* emulparms/elf64hppa.sh (OTHER_READWRITE_SECTIONS): Put .plt
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
252b5132
RH
1/* i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989, 91, 92, 93, 94, 95, 96, 97, 98, 1999
3 Free Software Foundation.
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22/*
23 Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better.
27 */
28
29#include <ctype.h>
30
31#include "as.h"
32#include "subsegs.h"
33#include "opcode/i386.h"
34
35#ifndef TC_RELOC
36#define TC_RELOC(X,Y) (Y)
37#endif
38
39#ifndef REGISTER_WARNINGS
40#define REGISTER_WARNINGS 1
41#endif
42
c3332e24 43#ifndef INFER_ADDR_PREFIX
eecb386c 44#define INFER_ADDR_PREFIX 1
c3332e24
AM
45#endif
46
252b5132
RH
47#ifndef SCALE1_WHEN_NO_INDEX
48/* Specifying a scale factor besides 1 when there is no index is
49 futile. eg. `mov (%ebx,2),%al' does exactly the same as
50 `mov (%ebx),%al'. To slavishly follow what the programmer
51 specified, set SCALE1_WHEN_NO_INDEX to 0. */
52#define SCALE1_WHEN_NO_INDEX 1
53#endif
54
55#define true 1
56#define false 0
57
58static unsigned int mode_from_disp_size PARAMS ((unsigned int));
59static int fits_in_signed_byte PARAMS ((long));
60static int fits_in_unsigned_byte PARAMS ((long));
61static int fits_in_unsigned_word PARAMS ((long));
62static int fits_in_signed_word PARAMS ((long));
63static int smallest_imm_type PARAMS ((long));
64static int add_prefix PARAMS ((unsigned int));
65static void set_16bit_code_flag PARAMS ((int));
eecb386c 66static void set_16bit_gcc_code_flag PARAMS((int));
252b5132
RH
67static void set_intel_syntax PARAMS ((int));
68
69#ifdef BFD_ASSEMBLER
70static bfd_reloc_code_real_type reloc
71 PARAMS ((int, int, bfd_reloc_code_real_type));
72#endif
73
74/* 'md_assemble ()' gathers together information and puts it into a
75 i386_insn. */
76
77struct _i386_insn
78 {
79 /* TM holds the template for the insn were currently assembling. */
80 template tm;
81
82 /* SUFFIX holds the instruction mnemonic suffix if given.
83 (e.g. 'l' for 'movl') */
84 char suffix;
85
86 /* Operands are coded with OPERANDS, TYPES, DISPS, IMMS, and REGS. */
87
88 /* OPERANDS gives the number of given operands. */
89 unsigned int operands;
90
91 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
92 of given register, displacement, memory operands and immediate
93 operands. */
94 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
95
96 /* TYPES [i] is the type (see above #defines) which tells us how to
97 search through DISPS [i] & IMMS [i] & REGS [i] for the required
98 operand. */
99 unsigned int types[MAX_OPERANDS];
100
101 /* Displacements (if given) for each operand. */
102 expressionS *disps[MAX_OPERANDS];
103
104 /* Relocation type for operand */
105#ifdef BFD_ASSEMBLER
106 enum bfd_reloc_code_real disp_reloc[MAX_OPERANDS];
107#else
108 int disp_reloc[MAX_OPERANDS];
109#endif
110
111 /* Immediate operands (if given) for each operand. */
112 expressionS *imms[MAX_OPERANDS];
113
114 /* Register operands (if given) for each operand. */
115 const reg_entry *regs[MAX_OPERANDS];
116
117 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
118 the base index byte below. */
119 const reg_entry *base_reg;
120 const reg_entry *index_reg;
121 unsigned int log2_scale_factor;
122
123 /* SEG gives the seg_entries of this insn. They are zero unless
124 explicit segment overrides are given. */
125 const seg_entry *seg[2]; /* segments for memory operands (if given) */
126
127 /* PREFIX holds all the given prefix opcodes (usually null).
128 PREFIXES is the number of prefix opcodes. */
129 unsigned int prefixes;
130 unsigned char prefix[MAX_PREFIXES];
131
132 /* RM and SIB are the modrm byte and the sib byte where the
133 addressing modes of this insn are encoded. */
134
135 modrm_byte rm;
136 sib_byte sib;
137 };
138
139typedef struct _i386_insn i386_insn;
140
141/* List of chars besides those in app.c:symbol_chars that can start an
142 operand. Used to prevent the scrubber eating vital white-space. */
143#ifdef LEX_AT
144const char extra_symbol_chars[] = "*%-(@";
145#else
146const char extra_symbol_chars[] = "*%-(";
147#endif
148
149/* This array holds the chars that always start a comment. If the
150 pre-processor is disabled, these aren't very useful */
151#if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX))
152/* Putting '/' here makes it impossible to use the divide operator.
153 However, we need it for compatibility with SVR4 systems. */
154const char comment_chars[] = "#/";
155#define PREFIX_SEPARATOR '\\'
156#else
157const char comment_chars[] = "#";
158#define PREFIX_SEPARATOR '/'
159#endif
160
161/* This array holds the chars that only start a comment at the beginning of
162 a line. If the line seems to have the form '# 123 filename'
163 .line and .file directives will appear in the pre-processed output */
164/* Note that input_file.c hand checks for '#' at the beginning of the
165 first line of the input file. This is because the compiler outputs
166 #NO_APP at the beginning of its output. */
167/* Also note that comments started like this one will always work if
168 '/' isn't otherwise defined. */
169#if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX))
170const char line_comment_chars[] = "";
171#else
172const char line_comment_chars[] = "/";
173#endif
174
175const char line_separator_chars[] = "";
176
177/* Chars that can be used to separate mant from exp in floating point nums */
178const char EXP_CHARS[] = "eE";
179
180/* Chars that mean this number is a floating point constant */
181/* As in 0f12.456 */
182/* or 0d1.2345e12 */
183const char FLT_CHARS[] = "fFdDxX";
184
185/* tables for lexical analysis */
186static char mnemonic_chars[256];
187static char register_chars[256];
188static char operand_chars[256];
189static char identifier_chars[256];
190static char digit_chars[256];
191
192/* lexical macros */
193#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
194#define is_operand_char(x) (operand_chars[(unsigned char) x])
195#define is_register_char(x) (register_chars[(unsigned char) x])
196#define is_space_char(x) ((x) == ' ')
197#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
198#define is_digit_char(x) (digit_chars[(unsigned char) x])
199
200/* put here all non-digit non-letter charcters that may occur in an operand */
201static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
202
203/* md_assemble() always leaves the strings it's passed unaltered. To
204 effect this we maintain a stack of saved characters that we've smashed
205 with '\0's (indicating end of strings for various sub-fields of the
206 assembler instruction). */
207static char save_stack[32];
208static char *save_stack_p; /* stack pointer */
209#define END_STRING_AND_SAVE(s) \
210 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
211#define RESTORE_END_STRING(s) \
212 do { *(s) = *--save_stack_p; } while (0)
213
214/* The instruction we're assembling. */
215static i386_insn i;
216
217/* Possible templates for current insn. */
218static const templates *current_templates;
219
220/* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
221static expressionS disp_expressions[2], im_expressions[2];
222
223static int this_operand; /* current operand we are working on */
224
225static int flag_do_long_jump; /* FIXME what does this do? */
226
227static int flag_16bit_code; /* 1 if we're writing 16-bit code, 0 if 32-bit */
228
229static int intel_syntax = 0; /* 1 for intel syntax, 0 if att syntax */
230
231static int allow_naked_reg = 0; /* 1 if register prefix % not required */
232
eecb386c
AM
233static char stackop_size = '\0'; /* Used in 16 bit gcc mode to add an l
234 suffix to call, ret, enter, leave, push,
235 and pop instructions. */
236
252b5132
RH
237/* Interface to relax_segment.
238 There are 2 relax states for 386 jump insns: one for conditional &
a217f122
AM
239 one for unconditional jumps. This is because these two types of
240 jumps add different sizes to frags when we're figuring out what
252b5132
RH
241 sort of jump to choose to reach a given label. */
242
243/* types */
244#define COND_JUMP 1 /* conditional jump */
245#define UNCOND_JUMP 2 /* unconditional jump */
246/* sizes */
247#define CODE16 1
248#define SMALL 0
249#define SMALL16 (SMALL|CODE16)
250#define BIG 2
251#define BIG16 (BIG|CODE16)
252
253#ifndef INLINE
254#ifdef __GNUC__
255#define INLINE __inline__
256#else
257#define INLINE
258#endif
259#endif
260
261#define ENCODE_RELAX_STATE(type,size) \
262 ((relax_substateT)((type<<2) | (size)))
263#define SIZE_FROM_RELAX_STATE(s) \
264 ( (((s) & 0x3) == BIG ? 4 : (((s) & 0x3) == BIG16 ? 2 : 1)) )
265
266/* This table is used by relax_frag to promote short jumps to long
267 ones where necessary. SMALL (short) jumps may be promoted to BIG
268 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
269 don't allow a short jump in a 32 bit code segment to be promoted to
270 a 16 bit offset jump because it's slower (requires data size
271 prefix), and doesn't work, unless the destination is in the bottom
272 64k of the code segment (The top 16 bits of eip are zeroed). */
273
274const relax_typeS md_relax_table[] =
275{
24eab124
AM
276 /* The fields are:
277 1) most positive reach of this state,
278 2) most negative reach of this state,
279 3) how many bytes this mode will add to the size of the current frag
280 4) which index into the table to try if we can't fit into this one.
281 */
252b5132
RH
282 {1, 1, 0, 0},
283 {1, 1, 0, 0},
284 {1, 1, 0, 0},
285 {1, 1, 0, 0},
286
287 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
288 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
289 /* dword conditionals adds 4 bytes to frag:
290 1 extra opcode byte, 3 extra displacement bytes. */
291 {0, 0, 4, 0},
292 /* word conditionals add 2 bytes to frag:
293 1 extra opcode byte, 1 extra displacement byte. */
294 {0, 0, 2, 0},
295
296 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
297 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
298 /* dword jmp adds 3 bytes to frag:
299 0 extra opcode bytes, 3 extra displacement bytes. */
300 {0, 0, 3, 0},
301 /* word jmp adds 1 byte to frag:
302 0 extra opcode bytes, 1 extra displacement byte. */
303 {0, 0, 1, 0}
304
305};
306
307
308void
309i386_align_code (fragP, count)
310 fragS *fragP;
311 int count;
312{
313 /* Various efficient no-op patterns for aligning code labels. */
314 /* Note: Don't try to assemble the instructions in the comments. */
315 /* 0L and 0w are not legal */
316 static const char f32_1[] =
317 {0x90}; /* nop */
318 static const char f32_2[] =
319 {0x89,0xf6}; /* movl %esi,%esi */
320 static const char f32_3[] =
321 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
322 static const char f32_4[] =
323 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
324 static const char f32_5[] =
325 {0x90, /* nop */
326 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
327 static const char f32_6[] =
328 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
329 static const char f32_7[] =
330 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
331 static const char f32_8[] =
332 {0x90, /* nop */
333 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
334 static const char f32_9[] =
335 {0x89,0xf6, /* movl %esi,%esi */
336 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
337 static const char f32_10[] =
338 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
339 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
340 static const char f32_11[] =
341 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
342 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
343 static const char f32_12[] =
344 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
345 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
346 static const char f32_13[] =
347 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
348 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
349 static const char f32_14[] =
350 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
351 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
352 static const char f32_15[] =
353 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
354 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
c3332e24
AM
355 static const char f16_3[] =
356 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
252b5132
RH
357 static const char f16_4[] =
358 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
359 static const char f16_5[] =
360 {0x90, /* nop */
361 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
362 static const char f16_6[] =
363 {0x89,0xf6, /* mov %si,%si */
364 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
365 static const char f16_7[] =
366 {0x8d,0x74,0x00, /* lea 0(%si),%si */
367 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
368 static const char f16_8[] =
369 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
370 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
371 static const char *const f32_patt[] = {
372 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
373 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
374 };
375 static const char *const f16_patt[] = {
c3332e24 376 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
252b5132
RH
377 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
378 };
379
380 if (count > 0 && count <= 15)
381 {
382 if (flag_16bit_code)
383 {
384 memcpy(fragP->fr_literal + fragP->fr_fix,
385 f16_patt[count - 1], count);
386 if (count > 8) /* adjust jump offset */
387 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
388 }
389 else
390 memcpy(fragP->fr_literal + fragP->fr_fix,
391 f32_patt[count - 1], count);
392 fragP->fr_var = count;
393 }
394}
395
396static char *output_invalid PARAMS ((int c));
397static int i386_operand PARAMS ((char *operand_string));
398static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
399static const reg_entry *parse_register PARAMS ((char *reg_string,
400 char **end_op));
401
402#ifndef I386COFF
403static void s_bss PARAMS ((int));
404#endif
405
406symbolS *GOT_symbol; /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
407
408static INLINE unsigned int
409mode_from_disp_size (t)
410 unsigned int t;
411{
412 return (t & Disp8) ? 1 : (t & (Disp16|Disp32)) ? 2 : 0;
413}
414
415static INLINE int
416fits_in_signed_byte (num)
417 long num;
418{
419 return (num >= -128) && (num <= 127);
420} /* fits_in_signed_byte() */
421
422static INLINE int
423fits_in_unsigned_byte (num)
424 long num;
425{
426 return (num & 0xff) == num;
427} /* fits_in_unsigned_byte() */
428
429static INLINE int
430fits_in_unsigned_word (num)
431 long num;
432{
433 return (num & 0xffff) == num;
434} /* fits_in_unsigned_word() */
435
436static INLINE int
437fits_in_signed_word (num)
438 long num;
439{
440 return (-32768 <= num) && (num <= 32767);
441} /* fits_in_signed_word() */
442
443static int
444smallest_imm_type (num)
445 long num;
446{
447#if 0
448 /* This code is disabled because all the Imm1 forms in the opcode table
449 are slower on the i486, and they're the versions with the implicitly
450 specified single-position displacement, which has another syntax if
451 you really want to use that form. If you really prefer to have the
452 one-byte-shorter Imm1 form despite these problems, re-enable this
453 code. */
454 if (num == 1)
455 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32;
456#endif
457 return (fits_in_signed_byte (num)
458 ? (Imm8S | Imm8 | Imm16 | Imm32)
459 : fits_in_unsigned_byte (num)
460 ? (Imm8 | Imm16 | Imm32)
461 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
462 ? (Imm16 | Imm32)
463 : (Imm32));
464} /* smallest_imm_type() */
465
466/* Returns 0 if attempting to add a prefix where one from the same
467 class already exists, 1 if non rep/repne added, 2 if rep/repne
468 added. */
469static int
470add_prefix (prefix)
471 unsigned int prefix;
472{
473 int ret = 1;
474 int q;
475
476 switch (prefix)
477 {
478 default:
479 abort ();
480
481 case CS_PREFIX_OPCODE:
482 case DS_PREFIX_OPCODE:
483 case ES_PREFIX_OPCODE:
484 case FS_PREFIX_OPCODE:
485 case GS_PREFIX_OPCODE:
486 case SS_PREFIX_OPCODE:
487 q = SEG_PREFIX;
488 break;
489
490 case REPNE_PREFIX_OPCODE:
491 case REPE_PREFIX_OPCODE:
492 ret = 2;
493 /* fall thru */
494 case LOCK_PREFIX_OPCODE:
495 q = LOCKREP_PREFIX;
496 break;
497
498 case FWAIT_OPCODE:
499 q = WAIT_PREFIX;
500 break;
501
502 case ADDR_PREFIX_OPCODE:
503 q = ADDR_PREFIX;
504 break;
505
506 case DATA_PREFIX_OPCODE:
507 q = DATA_PREFIX;
508 break;
509 }
510
511 if (i.prefix[q])
512 {
513 as_bad (_("same type of prefix used twice"));
514 return 0;
515 }
516
517 i.prefixes += 1;
518 i.prefix[q] = prefix;
519 return ret;
520}
521
522static void
523set_16bit_code_flag (new_16bit_code_flag)
eecb386c
AM
524 int new_16bit_code_flag;
525{
526 flag_16bit_code = new_16bit_code_flag;
527 stackop_size = '\0';
528}
529
530static void
531set_16bit_gcc_code_flag (new_16bit_code_flag)
532 int new_16bit_code_flag;
252b5132
RH
533{
534 flag_16bit_code = new_16bit_code_flag;
eecb386c 535 stackop_size = new_16bit_code_flag ? 'l' : '\0';
252b5132
RH
536}
537
538static void
539set_intel_syntax (syntax_flag)
eecb386c 540 int syntax_flag;
252b5132
RH
541{
542 /* Find out if register prefixing is specified. */
543 int ask_naked_reg = 0;
544
545 SKIP_WHITESPACE ();
546 if (! is_end_of_line[(unsigned char) *input_line_pointer])
547 {
548 char *string = input_line_pointer;
549 int e = get_symbol_end ();
550
551 if (strcmp(string, "prefix") == 0)
552 ask_naked_reg = 1;
553 else if (strcmp(string, "noprefix") == 0)
554 ask_naked_reg = -1;
555 else
556 as_bad (_("Bad argument to syntax directive."));
557 *input_line_pointer = e;
558 }
559 demand_empty_rest_of_line ();
c3332e24 560
252b5132
RH
561 intel_syntax = syntax_flag;
562
563 if (ask_naked_reg == 0)
564 {
565#ifdef BFD_ASSEMBLER
566 allow_naked_reg = (intel_syntax
24eab124 567 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
568#else
569 allow_naked_reg = 0; /* conservative default */
570#endif
571 }
572 else
573 allow_naked_reg = (ask_naked_reg < 0);
574}
575
576const pseudo_typeS md_pseudo_table[] =
577{
578#ifndef I386COFF
579 {"bss", s_bss, 0},
580#endif
581#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
582 {"align", s_align_bytes, 0},
583#else
584 {"align", s_align_ptwo, 0},
585#endif
586 {"ffloat", float_cons, 'f'},
587 {"dfloat", float_cons, 'd'},
588 {"tfloat", float_cons, 'x'},
589 {"value", cons, 2},
590 {"noopt", s_ignore, 0},
591 {"optim", s_ignore, 0},
eecb386c 592 {"code16gcc", set_16bit_gcc_code_flag, 1},
252b5132
RH
593 {"code16", set_16bit_code_flag, 1},
594 {"code32", set_16bit_code_flag, 0},
595 {"intel_syntax", set_intel_syntax, 1},
596 {"att_syntax", set_intel_syntax, 0},
597 {0, 0, 0}
598};
599
600/* for interface with expression () */
601extern char *input_line_pointer;
602
603/* hash table for instruction mnemonic lookup */
604static struct hash_control *op_hash;
605/* hash table for register lookup */
606static struct hash_control *reg_hash;
607\f
608
609void
610md_begin ()
611{
612 const char *hash_err;
613
614 /* initialize op_hash hash table */
615 op_hash = hash_new ();
616
617 {
618 register const template *optab;
619 register templates *core_optab;
620
621 optab = i386_optab; /* setup for loop */
622 core_optab = (templates *) xmalloc (sizeof (templates));
623 core_optab->start = optab;
624
625 while (1)
626 {
627 ++optab;
628 if (optab->name == NULL
629 || strcmp (optab->name, (optab - 1)->name) != 0)
630 {
631 /* different name --> ship out current template list;
632 add to hash table; & begin anew */
633 core_optab->end = optab;
634 hash_err = hash_insert (op_hash,
635 (optab - 1)->name,
636 (PTR) core_optab);
637 if (hash_err)
638 {
639 hash_error:
640 as_fatal (_("Internal Error: Can't hash %s: %s"),
641 (optab - 1)->name,
642 hash_err);
643 }
644 if (optab->name == NULL)
645 break;
646 core_optab = (templates *) xmalloc (sizeof (templates));
647 core_optab->start = optab;
648 }
649 }
650 }
651
652 /* initialize reg_hash hash table */
653 reg_hash = hash_new ();
654 {
655 register const reg_entry *regtab;
656
657 for (regtab = i386_regtab;
658 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
659 regtab++)
660 {
661 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
662 if (hash_err)
663 goto hash_error;
664 }
665 }
666
667 /* fill in lexical tables: mnemonic_chars, operand_chars. */
668 {
669 register int c;
670 register char *p;
671
672 for (c = 0; c < 256; c++)
673 {
674 if (isdigit (c))
675 {
676 digit_chars[c] = c;
677 mnemonic_chars[c] = c;
678 register_chars[c] = c;
679 operand_chars[c] = c;
680 }
681 else if (islower (c))
682 {
683 mnemonic_chars[c] = c;
684 register_chars[c] = c;
685 operand_chars[c] = c;
686 }
687 else if (isupper (c))
688 {
689 mnemonic_chars[c] = tolower (c);
690 register_chars[c] = mnemonic_chars[c];
691 operand_chars[c] = c;
692 }
693
694 if (isalpha (c) || isdigit (c))
695 identifier_chars[c] = c;
696 else if (c >= 128)
697 {
698 identifier_chars[c] = c;
699 operand_chars[c] = c;
700 }
701 }
702
703#ifdef LEX_AT
704 identifier_chars['@'] = '@';
705#endif
252b5132
RH
706 digit_chars['-'] = '-';
707 identifier_chars['_'] = '_';
708 identifier_chars['.'] = '.';
709
710 for (p = operand_special_chars; *p != '\0'; p++)
711 operand_chars[(unsigned char) *p] = *p;
712 }
713
714#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
715 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
716 {
717 record_alignment (text_section, 2);
718 record_alignment (data_section, 2);
719 record_alignment (bss_section, 2);
720 }
721#endif
722}
723
724void
725i386_print_statistics (file)
726 FILE *file;
727{
728 hash_print_statistics (file, "i386 opcode", op_hash);
729 hash_print_statistics (file, "i386 register", reg_hash);
730}
731\f
732
733#ifdef DEBUG386
734
735/* debugging routines for md_assemble */
736static void pi PARAMS ((char *, i386_insn *));
737static void pte PARAMS ((template *));
738static void pt PARAMS ((unsigned int));
739static void pe PARAMS ((expressionS *));
740static void ps PARAMS ((symbolS *));
741
742static void
743pi (line, x)
744 char *line;
745 i386_insn *x;
746{
747 register template *p;
748 int i;
749
750 fprintf (stdout, "%s: template ", line);
751 pte (&x->tm);
752 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x",
753 x->rm.mode, x->rm.reg, x->rm.regmem);
754 fprintf (stdout, " base %x index %x scale %x\n",
755 x->bi.base, x->bi.index, x->bi.scale);
756 for (i = 0; i < x->operands; i++)
757 {
758 fprintf (stdout, " #%d: ", i + 1);
759 pt (x->types[i]);
760 fprintf (stdout, "\n");
761 if (x->types[i]
3f4438ab 762 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
252b5132
RH
763 fprintf (stdout, "%s\n", x->regs[i]->reg_name);
764 if (x->types[i] & Imm)
765 pe (x->imms[i]);
766 if (x->types[i] & Disp)
767 pe (x->disps[i]);
768 }
769}
770
771static void
772pte (t)
773 template *t;
774{
775 int i;
776 fprintf (stdout, " %d operands ", t->operands);
777 fprintf (stdout, "opcode %x ",
778 t->base_opcode);
779 if (t->extension_opcode != None)
780 fprintf (stdout, "ext %x ", t->extension_opcode);
781 if (t->opcode_modifier & D)
782 fprintf (stdout, "D");
783 if (t->opcode_modifier & W)
784 fprintf (stdout, "W");
785 fprintf (stdout, "\n");
786 for (i = 0; i < t->operands; i++)
787 {
788 fprintf (stdout, " #%d type ", i + 1);
789 pt (t->operand_types[i]);
790 fprintf (stdout, "\n");
791 }
792}
793
794static void
795pe (e)
796 expressionS *e;
797{
24eab124 798 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
799 fprintf (stdout, " add_number %ld (%lx)\n",
800 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
801 if (e->X_add_symbol)
802 {
803 fprintf (stdout, " add_symbol ");
804 ps (e->X_add_symbol);
805 fprintf (stdout, "\n");
806 }
807 if (e->X_op_symbol)
808 {
809 fprintf (stdout, " op_symbol ");
810 ps (e->X_op_symbol);
811 fprintf (stdout, "\n");
812 }
813}
814
815static void
816ps (s)
817 symbolS *s;
818{
819 fprintf (stdout, "%s type %s%s",
820 S_GET_NAME (s),
821 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
822 segment_name (S_GET_SEGMENT (s)));
823}
824
825struct type_name
826 {
827 unsigned int mask;
828 char *tname;
829 }
830
831type_names[] =
832{
833 { Reg8, "r8" },
834 { Reg16, "r16" },
835 { Reg32, "r32" },
836 { Imm8, "i8" },
837 { Imm8S, "i8s" },
838 { Imm16, "i16" },
839 { Imm32, "i32" },
840 { Imm1, "i1" },
841 { BaseIndex, "BaseIndex" },
842 { Disp8, "d8" },
843 { Disp16, "d16" },
844 { Disp32, "d32" },
845 { InOutPortReg, "InOutPortReg" },
846 { ShiftCount, "ShiftCount" },
847 { Control, "control reg" },
848 { Test, "test reg" },
849 { Debug, "debug reg" },
850 { FloatReg, "FReg" },
851 { FloatAcc, "FAcc" },
852 { SReg2, "SReg2" },
853 { SReg3, "SReg3" },
854 { Acc, "Acc" },
855 { JumpAbsolute, "Jump Absolute" },
856 { RegMMX, "rMMX" },
3f4438ab 857 { RegXMM, "rXMM" },
252b5132
RH
858 { EsSeg, "es" },
859 { 0, "" }
860};
861
862static void
863pt (t)
864 unsigned int t;
865{
866 register struct type_name *ty;
867
868 if (t == Unknown)
869 {
870 fprintf (stdout, _("Unknown"));
871 }
872 else
873 {
874 for (ty = type_names; ty->mask; ty++)
875 if (t & ty->mask)
876 fprintf (stdout, "%s, ", ty->tname);
877 }
878 fflush (stdout);
879}
880
881#endif /* DEBUG386 */
882\f
883int
884tc_i386_force_relocation (fixp)
885 struct fix *fixp;
886{
887#ifdef BFD_ASSEMBLER
888 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
889 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
890 return 1;
891 return 0;
892#else
893 /* For COFF */
894 return fixp->fx_r_type==7;
895#endif
896}
897
898#ifdef BFD_ASSEMBLER
899static bfd_reloc_code_real_type reloc
900 PARAMS ((int, int, bfd_reloc_code_real_type));
901
902static bfd_reloc_code_real_type
903reloc (size, pcrel, other)
904 int size;
905 int pcrel;
906 bfd_reloc_code_real_type other;
907{
908 if (other != NO_RELOC) return other;
909
910 if (pcrel)
911 {
912 switch (size)
913 {
914 case 1: return BFD_RELOC_8_PCREL;
915 case 2: return BFD_RELOC_16_PCREL;
916 case 4: return BFD_RELOC_32_PCREL;
917 }
918 as_bad (_("Can not do %d byte pc-relative relocation"), size);
919 }
920 else
921 {
922 switch (size)
923 {
924 case 1: return BFD_RELOC_8;
925 case 2: return BFD_RELOC_16;
926 case 4: return BFD_RELOC_32;
927 }
928 as_bad (_("Can not do %d byte relocation"), size);
929 }
930
931 return BFD_RELOC_NONE;
932}
933
934/*
935 * Here we decide which fixups can be adjusted to make them relative to
936 * the beginning of the section instead of the symbol. Basically we need
937 * to make sure that the dynamic relocations are done correctly, so in
938 * some cases we force the original symbol to be used.
939 */
940int
c0c949c7
ILT
941tc_i386_fix_adjustable (fixP)
942 fixS *fixP;
252b5132 943{
79d292aa
ILT
944#if defined (OBJ_ELF) || defined (TE_PE)
945 /* Prevent all adjustments to global symbols, or else dynamic
946 linking will not work correctly. */
252b5132
RH
947 if (S_IS_EXTERN (fixP->fx_addsy))
948 return 0;
949 if (S_IS_WEAK (fixP->fx_addsy))
950 return 0;
951#endif
952 /* adjust_reloc_syms doesn't know about the GOT */
953 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
954 || fixP->fx_r_type == BFD_RELOC_386_PLT32
955 || fixP->fx_r_type == BFD_RELOC_386_GOT32
d33e1d24 956 || fixP->fx_r_type == BFD_RELOC_RVA
252b5132
RH
957 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
958 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
959 return 0;
960 return 1;
961}
962#else
963#define reloc(SIZE,PCREL,OTHER) 0
964#define BFD_RELOC_16 0
965#define BFD_RELOC_32 0
966#define BFD_RELOC_16_PCREL 0
967#define BFD_RELOC_32_PCREL 0
968#define BFD_RELOC_386_PLT32 0
969#define BFD_RELOC_386_GOT32 0
970#define BFD_RELOC_386_GOTOFF 0
971#endif
972
b4cac588
AM
973static int
974intel_float_operand PARAMS ((char *mnemonic));
975
976static int
252b5132
RH
977intel_float_operand (mnemonic)
978 char *mnemonic;
979{
980 if (mnemonic[0] == 'f' && mnemonic[1] =='i')
981 return 0;
982
983 if (mnemonic[0] == 'f')
984 return 1;
985
986 return 0;
987}
988
989/* This is the guts of the machine-dependent assembler. LINE points to a
990 machine dependent instruction. This function is supposed to emit
991 the frags/bytes it assembles to. */
992
993void
994md_assemble (line)
995 char *line;
996{
997 /* Points to template once we've found it. */
998 const template *t;
999
1000 /* Count the size of the instruction generated. */
1001 int insn_size = 0;
1002
1003 int j;
1004
1005 char mnemonic[MAX_MNEM_SIZE];
1006
1007 /* Initialize globals. */
1008 memset (&i, '\0', sizeof (i));
1009 for (j = 0; j < MAX_OPERANDS; j++)
1010 i.disp_reloc[j] = NO_RELOC;
1011 memset (disp_expressions, '\0', sizeof (disp_expressions));
1012 memset (im_expressions, '\0', sizeof (im_expressions));
1013 save_stack_p = save_stack; /* reset stack pointer */
1014
1015 /* First parse an instruction mnemonic & call i386_operand for the operands.
1016 We assume that the scrubber has arranged it so that line[0] is the valid
1017 start of a (possibly prefixed) mnemonic. */
1018 {
1019 char *l = line;
1020 char *token_start = l;
1021 char *mnem_p;
1022
1023 /* Non-zero if we found a prefix only acceptable with string insns. */
1024 const char *expecting_string_instruction = NULL;
1025
1026 while (1)
1027 {
1028 mnem_p = mnemonic;
1029 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1030 {
1031 mnem_p++;
1032 if (mnem_p >= mnemonic + sizeof (mnemonic))
1033 {
1034 as_bad (_("no such 386 instruction: `%s'"), token_start);
1035 return;
1036 }
1037 l++;
1038 }
1039 if (!is_space_char (*l)
1040 && *l != END_OF_INSN
1041 && *l != PREFIX_SEPARATOR)
1042 {
1043 as_bad (_("invalid character %s in mnemonic"),
1044 output_invalid (*l));
1045 return;
1046 }
1047 if (token_start == l)
1048 {
1049 if (*l == PREFIX_SEPARATOR)
1050 as_bad (_("expecting prefix; got nothing"));
1051 else
1052 as_bad (_("expecting mnemonic; got nothing"));
1053 return;
1054 }
1055
1056 /* Look up instruction (or prefix) via hash table. */
1057 current_templates = hash_find (op_hash, mnemonic);
1058
1059 if (*l != END_OF_INSN
1060 && (! is_space_char (*l) || l[1] != END_OF_INSN)
1061 && current_templates
1062 && (current_templates->start->opcode_modifier & IsPrefix))
1063 {
1064 /* If we are in 16-bit mode, do not allow addr16 or data16.
1065 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1066 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1067 && (((current_templates->start->opcode_modifier & Size32) != 0)
1068 ^ flag_16bit_code))
1069 {
1070 as_bad (_("redundant %s prefix"),
1071 current_templates->start->name);
1072 return;
1073 }
1074 /* Add prefix, checking for repeated prefixes. */
1075 switch (add_prefix (current_templates->start->base_opcode))
1076 {
1077 case 0:
1078 return;
1079 case 2:
1080 expecting_string_instruction =
1081 current_templates->start->name;
1082 break;
1083 }
1084 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1085 token_start = ++l;
1086 }
1087 else
1088 break;
1089 }
1090
1091 if (!current_templates)
1092 {
24eab124 1093 /* See if we can get a match by trimming off a suffix. */
252b5132
RH
1094 switch (mnem_p[-1])
1095 {
1096 case DWORD_MNEM_SUFFIX:
1097 case WORD_MNEM_SUFFIX:
1098 case BYTE_MNEM_SUFFIX:
1099 case SHORT_MNEM_SUFFIX:
1100#if LONG_MNEM_SUFFIX != DWORD_MNEM_SUFFIX
1101 case LONG_MNEM_SUFFIX:
1102#endif
1103 i.suffix = mnem_p[-1];
1104 mnem_p[-1] = '\0';
1105 current_templates = hash_find (op_hash, mnemonic);
24eab124
AM
1106 break;
1107
1108 /* Intel Syntax */
1109 case INTEL_DWORD_MNEM_SUFFIX:
1110 if (intel_syntax)
1111 {
1112 i.suffix = mnem_p[-1];
1113 mnem_p[-1] = '\0';
1114 current_templates = hash_find (op_hash, mnemonic);
1115 break;
1116 }
252b5132
RH
1117 }
1118 if (!current_templates)
1119 {
1120 as_bad (_("no such 386 instruction: `%s'"), token_start);
1121 return;
1122 }
1123 }
1124
1125 /* check for rep/repne without a string instruction */
1126 if (expecting_string_instruction
1127 && !(current_templates->start->opcode_modifier & IsString))
1128 {
1129 as_bad (_("expecting string instruction after `%s'"),
1130 expecting_string_instruction);
1131 return;
1132 }
1133
1134 /* There may be operands to parse. */
1135 if (*l != END_OF_INSN)
1136 {
1137 /* parse operands */
1138
1139 /* 1 if operand is pending after ','. */
1140 unsigned int expecting_operand = 0;
1141
1142 /* Non-zero if operand parens not balanced. */
1143 unsigned int paren_not_balanced;
1144
1145 do
1146 {
1147 /* skip optional white space before operand */
1148 if (is_space_char (*l))
1149 ++l;
1150 if (!is_operand_char (*l) && *l != END_OF_INSN)
1151 {
1152 as_bad (_("invalid character %s before operand %d"),
1153 output_invalid (*l),
1154 i.operands + 1);
1155 return;
1156 }
1157 token_start = l; /* after white space */
1158 paren_not_balanced = 0;
1159 while (paren_not_balanced || *l != ',')
1160 {
1161 if (*l == END_OF_INSN)
1162 {
1163 if (paren_not_balanced)
1164 {
24eab124 1165 if (!intel_syntax)
252b5132
RH
1166 as_bad (_("unbalanced parenthesis in operand %d."),
1167 i.operands + 1);
24eab124 1168 else
252b5132
RH
1169 as_bad (_("unbalanced brackets in operand %d."),
1170 i.operands + 1);
1171 return;
1172 }
1173 else
1174 break; /* we are done */
1175 }
1176 else if (!is_operand_char (*l) && !is_space_char (*l))
1177 {
1178 as_bad (_("invalid character %s in operand %d"),
1179 output_invalid (*l),
1180 i.operands + 1);
1181 return;
1182 }
24eab124
AM
1183 if (!intel_syntax)
1184 {
252b5132
RH
1185 if (*l == '(')
1186 ++paren_not_balanced;
1187 if (*l == ')')
1188 --paren_not_balanced;
24eab124
AM
1189 }
1190 else
1191 {
252b5132
RH
1192 if (*l == '[')
1193 ++paren_not_balanced;
1194 if (*l == ']')
1195 --paren_not_balanced;
24eab124 1196 }
252b5132
RH
1197 l++;
1198 }
1199 if (l != token_start)
1200 { /* yes, we've read in another operand */
1201 unsigned int operand_ok;
1202 this_operand = i.operands++;
1203 if (i.operands > MAX_OPERANDS)
1204 {
1205 as_bad (_("spurious operands; (%d operands/instruction max)"),
1206 MAX_OPERANDS);
1207 return;
1208 }
1209 /* now parse operand adding info to 'i' as we go along */
1210 END_STRING_AND_SAVE (l);
1211
24eab124
AM
1212 if (intel_syntax)
1213 operand_ok = i386_intel_operand (token_start, intel_float_operand (mnemonic));
1214 else
1215 operand_ok = i386_operand (token_start);
252b5132
RH
1216
1217 RESTORE_END_STRING (l); /* restore old contents */
1218 if (!operand_ok)
1219 return;
1220 }
1221 else
1222 {
1223 if (expecting_operand)
1224 {
1225 expecting_operand_after_comma:
1226 as_bad (_("expecting operand after ','; got nothing"));
1227 return;
1228 }
1229 if (*l == ',')
1230 {
1231 as_bad (_("expecting operand before ','; got nothing"));
1232 return;
1233 }
1234 }
1235
1236 /* now *l must be either ',' or END_OF_INSN */
1237 if (*l == ',')
1238 {
1239 if (*++l == END_OF_INSN)
1240 { /* just skip it, if it's \n complain */
1241 goto expecting_operand_after_comma;
1242 }
1243 expecting_operand = 1;
1244 }
1245 }
1246 while (*l != END_OF_INSN); /* until we get end of insn */
1247 }
1248 }
1249
1250 /* Now we've parsed the mnemonic into a set of templates, and have the
1251 operands at hand.
1252
1253 Next, we find a template that matches the given insn,
1254 making sure the overlap of the given operands types is consistent
1255 with the template operand types. */
1256
1257#define MATCH(overlap, given, template) \
1258 ((overlap) \
1259 && ((given) & BaseIndex) == ((overlap) & BaseIndex) \
1260 && ((given) & JumpAbsolute) == ((template) & JumpAbsolute))
1261
1262 /* If given types r0 and r1 are registers they must be of the same type
1263 unless the expected operand type register overlap is null.
1264 Note that Acc in a template matches every size of reg. */
1265#define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
1266 ( ((g0) & Reg) == 0 || ((g1) & Reg) == 0 || \
1267 ((g0) & Reg) == ((g1) & Reg) || \
1268 ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
1269
1270 {
1271 register unsigned int overlap0, overlap1;
252b5132
RH
1272 unsigned int overlap2;
1273 unsigned int found_reverse_match;
1274 int suffix_check;
1275
1276 /* All intel opcodes have reversed operands except for BOUND and ENTER */
1277 if (intel_syntax
24eab124
AM
1278 && (strcmp (mnemonic, "enter") != 0)
1279 && (strcmp (mnemonic, "bound") != 0)
1280 && (strncmp (mnemonic, "fsub", 4) !=0)
1281 && (strncmp (mnemonic, "fdiv", 4) !=0))
252b5132 1282 {
24eab124
AM
1283 const reg_entry *temp_reg = NULL;
1284 expressionS *temp_disp = NULL;
1285 expressionS *temp_imm = NULL;
1286 unsigned int temp_type;
1287 int xchg1 = 0;
ab9da554 1288 int xchg2 = 0;
252b5132 1289
24eab124
AM
1290 if (i.operands == 2)
1291 {
1292 xchg1 = 0;
1293 xchg2 = 1;
1294 }
1295 else if (i.operands == 3)
1296 {
1297 xchg1 = 0;
1298 xchg2 = 2;
1299 }
1300
1301 if (i.operands > 1)
1302 {
1303 temp_type = i.types[xchg2];
1304 if (temp_type & (Reg | FloatReg))
1305 temp_reg = i.regs[xchg2];
1306 else if (temp_type & Imm)
1307 temp_imm = i.imms[xchg2];
1308 else if (temp_type & Disp)
1309 temp_disp = i.disps[xchg2];
1310
1311 i.types[xchg2] = i.types[xchg1];
1312
1313 if (i.types[xchg1] & (Reg | FloatReg))
1314 {
1315 i.regs[xchg2] = i.regs[xchg1];
1316 i.regs[xchg1] = NULL;
1317 }
1318 else if (i.types[xchg2] & Imm)
1319 {
1320 i.imms[xchg2] = i.imms[xchg1];
1321 i.imms[xchg1] = NULL;
1322 }
1323 else if (i.types[xchg2] & Disp)
1324 {
1325 i.disps[xchg2] = i.disps[xchg1];
1326 i.disps[xchg1] = NULL;
1327 }
1328
1329 if (temp_type & (Reg | FloatReg))
1330 {
1331 i.regs[xchg1] = temp_reg;
1332 if (! (i.types[xchg1] & (Reg | FloatReg)))
1333 i.regs[xchg2] = NULL;
1334 }
1335 else if (temp_type & Imm)
1336 {
1337 i.imms[xchg1] = temp_imm;
1338 if (! (i.types[xchg1] & Imm))
1339 i.imms[xchg2] = NULL;
1340 }
1341 else if (temp_type & Disp)
1342 {
1343 i.disps[xchg1] = temp_disp;
1344 if (! (i.types[xchg1] & Disp))
1345 i.disps[xchg2] = NULL;
1346 }
1347
1348 i.types[xchg1] = temp_type;
1349 }
1350 if (!strcmp(mnemonic,"jmp")
1351 || !strcmp (mnemonic, "call"))
1352 if ((i.types[0] & Reg) || i.types[0] & BaseIndex)
1353 i.types[0] |= JumpAbsolute;
1354
1355 }
252b5132
RH
1356 overlap0 = 0;
1357 overlap1 = 0;
1358 overlap2 = 0;
1359 found_reverse_match = 0;
1360 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
1361 ? No_bSuf
1362 : (i.suffix == WORD_MNEM_SUFFIX
1363 ? No_wSuf
1364 : (i.suffix == SHORT_MNEM_SUFFIX
1365 ? No_sSuf
1366 : (i.suffix == LONG_MNEM_SUFFIX
24eab124
AM
1367 ? No_lSuf
1368 : (i.suffix == INTEL_DWORD_MNEM_SUFFIX
1369 ? No_dSuf
1370 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX ? No_xSuf : 0))))));
252b5132
RH
1371
1372 for (t = current_templates->start;
1373 t < current_templates->end;
1374 t++)
1375 {
1376 /* Must have right number of operands. */
1377 if (i.operands != t->operands)
1378 continue;
1379
24eab124
AM
1380 /* For some opcodes, don't check the suffix */
1381 if (intel_syntax)
1382 {
1383 if (strcmp (t->name, "fnstcw")
1384 && strcmp (t->name, "fldcw")
1385 && (t->opcode_modifier & suffix_check))
1386 continue;
1387 }
1388 /* Must not have disallowed suffix. */
1389 else if ((t->opcode_modifier & suffix_check))
1390 continue;
252b5132
RH
1391
1392 else if (!t->operands)
1393 break; /* 0 operands always matches */
1394
1395 overlap0 = i.types[0] & t->operand_types[0];
1396 switch (t->operands)
1397 {
1398 case 1:
1399 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
1400 continue;
1401 break;
1402 case 2:
1403 case 3:
1404 overlap1 = i.types[1] & t->operand_types[1];
1405 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
1406 || !MATCH (overlap1, i.types[1], t->operand_types[1])
1407 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1408 t->operand_types[0],
1409 overlap1, i.types[1],
1410 t->operand_types[1]))
1411 {
1412
1413 /* check if other direction is valid ... */
1414 if ((t->opcode_modifier & (D|FloatD)) == 0)
1415 continue;
1416
1417 /* try reversing direction of operands */
1418 overlap0 = i.types[0] & t->operand_types[1];
1419 overlap1 = i.types[1] & t->operand_types[0];
1420 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
1421 || !MATCH (overlap1, i.types[1], t->operand_types[0])
1422 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1423 t->operand_types[1],
1424 overlap1, i.types[1],
1425 t->operand_types[0]))
1426 {
1427 /* does not match either direction */
1428 continue;
1429 }
1430 /* found_reverse_match holds which of D or FloatDR
1431 we've found. */
1432 found_reverse_match = t->opcode_modifier & (D|FloatDR);
1433 break;
1434 }
1435 /* found a forward 2 operand match here */
1436 if (t->operands == 3)
1437 {
1438 /* Here we make use of the fact that there are no
1439 reverse match 3 operand instructions, and all 3
1440 operand instructions only need to be checked for
1441 register consistency between operands 2 and 3. */
1442 overlap2 = i.types[2] & t->operand_types[2];
1443 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
1444 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
1445 t->operand_types[1],
1446 overlap2, i.types[2],
24eab124 1447 t->operand_types[2]))
252b5132 1448
24eab124 1449 continue;
252b5132
RH
1450 }
1451 /* found either forward/reverse 2 or 3 operand match here:
1452 slip through to break */
1453 }
1454 break; /* we've found a match; break out of loop */
1455 } /* for (t = ... */
1456 if (t == current_templates->end)
1457 { /* we found no match */
1458 as_bad (_("suffix or operands invalid for `%s'"),
1459 current_templates->start->name);
1460 return;
1461 }
1462
1463 if ((t->opcode_modifier & (IsPrefix|IgnoreSize)) == (IsPrefix|IgnoreSize))
1464 {
1465 /* Warn them that a data or address size prefix doesn't affect
1466 assembly of the next line of code. */
1467 as_warn (_("stand-alone `%s' prefix"), t->name);
1468 }
1469
1470 /* Copy the template we found. */
1471 i.tm = *t;
1472 if (found_reverse_match)
1473 {
1474 i.tm.operand_types[0] = t->operand_types[1];
1475 i.tm.operand_types[1] = t->operand_types[0];
1476 }
1477
1478
1479 if (i.tm.opcode_modifier & FWait)
1480 if (! add_prefix (FWAIT_OPCODE))
1481 return;
1482
1483 /* Check string instruction segment overrides */
1484 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1485 {
1486 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
1487 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
1488 {
1489 if (i.seg[0] != NULL && i.seg[0] != &es)
1490 {
1491 as_bad (_("`%s' operand %d must use `%%es' segment"),
1492 i.tm.name,
1493 mem_op + 1);
1494 return;
1495 }
1496 /* There's only ever one segment override allowed per instruction.
1497 This instruction possibly has a legal segment override on the
1498 second operand, so copy the segment to where non-string
1499 instructions store it, allowing common code. */
1500 i.seg[0] = i.seg[1];
1501 }
1502 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
1503 {
1504 if (i.seg[1] != NULL && i.seg[1] != &es)
1505 {
1506 as_bad (_("`%s' operand %d must use `%%es' segment"),
1507 i.tm.name,
1508 mem_op + 2);
1509 return;
1510 }
1511 }
1512 }
1513
1514 /* If matched instruction specifies an explicit instruction mnemonic
1515 suffix, use it. */
1516 if (i.tm.opcode_modifier & (Size16 | Size32))
1517 {
1518 if (i.tm.opcode_modifier & Size16)
1519 i.suffix = WORD_MNEM_SUFFIX;
1520 else
1521 i.suffix = DWORD_MNEM_SUFFIX;
1522 }
1523 else if (i.reg_operands)
1524 {
1525 /* If there's no instruction mnemonic suffix we try to invent one
1526 based on register operands. */
1527 if (!i.suffix)
1528 {
1529 /* We take i.suffix from the last register operand specified,
1530 Destination register type is more significant than source
1531 register type. */
1532 int op;
1533 for (op = i.operands; --op >= 0; )
1534 if (i.types[op] & Reg)
1535 {
1536 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
1537 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
1538 DWORD_MNEM_SUFFIX);
1539 break;
1540 }
1541 }
1542 else if (i.suffix == BYTE_MNEM_SUFFIX)
1543 {
1544 int op;
1545 for (op = i.operands; --op >= 0; )
1546 {
1547 /* If this is an eight bit register, it's OK. If it's
1548 the 16 or 32 bit version of an eight bit register,
1549 we will just use the low portion, and that's OK too. */
1550 if (i.types[op] & Reg8)
1551 continue;
1552
24eab124
AM
1553 /* movzx and movsx should not generate this warning. */
1554 if (intel_syntax
1555 && (i.tm.base_opcode == 0xfb7
1556 || i.tm.base_opcode == 0xfb6
1557 || i.tm.base_opcode == 0xfbe
1558 || i.tm.base_opcode == 0xfbf))
1559 continue;
252b5132
RH
1560
1561 if ((i.types[op] & WordReg) && i.regs[op]->reg_num < 4
1562#if 0
1563 /* Check that the template allows eight bit regs
1564 This kills insns such as `orb $1,%edx', which
1565 maybe should be allowed. */
1566 && (i.tm.operand_types[op] & (Reg8|InOutPortReg))
1567#endif
1568 )
1569 {
1570#if REGISTER_WARNINGS
1571 if ((i.tm.operand_types[op] & InOutPortReg) == 0)
1572 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
1573 (i.regs[op] - (i.types[op] & Reg16 ? 8 : 16))->reg_name,
1574 i.regs[op]->reg_name,
1575 i.suffix);
1576#endif
1577 continue;
1578 }
1579 /* Any other register is bad */
3f4438ab
AM
1580 if (i.types[op] & (Reg | RegMMX | RegXMM
1581 | SReg2 | SReg3
1582 | Control | Debug | Test
1583 | FloatReg | FloatAcc))
252b5132
RH
1584 {
1585 as_bad (_("`%%%s' not allowed with `%s%c'"),
1586 i.regs[op]->reg_name,
1587 i.tm.name,
1588 i.suffix);
1589 return;
1590 }
1591 }
1592 }
1593 else if (i.suffix == DWORD_MNEM_SUFFIX)
1594 {
1595 int op;
1596 for (op = i.operands; --op >= 0; )
1597 /* Reject eight bit registers, except where the template
1598 requires them. (eg. movzb) */
1599 if ((i.types[op] & Reg8) != 0
1600 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
1601 {
1602 as_bad (_("`%%%s' not allowed with `%s%c'"),
1603 i.regs[op]->reg_name,
1604 i.tm.name,
1605 i.suffix);
1606 return;
1607 }
1608#if REGISTER_WARNINGS
1609 /* Warn if the e prefix on a general reg is missing. */
1610 else if ((i.types[op] & Reg16) != 0
1611 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
1612 {
1613 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
1614 (i.regs[op] + 8)->reg_name,
1615 i.regs[op]->reg_name,
1616 i.suffix);
1617 }
1618#endif
1619 }
1620 else if (i.suffix == WORD_MNEM_SUFFIX)
1621 {
1622 int op;
1623 for (op = i.operands; --op >= 0; )
1624 /* Reject eight bit registers, except where the template
1625 requires them. (eg. movzb) */
1626 if ((i.types[op] & Reg8) != 0
1627 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
1628 {
1629 as_bad (_("`%%%s' not allowed with `%s%c'"),
1630 i.regs[op]->reg_name,
1631 i.tm.name,
1632 i.suffix);
1633 return;
1634 }
1635#if REGISTER_WARNINGS
1636 /* Warn if the e prefix on a general reg is present. */
1637 else if ((i.types[op] & Reg32) != 0
1638 && (i.tm.operand_types[op] & (Reg16|Acc)) != 0)
1639 {
1640 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
1641 (i.regs[op] - 8)->reg_name,
1642 i.regs[op]->reg_name,
1643 i.suffix);
1644 }
1645#endif
1646 }
1647 else
1648 abort();
1649 }
eecb386c
AM
1650 else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
1651 {
1652 i.suffix = stackop_size;
1653 }
252b5132
RH
1654
1655 /* Make still unresolved immediate matches conform to size of immediate
1656 given in i.suffix. Note: overlap2 cannot be an immediate! */
1657 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32))
1658 && overlap0 != Imm8 && overlap0 != Imm8S
1659 && overlap0 != Imm16 && overlap0 != Imm32)
1660 {
1661 if (i.suffix)
1662 {
24eab124
AM
1663 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
1664 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 : Imm32));
252b5132
RH
1665 }
1666 else if (overlap0 == (Imm16 | Imm32))
1667 {
24eab124 1668 overlap0 =
252b5132
RH
1669 (flag_16bit_code ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32;
1670 }
1671 else
1672 {
1673 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
1674 return;
1675 }
1676 }
1677 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32))
1678 && overlap1 != Imm8 && overlap1 != Imm8S
1679 && overlap1 != Imm16 && overlap1 != Imm32)
1680 {
1681 if (i.suffix)
1682 {
24eab124
AM
1683 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
1684 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 : Imm32));
252b5132
RH
1685 }
1686 else if (overlap1 == (Imm16 | Imm32))
1687 {
24eab124 1688 overlap1 =
252b5132
RH
1689 (flag_16bit_code ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32;
1690 }
1691 else
1692 {
1693 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
1694 return;
1695 }
1696 }
1697 assert ((overlap2 & Imm) == 0);
1698
1699 i.types[0] = overlap0;
1700 if (overlap0 & ImplicitRegister)
1701 i.reg_operands--;
1702 if (overlap0 & Imm1)
1703 i.imm_operands = 0; /* kludge for shift insns */
1704
1705 i.types[1] = overlap1;
1706 if (overlap1 & ImplicitRegister)
1707 i.reg_operands--;
1708
1709 i.types[2] = overlap2;
1710 if (overlap2 & ImplicitRegister)
1711 i.reg_operands--;
1712
1713 /* Finalize opcode. First, we change the opcode based on the operand
1714 size given by i.suffix: We need not change things for byte insns. */
1715
1716 if (!i.suffix && (i.tm.opcode_modifier & W))
1717 {
1718 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
1719 return;
1720 }
1721
1722 /* For movzx and movsx, need to check the register type */
1723 if (intel_syntax
24eab124 1724 && (i.tm.base_opcode == 0xfb6 || i.tm.base_opcode == 0xfbe))
252b5132 1725 if (i.suffix && i.suffix == BYTE_MNEM_SUFFIX)
24eab124
AM
1726 {
1727 unsigned int prefix = DATA_PREFIX_OPCODE;
252b5132 1728
24eab124
AM
1729 if ((i.regs[1]->reg_type & Reg16) != 0)
1730 if (!add_prefix (prefix))
1731 return;
1732 }
252b5132
RH
1733
1734 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
1735 {
1736 /* It's not a byte, select word/dword operation. */
1737 if (i.tm.opcode_modifier & W)
1738 {
1739 if (i.tm.opcode_modifier & ShortForm)
1740 i.tm.base_opcode |= 8;
1741 else
1742 i.tm.base_opcode |= 1;
1743 }
1744 /* Now select between word & dword operations via the operand
1745 size prefix, except for instructions that will ignore this
1746 prefix anyway. */
1747 if (((intel_syntax && (i.suffix == INTEL_DWORD_MNEM_SUFFIX))
24eab124 1748 || i.suffix == DWORD_MNEM_SUFFIX
252b5132
RH
1749 || i.suffix == LONG_MNEM_SUFFIX) == flag_16bit_code
1750 && !(i.tm.opcode_modifier & IgnoreSize))
1751 {
1752 unsigned int prefix = DATA_PREFIX_OPCODE;
1753 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
1754 prefix = ADDR_PREFIX_OPCODE;
1755
1756 if (! add_prefix (prefix))
1757 return;
1758 }
1759 /* Size floating point instruction. */
1760 if (i.suffix == LONG_MNEM_SUFFIX
24eab124 1761 || (intel_syntax && i.suffix == INTEL_DWORD_MNEM_SUFFIX))
252b5132
RH
1762 {
1763 if (i.tm.opcode_modifier & FloatMF)
1764 i.tm.base_opcode ^= 4;
1765 }
252b5132
RH
1766 }
1767
3f4438ab 1768 if (i.tm.opcode_modifier & ImmExt)
252b5132 1769 {
3f4438ab
AM
1770 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1771 opcode suffix which is coded in the same place as an 8-bit
1772 immediate field would be. Here we fake an 8-bit immediate
1773 operand from the opcode suffix stored in tm.extension_opcode. */
252b5132
RH
1774
1775 expressionS *exp;
1776
1777 assert(i.imm_operands == 0 && i.operands <= 2);
1778
1779 exp = &im_expressions[i.imm_operands++];
1780 i.imms[i.operands] = exp;
1781 i.types[i.operands++] = Imm8;
1782 exp->X_op = O_constant;
1783 exp->X_add_number = i.tm.extension_opcode;
1784 i.tm.extension_opcode = None;
1785 }
1786
1787 /* For insns with operands there are more diddles to do to the opcode. */
1788 if (i.operands)
1789 {
24eab124 1790 /* Default segment register this instruction will use
252b5132
RH
1791 for memory accesses. 0 means unknown.
1792 This is only for optimizing out unnecessary segment overrides. */
1793 const seg_entry *default_seg = 0;
1794
1795 /* If we found a reverse match we must alter the opcode
1796 direction bit. found_reverse_match holds bits to change
1797 (different for int & float insns). */
1798
1799 i.tm.base_opcode ^= found_reverse_match;
1800
1801 /* The imul $imm, %reg instruction is converted into
1802 imul $imm, %reg, %reg, and the clr %reg instruction
1803 is converted into xor %reg, %reg. */
1804 if (i.tm.opcode_modifier & regKludge)
1805 {
1806 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
1807 /* Pretend we saw the extra register operand. */
1808 i.regs[first_reg_op+1] = i.regs[first_reg_op];
1809 i.reg_operands = 2;
1810 }
1811
1812 if (i.tm.opcode_modifier & ShortForm)
1813 {
1814 /* The register or float register operand is in operand 0 or 1. */
1815 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
1816 /* Register goes in low 3 bits of opcode. */
1817 i.tm.base_opcode |= i.regs[op]->reg_num;
1818 if ((i.tm.opcode_modifier & Ugh) != 0)
1819 {
1820 /* Warn about some common errors, but press on regardless.
1821 The first case can be generated by gcc (<= 2.8.1). */
1822 if (i.operands == 2)
1823 {
1824 /* reversed arguments on faddp, fsubp, etc. */
1825 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
1826 i.regs[1]->reg_name,
1827 i.regs[0]->reg_name);
1828 }
1829 else
1830 {
1831 /* extraneous `l' suffix on fp insn */
1832 as_warn (_("translating to `%s %%%s'"), i.tm.name,
1833 i.regs[0]->reg_name);
1834 }
1835 }
1836 }
1837 else if (i.tm.opcode_modifier & Modrm)
1838 {
1839 /* The opcode is completed (modulo i.tm.extension_opcode which
1840 must be put into the modrm byte).
1841 Now, we make the modrm & index base bytes based on all the
1842 info we've collected. */
1843
1844 /* i.reg_operands MUST be the number of real register operands;
1845 implicit registers do not count. */
1846 if (i.reg_operands == 2)
1847 {
1848 unsigned int source, dest;
1849 source = ((i.types[0]
3f4438ab
AM
1850 & (Reg | RegMMX | RegXMM
1851 | SReg2 | SReg3
1852 | Control | Debug | Test))
252b5132
RH
1853 ? 0 : 1);
1854 dest = source + 1;
1855
252b5132 1856 i.rm.mode = 3;
3f4438ab
AM
1857 /* One of the register operands will be encoded in the
1858 i.tm.reg field, the other in the combined i.tm.mode
1859 and i.tm.regmem fields. If no form of this
1860 instruction supports a memory destination operand,
1861 then we assume the source operand may sometimes be
1862 a memory operand and so we need to store the
1863 destination in the i.rm.reg field. */
1864 if ((i.tm.operand_types[dest] & AnyMem) == 0)
252b5132
RH
1865 {
1866 i.rm.reg = i.regs[dest]->reg_num;
1867 i.rm.regmem = i.regs[source]->reg_num;
1868 }
1869 else
1870 {
1871 i.rm.reg = i.regs[source]->reg_num;
1872 i.rm.regmem = i.regs[dest]->reg_num;
1873 }
1874 }
1875 else
1876 { /* if it's not 2 reg operands... */
1877 if (i.mem_operands)
1878 {
1879 unsigned int fake_zero_displacement = 0;
1880 unsigned int op = ((i.types[0] & AnyMem)
1881 ? 0
1882 : (i.types[1] & AnyMem) ? 1 : 2);
1883
1884 default_seg = &ds;
1885
1886 if (! i.base_reg)
1887 {
1888 i.rm.mode = 0;
1889 if (! i.disp_operands)
1890 fake_zero_displacement = 1;
1891 if (! i.index_reg)
1892 {
1893 /* Operand is just <disp> */
1894 if (flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0))
1895 {
1896 i.rm.regmem = NO_BASE_REGISTER_16;
1897 i.types[op] &= ~Disp;
1898 i.types[op] |= Disp16;
1899 }
1900 else
1901 {
1902 i.rm.regmem = NO_BASE_REGISTER;
1903 i.types[op] &= ~Disp;
1904 i.types[op] |= Disp32;
1905 }
1906 }
1907 else /* ! i.base_reg && i.index_reg */
1908 {
1909 i.sib.index = i.index_reg->reg_num;
1910 i.sib.base = NO_BASE_REGISTER;
1911 i.sib.scale = i.log2_scale_factor;
1912 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
1913 i.types[op] &= ~Disp;
1914 i.types[op] |= Disp32; /* Must be 32 bit */
1915 }
1916 }
1917 else if (i.base_reg->reg_type & Reg16)
1918 {
1919 switch (i.base_reg->reg_num)
1920 {
1921 case 3: /* (%bx) */
1922 if (! i.index_reg)
1923 i.rm.regmem = 7;
1924 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
1925 i.rm.regmem = i.index_reg->reg_num - 6;
1926 break;
1927 case 5: /* (%bp) */
1928 default_seg = &ss;
1929 if (! i.index_reg)
1930 {
1931 i.rm.regmem = 6;
1932 if ((i.types[op] & Disp) == 0)
1933 {
1934 /* fake (%bp) into 0(%bp) */
1935 i.types[op] |= Disp8;
1936 fake_zero_displacement = 1;
1937 }
1938 }
1939 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
1940 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
1941 break;
1942 default: /* (%si) -> 4 or (%di) -> 5 */
1943 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
1944 }
1945 i.rm.mode = mode_from_disp_size (i.types[op]);
1946 }
1947 else /* i.base_reg and 32 bit mode */
1948 {
1949 i.rm.regmem = i.base_reg->reg_num;
1950 i.sib.base = i.base_reg->reg_num;
1951 if (i.base_reg->reg_num == EBP_REG_NUM)
1952 {
1953 default_seg = &ss;
1954 if (i.disp_operands == 0)
1955 {
1956 fake_zero_displacement = 1;
1957 i.types[op] |= Disp8;
1958 }
1959 }
1960 else if (i.base_reg->reg_num == ESP_REG_NUM)
1961 {
1962 default_seg = &ss;
1963 }
1964 i.sib.scale = i.log2_scale_factor;
1965 if (! i.index_reg)
1966 {
1967 /* <disp>(%esp) becomes two byte modrm
1968 with no index register. We've already
1969 stored the code for esp in i.rm.regmem
1970 ie. ESCAPE_TO_TWO_BYTE_ADDRESSING. Any
1971 base register besides %esp will not use
1972 the extra modrm byte. */
1973 i.sib.index = NO_INDEX_REGISTER;
1974#if ! SCALE1_WHEN_NO_INDEX
1975 /* Another case where we force the second
1976 modrm byte. */
1977 if (i.log2_scale_factor)
1978 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
1979#endif
1980 }
1981 else
1982 {
1983 i.sib.index = i.index_reg->reg_num;
1984 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
1985 }
1986 i.rm.mode = mode_from_disp_size (i.types[op]);
1987 }
1988
1989 if (fake_zero_displacement)
1990 {
1991 /* Fakes a zero displacement assuming that i.types[op]
1992 holds the correct displacement size. */
b4cac588
AM
1993 expressionS *exp;
1994
252b5132
RH
1995 exp = &disp_expressions[i.disp_operands++];
1996 i.disps[op] = exp;
1997 exp->X_op = O_constant;
1998 exp->X_add_number = 0;
1999 exp->X_add_symbol = (symbolS *) 0;
2000 exp->X_op_symbol = (symbolS *) 0;
2001 }
2002 }
2003
2004 /* Fill in i.rm.reg or i.rm.regmem field with register
2005 operand (if any) based on i.tm.extension_opcode.
2006 Again, we must be careful to make sure that
2007 segment/control/debug/test/MMX registers are coded
2008 into the i.rm.reg field. */
2009 if (i.reg_operands)
2010 {
2011 unsigned int op =
2012 ((i.types[0]
3f4438ab
AM
2013 & (Reg | RegMMX | RegXMM
2014 | SReg2 | SReg3
2015 | Control | Debug | Test))
252b5132
RH
2016 ? 0
2017 : ((i.types[1]
3f4438ab
AM
2018 & (Reg | RegMMX | RegXMM
2019 | SReg2 | SReg3
2020 | Control | Debug | Test))
252b5132
RH
2021 ? 1
2022 : 2));
2023 /* If there is an extension opcode to put here, the
2024 register number must be put into the regmem field. */
2025 if (i.tm.extension_opcode != None)
2026 i.rm.regmem = i.regs[op]->reg_num;
2027 else
2028 i.rm.reg = i.regs[op]->reg_num;
2029
2030 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2
2031 we must set it to 3 to indicate this is a register
2032 operand in the regmem field. */
2033 if (!i.mem_operands)
2034 i.rm.mode = 3;
2035 }
2036
2037 /* Fill in i.rm.reg field with extension opcode (if any). */
2038 if (i.tm.extension_opcode != None)
2039 i.rm.reg = i.tm.extension_opcode;
2040 }
2041 }
2042 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2043 {
2044 if (i.tm.base_opcode == POP_SEG_SHORT && i.regs[0]->reg_num == 1)
2045 {
2046 as_bad (_("you can't `pop %%cs'"));
2047 return;
2048 }
2049 i.tm.base_opcode |= (i.regs[0]->reg_num << 3);
2050 }
2051 else if ((i.tm.base_opcode & ~(D|W)) == MOV_AX_DISP32)
2052 {
2053 default_seg = &ds;
2054 }
2055 else if ((i.tm.opcode_modifier & IsString) != 0)
2056 {
2057 /* For the string instructions that allow a segment override
2058 on one of their operands, the default segment is ds. */
2059 default_seg = &ds;
2060 }
2061
2062 /* If a segment was explicitly specified,
2063 and the specified segment is not the default,
2064 use an opcode prefix to select it.
2065 If we never figured out what the default segment is,
2066 then default_seg will be zero at this point,
2067 and the specified segment prefix will always be used. */
2068 if ((i.seg[0]) && (i.seg[0] != default_seg))
2069 {
2070 if (! add_prefix (i.seg[0]->seg_prefix))
2071 return;
2072 }
2073 }
2074 else if ((i.tm.opcode_modifier & Ugh) != 0)
2075 {
24eab124
AM
2076 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
2077 as_warn (_("translating to `%sp'"), i.tm.name);
252b5132
RH
2078 }
2079 }
2080
2081 /* Handle conversion of 'int $3' --> special int3 insn. */
2082 if (i.tm.base_opcode == INT_OPCODE && i.imms[0]->X_add_number == 3)
2083 {
2084 i.tm.base_opcode = INT3_OPCODE;
2085 i.imm_operands = 0;
2086 }
2087
2088 /* We are ready to output the insn. */
2089 {
2090 register char *p;
2091
2092 /* Output jumps. */
2093 if (i.tm.opcode_modifier & Jump)
2094 {
a217f122
AM
2095 int size;
2096 int code16;
2097 int prefix;
252b5132 2098
a217f122
AM
2099 code16 = 0;
2100 if (flag_16bit_code)
2101 code16 = CODE16;
2102
2103 prefix = 0;
2104 if (i.prefix[DATA_PREFIX])
252b5132 2105 {
a217f122 2106 prefix = 1;
252b5132 2107 i.prefixes -= 1;
a217f122 2108 code16 ^= CODE16;
252b5132 2109 }
252b5132 2110
a217f122
AM
2111 size = 4;
2112 if (code16)
2113 size = 2;
2114
2115 if (i.prefixes != 0 && !intel_syntax)
252b5132
RH
2116 as_warn (_("skipping prefixes on this instruction"));
2117
2118 if (i.disps[0]->X_op == O_constant)
2119 {
a217f122
AM
2120 long n = (long) i.disps[0]->X_add_number;
2121
252b5132
RH
2122 if (fits_in_signed_byte (n))
2123 {
2124 insn_size += 2;
2125 p = frag_more (2);
2126 p[0] = i.tm.base_opcode;
2127 p[1] = n;
2128 }
2129 else
2130 {
24eab124 2131 /* Use 16-bit jumps only for 16-bit code,
252b5132 2132 because text segments are limited to 64K anyway;
24eab124 2133 Use 32-bit jumps for 32-bit code, because they're faster,
252b5132 2134 and a 16-bit jump will clear the top 16 bits of %eip. */
24eab124 2135 if (code16 && !fits_in_signed_word (n))
252b5132
RH
2136 {
2137 as_bad (_("16-bit jump out of range"));
2138 return;
2139 }
2140
2141 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
2142 { /* pace */
2143 /* unconditional jump */
a217f122
AM
2144 insn_size += prefix + 1 + size;
2145 p = frag_more (prefix + 1 + size);
252b5132
RH
2146 if (prefix)
2147 *p++ = DATA_PREFIX_OPCODE;
2148 *p++ = (char) 0xe9;
a217f122 2149 md_number_to_chars (p, (valueT) n, size);
252b5132
RH
2150 }
2151 else
2152 {
2153 /* conditional jump */
a217f122
AM
2154 insn_size += prefix + 2 + size;
2155 p = frag_more (prefix + 2 + size);
252b5132
RH
2156 if (prefix)
2157 *p++ = DATA_PREFIX_OPCODE;
2158 *p++ = TWO_BYTE_OPCODE_ESCAPE;
2159 *p++ = i.tm.base_opcode + 0x10;
a217f122 2160 md_number_to_chars (p, (valueT) n, size);
252b5132
RH
2161 }
2162 }
2163 }
2164 else
2165 {
a217f122
AM
2166 /* It's a symbol; End frag & setup for relax.
2167 Make sure there is enough room in this frag for the largest
2168 instruction we may generate in md_convert_frag. This is 2
2169 bytes for the opcode and room for the prefix and largest
2170 displacement. */
2171 frag_grow (prefix + 2 + size);
2172 insn_size += prefix + 1;
2173 /* Prefix and 1 opcode byte go in fr_fix. */
2174 p = frag_more (prefix + 1);
252b5132
RH
2175 if (prefix)
2176 *p++ = DATA_PREFIX_OPCODE;
2177 *p = i.tm.base_opcode;
a217f122 2178 /* 1 possible extra opcode + displacement go in fr_var */
252b5132 2179 frag_var (rs_machine_dependent,
a217f122 2180 1 + size,
252b5132
RH
2181 1,
2182 ((unsigned char) *p == JUMP_PC_RELATIVE
2183 ? ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL) | code16
2184 : ENCODE_RELAX_STATE (COND_JUMP, SMALL) | code16),
2185 i.disps[0]->X_add_symbol,
a217f122
AM
2186 i.disps[0]->X_add_number,
2187 p);
252b5132
RH
2188 }
2189 }
2190 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
2191 {
a217f122 2192 int size;
252b5132 2193
a217f122 2194 if (i.tm.opcode_modifier & JumpByte)
252b5132 2195 {
a217f122
AM
2196 /* This is a loop or jecxz type instruction. */
2197 size = 1;
252b5132
RH
2198 if (i.prefix[ADDR_PREFIX])
2199 {
2200 insn_size += 1;
2201 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
2202 i.prefixes -= 1;
2203 }
2204 }
2205 else
2206 {
a217f122
AM
2207 int code16;
2208
2209 code16 = 0;
2210 if (flag_16bit_code)
2211 code16 = CODE16;
252b5132
RH
2212
2213 if (i.prefix[DATA_PREFIX])
2214 {
2215 insn_size += 1;
2216 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
2217 i.prefixes -= 1;
a217f122 2218 code16 ^= CODE16;
252b5132 2219 }
252b5132 2220
a217f122 2221 size = 4;
252b5132
RH
2222 if (code16)
2223 size = 2;
2224 }
2225
a217f122 2226 if (i.prefixes != 0 && !intel_syntax)
252b5132
RH
2227 as_warn (_("skipping prefixes on this instruction"));
2228
2229 if (fits_in_unsigned_byte (i.tm.base_opcode))
2230 {
2231 insn_size += 1 + size;
2232 p = frag_more (1 + size);
2233 }
2234 else
2235 {
a217f122
AM
2236 /* opcode can be at most two bytes */
2237 insn_size += 2 + size;
252b5132
RH
2238 p = frag_more (2 + size);
2239 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2240 }
2241 *p++ = i.tm.base_opcode & 0xff;
2242
2243 if (i.disps[0]->X_op == O_constant)
2244 {
a217f122
AM
2245 long n = (long) i.disps[0]->X_add_number;
2246
252b5132
RH
2247 if (size == 1 && !fits_in_signed_byte (n))
2248 {
2249 as_bad (_("`%s' only takes byte displacement; %ld shortened to %d"),
2250 i.tm.name, n, *p);
2251 }
2252 else if (size == 2 && !fits_in_signed_word (n))
2253 {
2254 as_bad (_("16-bit jump out of range"));
2255 return;
2256 }
2257 md_number_to_chars (p, (valueT) n, size);
2258 }
2259 else
2260 {
2261 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2262 i.disps[0], 1, reloc (size, 1, i.disp_reloc[0]));
2263
2264 }
2265 }
2266 else if (i.tm.opcode_modifier & JumpInterSegment)
2267 {
2268 int size;
2269 int reloc_type;
a217f122
AM
2270 int prefix;
2271 int code16;
252b5132 2272
a217f122
AM
2273 code16 = 0;
2274 if (flag_16bit_code)
2275 code16 = CODE16;
2276
2277 prefix = 0;
2278 if (i.prefix[DATA_PREFIX])
252b5132 2279 {
a217f122 2280 prefix = 1;
252b5132 2281 i.prefixes -= 1;
a217f122 2282 code16 ^= CODE16;
252b5132 2283 }
252b5132
RH
2284
2285 size = 4;
2286 reloc_type = BFD_RELOC_32;
2287 if (code16)
2288 {
2289 size = 2;
2290 reloc_type = BFD_RELOC_16;
2291 }
2292
a217f122 2293 if (i.prefixes != 0 && !intel_syntax)
252b5132
RH
2294 as_warn (_("skipping prefixes on this instruction"));
2295
2296 insn_size += prefix + 1 + 2 + size; /* 1 opcode; 2 segment; offset */
2297 p = frag_more (prefix + 1 + 2 + size);
2298 if (prefix)
2299 *p++ = DATA_PREFIX_OPCODE;
2300 *p++ = i.tm.base_opcode;
2301 if (i.imms[1]->X_op == O_constant)
2302 {
2303 long n = (long) i.imms[1]->X_add_number;
2304
2305 if (size == 2 && !fits_in_unsigned_word (n))
2306 {
2307 as_bad (_("16-bit jump out of range"));
2308 return;
2309 }
2310 md_number_to_chars (p, (valueT) n, size);
2311 }
2312 else
2313 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2314 i.imms[1], 0, reloc_type);
2315 if (i.imms[0]->X_op != O_constant)
2316 as_bad (_("can't handle non absolute segment in `%s'"),
2317 i.tm.name);
2318 md_number_to_chars (p + size, (valueT) i.imms[0]->X_add_number, 2);
2319 }
2320 else
2321 {
2322 /* Output normal instructions here. */
2323 unsigned char *q;
2324
2325 /* The prefix bytes. */
2326 for (q = i.prefix;
2327 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
2328 q++)
2329 {
2330 if (*q)
2331 {
2332 insn_size += 1;
2333 p = frag_more (1);
2334 md_number_to_chars (p, (valueT) *q, 1);
2335 }
2336 }
2337
2338 /* Now the opcode; be careful about word order here! */
2339 if (fits_in_unsigned_byte (i.tm.base_opcode))
2340 {
2341 insn_size += 1;
2342 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
2343 }
2344 else if (fits_in_unsigned_word (i.tm.base_opcode))
2345 {
2346 insn_size += 2;
2347 p = frag_more (2);
2348 /* put out high byte first: can't use md_number_to_chars! */
2349 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2350 *p = i.tm.base_opcode & 0xff;
2351 }
2352 else
2353 { /* opcode is either 3 or 4 bytes */
2354 if (i.tm.base_opcode & 0xff000000)
2355 {
2356 insn_size += 4;
2357 p = frag_more (4);
2358 *p++ = (i.tm.base_opcode >> 24) & 0xff;
2359 }
2360 else
2361 {
2362 insn_size += 3;
2363 p = frag_more (3);
2364 }
2365 *p++ = (i.tm.base_opcode >> 16) & 0xff;
2366 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2367 *p = (i.tm.base_opcode) & 0xff;
2368 }
2369
2370 /* Now the modrm byte and sib byte (if present). */
2371 if (i.tm.opcode_modifier & Modrm)
2372 {
2373 insn_size += 1;
2374 p = frag_more (1);
2375 md_number_to_chars (p,
2376 (valueT) (i.rm.regmem << 0
2377 | i.rm.reg << 3
2378 | i.rm.mode << 6),
2379 1);
2380 /* If i.rm.regmem == ESP (4)
2381 && i.rm.mode != (Register mode)
2382 && not 16 bit
2383 ==> need second modrm byte. */
2384 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
2385 && i.rm.mode != 3
2386 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
2387 {
2388 insn_size += 1;
2389 p = frag_more (1);
2390 md_number_to_chars (p,
2391 (valueT) (i.sib.base << 0
2392 | i.sib.index << 3
2393 | i.sib.scale << 6),
2394 1);
2395 }
2396 }
2397
2398 if (i.disp_operands)
2399 {
2400 register unsigned int n;
2401
2402 for (n = 0; n < i.operands; n++)
2403 {
2404 if (i.disps[n])
2405 {
2406 if (i.disps[n]->X_op == O_constant)
2407 {
b4cac588
AM
2408 int size = 4;
2409 long val = (long) i.disps[n]->X_add_number;
2410
2411 if (i.types[n] & (Disp8 | Disp16))
252b5132 2412 {
b4cac588
AM
2413 long mask;
2414
2415 size = 2;
2416 mask = ~ (long) 0xffff;
2417 if (i.types[n] & Disp8)
2418 {
2419 size = 1;
2420 mask = ~ (long) 0xff;
2421 }
2422
2423 if ((val & mask) != 0 && (val & mask) != mask)
24eab124
AM
2424 as_warn (_("%ld shortened to %ld"),
2425 val, val & ~mask);
252b5132 2426 }
b4cac588
AM
2427 insn_size += size;
2428 p = frag_more (size);
2429 md_number_to_chars (p, (valueT) val, size);
252b5132
RH
2430 }
2431 else if (i.types[n] & Disp32)
2432 {
2433 insn_size += 4;
2434 p = frag_more (4);
2435 fix_new_exp (frag_now, p - frag_now->fr_literal, 4,
2436 i.disps[n], 0,
2437 TC_RELOC (i.disp_reloc[n], BFD_RELOC_32));
2438 }
2439 else
2440 { /* must be Disp16 */
2441 insn_size += 2;
2442 p = frag_more (2);
2443 fix_new_exp (frag_now, p - frag_now->fr_literal, 2,
2444 i.disps[n], 0,
2445 TC_RELOC (i.disp_reloc[n], BFD_RELOC_16));
2446 }
2447 }
2448 }
2449 } /* end displacement output */
2450
2451 /* output immediate */
2452 if (i.imm_operands)
2453 {
2454 register unsigned int n;
2455
2456 for (n = 0; n < i.operands; n++)
2457 {
2458 if (i.imms[n])
2459 {
2460 if (i.imms[n]->X_op == O_constant)
2461 {
b4cac588
AM
2462 int size = 4;
2463 long val = (long) i.imms[n]->X_add_number;
2464
2465 if (i.types[n] & (Imm8 | Imm8S | Imm16))
252b5132 2466 {
b4cac588
AM
2467 long mask;
2468
2469 size = 2;
2470 mask = ~ (long) 0xffff;
2471 if (i.types[n] & (Imm8 | Imm8S))
2472 {
2473 size = 1;
2474 mask = ~ (long) 0xff;
2475 }
2476 if ((val & mask) != 0 && (val & mask) != mask)
24eab124
AM
2477 as_warn (_("%ld shortened to %ld"),
2478 val, val & ~mask);
252b5132 2479 }
b4cac588
AM
2480 insn_size += size;
2481 p = frag_more (size);
2482 md_number_to_chars (p, (valueT) val, size);
252b5132
RH
2483 }
2484 else
2485 { /* not absolute_section */
2486 /* Need a 32-bit fixup (don't support 8bit
2487 non-absolute ims). Try to support other
2488 sizes ... */
2489 int r_type;
2490 int size;
2491 int pcrel = 0;
2492
2493 if (i.types[n] & (Imm8 | Imm8S))
2494 size = 1;
2495 else if (i.types[n] & Imm16)
2496 size = 2;
2497 else
2498 size = 4;
2499 insn_size += size;
2500 p = frag_more (size);
2501 r_type = reloc (size, 0, i.disp_reloc[0]);
2502#ifdef BFD_ASSEMBLER
2503 if (r_type == BFD_RELOC_32
2504 && GOT_symbol
2505 && GOT_symbol == i.imms[n]->X_add_symbol
2506 && (i.imms[n]->X_op == O_symbol
2507 || (i.imms[n]->X_op == O_add
49309057
ILT
2508 && ((symbol_get_value_expression
2509 (i.imms[n]->X_op_symbol)->X_op)
252b5132
RH
2510 == O_subtract))))
2511 {
2512 r_type = BFD_RELOC_386_GOTPC;
2513 i.imms[n]->X_add_number += 3;
2514 }
2515#endif
2516 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2517 i.imms[n], pcrel, r_type);
2518 }
2519 }
2520 }
2521 } /* end immediate output */
2522 }
2523
2524#ifdef DEBUG386
2525 if (flag_debug)
2526 {
2527 pi (line, &i);
2528 }
2529#endif /* DEBUG386 */
2530 }
2531}
2532\f
252b5132
RH
2533static int i386_immediate PARAMS ((char *));
2534
2535static int
2536i386_immediate (imm_start)
2537 char *imm_start;
2538{
2539 char *save_input_line_pointer;
2540 segT exp_seg = 0;
2541 expressionS * exp;
2542
2543 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
2544 {
2545 as_bad (_("Only 1 or 2 immediate operands are allowed"));
2546 return 0;
2547 }
2548
2549 exp = &im_expressions[i.imm_operands++];
2550 i.imms[this_operand] = exp;
2551
2552 if (is_space_char (*imm_start))
2553 ++imm_start;
2554
2555 save_input_line_pointer = input_line_pointer;
2556 input_line_pointer = imm_start;
2557
2558#ifndef LEX_AT
24eab124
AM
2559 {
2560 /*
2561 * We can have operands of the form
2562 * <symbol>@GOTOFF+<nnn>
2563 * Take the easy way out here and copy everything
2564 * into a temporary buffer...
2565 */
2566 register char *cp;
2567
2568 cp = strchr (input_line_pointer, '@');
2569 if (cp != NULL)
2570 {
2571 char *tmpbuf;
2572 int len = 0;
2573 int first;
2574
2575 /* GOT relocations are not supported in 16 bit mode */
2576 if (flag_16bit_code)
2577 as_bad (_("GOT relocations not supported in 16 bit mode"));
2578
2579 if (GOT_symbol == NULL)
2580 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
2581
2582 if (strncmp (cp + 1, "PLT", 3) == 0)
2583 {
2584 i.disp_reloc[this_operand] = BFD_RELOC_386_PLT32;
2585 len = 3;
2586 }
2587 else if (strncmp (cp + 1, "GOTOFF", 6) == 0)
2588 {
2589 i.disp_reloc[this_operand] = BFD_RELOC_386_GOTOFF;
2590 len = 6;
2591 }
2592 else if (strncmp (cp + 1, "GOT", 3) == 0)
2593 {
2594 i.disp_reloc[this_operand] = BFD_RELOC_386_GOT32;
2595 len = 3;
2596 }
2597 else
2598 as_bad (_("Bad reloc specifier in expression"));
2599
2600 /* Replace the relocation token with ' ', so that errors like
2601 foo@GOTOFF1 will be detected. */
2602 first = cp - input_line_pointer;
2603 tmpbuf = (char *) alloca (strlen(input_line_pointer));
2604 memcpy (tmpbuf, input_line_pointer, first);
2605 tmpbuf[first] = ' ';
2606 strcpy (tmpbuf + first + 1, cp + 1 + len);
2607 input_line_pointer = tmpbuf;
2608 }
2609 }
252b5132
RH
2610#endif
2611
2612 exp_seg = expression (exp);
2613
83183c0c 2614 SKIP_WHITESPACE ();
252b5132
RH
2615 if (*input_line_pointer)
2616 as_bad (_("Ignoring junk `%s' after expression"), input_line_pointer);
2617
2618 input_line_pointer = save_input_line_pointer;
2619
2620 if (exp->X_op == O_absent)
2621 {
2622 /* missing or bad expr becomes absolute 0 */
2623 as_bad (_("Missing or invalid immediate expression `%s' taken as 0"),
24eab124 2624 imm_start);
252b5132
RH
2625 exp->X_op = O_constant;
2626 exp->X_add_number = 0;
2627 exp->X_add_symbol = (symbolS *) 0;
2628 exp->X_op_symbol = (symbolS *) 0;
2629 i.types[this_operand] |= Imm;
2630 }
2631 else if (exp->X_op == O_constant)
2632 {
b4cac588
AM
2633 int bigimm = Imm32;
2634 if (flag_16bit_code ^ (i.prefix[DATA_PREFIX] != 0))
2635 bigimm = Imm16;
2636
252b5132 2637 i.types[this_operand] |=
b4cac588
AM
2638 (bigimm | smallest_imm_type ((long) exp->X_add_number));
2639
252b5132
RH
2640 /* If a suffix is given, this operand may be shortended. */
2641 switch (i.suffix)
24eab124
AM
2642 {
2643 case WORD_MNEM_SUFFIX:
2644 i.types[this_operand] |= Imm16;
2645 break;
2646 case BYTE_MNEM_SUFFIX:
2647 i.types[this_operand] |= Imm16 | Imm8 | Imm8S;
2648 break;
2649 }
252b5132
RH
2650 }
2651#ifdef OBJ_AOUT
2652 else if (exp_seg != text_section
24eab124
AM
2653 && exp_seg != data_section
2654 && exp_seg != bss_section
2655 && exp_seg != undefined_section
252b5132 2656#ifdef BFD_ASSEMBLER
24eab124 2657 && !bfd_is_com_section (exp_seg)
252b5132 2658#endif
24eab124 2659 )
252b5132 2660 {
252b5132
RH
2661 as_bad (_("Unimplemented segment type %d in operand"), exp_seg);
2662 return 0;
2663 }
2664#endif
2665 else
2666 {
2667 /* This is an address. The size of the address will be
24eab124
AM
2668 determined later, depending on destination register,
2669 suffix, or the default for the section. We exclude
2670 Imm8S here so that `push $foo' and other instructions
2671 with an Imm8S form will use Imm16 or Imm32. */
252b5132
RH
2672 i.types[this_operand] |= (Imm8 | Imm16 | Imm32);
2673 }
2674
2675 return 1;
2676}
2677
2678static int i386_scale PARAMS ((char *));
2679
2680static int
2681i386_scale (scale)
2682 char *scale;
2683{
2684 if (!isdigit (*scale))
2685 goto bad_scale;
2686
2687 switch (*scale)
2688 {
2689 case '0':
2690 case '1':
2691 i.log2_scale_factor = 0;
2692 break;
2693 case '2':
2694 i.log2_scale_factor = 1;
2695 break;
2696 case '4':
2697 i.log2_scale_factor = 2;
2698 break;
2699 case '8':
2700 i.log2_scale_factor = 3;
2701 break;
2702 default:
2703 bad_scale:
2704 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
24eab124 2705 scale);
252b5132
RH
2706 return 0;
2707 }
2708 if (i.log2_scale_factor != 0 && ! i.index_reg)
2709 {
2710 as_warn (_("scale factor of %d without an index register"),
24eab124 2711 1 << i.log2_scale_factor);
252b5132
RH
2712#if SCALE1_WHEN_NO_INDEX
2713 i.log2_scale_factor = 0;
2714#endif
2715 }
2716 return 1;
2717}
2718
2719static int i386_displacement PARAMS ((char *, char *));
2720
2721static int
2722i386_displacement (disp_start, disp_end)
2723 char *disp_start;
2724 char *disp_end;
2725{
2726 register expressionS *exp;
2727 segT exp_seg = 0;
2728 char *save_input_line_pointer;
2729 int bigdisp = Disp32;
2730
252b5132
RH
2731 if (flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0))
2732 bigdisp = Disp16;
2733 i.types[this_operand] |= bigdisp;
2734
2735 exp = &disp_expressions[i.disp_operands];
2736 i.disps[this_operand] = exp;
2737 i.disp_reloc[this_operand] = NO_RELOC;
2738 i.disp_operands++;
2739 save_input_line_pointer = input_line_pointer;
2740 input_line_pointer = disp_start;
2741 END_STRING_AND_SAVE (disp_end);
2742
2743#ifndef GCC_ASM_O_HACK
2744#define GCC_ASM_O_HACK 0
2745#endif
2746#if GCC_ASM_O_HACK
2747 END_STRING_AND_SAVE (disp_end + 1);
2748 if ((i.types[this_operand] & BaseIndex) != 0
24eab124 2749 && displacement_string_end[-1] == '+')
252b5132
RH
2750 {
2751 /* This hack is to avoid a warning when using the "o"
24eab124
AM
2752 constraint within gcc asm statements.
2753 For instance:
2754
2755 #define _set_tssldt_desc(n,addr,limit,type) \
2756 __asm__ __volatile__ ( \
2757 "movw %w2,%0\n\t" \
2758 "movw %w1,2+%0\n\t" \
2759 "rorl $16,%1\n\t" \
2760 "movb %b1,4+%0\n\t" \
2761 "movb %4,5+%0\n\t" \
2762 "movb $0,6+%0\n\t" \
2763 "movb %h1,7+%0\n\t" \
2764 "rorl $16,%1" \
2765 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
2766
2767 This works great except that the output assembler ends
2768 up looking a bit weird if it turns out that there is
2769 no offset. You end up producing code that looks like:
2770
2771 #APP
2772 movw $235,(%eax)
2773 movw %dx,2+(%eax)
2774 rorl $16,%edx
2775 movb %dl,4+(%eax)
2776 movb $137,5+(%eax)
2777 movb $0,6+(%eax)
2778 movb %dh,7+(%eax)
2779 rorl $16,%edx
2780 #NO_APP
2781
2782 So here we provide the missing zero.
2783 */
2784
2785 *displacement_string_end = '0';
252b5132
RH
2786 }
2787#endif
2788#ifndef LEX_AT
24eab124
AM
2789 {
2790 /*
2791 * We can have operands of the form
2792 * <symbol>@GOTOFF+<nnn>
2793 * Take the easy way out here and copy everything
2794 * into a temporary buffer...
2795 */
2796 register char *cp;
2797
2798 cp = strchr (input_line_pointer, '@');
2799 if (cp != NULL)
2800 {
2801 char *tmpbuf;
2802 int len = 0;
2803 int first;
2804
2805 /* GOT relocations are not supported in 16 bit mode */
2806 if (flag_16bit_code)
2807 as_bad (_("GOT relocations not supported in 16 bit mode"));
2808
2809 if (GOT_symbol == NULL)
2810 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
2811
2812 if (strncmp (cp + 1, "PLT", 3) == 0)
2813 {
2814 i.disp_reloc[this_operand] = BFD_RELOC_386_PLT32;
2815 len = 3;
2816 }
2817 else if (strncmp (cp + 1, "GOTOFF", 6) == 0)
2818 {
2819 i.disp_reloc[this_operand] = BFD_RELOC_386_GOTOFF;
2820 len = 6;
2821 }
2822 else if (strncmp (cp + 1, "GOT", 3) == 0)
2823 {
2824 i.disp_reloc[this_operand] = BFD_RELOC_386_GOT32;
2825 len = 3;
2826 }
2827 else
2828 as_bad (_("Bad reloc specifier in expression"));
2829
2830 /* Replace the relocation token with ' ', so that errors like
2831 foo@GOTOFF1 will be detected. */
2832 first = cp - input_line_pointer;
2833 tmpbuf = (char *) alloca (strlen(input_line_pointer));
2834 memcpy (tmpbuf, input_line_pointer, first);
2835 tmpbuf[first] = ' ';
2836 strcpy (tmpbuf + first + 1, cp + 1 + len);
2837 input_line_pointer = tmpbuf;
2838 }
2839 }
252b5132
RH
2840#endif
2841
24eab124 2842 exp_seg = expression (exp);
252b5132
RH
2843
2844#ifdef BFD_ASSEMBLER
24eab124
AM
2845 /* We do this to make sure that the section symbol is in
2846 the symbol table. We will ultimately change the relocation
2847 to be relative to the beginning of the section */
2848 if (i.disp_reloc[this_operand] == BFD_RELOC_386_GOTOFF)
2849 {
2850 if (S_IS_LOCAL(exp->X_add_symbol)
2851 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
2852 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
2853 assert (exp->X_op == O_symbol);
2854 exp->X_op = O_subtract;
2855 exp->X_op_symbol = GOT_symbol;
2856 i.disp_reloc[this_operand] = BFD_RELOC_32;
2857 }
252b5132
RH
2858#endif
2859
24eab124
AM
2860 SKIP_WHITESPACE ();
2861 if (*input_line_pointer)
2862 as_bad (_("Ignoring junk `%s' after expression"),
2863 input_line_pointer);
252b5132 2864#if GCC_ASM_O_HACK
24eab124 2865 RESTORE_END_STRING (disp_end + 1);
252b5132 2866#endif
24eab124
AM
2867 RESTORE_END_STRING (disp_end);
2868 input_line_pointer = save_input_line_pointer;
2869
2870 if (exp->X_op == O_constant)
2871 {
2872 if (fits_in_signed_byte (exp->X_add_number))
2873 i.types[this_operand] |= Disp8;
2874 }
252b5132 2875#ifdef OBJ_AOUT
24eab124
AM
2876 else if (exp_seg != text_section
2877 && exp_seg != data_section
2878 && exp_seg != bss_section
2879 && exp_seg != undefined_section)
2880 {
2881 as_bad (_ ("Unimplemented segment type %d in operand"), exp_seg);
2882 return 0;
2883 }
252b5132
RH
2884#endif
2885 return 1;
2886}
2887
2888static int i386_operand_modifier PARAMS ((char **, int));
2889
2890static int
2891i386_operand_modifier (op_string, got_a_float)
2892 char **op_string;
2893 int got_a_float;
2894{
24eab124
AM
2895 if (!strncasecmp (*op_string, "BYTE PTR", 8))
2896 {
2897 i.suffix = BYTE_MNEM_SUFFIX;
2898 *op_string += 8;
2899 return BYTE_PTR;
252b5132 2900
24eab124
AM
2901 }
2902 else if (!strncasecmp (*op_string, "WORD PTR", 8))
2903 {
2904 i.suffix = WORD_MNEM_SUFFIX;
2905 *op_string += 8;
2906 return WORD_PTR;
2907 }
252b5132 2908
24eab124
AM
2909 else if (!strncasecmp (*op_string, "DWORD PTR", 9))
2910 {
2911 if (got_a_float)
2912 i.suffix = SHORT_MNEM_SUFFIX;
2913 else
2914 i.suffix = DWORD_MNEM_SUFFIX;
2915 *op_string += 9;
2916 return DWORD_PTR;
2917 }
252b5132 2918
24eab124
AM
2919 else if (!strncasecmp (*op_string, "QWORD PTR", 9))
2920 {
2921 i.suffix = INTEL_DWORD_MNEM_SUFFIX;
2922 *op_string += 9;
2923 return QWORD_PTR;
2924 }
252b5132 2925
24eab124
AM
2926 else if (!strncasecmp (*op_string, "XWORD PTR", 9))
2927 {
2928 i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
2929 *op_string += 9;
2930 return XWORD_PTR;
2931 }
252b5132 2932
24eab124
AM
2933 else if (!strncasecmp (*op_string, "SHORT", 5))
2934 {
2935 *op_string += 5;
2936 return SHORT;
2937 }
252b5132 2938
24eab124
AM
2939 else if (!strncasecmp (*op_string, "OFFSET FLAT:", 12))
2940 {
2941 *op_string += 12;
2942 return OFFSET_FLAT;
2943 }
252b5132 2944
24eab124
AM
2945 else if (!strncasecmp (*op_string, "FLAT", 4))
2946 {
2947 *op_string += 4;
2948 return FLAT;
2949 }
252b5132 2950
24eab124 2951 else return NONE_FOUND;
c3332e24 2952}
252b5132
RH
2953
2954static char * build_displacement_string PARAMS ((int, char *));
2955
2956static char *
2957build_displacement_string (initial_disp, op_string)
2958 int initial_disp;
2959 char *op_string;
2960{
2961 char *temp_string = (char *) malloc (strlen (op_string) + 1);
2962 char *end_of_operand_string;
2963 char *tc;
2964 char *temp_disp;
2965
2966 temp_string[0] = '\0';
2967 tc = end_of_operand_string = strchr (op_string, '[');
2968 if ( initial_disp && !end_of_operand_string)
2969 {
2970 strcpy (temp_string, op_string);
2971 return (temp_string);
2972 }
2973
2974 /* Build the whole displacement string */
2975 if (initial_disp)
2976 {
2977 strncpy (temp_string, op_string, end_of_operand_string - op_string);
2978 temp_string[end_of_operand_string - op_string] = '\0';
2979 temp_disp = tc;
2980 }
c3332e24 2981 else
252b5132
RH
2982 temp_disp = op_string;
2983
2984 while (*temp_disp != '\0')
2985 {
af6bdddf 2986 char *end_op;
252b5132
RH
2987 int add_minus = (*temp_disp == '-');
2988
2989 if (*temp_disp == '+' || *temp_disp == '-' || *temp_disp == '[')
24eab124 2990 temp_disp++;
252b5132
RH
2991
2992 if (is_space_char (*temp_disp))
24eab124 2993 temp_disp++;
252b5132
RH
2994
2995 /* Don't consider registers */
af6bdddf
AM
2996 if ( !((*temp_disp == REGISTER_PREFIX || allow_naked_reg)
2997 && parse_register (temp_disp, &end_op)) )
24eab124
AM
2998 {
2999 char *string_start = temp_disp;
3000
3001 while (*temp_disp != ']'
3002 && *temp_disp != '+'
3003 && *temp_disp != '-'
3004 && *temp_disp != '*')
3005 ++temp_disp;
3006
3007 if (add_minus)
3008 strcat (temp_string, "-");
3009 else
3010 strcat (temp_string, "+");
3011
3012 strncat (temp_string, string_start, temp_disp - string_start);
3013 if (*temp_disp == '+' || *temp_disp == '-')
3014 --temp_disp;
3015 }
252b5132
RH
3016
3017 while (*temp_disp != '\0'
24eab124
AM
3018 && *temp_disp != '+'
3019 && *temp_disp != '-')
3020 ++temp_disp;
252b5132
RH
3021 }
3022
3023 return temp_string;
3024}
3025
3026static int i386_parse_seg PARAMS ((char *));
3027
3028static int
3029i386_parse_seg (op_string)
3030 char *op_string;
3031{
3032 if (is_space_char (*op_string))
3033 ++op_string;
3034
3035 /* Should be one of es, cs, ss, ds fs or gs */
3036 switch (*op_string++)
3037 {
3038 case 'e':
3039 i.seg[i.mem_operands] = &es;
3040 break;
3041 case 'c':
3042 i.seg[i.mem_operands] = &cs;
3043 break;
3044 case 's':
3045 i.seg[i.mem_operands] = &ss;
3046 break;
3047 case 'd':
3048 i.seg[i.mem_operands] = &ds;
3049 break;
3050 case 'f':
3051 i.seg[i.mem_operands] = &fs;
3052 break;
3053 case 'g':
3054 i.seg[i.mem_operands] = &gs;
3055 break;
3056 default:
3057 as_bad (_("bad segment name `%s'"), op_string);
3058 return 0;
3059 }
3060
3061 if (*op_string++ != 's')
3062 {
24eab124
AM
3063 as_bad (_("bad segment name `%s'"), op_string);
3064 return 0;
252b5132
RH
3065 }
3066
3067 if (is_space_char (*op_string))
3068 ++op_string;
3069
3070 if (*op_string != ':')
3071 {
24eab124
AM
3072 as_bad (_("bad segment name `%s'"), op_string);
3073 return 0;
252b5132
RH
3074 }
3075
c3332e24
AM
3076 return 1;
3077
252b5132
RH
3078}
3079
eecb386c 3080static int i386_index_check PARAMS((const char *));
252b5132 3081
eecb386c
AM
3082/* Make sure the memory operand we've been dealt is valid.
3083 Returns 1 on success, 0 on a failure.
3084*/
252b5132 3085static int
eecb386c
AM
3086i386_index_check (operand_string)
3087 const char *operand_string;
252b5132 3088{
24eab124 3089#if INFER_ADDR_PREFIX
eecb386c
AM
3090 int fudged = 0;
3091
24eab124
AM
3092 tryprefix:
3093#endif
3094 if (flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0) ?
3095 /* 16 bit mode checks */
3096 ((i.base_reg
3097 && ((i.base_reg->reg_type & (Reg16|BaseIndex))
3098 != (Reg16|BaseIndex)))
3099 || (i.index_reg
3100 && (((i.index_reg->reg_type & (Reg16|BaseIndex))
3101 != (Reg16|BaseIndex))
3102 || ! (i.base_reg
3103 && i.base_reg->reg_num < 6
3104 && i.index_reg->reg_num >= 6
3105 && i.log2_scale_factor == 0)))) :
3106 /* 32 bit mode checks */
3107 ((i.base_reg
3108 && (i.base_reg->reg_type & Reg32) == 0)
3109 || (i.index_reg
3110 && ((i.index_reg->reg_type & (Reg32|BaseIndex))
3111 != (Reg32|BaseIndex)))))
3112 {
3113#if INFER_ADDR_PREFIX
eecb386c 3114 if (i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
24eab124
AM
3115 {
3116 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
3117 i.prefixes += 1;
b23bac36
AM
3118 /* Change the size of any displacement too. At most one of
3119 Disp16 or Disp32 is set.
3120 FIXME. There doesn't seem to be any real need for separate
3121 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
3122 Removing them would probably clean up the code quite a lot.
3123 */
3124 if (i.types[this_operand] & (Disp16|Disp32))
3125 i.types[this_operand] ^= (Disp16|Disp32);
eecb386c 3126 fudged = 1;
24eab124
AM
3127 goto tryprefix;
3128 }
24eab124 3129#endif
eecb386c
AM
3130 if (fudged)
3131 as_bad (_("`%s' is not a valid base/index expression"),
3132 operand_string);
3133 else
3134 as_bad (_("`%s' is not a valid %s bit base/index expression"),
3135 operand_string,
3136 flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0) ? "16" : "32");
3137 return 0;
24eab124
AM
3138 }
3139 return 1;
3140}
252b5132 3141
24eab124
AM
3142static int i386_intel_memory_operand PARAMS ((char *));
3143
3144static int
3145i386_intel_memory_operand (operand_string)
3146 char *operand_string;
3147{
3148 char *op_string = operand_string;
252b5132
RH
3149 char *end_of_operand_string;
3150
24eab124
AM
3151 if ((i.mem_operands == 1
3152 && (current_templates->start->opcode_modifier & IsString) == 0)
3153 || i.mem_operands == 2)
252b5132 3154 {
24eab124
AM
3155 as_bad (_("too many memory references for `%s'"),
3156 current_templates->start->name);
3157 return 0;
252b5132
RH
3158 }
3159
3160 /* Look for displacement preceding open bracket */
3161 if (*op_string != '[')
3162 {
3163 char *end_seg;
3164 char *temp_string;
3165
3166 end_seg = strchr (op_string, ':');
3167 if (end_seg)
24eab124
AM
3168 {
3169 if (!i386_parse_seg (op_string))
3170 return 0;
3171 op_string = end_seg + 1;
3172 }
252b5132
RH
3173
3174 temp_string = build_displacement_string (true, op_string);
24eab124
AM
3175
3176 if (i.disp_operands == 0 &&
3177 !i386_displacement (temp_string, temp_string + strlen (temp_string)))
3178 return 0;
252b5132
RH
3179
3180 end_of_operand_string = strchr (op_string, '[');
3181 if (!end_of_operand_string)
24eab124 3182 end_of_operand_string = op_string + strlen (op_string);
252b5132
RH
3183
3184 if (is_space_char (*end_of_operand_string))
24eab124 3185 --end_of_operand_string;
252b5132
RH
3186
3187 op_string = end_of_operand_string;
24eab124 3188 }
252b5132
RH
3189
3190 if (*op_string == '[')
3191 {
3192 ++op_string;
3193
3194 /* Pick off each component and figure out where it belongs */
3195
3196 end_of_operand_string = op_string;
3197
3198 while (*op_string != ']')
24eab124 3199 {
af6bdddf
AM
3200 const reg_entry *temp_reg;
3201 char *end_op;
3202 char *temp_string;
24eab124
AM
3203
3204 while (*end_of_operand_string != '+'
3205 && *end_of_operand_string != '-'
3206 && *end_of_operand_string != '*'
3207 && *end_of_operand_string != ']')
3208 end_of_operand_string++;
3209
af6bdddf
AM
3210 temp_string = op_string;
3211 if (*temp_string == '+')
24eab124 3212 {
af6bdddf 3213 ++temp_string;
24eab124
AM
3214 if (is_space_char (*temp_string))
3215 ++temp_string;
24eab124
AM
3216 }
3217
af6bdddf
AM
3218 if ((*temp_string == REGISTER_PREFIX || allow_naked_reg)
3219 && (temp_reg = parse_register (temp_string, &end_op)) != NULL)
24eab124 3220 {
24eab124
AM
3221 if (i.base_reg == NULL)
3222 i.base_reg = temp_reg;
3223 else
3224 i.index_reg = temp_reg;
3225
3226 i.types[this_operand] |= BaseIndex;
24eab124 3227 }
af6bdddf 3228 else if (*temp_string == REGISTER_PREFIX)
24eab124 3229 {
af6bdddf
AM
3230 as_bad (_("bad register name `%s'"), temp_string);
3231 return 0;
3232 }
3233 else if (is_digit_char (*op_string)
3234 || *op_string == '+' || *op_string == '-')
3235 {
3236 temp_string = build_displacement_string (false, op_string);
24eab124
AM
3237
3238 if (*temp_string == '+')
3239 ++temp_string;
3240
3241 if (i.disp_operands == 0 &&
3242 !i386_displacement (temp_string, temp_string + strlen (temp_string)))
3243 return 0;
3244
3245 ++op_string;
3246 end_of_operand_string = op_string;
3247 while (*end_of_operand_string != ']'
3248 && *end_of_operand_string != '+'
3249 && *end_of_operand_string != '-'
3250 && *end_of_operand_string != '*')
3251 ++end_of_operand_string;
3252 }
3253 else if (*op_string == '*')
3254 {
3255 ++op_string;
3256
3257 if (i.base_reg && !i.index_reg)
3258 {
3259 i.index_reg = i.base_reg;
3260 i.base_reg = 0;
3261 }
3262
3263 if (!i386_scale (op_string))
3264 return 0;
3265 }
3266 op_string = end_of_operand_string;
3267 ++end_of_operand_string;
3268 }
3269 }
3270
eecb386c
AM
3271 if (i386_index_check (operand_string) == 0)
3272 return 0;
252b5132 3273
24eab124 3274 i.mem_operands++;
252b5132
RH
3275 return 1;
3276}
3277
252b5132
RH
3278static int
3279i386_intel_operand (operand_string, got_a_float)
3280 char *operand_string;
3281 int got_a_float;
3282{
af6bdddf
AM
3283 const reg_entry * r;
3284 char *end_op;
252b5132
RH
3285 char *op_string = operand_string;
3286
3287 int operand_modifier = i386_operand_modifier (&op_string, got_a_float);
3288 if (is_space_char (*op_string))
3289 ++op_string;
3290
3291 switch (operand_modifier)
3292 {
3293 case BYTE_PTR:
3294 case WORD_PTR:
3295 case DWORD_PTR:
3296 case QWORD_PTR:
3297 case XWORD_PTR:
252b5132 3298 if (!i386_intel_memory_operand (op_string))
24eab124 3299 return 0;
252b5132
RH
3300 break;
3301
3302 case FLAT:
252b5132
RH
3303 case OFFSET_FLAT:
3304 if (!i386_immediate (op_string))
24eab124 3305 return 0;
252b5132
RH
3306 break;
3307
3308 case SHORT:
252b5132 3309 case NONE_FOUND:
c3332e24
AM
3310 /* Should be register or immediate */
3311 if (is_digit_char (*op_string)
3312 && strchr (op_string, '[') == 0)
3313 {
3314 if (!i386_immediate (op_string))
3315 return 0;
3316 }
af6bdddf
AM
3317 else if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
3318 && (r = parse_register (op_string, &end_op)) != NULL)
c3332e24 3319 {
c3332e24
AM
3320 /* Check for a segment override by searching for ':' after a
3321 segment register. */
3322 op_string = end_op;
3323 if (is_space_char (*op_string))
3324 ++op_string;
3325 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
3326 {
3327 switch (r->reg_num)
3328 {
3329 case 0:
3330 i.seg[i.mem_operands] = &es;
3331 break;
3332 case 1:
3333 i.seg[i.mem_operands] = &cs;
3334 break;
3335 case 2:
3336 i.seg[i.mem_operands] = &ss;
3337 break;
3338 case 3:
3339 i.seg[i.mem_operands] = &ds;
3340 break;
3341 case 4:
3342 i.seg[i.mem_operands] = &fs;
3343 break;
3344 case 5:
3345 i.seg[i.mem_operands] = &gs;
3346 break;
3347 }
252b5132 3348
c3332e24
AM
3349 }
3350 i.types[this_operand] |= r->reg_type & ~BaseIndex;
3351 i.regs[this_operand] = r;
3352 i.reg_operands++;
3353 }
af6bdddf 3354 else if (*op_string == REGISTER_PREFIX)
c3332e24 3355 {
af6bdddf
AM
3356 as_bad (_("bad register name `%s'"), op_string);
3357 return 0;
c3332e24 3358 }
af6bdddf
AM
3359 else if (!i386_intel_memory_operand (op_string))
3360 return 0;
3361
c3332e24 3362 break;
c3332e24 3363 } /* end switch */
24eab124 3364
252b5132
RH
3365 return 1;
3366}
3367
3368/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
3369 on error. */
3370
252b5132
RH
3371static int
3372i386_operand (operand_string)
3373 char *operand_string;
3374{
af6bdddf
AM
3375 const reg_entry *r;
3376 char *end_op;
24eab124 3377 char *op_string = operand_string;
252b5132 3378
24eab124 3379 if (is_space_char (*op_string))
252b5132
RH
3380 ++op_string;
3381
24eab124
AM
3382 /* We check for an absolute prefix (differentiating,
3383 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
3384 if (*op_string == ABSOLUTE_PREFIX)
3385 {
3386 ++op_string;
3387 if (is_space_char (*op_string))
3388 ++op_string;
3389 i.types[this_operand] |= JumpAbsolute;
3390 }
252b5132 3391
24eab124 3392 /* Check if operand is a register. */
af6bdddf
AM
3393 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
3394 && (r = parse_register (op_string, &end_op)) != NULL)
24eab124 3395 {
24eab124
AM
3396 /* Check for a segment override by searching for ':' after a
3397 segment register. */
3398 op_string = end_op;
3399 if (is_space_char (*op_string))
3400 ++op_string;
3401 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
3402 {
3403 switch (r->reg_num)
3404 {
3405 case 0:
3406 i.seg[i.mem_operands] = &es;
3407 break;
3408 case 1:
3409 i.seg[i.mem_operands] = &cs;
3410 break;
3411 case 2:
3412 i.seg[i.mem_operands] = &ss;
3413 break;
3414 case 3:
3415 i.seg[i.mem_operands] = &ds;
3416 break;
3417 case 4:
3418 i.seg[i.mem_operands] = &fs;
3419 break;
3420 case 5:
3421 i.seg[i.mem_operands] = &gs;
3422 break;
3423 }
252b5132 3424
24eab124 3425 /* Skip the ':' and whitespace. */
252b5132
RH
3426 ++op_string;
3427 if (is_space_char (*op_string))
24eab124 3428 ++op_string;
252b5132 3429
24eab124
AM
3430 if (!is_digit_char (*op_string)
3431 && !is_identifier_char (*op_string)
3432 && *op_string != '('
3433 && *op_string != ABSOLUTE_PREFIX)
3434 {
3435 as_bad (_("bad memory operand `%s'"), op_string);
3436 return 0;
3437 }
3438 /* Handle case of %es:*foo. */
3439 if (*op_string == ABSOLUTE_PREFIX)
3440 {
3441 ++op_string;
3442 if (is_space_char (*op_string))
3443 ++op_string;
3444 i.types[this_operand] |= JumpAbsolute;
3445 }
3446 goto do_memory_reference;
3447 }
3448 if (*op_string)
3449 {
3450 as_bad (_("Junk `%s' after register"), op_string);
3451 return 0;
3452 }
3453 i.types[this_operand] |= r->reg_type & ~BaseIndex;
3454 i.regs[this_operand] = r;
3455 i.reg_operands++;
3456 }
af6bdddf
AM
3457 else if (*op_string == REGISTER_PREFIX)
3458 {
3459 as_bad (_("bad register name `%s'"), op_string);
3460 return 0;
3461 }
24eab124
AM
3462 else if (*op_string == IMMEDIATE_PREFIX)
3463 { /* ... or an immediate */
3464 ++op_string;
3465 if (i.types[this_operand] & JumpAbsolute)
3466 {
3467 as_bad (_("Immediate operand illegal with absolute jump"));
3468 return 0;
3469 }
3470 if (!i386_immediate (op_string))
3471 return 0;
3472 }
3473 else if (is_digit_char (*op_string)
3474 || is_identifier_char (*op_string)
3475 || *op_string == '(' )
3476 {
3477 /* This is a memory reference of some sort. */
af6bdddf 3478 char *base_string;
252b5132 3479
24eab124 3480 /* Start and end of displacement string expression (if found). */
eecb386c
AM
3481 char *displacement_string_start;
3482 char *displacement_string_end;
252b5132 3483
24eab124 3484 do_memory_reference:
24eab124
AM
3485 if ((i.mem_operands == 1
3486 && (current_templates->start->opcode_modifier & IsString) == 0)
3487 || i.mem_operands == 2)
3488 {
3489 as_bad (_("too many memory references for `%s'"),
3490 current_templates->start->name);
3491 return 0;
3492 }
252b5132 3493
24eab124
AM
3494 /* Check for base index form. We detect the base index form by
3495 looking for an ')' at the end of the operand, searching
3496 for the '(' matching it, and finding a REGISTER_PREFIX or ','
3497 after the '('. */
af6bdddf 3498 base_string = op_string + strlen (op_string);
c3332e24 3499
af6bdddf
AM
3500 --base_string;
3501 if (is_space_char (*base_string))
3502 --base_string;
252b5132 3503
af6bdddf
AM
3504 /* If we only have a displacement, set-up for it to be parsed later. */
3505 displacement_string_start = op_string;
3506 displacement_string_end = base_string + 1;
252b5132 3507
24eab124
AM
3508 if (*base_string == ')')
3509 {
af6bdddf 3510 char *temp_string;
24eab124
AM
3511 unsigned int parens_balanced = 1;
3512 /* We've already checked that the number of left & right ()'s are
3513 equal, so this loop will not be infinite. */
3514 do
3515 {
3516 base_string--;
3517 if (*base_string == ')')
3518 parens_balanced++;
3519 if (*base_string == '(')
3520 parens_balanced--;
3521 }
3522 while (parens_balanced);
c3332e24 3523
af6bdddf 3524 temp_string = base_string;
c3332e24 3525
24eab124 3526 /* Skip past '(' and whitespace. */
252b5132
RH
3527 ++base_string;
3528 if (is_space_char (*base_string))
24eab124 3529 ++base_string;
252b5132 3530
af6bdddf
AM
3531 if (*base_string == ','
3532 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3533 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
252b5132 3534 {
af6bdddf 3535 displacement_string_end = temp_string;
252b5132 3536
af6bdddf 3537 i.types[this_operand] |= BaseIndex;
252b5132 3538
af6bdddf 3539 if (i.base_reg)
24eab124 3540 {
24eab124
AM
3541 base_string = end_op;
3542 if (is_space_char (*base_string))
3543 ++base_string;
af6bdddf
AM
3544 }
3545
3546 /* There may be an index reg or scale factor here. */
3547 if (*base_string == ',')
3548 {
3549 ++base_string;
3550 if (is_space_char (*base_string))
3551 ++base_string;
3552
3553 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3554 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
24eab124 3555 {
af6bdddf 3556 base_string = end_op;
24eab124
AM
3557 if (is_space_char (*base_string))
3558 ++base_string;
af6bdddf
AM
3559 if (*base_string == ',')
3560 {
3561 ++base_string;
3562 if (is_space_char (*base_string))
3563 ++base_string;
3564 }
3565 else if (*base_string != ')' )
3566 {
3567 as_bad (_("expecting `,' or `)' after index register in `%s'"),
3568 operand_string);
3569 return 0;
3570 }
24eab124 3571 }
af6bdddf 3572 else if (*base_string == REGISTER_PREFIX)
24eab124 3573 {
af6bdddf 3574 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
3575 return 0;
3576 }
252b5132 3577
af6bdddf
AM
3578 /* Check for scale factor. */
3579 if (isdigit ((unsigned char) *base_string))
3580 {
3581 if (!i386_scale (base_string))
3582 return 0;
24eab124 3583
af6bdddf
AM
3584 ++base_string;
3585 if (is_space_char (*base_string))
3586 ++base_string;
3587 if (*base_string != ')')
3588 {
3589 as_bad (_("expecting `)' after scale factor in `%s'"),
3590 operand_string);
3591 return 0;
3592 }
3593 }
3594 else if (!i.index_reg)
24eab124 3595 {
af6bdddf
AM
3596 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
3597 *base_string);
24eab124
AM
3598 return 0;
3599 }
3600 }
af6bdddf 3601 else if (*base_string != ')')
24eab124 3602 {
af6bdddf
AM
3603 as_bad (_("expecting `,' or `)' after base register in `%s'"),
3604 operand_string);
24eab124
AM
3605 return 0;
3606 }
c3332e24 3607 }
af6bdddf 3608 else if (*base_string == REGISTER_PREFIX)
c3332e24 3609 {
af6bdddf 3610 as_bad (_("bad register name `%s'"), base_string);
24eab124 3611 return 0;
c3332e24 3612 }
24eab124
AM
3613 }
3614
3615 /* If there's an expression beginning the operand, parse it,
3616 assuming displacement_string_start and
3617 displacement_string_end are meaningful. */
3618 if (displacement_string_start != displacement_string_end)
3619 {
3620 if (!i386_displacement (displacement_string_start,
3621 displacement_string_end))
3622 return 0;
3623 }
3624
3625 /* Special case for (%dx) while doing input/output op. */
3626 if (i.base_reg
3627 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
3628 && i.index_reg == 0
3629 && i.log2_scale_factor == 0
3630 && i.seg[i.mem_operands] == 0
3631 && (i.types[this_operand] & Disp) == 0)
3632 {
3633 i.types[this_operand] = InOutPortReg;
3634 return 1;
3635 }
3636
eecb386c
AM
3637 if (i386_index_check (operand_string) == 0)
3638 return 0;
24eab124
AM
3639 i.mem_operands++;
3640 }
3641 else
3642 { /* it's not a memory operand; argh! */
3643 as_bad (_("invalid char %s beginning operand %d `%s'"),
3644 output_invalid (*op_string),
3645 this_operand + 1,
3646 op_string);
3647 return 0;
3648 }
3649 return 1; /* normal return */
252b5132
RH
3650}
3651\f
3652/*
24eab124 3653 * md_estimate_size_before_relax()
252b5132
RH
3654 *
3655 * Called just before relax().
3656 * Any symbol that is now undefined will not become defined.
3657 * Return the correct fr_subtype in the frag.
3658 * Return the initial "guess for fr_var" to caller.
3659 * The guess for fr_var is ACTUALLY the growth beyond fr_fix.
3660 * Whatever we do to grow fr_fix or fr_var contributes to our returned value.
3661 * Although it may not be explicit in the frag, pretend fr_var starts with a
3662 * 0 value.
3663 */
3664int
3665md_estimate_size_before_relax (fragP, segment)
3666 register fragS *fragP;
3667 register segT segment;
3668{
3669 register unsigned char *opcode;
3670 register int old_fr_fix;
3671
3672 old_fr_fix = fragP->fr_fix;
3673 opcode = (unsigned char *) fragP->fr_opcode;
3674 /* We've already got fragP->fr_subtype right; all we have to do is
3675 check for un-relaxable symbols. */
3676 if (S_GET_SEGMENT (fragP->fr_symbol) != segment)
3677 {
3678 /* symbol is undefined in this segment */
3679 int code16 = fragP->fr_subtype & CODE16;
3680 int size = code16 ? 2 : 4;
3681 int pcrel_reloc = code16 ? BFD_RELOC_16_PCREL : BFD_RELOC_32_PCREL;
3682
3683 switch (opcode[0])
3684 {
3685 case JUMP_PC_RELATIVE: /* make jmp (0xeb) a dword displacement jump */
3686 opcode[0] = 0xe9; /* dword disp jmp */
3687 fragP->fr_fix += size;
3688 fix_new (fragP, old_fr_fix, size,
3689 fragP->fr_symbol,
3690 fragP->fr_offset, 1,
3691 (GOT_symbol && /* Not quite right - we should switch on
3692 presence of @PLT, but I cannot see how
3693 to get to that from here. We should have
3694 done this in md_assemble to really
3695 get it right all of the time, but I
3696 think it does not matter that much, as
3697 this will be right most of the time. ERY*/
3698 S_GET_SEGMENT(fragP->fr_symbol) == undefined_section)
3699 ? BFD_RELOC_386_PLT32 : pcrel_reloc);
3700 break;
3701
3702 default:
24eab124
AM
3703 /* This changes the byte-displacement jump 0x7N
3704 to the dword-displacement jump 0x0f8N. */
252b5132
RH
3705 opcode[1] = opcode[0] + 0x10;
3706 opcode[0] = TWO_BYTE_OPCODE_ESCAPE; /* two-byte escape */
3707 fragP->fr_fix += 1 + size; /* we've added an opcode byte */
3708 fix_new (fragP, old_fr_fix + 1, size,
3709 fragP->fr_symbol,
3710 fragP->fr_offset, 1,
3711 (GOT_symbol && /* Not quite right - we should switch on
24eab124
AM
3712 presence of @PLT, but I cannot see how
3713 to get to that from here. ERY */
252b5132
RH
3714 S_GET_SEGMENT(fragP->fr_symbol) == undefined_section)
3715 ? BFD_RELOC_386_PLT32 : pcrel_reloc);
3716 break;
3717 }
3718 frag_wane (fragP);
3719 }
3720 return (fragP->fr_var + fragP->fr_fix - old_fr_fix);
3721} /* md_estimate_size_before_relax() */
3722\f
3723/*
3724 * md_convert_frag();
3725 *
3726 * Called after relax() is finished.
3727 * In: Address of frag.
3728 * fr_type == rs_machine_dependent.
3729 * fr_subtype is what the address relaxed to.
3730 *
3731 * Out: Any fixSs and constants are set up.
3732 * Caller will turn frag into a ".space 0".
3733 */
3734#ifndef BFD_ASSEMBLER
3735void
3736md_convert_frag (headers, sec, fragP)
a04b544b
ILT
3737 object_headers *headers ATTRIBUTE_UNUSED;
3738 segT sec ATTRIBUTE_UNUSED;
252b5132
RH
3739 register fragS *fragP;
3740#else
3741void
3742md_convert_frag (abfd, sec, fragP)
ab9da554
ILT
3743 bfd *abfd ATTRIBUTE_UNUSED;
3744 segT sec ATTRIBUTE_UNUSED;
252b5132
RH
3745 register fragS *fragP;
3746#endif
3747{
3748 register unsigned char *opcode;
3749 unsigned char *where_to_put_displacement = NULL;
3750 unsigned int target_address;
3751 unsigned int opcode_address;
3752 unsigned int extension = 0;
3753 int displacement_from_opcode_start;
3754
3755 opcode = (unsigned char *) fragP->fr_opcode;
3756
3757 /* Address we want to reach in file space. */
3758 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
3759#ifdef BFD_ASSEMBLER /* not needed otherwise? */
49309057 3760 target_address += symbol_get_frag (fragP->fr_symbol)->fr_address;
252b5132
RH
3761#endif
3762
3763 /* Address opcode resides at in file space. */
3764 opcode_address = fragP->fr_address + fragP->fr_fix;
3765
3766 /* Displacement from opcode start to fill into instruction. */
3767 displacement_from_opcode_start = target_address - opcode_address;
3768
3769 switch (fragP->fr_subtype)
3770 {
3771 case ENCODE_RELAX_STATE (COND_JUMP, SMALL):
3772 case ENCODE_RELAX_STATE (COND_JUMP, SMALL16):
3773 case ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL):
3774 case ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL16):
3775 /* don't have to change opcode */
3776 extension = 1; /* 1 opcode + 1 displacement */
3777 where_to_put_displacement = &opcode[1];
3778 break;
3779
3780 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
3781 extension = 5; /* 2 opcode + 4 displacement */
3782 opcode[1] = opcode[0] + 0x10;
3783 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
3784 where_to_put_displacement = &opcode[2];
3785 break;
3786
3787 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
3788 extension = 4; /* 1 opcode + 4 displacement */
3789 opcode[0] = 0xe9;
3790 where_to_put_displacement = &opcode[1];
3791 break;
3792
3793 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
3794 extension = 3; /* 2 opcode + 2 displacement */
3795 opcode[1] = opcode[0] + 0x10;
3796 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
3797 where_to_put_displacement = &opcode[2];
3798 break;
3799
3800 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
3801 extension = 2; /* 1 opcode + 2 displacement */
3802 opcode[0] = 0xe9;
3803 where_to_put_displacement = &opcode[1];
3804 break;
3805
3806 default:
3807 BAD_CASE (fragP->fr_subtype);
3808 break;
3809 }
3810 /* now put displacement after opcode */
3811 md_number_to_chars ((char *) where_to_put_displacement,
3812 (valueT) (displacement_from_opcode_start - extension),
3813 SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
3814 fragP->fr_fix += extension;
3815}
3816\f
3817
3818int md_short_jump_size = 2; /* size of byte displacement jmp */
3819int md_long_jump_size = 5; /* size of dword displacement jmp */
3820const int md_reloc_size = 8; /* Size of relocation record */
3821
3822void
3823md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
3824 char *ptr;
3825 addressT from_addr, to_addr;
ab9da554
ILT
3826 fragS *frag ATTRIBUTE_UNUSED;
3827 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132
RH
3828{
3829 long offset;
3830
3831 offset = to_addr - (from_addr + 2);
3832 md_number_to_chars (ptr, (valueT) 0xeb, 1); /* opcode for byte-disp jump */
3833 md_number_to_chars (ptr + 1, (valueT) offset, 1);
3834}
3835
3836void
3837md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
3838 char *ptr;
3839 addressT from_addr, to_addr;
3840 fragS *frag;
3841 symbolS *to_symbol;
3842{
3843 long offset;
3844
3845 if (flag_do_long_jump)
3846 {
3847 offset = to_addr - S_GET_VALUE (to_symbol);
3848 md_number_to_chars (ptr, (valueT) 0xe9, 1);/* opcode for long jmp */
3849 md_number_to_chars (ptr + 1, (valueT) offset, 4);
3850 fix_new (frag, (ptr + 1) - frag->fr_literal, 4,
3851 to_symbol, (offsetT) 0, 0, BFD_RELOC_32);
3852 }
3853 else
3854 {
3855 offset = to_addr - (from_addr + 5);
3856 md_number_to_chars (ptr, (valueT) 0xe9, 1);
3857 md_number_to_chars (ptr + 1, (valueT) offset, 4);
3858 }
3859}
3860\f
3861/* Apply a fixup (fixS) to segment data, once it has been determined
3862 by our caller that we have all the info we need to fix it up.
3863
3864 On the 386, immediates, displacements, and data pointers are all in
3865 the same (little-endian) format, so we don't need to care about which
3866 we are handling. */
3867
3868int
3869md_apply_fix3 (fixP, valp, seg)
3870 fixS *fixP; /* The fix we're to put in. */
3871 valueT *valp; /* Pointer to the value of the bits. */
a04b544b 3872 segT seg ATTRIBUTE_UNUSED; /* Segment fix is from. */
252b5132
RH
3873{
3874 register char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
3875 valueT value = *valp;
3876
e1b283bb 3877#if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
93382f6d
AM
3878 if (fixP->fx_pcrel)
3879 {
3880 switch (fixP->fx_r_type)
3881 {
5865bb77
ILT
3882 default:
3883 break;
3884
93382f6d
AM
3885 case BFD_RELOC_32:
3886 fixP->fx_r_type = BFD_RELOC_32_PCREL;
3887 break;
3888 case BFD_RELOC_16:
3889 fixP->fx_r_type = BFD_RELOC_16_PCREL;
3890 break;
3891 case BFD_RELOC_8:
3892 fixP->fx_r_type = BFD_RELOC_8_PCREL;
3893 break;
3894 }
3895 }
252b5132 3896
0723899b
ILT
3897 /* This is a hack. There should be a better way to handle this.
3898 This covers for the fact that bfd_install_relocation will
3899 subtract the current location (for partial_inplace, PC relative
3900 relocations); see more below. */
93382f6d
AM
3901 if ((fixP->fx_r_type == BFD_RELOC_32_PCREL
3902 || fixP->fx_r_type == BFD_RELOC_16_PCREL
3903 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
3904 && fixP->fx_addsy)
252b5132
RH
3905 {
3906#ifndef OBJ_AOUT
3907 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
3908#ifdef TE_PE
3909 || OUTPUT_FLAVOR == bfd_target_coff_flavour
3910#endif
3911 )
3912 value += fixP->fx_where + fixP->fx_frag->fr_address;
3913#endif
3914#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3915 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
3916 && (S_GET_SEGMENT (fixP->fx_addsy) == seg
49309057 3917 || symbol_section_p (fixP->fx_addsy))
252b5132
RH
3918 && ! S_IS_EXTERNAL (fixP->fx_addsy)
3919 && ! S_IS_WEAK (fixP->fx_addsy)
3920 && S_IS_DEFINED (fixP->fx_addsy)
3921 && ! S_IS_COMMON (fixP->fx_addsy))
3922 {
3923 /* Yes, we add the values in twice. This is because
3924 bfd_perform_relocation subtracts them out again. I think
3925 bfd_perform_relocation is broken, but I don't dare change
3926 it. FIXME. */
3927 value += fixP->fx_where + fixP->fx_frag->fr_address;
3928 }
3929#endif
3930#if defined (OBJ_COFF) && defined (TE_PE)
3931 /* For some reason, the PE format does not store a section
24eab124 3932 address offset for a PC relative symbol. */
252b5132
RH
3933 if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
3934 value += md_pcrel_from (fixP);
c0c949c7
ILT
3935 else if (S_IS_EXTERNAL (fixP->fx_addsy)
3936 || S_IS_WEAK (fixP->fx_addsy))
3937 {
3938 /* We are generating an external relocation for this defined
3939 symbol. We add the address, because
3940 bfd_install_relocation will subtract it. VALUE already
3941 holds the symbol value, because fixup_segment added it
3942 in. We subtract it out, and then we subtract it out
3943 again because bfd_install_relocation will add it in
3944 again. */
3945 value += md_pcrel_from (fixP);
3946 value -= 2 * S_GET_VALUE (fixP->fx_addsy);
3947 }
252b5132
RH
3948#endif
3949 }
c0c949c7
ILT
3950#ifdef TE_PE
3951 else if (fixP->fx_addsy != NULL
3952 && S_IS_DEFINED (fixP->fx_addsy)
3953 && (S_IS_EXTERNAL (fixP->fx_addsy)
3954 || S_IS_WEAK (fixP->fx_addsy)))
3955 {
3956 /* We are generating an external relocation for this defined
3957 symbol. VALUE already holds the symbol value, and
3958 bfd_install_relocation will add it in again. We don't want
3959 either addition. */
3960 value -= 2 * S_GET_VALUE (fixP->fx_addsy);
3961 }
3962#endif
252b5132
RH
3963
3964 /* Fix a few things - the dynamic linker expects certain values here,
3965 and we must not dissappoint it. */
3966#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3967 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
3968 && fixP->fx_addsy)
3969 switch (fixP->fx_r_type) {
3970 case BFD_RELOC_386_PLT32:
3971 /* Make the jump instruction point to the address of the operand. At
3972 runtime we merely add the offset to the actual PLT entry. */
3973 value = 0xfffffffc;
3974 break;
3975 case BFD_RELOC_386_GOTPC:
3976/*
24eab124 3977 * This is tough to explain. We end up with this one if we have
252b5132
RH
3978 * operands that look like "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal
3979 * here is to obtain the absolute address of the GOT, and it is strongly
3980 * preferable from a performance point of view to avoid using a runtime
c3332e24 3981 * relocation for this. The actual sequence of instructions often look
252b5132 3982 * something like:
c3332e24 3983 *
24eab124 3984 * call .L66
252b5132 3985 * .L66:
24eab124
AM
3986 * popl %ebx
3987 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
c3332e24 3988 *
24eab124 3989 * The call and pop essentially return the absolute address of
252b5132
RH
3990 * the label .L66 and store it in %ebx. The linker itself will
3991 * ultimately change the first operand of the addl so that %ebx points to
3992 * the GOT, but to keep things simple, the .o file must have this operand
3993 * set so that it generates not the absolute address of .L66, but the
3994 * absolute address of itself. This allows the linker itself simply
3995 * treat a GOTPC relocation as asking for a pcrel offset to the GOT to be
3996 * added in, and the addend of the relocation is stored in the operand
3997 * field for the instruction itself.
c3332e24 3998 *
24eab124 3999 * Our job here is to fix the operand so that it would add the correct
252b5132
RH
4000 * offset so that %ebx would point to itself. The thing that is tricky is
4001 * that .-.L66 will point to the beginning of the instruction, so we need
4002 * to further modify the operand so that it will point to itself.
4003 * There are other cases where you have something like:
c3332e24 4004 *
24eab124 4005 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
c3332e24 4006 *
252b5132 4007 * and here no correction would be required. Internally in the assembler
c3332e24 4008 * we treat operands of this form as not being pcrel since the '.' is
252b5132
RH
4009 * explicitly mentioned, and I wonder whether it would simplify matters
4010 * to do it this way. Who knows. In earlier versions of the PIC patches,
4011 * the pcrel_adjust field was used to store the correction, but since the
4012 * expression is not pcrel, I felt it would be confusing to do it this way.
4013 */
4014 value -= 1;
4015 break;
4016 case BFD_RELOC_386_GOT32:
24eab124 4017 value = 0; /* Fully resolved at runtime. No addend. */
252b5132
RH
4018 break;
4019 case BFD_RELOC_386_GOTOFF:
4020 break;
4021
4022 case BFD_RELOC_VTABLE_INHERIT:
4023 case BFD_RELOC_VTABLE_ENTRY:
4024 fixP->fx_done = 0;
4025 return 1;
4026
4027 default:
4028 break;
4029 }
93382f6d
AM
4030#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
4031 *valp = value;
4032#endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */
252b5132
RH
4033 md_number_to_chars (p, value, fixP->fx_size);
4034
4035 return 1;
4036}
4037
4038#if 0
4039/* This is never used. */
4040long /* Knows about the byte order in a word. */
4041md_chars_to_number (con, nbytes)
4042 unsigned char con[]; /* Low order byte 1st. */
4043 int nbytes; /* Number of bytes in the input. */
4044{
4045 long retval;
4046 for (retval = 0, con += nbytes - 1; nbytes--; con--)
4047 {
4048 retval <<= BITS_PER_CHAR;
4049 retval |= *con;
4050 }
4051 return retval;
4052}
4053#endif /* 0 */
4054\f
4055
4056#define MAX_LITTLENUMS 6
4057
4058/* Turn the string pointed to by litP into a floating point constant of type
4059 type, and emit the appropriate bytes. The number of LITTLENUMS emitted
4060 is stored in *sizeP . An error message is returned, or NULL on OK. */
4061char *
4062md_atof (type, litP, sizeP)
2ab9b79e 4063 int type;
252b5132
RH
4064 char *litP;
4065 int *sizeP;
4066{
4067 int prec;
4068 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4069 LITTLENUM_TYPE *wordP;
4070 char *t;
4071
4072 switch (type)
4073 {
4074 case 'f':
4075 case 'F':
4076 prec = 2;
4077 break;
4078
4079 case 'd':
4080 case 'D':
4081 prec = 4;
4082 break;
4083
4084 case 'x':
4085 case 'X':
4086 prec = 5;
4087 break;
4088
4089 default:
4090 *sizeP = 0;
4091 return _("Bad call to md_atof ()");
4092 }
4093 t = atof_ieee (input_line_pointer, type, words);
4094 if (t)
4095 input_line_pointer = t;
4096
4097 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4098 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4099 the bigendian 386. */
4100 for (wordP = words + prec - 1; prec--;)
4101 {
4102 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4103 litP += sizeof (LITTLENUM_TYPE);
4104 }
4105 return 0;
4106}
4107\f
4108char output_invalid_buf[8];
4109
4110static char * output_invalid PARAMS ((int));
4111
4112static char *
4113output_invalid (c)
4114 int c;
4115{
4116 if (isprint (c))
4117 sprintf (output_invalid_buf, "'%c'", c);
4118 else
4119 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4120 return output_invalid_buf;
4121}
4122
252b5132 4123
af6bdddf 4124/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
4125
4126static const reg_entry *
4127parse_register (reg_string, end_op)
4128 char *reg_string;
4129 char **end_op;
4130{
af6bdddf
AM
4131 char *s = reg_string;
4132 char *p;
252b5132
RH
4133 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4134 const reg_entry *r;
4135
4136 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4137 if (*s == REGISTER_PREFIX)
4138 ++s;
4139
4140 if (is_space_char (*s))
4141 ++s;
4142
4143 p = reg_name_given;
af6bdddf 4144 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
4145 {
4146 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
4147 return (const reg_entry *) NULL;
4148 s++;
252b5132
RH
4149 }
4150
af6bdddf 4151 *end_op = s;
252b5132
RH
4152
4153 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
4154
5f47d35b
AM
4155 /* Handle floating point regs, allowing spaces in the (i) part. */
4156 if (r == i386_regtab /* %st is first entry of table */)
4157 {
5f47d35b
AM
4158 if (is_space_char (*s))
4159 ++s;
4160 if (*s == '(')
4161 {
af6bdddf 4162 ++s;
5f47d35b
AM
4163 if (is_space_char (*s))
4164 ++s;
4165 if (*s >= '0' && *s <= '7')
4166 {
4167 r = &i386_float_regtab[*s - '0'];
af6bdddf 4168 ++s;
5f47d35b
AM
4169 if (is_space_char (*s))
4170 ++s;
4171 if (*s == ')')
4172 {
4173 *end_op = s + 1;
4174 return r;
4175 }
5f47d35b 4176 }
af6bdddf 4177 /* We have "%st(" then garbage */
5f47d35b
AM
4178 return (const reg_entry *) NULL;
4179 }
4180 }
4181
252b5132
RH
4182 return r;
4183}
4184\f
4185#ifdef OBJ_ELF
4186CONST char *md_shortopts = "kmVQ:";
4187#else
4188CONST char *md_shortopts = "m";
4189#endif
4190struct option md_longopts[] = {
4191 {NULL, no_argument, NULL, 0}
4192};
4193size_t md_longopts_size = sizeof (md_longopts);
4194
4195int
4196md_parse_option (c, arg)
4197 int c;
ab9da554 4198 char *arg ATTRIBUTE_UNUSED;
252b5132
RH
4199{
4200 switch (c)
4201 {
4202 case 'm':
4203 flag_do_long_jump = 1;
4204 break;
4205
4206#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4207 /* -k: Ignore for FreeBSD compatibility. */
4208 case 'k':
4209 break;
4210
4211 /* -V: SVR4 argument to print version ID. */
4212 case 'V':
4213 print_version_id ();
4214 break;
4215
4216 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
4217 should be emitted or not. FIXME: Not implemented. */
4218 case 'Q':
4219 break;
4220#endif
4221
4222 default:
4223 return 0;
4224 }
4225 return 1;
4226}
4227
4228void
4229md_show_usage (stream)
4230 FILE *stream;
4231{
4232 fprintf (stream, _("\
4233-m do long jump\n"));
4234}
4235
4236#ifdef BFD_ASSEMBLER
4237#ifdef OBJ_MAYBE_ELF
4238#ifdef OBJ_MAYBE_COFF
4239
4240/* Pick the target format to use. */
4241
4242const char *
4243i386_target_format ()
4244{
4245 switch (OUTPUT_FLAVOR)
4246 {
4247 case bfd_target_coff_flavour:
4248 return "coff-i386";
4249 case bfd_target_elf_flavour:
4250 return "elf32-i386";
4251 default:
4252 abort ();
4253 return NULL;
4254 }
4255}
4256
4257#endif /* OBJ_MAYBE_COFF */
4258#endif /* OBJ_MAYBE_ELF */
4259#endif /* BFD_ASSEMBLER */
4260\f
252b5132
RH
4261symbolS *
4262md_undefined_symbol (name)
4263 char *name;
4264{
18dc2407
ILT
4265 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
4266 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
4267 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
4268 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
4269 {
4270 if (!GOT_symbol)
4271 {
4272 if (symbol_find (name))
4273 as_bad (_("GOT already in symbol table"));
4274 GOT_symbol = symbol_new (name, undefined_section,
4275 (valueT) 0, &zero_address_frag);
4276 };
4277 return GOT_symbol;
4278 }
252b5132
RH
4279 return 0;
4280}
4281
4282/* Round up a section size to the appropriate boundary. */
4283valueT
4284md_section_align (segment, size)
ab9da554 4285 segT segment ATTRIBUTE_UNUSED;
252b5132
RH
4286 valueT size;
4287{
4288#ifdef OBJ_AOUT
4289#ifdef BFD_ASSEMBLER
4290 /* For a.out, force the section size to be aligned. If we don't do
4291 this, BFD will align it for us, but it will not write out the
4292 final bytes of the section. This may be a bug in BFD, but it is
4293 easier to fix it here since that is how the other a.out targets
4294 work. */
4295 int align;
4296
4297 align = bfd_get_section_alignment (stdoutput, segment);
4298 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
4299#endif
4300#endif
4301
4302 return size;
4303}
4304
4305/* On the i386, PC-relative offsets are relative to the start of the
4306 next instruction. That is, the address of the offset, plus its
4307 size, since the offset is always the last part of the insn. */
4308
4309long
4310md_pcrel_from (fixP)
4311 fixS *fixP;
4312{
4313 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
4314}
4315
4316#ifndef I386COFF
4317
4318static void
4319s_bss (ignore)
ab9da554 4320 int ignore ATTRIBUTE_UNUSED;
252b5132
RH
4321{
4322 register int temp;
4323
4324 temp = get_absolute_expression ();
4325 subseg_set (bss_section, (subsegT) temp);
4326 demand_empty_rest_of_line ();
4327}
4328
4329#endif
4330
4331
4332#ifdef BFD_ASSEMBLER
4333
4334void
4335i386_validate_fix (fixp)
4336 fixS *fixp;
4337{
4338 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
4339 {
4340 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
4341 fixp->fx_subsy = 0;
4342 }
4343}
4344
252b5132
RH
4345arelent *
4346tc_gen_reloc (section, fixp)
ab9da554 4347 asection *section ATTRIBUTE_UNUSED;
252b5132
RH
4348 fixS *fixp;
4349{
4350 arelent *rel;
4351 bfd_reloc_code_real_type code;
4352
4353 switch (fixp->fx_r_type)
4354 {
4355 case BFD_RELOC_386_PLT32:
4356 case BFD_RELOC_386_GOT32:
4357 case BFD_RELOC_386_GOTOFF:
4358 case BFD_RELOC_386_GOTPC:
4359 case BFD_RELOC_RVA:
4360 case BFD_RELOC_VTABLE_ENTRY:
4361 case BFD_RELOC_VTABLE_INHERIT:
4362 code = fixp->fx_r_type;
4363 break;
4364 default:
93382f6d 4365 if (fixp->fx_pcrel)
252b5132 4366 {
93382f6d
AM
4367 switch (fixp->fx_size)
4368 {
4369 default:
4370 as_bad (_("Can not do %d byte pc-relative relocation"),
4371 fixp->fx_size);
4372 code = BFD_RELOC_32_PCREL;
4373 break;
4374 case 1: code = BFD_RELOC_8_PCREL; break;
4375 case 2: code = BFD_RELOC_16_PCREL; break;
4376 case 4: code = BFD_RELOC_32_PCREL; break;
4377 }
4378 }
4379 else
4380 {
4381 switch (fixp->fx_size)
4382 {
4383 default:
4384 as_bad (_("Can not do %d byte relocation"), fixp->fx_size);
4385 code = BFD_RELOC_32;
4386 break;
4387 case 1: code = BFD_RELOC_8; break;
4388 case 2: code = BFD_RELOC_16; break;
4389 case 4: code = BFD_RELOC_32; break;
4390 }
252b5132
RH
4391 }
4392 break;
4393 }
252b5132
RH
4394
4395 if (code == BFD_RELOC_32
4396 && GOT_symbol
4397 && fixp->fx_addsy == GOT_symbol)
4398 code = BFD_RELOC_386_GOTPC;
4399
4400 rel = (arelent *) xmalloc (sizeof (arelent));
49309057
ILT
4401 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
4402 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
4403
4404 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
4405 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
4406 vtable entry to be used in the relocation's section offset. */
4407 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
4408 rel->address = fixp->fx_offset;
4409
4410 if (fixp->fx_pcrel)
4411 rel->addend = fixp->fx_addnumber;
4412 else
4413 rel->addend = 0;
4414
4415 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
4416 if (rel->howto == NULL)
4417 {
4418 as_bad_where (fixp->fx_file, fixp->fx_line,
4419 _("Cannot represent relocation type %s"),
4420 bfd_get_reloc_code_name (code));
4421 /* Set howto to a garbage value so that we can keep going. */
4422 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
4423 assert (rel->howto != NULL);
4424 }
4425
4426 return rel;
4427}
4428
4429#else /* ! BFD_ASSEMBLER */
4430
4431#if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
4432void
4433tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
4434 char *where;
4435 fixS *fixP;
4436 relax_addressT segment_address_in_file;
4437{
4438 /*
4439 * In: length of relocation (or of address) in chars: 1, 2 or 4.
4440 * Out: GNU LD relocation length code: 0, 1, or 2.
4441 */
4442
4443 static const unsigned char nbytes_r_length[] = {42, 0, 1, 42, 2};
4444 long r_symbolnum;
4445
4446 know (fixP->fx_addsy != NULL);
4447
4448 md_number_to_chars (where,
4449 (valueT) (fixP->fx_frag->fr_address
4450 + fixP->fx_where - segment_address_in_file),
4451 4);
4452
4453 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
4454 ? S_GET_TYPE (fixP->fx_addsy)
4455 : fixP->fx_addsy->sy_number);
4456
4457 where[6] = (r_symbolnum >> 16) & 0x0ff;
4458 where[5] = (r_symbolnum >> 8) & 0x0ff;
4459 where[4] = r_symbolnum & 0x0ff;
4460 where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
4461 | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
4462 | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
4463}
4464
4465#endif /* OBJ_AOUT or OBJ_BOUT */
4466
4467#if defined (I386COFF)
4468
4469short
4470tc_coff_fix2rtype (fixP)
4471 fixS *fixP;
4472{
4473 if (fixP->fx_r_type == R_IMAGEBASE)
4474 return R_IMAGEBASE;
4475
4476 return (fixP->fx_pcrel ?
4477 (fixP->fx_size == 1 ? R_PCRBYTE :
4478 fixP->fx_size == 2 ? R_PCRWORD :
4479 R_PCRLONG) :
4480 (fixP->fx_size == 1 ? R_RELBYTE :
4481 fixP->fx_size == 2 ? R_RELWORD :
4482 R_DIR32));
4483}
4484
4485int
4486tc_coff_sizemachdep (frag)
4487 fragS *frag;
4488{
4489 if (frag->fr_next)
4490 return (frag->fr_next->fr_address - frag->fr_address);
4491 else
4492 return 0;
4493}
4494
4495#endif /* I386COFF */
4496
93382f6d 4497#endif /* ! BFD_ASSEMBLER */
252b5132
RH
4498\f
4499/* end of tc-i386.c */
This page took 0.252774 seconds and 4 git commands to generate.