vex_disp8;
4200 unsigned int memshift = i.memshift;
4201 offsetT n = i.op[j].disps->X_add_number;
4202
4203 evex_disp8 = fits_in_disp8 (n);
4204 i.memshift = 0;
4205 vex_disp8 = fits_in_disp8 (n);
4206 if (evex_disp8 != vex_disp8)
4207 {
4208 i.memshift = memshift;
4209 return;
4210 }
4211
4212 i.types[j].bitfield.disp8 = vex_disp8;
4213 break;
4214 }
4215 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4216 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
97ed31ae
L
4217 i.tm.opcode_modifier.vex
4218 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4219 i.tm.opcode_modifier.vexw = VEXW0;
79dec6b7
JB
4220 /* VPAND, VPOR, and VPXOR are commutative. */
4221 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4222 i.tm.opcode_modifier.commutative = 1;
97ed31ae
L
4223 i.tm.opcode_modifier.evex = 0;
4224 i.tm.opcode_modifier.masking = 0;
a0a1771e 4225 i.tm.opcode_modifier.broadcast = 0;
97ed31ae
L
4226 i.tm.opcode_modifier.disp8memshift = 0;
4227 i.memshift = 0;
a0a1771e
JB
4228 if (j < i.operands)
4229 i.types[j].bitfield.disp8
4230 = fits_in_disp8 (i.op[j].disps->X_add_number);
97ed31ae 4231 }
b6f8c7c4
L
4232}
4233
252b5132
RH
4234/* This is the guts of the machine-dependent assembler. LINE points to a
4235 machine dependent instruction. This function is supposed to emit
4236 the frags/bytes it assembles to. */
4237
4238void
65da13b5 4239md_assemble (char *line)
252b5132 4240{
40fb9820 4241 unsigned int j;
83b16ac6 4242 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 4243 const insn_template *t;
252b5132 4244
47926f60 4245 /* Initialize globals. */
252b5132
RH
4246 memset (&i, '\0', sizeof (i));
4247 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 4248 i.reloc[j] = NO_RELOC;
252b5132
RH
4249 memset (disp_expressions, '\0', sizeof (disp_expressions));
4250 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 4251 save_stack_p = save_stack;
252b5132
RH
4252
4253 /* First parse an instruction mnemonic & call i386_operand for the operands.
4254 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 4255 start of a (possibly prefixed) mnemonic. */
252b5132 4256
29b0f896
AM
4257 line = parse_insn (line, mnemonic);
4258 if (line == NULL)
4259 return;
83b16ac6 4260 mnem_suffix = i.suffix;
252b5132 4261
29b0f896 4262 line = parse_operands (line, mnemonic);
ee86248c 4263 this_operand = -1;
8325cc63
JB
4264 xfree (i.memop1_string);
4265 i.memop1_string = NULL;
29b0f896
AM
4266 if (line == NULL)
4267 return;
252b5132 4268
29b0f896
AM
4269 /* Now we've parsed the mnemonic into a set of templates, and have the
4270 operands at hand. */
4271
4272 /* All intel opcodes have reversed operands except for "bound" and
4273 "enter". We also don't reverse intersegment "jmp" and "call"
4274 instructions with 2 immediate operands so that the immediate segment
050dfa73 4275 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
4276 if (intel_syntax
4277 && i.operands > 1
29b0f896 4278 && (strcmp (mnemonic, "bound") != 0)
30123838 4279 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
4280 && !(operand_type_check (i.types[0], imm)
4281 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4282 swap_operands ();
4283
ec56d5c0
JB
4284 /* The order of the immediates should be reversed
4285 for 2 immediates extrq and insertq instructions */
4286 if (i.imm_operands == 2
4287 && (strcmp (mnemonic, "extrq") == 0
4288 || strcmp (mnemonic, "insertq") == 0))
4289 swap_2_operands (0, 1);
4290
29b0f896
AM
4291 if (i.imm_operands)
4292 optimize_imm ();
4293
b300c311
L
4294 /* Don't optimize displacement for movabs since it only takes 64bit
4295 displacement. */
4296 if (i.disp_operands
a501d77e 4297 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4298 && (flag_code != CODE_64BIT
4299 || strcmp (mnemonic, "movabs") != 0))
4300 optimize_disp ();
29b0f896
AM
4301
4302 /* Next, we find a template that matches the given insn,
4303 making sure the overlap of the given operands types is consistent
4304 with the template operand types. */
252b5132 4305
83b16ac6 4306 if (!(t = match_template (mnem_suffix)))
29b0f896 4307 return;
252b5132 4308
7bab8ab5 4309 if (sse_check != check_none
81f8a913 4310 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4311 && !i.tm.cpu_flags.bitfield.cpuavx
daf50ae7
L
4312 && (i.tm.cpu_flags.bitfield.cpusse
4313 || i.tm.cpu_flags.bitfield.cpusse2
4314 || i.tm.cpu_flags.bitfield.cpusse3
4315 || i.tm.cpu_flags.bitfield.cpussse3
4316 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e
JB
4317 || i.tm.cpu_flags.bitfield.cpusse4_2
4318 || i.tm.cpu_flags.bitfield.cpupclmul
4319 || i.tm.cpu_flags.bitfield.cpuaes
4320 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4321 {
7bab8ab5 4322 (sse_check == check_warning
daf50ae7
L
4323 ? as_warn
4324 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4325 }
4326
321fd21e
L
4327 /* Zap movzx and movsx suffix. The suffix has been set from
4328 "word ptr" or "byte ptr" on the source operand in Intel syntax
4329 or extracted from mnemonic in AT&T syntax. But we'll use
4330 the destination register to choose the suffix for encoding. */
4331 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4332 {
321fd21e
L
4333 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4334 there is no suffix, the default will be byte extension. */
4335 if (i.reg_operands != 2
4336 && !i.suffix
7ab9ffdd 4337 && intel_syntax)
321fd21e
L
4338 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4339
4340 i.suffix = 0;
cd61ebfe 4341 }
24eab124 4342
40fb9820 4343 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4344 if (!add_prefix (FWAIT_OPCODE))
4345 return;
252b5132 4346
d5de92cf
L
4347 /* Check if REP prefix is OK. */
4348 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4349 {
4350 as_bad (_("invalid instruction `%s' after `%s'"),
4351 i.tm.name, i.rep_prefix);
4352 return;
4353 }
4354
c1ba0266
L
4355 /* Check for lock without a lockable instruction. Destination operand
4356 must be memory unless it is xchg (0x86). */
c32fa91d
L
4357 if (i.prefix[LOCK_PREFIX]
4358 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4359 || i.mem_operands == 0
4360 || (i.tm.base_opcode != 0x86
8dc0818e 4361 && !(i.flags[i.operands - 1] & Operand_Mem))))
c32fa91d
L
4362 {
4363 as_bad (_("expecting lockable instruction after `lock'"));
4364 return;
4365 }
4366
7a8655d2
JB
4367 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4368 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4369 {
4370 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4371 return;
4372 }
4373
42164a71 4374 /* Check if HLE prefix is OK. */
165de32a 4375 if (i.hle_prefix && !check_hle ())
42164a71
L
4376 return;
4377
7e8b059b
L
4378 /* Check BND prefix. */
4379 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4380 as_bad (_("expecting valid branch instruction after `bnd'"));
4381
04ef582a 4382 /* Check NOTRACK prefix. */
9fef80d6
L
4383 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4384 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4385
327e8c42
JB
4386 if (i.tm.cpu_flags.bitfield.cpumpx)
4387 {
4388 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4389 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4390 else if (flag_code != CODE_16BIT
4391 ? i.prefix[ADDR_PREFIX]
4392 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4393 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4394 }
7e8b059b
L
4395
4396 /* Insert BND prefix. */
76d3a78a
JB
4397 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4398 {
4399 if (!i.prefix[BND_PREFIX])
4400 add_prefix (BND_PREFIX_OPCODE);
4401 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4402 {
4403 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4404 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4405 }
4406 }
7e8b059b 4407
29b0f896 4408 /* Check string instruction segment overrides. */
40fb9820 4409 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
4410 {
4411 if (!check_string ())
5dd0794d 4412 return;
fc0763e6 4413 i.disp_operands = 0;
29b0f896 4414 }
5dd0794d 4415
b6f8c7c4
L
4416 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4417 optimize_encoding ();
4418
29b0f896
AM
4419 if (!process_suffix ())
4420 return;
e413e4e9 4421
bc0844ae
L
4422 /* Update operand types. */
4423 for (j = 0; j < i.operands; j++)
4424 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4425
29b0f896
AM
4426 /* Make still unresolved immediate matches conform to size of immediate
4427 given in i.suffix. */
4428 if (!finalize_imm ())
4429 return;
252b5132 4430
40fb9820 4431 if (i.types[0].bitfield.imm1)
29b0f896 4432 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4433
9afe6eb8
L
4434 /* We only need to check those implicit registers for instructions
4435 with 3 operands or less. */
4436 if (i.operands <= 3)
4437 for (j = 0; j < i.operands; j++)
4438 if (i.types[j].bitfield.inoutportreg
4439 || i.types[j].bitfield.shiftcount
1b54b8d7 4440 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
9afe6eb8 4441 i.reg_operands--;
40fb9820 4442
c0f3af97
L
4443 /* ImmExt should be processed after SSE2AVX. */
4444 if (!i.tm.opcode_modifier.sse2avx
4445 && i.tm.opcode_modifier.immext)
65da13b5 4446 process_immext ();
252b5132 4447
29b0f896
AM
4448 /* For insns with operands there are more diddles to do to the opcode. */
4449 if (i.operands)
4450 {
4451 if (!process_operands ())
4452 return;
4453 }
40fb9820 4454 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4455 {
4456 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4457 as_warn (_("translating to `%sp'"), i.tm.name);
4458 }
252b5132 4459
7a8655d2 4460 if (is_any_vex_encoding (&i.tm))
9e5e5283 4461 {
c1dc7af5 4462 if (!cpu_arch_flags.bitfield.cpui286)
9e5e5283 4463 {
c1dc7af5 4464 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
9e5e5283
L
4465 i.tm.name);
4466 return;
4467 }
c0f3af97 4468
9e5e5283
L
4469 if (i.tm.opcode_modifier.vex)
4470 build_vex_prefix (t);
4471 else
4472 build_evex_prefix ();
4473 }
43234a1e 4474
5dd85c99
SP
4475 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4476 instructions may define INT_OPCODE as well, so avoid this corner
4477 case for those instructions that use MODRM. */
4478 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4479 && !i.tm.opcode_modifier.modrm
4480 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4481 {
4482 i.tm.base_opcode = INT3_OPCODE;
4483 i.imm_operands = 0;
4484 }
252b5132 4485
40fb9820
L
4486 if ((i.tm.opcode_modifier.jump
4487 || i.tm.opcode_modifier.jumpbyte
4488 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
4489 && i.op[0].disps->X_op == O_constant)
4490 {
4491 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4492 the absolute address given by the constant. Since ix86 jumps and
4493 calls are pc relative, we need to generate a reloc. */
4494 i.op[0].disps->X_add_symbol = &abs_symbol;
4495 i.op[0].disps->X_op = O_symbol;
4496 }
252b5132 4497
40fb9820 4498 if (i.tm.opcode_modifier.rex64)
161a04f6 4499 i.rex |= REX_W;
252b5132 4500
29b0f896
AM
4501 /* For 8 bit registers we need an empty rex prefix. Also if the
4502 instruction already has a prefix, we need to convert old
4503 registers to new ones. */
773f551c 4504
dc821c5f 4505 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
29b0f896 4506 && (i.op[0].regs->reg_flags & RegRex64) != 0)
dc821c5f 4507 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
29b0f896 4508 && (i.op[1].regs->reg_flags & RegRex64) != 0)
dc821c5f
JB
4509 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4510 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
29b0f896
AM
4511 && i.rex != 0))
4512 {
4513 int x;
726c5dcd 4514
29b0f896
AM
4515 i.rex |= REX_OPCODE;
4516 for (x = 0; x < 2; x++)
4517 {
4518 /* Look for 8 bit operand that uses old registers. */
dc821c5f 4519 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
29b0f896 4520 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4521 {
29b0f896
AM
4522 /* In case it is "hi" register, give up. */
4523 if (i.op[x].regs->reg_num > 3)
a540244d 4524 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4525 "instruction requiring REX prefix."),
a540244d 4526 register_prefix, i.op[x].regs->reg_name);
773f551c 4527
29b0f896
AM
4528 /* Otherwise it is equivalent to the extended register.
4529 Since the encoding doesn't change this is merely
4530 cosmetic cleanup for debug output. */
4531
4532 i.op[x].regs = i.op[x].regs + 8;
773f551c 4533 }
29b0f896
AM
4534 }
4535 }
773f551c 4536
6b6b6807
L
4537 if (i.rex == 0 && i.rex_encoding)
4538 {
4539 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4540 that uses legacy register. If it is "hi" register, don't add
4541 the REX_OPCODE byte. */
4542 int x;
4543 for (x = 0; x < 2; x++)
4544 if (i.types[x].bitfield.reg
4545 && i.types[x].bitfield.byte
4546 && (i.op[x].regs->reg_flags & RegRex64) == 0
4547 && i.op[x].regs->reg_num > 3)
4548 {
4549 i.rex_encoding = FALSE;
4550 break;
4551 }
4552
4553 if (i.rex_encoding)
4554 i.rex = REX_OPCODE;
4555 }
4556
7ab9ffdd 4557 if (i.rex != 0)
29b0f896
AM
4558 add_prefix (REX_OPCODE | i.rex);
4559
4560 /* We are ready to output the insn. */
4561 output_insn ();
4562}
4563
4564static char *
e3bb37b5 4565parse_insn (char *line, char *mnemonic)
29b0f896
AM
4566{
4567 char *l = line;
4568 char *token_start = l;
4569 char *mnem_p;
5c6af06e 4570 int supported;
d3ce72d0 4571 const insn_template *t;
b6169b20 4572 char *dot_p = NULL;
29b0f896 4573
29b0f896
AM
4574 while (1)
4575 {
4576 mnem_p = mnemonic;
4577 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4578 {
b6169b20
L
4579 if (*mnem_p == '.')
4580 dot_p = mnem_p;
29b0f896
AM
4581 mnem_p++;
4582 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4583 {
29b0f896
AM
4584 as_bad (_("no such instruction: `%s'"), token_start);
4585 return NULL;
4586 }
4587 l++;
4588 }
4589 if (!is_space_char (*l)
4590 && *l != END_OF_INSN
e44823cf
JB
4591 && (intel_syntax
4592 || (*l != PREFIX_SEPARATOR
4593 && *l != ',')))
29b0f896
AM
4594 {
4595 as_bad (_("invalid character %s in mnemonic"),
4596 output_invalid (*l));
4597 return NULL;
4598 }
4599 if (token_start == l)
4600 {
e44823cf 4601 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4602 as_bad (_("expecting prefix; got nothing"));
4603 else
4604 as_bad (_("expecting mnemonic; got nothing"));
4605 return NULL;
4606 }
45288df1 4607
29b0f896 4608 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4609 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4610
29b0f896
AM
4611 if (*l != END_OF_INSN
4612 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4613 && current_templates
40fb9820 4614 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4615 {
c6fb90c8 4616 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4617 {
4618 as_bad ((flag_code != CODE_64BIT
4619 ? _("`%s' is only supported in 64-bit mode")
4620 : _("`%s' is not supported in 64-bit mode")),
4621 current_templates->start->name);
4622 return NULL;
4623 }
29b0f896
AM
4624 /* If we are in 16-bit mode, do not allow addr16 or data16.
4625 Similarly, in 32-bit mode, do not allow addr32 or data32. */
673fe0f0
JB
4626 if ((current_templates->start->opcode_modifier.size == SIZE16
4627 || current_templates->start->opcode_modifier.size == SIZE32)
29b0f896 4628 && flag_code != CODE_64BIT
673fe0f0 4629 && ((current_templates->start->opcode_modifier.size == SIZE32)
29b0f896
AM
4630 ^ (flag_code == CODE_16BIT)))
4631 {
4632 as_bad (_("redundant %s prefix"),
4633 current_templates->start->name);
4634 return NULL;
45288df1 4635 }
86fa6981 4636 if (current_templates->start->opcode_length == 0)
29b0f896 4637 {
86fa6981
L
4638 /* Handle pseudo prefixes. */
4639 switch (current_templates->start->base_opcode)
4640 {
4641 case 0x0:
4642 /* {disp8} */
4643 i.disp_encoding = disp_encoding_8bit;
4644 break;
4645 case 0x1:
4646 /* {disp32} */
4647 i.disp_encoding = disp_encoding_32bit;
4648 break;
4649 case 0x2:
4650 /* {load} */
4651 i.dir_encoding = dir_encoding_load;
4652 break;
4653 case 0x3:
4654 /* {store} */
4655 i.dir_encoding = dir_encoding_store;
4656 break;
4657 case 0x4:
4658 /* {vex2} */
4659 i.vec_encoding = vex_encoding_vex2;
4660 break;
4661 case 0x5:
4662 /* {vex3} */
4663 i.vec_encoding = vex_encoding_vex3;
4664 break;
4665 case 0x6:
4666 /* {evex} */
4667 i.vec_encoding = vex_encoding_evex;
4668 break;
6b6b6807
L
4669 case 0x7:
4670 /* {rex} */
4671 i.rex_encoding = TRUE;
4672 break;
b6f8c7c4
L
4673 case 0x8:
4674 /* {nooptimize} */
4675 i.no_optimize = TRUE;
4676 break;
86fa6981
L
4677 default:
4678 abort ();
4679 }
4680 }
4681 else
4682 {
4683 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4684 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4685 {
4e9ac44a
L
4686 case PREFIX_EXIST:
4687 return NULL;
4688 case PREFIX_DS:
d777820b 4689 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4690 i.notrack_prefix = current_templates->start->name;
4691 break;
4692 case PREFIX_REP:
4693 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4694 i.hle_prefix = current_templates->start->name;
4695 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4696 i.bnd_prefix = current_templates->start->name;
4697 else
4698 i.rep_prefix = current_templates->start->name;
4699 break;
4700 default:
4701 break;
86fa6981 4702 }
29b0f896
AM
4703 }
4704 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4705 token_start = ++l;
4706 }
4707 else
4708 break;
4709 }
45288df1 4710
30a55f88 4711 if (!current_templates)
b6169b20 4712 {
07d5e953
JB
4713 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4714 Check if we should swap operand or force 32bit displacement in
f8a5c266 4715 encoding. */
30a55f88 4716 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
64c49ab3 4717 i.dir_encoding = dir_encoding_swap;
8d63c93e 4718 else if (mnem_p - 3 == dot_p
a501d77e
L
4719 && dot_p[1] == 'd'
4720 && dot_p[2] == '8')
4721 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4722 else if (mnem_p - 4 == dot_p
f8a5c266
L
4723 && dot_p[1] == 'd'
4724 && dot_p[2] == '3'
4725 && dot_p[3] == '2')
a501d77e 4726 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4727 else
4728 goto check_suffix;
4729 mnem_p = dot_p;
4730 *dot_p = '\0';
d3ce72d0 4731 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4732 }
4733
29b0f896
AM
4734 if (!current_templates)
4735 {
b6169b20 4736check_suffix:
1c529385 4737 if (mnem_p > mnemonic)
29b0f896 4738 {
1c529385
LH
4739 /* See if we can get a match by trimming off a suffix. */
4740 switch (mnem_p[-1])
29b0f896 4741 {
1c529385
LH
4742 case WORD_MNEM_SUFFIX:
4743 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
29b0f896
AM
4744 i.suffix = SHORT_MNEM_SUFFIX;
4745 else
1c529385
LH
4746 /* Fall through. */
4747 case BYTE_MNEM_SUFFIX:
4748 case QWORD_MNEM_SUFFIX:
4749 i.suffix = mnem_p[-1];
29b0f896 4750 mnem_p[-1] = '\0';
d3ce72d0 4751 current_templates = (const templates *) hash_find (op_hash,
1c529385
LH
4752 mnemonic);
4753 break;
4754 case SHORT_MNEM_SUFFIX:
4755 case LONG_MNEM_SUFFIX:
4756 if (!intel_syntax)
4757 {
4758 i.suffix = mnem_p[-1];
4759 mnem_p[-1] = '\0';
4760 current_templates = (const templates *) hash_find (op_hash,
4761 mnemonic);
4762 }
4763 break;
4764
4765 /* Intel Syntax. */
4766 case 'd':
4767 if (intel_syntax)
4768 {
4769 if (intel_float_operand (mnemonic) == 1)
4770 i.suffix = SHORT_MNEM_SUFFIX;
4771 else
4772 i.suffix = LONG_MNEM_SUFFIX;
4773 mnem_p[-1] = '\0';
4774 current_templates = (const templates *) hash_find (op_hash,
4775 mnemonic);
4776 }
4777 break;
29b0f896 4778 }
29b0f896 4779 }
1c529385 4780
29b0f896
AM
4781 if (!current_templates)
4782 {
4783 as_bad (_("no such instruction: `%s'"), token_start);
4784 return NULL;
4785 }
4786 }
252b5132 4787
40fb9820
L
4788 if (current_templates->start->opcode_modifier.jump
4789 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
4790 {
4791 /* Check for a branch hint. We allow ",pt" and ",pn" for
4792 predict taken and predict not taken respectively.
4793 I'm not sure that branch hints actually do anything on loop
4794 and jcxz insns (JumpByte) for current Pentium4 chips. They
4795 may work in the future and it doesn't hurt to accept them
4796 now. */
4797 if (l[0] == ',' && l[1] == 'p')
4798 {
4799 if (l[2] == 't')
4800 {
4801 if (!add_prefix (DS_PREFIX_OPCODE))
4802 return NULL;
4803 l += 3;
4804 }
4805 else if (l[2] == 'n')
4806 {
4807 if (!add_prefix (CS_PREFIX_OPCODE))
4808 return NULL;
4809 l += 3;
4810 }
4811 }
4812 }
4813 /* Any other comma loses. */
4814 if (*l == ',')
4815 {
4816 as_bad (_("invalid character %s in mnemonic"),
4817 output_invalid (*l));
4818 return NULL;
4819 }
252b5132 4820
29b0f896 4821 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4822 supported = 0;
4823 for (t = current_templates->start; t < current_templates->end; ++t)
4824 {
c0f3af97
L
4825 supported |= cpu_flags_match (t);
4826 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4827 {
4828 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4829 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4830
548d0ee6
JB
4831 return l;
4832 }
29b0f896 4833 }
3629bb00 4834
548d0ee6
JB
4835 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4836 as_bad (flag_code == CODE_64BIT
4837 ? _("`%s' is not supported in 64-bit mode")
4838 : _("`%s' is only supported in 64-bit mode"),
4839 current_templates->start->name);
4840 else
4841 as_bad (_("`%s' is not supported on `%s%s'"),
4842 current_templates->start->name,
4843 cpu_arch_name ? cpu_arch_name : default_arch,
4844 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4845
548d0ee6 4846 return NULL;
29b0f896 4847}
252b5132 4848
29b0f896 4849static char *
e3bb37b5 4850parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4851{
4852 char *token_start;
3138f287 4853
29b0f896
AM
4854 /* 1 if operand is pending after ','. */
4855 unsigned int expecting_operand = 0;
252b5132 4856
29b0f896
AM
4857 /* Non-zero if operand parens not balanced. */
4858 unsigned int paren_not_balanced;
4859
4860 while (*l != END_OF_INSN)
4861 {
4862 /* Skip optional white space before operand. */
4863 if (is_space_char (*l))
4864 ++l;
d02603dc 4865 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4866 {
4867 as_bad (_("invalid character %s before operand %d"),
4868 output_invalid (*l),
4869 i.operands + 1);
4870 return NULL;
4871 }
d02603dc 4872 token_start = l; /* After white space. */
29b0f896
AM
4873 paren_not_balanced = 0;
4874 while (paren_not_balanced || *l != ',')
4875 {
4876 if (*l == END_OF_INSN)
4877 {
4878 if (paren_not_balanced)
4879 {
4880 if (!intel_syntax)
4881 as_bad (_("unbalanced parenthesis in operand %d."),
4882 i.operands + 1);
4883 else
4884 as_bad (_("unbalanced brackets in operand %d."),
4885 i.operands + 1);
4886 return NULL;
4887 }
4888 else
4889 break; /* we are done */
4890 }
d02603dc 4891 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4892 {
4893 as_bad (_("invalid character %s in operand %d"),
4894 output_invalid (*l),
4895 i.operands + 1);
4896 return NULL;
4897 }
4898 if (!intel_syntax)
4899 {
4900 if (*l == '(')
4901 ++paren_not_balanced;
4902 if (*l == ')')
4903 --paren_not_balanced;
4904 }
4905 else
4906 {
4907 if (*l == '[')
4908 ++paren_not_balanced;
4909 if (*l == ']')
4910 --paren_not_balanced;
4911 }
4912 l++;
4913 }
4914 if (l != token_start)
4915 { /* Yes, we've read in another operand. */
4916 unsigned int operand_ok;
4917 this_operand = i.operands++;
4918 if (i.operands > MAX_OPERANDS)
4919 {
4920 as_bad (_("spurious operands; (%d operands/instruction max)"),
4921 MAX_OPERANDS);
4922 return NULL;
4923 }
9d46ce34 4924 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4925 /* Now parse operand adding info to 'i' as we go along. */
4926 END_STRING_AND_SAVE (l);
4927
1286ab78
L
4928 if (i.mem_operands > 1)
4929 {
4930 as_bad (_("too many memory references for `%s'"),
4931 mnemonic);
4932 return 0;
4933 }
4934
29b0f896
AM
4935 if (intel_syntax)
4936 operand_ok =
4937 i386_intel_operand (token_start,
4938 intel_float_operand (mnemonic));
4939 else
a7619375 4940 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4941
4942 RESTORE_END_STRING (l);
4943 if (!operand_ok)
4944 return NULL;
4945 }
4946 else
4947 {
4948 if (expecting_operand)
4949 {
4950 expecting_operand_after_comma:
4951 as_bad (_("expecting operand after ','; got nothing"));
4952 return NULL;
4953 }
4954 if (*l == ',')
4955 {
4956 as_bad (_("expecting operand before ','; got nothing"));
4957 return NULL;
4958 }
4959 }
7f3f1ea2 4960
29b0f896
AM
4961 /* Now *l must be either ',' or END_OF_INSN. */
4962 if (*l == ',')
4963 {
4964 if (*++l == END_OF_INSN)
4965 {
4966 /* Just skip it, if it's \n complain. */
4967 goto expecting_operand_after_comma;
4968 }
4969 expecting_operand = 1;
4970 }
4971 }
4972 return l;
4973}
7f3f1ea2 4974
050dfa73 4975static void
4d456e3d 4976swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4977{
4978 union i386_op temp_op;
40fb9820 4979 i386_operand_type temp_type;
c48dadc9 4980 unsigned int temp_flags;
050dfa73 4981 enum bfd_reloc_code_real temp_reloc;
4eed87de 4982
050dfa73
MM
4983 temp_type = i.types[xchg2];
4984 i.types[xchg2] = i.types[xchg1];
4985 i.types[xchg1] = temp_type;
c48dadc9
JB
4986
4987 temp_flags = i.flags[xchg2];
4988 i.flags[xchg2] = i.flags[xchg1];
4989 i.flags[xchg1] = temp_flags;
4990
050dfa73
MM
4991 temp_op = i.op[xchg2];
4992 i.op[xchg2] = i.op[xchg1];
4993 i.op[xchg1] = temp_op;
c48dadc9 4994
050dfa73
MM
4995 temp_reloc = i.reloc[xchg2];
4996 i.reloc[xchg2] = i.reloc[xchg1];
4997 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4998
4999 if (i.mask)
5000 {
5001 if (i.mask->operand == xchg1)
5002 i.mask->operand = xchg2;
5003 else if (i.mask->operand == xchg2)
5004 i.mask->operand = xchg1;
5005 }
5006 if (i.broadcast)
5007 {
5008 if (i.broadcast->operand == xchg1)
5009 i.broadcast->operand = xchg2;
5010 else if (i.broadcast->operand == xchg2)
5011 i.broadcast->operand = xchg1;
5012 }
5013 if (i.rounding)
5014 {
5015 if (i.rounding->operand == xchg1)
5016 i.rounding->operand = xchg2;
5017 else if (i.rounding->operand == xchg2)
5018 i.rounding->operand = xchg1;
5019 }
050dfa73
MM
5020}
5021
29b0f896 5022static void
e3bb37b5 5023swap_operands (void)
29b0f896 5024{
b7c61d9a 5025 switch (i.operands)
050dfa73 5026 {
c0f3af97 5027 case 5:
b7c61d9a 5028 case 4:
4d456e3d 5029 swap_2_operands (1, i.operands - 2);
1a0670f3 5030 /* Fall through. */
b7c61d9a
L
5031 case 3:
5032 case 2:
4d456e3d 5033 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
5034 break;
5035 default:
5036 abort ();
29b0f896 5037 }
29b0f896
AM
5038
5039 if (i.mem_operands == 2)
5040 {
5041 const seg_entry *temp_seg;
5042 temp_seg = i.seg[0];
5043 i.seg[0] = i.seg[1];
5044 i.seg[1] = temp_seg;
5045 }
5046}
252b5132 5047
29b0f896
AM
5048/* Try to ensure constant immediates are represented in the smallest
5049 opcode possible. */
5050static void
e3bb37b5 5051optimize_imm (void)
29b0f896
AM
5052{
5053 char guess_suffix = 0;
5054 int op;
252b5132 5055
29b0f896
AM
5056 if (i.suffix)
5057 guess_suffix = i.suffix;
5058 else if (i.reg_operands)
5059 {
5060 /* Figure out a suffix from the last register operand specified.
5061 We can't do this properly yet, ie. excluding InOutPortReg,
5062 but the following works for instructions with immediates.
5063 In any case, we can't set i.suffix yet. */
5064 for (op = i.operands; --op >= 0;)
dc821c5f 5065 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
7ab9ffdd 5066 {
40fb9820
L
5067 guess_suffix = BYTE_MNEM_SUFFIX;
5068 break;
5069 }
dc821c5f 5070 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
252b5132 5071 {
40fb9820
L
5072 guess_suffix = WORD_MNEM_SUFFIX;
5073 break;
5074 }
dc821c5f 5075 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
40fb9820
L
5076 {
5077 guess_suffix = LONG_MNEM_SUFFIX;
5078 break;
5079 }
dc821c5f 5080 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
40fb9820
L
5081 {
5082 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 5083 break;
252b5132 5084 }
29b0f896
AM
5085 }
5086 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5087 guess_suffix = WORD_MNEM_SUFFIX;
5088
5089 for (op = i.operands; --op >= 0;)
40fb9820 5090 if (operand_type_check (i.types[op], imm))
29b0f896
AM
5091 {
5092 switch (i.op[op].imms->X_op)
252b5132 5093 {
29b0f896
AM
5094 case O_constant:
5095 /* If a suffix is given, this operand may be shortened. */
5096 switch (guess_suffix)
252b5132 5097 {
29b0f896 5098 case LONG_MNEM_SUFFIX:
40fb9820
L
5099 i.types[op].bitfield.imm32 = 1;
5100 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5101 break;
5102 case WORD_MNEM_SUFFIX:
40fb9820
L
5103 i.types[op].bitfield.imm16 = 1;
5104 i.types[op].bitfield.imm32 = 1;
5105 i.types[op].bitfield.imm32s = 1;
5106 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5107 break;
5108 case BYTE_MNEM_SUFFIX:
40fb9820
L
5109 i.types[op].bitfield.imm8 = 1;
5110 i.types[op].bitfield.imm8s = 1;
5111 i.types[op].bitfield.imm16 = 1;
5112 i.types[op].bitfield.imm32 = 1;
5113 i.types[op].bitfield.imm32s = 1;
5114 i.types[op].bitfield.imm64 = 1;
29b0f896 5115 break;
252b5132 5116 }
252b5132 5117
29b0f896
AM
5118 /* If this operand is at most 16 bits, convert it
5119 to a signed 16 bit number before trying to see
5120 whether it will fit in an even smaller size.
5121 This allows a 16-bit operand such as $0xffe0 to
5122 be recognised as within Imm8S range. */
40fb9820 5123 if ((i.types[op].bitfield.imm16)
29b0f896 5124 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 5125 {
29b0f896
AM
5126 i.op[op].imms->X_add_number =
5127 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5128 }
a28def75
L
5129#ifdef BFD64
5130 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 5131 if ((i.types[op].bitfield.imm32)
29b0f896
AM
5132 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5133 == 0))
5134 {
5135 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5136 ^ ((offsetT) 1 << 31))
5137 - ((offsetT) 1 << 31));
5138 }
a28def75 5139#endif
40fb9820 5140 i.types[op]
c6fb90c8
L
5141 = operand_type_or (i.types[op],
5142 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 5143
29b0f896
AM
5144 /* We must avoid matching of Imm32 templates when 64bit
5145 only immediate is available. */
5146 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 5147 i.types[op].bitfield.imm32 = 0;
29b0f896 5148 break;
252b5132 5149
29b0f896
AM
5150 case O_absent:
5151 case O_register:
5152 abort ();
5153
5154 /* Symbols and expressions. */
5155 default:
9cd96992
JB
5156 /* Convert symbolic operand to proper sizes for matching, but don't
5157 prevent matching a set of insns that only supports sizes other
5158 than those matching the insn suffix. */
5159 {
40fb9820 5160 i386_operand_type mask, allowed;
d3ce72d0 5161 const insn_template *t;
9cd96992 5162
0dfbf9d7
L
5163 operand_type_set (&mask, 0);
5164 operand_type_set (&allowed, 0);
40fb9820 5165
4eed87de
AM
5166 for (t = current_templates->start;
5167 t < current_templates->end;
5168 ++t)
c6fb90c8
L
5169 allowed = operand_type_or (allowed,
5170 t->operand_types[op]);
9cd96992
JB
5171 switch (guess_suffix)
5172 {
5173 case QWORD_MNEM_SUFFIX:
40fb9820
L
5174 mask.bitfield.imm64 = 1;
5175 mask.bitfield.imm32s = 1;
9cd96992
JB
5176 break;
5177 case LONG_MNEM_SUFFIX:
40fb9820 5178 mask.bitfield.imm32 = 1;
9cd96992
JB
5179 break;
5180 case WORD_MNEM_SUFFIX:
40fb9820 5181 mask.bitfield.imm16 = 1;
9cd96992
JB
5182 break;
5183 case BYTE_MNEM_SUFFIX:
40fb9820 5184 mask.bitfield.imm8 = 1;
9cd96992
JB
5185 break;
5186 default:
9cd96992
JB
5187 break;
5188 }
c6fb90c8 5189 allowed = operand_type_and (mask, allowed);
0dfbf9d7 5190 if (!operand_type_all_zero (&allowed))
c6fb90c8 5191 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 5192 }
29b0f896 5193 break;
252b5132 5194 }
29b0f896
AM
5195 }
5196}
47926f60 5197
29b0f896
AM
5198/* Try to use the smallest displacement type too. */
5199static void
e3bb37b5 5200optimize_disp (void)
29b0f896
AM
5201{
5202 int op;
3e73aa7c 5203
29b0f896 5204 for (op = i.operands; --op >= 0;)
40fb9820 5205 if (operand_type_check (i.types[op], disp))
252b5132 5206 {
b300c311 5207 if (i.op[op].disps->X_op == O_constant)
252b5132 5208 {
91d6fa6a 5209 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 5210
40fb9820 5211 if (i.types[op].bitfield.disp16
91d6fa6a 5212 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
5213 {
5214 /* If this operand is at most 16 bits, convert
5215 to a signed 16 bit number and don't use 64bit
5216 displacement. */
91d6fa6a 5217 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 5218 i.types[op].bitfield.disp64 = 0;
b300c311 5219 }
a28def75
L
5220#ifdef BFD64
5221 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 5222 if (i.types[op].bitfield.disp32
91d6fa6a 5223 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
5224 {
5225 /* If this operand is at most 32 bits, convert
5226 to a signed 32 bit number and don't use 64bit
5227 displacement. */
91d6fa6a
NC
5228 op_disp &= (((offsetT) 2 << 31) - 1);
5229 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 5230 i.types[op].bitfield.disp64 = 0;
b300c311 5231 }
a28def75 5232#endif
91d6fa6a 5233 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 5234 {
40fb9820
L
5235 i.types[op].bitfield.disp8 = 0;
5236 i.types[op].bitfield.disp16 = 0;
5237 i.types[op].bitfield.disp32 = 0;
5238 i.types[op].bitfield.disp32s = 0;
5239 i.types[op].bitfield.disp64 = 0;
b300c311
L
5240 i.op[op].disps = 0;
5241 i.disp_operands--;
5242 }
5243 else if (flag_code == CODE_64BIT)
5244 {
91d6fa6a 5245 if (fits_in_signed_long (op_disp))
28a9d8f5 5246 {
40fb9820
L
5247 i.types[op].bitfield.disp64 = 0;
5248 i.types[op].bitfield.disp32s = 1;
28a9d8f5 5249 }
0e1147d9 5250 if (i.prefix[ADDR_PREFIX]
91d6fa6a 5251 && fits_in_unsigned_long (op_disp))
40fb9820 5252 i.types[op].bitfield.disp32 = 1;
b300c311 5253 }
40fb9820
L
5254 if ((i.types[op].bitfield.disp32
5255 || i.types[op].bitfield.disp32s
5256 || i.types[op].bitfield.disp16)
b5014f7a 5257 && fits_in_disp8 (op_disp))
40fb9820 5258 i.types[op].bitfield.disp8 = 1;
252b5132 5259 }
67a4f2b7
AO
5260 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5261 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5262 {
5263 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5264 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
5265 i.types[op].bitfield.disp8 = 0;
5266 i.types[op].bitfield.disp16 = 0;
5267 i.types[op].bitfield.disp32 = 0;
5268 i.types[op].bitfield.disp32s = 0;
5269 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
5270 }
5271 else
b300c311 5272 /* We only support 64bit displacement on constants. */
40fb9820 5273 i.types[op].bitfield.disp64 = 0;
252b5132 5274 }
29b0f896
AM
5275}
5276
4a1b91ea
L
5277/* Return 1 if there is a match in broadcast bytes between operand
5278 GIVEN and instruction template T. */
5279
5280static INLINE int
5281match_broadcast_size (const insn_template *t, unsigned int given)
5282{
5283 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5284 && i.types[given].bitfield.byte)
5285 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5286 && i.types[given].bitfield.word)
5287 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5288 && i.types[given].bitfield.dword)
5289 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5290 && i.types[given].bitfield.qword));
5291}
5292
6c30d220
L
5293/* Check if operands are valid for the instruction. */
5294
5295static int
5296check_VecOperands (const insn_template *t)
5297{
43234a1e 5298 unsigned int op;
e2195274
JB
5299 i386_cpu_flags cpu;
5300 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5301
5302 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5303 any one operand are implicity requiring AVX512VL support if the actual
5304 operand size is YMMword or XMMword. Since this function runs after
5305 template matching, there's no need to check for YMMword/XMMword in
5306 the template. */
5307 cpu = cpu_flags_and (t->cpu_flags, avx512);
5308 if (!cpu_flags_all_zero (&cpu)
5309 && !t->cpu_flags.bitfield.cpuavx512vl
5310 && !cpu_arch_flags.bitfield.cpuavx512vl)
5311 {
5312 for (op = 0; op < t->operands; ++op)
5313 {
5314 if (t->operand_types[op].bitfield.zmmword
5315 && (i.types[op].bitfield.ymmword
5316 || i.types[op].bitfield.xmmword))
5317 {
5318 i.error = unsupported;
5319 return 1;
5320 }
5321 }
5322 }
43234a1e 5323
6c30d220
L
5324 /* Without VSIB byte, we can't have a vector register for index. */
5325 if (!t->opcode_modifier.vecsib
5326 && i.index_reg
1b54b8d7
JB
5327 && (i.index_reg->reg_type.bitfield.xmmword
5328 || i.index_reg->reg_type.bitfield.ymmword
5329 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5330 {
5331 i.error = unsupported_vector_index_register;
5332 return 1;
5333 }
5334
ad8ecc81
MZ
5335 /* Check if default mask is allowed. */
5336 if (t->opcode_modifier.nodefmask
5337 && (!i.mask || i.mask->mask->reg_num == 0))
5338 {
5339 i.error = no_default_mask;
5340 return 1;
5341 }
5342
7bab8ab5
JB
5343 /* For VSIB byte, we need a vector register for index, and all vector
5344 registers must be distinct. */
5345 if (t->opcode_modifier.vecsib)
5346 {
5347 if (!i.index_reg
6c30d220 5348 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 5349 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 5350 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 5351 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 5352 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 5353 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5354 {
5355 i.error = invalid_vsib_address;
5356 return 1;
5357 }
5358
43234a1e
L
5359 gas_assert (i.reg_operands == 2 || i.mask);
5360 if (i.reg_operands == 2 && !i.mask)
5361 {
1b54b8d7
JB
5362 gas_assert (i.types[0].bitfield.regsimd);
5363 gas_assert (i.types[0].bitfield.xmmword
5364 || i.types[0].bitfield.ymmword);
5365 gas_assert (i.types[2].bitfield.regsimd);
5366 gas_assert (i.types[2].bitfield.xmmword
5367 || i.types[2].bitfield.ymmword);
43234a1e
L
5368 if (operand_check == check_none)
5369 return 0;
5370 if (register_number (i.op[0].regs)
5371 != register_number (i.index_reg)
5372 && register_number (i.op[2].regs)
5373 != register_number (i.index_reg)
5374 && register_number (i.op[0].regs)
5375 != register_number (i.op[2].regs))
5376 return 0;
5377 if (operand_check == check_error)
5378 {
5379 i.error = invalid_vector_register_set;
5380 return 1;
5381 }
5382 as_warn (_("mask, index, and destination registers should be distinct"));
5383 }
8444f82a
MZ
5384 else if (i.reg_operands == 1 && i.mask)
5385 {
1b54b8d7
JB
5386 if (i.types[1].bitfield.regsimd
5387 && (i.types[1].bitfield.xmmword
5388 || i.types[1].bitfield.ymmword
5389 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5390 && (register_number (i.op[1].regs)
5391 == register_number (i.index_reg)))
5392 {
5393 if (operand_check == check_error)
5394 {
5395 i.error = invalid_vector_register_set;
5396 return 1;
5397 }
5398 if (operand_check != check_none)
5399 as_warn (_("index and destination registers should be distinct"));
5400 }
5401 }
43234a1e 5402 }
7bab8ab5 5403
43234a1e
L
5404 /* Check if broadcast is supported by the instruction and is applied
5405 to the memory operand. */
5406 if (i.broadcast)
5407 {
8e6e0792 5408 i386_operand_type type, overlap;
43234a1e
L
5409
5410 /* Check if specified broadcast is supported in this instruction,
4a1b91ea 5411 and its broadcast bytes match the memory operand. */
32546502 5412 op = i.broadcast->operand;
8e6e0792 5413 if (!t->opcode_modifier.broadcast
c48dadc9 5414 || !(i.flags[op] & Operand_Mem)
c39e5b26 5415 || (!i.types[op].bitfield.unspecified
4a1b91ea 5416 && !match_broadcast_size (t, op)))
43234a1e
L
5417 {
5418 bad_broadcast:
5419 i.error = unsupported_broadcast;
5420 return 1;
5421 }
8e6e0792 5422
4a1b91ea
L
5423 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5424 * i.broadcast->type);
8e6e0792 5425 operand_type_set (&type, 0);
4a1b91ea 5426 switch (i.broadcast->bytes)
8e6e0792 5427 {
4a1b91ea
L
5428 case 2:
5429 type.bitfield.word = 1;
5430 break;
5431 case 4:
5432 type.bitfield.dword = 1;
5433 break;
8e6e0792
JB
5434 case 8:
5435 type.bitfield.qword = 1;
5436 break;
5437 case 16:
5438 type.bitfield.xmmword = 1;
5439 break;
5440 case 32:
5441 type.bitfield.ymmword = 1;
5442 break;
5443 case 64:
5444 type.bitfield.zmmword = 1;
5445 break;
5446 default:
5447 goto bad_broadcast;
5448 }
5449
5450 overlap = operand_type_and (type, t->operand_types[op]);
5451 if (operand_type_all_zero (&overlap))
5452 goto bad_broadcast;
5453
5454 if (t->opcode_modifier.checkregsize)
5455 {
5456 unsigned int j;
5457
e2195274 5458 type.bitfield.baseindex = 1;
8e6e0792
JB
5459 for (j = 0; j < i.operands; ++j)
5460 {
5461 if (j != op
5462 && !operand_type_register_match(i.types[j],
5463 t->operand_types[j],
5464 type,
5465 t->operand_types[op]))
5466 goto bad_broadcast;
5467 }
5468 }
43234a1e
L
5469 }
5470 /* If broadcast is supported in this instruction, we need to check if
5471 operand of one-element size isn't specified without broadcast. */
5472 else if (t->opcode_modifier.broadcast && i.mem_operands)
5473 {
5474 /* Find memory operand. */
5475 for (op = 0; op < i.operands; op++)
8dc0818e 5476 if (i.flags[op] & Operand_Mem)
43234a1e
L
5477 break;
5478 gas_assert (op < i.operands);
5479 /* Check size of the memory operand. */
4a1b91ea 5480 if (match_broadcast_size (t, op))
43234a1e
L
5481 {
5482 i.error = broadcast_needed;
5483 return 1;
5484 }
5485 }
c39e5b26
JB
5486 else
5487 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5488
5489 /* Check if requested masking is supported. */
ae2387fe 5490 if (i.mask)
43234a1e 5491 {
ae2387fe
JB
5492 switch (t->opcode_modifier.masking)
5493 {
5494 case BOTH_MASKING:
5495 break;
5496 case MERGING_MASKING:
5497 if (i.mask->zeroing)
5498 {
5499 case 0:
5500 i.error = unsupported_masking;
5501 return 1;
5502 }
5503 break;
5504 case DYNAMIC_MASKING:
5505 /* Memory destinations allow only merging masking. */
5506 if (i.mask->zeroing && i.mem_operands)
5507 {
5508 /* Find memory operand. */
5509 for (op = 0; op < i.operands; op++)
c48dadc9 5510 if (i.flags[op] & Operand_Mem)
ae2387fe
JB
5511 break;
5512 gas_assert (op < i.operands);
5513 if (op == i.operands - 1)
5514 {
5515 i.error = unsupported_masking;
5516 return 1;
5517 }
5518 }
5519 break;
5520 default:
5521 abort ();
5522 }
43234a1e
L
5523 }
5524
5525 /* Check if masking is applied to dest operand. */
5526 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5527 {
5528 i.error = mask_not_on_destination;
5529 return 1;
5530 }
5531
43234a1e
L
5532 /* Check RC/SAE. */
5533 if (i.rounding)
5534 {
a80195f1
JB
5535 if (!t->opcode_modifier.sae
5536 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
43234a1e
L
5537 {
5538 i.error = unsupported_rc_sae;
5539 return 1;
5540 }
5541 /* If the instruction has several immediate operands and one of
5542 them is rounding, the rounding operand should be the last
5543 immediate operand. */
5544 if (i.imm_operands > 1
5545 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5546 {
43234a1e 5547 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5548 return 1;
5549 }
6c30d220
L
5550 }
5551
43234a1e 5552 /* Check vector Disp8 operand. */
b5014f7a
JB
5553 if (t->opcode_modifier.disp8memshift
5554 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5555 {
5556 if (i.broadcast)
4a1b91ea 5557 i.memshift = t->opcode_modifier.broadcast - 1;
7091c612 5558 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 5559 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
5560 else
5561 {
5562 const i386_operand_type *type = NULL;
5563
5564 i.memshift = 0;
5565 for (op = 0; op < i.operands; op++)
8dc0818e 5566 if (i.flags[op] & Operand_Mem)
7091c612 5567 {
4174bfff
JB
5568 if (t->opcode_modifier.evex == EVEXLIG)
5569 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5570 else if (t->operand_types[op].bitfield.xmmword
5571 + t->operand_types[op].bitfield.ymmword
5572 + t->operand_types[op].bitfield.zmmword <= 1)
7091c612
JB
5573 type = &t->operand_types[op];
5574 else if (!i.types[op].bitfield.unspecified)
5575 type = &i.types[op];
5576 }
4174bfff
JB
5577 else if (i.types[op].bitfield.regsimd
5578 && t->opcode_modifier.evex != EVEXLIG)
7091c612
JB
5579 {
5580 if (i.types[op].bitfield.zmmword)
5581 i.memshift = 6;
5582 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5583 i.memshift = 5;
5584 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5585 i.memshift = 4;
5586 }
5587
5588 if (type)
5589 {
5590 if (type->bitfield.zmmword)
5591 i.memshift = 6;
5592 else if (type->bitfield.ymmword)
5593 i.memshift = 5;
5594 else if (type->bitfield.xmmword)
5595 i.memshift = 4;
5596 }
5597
5598 /* For the check in fits_in_disp8(). */
5599 if (i.memshift == 0)
5600 i.memshift = -1;
5601 }
43234a1e
L
5602
5603 for (op = 0; op < i.operands; op++)
5604 if (operand_type_check (i.types[op], disp)
5605 && i.op[op].disps->X_op == O_constant)
5606 {
b5014f7a 5607 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5608 {
b5014f7a
JB
5609 i.types[op].bitfield.disp8 = 1;
5610 return 0;
43234a1e 5611 }
b5014f7a 5612 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5613 }
5614 }
b5014f7a
JB
5615
5616 i.memshift = 0;
43234a1e 5617
6c30d220
L
5618 return 0;
5619}
5620
43f3e2ee 5621/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5622 operand types. */
5623
5624static int
5625VEX_check_operands (const insn_template *t)
5626{
86fa6981 5627 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5628 {
86fa6981 5629 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 5630 if (!is_evex_encoding (t))
86fa6981
L
5631 {
5632 i.error = unsupported;
5633 return 1;
5634 }
5635 return 0;
43234a1e
L
5636 }
5637
a683cc34 5638 if (!t->opcode_modifier.vex)
86fa6981
L
5639 {
5640 /* This instruction template doesn't have VEX prefix. */
5641 if (i.vec_encoding != vex_encoding_default)
5642 {
5643 i.error = unsupported;
5644 return 1;
5645 }
5646 return 0;
5647 }
a683cc34 5648
9d3bf266
JB
5649 /* Check the special Imm4 cases; must be the first operand. */
5650 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
a683cc34
SP
5651 {
5652 if (i.op[0].imms->X_op != O_constant
5653 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5654 {
a65babc9 5655 i.error = bad_imm4;
891edac4
L
5656 return 1;
5657 }
a683cc34 5658
9d3bf266
JB
5659 /* Turn off Imm<N> so that update_imm won't complain. */
5660 operand_type_set (&i.types[0], 0);
a683cc34
SP
5661 }
5662
5663 return 0;
5664}
5665
d3ce72d0 5666static const insn_template *
83b16ac6 5667match_template (char mnem_suffix)
29b0f896
AM
5668{
5669 /* Points to template once we've found it. */
d3ce72d0 5670 const insn_template *t;
40fb9820 5671 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5672 i386_operand_type overlap4;
29b0f896 5673 unsigned int found_reverse_match;
83b16ac6 5674 i386_opcode_modifier suffix_check, mnemsuf_check;
40fb9820 5675 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5676 int addr_prefix_disp;
a5c311ca 5677 unsigned int j;
3ac21baa 5678 unsigned int found_cpu_match, size_match;
45664ddb 5679 unsigned int check_register;
5614d22c 5680 enum i386_error specific_error = 0;
29b0f896 5681
c0f3af97
L
5682#if MAX_OPERANDS != 5
5683# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5684#endif
5685
29b0f896 5686 found_reverse_match = 0;
539e75ad 5687 addr_prefix_disp = -1;
40fb9820
L
5688
5689 memset (&suffix_check, 0, sizeof (suffix_check));
e2195274
JB
5690 if (intel_syntax && i.broadcast)
5691 /* nothing */;
5692 else if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
5693 suffix_check.no_bsuf = 1;
5694 else if (i.suffix == WORD_MNEM_SUFFIX)
5695 suffix_check.no_wsuf = 1;
5696 else if (i.suffix == SHORT_MNEM_SUFFIX)
5697 suffix_check.no_ssuf = 1;
5698 else if (i.suffix == LONG_MNEM_SUFFIX)
5699 suffix_check.no_lsuf = 1;
5700 else if (i.suffix == QWORD_MNEM_SUFFIX)
5701 suffix_check.no_qsuf = 1;
5702 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 5703 suffix_check.no_ldsuf = 1;
29b0f896 5704
83b16ac6
JB
5705 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5706 if (intel_syntax)
5707 {
5708 switch (mnem_suffix)
5709 {
5710 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5711 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5712 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5713 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5714 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5715 }
5716 }
5717
01559ecc
L
5718 /* Must have right number of operands. */
5719 i.error = number_of_operands_mismatch;
5720
45aa61fe 5721 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5722 {
539e75ad 5723 addr_prefix_disp = -1;
dbbc8b7e 5724 found_reverse_match = 0;
539e75ad 5725
29b0f896
AM
5726 if (i.operands != t->operands)
5727 continue;
5728
50aecf8c 5729 /* Check processor support. */
a65babc9 5730 i.error = unsupported;
c0f3af97
L
5731 found_cpu_match = (cpu_flags_match (t)
5732 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
5733 if (!found_cpu_match)
5734 continue;
5735
e1d4d893 5736 /* Check AT&T mnemonic. */
a65babc9 5737 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5738 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5739 continue;
5740
e92bae62 5741 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5742 i.error = unsupported_syntax;
5c07affc 5743 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5744 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5745 || (intel64 && t->opcode_modifier.amd64)
5746 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5747 continue;
5748
20592a94 5749 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 5750 i.error = invalid_instruction_suffix;
567e4e96
L
5751 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5752 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5753 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5754 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5755 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5756 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5757 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896 5758 continue;
83b16ac6
JB
5759 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5760 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5761 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5762 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5763 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5764 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5765 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5766 continue;
29b0f896 5767
3ac21baa
JB
5768 size_match = operand_size_match (t);
5769 if (!size_match)
7d5e4556 5770 continue;
539e75ad 5771
5c07affc
L
5772 for (j = 0; j < MAX_OPERANDS; j++)
5773 operand_types[j] = t->operand_types[j];
5774
45aa61fe
AM
5775 /* In general, don't allow 64-bit operands in 32-bit mode. */
5776 if (i.suffix == QWORD_MNEM_SUFFIX
5777 && flag_code != CODE_64BIT
5778 && (intel_syntax
40fb9820 5779 ? (!t->opcode_modifier.ignoresize
625cbd7a 5780 && !t->opcode_modifier.broadcast
45aa61fe
AM
5781 && !intel_float_operand (t->name))
5782 : intel_float_operand (t->name) != 2)
40fb9820 5783 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5784 && !operand_types[0].bitfield.regsimd)
40fb9820 5785 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5786 && !operand_types[t->operands > 1].bitfield.regsimd))
45aa61fe
AM
5787 && (t->base_opcode != 0x0fc7
5788 || t->extension_opcode != 1 /* cmpxchg8b */))
5789 continue;
5790
192dc9c6
JB
5791 /* In general, don't allow 32-bit operands on pre-386. */
5792 else if (i.suffix == LONG_MNEM_SUFFIX
5793 && !cpu_arch_flags.bitfield.cpui386
5794 && (intel_syntax
5795 ? (!t->opcode_modifier.ignoresize
5796 && !intel_float_operand (t->name))
5797 : intel_float_operand (t->name) != 2)
5798 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5799 && !operand_types[0].bitfield.regsimd)
192dc9c6 5800 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5801 && !operand_types[t->operands > 1].bitfield.regsimd)))
192dc9c6
JB
5802 continue;
5803
29b0f896 5804 /* Do not verify operands when there are none. */
50aecf8c 5805 else
29b0f896 5806 {
c6fb90c8 5807 if (!t->operands)
2dbab7d5
L
5808 /* We've found a match; break out of loop. */
5809 break;
29b0f896 5810 }
252b5132 5811
539e75ad
L
5812 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5813 into Disp32/Disp16/Disp32 operand. */
5814 if (i.prefix[ADDR_PREFIX] != 0)
5815 {
40fb9820 5816 /* There should be only one Disp operand. */
539e75ad
L
5817 switch (flag_code)
5818 {
5819 case CODE_16BIT:
40fb9820
L
5820 for (j = 0; j < MAX_OPERANDS; j++)
5821 {
5822 if (operand_types[j].bitfield.disp16)
5823 {
5824 addr_prefix_disp = j;
5825 operand_types[j].bitfield.disp32 = 1;
5826 operand_types[j].bitfield.disp16 = 0;
5827 break;
5828 }
5829 }
539e75ad
L
5830 break;
5831 case CODE_32BIT:
40fb9820
L
5832 for (j = 0; j < MAX_OPERANDS; j++)
5833 {
5834 if (operand_types[j].bitfield.disp32)
5835 {
5836 addr_prefix_disp = j;
5837 operand_types[j].bitfield.disp32 = 0;
5838 operand_types[j].bitfield.disp16 = 1;
5839 break;
5840 }
5841 }
539e75ad
L
5842 break;
5843 case CODE_64BIT:
40fb9820
L
5844 for (j = 0; j < MAX_OPERANDS; j++)
5845 {
5846 if (operand_types[j].bitfield.disp64)
5847 {
5848 addr_prefix_disp = j;
5849 operand_types[j].bitfield.disp64 = 0;
5850 operand_types[j].bitfield.disp32 = 1;
5851 break;
5852 }
5853 }
539e75ad
L
5854 break;
5855 }
539e75ad
L
5856 }
5857
02a86693
L
5858 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5859 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5860 continue;
5861
56ffb741 5862 /* We check register size if needed. */
e2195274
JB
5863 if (t->opcode_modifier.checkregsize)
5864 {
5865 check_register = (1 << t->operands) - 1;
5866 if (i.broadcast)
5867 check_register &= ~(1 << i.broadcast->operand);
5868 }
5869 else
5870 check_register = 0;
5871
c6fb90c8 5872 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5873 switch (t->operands)
5874 {
5875 case 1:
40fb9820 5876 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5877 continue;
5878 break;
5879 case 2:
33eaf5de 5880 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5881 only in 32bit mode and we can use opcode 0x90. In 64bit
5882 mode, we can't use 0x90 for xchg %eax, %eax since it should
5883 zero-extend %eax to %rax. */
5884 if (flag_code == CODE_64BIT
5885 && t->base_opcode == 0x90
2c703856
JB
5886 && i.types[0].bitfield.acc && i.types[0].bitfield.dword
5887 && i.types[1].bitfield.acc && i.types[1].bitfield.dword)
8b38ad71 5888 continue;
1212781b
JB
5889 /* xrelease mov %eax, <disp> is another special case. It must not
5890 match the accumulator-only encoding of mov. */
5891 if (flag_code != CODE_64BIT
5892 && i.hle_prefix
5893 && t->base_opcode == 0xa0
5894 && i.types[0].bitfield.acc
8dc0818e 5895 && (i.flags[1] & Operand_Mem))
1212781b 5896 continue;
f5eb1d70
JB
5897 /* Fall through. */
5898
5899 case 3:
3ac21baa
JB
5900 if (!(size_match & MATCH_STRAIGHT))
5901 goto check_reverse;
64c49ab3
JB
5902 /* Reverse direction of operands if swapping is possible in the first
5903 place (operands need to be symmetric) and
5904 - the load form is requested, and the template is a store form,
5905 - the store form is requested, and the template is a load form,
5906 - the non-default (swapped) form is requested. */
5907 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
f5eb1d70 5908 if (t->opcode_modifier.d && i.reg_operands == i.operands
64c49ab3
JB
5909 && !operand_type_all_zero (&overlap1))
5910 switch (i.dir_encoding)
5911 {
5912 case dir_encoding_load:
5913 if (operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 5914 || t->opcode_modifier.regmem)
64c49ab3
JB
5915 goto check_reverse;
5916 break;
5917
5918 case dir_encoding_store:
5919 if (!operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 5920 && !t->opcode_modifier.regmem)
64c49ab3
JB
5921 goto check_reverse;
5922 break;
5923
5924 case dir_encoding_swap:
5925 goto check_reverse;
5926
5927 case dir_encoding_default:
5928 break;
5929 }
86fa6981 5930 /* If we want store form, we skip the current load. */
64c49ab3
JB
5931 if ((i.dir_encoding == dir_encoding_store
5932 || i.dir_encoding == dir_encoding_swap)
86fa6981
L
5933 && i.mem_operands == 0
5934 && t->opcode_modifier.load)
fa99fab2 5935 continue;
1a0670f3 5936 /* Fall through. */
f48ff2ae 5937 case 4:
c0f3af97 5938 case 5:
c6fb90c8 5939 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
5940 if (!operand_type_match (overlap0, i.types[0])
5941 || !operand_type_match (overlap1, i.types[1])
e2195274 5942 || ((check_register & 3) == 3
dc821c5f 5943 && !operand_type_register_match (i.types[0],
40fb9820 5944 operand_types[0],
dc821c5f 5945 i.types[1],
40fb9820 5946 operand_types[1])))
29b0f896
AM
5947 {
5948 /* Check if other direction is valid ... */
38e314eb 5949 if (!t->opcode_modifier.d)
29b0f896
AM
5950 continue;
5951
b6169b20 5952check_reverse:
3ac21baa
JB
5953 if (!(size_match & MATCH_REVERSE))
5954 continue;
29b0f896 5955 /* Try reversing direction of operands. */
f5eb1d70
JB
5956 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5957 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
40fb9820 5958 if (!operand_type_match (overlap0, i.types[0])
f5eb1d70 5959 || !operand_type_match (overlap1, i.types[i.operands - 1])
45664ddb 5960 || (check_register
dc821c5f 5961 && !operand_type_register_match (i.types[0],
f5eb1d70
JB
5962 operand_types[i.operands - 1],
5963 i.types[i.operands - 1],
45664ddb 5964 operand_types[0])))
29b0f896
AM
5965 {
5966 /* Does not match either direction. */
5967 continue;
5968 }
38e314eb 5969 /* found_reverse_match holds which of D or FloatR
29b0f896 5970 we've found. */
38e314eb
JB
5971 if (!t->opcode_modifier.d)
5972 found_reverse_match = 0;
5973 else if (operand_types[0].bitfield.tbyte)
8a2ed489 5974 found_reverse_match = Opcode_FloatD;
dbbc8b7e 5975 else if (operand_types[0].bitfield.xmmword
f5eb1d70 5976 || operand_types[i.operands - 1].bitfield.xmmword
dbbc8b7e 5977 || operand_types[0].bitfield.regmmx
f5eb1d70 5978 || operand_types[i.operands - 1].bitfield.regmmx
dbbc8b7e
JB
5979 || is_any_vex_encoding(t))
5980 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5981 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
8a2ed489 5982 else
38e314eb 5983 found_reverse_match = Opcode_D;
40fb9820 5984 if (t->opcode_modifier.floatr)
8a2ed489 5985 found_reverse_match |= Opcode_FloatR;
29b0f896 5986 }
f48ff2ae 5987 else
29b0f896 5988 {
f48ff2ae 5989 /* Found a forward 2 operand match here. */
d1cbb4db
L
5990 switch (t->operands)
5991 {
c0f3af97
L
5992 case 5:
5993 overlap4 = operand_type_and (i.types[4],
5994 operand_types[4]);
1a0670f3 5995 /* Fall through. */
d1cbb4db 5996 case 4:
c6fb90c8
L
5997 overlap3 = operand_type_and (i.types[3],
5998 operand_types[3]);
1a0670f3 5999 /* Fall through. */
d1cbb4db 6000 case 3:
c6fb90c8
L
6001 overlap2 = operand_type_and (i.types[2],
6002 operand_types[2]);
d1cbb4db
L
6003 break;
6004 }
29b0f896 6005
f48ff2ae
L
6006 switch (t->operands)
6007 {
c0f3af97
L
6008 case 5:
6009 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 6010 || !operand_type_register_match (i.types[3],
c0f3af97 6011 operand_types[3],
c0f3af97
L
6012 i.types[4],
6013 operand_types[4]))
6014 continue;
1a0670f3 6015 /* Fall through. */
f48ff2ae 6016 case 4:
40fb9820 6017 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
6018 || ((check_register & 0xa) == 0xa
6019 && !operand_type_register_match (i.types[1],
f7768225
JB
6020 operand_types[1],
6021 i.types[3],
e2195274
JB
6022 operand_types[3]))
6023 || ((check_register & 0xc) == 0xc
6024 && !operand_type_register_match (i.types[2],
6025 operand_types[2],
6026 i.types[3],
6027 operand_types[3])))
f48ff2ae 6028 continue;
1a0670f3 6029 /* Fall through. */
f48ff2ae
L
6030 case 3:
6031 /* Here we make use of the fact that there are no
23e42951 6032 reverse match 3 operand instructions. */
40fb9820 6033 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
6034 || ((check_register & 5) == 5
6035 && !operand_type_register_match (i.types[0],
23e42951
JB
6036 operand_types[0],
6037 i.types[2],
e2195274
JB
6038 operand_types[2]))
6039 || ((check_register & 6) == 6
6040 && !operand_type_register_match (i.types[1],
6041 operand_types[1],
6042 i.types[2],
6043 operand_types[2])))
f48ff2ae
L
6044 continue;
6045 break;
6046 }
29b0f896 6047 }
f48ff2ae 6048 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
6049 slip through to break. */
6050 }
3629bb00 6051 if (!found_cpu_match)
dbbc8b7e 6052 continue;
c0f3af97 6053
5614d22c
JB
6054 /* Check if vector and VEX operands are valid. */
6055 if (check_VecOperands (t) || VEX_check_operands (t))
6056 {
6057 specific_error = i.error;
6058 continue;
6059 }
a683cc34 6060
29b0f896
AM
6061 /* We've found a match; break out of loop. */
6062 break;
6063 }
6064
6065 if (t == current_templates->end)
6066 {
6067 /* We found no match. */
a65babc9 6068 const char *err_msg;
5614d22c 6069 switch (specific_error ? specific_error : i.error)
a65babc9
L
6070 {
6071 default:
6072 abort ();
86e026a4 6073 case operand_size_mismatch:
a65babc9
L
6074 err_msg = _("operand size mismatch");
6075 break;
6076 case operand_type_mismatch:
6077 err_msg = _("operand type mismatch");
6078 break;
6079 case register_type_mismatch:
6080 err_msg = _("register type mismatch");
6081 break;
6082 case number_of_operands_mismatch:
6083 err_msg = _("number of operands mismatch");
6084 break;
6085 case invalid_instruction_suffix:
6086 err_msg = _("invalid instruction suffix");
6087 break;
6088 case bad_imm4:
4a2608e3 6089 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 6090 break;
a65babc9
L
6091 case unsupported_with_intel_mnemonic:
6092 err_msg = _("unsupported with Intel mnemonic");
6093 break;
6094 case unsupported_syntax:
6095 err_msg = _("unsupported syntax");
6096 break;
6097 case unsupported:
35262a23 6098 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
6099 current_templates->start->name);
6100 return NULL;
6c30d220
L
6101 case invalid_vsib_address:
6102 err_msg = _("invalid VSIB address");
6103 break;
7bab8ab5
JB
6104 case invalid_vector_register_set:
6105 err_msg = _("mask, index, and destination registers must be distinct");
6106 break;
6c30d220
L
6107 case unsupported_vector_index_register:
6108 err_msg = _("unsupported vector index register");
6109 break;
43234a1e
L
6110 case unsupported_broadcast:
6111 err_msg = _("unsupported broadcast");
6112 break;
43234a1e
L
6113 case broadcast_needed:
6114 err_msg = _("broadcast is needed for operand of such type");
6115 break;
6116 case unsupported_masking:
6117 err_msg = _("unsupported masking");
6118 break;
6119 case mask_not_on_destination:
6120 err_msg = _("mask not on destination operand");
6121 break;
6122 case no_default_mask:
6123 err_msg = _("default mask isn't allowed");
6124 break;
6125 case unsupported_rc_sae:
6126 err_msg = _("unsupported static rounding/sae");
6127 break;
6128 case rc_sae_operand_not_last_imm:
6129 if (intel_syntax)
6130 err_msg = _("RC/SAE operand must precede immediate operands");
6131 else
6132 err_msg = _("RC/SAE operand must follow immediate operands");
6133 break;
6134 case invalid_register_operand:
6135 err_msg = _("invalid register operand");
6136 break;
a65babc9
L
6137 }
6138 as_bad (_("%s for `%s'"), err_msg,
891edac4 6139 current_templates->start->name);
fa99fab2 6140 return NULL;
29b0f896 6141 }
252b5132 6142
29b0f896
AM
6143 if (!quiet_warnings)
6144 {
6145 if (!intel_syntax
40fb9820
L
6146 && (i.types[0].bitfield.jumpabsolute
6147 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
6148 {
6149 as_warn (_("indirect %s without `*'"), t->name);
6150 }
6151
40fb9820
L
6152 if (t->opcode_modifier.isprefix
6153 && t->opcode_modifier.ignoresize)
29b0f896
AM
6154 {
6155 /* Warn them that a data or address size prefix doesn't
6156 affect assembly of the next line of code. */
6157 as_warn (_("stand-alone `%s' prefix"), t->name);
6158 }
6159 }
6160
6161 /* Copy the template we found. */
6162 i.tm = *t;
539e75ad
L
6163
6164 if (addr_prefix_disp != -1)
6165 i.tm.operand_types[addr_prefix_disp]
6166 = operand_types[addr_prefix_disp];
6167
29b0f896
AM
6168 if (found_reverse_match)
6169 {
dfd69174
JB
6170 /* If we found a reverse match we must alter the opcode direction
6171 bit and clear/flip the regmem modifier one. found_reverse_match
6172 holds bits to change (different for int & float insns). */
29b0f896
AM
6173
6174 i.tm.base_opcode ^= found_reverse_match;
6175
f5eb1d70
JB
6176 i.tm.operand_types[0] = operand_types[i.operands - 1];
6177 i.tm.operand_types[i.operands - 1] = operand_types[0];
dfd69174
JB
6178
6179 /* Certain SIMD insns have their load forms specified in the opcode
6180 table, and hence we need to _set_ RegMem instead of clearing it.
6181 We need to avoid setting the bit though on insns like KMOVW. */
6182 i.tm.opcode_modifier.regmem
6183 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6184 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6185 && !i.tm.opcode_modifier.regmem;
29b0f896
AM
6186 }
6187
fa99fab2 6188 return t;
29b0f896
AM
6189}
6190
6191static int
e3bb37b5 6192check_string (void)
29b0f896 6193{
8dc0818e
JB
6194 unsigned int mem_op = i.flags[0] & Operand_Mem ? 0 : 1;
6195
40fb9820 6196 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
6197 {
6198 if (i.seg[0] != NULL && i.seg[0] != &es)
6199 {
a87af027 6200 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 6201 i.tm.name,
d241b910 6202 intel_syntax ? i.tm.operands - mem_op : mem_op + 1,
a87af027 6203 register_prefix);
29b0f896
AM
6204 return 0;
6205 }
6206 /* There's only ever one segment override allowed per instruction.
6207 This instruction possibly has a legal segment override on the
6208 second operand, so copy the segment to where non-string
6209 instructions store it, allowing common code. */
6210 i.seg[0] = i.seg[1];
6211 }
40fb9820 6212 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
6213 {
6214 if (i.seg[1] != NULL && i.seg[1] != &es)
6215 {
a87af027 6216 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 6217 i.tm.name,
d241b910 6218 intel_syntax ? i.tm.operands - mem_op - 1 : mem_op + 2,
a87af027 6219 register_prefix);
29b0f896
AM
6220 return 0;
6221 }
6222 }
6223 return 1;
6224}
6225
6226static int
543613e9 6227process_suffix (void)
29b0f896
AM
6228{
6229 /* If matched instruction specifies an explicit instruction mnemonic
6230 suffix, use it. */
673fe0f0 6231 if (i.tm.opcode_modifier.size == SIZE16)
40fb9820 6232 i.suffix = WORD_MNEM_SUFFIX;
673fe0f0 6233 else if (i.tm.opcode_modifier.size == SIZE32)
40fb9820 6234 i.suffix = LONG_MNEM_SUFFIX;
673fe0f0 6235 else if (i.tm.opcode_modifier.size == SIZE64)
40fb9820 6236 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
6237 else if (i.reg_operands)
6238 {
6239 /* If there's no instruction mnemonic suffix we try to invent one
6240 based on register operands. */
6241 if (!i.suffix)
6242 {
6243 /* We take i.suffix from the last register operand specified,
6244 Destination register type is more significant than source
381d071f
L
6245 register type. crc32 in SSE4.2 prefers source register
6246 type. */
556059dd 6247 if (i.tm.base_opcode == 0xf20f38f0 && i.types[0].bitfield.reg)
381d071f 6248 {
556059dd
JB
6249 if (i.types[0].bitfield.byte)
6250 i.suffix = BYTE_MNEM_SUFFIX;
6251 else if (i.types[0].bitfield.word)
40fb9820 6252 i.suffix = WORD_MNEM_SUFFIX;
556059dd 6253 else if (i.types[0].bitfield.dword)
40fb9820 6254 i.suffix = LONG_MNEM_SUFFIX;
556059dd 6255 else if (i.types[0].bitfield.qword)
40fb9820 6256 i.suffix = QWORD_MNEM_SUFFIX;
381d071f
L
6257 }
6258
6259 if (!i.suffix)
6260 {
6261 int op;
6262
556059dd 6263 if (i.tm.base_opcode == 0xf20f38f0)
20592a94
L
6264 {
6265 /* We have to know the operand size for crc32. */
6266 as_bad (_("ambiguous memory operand size for `%s`"),
6267 i.tm.name);
6268 return 0;
6269 }
6270
381d071f 6271 for (op = i.operands; --op >= 0;)
b76bc5d5
JB
6272 if (!i.tm.operand_types[op].bitfield.inoutportreg
6273 && !i.tm.operand_types[op].bitfield.shiftcount)
381d071f 6274 {
8819ada6
JB
6275 if (!i.types[op].bitfield.reg)
6276 continue;
6277 if (i.types[op].bitfield.byte)
6278 i.suffix = BYTE_MNEM_SUFFIX;
6279 else if (i.types[op].bitfield.word)
6280 i.suffix = WORD_MNEM_SUFFIX;
6281 else if (i.types[op].bitfield.dword)
6282 i.suffix = LONG_MNEM_SUFFIX;
6283 else if (i.types[op].bitfield.qword)
6284 i.suffix = QWORD_MNEM_SUFFIX;
6285 else
6286 continue;
6287 break;
381d071f
L
6288 }
6289 }
29b0f896
AM
6290 }
6291 else if (i.suffix == BYTE_MNEM_SUFFIX)
6292 {
2eb952a4
L
6293 if (intel_syntax
6294 && i.tm.opcode_modifier.ignoresize
6295 && i.tm.opcode_modifier.no_bsuf)
6296 i.suffix = 0;
6297 else if (!check_byte_reg ())
29b0f896
AM
6298 return 0;
6299 }
6300 else if (i.suffix == LONG_MNEM_SUFFIX)
6301 {
2eb952a4
L
6302 if (intel_syntax
6303 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6304 && i.tm.opcode_modifier.no_lsuf
6305 && !i.tm.opcode_modifier.todword
6306 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
6307 i.suffix = 0;
6308 else if (!check_long_reg ())
29b0f896
AM
6309 return 0;
6310 }
6311 else if (i.suffix == QWORD_MNEM_SUFFIX)
6312 {
955e1e6a
L
6313 if (intel_syntax
6314 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6315 && i.tm.opcode_modifier.no_qsuf
6316 && !i.tm.opcode_modifier.todword
6317 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
6318 i.suffix = 0;
6319 else if (!check_qword_reg ())
29b0f896
AM
6320 return 0;
6321 }
6322 else if (i.suffix == WORD_MNEM_SUFFIX)
6323 {
2eb952a4
L
6324 if (intel_syntax
6325 && i.tm.opcode_modifier.ignoresize
6326 && i.tm.opcode_modifier.no_wsuf)
6327 i.suffix = 0;
6328 else if (!check_word_reg ())
29b0f896
AM
6329 return 0;
6330 }
40fb9820 6331 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
6332 /* Do nothing if the instruction is going to ignore the prefix. */
6333 ;
6334 else
6335 abort ();
6336 }
40fb9820 6337 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
6338 && !i.suffix
6339 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 6340 && i.tm.opcode_modifier.no_ssuf)
29b0f896 6341 {
06f74c5c
L
6342 if (stackop_size == LONG_MNEM_SUFFIX
6343 && i.tm.base_opcode == 0xcf)
6344 {
6345 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6346 .code16gcc directive to support 16-bit mode with
6347 32-bit address. For IRET without a suffix, generate
6348 16-bit IRET (opcode 0xcf) to return from an interrupt
6349 handler. */
6350 i.suffix = WORD_MNEM_SUFFIX;
6351 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6352 }
6353 else
6354 i.suffix = stackop_size;
29b0f896 6355 }
9306ca4a
JB
6356 else if (intel_syntax
6357 && !i.suffix
40fb9820
L
6358 && (i.tm.operand_types[0].bitfield.jumpabsolute
6359 || i.tm.opcode_modifier.jumpbyte
6360 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
6361 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6362 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
6363 {
6364 switch (flag_code)
6365 {
6366 case CODE_64BIT:
40fb9820 6367 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
6368 {
6369 i.suffix = QWORD_MNEM_SUFFIX;
6370 break;
6371 }
1a0670f3 6372 /* Fall through. */
9306ca4a 6373 case CODE_32BIT:
40fb9820 6374 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
6375 i.suffix = LONG_MNEM_SUFFIX;
6376 break;
6377 case CODE_16BIT:
40fb9820 6378 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
6379 i.suffix = WORD_MNEM_SUFFIX;
6380 break;
6381 }
6382 }
252b5132 6383
9306ca4a 6384 if (!i.suffix)
29b0f896 6385 {
9306ca4a
JB
6386 if (!intel_syntax)
6387 {
40fb9820 6388 if (i.tm.opcode_modifier.w)
9306ca4a 6389 {
4eed87de
AM
6390 as_bad (_("no instruction mnemonic suffix given and "
6391 "no register operands; can't size instruction"));
9306ca4a
JB
6392 return 0;
6393 }
6394 }
6395 else
6396 {
40fb9820 6397 unsigned int suffixes;
7ab9ffdd 6398
40fb9820
L
6399 suffixes = !i.tm.opcode_modifier.no_bsuf;
6400 if (!i.tm.opcode_modifier.no_wsuf)
6401 suffixes |= 1 << 1;
6402 if (!i.tm.opcode_modifier.no_lsuf)
6403 suffixes |= 1 << 2;
fc4adea1 6404 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
6405 suffixes |= 1 << 3;
6406 if (!i.tm.opcode_modifier.no_ssuf)
6407 suffixes |= 1 << 4;
c2b9da16 6408 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
6409 suffixes |= 1 << 5;
6410
6411 /* There are more than suffix matches. */
6412 if (i.tm.opcode_modifier.w
9306ca4a 6413 || ((suffixes & (suffixes - 1))
40fb9820
L
6414 && !i.tm.opcode_modifier.defaultsize
6415 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
6416 {
6417 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6418 return 0;
6419 }
6420 }
29b0f896 6421 }
252b5132 6422
d2224064
JB
6423 /* Change the opcode based on the operand size given by i.suffix. */
6424 switch (i.suffix)
29b0f896 6425 {
d2224064
JB
6426 /* Size floating point instruction. */
6427 case LONG_MNEM_SUFFIX:
6428 if (i.tm.opcode_modifier.floatmf)
6429 {
6430 i.tm.base_opcode ^= 4;
6431 break;
6432 }
6433 /* fall through */
6434 case WORD_MNEM_SUFFIX:
6435 case QWORD_MNEM_SUFFIX:
29b0f896 6436 /* It's not a byte, select word/dword operation. */
40fb9820 6437 if (i.tm.opcode_modifier.w)
29b0f896 6438 {
40fb9820 6439 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
6440 i.tm.base_opcode |= 8;
6441 else
6442 i.tm.base_opcode |= 1;
6443 }
d2224064
JB
6444 /* fall through */
6445 case SHORT_MNEM_SUFFIX:
29b0f896
AM
6446 /* Now select between word & dword operations via the operand
6447 size prefix, except for instructions that will ignore this
6448 prefix anyway. */
75c0a438
L
6449 if (i.reg_operands > 0
6450 && i.types[0].bitfield.reg
6451 && i.tm.opcode_modifier.addrprefixopreg
6452 && (i.tm.opcode_modifier.immext
6453 || i.operands == 1))
cb712a9e 6454 {
ca61edf2
L
6455 /* The address size override prefix changes the size of the
6456 first operand. */
40fb9820 6457 if ((flag_code == CODE_32BIT
75c0a438 6458 && i.op[0].regs->reg_type.bitfield.word)
40fb9820 6459 || (flag_code != CODE_32BIT
75c0a438 6460 && i.op[0].regs->reg_type.bitfield.dword))
cb712a9e
L
6461 if (!add_prefix (ADDR_PREFIX_OPCODE))
6462 return 0;
6463 }
6464 else if (i.suffix != QWORD_MNEM_SUFFIX
40fb9820
L
6465 && !i.tm.opcode_modifier.ignoresize
6466 && !i.tm.opcode_modifier.floatmf
a38d7118 6467 && !is_any_vex_encoding (&i.tm)
cb712a9e
L
6468 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6469 || (flag_code == CODE_64BIT
40fb9820 6470 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
6471 {
6472 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 6473
40fb9820 6474 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 6475 prefix = ADDR_PREFIX_OPCODE;
252b5132 6476
29b0f896
AM
6477 if (!add_prefix (prefix))
6478 return 0;
24eab124 6479 }
252b5132 6480
29b0f896
AM
6481 /* Set mode64 for an operand. */
6482 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 6483 && flag_code == CODE_64BIT
d2224064 6484 && !i.tm.opcode_modifier.norex64
46e883c5 6485 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
6486 need rex64. */
6487 && ! (i.operands == 2
6488 && i.tm.base_opcode == 0x90
6489 && i.tm.extension_opcode == None
2c703856
JB
6490 && i.types[0].bitfield.acc && i.types[0].bitfield.qword
6491 && i.types[1].bitfield.acc && i.types[1].bitfield.qword))
d2224064 6492 i.rex |= REX_W;
3e73aa7c 6493
d2224064 6494 break;
29b0f896 6495 }
7ecd2f8b 6496
c0a30a9f
L
6497 if (i.reg_operands != 0
6498 && i.operands > 1
6499 && i.tm.opcode_modifier.addrprefixopreg
6500 && !i.tm.opcode_modifier.immext)
6501 {
6502 /* Check invalid register operand when the address size override
6503 prefix changes the size of register operands. */
6504 unsigned int op;
6505 enum { need_word, need_dword, need_qword } need;
6506
6507 if (flag_code == CODE_32BIT)
6508 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6509 else
6510 {
6511 if (i.prefix[ADDR_PREFIX])
6512 need = need_dword;
6513 else
6514 need = flag_code == CODE_64BIT ? need_qword : need_word;
6515 }
6516
6517 for (op = 0; op < i.operands; op++)
6518 if (i.types[op].bitfield.reg
6519 && ((need == need_word
6520 && !i.op[op].regs->reg_type.bitfield.word)
6521 || (need == need_dword
6522 && !i.op[op].regs->reg_type.bitfield.dword)
6523 || (need == need_qword
6524 && !i.op[op].regs->reg_type.bitfield.qword)))
6525 {
6526 as_bad (_("invalid register operand size for `%s'"),
6527 i.tm.name);
6528 return 0;
6529 }
6530 }
6531
29b0f896
AM
6532 return 1;
6533}
3e73aa7c 6534
29b0f896 6535static int
543613e9 6536check_byte_reg (void)
29b0f896
AM
6537{
6538 int op;
543613e9 6539
29b0f896
AM
6540 for (op = i.operands; --op >= 0;)
6541 {
dc821c5f
JB
6542 /* Skip non-register operands. */
6543 if (!i.types[op].bitfield.reg)
6544 continue;
6545
29b0f896
AM
6546 /* If this is an eight bit register, it's OK. If it's the 16 or
6547 32 bit version of an eight bit register, we will just use the
6548 low portion, and that's OK too. */
dc821c5f 6549 if (i.types[op].bitfield.byte)
29b0f896
AM
6550 continue;
6551
5a819eb9
JB
6552 /* I/O port address operands are OK too. */
6553 if (i.tm.operand_types[op].bitfield.inoutportreg)
6554 continue;
6555
9344ff29
L
6556 /* crc32 doesn't generate this warning. */
6557 if (i.tm.base_opcode == 0xf20f38f0)
6558 continue;
6559
dc821c5f
JB
6560 if ((i.types[op].bitfield.word
6561 || i.types[op].bitfield.dword
6562 || i.types[op].bitfield.qword)
5a819eb9
JB
6563 && i.op[op].regs->reg_num < 4
6564 /* Prohibit these changes in 64bit mode, since the lowering
6565 would be more complicated. */
6566 && flag_code != CODE_64BIT)
29b0f896 6567 {
29b0f896 6568#if REGISTER_WARNINGS
5a819eb9 6569 if (!quiet_warnings)
a540244d
L
6570 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6571 register_prefix,
dc821c5f 6572 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
6573 ? REGNAM_AL - REGNAM_AX
6574 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 6575 register_prefix,
29b0f896
AM
6576 i.op[op].regs->reg_name,
6577 i.suffix);
6578#endif
6579 continue;
6580 }
6581 /* Any other register is bad. */
dc821c5f 6582 if (i.types[op].bitfield.reg
40fb9820 6583 || i.types[op].bitfield.regmmx
1b54b8d7 6584 || i.types[op].bitfield.regsimd
21df382b 6585 || i.types[op].bitfield.sreg
40fb9820
L
6586 || i.types[op].bitfield.control
6587 || i.types[op].bitfield.debug
ca0d63fe 6588 || i.types[op].bitfield.test)
29b0f896 6589 {
a540244d
L
6590 as_bad (_("`%s%s' not allowed with `%s%c'"),
6591 register_prefix,
29b0f896
AM
6592 i.op[op].regs->reg_name,
6593 i.tm.name,
6594 i.suffix);
6595 return 0;
6596 }
6597 }
6598 return 1;
6599}
6600
6601static int
e3bb37b5 6602check_long_reg (void)
29b0f896
AM
6603{
6604 int op;
6605
6606 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6607 /* Skip non-register operands. */
6608 if (!i.types[op].bitfield.reg)
6609 continue;
29b0f896
AM
6610 /* Reject eight bit registers, except where the template requires
6611 them. (eg. movzb) */
dc821c5f
JB
6612 else if (i.types[op].bitfield.byte
6613 && (i.tm.operand_types[op].bitfield.reg
6614 || i.tm.operand_types[op].bitfield.acc)
6615 && (i.tm.operand_types[op].bitfield.word
6616 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6617 {
a540244d
L
6618 as_bad (_("`%s%s' not allowed with `%s%c'"),
6619 register_prefix,
29b0f896
AM
6620 i.op[op].regs->reg_name,
6621 i.tm.name,
6622 i.suffix);
6623 return 0;
6624 }
e4630f71 6625 /* Warn if the e prefix on a general reg is missing. */
29b0f896 6626 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6627 && i.types[op].bitfield.word
6628 && (i.tm.operand_types[op].bitfield.reg
6629 || i.tm.operand_types[op].bitfield.acc)
6630 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
6631 {
6632 /* Prohibit these changes in the 64bit mode, since the
6633 lowering is more complicated. */
6634 if (flag_code == CODE_64BIT)
252b5132 6635 {
2b5d6a91 6636 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6637 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6638 i.suffix);
6639 return 0;
252b5132 6640 }
29b0f896 6641#if REGISTER_WARNINGS
cecf1424
JB
6642 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6643 register_prefix,
6644 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6645 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 6646#endif
252b5132 6647 }
e4630f71 6648 /* Warn if the r prefix on a general reg is present. */
dc821c5f
JB
6649 else if (i.types[op].bitfield.qword
6650 && (i.tm.operand_types[op].bitfield.reg
6651 || i.tm.operand_types[op].bitfield.acc)
6652 && i.tm.operand_types[op].bitfield.dword)
252b5132 6653 {
34828aad 6654 if (intel_syntax
ca61edf2 6655 && i.tm.opcode_modifier.toqword
1b54b8d7 6656 && !i.types[0].bitfield.regsimd)
34828aad 6657 {
ca61edf2 6658 /* Convert to QWORD. We want REX byte. */
34828aad
L
6659 i.suffix = QWORD_MNEM_SUFFIX;
6660 }
6661 else
6662 {
2b5d6a91 6663 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6664 register_prefix, i.op[op].regs->reg_name,
6665 i.suffix);
6666 return 0;
6667 }
29b0f896
AM
6668 }
6669 return 1;
6670}
252b5132 6671
29b0f896 6672static int
e3bb37b5 6673check_qword_reg (void)
29b0f896
AM
6674{
6675 int op;
252b5132 6676
29b0f896 6677 for (op = i.operands; --op >= 0; )
dc821c5f
JB
6678 /* Skip non-register operands. */
6679 if (!i.types[op].bitfield.reg)
6680 continue;
29b0f896
AM
6681 /* Reject eight bit registers, except where the template requires
6682 them. (eg. movzb) */
dc821c5f
JB
6683 else if (i.types[op].bitfield.byte
6684 && (i.tm.operand_types[op].bitfield.reg
6685 || i.tm.operand_types[op].bitfield.acc)
6686 && (i.tm.operand_types[op].bitfield.word
6687 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6688 {
a540244d
L
6689 as_bad (_("`%s%s' not allowed with `%s%c'"),
6690 register_prefix,
29b0f896
AM
6691 i.op[op].regs->reg_name,
6692 i.tm.name,
6693 i.suffix);
6694 return 0;
6695 }
e4630f71 6696 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6697 else if ((i.types[op].bitfield.word
6698 || i.types[op].bitfield.dword)
6699 && (i.tm.operand_types[op].bitfield.reg
6700 || i.tm.operand_types[op].bitfield.acc)
6701 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6702 {
6703 /* Prohibit these changes in the 64bit mode, since the
6704 lowering is more complicated. */
34828aad 6705 if (intel_syntax
ca61edf2 6706 && i.tm.opcode_modifier.todword
1b54b8d7 6707 && !i.types[0].bitfield.regsimd)
34828aad 6708 {
ca61edf2 6709 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6710 i.suffix = LONG_MNEM_SUFFIX;
6711 }
6712 else
6713 {
2b5d6a91 6714 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6715 register_prefix, i.op[op].regs->reg_name,
6716 i.suffix);
6717 return 0;
6718 }
252b5132 6719 }
29b0f896
AM
6720 return 1;
6721}
252b5132 6722
29b0f896 6723static int
e3bb37b5 6724check_word_reg (void)
29b0f896
AM
6725{
6726 int op;
6727 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6728 /* Skip non-register operands. */
6729 if (!i.types[op].bitfield.reg)
6730 continue;
29b0f896
AM
6731 /* Reject eight bit registers, except where the template requires
6732 them. (eg. movzb) */
dc821c5f
JB
6733 else if (i.types[op].bitfield.byte
6734 && (i.tm.operand_types[op].bitfield.reg
6735 || i.tm.operand_types[op].bitfield.acc)
6736 && (i.tm.operand_types[op].bitfield.word
6737 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6738 {
a540244d
L
6739 as_bad (_("`%s%s' not allowed with `%s%c'"),
6740 register_prefix,
29b0f896
AM
6741 i.op[op].regs->reg_name,
6742 i.tm.name,
6743 i.suffix);
6744 return 0;
6745 }
e4630f71 6746 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6747 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6748 && (i.types[op].bitfield.dword
6749 || i.types[op].bitfield.qword)
6750 && (i.tm.operand_types[op].bitfield.reg
6751 || i.tm.operand_types[op].bitfield.acc)
6752 && i.tm.operand_types[op].bitfield.word)
252b5132 6753 {
29b0f896
AM
6754 /* Prohibit these changes in the 64bit mode, since the
6755 lowering is more complicated. */
6756 if (flag_code == CODE_64BIT)
252b5132 6757 {
2b5d6a91 6758 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6759 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6760 i.suffix);
6761 return 0;
252b5132 6762 }
29b0f896 6763#if REGISTER_WARNINGS
cecf1424
JB
6764 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6765 register_prefix,
6766 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6767 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6768#endif
6769 }
6770 return 1;
6771}
252b5132 6772
29b0f896 6773static int
40fb9820 6774update_imm (unsigned int j)
29b0f896 6775{
bc0844ae 6776 i386_operand_type overlap = i.types[j];
40fb9820
L
6777 if ((overlap.bitfield.imm8
6778 || overlap.bitfield.imm8s
6779 || overlap.bitfield.imm16
6780 || overlap.bitfield.imm32
6781 || overlap.bitfield.imm32s
6782 || overlap.bitfield.imm64)
0dfbf9d7
L
6783 && !operand_type_equal (&overlap, &imm8)
6784 && !operand_type_equal (&overlap, &imm8s)
6785 && !operand_type_equal (&overlap, &imm16)
6786 && !operand_type_equal (&overlap, &imm32)
6787 && !operand_type_equal (&overlap, &imm32s)
6788 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6789 {
6790 if (i.suffix)
6791 {
40fb9820
L
6792 i386_operand_type temp;
6793
0dfbf9d7 6794 operand_type_set (&temp, 0);
7ab9ffdd 6795 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6796 {
6797 temp.bitfield.imm8 = overlap.bitfield.imm8;
6798 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6799 }
6800 else if (i.suffix == WORD_MNEM_SUFFIX)
6801 temp.bitfield.imm16 = overlap.bitfield.imm16;
6802 else if (i.suffix == QWORD_MNEM_SUFFIX)
6803 {
6804 temp.bitfield.imm64 = overlap.bitfield.imm64;
6805 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6806 }
6807 else
6808 temp.bitfield.imm32 = overlap.bitfield.imm32;
6809 overlap = temp;
29b0f896 6810 }
0dfbf9d7
L
6811 else if (operand_type_equal (&overlap, &imm16_32_32s)
6812 || operand_type_equal (&overlap, &imm16_32)
6813 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6814 {
40fb9820 6815 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6816 overlap = imm16;
40fb9820 6817 else
65da13b5 6818 overlap = imm32s;
29b0f896 6819 }
0dfbf9d7
L
6820 if (!operand_type_equal (&overlap, &imm8)
6821 && !operand_type_equal (&overlap, &imm8s)
6822 && !operand_type_equal (&overlap, &imm16)
6823 && !operand_type_equal (&overlap, &imm32)
6824 && !operand_type_equal (&overlap, &imm32s)
6825 && !operand_type_equal (&overlap, &imm64))
29b0f896 6826 {
4eed87de
AM
6827 as_bad (_("no instruction mnemonic suffix given; "
6828 "can't determine immediate size"));
29b0f896
AM
6829 return 0;
6830 }
6831 }
40fb9820 6832 i.types[j] = overlap;
29b0f896 6833
40fb9820
L
6834 return 1;
6835}
6836
6837static int
6838finalize_imm (void)
6839{
bc0844ae 6840 unsigned int j, n;
29b0f896 6841
bc0844ae
L
6842 /* Update the first 2 immediate operands. */
6843 n = i.operands > 2 ? 2 : i.operands;
6844 if (n)
6845 {
6846 for (j = 0; j < n; j++)
6847 if (update_imm (j) == 0)
6848 return 0;
40fb9820 6849
bc0844ae
L
6850 /* The 3rd operand can't be immediate operand. */
6851 gas_assert (operand_type_check (i.types[2], imm) == 0);
6852 }
29b0f896
AM
6853
6854 return 1;
6855}
6856
6857static int
e3bb37b5 6858process_operands (void)
29b0f896
AM
6859{
6860 /* Default segment register this instruction will use for memory
6861 accesses. 0 means unknown. This is only for optimizing out
6862 unnecessary segment overrides. */
6863 const seg_entry *default_seg = 0;
6864
2426c15f 6865 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6866 {
91d6fa6a
NC
6867 unsigned int dupl = i.operands;
6868 unsigned int dest = dupl - 1;
9fcfb3d7
L
6869 unsigned int j;
6870
c0f3af97 6871 /* The destination must be an xmm register. */
9c2799c2 6872 gas_assert (i.reg_operands
91d6fa6a 6873 && MAX_OPERANDS > dupl
7ab9ffdd 6874 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6875
1b54b8d7
JB
6876 if (i.tm.operand_types[0].bitfield.acc
6877 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6878 {
8cd7925b 6879 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6880 {
6881 /* Keep xmm0 for instructions with VEX prefix and 3
6882 sources. */
1b54b8d7
JB
6883 i.tm.operand_types[0].bitfield.acc = 0;
6884 i.tm.operand_types[0].bitfield.regsimd = 1;
c0f3af97
L
6885 goto duplicate;
6886 }
e2ec9d29 6887 else
c0f3af97
L
6888 {
6889 /* We remove the first xmm0 and keep the number of
6890 operands unchanged, which in fact duplicates the
6891 destination. */
6892 for (j = 1; j < i.operands; j++)
6893 {
6894 i.op[j - 1] = i.op[j];
6895 i.types[j - 1] = i.types[j];
6896 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
8dc0818e 6897 i.flags[j - 1] = i.flags[j];
c0f3af97
L
6898 }
6899 }
6900 }
6901 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6902 {
91d6fa6a 6903 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6904 && (i.tm.opcode_modifier.vexsources
6905 == VEX3SOURCES));
c0f3af97
L
6906
6907 /* Add the implicit xmm0 for instructions with VEX prefix
6908 and 3 sources. */
6909 for (j = i.operands; j > 0; j--)
6910 {
6911 i.op[j] = i.op[j - 1];
6912 i.types[j] = i.types[j - 1];
6913 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
8dc0818e 6914 i.flags[j] = i.flags[j - 1];
c0f3af97
L
6915 }
6916 i.op[0].regs
6917 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6918 i.types[0] = regxmm;
c0f3af97
L
6919 i.tm.operand_types[0] = regxmm;
6920
6921 i.operands += 2;
6922 i.reg_operands += 2;
6923 i.tm.operands += 2;
6924
91d6fa6a 6925 dupl++;
c0f3af97 6926 dest++;
91d6fa6a
NC
6927 i.op[dupl] = i.op[dest];
6928 i.types[dupl] = i.types[dest];
6929 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 6930 i.flags[dupl] = i.flags[dest];
e2ec9d29 6931 }
c0f3af97
L
6932 else
6933 {
6934duplicate:
6935 i.operands++;
6936 i.reg_operands++;
6937 i.tm.operands++;
6938
91d6fa6a
NC
6939 i.op[dupl] = i.op[dest];
6940 i.types[dupl] = i.types[dest];
6941 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 6942 i.flags[dupl] = i.flags[dest];
c0f3af97
L
6943 }
6944
6945 if (i.tm.opcode_modifier.immext)
6946 process_immext ();
6947 }
1b54b8d7
JB
6948 else if (i.tm.operand_types[0].bitfield.acc
6949 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
6950 {
6951 unsigned int j;
6952
9fcfb3d7
L
6953 for (j = 1; j < i.operands; j++)
6954 {
6955 i.op[j - 1] = i.op[j];
6956 i.types[j - 1] = i.types[j];
6957
6958 /* We need to adjust fields in i.tm since they are used by
6959 build_modrm_byte. */
6960 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
8dc0818e
JB
6961
6962 i.flags[j - 1] = i.flags[j];
9fcfb3d7
L
6963 }
6964
e2ec9d29
L
6965 i.operands--;
6966 i.reg_operands--;
e2ec9d29
L
6967 i.tm.operands--;
6968 }
920d2ddc
IT
6969 else if (i.tm.opcode_modifier.implicitquadgroup)
6970 {
a477a8c4
JB
6971 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6972
920d2ddc 6973 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
10c17abd 6974 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
a477a8c4
JB
6975 regnum = register_number (i.op[1].regs);
6976 first_reg_in_group = regnum & ~3;
6977 last_reg_in_group = first_reg_in_group + 3;
6978 if (regnum != first_reg_in_group)
6979 as_warn (_("source register `%s%s' implicitly denotes"
6980 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6981 register_prefix, i.op[1].regs->reg_name,
6982 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6983 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6984 i.tm.name);
6985 }
e2ec9d29
L
6986 else if (i.tm.opcode_modifier.regkludge)
6987 {
6988 /* The imul $imm, %reg instruction is converted into
6989 imul $imm, %reg, %reg, and the clr %reg instruction
6990 is converted into xor %reg, %reg. */
6991
6992 unsigned int first_reg_op;
6993
6994 if (operand_type_check (i.types[0], reg))
6995 first_reg_op = 0;
6996 else
6997 first_reg_op = 1;
6998 /* Pretend we saw the extra register operand. */
9c2799c2 6999 gas_assert (i.reg_operands == 1
7ab9ffdd 7000 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
7001 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7002 i.types[first_reg_op + 1] = i.types[first_reg_op];
7003 i.operands++;
7004 i.reg_operands++;
29b0f896
AM
7005 }
7006
85b80b0f 7007 if (i.tm.opcode_modifier.modrm)
29b0f896
AM
7008 {
7009 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
7010 must be put into the modrm byte). Now, we make the modrm and
7011 index base bytes based on all the info we've collected. */
29b0f896
AM
7012
7013 default_seg = build_modrm_byte ();
7014 }
85b80b0f
JB
7015 else if (i.types[0].bitfield.sreg)
7016 {
7017 if (flag_code != CODE_64BIT
7018 ? i.tm.base_opcode == POP_SEG_SHORT
7019 && i.op[0].regs->reg_num == 1
7020 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7021 && i.op[0].regs->reg_num < 4)
7022 {
7023 as_bad (_("you can't `%s %s%s'"),
7024 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7025 return 0;
7026 }
7027 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7028 {
7029 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7030 i.tm.opcode_length = 2;
7031 }
7032 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7033 }
8a2ed489 7034 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
7035 {
7036 default_seg = &ds;
7037 }
40fb9820 7038 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
7039 {
7040 /* For the string instructions that allow a segment override
7041 on one of their operands, the default segment is ds. */
7042 default_seg = &ds;
7043 }
85b80b0f
JB
7044 else if (i.tm.opcode_modifier.shortform)
7045 {
7046 /* The register or float register operand is in operand
7047 0 or 1. */
7048 unsigned int op = !i.tm.operand_types[0].bitfield.reg;
7049
7050 /* Register goes in low 3 bits of opcode. */
7051 i.tm.base_opcode |= i.op[op].regs->reg_num;
7052 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7053 i.rex |= REX_B;
7054 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7055 {
7056 /* Warn about some common errors, but press on regardless.
7057 The first case can be generated by gcc (<= 2.8.1). */
7058 if (i.operands == 2)
7059 {
7060 /* Reversed arguments on faddp, fsubp, etc. */
7061 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7062 register_prefix, i.op[!intel_syntax].regs->reg_name,
7063 register_prefix, i.op[intel_syntax].regs->reg_name);
7064 }
7065 else
7066 {
7067 /* Extraneous `l' suffix on fp insn. */
7068 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7069 register_prefix, i.op[0].regs->reg_name);
7070 }
7071 }
7072 }
29b0f896 7073
75178d9d
L
7074 if (i.tm.base_opcode == 0x8d /* lea */
7075 && i.seg[0]
7076 && !quiet_warnings)
30123838 7077 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
7078
7079 /* If a segment was explicitly specified, and the specified segment
7080 is not the default, use an opcode prefix to select it. If we
7081 never figured out what the default segment is, then default_seg
7082 will be zero at this point, and the specified segment prefix will
7083 always be used. */
29b0f896
AM
7084 if ((i.seg[0]) && (i.seg[0] != default_seg))
7085 {
7086 if (!add_prefix (i.seg[0]->seg_prefix))
7087 return 0;
7088 }
7089 return 1;
7090}
7091
7092static const seg_entry *
e3bb37b5 7093build_modrm_byte (void)
29b0f896
AM
7094{
7095 const seg_entry *default_seg = 0;
c0f3af97 7096 unsigned int source, dest;
8cd7925b 7097 int vex_3_sources;
c0f3af97 7098
8cd7925b 7099 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
7100 if (vex_3_sources)
7101 {
91d6fa6a 7102 unsigned int nds, reg_slot;
4c2c6516 7103 expressionS *exp;
c0f3af97 7104
6b8d3588 7105 dest = i.operands - 1;
c0f3af97 7106 nds = dest - 1;
922d8de8 7107
a683cc34 7108 /* There are 2 kinds of instructions:
bed3d976 7109 1. 5 operands: 4 register operands or 3 register operands
9d3bf266 7110 plus 1 memory operand plus one Imm4 operand, VexXDS, and
bed3d976 7111 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 7112 ZMM register.
bed3d976 7113 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 7114 plus 1 memory operand, with VexXDS. */
922d8de8 7115 gas_assert ((i.reg_operands == 4
bed3d976
JB
7116 || (i.reg_operands == 3 && i.mem_operands == 1))
7117 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323
JB
7118 && i.tm.opcode_modifier.vexw
7119 && i.tm.operand_types[dest].bitfield.regsimd);
a683cc34 7120
48db9223
JB
7121 /* If VexW1 is set, the first non-immediate operand is the source and
7122 the second non-immediate one is encoded in the immediate operand. */
7123 if (i.tm.opcode_modifier.vexw == VEXW1)
7124 {
7125 source = i.imm_operands;
7126 reg_slot = i.imm_operands + 1;
7127 }
7128 else
7129 {
7130 source = i.imm_operands + 1;
7131 reg_slot = i.imm_operands;
7132 }
7133
a683cc34 7134 if (i.imm_operands == 0)
bed3d976
JB
7135 {
7136 /* When there is no immediate operand, generate an 8bit
7137 immediate operand to encode the first operand. */
7138 exp = &im_expressions[i.imm_operands++];
7139 i.op[i.operands].imms = exp;
7140 i.types[i.operands] = imm8;
7141 i.operands++;
7142
7143 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7144 exp->X_op = O_constant;
7145 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
7146 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7147 }
922d8de8 7148 else
bed3d976 7149 {
9d3bf266
JB
7150 gas_assert (i.imm_operands == 1);
7151 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7152 gas_assert (!i.tm.opcode_modifier.immext);
a683cc34 7153
9d3bf266
JB
7154 /* Turn on Imm8 again so that output_imm will generate it. */
7155 i.types[0].bitfield.imm8 = 1;
bed3d976
JB
7156
7157 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
9d3bf266 7158 i.op[0].imms->X_add_number
bed3d976 7159 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 7160 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 7161 }
a683cc34 7162
10c17abd 7163 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
dae39acc 7164 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
7165 }
7166 else
7167 source = dest = 0;
29b0f896
AM
7168
7169 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
7170 implicit registers do not count. If there are 3 register
7171 operands, it must be a instruction with VexNDS. For a
7172 instruction with VexNDD, the destination register is encoded
7173 in VEX prefix. If there are 4 register operands, it must be
7174 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
7175 if (i.mem_operands == 0
7176 && ((i.reg_operands == 2
2426c15f 7177 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 7178 || (i.reg_operands == 3
2426c15f 7179 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 7180 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 7181 {
cab737b9
L
7182 switch (i.operands)
7183 {
7184 case 2:
7185 source = 0;
7186 break;
7187 case 3:
c81128dc
L
7188 /* When there are 3 operands, one of them may be immediate,
7189 which may be the first or the last operand. Otherwise,
c0f3af97
L
7190 the first operand must be shift count register (cl) or it
7191 is an instruction with VexNDS. */
9c2799c2 7192 gas_assert (i.imm_operands == 1
7ab9ffdd 7193 || (i.imm_operands == 0
2426c15f 7194 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 7195 || i.types[0].bitfield.shiftcount)));
40fb9820
L
7196 if (operand_type_check (i.types[0], imm)
7197 || i.types[0].bitfield.shiftcount)
7198 source = 1;
7199 else
7200 source = 0;
cab737b9
L
7201 break;
7202 case 4:
368d64cc
L
7203 /* When there are 4 operands, the first two must be 8bit
7204 immediate operands. The source operand will be the 3rd
c0f3af97
L
7205 one.
7206
7207 For instructions with VexNDS, if the first operand
7208 an imm8, the source operand is the 2nd one. If the last
7209 operand is imm8, the source operand is the first one. */
9c2799c2 7210 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
7211 && i.types[0].bitfield.imm8
7212 && i.types[1].bitfield.imm8)
2426c15f 7213 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
7214 && i.imm_operands == 1
7215 && (i.types[0].bitfield.imm8
43234a1e
L
7216 || i.types[i.operands - 1].bitfield.imm8
7217 || i.rounding)));
9f2670f2
L
7218 if (i.imm_operands == 2)
7219 source = 2;
7220 else
c0f3af97
L
7221 {
7222 if (i.types[0].bitfield.imm8)
7223 source = 1;
7224 else
7225 source = 0;
7226 }
c0f3af97
L
7227 break;
7228 case 5:
e771e7c9 7229 if (is_evex_encoding (&i.tm))
43234a1e
L
7230 {
7231 /* For EVEX instructions, when there are 5 operands, the
7232 first one must be immediate operand. If the second one
7233 is immediate operand, the source operand is the 3th
7234 one. If the last one is immediate operand, the source
7235 operand is the 2nd one. */
7236 gas_assert (i.imm_operands == 2
7237 && i.tm.opcode_modifier.sae
7238 && operand_type_check (i.types[0], imm));
7239 if (operand_type_check (i.types[1], imm))
7240 source = 2;
7241 else if (operand_type_check (i.types[4], imm))
7242 source = 1;
7243 else
7244 abort ();
7245 }
cab737b9
L
7246 break;
7247 default:
7248 abort ();
7249 }
7250
c0f3af97
L
7251 if (!vex_3_sources)
7252 {
7253 dest = source + 1;
7254
43234a1e
L
7255 /* RC/SAE operand could be between DEST and SRC. That happens
7256 when one operand is GPR and the other one is XMM/YMM/ZMM
7257 register. */
7258 if (i.rounding && i.rounding->operand == (int) dest)
7259 dest++;
7260
2426c15f 7261 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 7262 {
43234a1e 7263 /* For instructions with VexNDS, the register-only source
c5d0745b 7264 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
dfd69174 7265 register. It is encoded in VEX prefix. */
f12dc422
L
7266
7267 i386_operand_type op;
7268 unsigned int vvvv;
7269
7270 /* Check register-only source operand when two source
7271 operands are swapped. */
7272 if (!i.tm.operand_types[source].bitfield.baseindex
7273 && i.tm.operand_types[dest].bitfield.baseindex)
7274 {
7275 vvvv = source;
7276 source = dest;
7277 }
7278 else
7279 vvvv = dest;
7280
7281 op = i.tm.operand_types[vvvv];
c0f3af97 7282 if ((dest + 1) >= i.operands
dc821c5f
JB
7283 || ((!op.bitfield.reg
7284 || (!op.bitfield.dword && !op.bitfield.qword))
10c17abd 7285 && !op.bitfield.regsimd
43234a1e 7286 && !operand_type_equal (&op, &regmask)))
c0f3af97 7287 abort ();
f12dc422 7288 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
7289 dest++;
7290 }
7291 }
29b0f896
AM
7292
7293 i.rm.mode = 3;
dfd69174
JB
7294 /* One of the register operands will be encoded in the i.rm.reg
7295 field, the other in the combined i.rm.mode and i.rm.regmem
29b0f896
AM
7296 fields. If no form of this instruction supports a memory
7297 destination operand, then we assume the source operand may
7298 sometimes be a memory operand and so we need to store the
7299 destination in the i.rm.reg field. */
dfd69174 7300 if (!i.tm.opcode_modifier.regmem
40fb9820 7301 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
7302 {
7303 i.rm.reg = i.op[dest].regs->reg_num;
7304 i.rm.regmem = i.op[source].regs->reg_num;
b4a3a7b4
L
7305 if (i.op[dest].regs->reg_type.bitfield.regmmx
7306 || i.op[source].regs->reg_type.bitfield.regmmx)
7307 i.has_regmmx = TRUE;
7308 else if (i.op[dest].regs->reg_type.bitfield.regsimd
7309 || i.op[source].regs->reg_type.bitfield.regsimd)
7310 {
7311 if (i.types[dest].bitfield.zmmword
7312 || i.types[source].bitfield.zmmword)
7313 i.has_regzmm = TRUE;
7314 else if (i.types[dest].bitfield.ymmword
7315 || i.types[source].bitfield.ymmword)
7316 i.has_regymm = TRUE;
7317 else
7318 i.has_regxmm = TRUE;
7319 }
29b0f896 7320 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7321 i.rex |= REX_R;
43234a1e
L
7322 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7323 i.vrex |= REX_R;
29b0f896 7324 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7325 i.rex |= REX_B;
43234a1e
L
7326 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7327 i.vrex |= REX_B;
29b0f896
AM
7328 }
7329 else
7330 {
7331 i.rm.reg = i.op[source].regs->reg_num;
7332 i.rm.regmem = i.op[dest].regs->reg_num;
7333 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7334 i.rex |= REX_B;
43234a1e
L
7335 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7336 i.vrex |= REX_B;
29b0f896 7337 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7338 i.rex |= REX_R;
43234a1e
L
7339 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7340 i.vrex |= REX_R;
29b0f896 7341 }
e0c7f900 7342 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 7343 {
dfd69174 7344 if (!i.types[!i.tm.opcode_modifier.regmem].bitfield.control)
c4a530c5 7345 abort ();
e0c7f900 7346 i.rex &= ~REX_R;
c4a530c5
JB
7347 add_prefix (LOCK_PREFIX_OPCODE);
7348 }
29b0f896
AM
7349 }
7350 else
7351 { /* If it's not 2 reg operands... */
c0f3af97
L
7352 unsigned int mem;
7353
29b0f896
AM
7354 if (i.mem_operands)
7355 {
7356 unsigned int fake_zero_displacement = 0;
99018f42 7357 unsigned int op;
4eed87de 7358
7ab9ffdd 7359 for (op = 0; op < i.operands; op++)
8dc0818e 7360 if (i.flags[op] & Operand_Mem)
7ab9ffdd 7361 break;
7ab9ffdd 7362 gas_assert (op < i.operands);
29b0f896 7363
6c30d220
L
7364 if (i.tm.opcode_modifier.vecsib)
7365 {
e968fc9b 7366 if (i.index_reg->reg_num == RegIZ)
6c30d220
L
7367 abort ();
7368
7369 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7370 if (!i.base_reg)
7371 {
7372 i.sib.base = NO_BASE_REGISTER;
7373 i.sib.scale = i.log2_scale_factor;
7374 i.types[op].bitfield.disp8 = 0;
7375 i.types[op].bitfield.disp16 = 0;
7376 i.types[op].bitfield.disp64 = 0;
43083a50 7377 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
7378 {
7379 /* Must be 32 bit */
7380 i.types[op].bitfield.disp32 = 1;
7381 i.types[op].bitfield.disp32s = 0;
7382 }
7383 else
7384 {
7385 i.types[op].bitfield.disp32 = 0;
7386 i.types[op].bitfield.disp32s = 1;
7387 }
7388 }
7389 i.sib.index = i.index_reg->reg_num;
7390 if ((i.index_reg->reg_flags & RegRex) != 0)
7391 i.rex |= REX_X;
43234a1e
L
7392 if ((i.index_reg->reg_flags & RegVRex) != 0)
7393 i.vrex |= REX_X;
6c30d220
L
7394 }
7395
29b0f896
AM
7396 default_seg = &ds;
7397
7398 if (i.base_reg == 0)
7399 {
7400 i.rm.mode = 0;
7401 if (!i.disp_operands)
9bb129e8 7402 fake_zero_displacement = 1;
29b0f896
AM
7403 if (i.index_reg == 0)
7404 {
73053c1f
JB
7405 i386_operand_type newdisp;
7406
6c30d220 7407 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7408 /* Operand is just <disp> */
20f0a1fc 7409 if (flag_code == CODE_64BIT)
29b0f896
AM
7410 {
7411 /* 64bit mode overwrites the 32bit absolute
7412 addressing by RIP relative addressing and
7413 absolute addressing is encoded by one of the
7414 redundant SIB forms. */
7415 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7416 i.sib.base = NO_BASE_REGISTER;
7417 i.sib.index = NO_INDEX_REGISTER;
73053c1f 7418 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 7419 }
fc225355
L
7420 else if ((flag_code == CODE_16BIT)
7421 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
7422 {
7423 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 7424 newdisp = disp16;
20f0a1fc
NC
7425 }
7426 else
7427 {
7428 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 7429 newdisp = disp32;
29b0f896 7430 }
73053c1f
JB
7431 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7432 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 7433 }
6c30d220 7434 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7435 {
6c30d220 7436 /* !i.base_reg && i.index_reg */
e968fc9b 7437 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7438 i.sib.index = NO_INDEX_REGISTER;
7439 else
7440 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7441 i.sib.base = NO_BASE_REGISTER;
7442 i.sib.scale = i.log2_scale_factor;
7443 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
7444 i.types[op].bitfield.disp8 = 0;
7445 i.types[op].bitfield.disp16 = 0;
7446 i.types[op].bitfield.disp64 = 0;
43083a50 7447 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
7448 {
7449 /* Must be 32 bit */
7450 i.types[op].bitfield.disp32 = 1;
7451 i.types[op].bitfield.disp32s = 0;
7452 }
29b0f896 7453 else
40fb9820
L
7454 {
7455 i.types[op].bitfield.disp32 = 0;
7456 i.types[op].bitfield.disp32s = 1;
7457 }
29b0f896 7458 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7459 i.rex |= REX_X;
29b0f896
AM
7460 }
7461 }
7462 /* RIP addressing for 64bit mode. */
e968fc9b 7463 else if (i.base_reg->reg_num == RegIP)
29b0f896 7464 {
6c30d220 7465 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7466 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
7467 i.types[op].bitfield.disp8 = 0;
7468 i.types[op].bitfield.disp16 = 0;
7469 i.types[op].bitfield.disp32 = 0;
7470 i.types[op].bitfield.disp32s = 1;
7471 i.types[op].bitfield.disp64 = 0;
71903a11 7472 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
7473 if (! i.disp_operands)
7474 fake_zero_displacement = 1;
29b0f896 7475 }
dc821c5f 7476 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 7477 {
6c30d220 7478 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7479 switch (i.base_reg->reg_num)
7480 {
7481 case 3: /* (%bx) */
7482 if (i.index_reg == 0)
7483 i.rm.regmem = 7;
7484 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7485 i.rm.regmem = i.index_reg->reg_num - 6;
7486 break;
7487 case 5: /* (%bp) */
7488 default_seg = &ss;
7489 if (i.index_reg == 0)
7490 {
7491 i.rm.regmem = 6;
40fb9820 7492 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
7493 {
7494 /* fake (%bp) into 0(%bp) */
b5014f7a 7495 i.types[op].bitfield.disp8 = 1;
252b5132 7496 fake_zero_displacement = 1;
29b0f896
AM
7497 }
7498 }
7499 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7500 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7501 break;
7502 default: /* (%si) -> 4 or (%di) -> 5 */
7503 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7504 }
7505 i.rm.mode = mode_from_disp_size (i.types[op]);
7506 }
7507 else /* i.base_reg and 32/64 bit mode */
7508 {
7509 if (flag_code == CODE_64BIT
40fb9820
L
7510 && operand_type_check (i.types[op], disp))
7511 {
73053c1f
JB
7512 i.types[op].bitfield.disp16 = 0;
7513 i.types[op].bitfield.disp64 = 0;
40fb9820 7514 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
7515 {
7516 i.types[op].bitfield.disp32 = 0;
7517 i.types[op].bitfield.disp32s = 1;
7518 }
40fb9820 7519 else
73053c1f
JB
7520 {
7521 i.types[op].bitfield.disp32 = 1;
7522 i.types[op].bitfield.disp32s = 0;
7523 }
40fb9820 7524 }
20f0a1fc 7525
6c30d220
L
7526 if (!i.tm.opcode_modifier.vecsib)
7527 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7528 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7529 i.rex |= REX_B;
29b0f896
AM
7530 i.sib.base = i.base_reg->reg_num;
7531 /* x86-64 ignores REX prefix bit here to avoid decoder
7532 complications. */
848930b2
JB
7533 if (!(i.base_reg->reg_flags & RegRex)
7534 && (i.base_reg->reg_num == EBP_REG_NUM
7535 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7536 default_seg = &ss;
848930b2 7537 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7538 {
848930b2 7539 fake_zero_displacement = 1;
b5014f7a 7540 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7541 }
7542 i.sib.scale = i.log2_scale_factor;
7543 if (i.index_reg == 0)
7544 {
6c30d220 7545 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7546 /* <disp>(%esp) becomes two byte modrm with no index
7547 register. We've already stored the code for esp
7548 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7549 Any base register besides %esp will not use the
7550 extra modrm byte. */
7551 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7552 }
6c30d220 7553 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7554 {
e968fc9b 7555 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7556 i.sib.index = NO_INDEX_REGISTER;
7557 else
7558 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7559 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7560 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7561 i.rex |= REX_X;
29b0f896 7562 }
67a4f2b7
AO
7563
7564 if (i.disp_operands
7565 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7566 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7567 i.rm.mode = 0;
7568 else
a501d77e
L
7569 {
7570 if (!fake_zero_displacement
7571 && !i.disp_operands
7572 && i.disp_encoding)
7573 {
7574 fake_zero_displacement = 1;
7575 if (i.disp_encoding == disp_encoding_8bit)
7576 i.types[op].bitfield.disp8 = 1;
7577 else
7578 i.types[op].bitfield.disp32 = 1;
7579 }
7580 i.rm.mode = mode_from_disp_size (i.types[op]);
7581 }
29b0f896 7582 }
252b5132 7583
29b0f896
AM
7584 if (fake_zero_displacement)
7585 {
7586 /* Fakes a zero displacement assuming that i.types[op]
7587 holds the correct displacement size. */
7588 expressionS *exp;
7589
9c2799c2 7590 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7591 exp = &disp_expressions[i.disp_operands++];
7592 i.op[op].disps = exp;
7593 exp->X_op = O_constant;
7594 exp->X_add_number = 0;
7595 exp->X_add_symbol = (symbolS *) 0;
7596 exp->X_op_symbol = (symbolS *) 0;
7597 }
c0f3af97
L
7598
7599 mem = op;
29b0f896 7600 }
c0f3af97
L
7601 else
7602 mem = ~0;
252b5132 7603
8c43a48b 7604 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7605 {
7606 if (operand_type_check (i.types[0], imm))
7607 i.vex.register_specifier = NULL;
7608 else
7609 {
7610 /* VEX.vvvv encodes one of the sources when the first
7611 operand is not an immediate. */
1ef99a7b 7612 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7613 i.vex.register_specifier = i.op[0].regs;
7614 else
7615 i.vex.register_specifier = i.op[1].regs;
7616 }
7617
7618 /* Destination is a XMM register encoded in the ModRM.reg
7619 and VEX.R bit. */
7620 i.rm.reg = i.op[2].regs->reg_num;
7621 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7622 i.rex |= REX_R;
7623
7624 /* ModRM.rm and VEX.B encodes the other source. */
7625 if (!i.mem_operands)
7626 {
7627 i.rm.mode = 3;
7628
1ef99a7b 7629 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7630 i.rm.regmem = i.op[1].regs->reg_num;
7631 else
7632 i.rm.regmem = i.op[0].regs->reg_num;
7633
7634 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7635 i.rex |= REX_B;
7636 }
7637 }
2426c15f 7638 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7639 {
7640 i.vex.register_specifier = i.op[2].regs;
7641 if (!i.mem_operands)
7642 {
7643 i.rm.mode = 3;
7644 i.rm.regmem = i.op[1].regs->reg_num;
7645 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7646 i.rex |= REX_B;
7647 }
7648 }
29b0f896
AM
7649 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7650 (if any) based on i.tm.extension_opcode. Again, we must be
7651 careful to make sure that segment/control/debug/test/MMX
7652 registers are coded into the i.rm.reg field. */
f88c9eb0 7653 else if (i.reg_operands)
29b0f896 7654 {
99018f42 7655 unsigned int op;
7ab9ffdd
L
7656 unsigned int vex_reg = ~0;
7657
7658 for (op = 0; op < i.operands; op++)
b4a3a7b4
L
7659 {
7660 if (i.types[op].bitfield.reg
7661 || i.types[op].bitfield.regbnd
7662 || i.types[op].bitfield.regmask
21df382b 7663 || i.types[op].bitfield.sreg
b4a3a7b4
L
7664 || i.types[op].bitfield.control
7665 || i.types[op].bitfield.debug
7666 || i.types[op].bitfield.test)
7667 break;
7668 if (i.types[op].bitfield.regsimd)
7669 {
7670 if (i.types[op].bitfield.zmmword)
7671 i.has_regzmm = TRUE;
7672 else if (i.types[op].bitfield.ymmword)
7673 i.has_regymm = TRUE;
7674 else
7675 i.has_regxmm = TRUE;
7676 break;
7677 }
7678 if (i.types[op].bitfield.regmmx)
7679 {
7680 i.has_regmmx = TRUE;
7681 break;
7682 }
7683 }
c0209578 7684
7ab9ffdd
L
7685 if (vex_3_sources)
7686 op = dest;
2426c15f 7687 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7688 {
7689 /* For instructions with VexNDS, the register-only
7690 source operand is encoded in VEX prefix. */
7691 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7692
7ab9ffdd 7693 if (op > mem)
c0f3af97 7694 {
7ab9ffdd
L
7695 vex_reg = op++;
7696 gas_assert (op < i.operands);
c0f3af97
L
7697 }
7698 else
c0f3af97 7699 {
f12dc422
L
7700 /* Check register-only source operand when two source
7701 operands are swapped. */
7702 if (!i.tm.operand_types[op].bitfield.baseindex
7703 && i.tm.operand_types[op + 1].bitfield.baseindex)
7704 {
7705 vex_reg = op;
7706 op += 2;
7707 gas_assert (mem == (vex_reg + 1)
7708 && op < i.operands);
7709 }
7710 else
7711 {
7712 vex_reg = op + 1;
7713 gas_assert (vex_reg < i.operands);
7714 }
c0f3af97 7715 }
7ab9ffdd 7716 }
2426c15f 7717 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7718 {
f12dc422 7719 /* For instructions with VexNDD, the register destination
7ab9ffdd 7720 is encoded in VEX prefix. */
f12dc422
L
7721 if (i.mem_operands == 0)
7722 {
7723 /* There is no memory operand. */
7724 gas_assert ((op + 2) == i.operands);
7725 vex_reg = op + 1;
7726 }
7727 else
8d63c93e 7728 {
ed438a93
JB
7729 /* There are only 2 non-immediate operands. */
7730 gas_assert (op < i.imm_operands + 2
7731 && i.operands == i.imm_operands + 2);
7732 vex_reg = i.imm_operands + 1;
f12dc422 7733 }
7ab9ffdd
L
7734 }
7735 else
7736 gas_assert (op < i.operands);
99018f42 7737
7ab9ffdd
L
7738 if (vex_reg != (unsigned int) ~0)
7739 {
f12dc422 7740 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7741
dc821c5f
JB
7742 if ((!type->bitfield.reg
7743 || (!type->bitfield.dword && !type->bitfield.qword))
10c17abd 7744 && !type->bitfield.regsimd
43234a1e 7745 && !operand_type_equal (type, &regmask))
7ab9ffdd 7746 abort ();
f88c9eb0 7747
7ab9ffdd
L
7748 i.vex.register_specifier = i.op[vex_reg].regs;
7749 }
7750
1b9f0c97
L
7751 /* Don't set OP operand twice. */
7752 if (vex_reg != op)
7ab9ffdd 7753 {
1b9f0c97
L
7754 /* If there is an extension opcode to put here, the
7755 register number must be put into the regmem field. */
7756 if (i.tm.extension_opcode != None)
7757 {
7758 i.rm.regmem = i.op[op].regs->reg_num;
7759 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7760 i.rex |= REX_B;
43234a1e
L
7761 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7762 i.vrex |= REX_B;
1b9f0c97
L
7763 }
7764 else
7765 {
7766 i.rm.reg = i.op[op].regs->reg_num;
7767 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7768 i.rex |= REX_R;
43234a1e
L
7769 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7770 i.vrex |= REX_R;
1b9f0c97 7771 }
7ab9ffdd 7772 }
252b5132 7773
29b0f896
AM
7774 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7775 must set it to 3 to indicate this is a register operand
7776 in the regmem field. */
7777 if (!i.mem_operands)
7778 i.rm.mode = 3;
7779 }
252b5132 7780
29b0f896 7781 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7782 if (i.tm.extension_opcode != None)
29b0f896
AM
7783 i.rm.reg = i.tm.extension_opcode;
7784 }
7785 return default_seg;
7786}
252b5132 7787
29b0f896 7788static void
e3bb37b5 7789output_branch (void)
29b0f896
AM
7790{
7791 char *p;
f8a5c266 7792 int size;
29b0f896
AM
7793 int code16;
7794 int prefix;
7795 relax_substateT subtype;
7796 symbolS *sym;
7797 offsetT off;
7798
f8a5c266 7799 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7800 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7801
7802 prefix = 0;
7803 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7804 {
29b0f896
AM
7805 prefix = 1;
7806 i.prefixes -= 1;
7807 code16 ^= CODE16;
252b5132 7808 }
29b0f896
AM
7809 /* Pentium4 branch hints. */
7810 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7811 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7812 {
29b0f896
AM
7813 prefix++;
7814 i.prefixes--;
7815 }
7816 if (i.prefix[REX_PREFIX] != 0)
7817 {
7818 prefix++;
7819 i.prefixes--;
2f66722d
AM
7820 }
7821
7e8b059b
L
7822 /* BND prefixed jump. */
7823 if (i.prefix[BND_PREFIX] != 0)
7824 {
7825 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7826 i.prefixes -= 1;
7827 }
7828
29b0f896
AM
7829 if (i.prefixes != 0 && !intel_syntax)
7830 as_warn (_("skipping prefixes on this instruction"));
7831
7832 /* It's always a symbol; End frag & setup for relax.
7833 Make sure there is enough room in this frag for the largest
7834 instruction we may generate in md_convert_frag. This is 2
7835 bytes for the opcode and room for the prefix and largest
7836 displacement. */
7837 frag_grow (prefix + 2 + 4);
7838 /* Prefix and 1 opcode byte go in fr_fix. */
7839 p = frag_more (prefix + 1);
7840 if (i.prefix[DATA_PREFIX] != 0)
7841 *p++ = DATA_PREFIX_OPCODE;
7842 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7843 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7844 *p++ = i.prefix[SEG_PREFIX];
7845 if (i.prefix[REX_PREFIX] != 0)
7846 *p++ = i.prefix[REX_PREFIX];
7847 *p = i.tm.base_opcode;
7848
7849 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7850 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7851 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7852 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7853 else
f8a5c266 7854 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7855 subtype |= code16;
3e73aa7c 7856
29b0f896
AM
7857 sym = i.op[0].disps->X_add_symbol;
7858 off = i.op[0].disps->X_add_number;
3e73aa7c 7859
29b0f896
AM
7860 if (i.op[0].disps->X_op != O_constant
7861 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7862 {
29b0f896
AM
7863 /* Handle complex expressions. */
7864 sym = make_expr_symbol (i.op[0].disps);
7865 off = 0;
7866 }
3e73aa7c 7867
29b0f896
AM
7868 /* 1 possible extra opcode + 4 byte displacement go in var part.
7869 Pass reloc in fr_var. */
d258b828 7870 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7871}
3e73aa7c 7872
bd7ab16b
L
7873#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7874/* Return TRUE iff PLT32 relocation should be used for branching to
7875 symbol S. */
7876
7877static bfd_boolean
7878need_plt32_p (symbolS *s)
7879{
7880 /* PLT32 relocation is ELF only. */
7881 if (!IS_ELF)
7882 return FALSE;
7883
a5def729
RO
7884#ifdef TE_SOLARIS
7885 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7886 krtld support it. */
7887 return FALSE;
7888#endif
7889
bd7ab16b
L
7890 /* Since there is no need to prepare for PLT branch on x86-64, we
7891 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7892 be used as a marker for 32-bit PC-relative branches. */
7893 if (!object_64bit)
7894 return FALSE;
7895
7896 /* Weak or undefined symbol need PLT32 relocation. */
7897 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7898 return TRUE;
7899
7900 /* Non-global symbol doesn't need PLT32 relocation. */
7901 if (! S_IS_EXTERNAL (s))
7902 return FALSE;
7903
7904 /* Other global symbols need PLT32 relocation. NB: Symbol with
7905 non-default visibilities are treated as normal global symbol
7906 so that PLT32 relocation can be used as a marker for 32-bit
7907 PC-relative branches. It is useful for linker relaxation. */
7908 return TRUE;
7909}
7910#endif
7911
29b0f896 7912static void
e3bb37b5 7913output_jump (void)
29b0f896
AM
7914{
7915 char *p;
7916 int size;
3e02c1cc 7917 fixS *fixP;
bd7ab16b 7918 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7919
40fb9820 7920 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
7921 {
7922 /* This is a loop or jecxz type instruction. */
7923 size = 1;
7924 if (i.prefix[ADDR_PREFIX] != 0)
7925 {
7926 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7927 i.prefixes -= 1;
7928 }
7929 /* Pentium4 branch hints. */
7930 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7931 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7932 {
7933 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7934 i.prefixes--;
3e73aa7c
JH
7935 }
7936 }
29b0f896
AM
7937 else
7938 {
7939 int code16;
3e73aa7c 7940
29b0f896
AM
7941 code16 = 0;
7942 if (flag_code == CODE_16BIT)
7943 code16 = CODE16;
3e73aa7c 7944
29b0f896
AM
7945 if (i.prefix[DATA_PREFIX] != 0)
7946 {
7947 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7948 i.prefixes -= 1;
7949 code16 ^= CODE16;
7950 }
252b5132 7951
29b0f896
AM
7952 size = 4;
7953 if (code16)
7954 size = 2;
7955 }
9fcc94b6 7956
29b0f896
AM
7957 if (i.prefix[REX_PREFIX] != 0)
7958 {
7959 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7960 i.prefixes -= 1;
7961 }
252b5132 7962
7e8b059b
L
7963 /* BND prefixed jump. */
7964 if (i.prefix[BND_PREFIX] != 0)
7965 {
7966 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7967 i.prefixes -= 1;
7968 }
7969
29b0f896
AM
7970 if (i.prefixes != 0 && !intel_syntax)
7971 as_warn (_("skipping prefixes on this instruction"));
e0890092 7972
42164a71
L
7973 p = frag_more (i.tm.opcode_length + size);
7974 switch (i.tm.opcode_length)
7975 {
7976 case 2:
7977 *p++ = i.tm.base_opcode >> 8;
1a0670f3 7978 /* Fall through. */
42164a71
L
7979 case 1:
7980 *p++ = i.tm.base_opcode;
7981 break;
7982 default:
7983 abort ();
7984 }
e0890092 7985
bd7ab16b
L
7986#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7987 if (size == 4
7988 && jump_reloc == NO_RELOC
7989 && need_plt32_p (i.op[0].disps->X_add_symbol))
7990 jump_reloc = BFD_RELOC_X86_64_PLT32;
7991#endif
7992
7993 jump_reloc = reloc (size, 1, 1, jump_reloc);
7994
3e02c1cc 7995 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 7996 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
7997
7998 /* All jumps handled here are signed, but don't use a signed limit
7999 check for 32 and 16 bit jumps as we want to allow wrap around at
8000 4G and 64k respectively. */
8001 if (size == 1)
8002 fixP->fx_signed = 1;
29b0f896 8003}
e0890092 8004
29b0f896 8005static void
e3bb37b5 8006output_interseg_jump (void)
29b0f896
AM
8007{
8008 char *p;
8009 int size;
8010 int prefix;
8011 int code16;
252b5132 8012
29b0f896
AM
8013 code16 = 0;
8014 if (flag_code == CODE_16BIT)
8015 code16 = CODE16;
a217f122 8016
29b0f896
AM
8017 prefix = 0;
8018 if (i.prefix[DATA_PREFIX] != 0)
8019 {
8020 prefix = 1;
8021 i.prefixes -= 1;
8022 code16 ^= CODE16;
8023 }
8024 if (i.prefix[REX_PREFIX] != 0)
8025 {
8026 prefix++;
8027 i.prefixes -= 1;
8028 }
252b5132 8029
29b0f896
AM
8030 size = 4;
8031 if (code16)
8032 size = 2;
252b5132 8033
29b0f896
AM
8034 if (i.prefixes != 0 && !intel_syntax)
8035 as_warn (_("skipping prefixes on this instruction"));
252b5132 8036
29b0f896
AM
8037 /* 1 opcode; 2 segment; offset */
8038 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 8039
29b0f896
AM
8040 if (i.prefix[DATA_PREFIX] != 0)
8041 *p++ = DATA_PREFIX_OPCODE;
252b5132 8042
29b0f896
AM
8043 if (i.prefix[REX_PREFIX] != 0)
8044 *p++ = i.prefix[REX_PREFIX];
252b5132 8045
29b0f896
AM
8046 *p++ = i.tm.base_opcode;
8047 if (i.op[1].imms->X_op == O_constant)
8048 {
8049 offsetT n = i.op[1].imms->X_add_number;
252b5132 8050
29b0f896
AM
8051 if (size == 2
8052 && !fits_in_unsigned_word (n)
8053 && !fits_in_signed_word (n))
8054 {
8055 as_bad (_("16-bit jump out of range"));
8056 return;
8057 }
8058 md_number_to_chars (p, n, size);
8059 }
8060 else
8061 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 8062 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
8063 if (i.op[0].imms->X_op != O_constant)
8064 as_bad (_("can't handle non absolute segment in `%s'"),
8065 i.tm.name);
8066 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8067}
a217f122 8068
b4a3a7b4
L
8069#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8070void
8071x86_cleanup (void)
8072{
8073 char *p;
8074 asection *seg = now_seg;
8075 subsegT subseg = now_subseg;
8076 asection *sec;
8077 unsigned int alignment, align_size_1;
8078 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8079 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8080 unsigned int padding;
8081
8082 if (!IS_ELF || !x86_used_note)
8083 return;
8084
b4a3a7b4
L
8085 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8086
8087 /* The .note.gnu.property section layout:
8088
8089 Field Length Contents
8090 ---- ---- ----
8091 n_namsz 4 4
8092 n_descsz 4 The note descriptor size
8093 n_type 4 NT_GNU_PROPERTY_TYPE_0
8094 n_name 4 "GNU"
8095 n_desc n_descsz The program property array
8096 .... .... ....
8097 */
8098
8099 /* Create the .note.gnu.property section. */
8100 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
fd361982 8101 bfd_set_section_flags (sec,
b4a3a7b4
L
8102 (SEC_ALLOC
8103 | SEC_LOAD
8104 | SEC_DATA
8105 | SEC_HAS_CONTENTS
8106 | SEC_READONLY));
8107
8108 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8109 {
8110 align_size_1 = 7;
8111 alignment = 3;
8112 }
8113 else
8114 {
8115 align_size_1 = 3;
8116 alignment = 2;
8117 }
8118
fd361982 8119 bfd_set_section_alignment (sec, alignment);
b4a3a7b4
L
8120 elf_section_type (sec) = SHT_NOTE;
8121
8122 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8123 + 4-byte data */
8124 isa_1_descsz_raw = 4 + 4 + 4;
8125 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8126 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8127
8128 feature_2_descsz_raw = isa_1_descsz;
8129 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8130 + 4-byte data */
8131 feature_2_descsz_raw += 4 + 4 + 4;
8132 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8133 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8134 & ~align_size_1);
8135
8136 descsz = feature_2_descsz;
8137 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8138 p = frag_more (4 + 4 + 4 + 4 + descsz);
8139
8140 /* Write n_namsz. */
8141 md_number_to_chars (p, (valueT) 4, 4);
8142
8143 /* Write n_descsz. */
8144 md_number_to_chars (p + 4, (valueT) descsz, 4);
8145
8146 /* Write n_type. */
8147 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8148
8149 /* Write n_name. */
8150 memcpy (p + 4 * 3, "GNU", 4);
8151
8152 /* Write 4-byte type. */
8153 md_number_to_chars (p + 4 * 4,
8154 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8155
8156 /* Write 4-byte data size. */
8157 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8158
8159 /* Write 4-byte data. */
8160 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8161
8162 /* Zero out paddings. */
8163 padding = isa_1_descsz - isa_1_descsz_raw;
8164 if (padding)
8165 memset (p + 4 * 7, 0, padding);
8166
8167 /* Write 4-byte type. */
8168 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8169 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8170
8171 /* Write 4-byte data size. */
8172 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8173
8174 /* Write 4-byte data. */
8175 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8176 (valueT) x86_feature_2_used, 4);
8177
8178 /* Zero out paddings. */
8179 padding = feature_2_descsz - feature_2_descsz_raw;
8180 if (padding)
8181 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8182
8183 /* We probably can't restore the current segment, for there likely
8184 isn't one yet... */
8185 if (seg && subseg)
8186 subseg_set (seg, subseg);
8187}
8188#endif
8189
9c33702b
JB
8190static unsigned int
8191encoding_length (const fragS *start_frag, offsetT start_off,
8192 const char *frag_now_ptr)
8193{
8194 unsigned int len = 0;
8195
8196 if (start_frag != frag_now)
8197 {
8198 const fragS *fr = start_frag;
8199
8200 do {
8201 len += fr->fr_fix;
8202 fr = fr->fr_next;
8203 } while (fr && fr != frag_now);
8204 }
8205
8206 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8207}
8208
29b0f896 8209static void
e3bb37b5 8210output_insn (void)
29b0f896 8211{
2bbd9c25
JJ
8212 fragS *insn_start_frag;
8213 offsetT insn_start_off;
8214
b4a3a7b4
L
8215#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8216 if (IS_ELF && x86_used_note)
8217 {
8218 if (i.tm.cpu_flags.bitfield.cpucmov)
8219 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8220 if (i.tm.cpu_flags.bitfield.cpusse)
8221 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8222 if (i.tm.cpu_flags.bitfield.cpusse2)
8223 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8224 if (i.tm.cpu_flags.bitfield.cpusse3)
8225 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8226 if (i.tm.cpu_flags.bitfield.cpussse3)
8227 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8228 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8229 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8230 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8231 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8232 if (i.tm.cpu_flags.bitfield.cpuavx)
8233 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8234 if (i.tm.cpu_flags.bitfield.cpuavx2)
8235 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8236 if (i.tm.cpu_flags.bitfield.cpufma)
8237 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8238 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8239 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8240 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8241 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8242 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8243 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8244 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8245 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8246 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8247 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8248 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8249 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8250 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8251 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8252 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8253 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8254 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8255 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8256 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8257 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8258 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8259 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8260 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8261 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8262 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8263 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8264 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8265 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
462cac58
L
8266 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8267 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
b4a3a7b4
L
8268
8269 if (i.tm.cpu_flags.bitfield.cpu8087
8270 || i.tm.cpu_flags.bitfield.cpu287
8271 || i.tm.cpu_flags.bitfield.cpu387
8272 || i.tm.cpu_flags.bitfield.cpu687
8273 || i.tm.cpu_flags.bitfield.cpufisttp)
8274 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8275 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8276 Xfence instructions. */
8277 if (i.tm.base_opcode != 0xf18
8278 && i.tm.base_opcode != 0xf0d
c3949f43 8279 && i.tm.base_opcode != 0xfaef8
b4a3a7b4
L
8280 && (i.has_regmmx
8281 || i.tm.cpu_flags.bitfield.cpummx
8282 || i.tm.cpu_flags.bitfield.cpua3dnow
8283 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8284 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8285 if (i.has_regxmm)
8286 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8287 if (i.has_regymm)
8288 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8289 if (i.has_regzmm)
8290 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8291 if (i.tm.cpu_flags.bitfield.cpufxsr)
8292 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8293 if (i.tm.cpu_flags.bitfield.cpuxsave)
8294 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8295 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8296 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8297 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8298 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8299 }
8300#endif
8301
29b0f896
AM
8302 /* Tie dwarf2 debug info to the address at the start of the insn.
8303 We can't do this after the insn has been output as the current
8304 frag may have been closed off. eg. by frag_var. */
8305 dwarf2_emit_insn (0);
8306
2bbd9c25
JJ
8307 insn_start_frag = frag_now;
8308 insn_start_off = frag_now_fix ();
8309
29b0f896 8310 /* Output jumps. */
40fb9820 8311 if (i.tm.opcode_modifier.jump)
29b0f896 8312 output_branch ();
40fb9820
L
8313 else if (i.tm.opcode_modifier.jumpbyte
8314 || i.tm.opcode_modifier.jumpdword)
29b0f896 8315 output_jump ();
40fb9820 8316 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
8317 output_interseg_jump ();
8318 else
8319 {
8320 /* Output normal instructions here. */
8321 char *p;
8322 unsigned char *q;
47465058 8323 unsigned int j;
331d2d0d 8324 unsigned int prefix;
4dffcebc 8325
e4e00185 8326 if (avoid_fence
c3949f43
JB
8327 && (i.tm.base_opcode == 0xfaee8
8328 || i.tm.base_opcode == 0xfaef0
8329 || i.tm.base_opcode == 0xfaef8))
e4e00185
AS
8330 {
8331 /* Encode lfence, mfence, and sfence as
8332 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8333 offsetT val = 0x240483f0ULL;
8334 p = frag_more (5);
8335 md_number_to_chars (p, val, 5);
8336 return;
8337 }
8338
d022bddd
IT
8339 /* Some processors fail on LOCK prefix. This options makes
8340 assembler ignore LOCK prefix and serves as a workaround. */
8341 if (omit_lock_prefix)
8342 {
8343 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8344 return;
8345 i.prefix[LOCK_PREFIX] = 0;
8346 }
8347
43234a1e
L
8348 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8349 don't need the explicit prefix. */
8350 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 8351 {
c0f3af97 8352 switch (i.tm.opcode_length)
bc4bd9ab 8353 {
c0f3af97
L
8354 case 3:
8355 if (i.tm.base_opcode & 0xff000000)
4dffcebc 8356 {
c0f3af97 8357 prefix = (i.tm.base_opcode >> 24) & 0xff;
c3949f43
JB
8358 if (!i.tm.cpu_flags.bitfield.cpupadlock
8359 || prefix != REPE_PREFIX_OPCODE
8360 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8361 add_prefix (prefix);
c0f3af97
L
8362 }
8363 break;
8364 case 2:
8365 if ((i.tm.base_opcode & 0xff0000) != 0)
8366 {
8367 prefix = (i.tm.base_opcode >> 16) & 0xff;
c3949f43 8368 add_prefix (prefix);
4dffcebc 8369 }
c0f3af97
L
8370 break;
8371 case 1:
8372 break;
390c91cf
L
8373 case 0:
8374 /* Check for pseudo prefixes. */
8375 as_bad_where (insn_start_frag->fr_file,
8376 insn_start_frag->fr_line,
8377 _("pseudo prefix without instruction"));
8378 return;
c0f3af97
L
8379 default:
8380 abort ();
bc4bd9ab 8381 }
c0f3af97 8382
6d19a37a 8383#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
8384 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8385 R_X86_64_GOTTPOFF relocation so that linker can safely
8386 perform IE->LE optimization. */
8387 if (x86_elf_abi == X86_64_X32_ABI
8388 && i.operands == 2
8389 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8390 && i.prefix[REX_PREFIX] == 0)
8391 add_prefix (REX_OPCODE);
6d19a37a 8392#endif
cf61b747 8393
c0f3af97
L
8394 /* The prefix bytes. */
8395 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8396 if (*q)
8397 FRAG_APPEND_1_CHAR (*q);
0f10071e 8398 }
ae5c1c7b 8399 else
c0f3af97
L
8400 {
8401 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8402 if (*q)
8403 switch (j)
8404 {
8405 case REX_PREFIX:
8406 /* REX byte is encoded in VEX prefix. */
8407 break;
8408 case SEG_PREFIX:
8409 case ADDR_PREFIX:
8410 FRAG_APPEND_1_CHAR (*q);
8411 break;
8412 default:
8413 /* There should be no other prefixes for instructions
8414 with VEX prefix. */
8415 abort ();
8416 }
8417
43234a1e
L
8418 /* For EVEX instructions i.vrex should become 0 after
8419 build_evex_prefix. For VEX instructions upper 16 registers
8420 aren't available, so VREX should be 0. */
8421 if (i.vrex)
8422 abort ();
c0f3af97
L
8423 /* Now the VEX prefix. */
8424 p = frag_more (i.vex.length);
8425 for (j = 0; j < i.vex.length; j++)
8426 p[j] = i.vex.bytes[j];
8427 }
252b5132 8428
29b0f896 8429 /* Now the opcode; be careful about word order here! */
4dffcebc 8430 if (i.tm.opcode_length == 1)
29b0f896
AM
8431 {
8432 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8433 }
8434 else
8435 {
4dffcebc 8436 switch (i.tm.opcode_length)
331d2d0d 8437 {
43234a1e
L
8438 case 4:
8439 p = frag_more (4);
8440 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8441 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8442 break;
4dffcebc 8443 case 3:
331d2d0d
L
8444 p = frag_more (3);
8445 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
8446 break;
8447 case 2:
8448 p = frag_more (2);
8449 break;
8450 default:
8451 abort ();
8452 break;
331d2d0d 8453 }
0f10071e 8454
29b0f896
AM
8455 /* Put out high byte first: can't use md_number_to_chars! */
8456 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8457 *p = i.tm.base_opcode & 0xff;
8458 }
3e73aa7c 8459
29b0f896 8460 /* Now the modrm byte and sib byte (if present). */
40fb9820 8461 if (i.tm.opcode_modifier.modrm)
29b0f896 8462 {
4a3523fa
L
8463 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8464 | i.rm.reg << 3
8465 | i.rm.mode << 6));
29b0f896
AM
8466 /* If i.rm.regmem == ESP (4)
8467 && i.rm.mode != (Register mode)
8468 && not 16 bit
8469 ==> need second modrm byte. */
8470 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8471 && i.rm.mode != 3
dc821c5f 8472 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
8473 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8474 | i.sib.index << 3
8475 | i.sib.scale << 6));
29b0f896 8476 }
3e73aa7c 8477
29b0f896 8478 if (i.disp_operands)
2bbd9c25 8479 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 8480
29b0f896 8481 if (i.imm_operands)
2bbd9c25 8482 output_imm (insn_start_frag, insn_start_off);
9c33702b
JB
8483
8484 /*
8485 * frag_now_fix () returning plain abs_section_offset when we're in the
8486 * absolute section, and abs_section_offset not getting updated as data
8487 * gets added to the frag breaks the logic below.
8488 */
8489 if (now_seg != absolute_section)
8490 {
8491 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8492 if (j > 15)
8493 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8494 j);
8495 }
29b0f896 8496 }
252b5132 8497
29b0f896
AM
8498#ifdef DEBUG386
8499 if (flag_debug)
8500 {
7b81dfbb 8501 pi ("" /*line*/, &i);
29b0f896
AM
8502 }
8503#endif /* DEBUG386 */
8504}
252b5132 8505
e205caa7
L
8506/* Return the size of the displacement operand N. */
8507
8508static int
8509disp_size (unsigned int n)
8510{
8511 int size = 4;
43234a1e 8512
b5014f7a 8513 if (i.types[n].bitfield.disp64)
40fb9820
L
8514 size = 8;
8515 else if (i.types[n].bitfield.disp8)
8516 size = 1;
8517 else if (i.types[n].bitfield.disp16)
8518 size = 2;
e205caa7
L
8519 return size;
8520}
8521
8522/* Return the size of the immediate operand N. */
8523
8524static int
8525imm_size (unsigned int n)
8526{
8527 int size = 4;
40fb9820
L
8528 if (i.types[n].bitfield.imm64)
8529 size = 8;
8530 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8531 size = 1;
8532 else if (i.types[n].bitfield.imm16)
8533 size = 2;
e205caa7
L
8534 return size;
8535}
8536
29b0f896 8537static void
64e74474 8538output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8539{
8540 char *p;
8541 unsigned int n;
252b5132 8542
29b0f896
AM
8543 for (n = 0; n < i.operands; n++)
8544 {
b5014f7a 8545 if (operand_type_check (i.types[n], disp))
29b0f896
AM
8546 {
8547 if (i.op[n].disps->X_op == O_constant)
8548 {
e205caa7 8549 int size = disp_size (n);
43234a1e 8550 offsetT val = i.op[n].disps->X_add_number;
252b5132 8551
629cfaf1
JB
8552 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8553 size);
29b0f896
AM
8554 p = frag_more (size);
8555 md_number_to_chars (p, val, size);
8556 }
8557 else
8558 {
f86103b7 8559 enum bfd_reloc_code_real reloc_type;
e205caa7 8560 int size = disp_size (n);
40fb9820 8561 int sign = i.types[n].bitfield.disp32s;
29b0f896 8562 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 8563 fixS *fixP;
29b0f896 8564
e205caa7 8565 /* We can't have 8 bit displacement here. */
9c2799c2 8566 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 8567
29b0f896
AM
8568 /* The PC relative address is computed relative
8569 to the instruction boundary, so in case immediate
8570 fields follows, we need to adjust the value. */
8571 if (pcrel && i.imm_operands)
8572 {
29b0f896 8573 unsigned int n1;
e205caa7 8574 int sz = 0;
252b5132 8575
29b0f896 8576 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 8577 if (operand_type_check (i.types[n1], imm))
252b5132 8578 {
e205caa7
L
8579 /* Only one immediate is allowed for PC
8580 relative address. */
9c2799c2 8581 gas_assert (sz == 0);
e205caa7
L
8582 sz = imm_size (n1);
8583 i.op[n].disps->X_add_number -= sz;
252b5132 8584 }
29b0f896 8585 /* We should find the immediate. */
9c2799c2 8586 gas_assert (sz != 0);
29b0f896 8587 }
520dc8e8 8588
29b0f896 8589 p = frag_more (size);
d258b828 8590 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 8591 if (GOT_symbol
2bbd9c25 8592 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 8593 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8594 || reloc_type == BFD_RELOC_X86_64_32S
8595 || (reloc_type == BFD_RELOC_64
8596 && object_64bit))
d6ab8113
JB
8597 && (i.op[n].disps->X_op == O_symbol
8598 || (i.op[n].disps->X_op == O_add
8599 && ((symbol_get_value_expression
8600 (i.op[n].disps->X_op_symbol)->X_op)
8601 == O_subtract))))
8602 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25 8603 {
4fa24527 8604 if (!object_64bit)
7b81dfbb
AJ
8605 {
8606 reloc_type = BFD_RELOC_386_GOTPC;
d583596c
JB
8607 i.op[n].imms->X_add_number +=
8608 encoding_length (insn_start_frag, insn_start_off, p);
7b81dfbb
AJ
8609 }
8610 else if (reloc_type == BFD_RELOC_64)
8611 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 8612 else
7b81dfbb
AJ
8613 /* Don't do the adjustment for x86-64, as there
8614 the pcrel addressing is relative to the _next_
8615 insn, and that is taken care of in other code. */
d6ab8113 8616 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 8617 }
02a86693
L
8618 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8619 size, i.op[n].disps, pcrel,
8620 reloc_type);
8621 /* Check for "call/jmp *mem", "mov mem, %reg",
8622 "test %reg, mem" and "binop mem, %reg" where binop
8623 is one of adc, add, and, cmp, or, sbb, sub, xor
e60f4d3b
L
8624 instructions without data prefix. Always generate
8625 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
8626 if (i.prefix[DATA_PREFIX] == 0
8627 && (generate_relax_relocations
8628 || (!object_64bit
8629 && i.rm.mode == 0
8630 && i.rm.regmem == 5))
0cb4071e
L
8631 && (i.rm.mode == 2
8632 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
8633 && ((i.operands == 1
8634 && i.tm.base_opcode == 0xff
8635 && (i.rm.reg == 2 || i.rm.reg == 4))
8636 || (i.operands == 2
8637 && (i.tm.base_opcode == 0x8b
8638 || i.tm.base_opcode == 0x85
8639 || (i.tm.base_opcode & 0xc7) == 0x03))))
8640 {
8641 if (object_64bit)
8642 {
8643 fixP->fx_tcbit = i.rex != 0;
8644 if (i.base_reg
e968fc9b 8645 && (i.base_reg->reg_num == RegIP))
02a86693
L
8646 fixP->fx_tcbit2 = 1;
8647 }
8648 else
8649 fixP->fx_tcbit2 = 1;
8650 }
29b0f896
AM
8651 }
8652 }
8653 }
8654}
252b5132 8655
29b0f896 8656static void
64e74474 8657output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8658{
8659 char *p;
8660 unsigned int n;
252b5132 8661
29b0f896
AM
8662 for (n = 0; n < i.operands; n++)
8663 {
43234a1e
L
8664 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8665 if (i.rounding && (int) n == i.rounding->operand)
8666 continue;
8667
40fb9820 8668 if (operand_type_check (i.types[n], imm))
29b0f896
AM
8669 {
8670 if (i.op[n].imms->X_op == O_constant)
8671 {
e205caa7 8672 int size = imm_size (n);
29b0f896 8673 offsetT val;
b4cac588 8674
29b0f896
AM
8675 val = offset_in_range (i.op[n].imms->X_add_number,
8676 size);
8677 p = frag_more (size);
8678 md_number_to_chars (p, val, size);
8679 }
8680 else
8681 {
8682 /* Not absolute_section.
8683 Need a 32-bit fixup (don't support 8bit
8684 non-absolute imms). Try to support other
8685 sizes ... */
f86103b7 8686 enum bfd_reloc_code_real reloc_type;
e205caa7
L
8687 int size = imm_size (n);
8688 int sign;
29b0f896 8689
40fb9820 8690 if (i.types[n].bitfield.imm32s
a7d61044 8691 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 8692 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 8693 sign = 1;
e205caa7
L
8694 else
8695 sign = 0;
520dc8e8 8696
29b0f896 8697 p = frag_more (size);
d258b828 8698 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 8699
2bbd9c25
JJ
8700 /* This is tough to explain. We end up with this one if we
8701 * have operands that look like
8702 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8703 * obtain the absolute address of the GOT, and it is strongly
8704 * preferable from a performance point of view to avoid using
8705 * a runtime relocation for this. The actual sequence of
8706 * instructions often look something like:
8707 *
8708 * call .L66
8709 * .L66:
8710 * popl %ebx
8711 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8712 *
8713 * The call and pop essentially return the absolute address
8714 * of the label .L66 and store it in %ebx. The linker itself
8715 * will ultimately change the first operand of the addl so
8716 * that %ebx points to the GOT, but to keep things simple, the
8717 * .o file must have this operand set so that it generates not
8718 * the absolute address of .L66, but the absolute address of
8719 * itself. This allows the linker itself simply treat a GOTPC
8720 * relocation as asking for a pcrel offset to the GOT to be
8721 * added in, and the addend of the relocation is stored in the
8722 * operand field for the instruction itself.
8723 *
8724 * Our job here is to fix the operand so that it would add
8725 * the correct offset so that %ebx would point to itself. The
8726 * thing that is tricky is that .-.L66 will point to the
8727 * beginning of the instruction, so we need to further modify
8728 * the operand so that it will point to itself. There are
8729 * other cases where you have something like:
8730 *
8731 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8732 *
8733 * and here no correction would be required. Internally in
8734 * the assembler we treat operands of this form as not being
8735 * pcrel since the '.' is explicitly mentioned, and I wonder
8736 * whether it would simplify matters to do it this way. Who
8737 * knows. In earlier versions of the PIC patches, the
8738 * pcrel_adjust field was used to store the correction, but
8739 * since the expression is not pcrel, I felt it would be
8740 * confusing to do it this way. */
8741
d6ab8113 8742 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8743 || reloc_type == BFD_RELOC_X86_64_32S
8744 || reloc_type == BFD_RELOC_64)
29b0f896
AM
8745 && GOT_symbol
8746 && GOT_symbol == i.op[n].imms->X_add_symbol
8747 && (i.op[n].imms->X_op == O_symbol
8748 || (i.op[n].imms->X_op == O_add
8749 && ((symbol_get_value_expression
8750 (i.op[n].imms->X_op_symbol)->X_op)
8751 == O_subtract))))
8752 {
4fa24527 8753 if (!object_64bit)
d6ab8113 8754 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 8755 else if (size == 4)
d6ab8113 8756 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
8757 else if (size == 8)
8758 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d583596c
JB
8759 i.op[n].imms->X_add_number +=
8760 encoding_length (insn_start_frag, insn_start_off, p);
29b0f896 8761 }
29b0f896
AM
8762 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8763 i.op[n].imms, 0, reloc_type);
8764 }
8765 }
8766 }
252b5132
RH
8767}
8768\f
d182319b
JB
8769/* x86_cons_fix_new is called via the expression parsing code when a
8770 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
8771static int cons_sign = -1;
8772
8773void
e3bb37b5 8774x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 8775 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 8776{
d258b828 8777 r = reloc (len, 0, cons_sign, r);
d182319b
JB
8778
8779#ifdef TE_PE
8780 if (exp->X_op == O_secrel)
8781 {
8782 exp->X_op = O_symbol;
8783 r = BFD_RELOC_32_SECREL;
8784 }
8785#endif
8786
8787 fix_new_exp (frag, off, len, exp, 0, r);
8788}
8789
357d1bd8
L
8790/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8791 purpose of the `.dc.a' internal pseudo-op. */
8792
8793int
8794x86_address_bytes (void)
8795{
8796 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8797 return 4;
8798 return stdoutput->arch_info->bits_per_address / 8;
8799}
8800
d382c579
TG
8801#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8802 || defined (LEX_AT)
d258b828 8803# define lex_got(reloc, adjust, types) NULL
718ddfc0 8804#else
f3c180ae
AM
8805/* Parse operands of the form
8806 <symbol>@GOTOFF+<nnn>
8807 and similar .plt or .got references.
8808
8809 If we find one, set up the correct relocation in RELOC and copy the
8810 input string, minus the `@GOTOFF' into a malloc'd buffer for
8811 parsing by the calling routine. Return this buffer, and if ADJUST
8812 is non-null set it to the length of the string we removed from the
8813 input line. Otherwise return NULL. */
8814static char *
91d6fa6a 8815lex_got (enum bfd_reloc_code_real *rel,
64e74474 8816 int *adjust,
d258b828 8817 i386_operand_type *types)
f3c180ae 8818{
7b81dfbb
AJ
8819 /* Some of the relocations depend on the size of what field is to
8820 be relocated. But in our callers i386_immediate and i386_displacement
8821 we don't yet know the operand size (this will be set by insn
8822 matching). Hence we record the word32 relocation here,
8823 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
8824 static const struct {
8825 const char *str;
cff8d58a 8826 int len;
4fa24527 8827 const enum bfd_reloc_code_real rel[2];
40fb9820 8828 const i386_operand_type types64;
f3c180ae 8829 } gotrel[] = {
8ce3d284 8830#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
8831 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8832 BFD_RELOC_SIZE32 },
8833 OPERAND_TYPE_IMM32_64 },
8ce3d284 8834#endif
cff8d58a
L
8835 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8836 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 8837 OPERAND_TYPE_IMM64 },
cff8d58a
L
8838 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8839 BFD_RELOC_X86_64_PLT32 },
40fb9820 8840 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8841 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8842 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 8843 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8844 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8845 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 8846 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8847 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8848 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 8849 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8850 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8851 BFD_RELOC_X86_64_TLSGD },
40fb9820 8852 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8853 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8854 _dummy_first_bfd_reloc_code_real },
40fb9820 8855 OPERAND_TYPE_NONE },
cff8d58a
L
8856 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8857 BFD_RELOC_X86_64_TLSLD },
40fb9820 8858 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8859 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8860 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 8861 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8862 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8863 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 8864 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8865 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8866 _dummy_first_bfd_reloc_code_real },
40fb9820 8867 OPERAND_TYPE_NONE },
cff8d58a
L
8868 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8869 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 8870 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8871 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8872 _dummy_first_bfd_reloc_code_real },
40fb9820 8873 OPERAND_TYPE_NONE },
cff8d58a
L
8874 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8875 _dummy_first_bfd_reloc_code_real },
40fb9820 8876 OPERAND_TYPE_NONE },
cff8d58a
L
8877 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8878 BFD_RELOC_X86_64_GOT32 },
40fb9820 8879 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
8880 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8881 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 8882 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8883 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8884 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 8885 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
8886 };
8887 char *cp;
8888 unsigned int j;
8889
d382c579 8890#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
8891 if (!IS_ELF)
8892 return NULL;
d382c579 8893#endif
718ddfc0 8894
f3c180ae 8895 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 8896 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
8897 return NULL;
8898
47465058 8899 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 8900 {
cff8d58a 8901 int len = gotrel[j].len;
28f81592 8902 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 8903 {
4fa24527 8904 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 8905 {
28f81592
AM
8906 int first, second;
8907 char *tmpbuf, *past_reloc;
f3c180ae 8908
91d6fa6a 8909 *rel = gotrel[j].rel[object_64bit];
f3c180ae 8910
3956db08
JB
8911 if (types)
8912 {
8913 if (flag_code != CODE_64BIT)
40fb9820
L
8914 {
8915 types->bitfield.imm32 = 1;
8916 types->bitfield.disp32 = 1;
8917 }
3956db08
JB
8918 else
8919 *types = gotrel[j].types64;
8920 }
8921
8fd4256d 8922 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
8923 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8924
28f81592 8925 /* The length of the first part of our input line. */
f3c180ae 8926 first = cp - input_line_pointer;
28f81592
AM
8927
8928 /* The second part goes from after the reloc token until
67c11a9b 8929 (and including) an end_of_line char or comma. */
28f81592 8930 past_reloc = cp + 1 + len;
67c11a9b
AM
8931 cp = past_reloc;
8932 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8933 ++cp;
8934 second = cp + 1 - past_reloc;
28f81592
AM
8935
8936 /* Allocate and copy string. The trailing NUL shouldn't
8937 be necessary, but be safe. */
add39d23 8938 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 8939 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
8940 if (second != 0 && *past_reloc != ' ')
8941 /* Replace the relocation token with ' ', so that
8942 errors like foo@GOTOFF1 will be detected. */
8943 tmpbuf[first++] = ' ';
af89796a
L
8944 else
8945 /* Increment length by 1 if the relocation token is
8946 removed. */
8947 len++;
8948 if (adjust)
8949 *adjust = len;
0787a12d
AM
8950 memcpy (tmpbuf + first, past_reloc, second);
8951 tmpbuf[first + second] = '\0';
f3c180ae
AM
8952 return tmpbuf;
8953 }
8954
4fa24527
JB
8955 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8956 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
8957 return NULL;
8958 }
8959 }
8960
8961 /* Might be a symbol version string. Don't as_bad here. */
8962 return NULL;
8963}
4e4f7c87 8964#endif
f3c180ae 8965
a988325c
NC
8966#ifdef TE_PE
8967#ifdef lex_got
8968#undef lex_got
8969#endif
8970/* Parse operands of the form
8971 <symbol>@SECREL32+<nnn>
8972
8973 If we find one, set up the correct relocation in RELOC and copy the
8974 input string, minus the `@SECREL32' into a malloc'd buffer for
8975 parsing by the calling routine. Return this buffer, and if ADJUST
8976 is non-null set it to the length of the string we removed from the
34bca508
L
8977 input line. Otherwise return NULL.
8978
a988325c
NC
8979 This function is copied from the ELF version above adjusted for PE targets. */
8980
8981static char *
8982lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8983 int *adjust ATTRIBUTE_UNUSED,
d258b828 8984 i386_operand_type *types)
a988325c
NC
8985{
8986 static const struct
8987 {
8988 const char *str;
8989 int len;
8990 const enum bfd_reloc_code_real rel[2];
8991 const i386_operand_type types64;
8992 }
8993 gotrel[] =
8994 {
8995 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8996 BFD_RELOC_32_SECREL },
8997 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8998 };
8999
9000 char *cp;
9001 unsigned j;
9002
9003 for (cp = input_line_pointer; *cp != '@'; cp++)
9004 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9005 return NULL;
9006
9007 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9008 {
9009 int len = gotrel[j].len;
9010
9011 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9012 {
9013 if (gotrel[j].rel[object_64bit] != 0)
9014 {
9015 int first, second;
9016 char *tmpbuf, *past_reloc;
9017
9018 *rel = gotrel[j].rel[object_64bit];
9019 if (adjust)
9020 *adjust = len;
9021
9022 if (types)
9023 {
9024 if (flag_code != CODE_64BIT)
9025 {
9026 types->bitfield.imm32 = 1;
9027 types->bitfield.disp32 = 1;
9028 }
9029 else
9030 *types = gotrel[j].types64;
9031 }
9032
9033 /* The length of the first part of our input line. */
9034 first = cp - input_line_pointer;
9035
9036 /* The second part goes from after the reloc token until
9037 (and including) an end_of_line char or comma. */
9038 past_reloc = cp + 1 + len;
9039 cp = past_reloc;
9040 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9041 ++cp;
9042 second = cp + 1 - past_reloc;
9043
9044 /* Allocate and copy string. The trailing NUL shouldn't
9045 be necessary, but be safe. */
add39d23 9046 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
9047 memcpy (tmpbuf, input_line_pointer, first);
9048 if (second != 0 && *past_reloc != ' ')
9049 /* Replace the relocation token with ' ', so that
9050 errors like foo@SECLREL321 will be detected. */
9051 tmpbuf[first++] = ' ';
9052 memcpy (tmpbuf + first, past_reloc, second);
9053 tmpbuf[first + second] = '\0';
9054 return tmpbuf;
9055 }
9056
9057 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9058 gotrel[j].str, 1 << (5 + object_64bit));
9059 return NULL;
9060 }
9061 }
9062
9063 /* Might be a symbol version string. Don't as_bad here. */
9064 return NULL;
9065}
9066
9067#endif /* TE_PE */
9068
62ebcb5c 9069bfd_reloc_code_real_type
e3bb37b5 9070x86_cons (expressionS *exp, int size)
f3c180ae 9071{
62ebcb5c
AM
9072 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9073
ee86248c
JB
9074 intel_syntax = -intel_syntax;
9075
3c7b9c2c 9076 exp->X_md = 0;
4fa24527 9077 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
9078 {
9079 /* Handle @GOTOFF and the like in an expression. */
9080 char *save;
9081 char *gotfree_input_line;
4a57f2cf 9082 int adjust = 0;
f3c180ae
AM
9083
9084 save = input_line_pointer;
d258b828 9085 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
9086 if (gotfree_input_line)
9087 input_line_pointer = gotfree_input_line;
9088
9089 expression (exp);
9090
9091 if (gotfree_input_line)
9092 {
9093 /* expression () has merrily parsed up to the end of line,
9094 or a comma - in the wrong buffer. Transfer how far
9095 input_line_pointer has moved to the right buffer. */
9096 input_line_pointer = (save
9097 + (input_line_pointer - gotfree_input_line)
9098 + adjust);
9099 free (gotfree_input_line);
3992d3b7
AM
9100 if (exp->X_op == O_constant
9101 || exp->X_op == O_absent
9102 || exp->X_op == O_illegal
0398aac5 9103 || exp->X_op == O_register
3992d3b7
AM
9104 || exp->X_op == O_big)
9105 {
9106 char c = *input_line_pointer;
9107 *input_line_pointer = 0;
9108 as_bad (_("missing or invalid expression `%s'"), save);
9109 *input_line_pointer = c;
9110 }
b9519cfe
L
9111 else if ((got_reloc == BFD_RELOC_386_PLT32
9112 || got_reloc == BFD_RELOC_X86_64_PLT32)
9113 && exp->X_op != O_symbol)
9114 {
9115 char c = *input_line_pointer;
9116 *input_line_pointer = 0;
9117 as_bad (_("invalid PLT expression `%s'"), save);
9118 *input_line_pointer = c;
9119 }
f3c180ae
AM
9120 }
9121 }
9122 else
9123 expression (exp);
ee86248c
JB
9124
9125 intel_syntax = -intel_syntax;
9126
9127 if (intel_syntax)
9128 i386_intel_simplify (exp);
62ebcb5c
AM
9129
9130 return got_reloc;
f3c180ae 9131}
f3c180ae 9132
9f32dd5b
L
9133static void
9134signed_cons (int size)
6482c264 9135{
d182319b
JB
9136 if (flag_code == CODE_64BIT)
9137 cons_sign = 1;
9138 cons (size);
9139 cons_sign = -1;
6482c264
NC
9140}
9141
d182319b 9142#ifdef TE_PE
6482c264 9143static void
7016a5d5 9144pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
9145{
9146 expressionS exp;
9147
9148 do
9149 {
9150 expression (&exp);
9151 if (exp.X_op == O_symbol)
9152 exp.X_op = O_secrel;
9153
9154 emit_expr (&exp, 4);
9155 }
9156 while (*input_line_pointer++ == ',');
9157
9158 input_line_pointer--;
9159 demand_empty_rest_of_line ();
9160}
6482c264
NC
9161#endif
9162
43234a1e
L
9163/* Handle Vector operations. */
9164
9165static char *
9166check_VecOperations (char *op_string, char *op_end)
9167{
9168 const reg_entry *mask;
9169 const char *saved;
9170 char *end_op;
9171
9172 while (*op_string
9173 && (op_end == NULL || op_string < op_end))
9174 {
9175 saved = op_string;
9176 if (*op_string == '{')
9177 {
9178 op_string++;
9179
9180 /* Check broadcasts. */
9181 if (strncmp (op_string, "1to", 3) == 0)
9182 {
9183 int bcst_type;
9184
9185 if (i.broadcast)
9186 goto duplicated_vec_op;
9187
9188 op_string += 3;
9189 if (*op_string == '8')
8e6e0792 9190 bcst_type = 8;
b28d1bda 9191 else if (*op_string == '4')
8e6e0792 9192 bcst_type = 4;
b28d1bda 9193 else if (*op_string == '2')
8e6e0792 9194 bcst_type = 2;
43234a1e
L
9195 else if (*op_string == '1'
9196 && *(op_string+1) == '6')
9197 {
8e6e0792 9198 bcst_type = 16;
43234a1e
L
9199 op_string++;
9200 }
9201 else
9202 {
9203 as_bad (_("Unsupported broadcast: `%s'"), saved);
9204 return NULL;
9205 }
9206 op_string++;
9207
9208 broadcast_op.type = bcst_type;
9209 broadcast_op.operand = this_operand;
1f75763a 9210 broadcast_op.bytes = 0;
43234a1e
L
9211 i.broadcast = &broadcast_op;
9212 }
9213 /* Check masking operation. */
9214 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9215 {
9216 /* k0 can't be used for write mask. */
6d2cd6b2 9217 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
43234a1e 9218 {
6d2cd6b2
JB
9219 as_bad (_("`%s%s' can't be used for write mask"),
9220 register_prefix, mask->reg_name);
43234a1e
L
9221 return NULL;
9222 }
9223
9224 if (!i.mask)
9225 {
9226 mask_op.mask = mask;
9227 mask_op.zeroing = 0;
9228 mask_op.operand = this_operand;
9229 i.mask = &mask_op;
9230 }
9231 else
9232 {
9233 if (i.mask->mask)
9234 goto duplicated_vec_op;
9235
9236 i.mask->mask = mask;
9237
9238 /* Only "{z}" is allowed here. No need to check
9239 zeroing mask explicitly. */
9240 if (i.mask->operand != this_operand)
9241 {
9242 as_bad (_("invalid write mask `%s'"), saved);
9243 return NULL;
9244 }
9245 }
9246
9247 op_string = end_op;
9248 }
9249 /* Check zeroing-flag for masking operation. */
9250 else if (*op_string == 'z')
9251 {
9252 if (!i.mask)
9253 {
9254 mask_op.mask = NULL;
9255 mask_op.zeroing = 1;
9256 mask_op.operand = this_operand;
9257 i.mask = &mask_op;
9258 }
9259 else
9260 {
9261 if (i.mask->zeroing)
9262 {
9263 duplicated_vec_op:
9264 as_bad (_("duplicated `%s'"), saved);
9265 return NULL;
9266 }
9267
9268 i.mask->zeroing = 1;
9269
9270 /* Only "{%k}" is allowed here. No need to check mask
9271 register explicitly. */
9272 if (i.mask->operand != this_operand)
9273 {
9274 as_bad (_("invalid zeroing-masking `%s'"),
9275 saved);
9276 return NULL;
9277 }
9278 }
9279
9280 op_string++;
9281 }
9282 else
9283 goto unknown_vec_op;
9284
9285 if (*op_string != '}')
9286 {
9287 as_bad (_("missing `}' in `%s'"), saved);
9288 return NULL;
9289 }
9290 op_string++;
0ba3a731
L
9291
9292 /* Strip whitespace since the addition of pseudo prefixes
9293 changed how the scrubber treats '{'. */
9294 if (is_space_char (*op_string))
9295 ++op_string;
9296
43234a1e
L
9297 continue;
9298 }
9299 unknown_vec_op:
9300 /* We don't know this one. */
9301 as_bad (_("unknown vector operation: `%s'"), saved);
9302 return NULL;
9303 }
9304
6d2cd6b2
JB
9305 if (i.mask && i.mask->zeroing && !i.mask->mask)
9306 {
9307 as_bad (_("zeroing-masking only allowed with write mask"));
9308 return NULL;
9309 }
9310
43234a1e
L
9311 return op_string;
9312}
9313
252b5132 9314static int
70e41ade 9315i386_immediate (char *imm_start)
252b5132
RH
9316{
9317 char *save_input_line_pointer;
f3c180ae 9318 char *gotfree_input_line;
252b5132 9319 segT exp_seg = 0;
47926f60 9320 expressionS *exp;
40fb9820
L
9321 i386_operand_type types;
9322
0dfbf9d7 9323 operand_type_set (&types, ~0);
252b5132
RH
9324
9325 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9326 {
31b2323c
L
9327 as_bad (_("at most %d immediate operands are allowed"),
9328 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
9329 return 0;
9330 }
9331
9332 exp = &im_expressions[i.imm_operands++];
520dc8e8 9333 i.op[this_operand].imms = exp;
252b5132
RH
9334
9335 if (is_space_char (*imm_start))
9336 ++imm_start;
9337
9338 save_input_line_pointer = input_line_pointer;
9339 input_line_pointer = imm_start;
9340
d258b828 9341 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9342 if (gotfree_input_line)
9343 input_line_pointer = gotfree_input_line;
252b5132
RH
9344
9345 exp_seg = expression (exp);
9346
83183c0c 9347 SKIP_WHITESPACE ();
43234a1e
L
9348
9349 /* Handle vector operations. */
9350 if (*input_line_pointer == '{')
9351 {
9352 input_line_pointer = check_VecOperations (input_line_pointer,
9353 NULL);
9354 if (input_line_pointer == NULL)
9355 return 0;
9356 }
9357
252b5132 9358 if (*input_line_pointer)
f3c180ae 9359 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
9360
9361 input_line_pointer = save_input_line_pointer;
f3c180ae 9362 if (gotfree_input_line)
ee86248c
JB
9363 {
9364 free (gotfree_input_line);
9365
9366 if (exp->X_op == O_constant || exp->X_op == O_register)
9367 exp->X_op = O_illegal;
9368 }
9369
9370 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9371}
252b5132 9372
ee86248c
JB
9373static int
9374i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9375 i386_operand_type types, const char *imm_start)
9376{
9377 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 9378 {
313c53d1
L
9379 if (imm_start)
9380 as_bad (_("missing or invalid immediate expression `%s'"),
9381 imm_start);
3992d3b7 9382 return 0;
252b5132 9383 }
3e73aa7c 9384 else if (exp->X_op == O_constant)
252b5132 9385 {
47926f60 9386 /* Size it properly later. */
40fb9820 9387 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
9388 /* If not 64bit, sign extend val. */
9389 if (flag_code != CODE_64BIT
4eed87de
AM
9390 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9391 exp->X_add_number
9392 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 9393 }
4c63da97 9394#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 9395 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 9396 && exp_seg != absolute_section
47926f60 9397 && exp_seg != text_section
24eab124
AM
9398 && exp_seg != data_section
9399 && exp_seg != bss_section
9400 && exp_seg != undefined_section
f86103b7 9401 && !bfd_is_com_section (exp_seg))
252b5132 9402 {
d0b47220 9403 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
9404 return 0;
9405 }
9406#endif
a841bdf5 9407 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 9408 {
313c53d1
L
9409 if (imm_start)
9410 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
9411 return 0;
9412 }
252b5132
RH
9413 else
9414 {
9415 /* This is an address. The size of the address will be
24eab124 9416 determined later, depending on destination register,
3e73aa7c 9417 suffix, or the default for the section. */
40fb9820
L
9418 i.types[this_operand].bitfield.imm8 = 1;
9419 i.types[this_operand].bitfield.imm16 = 1;
9420 i.types[this_operand].bitfield.imm32 = 1;
9421 i.types[this_operand].bitfield.imm32s = 1;
9422 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
9423 i.types[this_operand] = operand_type_and (i.types[this_operand],
9424 types);
252b5132
RH
9425 }
9426
9427 return 1;
9428}
9429
551c1ca1 9430static char *
e3bb37b5 9431i386_scale (char *scale)
252b5132 9432{
551c1ca1
AM
9433 offsetT val;
9434 char *save = input_line_pointer;
252b5132 9435
551c1ca1
AM
9436 input_line_pointer = scale;
9437 val = get_absolute_expression ();
9438
9439 switch (val)
252b5132 9440 {
551c1ca1 9441 case 1:
252b5132
RH
9442 i.log2_scale_factor = 0;
9443 break;
551c1ca1 9444 case 2:
252b5132
RH
9445 i.log2_scale_factor = 1;
9446 break;
551c1ca1 9447 case 4:
252b5132
RH
9448 i.log2_scale_factor = 2;
9449 break;
551c1ca1 9450 case 8:
252b5132
RH
9451 i.log2_scale_factor = 3;
9452 break;
9453 default:
a724f0f4
JB
9454 {
9455 char sep = *input_line_pointer;
9456
9457 *input_line_pointer = '\0';
9458 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9459 scale);
9460 *input_line_pointer = sep;
9461 input_line_pointer = save;
9462 return NULL;
9463 }
252b5132 9464 }
29b0f896 9465 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
9466 {
9467 as_warn (_("scale factor of %d without an index register"),
24eab124 9468 1 << i.log2_scale_factor);
252b5132 9469 i.log2_scale_factor = 0;
252b5132 9470 }
551c1ca1
AM
9471 scale = input_line_pointer;
9472 input_line_pointer = save;
9473 return scale;
252b5132
RH
9474}
9475
252b5132 9476static int
e3bb37b5 9477i386_displacement (char *disp_start, char *disp_end)
252b5132 9478{
29b0f896 9479 expressionS *exp;
252b5132
RH
9480 segT exp_seg = 0;
9481 char *save_input_line_pointer;
f3c180ae 9482 char *gotfree_input_line;
40fb9820
L
9483 int override;
9484 i386_operand_type bigdisp, types = anydisp;
3992d3b7 9485 int ret;
252b5132 9486
31b2323c
L
9487 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9488 {
9489 as_bad (_("at most %d displacement operands are allowed"),
9490 MAX_MEMORY_OPERANDS);
9491 return 0;
9492 }
9493
0dfbf9d7 9494 operand_type_set (&bigdisp, 0);
40fb9820
L
9495 if ((i.types[this_operand].bitfield.jumpabsolute)
9496 || (!current_templates->start->opcode_modifier.jump
9497 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 9498 {
40fb9820 9499 bigdisp.bitfield.disp32 = 1;
e05278af 9500 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
9501 if (flag_code == CODE_64BIT)
9502 {
9503 if (!override)
9504 {
9505 bigdisp.bitfield.disp32s = 1;
9506 bigdisp.bitfield.disp64 = 1;
9507 }
9508 }
9509 else if ((flag_code == CODE_16BIT) ^ override)
9510 {
9511 bigdisp.bitfield.disp32 = 0;
9512 bigdisp.bitfield.disp16 = 1;
9513 }
e05278af
JB
9514 }
9515 else
9516 {
9517 /* For PC-relative branches, the width of the displacement
9518 is dependent upon data size, not address size. */
e05278af 9519 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
9520 if (flag_code == CODE_64BIT)
9521 {
9522 if (override || i.suffix == WORD_MNEM_SUFFIX)
9523 bigdisp.bitfield.disp16 = 1;
9524 else
9525 {
9526 bigdisp.bitfield.disp32 = 1;
9527 bigdisp.bitfield.disp32s = 1;
9528 }
9529 }
9530 else
e05278af
JB
9531 {
9532 if (!override)
9533 override = (i.suffix == (flag_code != CODE_16BIT
9534 ? WORD_MNEM_SUFFIX
9535 : LONG_MNEM_SUFFIX));
40fb9820
L
9536 bigdisp.bitfield.disp32 = 1;
9537 if ((flag_code == CODE_16BIT) ^ override)
9538 {
9539 bigdisp.bitfield.disp32 = 0;
9540 bigdisp.bitfield.disp16 = 1;
9541 }
e05278af 9542 }
e05278af 9543 }
c6fb90c8
L
9544 i.types[this_operand] = operand_type_or (i.types[this_operand],
9545 bigdisp);
252b5132
RH
9546
9547 exp = &disp_expressions[i.disp_operands];
520dc8e8 9548 i.op[this_operand].disps = exp;
252b5132
RH
9549 i.disp_operands++;
9550 save_input_line_pointer = input_line_pointer;
9551 input_line_pointer = disp_start;
9552 END_STRING_AND_SAVE (disp_end);
9553
9554#ifndef GCC_ASM_O_HACK
9555#define GCC_ASM_O_HACK 0
9556#endif
9557#if GCC_ASM_O_HACK
9558 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 9559 if (i.types[this_operand].bitfield.baseIndex
24eab124 9560 && displacement_string_end[-1] == '+')
252b5132
RH
9561 {
9562 /* This hack is to avoid a warning when using the "o"
24eab124
AM
9563 constraint within gcc asm statements.
9564 For instance:
9565
9566 #define _set_tssldt_desc(n,addr,limit,type) \
9567 __asm__ __volatile__ ( \
9568 "movw %w2,%0\n\t" \
9569 "movw %w1,2+%0\n\t" \
9570 "rorl $16,%1\n\t" \
9571 "movb %b1,4+%0\n\t" \
9572 "movb %4,5+%0\n\t" \
9573 "movb $0,6+%0\n\t" \
9574 "movb %h1,7+%0\n\t" \
9575 "rorl $16,%1" \
9576 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9577
9578 This works great except that the output assembler ends
9579 up looking a bit weird if it turns out that there is
9580 no offset. You end up producing code that looks like:
9581
9582 #APP
9583 movw $235,(%eax)
9584 movw %dx,2+(%eax)
9585 rorl $16,%edx
9586 movb %dl,4+(%eax)
9587 movb $137,5+(%eax)
9588 movb $0,6+(%eax)
9589 movb %dh,7+(%eax)
9590 rorl $16,%edx
9591 #NO_APP
9592
47926f60 9593 So here we provide the missing zero. */
24eab124
AM
9594
9595 *displacement_string_end = '0';
252b5132
RH
9596 }
9597#endif
d258b828 9598 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9599 if (gotfree_input_line)
9600 input_line_pointer = gotfree_input_line;
252b5132 9601
24eab124 9602 exp_seg = expression (exp);
252b5132 9603
636c26b0
AM
9604 SKIP_WHITESPACE ();
9605 if (*input_line_pointer)
9606 as_bad (_("junk `%s' after expression"), input_line_pointer);
9607#if GCC_ASM_O_HACK
9608 RESTORE_END_STRING (disp_end + 1);
9609#endif
636c26b0 9610 input_line_pointer = save_input_line_pointer;
636c26b0 9611 if (gotfree_input_line)
ee86248c
JB
9612 {
9613 free (gotfree_input_line);
9614
9615 if (exp->X_op == O_constant || exp->X_op == O_register)
9616 exp->X_op = O_illegal;
9617 }
9618
9619 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9620
9621 RESTORE_END_STRING (disp_end);
9622
9623 return ret;
9624}
9625
9626static int
9627i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9628 i386_operand_type types, const char *disp_start)
9629{
9630 i386_operand_type bigdisp;
9631 int ret = 1;
636c26b0 9632
24eab124
AM
9633 /* We do this to make sure that the section symbol is in
9634 the symbol table. We will ultimately change the relocation
47926f60 9635 to be relative to the beginning of the section. */
1ae12ab7 9636 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
9637 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9638 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 9639 {
636c26b0 9640 if (exp->X_op != O_symbol)
3992d3b7 9641 goto inv_disp;
636c26b0 9642
e5cb08ac 9643 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
9644 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9645 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 9646 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
9647 exp->X_op = O_subtract;
9648 exp->X_op_symbol = GOT_symbol;
1ae12ab7 9649 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 9650 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
9651 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9652 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 9653 else
29b0f896 9654 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 9655 }
252b5132 9656
3992d3b7
AM
9657 else if (exp->X_op == O_absent
9658 || exp->X_op == O_illegal
ee86248c 9659 || exp->X_op == O_big)
2daf4fd8 9660 {
3992d3b7
AM
9661 inv_disp:
9662 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 9663 disp_start);
3992d3b7 9664 ret = 0;
2daf4fd8
AM
9665 }
9666
0e1147d9
L
9667 else if (flag_code == CODE_64BIT
9668 && !i.prefix[ADDR_PREFIX]
9669 && exp->X_op == O_constant)
9670 {
9671 /* Since displacement is signed extended to 64bit, don't allow
9672 disp32 and turn off disp32s if they are out of range. */
9673 i.types[this_operand].bitfield.disp32 = 0;
9674 if (!fits_in_signed_long (exp->X_add_number))
9675 {
9676 i.types[this_operand].bitfield.disp32s = 0;
9677 if (i.types[this_operand].bitfield.baseindex)
9678 {
9679 as_bad (_("0x%lx out range of signed 32bit displacement"),
9680 (long) exp->X_add_number);
9681 ret = 0;
9682 }
9683 }
9684 }
9685
4c63da97 9686#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
9687 else if (exp->X_op != O_constant
9688 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9689 && exp_seg != absolute_section
9690 && exp_seg != text_section
9691 && exp_seg != data_section
9692 && exp_seg != bss_section
9693 && exp_seg != undefined_section
9694 && !bfd_is_com_section (exp_seg))
24eab124 9695 {
d0b47220 9696 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 9697 ret = 0;
24eab124 9698 }
252b5132 9699#endif
3956db08 9700
40fb9820
L
9701 /* Check if this is a displacement only operand. */
9702 bigdisp = i.types[this_operand];
9703 bigdisp.bitfield.disp8 = 0;
9704 bigdisp.bitfield.disp16 = 0;
9705 bigdisp.bitfield.disp32 = 0;
9706 bigdisp.bitfield.disp32s = 0;
9707 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 9708 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
9709 i.types[this_operand] = operand_type_and (i.types[this_operand],
9710 types);
3956db08 9711
3992d3b7 9712 return ret;
252b5132
RH
9713}
9714
2abc2bec
JB
9715/* Return the active addressing mode, taking address override and
9716 registers forming the address into consideration. Update the
9717 address override prefix if necessary. */
47926f60 9718
2abc2bec
JB
9719static enum flag_code
9720i386_addressing_mode (void)
252b5132 9721{
be05d201
L
9722 enum flag_code addr_mode;
9723
9724 if (i.prefix[ADDR_PREFIX])
9725 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9726 else
9727 {
9728 addr_mode = flag_code;
9729
24eab124 9730#if INFER_ADDR_PREFIX
be05d201
L
9731 if (i.mem_operands == 0)
9732 {
9733 /* Infer address prefix from the first memory operand. */
9734 const reg_entry *addr_reg = i.base_reg;
9735
9736 if (addr_reg == NULL)
9737 addr_reg = i.index_reg;
eecb386c 9738
be05d201
L
9739 if (addr_reg)
9740 {
e968fc9b 9741 if (addr_reg->reg_type.bitfield.dword)
be05d201
L
9742 addr_mode = CODE_32BIT;
9743 else if (flag_code != CODE_64BIT
dc821c5f 9744 && addr_reg->reg_type.bitfield.word)
be05d201
L
9745 addr_mode = CODE_16BIT;
9746
9747 if (addr_mode != flag_code)
9748 {
9749 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9750 i.prefixes += 1;
9751 /* Change the size of any displacement too. At most one
9752 of Disp16 or Disp32 is set.
9753 FIXME. There doesn't seem to be any real need for
9754 separate Disp16 and Disp32 flags. The same goes for
9755 Imm16 and Imm32. Removing them would probably clean
9756 up the code quite a lot. */
9757 if (flag_code != CODE_64BIT
9758 && (i.types[this_operand].bitfield.disp16
9759 || i.types[this_operand].bitfield.disp32))
9760 i.types[this_operand]
9761 = operand_type_xor (i.types[this_operand], disp16_32);
9762 }
9763 }
9764 }
24eab124 9765#endif
be05d201
L
9766 }
9767
2abc2bec
JB
9768 return addr_mode;
9769}
9770
9771/* Make sure the memory operand we've been dealt is valid.
9772 Return 1 on success, 0 on a failure. */
9773
9774static int
9775i386_index_check (const char *operand_string)
9776{
9777 const char *kind = "base/index";
9778 enum flag_code addr_mode = i386_addressing_mode ();
9779
fc0763e6 9780 if (current_templates->start->opcode_modifier.isstring
c3949f43 9781 && !current_templates->start->cpu_flags.bitfield.cpupadlock
fc0763e6
JB
9782 && (current_templates->end[-1].opcode_modifier.isstring
9783 || i.mem_operands))
9784 {
9785 /* Memory operands of string insns are special in that they only allow
9786 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
9787 const reg_entry *expected_reg;
9788 static const char *di_si[][2] =
9789 {
9790 { "esi", "edi" },
9791 { "si", "di" },
9792 { "rsi", "rdi" }
9793 };
9794 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
9795
9796 kind = "string address";
9797
8325cc63 9798 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6
JB
9799 {
9800 i386_operand_type type = current_templates->end[-1].operand_types[0];
9801
9802 if (!type.bitfield.baseindex
9803 || ((!i.mem_operands != !intel_syntax)
9804 && current_templates->end[-1].operand_types[1]
9805 .bitfield.baseindex))
9806 type = current_templates->end[-1].operand_types[1];
be05d201
L
9807 expected_reg = hash_find (reg_hash,
9808 di_si[addr_mode][type.bitfield.esseg]);
9809
fc0763e6
JB
9810 }
9811 else
be05d201 9812 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 9813
be05d201
L
9814 if (i.base_reg != expected_reg
9815 || i.index_reg
fc0763e6 9816 || operand_type_check (i.types[this_operand], disp))
fc0763e6 9817 {
be05d201
L
9818 /* The second memory operand must have the same size as
9819 the first one. */
9820 if (i.mem_operands
9821 && i.base_reg
9822 && !((addr_mode == CODE_64BIT
dc821c5f 9823 && i.base_reg->reg_type.bitfield.qword)
be05d201 9824 || (addr_mode == CODE_32BIT
dc821c5f
JB
9825 ? i.base_reg->reg_type.bitfield.dword
9826 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
9827 goto bad_address;
9828
fc0763e6
JB
9829 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9830 operand_string,
9831 intel_syntax ? '[' : '(',
9832 register_prefix,
be05d201 9833 expected_reg->reg_name,
fc0763e6 9834 intel_syntax ? ']' : ')');
be05d201 9835 return 1;
fc0763e6 9836 }
be05d201
L
9837 else
9838 return 1;
9839
9840bad_address:
9841 as_bad (_("`%s' is not a valid %s expression"),
9842 operand_string, kind);
9843 return 0;
3e73aa7c
JH
9844 }
9845 else
9846 {
be05d201
L
9847 if (addr_mode != CODE_16BIT)
9848 {
9849 /* 32-bit/64-bit checks. */
9850 if ((i.base_reg
e968fc9b
JB
9851 && ((addr_mode == CODE_64BIT
9852 ? !i.base_reg->reg_type.bitfield.qword
9853 : !i.base_reg->reg_type.bitfield.dword)
9854 || (i.index_reg && i.base_reg->reg_num == RegIP)
9855 || i.base_reg->reg_num == RegIZ))
be05d201 9856 || (i.index_reg
1b54b8d7
JB
9857 && !i.index_reg->reg_type.bitfield.xmmword
9858 && !i.index_reg->reg_type.bitfield.ymmword
9859 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 9860 && ((addr_mode == CODE_64BIT
e968fc9b
JB
9861 ? !i.index_reg->reg_type.bitfield.qword
9862 : !i.index_reg->reg_type.bitfield.dword)
be05d201
L
9863 || !i.index_reg->reg_type.bitfield.baseindex)))
9864 goto bad_address;
8178be5b
JB
9865
9866 /* bndmk, bndldx, and bndstx have special restrictions. */
9867 if (current_templates->start->base_opcode == 0xf30f1b
9868 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9869 {
9870 /* They cannot use RIP-relative addressing. */
e968fc9b 9871 if (i.base_reg && i.base_reg->reg_num == RegIP)
8178be5b
JB
9872 {
9873 as_bad (_("`%s' cannot be used here"), operand_string);
9874 return 0;
9875 }
9876
9877 /* bndldx and bndstx ignore their scale factor. */
9878 if (current_templates->start->base_opcode != 0xf30f1b
9879 && i.log2_scale_factor)
9880 as_warn (_("register scaling is being ignored here"));
9881 }
be05d201
L
9882 }
9883 else
3e73aa7c 9884 {
be05d201 9885 /* 16-bit checks. */
3e73aa7c 9886 if ((i.base_reg
dc821c5f 9887 && (!i.base_reg->reg_type.bitfield.word
40fb9820 9888 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 9889 || (i.index_reg
dc821c5f 9890 && (!i.index_reg->reg_type.bitfield.word
40fb9820 9891 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
9892 || !(i.base_reg
9893 && i.base_reg->reg_num < 6
9894 && i.index_reg->reg_num >= 6
9895 && i.log2_scale_factor == 0))))
be05d201 9896 goto bad_address;
3e73aa7c
JH
9897 }
9898 }
be05d201 9899 return 1;
24eab124 9900}
252b5132 9901
43234a1e
L
9902/* Handle vector immediates. */
9903
9904static int
9905RC_SAE_immediate (const char *imm_start)
9906{
9907 unsigned int match_found, j;
9908 const char *pstr = imm_start;
9909 expressionS *exp;
9910
9911 if (*pstr != '{')
9912 return 0;
9913
9914 pstr++;
9915 match_found = 0;
9916 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9917 {
9918 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9919 {
9920 if (!i.rounding)
9921 {
9922 rc_op.type = RC_NamesTable[j].type;
9923 rc_op.operand = this_operand;
9924 i.rounding = &rc_op;
9925 }
9926 else
9927 {
9928 as_bad (_("duplicated `%s'"), imm_start);
9929 return 0;
9930 }
9931 pstr += RC_NamesTable[j].len;
9932 match_found = 1;
9933 break;
9934 }
9935 }
9936 if (!match_found)
9937 return 0;
9938
9939 if (*pstr++ != '}')
9940 {
9941 as_bad (_("Missing '}': '%s'"), imm_start);
9942 return 0;
9943 }
9944 /* RC/SAE immediate string should contain nothing more. */;
9945 if (*pstr != 0)
9946 {
9947 as_bad (_("Junk after '}': '%s'"), imm_start);
9948 return 0;
9949 }
9950
9951 exp = &im_expressions[i.imm_operands++];
9952 i.op[this_operand].imms = exp;
9953
9954 exp->X_op = O_constant;
9955 exp->X_add_number = 0;
9956 exp->X_add_symbol = (symbolS *) 0;
9957 exp->X_op_symbol = (symbolS *) 0;
9958
9959 i.types[this_operand].bitfield.imm8 = 1;
9960 return 1;
9961}
9962
8325cc63
JB
9963/* Only string instructions can have a second memory operand, so
9964 reduce current_templates to just those if it contains any. */
9965static int
9966maybe_adjust_templates (void)
9967{
9968 const insn_template *t;
9969
9970 gas_assert (i.mem_operands == 1);
9971
9972 for (t = current_templates->start; t < current_templates->end; ++t)
9973 if (t->opcode_modifier.isstring)
9974 break;
9975
9976 if (t < current_templates->end)
9977 {
9978 static templates aux_templates;
9979 bfd_boolean recheck;
9980
9981 aux_templates.start = t;
9982 for (; t < current_templates->end; ++t)
9983 if (!t->opcode_modifier.isstring)
9984 break;
9985 aux_templates.end = t;
9986
9987 /* Determine whether to re-check the first memory operand. */
9988 recheck = (aux_templates.start != current_templates->start
9989 || t != current_templates->end);
9990
9991 current_templates = &aux_templates;
9992
9993 if (recheck)
9994 {
9995 i.mem_operands = 0;
9996 if (i.memop1_string != NULL
9997 && i386_index_check (i.memop1_string) == 0)
9998 return 0;
9999 i.mem_operands = 1;
10000 }
10001 }
10002
10003 return 1;
10004}
10005
fc0763e6 10006/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 10007 on error. */
252b5132 10008
252b5132 10009static int
a7619375 10010i386_att_operand (char *operand_string)
252b5132 10011{
af6bdddf
AM
10012 const reg_entry *r;
10013 char *end_op;
24eab124 10014 char *op_string = operand_string;
252b5132 10015
24eab124 10016 if (is_space_char (*op_string))
252b5132
RH
10017 ++op_string;
10018
24eab124 10019 /* We check for an absolute prefix (differentiating,
47926f60 10020 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
10021 if (*op_string == ABSOLUTE_PREFIX)
10022 {
10023 ++op_string;
10024 if (is_space_char (*op_string))
10025 ++op_string;
40fb9820 10026 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 10027 }
252b5132 10028
47926f60 10029 /* Check if operand is a register. */
4d1bb795 10030 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 10031 {
40fb9820
L
10032 i386_operand_type temp;
10033
24eab124
AM
10034 /* Check for a segment override by searching for ':' after a
10035 segment register. */
10036 op_string = end_op;
10037 if (is_space_char (*op_string))
10038 ++op_string;
21df382b 10039 if (*op_string == ':' && r->reg_type.bitfield.sreg)
24eab124
AM
10040 {
10041 switch (r->reg_num)
10042 {
10043 case 0:
10044 i.seg[i.mem_operands] = &es;
10045 break;
10046 case 1:
10047 i.seg[i.mem_operands] = &cs;
10048 break;
10049 case 2:
10050 i.seg[i.mem_operands] = &ss;
10051 break;
10052 case 3:
10053 i.seg[i.mem_operands] = &ds;
10054 break;
10055 case 4:
10056 i.seg[i.mem_operands] = &fs;
10057 break;
10058 case 5:
10059 i.seg[i.mem_operands] = &gs;
10060 break;
10061 }
252b5132 10062
24eab124 10063 /* Skip the ':' and whitespace. */
252b5132
RH
10064 ++op_string;
10065 if (is_space_char (*op_string))
24eab124 10066 ++op_string;
252b5132 10067
24eab124
AM
10068 if (!is_digit_char (*op_string)
10069 && !is_identifier_char (*op_string)
10070 && *op_string != '('
10071 && *op_string != ABSOLUTE_PREFIX)
10072 {
10073 as_bad (_("bad memory operand `%s'"), op_string);
10074 return 0;
10075 }
47926f60 10076 /* Handle case of %es:*foo. */
24eab124
AM
10077 if (*op_string == ABSOLUTE_PREFIX)
10078 {
10079 ++op_string;
10080 if (is_space_char (*op_string))
10081 ++op_string;
40fb9820 10082 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
10083 }
10084 goto do_memory_reference;
10085 }
43234a1e
L
10086
10087 /* Handle vector operations. */
10088 if (*op_string == '{')
10089 {
10090 op_string = check_VecOperations (op_string, NULL);
10091 if (op_string == NULL)
10092 return 0;
10093 }
10094
24eab124
AM
10095 if (*op_string)
10096 {
d0b47220 10097 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
10098 return 0;
10099 }
40fb9820
L
10100 temp = r->reg_type;
10101 temp.bitfield.baseindex = 0;
c6fb90c8
L
10102 i.types[this_operand] = operand_type_or (i.types[this_operand],
10103 temp);
7d5e4556 10104 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 10105 i.op[this_operand].regs = r;
24eab124
AM
10106 i.reg_operands++;
10107 }
af6bdddf
AM
10108 else if (*op_string == REGISTER_PREFIX)
10109 {
10110 as_bad (_("bad register name `%s'"), op_string);
10111 return 0;
10112 }
24eab124 10113 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 10114 {
24eab124 10115 ++op_string;
40fb9820 10116 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 10117 {
d0b47220 10118 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
10119 return 0;
10120 }
10121 if (!i386_immediate (op_string))
10122 return 0;
10123 }
43234a1e
L
10124 else if (RC_SAE_immediate (operand_string))
10125 {
10126 /* If it is a RC or SAE immediate, do nothing. */
10127 ;
10128 }
24eab124
AM
10129 else if (is_digit_char (*op_string)
10130 || is_identifier_char (*op_string)
d02603dc 10131 || *op_string == '"'
e5cb08ac 10132 || *op_string == '(')
24eab124 10133 {
47926f60 10134 /* This is a memory reference of some sort. */
af6bdddf 10135 char *base_string;
252b5132 10136
47926f60 10137 /* Start and end of displacement string expression (if found). */
eecb386c
AM
10138 char *displacement_string_start;
10139 char *displacement_string_end;
43234a1e 10140 char *vop_start;
252b5132 10141
24eab124 10142 do_memory_reference:
8325cc63
JB
10143 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10144 return 0;
24eab124 10145 if ((i.mem_operands == 1
40fb9820 10146 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
10147 || i.mem_operands == 2)
10148 {
10149 as_bad (_("too many memory references for `%s'"),
10150 current_templates->start->name);
10151 return 0;
10152 }
252b5132 10153
24eab124
AM
10154 /* Check for base index form. We detect the base index form by
10155 looking for an ')' at the end of the operand, searching
10156 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10157 after the '('. */
af6bdddf 10158 base_string = op_string + strlen (op_string);
c3332e24 10159
43234a1e
L
10160 /* Handle vector operations. */
10161 vop_start = strchr (op_string, '{');
10162 if (vop_start && vop_start < base_string)
10163 {
10164 if (check_VecOperations (vop_start, base_string) == NULL)
10165 return 0;
10166 base_string = vop_start;
10167 }
10168
af6bdddf
AM
10169 --base_string;
10170 if (is_space_char (*base_string))
10171 --base_string;
252b5132 10172
47926f60 10173 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
10174 displacement_string_start = op_string;
10175 displacement_string_end = base_string + 1;
252b5132 10176
24eab124
AM
10177 if (*base_string == ')')
10178 {
af6bdddf 10179 char *temp_string;
24eab124
AM
10180 unsigned int parens_balanced = 1;
10181 /* We've already checked that the number of left & right ()'s are
47926f60 10182 equal, so this loop will not be infinite. */
24eab124
AM
10183 do
10184 {
10185 base_string--;
10186 if (*base_string == ')')
10187 parens_balanced++;
10188 if (*base_string == '(')
10189 parens_balanced--;
10190 }
10191 while (parens_balanced);
c3332e24 10192
af6bdddf 10193 temp_string = base_string;
c3332e24 10194
24eab124 10195 /* Skip past '(' and whitespace. */
252b5132
RH
10196 ++base_string;
10197 if (is_space_char (*base_string))
24eab124 10198 ++base_string;
252b5132 10199
af6bdddf 10200 if (*base_string == ','
4eed87de
AM
10201 || ((i.base_reg = parse_register (base_string, &end_op))
10202 != NULL))
252b5132 10203 {
af6bdddf 10204 displacement_string_end = temp_string;
252b5132 10205
40fb9820 10206 i.types[this_operand].bitfield.baseindex = 1;
252b5132 10207
af6bdddf 10208 if (i.base_reg)
24eab124 10209 {
24eab124
AM
10210 base_string = end_op;
10211 if (is_space_char (*base_string))
10212 ++base_string;
af6bdddf
AM
10213 }
10214
10215 /* There may be an index reg or scale factor here. */
10216 if (*base_string == ',')
10217 {
10218 ++base_string;
10219 if (is_space_char (*base_string))
10220 ++base_string;
10221
4eed87de
AM
10222 if ((i.index_reg = parse_register (base_string, &end_op))
10223 != NULL)
24eab124 10224 {
af6bdddf 10225 base_string = end_op;
24eab124
AM
10226 if (is_space_char (*base_string))
10227 ++base_string;
af6bdddf
AM
10228 if (*base_string == ',')
10229 {
10230 ++base_string;
10231 if (is_space_char (*base_string))
10232 ++base_string;
10233 }
e5cb08ac 10234 else if (*base_string != ')')
af6bdddf 10235 {
4eed87de
AM
10236 as_bad (_("expecting `,' or `)' "
10237 "after index register in `%s'"),
af6bdddf
AM
10238 operand_string);
10239 return 0;
10240 }
24eab124 10241 }
af6bdddf 10242 else if (*base_string == REGISTER_PREFIX)
24eab124 10243 {
f76bf5e0
L
10244 end_op = strchr (base_string, ',');
10245 if (end_op)
10246 *end_op = '\0';
af6bdddf 10247 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
10248 return 0;
10249 }
252b5132 10250
47926f60 10251 /* Check for scale factor. */
551c1ca1 10252 if (*base_string != ')')
af6bdddf 10253 {
551c1ca1
AM
10254 char *end_scale = i386_scale (base_string);
10255
10256 if (!end_scale)
af6bdddf 10257 return 0;
24eab124 10258
551c1ca1 10259 base_string = end_scale;
af6bdddf
AM
10260 if (is_space_char (*base_string))
10261 ++base_string;
10262 if (*base_string != ')')
10263 {
4eed87de
AM
10264 as_bad (_("expecting `)' "
10265 "after scale factor in `%s'"),
af6bdddf
AM
10266 operand_string);
10267 return 0;
10268 }
10269 }
10270 else if (!i.index_reg)
24eab124 10271 {
4eed87de
AM
10272 as_bad (_("expecting index register or scale factor "
10273 "after `,'; got '%c'"),
af6bdddf 10274 *base_string);
24eab124
AM
10275 return 0;
10276 }
10277 }
af6bdddf 10278 else if (*base_string != ')')
24eab124 10279 {
4eed87de
AM
10280 as_bad (_("expecting `,' or `)' "
10281 "after base register in `%s'"),
af6bdddf 10282 operand_string);
24eab124
AM
10283 return 0;
10284 }
c3332e24 10285 }
af6bdddf 10286 else if (*base_string == REGISTER_PREFIX)
c3332e24 10287 {
f76bf5e0
L
10288 end_op = strchr (base_string, ',');
10289 if (end_op)
10290 *end_op = '\0';
af6bdddf 10291 as_bad (_("bad register name `%s'"), base_string);
24eab124 10292 return 0;
c3332e24 10293 }
24eab124
AM
10294 }
10295
10296 /* If there's an expression beginning the operand, parse it,
10297 assuming displacement_string_start and
10298 displacement_string_end are meaningful. */
10299 if (displacement_string_start != displacement_string_end)
10300 {
10301 if (!i386_displacement (displacement_string_start,
10302 displacement_string_end))
10303 return 0;
10304 }
10305
10306 /* Special case for (%dx) while doing input/output op. */
10307 if (i.base_reg
2fb5be8d 10308 && i.base_reg->reg_type.bitfield.inoutportreg
24eab124
AM
10309 && i.index_reg == 0
10310 && i.log2_scale_factor == 0
10311 && i.seg[i.mem_operands] == 0
40fb9820 10312 && !operand_type_check (i.types[this_operand], disp))
24eab124 10313 {
2fb5be8d 10314 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
10315 return 1;
10316 }
10317
eecb386c
AM
10318 if (i386_index_check (operand_string) == 0)
10319 return 0;
c48dadc9 10320 i.flags[this_operand] |= Operand_Mem;
8325cc63
JB
10321 if (i.mem_operands == 0)
10322 i.memop1_string = xstrdup (operand_string);
24eab124
AM
10323 i.mem_operands++;
10324 }
10325 else
ce8a8b2f
AM
10326 {
10327 /* It's not a memory operand; argh! */
24eab124
AM
10328 as_bad (_("invalid char %s beginning operand %d `%s'"),
10329 output_invalid (*op_string),
10330 this_operand + 1,
10331 op_string);
10332 return 0;
10333 }
47926f60 10334 return 1; /* Normal return. */
252b5132
RH
10335}
10336\f
fa94de6b
RM
10337/* Calculate the maximum variable size (i.e., excluding fr_fix)
10338 that an rs_machine_dependent frag may reach. */
10339
10340unsigned int
10341i386_frag_max_var (fragS *frag)
10342{
10343 /* The only relaxable frags are for jumps.
10344 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10345 gas_assert (frag->fr_type == rs_machine_dependent);
10346 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10347}
10348
b084df0b
L
10349#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10350static int
8dcea932 10351elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
10352{
10353 /* STT_GNU_IFUNC symbol must go through PLT. */
10354 if ((symbol_get_bfdsym (fr_symbol)->flags
10355 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10356 return 0;
10357
10358 if (!S_IS_EXTERNAL (fr_symbol))
10359 /* Symbol may be weak or local. */
10360 return !S_IS_WEAK (fr_symbol);
10361
8dcea932
L
10362 /* Global symbols with non-default visibility can't be preempted. */
10363 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10364 return 1;
10365
10366 if (fr_var != NO_RELOC)
10367 switch ((enum bfd_reloc_code_real) fr_var)
10368 {
10369 case BFD_RELOC_386_PLT32:
10370 case BFD_RELOC_X86_64_PLT32:
33eaf5de 10371 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
10372 return 0;
10373 default:
10374 abort ();
10375 }
10376
b084df0b
L
10377 /* Global symbols with default visibility in a shared library may be
10378 preempted by another definition. */
8dcea932 10379 return !shared;
b084df0b
L
10380}
10381#endif
10382
ee7fcc42
AM
10383/* md_estimate_size_before_relax()
10384
10385 Called just before relax() for rs_machine_dependent frags. The x86
10386 assembler uses these frags to handle variable size jump
10387 instructions.
10388
10389 Any symbol that is now undefined will not become defined.
10390 Return the correct fr_subtype in the frag.
10391 Return the initial "guess for variable size of frag" to caller.
10392 The guess is actually the growth beyond the fixed part. Whatever
10393 we do to grow the fixed or variable part contributes to our
10394 returned value. */
10395
252b5132 10396int
7016a5d5 10397md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 10398{
252b5132 10399 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
10400 check for un-relaxable symbols. On an ELF system, we can't relax
10401 an externally visible symbol, because it may be overridden by a
10402 shared library. */
10403 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 10404#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10405 || (IS_ELF
8dcea932
L
10406 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10407 fragP->fr_var))
fbeb56a4
DK
10408#endif
10409#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 10410 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 10411 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
10412#endif
10413 )
252b5132 10414 {
b98ef147
AM
10415 /* Symbol is undefined in this segment, or we need to keep a
10416 reloc so that weak symbols can be overridden. */
10417 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 10418 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
10419 unsigned char *opcode;
10420 int old_fr_fix;
f6af82bd 10421
ee7fcc42 10422 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 10423 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 10424 else if (size == 2)
f6af82bd 10425 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
10426#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10427 else if (need_plt32_p (fragP->fr_symbol))
10428 reloc_type = BFD_RELOC_X86_64_PLT32;
10429#endif
f6af82bd
AM
10430 else
10431 reloc_type = BFD_RELOC_32_PCREL;
252b5132 10432
ee7fcc42
AM
10433 old_fr_fix = fragP->fr_fix;
10434 opcode = (unsigned char *) fragP->fr_opcode;
10435
fddf5b5b 10436 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 10437 {
fddf5b5b
AM
10438 case UNCOND_JUMP:
10439 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 10440 opcode[0] = 0xe9;
252b5132 10441 fragP->fr_fix += size;
062cd5e7
AS
10442 fix_new (fragP, old_fr_fix, size,
10443 fragP->fr_symbol,
10444 fragP->fr_offset, 1,
10445 reloc_type);
252b5132
RH
10446 break;
10447
fddf5b5b 10448 case COND_JUMP86:
412167cb
AM
10449 if (size == 2
10450 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
10451 {
10452 /* Negate the condition, and branch past an
10453 unconditional jump. */
10454 opcode[0] ^= 1;
10455 opcode[1] = 3;
10456 /* Insert an unconditional jump. */
10457 opcode[2] = 0xe9;
10458 /* We added two extra opcode bytes, and have a two byte
10459 offset. */
10460 fragP->fr_fix += 2 + 2;
062cd5e7
AS
10461 fix_new (fragP, old_fr_fix + 2, 2,
10462 fragP->fr_symbol,
10463 fragP->fr_offset, 1,
10464 reloc_type);
fddf5b5b
AM
10465 break;
10466 }
10467 /* Fall through. */
10468
10469 case COND_JUMP:
412167cb
AM
10470 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10471 {
3e02c1cc
AM
10472 fixS *fixP;
10473
412167cb 10474 fragP->fr_fix += 1;
3e02c1cc
AM
10475 fixP = fix_new (fragP, old_fr_fix, 1,
10476 fragP->fr_symbol,
10477 fragP->fr_offset, 1,
10478 BFD_RELOC_8_PCREL);
10479 fixP->fx_signed = 1;
412167cb
AM
10480 break;
10481 }
93c2a809 10482
24eab124 10483 /* This changes the byte-displacement jump 0x7N
fddf5b5b 10484 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 10485 opcode[1] = opcode[0] + 0x10;
f6af82bd 10486 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
10487 /* We've added an opcode byte. */
10488 fragP->fr_fix += 1 + size;
062cd5e7
AS
10489 fix_new (fragP, old_fr_fix + 1, size,
10490 fragP->fr_symbol,
10491 fragP->fr_offset, 1,
10492 reloc_type);
252b5132 10493 break;
fddf5b5b
AM
10494
10495 default:
10496 BAD_CASE (fragP->fr_subtype);
10497 break;
252b5132
RH
10498 }
10499 frag_wane (fragP);
ee7fcc42 10500 return fragP->fr_fix - old_fr_fix;
252b5132 10501 }
93c2a809 10502
93c2a809
AM
10503 /* Guess size depending on current relax state. Initially the relax
10504 state will correspond to a short jump and we return 1, because
10505 the variable part of the frag (the branch offset) is one byte
10506 long. However, we can relax a section more than once and in that
10507 case we must either set fr_subtype back to the unrelaxed state,
10508 or return the value for the appropriate branch. */
10509 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
10510}
10511
47926f60
KH
10512/* Called after relax() is finished.
10513
10514 In: Address of frag.
10515 fr_type == rs_machine_dependent.
10516 fr_subtype is what the address relaxed to.
10517
10518 Out: Any fixSs and constants are set up.
10519 Caller will turn frag into a ".space 0". */
10520
252b5132 10521void
7016a5d5
TG
10522md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10523 fragS *fragP)
252b5132 10524{
29b0f896 10525 unsigned char *opcode;
252b5132 10526 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
10527 offsetT target_address;
10528 offsetT opcode_address;
252b5132 10529 unsigned int extension = 0;
847f7ad4 10530 offsetT displacement_from_opcode_start;
252b5132
RH
10531
10532 opcode = (unsigned char *) fragP->fr_opcode;
10533
47926f60 10534 /* Address we want to reach in file space. */
252b5132 10535 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 10536
47926f60 10537 /* Address opcode resides at in file space. */
252b5132
RH
10538 opcode_address = fragP->fr_address + fragP->fr_fix;
10539
47926f60 10540 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
10541 displacement_from_opcode_start = target_address - opcode_address;
10542
fddf5b5b 10543 if ((fragP->fr_subtype & BIG) == 0)
252b5132 10544 {
47926f60
KH
10545 /* Don't have to change opcode. */
10546 extension = 1; /* 1 opcode + 1 displacement */
252b5132 10547 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
10548 }
10549 else
10550 {
10551 if (no_cond_jump_promotion
10552 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
10553 as_warn_where (fragP->fr_file, fragP->fr_line,
10554 _("long jump required"));
252b5132 10555
fddf5b5b
AM
10556 switch (fragP->fr_subtype)
10557 {
10558 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10559 extension = 4; /* 1 opcode + 4 displacement */
10560 opcode[0] = 0xe9;
10561 where_to_put_displacement = &opcode[1];
10562 break;
252b5132 10563
fddf5b5b
AM
10564 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10565 extension = 2; /* 1 opcode + 2 displacement */
10566 opcode[0] = 0xe9;
10567 where_to_put_displacement = &opcode[1];
10568 break;
252b5132 10569
fddf5b5b
AM
10570 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10571 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10572 extension = 5; /* 2 opcode + 4 displacement */
10573 opcode[1] = opcode[0] + 0x10;
10574 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10575 where_to_put_displacement = &opcode[2];
10576 break;
252b5132 10577
fddf5b5b
AM
10578 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10579 extension = 3; /* 2 opcode + 2 displacement */
10580 opcode[1] = opcode[0] + 0x10;
10581 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10582 where_to_put_displacement = &opcode[2];
10583 break;
252b5132 10584
fddf5b5b
AM
10585 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10586 extension = 4;
10587 opcode[0] ^= 1;
10588 opcode[1] = 3;
10589 opcode[2] = 0xe9;
10590 where_to_put_displacement = &opcode[3];
10591 break;
10592
10593 default:
10594 BAD_CASE (fragP->fr_subtype);
10595 break;
10596 }
252b5132 10597 }
fddf5b5b 10598
7b81dfbb
AJ
10599 /* If size if less then four we are sure that the operand fits,
10600 but if it's 4, then it could be that the displacement is larger
10601 then -/+ 2GB. */
10602 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10603 && object_64bit
10604 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
10605 + ((addressT) 1 << 31))
10606 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
10607 {
10608 as_bad_where (fragP->fr_file, fragP->fr_line,
10609 _("jump target out of range"));
10610 /* Make us emit 0. */
10611 displacement_from_opcode_start = extension;
10612 }
47926f60 10613 /* Now put displacement after opcode. */
252b5132
RH
10614 md_number_to_chars ((char *) where_to_put_displacement,
10615 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 10616 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
10617 fragP->fr_fix += extension;
10618}
10619\f
7016a5d5 10620/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
10621 by our caller that we have all the info we need to fix it up.
10622
7016a5d5
TG
10623 Parameter valP is the pointer to the value of the bits.
10624
252b5132
RH
10625 On the 386, immediates, displacements, and data pointers are all in
10626 the same (little-endian) format, so we don't need to care about which
10627 we are handling. */
10628
94f592af 10629void
7016a5d5 10630md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 10631{
94f592af 10632 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 10633 valueT value = *valP;
252b5132 10634
f86103b7 10635#if !defined (TE_Mach)
93382f6d
AM
10636 if (fixP->fx_pcrel)
10637 {
10638 switch (fixP->fx_r_type)
10639 {
5865bb77
ILT
10640 default:
10641 break;
10642
d6ab8113
JB
10643 case BFD_RELOC_64:
10644 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10645 break;
93382f6d 10646 case BFD_RELOC_32:
ae8887b5 10647 case BFD_RELOC_X86_64_32S:
93382f6d
AM
10648 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10649 break;
10650 case BFD_RELOC_16:
10651 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10652 break;
10653 case BFD_RELOC_8:
10654 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10655 break;
10656 }
10657 }
252b5132 10658
a161fe53 10659 if (fixP->fx_addsy != NULL
31312f95 10660 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 10661 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 10662 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 10663 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 10664 && !use_rela_relocations)
252b5132 10665 {
31312f95
AM
10666 /* This is a hack. There should be a better way to handle this.
10667 This covers for the fact that bfd_install_relocation will
10668 subtract the current location (for partial_inplace, PC relative
10669 relocations); see more below. */
252b5132 10670#ifndef OBJ_AOUT
718ddfc0 10671 if (IS_ELF
252b5132
RH
10672#ifdef TE_PE
10673 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10674#endif
10675 )
10676 value += fixP->fx_where + fixP->fx_frag->fr_address;
10677#endif
10678#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10679 if (IS_ELF)
252b5132 10680 {
6539b54b 10681 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 10682
6539b54b 10683 if ((sym_seg == seg
2f66722d 10684 || (symbol_section_p (fixP->fx_addsy)
6539b54b 10685 && sym_seg != absolute_section))
af65af87 10686 && !generic_force_reloc (fixP))
2f66722d
AM
10687 {
10688 /* Yes, we add the values in twice. This is because
6539b54b
AM
10689 bfd_install_relocation subtracts them out again. I think
10690 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
10691 it. FIXME. */
10692 value += fixP->fx_where + fixP->fx_frag->fr_address;
10693 }
252b5132
RH
10694 }
10695#endif
10696#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
10697 /* For some reason, the PE format does not store a
10698 section address offset for a PC relative symbol. */
10699 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 10700 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
10701 value += md_pcrel_from (fixP);
10702#endif
10703 }
fbeb56a4 10704#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
10705 if (fixP->fx_addsy != NULL
10706 && S_IS_WEAK (fixP->fx_addsy)
10707 /* PR 16858: Do not modify weak function references. */
10708 && ! fixP->fx_pcrel)
fbeb56a4 10709 {
296a8689
NC
10710#if !defined (TE_PEP)
10711 /* For x86 PE weak function symbols are neither PC-relative
10712 nor do they set S_IS_FUNCTION. So the only reliable way
10713 to detect them is to check the flags of their containing
10714 section. */
10715 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10716 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10717 ;
10718 else
10719#endif
fbeb56a4
DK
10720 value -= S_GET_VALUE (fixP->fx_addsy);
10721 }
10722#endif
252b5132
RH
10723
10724 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 10725 and we must not disappoint it. */
252b5132 10726#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10727 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
10728 switch (fixP->fx_r_type)
10729 {
10730 case BFD_RELOC_386_PLT32:
3e73aa7c 10731 case BFD_RELOC_X86_64_PLT32:
b9519cfe
L
10732 /* Make the jump instruction point to the address of the operand.
10733 At runtime we merely add the offset to the actual PLT entry.
10734 NB: Subtract the offset size only for jump instructions. */
10735 if (fixP->fx_pcrel)
10736 value = -4;
47926f60 10737 break;
31312f95 10738
13ae64f3
JJ
10739 case BFD_RELOC_386_TLS_GD:
10740 case BFD_RELOC_386_TLS_LDM:
13ae64f3 10741 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
10742 case BFD_RELOC_386_TLS_IE:
10743 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 10744 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
10745 case BFD_RELOC_X86_64_TLSGD:
10746 case BFD_RELOC_X86_64_TLSLD:
10747 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 10748 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
10749 value = 0; /* Fully resolved at runtime. No addend. */
10750 /* Fallthrough */
10751 case BFD_RELOC_386_TLS_LE:
10752 case BFD_RELOC_386_TLS_LDO_32:
10753 case BFD_RELOC_386_TLS_LE_32:
10754 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 10755 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 10756 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 10757 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
10758 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10759 break;
10760
67a4f2b7
AO
10761 case BFD_RELOC_386_TLS_DESC_CALL:
10762 case BFD_RELOC_X86_64_TLSDESC_CALL:
10763 value = 0; /* Fully resolved at runtime. No addend. */
10764 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10765 fixP->fx_done = 0;
10766 return;
10767
47926f60
KH
10768 case BFD_RELOC_VTABLE_INHERIT:
10769 case BFD_RELOC_VTABLE_ENTRY:
10770 fixP->fx_done = 0;
94f592af 10771 return;
47926f60
KH
10772
10773 default:
10774 break;
10775 }
10776#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 10777 *valP = value;
f86103b7 10778#endif /* !defined (TE_Mach) */
3e73aa7c 10779
3e73aa7c 10780 /* Are we finished with this relocation now? */
c6682705 10781 if (fixP->fx_addsy == NULL)
3e73aa7c 10782 fixP->fx_done = 1;
fbeb56a4
DK
10783#if defined (OBJ_COFF) && defined (TE_PE)
10784 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10785 {
10786 fixP->fx_done = 0;
10787 /* Remember value for tc_gen_reloc. */
10788 fixP->fx_addnumber = value;
10789 /* Clear out the frag for now. */
10790 value = 0;
10791 }
10792#endif
3e73aa7c
JH
10793 else if (use_rela_relocations)
10794 {
10795 fixP->fx_no_overflow = 1;
062cd5e7
AS
10796 /* Remember value for tc_gen_reloc. */
10797 fixP->fx_addnumber = value;
3e73aa7c
JH
10798 value = 0;
10799 }
f86103b7 10800
94f592af 10801 md_number_to_chars (p, value, fixP->fx_size);
252b5132 10802}
252b5132 10803\f
6d4af3c2 10804const char *
499ac353 10805md_atof (int type, char *litP, int *sizeP)
252b5132 10806{
499ac353
NC
10807 /* This outputs the LITTLENUMs in REVERSE order;
10808 in accord with the bigendian 386. */
10809 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
10810}
10811\f
2d545b82 10812static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 10813
252b5132 10814static char *
e3bb37b5 10815output_invalid (int c)
252b5132 10816{
3882b010 10817 if (ISPRINT (c))
f9f21a03
L
10818 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10819 "'%c'", c);
252b5132 10820 else
f9f21a03 10821 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 10822 "(0x%x)", (unsigned char) c);
252b5132
RH
10823 return output_invalid_buf;
10824}
10825
af6bdddf 10826/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
10827
10828static const reg_entry *
4d1bb795 10829parse_real_register (char *reg_string, char **end_op)
252b5132 10830{
af6bdddf
AM
10831 char *s = reg_string;
10832 char *p;
252b5132
RH
10833 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10834 const reg_entry *r;
10835
10836 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10837 if (*s == REGISTER_PREFIX)
10838 ++s;
10839
10840 if (is_space_char (*s))
10841 ++s;
10842
10843 p = reg_name_given;
af6bdddf 10844 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
10845 {
10846 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
10847 return (const reg_entry *) NULL;
10848 s++;
252b5132
RH
10849 }
10850
6588847e
DN
10851 /* For naked regs, make sure that we are not dealing with an identifier.
10852 This prevents confusing an identifier like `eax_var' with register
10853 `eax'. */
10854 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10855 return (const reg_entry *) NULL;
10856
af6bdddf 10857 *end_op = s;
252b5132
RH
10858
10859 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10860
5f47d35b 10861 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 10862 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 10863 {
0e0eea78
JB
10864 if (!cpu_arch_flags.bitfield.cpu8087
10865 && !cpu_arch_flags.bitfield.cpu287
10866 && !cpu_arch_flags.bitfield.cpu387)
10867 return (const reg_entry *) NULL;
10868
5f47d35b
AM
10869 if (is_space_char (*s))
10870 ++s;
10871 if (*s == '(')
10872 {
af6bdddf 10873 ++s;
5f47d35b
AM
10874 if (is_space_char (*s))
10875 ++s;
10876 if (*s >= '0' && *s <= '7')
10877 {
db557034 10878 int fpr = *s - '0';
af6bdddf 10879 ++s;
5f47d35b
AM
10880 if (is_space_char (*s))
10881 ++s;
10882 if (*s == ')')
10883 {
10884 *end_op = s + 1;
1e9cc1c2 10885 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
10886 know (r);
10887 return r + fpr;
5f47d35b 10888 }
5f47d35b 10889 }
47926f60 10890 /* We have "%st(" then garbage. */
5f47d35b
AM
10891 return (const reg_entry *) NULL;
10892 }
10893 }
10894
a60de03c
JB
10895 if (r == NULL || allow_pseudo_reg)
10896 return r;
10897
0dfbf9d7 10898 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
10899 return (const reg_entry *) NULL;
10900
dc821c5f 10901 if ((r->reg_type.bitfield.dword
21df382b 10902 || (r->reg_type.bitfield.sreg && r->reg_num > 3)
192dc9c6
JB
10903 || r->reg_type.bitfield.control
10904 || r->reg_type.bitfield.debug
10905 || r->reg_type.bitfield.test)
10906 && !cpu_arch_flags.bitfield.cpui386)
10907 return (const reg_entry *) NULL;
10908
6e041cf4 10909 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
192dc9c6
JB
10910 return (const reg_entry *) NULL;
10911
6e041cf4
JB
10912 if (!cpu_arch_flags.bitfield.cpuavx512f)
10913 {
10914 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10915 return (const reg_entry *) NULL;
40f12533 10916
6e041cf4
JB
10917 if (!cpu_arch_flags.bitfield.cpuavx)
10918 {
10919 if (r->reg_type.bitfield.ymmword)
10920 return (const reg_entry *) NULL;
1848e567 10921
6e041cf4
JB
10922 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10923 return (const reg_entry *) NULL;
10924 }
10925 }
43234a1e 10926
1adf7f56
JB
10927 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10928 return (const reg_entry *) NULL;
10929
db51cc60 10930 /* Don't allow fake index register unless allow_index_reg isn't 0. */
e968fc9b 10931 if (!allow_index_reg && r->reg_num == RegIZ)
db51cc60
L
10932 return (const reg_entry *) NULL;
10933
1d3f8286
JB
10934 /* Upper 16 vector registers are only available with VREX in 64bit
10935 mode, and require EVEX encoding. */
10936 if (r->reg_flags & RegVRex)
43234a1e 10937 {
e951d5ca 10938 if (!cpu_arch_flags.bitfield.cpuavx512f
43234a1e
L
10939 || flag_code != CODE_64BIT)
10940 return (const reg_entry *) NULL;
1d3f8286
JB
10941
10942 i.vec_encoding = vex_encoding_evex;
43234a1e
L
10943 }
10944
4787f4a5
JB
10945 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10946 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
1ae00879 10947 && flag_code != CODE_64BIT)
20f0a1fc 10948 return (const reg_entry *) NULL;
1ae00879 10949
21df382b 10950 if (r->reg_type.bitfield.sreg && r->reg_num == RegFlat && !intel_syntax)
b7240065
JB
10951 return (const reg_entry *) NULL;
10952
252b5132
RH
10953 return r;
10954}
4d1bb795
JB
10955
10956/* REG_STRING starts *before* REGISTER_PREFIX. */
10957
10958static const reg_entry *
10959parse_register (char *reg_string, char **end_op)
10960{
10961 const reg_entry *r;
10962
10963 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10964 r = parse_real_register (reg_string, end_op);
10965 else
10966 r = NULL;
10967 if (!r)
10968 {
10969 char *save = input_line_pointer;
10970 char c;
10971 symbolS *symbolP;
10972
10973 input_line_pointer = reg_string;
d02603dc 10974 c = get_symbol_name (&reg_string);
4d1bb795
JB
10975 symbolP = symbol_find (reg_string);
10976 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10977 {
10978 const expressionS *e = symbol_get_value_expression (symbolP);
10979
0398aac5 10980 know (e->X_op == O_register);
4eed87de 10981 know (e->X_add_number >= 0
c3fe08fa 10982 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 10983 r = i386_regtab + e->X_add_number;
d3bb6b49 10984 if ((r->reg_flags & RegVRex))
86fa6981 10985 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
10986 *end_op = input_line_pointer;
10987 }
10988 *input_line_pointer = c;
10989 input_line_pointer = save;
10990 }
10991 return r;
10992}
10993
10994int
10995i386_parse_name (char *name, expressionS *e, char *nextcharP)
10996{
10997 const reg_entry *r;
10998 char *end = input_line_pointer;
10999
11000 *end = *nextcharP;
11001 r = parse_register (name, &input_line_pointer);
11002 if (r && end <= input_line_pointer)
11003 {
11004 *nextcharP = *input_line_pointer;
11005 *input_line_pointer = 0;
11006 e->X_op = O_register;
11007 e->X_add_number = r - i386_regtab;
11008 return 1;
11009 }
11010 input_line_pointer = end;
11011 *end = 0;
ee86248c 11012 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
11013}
11014
11015void
11016md_operand (expressionS *e)
11017{
ee86248c
JB
11018 char *end;
11019 const reg_entry *r;
4d1bb795 11020
ee86248c
JB
11021 switch (*input_line_pointer)
11022 {
11023 case REGISTER_PREFIX:
11024 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
11025 if (r)
11026 {
11027 e->X_op = O_register;
11028 e->X_add_number = r - i386_regtab;
11029 input_line_pointer = end;
11030 }
ee86248c
JB
11031 break;
11032
11033 case '[':
9c2799c2 11034 gas_assert (intel_syntax);
ee86248c
JB
11035 end = input_line_pointer++;
11036 expression (e);
11037 if (*input_line_pointer == ']')
11038 {
11039 ++input_line_pointer;
11040 e->X_op_symbol = make_expr_symbol (e);
11041 e->X_add_symbol = NULL;
11042 e->X_add_number = 0;
11043 e->X_op = O_index;
11044 }
11045 else
11046 {
11047 e->X_op = O_absent;
11048 input_line_pointer = end;
11049 }
11050 break;
4d1bb795
JB
11051 }
11052}
11053
252b5132 11054\f
4cc782b5 11055#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 11056const char *md_shortopts = "kVQ:sqnO::";
252b5132 11057#else
b6f8c7c4 11058const char *md_shortopts = "qnO::";
252b5132 11059#endif
6e0b89ee 11060
3e73aa7c 11061#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
11062#define OPTION_64 (OPTION_MD_BASE + 1)
11063#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
11064#define OPTION_MARCH (OPTION_MD_BASE + 3)
11065#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
11066#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
11067#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
11068#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
11069#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 11070#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 11071#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 11072#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
11073#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
11074#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
11075#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 11076#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
11077#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
11078#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 11079#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 11080#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 11081#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 11082#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
11083#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
11084#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 11085#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b4a3a7b4 11086#define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
03751133 11087#define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
b3b91714 11088
99ad8390
NC
11089struct option md_longopts[] =
11090{
3e73aa7c 11091 {"32", no_argument, NULL, OPTION_32},
321098a5 11092#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 11093 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 11094 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
11095#endif
11096#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 11097 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 11098 {"mshared", no_argument, NULL, OPTION_MSHARED},
b4a3a7b4 11099 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
6e0b89ee 11100#endif
b3b91714 11101 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
11102 {"march", required_argument, NULL, OPTION_MARCH},
11103 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
11104 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
11105 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
11106 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
11107 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 11108 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 11109 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 11110 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 11111 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
03751133 11112 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
7e8b059b 11113 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
11114 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
11115 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
11116# if defined (TE_PE) || defined (TE_PEP)
11117 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
11118#endif
d1982f93 11119 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 11120 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 11121 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 11122 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
11123 {"mamd64", no_argument, NULL, OPTION_MAMD64},
11124 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
11125 {NULL, no_argument, NULL, 0}
11126};
11127size_t md_longopts_size = sizeof (md_longopts);
11128
11129int
17b9d67d 11130md_parse_option (int c, const char *arg)
252b5132 11131{
91d6fa6a 11132 unsigned int j;
293f5f65 11133 char *arch, *next, *saved;
9103f4f4 11134
252b5132
RH
11135 switch (c)
11136 {
12b55ccc
L
11137 case 'n':
11138 optimize_align_code = 0;
11139 break;
11140
a38cf1db
AM
11141 case 'q':
11142 quiet_warnings = 1;
252b5132
RH
11143 break;
11144
11145#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
11146 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
11147 should be emitted or not. FIXME: Not implemented. */
11148 case 'Q':
d4693039
JB
11149 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
11150 return 0;
252b5132
RH
11151 break;
11152
11153 /* -V: SVR4 argument to print version ID. */
11154 case 'V':
11155 print_version_id ();
11156 break;
11157
a38cf1db
AM
11158 /* -k: Ignore for FreeBSD compatibility. */
11159 case 'k':
252b5132 11160 break;
4cc782b5
ILT
11161
11162 case 's':
11163 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 11164 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 11165 break;
8dcea932
L
11166
11167 case OPTION_MSHARED:
11168 shared = 1;
11169 break;
b4a3a7b4
L
11170
11171 case OPTION_X86_USED_NOTE:
11172 if (strcasecmp (arg, "yes") == 0)
11173 x86_used_note = 1;
11174 else if (strcasecmp (arg, "no") == 0)
11175 x86_used_note = 0;
11176 else
11177 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
11178 break;
11179
11180
99ad8390 11181#endif
321098a5 11182#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 11183 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
11184 case OPTION_64:
11185 {
11186 const char **list, **l;
11187
3e73aa7c
JH
11188 list = bfd_target_list ();
11189 for (l = list; *l != NULL; l++)
8620418b 11190 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
11191 || strcmp (*l, "coff-x86-64") == 0
11192 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
11193 || strcmp (*l, "pei-x86-64") == 0
11194 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
11195 {
11196 default_arch = "x86_64";
11197 break;
11198 }
3e73aa7c 11199 if (*l == NULL)
2b5d6a91 11200 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
11201 free (list);
11202 }
11203 break;
11204#endif
252b5132 11205
351f65ca 11206#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 11207 case OPTION_X32:
351f65ca
L
11208 if (IS_ELF)
11209 {
11210 const char **list, **l;
11211
11212 list = bfd_target_list ();
11213 for (l = list; *l != NULL; l++)
11214 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11215 {
11216 default_arch = "x86_64:32";
11217 break;
11218 }
11219 if (*l == NULL)
2b5d6a91 11220 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
11221 free (list);
11222 }
11223 else
11224 as_fatal (_("32bit x86_64 is only supported for ELF"));
11225 break;
11226#endif
11227
6e0b89ee
AM
11228 case OPTION_32:
11229 default_arch = "i386";
11230 break;
11231
b3b91714
AM
11232 case OPTION_DIVIDE:
11233#ifdef SVR4_COMMENT_CHARS
11234 {
11235 char *n, *t;
11236 const char *s;
11237
add39d23 11238 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
11239 t = n;
11240 for (s = i386_comment_chars; *s != '\0'; s++)
11241 if (*s != '/')
11242 *t++ = *s;
11243 *t = '\0';
11244 i386_comment_chars = n;
11245 }
11246#endif
11247 break;
11248
9103f4f4 11249 case OPTION_MARCH:
293f5f65
L
11250 saved = xstrdup (arg);
11251 arch = saved;
11252 /* Allow -march=+nosse. */
11253 if (*arch == '+')
11254 arch++;
6305a203 11255 do
9103f4f4 11256 {
6305a203 11257 if (*arch == '.')
2b5d6a91 11258 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11259 next = strchr (arch, '+');
11260 if (next)
11261 *next++ = '\0';
91d6fa6a 11262 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11263 {
91d6fa6a 11264 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 11265 {
6305a203 11266 /* Processor. */
1ded5609
JB
11267 if (! cpu_arch[j].flags.bitfield.cpui386)
11268 continue;
11269
91d6fa6a 11270 cpu_arch_name = cpu_arch[j].name;
6305a203 11271 cpu_sub_arch_name = NULL;
91d6fa6a
NC
11272 cpu_arch_flags = cpu_arch[j].flags;
11273 cpu_arch_isa = cpu_arch[j].type;
11274 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
11275 if (!cpu_arch_tune_set)
11276 {
11277 cpu_arch_tune = cpu_arch_isa;
11278 cpu_arch_tune_flags = cpu_arch_isa_flags;
11279 }
11280 break;
11281 }
91d6fa6a
NC
11282 else if (*cpu_arch [j].name == '.'
11283 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 11284 {
33eaf5de 11285 /* ISA extension. */
6305a203 11286 i386_cpu_flags flags;
309d3373 11287
293f5f65
L
11288 flags = cpu_flags_or (cpu_arch_flags,
11289 cpu_arch[j].flags);
81486035 11290
5b64d091 11291 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
11292 {
11293 if (cpu_sub_arch_name)
11294 {
11295 char *name = cpu_sub_arch_name;
11296 cpu_sub_arch_name = concat (name,
91d6fa6a 11297 cpu_arch[j].name,
1bf57e9f 11298 (const char *) NULL);
6305a203
L
11299 free (name);
11300 }
11301 else
91d6fa6a 11302 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 11303 cpu_arch_flags = flags;
a586129e 11304 cpu_arch_isa_flags = flags;
6305a203 11305 }
0089dace
L
11306 else
11307 cpu_arch_isa_flags
11308 = cpu_flags_or (cpu_arch_isa_flags,
11309 cpu_arch[j].flags);
6305a203 11310 break;
ccc9c027 11311 }
9103f4f4 11312 }
6305a203 11313
293f5f65
L
11314 if (j >= ARRAY_SIZE (cpu_arch))
11315 {
33eaf5de 11316 /* Disable an ISA extension. */
293f5f65
L
11317 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11318 if (strcmp (arch, cpu_noarch [j].name) == 0)
11319 {
11320 i386_cpu_flags flags;
11321
11322 flags = cpu_flags_and_not (cpu_arch_flags,
11323 cpu_noarch[j].flags);
11324 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11325 {
11326 if (cpu_sub_arch_name)
11327 {
11328 char *name = cpu_sub_arch_name;
11329 cpu_sub_arch_name = concat (arch,
11330 (const char *) NULL);
11331 free (name);
11332 }
11333 else
11334 cpu_sub_arch_name = xstrdup (arch);
11335 cpu_arch_flags = flags;
11336 cpu_arch_isa_flags = flags;
11337 }
11338 break;
11339 }
11340
11341 if (j >= ARRAY_SIZE (cpu_noarch))
11342 j = ARRAY_SIZE (cpu_arch);
11343 }
11344
91d6fa6a 11345 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11346 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11347
11348 arch = next;
9103f4f4 11349 }
293f5f65
L
11350 while (next != NULL);
11351 free (saved);
9103f4f4
L
11352 break;
11353
11354 case OPTION_MTUNE:
11355 if (*arg == '.')
2b5d6a91 11356 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 11357 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11358 {
91d6fa6a 11359 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 11360 {
ccc9c027 11361 cpu_arch_tune_set = 1;
91d6fa6a
NC
11362 cpu_arch_tune = cpu_arch [j].type;
11363 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
11364 break;
11365 }
11366 }
91d6fa6a 11367 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11368 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
11369 break;
11370
1efbbeb4
L
11371 case OPTION_MMNEMONIC:
11372 if (strcasecmp (arg, "att") == 0)
11373 intel_mnemonic = 0;
11374 else if (strcasecmp (arg, "intel") == 0)
11375 intel_mnemonic = 1;
11376 else
2b5d6a91 11377 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
11378 break;
11379
11380 case OPTION_MSYNTAX:
11381 if (strcasecmp (arg, "att") == 0)
11382 intel_syntax = 0;
11383 else if (strcasecmp (arg, "intel") == 0)
11384 intel_syntax = 1;
11385 else
2b5d6a91 11386 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
11387 break;
11388
11389 case OPTION_MINDEX_REG:
11390 allow_index_reg = 1;
11391 break;
11392
11393 case OPTION_MNAKED_REG:
11394 allow_naked_reg = 1;
11395 break;
11396
c0f3af97
L
11397 case OPTION_MSSE2AVX:
11398 sse2avx = 1;
11399 break;
11400
daf50ae7
L
11401 case OPTION_MSSE_CHECK:
11402 if (strcasecmp (arg, "error") == 0)
7bab8ab5 11403 sse_check = check_error;
daf50ae7 11404 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 11405 sse_check = check_warning;
daf50ae7 11406 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 11407 sse_check = check_none;
daf50ae7 11408 else
2b5d6a91 11409 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
11410 break;
11411
7bab8ab5
JB
11412 case OPTION_MOPERAND_CHECK:
11413 if (strcasecmp (arg, "error") == 0)
11414 operand_check = check_error;
11415 else if (strcasecmp (arg, "warning") == 0)
11416 operand_check = check_warning;
11417 else if (strcasecmp (arg, "none") == 0)
11418 operand_check = check_none;
11419 else
11420 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11421 break;
11422
539f890d
L
11423 case OPTION_MAVXSCALAR:
11424 if (strcasecmp (arg, "128") == 0)
11425 avxscalar = vex128;
11426 else if (strcasecmp (arg, "256") == 0)
11427 avxscalar = vex256;
11428 else
2b5d6a91 11429 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
11430 break;
11431
03751133
L
11432 case OPTION_MVEXWIG:
11433 if (strcmp (arg, "0") == 0)
40c9c8de 11434 vexwig = vexw0;
03751133 11435 else if (strcmp (arg, "1") == 0)
40c9c8de 11436 vexwig = vexw1;
03751133
L
11437 else
11438 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
11439 break;
11440
7e8b059b
L
11441 case OPTION_MADD_BND_PREFIX:
11442 add_bnd_prefix = 1;
11443 break;
11444
43234a1e
L
11445 case OPTION_MEVEXLIG:
11446 if (strcmp (arg, "128") == 0)
11447 evexlig = evexl128;
11448 else if (strcmp (arg, "256") == 0)
11449 evexlig = evexl256;
11450 else if (strcmp (arg, "512") == 0)
11451 evexlig = evexl512;
11452 else
11453 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11454 break;
11455
d3d3c6db
IT
11456 case OPTION_MEVEXRCIG:
11457 if (strcmp (arg, "rne") == 0)
11458 evexrcig = rne;
11459 else if (strcmp (arg, "rd") == 0)
11460 evexrcig = rd;
11461 else if (strcmp (arg, "ru") == 0)
11462 evexrcig = ru;
11463 else if (strcmp (arg, "rz") == 0)
11464 evexrcig = rz;
11465 else
11466 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11467 break;
11468
43234a1e
L
11469 case OPTION_MEVEXWIG:
11470 if (strcmp (arg, "0") == 0)
11471 evexwig = evexw0;
11472 else if (strcmp (arg, "1") == 0)
11473 evexwig = evexw1;
11474 else
11475 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11476 break;
11477
167ad85b
TG
11478# if defined (TE_PE) || defined (TE_PEP)
11479 case OPTION_MBIG_OBJ:
11480 use_big_obj = 1;
11481 break;
11482#endif
11483
d1982f93 11484 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
11485 if (strcasecmp (arg, "yes") == 0)
11486 omit_lock_prefix = 1;
11487 else if (strcasecmp (arg, "no") == 0)
11488 omit_lock_prefix = 0;
11489 else
11490 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11491 break;
11492
e4e00185
AS
11493 case OPTION_MFENCE_AS_LOCK_ADD:
11494 if (strcasecmp (arg, "yes") == 0)
11495 avoid_fence = 1;
11496 else if (strcasecmp (arg, "no") == 0)
11497 avoid_fence = 0;
11498 else
11499 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11500 break;
11501
0cb4071e
L
11502 case OPTION_MRELAX_RELOCATIONS:
11503 if (strcasecmp (arg, "yes") == 0)
11504 generate_relax_relocations = 1;
11505 else if (strcasecmp (arg, "no") == 0)
11506 generate_relax_relocations = 0;
11507 else
11508 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11509 break;
11510
5db04b09 11511 case OPTION_MAMD64:
e89c5eaa 11512 intel64 = 0;
5db04b09
L
11513 break;
11514
11515 case OPTION_MINTEL64:
e89c5eaa 11516 intel64 = 1;
5db04b09
L
11517 break;
11518
b6f8c7c4
L
11519 case 'O':
11520 if (arg == NULL)
11521 {
11522 optimize = 1;
11523 /* Turn off -Os. */
11524 optimize_for_space = 0;
11525 }
11526 else if (*arg == 's')
11527 {
11528 optimize_for_space = 1;
11529 /* Turn on all encoding optimizations. */
41fd2579 11530 optimize = INT_MAX;
b6f8c7c4
L
11531 }
11532 else
11533 {
11534 optimize = atoi (arg);
11535 /* Turn off -Os. */
11536 optimize_for_space = 0;
11537 }
11538 break;
11539
252b5132
RH
11540 default:
11541 return 0;
11542 }
11543 return 1;
11544}
11545
8a2c8fef
L
11546#define MESSAGE_TEMPLATE \
11547" "
11548
293f5f65
L
11549static char *
11550output_message (FILE *stream, char *p, char *message, char *start,
11551 int *left_p, const char *name, int len)
11552{
11553 int size = sizeof (MESSAGE_TEMPLATE);
11554 int left = *left_p;
11555
11556 /* Reserve 2 spaces for ", " or ",\0" */
11557 left -= len + 2;
11558
11559 /* Check if there is any room. */
11560 if (left >= 0)
11561 {
11562 if (p != start)
11563 {
11564 *p++ = ',';
11565 *p++ = ' ';
11566 }
11567 p = mempcpy (p, name, len);
11568 }
11569 else
11570 {
11571 /* Output the current message now and start a new one. */
11572 *p++ = ',';
11573 *p = '\0';
11574 fprintf (stream, "%s\n", message);
11575 p = start;
11576 left = size - (start - message) - len - 2;
11577
11578 gas_assert (left >= 0);
11579
11580 p = mempcpy (p, name, len);
11581 }
11582
11583 *left_p = left;
11584 return p;
11585}
11586
8a2c8fef 11587static void
1ded5609 11588show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
11589{
11590 static char message[] = MESSAGE_TEMPLATE;
11591 char *start = message + 27;
11592 char *p;
11593 int size = sizeof (MESSAGE_TEMPLATE);
11594 int left;
11595 const char *name;
11596 int len;
11597 unsigned int j;
11598
11599 p = start;
11600 left = size - (start - message);
11601 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11602 {
11603 /* Should it be skipped? */
11604 if (cpu_arch [j].skip)
11605 continue;
11606
11607 name = cpu_arch [j].name;
11608 len = cpu_arch [j].len;
11609 if (*name == '.')
11610 {
11611 /* It is an extension. Skip if we aren't asked to show it. */
11612 if (ext)
11613 {
11614 name++;
11615 len--;
11616 }
11617 else
11618 continue;
11619 }
11620 else if (ext)
11621 {
11622 /* It is an processor. Skip if we show only extension. */
11623 continue;
11624 }
1ded5609
JB
11625 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11626 {
11627 /* It is an impossible processor - skip. */
11628 continue;
11629 }
8a2c8fef 11630
293f5f65 11631 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
11632 }
11633
293f5f65
L
11634 /* Display disabled extensions. */
11635 if (ext)
11636 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11637 {
11638 name = cpu_noarch [j].name;
11639 len = cpu_noarch [j].len;
11640 p = output_message (stream, p, message, start, &left, name,
11641 len);
11642 }
11643
8a2c8fef
L
11644 *p = '\0';
11645 fprintf (stream, "%s\n", message);
11646}
11647
252b5132 11648void
8a2c8fef 11649md_show_usage (FILE *stream)
252b5132 11650{
4cc782b5
ILT
11651#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11652 fprintf (stream, _("\
d4693039 11653 -Qy, -Qn ignored\n\
a38cf1db 11654 -V print assembler version number\n\
b3b91714
AM
11655 -k ignored\n"));
11656#endif
11657 fprintf (stream, _("\
12b55ccc 11658 -n Do not optimize code alignment\n\
b3b91714
AM
11659 -q quieten some warnings\n"));
11660#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11661 fprintf (stream, _("\
a38cf1db 11662 -s ignored\n"));
b3b91714 11663#endif
d7f449c0
L
11664#if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11665 || defined (TE_PE) || defined (TE_PEP))
751d281c 11666 fprintf (stream, _("\
570561f7 11667 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 11668#endif
b3b91714
AM
11669#ifdef SVR4_COMMENT_CHARS
11670 fprintf (stream, _("\
11671 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
11672#else
11673 fprintf (stream, _("\
b3b91714 11674 --divide ignored\n"));
4cc782b5 11675#endif
9103f4f4 11676 fprintf (stream, _("\
6305a203 11677 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 11678 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 11679 show_arch (stream, 0, 1);
8a2c8fef
L
11680 fprintf (stream, _("\
11681 EXTENSION is combination of:\n"));
1ded5609 11682 show_arch (stream, 1, 0);
6305a203 11683 fprintf (stream, _("\
8a2c8fef 11684 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 11685 show_arch (stream, 0, 0);
ba104c83 11686 fprintf (stream, _("\
c0f3af97
L
11687 -msse2avx encode SSE instructions with VEX prefix\n"));
11688 fprintf (stream, _("\
7c5c05ef 11689 -msse-check=[none|error|warning] (default: warning)\n\
daf50ae7
L
11690 check SSE instructions\n"));
11691 fprintf (stream, _("\
7c5c05ef 11692 -moperand-check=[none|error|warning] (default: warning)\n\
7bab8ab5
JB
11693 check operand combinations for validity\n"));
11694 fprintf (stream, _("\
7c5c05ef
L
11695 -mavxscalar=[128|256] (default: 128)\n\
11696 encode scalar AVX instructions with specific vector\n\
539f890d
L
11697 length\n"));
11698 fprintf (stream, _("\
03751133
L
11699 -mvexwig=[0|1] (default: 0)\n\
11700 encode VEX instructions with specific VEX.W value\n\
11701 for VEX.W bit ignored instructions\n"));
11702 fprintf (stream, _("\
7c5c05ef
L
11703 -mevexlig=[128|256|512] (default: 128)\n\
11704 encode scalar EVEX instructions with specific vector\n\
43234a1e
L
11705 length\n"));
11706 fprintf (stream, _("\
7c5c05ef
L
11707 -mevexwig=[0|1] (default: 0)\n\
11708 encode EVEX instructions with specific EVEX.W value\n\
43234a1e
L
11709 for EVEX.W bit ignored instructions\n"));
11710 fprintf (stream, _("\
7c5c05ef 11711 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
d3d3c6db
IT
11712 encode EVEX instructions with specific EVEX.RC value\n\
11713 for SAE-only ignored instructions\n"));
11714 fprintf (stream, _("\
7c5c05ef
L
11715 -mmnemonic=[att|intel] "));
11716 if (SYSV386_COMPAT)
11717 fprintf (stream, _("(default: att)\n"));
11718 else
11719 fprintf (stream, _("(default: intel)\n"));
11720 fprintf (stream, _("\
11721 use AT&T/Intel mnemonic\n"));
ba104c83 11722 fprintf (stream, _("\
7c5c05ef
L
11723 -msyntax=[att|intel] (default: att)\n\
11724 use AT&T/Intel syntax\n"));
ba104c83
L
11725 fprintf (stream, _("\
11726 -mindex-reg support pseudo index registers\n"));
11727 fprintf (stream, _("\
11728 -mnaked-reg don't require `%%' prefix for registers\n"));
11729 fprintf (stream, _("\
7e8b059b 11730 -madd-bnd-prefix add BND prefix for all valid branches\n"));
b4a3a7b4 11731#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8dcea932
L
11732 fprintf (stream, _("\
11733 -mshared disable branch optimization for shared code\n"));
b4a3a7b4
L
11734 fprintf (stream, _("\
11735 -mx86-used-note=[no|yes] "));
11736 if (DEFAULT_X86_USED_NOTE)
11737 fprintf (stream, _("(default: yes)\n"));
11738 else
11739 fprintf (stream, _("(default: no)\n"));
11740 fprintf (stream, _("\
11741 generate x86 used ISA and feature properties\n"));
11742#endif
11743#if defined (TE_PE) || defined (TE_PEP)
167ad85b
TG
11744 fprintf (stream, _("\
11745 -mbig-obj generate big object files\n"));
11746#endif
d022bddd 11747 fprintf (stream, _("\
7c5c05ef 11748 -momit-lock-prefix=[no|yes] (default: no)\n\
d022bddd 11749 strip all lock prefixes\n"));
5db04b09 11750 fprintf (stream, _("\
7c5c05ef 11751 -mfence-as-lock-add=[no|yes] (default: no)\n\
e4e00185
AS
11752 encode lfence, mfence and sfence as\n\
11753 lock addl $0x0, (%%{re}sp)\n"));
11754 fprintf (stream, _("\
7c5c05ef
L
11755 -mrelax-relocations=[no|yes] "));
11756 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11757 fprintf (stream, _("(default: yes)\n"));
11758 else
11759 fprintf (stream, _("(default: no)\n"));
11760 fprintf (stream, _("\
0cb4071e
L
11761 generate relax relocations\n"));
11762 fprintf (stream, _("\
7c5c05ef 11763 -mamd64 accept only AMD64 ISA [default]\n"));
5db04b09
L
11764 fprintf (stream, _("\
11765 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
11766}
11767
3e73aa7c 11768#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 11769 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 11770 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
11771
11772/* Pick the target format to use. */
11773
47926f60 11774const char *
e3bb37b5 11775i386_target_format (void)
252b5132 11776{
351f65ca
L
11777 if (!strncmp (default_arch, "x86_64", 6))
11778 {
11779 update_code_flag (CODE_64BIT, 1);
11780 if (default_arch[6] == '\0')
7f56bc95 11781 x86_elf_abi = X86_64_ABI;
351f65ca 11782 else
7f56bc95 11783 x86_elf_abi = X86_64_X32_ABI;
351f65ca 11784 }
3e73aa7c 11785 else if (!strcmp (default_arch, "i386"))
78f12dd3 11786 update_code_flag (CODE_32BIT, 1);
5197d474
L
11787 else if (!strcmp (default_arch, "iamcu"))
11788 {
11789 update_code_flag (CODE_32BIT, 1);
11790 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11791 {
11792 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11793 cpu_arch_name = "iamcu";
11794 cpu_sub_arch_name = NULL;
11795 cpu_arch_flags = iamcu_flags;
11796 cpu_arch_isa = PROCESSOR_IAMCU;
11797 cpu_arch_isa_flags = iamcu_flags;
11798 if (!cpu_arch_tune_set)
11799 {
11800 cpu_arch_tune = cpu_arch_isa;
11801 cpu_arch_tune_flags = cpu_arch_isa_flags;
11802 }
11803 }
8d471ec1 11804 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
11805 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11806 cpu_arch_name);
11807 }
3e73aa7c 11808 else
2b5d6a91 11809 as_fatal (_("unknown architecture"));
89507696
JB
11810
11811 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11812 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11813 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11814 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11815
252b5132
RH
11816 switch (OUTPUT_FLAVOR)
11817 {
9384f2ff 11818#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 11819 case bfd_target_aout_flavour:
47926f60 11820 return AOUT_TARGET_FORMAT;
4c63da97 11821#endif
9384f2ff
AM
11822#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11823# if defined (TE_PE) || defined (TE_PEP)
11824 case bfd_target_coff_flavour:
167ad85b
TG
11825 if (flag_code == CODE_64BIT)
11826 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11827 else
11828 return "pe-i386";
9384f2ff 11829# elif defined (TE_GO32)
0561d57c
JK
11830 case bfd_target_coff_flavour:
11831 return "coff-go32";
9384f2ff 11832# else
252b5132
RH
11833 case bfd_target_coff_flavour:
11834 return "coff-i386";
9384f2ff 11835# endif
4c63da97 11836#endif
3e73aa7c 11837#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 11838 case bfd_target_elf_flavour:
3e73aa7c 11839 {
351f65ca
L
11840 const char *format;
11841
11842 switch (x86_elf_abi)
4fa24527 11843 {
351f65ca
L
11844 default:
11845 format = ELF_TARGET_FORMAT;
11846 break;
7f56bc95 11847 case X86_64_ABI:
351f65ca 11848 use_rela_relocations = 1;
4fa24527 11849 object_64bit = 1;
351f65ca
L
11850 format = ELF_TARGET_FORMAT64;
11851 break;
7f56bc95 11852 case X86_64_X32_ABI:
4fa24527 11853 use_rela_relocations = 1;
351f65ca 11854 object_64bit = 1;
862be3fb 11855 disallow_64bit_reloc = 1;
351f65ca
L
11856 format = ELF_TARGET_FORMAT32;
11857 break;
4fa24527 11858 }
3632d14b 11859 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 11860 {
7f56bc95 11861 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
11862 as_fatal (_("Intel L1OM is 64bit only"));
11863 return ELF_TARGET_L1OM_FORMAT;
11864 }
b49f93f6 11865 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
11866 {
11867 if (x86_elf_abi != X86_64_ABI)
11868 as_fatal (_("Intel K1OM is 64bit only"));
11869 return ELF_TARGET_K1OM_FORMAT;
11870 }
81486035
L
11871 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11872 {
11873 if (x86_elf_abi != I386_ABI)
11874 as_fatal (_("Intel MCU is 32bit only"));
11875 return ELF_TARGET_IAMCU_FORMAT;
11876 }
8a9036a4 11877 else
351f65ca 11878 return format;
3e73aa7c 11879 }
e57f8c65
TG
11880#endif
11881#if defined (OBJ_MACH_O)
11882 case bfd_target_mach_o_flavour:
d382c579
TG
11883 if (flag_code == CODE_64BIT)
11884 {
11885 use_rela_relocations = 1;
11886 object_64bit = 1;
11887 return "mach-o-x86-64";
11888 }
11889 else
11890 return "mach-o-i386";
4c63da97 11891#endif
252b5132
RH
11892 default:
11893 abort ();
11894 return NULL;
11895 }
11896}
11897
47926f60 11898#endif /* OBJ_MAYBE_ more than one */
252b5132 11899\f
252b5132 11900symbolS *
7016a5d5 11901md_undefined_symbol (char *name)
252b5132 11902{
18dc2407
ILT
11903 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11904 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11905 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11906 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
11907 {
11908 if (!GOT_symbol)
11909 {
11910 if (symbol_find (name))
11911 as_bad (_("GOT already in symbol table"));
11912 GOT_symbol = symbol_new (name, undefined_section,
11913 (valueT) 0, &zero_address_frag);
11914 };
11915 return GOT_symbol;
11916 }
252b5132
RH
11917 return 0;
11918}
11919
11920/* Round up a section size to the appropriate boundary. */
47926f60 11921
252b5132 11922valueT
7016a5d5 11923md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 11924{
4c63da97
AM
11925#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11926 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11927 {
11928 /* For a.out, force the section size to be aligned. If we don't do
11929 this, BFD will align it for us, but it will not write out the
11930 final bytes of the section. This may be a bug in BFD, but it is
11931 easier to fix it here since that is how the other a.out targets
11932 work. */
11933 int align;
11934
fd361982 11935 align = bfd_section_alignment (segment);
8d3842cd 11936 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 11937 }
252b5132
RH
11938#endif
11939
11940 return size;
11941}
11942
11943/* On the i386, PC-relative offsets are relative to the start of the
11944 next instruction. That is, the address of the offset, plus its
11945 size, since the offset is always the last part of the insn. */
11946
11947long
e3bb37b5 11948md_pcrel_from (fixS *fixP)
252b5132
RH
11949{
11950 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11951}
11952
11953#ifndef I386COFF
11954
11955static void
e3bb37b5 11956s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 11957{
29b0f896 11958 int temp;
252b5132 11959
8a75718c
JB
11960#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11961 if (IS_ELF)
11962 obj_elf_section_change_hook ();
11963#endif
252b5132
RH
11964 temp = get_absolute_expression ();
11965 subseg_set (bss_section, (subsegT) temp);
11966 demand_empty_rest_of_line ();
11967}
11968
11969#endif
11970
252b5132 11971void
e3bb37b5 11972i386_validate_fix (fixS *fixp)
252b5132 11973{
02a86693 11974 if (fixp->fx_subsy)
252b5132 11975 {
02a86693 11976 if (fixp->fx_subsy == GOT_symbol)
23df1078 11977 {
02a86693
L
11978 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11979 {
11980 if (!object_64bit)
11981 abort ();
11982#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11983 if (fixp->fx_tcbit2)
56ceb5b5
L
11984 fixp->fx_r_type = (fixp->fx_tcbit
11985 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11986 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
11987 else
11988#endif
11989 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11990 }
d6ab8113 11991 else
02a86693
L
11992 {
11993 if (!object_64bit)
11994 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11995 else
11996 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11997 }
11998 fixp->fx_subsy = 0;
23df1078 11999 }
252b5132 12000 }
02a86693
L
12001#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12002 else if (!object_64bit)
12003 {
12004 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
12005 && fixp->fx_tcbit2)
12006 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
12007 }
12008#endif
252b5132
RH
12009}
12010
252b5132 12011arelent *
7016a5d5 12012tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
12013{
12014 arelent *rel;
12015 bfd_reloc_code_real_type code;
12016
12017 switch (fixp->fx_r_type)
12018 {
8ce3d284 12019#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
12020 case BFD_RELOC_SIZE32:
12021 case BFD_RELOC_SIZE64:
12022 if (S_IS_DEFINED (fixp->fx_addsy)
12023 && !S_IS_EXTERNAL (fixp->fx_addsy))
12024 {
12025 /* Resolve size relocation against local symbol to size of
12026 the symbol plus addend. */
12027 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
12028 if (fixp->fx_r_type == BFD_RELOC_SIZE32
12029 && !fits_in_unsigned_long (value))
12030 as_bad_where (fixp->fx_file, fixp->fx_line,
12031 _("symbol size computation overflow"));
12032 fixp->fx_addsy = NULL;
12033 fixp->fx_subsy = NULL;
12034 md_apply_fix (fixp, (valueT *) &value, NULL);
12035 return NULL;
12036 }
8ce3d284 12037#endif
1a0670f3 12038 /* Fall through. */
8fd4256d 12039
3e73aa7c
JH
12040 case BFD_RELOC_X86_64_PLT32:
12041 case BFD_RELOC_X86_64_GOT32:
12042 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
12043 case BFD_RELOC_X86_64_GOTPCRELX:
12044 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
12045 case BFD_RELOC_386_PLT32:
12046 case BFD_RELOC_386_GOT32:
02a86693 12047 case BFD_RELOC_386_GOT32X:
252b5132
RH
12048 case BFD_RELOC_386_GOTOFF:
12049 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
12050 case BFD_RELOC_386_TLS_GD:
12051 case BFD_RELOC_386_TLS_LDM:
12052 case BFD_RELOC_386_TLS_LDO_32:
12053 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
12054 case BFD_RELOC_386_TLS_IE:
12055 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
12056 case BFD_RELOC_386_TLS_LE_32:
12057 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
12058 case BFD_RELOC_386_TLS_GOTDESC:
12059 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
12060 case BFD_RELOC_X86_64_TLSGD:
12061 case BFD_RELOC_X86_64_TLSLD:
12062 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 12063 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
12064 case BFD_RELOC_X86_64_GOTTPOFF:
12065 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
12066 case BFD_RELOC_X86_64_TPOFF64:
12067 case BFD_RELOC_X86_64_GOTOFF64:
12068 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
12069 case BFD_RELOC_X86_64_GOT64:
12070 case BFD_RELOC_X86_64_GOTPCREL64:
12071 case BFD_RELOC_X86_64_GOTPC64:
12072 case BFD_RELOC_X86_64_GOTPLT64:
12073 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
12074 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12075 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
12076 case BFD_RELOC_RVA:
12077 case BFD_RELOC_VTABLE_ENTRY:
12078 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
12079#ifdef TE_PE
12080 case BFD_RELOC_32_SECREL:
12081#endif
252b5132
RH
12082 code = fixp->fx_r_type;
12083 break;
dbbaec26
L
12084 case BFD_RELOC_X86_64_32S:
12085 if (!fixp->fx_pcrel)
12086 {
12087 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
12088 code = fixp->fx_r_type;
12089 break;
12090 }
1a0670f3 12091 /* Fall through. */
252b5132 12092 default:
93382f6d 12093 if (fixp->fx_pcrel)
252b5132 12094 {
93382f6d
AM
12095 switch (fixp->fx_size)
12096 {
12097 default:
b091f402
AM
12098 as_bad_where (fixp->fx_file, fixp->fx_line,
12099 _("can not do %d byte pc-relative relocation"),
12100 fixp->fx_size);
93382f6d
AM
12101 code = BFD_RELOC_32_PCREL;
12102 break;
12103 case 1: code = BFD_RELOC_8_PCREL; break;
12104 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 12105 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
12106#ifdef BFD64
12107 case 8: code = BFD_RELOC_64_PCREL; break;
12108#endif
93382f6d
AM
12109 }
12110 }
12111 else
12112 {
12113 switch (fixp->fx_size)
12114 {
12115 default:
b091f402
AM
12116 as_bad_where (fixp->fx_file, fixp->fx_line,
12117 _("can not do %d byte relocation"),
12118 fixp->fx_size);
93382f6d
AM
12119 code = BFD_RELOC_32;
12120 break;
12121 case 1: code = BFD_RELOC_8; break;
12122 case 2: code = BFD_RELOC_16; break;
12123 case 4: code = BFD_RELOC_32; break;
937149dd 12124#ifdef BFD64
3e73aa7c 12125 case 8: code = BFD_RELOC_64; break;
937149dd 12126#endif
93382f6d 12127 }
252b5132
RH
12128 }
12129 break;
12130 }
252b5132 12131
d182319b
JB
12132 if ((code == BFD_RELOC_32
12133 || code == BFD_RELOC_32_PCREL
12134 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
12135 && GOT_symbol
12136 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 12137 {
4fa24527 12138 if (!object_64bit)
d6ab8113
JB
12139 code = BFD_RELOC_386_GOTPC;
12140 else
12141 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 12142 }
7b81dfbb
AJ
12143 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
12144 && GOT_symbol
12145 && fixp->fx_addsy == GOT_symbol)
12146 {
12147 code = BFD_RELOC_X86_64_GOTPC64;
12148 }
252b5132 12149
add39d23
TS
12150 rel = XNEW (arelent);
12151 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 12152 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
12153
12154 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 12155
3e73aa7c
JH
12156 if (!use_rela_relocations)
12157 {
12158 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
12159 vtable entry to be used in the relocation's section offset. */
12160 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12161 rel->address = fixp->fx_offset;
fbeb56a4
DK
12162#if defined (OBJ_COFF) && defined (TE_PE)
12163 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
12164 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
12165 else
12166#endif
c6682705 12167 rel->addend = 0;
3e73aa7c
JH
12168 }
12169 /* Use the rela in 64bit mode. */
252b5132 12170 else
3e73aa7c 12171 {
862be3fb
L
12172 if (disallow_64bit_reloc)
12173 switch (code)
12174 {
862be3fb
L
12175 case BFD_RELOC_X86_64_DTPOFF64:
12176 case BFD_RELOC_X86_64_TPOFF64:
12177 case BFD_RELOC_64_PCREL:
12178 case BFD_RELOC_X86_64_GOTOFF64:
12179 case BFD_RELOC_X86_64_GOT64:
12180 case BFD_RELOC_X86_64_GOTPCREL64:
12181 case BFD_RELOC_X86_64_GOTPC64:
12182 case BFD_RELOC_X86_64_GOTPLT64:
12183 case BFD_RELOC_X86_64_PLTOFF64:
12184 as_bad_where (fixp->fx_file, fixp->fx_line,
12185 _("cannot represent relocation type %s in x32 mode"),
12186 bfd_get_reloc_code_name (code));
12187 break;
12188 default:
12189 break;
12190 }
12191
062cd5e7
AS
12192 if (!fixp->fx_pcrel)
12193 rel->addend = fixp->fx_offset;
12194 else
12195 switch (code)
12196 {
12197 case BFD_RELOC_X86_64_PLT32:
12198 case BFD_RELOC_X86_64_GOT32:
12199 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
12200 case BFD_RELOC_X86_64_GOTPCRELX:
12201 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
12202 case BFD_RELOC_X86_64_TLSGD:
12203 case BFD_RELOC_X86_64_TLSLD:
12204 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
12205 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12206 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
12207 rel->addend = fixp->fx_offset - fixp->fx_size;
12208 break;
12209 default:
12210 rel->addend = (section->vma
12211 - fixp->fx_size
12212 + fixp->fx_addnumber
12213 + md_pcrel_from (fixp));
12214 break;
12215 }
3e73aa7c
JH
12216 }
12217
252b5132
RH
12218 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12219 if (rel->howto == NULL)
12220 {
12221 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 12222 _("cannot represent relocation type %s"),
252b5132
RH
12223 bfd_get_reloc_code_name (code));
12224 /* Set howto to a garbage value so that we can keep going. */
12225 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 12226 gas_assert (rel->howto != NULL);
252b5132
RH
12227 }
12228
12229 return rel;
12230}
12231
ee86248c 12232#include "tc-i386-intel.c"
54cfded0 12233
a60de03c
JB
12234void
12235tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 12236{
a60de03c
JB
12237 int saved_naked_reg;
12238 char saved_register_dot;
54cfded0 12239
a60de03c
JB
12240 saved_naked_reg = allow_naked_reg;
12241 allow_naked_reg = 1;
12242 saved_register_dot = register_chars['.'];
12243 register_chars['.'] = '.';
12244 allow_pseudo_reg = 1;
12245 expression_and_evaluate (exp);
12246 allow_pseudo_reg = 0;
12247 register_chars['.'] = saved_register_dot;
12248 allow_naked_reg = saved_naked_reg;
12249
e96d56a1 12250 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 12251 {
a60de03c
JB
12252 if ((addressT) exp->X_add_number < i386_regtab_size)
12253 {
12254 exp->X_op = O_constant;
12255 exp->X_add_number = i386_regtab[exp->X_add_number]
12256 .dw2_regnum[flag_code >> 1];
12257 }
12258 else
12259 exp->X_op = O_illegal;
54cfded0 12260 }
54cfded0
AM
12261}
12262
12263void
12264tc_x86_frame_initial_instructions (void)
12265{
a60de03c
JB
12266 static unsigned int sp_regno[2];
12267
12268 if (!sp_regno[flag_code >> 1])
12269 {
12270 char *saved_input = input_line_pointer;
12271 char sp[][4] = {"esp", "rsp"};
12272 expressionS exp;
a4447b93 12273
a60de03c
JB
12274 input_line_pointer = sp[flag_code >> 1];
12275 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 12276 gas_assert (exp.X_op == O_constant);
a60de03c
JB
12277 sp_regno[flag_code >> 1] = exp.X_add_number;
12278 input_line_pointer = saved_input;
12279 }
a4447b93 12280
61ff971f
L
12281 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12282 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 12283}
d2b2c203 12284
d7921315
L
12285int
12286x86_dwarf2_addr_size (void)
12287{
12288#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12289 if (x86_elf_abi == X86_64_X32_ABI)
12290 return 4;
12291#endif
12292 return bfd_arch_bits_per_address (stdoutput) / 8;
12293}
12294
d2b2c203
DJ
12295int
12296i386_elf_section_type (const char *str, size_t len)
12297{
12298 if (flag_code == CODE_64BIT
12299 && len == sizeof ("unwind") - 1
12300 && strncmp (str, "unwind", 6) == 0)
12301 return SHT_X86_64_UNWIND;
12302
12303 return -1;
12304}
bb41ade5 12305
ad5fec3b
EB
12306#ifdef TE_SOLARIS
12307void
12308i386_solaris_fix_up_eh_frame (segT sec)
12309{
12310 if (flag_code == CODE_64BIT)
12311 elf_section_type (sec) = SHT_X86_64_UNWIND;
12312}
12313#endif
12314
bb41ade5
AM
12315#ifdef TE_PE
12316void
12317tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12318{
91d6fa6a 12319 expressionS exp;
bb41ade5 12320
91d6fa6a
NC
12321 exp.X_op = O_secrel;
12322 exp.X_add_symbol = symbol;
12323 exp.X_add_number = 0;
12324 emit_expr (&exp, size);
bb41ade5
AM
12325}
12326#endif
3b22753a
L
12327
12328#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12329/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12330
01e1a5bc 12331bfd_vma
6d4af3c2 12332x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
12333{
12334 if (flag_code == CODE_64BIT)
12335 {
12336 if (letter == 'l')
12337 return SHF_X86_64_LARGE;
12338
8f3bae45 12339 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 12340 }
3b22753a 12341 else
8f3bae45 12342 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
12343 return -1;
12344}
12345
01e1a5bc 12346bfd_vma
3b22753a
L
12347x86_64_section_word (char *str, size_t len)
12348{
8620418b 12349 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
12350 return SHF_X86_64_LARGE;
12351
12352 return -1;
12353}
12354
12355static void
12356handle_large_common (int small ATTRIBUTE_UNUSED)
12357{
12358 if (flag_code != CODE_64BIT)
12359 {
12360 s_comm_internal (0, elf_common_parse);
12361 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12362 }
12363 else
12364 {
12365 static segT lbss_section;
12366 asection *saved_com_section_ptr = elf_com_section_ptr;
12367 asection *saved_bss_section = bss_section;
12368
12369 if (lbss_section == NULL)
12370 {
12371 flagword applicable;
12372 segT seg = now_seg;
12373 subsegT subseg = now_subseg;
12374
12375 /* The .lbss section is for local .largecomm symbols. */
12376 lbss_section = subseg_new (".lbss", 0);
12377 applicable = bfd_applicable_section_flags (stdoutput);
fd361982 12378 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
3b22753a
L
12379 seg_info (lbss_section)->bss = 1;
12380
12381 subseg_set (seg, subseg);
12382 }
12383
12384 elf_com_section_ptr = &_bfd_elf_large_com_section;
12385 bss_section = lbss_section;
12386
12387 s_comm_internal (0, elf_common_parse);
12388
12389 elf_com_section_ptr = saved_com_section_ptr;
12390 bss_section = saved_bss_section;
12391 }
12392}
12393#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 2.385417 seconds and 4 git commands to generate.