x86: simplify OP_I64()
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
82704155 2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
41fd2579
L
36#ifdef HAVE_LIMITS_H
37#include <limits.h>
38#else
39#ifdef HAVE_SYS_PARAM_H
40#include <sys/param.h>
41#endif
42#ifndef INT_MAX
43#define INT_MAX (int) (((unsigned) (-1)) >> 1)
44#endif
45#endif
46
252b5132
RH
47#ifndef REGISTER_WARNINGS
48#define REGISTER_WARNINGS 1
49#endif
50
c3332e24 51#ifndef INFER_ADDR_PREFIX
eecb386c 52#define INFER_ADDR_PREFIX 1
c3332e24
AM
53#endif
54
29b0f896
AM
55#ifndef DEFAULT_ARCH
56#define DEFAULT_ARCH "i386"
246fcdee 57#endif
252b5132 58
edde18a5
AM
59#ifndef INLINE
60#if __GNUC__ >= 2
61#define INLINE __inline__
62#else
63#define INLINE
64#endif
65#endif
66
6305a203
L
67/* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
72#define WAIT_PREFIX 0
73#define SEG_PREFIX 1
74#define ADDR_PREFIX 2
75#define DATA_PREFIX 3
c32fa91d 76#define REP_PREFIX 4
42164a71 77#define HLE_PREFIX REP_PREFIX
7e8b059b 78#define BND_PREFIX REP_PREFIX
c32fa91d 79#define LOCK_PREFIX 5
4e9ac44a
L
80#define REX_PREFIX 6 /* must come last. */
81#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
82
83/* we define the syntax here (modulo base,index,scale syntax) */
84#define REGISTER_PREFIX '%'
85#define IMMEDIATE_PREFIX '$'
86#define ABSOLUTE_PREFIX '*'
87
88/* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90#define WORD_MNEM_SUFFIX 'w'
91#define BYTE_MNEM_SUFFIX 'b'
92#define SHORT_MNEM_SUFFIX 's'
93#define LONG_MNEM_SUFFIX 'l'
94#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
95/* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97#define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99#define END_OF_INSN '\0'
100
101/*
102 'templates' is for grouping together 'template' structures for opcodes
103 of the same name. This is only used for storing the insns in the grand
104 ole hash table of insns.
105 The templates themselves start at START and range up to (but not including)
106 END.
107 */
108typedef struct
109{
d3ce72d0
NC
110 const insn_template *start;
111 const insn_template *end;
6305a203
L
112}
113templates;
114
115/* 386 operand encoding bytes: see 386 book for details of this. */
116typedef struct
117{
118 unsigned int regmem; /* codes register or memory operand */
119 unsigned int reg; /* codes register operand (or extended opcode) */
120 unsigned int mode; /* how to interpret regmem & reg */
121}
122modrm_byte;
123
124/* x86-64 extension prefix. */
125typedef int rex_byte;
126
6305a203
L
127/* 386 opcode byte to code indirect addressing. */
128typedef struct
129{
130 unsigned base;
131 unsigned index;
132 unsigned scale;
133}
134sib_byte;
135
6305a203
L
136/* x86 arch names, types and features */
137typedef struct
138{
139 const char *name; /* arch name */
8a2c8fef 140 unsigned int len; /* arch string length */
6305a203
L
141 enum processor_type type; /* arch type */
142 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 143 unsigned int skip; /* show_arch should skip this. */
6305a203
L
144}
145arch_entry;
146
293f5f65
L
147/* Used to turn off indicated flags. */
148typedef struct
149{
150 const char *name; /* arch name */
151 unsigned int len; /* arch string length */
152 i386_cpu_flags flags; /* cpu feature flags */
153}
154noarch_entry;
155
78f12dd3 156static void update_code_flag (int, int);
e3bb37b5
L
157static void set_code_flag (int);
158static void set_16bit_gcc_code_flag (int);
159static void set_intel_syntax (int);
1efbbeb4 160static void set_intel_mnemonic (int);
db51cc60 161static void set_allow_index_reg (int);
7bab8ab5 162static void set_check (int);
e3bb37b5 163static void set_cpu_arch (int);
6482c264 164#ifdef TE_PE
e3bb37b5 165static void pe_directive_secrel (int);
6482c264 166#endif
e3bb37b5
L
167static void signed_cons (int);
168static char *output_invalid (int c);
ee86248c
JB
169static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
170 const char *);
171static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
172 const char *);
a7619375 173static int i386_att_operand (char *);
e3bb37b5 174static int i386_intel_operand (char *, int);
ee86248c
JB
175static int i386_intel_simplify (expressionS *);
176static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
177static const reg_entry *parse_register (char *, char **);
178static char *parse_insn (char *, char *);
179static char *parse_operands (char *, const char *);
180static void swap_operands (void);
4d456e3d 181static void swap_2_operands (int, int);
e3bb37b5
L
182static void optimize_imm (void);
183static void optimize_disp (void);
83b16ac6 184static const insn_template *match_template (char);
e3bb37b5
L
185static int check_string (void);
186static int process_suffix (void);
187static int check_byte_reg (void);
188static int check_long_reg (void);
189static int check_qword_reg (void);
190static int check_word_reg (void);
191static int finalize_imm (void);
192static int process_operands (void);
193static const seg_entry *build_modrm_byte (void);
194static void output_insn (void);
195static void output_imm (fragS *, offsetT);
196static void output_disp (fragS *, offsetT);
29b0f896 197#ifndef I386COFF
e3bb37b5 198static void s_bss (int);
252b5132 199#endif
17d4e2a2
L
200#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
201static void handle_large_common (int small ATTRIBUTE_UNUSED);
b4a3a7b4
L
202
203/* GNU_PROPERTY_X86_ISA_1_USED. */
204static unsigned int x86_isa_1_used;
205/* GNU_PROPERTY_X86_FEATURE_2_USED. */
206static unsigned int x86_feature_2_used;
207/* Generate x86 used ISA and feature properties. */
208static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
17d4e2a2 209#endif
252b5132 210
a847613f 211static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 212
43234a1e
L
213/* This struct describes rounding control and SAE in the instruction. */
214struct RC_Operation
215{
216 enum rc_type
217 {
218 rne = 0,
219 rd,
220 ru,
221 rz,
222 saeonly
223 } type;
224 int operand;
225};
226
227static struct RC_Operation rc_op;
228
229/* The struct describes masking, applied to OPERAND in the instruction.
230 MASK is a pointer to the corresponding mask register. ZEROING tells
231 whether merging or zeroing mask is used. */
232struct Mask_Operation
233{
234 const reg_entry *mask;
235 unsigned int zeroing;
236 /* The operand where this operation is associated. */
237 int operand;
238};
239
240static struct Mask_Operation mask_op;
241
242/* The struct describes broadcasting, applied to OPERAND. FACTOR is
243 broadcast factor. */
244struct Broadcast_Operation
245{
8e6e0792 246 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
247 int type;
248
249 /* Index of broadcasted operand. */
250 int operand;
4a1b91ea
L
251
252 /* Number of bytes to broadcast. */
253 int bytes;
43234a1e
L
254};
255
256static struct Broadcast_Operation broadcast_op;
257
c0f3af97
L
258/* VEX prefix. */
259typedef struct
260{
43234a1e
L
261 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
262 unsigned char bytes[4];
c0f3af97
L
263 unsigned int length;
264 /* Destination or source register specifier. */
265 const reg_entry *register_specifier;
266} vex_prefix;
267
252b5132 268/* 'md_assemble ()' gathers together information and puts it into a
47926f60 269 i386_insn. */
252b5132 270
520dc8e8
AM
271union i386_op
272 {
273 expressionS *disps;
274 expressionS *imms;
275 const reg_entry *regs;
276 };
277
a65babc9
L
278enum i386_error
279 {
86e026a4 280 operand_size_mismatch,
a65babc9
L
281 operand_type_mismatch,
282 register_type_mismatch,
283 number_of_operands_mismatch,
284 invalid_instruction_suffix,
285 bad_imm4,
a65babc9
L
286 unsupported_with_intel_mnemonic,
287 unsupported_syntax,
6c30d220
L
288 unsupported,
289 invalid_vsib_address,
7bab8ab5 290 invalid_vector_register_set,
43234a1e
L
291 unsupported_vector_index_register,
292 unsupported_broadcast,
43234a1e
L
293 broadcast_needed,
294 unsupported_masking,
295 mask_not_on_destination,
296 no_default_mask,
297 unsupported_rc_sae,
298 rc_sae_operand_not_last_imm,
299 invalid_register_operand,
a65babc9
L
300 };
301
252b5132
RH
302struct _i386_insn
303 {
47926f60 304 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 305 insn_template tm;
252b5132 306
7d5e4556
L
307 /* SUFFIX holds the instruction size suffix for byte, word, dword
308 or qword, if given. */
252b5132
RH
309 char suffix;
310
47926f60 311 /* OPERANDS gives the number of given operands. */
252b5132
RH
312 unsigned int operands;
313
314 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
315 of given register, displacement, memory operands and immediate
47926f60 316 operands. */
252b5132
RH
317 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
318
319 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 320 use OP[i] for the corresponding operand. */
40fb9820 321 i386_operand_type types[MAX_OPERANDS];
252b5132 322
520dc8e8
AM
323 /* Displacement expression, immediate expression, or register for each
324 operand. */
325 union i386_op op[MAX_OPERANDS];
252b5132 326
3e73aa7c
JH
327 /* Flags for operands. */
328 unsigned int flags[MAX_OPERANDS];
329#define Operand_PCrel 1
c48dadc9 330#define Operand_Mem 2
3e73aa7c 331
252b5132 332 /* Relocation type for operand */
f86103b7 333 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 334
252b5132
RH
335 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
336 the base index byte below. */
337 const reg_entry *base_reg;
338 const reg_entry *index_reg;
339 unsigned int log2_scale_factor;
340
341 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 342 explicit segment overrides are given. */
ce8a8b2f 343 const seg_entry *seg[2];
252b5132 344
8325cc63
JB
345 /* Copied first memory operand string, for re-checking. */
346 char *memop1_string;
347
252b5132
RH
348 /* PREFIX holds all the given prefix opcodes (usually null).
349 PREFIXES is the number of prefix opcodes. */
350 unsigned int prefixes;
351 unsigned char prefix[MAX_PREFIXES];
352
b4a3a7b4
L
353 /* Has MMX register operands. */
354 bfd_boolean has_regmmx;
355
356 /* Has XMM register operands. */
357 bfd_boolean has_regxmm;
358
359 /* Has YMM register operands. */
360 bfd_boolean has_regymm;
361
362 /* Has ZMM register operands. */
363 bfd_boolean has_regzmm;
364
252b5132 365 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 366 addressing modes of this insn are encoded. */
252b5132 367 modrm_byte rm;
3e73aa7c 368 rex_byte rex;
43234a1e 369 rex_byte vrex;
252b5132 370 sib_byte sib;
c0f3af97 371 vex_prefix vex;
b6169b20 372
43234a1e
L
373 /* Masking attributes. */
374 struct Mask_Operation *mask;
375
376 /* Rounding control and SAE attributes. */
377 struct RC_Operation *rounding;
378
379 /* Broadcasting attributes. */
380 struct Broadcast_Operation *broadcast;
381
382 /* Compressed disp8*N attribute. */
383 unsigned int memshift;
384
86fa6981
L
385 /* Prefer load or store in encoding. */
386 enum
387 {
388 dir_encoding_default = 0,
389 dir_encoding_load,
64c49ab3
JB
390 dir_encoding_store,
391 dir_encoding_swap
86fa6981 392 } dir_encoding;
891edac4 393
a501d77e
L
394 /* Prefer 8bit or 32bit displacement in encoding. */
395 enum
396 {
397 disp_encoding_default = 0,
398 disp_encoding_8bit,
399 disp_encoding_32bit
400 } disp_encoding;
f8a5c266 401
6b6b6807
L
402 /* Prefer the REX byte in encoding. */
403 bfd_boolean rex_encoding;
404
b6f8c7c4
L
405 /* Disable instruction size optimization. */
406 bfd_boolean no_optimize;
407
86fa6981
L
408 /* How to encode vector instructions. */
409 enum
410 {
411 vex_encoding_default = 0,
412 vex_encoding_vex2,
413 vex_encoding_vex3,
414 vex_encoding_evex
415 } vec_encoding;
416
d5de92cf
L
417 /* REP prefix. */
418 const char *rep_prefix;
419
165de32a
L
420 /* HLE prefix. */
421 const char *hle_prefix;
42164a71 422
7e8b059b
L
423 /* Have BND prefix. */
424 const char *bnd_prefix;
425
04ef582a
L
426 /* Have NOTRACK prefix. */
427 const char *notrack_prefix;
428
891edac4 429 /* Error message. */
a65babc9 430 enum i386_error error;
252b5132
RH
431 };
432
433typedef struct _i386_insn i386_insn;
434
43234a1e
L
435/* Link RC type with corresponding string, that'll be looked for in
436 asm. */
437struct RC_name
438{
439 enum rc_type type;
440 const char *name;
441 unsigned int len;
442};
443
444static const struct RC_name RC_NamesTable[] =
445{
446 { rne, STRING_COMMA_LEN ("rn-sae") },
447 { rd, STRING_COMMA_LEN ("rd-sae") },
448 { ru, STRING_COMMA_LEN ("ru-sae") },
449 { rz, STRING_COMMA_LEN ("rz-sae") },
450 { saeonly, STRING_COMMA_LEN ("sae") },
451};
452
252b5132
RH
453/* List of chars besides those in app.c:symbol_chars that can start an
454 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 455const char extra_symbol_chars[] = "*%-([{}"
252b5132 456#ifdef LEX_AT
32137342
NC
457 "@"
458#endif
459#ifdef LEX_QM
460 "?"
252b5132 461#endif
32137342 462 ;
252b5132 463
29b0f896
AM
464#if (defined (TE_I386AIX) \
465 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 466 && !defined (TE_GNU) \
29b0f896 467 && !defined (TE_LINUX) \
8d63c93e 468 && !defined (TE_NACL) \
29b0f896 469 && !defined (TE_FreeBSD) \
5b806d27 470 && !defined (TE_DragonFly) \
29b0f896 471 && !defined (TE_NetBSD)))
252b5132 472/* This array holds the chars that always start a comment. If the
b3b91714
AM
473 pre-processor is disabled, these aren't very useful. The option
474 --divide will remove '/' from this list. */
475const char *i386_comment_chars = "#/";
476#define SVR4_COMMENT_CHARS 1
252b5132 477#define PREFIX_SEPARATOR '\\'
252b5132 478
b3b91714
AM
479#else
480const char *i386_comment_chars = "#";
481#define PREFIX_SEPARATOR '/'
482#endif
483
252b5132
RH
484/* This array holds the chars that only start a comment at the beginning of
485 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
486 .line and .file directives will appear in the pre-processed output.
487 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 488 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
489 #NO_APP at the beginning of its output.
490 Also note that comments started like this one will always work if
252b5132 491 '/' isn't otherwise defined. */
b3b91714 492const char line_comment_chars[] = "#/";
252b5132 493
63a0b638 494const char line_separator_chars[] = ";";
252b5132 495
ce8a8b2f
AM
496/* Chars that can be used to separate mant from exp in floating point
497 nums. */
252b5132
RH
498const char EXP_CHARS[] = "eE";
499
ce8a8b2f
AM
500/* Chars that mean this number is a floating point constant
501 As in 0f12.456
502 or 0d1.2345e12. */
252b5132
RH
503const char FLT_CHARS[] = "fFdDxX";
504
ce8a8b2f 505/* Tables for lexical analysis. */
252b5132
RH
506static char mnemonic_chars[256];
507static char register_chars[256];
508static char operand_chars[256];
509static char identifier_chars[256];
510static char digit_chars[256];
511
ce8a8b2f 512/* Lexical macros. */
252b5132
RH
513#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
514#define is_operand_char(x) (operand_chars[(unsigned char) x])
515#define is_register_char(x) (register_chars[(unsigned char) x])
516#define is_space_char(x) ((x) == ' ')
517#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
518#define is_digit_char(x) (digit_chars[(unsigned char) x])
519
0234cb7c 520/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
521static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
522
523/* md_assemble() always leaves the strings it's passed unaltered. To
524 effect this we maintain a stack of saved characters that we've smashed
525 with '\0's (indicating end of strings for various sub-fields of the
47926f60 526 assembler instruction). */
252b5132 527static char save_stack[32];
ce8a8b2f 528static char *save_stack_p;
252b5132
RH
529#define END_STRING_AND_SAVE(s) \
530 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
531#define RESTORE_END_STRING(s) \
532 do { *(s) = *--save_stack_p; } while (0)
533
47926f60 534/* The instruction we're assembling. */
252b5132
RH
535static i386_insn i;
536
537/* Possible templates for current insn. */
538static const templates *current_templates;
539
31b2323c
L
540/* Per instruction expressionS buffers: max displacements & immediates. */
541static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
542static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 543
47926f60 544/* Current operand we are working on. */
ee86248c 545static int this_operand = -1;
252b5132 546
3e73aa7c
JH
547/* We support four different modes. FLAG_CODE variable is used to distinguish
548 these. */
549
550enum flag_code {
551 CODE_32BIT,
552 CODE_16BIT,
553 CODE_64BIT };
554
555static enum flag_code flag_code;
4fa24527 556static unsigned int object_64bit;
862be3fb 557static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
558static int use_rela_relocations = 0;
559
7af8ed2d
NC
560#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
561 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
562 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
563
351f65ca
L
564/* The ELF ABI to use. */
565enum x86_elf_abi
566{
567 I386_ABI,
7f56bc95
L
568 X86_64_ABI,
569 X86_64_X32_ABI
351f65ca
L
570};
571
572static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 573#endif
351f65ca 574
167ad85b
TG
575#if defined (TE_PE) || defined (TE_PEP)
576/* Use big object file format. */
577static int use_big_obj = 0;
578#endif
579
8dcea932
L
580#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
581/* 1 if generating code for a shared library. */
582static int shared = 0;
583#endif
584
47926f60
KH
585/* 1 for intel syntax,
586 0 if att syntax. */
587static int intel_syntax = 0;
252b5132 588
e89c5eaa
L
589/* 1 for Intel64 ISA,
590 0 if AMD64 ISA. */
591static int intel64;
592
1efbbeb4
L
593/* 1 for intel mnemonic,
594 0 if att mnemonic. */
595static int intel_mnemonic = !SYSV386_COMPAT;
596
a60de03c
JB
597/* 1 if pseudo registers are permitted. */
598static int allow_pseudo_reg = 0;
599
47926f60
KH
600/* 1 if register prefix % not required. */
601static int allow_naked_reg = 0;
252b5132 602
33eaf5de 603/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
604 instructions supporting it, even if this prefix wasn't specified
605 explicitly. */
606static int add_bnd_prefix = 0;
607
ba104c83 608/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
609static int allow_index_reg = 0;
610
d022bddd
IT
611/* 1 if the assembler should ignore LOCK prefix, even if it was
612 specified explicitly. */
613static int omit_lock_prefix = 0;
614
e4e00185
AS
615/* 1 if the assembler should encode lfence, mfence, and sfence as
616 "lock addl $0, (%{re}sp)". */
617static int avoid_fence = 0;
618
0cb4071e
L
619/* 1 if the assembler should generate relax relocations. */
620
621static int generate_relax_relocations
622 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
623
7bab8ab5 624static enum check_kind
daf50ae7 625 {
7bab8ab5
JB
626 check_none = 0,
627 check_warning,
628 check_error
daf50ae7 629 }
7bab8ab5 630sse_check, operand_check = check_warning;
daf50ae7 631
b6f8c7c4
L
632/* Optimization:
633 1. Clear the REX_W bit with register operand if possible.
634 2. Above plus use 128bit vector instruction to clear the full vector
635 register.
636 */
637static int optimize = 0;
638
639/* Optimization:
640 1. Clear the REX_W bit with register operand if possible.
641 2. Above plus use 128bit vector instruction to clear the full vector
642 register.
643 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
644 "testb $imm7,%r8".
645 */
646static int optimize_for_space = 0;
647
2ca3ace5
L
648/* Register prefix used for error message. */
649static const char *register_prefix = "%";
650
47926f60
KH
651/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
652 leave, push, and pop instructions so that gcc has the same stack
653 frame as in 32 bit mode. */
654static char stackop_size = '\0';
eecb386c 655
12b55ccc
L
656/* Non-zero to optimize code alignment. */
657int optimize_align_code = 1;
658
47926f60
KH
659/* Non-zero to quieten some warnings. */
660static int quiet_warnings = 0;
a38cf1db 661
47926f60
KH
662/* CPU name. */
663static const char *cpu_arch_name = NULL;
6305a203 664static char *cpu_sub_arch_name = NULL;
a38cf1db 665
47926f60 666/* CPU feature flags. */
40fb9820
L
667static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
668
ccc9c027
L
669/* If we have selected a cpu we are generating instructions for. */
670static int cpu_arch_tune_set = 0;
671
9103f4f4 672/* Cpu we are generating instructions for. */
fbf3f584 673enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
674
675/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 676static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 677
ccc9c027 678/* CPU instruction set architecture used. */
fbf3f584 679enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 680
9103f4f4 681/* CPU feature flags of instruction set architecture used. */
fbf3f584 682i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 683
fddf5b5b
AM
684/* If set, conditional jumps are not automatically promoted to handle
685 larger than a byte offset. */
686static unsigned int no_cond_jump_promotion = 0;
687
c0f3af97
L
688/* Encode SSE instructions with VEX prefix. */
689static unsigned int sse2avx;
690
539f890d
L
691/* Encode scalar AVX instructions with specific vector length. */
692static enum
693 {
694 vex128 = 0,
695 vex256
696 } avxscalar;
697
03751133
L
698/* Encode VEX WIG instructions with specific vex.w. */
699static enum
700 {
701 vexw0 = 0,
702 vexw1
703 } vexwig;
704
43234a1e
L
705/* Encode scalar EVEX LIG instructions with specific vector length. */
706static enum
707 {
708 evexl128 = 0,
709 evexl256,
710 evexl512
711 } evexlig;
712
713/* Encode EVEX WIG instructions with specific evex.w. */
714static enum
715 {
716 evexw0 = 0,
717 evexw1
718 } evexwig;
719
d3d3c6db
IT
720/* Value to encode in EVEX RC bits, for SAE-only instructions. */
721static enum rc_type evexrcig = rne;
722
29b0f896 723/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 724static symbolS *GOT_symbol;
29b0f896 725
a4447b93
RH
726/* The dwarf2 return column, adjusted for 32 or 64 bit. */
727unsigned int x86_dwarf2_return_column;
728
729/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
730int x86_cie_data_alignment;
731
252b5132 732/* Interface to relax_segment.
fddf5b5b
AM
733 There are 3 major relax states for 386 jump insns because the
734 different types of jumps add different sizes to frags when we're
735 figuring out what sort of jump to choose to reach a given label. */
252b5132 736
47926f60 737/* Types. */
93c2a809
AM
738#define UNCOND_JUMP 0
739#define COND_JUMP 1
740#define COND_JUMP86 2
fddf5b5b 741
47926f60 742/* Sizes. */
252b5132
RH
743#define CODE16 1
744#define SMALL 0
29b0f896 745#define SMALL16 (SMALL | CODE16)
252b5132 746#define BIG 2
29b0f896 747#define BIG16 (BIG | CODE16)
252b5132
RH
748
749#ifndef INLINE
750#ifdef __GNUC__
751#define INLINE __inline__
752#else
753#define INLINE
754#endif
755#endif
756
fddf5b5b
AM
757#define ENCODE_RELAX_STATE(type, size) \
758 ((relax_substateT) (((type) << 2) | (size)))
759#define TYPE_FROM_RELAX_STATE(s) \
760 ((s) >> 2)
761#define DISP_SIZE_FROM_RELAX_STATE(s) \
762 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
763
764/* This table is used by relax_frag to promote short jumps to long
765 ones where necessary. SMALL (short) jumps may be promoted to BIG
766 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
767 don't allow a short jump in a 32 bit code segment to be promoted to
768 a 16 bit offset jump because it's slower (requires data size
769 prefix), and doesn't work, unless the destination is in the bottom
770 64k of the code segment (The top 16 bits of eip are zeroed). */
771
772const relax_typeS md_relax_table[] =
773{
24eab124
AM
774 /* The fields are:
775 1) most positive reach of this state,
776 2) most negative reach of this state,
93c2a809 777 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 778 4) which index into the table to try if we can't fit into this one. */
252b5132 779
fddf5b5b 780 /* UNCOND_JUMP states. */
93c2a809
AM
781 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
782 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
783 /* dword jmp adds 4 bytes to frag:
784 0 extra opcode bytes, 4 displacement bytes. */
252b5132 785 {0, 0, 4, 0},
93c2a809
AM
786 /* word jmp adds 2 byte2 to frag:
787 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
788 {0, 0, 2, 0},
789
93c2a809
AM
790 /* COND_JUMP states. */
791 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
792 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
793 /* dword conditionals adds 5 bytes to frag:
794 1 extra opcode byte, 4 displacement bytes. */
795 {0, 0, 5, 0},
fddf5b5b 796 /* word conditionals add 3 bytes to frag:
93c2a809
AM
797 1 extra opcode byte, 2 displacement bytes. */
798 {0, 0, 3, 0},
799
800 /* COND_JUMP86 states. */
801 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
802 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
803 /* dword conditionals adds 5 bytes to frag:
804 1 extra opcode byte, 4 displacement bytes. */
805 {0, 0, 5, 0},
806 /* word conditionals add 4 bytes to frag:
807 1 displacement byte and a 3 byte long branch insn. */
808 {0, 0, 4, 0}
252b5132
RH
809};
810
9103f4f4
L
811static const arch_entry cpu_arch[] =
812{
89507696
JB
813 /* Do not replace the first two entries - i386_target_format()
814 relies on them being there in this order. */
8a2c8fef 815 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 816 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 817 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 818 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 819 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 820 CPU_NONE_FLAGS, 0 },
8a2c8fef 821 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 822 CPU_I186_FLAGS, 0 },
8a2c8fef 823 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 824 CPU_I286_FLAGS, 0 },
8a2c8fef 825 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 826 CPU_I386_FLAGS, 0 },
8a2c8fef 827 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 828 CPU_I486_FLAGS, 0 },
8a2c8fef 829 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 830 CPU_I586_FLAGS, 0 },
8a2c8fef 831 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 832 CPU_I686_FLAGS, 0 },
8a2c8fef 833 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 834 CPU_I586_FLAGS, 0 },
8a2c8fef 835 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 836 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 837 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 838 CPU_P2_FLAGS, 0 },
8a2c8fef 839 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 840 CPU_P3_FLAGS, 0 },
8a2c8fef 841 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 842 CPU_P4_FLAGS, 0 },
8a2c8fef 843 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 844 CPU_CORE_FLAGS, 0 },
8a2c8fef 845 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 846 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 847 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 848 CPU_CORE_FLAGS, 1 },
8a2c8fef 849 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 850 CPU_CORE_FLAGS, 0 },
8a2c8fef 851 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 852 CPU_CORE2_FLAGS, 1 },
8a2c8fef 853 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 854 CPU_CORE2_FLAGS, 0 },
8a2c8fef 855 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 856 CPU_COREI7_FLAGS, 0 },
8a2c8fef 857 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 858 CPU_L1OM_FLAGS, 0 },
7a9068fe 859 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 860 CPU_K1OM_FLAGS, 0 },
81486035 861 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 862 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 863 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 864 CPU_K6_FLAGS, 0 },
8a2c8fef 865 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 866 CPU_K6_2_FLAGS, 0 },
8a2c8fef 867 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 868 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 869 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 870 CPU_K8_FLAGS, 1 },
8a2c8fef 871 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 872 CPU_K8_FLAGS, 0 },
8a2c8fef 873 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 874 CPU_K8_FLAGS, 0 },
8a2c8fef 875 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 876 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 877 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 878 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 879 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 880 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 881 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 882 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 883 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 884 CPU_BDVER4_FLAGS, 0 },
029f3522 885 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 886 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
887 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
888 CPU_ZNVER2_FLAGS, 0 },
7b458c12 889 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 890 CPU_BTVER1_FLAGS, 0 },
7b458c12 891 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 892 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 893 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 894 CPU_8087_FLAGS, 0 },
8a2c8fef 895 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 896 CPU_287_FLAGS, 0 },
8a2c8fef 897 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 898 CPU_387_FLAGS, 0 },
1848e567
L
899 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
900 CPU_687_FLAGS, 0 },
d871f3f4
L
901 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
902 CPU_CMOV_FLAGS, 0 },
903 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
904 CPU_FXSR_FLAGS, 0 },
8a2c8fef 905 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 906 CPU_MMX_FLAGS, 0 },
8a2c8fef 907 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 908 CPU_SSE_FLAGS, 0 },
8a2c8fef 909 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 910 CPU_SSE2_FLAGS, 0 },
8a2c8fef 911 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 912 CPU_SSE3_FLAGS, 0 },
8a2c8fef 913 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 914 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 915 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 916 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 917 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 918 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 919 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 920 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 921 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 922 CPU_AVX_FLAGS, 0 },
6c30d220 923 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 924 CPU_AVX2_FLAGS, 0 },
43234a1e 925 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 926 CPU_AVX512F_FLAGS, 0 },
43234a1e 927 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 928 CPU_AVX512CD_FLAGS, 0 },
43234a1e 929 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 930 CPU_AVX512ER_FLAGS, 0 },
43234a1e 931 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 932 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 933 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 934 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 935 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 936 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 937 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 938 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 939 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 940 CPU_VMX_FLAGS, 0 },
8729a6f6 941 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 942 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 943 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 944 CPU_SMX_FLAGS, 0 },
8a2c8fef 945 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 946 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 947 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 948 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 949 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 950 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 951 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 952 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 953 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 954 CPU_AES_FLAGS, 0 },
8a2c8fef 955 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 956 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 957 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 958 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 959 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 960 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 961 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 962 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 963 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 964 CPU_F16C_FLAGS, 0 },
6c30d220 965 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 966 CPU_BMI2_FLAGS, 0 },
8a2c8fef 967 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 968 CPU_FMA_FLAGS, 0 },
8a2c8fef 969 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 970 CPU_FMA4_FLAGS, 0 },
8a2c8fef 971 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 972 CPU_XOP_FLAGS, 0 },
8a2c8fef 973 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 974 CPU_LWP_FLAGS, 0 },
8a2c8fef 975 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 976 CPU_MOVBE_FLAGS, 0 },
60aa667e 977 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 978 CPU_CX16_FLAGS, 0 },
8a2c8fef 979 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 980 CPU_EPT_FLAGS, 0 },
6c30d220 981 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 982 CPU_LZCNT_FLAGS, 0 },
42164a71 983 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 984 CPU_HLE_FLAGS, 0 },
42164a71 985 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 986 CPU_RTM_FLAGS, 0 },
6c30d220 987 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 988 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 989 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 990 CPU_CLFLUSH_FLAGS, 0 },
22109423 991 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 992 CPU_NOP_FLAGS, 0 },
8a2c8fef 993 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 994 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 995 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 996 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 997 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 998 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 999 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 1000 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 1001 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 1002 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 1003 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 1004 CPU_SVME_FLAGS, 1 },
8a2c8fef 1005 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 1006 CPU_SVME_FLAGS, 0 },
8a2c8fef 1007 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 1008 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 1009 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 1010 CPU_ABM_FLAGS, 0 },
87973e9f 1011 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 1012 CPU_BMI_FLAGS, 0 },
2a2a0f38 1013 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 1014 CPU_TBM_FLAGS, 0 },
e2e1fcde 1015 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 1016 CPU_ADX_FLAGS, 0 },
e2e1fcde 1017 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 1018 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 1019 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 1020 CPU_PRFCHW_FLAGS, 0 },
5c111e37 1021 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 1022 CPU_SMAP_FLAGS, 0 },
7e8b059b 1023 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 1024 CPU_MPX_FLAGS, 0 },
a0046408 1025 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 1026 CPU_SHA_FLAGS, 0 },
963f3586 1027 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 1028 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 1029 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 1030 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 1031 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 1032 CPU_SE1_FLAGS, 0 },
c5e7287a 1033 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 1034 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 1035 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 1036 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 1037 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 1038 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
1039 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1040 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
1041 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1042 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1043 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1044 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1045 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1046 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1047 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1048 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1049 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1050 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1051 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1052 CPU_CLZERO_FLAGS, 0 },
9916071f 1053 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1054 CPU_MWAITX_FLAGS, 0 },
8eab4136 1055 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1056 CPU_OSPKE_FLAGS, 0 },
8bc52696 1057 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1058 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1059 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1060 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1061 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1062 CPU_IBT_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1064 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1065 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1066 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1067 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1068 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1069 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1070 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1071 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1072 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1073 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1074 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1075 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1076 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1077 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1078 CPU_CLDEMOTE_FLAGS, 0 },
c0a30a9f
L
1079 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1080 CPU_MOVDIRI_FLAGS, 0 },
1081 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1082 CPU_MOVDIR64B_FLAGS, 0 },
d6aab7a1
XG
1083 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1084 CPU_AVX512_BF16_FLAGS, 0 },
9186c494
L
1085 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1086 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
dd455cf5
L
1087 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1088 CPU_ENQCMD_FLAGS, 0 },
293f5f65
L
1089};
1090
1091static const noarch_entry cpu_noarch[] =
1092{
1093 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1094 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1095 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1096 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
d871f3f4
L
1097 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1098 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
293f5f65
L
1099 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1100 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1101 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1102 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1103 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1104 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1105 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1106 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1107 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1108 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1109 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1110 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1111 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1112 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1113 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1114 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1115 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1116 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1117 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1118 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1119 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1120 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1121 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1122 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1123 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1124 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1125 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
c0a30a9f
L
1126 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1127 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
d6aab7a1 1128 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
9186c494 1129 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
dd455cf5 1130 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
e413e4e9
AM
1131};
1132
704209c0 1133#ifdef I386COFF
a6c24e68
NC
1134/* Like s_lcomm_internal in gas/read.c but the alignment string
1135 is allowed to be optional. */
1136
1137static symbolS *
1138pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1139{
1140 addressT align = 0;
1141
1142 SKIP_WHITESPACE ();
1143
7ab9ffdd 1144 if (needs_align
a6c24e68
NC
1145 && *input_line_pointer == ',')
1146 {
1147 align = parse_align (needs_align - 1);
7ab9ffdd 1148
a6c24e68
NC
1149 if (align == (addressT) -1)
1150 return NULL;
1151 }
1152 else
1153 {
1154 if (size >= 8)
1155 align = 3;
1156 else if (size >= 4)
1157 align = 2;
1158 else if (size >= 2)
1159 align = 1;
1160 else
1161 align = 0;
1162 }
1163
1164 bss_alloc (symbolP, size, align);
1165 return symbolP;
1166}
1167
704209c0 1168static void
a6c24e68
NC
1169pe_lcomm (int needs_align)
1170{
1171 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1172}
704209c0 1173#endif
a6c24e68 1174
29b0f896
AM
1175const pseudo_typeS md_pseudo_table[] =
1176{
1177#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1178 {"align", s_align_bytes, 0},
1179#else
1180 {"align", s_align_ptwo, 0},
1181#endif
1182 {"arch", set_cpu_arch, 0},
1183#ifndef I386COFF
1184 {"bss", s_bss, 0},
a6c24e68
NC
1185#else
1186 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1187#endif
1188 {"ffloat", float_cons, 'f'},
1189 {"dfloat", float_cons, 'd'},
1190 {"tfloat", float_cons, 'x'},
1191 {"value", cons, 2},
d182319b 1192 {"slong", signed_cons, 4},
29b0f896
AM
1193 {"noopt", s_ignore, 0},
1194 {"optim", s_ignore, 0},
1195 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1196 {"code16", set_code_flag, CODE_16BIT},
1197 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1198#ifdef BFD64
29b0f896 1199 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1200#endif
29b0f896
AM
1201 {"intel_syntax", set_intel_syntax, 1},
1202 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1203 {"intel_mnemonic", set_intel_mnemonic, 1},
1204 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1205 {"allow_index_reg", set_allow_index_reg, 1},
1206 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1207 {"sse_check", set_check, 0},
1208 {"operand_check", set_check, 1},
3b22753a
L
1209#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1210 {"largecomm", handle_large_common, 0},
07a53e5c 1211#else
68d20676 1212 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1213 {"loc", dwarf2_directive_loc, 0},
1214 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1215#endif
6482c264
NC
1216#ifdef TE_PE
1217 {"secrel32", pe_directive_secrel, 0},
1218#endif
29b0f896
AM
1219 {0, 0, 0}
1220};
1221
1222/* For interface with expression (). */
1223extern char *input_line_pointer;
1224
1225/* Hash table for instruction mnemonic lookup. */
1226static struct hash_control *op_hash;
1227
1228/* Hash table for register lookup. */
1229static struct hash_control *reg_hash;
1230\f
ce8a8b2f
AM
1231 /* Various efficient no-op patterns for aligning code labels.
1232 Note: Don't try to assemble the instructions in the comments.
1233 0L and 0w are not legal. */
62a02d25
L
1234static const unsigned char f32_1[] =
1235 {0x90}; /* nop */
1236static const unsigned char f32_2[] =
1237 {0x66,0x90}; /* xchg %ax,%ax */
1238static const unsigned char f32_3[] =
1239 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1240static const unsigned char f32_4[] =
1241 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1242static const unsigned char f32_6[] =
1243 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1244static const unsigned char f32_7[] =
1245 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1246static const unsigned char f16_3[] =
3ae729d5 1247 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1248static const unsigned char f16_4[] =
3ae729d5
L
1249 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1250static const unsigned char jump_disp8[] =
1251 {0xeb}; /* jmp disp8 */
1252static const unsigned char jump32_disp32[] =
1253 {0xe9}; /* jmp disp32 */
1254static const unsigned char jump16_disp32[] =
1255 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1256/* 32-bit NOPs patterns. */
1257static const unsigned char *const f32_patt[] = {
3ae729d5 1258 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1259};
1260/* 16-bit NOPs patterns. */
1261static const unsigned char *const f16_patt[] = {
3ae729d5 1262 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1263};
1264/* nopl (%[re]ax) */
1265static const unsigned char alt_3[] =
1266 {0x0f,0x1f,0x00};
1267/* nopl 0(%[re]ax) */
1268static const unsigned char alt_4[] =
1269 {0x0f,0x1f,0x40,0x00};
1270/* nopl 0(%[re]ax,%[re]ax,1) */
1271static const unsigned char alt_5[] =
1272 {0x0f,0x1f,0x44,0x00,0x00};
1273/* nopw 0(%[re]ax,%[re]ax,1) */
1274static const unsigned char alt_6[] =
1275 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1276/* nopl 0L(%[re]ax) */
1277static const unsigned char alt_7[] =
1278 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1279/* nopl 0L(%[re]ax,%[re]ax,1) */
1280static const unsigned char alt_8[] =
1281 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1282/* nopw 0L(%[re]ax,%[re]ax,1) */
1283static const unsigned char alt_9[] =
1284 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1285/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1286static const unsigned char alt_10[] =
1287 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1288/* data16 nopw %cs:0L(%eax,%eax,1) */
1289static const unsigned char alt_11[] =
1290 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1291/* 32-bit and 64-bit NOPs patterns. */
1292static const unsigned char *const alt_patt[] = {
1293 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1294 alt_9, alt_10, alt_11
62a02d25
L
1295};
1296
1297/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1298 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1299
1300static void
1301i386_output_nops (char *where, const unsigned char *const *patt,
1302 int count, int max_single_nop_size)
1303
1304{
3ae729d5
L
1305 /* Place the longer NOP first. */
1306 int last;
1307 int offset;
3076e594
NC
1308 const unsigned char *nops;
1309
1310 if (max_single_nop_size < 1)
1311 {
1312 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1313 max_single_nop_size);
1314 return;
1315 }
1316
1317 nops = patt[max_single_nop_size - 1];
3ae729d5
L
1318
1319 /* Use the smaller one if the requsted one isn't available. */
1320 if (nops == NULL)
62a02d25 1321 {
3ae729d5
L
1322 max_single_nop_size--;
1323 nops = patt[max_single_nop_size - 1];
62a02d25
L
1324 }
1325
3ae729d5
L
1326 last = count % max_single_nop_size;
1327
1328 count -= last;
1329 for (offset = 0; offset < count; offset += max_single_nop_size)
1330 memcpy (where + offset, nops, max_single_nop_size);
1331
1332 if (last)
1333 {
1334 nops = patt[last - 1];
1335 if (nops == NULL)
1336 {
1337 /* Use the smaller one plus one-byte NOP if the needed one
1338 isn't available. */
1339 last--;
1340 nops = patt[last - 1];
1341 memcpy (where + offset, nops, last);
1342 where[offset + last] = *patt[0];
1343 }
1344 else
1345 memcpy (where + offset, nops, last);
1346 }
62a02d25
L
1347}
1348
3ae729d5
L
1349static INLINE int
1350fits_in_imm7 (offsetT num)
1351{
1352 return (num & 0x7f) == num;
1353}
1354
1355static INLINE int
1356fits_in_imm31 (offsetT num)
1357{
1358 return (num & 0x7fffffff) == num;
1359}
62a02d25
L
1360
1361/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1362 single NOP instruction LIMIT. */
1363
1364void
3ae729d5 1365i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1366{
3ae729d5 1367 const unsigned char *const *patt = NULL;
62a02d25 1368 int max_single_nop_size;
3ae729d5
L
1369 /* Maximum number of NOPs before switching to jump over NOPs. */
1370 int max_number_of_nops;
62a02d25 1371
3ae729d5 1372 switch (fragP->fr_type)
62a02d25 1373 {
3ae729d5
L
1374 case rs_fill_nop:
1375 case rs_align_code:
1376 break;
1377 default:
62a02d25
L
1378 return;
1379 }
1380
ccc9c027
L
1381 /* We need to decide which NOP sequence to use for 32bit and
1382 64bit. When -mtune= is used:
4eed87de 1383
76bc74dc
L
1384 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1385 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1386 2. For the rest, alt_patt will be used.
1387
1388 When -mtune= isn't used, alt_patt will be used if
22109423 1389 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1390 be used.
ccc9c027
L
1391
1392 When -march= or .arch is used, we can't use anything beyond
1393 cpu_arch_isa_flags. */
1394
1395 if (flag_code == CODE_16BIT)
1396 {
3ae729d5
L
1397 patt = f16_patt;
1398 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1399 /* Limit number of NOPs to 2 in 16-bit mode. */
1400 max_number_of_nops = 2;
252b5132 1401 }
33fef721 1402 else
ccc9c027 1403 {
fbf3f584 1404 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1405 {
1406 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1407 switch (cpu_arch_tune)
1408 {
1409 case PROCESSOR_UNKNOWN:
1410 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1411 optimize with nops. */
1412 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1413 patt = alt_patt;
ccc9c027
L
1414 else
1415 patt = f32_patt;
1416 break;
ccc9c027
L
1417 case PROCESSOR_PENTIUM4:
1418 case PROCESSOR_NOCONA:
ef05d495 1419 case PROCESSOR_CORE:
76bc74dc 1420 case PROCESSOR_CORE2:
bd5295b2 1421 case PROCESSOR_COREI7:
3632d14b 1422 case PROCESSOR_L1OM:
7a9068fe 1423 case PROCESSOR_K1OM:
76bc74dc 1424 case PROCESSOR_GENERIC64:
ccc9c027
L
1425 case PROCESSOR_K6:
1426 case PROCESSOR_ATHLON:
1427 case PROCESSOR_K8:
4eed87de 1428 case PROCESSOR_AMDFAM10:
8aedb9fe 1429 case PROCESSOR_BD:
029f3522 1430 case PROCESSOR_ZNVER:
7b458c12 1431 case PROCESSOR_BT:
80b8656c 1432 patt = alt_patt;
ccc9c027 1433 break;
76bc74dc 1434 case PROCESSOR_I386:
ccc9c027
L
1435 case PROCESSOR_I486:
1436 case PROCESSOR_PENTIUM:
2dde1948 1437 case PROCESSOR_PENTIUMPRO:
81486035 1438 case PROCESSOR_IAMCU:
ccc9c027
L
1439 case PROCESSOR_GENERIC32:
1440 patt = f32_patt;
1441 break;
4eed87de 1442 }
ccc9c027
L
1443 }
1444 else
1445 {
fbf3f584 1446 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1447 {
1448 case PROCESSOR_UNKNOWN:
e6a14101 1449 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1450 PROCESSOR_UNKNOWN. */
1451 abort ();
1452 break;
1453
76bc74dc 1454 case PROCESSOR_I386:
ccc9c027
L
1455 case PROCESSOR_I486:
1456 case PROCESSOR_PENTIUM:
81486035 1457 case PROCESSOR_IAMCU:
ccc9c027
L
1458 case PROCESSOR_K6:
1459 case PROCESSOR_ATHLON:
1460 case PROCESSOR_K8:
4eed87de 1461 case PROCESSOR_AMDFAM10:
8aedb9fe 1462 case PROCESSOR_BD:
029f3522 1463 case PROCESSOR_ZNVER:
7b458c12 1464 case PROCESSOR_BT:
ccc9c027
L
1465 case PROCESSOR_GENERIC32:
1466 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1467 with nops. */
1468 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1469 patt = alt_patt;
ccc9c027
L
1470 else
1471 patt = f32_patt;
1472 break;
76bc74dc
L
1473 case PROCESSOR_PENTIUMPRO:
1474 case PROCESSOR_PENTIUM4:
1475 case PROCESSOR_NOCONA:
1476 case PROCESSOR_CORE:
ef05d495 1477 case PROCESSOR_CORE2:
bd5295b2 1478 case PROCESSOR_COREI7:
3632d14b 1479 case PROCESSOR_L1OM:
7a9068fe 1480 case PROCESSOR_K1OM:
22109423 1481 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1482 patt = alt_patt;
ccc9c027
L
1483 else
1484 patt = f32_patt;
1485 break;
1486 case PROCESSOR_GENERIC64:
80b8656c 1487 patt = alt_patt;
ccc9c027 1488 break;
4eed87de 1489 }
ccc9c027
L
1490 }
1491
76bc74dc
L
1492 if (patt == f32_patt)
1493 {
3ae729d5
L
1494 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1495 /* Limit number of NOPs to 2 for older processors. */
1496 max_number_of_nops = 2;
76bc74dc
L
1497 }
1498 else
1499 {
3ae729d5
L
1500 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1501 /* Limit number of NOPs to 7 for newer processors. */
1502 max_number_of_nops = 7;
1503 }
1504 }
1505
1506 if (limit == 0)
1507 limit = max_single_nop_size;
1508
1509 if (fragP->fr_type == rs_fill_nop)
1510 {
1511 /* Output NOPs for .nop directive. */
1512 if (limit > max_single_nop_size)
1513 {
1514 as_bad_where (fragP->fr_file, fragP->fr_line,
1515 _("invalid single nop size: %d "
1516 "(expect within [0, %d])"),
1517 limit, max_single_nop_size);
1518 return;
1519 }
1520 }
1521 else
1522 fragP->fr_var = count;
1523
1524 if ((count / max_single_nop_size) > max_number_of_nops)
1525 {
1526 /* Generate jump over NOPs. */
1527 offsetT disp = count - 2;
1528 if (fits_in_imm7 (disp))
1529 {
1530 /* Use "jmp disp8" if possible. */
1531 count = disp;
1532 where[0] = jump_disp8[0];
1533 where[1] = count;
1534 where += 2;
1535 }
1536 else
1537 {
1538 unsigned int size_of_jump;
1539
1540 if (flag_code == CODE_16BIT)
1541 {
1542 where[0] = jump16_disp32[0];
1543 where[1] = jump16_disp32[1];
1544 size_of_jump = 2;
1545 }
1546 else
1547 {
1548 where[0] = jump32_disp32[0];
1549 size_of_jump = 1;
1550 }
1551
1552 count -= size_of_jump + 4;
1553 if (!fits_in_imm31 (count))
1554 {
1555 as_bad_where (fragP->fr_file, fragP->fr_line,
1556 _("jump over nop padding out of range"));
1557 return;
1558 }
1559
1560 md_number_to_chars (where + size_of_jump, count, 4);
1561 where += size_of_jump + 4;
76bc74dc 1562 }
ccc9c027 1563 }
3ae729d5
L
1564
1565 /* Generate multiple NOPs. */
1566 i386_output_nops (where, patt, count, limit);
252b5132
RH
1567}
1568
c6fb90c8 1569static INLINE int
0dfbf9d7 1570operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1571{
0dfbf9d7 1572 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1573 {
1574 case 3:
0dfbf9d7 1575 if (x->array[2])
c6fb90c8 1576 return 0;
1a0670f3 1577 /* Fall through. */
c6fb90c8 1578 case 2:
0dfbf9d7 1579 if (x->array[1])
c6fb90c8 1580 return 0;
1a0670f3 1581 /* Fall through. */
c6fb90c8 1582 case 1:
0dfbf9d7 1583 return !x->array[0];
c6fb90c8
L
1584 default:
1585 abort ();
1586 }
40fb9820
L
1587}
1588
c6fb90c8 1589static INLINE void
0dfbf9d7 1590operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1591{
0dfbf9d7 1592 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1593 {
1594 case 3:
0dfbf9d7 1595 x->array[2] = v;
1a0670f3 1596 /* Fall through. */
c6fb90c8 1597 case 2:
0dfbf9d7 1598 x->array[1] = v;
1a0670f3 1599 /* Fall through. */
c6fb90c8 1600 case 1:
0dfbf9d7 1601 x->array[0] = v;
1a0670f3 1602 /* Fall through. */
c6fb90c8
L
1603 break;
1604 default:
1605 abort ();
1606 }
1607}
40fb9820 1608
c6fb90c8 1609static INLINE int
0dfbf9d7
L
1610operand_type_equal (const union i386_operand_type *x,
1611 const union i386_operand_type *y)
c6fb90c8 1612{
0dfbf9d7 1613 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1614 {
1615 case 3:
0dfbf9d7 1616 if (x->array[2] != y->array[2])
c6fb90c8 1617 return 0;
1a0670f3 1618 /* Fall through. */
c6fb90c8 1619 case 2:
0dfbf9d7 1620 if (x->array[1] != y->array[1])
c6fb90c8 1621 return 0;
1a0670f3 1622 /* Fall through. */
c6fb90c8 1623 case 1:
0dfbf9d7 1624 return x->array[0] == y->array[0];
c6fb90c8
L
1625 break;
1626 default:
1627 abort ();
1628 }
1629}
40fb9820 1630
0dfbf9d7
L
1631static INLINE int
1632cpu_flags_all_zero (const union i386_cpu_flags *x)
1633{
1634 switch (ARRAY_SIZE(x->array))
1635 {
53467f57
IT
1636 case 4:
1637 if (x->array[3])
1638 return 0;
1639 /* Fall through. */
0dfbf9d7
L
1640 case 3:
1641 if (x->array[2])
1642 return 0;
1a0670f3 1643 /* Fall through. */
0dfbf9d7
L
1644 case 2:
1645 if (x->array[1])
1646 return 0;
1a0670f3 1647 /* Fall through. */
0dfbf9d7
L
1648 case 1:
1649 return !x->array[0];
1650 default:
1651 abort ();
1652 }
1653}
1654
0dfbf9d7
L
1655static INLINE int
1656cpu_flags_equal (const union i386_cpu_flags *x,
1657 const union i386_cpu_flags *y)
1658{
1659 switch (ARRAY_SIZE(x->array))
1660 {
53467f57
IT
1661 case 4:
1662 if (x->array[3] != y->array[3])
1663 return 0;
1664 /* Fall through. */
0dfbf9d7
L
1665 case 3:
1666 if (x->array[2] != y->array[2])
1667 return 0;
1a0670f3 1668 /* Fall through. */
0dfbf9d7
L
1669 case 2:
1670 if (x->array[1] != y->array[1])
1671 return 0;
1a0670f3 1672 /* Fall through. */
0dfbf9d7
L
1673 case 1:
1674 return x->array[0] == y->array[0];
1675 break;
1676 default:
1677 abort ();
1678 }
1679}
c6fb90c8
L
1680
1681static INLINE int
1682cpu_flags_check_cpu64 (i386_cpu_flags f)
1683{
1684 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1685 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1686}
1687
c6fb90c8
L
1688static INLINE i386_cpu_flags
1689cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1690{
c6fb90c8
L
1691 switch (ARRAY_SIZE (x.array))
1692 {
53467f57
IT
1693 case 4:
1694 x.array [3] &= y.array [3];
1695 /* Fall through. */
c6fb90c8
L
1696 case 3:
1697 x.array [2] &= y.array [2];
1a0670f3 1698 /* Fall through. */
c6fb90c8
L
1699 case 2:
1700 x.array [1] &= y.array [1];
1a0670f3 1701 /* Fall through. */
c6fb90c8
L
1702 case 1:
1703 x.array [0] &= y.array [0];
1704 break;
1705 default:
1706 abort ();
1707 }
1708 return x;
1709}
40fb9820 1710
c6fb90c8
L
1711static INLINE i386_cpu_flags
1712cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1713{
c6fb90c8 1714 switch (ARRAY_SIZE (x.array))
40fb9820 1715 {
53467f57
IT
1716 case 4:
1717 x.array [3] |= y.array [3];
1718 /* Fall through. */
c6fb90c8
L
1719 case 3:
1720 x.array [2] |= y.array [2];
1a0670f3 1721 /* Fall through. */
c6fb90c8
L
1722 case 2:
1723 x.array [1] |= y.array [1];
1a0670f3 1724 /* Fall through. */
c6fb90c8
L
1725 case 1:
1726 x.array [0] |= y.array [0];
40fb9820
L
1727 break;
1728 default:
1729 abort ();
1730 }
40fb9820
L
1731 return x;
1732}
1733
309d3373
JB
1734static INLINE i386_cpu_flags
1735cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1736{
1737 switch (ARRAY_SIZE (x.array))
1738 {
53467f57
IT
1739 case 4:
1740 x.array [3] &= ~y.array [3];
1741 /* Fall through. */
309d3373
JB
1742 case 3:
1743 x.array [2] &= ~y.array [2];
1a0670f3 1744 /* Fall through. */
309d3373
JB
1745 case 2:
1746 x.array [1] &= ~y.array [1];
1a0670f3 1747 /* Fall through. */
309d3373
JB
1748 case 1:
1749 x.array [0] &= ~y.array [0];
1750 break;
1751 default:
1752 abort ();
1753 }
1754 return x;
1755}
1756
c0f3af97
L
1757#define CPU_FLAGS_ARCH_MATCH 0x1
1758#define CPU_FLAGS_64BIT_MATCH 0x2
1759
c0f3af97 1760#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1761 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1762
1763/* Return CPU flags match bits. */
3629bb00 1764
40fb9820 1765static int
d3ce72d0 1766cpu_flags_match (const insn_template *t)
40fb9820 1767{
c0f3af97
L
1768 i386_cpu_flags x = t->cpu_flags;
1769 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1770
1771 x.bitfield.cpu64 = 0;
1772 x.bitfield.cpuno64 = 0;
1773
0dfbf9d7 1774 if (cpu_flags_all_zero (&x))
c0f3af97
L
1775 {
1776 /* This instruction is available on all archs. */
db12e14e 1777 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1778 }
3629bb00
L
1779 else
1780 {
c0f3af97 1781 /* This instruction is available only on some archs. */
3629bb00
L
1782 i386_cpu_flags cpu = cpu_arch_flags;
1783
ab592e75
JB
1784 /* AVX512VL is no standalone feature - match it and then strip it. */
1785 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1786 return match;
1787 x.bitfield.cpuavx512vl = 0;
1788
3629bb00 1789 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1790 if (!cpu_flags_all_zero (&cpu))
1791 {
a5ff0eb2
L
1792 if (x.bitfield.cpuavx)
1793 {
929f69fa 1794 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1795 if (cpu.bitfield.cpuavx
1796 && (!t->opcode_modifier.sse2avx || sse2avx)
1797 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1798 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1799 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1800 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1801 }
929f69fa
JB
1802 else if (x.bitfield.cpuavx512f)
1803 {
1804 /* We need to check a few extra flags with AVX512F. */
1805 if (cpu.bitfield.cpuavx512f
1806 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1807 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1808 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1809 match |= CPU_FLAGS_ARCH_MATCH;
1810 }
a5ff0eb2 1811 else
db12e14e 1812 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1813 }
3629bb00 1814 }
c0f3af97 1815 return match;
40fb9820
L
1816}
1817
c6fb90c8
L
1818static INLINE i386_operand_type
1819operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1820{
c6fb90c8
L
1821 switch (ARRAY_SIZE (x.array))
1822 {
1823 case 3:
1824 x.array [2] &= y.array [2];
1a0670f3 1825 /* Fall through. */
c6fb90c8
L
1826 case 2:
1827 x.array [1] &= y.array [1];
1a0670f3 1828 /* Fall through. */
c6fb90c8
L
1829 case 1:
1830 x.array [0] &= y.array [0];
1831 break;
1832 default:
1833 abort ();
1834 }
1835 return x;
40fb9820
L
1836}
1837
73053c1f
JB
1838static INLINE i386_operand_type
1839operand_type_and_not (i386_operand_type x, i386_operand_type y)
1840{
1841 switch (ARRAY_SIZE (x.array))
1842 {
1843 case 3:
1844 x.array [2] &= ~y.array [2];
1845 /* Fall through. */
1846 case 2:
1847 x.array [1] &= ~y.array [1];
1848 /* Fall through. */
1849 case 1:
1850 x.array [0] &= ~y.array [0];
1851 break;
1852 default:
1853 abort ();
1854 }
1855 return x;
1856}
1857
c6fb90c8
L
1858static INLINE i386_operand_type
1859operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1860{
c6fb90c8 1861 switch (ARRAY_SIZE (x.array))
40fb9820 1862 {
c6fb90c8
L
1863 case 3:
1864 x.array [2] |= y.array [2];
1a0670f3 1865 /* Fall through. */
c6fb90c8
L
1866 case 2:
1867 x.array [1] |= y.array [1];
1a0670f3 1868 /* Fall through. */
c6fb90c8
L
1869 case 1:
1870 x.array [0] |= y.array [0];
40fb9820
L
1871 break;
1872 default:
1873 abort ();
1874 }
c6fb90c8
L
1875 return x;
1876}
40fb9820 1877
c6fb90c8
L
1878static INLINE i386_operand_type
1879operand_type_xor (i386_operand_type x, i386_operand_type y)
1880{
1881 switch (ARRAY_SIZE (x.array))
1882 {
1883 case 3:
1884 x.array [2] ^= y.array [2];
1a0670f3 1885 /* Fall through. */
c6fb90c8
L
1886 case 2:
1887 x.array [1] ^= y.array [1];
1a0670f3 1888 /* Fall through. */
c6fb90c8
L
1889 case 1:
1890 x.array [0] ^= y.array [0];
1891 break;
1892 default:
1893 abort ();
1894 }
40fb9820
L
1895 return x;
1896}
1897
1898static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1899static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
40fb9820
L
1900static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1901static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1902static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1903static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1904static const i386_operand_type anydisp
1905 = OPERAND_TYPE_ANYDISP;
40fb9820 1906static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 1907static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1908static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1909static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1910static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1911static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1912static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1913static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1914static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1915static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1916static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
a683cc34 1917static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
40fb9820
L
1918
1919enum operand_type
1920{
1921 reg,
40fb9820
L
1922 imm,
1923 disp,
1924 anymem
1925};
1926
c6fb90c8 1927static INLINE int
40fb9820
L
1928operand_type_check (i386_operand_type t, enum operand_type c)
1929{
1930 switch (c)
1931 {
1932 case reg:
dc821c5f 1933 return t.bitfield.reg;
40fb9820 1934
40fb9820
L
1935 case imm:
1936 return (t.bitfield.imm8
1937 || t.bitfield.imm8s
1938 || t.bitfield.imm16
1939 || t.bitfield.imm32
1940 || t.bitfield.imm32s
1941 || t.bitfield.imm64);
1942
1943 case disp:
1944 return (t.bitfield.disp8
1945 || t.bitfield.disp16
1946 || t.bitfield.disp32
1947 || t.bitfield.disp32s
1948 || t.bitfield.disp64);
1949
1950 case anymem:
1951 return (t.bitfield.disp8
1952 || t.bitfield.disp16
1953 || t.bitfield.disp32
1954 || t.bitfield.disp32s
1955 || t.bitfield.disp64
1956 || t.bitfield.baseindex);
1957
1958 default:
1959 abort ();
1960 }
2cfe26b6
AM
1961
1962 return 0;
40fb9820
L
1963}
1964
7a54636a
L
1965/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1966 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
1967
1968static INLINE int
7a54636a
L
1969match_operand_size (const insn_template *t, unsigned int wanted,
1970 unsigned int given)
5c07affc 1971{
3ac21baa
JB
1972 return !((i.types[given].bitfield.byte
1973 && !t->operand_types[wanted].bitfield.byte)
1974 || (i.types[given].bitfield.word
1975 && !t->operand_types[wanted].bitfield.word)
1976 || (i.types[given].bitfield.dword
1977 && !t->operand_types[wanted].bitfield.dword)
1978 || (i.types[given].bitfield.qword
1979 && !t->operand_types[wanted].bitfield.qword)
1980 || (i.types[given].bitfield.tbyte
1981 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
1982}
1983
dd40ce22
L
1984/* Return 1 if there is no conflict in SIMD register between operand
1985 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
1986
1987static INLINE int
dd40ce22
L
1988match_simd_size (const insn_template *t, unsigned int wanted,
1989 unsigned int given)
1b54b8d7 1990{
3ac21baa
JB
1991 return !((i.types[given].bitfield.xmmword
1992 && !t->operand_types[wanted].bitfield.xmmword)
1993 || (i.types[given].bitfield.ymmword
1994 && !t->operand_types[wanted].bitfield.ymmword)
1995 || (i.types[given].bitfield.zmmword
1996 && !t->operand_types[wanted].bitfield.zmmword));
1b54b8d7
JB
1997}
1998
7a54636a
L
1999/* Return 1 if there is no conflict in any size between operand GIVEN
2000 and opeand WANTED for instruction template T. */
5c07affc
L
2001
2002static INLINE int
dd40ce22
L
2003match_mem_size (const insn_template *t, unsigned int wanted,
2004 unsigned int given)
5c07affc 2005{
7a54636a 2006 return (match_operand_size (t, wanted, given)
3ac21baa 2007 && !((i.types[given].bitfield.unspecified
af508cb9 2008 && !i.broadcast
3ac21baa
JB
2009 && !t->operand_types[wanted].bitfield.unspecified)
2010 || (i.types[given].bitfield.fword
2011 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
2012 /* For scalar opcode templates to allow register and memory
2013 operands at the same time, some special casing is needed
d6793fa1
JB
2014 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2015 down-conversion vpmov*. */
3ac21baa 2016 || ((t->operand_types[wanted].bitfield.regsimd
1b54b8d7 2017 && !t->opcode_modifier.broadcast
3ac21baa
JB
2018 && (t->operand_types[wanted].bitfield.byte
2019 || t->operand_types[wanted].bitfield.word
2020 || t->operand_types[wanted].bitfield.dword
2021 || t->operand_types[wanted].bitfield.qword))
2022 ? (i.types[given].bitfield.xmmword
2023 || i.types[given].bitfield.ymmword
2024 || i.types[given].bitfield.zmmword)
2025 : !match_simd_size(t, wanted, given))));
5c07affc
L
2026}
2027
3ac21baa
JB
2028/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2029 operands for instruction template T, and it has MATCH_REVERSE set if there
2030 is no size conflict on any operands for the template with operands reversed
2031 (and the template allows for reversing in the first place). */
5c07affc 2032
3ac21baa
JB
2033#define MATCH_STRAIGHT 1
2034#define MATCH_REVERSE 2
2035
2036static INLINE unsigned int
d3ce72d0 2037operand_size_match (const insn_template *t)
5c07affc 2038{
3ac21baa 2039 unsigned int j, match = MATCH_STRAIGHT;
5c07affc
L
2040
2041 /* Don't check jump instructions. */
2042 if (t->opcode_modifier.jump
2043 || t->opcode_modifier.jumpbyte
2044 || t->opcode_modifier.jumpdword
2045 || t->opcode_modifier.jumpintersegment)
2046 return match;
2047
2048 /* Check memory and accumulator operand size. */
2049 for (j = 0; j < i.operands; j++)
2050 {
1b54b8d7
JB
2051 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
2052 && t->operand_types[j].bitfield.anysize)
5c07affc
L
2053 continue;
2054
1b54b8d7 2055 if (t->operand_types[j].bitfield.reg
7a54636a 2056 && !match_operand_size (t, j, j))
5c07affc
L
2057 {
2058 match = 0;
2059 break;
2060 }
2061
1b54b8d7 2062 if (t->operand_types[j].bitfield.regsimd
3ac21baa 2063 && !match_simd_size (t, j, j))
1b54b8d7
JB
2064 {
2065 match = 0;
2066 break;
2067 }
2068
2069 if (t->operand_types[j].bitfield.acc
7a54636a 2070 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2071 {
2072 match = 0;
2073 break;
2074 }
2075
c48dadc9 2076 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
5c07affc
L
2077 {
2078 match = 0;
2079 break;
2080 }
2081 }
2082
3ac21baa 2083 if (!t->opcode_modifier.d)
891edac4
L
2084 {
2085mismatch:
3ac21baa
JB
2086 if (!match)
2087 i.error = operand_size_mismatch;
2088 return match;
891edac4 2089 }
5c07affc
L
2090
2091 /* Check reverse. */
f5eb1d70 2092 gas_assert (i.operands >= 2 && i.operands <= 3);
5c07affc 2093
f5eb1d70 2094 for (j = 0; j < i.operands; j++)
5c07affc 2095 {
f5eb1d70
JB
2096 unsigned int given = i.operands - j - 1;
2097
dbbc8b7e 2098 if (t->operand_types[j].bitfield.reg
f5eb1d70 2099 && !match_operand_size (t, j, given))
891edac4 2100 goto mismatch;
5c07affc 2101
dbbc8b7e 2102 if (t->operand_types[j].bitfield.regsimd
f5eb1d70 2103 && !match_simd_size (t, j, given))
dbbc8b7e
JB
2104 goto mismatch;
2105
2106 if (t->operand_types[j].bitfield.acc
f5eb1d70
JB
2107 && (!match_operand_size (t, j, given)
2108 || !match_simd_size (t, j, given)))
dbbc8b7e
JB
2109 goto mismatch;
2110
f5eb1d70 2111 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
891edac4 2112 goto mismatch;
5c07affc
L
2113 }
2114
3ac21baa 2115 return match | MATCH_REVERSE;
5c07affc
L
2116}
2117
c6fb90c8 2118static INLINE int
40fb9820
L
2119operand_type_match (i386_operand_type overlap,
2120 i386_operand_type given)
2121{
2122 i386_operand_type temp = overlap;
2123
2124 temp.bitfield.jumpabsolute = 0;
7d5e4556 2125 temp.bitfield.unspecified = 0;
5c07affc
L
2126 temp.bitfield.byte = 0;
2127 temp.bitfield.word = 0;
2128 temp.bitfield.dword = 0;
2129 temp.bitfield.fword = 0;
2130 temp.bitfield.qword = 0;
2131 temp.bitfield.tbyte = 0;
2132 temp.bitfield.xmmword = 0;
c0f3af97 2133 temp.bitfield.ymmword = 0;
43234a1e 2134 temp.bitfield.zmmword = 0;
0dfbf9d7 2135 if (operand_type_all_zero (&temp))
891edac4 2136 goto mismatch;
40fb9820 2137
891edac4
L
2138 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2139 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2140 return 1;
2141
2142mismatch:
a65babc9 2143 i.error = operand_type_mismatch;
891edac4 2144 return 0;
40fb9820
L
2145}
2146
7d5e4556 2147/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2148 unless the expected operand type register overlap is null.
2149 Memory operand size of certain SIMD instructions is also being checked
2150 here. */
40fb9820 2151
c6fb90c8 2152static INLINE int
dc821c5f 2153operand_type_register_match (i386_operand_type g0,
40fb9820 2154 i386_operand_type t0,
40fb9820
L
2155 i386_operand_type g1,
2156 i386_operand_type t1)
2157{
10c17abd
JB
2158 if (!g0.bitfield.reg
2159 && !g0.bitfield.regsimd
2160 && (!operand_type_check (g0, anymem)
2161 || g0.bitfield.unspecified
2162 || !t0.bitfield.regsimd))
40fb9820
L
2163 return 1;
2164
10c17abd
JB
2165 if (!g1.bitfield.reg
2166 && !g1.bitfield.regsimd
2167 && (!operand_type_check (g1, anymem)
2168 || g1.bitfield.unspecified
2169 || !t1.bitfield.regsimd))
40fb9820
L
2170 return 1;
2171
dc821c5f
JB
2172 if (g0.bitfield.byte == g1.bitfield.byte
2173 && g0.bitfield.word == g1.bitfield.word
2174 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2175 && g0.bitfield.qword == g1.bitfield.qword
2176 && g0.bitfield.xmmword == g1.bitfield.xmmword
2177 && g0.bitfield.ymmword == g1.bitfield.ymmword
2178 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2179 return 1;
2180
dc821c5f
JB
2181 if (!(t0.bitfield.byte & t1.bitfield.byte)
2182 && !(t0.bitfield.word & t1.bitfield.word)
2183 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2184 && !(t0.bitfield.qword & t1.bitfield.qword)
2185 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2186 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2187 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2188 return 1;
2189
a65babc9 2190 i.error = register_type_mismatch;
891edac4
L
2191
2192 return 0;
40fb9820
L
2193}
2194
4c692bc7
JB
2195static INLINE unsigned int
2196register_number (const reg_entry *r)
2197{
2198 unsigned int nr = r->reg_num;
2199
2200 if (r->reg_flags & RegRex)
2201 nr += 8;
2202
200cbe0f
L
2203 if (r->reg_flags & RegVRex)
2204 nr += 16;
2205
4c692bc7
JB
2206 return nr;
2207}
2208
252b5132 2209static INLINE unsigned int
40fb9820 2210mode_from_disp_size (i386_operand_type t)
252b5132 2211{
b5014f7a 2212 if (t.bitfield.disp8)
40fb9820
L
2213 return 1;
2214 else if (t.bitfield.disp16
2215 || t.bitfield.disp32
2216 || t.bitfield.disp32s)
2217 return 2;
2218 else
2219 return 0;
252b5132
RH
2220}
2221
2222static INLINE int
65879393 2223fits_in_signed_byte (addressT num)
252b5132 2224{
65879393 2225 return num + 0x80 <= 0xff;
47926f60 2226}
252b5132
RH
2227
2228static INLINE int
65879393 2229fits_in_unsigned_byte (addressT num)
252b5132 2230{
65879393 2231 return num <= 0xff;
47926f60 2232}
252b5132
RH
2233
2234static INLINE int
65879393 2235fits_in_unsigned_word (addressT num)
252b5132 2236{
65879393 2237 return num <= 0xffff;
47926f60 2238}
252b5132
RH
2239
2240static INLINE int
65879393 2241fits_in_signed_word (addressT num)
252b5132 2242{
65879393 2243 return num + 0x8000 <= 0xffff;
47926f60 2244}
2a962e6d 2245
3e73aa7c 2246static INLINE int
65879393 2247fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2248{
2249#ifndef BFD64
2250 return 1;
2251#else
65879393 2252 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2253#endif
2254} /* fits_in_signed_long() */
2a962e6d 2255
3e73aa7c 2256static INLINE int
65879393 2257fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2258{
2259#ifndef BFD64
2260 return 1;
2261#else
65879393 2262 return num <= 0xffffffff;
3e73aa7c
JH
2263#endif
2264} /* fits_in_unsigned_long() */
252b5132 2265
43234a1e 2266static INLINE int
b5014f7a 2267fits_in_disp8 (offsetT num)
43234a1e
L
2268{
2269 int shift = i.memshift;
2270 unsigned int mask;
2271
2272 if (shift == -1)
2273 abort ();
2274
2275 mask = (1 << shift) - 1;
2276
2277 /* Return 0 if NUM isn't properly aligned. */
2278 if ((num & mask))
2279 return 0;
2280
2281 /* Check if NUM will fit in 8bit after shift. */
2282 return fits_in_signed_byte (num >> shift);
2283}
2284
a683cc34
SP
2285static INLINE int
2286fits_in_imm4 (offsetT num)
2287{
2288 return (num & 0xf) == num;
2289}
2290
40fb9820 2291static i386_operand_type
e3bb37b5 2292smallest_imm_type (offsetT num)
252b5132 2293{
40fb9820 2294 i386_operand_type t;
7ab9ffdd 2295
0dfbf9d7 2296 operand_type_set (&t, 0);
40fb9820
L
2297 t.bitfield.imm64 = 1;
2298
2299 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2300 {
2301 /* This code is disabled on the 486 because all the Imm1 forms
2302 in the opcode table are slower on the i486. They're the
2303 versions with the implicitly specified single-position
2304 displacement, which has another syntax if you really want to
2305 use that form. */
40fb9820
L
2306 t.bitfield.imm1 = 1;
2307 t.bitfield.imm8 = 1;
2308 t.bitfield.imm8s = 1;
2309 t.bitfield.imm16 = 1;
2310 t.bitfield.imm32 = 1;
2311 t.bitfield.imm32s = 1;
2312 }
2313 else if (fits_in_signed_byte (num))
2314 {
2315 t.bitfield.imm8 = 1;
2316 t.bitfield.imm8s = 1;
2317 t.bitfield.imm16 = 1;
2318 t.bitfield.imm32 = 1;
2319 t.bitfield.imm32s = 1;
2320 }
2321 else if (fits_in_unsigned_byte (num))
2322 {
2323 t.bitfield.imm8 = 1;
2324 t.bitfield.imm16 = 1;
2325 t.bitfield.imm32 = 1;
2326 t.bitfield.imm32s = 1;
2327 }
2328 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2329 {
2330 t.bitfield.imm16 = 1;
2331 t.bitfield.imm32 = 1;
2332 t.bitfield.imm32s = 1;
2333 }
2334 else if (fits_in_signed_long (num))
2335 {
2336 t.bitfield.imm32 = 1;
2337 t.bitfield.imm32s = 1;
2338 }
2339 else if (fits_in_unsigned_long (num))
2340 t.bitfield.imm32 = 1;
2341
2342 return t;
47926f60 2343}
252b5132 2344
847f7ad4 2345static offsetT
e3bb37b5 2346offset_in_range (offsetT val, int size)
847f7ad4 2347{
508866be 2348 addressT mask;
ba2adb93 2349
847f7ad4
AM
2350 switch (size)
2351 {
508866be
L
2352 case 1: mask = ((addressT) 1 << 8) - 1; break;
2353 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2354 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2355#ifdef BFD64
2356 case 8: mask = ((addressT) 2 << 63) - 1; break;
2357#endif
47926f60 2358 default: abort ();
847f7ad4
AM
2359 }
2360
9de868bf
L
2361#ifdef BFD64
2362 /* If BFD64, sign extend val for 32bit address mode. */
2363 if (flag_code != CODE_64BIT
2364 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2365 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2366 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2367#endif
ba2adb93 2368
47926f60 2369 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2370 {
2371 char buf1[40], buf2[40];
2372
2373 sprint_value (buf1, val);
2374 sprint_value (buf2, val & mask);
2375 as_warn (_("%s shortened to %s"), buf1, buf2);
2376 }
2377 return val & mask;
2378}
2379
c32fa91d
L
2380enum PREFIX_GROUP
2381{
2382 PREFIX_EXIST = 0,
2383 PREFIX_LOCK,
2384 PREFIX_REP,
04ef582a 2385 PREFIX_DS,
c32fa91d
L
2386 PREFIX_OTHER
2387};
2388
2389/* Returns
2390 a. PREFIX_EXIST if attempting to add a prefix where one from the
2391 same class already exists.
2392 b. PREFIX_LOCK if lock prefix is added.
2393 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2394 d. PREFIX_DS if ds prefix is added.
2395 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2396 */
2397
2398static enum PREFIX_GROUP
e3bb37b5 2399add_prefix (unsigned int prefix)
252b5132 2400{
c32fa91d 2401 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2402 unsigned int q;
252b5132 2403
29b0f896
AM
2404 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2405 && flag_code == CODE_64BIT)
b1905489 2406 {
161a04f6 2407 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2408 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2409 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2410 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2411 ret = PREFIX_EXIST;
b1905489
JB
2412 q = REX_PREFIX;
2413 }
3e73aa7c 2414 else
b1905489
JB
2415 {
2416 switch (prefix)
2417 {
2418 default:
2419 abort ();
2420
b1905489 2421 case DS_PREFIX_OPCODE:
04ef582a
L
2422 ret = PREFIX_DS;
2423 /* Fall through. */
2424 case CS_PREFIX_OPCODE:
b1905489
JB
2425 case ES_PREFIX_OPCODE:
2426 case FS_PREFIX_OPCODE:
2427 case GS_PREFIX_OPCODE:
2428 case SS_PREFIX_OPCODE:
2429 q = SEG_PREFIX;
2430 break;
2431
2432 case REPNE_PREFIX_OPCODE:
2433 case REPE_PREFIX_OPCODE:
c32fa91d
L
2434 q = REP_PREFIX;
2435 ret = PREFIX_REP;
2436 break;
2437
b1905489 2438 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2439 q = LOCK_PREFIX;
2440 ret = PREFIX_LOCK;
b1905489
JB
2441 break;
2442
2443 case FWAIT_OPCODE:
2444 q = WAIT_PREFIX;
2445 break;
2446
2447 case ADDR_PREFIX_OPCODE:
2448 q = ADDR_PREFIX;
2449 break;
2450
2451 case DATA_PREFIX_OPCODE:
2452 q = DATA_PREFIX;
2453 break;
2454 }
2455 if (i.prefix[q] != 0)
c32fa91d 2456 ret = PREFIX_EXIST;
b1905489 2457 }
252b5132 2458
b1905489 2459 if (ret)
252b5132 2460 {
b1905489
JB
2461 if (!i.prefix[q])
2462 ++i.prefixes;
2463 i.prefix[q] |= prefix;
252b5132 2464 }
b1905489
JB
2465 else
2466 as_bad (_("same type of prefix used twice"));
252b5132 2467
252b5132
RH
2468 return ret;
2469}
2470
2471static void
78f12dd3 2472update_code_flag (int value, int check)
eecb386c 2473{
78f12dd3
L
2474 PRINTF_LIKE ((*as_error));
2475
1e9cc1c2 2476 flag_code = (enum flag_code) value;
40fb9820
L
2477 if (flag_code == CODE_64BIT)
2478 {
2479 cpu_arch_flags.bitfield.cpu64 = 1;
2480 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2481 }
2482 else
2483 {
2484 cpu_arch_flags.bitfield.cpu64 = 0;
2485 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2486 }
2487 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2488 {
78f12dd3
L
2489 if (check)
2490 as_error = as_fatal;
2491 else
2492 as_error = as_bad;
2493 (*as_error) (_("64bit mode not supported on `%s'."),
2494 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2495 }
40fb9820 2496 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2497 {
78f12dd3
L
2498 if (check)
2499 as_error = as_fatal;
2500 else
2501 as_error = as_bad;
2502 (*as_error) (_("32bit mode not supported on `%s'."),
2503 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2504 }
eecb386c
AM
2505 stackop_size = '\0';
2506}
2507
78f12dd3
L
2508static void
2509set_code_flag (int value)
2510{
2511 update_code_flag (value, 0);
2512}
2513
eecb386c 2514static void
e3bb37b5 2515set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2516{
1e9cc1c2 2517 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2518 if (flag_code != CODE_16BIT)
2519 abort ();
2520 cpu_arch_flags.bitfield.cpu64 = 0;
2521 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2522 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2523}
2524
2525static void
e3bb37b5 2526set_intel_syntax (int syntax_flag)
252b5132
RH
2527{
2528 /* Find out if register prefixing is specified. */
2529 int ask_naked_reg = 0;
2530
2531 SKIP_WHITESPACE ();
29b0f896 2532 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2533 {
d02603dc
NC
2534 char *string;
2535 int e = get_symbol_name (&string);
252b5132 2536
47926f60 2537 if (strcmp (string, "prefix") == 0)
252b5132 2538 ask_naked_reg = 1;
47926f60 2539 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2540 ask_naked_reg = -1;
2541 else
d0b47220 2542 as_bad (_("bad argument to syntax directive."));
d02603dc 2543 (void) restore_line_pointer (e);
252b5132
RH
2544 }
2545 demand_empty_rest_of_line ();
c3332e24 2546
252b5132
RH
2547 intel_syntax = syntax_flag;
2548
2549 if (ask_naked_reg == 0)
f86103b7
AM
2550 allow_naked_reg = (intel_syntax
2551 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2552 else
2553 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2554
ee86248c 2555 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2556
e4a3b5a4 2557 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2558 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2559 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2560}
2561
1efbbeb4
L
2562static void
2563set_intel_mnemonic (int mnemonic_flag)
2564{
e1d4d893 2565 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2566}
2567
db51cc60
L
2568static void
2569set_allow_index_reg (int flag)
2570{
2571 allow_index_reg = flag;
2572}
2573
cb19c032 2574static void
7bab8ab5 2575set_check (int what)
cb19c032 2576{
7bab8ab5
JB
2577 enum check_kind *kind;
2578 const char *str;
2579
2580 if (what)
2581 {
2582 kind = &operand_check;
2583 str = "operand";
2584 }
2585 else
2586 {
2587 kind = &sse_check;
2588 str = "sse";
2589 }
2590
cb19c032
L
2591 SKIP_WHITESPACE ();
2592
2593 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2594 {
d02603dc
NC
2595 char *string;
2596 int e = get_symbol_name (&string);
cb19c032
L
2597
2598 if (strcmp (string, "none") == 0)
7bab8ab5 2599 *kind = check_none;
cb19c032 2600 else if (strcmp (string, "warning") == 0)
7bab8ab5 2601 *kind = check_warning;
cb19c032 2602 else if (strcmp (string, "error") == 0)
7bab8ab5 2603 *kind = check_error;
cb19c032 2604 else
7bab8ab5 2605 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2606 (void) restore_line_pointer (e);
cb19c032
L
2607 }
2608 else
7bab8ab5 2609 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2610
2611 demand_empty_rest_of_line ();
2612}
2613
8a9036a4
L
2614static void
2615check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2616 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2617{
2618#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2619 static const char *arch;
2620
2621 /* Intel LIOM is only supported on ELF. */
2622 if (!IS_ELF)
2623 return;
2624
2625 if (!arch)
2626 {
2627 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2628 use default_arch. */
2629 arch = cpu_arch_name;
2630 if (!arch)
2631 arch = default_arch;
2632 }
2633
81486035
L
2634 /* If we are targeting Intel MCU, we must enable it. */
2635 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2636 || new_flag.bitfield.cpuiamcu)
2637 return;
2638
3632d14b 2639 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2640 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2641 || new_flag.bitfield.cpul1om)
8a9036a4 2642 return;
76ba9986 2643
7a9068fe
L
2644 /* If we are targeting Intel K1OM, we must enable it. */
2645 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2646 || new_flag.bitfield.cpuk1om)
2647 return;
2648
8a9036a4
L
2649 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2650#endif
2651}
2652
e413e4e9 2653static void
e3bb37b5 2654set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2655{
47926f60 2656 SKIP_WHITESPACE ();
e413e4e9 2657
29b0f896 2658 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2659 {
d02603dc
NC
2660 char *string;
2661 int e = get_symbol_name (&string);
91d6fa6a 2662 unsigned int j;
40fb9820 2663 i386_cpu_flags flags;
e413e4e9 2664
91d6fa6a 2665 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2666 {
91d6fa6a 2667 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2668 {
91d6fa6a 2669 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2670
5c6af06e
JB
2671 if (*string != '.')
2672 {
91d6fa6a 2673 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2674 cpu_sub_arch_name = NULL;
91d6fa6a 2675 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2676 if (flag_code == CODE_64BIT)
2677 {
2678 cpu_arch_flags.bitfield.cpu64 = 1;
2679 cpu_arch_flags.bitfield.cpuno64 = 0;
2680 }
2681 else
2682 {
2683 cpu_arch_flags.bitfield.cpu64 = 0;
2684 cpu_arch_flags.bitfield.cpuno64 = 1;
2685 }
91d6fa6a
NC
2686 cpu_arch_isa = cpu_arch[j].type;
2687 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2688 if (!cpu_arch_tune_set)
2689 {
2690 cpu_arch_tune = cpu_arch_isa;
2691 cpu_arch_tune_flags = cpu_arch_isa_flags;
2692 }
5c6af06e
JB
2693 break;
2694 }
40fb9820 2695
293f5f65
L
2696 flags = cpu_flags_or (cpu_arch_flags,
2697 cpu_arch[j].flags);
81486035 2698
5b64d091 2699 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2700 {
6305a203
L
2701 if (cpu_sub_arch_name)
2702 {
2703 char *name = cpu_sub_arch_name;
2704 cpu_sub_arch_name = concat (name,
91d6fa6a 2705 cpu_arch[j].name,
1bf57e9f 2706 (const char *) NULL);
6305a203
L
2707 free (name);
2708 }
2709 else
91d6fa6a 2710 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2711 cpu_arch_flags = flags;
a586129e 2712 cpu_arch_isa_flags = flags;
5c6af06e 2713 }
0089dace
L
2714 else
2715 cpu_arch_isa_flags
2716 = cpu_flags_or (cpu_arch_isa_flags,
2717 cpu_arch[j].flags);
d02603dc 2718 (void) restore_line_pointer (e);
5c6af06e
JB
2719 demand_empty_rest_of_line ();
2720 return;
e413e4e9
AM
2721 }
2722 }
293f5f65
L
2723
2724 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2725 {
33eaf5de 2726 /* Disable an ISA extension. */
293f5f65
L
2727 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2728 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2729 {
2730 flags = cpu_flags_and_not (cpu_arch_flags,
2731 cpu_noarch[j].flags);
2732 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2733 {
2734 if (cpu_sub_arch_name)
2735 {
2736 char *name = cpu_sub_arch_name;
2737 cpu_sub_arch_name = concat (name, string,
2738 (const char *) NULL);
2739 free (name);
2740 }
2741 else
2742 cpu_sub_arch_name = xstrdup (string);
2743 cpu_arch_flags = flags;
2744 cpu_arch_isa_flags = flags;
2745 }
2746 (void) restore_line_pointer (e);
2747 demand_empty_rest_of_line ();
2748 return;
2749 }
2750
2751 j = ARRAY_SIZE (cpu_arch);
2752 }
2753
91d6fa6a 2754 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2755 as_bad (_("no such architecture: `%s'"), string);
2756
2757 *input_line_pointer = e;
2758 }
2759 else
2760 as_bad (_("missing cpu architecture"));
2761
fddf5b5b
AM
2762 no_cond_jump_promotion = 0;
2763 if (*input_line_pointer == ','
29b0f896 2764 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2765 {
d02603dc
NC
2766 char *string;
2767 char e;
2768
2769 ++input_line_pointer;
2770 e = get_symbol_name (&string);
fddf5b5b
AM
2771
2772 if (strcmp (string, "nojumps") == 0)
2773 no_cond_jump_promotion = 1;
2774 else if (strcmp (string, "jumps") == 0)
2775 ;
2776 else
2777 as_bad (_("no such architecture modifier: `%s'"), string);
2778
d02603dc 2779 (void) restore_line_pointer (e);
fddf5b5b
AM
2780 }
2781
e413e4e9
AM
2782 demand_empty_rest_of_line ();
2783}
2784
8a9036a4
L
2785enum bfd_architecture
2786i386_arch (void)
2787{
3632d14b 2788 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2789 {
2790 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2791 || flag_code != CODE_64BIT)
2792 as_fatal (_("Intel L1OM is 64bit ELF only"));
2793 return bfd_arch_l1om;
2794 }
7a9068fe
L
2795 else if (cpu_arch_isa == PROCESSOR_K1OM)
2796 {
2797 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2798 || flag_code != CODE_64BIT)
2799 as_fatal (_("Intel K1OM is 64bit ELF only"));
2800 return bfd_arch_k1om;
2801 }
81486035
L
2802 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2803 {
2804 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2805 || flag_code == CODE_64BIT)
2806 as_fatal (_("Intel MCU is 32bit ELF only"));
2807 return bfd_arch_iamcu;
2808 }
8a9036a4
L
2809 else
2810 return bfd_arch_i386;
2811}
2812
b9d79e03 2813unsigned long
7016a5d5 2814i386_mach (void)
b9d79e03 2815{
351f65ca 2816 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2817 {
3632d14b 2818 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2819 {
351f65ca
L
2820 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2821 || default_arch[6] != '\0')
8a9036a4
L
2822 as_fatal (_("Intel L1OM is 64bit ELF only"));
2823 return bfd_mach_l1om;
2824 }
7a9068fe
L
2825 else if (cpu_arch_isa == PROCESSOR_K1OM)
2826 {
2827 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2828 || default_arch[6] != '\0')
2829 as_fatal (_("Intel K1OM is 64bit ELF only"));
2830 return bfd_mach_k1om;
2831 }
351f65ca 2832 else if (default_arch[6] == '\0')
8a9036a4 2833 return bfd_mach_x86_64;
351f65ca
L
2834 else
2835 return bfd_mach_x64_32;
8a9036a4 2836 }
5197d474
L
2837 else if (!strcmp (default_arch, "i386")
2838 || !strcmp (default_arch, "iamcu"))
81486035
L
2839 {
2840 if (cpu_arch_isa == PROCESSOR_IAMCU)
2841 {
2842 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2843 as_fatal (_("Intel MCU is 32bit ELF only"));
2844 return bfd_mach_i386_iamcu;
2845 }
2846 else
2847 return bfd_mach_i386_i386;
2848 }
b9d79e03 2849 else
2b5d6a91 2850 as_fatal (_("unknown architecture"));
b9d79e03 2851}
b9d79e03 2852\f
252b5132 2853void
7016a5d5 2854md_begin (void)
252b5132
RH
2855{
2856 const char *hash_err;
2857
86fa6981
L
2858 /* Support pseudo prefixes like {disp32}. */
2859 lex_type ['{'] = LEX_BEGIN_NAME;
2860
47926f60 2861 /* Initialize op_hash hash table. */
252b5132
RH
2862 op_hash = hash_new ();
2863
2864 {
d3ce72d0 2865 const insn_template *optab;
29b0f896 2866 templates *core_optab;
252b5132 2867
47926f60
KH
2868 /* Setup for loop. */
2869 optab = i386_optab;
add39d23 2870 core_optab = XNEW (templates);
252b5132
RH
2871 core_optab->start = optab;
2872
2873 while (1)
2874 {
2875 ++optab;
2876 if (optab->name == NULL
2877 || strcmp (optab->name, (optab - 1)->name) != 0)
2878 {
2879 /* different name --> ship out current template list;
47926f60 2880 add to hash table; & begin anew. */
252b5132
RH
2881 core_optab->end = optab;
2882 hash_err = hash_insert (op_hash,
2883 (optab - 1)->name,
5a49b8ac 2884 (void *) core_optab);
252b5132
RH
2885 if (hash_err)
2886 {
b37df7c4 2887 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2888 (optab - 1)->name,
2889 hash_err);
2890 }
2891 if (optab->name == NULL)
2892 break;
add39d23 2893 core_optab = XNEW (templates);
252b5132
RH
2894 core_optab->start = optab;
2895 }
2896 }
2897 }
2898
47926f60 2899 /* Initialize reg_hash hash table. */
252b5132
RH
2900 reg_hash = hash_new ();
2901 {
29b0f896 2902 const reg_entry *regtab;
c3fe08fa 2903 unsigned int regtab_size = i386_regtab_size;
252b5132 2904
c3fe08fa 2905 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2906 {
5a49b8ac 2907 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2908 if (hash_err)
b37df7c4 2909 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2910 regtab->reg_name,
2911 hash_err);
252b5132
RH
2912 }
2913 }
2914
47926f60 2915 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2916 {
29b0f896
AM
2917 int c;
2918 char *p;
252b5132
RH
2919
2920 for (c = 0; c < 256; c++)
2921 {
3882b010 2922 if (ISDIGIT (c))
252b5132
RH
2923 {
2924 digit_chars[c] = c;
2925 mnemonic_chars[c] = c;
2926 register_chars[c] = c;
2927 operand_chars[c] = c;
2928 }
3882b010 2929 else if (ISLOWER (c))
252b5132
RH
2930 {
2931 mnemonic_chars[c] = c;
2932 register_chars[c] = c;
2933 operand_chars[c] = c;
2934 }
3882b010 2935 else if (ISUPPER (c))
252b5132 2936 {
3882b010 2937 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2938 register_chars[c] = mnemonic_chars[c];
2939 operand_chars[c] = c;
2940 }
43234a1e 2941 else if (c == '{' || c == '}')
86fa6981
L
2942 {
2943 mnemonic_chars[c] = c;
2944 operand_chars[c] = c;
2945 }
252b5132 2946
3882b010 2947 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2948 identifier_chars[c] = c;
2949 else if (c >= 128)
2950 {
2951 identifier_chars[c] = c;
2952 operand_chars[c] = c;
2953 }
2954 }
2955
2956#ifdef LEX_AT
2957 identifier_chars['@'] = '@';
32137342
NC
2958#endif
2959#ifdef LEX_QM
2960 identifier_chars['?'] = '?';
2961 operand_chars['?'] = '?';
252b5132 2962#endif
252b5132 2963 digit_chars['-'] = '-';
c0f3af97 2964 mnemonic_chars['_'] = '_';
791fe849 2965 mnemonic_chars['-'] = '-';
0003779b 2966 mnemonic_chars['.'] = '.';
252b5132
RH
2967 identifier_chars['_'] = '_';
2968 identifier_chars['.'] = '.';
2969
2970 for (p = operand_special_chars; *p != '\0'; p++)
2971 operand_chars[(unsigned char) *p] = *p;
2972 }
2973
a4447b93
RH
2974 if (flag_code == CODE_64BIT)
2975 {
ca19b261
KT
2976#if defined (OBJ_COFF) && defined (TE_PE)
2977 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2978 ? 32 : 16);
2979#else
a4447b93 2980 x86_dwarf2_return_column = 16;
ca19b261 2981#endif
61ff971f 2982 x86_cie_data_alignment = -8;
a4447b93
RH
2983 }
2984 else
2985 {
2986 x86_dwarf2_return_column = 8;
2987 x86_cie_data_alignment = -4;
2988 }
252b5132
RH
2989}
2990
2991void
e3bb37b5 2992i386_print_statistics (FILE *file)
252b5132
RH
2993{
2994 hash_print_statistics (file, "i386 opcode", op_hash);
2995 hash_print_statistics (file, "i386 register", reg_hash);
2996}
2997\f
252b5132
RH
2998#ifdef DEBUG386
2999
ce8a8b2f 3000/* Debugging routines for md_assemble. */
d3ce72d0 3001static void pte (insn_template *);
40fb9820 3002static void pt (i386_operand_type);
e3bb37b5
L
3003static void pe (expressionS *);
3004static void ps (symbolS *);
252b5132
RH
3005
3006static void
e3bb37b5 3007pi (char *line, i386_insn *x)
252b5132 3008{
09137c09 3009 unsigned int j;
252b5132
RH
3010
3011 fprintf (stdout, "%s: template ", line);
3012 pte (&x->tm);
09f131f2
JH
3013 fprintf (stdout, " address: base %s index %s scale %x\n",
3014 x->base_reg ? x->base_reg->reg_name : "none",
3015 x->index_reg ? x->index_reg->reg_name : "none",
3016 x->log2_scale_factor);
3017 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 3018 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
3019 fprintf (stdout, " sib: base %x index %x scale %x\n",
3020 x->sib.base, x->sib.index, x->sib.scale);
3021 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
3022 (x->rex & REX_W) != 0,
3023 (x->rex & REX_R) != 0,
3024 (x->rex & REX_X) != 0,
3025 (x->rex & REX_B) != 0);
09137c09 3026 for (j = 0; j < x->operands; j++)
252b5132 3027 {
09137c09
SP
3028 fprintf (stdout, " #%d: ", j + 1);
3029 pt (x->types[j]);
252b5132 3030 fprintf (stdout, "\n");
dc821c5f 3031 if (x->types[j].bitfield.reg
09137c09 3032 || x->types[j].bitfield.regmmx
1b54b8d7 3033 || x->types[j].bitfield.regsimd
09137c09
SP
3034 || x->types[j].bitfield.sreg2
3035 || x->types[j].bitfield.sreg3
3036 || x->types[j].bitfield.control
3037 || x->types[j].bitfield.debug
3038 || x->types[j].bitfield.test)
3039 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3040 if (operand_type_check (x->types[j], imm))
3041 pe (x->op[j].imms);
3042 if (operand_type_check (x->types[j], disp))
3043 pe (x->op[j].disps);
252b5132
RH
3044 }
3045}
3046
3047static void
d3ce72d0 3048pte (insn_template *t)
252b5132 3049{
09137c09 3050 unsigned int j;
252b5132 3051 fprintf (stdout, " %d operands ", t->operands);
47926f60 3052 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
3053 if (t->extension_opcode != None)
3054 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 3055 if (t->opcode_modifier.d)
252b5132 3056 fprintf (stdout, "D");
40fb9820 3057 if (t->opcode_modifier.w)
252b5132
RH
3058 fprintf (stdout, "W");
3059 fprintf (stdout, "\n");
09137c09 3060 for (j = 0; j < t->operands; j++)
252b5132 3061 {
09137c09
SP
3062 fprintf (stdout, " #%d type ", j + 1);
3063 pt (t->operand_types[j]);
252b5132
RH
3064 fprintf (stdout, "\n");
3065 }
3066}
3067
3068static void
e3bb37b5 3069pe (expressionS *e)
252b5132 3070{
24eab124 3071 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
3072 fprintf (stdout, " add_number %ld (%lx)\n",
3073 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
3074 if (e->X_add_symbol)
3075 {
3076 fprintf (stdout, " add_symbol ");
3077 ps (e->X_add_symbol);
3078 fprintf (stdout, "\n");
3079 }
3080 if (e->X_op_symbol)
3081 {
3082 fprintf (stdout, " op_symbol ");
3083 ps (e->X_op_symbol);
3084 fprintf (stdout, "\n");
3085 }
3086}
3087
3088static void
e3bb37b5 3089ps (symbolS *s)
252b5132
RH
3090{
3091 fprintf (stdout, "%s type %s%s",
3092 S_GET_NAME (s),
3093 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3094 segment_name (S_GET_SEGMENT (s)));
3095}
3096
7b81dfbb 3097static struct type_name
252b5132 3098 {
40fb9820
L
3099 i386_operand_type mask;
3100 const char *name;
252b5132 3101 }
7b81dfbb 3102const type_names[] =
252b5132 3103{
40fb9820
L
3104 { OPERAND_TYPE_REG8, "r8" },
3105 { OPERAND_TYPE_REG16, "r16" },
3106 { OPERAND_TYPE_REG32, "r32" },
3107 { OPERAND_TYPE_REG64, "r64" },
3108 { OPERAND_TYPE_IMM8, "i8" },
3109 { OPERAND_TYPE_IMM8, "i8s" },
3110 { OPERAND_TYPE_IMM16, "i16" },
3111 { OPERAND_TYPE_IMM32, "i32" },
3112 { OPERAND_TYPE_IMM32S, "i32s" },
3113 { OPERAND_TYPE_IMM64, "i64" },
3114 { OPERAND_TYPE_IMM1, "i1" },
3115 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3116 { OPERAND_TYPE_DISP8, "d8" },
3117 { OPERAND_TYPE_DISP16, "d16" },
3118 { OPERAND_TYPE_DISP32, "d32" },
3119 { OPERAND_TYPE_DISP32S, "d32s" },
3120 { OPERAND_TYPE_DISP64, "d64" },
3121 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3122 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3123 { OPERAND_TYPE_CONTROL, "control reg" },
3124 { OPERAND_TYPE_TEST, "test reg" },
3125 { OPERAND_TYPE_DEBUG, "debug reg" },
3126 { OPERAND_TYPE_FLOATREG, "FReg" },
3127 { OPERAND_TYPE_FLOATACC, "FAcc" },
3128 { OPERAND_TYPE_SREG2, "SReg2" },
3129 { OPERAND_TYPE_SREG3, "SReg3" },
3130 { OPERAND_TYPE_ACC, "Acc" },
3131 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3132 { OPERAND_TYPE_REGMMX, "rMMX" },
3133 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3134 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3135 { OPERAND_TYPE_REGZMM, "rZMM" },
3136 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 3137 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
3138};
3139
3140static void
40fb9820 3141pt (i386_operand_type t)
252b5132 3142{
40fb9820 3143 unsigned int j;
c6fb90c8 3144 i386_operand_type a;
252b5132 3145
40fb9820 3146 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3147 {
3148 a = operand_type_and (t, type_names[j].mask);
0349dc08 3149 if (!operand_type_all_zero (&a))
c6fb90c8
L
3150 fprintf (stdout, "%s, ", type_names[j].name);
3151 }
252b5132
RH
3152 fflush (stdout);
3153}
3154
3155#endif /* DEBUG386 */
3156\f
252b5132 3157static bfd_reloc_code_real_type
3956db08 3158reloc (unsigned int size,
64e74474
AM
3159 int pcrel,
3160 int sign,
3161 bfd_reloc_code_real_type other)
252b5132 3162{
47926f60 3163 if (other != NO_RELOC)
3956db08 3164 {
91d6fa6a 3165 reloc_howto_type *rel;
3956db08
JB
3166
3167 if (size == 8)
3168 switch (other)
3169 {
64e74474
AM
3170 case BFD_RELOC_X86_64_GOT32:
3171 return BFD_RELOC_X86_64_GOT64;
3172 break;
553d1284
L
3173 case BFD_RELOC_X86_64_GOTPLT64:
3174 return BFD_RELOC_X86_64_GOTPLT64;
3175 break;
64e74474
AM
3176 case BFD_RELOC_X86_64_PLTOFF64:
3177 return BFD_RELOC_X86_64_PLTOFF64;
3178 break;
3179 case BFD_RELOC_X86_64_GOTPC32:
3180 other = BFD_RELOC_X86_64_GOTPC64;
3181 break;
3182 case BFD_RELOC_X86_64_GOTPCREL:
3183 other = BFD_RELOC_X86_64_GOTPCREL64;
3184 break;
3185 case BFD_RELOC_X86_64_TPOFF32:
3186 other = BFD_RELOC_X86_64_TPOFF64;
3187 break;
3188 case BFD_RELOC_X86_64_DTPOFF32:
3189 other = BFD_RELOC_X86_64_DTPOFF64;
3190 break;
3191 default:
3192 break;
3956db08 3193 }
e05278af 3194
8ce3d284 3195#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3196 if (other == BFD_RELOC_SIZE32)
3197 {
3198 if (size == 8)
1ab668bf 3199 other = BFD_RELOC_SIZE64;
8fd4256d 3200 if (pcrel)
1ab668bf
AM
3201 {
3202 as_bad (_("there are no pc-relative size relocations"));
3203 return NO_RELOC;
3204 }
8fd4256d 3205 }
8ce3d284 3206#endif
8fd4256d 3207
e05278af 3208 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3209 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3210 sign = -1;
3211
91d6fa6a
NC
3212 rel = bfd_reloc_type_lookup (stdoutput, other);
3213 if (!rel)
3956db08 3214 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3215 else if (size != bfd_get_reloc_size (rel))
3956db08 3216 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3217 bfd_get_reloc_size (rel),
3956db08 3218 size);
91d6fa6a 3219 else if (pcrel && !rel->pc_relative)
3956db08 3220 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3221 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3222 && !sign)
91d6fa6a 3223 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3224 && sign > 0))
3956db08
JB
3225 as_bad (_("relocated field and relocation type differ in signedness"));
3226 else
3227 return other;
3228 return NO_RELOC;
3229 }
252b5132
RH
3230
3231 if (pcrel)
3232 {
3e73aa7c 3233 if (!sign)
3956db08 3234 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3235 switch (size)
3236 {
3237 case 1: return BFD_RELOC_8_PCREL;
3238 case 2: return BFD_RELOC_16_PCREL;
d258b828 3239 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3240 case 8: return BFD_RELOC_64_PCREL;
252b5132 3241 }
3956db08 3242 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3243 }
3244 else
3245 {
3956db08 3246 if (sign > 0)
e5cb08ac 3247 switch (size)
3e73aa7c
JH
3248 {
3249 case 4: return BFD_RELOC_X86_64_32S;
3250 }
3251 else
3252 switch (size)
3253 {
3254 case 1: return BFD_RELOC_8;
3255 case 2: return BFD_RELOC_16;
3256 case 4: return BFD_RELOC_32;
3257 case 8: return BFD_RELOC_64;
3258 }
3956db08
JB
3259 as_bad (_("cannot do %s %u byte relocation"),
3260 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3261 }
3262
0cc9e1d3 3263 return NO_RELOC;
252b5132
RH
3264}
3265
47926f60
KH
3266/* Here we decide which fixups can be adjusted to make them relative to
3267 the beginning of the section instead of the symbol. Basically we need
3268 to make sure that the dynamic relocations are done correctly, so in
3269 some cases we force the original symbol to be used. */
3270
252b5132 3271int
e3bb37b5 3272tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3273{
6d249963 3274#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3275 if (!IS_ELF)
31312f95
AM
3276 return 1;
3277
a161fe53
AM
3278 /* Don't adjust pc-relative references to merge sections in 64-bit
3279 mode. */
3280 if (use_rela_relocations
3281 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3282 && fixP->fx_pcrel)
252b5132 3283 return 0;
31312f95 3284
8d01d9a9
AJ
3285 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3286 and changed later by validate_fix. */
3287 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3288 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3289 return 0;
3290
8fd4256d
L
3291 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3292 for size relocations. */
3293 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3294 || fixP->fx_r_type == BFD_RELOC_SIZE64
3295 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3296 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3297 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3298 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3299 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3300 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3301 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3302 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3303 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3304 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3305 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3306 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3307 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3308 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3309 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3310 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3311 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3312 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3313 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3314 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3315 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3316 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3317 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3318 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3319 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3320 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3321 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3322 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3323 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3324 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3325 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3326 return 0;
31312f95 3327#endif
252b5132
RH
3328 return 1;
3329}
252b5132 3330
b4cac588 3331static int
e3bb37b5 3332intel_float_operand (const char *mnemonic)
252b5132 3333{
9306ca4a
JB
3334 /* Note that the value returned is meaningful only for opcodes with (memory)
3335 operands, hence the code here is free to improperly handle opcodes that
3336 have no operands (for better performance and smaller code). */
3337
3338 if (mnemonic[0] != 'f')
3339 return 0; /* non-math */
3340
3341 switch (mnemonic[1])
3342 {
3343 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3344 the fs segment override prefix not currently handled because no
3345 call path can make opcodes without operands get here */
3346 case 'i':
3347 return 2 /* integer op */;
3348 case 'l':
3349 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3350 return 3; /* fldcw/fldenv */
3351 break;
3352 case 'n':
3353 if (mnemonic[2] != 'o' /* fnop */)
3354 return 3; /* non-waiting control op */
3355 break;
3356 case 'r':
3357 if (mnemonic[2] == 's')
3358 return 3; /* frstor/frstpm */
3359 break;
3360 case 's':
3361 if (mnemonic[2] == 'a')
3362 return 3; /* fsave */
3363 if (mnemonic[2] == 't')
3364 {
3365 switch (mnemonic[3])
3366 {
3367 case 'c': /* fstcw */
3368 case 'd': /* fstdw */
3369 case 'e': /* fstenv */
3370 case 's': /* fsts[gw] */
3371 return 3;
3372 }
3373 }
3374 break;
3375 case 'x':
3376 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3377 return 0; /* fxsave/fxrstor are not really math ops */
3378 break;
3379 }
252b5132 3380
9306ca4a 3381 return 1;
252b5132
RH
3382}
3383
c0f3af97
L
3384/* Build the VEX prefix. */
3385
3386static void
d3ce72d0 3387build_vex_prefix (const insn_template *t)
c0f3af97
L
3388{
3389 unsigned int register_specifier;
3390 unsigned int implied_prefix;
3391 unsigned int vector_length;
03751133 3392 unsigned int w;
c0f3af97
L
3393
3394 /* Check register specifier. */
3395 if (i.vex.register_specifier)
43234a1e
L
3396 {
3397 register_specifier =
3398 ~register_number (i.vex.register_specifier) & 0xf;
3399 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3400 }
c0f3af97
L
3401 else
3402 register_specifier = 0xf;
3403
79f0fa25
L
3404 /* Use 2-byte VEX prefix by swapping destination and source operand
3405 if there are more than 1 register operand. */
3406 if (i.reg_operands > 1
3407 && i.vec_encoding != vex_encoding_vex3
86fa6981 3408 && i.dir_encoding == dir_encoding_default
fa99fab2 3409 && i.operands == i.reg_operands
dbbc8b7e 3410 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
7f399153 3411 && i.tm.opcode_modifier.vexopcode == VEX0F
dbbc8b7e 3412 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
fa99fab2
L
3413 && i.rex == REX_B)
3414 {
3415 unsigned int xchg = i.operands - 1;
3416 union i386_op temp_op;
3417 i386_operand_type temp_type;
3418
3419 temp_type = i.types[xchg];
3420 i.types[xchg] = i.types[0];
3421 i.types[0] = temp_type;
3422 temp_op = i.op[xchg];
3423 i.op[xchg] = i.op[0];
3424 i.op[0] = temp_op;
3425
9c2799c2 3426 gas_assert (i.rm.mode == 3);
fa99fab2
L
3427
3428 i.rex = REX_R;
3429 xchg = i.rm.regmem;
3430 i.rm.regmem = i.rm.reg;
3431 i.rm.reg = xchg;
3432
dbbc8b7e
JB
3433 if (i.tm.opcode_modifier.d)
3434 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3435 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3436 else /* Use the next insn. */
3437 i.tm = t[1];
fa99fab2
L
3438 }
3439
539f890d
L
3440 if (i.tm.opcode_modifier.vex == VEXScalar)
3441 vector_length = avxscalar;
10c17abd
JB
3442 else if (i.tm.opcode_modifier.vex == VEX256)
3443 vector_length = 1;
539f890d 3444 else
10c17abd 3445 {
56522fc5 3446 unsigned int op;
10c17abd 3447
c7213af9
L
3448 /* Determine vector length from the last multi-length vector
3449 operand. */
10c17abd 3450 vector_length = 0;
56522fc5 3451 for (op = t->operands; op--;)
10c17abd
JB
3452 if (t->operand_types[op].bitfield.xmmword
3453 && t->operand_types[op].bitfield.ymmword
3454 && i.types[op].bitfield.ymmword)
3455 {
3456 vector_length = 1;
3457 break;
3458 }
3459 }
c0f3af97
L
3460
3461 switch ((i.tm.base_opcode >> 8) & 0xff)
3462 {
3463 case 0:
3464 implied_prefix = 0;
3465 break;
3466 case DATA_PREFIX_OPCODE:
3467 implied_prefix = 1;
3468 break;
3469 case REPE_PREFIX_OPCODE:
3470 implied_prefix = 2;
3471 break;
3472 case REPNE_PREFIX_OPCODE:
3473 implied_prefix = 3;
3474 break;
3475 default:
3476 abort ();
3477 }
3478
03751133
L
3479 /* Check the REX.W bit and VEXW. */
3480 if (i.tm.opcode_modifier.vexw == VEXWIG)
3481 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3482 else if (i.tm.opcode_modifier.vexw)
3483 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3484 else
931d03b7 3485 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
03751133 3486
c0f3af97 3487 /* Use 2-byte VEX prefix if possible. */
03751133
L
3488 if (w == 0
3489 && i.vec_encoding != vex_encoding_vex3
86fa6981 3490 && i.tm.opcode_modifier.vexopcode == VEX0F
c0f3af97
L
3491 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3492 {
3493 /* 2-byte VEX prefix. */
3494 unsigned int r;
3495
3496 i.vex.length = 2;
3497 i.vex.bytes[0] = 0xc5;
3498
3499 /* Check the REX.R bit. */
3500 r = (i.rex & REX_R) ? 0 : 1;
3501 i.vex.bytes[1] = (r << 7
3502 | register_specifier << 3
3503 | vector_length << 2
3504 | implied_prefix);
3505 }
3506 else
3507 {
3508 /* 3-byte VEX prefix. */
03751133 3509 unsigned int m;
c0f3af97 3510
f88c9eb0 3511 i.vex.length = 3;
f88c9eb0 3512
7f399153 3513 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3514 {
7f399153
L
3515 case VEX0F:
3516 m = 0x1;
80de6e00 3517 i.vex.bytes[0] = 0xc4;
7f399153
L
3518 break;
3519 case VEX0F38:
3520 m = 0x2;
80de6e00 3521 i.vex.bytes[0] = 0xc4;
7f399153
L
3522 break;
3523 case VEX0F3A:
3524 m = 0x3;
80de6e00 3525 i.vex.bytes[0] = 0xc4;
7f399153
L
3526 break;
3527 case XOP08:
5dd85c99
SP
3528 m = 0x8;
3529 i.vex.bytes[0] = 0x8f;
7f399153
L
3530 break;
3531 case XOP09:
f88c9eb0
SP
3532 m = 0x9;
3533 i.vex.bytes[0] = 0x8f;
7f399153
L
3534 break;
3535 case XOP0A:
f88c9eb0
SP
3536 m = 0xa;
3537 i.vex.bytes[0] = 0x8f;
7f399153
L
3538 break;
3539 default:
3540 abort ();
f88c9eb0 3541 }
c0f3af97 3542
c0f3af97
L
3543 /* The high 3 bits of the second VEX byte are 1's compliment
3544 of RXB bits from REX. */
3545 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3546
c0f3af97
L
3547 i.vex.bytes[2] = (w << 7
3548 | register_specifier << 3
3549 | vector_length << 2
3550 | implied_prefix);
3551 }
3552}
3553
e771e7c9
JB
3554static INLINE bfd_boolean
3555is_evex_encoding (const insn_template *t)
3556{
7091c612 3557 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
e771e7c9
JB
3558 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3559 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3560}
3561
7a8655d2
JB
3562static INLINE bfd_boolean
3563is_any_vex_encoding (const insn_template *t)
3564{
3565 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3566 || is_evex_encoding (t);
3567}
3568
43234a1e
L
3569/* Build the EVEX prefix. */
3570
3571static void
3572build_evex_prefix (void)
3573{
3574 unsigned int register_specifier;
3575 unsigned int implied_prefix;
3576 unsigned int m, w;
3577 rex_byte vrex_used = 0;
3578
3579 /* Check register specifier. */
3580 if (i.vex.register_specifier)
3581 {
3582 gas_assert ((i.vrex & REX_X) == 0);
3583
3584 register_specifier = i.vex.register_specifier->reg_num;
3585 if ((i.vex.register_specifier->reg_flags & RegRex))
3586 register_specifier += 8;
3587 /* The upper 16 registers are encoded in the fourth byte of the
3588 EVEX prefix. */
3589 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3590 i.vex.bytes[3] = 0x8;
3591 register_specifier = ~register_specifier & 0xf;
3592 }
3593 else
3594 {
3595 register_specifier = 0xf;
3596
3597 /* Encode upper 16 vector index register in the fourth byte of
3598 the EVEX prefix. */
3599 if (!(i.vrex & REX_X))
3600 i.vex.bytes[3] = 0x8;
3601 else
3602 vrex_used |= REX_X;
3603 }
3604
3605 switch ((i.tm.base_opcode >> 8) & 0xff)
3606 {
3607 case 0:
3608 implied_prefix = 0;
3609 break;
3610 case DATA_PREFIX_OPCODE:
3611 implied_prefix = 1;
3612 break;
3613 case REPE_PREFIX_OPCODE:
3614 implied_prefix = 2;
3615 break;
3616 case REPNE_PREFIX_OPCODE:
3617 implied_prefix = 3;
3618 break;
3619 default:
3620 abort ();
3621 }
3622
3623 /* 4 byte EVEX prefix. */
3624 i.vex.length = 4;
3625 i.vex.bytes[0] = 0x62;
3626
3627 /* mmmm bits. */
3628 switch (i.tm.opcode_modifier.vexopcode)
3629 {
3630 case VEX0F:
3631 m = 1;
3632 break;
3633 case VEX0F38:
3634 m = 2;
3635 break;
3636 case VEX0F3A:
3637 m = 3;
3638 break;
3639 default:
3640 abort ();
3641 break;
3642 }
3643
3644 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3645 bits from REX. */
3646 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3647
3648 /* The fifth bit of the second EVEX byte is 1's compliment of the
3649 REX_R bit in VREX. */
3650 if (!(i.vrex & REX_R))
3651 i.vex.bytes[1] |= 0x10;
3652 else
3653 vrex_used |= REX_R;
3654
3655 if ((i.reg_operands + i.imm_operands) == i.operands)
3656 {
3657 /* When all operands are registers, the REX_X bit in REX is not
3658 used. We reuse it to encode the upper 16 registers, which is
3659 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3660 as 1's compliment. */
3661 if ((i.vrex & REX_B))
3662 {
3663 vrex_used |= REX_B;
3664 i.vex.bytes[1] &= ~0x40;
3665 }
3666 }
3667
3668 /* EVEX instructions shouldn't need the REX prefix. */
3669 i.vrex &= ~vrex_used;
3670 gas_assert (i.vrex == 0);
3671
6865c043
L
3672 /* Check the REX.W bit and VEXW. */
3673 if (i.tm.opcode_modifier.vexw == VEXWIG)
3674 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3675 else if (i.tm.opcode_modifier.vexw)
3676 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3677 else
931d03b7 3678 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
43234a1e
L
3679
3680 /* Encode the U bit. */
3681 implied_prefix |= 0x4;
3682
3683 /* The third byte of the EVEX prefix. */
3684 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3685
3686 /* The fourth byte of the EVEX prefix. */
3687 /* The zeroing-masking bit. */
3688 if (i.mask && i.mask->zeroing)
3689 i.vex.bytes[3] |= 0x80;
3690
3691 /* Don't always set the broadcast bit if there is no RC. */
3692 if (!i.rounding)
3693 {
3694 /* Encode the vector length. */
3695 unsigned int vec_length;
3696
e771e7c9
JB
3697 if (!i.tm.opcode_modifier.evex
3698 || i.tm.opcode_modifier.evex == EVEXDYN)
3699 {
56522fc5 3700 unsigned int op;
e771e7c9 3701
c7213af9
L
3702 /* Determine vector length from the last multi-length vector
3703 operand. */
e771e7c9 3704 vec_length = 0;
56522fc5 3705 for (op = i.operands; op--;)
e771e7c9
JB
3706 if (i.tm.operand_types[op].bitfield.xmmword
3707 + i.tm.operand_types[op].bitfield.ymmword
3708 + i.tm.operand_types[op].bitfield.zmmword > 1)
3709 {
3710 if (i.types[op].bitfield.zmmword)
c7213af9
L
3711 {
3712 i.tm.opcode_modifier.evex = EVEX512;
3713 break;
3714 }
e771e7c9 3715 else if (i.types[op].bitfield.ymmword)
c7213af9
L
3716 {
3717 i.tm.opcode_modifier.evex = EVEX256;
3718 break;
3719 }
e771e7c9 3720 else if (i.types[op].bitfield.xmmword)
c7213af9
L
3721 {
3722 i.tm.opcode_modifier.evex = EVEX128;
3723 break;
3724 }
625cbd7a
JB
3725 else if (i.broadcast && (int) op == i.broadcast->operand)
3726 {
4a1b91ea 3727 switch (i.broadcast->bytes)
625cbd7a
JB
3728 {
3729 case 64:
3730 i.tm.opcode_modifier.evex = EVEX512;
3731 break;
3732 case 32:
3733 i.tm.opcode_modifier.evex = EVEX256;
3734 break;
3735 case 16:
3736 i.tm.opcode_modifier.evex = EVEX128;
3737 break;
3738 default:
c7213af9 3739 abort ();
625cbd7a 3740 }
c7213af9 3741 break;
625cbd7a 3742 }
e771e7c9 3743 }
c7213af9 3744
56522fc5 3745 if (op >= MAX_OPERANDS)
c7213af9 3746 abort ();
e771e7c9
JB
3747 }
3748
43234a1e
L
3749 switch (i.tm.opcode_modifier.evex)
3750 {
3751 case EVEXLIG: /* LL' is ignored */
3752 vec_length = evexlig << 5;
3753 break;
3754 case EVEX128:
3755 vec_length = 0 << 5;
3756 break;
3757 case EVEX256:
3758 vec_length = 1 << 5;
3759 break;
3760 case EVEX512:
3761 vec_length = 2 << 5;
3762 break;
3763 default:
3764 abort ();
3765 break;
3766 }
3767 i.vex.bytes[3] |= vec_length;
3768 /* Encode the broadcast bit. */
3769 if (i.broadcast)
3770 i.vex.bytes[3] |= 0x10;
3771 }
3772 else
3773 {
3774 if (i.rounding->type != saeonly)
3775 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3776 else
d3d3c6db 3777 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3778 }
3779
3780 if (i.mask && i.mask->mask)
3781 i.vex.bytes[3] |= i.mask->mask->reg_num;
3782}
3783
65da13b5
L
3784static void
3785process_immext (void)
3786{
3787 expressionS *exp;
3788
4c692bc7
JB
3789 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3790 && i.operands > 0)
65da13b5 3791 {
4c692bc7
JB
3792 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3793 with an opcode suffix which is coded in the same place as an
3794 8-bit immediate field would be.
3795 Here we check those operands and remove them afterwards. */
65da13b5
L
3796 unsigned int x;
3797
3798 for (x = 0; x < i.operands; x++)
4c692bc7 3799 if (register_number (i.op[x].regs) != x)
65da13b5 3800 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3801 register_prefix, i.op[x].regs->reg_name, x + 1,
3802 i.tm.name);
3803
3804 i.operands = 0;
65da13b5
L
3805 }
3806
9916071f
AP
3807 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3808 {
3809 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3810 suffix which is coded in the same place as an 8-bit immediate
3811 field would be.
3812 Here we check those operands and remove them afterwards. */
3813 unsigned int x;
3814
3815 if (i.operands != 3)
3816 abort();
3817
3818 for (x = 0; x < 2; x++)
3819 if (register_number (i.op[x].regs) != x)
3820 goto bad_register_operand;
3821
3822 /* Check for third operand for mwaitx/monitorx insn. */
3823 if (register_number (i.op[x].regs)
3824 != (x + (i.tm.extension_opcode == 0xfb)))
3825 {
3826bad_register_operand:
3827 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3828 register_prefix, i.op[x].regs->reg_name, x+1,
3829 i.tm.name);
3830 }
3831
3832 i.operands = 0;
3833 }
3834
c0f3af97 3835 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3836 which is coded in the same place as an 8-bit immediate field
3837 would be. Here we fake an 8-bit immediate operand from the
3838 opcode suffix stored in tm.extension_opcode.
3839
c1e679ec 3840 AVX instructions also use this encoding, for some of
c0f3af97 3841 3 argument instructions. */
65da13b5 3842
43234a1e 3843 gas_assert (i.imm_operands <= 1
7ab9ffdd 3844 && (i.operands <= 2
7a8655d2 3845 || (is_any_vex_encoding (&i.tm)
7ab9ffdd 3846 && i.operands <= 4)));
65da13b5
L
3847
3848 exp = &im_expressions[i.imm_operands++];
3849 i.op[i.operands].imms = exp;
3850 i.types[i.operands] = imm8;
3851 i.operands++;
3852 exp->X_op = O_constant;
3853 exp->X_add_number = i.tm.extension_opcode;
3854 i.tm.extension_opcode = None;
3855}
3856
42164a71
L
3857
3858static int
3859check_hle (void)
3860{
3861 switch (i.tm.opcode_modifier.hleprefixok)
3862 {
3863 default:
3864 abort ();
82c2def5 3865 case HLEPrefixNone:
165de32a
L
3866 as_bad (_("invalid instruction `%s' after `%s'"),
3867 i.tm.name, i.hle_prefix);
42164a71 3868 return 0;
82c2def5 3869 case HLEPrefixLock:
42164a71
L
3870 if (i.prefix[LOCK_PREFIX])
3871 return 1;
165de32a 3872 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3873 return 0;
82c2def5 3874 case HLEPrefixAny:
42164a71 3875 return 1;
82c2def5 3876 case HLEPrefixRelease:
42164a71
L
3877 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3878 {
3879 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3880 i.tm.name);
3881 return 0;
3882 }
3883 if (i.mem_operands == 0
3884 || !operand_type_check (i.types[i.operands - 1], anymem))
3885 {
3886 as_bad (_("memory destination needed for instruction `%s'"
3887 " after `xrelease'"), i.tm.name);
3888 return 0;
3889 }
3890 return 1;
3891 }
3892}
3893
b6f8c7c4
L
3894/* Try the shortest encoding by shortening operand size. */
3895
3896static void
3897optimize_encoding (void)
3898{
3899 int j;
3900
3901 if (optimize_for_space
3902 && i.reg_operands == 1
3903 && i.imm_operands == 1
3904 && !i.types[1].bitfield.byte
3905 && i.op[0].imms->X_op == O_constant
3906 && fits_in_imm7 (i.op[0].imms->X_add_number)
3907 && ((i.tm.base_opcode == 0xa8
3908 && i.tm.extension_opcode == None)
3909 || (i.tm.base_opcode == 0xf6
3910 && i.tm.extension_opcode == 0x0)))
3911 {
3912 /* Optimize: -Os:
3913 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3914 */
3915 unsigned int base_regnum = i.op[1].regs->reg_num;
3916 if (flag_code == CODE_64BIT || base_regnum < 4)
3917 {
3918 i.types[1].bitfield.byte = 1;
3919 /* Ignore the suffix. */
3920 i.suffix = 0;
3921 if (base_regnum >= 4
3922 && !(i.op[1].regs->reg_flags & RegRex))
3923 {
3924 /* Handle SP, BP, SI and DI registers. */
3925 if (i.types[1].bitfield.word)
3926 j = 16;
3927 else if (i.types[1].bitfield.dword)
3928 j = 32;
3929 else
3930 j = 48;
3931 i.op[1].regs -= j;
3932 }
3933 }
3934 }
3935 else if (flag_code == CODE_64BIT
d3d50934
L
3936 && ((i.types[1].bitfield.qword
3937 && i.reg_operands == 1
b6f8c7c4
L
3938 && i.imm_operands == 1
3939 && i.op[0].imms->X_op == O_constant
3940 && ((i.tm.base_opcode == 0xb0
3941 && i.tm.extension_opcode == None
3942 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3943 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3944 && (((i.tm.base_opcode == 0x24
3945 || i.tm.base_opcode == 0xa8)
3946 && i.tm.extension_opcode == None)
3947 || (i.tm.base_opcode == 0x80
3948 && i.tm.extension_opcode == 0x4)
3949 || ((i.tm.base_opcode == 0xf6
3950 || i.tm.base_opcode == 0xc6)
b8364fa7
JB
3951 && i.tm.extension_opcode == 0x0)))
3952 || (fits_in_imm7 (i.op[0].imms->X_add_number)
3953 && i.tm.base_opcode == 0x83
3954 && i.tm.extension_opcode == 0x4)))
d3d50934
L
3955 || (i.types[0].bitfield.qword
3956 && ((i.reg_operands == 2
3957 && i.op[0].regs == i.op[1].regs
3958 && ((i.tm.base_opcode == 0x30
3959 || i.tm.base_opcode == 0x28)
3960 && i.tm.extension_opcode == None))
3961 || (i.reg_operands == 1
3962 && i.operands == 1
3963 && i.tm.base_opcode == 0x30
3964 && i.tm.extension_opcode == None)))))
b6f8c7c4
L
3965 {
3966 /* Optimize: -O:
3967 andq $imm31, %r64 -> andl $imm31, %r32
b8364fa7 3968 andq $imm7, %r64 -> andl $imm7, %r32
b6f8c7c4
L
3969 testq $imm31, %r64 -> testl $imm31, %r32
3970 xorq %r64, %r64 -> xorl %r32, %r32
3971 subq %r64, %r64 -> subl %r32, %r32
3972 movq $imm31, %r64 -> movl $imm31, %r32
3973 movq $imm32, %r64 -> movl $imm32, %r32
3974 */
3975 i.tm.opcode_modifier.norex64 = 1;
3976 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3977 {
3978 /* Handle
3979 movq $imm31, %r64 -> movl $imm31, %r32
3980 movq $imm32, %r64 -> movl $imm32, %r32
3981 */
3982 i.tm.operand_types[0].bitfield.imm32 = 1;
3983 i.tm.operand_types[0].bitfield.imm32s = 0;
3984 i.tm.operand_types[0].bitfield.imm64 = 0;
3985 i.types[0].bitfield.imm32 = 1;
3986 i.types[0].bitfield.imm32s = 0;
3987 i.types[0].bitfield.imm64 = 0;
3988 i.types[1].bitfield.dword = 1;
3989 i.types[1].bitfield.qword = 0;
3990 if (i.tm.base_opcode == 0xc6)
3991 {
3992 /* Handle
3993 movq $imm31, %r64 -> movl $imm31, %r32
3994 */
3995 i.tm.base_opcode = 0xb0;
3996 i.tm.extension_opcode = None;
3997 i.tm.opcode_modifier.shortform = 1;
3998 i.tm.opcode_modifier.modrm = 0;
3999 }
4000 }
4001 }
99112332 4002 else if (i.reg_operands == 3
b6f8c7c4
L
4003 && i.op[0].regs == i.op[1].regs
4004 && !i.types[2].bitfield.xmmword
4005 && (i.tm.opcode_modifier.vex
7a69eac3 4006 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 4007 && !i.rounding
e771e7c9 4008 && is_evex_encoding (&i.tm)
80c34c38 4009 && (i.vec_encoding != vex_encoding_evex
dd22218c 4010 || cpu_arch_isa_flags.bitfield.cpuavx512vl
80c34c38 4011 || i.tm.cpu_flags.bitfield.cpuavx512vl
7091c612 4012 || (i.tm.operand_types[2].bitfield.zmmword
dd22218c 4013 && i.types[2].bitfield.ymmword))))
b6f8c7c4
L
4014 && ((i.tm.base_opcode == 0x55
4015 || i.tm.base_opcode == 0x6655
4016 || i.tm.base_opcode == 0x66df
4017 || i.tm.base_opcode == 0x57
4018 || i.tm.base_opcode == 0x6657
8305403a
L
4019 || i.tm.base_opcode == 0x66ef
4020 || i.tm.base_opcode == 0x66f8
4021 || i.tm.base_opcode == 0x66f9
4022 || i.tm.base_opcode == 0x66fa
1424ad86
JB
4023 || i.tm.base_opcode == 0x66fb
4024 || i.tm.base_opcode == 0x42
4025 || i.tm.base_opcode == 0x6642
4026 || i.tm.base_opcode == 0x47
4027 || i.tm.base_opcode == 0x6647)
b6f8c7c4
L
4028 && i.tm.extension_opcode == None))
4029 {
99112332 4030 /* Optimize: -O1:
8305403a
L
4031 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4032 vpsubq and vpsubw:
b6f8c7c4
L
4033 EVEX VOP %zmmM, %zmmM, %zmmN
4034 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4035 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4036 EVEX VOP %ymmM, %ymmM, %ymmN
4037 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4038 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4039 VEX VOP %ymmM, %ymmM, %ymmN
4040 -> VEX VOP %xmmM, %xmmM, %xmmN
4041 VOP, one of vpandn and vpxor:
4042 VEX VOP %ymmM, %ymmM, %ymmN
4043 -> VEX VOP %xmmM, %xmmM, %xmmN
4044 VOP, one of vpandnd and vpandnq:
4045 EVEX VOP %zmmM, %zmmM, %zmmN
4046 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4047 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4048 EVEX VOP %ymmM, %ymmM, %ymmN
4049 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4050 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4051 VOP, one of vpxord and vpxorq:
4052 EVEX VOP %zmmM, %zmmM, %zmmN
4053 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4054 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4055 EVEX VOP %ymmM, %ymmM, %ymmN
4056 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4057 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
1424ad86
JB
4058 VOP, one of kxord and kxorq:
4059 VEX VOP %kM, %kM, %kN
4060 -> VEX kxorw %kM, %kM, %kN
4061 VOP, one of kandnd and kandnq:
4062 VEX VOP %kM, %kM, %kN
4063 -> VEX kandnw %kM, %kM, %kN
b6f8c7c4 4064 */
e771e7c9 4065 if (is_evex_encoding (&i.tm))
b6f8c7c4 4066 {
7b1d7ca1 4067 if (i.vec_encoding != vex_encoding_evex)
b6f8c7c4
L
4068 {
4069 i.tm.opcode_modifier.vex = VEX128;
4070 i.tm.opcode_modifier.vexw = VEXW0;
4071 i.tm.opcode_modifier.evex = 0;
4072 }
7b1d7ca1 4073 else if (optimize > 1)
dd22218c
L
4074 i.tm.opcode_modifier.evex = EVEX128;
4075 else
4076 return;
b6f8c7c4 4077 }
1424ad86
JB
4078 else if (i.tm.operand_types[0].bitfield.regmask)
4079 {
4080 i.tm.base_opcode &= 0xff;
4081 i.tm.opcode_modifier.vexw = VEXW0;
4082 }
b6f8c7c4
L
4083 else
4084 i.tm.opcode_modifier.vex = VEX128;
4085
4086 if (i.tm.opcode_modifier.vex)
4087 for (j = 0; j < 3; j++)
4088 {
4089 i.types[j].bitfield.xmmword = 1;
4090 i.types[j].bitfield.ymmword = 0;
4091 }
4092 }
392a5972 4093 else if (i.vec_encoding != vex_encoding_evex
97ed31ae 4094 && !i.types[0].bitfield.zmmword
392a5972 4095 && !i.types[1].bitfield.zmmword
97ed31ae
L
4096 && !i.mask
4097 && is_evex_encoding (&i.tm)
392a5972
L
4098 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4099 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4100 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
97ed31ae
L
4101 && i.tm.extension_opcode == None)
4102 {
4103 /* Optimize: -O1:
4104 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4105 vmovdqu32 and vmovdqu64:
4106 EVEX VOP %xmmM, %xmmN
4107 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4108 EVEX VOP %ymmM, %ymmN
4109 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4110 EVEX VOP %xmmM, mem
4111 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4112 EVEX VOP %ymmM, mem
4113 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4114 EVEX VOP mem, %xmmN
4115 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4116 EVEX VOP mem, %ymmN
4117 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4118 */
392a5972
L
4119 for (j = 0; j < 2; j++)
4120 if (operand_type_check (i.types[j], disp)
4121 && i.op[j].disps->X_op == O_constant)
4122 {
4123 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4124 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4125 bytes, we choose EVEX Disp8 over VEX Disp32. */
4126 int evex_disp8, vex_disp8;
4127 unsigned int memshift = i.memshift;
4128 offsetT n = i.op[j].disps->X_add_number;
4129
4130 evex_disp8 = fits_in_disp8 (n);
4131 i.memshift = 0;
4132 vex_disp8 = fits_in_disp8 (n);
4133 if (evex_disp8 != vex_disp8)
4134 {
4135 i.memshift = memshift;
4136 return;
4137 }
4138
4139 i.types[j].bitfield.disp8 = vex_disp8;
4140 break;
4141 }
4142 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4143 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
97ed31ae
L
4144 i.tm.opcode_modifier.vex
4145 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4146 i.tm.opcode_modifier.vexw = VEXW0;
4147 i.tm.opcode_modifier.evex = 0;
4148 i.tm.opcode_modifier.masking = 0;
4149 i.tm.opcode_modifier.disp8memshift = 0;
4150 i.memshift = 0;
4151 for (j = 0; j < 2; j++)
4152 if (operand_type_check (i.types[j], disp)
4153 && i.op[j].disps->X_op == O_constant)
4154 {
4155 i.types[j].bitfield.disp8
4156 = fits_in_disp8 (i.op[j].disps->X_add_number);
4157 break;
4158 }
4159 }
b6f8c7c4
L
4160}
4161
252b5132
RH
4162/* This is the guts of the machine-dependent assembler. LINE points to a
4163 machine dependent instruction. This function is supposed to emit
4164 the frags/bytes it assembles to. */
4165
4166void
65da13b5 4167md_assemble (char *line)
252b5132 4168{
40fb9820 4169 unsigned int j;
83b16ac6 4170 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 4171 const insn_template *t;
252b5132 4172
47926f60 4173 /* Initialize globals. */
252b5132
RH
4174 memset (&i, '\0', sizeof (i));
4175 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 4176 i.reloc[j] = NO_RELOC;
252b5132
RH
4177 memset (disp_expressions, '\0', sizeof (disp_expressions));
4178 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 4179 save_stack_p = save_stack;
252b5132
RH
4180
4181 /* First parse an instruction mnemonic & call i386_operand for the operands.
4182 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 4183 start of a (possibly prefixed) mnemonic. */
252b5132 4184
29b0f896
AM
4185 line = parse_insn (line, mnemonic);
4186 if (line == NULL)
4187 return;
83b16ac6 4188 mnem_suffix = i.suffix;
252b5132 4189
29b0f896 4190 line = parse_operands (line, mnemonic);
ee86248c 4191 this_operand = -1;
8325cc63
JB
4192 xfree (i.memop1_string);
4193 i.memop1_string = NULL;
29b0f896
AM
4194 if (line == NULL)
4195 return;
252b5132 4196
29b0f896
AM
4197 /* Now we've parsed the mnemonic into a set of templates, and have the
4198 operands at hand. */
4199
4200 /* All intel opcodes have reversed operands except for "bound" and
4201 "enter". We also don't reverse intersegment "jmp" and "call"
4202 instructions with 2 immediate operands so that the immediate segment
050dfa73 4203 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
4204 if (intel_syntax
4205 && i.operands > 1
29b0f896 4206 && (strcmp (mnemonic, "bound") != 0)
30123838 4207 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
4208 && !(operand_type_check (i.types[0], imm)
4209 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4210 swap_operands ();
4211
ec56d5c0
JB
4212 /* The order of the immediates should be reversed
4213 for 2 immediates extrq and insertq instructions */
4214 if (i.imm_operands == 2
4215 && (strcmp (mnemonic, "extrq") == 0
4216 || strcmp (mnemonic, "insertq") == 0))
4217 swap_2_operands (0, 1);
4218
29b0f896
AM
4219 if (i.imm_operands)
4220 optimize_imm ();
4221
b300c311
L
4222 /* Don't optimize displacement for movabs since it only takes 64bit
4223 displacement. */
4224 if (i.disp_operands
a501d77e 4225 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4226 && (flag_code != CODE_64BIT
4227 || strcmp (mnemonic, "movabs") != 0))
4228 optimize_disp ();
29b0f896
AM
4229
4230 /* Next, we find a template that matches the given insn,
4231 making sure the overlap of the given operands types is consistent
4232 with the template operand types. */
252b5132 4233
83b16ac6 4234 if (!(t = match_template (mnem_suffix)))
29b0f896 4235 return;
252b5132 4236
7bab8ab5 4237 if (sse_check != check_none
81f8a913 4238 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4239 && !i.tm.cpu_flags.bitfield.cpuavx
daf50ae7
L
4240 && (i.tm.cpu_flags.bitfield.cpusse
4241 || i.tm.cpu_flags.bitfield.cpusse2
4242 || i.tm.cpu_flags.bitfield.cpusse3
4243 || i.tm.cpu_flags.bitfield.cpussse3
4244 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e
JB
4245 || i.tm.cpu_flags.bitfield.cpusse4_2
4246 || i.tm.cpu_flags.bitfield.cpupclmul
4247 || i.tm.cpu_flags.bitfield.cpuaes
4248 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4249 {
7bab8ab5 4250 (sse_check == check_warning
daf50ae7
L
4251 ? as_warn
4252 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4253 }
4254
321fd21e
L
4255 /* Zap movzx and movsx suffix. The suffix has been set from
4256 "word ptr" or "byte ptr" on the source operand in Intel syntax
4257 or extracted from mnemonic in AT&T syntax. But we'll use
4258 the destination register to choose the suffix for encoding. */
4259 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4260 {
321fd21e
L
4261 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4262 there is no suffix, the default will be byte extension. */
4263 if (i.reg_operands != 2
4264 && !i.suffix
7ab9ffdd 4265 && intel_syntax)
321fd21e
L
4266 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4267
4268 i.suffix = 0;
cd61ebfe 4269 }
24eab124 4270
40fb9820 4271 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4272 if (!add_prefix (FWAIT_OPCODE))
4273 return;
252b5132 4274
d5de92cf
L
4275 /* Check if REP prefix is OK. */
4276 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4277 {
4278 as_bad (_("invalid instruction `%s' after `%s'"),
4279 i.tm.name, i.rep_prefix);
4280 return;
4281 }
4282
c1ba0266
L
4283 /* Check for lock without a lockable instruction. Destination operand
4284 must be memory unless it is xchg (0x86). */
c32fa91d
L
4285 if (i.prefix[LOCK_PREFIX]
4286 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4287 || i.mem_operands == 0
4288 || (i.tm.base_opcode != 0x86
4289 && !operand_type_check (i.types[i.operands - 1], anymem))))
c32fa91d
L
4290 {
4291 as_bad (_("expecting lockable instruction after `lock'"));
4292 return;
4293 }
4294
7a8655d2
JB
4295 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4296 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4297 {
4298 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4299 return;
4300 }
4301
42164a71 4302 /* Check if HLE prefix is OK. */
165de32a 4303 if (i.hle_prefix && !check_hle ())
42164a71
L
4304 return;
4305
7e8b059b
L
4306 /* Check BND prefix. */
4307 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4308 as_bad (_("expecting valid branch instruction after `bnd'"));
4309
04ef582a 4310 /* Check NOTRACK prefix. */
9fef80d6
L
4311 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4312 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4313
327e8c42
JB
4314 if (i.tm.cpu_flags.bitfield.cpumpx)
4315 {
4316 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4317 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4318 else if (flag_code != CODE_16BIT
4319 ? i.prefix[ADDR_PREFIX]
4320 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4321 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4322 }
7e8b059b
L
4323
4324 /* Insert BND prefix. */
76d3a78a
JB
4325 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4326 {
4327 if (!i.prefix[BND_PREFIX])
4328 add_prefix (BND_PREFIX_OPCODE);
4329 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4330 {
4331 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4332 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4333 }
4334 }
7e8b059b 4335
29b0f896 4336 /* Check string instruction segment overrides. */
40fb9820 4337 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
4338 {
4339 if (!check_string ())
5dd0794d 4340 return;
fc0763e6 4341 i.disp_operands = 0;
29b0f896 4342 }
5dd0794d 4343
b6f8c7c4
L
4344 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4345 optimize_encoding ();
4346
29b0f896
AM
4347 if (!process_suffix ())
4348 return;
e413e4e9 4349
bc0844ae
L
4350 /* Update operand types. */
4351 for (j = 0; j < i.operands; j++)
4352 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4353
29b0f896
AM
4354 /* Make still unresolved immediate matches conform to size of immediate
4355 given in i.suffix. */
4356 if (!finalize_imm ())
4357 return;
252b5132 4358
40fb9820 4359 if (i.types[0].bitfield.imm1)
29b0f896 4360 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4361
9afe6eb8
L
4362 /* We only need to check those implicit registers for instructions
4363 with 3 operands or less. */
4364 if (i.operands <= 3)
4365 for (j = 0; j < i.operands; j++)
4366 if (i.types[j].bitfield.inoutportreg
4367 || i.types[j].bitfield.shiftcount
1b54b8d7 4368 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
9afe6eb8 4369 i.reg_operands--;
40fb9820 4370
c0f3af97
L
4371 /* ImmExt should be processed after SSE2AVX. */
4372 if (!i.tm.opcode_modifier.sse2avx
4373 && i.tm.opcode_modifier.immext)
65da13b5 4374 process_immext ();
252b5132 4375
29b0f896
AM
4376 /* For insns with operands there are more diddles to do to the opcode. */
4377 if (i.operands)
4378 {
4379 if (!process_operands ())
4380 return;
4381 }
40fb9820 4382 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4383 {
4384 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4385 as_warn (_("translating to `%sp'"), i.tm.name);
4386 }
252b5132 4387
7a8655d2 4388 if (is_any_vex_encoding (&i.tm))
9e5e5283
L
4389 {
4390 if (flag_code == CODE_16BIT)
4391 {
4392 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4393 i.tm.name);
4394 return;
4395 }
c0f3af97 4396
9e5e5283
L
4397 if (i.tm.opcode_modifier.vex)
4398 build_vex_prefix (t);
4399 else
4400 build_evex_prefix ();
4401 }
43234a1e 4402
5dd85c99
SP
4403 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4404 instructions may define INT_OPCODE as well, so avoid this corner
4405 case for those instructions that use MODRM. */
4406 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4407 && !i.tm.opcode_modifier.modrm
4408 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4409 {
4410 i.tm.base_opcode = INT3_OPCODE;
4411 i.imm_operands = 0;
4412 }
252b5132 4413
40fb9820
L
4414 if ((i.tm.opcode_modifier.jump
4415 || i.tm.opcode_modifier.jumpbyte
4416 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
4417 && i.op[0].disps->X_op == O_constant)
4418 {
4419 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4420 the absolute address given by the constant. Since ix86 jumps and
4421 calls are pc relative, we need to generate a reloc. */
4422 i.op[0].disps->X_add_symbol = &abs_symbol;
4423 i.op[0].disps->X_op = O_symbol;
4424 }
252b5132 4425
40fb9820 4426 if (i.tm.opcode_modifier.rex64)
161a04f6 4427 i.rex |= REX_W;
252b5132 4428
29b0f896
AM
4429 /* For 8 bit registers we need an empty rex prefix. Also if the
4430 instruction already has a prefix, we need to convert old
4431 registers to new ones. */
773f551c 4432
dc821c5f 4433 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
29b0f896 4434 && (i.op[0].regs->reg_flags & RegRex64) != 0)
dc821c5f 4435 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
29b0f896 4436 && (i.op[1].regs->reg_flags & RegRex64) != 0)
dc821c5f
JB
4437 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4438 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
29b0f896
AM
4439 && i.rex != 0))
4440 {
4441 int x;
726c5dcd 4442
29b0f896
AM
4443 i.rex |= REX_OPCODE;
4444 for (x = 0; x < 2; x++)
4445 {
4446 /* Look for 8 bit operand that uses old registers. */
dc821c5f 4447 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
29b0f896 4448 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4449 {
29b0f896
AM
4450 /* In case it is "hi" register, give up. */
4451 if (i.op[x].regs->reg_num > 3)
a540244d 4452 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4453 "instruction requiring REX prefix."),
a540244d 4454 register_prefix, i.op[x].regs->reg_name);
773f551c 4455
29b0f896
AM
4456 /* Otherwise it is equivalent to the extended register.
4457 Since the encoding doesn't change this is merely
4458 cosmetic cleanup for debug output. */
4459
4460 i.op[x].regs = i.op[x].regs + 8;
773f551c 4461 }
29b0f896
AM
4462 }
4463 }
773f551c 4464
6b6b6807
L
4465 if (i.rex == 0 && i.rex_encoding)
4466 {
4467 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4468 that uses legacy register. If it is "hi" register, don't add
4469 the REX_OPCODE byte. */
4470 int x;
4471 for (x = 0; x < 2; x++)
4472 if (i.types[x].bitfield.reg
4473 && i.types[x].bitfield.byte
4474 && (i.op[x].regs->reg_flags & RegRex64) == 0
4475 && i.op[x].regs->reg_num > 3)
4476 {
4477 i.rex_encoding = FALSE;
4478 break;
4479 }
4480
4481 if (i.rex_encoding)
4482 i.rex = REX_OPCODE;
4483 }
4484
7ab9ffdd 4485 if (i.rex != 0)
29b0f896
AM
4486 add_prefix (REX_OPCODE | i.rex);
4487
4488 /* We are ready to output the insn. */
4489 output_insn ();
4490}
4491
4492static char *
e3bb37b5 4493parse_insn (char *line, char *mnemonic)
29b0f896
AM
4494{
4495 char *l = line;
4496 char *token_start = l;
4497 char *mnem_p;
5c6af06e 4498 int supported;
d3ce72d0 4499 const insn_template *t;
b6169b20 4500 char *dot_p = NULL;
29b0f896 4501
29b0f896
AM
4502 while (1)
4503 {
4504 mnem_p = mnemonic;
4505 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4506 {
b6169b20
L
4507 if (*mnem_p == '.')
4508 dot_p = mnem_p;
29b0f896
AM
4509 mnem_p++;
4510 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4511 {
29b0f896
AM
4512 as_bad (_("no such instruction: `%s'"), token_start);
4513 return NULL;
4514 }
4515 l++;
4516 }
4517 if (!is_space_char (*l)
4518 && *l != END_OF_INSN
e44823cf
JB
4519 && (intel_syntax
4520 || (*l != PREFIX_SEPARATOR
4521 && *l != ',')))
29b0f896
AM
4522 {
4523 as_bad (_("invalid character %s in mnemonic"),
4524 output_invalid (*l));
4525 return NULL;
4526 }
4527 if (token_start == l)
4528 {
e44823cf 4529 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4530 as_bad (_("expecting prefix; got nothing"));
4531 else
4532 as_bad (_("expecting mnemonic; got nothing"));
4533 return NULL;
4534 }
45288df1 4535
29b0f896 4536 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4537 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4538
29b0f896
AM
4539 if (*l != END_OF_INSN
4540 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4541 && current_templates
40fb9820 4542 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4543 {
c6fb90c8 4544 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4545 {
4546 as_bad ((flag_code != CODE_64BIT
4547 ? _("`%s' is only supported in 64-bit mode")
4548 : _("`%s' is not supported in 64-bit mode")),
4549 current_templates->start->name);
4550 return NULL;
4551 }
29b0f896
AM
4552 /* If we are in 16-bit mode, do not allow addr16 or data16.
4553 Similarly, in 32-bit mode, do not allow addr32 or data32. */
673fe0f0
JB
4554 if ((current_templates->start->opcode_modifier.size == SIZE16
4555 || current_templates->start->opcode_modifier.size == SIZE32)
29b0f896 4556 && flag_code != CODE_64BIT
673fe0f0 4557 && ((current_templates->start->opcode_modifier.size == SIZE32)
29b0f896
AM
4558 ^ (flag_code == CODE_16BIT)))
4559 {
4560 as_bad (_("redundant %s prefix"),
4561 current_templates->start->name);
4562 return NULL;
45288df1 4563 }
86fa6981 4564 if (current_templates->start->opcode_length == 0)
29b0f896 4565 {
86fa6981
L
4566 /* Handle pseudo prefixes. */
4567 switch (current_templates->start->base_opcode)
4568 {
4569 case 0x0:
4570 /* {disp8} */
4571 i.disp_encoding = disp_encoding_8bit;
4572 break;
4573 case 0x1:
4574 /* {disp32} */
4575 i.disp_encoding = disp_encoding_32bit;
4576 break;
4577 case 0x2:
4578 /* {load} */
4579 i.dir_encoding = dir_encoding_load;
4580 break;
4581 case 0x3:
4582 /* {store} */
4583 i.dir_encoding = dir_encoding_store;
4584 break;
4585 case 0x4:
4586 /* {vex2} */
4587 i.vec_encoding = vex_encoding_vex2;
4588 break;
4589 case 0x5:
4590 /* {vex3} */
4591 i.vec_encoding = vex_encoding_vex3;
4592 break;
4593 case 0x6:
4594 /* {evex} */
4595 i.vec_encoding = vex_encoding_evex;
4596 break;
6b6b6807
L
4597 case 0x7:
4598 /* {rex} */
4599 i.rex_encoding = TRUE;
4600 break;
b6f8c7c4
L
4601 case 0x8:
4602 /* {nooptimize} */
4603 i.no_optimize = TRUE;
4604 break;
86fa6981
L
4605 default:
4606 abort ();
4607 }
4608 }
4609 else
4610 {
4611 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4612 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4613 {
4e9ac44a
L
4614 case PREFIX_EXIST:
4615 return NULL;
4616 case PREFIX_DS:
d777820b 4617 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4618 i.notrack_prefix = current_templates->start->name;
4619 break;
4620 case PREFIX_REP:
4621 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4622 i.hle_prefix = current_templates->start->name;
4623 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4624 i.bnd_prefix = current_templates->start->name;
4625 else
4626 i.rep_prefix = current_templates->start->name;
4627 break;
4628 default:
4629 break;
86fa6981 4630 }
29b0f896
AM
4631 }
4632 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4633 token_start = ++l;
4634 }
4635 else
4636 break;
4637 }
45288df1 4638
30a55f88 4639 if (!current_templates)
b6169b20 4640 {
07d5e953
JB
4641 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4642 Check if we should swap operand or force 32bit displacement in
f8a5c266 4643 encoding. */
30a55f88 4644 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
64c49ab3 4645 i.dir_encoding = dir_encoding_swap;
8d63c93e 4646 else if (mnem_p - 3 == dot_p
a501d77e
L
4647 && dot_p[1] == 'd'
4648 && dot_p[2] == '8')
4649 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4650 else if (mnem_p - 4 == dot_p
f8a5c266
L
4651 && dot_p[1] == 'd'
4652 && dot_p[2] == '3'
4653 && dot_p[3] == '2')
a501d77e 4654 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4655 else
4656 goto check_suffix;
4657 mnem_p = dot_p;
4658 *dot_p = '\0';
d3ce72d0 4659 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4660 }
4661
29b0f896
AM
4662 if (!current_templates)
4663 {
b6169b20 4664check_suffix:
1c529385 4665 if (mnem_p > mnemonic)
29b0f896 4666 {
1c529385
LH
4667 /* See if we can get a match by trimming off a suffix. */
4668 switch (mnem_p[-1])
29b0f896 4669 {
1c529385
LH
4670 case WORD_MNEM_SUFFIX:
4671 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
29b0f896
AM
4672 i.suffix = SHORT_MNEM_SUFFIX;
4673 else
1c529385
LH
4674 /* Fall through. */
4675 case BYTE_MNEM_SUFFIX:
4676 case QWORD_MNEM_SUFFIX:
4677 i.suffix = mnem_p[-1];
29b0f896 4678 mnem_p[-1] = '\0';
d3ce72d0 4679 current_templates = (const templates *) hash_find (op_hash,
1c529385
LH
4680 mnemonic);
4681 break;
4682 case SHORT_MNEM_SUFFIX:
4683 case LONG_MNEM_SUFFIX:
4684 if (!intel_syntax)
4685 {
4686 i.suffix = mnem_p[-1];
4687 mnem_p[-1] = '\0';
4688 current_templates = (const templates *) hash_find (op_hash,
4689 mnemonic);
4690 }
4691 break;
4692
4693 /* Intel Syntax. */
4694 case 'd':
4695 if (intel_syntax)
4696 {
4697 if (intel_float_operand (mnemonic) == 1)
4698 i.suffix = SHORT_MNEM_SUFFIX;
4699 else
4700 i.suffix = LONG_MNEM_SUFFIX;
4701 mnem_p[-1] = '\0';
4702 current_templates = (const templates *) hash_find (op_hash,
4703 mnemonic);
4704 }
4705 break;
29b0f896 4706 }
29b0f896 4707 }
1c529385 4708
29b0f896
AM
4709 if (!current_templates)
4710 {
4711 as_bad (_("no such instruction: `%s'"), token_start);
4712 return NULL;
4713 }
4714 }
252b5132 4715
40fb9820
L
4716 if (current_templates->start->opcode_modifier.jump
4717 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
4718 {
4719 /* Check for a branch hint. We allow ",pt" and ",pn" for
4720 predict taken and predict not taken respectively.
4721 I'm not sure that branch hints actually do anything on loop
4722 and jcxz insns (JumpByte) for current Pentium4 chips. They
4723 may work in the future and it doesn't hurt to accept them
4724 now. */
4725 if (l[0] == ',' && l[1] == 'p')
4726 {
4727 if (l[2] == 't')
4728 {
4729 if (!add_prefix (DS_PREFIX_OPCODE))
4730 return NULL;
4731 l += 3;
4732 }
4733 else if (l[2] == 'n')
4734 {
4735 if (!add_prefix (CS_PREFIX_OPCODE))
4736 return NULL;
4737 l += 3;
4738 }
4739 }
4740 }
4741 /* Any other comma loses. */
4742 if (*l == ',')
4743 {
4744 as_bad (_("invalid character %s in mnemonic"),
4745 output_invalid (*l));
4746 return NULL;
4747 }
252b5132 4748
29b0f896 4749 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4750 supported = 0;
4751 for (t = current_templates->start; t < current_templates->end; ++t)
4752 {
c0f3af97
L
4753 supported |= cpu_flags_match (t);
4754 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4755 {
4756 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4757 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4758
548d0ee6
JB
4759 return l;
4760 }
29b0f896 4761 }
3629bb00 4762
548d0ee6
JB
4763 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4764 as_bad (flag_code == CODE_64BIT
4765 ? _("`%s' is not supported in 64-bit mode")
4766 : _("`%s' is only supported in 64-bit mode"),
4767 current_templates->start->name);
4768 else
4769 as_bad (_("`%s' is not supported on `%s%s'"),
4770 current_templates->start->name,
4771 cpu_arch_name ? cpu_arch_name : default_arch,
4772 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4773
548d0ee6 4774 return NULL;
29b0f896 4775}
252b5132 4776
29b0f896 4777static char *
e3bb37b5 4778parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4779{
4780 char *token_start;
3138f287 4781
29b0f896
AM
4782 /* 1 if operand is pending after ','. */
4783 unsigned int expecting_operand = 0;
252b5132 4784
29b0f896
AM
4785 /* Non-zero if operand parens not balanced. */
4786 unsigned int paren_not_balanced;
4787
4788 while (*l != END_OF_INSN)
4789 {
4790 /* Skip optional white space before operand. */
4791 if (is_space_char (*l))
4792 ++l;
d02603dc 4793 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4794 {
4795 as_bad (_("invalid character %s before operand %d"),
4796 output_invalid (*l),
4797 i.operands + 1);
4798 return NULL;
4799 }
d02603dc 4800 token_start = l; /* After white space. */
29b0f896
AM
4801 paren_not_balanced = 0;
4802 while (paren_not_balanced || *l != ',')
4803 {
4804 if (*l == END_OF_INSN)
4805 {
4806 if (paren_not_balanced)
4807 {
4808 if (!intel_syntax)
4809 as_bad (_("unbalanced parenthesis in operand %d."),
4810 i.operands + 1);
4811 else
4812 as_bad (_("unbalanced brackets in operand %d."),
4813 i.operands + 1);
4814 return NULL;
4815 }
4816 else
4817 break; /* we are done */
4818 }
d02603dc 4819 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4820 {
4821 as_bad (_("invalid character %s in operand %d"),
4822 output_invalid (*l),
4823 i.operands + 1);
4824 return NULL;
4825 }
4826 if (!intel_syntax)
4827 {
4828 if (*l == '(')
4829 ++paren_not_balanced;
4830 if (*l == ')')
4831 --paren_not_balanced;
4832 }
4833 else
4834 {
4835 if (*l == '[')
4836 ++paren_not_balanced;
4837 if (*l == ']')
4838 --paren_not_balanced;
4839 }
4840 l++;
4841 }
4842 if (l != token_start)
4843 { /* Yes, we've read in another operand. */
4844 unsigned int operand_ok;
4845 this_operand = i.operands++;
4846 if (i.operands > MAX_OPERANDS)
4847 {
4848 as_bad (_("spurious operands; (%d operands/instruction max)"),
4849 MAX_OPERANDS);
4850 return NULL;
4851 }
9d46ce34 4852 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4853 /* Now parse operand adding info to 'i' as we go along. */
4854 END_STRING_AND_SAVE (l);
4855
1286ab78
L
4856 if (i.mem_operands > 1)
4857 {
4858 as_bad (_("too many memory references for `%s'"),
4859 mnemonic);
4860 return 0;
4861 }
4862
29b0f896
AM
4863 if (intel_syntax)
4864 operand_ok =
4865 i386_intel_operand (token_start,
4866 intel_float_operand (mnemonic));
4867 else
a7619375 4868 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4869
4870 RESTORE_END_STRING (l);
4871 if (!operand_ok)
4872 return NULL;
4873 }
4874 else
4875 {
4876 if (expecting_operand)
4877 {
4878 expecting_operand_after_comma:
4879 as_bad (_("expecting operand after ','; got nothing"));
4880 return NULL;
4881 }
4882 if (*l == ',')
4883 {
4884 as_bad (_("expecting operand before ','; got nothing"));
4885 return NULL;
4886 }
4887 }
7f3f1ea2 4888
29b0f896
AM
4889 /* Now *l must be either ',' or END_OF_INSN. */
4890 if (*l == ',')
4891 {
4892 if (*++l == END_OF_INSN)
4893 {
4894 /* Just skip it, if it's \n complain. */
4895 goto expecting_operand_after_comma;
4896 }
4897 expecting_operand = 1;
4898 }
4899 }
4900 return l;
4901}
7f3f1ea2 4902
050dfa73 4903static void
4d456e3d 4904swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4905{
4906 union i386_op temp_op;
40fb9820 4907 i386_operand_type temp_type;
c48dadc9 4908 unsigned int temp_flags;
050dfa73 4909 enum bfd_reloc_code_real temp_reloc;
4eed87de 4910
050dfa73
MM
4911 temp_type = i.types[xchg2];
4912 i.types[xchg2] = i.types[xchg1];
4913 i.types[xchg1] = temp_type;
c48dadc9
JB
4914
4915 temp_flags = i.flags[xchg2];
4916 i.flags[xchg2] = i.flags[xchg1];
4917 i.flags[xchg1] = temp_flags;
4918
050dfa73
MM
4919 temp_op = i.op[xchg2];
4920 i.op[xchg2] = i.op[xchg1];
4921 i.op[xchg1] = temp_op;
c48dadc9 4922
050dfa73
MM
4923 temp_reloc = i.reloc[xchg2];
4924 i.reloc[xchg2] = i.reloc[xchg1];
4925 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4926
4927 if (i.mask)
4928 {
4929 if (i.mask->operand == xchg1)
4930 i.mask->operand = xchg2;
4931 else if (i.mask->operand == xchg2)
4932 i.mask->operand = xchg1;
4933 }
4934 if (i.broadcast)
4935 {
4936 if (i.broadcast->operand == xchg1)
4937 i.broadcast->operand = xchg2;
4938 else if (i.broadcast->operand == xchg2)
4939 i.broadcast->operand = xchg1;
4940 }
4941 if (i.rounding)
4942 {
4943 if (i.rounding->operand == xchg1)
4944 i.rounding->operand = xchg2;
4945 else if (i.rounding->operand == xchg2)
4946 i.rounding->operand = xchg1;
4947 }
050dfa73
MM
4948}
4949
29b0f896 4950static void
e3bb37b5 4951swap_operands (void)
29b0f896 4952{
b7c61d9a 4953 switch (i.operands)
050dfa73 4954 {
c0f3af97 4955 case 5:
b7c61d9a 4956 case 4:
4d456e3d 4957 swap_2_operands (1, i.operands - 2);
1a0670f3 4958 /* Fall through. */
b7c61d9a
L
4959 case 3:
4960 case 2:
4d456e3d 4961 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
4962 break;
4963 default:
4964 abort ();
29b0f896 4965 }
29b0f896
AM
4966
4967 if (i.mem_operands == 2)
4968 {
4969 const seg_entry *temp_seg;
4970 temp_seg = i.seg[0];
4971 i.seg[0] = i.seg[1];
4972 i.seg[1] = temp_seg;
4973 }
4974}
252b5132 4975
29b0f896
AM
4976/* Try to ensure constant immediates are represented in the smallest
4977 opcode possible. */
4978static void
e3bb37b5 4979optimize_imm (void)
29b0f896
AM
4980{
4981 char guess_suffix = 0;
4982 int op;
252b5132 4983
29b0f896
AM
4984 if (i.suffix)
4985 guess_suffix = i.suffix;
4986 else if (i.reg_operands)
4987 {
4988 /* Figure out a suffix from the last register operand specified.
4989 We can't do this properly yet, ie. excluding InOutPortReg,
4990 but the following works for instructions with immediates.
4991 In any case, we can't set i.suffix yet. */
4992 for (op = i.operands; --op >= 0;)
dc821c5f 4993 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
7ab9ffdd 4994 {
40fb9820
L
4995 guess_suffix = BYTE_MNEM_SUFFIX;
4996 break;
4997 }
dc821c5f 4998 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
252b5132 4999 {
40fb9820
L
5000 guess_suffix = WORD_MNEM_SUFFIX;
5001 break;
5002 }
dc821c5f 5003 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
40fb9820
L
5004 {
5005 guess_suffix = LONG_MNEM_SUFFIX;
5006 break;
5007 }
dc821c5f 5008 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
40fb9820
L
5009 {
5010 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 5011 break;
252b5132 5012 }
29b0f896
AM
5013 }
5014 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5015 guess_suffix = WORD_MNEM_SUFFIX;
5016
5017 for (op = i.operands; --op >= 0;)
40fb9820 5018 if (operand_type_check (i.types[op], imm))
29b0f896
AM
5019 {
5020 switch (i.op[op].imms->X_op)
252b5132 5021 {
29b0f896
AM
5022 case O_constant:
5023 /* If a suffix is given, this operand may be shortened. */
5024 switch (guess_suffix)
252b5132 5025 {
29b0f896 5026 case LONG_MNEM_SUFFIX:
40fb9820
L
5027 i.types[op].bitfield.imm32 = 1;
5028 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5029 break;
5030 case WORD_MNEM_SUFFIX:
40fb9820
L
5031 i.types[op].bitfield.imm16 = 1;
5032 i.types[op].bitfield.imm32 = 1;
5033 i.types[op].bitfield.imm32s = 1;
5034 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5035 break;
5036 case BYTE_MNEM_SUFFIX:
40fb9820
L
5037 i.types[op].bitfield.imm8 = 1;
5038 i.types[op].bitfield.imm8s = 1;
5039 i.types[op].bitfield.imm16 = 1;
5040 i.types[op].bitfield.imm32 = 1;
5041 i.types[op].bitfield.imm32s = 1;
5042 i.types[op].bitfield.imm64 = 1;
29b0f896 5043 break;
252b5132 5044 }
252b5132 5045
29b0f896
AM
5046 /* If this operand is at most 16 bits, convert it
5047 to a signed 16 bit number before trying to see
5048 whether it will fit in an even smaller size.
5049 This allows a 16-bit operand such as $0xffe0 to
5050 be recognised as within Imm8S range. */
40fb9820 5051 if ((i.types[op].bitfield.imm16)
29b0f896 5052 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 5053 {
29b0f896
AM
5054 i.op[op].imms->X_add_number =
5055 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5056 }
a28def75
L
5057#ifdef BFD64
5058 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 5059 if ((i.types[op].bitfield.imm32)
29b0f896
AM
5060 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5061 == 0))
5062 {
5063 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5064 ^ ((offsetT) 1 << 31))
5065 - ((offsetT) 1 << 31));
5066 }
a28def75 5067#endif
40fb9820 5068 i.types[op]
c6fb90c8
L
5069 = operand_type_or (i.types[op],
5070 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 5071
29b0f896
AM
5072 /* We must avoid matching of Imm32 templates when 64bit
5073 only immediate is available. */
5074 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 5075 i.types[op].bitfield.imm32 = 0;
29b0f896 5076 break;
252b5132 5077
29b0f896
AM
5078 case O_absent:
5079 case O_register:
5080 abort ();
5081
5082 /* Symbols and expressions. */
5083 default:
9cd96992
JB
5084 /* Convert symbolic operand to proper sizes for matching, but don't
5085 prevent matching a set of insns that only supports sizes other
5086 than those matching the insn suffix. */
5087 {
40fb9820 5088 i386_operand_type mask, allowed;
d3ce72d0 5089 const insn_template *t;
9cd96992 5090
0dfbf9d7
L
5091 operand_type_set (&mask, 0);
5092 operand_type_set (&allowed, 0);
40fb9820 5093
4eed87de
AM
5094 for (t = current_templates->start;
5095 t < current_templates->end;
5096 ++t)
c6fb90c8
L
5097 allowed = operand_type_or (allowed,
5098 t->operand_types[op]);
9cd96992
JB
5099 switch (guess_suffix)
5100 {
5101 case QWORD_MNEM_SUFFIX:
40fb9820
L
5102 mask.bitfield.imm64 = 1;
5103 mask.bitfield.imm32s = 1;
9cd96992
JB
5104 break;
5105 case LONG_MNEM_SUFFIX:
40fb9820 5106 mask.bitfield.imm32 = 1;
9cd96992
JB
5107 break;
5108 case WORD_MNEM_SUFFIX:
40fb9820 5109 mask.bitfield.imm16 = 1;
9cd96992
JB
5110 break;
5111 case BYTE_MNEM_SUFFIX:
40fb9820 5112 mask.bitfield.imm8 = 1;
9cd96992
JB
5113 break;
5114 default:
9cd96992
JB
5115 break;
5116 }
c6fb90c8 5117 allowed = operand_type_and (mask, allowed);
0dfbf9d7 5118 if (!operand_type_all_zero (&allowed))
c6fb90c8 5119 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 5120 }
29b0f896 5121 break;
252b5132 5122 }
29b0f896
AM
5123 }
5124}
47926f60 5125
29b0f896
AM
5126/* Try to use the smallest displacement type too. */
5127static void
e3bb37b5 5128optimize_disp (void)
29b0f896
AM
5129{
5130 int op;
3e73aa7c 5131
29b0f896 5132 for (op = i.operands; --op >= 0;)
40fb9820 5133 if (operand_type_check (i.types[op], disp))
252b5132 5134 {
b300c311 5135 if (i.op[op].disps->X_op == O_constant)
252b5132 5136 {
91d6fa6a 5137 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 5138
40fb9820 5139 if (i.types[op].bitfield.disp16
91d6fa6a 5140 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
5141 {
5142 /* If this operand is at most 16 bits, convert
5143 to a signed 16 bit number and don't use 64bit
5144 displacement. */
91d6fa6a 5145 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 5146 i.types[op].bitfield.disp64 = 0;
b300c311 5147 }
a28def75
L
5148#ifdef BFD64
5149 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 5150 if (i.types[op].bitfield.disp32
91d6fa6a 5151 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
5152 {
5153 /* If this operand is at most 32 bits, convert
5154 to a signed 32 bit number and don't use 64bit
5155 displacement. */
91d6fa6a
NC
5156 op_disp &= (((offsetT) 2 << 31) - 1);
5157 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 5158 i.types[op].bitfield.disp64 = 0;
b300c311 5159 }
a28def75 5160#endif
91d6fa6a 5161 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 5162 {
40fb9820
L
5163 i.types[op].bitfield.disp8 = 0;
5164 i.types[op].bitfield.disp16 = 0;
5165 i.types[op].bitfield.disp32 = 0;
5166 i.types[op].bitfield.disp32s = 0;
5167 i.types[op].bitfield.disp64 = 0;
b300c311
L
5168 i.op[op].disps = 0;
5169 i.disp_operands--;
5170 }
5171 else if (flag_code == CODE_64BIT)
5172 {
91d6fa6a 5173 if (fits_in_signed_long (op_disp))
28a9d8f5 5174 {
40fb9820
L
5175 i.types[op].bitfield.disp64 = 0;
5176 i.types[op].bitfield.disp32s = 1;
28a9d8f5 5177 }
0e1147d9 5178 if (i.prefix[ADDR_PREFIX]
91d6fa6a 5179 && fits_in_unsigned_long (op_disp))
40fb9820 5180 i.types[op].bitfield.disp32 = 1;
b300c311 5181 }
40fb9820
L
5182 if ((i.types[op].bitfield.disp32
5183 || i.types[op].bitfield.disp32s
5184 || i.types[op].bitfield.disp16)
b5014f7a 5185 && fits_in_disp8 (op_disp))
40fb9820 5186 i.types[op].bitfield.disp8 = 1;
252b5132 5187 }
67a4f2b7
AO
5188 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5189 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5190 {
5191 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5192 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
5193 i.types[op].bitfield.disp8 = 0;
5194 i.types[op].bitfield.disp16 = 0;
5195 i.types[op].bitfield.disp32 = 0;
5196 i.types[op].bitfield.disp32s = 0;
5197 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
5198 }
5199 else
b300c311 5200 /* We only support 64bit displacement on constants. */
40fb9820 5201 i.types[op].bitfield.disp64 = 0;
252b5132 5202 }
29b0f896
AM
5203}
5204
4a1b91ea
L
5205/* Return 1 if there is a match in broadcast bytes between operand
5206 GIVEN and instruction template T. */
5207
5208static INLINE int
5209match_broadcast_size (const insn_template *t, unsigned int given)
5210{
5211 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5212 && i.types[given].bitfield.byte)
5213 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5214 && i.types[given].bitfield.word)
5215 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5216 && i.types[given].bitfield.dword)
5217 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5218 && i.types[given].bitfield.qword));
5219}
5220
6c30d220
L
5221/* Check if operands are valid for the instruction. */
5222
5223static int
5224check_VecOperands (const insn_template *t)
5225{
43234a1e 5226 unsigned int op;
e2195274
JB
5227 i386_cpu_flags cpu;
5228 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5229
5230 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5231 any one operand are implicity requiring AVX512VL support if the actual
5232 operand size is YMMword or XMMword. Since this function runs after
5233 template matching, there's no need to check for YMMword/XMMword in
5234 the template. */
5235 cpu = cpu_flags_and (t->cpu_flags, avx512);
5236 if (!cpu_flags_all_zero (&cpu)
5237 && !t->cpu_flags.bitfield.cpuavx512vl
5238 && !cpu_arch_flags.bitfield.cpuavx512vl)
5239 {
5240 for (op = 0; op < t->operands; ++op)
5241 {
5242 if (t->operand_types[op].bitfield.zmmword
5243 && (i.types[op].bitfield.ymmword
5244 || i.types[op].bitfield.xmmword))
5245 {
5246 i.error = unsupported;
5247 return 1;
5248 }
5249 }
5250 }
43234a1e 5251
6c30d220
L
5252 /* Without VSIB byte, we can't have a vector register for index. */
5253 if (!t->opcode_modifier.vecsib
5254 && i.index_reg
1b54b8d7
JB
5255 && (i.index_reg->reg_type.bitfield.xmmword
5256 || i.index_reg->reg_type.bitfield.ymmword
5257 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5258 {
5259 i.error = unsupported_vector_index_register;
5260 return 1;
5261 }
5262
ad8ecc81
MZ
5263 /* Check if default mask is allowed. */
5264 if (t->opcode_modifier.nodefmask
5265 && (!i.mask || i.mask->mask->reg_num == 0))
5266 {
5267 i.error = no_default_mask;
5268 return 1;
5269 }
5270
7bab8ab5
JB
5271 /* For VSIB byte, we need a vector register for index, and all vector
5272 registers must be distinct. */
5273 if (t->opcode_modifier.vecsib)
5274 {
5275 if (!i.index_reg
6c30d220 5276 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 5277 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 5278 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 5279 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 5280 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 5281 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5282 {
5283 i.error = invalid_vsib_address;
5284 return 1;
5285 }
5286
43234a1e
L
5287 gas_assert (i.reg_operands == 2 || i.mask);
5288 if (i.reg_operands == 2 && !i.mask)
5289 {
1b54b8d7
JB
5290 gas_assert (i.types[0].bitfield.regsimd);
5291 gas_assert (i.types[0].bitfield.xmmword
5292 || i.types[0].bitfield.ymmword);
5293 gas_assert (i.types[2].bitfield.regsimd);
5294 gas_assert (i.types[2].bitfield.xmmword
5295 || i.types[2].bitfield.ymmword);
43234a1e
L
5296 if (operand_check == check_none)
5297 return 0;
5298 if (register_number (i.op[0].regs)
5299 != register_number (i.index_reg)
5300 && register_number (i.op[2].regs)
5301 != register_number (i.index_reg)
5302 && register_number (i.op[0].regs)
5303 != register_number (i.op[2].regs))
5304 return 0;
5305 if (operand_check == check_error)
5306 {
5307 i.error = invalid_vector_register_set;
5308 return 1;
5309 }
5310 as_warn (_("mask, index, and destination registers should be distinct"));
5311 }
8444f82a
MZ
5312 else if (i.reg_operands == 1 && i.mask)
5313 {
1b54b8d7
JB
5314 if (i.types[1].bitfield.regsimd
5315 && (i.types[1].bitfield.xmmword
5316 || i.types[1].bitfield.ymmword
5317 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5318 && (register_number (i.op[1].regs)
5319 == register_number (i.index_reg)))
5320 {
5321 if (operand_check == check_error)
5322 {
5323 i.error = invalid_vector_register_set;
5324 return 1;
5325 }
5326 if (operand_check != check_none)
5327 as_warn (_("index and destination registers should be distinct"));
5328 }
5329 }
43234a1e 5330 }
7bab8ab5 5331
43234a1e
L
5332 /* Check if broadcast is supported by the instruction and is applied
5333 to the memory operand. */
5334 if (i.broadcast)
5335 {
8e6e0792 5336 i386_operand_type type, overlap;
43234a1e
L
5337
5338 /* Check if specified broadcast is supported in this instruction,
4a1b91ea 5339 and its broadcast bytes match the memory operand. */
32546502 5340 op = i.broadcast->operand;
8e6e0792 5341 if (!t->opcode_modifier.broadcast
c48dadc9 5342 || !(i.flags[op] & Operand_Mem)
c39e5b26 5343 || (!i.types[op].bitfield.unspecified
4a1b91ea 5344 && !match_broadcast_size (t, op)))
43234a1e
L
5345 {
5346 bad_broadcast:
5347 i.error = unsupported_broadcast;
5348 return 1;
5349 }
8e6e0792 5350
4a1b91ea
L
5351 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5352 * i.broadcast->type);
8e6e0792 5353 operand_type_set (&type, 0);
4a1b91ea 5354 switch (i.broadcast->bytes)
8e6e0792 5355 {
4a1b91ea
L
5356 case 2:
5357 type.bitfield.word = 1;
5358 break;
5359 case 4:
5360 type.bitfield.dword = 1;
5361 break;
8e6e0792
JB
5362 case 8:
5363 type.bitfield.qword = 1;
5364 break;
5365 case 16:
5366 type.bitfield.xmmword = 1;
5367 break;
5368 case 32:
5369 type.bitfield.ymmword = 1;
5370 break;
5371 case 64:
5372 type.bitfield.zmmword = 1;
5373 break;
5374 default:
5375 goto bad_broadcast;
5376 }
5377
5378 overlap = operand_type_and (type, t->operand_types[op]);
5379 if (operand_type_all_zero (&overlap))
5380 goto bad_broadcast;
5381
5382 if (t->opcode_modifier.checkregsize)
5383 {
5384 unsigned int j;
5385
e2195274 5386 type.bitfield.baseindex = 1;
8e6e0792
JB
5387 for (j = 0; j < i.operands; ++j)
5388 {
5389 if (j != op
5390 && !operand_type_register_match(i.types[j],
5391 t->operand_types[j],
5392 type,
5393 t->operand_types[op]))
5394 goto bad_broadcast;
5395 }
5396 }
43234a1e
L
5397 }
5398 /* If broadcast is supported in this instruction, we need to check if
5399 operand of one-element size isn't specified without broadcast. */
5400 else if (t->opcode_modifier.broadcast && i.mem_operands)
5401 {
5402 /* Find memory operand. */
5403 for (op = 0; op < i.operands; op++)
5404 if (operand_type_check (i.types[op], anymem))
5405 break;
5406 gas_assert (op < i.operands);
5407 /* Check size of the memory operand. */
4a1b91ea 5408 if (match_broadcast_size (t, op))
43234a1e
L
5409 {
5410 i.error = broadcast_needed;
5411 return 1;
5412 }
5413 }
c39e5b26
JB
5414 else
5415 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5416
5417 /* Check if requested masking is supported. */
ae2387fe 5418 if (i.mask)
43234a1e 5419 {
ae2387fe
JB
5420 switch (t->opcode_modifier.masking)
5421 {
5422 case BOTH_MASKING:
5423 break;
5424 case MERGING_MASKING:
5425 if (i.mask->zeroing)
5426 {
5427 case 0:
5428 i.error = unsupported_masking;
5429 return 1;
5430 }
5431 break;
5432 case DYNAMIC_MASKING:
5433 /* Memory destinations allow only merging masking. */
5434 if (i.mask->zeroing && i.mem_operands)
5435 {
5436 /* Find memory operand. */
5437 for (op = 0; op < i.operands; op++)
c48dadc9 5438 if (i.flags[op] & Operand_Mem)
ae2387fe
JB
5439 break;
5440 gas_assert (op < i.operands);
5441 if (op == i.operands - 1)
5442 {
5443 i.error = unsupported_masking;
5444 return 1;
5445 }
5446 }
5447 break;
5448 default:
5449 abort ();
5450 }
43234a1e
L
5451 }
5452
5453 /* Check if masking is applied to dest operand. */
5454 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5455 {
5456 i.error = mask_not_on_destination;
5457 return 1;
5458 }
5459
43234a1e
L
5460 /* Check RC/SAE. */
5461 if (i.rounding)
5462 {
5463 if ((i.rounding->type != saeonly
5464 && !t->opcode_modifier.staticrounding)
5465 || (i.rounding->type == saeonly
5466 && (t->opcode_modifier.staticrounding
5467 || !t->opcode_modifier.sae)))
5468 {
5469 i.error = unsupported_rc_sae;
5470 return 1;
5471 }
5472 /* If the instruction has several immediate operands and one of
5473 them is rounding, the rounding operand should be the last
5474 immediate operand. */
5475 if (i.imm_operands > 1
5476 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5477 {
43234a1e 5478 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5479 return 1;
5480 }
6c30d220
L
5481 }
5482
43234a1e 5483 /* Check vector Disp8 operand. */
b5014f7a
JB
5484 if (t->opcode_modifier.disp8memshift
5485 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5486 {
5487 if (i.broadcast)
4a1b91ea 5488 i.memshift = t->opcode_modifier.broadcast - 1;
7091c612 5489 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 5490 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
5491 else
5492 {
5493 const i386_operand_type *type = NULL;
5494
5495 i.memshift = 0;
5496 for (op = 0; op < i.operands; op++)
5497 if (operand_type_check (i.types[op], anymem))
5498 {
4174bfff
JB
5499 if (t->opcode_modifier.evex == EVEXLIG)
5500 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5501 else if (t->operand_types[op].bitfield.xmmword
5502 + t->operand_types[op].bitfield.ymmword
5503 + t->operand_types[op].bitfield.zmmword <= 1)
7091c612
JB
5504 type = &t->operand_types[op];
5505 else if (!i.types[op].bitfield.unspecified)
5506 type = &i.types[op];
5507 }
4174bfff
JB
5508 else if (i.types[op].bitfield.regsimd
5509 && t->opcode_modifier.evex != EVEXLIG)
7091c612
JB
5510 {
5511 if (i.types[op].bitfield.zmmword)
5512 i.memshift = 6;
5513 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5514 i.memshift = 5;
5515 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5516 i.memshift = 4;
5517 }
5518
5519 if (type)
5520 {
5521 if (type->bitfield.zmmword)
5522 i.memshift = 6;
5523 else if (type->bitfield.ymmword)
5524 i.memshift = 5;
5525 else if (type->bitfield.xmmword)
5526 i.memshift = 4;
5527 }
5528
5529 /* For the check in fits_in_disp8(). */
5530 if (i.memshift == 0)
5531 i.memshift = -1;
5532 }
43234a1e
L
5533
5534 for (op = 0; op < i.operands; op++)
5535 if (operand_type_check (i.types[op], disp)
5536 && i.op[op].disps->X_op == O_constant)
5537 {
b5014f7a 5538 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5539 {
b5014f7a
JB
5540 i.types[op].bitfield.disp8 = 1;
5541 return 0;
43234a1e 5542 }
b5014f7a 5543 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5544 }
5545 }
b5014f7a
JB
5546
5547 i.memshift = 0;
43234a1e 5548
6c30d220
L
5549 return 0;
5550}
5551
43f3e2ee 5552/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5553 operand types. */
5554
5555static int
5556VEX_check_operands (const insn_template *t)
5557{
86fa6981 5558 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5559 {
86fa6981 5560 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 5561 if (!is_evex_encoding (t))
86fa6981
L
5562 {
5563 i.error = unsupported;
5564 return 1;
5565 }
5566 return 0;
43234a1e
L
5567 }
5568
a683cc34 5569 if (!t->opcode_modifier.vex)
86fa6981
L
5570 {
5571 /* This instruction template doesn't have VEX prefix. */
5572 if (i.vec_encoding != vex_encoding_default)
5573 {
5574 i.error = unsupported;
5575 return 1;
5576 }
5577 return 0;
5578 }
a683cc34
SP
5579
5580 /* Only check VEX_Imm4, which must be the first operand. */
5581 if (t->operand_types[0].bitfield.vec_imm4)
5582 {
5583 if (i.op[0].imms->X_op != O_constant
5584 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5585 {
a65babc9 5586 i.error = bad_imm4;
891edac4
L
5587 return 1;
5588 }
a683cc34
SP
5589
5590 /* Turn off Imm8 so that update_imm won't complain. */
5591 i.types[0] = vec_imm4;
5592 }
5593
5594 return 0;
5595}
5596
d3ce72d0 5597static const insn_template *
83b16ac6 5598match_template (char mnem_suffix)
29b0f896
AM
5599{
5600 /* Points to template once we've found it. */
d3ce72d0 5601 const insn_template *t;
40fb9820 5602 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5603 i386_operand_type overlap4;
29b0f896 5604 unsigned int found_reverse_match;
83b16ac6 5605 i386_opcode_modifier suffix_check, mnemsuf_check;
40fb9820 5606 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5607 int addr_prefix_disp;
a5c311ca 5608 unsigned int j;
3ac21baa 5609 unsigned int found_cpu_match, size_match;
45664ddb 5610 unsigned int check_register;
5614d22c 5611 enum i386_error specific_error = 0;
29b0f896 5612
c0f3af97
L
5613#if MAX_OPERANDS != 5
5614# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5615#endif
5616
29b0f896 5617 found_reverse_match = 0;
539e75ad 5618 addr_prefix_disp = -1;
40fb9820
L
5619
5620 memset (&suffix_check, 0, sizeof (suffix_check));
e2195274
JB
5621 if (intel_syntax && i.broadcast)
5622 /* nothing */;
5623 else if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
5624 suffix_check.no_bsuf = 1;
5625 else if (i.suffix == WORD_MNEM_SUFFIX)
5626 suffix_check.no_wsuf = 1;
5627 else if (i.suffix == SHORT_MNEM_SUFFIX)
5628 suffix_check.no_ssuf = 1;
5629 else if (i.suffix == LONG_MNEM_SUFFIX)
5630 suffix_check.no_lsuf = 1;
5631 else if (i.suffix == QWORD_MNEM_SUFFIX)
5632 suffix_check.no_qsuf = 1;
5633 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 5634 suffix_check.no_ldsuf = 1;
29b0f896 5635
83b16ac6
JB
5636 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5637 if (intel_syntax)
5638 {
5639 switch (mnem_suffix)
5640 {
5641 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5642 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5643 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5644 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5645 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5646 }
5647 }
5648
01559ecc
L
5649 /* Must have right number of operands. */
5650 i.error = number_of_operands_mismatch;
5651
45aa61fe 5652 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5653 {
539e75ad 5654 addr_prefix_disp = -1;
dbbc8b7e 5655 found_reverse_match = 0;
539e75ad 5656
29b0f896
AM
5657 if (i.operands != t->operands)
5658 continue;
5659
50aecf8c 5660 /* Check processor support. */
a65babc9 5661 i.error = unsupported;
c0f3af97
L
5662 found_cpu_match = (cpu_flags_match (t)
5663 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
5664 if (!found_cpu_match)
5665 continue;
5666
e1d4d893 5667 /* Check AT&T mnemonic. */
a65babc9 5668 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5669 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5670 continue;
5671
e92bae62 5672 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5673 i.error = unsupported_syntax;
5c07affc 5674 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5675 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5676 || (intel64 && t->opcode_modifier.amd64)
5677 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5678 continue;
5679
20592a94 5680 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 5681 i.error = invalid_instruction_suffix;
567e4e96
L
5682 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5683 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5684 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5685 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5686 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5687 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5688 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896 5689 continue;
83b16ac6
JB
5690 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5691 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5692 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5693 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5694 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5695 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5696 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5697 continue;
29b0f896 5698
3ac21baa
JB
5699 size_match = operand_size_match (t);
5700 if (!size_match)
7d5e4556 5701 continue;
539e75ad 5702
5c07affc
L
5703 for (j = 0; j < MAX_OPERANDS; j++)
5704 operand_types[j] = t->operand_types[j];
5705
45aa61fe
AM
5706 /* In general, don't allow 64-bit operands in 32-bit mode. */
5707 if (i.suffix == QWORD_MNEM_SUFFIX
5708 && flag_code != CODE_64BIT
5709 && (intel_syntax
40fb9820 5710 ? (!t->opcode_modifier.ignoresize
625cbd7a 5711 && !t->opcode_modifier.broadcast
45aa61fe
AM
5712 && !intel_float_operand (t->name))
5713 : intel_float_operand (t->name) != 2)
40fb9820 5714 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5715 && !operand_types[0].bitfield.regsimd)
40fb9820 5716 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5717 && !operand_types[t->operands > 1].bitfield.regsimd))
45aa61fe
AM
5718 && (t->base_opcode != 0x0fc7
5719 || t->extension_opcode != 1 /* cmpxchg8b */))
5720 continue;
5721
192dc9c6
JB
5722 /* In general, don't allow 32-bit operands on pre-386. */
5723 else if (i.suffix == LONG_MNEM_SUFFIX
5724 && !cpu_arch_flags.bitfield.cpui386
5725 && (intel_syntax
5726 ? (!t->opcode_modifier.ignoresize
5727 && !intel_float_operand (t->name))
5728 : intel_float_operand (t->name) != 2)
5729 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5730 && !operand_types[0].bitfield.regsimd)
192dc9c6 5731 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5732 && !operand_types[t->operands > 1].bitfield.regsimd)))
192dc9c6
JB
5733 continue;
5734
29b0f896 5735 /* Do not verify operands when there are none. */
50aecf8c 5736 else
29b0f896 5737 {
c6fb90c8 5738 if (!t->operands)
2dbab7d5
L
5739 /* We've found a match; break out of loop. */
5740 break;
29b0f896 5741 }
252b5132 5742
539e75ad
L
5743 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5744 into Disp32/Disp16/Disp32 operand. */
5745 if (i.prefix[ADDR_PREFIX] != 0)
5746 {
40fb9820 5747 /* There should be only one Disp operand. */
539e75ad
L
5748 switch (flag_code)
5749 {
5750 case CODE_16BIT:
40fb9820
L
5751 for (j = 0; j < MAX_OPERANDS; j++)
5752 {
5753 if (operand_types[j].bitfield.disp16)
5754 {
5755 addr_prefix_disp = j;
5756 operand_types[j].bitfield.disp32 = 1;
5757 operand_types[j].bitfield.disp16 = 0;
5758 break;
5759 }
5760 }
539e75ad
L
5761 break;
5762 case CODE_32BIT:
40fb9820
L
5763 for (j = 0; j < MAX_OPERANDS; j++)
5764 {
5765 if (operand_types[j].bitfield.disp32)
5766 {
5767 addr_prefix_disp = j;
5768 operand_types[j].bitfield.disp32 = 0;
5769 operand_types[j].bitfield.disp16 = 1;
5770 break;
5771 }
5772 }
539e75ad
L
5773 break;
5774 case CODE_64BIT:
40fb9820
L
5775 for (j = 0; j < MAX_OPERANDS; j++)
5776 {
5777 if (operand_types[j].bitfield.disp64)
5778 {
5779 addr_prefix_disp = j;
5780 operand_types[j].bitfield.disp64 = 0;
5781 operand_types[j].bitfield.disp32 = 1;
5782 break;
5783 }
5784 }
539e75ad
L
5785 break;
5786 }
539e75ad
L
5787 }
5788
02a86693
L
5789 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5790 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5791 continue;
5792
56ffb741 5793 /* We check register size if needed. */
e2195274
JB
5794 if (t->opcode_modifier.checkregsize)
5795 {
5796 check_register = (1 << t->operands) - 1;
5797 if (i.broadcast)
5798 check_register &= ~(1 << i.broadcast->operand);
5799 }
5800 else
5801 check_register = 0;
5802
c6fb90c8 5803 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5804 switch (t->operands)
5805 {
5806 case 1:
40fb9820 5807 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5808 continue;
5809 break;
5810 case 2:
33eaf5de 5811 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5812 only in 32bit mode and we can use opcode 0x90. In 64bit
5813 mode, we can't use 0x90 for xchg %eax, %eax since it should
5814 zero-extend %eax to %rax. */
5815 if (flag_code == CODE_64BIT
5816 && t->base_opcode == 0x90
0dfbf9d7
L
5817 && operand_type_equal (&i.types [0], &acc32)
5818 && operand_type_equal (&i.types [1], &acc32))
8b38ad71 5819 continue;
1212781b
JB
5820 /* xrelease mov %eax, <disp> is another special case. It must not
5821 match the accumulator-only encoding of mov. */
5822 if (flag_code != CODE_64BIT
5823 && i.hle_prefix
5824 && t->base_opcode == 0xa0
5825 && i.types[0].bitfield.acc
5826 && operand_type_check (i.types[1], anymem))
5827 continue;
f5eb1d70
JB
5828 /* Fall through. */
5829
5830 case 3:
3ac21baa
JB
5831 if (!(size_match & MATCH_STRAIGHT))
5832 goto check_reverse;
64c49ab3
JB
5833 /* Reverse direction of operands if swapping is possible in the first
5834 place (operands need to be symmetric) and
5835 - the load form is requested, and the template is a store form,
5836 - the store form is requested, and the template is a load form,
5837 - the non-default (swapped) form is requested. */
5838 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
f5eb1d70 5839 if (t->opcode_modifier.d && i.reg_operands == i.operands
64c49ab3
JB
5840 && !operand_type_all_zero (&overlap1))
5841 switch (i.dir_encoding)
5842 {
5843 case dir_encoding_load:
5844 if (operand_type_check (operand_types[i.operands - 1], anymem)
5845 || operand_types[i.operands - 1].bitfield.regmem)
5846 goto check_reverse;
5847 break;
5848
5849 case dir_encoding_store:
5850 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5851 && !operand_types[i.operands - 1].bitfield.regmem)
5852 goto check_reverse;
5853 break;
5854
5855 case dir_encoding_swap:
5856 goto check_reverse;
5857
5858 case dir_encoding_default:
5859 break;
5860 }
86fa6981 5861 /* If we want store form, we skip the current load. */
64c49ab3
JB
5862 if ((i.dir_encoding == dir_encoding_store
5863 || i.dir_encoding == dir_encoding_swap)
86fa6981
L
5864 && i.mem_operands == 0
5865 && t->opcode_modifier.load)
fa99fab2 5866 continue;
1a0670f3 5867 /* Fall through. */
f48ff2ae 5868 case 4:
c0f3af97 5869 case 5:
c6fb90c8 5870 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
5871 if (!operand_type_match (overlap0, i.types[0])
5872 || !operand_type_match (overlap1, i.types[1])
e2195274 5873 || ((check_register & 3) == 3
dc821c5f 5874 && !operand_type_register_match (i.types[0],
40fb9820 5875 operand_types[0],
dc821c5f 5876 i.types[1],
40fb9820 5877 operand_types[1])))
29b0f896
AM
5878 {
5879 /* Check if other direction is valid ... */
38e314eb 5880 if (!t->opcode_modifier.d)
29b0f896
AM
5881 continue;
5882
b6169b20 5883check_reverse:
3ac21baa
JB
5884 if (!(size_match & MATCH_REVERSE))
5885 continue;
29b0f896 5886 /* Try reversing direction of operands. */
f5eb1d70
JB
5887 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5888 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
40fb9820 5889 if (!operand_type_match (overlap0, i.types[0])
f5eb1d70 5890 || !operand_type_match (overlap1, i.types[i.operands - 1])
45664ddb 5891 || (check_register
dc821c5f 5892 && !operand_type_register_match (i.types[0],
f5eb1d70
JB
5893 operand_types[i.operands - 1],
5894 i.types[i.operands - 1],
45664ddb 5895 operand_types[0])))
29b0f896
AM
5896 {
5897 /* Does not match either direction. */
5898 continue;
5899 }
38e314eb 5900 /* found_reverse_match holds which of D or FloatR
29b0f896 5901 we've found. */
38e314eb
JB
5902 if (!t->opcode_modifier.d)
5903 found_reverse_match = 0;
5904 else if (operand_types[0].bitfield.tbyte)
8a2ed489 5905 found_reverse_match = Opcode_FloatD;
dbbc8b7e 5906 else if (operand_types[0].bitfield.xmmword
f5eb1d70 5907 || operand_types[i.operands - 1].bitfield.xmmword
dbbc8b7e 5908 || operand_types[0].bitfield.regmmx
f5eb1d70 5909 || operand_types[i.operands - 1].bitfield.regmmx
dbbc8b7e
JB
5910 || is_any_vex_encoding(t))
5911 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5912 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
8a2ed489 5913 else
38e314eb 5914 found_reverse_match = Opcode_D;
40fb9820 5915 if (t->opcode_modifier.floatr)
8a2ed489 5916 found_reverse_match |= Opcode_FloatR;
29b0f896 5917 }
f48ff2ae 5918 else
29b0f896 5919 {
f48ff2ae 5920 /* Found a forward 2 operand match here. */
d1cbb4db
L
5921 switch (t->operands)
5922 {
c0f3af97
L
5923 case 5:
5924 overlap4 = operand_type_and (i.types[4],
5925 operand_types[4]);
1a0670f3 5926 /* Fall through. */
d1cbb4db 5927 case 4:
c6fb90c8
L
5928 overlap3 = operand_type_and (i.types[3],
5929 operand_types[3]);
1a0670f3 5930 /* Fall through. */
d1cbb4db 5931 case 3:
c6fb90c8
L
5932 overlap2 = operand_type_and (i.types[2],
5933 operand_types[2]);
d1cbb4db
L
5934 break;
5935 }
29b0f896 5936
f48ff2ae
L
5937 switch (t->operands)
5938 {
c0f3af97
L
5939 case 5:
5940 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 5941 || !operand_type_register_match (i.types[3],
c0f3af97 5942 operand_types[3],
c0f3af97
L
5943 i.types[4],
5944 operand_types[4]))
5945 continue;
1a0670f3 5946 /* Fall through. */
f48ff2ae 5947 case 4:
40fb9820 5948 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
5949 || ((check_register & 0xa) == 0xa
5950 && !operand_type_register_match (i.types[1],
f7768225
JB
5951 operand_types[1],
5952 i.types[3],
e2195274
JB
5953 operand_types[3]))
5954 || ((check_register & 0xc) == 0xc
5955 && !operand_type_register_match (i.types[2],
5956 operand_types[2],
5957 i.types[3],
5958 operand_types[3])))
f48ff2ae 5959 continue;
1a0670f3 5960 /* Fall through. */
f48ff2ae
L
5961 case 3:
5962 /* Here we make use of the fact that there are no
23e42951 5963 reverse match 3 operand instructions. */
40fb9820 5964 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
5965 || ((check_register & 5) == 5
5966 && !operand_type_register_match (i.types[0],
23e42951
JB
5967 operand_types[0],
5968 i.types[2],
e2195274
JB
5969 operand_types[2]))
5970 || ((check_register & 6) == 6
5971 && !operand_type_register_match (i.types[1],
5972 operand_types[1],
5973 i.types[2],
5974 operand_types[2])))
f48ff2ae
L
5975 continue;
5976 break;
5977 }
29b0f896 5978 }
f48ff2ae 5979 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
5980 slip through to break. */
5981 }
3629bb00 5982 if (!found_cpu_match)
dbbc8b7e 5983 continue;
c0f3af97 5984
5614d22c
JB
5985 /* Check if vector and VEX operands are valid. */
5986 if (check_VecOperands (t) || VEX_check_operands (t))
5987 {
5988 specific_error = i.error;
5989 continue;
5990 }
a683cc34 5991
29b0f896
AM
5992 /* We've found a match; break out of loop. */
5993 break;
5994 }
5995
5996 if (t == current_templates->end)
5997 {
5998 /* We found no match. */
a65babc9 5999 const char *err_msg;
5614d22c 6000 switch (specific_error ? specific_error : i.error)
a65babc9
L
6001 {
6002 default:
6003 abort ();
86e026a4 6004 case operand_size_mismatch:
a65babc9
L
6005 err_msg = _("operand size mismatch");
6006 break;
6007 case operand_type_mismatch:
6008 err_msg = _("operand type mismatch");
6009 break;
6010 case register_type_mismatch:
6011 err_msg = _("register type mismatch");
6012 break;
6013 case number_of_operands_mismatch:
6014 err_msg = _("number of operands mismatch");
6015 break;
6016 case invalid_instruction_suffix:
6017 err_msg = _("invalid instruction suffix");
6018 break;
6019 case bad_imm4:
4a2608e3 6020 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 6021 break;
a65babc9
L
6022 case unsupported_with_intel_mnemonic:
6023 err_msg = _("unsupported with Intel mnemonic");
6024 break;
6025 case unsupported_syntax:
6026 err_msg = _("unsupported syntax");
6027 break;
6028 case unsupported:
35262a23 6029 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
6030 current_templates->start->name);
6031 return NULL;
6c30d220
L
6032 case invalid_vsib_address:
6033 err_msg = _("invalid VSIB address");
6034 break;
7bab8ab5
JB
6035 case invalid_vector_register_set:
6036 err_msg = _("mask, index, and destination registers must be distinct");
6037 break;
6c30d220
L
6038 case unsupported_vector_index_register:
6039 err_msg = _("unsupported vector index register");
6040 break;
43234a1e
L
6041 case unsupported_broadcast:
6042 err_msg = _("unsupported broadcast");
6043 break;
43234a1e
L
6044 case broadcast_needed:
6045 err_msg = _("broadcast is needed for operand of such type");
6046 break;
6047 case unsupported_masking:
6048 err_msg = _("unsupported masking");
6049 break;
6050 case mask_not_on_destination:
6051 err_msg = _("mask not on destination operand");
6052 break;
6053 case no_default_mask:
6054 err_msg = _("default mask isn't allowed");
6055 break;
6056 case unsupported_rc_sae:
6057 err_msg = _("unsupported static rounding/sae");
6058 break;
6059 case rc_sae_operand_not_last_imm:
6060 if (intel_syntax)
6061 err_msg = _("RC/SAE operand must precede immediate operands");
6062 else
6063 err_msg = _("RC/SAE operand must follow immediate operands");
6064 break;
6065 case invalid_register_operand:
6066 err_msg = _("invalid register operand");
6067 break;
a65babc9
L
6068 }
6069 as_bad (_("%s for `%s'"), err_msg,
891edac4 6070 current_templates->start->name);
fa99fab2 6071 return NULL;
29b0f896 6072 }
252b5132 6073
29b0f896
AM
6074 if (!quiet_warnings)
6075 {
6076 if (!intel_syntax
40fb9820
L
6077 && (i.types[0].bitfield.jumpabsolute
6078 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
6079 {
6080 as_warn (_("indirect %s without `*'"), t->name);
6081 }
6082
40fb9820
L
6083 if (t->opcode_modifier.isprefix
6084 && t->opcode_modifier.ignoresize)
29b0f896
AM
6085 {
6086 /* Warn them that a data or address size prefix doesn't
6087 affect assembly of the next line of code. */
6088 as_warn (_("stand-alone `%s' prefix"), t->name);
6089 }
6090 }
6091
6092 /* Copy the template we found. */
6093 i.tm = *t;
539e75ad
L
6094
6095 if (addr_prefix_disp != -1)
6096 i.tm.operand_types[addr_prefix_disp]
6097 = operand_types[addr_prefix_disp];
6098
29b0f896
AM
6099 if (found_reverse_match)
6100 {
6101 /* If we found a reverse match we must alter the opcode
6102 direction bit. found_reverse_match holds bits to change
6103 (different for int & float insns). */
6104
6105 i.tm.base_opcode ^= found_reverse_match;
6106
f5eb1d70
JB
6107 i.tm.operand_types[0] = operand_types[i.operands - 1];
6108 i.tm.operand_types[i.operands - 1] = operand_types[0];
29b0f896
AM
6109 }
6110
fa99fab2 6111 return t;
29b0f896
AM
6112}
6113
6114static int
e3bb37b5 6115check_string (void)
29b0f896 6116{
40fb9820
L
6117 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
6118 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
6119 {
6120 if (i.seg[0] != NULL && i.seg[0] != &es)
6121 {
a87af027 6122 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 6123 i.tm.name,
a87af027
JB
6124 mem_op + 1,
6125 register_prefix);
29b0f896
AM
6126 return 0;
6127 }
6128 /* There's only ever one segment override allowed per instruction.
6129 This instruction possibly has a legal segment override on the
6130 second operand, so copy the segment to where non-string
6131 instructions store it, allowing common code. */
6132 i.seg[0] = i.seg[1];
6133 }
40fb9820 6134 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
6135 {
6136 if (i.seg[1] != NULL && i.seg[1] != &es)
6137 {
a87af027 6138 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 6139 i.tm.name,
a87af027
JB
6140 mem_op + 2,
6141 register_prefix);
29b0f896
AM
6142 return 0;
6143 }
6144 }
6145 return 1;
6146}
6147
6148static int
543613e9 6149process_suffix (void)
29b0f896
AM
6150{
6151 /* If matched instruction specifies an explicit instruction mnemonic
6152 suffix, use it. */
673fe0f0 6153 if (i.tm.opcode_modifier.size == SIZE16)
40fb9820 6154 i.suffix = WORD_MNEM_SUFFIX;
673fe0f0 6155 else if (i.tm.opcode_modifier.size == SIZE32)
40fb9820 6156 i.suffix = LONG_MNEM_SUFFIX;
673fe0f0 6157 else if (i.tm.opcode_modifier.size == SIZE64)
40fb9820 6158 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
6159 else if (i.reg_operands)
6160 {
6161 /* If there's no instruction mnemonic suffix we try to invent one
6162 based on register operands. */
6163 if (!i.suffix)
6164 {
6165 /* We take i.suffix from the last register operand specified,
6166 Destination register type is more significant than source
381d071f
L
6167 register type. crc32 in SSE4.2 prefers source register
6168 type. */
556059dd 6169 if (i.tm.base_opcode == 0xf20f38f0 && i.types[0].bitfield.reg)
381d071f 6170 {
556059dd
JB
6171 if (i.types[0].bitfield.byte)
6172 i.suffix = BYTE_MNEM_SUFFIX;
6173 else if (i.types[0].bitfield.word)
40fb9820 6174 i.suffix = WORD_MNEM_SUFFIX;
556059dd 6175 else if (i.types[0].bitfield.dword)
40fb9820 6176 i.suffix = LONG_MNEM_SUFFIX;
556059dd 6177 else if (i.types[0].bitfield.qword)
40fb9820 6178 i.suffix = QWORD_MNEM_SUFFIX;
381d071f
L
6179 }
6180
6181 if (!i.suffix)
6182 {
6183 int op;
6184
556059dd 6185 if (i.tm.base_opcode == 0xf20f38f0)
20592a94
L
6186 {
6187 /* We have to know the operand size for crc32. */
6188 as_bad (_("ambiguous memory operand size for `%s`"),
6189 i.tm.name);
6190 return 0;
6191 }
6192
381d071f 6193 for (op = i.operands; --op >= 0;)
b76bc5d5
JB
6194 if (!i.tm.operand_types[op].bitfield.inoutportreg
6195 && !i.tm.operand_types[op].bitfield.shiftcount)
381d071f 6196 {
8819ada6
JB
6197 if (!i.types[op].bitfield.reg)
6198 continue;
6199 if (i.types[op].bitfield.byte)
6200 i.suffix = BYTE_MNEM_SUFFIX;
6201 else if (i.types[op].bitfield.word)
6202 i.suffix = WORD_MNEM_SUFFIX;
6203 else if (i.types[op].bitfield.dword)
6204 i.suffix = LONG_MNEM_SUFFIX;
6205 else if (i.types[op].bitfield.qword)
6206 i.suffix = QWORD_MNEM_SUFFIX;
6207 else
6208 continue;
6209 break;
381d071f
L
6210 }
6211 }
29b0f896
AM
6212 }
6213 else if (i.suffix == BYTE_MNEM_SUFFIX)
6214 {
2eb952a4
L
6215 if (intel_syntax
6216 && i.tm.opcode_modifier.ignoresize
6217 && i.tm.opcode_modifier.no_bsuf)
6218 i.suffix = 0;
6219 else if (!check_byte_reg ())
29b0f896
AM
6220 return 0;
6221 }
6222 else if (i.suffix == LONG_MNEM_SUFFIX)
6223 {
2eb952a4
L
6224 if (intel_syntax
6225 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6226 && i.tm.opcode_modifier.no_lsuf
6227 && !i.tm.opcode_modifier.todword
6228 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
6229 i.suffix = 0;
6230 else if (!check_long_reg ())
29b0f896
AM
6231 return 0;
6232 }
6233 else if (i.suffix == QWORD_MNEM_SUFFIX)
6234 {
955e1e6a
L
6235 if (intel_syntax
6236 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6237 && i.tm.opcode_modifier.no_qsuf
6238 && !i.tm.opcode_modifier.todword
6239 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
6240 i.suffix = 0;
6241 else if (!check_qword_reg ())
29b0f896
AM
6242 return 0;
6243 }
6244 else if (i.suffix == WORD_MNEM_SUFFIX)
6245 {
2eb952a4
L
6246 if (intel_syntax
6247 && i.tm.opcode_modifier.ignoresize
6248 && i.tm.opcode_modifier.no_wsuf)
6249 i.suffix = 0;
6250 else if (!check_word_reg ())
29b0f896
AM
6251 return 0;
6252 }
40fb9820 6253 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
6254 /* Do nothing if the instruction is going to ignore the prefix. */
6255 ;
6256 else
6257 abort ();
6258 }
40fb9820 6259 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
6260 && !i.suffix
6261 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 6262 && i.tm.opcode_modifier.no_ssuf)
29b0f896 6263 {
06f74c5c
L
6264 if (stackop_size == LONG_MNEM_SUFFIX
6265 && i.tm.base_opcode == 0xcf)
6266 {
6267 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6268 .code16gcc directive to support 16-bit mode with
6269 32-bit address. For IRET without a suffix, generate
6270 16-bit IRET (opcode 0xcf) to return from an interrupt
6271 handler. */
6272 i.suffix = WORD_MNEM_SUFFIX;
6273 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6274 }
6275 else
6276 i.suffix = stackop_size;
29b0f896 6277 }
9306ca4a
JB
6278 else if (intel_syntax
6279 && !i.suffix
40fb9820
L
6280 && (i.tm.operand_types[0].bitfield.jumpabsolute
6281 || i.tm.opcode_modifier.jumpbyte
6282 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
6283 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6284 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
6285 {
6286 switch (flag_code)
6287 {
6288 case CODE_64BIT:
40fb9820 6289 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
6290 {
6291 i.suffix = QWORD_MNEM_SUFFIX;
6292 break;
6293 }
1a0670f3 6294 /* Fall through. */
9306ca4a 6295 case CODE_32BIT:
40fb9820 6296 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
6297 i.suffix = LONG_MNEM_SUFFIX;
6298 break;
6299 case CODE_16BIT:
40fb9820 6300 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
6301 i.suffix = WORD_MNEM_SUFFIX;
6302 break;
6303 }
6304 }
252b5132 6305
9306ca4a 6306 if (!i.suffix)
29b0f896 6307 {
9306ca4a
JB
6308 if (!intel_syntax)
6309 {
40fb9820 6310 if (i.tm.opcode_modifier.w)
9306ca4a 6311 {
4eed87de
AM
6312 as_bad (_("no instruction mnemonic suffix given and "
6313 "no register operands; can't size instruction"));
9306ca4a
JB
6314 return 0;
6315 }
6316 }
6317 else
6318 {
40fb9820 6319 unsigned int suffixes;
7ab9ffdd 6320
40fb9820
L
6321 suffixes = !i.tm.opcode_modifier.no_bsuf;
6322 if (!i.tm.opcode_modifier.no_wsuf)
6323 suffixes |= 1 << 1;
6324 if (!i.tm.opcode_modifier.no_lsuf)
6325 suffixes |= 1 << 2;
fc4adea1 6326 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
6327 suffixes |= 1 << 3;
6328 if (!i.tm.opcode_modifier.no_ssuf)
6329 suffixes |= 1 << 4;
c2b9da16 6330 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
6331 suffixes |= 1 << 5;
6332
6333 /* There are more than suffix matches. */
6334 if (i.tm.opcode_modifier.w
9306ca4a 6335 || ((suffixes & (suffixes - 1))
40fb9820
L
6336 && !i.tm.opcode_modifier.defaultsize
6337 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
6338 {
6339 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6340 return 0;
6341 }
6342 }
29b0f896 6343 }
252b5132 6344
d2224064
JB
6345 /* Change the opcode based on the operand size given by i.suffix. */
6346 switch (i.suffix)
29b0f896 6347 {
d2224064
JB
6348 /* Size floating point instruction. */
6349 case LONG_MNEM_SUFFIX:
6350 if (i.tm.opcode_modifier.floatmf)
6351 {
6352 i.tm.base_opcode ^= 4;
6353 break;
6354 }
6355 /* fall through */
6356 case WORD_MNEM_SUFFIX:
6357 case QWORD_MNEM_SUFFIX:
29b0f896 6358 /* It's not a byte, select word/dword operation. */
40fb9820 6359 if (i.tm.opcode_modifier.w)
29b0f896 6360 {
40fb9820 6361 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
6362 i.tm.base_opcode |= 8;
6363 else
6364 i.tm.base_opcode |= 1;
6365 }
d2224064
JB
6366 /* fall through */
6367 case SHORT_MNEM_SUFFIX:
29b0f896
AM
6368 /* Now select between word & dword operations via the operand
6369 size prefix, except for instructions that will ignore this
6370 prefix anyway. */
75c0a438
L
6371 if (i.reg_operands > 0
6372 && i.types[0].bitfield.reg
6373 && i.tm.opcode_modifier.addrprefixopreg
6374 && (i.tm.opcode_modifier.immext
6375 || i.operands == 1))
cb712a9e 6376 {
ca61edf2
L
6377 /* The address size override prefix changes the size of the
6378 first operand. */
40fb9820 6379 if ((flag_code == CODE_32BIT
75c0a438 6380 && i.op[0].regs->reg_type.bitfield.word)
40fb9820 6381 || (flag_code != CODE_32BIT
75c0a438 6382 && i.op[0].regs->reg_type.bitfield.dword))
cb712a9e
L
6383 if (!add_prefix (ADDR_PREFIX_OPCODE))
6384 return 0;
6385 }
6386 else if (i.suffix != QWORD_MNEM_SUFFIX
40fb9820
L
6387 && !i.tm.opcode_modifier.ignoresize
6388 && !i.tm.opcode_modifier.floatmf
7a8655d2
JB
6389 && !i.tm.opcode_modifier.vex
6390 && !i.tm.opcode_modifier.vexopcode
6391 && !is_evex_encoding (&i.tm)
cb712a9e
L
6392 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6393 || (flag_code == CODE_64BIT
40fb9820 6394 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
6395 {
6396 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 6397
40fb9820 6398 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 6399 prefix = ADDR_PREFIX_OPCODE;
252b5132 6400
29b0f896
AM
6401 if (!add_prefix (prefix))
6402 return 0;
24eab124 6403 }
252b5132 6404
29b0f896
AM
6405 /* Set mode64 for an operand. */
6406 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 6407 && flag_code == CODE_64BIT
d2224064 6408 && !i.tm.opcode_modifier.norex64
46e883c5 6409 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
6410 need rex64. */
6411 && ! (i.operands == 2
6412 && i.tm.base_opcode == 0x90
6413 && i.tm.extension_opcode == None
6414 && operand_type_equal (&i.types [0], &acc64)
6415 && operand_type_equal (&i.types [1], &acc64)))
6416 i.rex |= REX_W;
3e73aa7c 6417
d2224064 6418 break;
29b0f896 6419 }
7ecd2f8b 6420
c0a30a9f
L
6421 if (i.reg_operands != 0
6422 && i.operands > 1
6423 && i.tm.opcode_modifier.addrprefixopreg
6424 && !i.tm.opcode_modifier.immext)
6425 {
6426 /* Check invalid register operand when the address size override
6427 prefix changes the size of register operands. */
6428 unsigned int op;
6429 enum { need_word, need_dword, need_qword } need;
6430
6431 if (flag_code == CODE_32BIT)
6432 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6433 else
6434 {
6435 if (i.prefix[ADDR_PREFIX])
6436 need = need_dword;
6437 else
6438 need = flag_code == CODE_64BIT ? need_qword : need_word;
6439 }
6440
6441 for (op = 0; op < i.operands; op++)
6442 if (i.types[op].bitfield.reg
6443 && ((need == need_word
6444 && !i.op[op].regs->reg_type.bitfield.word)
6445 || (need == need_dword
6446 && !i.op[op].regs->reg_type.bitfield.dword)
6447 || (need == need_qword
6448 && !i.op[op].regs->reg_type.bitfield.qword)))
6449 {
6450 as_bad (_("invalid register operand size for `%s'"),
6451 i.tm.name);
6452 return 0;
6453 }
6454 }
6455
29b0f896
AM
6456 return 1;
6457}
3e73aa7c 6458
29b0f896 6459static int
543613e9 6460check_byte_reg (void)
29b0f896
AM
6461{
6462 int op;
543613e9 6463
29b0f896
AM
6464 for (op = i.operands; --op >= 0;)
6465 {
dc821c5f
JB
6466 /* Skip non-register operands. */
6467 if (!i.types[op].bitfield.reg)
6468 continue;
6469
29b0f896
AM
6470 /* If this is an eight bit register, it's OK. If it's the 16 or
6471 32 bit version of an eight bit register, we will just use the
6472 low portion, and that's OK too. */
dc821c5f 6473 if (i.types[op].bitfield.byte)
29b0f896
AM
6474 continue;
6475
5a819eb9
JB
6476 /* I/O port address operands are OK too. */
6477 if (i.tm.operand_types[op].bitfield.inoutportreg)
6478 continue;
6479
9344ff29
L
6480 /* crc32 doesn't generate this warning. */
6481 if (i.tm.base_opcode == 0xf20f38f0)
6482 continue;
6483
dc821c5f
JB
6484 if ((i.types[op].bitfield.word
6485 || i.types[op].bitfield.dword
6486 || i.types[op].bitfield.qword)
5a819eb9
JB
6487 && i.op[op].regs->reg_num < 4
6488 /* Prohibit these changes in 64bit mode, since the lowering
6489 would be more complicated. */
6490 && flag_code != CODE_64BIT)
29b0f896 6491 {
29b0f896 6492#if REGISTER_WARNINGS
5a819eb9 6493 if (!quiet_warnings)
a540244d
L
6494 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6495 register_prefix,
dc821c5f 6496 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
6497 ? REGNAM_AL - REGNAM_AX
6498 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 6499 register_prefix,
29b0f896
AM
6500 i.op[op].regs->reg_name,
6501 i.suffix);
6502#endif
6503 continue;
6504 }
6505 /* Any other register is bad. */
dc821c5f 6506 if (i.types[op].bitfield.reg
40fb9820 6507 || i.types[op].bitfield.regmmx
1b54b8d7 6508 || i.types[op].bitfield.regsimd
40fb9820
L
6509 || i.types[op].bitfield.sreg2
6510 || i.types[op].bitfield.sreg3
6511 || i.types[op].bitfield.control
6512 || i.types[op].bitfield.debug
ca0d63fe 6513 || i.types[op].bitfield.test)
29b0f896 6514 {
a540244d
L
6515 as_bad (_("`%s%s' not allowed with `%s%c'"),
6516 register_prefix,
29b0f896
AM
6517 i.op[op].regs->reg_name,
6518 i.tm.name,
6519 i.suffix);
6520 return 0;
6521 }
6522 }
6523 return 1;
6524}
6525
6526static int
e3bb37b5 6527check_long_reg (void)
29b0f896
AM
6528{
6529 int op;
6530
6531 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6532 /* Skip non-register operands. */
6533 if (!i.types[op].bitfield.reg)
6534 continue;
29b0f896
AM
6535 /* Reject eight bit registers, except where the template requires
6536 them. (eg. movzb) */
dc821c5f
JB
6537 else if (i.types[op].bitfield.byte
6538 && (i.tm.operand_types[op].bitfield.reg
6539 || i.tm.operand_types[op].bitfield.acc)
6540 && (i.tm.operand_types[op].bitfield.word
6541 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6542 {
a540244d
L
6543 as_bad (_("`%s%s' not allowed with `%s%c'"),
6544 register_prefix,
29b0f896
AM
6545 i.op[op].regs->reg_name,
6546 i.tm.name,
6547 i.suffix);
6548 return 0;
6549 }
e4630f71 6550 /* Warn if the e prefix on a general reg is missing. */
29b0f896 6551 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6552 && i.types[op].bitfield.word
6553 && (i.tm.operand_types[op].bitfield.reg
6554 || i.tm.operand_types[op].bitfield.acc)
6555 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
6556 {
6557 /* Prohibit these changes in the 64bit mode, since the
6558 lowering is more complicated. */
6559 if (flag_code == CODE_64BIT)
252b5132 6560 {
2b5d6a91 6561 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6562 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6563 i.suffix);
6564 return 0;
252b5132 6565 }
29b0f896 6566#if REGISTER_WARNINGS
cecf1424
JB
6567 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6568 register_prefix,
6569 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6570 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 6571#endif
252b5132 6572 }
e4630f71 6573 /* Warn if the r prefix on a general reg is present. */
dc821c5f
JB
6574 else if (i.types[op].bitfield.qword
6575 && (i.tm.operand_types[op].bitfield.reg
6576 || i.tm.operand_types[op].bitfield.acc)
6577 && i.tm.operand_types[op].bitfield.dword)
252b5132 6578 {
34828aad 6579 if (intel_syntax
ca61edf2 6580 && i.tm.opcode_modifier.toqword
1b54b8d7 6581 && !i.types[0].bitfield.regsimd)
34828aad 6582 {
ca61edf2 6583 /* Convert to QWORD. We want REX byte. */
34828aad
L
6584 i.suffix = QWORD_MNEM_SUFFIX;
6585 }
6586 else
6587 {
2b5d6a91 6588 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6589 register_prefix, i.op[op].regs->reg_name,
6590 i.suffix);
6591 return 0;
6592 }
29b0f896
AM
6593 }
6594 return 1;
6595}
252b5132 6596
29b0f896 6597static int
e3bb37b5 6598check_qword_reg (void)
29b0f896
AM
6599{
6600 int op;
252b5132 6601
29b0f896 6602 for (op = i.operands; --op >= 0; )
dc821c5f
JB
6603 /* Skip non-register operands. */
6604 if (!i.types[op].bitfield.reg)
6605 continue;
29b0f896
AM
6606 /* Reject eight bit registers, except where the template requires
6607 them. (eg. movzb) */
dc821c5f
JB
6608 else if (i.types[op].bitfield.byte
6609 && (i.tm.operand_types[op].bitfield.reg
6610 || i.tm.operand_types[op].bitfield.acc)
6611 && (i.tm.operand_types[op].bitfield.word
6612 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6613 {
a540244d
L
6614 as_bad (_("`%s%s' not allowed with `%s%c'"),
6615 register_prefix,
29b0f896
AM
6616 i.op[op].regs->reg_name,
6617 i.tm.name,
6618 i.suffix);
6619 return 0;
6620 }
e4630f71 6621 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6622 else if ((i.types[op].bitfield.word
6623 || i.types[op].bitfield.dword)
6624 && (i.tm.operand_types[op].bitfield.reg
6625 || i.tm.operand_types[op].bitfield.acc)
6626 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6627 {
6628 /* Prohibit these changes in the 64bit mode, since the
6629 lowering is more complicated. */
34828aad 6630 if (intel_syntax
ca61edf2 6631 && i.tm.opcode_modifier.todword
1b54b8d7 6632 && !i.types[0].bitfield.regsimd)
34828aad 6633 {
ca61edf2 6634 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6635 i.suffix = LONG_MNEM_SUFFIX;
6636 }
6637 else
6638 {
2b5d6a91 6639 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6640 register_prefix, i.op[op].regs->reg_name,
6641 i.suffix);
6642 return 0;
6643 }
252b5132 6644 }
29b0f896
AM
6645 return 1;
6646}
252b5132 6647
29b0f896 6648static int
e3bb37b5 6649check_word_reg (void)
29b0f896
AM
6650{
6651 int op;
6652 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6653 /* Skip non-register operands. */
6654 if (!i.types[op].bitfield.reg)
6655 continue;
29b0f896
AM
6656 /* Reject eight bit registers, except where the template requires
6657 them. (eg. movzb) */
dc821c5f
JB
6658 else if (i.types[op].bitfield.byte
6659 && (i.tm.operand_types[op].bitfield.reg
6660 || i.tm.operand_types[op].bitfield.acc)
6661 && (i.tm.operand_types[op].bitfield.word
6662 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6663 {
a540244d
L
6664 as_bad (_("`%s%s' not allowed with `%s%c'"),
6665 register_prefix,
29b0f896
AM
6666 i.op[op].regs->reg_name,
6667 i.tm.name,
6668 i.suffix);
6669 return 0;
6670 }
e4630f71 6671 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6672 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6673 && (i.types[op].bitfield.dword
6674 || i.types[op].bitfield.qword)
6675 && (i.tm.operand_types[op].bitfield.reg
6676 || i.tm.operand_types[op].bitfield.acc)
6677 && i.tm.operand_types[op].bitfield.word)
252b5132 6678 {
29b0f896
AM
6679 /* Prohibit these changes in the 64bit mode, since the
6680 lowering is more complicated. */
6681 if (flag_code == CODE_64BIT)
252b5132 6682 {
2b5d6a91 6683 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6684 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6685 i.suffix);
6686 return 0;
252b5132 6687 }
29b0f896 6688#if REGISTER_WARNINGS
cecf1424
JB
6689 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6690 register_prefix,
6691 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6692 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6693#endif
6694 }
6695 return 1;
6696}
252b5132 6697
29b0f896 6698static int
40fb9820 6699update_imm (unsigned int j)
29b0f896 6700{
bc0844ae 6701 i386_operand_type overlap = i.types[j];
40fb9820
L
6702 if ((overlap.bitfield.imm8
6703 || overlap.bitfield.imm8s
6704 || overlap.bitfield.imm16
6705 || overlap.bitfield.imm32
6706 || overlap.bitfield.imm32s
6707 || overlap.bitfield.imm64)
0dfbf9d7
L
6708 && !operand_type_equal (&overlap, &imm8)
6709 && !operand_type_equal (&overlap, &imm8s)
6710 && !operand_type_equal (&overlap, &imm16)
6711 && !operand_type_equal (&overlap, &imm32)
6712 && !operand_type_equal (&overlap, &imm32s)
6713 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6714 {
6715 if (i.suffix)
6716 {
40fb9820
L
6717 i386_operand_type temp;
6718
0dfbf9d7 6719 operand_type_set (&temp, 0);
7ab9ffdd 6720 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6721 {
6722 temp.bitfield.imm8 = overlap.bitfield.imm8;
6723 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6724 }
6725 else if (i.suffix == WORD_MNEM_SUFFIX)
6726 temp.bitfield.imm16 = overlap.bitfield.imm16;
6727 else if (i.suffix == QWORD_MNEM_SUFFIX)
6728 {
6729 temp.bitfield.imm64 = overlap.bitfield.imm64;
6730 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6731 }
6732 else
6733 temp.bitfield.imm32 = overlap.bitfield.imm32;
6734 overlap = temp;
29b0f896 6735 }
0dfbf9d7
L
6736 else if (operand_type_equal (&overlap, &imm16_32_32s)
6737 || operand_type_equal (&overlap, &imm16_32)
6738 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6739 {
40fb9820 6740 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6741 overlap = imm16;
40fb9820 6742 else
65da13b5 6743 overlap = imm32s;
29b0f896 6744 }
0dfbf9d7
L
6745 if (!operand_type_equal (&overlap, &imm8)
6746 && !operand_type_equal (&overlap, &imm8s)
6747 && !operand_type_equal (&overlap, &imm16)
6748 && !operand_type_equal (&overlap, &imm32)
6749 && !operand_type_equal (&overlap, &imm32s)
6750 && !operand_type_equal (&overlap, &imm64))
29b0f896 6751 {
4eed87de
AM
6752 as_bad (_("no instruction mnemonic suffix given; "
6753 "can't determine immediate size"));
29b0f896
AM
6754 return 0;
6755 }
6756 }
40fb9820 6757 i.types[j] = overlap;
29b0f896 6758
40fb9820
L
6759 return 1;
6760}
6761
6762static int
6763finalize_imm (void)
6764{
bc0844ae 6765 unsigned int j, n;
29b0f896 6766
bc0844ae
L
6767 /* Update the first 2 immediate operands. */
6768 n = i.operands > 2 ? 2 : i.operands;
6769 if (n)
6770 {
6771 for (j = 0; j < n; j++)
6772 if (update_imm (j) == 0)
6773 return 0;
40fb9820 6774
bc0844ae
L
6775 /* The 3rd operand can't be immediate operand. */
6776 gas_assert (operand_type_check (i.types[2], imm) == 0);
6777 }
29b0f896
AM
6778
6779 return 1;
6780}
6781
6782static int
e3bb37b5 6783process_operands (void)
29b0f896
AM
6784{
6785 /* Default segment register this instruction will use for memory
6786 accesses. 0 means unknown. This is only for optimizing out
6787 unnecessary segment overrides. */
6788 const seg_entry *default_seg = 0;
6789
2426c15f 6790 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6791 {
91d6fa6a
NC
6792 unsigned int dupl = i.operands;
6793 unsigned int dest = dupl - 1;
9fcfb3d7
L
6794 unsigned int j;
6795
c0f3af97 6796 /* The destination must be an xmm register. */
9c2799c2 6797 gas_assert (i.reg_operands
91d6fa6a 6798 && MAX_OPERANDS > dupl
7ab9ffdd 6799 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6800
1b54b8d7
JB
6801 if (i.tm.operand_types[0].bitfield.acc
6802 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6803 {
8cd7925b 6804 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6805 {
6806 /* Keep xmm0 for instructions with VEX prefix and 3
6807 sources. */
1b54b8d7
JB
6808 i.tm.operand_types[0].bitfield.acc = 0;
6809 i.tm.operand_types[0].bitfield.regsimd = 1;
c0f3af97
L
6810 goto duplicate;
6811 }
e2ec9d29 6812 else
c0f3af97
L
6813 {
6814 /* We remove the first xmm0 and keep the number of
6815 operands unchanged, which in fact duplicates the
6816 destination. */
6817 for (j = 1; j < i.operands; j++)
6818 {
6819 i.op[j - 1] = i.op[j];
6820 i.types[j - 1] = i.types[j];
6821 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6822 }
6823 }
6824 }
6825 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6826 {
91d6fa6a 6827 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6828 && (i.tm.opcode_modifier.vexsources
6829 == VEX3SOURCES));
c0f3af97
L
6830
6831 /* Add the implicit xmm0 for instructions with VEX prefix
6832 and 3 sources. */
6833 for (j = i.operands; j > 0; j--)
6834 {
6835 i.op[j] = i.op[j - 1];
6836 i.types[j] = i.types[j - 1];
6837 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6838 }
6839 i.op[0].regs
6840 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6841 i.types[0] = regxmm;
c0f3af97
L
6842 i.tm.operand_types[0] = regxmm;
6843
6844 i.operands += 2;
6845 i.reg_operands += 2;
6846 i.tm.operands += 2;
6847
91d6fa6a 6848 dupl++;
c0f3af97 6849 dest++;
91d6fa6a
NC
6850 i.op[dupl] = i.op[dest];
6851 i.types[dupl] = i.types[dest];
6852 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
e2ec9d29 6853 }
c0f3af97
L
6854 else
6855 {
6856duplicate:
6857 i.operands++;
6858 i.reg_operands++;
6859 i.tm.operands++;
6860
91d6fa6a
NC
6861 i.op[dupl] = i.op[dest];
6862 i.types[dupl] = i.types[dest];
6863 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
c0f3af97
L
6864 }
6865
6866 if (i.tm.opcode_modifier.immext)
6867 process_immext ();
6868 }
1b54b8d7
JB
6869 else if (i.tm.operand_types[0].bitfield.acc
6870 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
6871 {
6872 unsigned int j;
6873
9fcfb3d7
L
6874 for (j = 1; j < i.operands; j++)
6875 {
6876 i.op[j - 1] = i.op[j];
6877 i.types[j - 1] = i.types[j];
6878
6879 /* We need to adjust fields in i.tm since they are used by
6880 build_modrm_byte. */
6881 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6882 }
6883
e2ec9d29
L
6884 i.operands--;
6885 i.reg_operands--;
e2ec9d29
L
6886 i.tm.operands--;
6887 }
920d2ddc
IT
6888 else if (i.tm.opcode_modifier.implicitquadgroup)
6889 {
a477a8c4
JB
6890 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6891
920d2ddc 6892 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
10c17abd 6893 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
a477a8c4
JB
6894 regnum = register_number (i.op[1].regs);
6895 first_reg_in_group = regnum & ~3;
6896 last_reg_in_group = first_reg_in_group + 3;
6897 if (regnum != first_reg_in_group)
6898 as_warn (_("source register `%s%s' implicitly denotes"
6899 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6900 register_prefix, i.op[1].regs->reg_name,
6901 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6902 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6903 i.tm.name);
6904 }
e2ec9d29
L
6905 else if (i.tm.opcode_modifier.regkludge)
6906 {
6907 /* The imul $imm, %reg instruction is converted into
6908 imul $imm, %reg, %reg, and the clr %reg instruction
6909 is converted into xor %reg, %reg. */
6910
6911 unsigned int first_reg_op;
6912
6913 if (operand_type_check (i.types[0], reg))
6914 first_reg_op = 0;
6915 else
6916 first_reg_op = 1;
6917 /* Pretend we saw the extra register operand. */
9c2799c2 6918 gas_assert (i.reg_operands == 1
7ab9ffdd 6919 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
6920 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6921 i.types[first_reg_op + 1] = i.types[first_reg_op];
6922 i.operands++;
6923 i.reg_operands++;
29b0f896
AM
6924 }
6925
40fb9820 6926 if (i.tm.opcode_modifier.shortform)
29b0f896 6927 {
40fb9820
L
6928 if (i.types[0].bitfield.sreg2
6929 || i.types[0].bitfield.sreg3)
29b0f896 6930 {
4eed87de
AM
6931 if (i.tm.base_opcode == POP_SEG_SHORT
6932 && i.op[0].regs->reg_num == 1)
29b0f896 6933 {
a87af027 6934 as_bad (_("you can't `pop %scs'"), register_prefix);
4eed87de 6935 return 0;
29b0f896 6936 }
4eed87de
AM
6937 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6938 if ((i.op[0].regs->reg_flags & RegRex) != 0)
161a04f6 6939 i.rex |= REX_B;
4eed87de
AM
6940 }
6941 else
6942 {
7ab9ffdd 6943 /* The register or float register operand is in operand
85f10a01 6944 0 or 1. */
40fb9820 6945 unsigned int op;
7ab9ffdd 6946
ca0d63fe 6947 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
7ab9ffdd
L
6948 || operand_type_check (i.types[0], reg))
6949 op = 0;
6950 else
6951 op = 1;
4eed87de
AM
6952 /* Register goes in low 3 bits of opcode. */
6953 i.tm.base_opcode |= i.op[op].regs->reg_num;
6954 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 6955 i.rex |= REX_B;
40fb9820 6956 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 6957 {
4eed87de
AM
6958 /* Warn about some common errors, but press on regardless.
6959 The first case can be generated by gcc (<= 2.8.1). */
6960 if (i.operands == 2)
6961 {
6962 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 6963 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
6964 register_prefix, i.op[!intel_syntax].regs->reg_name,
6965 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
6966 }
6967 else
6968 {
6969 /* Extraneous `l' suffix on fp insn. */
a540244d
L
6970 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6971 register_prefix, i.op[0].regs->reg_name);
4eed87de 6972 }
29b0f896
AM
6973 }
6974 }
6975 }
40fb9820 6976 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
6977 {
6978 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
6979 must be put into the modrm byte). Now, we make the modrm and
6980 index base bytes based on all the info we've collected. */
29b0f896
AM
6981
6982 default_seg = build_modrm_byte ();
6983 }
8a2ed489 6984 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
6985 {
6986 default_seg = &ds;
6987 }
40fb9820 6988 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
6989 {
6990 /* For the string instructions that allow a segment override
6991 on one of their operands, the default segment is ds. */
6992 default_seg = &ds;
6993 }
6994
75178d9d
L
6995 if (i.tm.base_opcode == 0x8d /* lea */
6996 && i.seg[0]
6997 && !quiet_warnings)
30123838 6998 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
6999
7000 /* If a segment was explicitly specified, and the specified segment
7001 is not the default, use an opcode prefix to select it. If we
7002 never figured out what the default segment is, then default_seg
7003 will be zero at this point, and the specified segment prefix will
7004 always be used. */
29b0f896
AM
7005 if ((i.seg[0]) && (i.seg[0] != default_seg))
7006 {
7007 if (!add_prefix (i.seg[0]->seg_prefix))
7008 return 0;
7009 }
7010 return 1;
7011}
7012
7013static const seg_entry *
e3bb37b5 7014build_modrm_byte (void)
29b0f896
AM
7015{
7016 const seg_entry *default_seg = 0;
c0f3af97 7017 unsigned int source, dest;
8cd7925b 7018 int vex_3_sources;
c0f3af97 7019
8cd7925b 7020 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
7021 if (vex_3_sources)
7022 {
91d6fa6a 7023 unsigned int nds, reg_slot;
4c2c6516 7024 expressionS *exp;
c0f3af97 7025
6b8d3588 7026 dest = i.operands - 1;
c0f3af97 7027 nds = dest - 1;
922d8de8 7028
a683cc34 7029 /* There are 2 kinds of instructions:
bed3d976
JB
7030 1. 5 operands: 4 register operands or 3 register operands
7031 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
7032 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 7033 ZMM register.
bed3d976 7034 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 7035 plus 1 memory operand, with VexXDS. */
922d8de8 7036 gas_assert ((i.reg_operands == 4
bed3d976
JB
7037 || (i.reg_operands == 3 && i.mem_operands == 1))
7038 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323
JB
7039 && i.tm.opcode_modifier.vexw
7040 && i.tm.operand_types[dest].bitfield.regsimd);
a683cc34 7041
48db9223
JB
7042 /* If VexW1 is set, the first non-immediate operand is the source and
7043 the second non-immediate one is encoded in the immediate operand. */
7044 if (i.tm.opcode_modifier.vexw == VEXW1)
7045 {
7046 source = i.imm_operands;
7047 reg_slot = i.imm_operands + 1;
7048 }
7049 else
7050 {
7051 source = i.imm_operands + 1;
7052 reg_slot = i.imm_operands;
7053 }
7054
a683cc34 7055 if (i.imm_operands == 0)
bed3d976
JB
7056 {
7057 /* When there is no immediate operand, generate an 8bit
7058 immediate operand to encode the first operand. */
7059 exp = &im_expressions[i.imm_operands++];
7060 i.op[i.operands].imms = exp;
7061 i.types[i.operands] = imm8;
7062 i.operands++;
7063
7064 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7065 exp->X_op = O_constant;
7066 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
7067 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7068 }
922d8de8 7069 else
bed3d976
JB
7070 {
7071 unsigned int imm_slot;
a683cc34 7072
2f1bada2
JB
7073 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
7074
bed3d976
JB
7075 if (i.tm.opcode_modifier.immext)
7076 {
7077 /* When ImmExt is set, the immediate byte is the last
7078 operand. */
7079 imm_slot = i.operands - 1;
7080 source--;
7081 reg_slot--;
7082 }
7083 else
7084 {
7085 imm_slot = 0;
7086
7087 /* Turn on Imm8 so that output_imm will generate it. */
7088 i.types[imm_slot].bitfield.imm8 = 1;
7089 }
7090
7091 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7092 i.op[imm_slot].imms->X_add_number
7093 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 7094 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 7095 }
a683cc34 7096
10c17abd 7097 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
dae39acc 7098 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
7099 }
7100 else
7101 source = dest = 0;
29b0f896
AM
7102
7103 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
7104 implicit registers do not count. If there are 3 register
7105 operands, it must be a instruction with VexNDS. For a
7106 instruction with VexNDD, the destination register is encoded
7107 in VEX prefix. If there are 4 register operands, it must be
7108 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
7109 if (i.mem_operands == 0
7110 && ((i.reg_operands == 2
2426c15f 7111 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 7112 || (i.reg_operands == 3
2426c15f 7113 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 7114 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 7115 {
cab737b9
L
7116 switch (i.operands)
7117 {
7118 case 2:
7119 source = 0;
7120 break;
7121 case 3:
c81128dc
L
7122 /* When there are 3 operands, one of them may be immediate,
7123 which may be the first or the last operand. Otherwise,
c0f3af97
L
7124 the first operand must be shift count register (cl) or it
7125 is an instruction with VexNDS. */
9c2799c2 7126 gas_assert (i.imm_operands == 1
7ab9ffdd 7127 || (i.imm_operands == 0
2426c15f 7128 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 7129 || i.types[0].bitfield.shiftcount)));
40fb9820
L
7130 if (operand_type_check (i.types[0], imm)
7131 || i.types[0].bitfield.shiftcount)
7132 source = 1;
7133 else
7134 source = 0;
cab737b9
L
7135 break;
7136 case 4:
368d64cc
L
7137 /* When there are 4 operands, the first two must be 8bit
7138 immediate operands. The source operand will be the 3rd
c0f3af97
L
7139 one.
7140
7141 For instructions with VexNDS, if the first operand
7142 an imm8, the source operand is the 2nd one. If the last
7143 operand is imm8, the source operand is the first one. */
9c2799c2 7144 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
7145 && i.types[0].bitfield.imm8
7146 && i.types[1].bitfield.imm8)
2426c15f 7147 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
7148 && i.imm_operands == 1
7149 && (i.types[0].bitfield.imm8
43234a1e
L
7150 || i.types[i.operands - 1].bitfield.imm8
7151 || i.rounding)));
9f2670f2
L
7152 if (i.imm_operands == 2)
7153 source = 2;
7154 else
c0f3af97
L
7155 {
7156 if (i.types[0].bitfield.imm8)
7157 source = 1;
7158 else
7159 source = 0;
7160 }
c0f3af97
L
7161 break;
7162 case 5:
e771e7c9 7163 if (is_evex_encoding (&i.tm))
43234a1e
L
7164 {
7165 /* For EVEX instructions, when there are 5 operands, the
7166 first one must be immediate operand. If the second one
7167 is immediate operand, the source operand is the 3th
7168 one. If the last one is immediate operand, the source
7169 operand is the 2nd one. */
7170 gas_assert (i.imm_operands == 2
7171 && i.tm.opcode_modifier.sae
7172 && operand_type_check (i.types[0], imm));
7173 if (operand_type_check (i.types[1], imm))
7174 source = 2;
7175 else if (operand_type_check (i.types[4], imm))
7176 source = 1;
7177 else
7178 abort ();
7179 }
cab737b9
L
7180 break;
7181 default:
7182 abort ();
7183 }
7184
c0f3af97
L
7185 if (!vex_3_sources)
7186 {
7187 dest = source + 1;
7188
43234a1e
L
7189 /* RC/SAE operand could be between DEST and SRC. That happens
7190 when one operand is GPR and the other one is XMM/YMM/ZMM
7191 register. */
7192 if (i.rounding && i.rounding->operand == (int) dest)
7193 dest++;
7194
2426c15f 7195 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 7196 {
43234a1e 7197 /* For instructions with VexNDS, the register-only source
c5d0745b 7198 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
43234a1e
L
7199 register. It is encoded in VEX prefix. We need to
7200 clear RegMem bit before calling operand_type_equal. */
f12dc422
L
7201
7202 i386_operand_type op;
7203 unsigned int vvvv;
7204
7205 /* Check register-only source operand when two source
7206 operands are swapped. */
7207 if (!i.tm.operand_types[source].bitfield.baseindex
7208 && i.tm.operand_types[dest].bitfield.baseindex)
7209 {
7210 vvvv = source;
7211 source = dest;
7212 }
7213 else
7214 vvvv = dest;
7215
7216 op = i.tm.operand_types[vvvv];
fa99fab2 7217 op.bitfield.regmem = 0;
c0f3af97 7218 if ((dest + 1) >= i.operands
dc821c5f
JB
7219 || ((!op.bitfield.reg
7220 || (!op.bitfield.dword && !op.bitfield.qword))
10c17abd 7221 && !op.bitfield.regsimd
43234a1e 7222 && !operand_type_equal (&op, &regmask)))
c0f3af97 7223 abort ();
f12dc422 7224 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
7225 dest++;
7226 }
7227 }
29b0f896
AM
7228
7229 i.rm.mode = 3;
7230 /* One of the register operands will be encoded in the i.tm.reg
7231 field, the other in the combined i.tm.mode and i.tm.regmem
7232 fields. If no form of this instruction supports a memory
7233 destination operand, then we assume the source operand may
7234 sometimes be a memory operand and so we need to store the
7235 destination in the i.rm.reg field. */
40fb9820
L
7236 if (!i.tm.operand_types[dest].bitfield.regmem
7237 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
7238 {
7239 i.rm.reg = i.op[dest].regs->reg_num;
7240 i.rm.regmem = i.op[source].regs->reg_num;
b4a3a7b4
L
7241 if (i.op[dest].regs->reg_type.bitfield.regmmx
7242 || i.op[source].regs->reg_type.bitfield.regmmx)
7243 i.has_regmmx = TRUE;
7244 else if (i.op[dest].regs->reg_type.bitfield.regsimd
7245 || i.op[source].regs->reg_type.bitfield.regsimd)
7246 {
7247 if (i.types[dest].bitfield.zmmword
7248 || i.types[source].bitfield.zmmword)
7249 i.has_regzmm = TRUE;
7250 else if (i.types[dest].bitfield.ymmword
7251 || i.types[source].bitfield.ymmword)
7252 i.has_regymm = TRUE;
7253 else
7254 i.has_regxmm = TRUE;
7255 }
29b0f896 7256 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7257 i.rex |= REX_R;
43234a1e
L
7258 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7259 i.vrex |= REX_R;
29b0f896 7260 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7261 i.rex |= REX_B;
43234a1e
L
7262 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7263 i.vrex |= REX_B;
29b0f896
AM
7264 }
7265 else
7266 {
7267 i.rm.reg = i.op[source].regs->reg_num;
7268 i.rm.regmem = i.op[dest].regs->reg_num;
7269 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7270 i.rex |= REX_B;
43234a1e
L
7271 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7272 i.vrex |= REX_B;
29b0f896 7273 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7274 i.rex |= REX_R;
43234a1e
L
7275 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7276 i.vrex |= REX_R;
29b0f896 7277 }
e0c7f900 7278 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 7279 {
e0c7f900 7280 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
c4a530c5 7281 abort ();
e0c7f900 7282 i.rex &= ~REX_R;
c4a530c5
JB
7283 add_prefix (LOCK_PREFIX_OPCODE);
7284 }
29b0f896
AM
7285 }
7286 else
7287 { /* If it's not 2 reg operands... */
c0f3af97
L
7288 unsigned int mem;
7289
29b0f896
AM
7290 if (i.mem_operands)
7291 {
7292 unsigned int fake_zero_displacement = 0;
99018f42 7293 unsigned int op;
4eed87de 7294
7ab9ffdd
L
7295 for (op = 0; op < i.operands; op++)
7296 if (operand_type_check (i.types[op], anymem))
7297 break;
7ab9ffdd 7298 gas_assert (op < i.operands);
29b0f896 7299
6c30d220
L
7300 if (i.tm.opcode_modifier.vecsib)
7301 {
e968fc9b 7302 if (i.index_reg->reg_num == RegIZ)
6c30d220
L
7303 abort ();
7304
7305 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7306 if (!i.base_reg)
7307 {
7308 i.sib.base = NO_BASE_REGISTER;
7309 i.sib.scale = i.log2_scale_factor;
7310 i.types[op].bitfield.disp8 = 0;
7311 i.types[op].bitfield.disp16 = 0;
7312 i.types[op].bitfield.disp64 = 0;
43083a50 7313 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
7314 {
7315 /* Must be 32 bit */
7316 i.types[op].bitfield.disp32 = 1;
7317 i.types[op].bitfield.disp32s = 0;
7318 }
7319 else
7320 {
7321 i.types[op].bitfield.disp32 = 0;
7322 i.types[op].bitfield.disp32s = 1;
7323 }
7324 }
7325 i.sib.index = i.index_reg->reg_num;
7326 if ((i.index_reg->reg_flags & RegRex) != 0)
7327 i.rex |= REX_X;
43234a1e
L
7328 if ((i.index_reg->reg_flags & RegVRex) != 0)
7329 i.vrex |= REX_X;
6c30d220
L
7330 }
7331
29b0f896
AM
7332 default_seg = &ds;
7333
7334 if (i.base_reg == 0)
7335 {
7336 i.rm.mode = 0;
7337 if (!i.disp_operands)
9bb129e8 7338 fake_zero_displacement = 1;
29b0f896
AM
7339 if (i.index_reg == 0)
7340 {
73053c1f
JB
7341 i386_operand_type newdisp;
7342
6c30d220 7343 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7344 /* Operand is just <disp> */
20f0a1fc 7345 if (flag_code == CODE_64BIT)
29b0f896
AM
7346 {
7347 /* 64bit mode overwrites the 32bit absolute
7348 addressing by RIP relative addressing and
7349 absolute addressing is encoded by one of the
7350 redundant SIB forms. */
7351 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7352 i.sib.base = NO_BASE_REGISTER;
7353 i.sib.index = NO_INDEX_REGISTER;
73053c1f 7354 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 7355 }
fc225355
L
7356 else if ((flag_code == CODE_16BIT)
7357 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
7358 {
7359 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 7360 newdisp = disp16;
20f0a1fc
NC
7361 }
7362 else
7363 {
7364 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 7365 newdisp = disp32;
29b0f896 7366 }
73053c1f
JB
7367 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7368 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 7369 }
6c30d220 7370 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7371 {
6c30d220 7372 /* !i.base_reg && i.index_reg */
e968fc9b 7373 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7374 i.sib.index = NO_INDEX_REGISTER;
7375 else
7376 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7377 i.sib.base = NO_BASE_REGISTER;
7378 i.sib.scale = i.log2_scale_factor;
7379 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
7380 i.types[op].bitfield.disp8 = 0;
7381 i.types[op].bitfield.disp16 = 0;
7382 i.types[op].bitfield.disp64 = 0;
43083a50 7383 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
7384 {
7385 /* Must be 32 bit */
7386 i.types[op].bitfield.disp32 = 1;
7387 i.types[op].bitfield.disp32s = 0;
7388 }
29b0f896 7389 else
40fb9820
L
7390 {
7391 i.types[op].bitfield.disp32 = 0;
7392 i.types[op].bitfield.disp32s = 1;
7393 }
29b0f896 7394 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7395 i.rex |= REX_X;
29b0f896
AM
7396 }
7397 }
7398 /* RIP addressing for 64bit mode. */
e968fc9b 7399 else if (i.base_reg->reg_num == RegIP)
29b0f896 7400 {
6c30d220 7401 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7402 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
7403 i.types[op].bitfield.disp8 = 0;
7404 i.types[op].bitfield.disp16 = 0;
7405 i.types[op].bitfield.disp32 = 0;
7406 i.types[op].bitfield.disp32s = 1;
7407 i.types[op].bitfield.disp64 = 0;
71903a11 7408 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
7409 if (! i.disp_operands)
7410 fake_zero_displacement = 1;
29b0f896 7411 }
dc821c5f 7412 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 7413 {
6c30d220 7414 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7415 switch (i.base_reg->reg_num)
7416 {
7417 case 3: /* (%bx) */
7418 if (i.index_reg == 0)
7419 i.rm.regmem = 7;
7420 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7421 i.rm.regmem = i.index_reg->reg_num - 6;
7422 break;
7423 case 5: /* (%bp) */
7424 default_seg = &ss;
7425 if (i.index_reg == 0)
7426 {
7427 i.rm.regmem = 6;
40fb9820 7428 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
7429 {
7430 /* fake (%bp) into 0(%bp) */
b5014f7a 7431 i.types[op].bitfield.disp8 = 1;
252b5132 7432 fake_zero_displacement = 1;
29b0f896
AM
7433 }
7434 }
7435 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7436 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7437 break;
7438 default: /* (%si) -> 4 or (%di) -> 5 */
7439 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7440 }
7441 i.rm.mode = mode_from_disp_size (i.types[op]);
7442 }
7443 else /* i.base_reg and 32/64 bit mode */
7444 {
7445 if (flag_code == CODE_64BIT
40fb9820
L
7446 && operand_type_check (i.types[op], disp))
7447 {
73053c1f
JB
7448 i.types[op].bitfield.disp16 = 0;
7449 i.types[op].bitfield.disp64 = 0;
40fb9820 7450 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
7451 {
7452 i.types[op].bitfield.disp32 = 0;
7453 i.types[op].bitfield.disp32s = 1;
7454 }
40fb9820 7455 else
73053c1f
JB
7456 {
7457 i.types[op].bitfield.disp32 = 1;
7458 i.types[op].bitfield.disp32s = 0;
7459 }
40fb9820 7460 }
20f0a1fc 7461
6c30d220
L
7462 if (!i.tm.opcode_modifier.vecsib)
7463 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7464 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7465 i.rex |= REX_B;
29b0f896
AM
7466 i.sib.base = i.base_reg->reg_num;
7467 /* x86-64 ignores REX prefix bit here to avoid decoder
7468 complications. */
848930b2
JB
7469 if (!(i.base_reg->reg_flags & RegRex)
7470 && (i.base_reg->reg_num == EBP_REG_NUM
7471 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7472 default_seg = &ss;
848930b2 7473 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7474 {
848930b2 7475 fake_zero_displacement = 1;
b5014f7a 7476 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7477 }
7478 i.sib.scale = i.log2_scale_factor;
7479 if (i.index_reg == 0)
7480 {
6c30d220 7481 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7482 /* <disp>(%esp) becomes two byte modrm with no index
7483 register. We've already stored the code for esp
7484 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7485 Any base register besides %esp will not use the
7486 extra modrm byte. */
7487 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7488 }
6c30d220 7489 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7490 {
e968fc9b 7491 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7492 i.sib.index = NO_INDEX_REGISTER;
7493 else
7494 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7495 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7496 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7497 i.rex |= REX_X;
29b0f896 7498 }
67a4f2b7
AO
7499
7500 if (i.disp_operands
7501 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7502 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7503 i.rm.mode = 0;
7504 else
a501d77e
L
7505 {
7506 if (!fake_zero_displacement
7507 && !i.disp_operands
7508 && i.disp_encoding)
7509 {
7510 fake_zero_displacement = 1;
7511 if (i.disp_encoding == disp_encoding_8bit)
7512 i.types[op].bitfield.disp8 = 1;
7513 else
7514 i.types[op].bitfield.disp32 = 1;
7515 }
7516 i.rm.mode = mode_from_disp_size (i.types[op]);
7517 }
29b0f896 7518 }
252b5132 7519
29b0f896
AM
7520 if (fake_zero_displacement)
7521 {
7522 /* Fakes a zero displacement assuming that i.types[op]
7523 holds the correct displacement size. */
7524 expressionS *exp;
7525
9c2799c2 7526 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7527 exp = &disp_expressions[i.disp_operands++];
7528 i.op[op].disps = exp;
7529 exp->X_op = O_constant;
7530 exp->X_add_number = 0;
7531 exp->X_add_symbol = (symbolS *) 0;
7532 exp->X_op_symbol = (symbolS *) 0;
7533 }
c0f3af97
L
7534
7535 mem = op;
29b0f896 7536 }
c0f3af97
L
7537 else
7538 mem = ~0;
252b5132 7539
8c43a48b 7540 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7541 {
7542 if (operand_type_check (i.types[0], imm))
7543 i.vex.register_specifier = NULL;
7544 else
7545 {
7546 /* VEX.vvvv encodes one of the sources when the first
7547 operand is not an immediate. */
1ef99a7b 7548 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7549 i.vex.register_specifier = i.op[0].regs;
7550 else
7551 i.vex.register_specifier = i.op[1].regs;
7552 }
7553
7554 /* Destination is a XMM register encoded in the ModRM.reg
7555 and VEX.R bit. */
7556 i.rm.reg = i.op[2].regs->reg_num;
7557 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7558 i.rex |= REX_R;
7559
7560 /* ModRM.rm and VEX.B encodes the other source. */
7561 if (!i.mem_operands)
7562 {
7563 i.rm.mode = 3;
7564
1ef99a7b 7565 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7566 i.rm.regmem = i.op[1].regs->reg_num;
7567 else
7568 i.rm.regmem = i.op[0].regs->reg_num;
7569
7570 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7571 i.rex |= REX_B;
7572 }
7573 }
2426c15f 7574 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7575 {
7576 i.vex.register_specifier = i.op[2].regs;
7577 if (!i.mem_operands)
7578 {
7579 i.rm.mode = 3;
7580 i.rm.regmem = i.op[1].regs->reg_num;
7581 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7582 i.rex |= REX_B;
7583 }
7584 }
29b0f896
AM
7585 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7586 (if any) based on i.tm.extension_opcode. Again, we must be
7587 careful to make sure that segment/control/debug/test/MMX
7588 registers are coded into the i.rm.reg field. */
f88c9eb0 7589 else if (i.reg_operands)
29b0f896 7590 {
99018f42 7591 unsigned int op;
7ab9ffdd
L
7592 unsigned int vex_reg = ~0;
7593
7594 for (op = 0; op < i.operands; op++)
b4a3a7b4
L
7595 {
7596 if (i.types[op].bitfield.reg
7597 || i.types[op].bitfield.regbnd
7598 || i.types[op].bitfield.regmask
7599 || i.types[op].bitfield.sreg2
7600 || i.types[op].bitfield.sreg3
7601 || i.types[op].bitfield.control
7602 || i.types[op].bitfield.debug
7603 || i.types[op].bitfield.test)
7604 break;
7605 if (i.types[op].bitfield.regsimd)
7606 {
7607 if (i.types[op].bitfield.zmmword)
7608 i.has_regzmm = TRUE;
7609 else if (i.types[op].bitfield.ymmword)
7610 i.has_regymm = TRUE;
7611 else
7612 i.has_regxmm = TRUE;
7613 break;
7614 }
7615 if (i.types[op].bitfield.regmmx)
7616 {
7617 i.has_regmmx = TRUE;
7618 break;
7619 }
7620 }
c0209578 7621
7ab9ffdd
L
7622 if (vex_3_sources)
7623 op = dest;
2426c15f 7624 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7625 {
7626 /* For instructions with VexNDS, the register-only
7627 source operand is encoded in VEX prefix. */
7628 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7629
7ab9ffdd 7630 if (op > mem)
c0f3af97 7631 {
7ab9ffdd
L
7632 vex_reg = op++;
7633 gas_assert (op < i.operands);
c0f3af97
L
7634 }
7635 else
c0f3af97 7636 {
f12dc422
L
7637 /* Check register-only source operand when two source
7638 operands are swapped. */
7639 if (!i.tm.operand_types[op].bitfield.baseindex
7640 && i.tm.operand_types[op + 1].bitfield.baseindex)
7641 {
7642 vex_reg = op;
7643 op += 2;
7644 gas_assert (mem == (vex_reg + 1)
7645 && op < i.operands);
7646 }
7647 else
7648 {
7649 vex_reg = op + 1;
7650 gas_assert (vex_reg < i.operands);
7651 }
c0f3af97 7652 }
7ab9ffdd 7653 }
2426c15f 7654 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7655 {
f12dc422 7656 /* For instructions with VexNDD, the register destination
7ab9ffdd 7657 is encoded in VEX prefix. */
f12dc422
L
7658 if (i.mem_operands == 0)
7659 {
7660 /* There is no memory operand. */
7661 gas_assert ((op + 2) == i.operands);
7662 vex_reg = op + 1;
7663 }
7664 else
8d63c93e 7665 {
ed438a93
JB
7666 /* There are only 2 non-immediate operands. */
7667 gas_assert (op < i.imm_operands + 2
7668 && i.operands == i.imm_operands + 2);
7669 vex_reg = i.imm_operands + 1;
f12dc422 7670 }
7ab9ffdd
L
7671 }
7672 else
7673 gas_assert (op < i.operands);
99018f42 7674
7ab9ffdd
L
7675 if (vex_reg != (unsigned int) ~0)
7676 {
f12dc422 7677 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7678
dc821c5f
JB
7679 if ((!type->bitfield.reg
7680 || (!type->bitfield.dword && !type->bitfield.qword))
10c17abd 7681 && !type->bitfield.regsimd
43234a1e 7682 && !operand_type_equal (type, &regmask))
7ab9ffdd 7683 abort ();
f88c9eb0 7684
7ab9ffdd
L
7685 i.vex.register_specifier = i.op[vex_reg].regs;
7686 }
7687
1b9f0c97
L
7688 /* Don't set OP operand twice. */
7689 if (vex_reg != op)
7ab9ffdd 7690 {
1b9f0c97
L
7691 /* If there is an extension opcode to put here, the
7692 register number must be put into the regmem field. */
7693 if (i.tm.extension_opcode != None)
7694 {
7695 i.rm.regmem = i.op[op].regs->reg_num;
7696 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7697 i.rex |= REX_B;
43234a1e
L
7698 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7699 i.vrex |= REX_B;
1b9f0c97
L
7700 }
7701 else
7702 {
7703 i.rm.reg = i.op[op].regs->reg_num;
7704 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7705 i.rex |= REX_R;
43234a1e
L
7706 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7707 i.vrex |= REX_R;
1b9f0c97 7708 }
7ab9ffdd 7709 }
252b5132 7710
29b0f896
AM
7711 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7712 must set it to 3 to indicate this is a register operand
7713 in the regmem field. */
7714 if (!i.mem_operands)
7715 i.rm.mode = 3;
7716 }
252b5132 7717
29b0f896 7718 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7719 if (i.tm.extension_opcode != None)
29b0f896
AM
7720 i.rm.reg = i.tm.extension_opcode;
7721 }
7722 return default_seg;
7723}
252b5132 7724
29b0f896 7725static void
e3bb37b5 7726output_branch (void)
29b0f896
AM
7727{
7728 char *p;
f8a5c266 7729 int size;
29b0f896
AM
7730 int code16;
7731 int prefix;
7732 relax_substateT subtype;
7733 symbolS *sym;
7734 offsetT off;
7735
f8a5c266 7736 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7737 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7738
7739 prefix = 0;
7740 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7741 {
29b0f896
AM
7742 prefix = 1;
7743 i.prefixes -= 1;
7744 code16 ^= CODE16;
252b5132 7745 }
29b0f896
AM
7746 /* Pentium4 branch hints. */
7747 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7748 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7749 {
29b0f896
AM
7750 prefix++;
7751 i.prefixes--;
7752 }
7753 if (i.prefix[REX_PREFIX] != 0)
7754 {
7755 prefix++;
7756 i.prefixes--;
2f66722d
AM
7757 }
7758
7e8b059b
L
7759 /* BND prefixed jump. */
7760 if (i.prefix[BND_PREFIX] != 0)
7761 {
7762 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7763 i.prefixes -= 1;
7764 }
7765
29b0f896
AM
7766 if (i.prefixes != 0 && !intel_syntax)
7767 as_warn (_("skipping prefixes on this instruction"));
7768
7769 /* It's always a symbol; End frag & setup for relax.
7770 Make sure there is enough room in this frag for the largest
7771 instruction we may generate in md_convert_frag. This is 2
7772 bytes for the opcode and room for the prefix and largest
7773 displacement. */
7774 frag_grow (prefix + 2 + 4);
7775 /* Prefix and 1 opcode byte go in fr_fix. */
7776 p = frag_more (prefix + 1);
7777 if (i.prefix[DATA_PREFIX] != 0)
7778 *p++ = DATA_PREFIX_OPCODE;
7779 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7780 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7781 *p++ = i.prefix[SEG_PREFIX];
7782 if (i.prefix[REX_PREFIX] != 0)
7783 *p++ = i.prefix[REX_PREFIX];
7784 *p = i.tm.base_opcode;
7785
7786 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7787 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7788 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7789 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7790 else
f8a5c266 7791 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7792 subtype |= code16;
3e73aa7c 7793
29b0f896
AM
7794 sym = i.op[0].disps->X_add_symbol;
7795 off = i.op[0].disps->X_add_number;
3e73aa7c 7796
29b0f896
AM
7797 if (i.op[0].disps->X_op != O_constant
7798 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7799 {
29b0f896
AM
7800 /* Handle complex expressions. */
7801 sym = make_expr_symbol (i.op[0].disps);
7802 off = 0;
7803 }
3e73aa7c 7804
29b0f896
AM
7805 /* 1 possible extra opcode + 4 byte displacement go in var part.
7806 Pass reloc in fr_var. */
d258b828 7807 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7808}
3e73aa7c 7809
bd7ab16b
L
7810#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7811/* Return TRUE iff PLT32 relocation should be used for branching to
7812 symbol S. */
7813
7814static bfd_boolean
7815need_plt32_p (symbolS *s)
7816{
7817 /* PLT32 relocation is ELF only. */
7818 if (!IS_ELF)
7819 return FALSE;
7820
a5def729
RO
7821#ifdef TE_SOLARIS
7822 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7823 krtld support it. */
7824 return FALSE;
7825#endif
7826
bd7ab16b
L
7827 /* Since there is no need to prepare for PLT branch on x86-64, we
7828 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7829 be used as a marker for 32-bit PC-relative branches. */
7830 if (!object_64bit)
7831 return FALSE;
7832
7833 /* Weak or undefined symbol need PLT32 relocation. */
7834 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7835 return TRUE;
7836
7837 /* Non-global symbol doesn't need PLT32 relocation. */
7838 if (! S_IS_EXTERNAL (s))
7839 return FALSE;
7840
7841 /* Other global symbols need PLT32 relocation. NB: Symbol with
7842 non-default visibilities are treated as normal global symbol
7843 so that PLT32 relocation can be used as a marker for 32-bit
7844 PC-relative branches. It is useful for linker relaxation. */
7845 return TRUE;
7846}
7847#endif
7848
29b0f896 7849static void
e3bb37b5 7850output_jump (void)
29b0f896
AM
7851{
7852 char *p;
7853 int size;
3e02c1cc 7854 fixS *fixP;
bd7ab16b 7855 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7856
40fb9820 7857 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
7858 {
7859 /* This is a loop or jecxz type instruction. */
7860 size = 1;
7861 if (i.prefix[ADDR_PREFIX] != 0)
7862 {
7863 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7864 i.prefixes -= 1;
7865 }
7866 /* Pentium4 branch hints. */
7867 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7868 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7869 {
7870 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7871 i.prefixes--;
3e73aa7c
JH
7872 }
7873 }
29b0f896
AM
7874 else
7875 {
7876 int code16;
3e73aa7c 7877
29b0f896
AM
7878 code16 = 0;
7879 if (flag_code == CODE_16BIT)
7880 code16 = CODE16;
3e73aa7c 7881
29b0f896
AM
7882 if (i.prefix[DATA_PREFIX] != 0)
7883 {
7884 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7885 i.prefixes -= 1;
7886 code16 ^= CODE16;
7887 }
252b5132 7888
29b0f896
AM
7889 size = 4;
7890 if (code16)
7891 size = 2;
7892 }
9fcc94b6 7893
29b0f896
AM
7894 if (i.prefix[REX_PREFIX] != 0)
7895 {
7896 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7897 i.prefixes -= 1;
7898 }
252b5132 7899
7e8b059b
L
7900 /* BND prefixed jump. */
7901 if (i.prefix[BND_PREFIX] != 0)
7902 {
7903 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7904 i.prefixes -= 1;
7905 }
7906
29b0f896
AM
7907 if (i.prefixes != 0 && !intel_syntax)
7908 as_warn (_("skipping prefixes on this instruction"));
e0890092 7909
42164a71
L
7910 p = frag_more (i.tm.opcode_length + size);
7911 switch (i.tm.opcode_length)
7912 {
7913 case 2:
7914 *p++ = i.tm.base_opcode >> 8;
1a0670f3 7915 /* Fall through. */
42164a71
L
7916 case 1:
7917 *p++ = i.tm.base_opcode;
7918 break;
7919 default:
7920 abort ();
7921 }
e0890092 7922
bd7ab16b
L
7923#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7924 if (size == 4
7925 && jump_reloc == NO_RELOC
7926 && need_plt32_p (i.op[0].disps->X_add_symbol))
7927 jump_reloc = BFD_RELOC_X86_64_PLT32;
7928#endif
7929
7930 jump_reloc = reloc (size, 1, 1, jump_reloc);
7931
3e02c1cc 7932 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 7933 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
7934
7935 /* All jumps handled here are signed, but don't use a signed limit
7936 check for 32 and 16 bit jumps as we want to allow wrap around at
7937 4G and 64k respectively. */
7938 if (size == 1)
7939 fixP->fx_signed = 1;
29b0f896 7940}
e0890092 7941
29b0f896 7942static void
e3bb37b5 7943output_interseg_jump (void)
29b0f896
AM
7944{
7945 char *p;
7946 int size;
7947 int prefix;
7948 int code16;
252b5132 7949
29b0f896
AM
7950 code16 = 0;
7951 if (flag_code == CODE_16BIT)
7952 code16 = CODE16;
a217f122 7953
29b0f896
AM
7954 prefix = 0;
7955 if (i.prefix[DATA_PREFIX] != 0)
7956 {
7957 prefix = 1;
7958 i.prefixes -= 1;
7959 code16 ^= CODE16;
7960 }
7961 if (i.prefix[REX_PREFIX] != 0)
7962 {
7963 prefix++;
7964 i.prefixes -= 1;
7965 }
252b5132 7966
29b0f896
AM
7967 size = 4;
7968 if (code16)
7969 size = 2;
252b5132 7970
29b0f896
AM
7971 if (i.prefixes != 0 && !intel_syntax)
7972 as_warn (_("skipping prefixes on this instruction"));
252b5132 7973
29b0f896
AM
7974 /* 1 opcode; 2 segment; offset */
7975 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 7976
29b0f896
AM
7977 if (i.prefix[DATA_PREFIX] != 0)
7978 *p++ = DATA_PREFIX_OPCODE;
252b5132 7979
29b0f896
AM
7980 if (i.prefix[REX_PREFIX] != 0)
7981 *p++ = i.prefix[REX_PREFIX];
252b5132 7982
29b0f896
AM
7983 *p++ = i.tm.base_opcode;
7984 if (i.op[1].imms->X_op == O_constant)
7985 {
7986 offsetT n = i.op[1].imms->X_add_number;
252b5132 7987
29b0f896
AM
7988 if (size == 2
7989 && !fits_in_unsigned_word (n)
7990 && !fits_in_signed_word (n))
7991 {
7992 as_bad (_("16-bit jump out of range"));
7993 return;
7994 }
7995 md_number_to_chars (p, n, size);
7996 }
7997 else
7998 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 7999 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
8000 if (i.op[0].imms->X_op != O_constant)
8001 as_bad (_("can't handle non absolute segment in `%s'"),
8002 i.tm.name);
8003 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8004}
a217f122 8005
b4a3a7b4
L
8006#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8007void
8008x86_cleanup (void)
8009{
8010 char *p;
8011 asection *seg = now_seg;
8012 subsegT subseg = now_subseg;
8013 asection *sec;
8014 unsigned int alignment, align_size_1;
8015 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8016 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8017 unsigned int padding;
8018
8019 if (!IS_ELF || !x86_used_note)
8020 return;
8021
b4a3a7b4
L
8022 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8023
8024 /* The .note.gnu.property section layout:
8025
8026 Field Length Contents
8027 ---- ---- ----
8028 n_namsz 4 4
8029 n_descsz 4 The note descriptor size
8030 n_type 4 NT_GNU_PROPERTY_TYPE_0
8031 n_name 4 "GNU"
8032 n_desc n_descsz The program property array
8033 .... .... ....
8034 */
8035
8036 /* Create the .note.gnu.property section. */
8037 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8038 bfd_set_section_flags (stdoutput, sec,
8039 (SEC_ALLOC
8040 | SEC_LOAD
8041 | SEC_DATA
8042 | SEC_HAS_CONTENTS
8043 | SEC_READONLY));
8044
8045 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8046 {
8047 align_size_1 = 7;
8048 alignment = 3;
8049 }
8050 else
8051 {
8052 align_size_1 = 3;
8053 alignment = 2;
8054 }
8055
8056 bfd_set_section_alignment (stdoutput, sec, alignment);
8057 elf_section_type (sec) = SHT_NOTE;
8058
8059 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8060 + 4-byte data */
8061 isa_1_descsz_raw = 4 + 4 + 4;
8062 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8063 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8064
8065 feature_2_descsz_raw = isa_1_descsz;
8066 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8067 + 4-byte data */
8068 feature_2_descsz_raw += 4 + 4 + 4;
8069 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8070 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8071 & ~align_size_1);
8072
8073 descsz = feature_2_descsz;
8074 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8075 p = frag_more (4 + 4 + 4 + 4 + descsz);
8076
8077 /* Write n_namsz. */
8078 md_number_to_chars (p, (valueT) 4, 4);
8079
8080 /* Write n_descsz. */
8081 md_number_to_chars (p + 4, (valueT) descsz, 4);
8082
8083 /* Write n_type. */
8084 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8085
8086 /* Write n_name. */
8087 memcpy (p + 4 * 3, "GNU", 4);
8088
8089 /* Write 4-byte type. */
8090 md_number_to_chars (p + 4 * 4,
8091 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8092
8093 /* Write 4-byte data size. */
8094 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8095
8096 /* Write 4-byte data. */
8097 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8098
8099 /* Zero out paddings. */
8100 padding = isa_1_descsz - isa_1_descsz_raw;
8101 if (padding)
8102 memset (p + 4 * 7, 0, padding);
8103
8104 /* Write 4-byte type. */
8105 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8106 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8107
8108 /* Write 4-byte data size. */
8109 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8110
8111 /* Write 4-byte data. */
8112 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8113 (valueT) x86_feature_2_used, 4);
8114
8115 /* Zero out paddings. */
8116 padding = feature_2_descsz - feature_2_descsz_raw;
8117 if (padding)
8118 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8119
8120 /* We probably can't restore the current segment, for there likely
8121 isn't one yet... */
8122 if (seg && subseg)
8123 subseg_set (seg, subseg);
8124}
8125#endif
8126
29b0f896 8127static void
e3bb37b5 8128output_insn (void)
29b0f896 8129{
2bbd9c25
JJ
8130 fragS *insn_start_frag;
8131 offsetT insn_start_off;
8132
b4a3a7b4
L
8133#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8134 if (IS_ELF && x86_used_note)
8135 {
8136 if (i.tm.cpu_flags.bitfield.cpucmov)
8137 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8138 if (i.tm.cpu_flags.bitfield.cpusse)
8139 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8140 if (i.tm.cpu_flags.bitfield.cpusse2)
8141 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8142 if (i.tm.cpu_flags.bitfield.cpusse3)
8143 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8144 if (i.tm.cpu_flags.bitfield.cpussse3)
8145 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8146 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8147 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8148 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8149 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8150 if (i.tm.cpu_flags.bitfield.cpuavx)
8151 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8152 if (i.tm.cpu_flags.bitfield.cpuavx2)
8153 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8154 if (i.tm.cpu_flags.bitfield.cpufma)
8155 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8156 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8157 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8158 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8159 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8160 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8161 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8162 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8163 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8164 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8165 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8166 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8167 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8168 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8169 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8170 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8171 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8172 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8173 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8174 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8175 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8176 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8177 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8178 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8179 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8180 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8181 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8182 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8183 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
462cac58
L
8184 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8185 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
b4a3a7b4
L
8186
8187 if (i.tm.cpu_flags.bitfield.cpu8087
8188 || i.tm.cpu_flags.bitfield.cpu287
8189 || i.tm.cpu_flags.bitfield.cpu387
8190 || i.tm.cpu_flags.bitfield.cpu687
8191 || i.tm.cpu_flags.bitfield.cpufisttp)
8192 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8193 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8194 Xfence instructions. */
8195 if (i.tm.base_opcode != 0xf18
8196 && i.tm.base_opcode != 0xf0d
8197 && i.tm.base_opcode != 0xfae
8198 && (i.has_regmmx
8199 || i.tm.cpu_flags.bitfield.cpummx
8200 || i.tm.cpu_flags.bitfield.cpua3dnow
8201 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8202 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8203 if (i.has_regxmm)
8204 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8205 if (i.has_regymm)
8206 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8207 if (i.has_regzmm)
8208 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8209 if (i.tm.cpu_flags.bitfield.cpufxsr)
8210 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8211 if (i.tm.cpu_flags.bitfield.cpuxsave)
8212 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8213 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8214 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8215 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8216 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8217 }
8218#endif
8219
29b0f896
AM
8220 /* Tie dwarf2 debug info to the address at the start of the insn.
8221 We can't do this after the insn has been output as the current
8222 frag may have been closed off. eg. by frag_var. */
8223 dwarf2_emit_insn (0);
8224
2bbd9c25
JJ
8225 insn_start_frag = frag_now;
8226 insn_start_off = frag_now_fix ();
8227
29b0f896 8228 /* Output jumps. */
40fb9820 8229 if (i.tm.opcode_modifier.jump)
29b0f896 8230 output_branch ();
40fb9820
L
8231 else if (i.tm.opcode_modifier.jumpbyte
8232 || i.tm.opcode_modifier.jumpdword)
29b0f896 8233 output_jump ();
40fb9820 8234 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
8235 output_interseg_jump ();
8236 else
8237 {
8238 /* Output normal instructions here. */
8239 char *p;
8240 unsigned char *q;
47465058 8241 unsigned int j;
331d2d0d 8242 unsigned int prefix;
4dffcebc 8243
e4e00185
AS
8244 if (avoid_fence
8245 && i.tm.base_opcode == 0xfae
8246 && i.operands == 1
8247 && i.imm_operands == 1
8248 && (i.op[0].imms->X_add_number == 0xe8
8249 || i.op[0].imms->X_add_number == 0xf0
8250 || i.op[0].imms->X_add_number == 0xf8))
8251 {
8252 /* Encode lfence, mfence, and sfence as
8253 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8254 offsetT val = 0x240483f0ULL;
8255 p = frag_more (5);
8256 md_number_to_chars (p, val, 5);
8257 return;
8258 }
8259
d022bddd
IT
8260 /* Some processors fail on LOCK prefix. This options makes
8261 assembler ignore LOCK prefix and serves as a workaround. */
8262 if (omit_lock_prefix)
8263 {
8264 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8265 return;
8266 i.prefix[LOCK_PREFIX] = 0;
8267 }
8268
43234a1e
L
8269 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8270 don't need the explicit prefix. */
8271 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 8272 {
c0f3af97 8273 switch (i.tm.opcode_length)
bc4bd9ab 8274 {
c0f3af97
L
8275 case 3:
8276 if (i.tm.base_opcode & 0xff000000)
4dffcebc 8277 {
c0f3af97 8278 prefix = (i.tm.base_opcode >> 24) & 0xff;
bd59a631 8279 add_prefix (prefix);
c0f3af97
L
8280 }
8281 break;
8282 case 2:
8283 if ((i.tm.base_opcode & 0xff0000) != 0)
8284 {
8285 prefix = (i.tm.base_opcode >> 16) & 0xff;
bd59a631
JB
8286 if (!i.tm.cpu_flags.bitfield.cpupadlock
8287 || prefix != REPE_PREFIX_OPCODE
8288 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
4dffcebc
L
8289 add_prefix (prefix);
8290 }
c0f3af97
L
8291 break;
8292 case 1:
8293 break;
390c91cf
L
8294 case 0:
8295 /* Check for pseudo prefixes. */
8296 as_bad_where (insn_start_frag->fr_file,
8297 insn_start_frag->fr_line,
8298 _("pseudo prefix without instruction"));
8299 return;
c0f3af97
L
8300 default:
8301 abort ();
bc4bd9ab 8302 }
c0f3af97 8303
6d19a37a 8304#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
8305 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8306 R_X86_64_GOTTPOFF relocation so that linker can safely
8307 perform IE->LE optimization. */
8308 if (x86_elf_abi == X86_64_X32_ABI
8309 && i.operands == 2
8310 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8311 && i.prefix[REX_PREFIX] == 0)
8312 add_prefix (REX_OPCODE);
6d19a37a 8313#endif
cf61b747 8314
c0f3af97
L
8315 /* The prefix bytes. */
8316 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8317 if (*q)
8318 FRAG_APPEND_1_CHAR (*q);
0f10071e 8319 }
ae5c1c7b 8320 else
c0f3af97
L
8321 {
8322 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8323 if (*q)
8324 switch (j)
8325 {
8326 case REX_PREFIX:
8327 /* REX byte is encoded in VEX prefix. */
8328 break;
8329 case SEG_PREFIX:
8330 case ADDR_PREFIX:
8331 FRAG_APPEND_1_CHAR (*q);
8332 break;
8333 default:
8334 /* There should be no other prefixes for instructions
8335 with VEX prefix. */
8336 abort ();
8337 }
8338
43234a1e
L
8339 /* For EVEX instructions i.vrex should become 0 after
8340 build_evex_prefix. For VEX instructions upper 16 registers
8341 aren't available, so VREX should be 0. */
8342 if (i.vrex)
8343 abort ();
c0f3af97
L
8344 /* Now the VEX prefix. */
8345 p = frag_more (i.vex.length);
8346 for (j = 0; j < i.vex.length; j++)
8347 p[j] = i.vex.bytes[j];
8348 }
252b5132 8349
29b0f896 8350 /* Now the opcode; be careful about word order here! */
4dffcebc 8351 if (i.tm.opcode_length == 1)
29b0f896
AM
8352 {
8353 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8354 }
8355 else
8356 {
4dffcebc 8357 switch (i.tm.opcode_length)
331d2d0d 8358 {
43234a1e
L
8359 case 4:
8360 p = frag_more (4);
8361 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8362 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8363 break;
4dffcebc 8364 case 3:
331d2d0d
L
8365 p = frag_more (3);
8366 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
8367 break;
8368 case 2:
8369 p = frag_more (2);
8370 break;
8371 default:
8372 abort ();
8373 break;
331d2d0d 8374 }
0f10071e 8375
29b0f896
AM
8376 /* Put out high byte first: can't use md_number_to_chars! */
8377 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8378 *p = i.tm.base_opcode & 0xff;
8379 }
3e73aa7c 8380
29b0f896 8381 /* Now the modrm byte and sib byte (if present). */
40fb9820 8382 if (i.tm.opcode_modifier.modrm)
29b0f896 8383 {
4a3523fa
L
8384 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8385 | i.rm.reg << 3
8386 | i.rm.mode << 6));
29b0f896
AM
8387 /* If i.rm.regmem == ESP (4)
8388 && i.rm.mode != (Register mode)
8389 && not 16 bit
8390 ==> need second modrm byte. */
8391 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8392 && i.rm.mode != 3
dc821c5f 8393 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
8394 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8395 | i.sib.index << 3
8396 | i.sib.scale << 6));
29b0f896 8397 }
3e73aa7c 8398
29b0f896 8399 if (i.disp_operands)
2bbd9c25 8400 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 8401
29b0f896 8402 if (i.imm_operands)
2bbd9c25 8403 output_imm (insn_start_frag, insn_start_off);
29b0f896 8404 }
252b5132 8405
29b0f896
AM
8406#ifdef DEBUG386
8407 if (flag_debug)
8408 {
7b81dfbb 8409 pi ("" /*line*/, &i);
29b0f896
AM
8410 }
8411#endif /* DEBUG386 */
8412}
252b5132 8413
e205caa7
L
8414/* Return the size of the displacement operand N. */
8415
8416static int
8417disp_size (unsigned int n)
8418{
8419 int size = 4;
43234a1e 8420
b5014f7a 8421 if (i.types[n].bitfield.disp64)
40fb9820
L
8422 size = 8;
8423 else if (i.types[n].bitfield.disp8)
8424 size = 1;
8425 else if (i.types[n].bitfield.disp16)
8426 size = 2;
e205caa7
L
8427 return size;
8428}
8429
8430/* Return the size of the immediate operand N. */
8431
8432static int
8433imm_size (unsigned int n)
8434{
8435 int size = 4;
40fb9820
L
8436 if (i.types[n].bitfield.imm64)
8437 size = 8;
8438 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8439 size = 1;
8440 else if (i.types[n].bitfield.imm16)
8441 size = 2;
e205caa7
L
8442 return size;
8443}
8444
29b0f896 8445static void
64e74474 8446output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8447{
8448 char *p;
8449 unsigned int n;
252b5132 8450
29b0f896
AM
8451 for (n = 0; n < i.operands; n++)
8452 {
b5014f7a 8453 if (operand_type_check (i.types[n], disp))
29b0f896
AM
8454 {
8455 if (i.op[n].disps->X_op == O_constant)
8456 {
e205caa7 8457 int size = disp_size (n);
43234a1e 8458 offsetT val = i.op[n].disps->X_add_number;
252b5132 8459
629cfaf1
JB
8460 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8461 size);
29b0f896
AM
8462 p = frag_more (size);
8463 md_number_to_chars (p, val, size);
8464 }
8465 else
8466 {
f86103b7 8467 enum bfd_reloc_code_real reloc_type;
e205caa7 8468 int size = disp_size (n);
40fb9820 8469 int sign = i.types[n].bitfield.disp32s;
29b0f896 8470 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 8471 fixS *fixP;
29b0f896 8472
e205caa7 8473 /* We can't have 8 bit displacement here. */
9c2799c2 8474 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 8475
29b0f896
AM
8476 /* The PC relative address is computed relative
8477 to the instruction boundary, so in case immediate
8478 fields follows, we need to adjust the value. */
8479 if (pcrel && i.imm_operands)
8480 {
29b0f896 8481 unsigned int n1;
e205caa7 8482 int sz = 0;
252b5132 8483
29b0f896 8484 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 8485 if (operand_type_check (i.types[n1], imm))
252b5132 8486 {
e205caa7
L
8487 /* Only one immediate is allowed for PC
8488 relative address. */
9c2799c2 8489 gas_assert (sz == 0);
e205caa7
L
8490 sz = imm_size (n1);
8491 i.op[n].disps->X_add_number -= sz;
252b5132 8492 }
29b0f896 8493 /* We should find the immediate. */
9c2799c2 8494 gas_assert (sz != 0);
29b0f896 8495 }
520dc8e8 8496
29b0f896 8497 p = frag_more (size);
d258b828 8498 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 8499 if (GOT_symbol
2bbd9c25 8500 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 8501 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8502 || reloc_type == BFD_RELOC_X86_64_32S
8503 || (reloc_type == BFD_RELOC_64
8504 && object_64bit))
d6ab8113
JB
8505 && (i.op[n].disps->X_op == O_symbol
8506 || (i.op[n].disps->X_op == O_add
8507 && ((symbol_get_value_expression
8508 (i.op[n].disps->X_op_symbol)->X_op)
8509 == O_subtract))))
8510 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25
JJ
8511 {
8512 offsetT add;
8513
8514 if (insn_start_frag == frag_now)
8515 add = (p - frag_now->fr_literal) - insn_start_off;
8516 else
8517 {
8518 fragS *fr;
8519
8520 add = insn_start_frag->fr_fix - insn_start_off;
8521 for (fr = insn_start_frag->fr_next;
8522 fr && fr != frag_now; fr = fr->fr_next)
8523 add += fr->fr_fix;
8524 add += p - frag_now->fr_literal;
8525 }
8526
4fa24527 8527 if (!object_64bit)
7b81dfbb
AJ
8528 {
8529 reloc_type = BFD_RELOC_386_GOTPC;
8530 i.op[n].imms->X_add_number += add;
8531 }
8532 else if (reloc_type == BFD_RELOC_64)
8533 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 8534 else
7b81dfbb
AJ
8535 /* Don't do the adjustment for x86-64, as there
8536 the pcrel addressing is relative to the _next_
8537 insn, and that is taken care of in other code. */
d6ab8113 8538 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 8539 }
02a86693
L
8540 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8541 size, i.op[n].disps, pcrel,
8542 reloc_type);
8543 /* Check for "call/jmp *mem", "mov mem, %reg",
8544 "test %reg, mem" and "binop mem, %reg" where binop
8545 is one of adc, add, and, cmp, or, sbb, sub, xor
e60f4d3b
L
8546 instructions without data prefix. Always generate
8547 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
8548 if (i.prefix[DATA_PREFIX] == 0
8549 && (generate_relax_relocations
8550 || (!object_64bit
8551 && i.rm.mode == 0
8552 && i.rm.regmem == 5))
0cb4071e
L
8553 && (i.rm.mode == 2
8554 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
8555 && ((i.operands == 1
8556 && i.tm.base_opcode == 0xff
8557 && (i.rm.reg == 2 || i.rm.reg == 4))
8558 || (i.operands == 2
8559 && (i.tm.base_opcode == 0x8b
8560 || i.tm.base_opcode == 0x85
8561 || (i.tm.base_opcode & 0xc7) == 0x03))))
8562 {
8563 if (object_64bit)
8564 {
8565 fixP->fx_tcbit = i.rex != 0;
8566 if (i.base_reg
e968fc9b 8567 && (i.base_reg->reg_num == RegIP))
02a86693
L
8568 fixP->fx_tcbit2 = 1;
8569 }
8570 else
8571 fixP->fx_tcbit2 = 1;
8572 }
29b0f896
AM
8573 }
8574 }
8575 }
8576}
252b5132 8577
29b0f896 8578static void
64e74474 8579output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8580{
8581 char *p;
8582 unsigned int n;
252b5132 8583
29b0f896
AM
8584 for (n = 0; n < i.operands; n++)
8585 {
43234a1e
L
8586 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8587 if (i.rounding && (int) n == i.rounding->operand)
8588 continue;
8589
40fb9820 8590 if (operand_type_check (i.types[n], imm))
29b0f896
AM
8591 {
8592 if (i.op[n].imms->X_op == O_constant)
8593 {
e205caa7 8594 int size = imm_size (n);
29b0f896 8595 offsetT val;
b4cac588 8596
29b0f896
AM
8597 val = offset_in_range (i.op[n].imms->X_add_number,
8598 size);
8599 p = frag_more (size);
8600 md_number_to_chars (p, val, size);
8601 }
8602 else
8603 {
8604 /* Not absolute_section.
8605 Need a 32-bit fixup (don't support 8bit
8606 non-absolute imms). Try to support other
8607 sizes ... */
f86103b7 8608 enum bfd_reloc_code_real reloc_type;
e205caa7
L
8609 int size = imm_size (n);
8610 int sign;
29b0f896 8611
40fb9820 8612 if (i.types[n].bitfield.imm32s
a7d61044 8613 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 8614 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 8615 sign = 1;
e205caa7
L
8616 else
8617 sign = 0;
520dc8e8 8618
29b0f896 8619 p = frag_more (size);
d258b828 8620 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 8621
2bbd9c25
JJ
8622 /* This is tough to explain. We end up with this one if we
8623 * have operands that look like
8624 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8625 * obtain the absolute address of the GOT, and it is strongly
8626 * preferable from a performance point of view to avoid using
8627 * a runtime relocation for this. The actual sequence of
8628 * instructions often look something like:
8629 *
8630 * call .L66
8631 * .L66:
8632 * popl %ebx
8633 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8634 *
8635 * The call and pop essentially return the absolute address
8636 * of the label .L66 and store it in %ebx. The linker itself
8637 * will ultimately change the first operand of the addl so
8638 * that %ebx points to the GOT, but to keep things simple, the
8639 * .o file must have this operand set so that it generates not
8640 * the absolute address of .L66, but the absolute address of
8641 * itself. This allows the linker itself simply treat a GOTPC
8642 * relocation as asking for a pcrel offset to the GOT to be
8643 * added in, and the addend of the relocation is stored in the
8644 * operand field for the instruction itself.
8645 *
8646 * Our job here is to fix the operand so that it would add
8647 * the correct offset so that %ebx would point to itself. The
8648 * thing that is tricky is that .-.L66 will point to the
8649 * beginning of the instruction, so we need to further modify
8650 * the operand so that it will point to itself. There are
8651 * other cases where you have something like:
8652 *
8653 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8654 *
8655 * and here no correction would be required. Internally in
8656 * the assembler we treat operands of this form as not being
8657 * pcrel since the '.' is explicitly mentioned, and I wonder
8658 * whether it would simplify matters to do it this way. Who
8659 * knows. In earlier versions of the PIC patches, the
8660 * pcrel_adjust field was used to store the correction, but
8661 * since the expression is not pcrel, I felt it would be
8662 * confusing to do it this way. */
8663
d6ab8113 8664 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8665 || reloc_type == BFD_RELOC_X86_64_32S
8666 || reloc_type == BFD_RELOC_64)
29b0f896
AM
8667 && GOT_symbol
8668 && GOT_symbol == i.op[n].imms->X_add_symbol
8669 && (i.op[n].imms->X_op == O_symbol
8670 || (i.op[n].imms->X_op == O_add
8671 && ((symbol_get_value_expression
8672 (i.op[n].imms->X_op_symbol)->X_op)
8673 == O_subtract))))
8674 {
2bbd9c25
JJ
8675 offsetT add;
8676
8677 if (insn_start_frag == frag_now)
8678 add = (p - frag_now->fr_literal) - insn_start_off;
8679 else
8680 {
8681 fragS *fr;
8682
8683 add = insn_start_frag->fr_fix - insn_start_off;
8684 for (fr = insn_start_frag->fr_next;
8685 fr && fr != frag_now; fr = fr->fr_next)
8686 add += fr->fr_fix;
8687 add += p - frag_now->fr_literal;
8688 }
8689
4fa24527 8690 if (!object_64bit)
d6ab8113 8691 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 8692 else if (size == 4)
d6ab8113 8693 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
8694 else if (size == 8)
8695 reloc_type = BFD_RELOC_X86_64_GOTPC64;
2bbd9c25 8696 i.op[n].imms->X_add_number += add;
29b0f896 8697 }
29b0f896
AM
8698 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8699 i.op[n].imms, 0, reloc_type);
8700 }
8701 }
8702 }
252b5132
RH
8703}
8704\f
d182319b
JB
8705/* x86_cons_fix_new is called via the expression parsing code when a
8706 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
8707static int cons_sign = -1;
8708
8709void
e3bb37b5 8710x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 8711 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 8712{
d258b828 8713 r = reloc (len, 0, cons_sign, r);
d182319b
JB
8714
8715#ifdef TE_PE
8716 if (exp->X_op == O_secrel)
8717 {
8718 exp->X_op = O_symbol;
8719 r = BFD_RELOC_32_SECREL;
8720 }
8721#endif
8722
8723 fix_new_exp (frag, off, len, exp, 0, r);
8724}
8725
357d1bd8
L
8726/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8727 purpose of the `.dc.a' internal pseudo-op. */
8728
8729int
8730x86_address_bytes (void)
8731{
8732 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8733 return 4;
8734 return stdoutput->arch_info->bits_per_address / 8;
8735}
8736
d382c579
TG
8737#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8738 || defined (LEX_AT)
d258b828 8739# define lex_got(reloc, adjust, types) NULL
718ddfc0 8740#else
f3c180ae
AM
8741/* Parse operands of the form
8742 <symbol>@GOTOFF+<nnn>
8743 and similar .plt or .got references.
8744
8745 If we find one, set up the correct relocation in RELOC and copy the
8746 input string, minus the `@GOTOFF' into a malloc'd buffer for
8747 parsing by the calling routine. Return this buffer, and if ADJUST
8748 is non-null set it to the length of the string we removed from the
8749 input line. Otherwise return NULL. */
8750static char *
91d6fa6a 8751lex_got (enum bfd_reloc_code_real *rel,
64e74474 8752 int *adjust,
d258b828 8753 i386_operand_type *types)
f3c180ae 8754{
7b81dfbb
AJ
8755 /* Some of the relocations depend on the size of what field is to
8756 be relocated. But in our callers i386_immediate and i386_displacement
8757 we don't yet know the operand size (this will be set by insn
8758 matching). Hence we record the word32 relocation here,
8759 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
8760 static const struct {
8761 const char *str;
cff8d58a 8762 int len;
4fa24527 8763 const enum bfd_reloc_code_real rel[2];
40fb9820 8764 const i386_operand_type types64;
f3c180ae 8765 } gotrel[] = {
8ce3d284 8766#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
8767 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8768 BFD_RELOC_SIZE32 },
8769 OPERAND_TYPE_IMM32_64 },
8ce3d284 8770#endif
cff8d58a
L
8771 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8772 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 8773 OPERAND_TYPE_IMM64 },
cff8d58a
L
8774 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8775 BFD_RELOC_X86_64_PLT32 },
40fb9820 8776 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8777 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8778 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 8779 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8780 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8781 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 8782 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8783 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8784 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 8785 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8786 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8787 BFD_RELOC_X86_64_TLSGD },
40fb9820 8788 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8789 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8790 _dummy_first_bfd_reloc_code_real },
40fb9820 8791 OPERAND_TYPE_NONE },
cff8d58a
L
8792 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8793 BFD_RELOC_X86_64_TLSLD },
40fb9820 8794 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8795 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8796 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 8797 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8798 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8799 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 8800 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8801 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8802 _dummy_first_bfd_reloc_code_real },
40fb9820 8803 OPERAND_TYPE_NONE },
cff8d58a
L
8804 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8805 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 8806 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8807 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8808 _dummy_first_bfd_reloc_code_real },
40fb9820 8809 OPERAND_TYPE_NONE },
cff8d58a
L
8810 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8811 _dummy_first_bfd_reloc_code_real },
40fb9820 8812 OPERAND_TYPE_NONE },
cff8d58a
L
8813 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8814 BFD_RELOC_X86_64_GOT32 },
40fb9820 8815 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
8816 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8817 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 8818 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8819 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8820 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 8821 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
8822 };
8823 char *cp;
8824 unsigned int j;
8825
d382c579 8826#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
8827 if (!IS_ELF)
8828 return NULL;
d382c579 8829#endif
718ddfc0 8830
f3c180ae 8831 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 8832 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
8833 return NULL;
8834
47465058 8835 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 8836 {
cff8d58a 8837 int len = gotrel[j].len;
28f81592 8838 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 8839 {
4fa24527 8840 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 8841 {
28f81592
AM
8842 int first, second;
8843 char *tmpbuf, *past_reloc;
f3c180ae 8844
91d6fa6a 8845 *rel = gotrel[j].rel[object_64bit];
f3c180ae 8846
3956db08
JB
8847 if (types)
8848 {
8849 if (flag_code != CODE_64BIT)
40fb9820
L
8850 {
8851 types->bitfield.imm32 = 1;
8852 types->bitfield.disp32 = 1;
8853 }
3956db08
JB
8854 else
8855 *types = gotrel[j].types64;
8856 }
8857
8fd4256d 8858 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
8859 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8860
28f81592 8861 /* The length of the first part of our input line. */
f3c180ae 8862 first = cp - input_line_pointer;
28f81592
AM
8863
8864 /* The second part goes from after the reloc token until
67c11a9b 8865 (and including) an end_of_line char or comma. */
28f81592 8866 past_reloc = cp + 1 + len;
67c11a9b
AM
8867 cp = past_reloc;
8868 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8869 ++cp;
8870 second = cp + 1 - past_reloc;
28f81592
AM
8871
8872 /* Allocate and copy string. The trailing NUL shouldn't
8873 be necessary, but be safe. */
add39d23 8874 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 8875 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
8876 if (second != 0 && *past_reloc != ' ')
8877 /* Replace the relocation token with ' ', so that
8878 errors like foo@GOTOFF1 will be detected. */
8879 tmpbuf[first++] = ' ';
af89796a
L
8880 else
8881 /* Increment length by 1 if the relocation token is
8882 removed. */
8883 len++;
8884 if (adjust)
8885 *adjust = len;
0787a12d
AM
8886 memcpy (tmpbuf + first, past_reloc, second);
8887 tmpbuf[first + second] = '\0';
f3c180ae
AM
8888 return tmpbuf;
8889 }
8890
4fa24527
JB
8891 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8892 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
8893 return NULL;
8894 }
8895 }
8896
8897 /* Might be a symbol version string. Don't as_bad here. */
8898 return NULL;
8899}
4e4f7c87 8900#endif
f3c180ae 8901
a988325c
NC
8902#ifdef TE_PE
8903#ifdef lex_got
8904#undef lex_got
8905#endif
8906/* Parse operands of the form
8907 <symbol>@SECREL32+<nnn>
8908
8909 If we find one, set up the correct relocation in RELOC and copy the
8910 input string, minus the `@SECREL32' into a malloc'd buffer for
8911 parsing by the calling routine. Return this buffer, and if ADJUST
8912 is non-null set it to the length of the string we removed from the
34bca508
L
8913 input line. Otherwise return NULL.
8914
a988325c
NC
8915 This function is copied from the ELF version above adjusted for PE targets. */
8916
8917static char *
8918lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8919 int *adjust ATTRIBUTE_UNUSED,
d258b828 8920 i386_operand_type *types)
a988325c
NC
8921{
8922 static const struct
8923 {
8924 const char *str;
8925 int len;
8926 const enum bfd_reloc_code_real rel[2];
8927 const i386_operand_type types64;
8928 }
8929 gotrel[] =
8930 {
8931 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8932 BFD_RELOC_32_SECREL },
8933 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8934 };
8935
8936 char *cp;
8937 unsigned j;
8938
8939 for (cp = input_line_pointer; *cp != '@'; cp++)
8940 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8941 return NULL;
8942
8943 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8944 {
8945 int len = gotrel[j].len;
8946
8947 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8948 {
8949 if (gotrel[j].rel[object_64bit] != 0)
8950 {
8951 int first, second;
8952 char *tmpbuf, *past_reloc;
8953
8954 *rel = gotrel[j].rel[object_64bit];
8955 if (adjust)
8956 *adjust = len;
8957
8958 if (types)
8959 {
8960 if (flag_code != CODE_64BIT)
8961 {
8962 types->bitfield.imm32 = 1;
8963 types->bitfield.disp32 = 1;
8964 }
8965 else
8966 *types = gotrel[j].types64;
8967 }
8968
8969 /* The length of the first part of our input line. */
8970 first = cp - input_line_pointer;
8971
8972 /* The second part goes from after the reloc token until
8973 (and including) an end_of_line char or comma. */
8974 past_reloc = cp + 1 + len;
8975 cp = past_reloc;
8976 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8977 ++cp;
8978 second = cp + 1 - past_reloc;
8979
8980 /* Allocate and copy string. The trailing NUL shouldn't
8981 be necessary, but be safe. */
add39d23 8982 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
8983 memcpy (tmpbuf, input_line_pointer, first);
8984 if (second != 0 && *past_reloc != ' ')
8985 /* Replace the relocation token with ' ', so that
8986 errors like foo@SECLREL321 will be detected. */
8987 tmpbuf[first++] = ' ';
8988 memcpy (tmpbuf + first, past_reloc, second);
8989 tmpbuf[first + second] = '\0';
8990 return tmpbuf;
8991 }
8992
8993 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8994 gotrel[j].str, 1 << (5 + object_64bit));
8995 return NULL;
8996 }
8997 }
8998
8999 /* Might be a symbol version string. Don't as_bad here. */
9000 return NULL;
9001}
9002
9003#endif /* TE_PE */
9004
62ebcb5c 9005bfd_reloc_code_real_type
e3bb37b5 9006x86_cons (expressionS *exp, int size)
f3c180ae 9007{
62ebcb5c
AM
9008 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9009
ee86248c
JB
9010 intel_syntax = -intel_syntax;
9011
3c7b9c2c 9012 exp->X_md = 0;
4fa24527 9013 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
9014 {
9015 /* Handle @GOTOFF and the like in an expression. */
9016 char *save;
9017 char *gotfree_input_line;
4a57f2cf 9018 int adjust = 0;
f3c180ae
AM
9019
9020 save = input_line_pointer;
d258b828 9021 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
9022 if (gotfree_input_line)
9023 input_line_pointer = gotfree_input_line;
9024
9025 expression (exp);
9026
9027 if (gotfree_input_line)
9028 {
9029 /* expression () has merrily parsed up to the end of line,
9030 or a comma - in the wrong buffer. Transfer how far
9031 input_line_pointer has moved to the right buffer. */
9032 input_line_pointer = (save
9033 + (input_line_pointer - gotfree_input_line)
9034 + adjust);
9035 free (gotfree_input_line);
3992d3b7
AM
9036 if (exp->X_op == O_constant
9037 || exp->X_op == O_absent
9038 || exp->X_op == O_illegal
0398aac5 9039 || exp->X_op == O_register
3992d3b7
AM
9040 || exp->X_op == O_big)
9041 {
9042 char c = *input_line_pointer;
9043 *input_line_pointer = 0;
9044 as_bad (_("missing or invalid expression `%s'"), save);
9045 *input_line_pointer = c;
9046 }
b9519cfe
L
9047 else if ((got_reloc == BFD_RELOC_386_PLT32
9048 || got_reloc == BFD_RELOC_X86_64_PLT32)
9049 && exp->X_op != O_symbol)
9050 {
9051 char c = *input_line_pointer;
9052 *input_line_pointer = 0;
9053 as_bad (_("invalid PLT expression `%s'"), save);
9054 *input_line_pointer = c;
9055 }
f3c180ae
AM
9056 }
9057 }
9058 else
9059 expression (exp);
ee86248c
JB
9060
9061 intel_syntax = -intel_syntax;
9062
9063 if (intel_syntax)
9064 i386_intel_simplify (exp);
62ebcb5c
AM
9065
9066 return got_reloc;
f3c180ae 9067}
f3c180ae 9068
9f32dd5b
L
9069static void
9070signed_cons (int size)
6482c264 9071{
d182319b
JB
9072 if (flag_code == CODE_64BIT)
9073 cons_sign = 1;
9074 cons (size);
9075 cons_sign = -1;
6482c264
NC
9076}
9077
d182319b 9078#ifdef TE_PE
6482c264 9079static void
7016a5d5 9080pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
9081{
9082 expressionS exp;
9083
9084 do
9085 {
9086 expression (&exp);
9087 if (exp.X_op == O_symbol)
9088 exp.X_op = O_secrel;
9089
9090 emit_expr (&exp, 4);
9091 }
9092 while (*input_line_pointer++ == ',');
9093
9094 input_line_pointer--;
9095 demand_empty_rest_of_line ();
9096}
6482c264
NC
9097#endif
9098
43234a1e
L
9099/* Handle Vector operations. */
9100
9101static char *
9102check_VecOperations (char *op_string, char *op_end)
9103{
9104 const reg_entry *mask;
9105 const char *saved;
9106 char *end_op;
9107
9108 while (*op_string
9109 && (op_end == NULL || op_string < op_end))
9110 {
9111 saved = op_string;
9112 if (*op_string == '{')
9113 {
9114 op_string++;
9115
9116 /* Check broadcasts. */
9117 if (strncmp (op_string, "1to", 3) == 0)
9118 {
9119 int bcst_type;
9120
9121 if (i.broadcast)
9122 goto duplicated_vec_op;
9123
9124 op_string += 3;
9125 if (*op_string == '8')
8e6e0792 9126 bcst_type = 8;
b28d1bda 9127 else if (*op_string == '4')
8e6e0792 9128 bcst_type = 4;
b28d1bda 9129 else if (*op_string == '2')
8e6e0792 9130 bcst_type = 2;
43234a1e
L
9131 else if (*op_string == '1'
9132 && *(op_string+1) == '6')
9133 {
8e6e0792 9134 bcst_type = 16;
43234a1e
L
9135 op_string++;
9136 }
9137 else
9138 {
9139 as_bad (_("Unsupported broadcast: `%s'"), saved);
9140 return NULL;
9141 }
9142 op_string++;
9143
9144 broadcast_op.type = bcst_type;
9145 broadcast_op.operand = this_operand;
1f75763a 9146 broadcast_op.bytes = 0;
43234a1e
L
9147 i.broadcast = &broadcast_op;
9148 }
9149 /* Check masking operation. */
9150 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9151 {
9152 /* k0 can't be used for write mask. */
6d2cd6b2 9153 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
43234a1e 9154 {
6d2cd6b2
JB
9155 as_bad (_("`%s%s' can't be used for write mask"),
9156 register_prefix, mask->reg_name);
43234a1e
L
9157 return NULL;
9158 }
9159
9160 if (!i.mask)
9161 {
9162 mask_op.mask = mask;
9163 mask_op.zeroing = 0;
9164 mask_op.operand = this_operand;
9165 i.mask = &mask_op;
9166 }
9167 else
9168 {
9169 if (i.mask->mask)
9170 goto duplicated_vec_op;
9171
9172 i.mask->mask = mask;
9173
9174 /* Only "{z}" is allowed here. No need to check
9175 zeroing mask explicitly. */
9176 if (i.mask->operand != this_operand)
9177 {
9178 as_bad (_("invalid write mask `%s'"), saved);
9179 return NULL;
9180 }
9181 }
9182
9183 op_string = end_op;
9184 }
9185 /* Check zeroing-flag for masking operation. */
9186 else if (*op_string == 'z')
9187 {
9188 if (!i.mask)
9189 {
9190 mask_op.mask = NULL;
9191 mask_op.zeroing = 1;
9192 mask_op.operand = this_operand;
9193 i.mask = &mask_op;
9194 }
9195 else
9196 {
9197 if (i.mask->zeroing)
9198 {
9199 duplicated_vec_op:
9200 as_bad (_("duplicated `%s'"), saved);
9201 return NULL;
9202 }
9203
9204 i.mask->zeroing = 1;
9205
9206 /* Only "{%k}" is allowed here. No need to check mask
9207 register explicitly. */
9208 if (i.mask->operand != this_operand)
9209 {
9210 as_bad (_("invalid zeroing-masking `%s'"),
9211 saved);
9212 return NULL;
9213 }
9214 }
9215
9216 op_string++;
9217 }
9218 else
9219 goto unknown_vec_op;
9220
9221 if (*op_string != '}')
9222 {
9223 as_bad (_("missing `}' in `%s'"), saved);
9224 return NULL;
9225 }
9226 op_string++;
0ba3a731
L
9227
9228 /* Strip whitespace since the addition of pseudo prefixes
9229 changed how the scrubber treats '{'. */
9230 if (is_space_char (*op_string))
9231 ++op_string;
9232
43234a1e
L
9233 continue;
9234 }
9235 unknown_vec_op:
9236 /* We don't know this one. */
9237 as_bad (_("unknown vector operation: `%s'"), saved);
9238 return NULL;
9239 }
9240
6d2cd6b2
JB
9241 if (i.mask && i.mask->zeroing && !i.mask->mask)
9242 {
9243 as_bad (_("zeroing-masking only allowed with write mask"));
9244 return NULL;
9245 }
9246
43234a1e
L
9247 return op_string;
9248}
9249
252b5132 9250static int
70e41ade 9251i386_immediate (char *imm_start)
252b5132
RH
9252{
9253 char *save_input_line_pointer;
f3c180ae 9254 char *gotfree_input_line;
252b5132 9255 segT exp_seg = 0;
47926f60 9256 expressionS *exp;
40fb9820
L
9257 i386_operand_type types;
9258
0dfbf9d7 9259 operand_type_set (&types, ~0);
252b5132
RH
9260
9261 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9262 {
31b2323c
L
9263 as_bad (_("at most %d immediate operands are allowed"),
9264 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
9265 return 0;
9266 }
9267
9268 exp = &im_expressions[i.imm_operands++];
520dc8e8 9269 i.op[this_operand].imms = exp;
252b5132
RH
9270
9271 if (is_space_char (*imm_start))
9272 ++imm_start;
9273
9274 save_input_line_pointer = input_line_pointer;
9275 input_line_pointer = imm_start;
9276
d258b828 9277 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9278 if (gotfree_input_line)
9279 input_line_pointer = gotfree_input_line;
252b5132
RH
9280
9281 exp_seg = expression (exp);
9282
83183c0c 9283 SKIP_WHITESPACE ();
43234a1e
L
9284
9285 /* Handle vector operations. */
9286 if (*input_line_pointer == '{')
9287 {
9288 input_line_pointer = check_VecOperations (input_line_pointer,
9289 NULL);
9290 if (input_line_pointer == NULL)
9291 return 0;
9292 }
9293
252b5132 9294 if (*input_line_pointer)
f3c180ae 9295 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
9296
9297 input_line_pointer = save_input_line_pointer;
f3c180ae 9298 if (gotfree_input_line)
ee86248c
JB
9299 {
9300 free (gotfree_input_line);
9301
9302 if (exp->X_op == O_constant || exp->X_op == O_register)
9303 exp->X_op = O_illegal;
9304 }
9305
9306 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9307}
252b5132 9308
ee86248c
JB
9309static int
9310i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9311 i386_operand_type types, const char *imm_start)
9312{
9313 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 9314 {
313c53d1
L
9315 if (imm_start)
9316 as_bad (_("missing or invalid immediate expression `%s'"),
9317 imm_start);
3992d3b7 9318 return 0;
252b5132 9319 }
3e73aa7c 9320 else if (exp->X_op == O_constant)
252b5132 9321 {
47926f60 9322 /* Size it properly later. */
40fb9820 9323 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
9324 /* If not 64bit, sign extend val. */
9325 if (flag_code != CODE_64BIT
4eed87de
AM
9326 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9327 exp->X_add_number
9328 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 9329 }
4c63da97 9330#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 9331 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 9332 && exp_seg != absolute_section
47926f60 9333 && exp_seg != text_section
24eab124
AM
9334 && exp_seg != data_section
9335 && exp_seg != bss_section
9336 && exp_seg != undefined_section
f86103b7 9337 && !bfd_is_com_section (exp_seg))
252b5132 9338 {
d0b47220 9339 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
9340 return 0;
9341 }
9342#endif
a841bdf5 9343 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 9344 {
313c53d1
L
9345 if (imm_start)
9346 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
9347 return 0;
9348 }
252b5132
RH
9349 else
9350 {
9351 /* This is an address. The size of the address will be
24eab124 9352 determined later, depending on destination register,
3e73aa7c 9353 suffix, or the default for the section. */
40fb9820
L
9354 i.types[this_operand].bitfield.imm8 = 1;
9355 i.types[this_operand].bitfield.imm16 = 1;
9356 i.types[this_operand].bitfield.imm32 = 1;
9357 i.types[this_operand].bitfield.imm32s = 1;
9358 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
9359 i.types[this_operand] = operand_type_and (i.types[this_operand],
9360 types);
252b5132
RH
9361 }
9362
9363 return 1;
9364}
9365
551c1ca1 9366static char *
e3bb37b5 9367i386_scale (char *scale)
252b5132 9368{
551c1ca1
AM
9369 offsetT val;
9370 char *save = input_line_pointer;
252b5132 9371
551c1ca1
AM
9372 input_line_pointer = scale;
9373 val = get_absolute_expression ();
9374
9375 switch (val)
252b5132 9376 {
551c1ca1 9377 case 1:
252b5132
RH
9378 i.log2_scale_factor = 0;
9379 break;
551c1ca1 9380 case 2:
252b5132
RH
9381 i.log2_scale_factor = 1;
9382 break;
551c1ca1 9383 case 4:
252b5132
RH
9384 i.log2_scale_factor = 2;
9385 break;
551c1ca1 9386 case 8:
252b5132
RH
9387 i.log2_scale_factor = 3;
9388 break;
9389 default:
a724f0f4
JB
9390 {
9391 char sep = *input_line_pointer;
9392
9393 *input_line_pointer = '\0';
9394 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9395 scale);
9396 *input_line_pointer = sep;
9397 input_line_pointer = save;
9398 return NULL;
9399 }
252b5132 9400 }
29b0f896 9401 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
9402 {
9403 as_warn (_("scale factor of %d without an index register"),
24eab124 9404 1 << i.log2_scale_factor);
252b5132 9405 i.log2_scale_factor = 0;
252b5132 9406 }
551c1ca1
AM
9407 scale = input_line_pointer;
9408 input_line_pointer = save;
9409 return scale;
252b5132
RH
9410}
9411
252b5132 9412static int
e3bb37b5 9413i386_displacement (char *disp_start, char *disp_end)
252b5132 9414{
29b0f896 9415 expressionS *exp;
252b5132
RH
9416 segT exp_seg = 0;
9417 char *save_input_line_pointer;
f3c180ae 9418 char *gotfree_input_line;
40fb9820
L
9419 int override;
9420 i386_operand_type bigdisp, types = anydisp;
3992d3b7 9421 int ret;
252b5132 9422
31b2323c
L
9423 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9424 {
9425 as_bad (_("at most %d displacement operands are allowed"),
9426 MAX_MEMORY_OPERANDS);
9427 return 0;
9428 }
9429
0dfbf9d7 9430 operand_type_set (&bigdisp, 0);
40fb9820
L
9431 if ((i.types[this_operand].bitfield.jumpabsolute)
9432 || (!current_templates->start->opcode_modifier.jump
9433 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 9434 {
40fb9820 9435 bigdisp.bitfield.disp32 = 1;
e05278af 9436 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
9437 if (flag_code == CODE_64BIT)
9438 {
9439 if (!override)
9440 {
9441 bigdisp.bitfield.disp32s = 1;
9442 bigdisp.bitfield.disp64 = 1;
9443 }
9444 }
9445 else if ((flag_code == CODE_16BIT) ^ override)
9446 {
9447 bigdisp.bitfield.disp32 = 0;
9448 bigdisp.bitfield.disp16 = 1;
9449 }
e05278af
JB
9450 }
9451 else
9452 {
9453 /* For PC-relative branches, the width of the displacement
9454 is dependent upon data size, not address size. */
e05278af 9455 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
9456 if (flag_code == CODE_64BIT)
9457 {
9458 if (override || i.suffix == WORD_MNEM_SUFFIX)
9459 bigdisp.bitfield.disp16 = 1;
9460 else
9461 {
9462 bigdisp.bitfield.disp32 = 1;
9463 bigdisp.bitfield.disp32s = 1;
9464 }
9465 }
9466 else
e05278af
JB
9467 {
9468 if (!override)
9469 override = (i.suffix == (flag_code != CODE_16BIT
9470 ? WORD_MNEM_SUFFIX
9471 : LONG_MNEM_SUFFIX));
40fb9820
L
9472 bigdisp.bitfield.disp32 = 1;
9473 if ((flag_code == CODE_16BIT) ^ override)
9474 {
9475 bigdisp.bitfield.disp32 = 0;
9476 bigdisp.bitfield.disp16 = 1;
9477 }
e05278af 9478 }
e05278af 9479 }
c6fb90c8
L
9480 i.types[this_operand] = operand_type_or (i.types[this_operand],
9481 bigdisp);
252b5132
RH
9482
9483 exp = &disp_expressions[i.disp_operands];
520dc8e8 9484 i.op[this_operand].disps = exp;
252b5132
RH
9485 i.disp_operands++;
9486 save_input_line_pointer = input_line_pointer;
9487 input_line_pointer = disp_start;
9488 END_STRING_AND_SAVE (disp_end);
9489
9490#ifndef GCC_ASM_O_HACK
9491#define GCC_ASM_O_HACK 0
9492#endif
9493#if GCC_ASM_O_HACK
9494 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 9495 if (i.types[this_operand].bitfield.baseIndex
24eab124 9496 && displacement_string_end[-1] == '+')
252b5132
RH
9497 {
9498 /* This hack is to avoid a warning when using the "o"
24eab124
AM
9499 constraint within gcc asm statements.
9500 For instance:
9501
9502 #define _set_tssldt_desc(n,addr,limit,type) \
9503 __asm__ __volatile__ ( \
9504 "movw %w2,%0\n\t" \
9505 "movw %w1,2+%0\n\t" \
9506 "rorl $16,%1\n\t" \
9507 "movb %b1,4+%0\n\t" \
9508 "movb %4,5+%0\n\t" \
9509 "movb $0,6+%0\n\t" \
9510 "movb %h1,7+%0\n\t" \
9511 "rorl $16,%1" \
9512 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9513
9514 This works great except that the output assembler ends
9515 up looking a bit weird if it turns out that there is
9516 no offset. You end up producing code that looks like:
9517
9518 #APP
9519 movw $235,(%eax)
9520 movw %dx,2+(%eax)
9521 rorl $16,%edx
9522 movb %dl,4+(%eax)
9523 movb $137,5+(%eax)
9524 movb $0,6+(%eax)
9525 movb %dh,7+(%eax)
9526 rorl $16,%edx
9527 #NO_APP
9528
47926f60 9529 So here we provide the missing zero. */
24eab124
AM
9530
9531 *displacement_string_end = '0';
252b5132
RH
9532 }
9533#endif
d258b828 9534 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9535 if (gotfree_input_line)
9536 input_line_pointer = gotfree_input_line;
252b5132 9537
24eab124 9538 exp_seg = expression (exp);
252b5132 9539
636c26b0
AM
9540 SKIP_WHITESPACE ();
9541 if (*input_line_pointer)
9542 as_bad (_("junk `%s' after expression"), input_line_pointer);
9543#if GCC_ASM_O_HACK
9544 RESTORE_END_STRING (disp_end + 1);
9545#endif
636c26b0 9546 input_line_pointer = save_input_line_pointer;
636c26b0 9547 if (gotfree_input_line)
ee86248c
JB
9548 {
9549 free (gotfree_input_line);
9550
9551 if (exp->X_op == O_constant || exp->X_op == O_register)
9552 exp->X_op = O_illegal;
9553 }
9554
9555 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9556
9557 RESTORE_END_STRING (disp_end);
9558
9559 return ret;
9560}
9561
9562static int
9563i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9564 i386_operand_type types, const char *disp_start)
9565{
9566 i386_operand_type bigdisp;
9567 int ret = 1;
636c26b0 9568
24eab124
AM
9569 /* We do this to make sure that the section symbol is in
9570 the symbol table. We will ultimately change the relocation
47926f60 9571 to be relative to the beginning of the section. */
1ae12ab7 9572 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
9573 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9574 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 9575 {
636c26b0 9576 if (exp->X_op != O_symbol)
3992d3b7 9577 goto inv_disp;
636c26b0 9578
e5cb08ac 9579 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
9580 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9581 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 9582 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
9583 exp->X_op = O_subtract;
9584 exp->X_op_symbol = GOT_symbol;
1ae12ab7 9585 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 9586 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
9587 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9588 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 9589 else
29b0f896 9590 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 9591 }
252b5132 9592
3992d3b7
AM
9593 else if (exp->X_op == O_absent
9594 || exp->X_op == O_illegal
ee86248c 9595 || exp->X_op == O_big)
2daf4fd8 9596 {
3992d3b7
AM
9597 inv_disp:
9598 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 9599 disp_start);
3992d3b7 9600 ret = 0;
2daf4fd8
AM
9601 }
9602
0e1147d9
L
9603 else if (flag_code == CODE_64BIT
9604 && !i.prefix[ADDR_PREFIX]
9605 && exp->X_op == O_constant)
9606 {
9607 /* Since displacement is signed extended to 64bit, don't allow
9608 disp32 and turn off disp32s if they are out of range. */
9609 i.types[this_operand].bitfield.disp32 = 0;
9610 if (!fits_in_signed_long (exp->X_add_number))
9611 {
9612 i.types[this_operand].bitfield.disp32s = 0;
9613 if (i.types[this_operand].bitfield.baseindex)
9614 {
9615 as_bad (_("0x%lx out range of signed 32bit displacement"),
9616 (long) exp->X_add_number);
9617 ret = 0;
9618 }
9619 }
9620 }
9621
4c63da97 9622#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
9623 else if (exp->X_op != O_constant
9624 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9625 && exp_seg != absolute_section
9626 && exp_seg != text_section
9627 && exp_seg != data_section
9628 && exp_seg != bss_section
9629 && exp_seg != undefined_section
9630 && !bfd_is_com_section (exp_seg))
24eab124 9631 {
d0b47220 9632 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 9633 ret = 0;
24eab124 9634 }
252b5132 9635#endif
3956db08 9636
40fb9820
L
9637 /* Check if this is a displacement only operand. */
9638 bigdisp = i.types[this_operand];
9639 bigdisp.bitfield.disp8 = 0;
9640 bigdisp.bitfield.disp16 = 0;
9641 bigdisp.bitfield.disp32 = 0;
9642 bigdisp.bitfield.disp32s = 0;
9643 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 9644 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
9645 i.types[this_operand] = operand_type_and (i.types[this_operand],
9646 types);
3956db08 9647
3992d3b7 9648 return ret;
252b5132
RH
9649}
9650
2abc2bec
JB
9651/* Return the active addressing mode, taking address override and
9652 registers forming the address into consideration. Update the
9653 address override prefix if necessary. */
47926f60 9654
2abc2bec
JB
9655static enum flag_code
9656i386_addressing_mode (void)
252b5132 9657{
be05d201
L
9658 enum flag_code addr_mode;
9659
9660 if (i.prefix[ADDR_PREFIX])
9661 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9662 else
9663 {
9664 addr_mode = flag_code;
9665
24eab124 9666#if INFER_ADDR_PREFIX
be05d201
L
9667 if (i.mem_operands == 0)
9668 {
9669 /* Infer address prefix from the first memory operand. */
9670 const reg_entry *addr_reg = i.base_reg;
9671
9672 if (addr_reg == NULL)
9673 addr_reg = i.index_reg;
eecb386c 9674
be05d201
L
9675 if (addr_reg)
9676 {
e968fc9b 9677 if (addr_reg->reg_type.bitfield.dword)
be05d201
L
9678 addr_mode = CODE_32BIT;
9679 else if (flag_code != CODE_64BIT
dc821c5f 9680 && addr_reg->reg_type.bitfield.word)
be05d201
L
9681 addr_mode = CODE_16BIT;
9682
9683 if (addr_mode != flag_code)
9684 {
9685 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9686 i.prefixes += 1;
9687 /* Change the size of any displacement too. At most one
9688 of Disp16 or Disp32 is set.
9689 FIXME. There doesn't seem to be any real need for
9690 separate Disp16 and Disp32 flags. The same goes for
9691 Imm16 and Imm32. Removing them would probably clean
9692 up the code quite a lot. */
9693 if (flag_code != CODE_64BIT
9694 && (i.types[this_operand].bitfield.disp16
9695 || i.types[this_operand].bitfield.disp32))
9696 i.types[this_operand]
9697 = operand_type_xor (i.types[this_operand], disp16_32);
9698 }
9699 }
9700 }
24eab124 9701#endif
be05d201
L
9702 }
9703
2abc2bec
JB
9704 return addr_mode;
9705}
9706
9707/* Make sure the memory operand we've been dealt is valid.
9708 Return 1 on success, 0 on a failure. */
9709
9710static int
9711i386_index_check (const char *operand_string)
9712{
9713 const char *kind = "base/index";
9714 enum flag_code addr_mode = i386_addressing_mode ();
9715
fc0763e6
JB
9716 if (current_templates->start->opcode_modifier.isstring
9717 && !current_templates->start->opcode_modifier.immext
9718 && (current_templates->end[-1].opcode_modifier.isstring
9719 || i.mem_operands))
9720 {
9721 /* Memory operands of string insns are special in that they only allow
9722 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
9723 const reg_entry *expected_reg;
9724 static const char *di_si[][2] =
9725 {
9726 { "esi", "edi" },
9727 { "si", "di" },
9728 { "rsi", "rdi" }
9729 };
9730 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
9731
9732 kind = "string address";
9733
8325cc63 9734 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6
JB
9735 {
9736 i386_operand_type type = current_templates->end[-1].operand_types[0];
9737
9738 if (!type.bitfield.baseindex
9739 || ((!i.mem_operands != !intel_syntax)
9740 && current_templates->end[-1].operand_types[1]
9741 .bitfield.baseindex))
9742 type = current_templates->end[-1].operand_types[1];
be05d201
L
9743 expected_reg = hash_find (reg_hash,
9744 di_si[addr_mode][type.bitfield.esseg]);
9745
fc0763e6
JB
9746 }
9747 else
be05d201 9748 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 9749
be05d201
L
9750 if (i.base_reg != expected_reg
9751 || i.index_reg
fc0763e6 9752 || operand_type_check (i.types[this_operand], disp))
fc0763e6 9753 {
be05d201
L
9754 /* The second memory operand must have the same size as
9755 the first one. */
9756 if (i.mem_operands
9757 && i.base_reg
9758 && !((addr_mode == CODE_64BIT
dc821c5f 9759 && i.base_reg->reg_type.bitfield.qword)
be05d201 9760 || (addr_mode == CODE_32BIT
dc821c5f
JB
9761 ? i.base_reg->reg_type.bitfield.dword
9762 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
9763 goto bad_address;
9764
fc0763e6
JB
9765 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9766 operand_string,
9767 intel_syntax ? '[' : '(',
9768 register_prefix,
be05d201 9769 expected_reg->reg_name,
fc0763e6 9770 intel_syntax ? ']' : ')');
be05d201 9771 return 1;
fc0763e6 9772 }
be05d201
L
9773 else
9774 return 1;
9775
9776bad_address:
9777 as_bad (_("`%s' is not a valid %s expression"),
9778 operand_string, kind);
9779 return 0;
3e73aa7c
JH
9780 }
9781 else
9782 {
be05d201
L
9783 if (addr_mode != CODE_16BIT)
9784 {
9785 /* 32-bit/64-bit checks. */
9786 if ((i.base_reg
e968fc9b
JB
9787 && ((addr_mode == CODE_64BIT
9788 ? !i.base_reg->reg_type.bitfield.qword
9789 : !i.base_reg->reg_type.bitfield.dword)
9790 || (i.index_reg && i.base_reg->reg_num == RegIP)
9791 || i.base_reg->reg_num == RegIZ))
be05d201 9792 || (i.index_reg
1b54b8d7
JB
9793 && !i.index_reg->reg_type.bitfield.xmmword
9794 && !i.index_reg->reg_type.bitfield.ymmword
9795 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 9796 && ((addr_mode == CODE_64BIT
e968fc9b
JB
9797 ? !i.index_reg->reg_type.bitfield.qword
9798 : !i.index_reg->reg_type.bitfield.dword)
be05d201
L
9799 || !i.index_reg->reg_type.bitfield.baseindex)))
9800 goto bad_address;
8178be5b
JB
9801
9802 /* bndmk, bndldx, and bndstx have special restrictions. */
9803 if (current_templates->start->base_opcode == 0xf30f1b
9804 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9805 {
9806 /* They cannot use RIP-relative addressing. */
e968fc9b 9807 if (i.base_reg && i.base_reg->reg_num == RegIP)
8178be5b
JB
9808 {
9809 as_bad (_("`%s' cannot be used here"), operand_string);
9810 return 0;
9811 }
9812
9813 /* bndldx and bndstx ignore their scale factor. */
9814 if (current_templates->start->base_opcode != 0xf30f1b
9815 && i.log2_scale_factor)
9816 as_warn (_("register scaling is being ignored here"));
9817 }
be05d201
L
9818 }
9819 else
3e73aa7c 9820 {
be05d201 9821 /* 16-bit checks. */
3e73aa7c 9822 if ((i.base_reg
dc821c5f 9823 && (!i.base_reg->reg_type.bitfield.word
40fb9820 9824 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 9825 || (i.index_reg
dc821c5f 9826 && (!i.index_reg->reg_type.bitfield.word
40fb9820 9827 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
9828 || !(i.base_reg
9829 && i.base_reg->reg_num < 6
9830 && i.index_reg->reg_num >= 6
9831 && i.log2_scale_factor == 0))))
be05d201 9832 goto bad_address;
3e73aa7c
JH
9833 }
9834 }
be05d201 9835 return 1;
24eab124 9836}
252b5132 9837
43234a1e
L
9838/* Handle vector immediates. */
9839
9840static int
9841RC_SAE_immediate (const char *imm_start)
9842{
9843 unsigned int match_found, j;
9844 const char *pstr = imm_start;
9845 expressionS *exp;
9846
9847 if (*pstr != '{')
9848 return 0;
9849
9850 pstr++;
9851 match_found = 0;
9852 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9853 {
9854 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9855 {
9856 if (!i.rounding)
9857 {
9858 rc_op.type = RC_NamesTable[j].type;
9859 rc_op.operand = this_operand;
9860 i.rounding = &rc_op;
9861 }
9862 else
9863 {
9864 as_bad (_("duplicated `%s'"), imm_start);
9865 return 0;
9866 }
9867 pstr += RC_NamesTable[j].len;
9868 match_found = 1;
9869 break;
9870 }
9871 }
9872 if (!match_found)
9873 return 0;
9874
9875 if (*pstr++ != '}')
9876 {
9877 as_bad (_("Missing '}': '%s'"), imm_start);
9878 return 0;
9879 }
9880 /* RC/SAE immediate string should contain nothing more. */;
9881 if (*pstr != 0)
9882 {
9883 as_bad (_("Junk after '}': '%s'"), imm_start);
9884 return 0;
9885 }
9886
9887 exp = &im_expressions[i.imm_operands++];
9888 i.op[this_operand].imms = exp;
9889
9890 exp->X_op = O_constant;
9891 exp->X_add_number = 0;
9892 exp->X_add_symbol = (symbolS *) 0;
9893 exp->X_op_symbol = (symbolS *) 0;
9894
9895 i.types[this_operand].bitfield.imm8 = 1;
9896 return 1;
9897}
9898
8325cc63
JB
9899/* Only string instructions can have a second memory operand, so
9900 reduce current_templates to just those if it contains any. */
9901static int
9902maybe_adjust_templates (void)
9903{
9904 const insn_template *t;
9905
9906 gas_assert (i.mem_operands == 1);
9907
9908 for (t = current_templates->start; t < current_templates->end; ++t)
9909 if (t->opcode_modifier.isstring)
9910 break;
9911
9912 if (t < current_templates->end)
9913 {
9914 static templates aux_templates;
9915 bfd_boolean recheck;
9916
9917 aux_templates.start = t;
9918 for (; t < current_templates->end; ++t)
9919 if (!t->opcode_modifier.isstring)
9920 break;
9921 aux_templates.end = t;
9922
9923 /* Determine whether to re-check the first memory operand. */
9924 recheck = (aux_templates.start != current_templates->start
9925 || t != current_templates->end);
9926
9927 current_templates = &aux_templates;
9928
9929 if (recheck)
9930 {
9931 i.mem_operands = 0;
9932 if (i.memop1_string != NULL
9933 && i386_index_check (i.memop1_string) == 0)
9934 return 0;
9935 i.mem_operands = 1;
9936 }
9937 }
9938
9939 return 1;
9940}
9941
fc0763e6 9942/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 9943 on error. */
252b5132 9944
252b5132 9945static int
a7619375 9946i386_att_operand (char *operand_string)
252b5132 9947{
af6bdddf
AM
9948 const reg_entry *r;
9949 char *end_op;
24eab124 9950 char *op_string = operand_string;
252b5132 9951
24eab124 9952 if (is_space_char (*op_string))
252b5132
RH
9953 ++op_string;
9954
24eab124 9955 /* We check for an absolute prefix (differentiating,
47926f60 9956 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
9957 if (*op_string == ABSOLUTE_PREFIX)
9958 {
9959 ++op_string;
9960 if (is_space_char (*op_string))
9961 ++op_string;
40fb9820 9962 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 9963 }
252b5132 9964
47926f60 9965 /* Check if operand is a register. */
4d1bb795 9966 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 9967 {
40fb9820
L
9968 i386_operand_type temp;
9969
24eab124
AM
9970 /* Check for a segment override by searching for ':' after a
9971 segment register. */
9972 op_string = end_op;
9973 if (is_space_char (*op_string))
9974 ++op_string;
40fb9820
L
9975 if (*op_string == ':'
9976 && (r->reg_type.bitfield.sreg2
9977 || r->reg_type.bitfield.sreg3))
24eab124
AM
9978 {
9979 switch (r->reg_num)
9980 {
9981 case 0:
9982 i.seg[i.mem_operands] = &es;
9983 break;
9984 case 1:
9985 i.seg[i.mem_operands] = &cs;
9986 break;
9987 case 2:
9988 i.seg[i.mem_operands] = &ss;
9989 break;
9990 case 3:
9991 i.seg[i.mem_operands] = &ds;
9992 break;
9993 case 4:
9994 i.seg[i.mem_operands] = &fs;
9995 break;
9996 case 5:
9997 i.seg[i.mem_operands] = &gs;
9998 break;
9999 }
252b5132 10000
24eab124 10001 /* Skip the ':' and whitespace. */
252b5132
RH
10002 ++op_string;
10003 if (is_space_char (*op_string))
24eab124 10004 ++op_string;
252b5132 10005
24eab124
AM
10006 if (!is_digit_char (*op_string)
10007 && !is_identifier_char (*op_string)
10008 && *op_string != '('
10009 && *op_string != ABSOLUTE_PREFIX)
10010 {
10011 as_bad (_("bad memory operand `%s'"), op_string);
10012 return 0;
10013 }
47926f60 10014 /* Handle case of %es:*foo. */
24eab124
AM
10015 if (*op_string == ABSOLUTE_PREFIX)
10016 {
10017 ++op_string;
10018 if (is_space_char (*op_string))
10019 ++op_string;
40fb9820 10020 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
10021 }
10022 goto do_memory_reference;
10023 }
43234a1e
L
10024
10025 /* Handle vector operations. */
10026 if (*op_string == '{')
10027 {
10028 op_string = check_VecOperations (op_string, NULL);
10029 if (op_string == NULL)
10030 return 0;
10031 }
10032
24eab124
AM
10033 if (*op_string)
10034 {
d0b47220 10035 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
10036 return 0;
10037 }
40fb9820
L
10038 temp = r->reg_type;
10039 temp.bitfield.baseindex = 0;
c6fb90c8
L
10040 i.types[this_operand] = operand_type_or (i.types[this_operand],
10041 temp);
7d5e4556 10042 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 10043 i.op[this_operand].regs = r;
24eab124
AM
10044 i.reg_operands++;
10045 }
af6bdddf
AM
10046 else if (*op_string == REGISTER_PREFIX)
10047 {
10048 as_bad (_("bad register name `%s'"), op_string);
10049 return 0;
10050 }
24eab124 10051 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 10052 {
24eab124 10053 ++op_string;
40fb9820 10054 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 10055 {
d0b47220 10056 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
10057 return 0;
10058 }
10059 if (!i386_immediate (op_string))
10060 return 0;
10061 }
43234a1e
L
10062 else if (RC_SAE_immediate (operand_string))
10063 {
10064 /* If it is a RC or SAE immediate, do nothing. */
10065 ;
10066 }
24eab124
AM
10067 else if (is_digit_char (*op_string)
10068 || is_identifier_char (*op_string)
d02603dc 10069 || *op_string == '"'
e5cb08ac 10070 || *op_string == '(')
24eab124 10071 {
47926f60 10072 /* This is a memory reference of some sort. */
af6bdddf 10073 char *base_string;
252b5132 10074
47926f60 10075 /* Start and end of displacement string expression (if found). */
eecb386c
AM
10076 char *displacement_string_start;
10077 char *displacement_string_end;
43234a1e 10078 char *vop_start;
252b5132 10079
24eab124 10080 do_memory_reference:
8325cc63
JB
10081 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10082 return 0;
24eab124 10083 if ((i.mem_operands == 1
40fb9820 10084 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
10085 || i.mem_operands == 2)
10086 {
10087 as_bad (_("too many memory references for `%s'"),
10088 current_templates->start->name);
10089 return 0;
10090 }
252b5132 10091
24eab124
AM
10092 /* Check for base index form. We detect the base index form by
10093 looking for an ')' at the end of the operand, searching
10094 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10095 after the '('. */
af6bdddf 10096 base_string = op_string + strlen (op_string);
c3332e24 10097
43234a1e
L
10098 /* Handle vector operations. */
10099 vop_start = strchr (op_string, '{');
10100 if (vop_start && vop_start < base_string)
10101 {
10102 if (check_VecOperations (vop_start, base_string) == NULL)
10103 return 0;
10104 base_string = vop_start;
10105 }
10106
af6bdddf
AM
10107 --base_string;
10108 if (is_space_char (*base_string))
10109 --base_string;
252b5132 10110
47926f60 10111 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
10112 displacement_string_start = op_string;
10113 displacement_string_end = base_string + 1;
252b5132 10114
24eab124
AM
10115 if (*base_string == ')')
10116 {
af6bdddf 10117 char *temp_string;
24eab124
AM
10118 unsigned int parens_balanced = 1;
10119 /* We've already checked that the number of left & right ()'s are
47926f60 10120 equal, so this loop will not be infinite. */
24eab124
AM
10121 do
10122 {
10123 base_string--;
10124 if (*base_string == ')')
10125 parens_balanced++;
10126 if (*base_string == '(')
10127 parens_balanced--;
10128 }
10129 while (parens_balanced);
c3332e24 10130
af6bdddf 10131 temp_string = base_string;
c3332e24 10132
24eab124 10133 /* Skip past '(' and whitespace. */
252b5132
RH
10134 ++base_string;
10135 if (is_space_char (*base_string))
24eab124 10136 ++base_string;
252b5132 10137
af6bdddf 10138 if (*base_string == ','
4eed87de
AM
10139 || ((i.base_reg = parse_register (base_string, &end_op))
10140 != NULL))
252b5132 10141 {
af6bdddf 10142 displacement_string_end = temp_string;
252b5132 10143
40fb9820 10144 i.types[this_operand].bitfield.baseindex = 1;
252b5132 10145
af6bdddf 10146 if (i.base_reg)
24eab124 10147 {
24eab124
AM
10148 base_string = end_op;
10149 if (is_space_char (*base_string))
10150 ++base_string;
af6bdddf
AM
10151 }
10152
10153 /* There may be an index reg or scale factor here. */
10154 if (*base_string == ',')
10155 {
10156 ++base_string;
10157 if (is_space_char (*base_string))
10158 ++base_string;
10159
4eed87de
AM
10160 if ((i.index_reg = parse_register (base_string, &end_op))
10161 != NULL)
24eab124 10162 {
af6bdddf 10163 base_string = end_op;
24eab124
AM
10164 if (is_space_char (*base_string))
10165 ++base_string;
af6bdddf
AM
10166 if (*base_string == ',')
10167 {
10168 ++base_string;
10169 if (is_space_char (*base_string))
10170 ++base_string;
10171 }
e5cb08ac 10172 else if (*base_string != ')')
af6bdddf 10173 {
4eed87de
AM
10174 as_bad (_("expecting `,' or `)' "
10175 "after index register in `%s'"),
af6bdddf
AM
10176 operand_string);
10177 return 0;
10178 }
24eab124 10179 }
af6bdddf 10180 else if (*base_string == REGISTER_PREFIX)
24eab124 10181 {
f76bf5e0
L
10182 end_op = strchr (base_string, ',');
10183 if (end_op)
10184 *end_op = '\0';
af6bdddf 10185 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
10186 return 0;
10187 }
252b5132 10188
47926f60 10189 /* Check for scale factor. */
551c1ca1 10190 if (*base_string != ')')
af6bdddf 10191 {
551c1ca1
AM
10192 char *end_scale = i386_scale (base_string);
10193
10194 if (!end_scale)
af6bdddf 10195 return 0;
24eab124 10196
551c1ca1 10197 base_string = end_scale;
af6bdddf
AM
10198 if (is_space_char (*base_string))
10199 ++base_string;
10200 if (*base_string != ')')
10201 {
4eed87de
AM
10202 as_bad (_("expecting `)' "
10203 "after scale factor in `%s'"),
af6bdddf
AM
10204 operand_string);
10205 return 0;
10206 }
10207 }
10208 else if (!i.index_reg)
24eab124 10209 {
4eed87de
AM
10210 as_bad (_("expecting index register or scale factor "
10211 "after `,'; got '%c'"),
af6bdddf 10212 *base_string);
24eab124
AM
10213 return 0;
10214 }
10215 }
af6bdddf 10216 else if (*base_string != ')')
24eab124 10217 {
4eed87de
AM
10218 as_bad (_("expecting `,' or `)' "
10219 "after base register in `%s'"),
af6bdddf 10220 operand_string);
24eab124
AM
10221 return 0;
10222 }
c3332e24 10223 }
af6bdddf 10224 else if (*base_string == REGISTER_PREFIX)
c3332e24 10225 {
f76bf5e0
L
10226 end_op = strchr (base_string, ',');
10227 if (end_op)
10228 *end_op = '\0';
af6bdddf 10229 as_bad (_("bad register name `%s'"), base_string);
24eab124 10230 return 0;
c3332e24 10231 }
24eab124
AM
10232 }
10233
10234 /* If there's an expression beginning the operand, parse it,
10235 assuming displacement_string_start and
10236 displacement_string_end are meaningful. */
10237 if (displacement_string_start != displacement_string_end)
10238 {
10239 if (!i386_displacement (displacement_string_start,
10240 displacement_string_end))
10241 return 0;
10242 }
10243
10244 /* Special case for (%dx) while doing input/output op. */
10245 if (i.base_reg
2fb5be8d 10246 && i.base_reg->reg_type.bitfield.inoutportreg
24eab124
AM
10247 && i.index_reg == 0
10248 && i.log2_scale_factor == 0
10249 && i.seg[i.mem_operands] == 0
40fb9820 10250 && !operand_type_check (i.types[this_operand], disp))
24eab124 10251 {
2fb5be8d 10252 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
10253 return 1;
10254 }
10255
eecb386c
AM
10256 if (i386_index_check (operand_string) == 0)
10257 return 0;
c48dadc9 10258 i.flags[this_operand] |= Operand_Mem;
8325cc63
JB
10259 if (i.mem_operands == 0)
10260 i.memop1_string = xstrdup (operand_string);
24eab124
AM
10261 i.mem_operands++;
10262 }
10263 else
ce8a8b2f
AM
10264 {
10265 /* It's not a memory operand; argh! */
24eab124
AM
10266 as_bad (_("invalid char %s beginning operand %d `%s'"),
10267 output_invalid (*op_string),
10268 this_operand + 1,
10269 op_string);
10270 return 0;
10271 }
47926f60 10272 return 1; /* Normal return. */
252b5132
RH
10273}
10274\f
fa94de6b
RM
10275/* Calculate the maximum variable size (i.e., excluding fr_fix)
10276 that an rs_machine_dependent frag may reach. */
10277
10278unsigned int
10279i386_frag_max_var (fragS *frag)
10280{
10281 /* The only relaxable frags are for jumps.
10282 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10283 gas_assert (frag->fr_type == rs_machine_dependent);
10284 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10285}
10286
b084df0b
L
10287#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10288static int
8dcea932 10289elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
10290{
10291 /* STT_GNU_IFUNC symbol must go through PLT. */
10292 if ((symbol_get_bfdsym (fr_symbol)->flags
10293 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10294 return 0;
10295
10296 if (!S_IS_EXTERNAL (fr_symbol))
10297 /* Symbol may be weak or local. */
10298 return !S_IS_WEAK (fr_symbol);
10299
8dcea932
L
10300 /* Global symbols with non-default visibility can't be preempted. */
10301 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10302 return 1;
10303
10304 if (fr_var != NO_RELOC)
10305 switch ((enum bfd_reloc_code_real) fr_var)
10306 {
10307 case BFD_RELOC_386_PLT32:
10308 case BFD_RELOC_X86_64_PLT32:
33eaf5de 10309 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
10310 return 0;
10311 default:
10312 abort ();
10313 }
10314
b084df0b
L
10315 /* Global symbols with default visibility in a shared library may be
10316 preempted by another definition. */
8dcea932 10317 return !shared;
b084df0b
L
10318}
10319#endif
10320
ee7fcc42
AM
10321/* md_estimate_size_before_relax()
10322
10323 Called just before relax() for rs_machine_dependent frags. The x86
10324 assembler uses these frags to handle variable size jump
10325 instructions.
10326
10327 Any symbol that is now undefined will not become defined.
10328 Return the correct fr_subtype in the frag.
10329 Return the initial "guess for variable size of frag" to caller.
10330 The guess is actually the growth beyond the fixed part. Whatever
10331 we do to grow the fixed or variable part contributes to our
10332 returned value. */
10333
252b5132 10334int
7016a5d5 10335md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 10336{
252b5132 10337 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
10338 check for un-relaxable symbols. On an ELF system, we can't relax
10339 an externally visible symbol, because it may be overridden by a
10340 shared library. */
10341 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 10342#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10343 || (IS_ELF
8dcea932
L
10344 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10345 fragP->fr_var))
fbeb56a4
DK
10346#endif
10347#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 10348 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 10349 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
10350#endif
10351 )
252b5132 10352 {
b98ef147
AM
10353 /* Symbol is undefined in this segment, or we need to keep a
10354 reloc so that weak symbols can be overridden. */
10355 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 10356 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
10357 unsigned char *opcode;
10358 int old_fr_fix;
f6af82bd 10359
ee7fcc42 10360 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 10361 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 10362 else if (size == 2)
f6af82bd 10363 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
10364#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10365 else if (need_plt32_p (fragP->fr_symbol))
10366 reloc_type = BFD_RELOC_X86_64_PLT32;
10367#endif
f6af82bd
AM
10368 else
10369 reloc_type = BFD_RELOC_32_PCREL;
252b5132 10370
ee7fcc42
AM
10371 old_fr_fix = fragP->fr_fix;
10372 opcode = (unsigned char *) fragP->fr_opcode;
10373
fddf5b5b 10374 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 10375 {
fddf5b5b
AM
10376 case UNCOND_JUMP:
10377 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 10378 opcode[0] = 0xe9;
252b5132 10379 fragP->fr_fix += size;
062cd5e7
AS
10380 fix_new (fragP, old_fr_fix, size,
10381 fragP->fr_symbol,
10382 fragP->fr_offset, 1,
10383 reloc_type);
252b5132
RH
10384 break;
10385
fddf5b5b 10386 case COND_JUMP86:
412167cb
AM
10387 if (size == 2
10388 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
10389 {
10390 /* Negate the condition, and branch past an
10391 unconditional jump. */
10392 opcode[0] ^= 1;
10393 opcode[1] = 3;
10394 /* Insert an unconditional jump. */
10395 opcode[2] = 0xe9;
10396 /* We added two extra opcode bytes, and have a two byte
10397 offset. */
10398 fragP->fr_fix += 2 + 2;
062cd5e7
AS
10399 fix_new (fragP, old_fr_fix + 2, 2,
10400 fragP->fr_symbol,
10401 fragP->fr_offset, 1,
10402 reloc_type);
fddf5b5b
AM
10403 break;
10404 }
10405 /* Fall through. */
10406
10407 case COND_JUMP:
412167cb
AM
10408 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10409 {
3e02c1cc
AM
10410 fixS *fixP;
10411
412167cb 10412 fragP->fr_fix += 1;
3e02c1cc
AM
10413 fixP = fix_new (fragP, old_fr_fix, 1,
10414 fragP->fr_symbol,
10415 fragP->fr_offset, 1,
10416 BFD_RELOC_8_PCREL);
10417 fixP->fx_signed = 1;
412167cb
AM
10418 break;
10419 }
93c2a809 10420
24eab124 10421 /* This changes the byte-displacement jump 0x7N
fddf5b5b 10422 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 10423 opcode[1] = opcode[0] + 0x10;
f6af82bd 10424 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
10425 /* We've added an opcode byte. */
10426 fragP->fr_fix += 1 + size;
062cd5e7
AS
10427 fix_new (fragP, old_fr_fix + 1, size,
10428 fragP->fr_symbol,
10429 fragP->fr_offset, 1,
10430 reloc_type);
252b5132 10431 break;
fddf5b5b
AM
10432
10433 default:
10434 BAD_CASE (fragP->fr_subtype);
10435 break;
252b5132
RH
10436 }
10437 frag_wane (fragP);
ee7fcc42 10438 return fragP->fr_fix - old_fr_fix;
252b5132 10439 }
93c2a809 10440
93c2a809
AM
10441 /* Guess size depending on current relax state. Initially the relax
10442 state will correspond to a short jump and we return 1, because
10443 the variable part of the frag (the branch offset) is one byte
10444 long. However, we can relax a section more than once and in that
10445 case we must either set fr_subtype back to the unrelaxed state,
10446 or return the value for the appropriate branch. */
10447 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
10448}
10449
47926f60
KH
10450/* Called after relax() is finished.
10451
10452 In: Address of frag.
10453 fr_type == rs_machine_dependent.
10454 fr_subtype is what the address relaxed to.
10455
10456 Out: Any fixSs and constants are set up.
10457 Caller will turn frag into a ".space 0". */
10458
252b5132 10459void
7016a5d5
TG
10460md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10461 fragS *fragP)
252b5132 10462{
29b0f896 10463 unsigned char *opcode;
252b5132 10464 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
10465 offsetT target_address;
10466 offsetT opcode_address;
252b5132 10467 unsigned int extension = 0;
847f7ad4 10468 offsetT displacement_from_opcode_start;
252b5132
RH
10469
10470 opcode = (unsigned char *) fragP->fr_opcode;
10471
47926f60 10472 /* Address we want to reach in file space. */
252b5132 10473 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 10474
47926f60 10475 /* Address opcode resides at in file space. */
252b5132
RH
10476 opcode_address = fragP->fr_address + fragP->fr_fix;
10477
47926f60 10478 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
10479 displacement_from_opcode_start = target_address - opcode_address;
10480
fddf5b5b 10481 if ((fragP->fr_subtype & BIG) == 0)
252b5132 10482 {
47926f60
KH
10483 /* Don't have to change opcode. */
10484 extension = 1; /* 1 opcode + 1 displacement */
252b5132 10485 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
10486 }
10487 else
10488 {
10489 if (no_cond_jump_promotion
10490 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
10491 as_warn_where (fragP->fr_file, fragP->fr_line,
10492 _("long jump required"));
252b5132 10493
fddf5b5b
AM
10494 switch (fragP->fr_subtype)
10495 {
10496 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10497 extension = 4; /* 1 opcode + 4 displacement */
10498 opcode[0] = 0xe9;
10499 where_to_put_displacement = &opcode[1];
10500 break;
252b5132 10501
fddf5b5b
AM
10502 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10503 extension = 2; /* 1 opcode + 2 displacement */
10504 opcode[0] = 0xe9;
10505 where_to_put_displacement = &opcode[1];
10506 break;
252b5132 10507
fddf5b5b
AM
10508 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10509 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10510 extension = 5; /* 2 opcode + 4 displacement */
10511 opcode[1] = opcode[0] + 0x10;
10512 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10513 where_to_put_displacement = &opcode[2];
10514 break;
252b5132 10515
fddf5b5b
AM
10516 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10517 extension = 3; /* 2 opcode + 2 displacement */
10518 opcode[1] = opcode[0] + 0x10;
10519 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10520 where_to_put_displacement = &opcode[2];
10521 break;
252b5132 10522
fddf5b5b
AM
10523 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10524 extension = 4;
10525 opcode[0] ^= 1;
10526 opcode[1] = 3;
10527 opcode[2] = 0xe9;
10528 where_to_put_displacement = &opcode[3];
10529 break;
10530
10531 default:
10532 BAD_CASE (fragP->fr_subtype);
10533 break;
10534 }
252b5132 10535 }
fddf5b5b 10536
7b81dfbb
AJ
10537 /* If size if less then four we are sure that the operand fits,
10538 but if it's 4, then it could be that the displacement is larger
10539 then -/+ 2GB. */
10540 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10541 && object_64bit
10542 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
10543 + ((addressT) 1 << 31))
10544 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
10545 {
10546 as_bad_where (fragP->fr_file, fragP->fr_line,
10547 _("jump target out of range"));
10548 /* Make us emit 0. */
10549 displacement_from_opcode_start = extension;
10550 }
47926f60 10551 /* Now put displacement after opcode. */
252b5132
RH
10552 md_number_to_chars ((char *) where_to_put_displacement,
10553 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 10554 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
10555 fragP->fr_fix += extension;
10556}
10557\f
7016a5d5 10558/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
10559 by our caller that we have all the info we need to fix it up.
10560
7016a5d5
TG
10561 Parameter valP is the pointer to the value of the bits.
10562
252b5132
RH
10563 On the 386, immediates, displacements, and data pointers are all in
10564 the same (little-endian) format, so we don't need to care about which
10565 we are handling. */
10566
94f592af 10567void
7016a5d5 10568md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 10569{
94f592af 10570 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 10571 valueT value = *valP;
252b5132 10572
f86103b7 10573#if !defined (TE_Mach)
93382f6d
AM
10574 if (fixP->fx_pcrel)
10575 {
10576 switch (fixP->fx_r_type)
10577 {
5865bb77
ILT
10578 default:
10579 break;
10580
d6ab8113
JB
10581 case BFD_RELOC_64:
10582 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10583 break;
93382f6d 10584 case BFD_RELOC_32:
ae8887b5 10585 case BFD_RELOC_X86_64_32S:
93382f6d
AM
10586 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10587 break;
10588 case BFD_RELOC_16:
10589 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10590 break;
10591 case BFD_RELOC_8:
10592 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10593 break;
10594 }
10595 }
252b5132 10596
a161fe53 10597 if (fixP->fx_addsy != NULL
31312f95 10598 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 10599 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 10600 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 10601 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 10602 && !use_rela_relocations)
252b5132 10603 {
31312f95
AM
10604 /* This is a hack. There should be a better way to handle this.
10605 This covers for the fact that bfd_install_relocation will
10606 subtract the current location (for partial_inplace, PC relative
10607 relocations); see more below. */
252b5132 10608#ifndef OBJ_AOUT
718ddfc0 10609 if (IS_ELF
252b5132
RH
10610#ifdef TE_PE
10611 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10612#endif
10613 )
10614 value += fixP->fx_where + fixP->fx_frag->fr_address;
10615#endif
10616#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10617 if (IS_ELF)
252b5132 10618 {
6539b54b 10619 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 10620
6539b54b 10621 if ((sym_seg == seg
2f66722d 10622 || (symbol_section_p (fixP->fx_addsy)
6539b54b 10623 && sym_seg != absolute_section))
af65af87 10624 && !generic_force_reloc (fixP))
2f66722d
AM
10625 {
10626 /* Yes, we add the values in twice. This is because
6539b54b
AM
10627 bfd_install_relocation subtracts them out again. I think
10628 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
10629 it. FIXME. */
10630 value += fixP->fx_where + fixP->fx_frag->fr_address;
10631 }
252b5132
RH
10632 }
10633#endif
10634#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
10635 /* For some reason, the PE format does not store a
10636 section address offset for a PC relative symbol. */
10637 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 10638 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
10639 value += md_pcrel_from (fixP);
10640#endif
10641 }
fbeb56a4 10642#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
10643 if (fixP->fx_addsy != NULL
10644 && S_IS_WEAK (fixP->fx_addsy)
10645 /* PR 16858: Do not modify weak function references. */
10646 && ! fixP->fx_pcrel)
fbeb56a4 10647 {
296a8689
NC
10648#if !defined (TE_PEP)
10649 /* For x86 PE weak function symbols are neither PC-relative
10650 nor do they set S_IS_FUNCTION. So the only reliable way
10651 to detect them is to check the flags of their containing
10652 section. */
10653 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10654 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10655 ;
10656 else
10657#endif
fbeb56a4
DK
10658 value -= S_GET_VALUE (fixP->fx_addsy);
10659 }
10660#endif
252b5132
RH
10661
10662 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 10663 and we must not disappoint it. */
252b5132 10664#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10665 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
10666 switch (fixP->fx_r_type)
10667 {
10668 case BFD_RELOC_386_PLT32:
3e73aa7c 10669 case BFD_RELOC_X86_64_PLT32:
b9519cfe
L
10670 /* Make the jump instruction point to the address of the operand.
10671 At runtime we merely add the offset to the actual PLT entry.
10672 NB: Subtract the offset size only for jump instructions. */
10673 if (fixP->fx_pcrel)
10674 value = -4;
47926f60 10675 break;
31312f95 10676
13ae64f3
JJ
10677 case BFD_RELOC_386_TLS_GD:
10678 case BFD_RELOC_386_TLS_LDM:
13ae64f3 10679 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
10680 case BFD_RELOC_386_TLS_IE:
10681 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 10682 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
10683 case BFD_RELOC_X86_64_TLSGD:
10684 case BFD_RELOC_X86_64_TLSLD:
10685 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 10686 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
10687 value = 0; /* Fully resolved at runtime. No addend. */
10688 /* Fallthrough */
10689 case BFD_RELOC_386_TLS_LE:
10690 case BFD_RELOC_386_TLS_LDO_32:
10691 case BFD_RELOC_386_TLS_LE_32:
10692 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 10693 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 10694 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 10695 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
10696 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10697 break;
10698
67a4f2b7
AO
10699 case BFD_RELOC_386_TLS_DESC_CALL:
10700 case BFD_RELOC_X86_64_TLSDESC_CALL:
10701 value = 0; /* Fully resolved at runtime. No addend. */
10702 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10703 fixP->fx_done = 0;
10704 return;
10705
47926f60
KH
10706 case BFD_RELOC_VTABLE_INHERIT:
10707 case BFD_RELOC_VTABLE_ENTRY:
10708 fixP->fx_done = 0;
94f592af 10709 return;
47926f60
KH
10710
10711 default:
10712 break;
10713 }
10714#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 10715 *valP = value;
f86103b7 10716#endif /* !defined (TE_Mach) */
3e73aa7c 10717
3e73aa7c 10718 /* Are we finished with this relocation now? */
c6682705 10719 if (fixP->fx_addsy == NULL)
3e73aa7c 10720 fixP->fx_done = 1;
fbeb56a4
DK
10721#if defined (OBJ_COFF) && defined (TE_PE)
10722 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10723 {
10724 fixP->fx_done = 0;
10725 /* Remember value for tc_gen_reloc. */
10726 fixP->fx_addnumber = value;
10727 /* Clear out the frag for now. */
10728 value = 0;
10729 }
10730#endif
3e73aa7c
JH
10731 else if (use_rela_relocations)
10732 {
10733 fixP->fx_no_overflow = 1;
062cd5e7
AS
10734 /* Remember value for tc_gen_reloc. */
10735 fixP->fx_addnumber = value;
3e73aa7c
JH
10736 value = 0;
10737 }
f86103b7 10738
94f592af 10739 md_number_to_chars (p, value, fixP->fx_size);
252b5132 10740}
252b5132 10741\f
6d4af3c2 10742const char *
499ac353 10743md_atof (int type, char *litP, int *sizeP)
252b5132 10744{
499ac353
NC
10745 /* This outputs the LITTLENUMs in REVERSE order;
10746 in accord with the bigendian 386. */
10747 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
10748}
10749\f
2d545b82 10750static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 10751
252b5132 10752static char *
e3bb37b5 10753output_invalid (int c)
252b5132 10754{
3882b010 10755 if (ISPRINT (c))
f9f21a03
L
10756 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10757 "'%c'", c);
252b5132 10758 else
f9f21a03 10759 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 10760 "(0x%x)", (unsigned char) c);
252b5132
RH
10761 return output_invalid_buf;
10762}
10763
af6bdddf 10764/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
10765
10766static const reg_entry *
4d1bb795 10767parse_real_register (char *reg_string, char **end_op)
252b5132 10768{
af6bdddf
AM
10769 char *s = reg_string;
10770 char *p;
252b5132
RH
10771 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10772 const reg_entry *r;
10773
10774 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10775 if (*s == REGISTER_PREFIX)
10776 ++s;
10777
10778 if (is_space_char (*s))
10779 ++s;
10780
10781 p = reg_name_given;
af6bdddf 10782 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
10783 {
10784 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
10785 return (const reg_entry *) NULL;
10786 s++;
252b5132
RH
10787 }
10788
6588847e
DN
10789 /* For naked regs, make sure that we are not dealing with an identifier.
10790 This prevents confusing an identifier like `eax_var' with register
10791 `eax'. */
10792 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10793 return (const reg_entry *) NULL;
10794
af6bdddf 10795 *end_op = s;
252b5132
RH
10796
10797 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10798
5f47d35b 10799 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 10800 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 10801 {
0e0eea78
JB
10802 if (!cpu_arch_flags.bitfield.cpu8087
10803 && !cpu_arch_flags.bitfield.cpu287
10804 && !cpu_arch_flags.bitfield.cpu387)
10805 return (const reg_entry *) NULL;
10806
5f47d35b
AM
10807 if (is_space_char (*s))
10808 ++s;
10809 if (*s == '(')
10810 {
af6bdddf 10811 ++s;
5f47d35b
AM
10812 if (is_space_char (*s))
10813 ++s;
10814 if (*s >= '0' && *s <= '7')
10815 {
db557034 10816 int fpr = *s - '0';
af6bdddf 10817 ++s;
5f47d35b
AM
10818 if (is_space_char (*s))
10819 ++s;
10820 if (*s == ')')
10821 {
10822 *end_op = s + 1;
1e9cc1c2 10823 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
10824 know (r);
10825 return r + fpr;
5f47d35b 10826 }
5f47d35b 10827 }
47926f60 10828 /* We have "%st(" then garbage. */
5f47d35b
AM
10829 return (const reg_entry *) NULL;
10830 }
10831 }
10832
a60de03c
JB
10833 if (r == NULL || allow_pseudo_reg)
10834 return r;
10835
0dfbf9d7 10836 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
10837 return (const reg_entry *) NULL;
10838
dc821c5f 10839 if ((r->reg_type.bitfield.dword
192dc9c6
JB
10840 || r->reg_type.bitfield.sreg3
10841 || r->reg_type.bitfield.control
10842 || r->reg_type.bitfield.debug
10843 || r->reg_type.bitfield.test)
10844 && !cpu_arch_flags.bitfield.cpui386)
10845 return (const reg_entry *) NULL;
10846
6e041cf4 10847 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
192dc9c6
JB
10848 return (const reg_entry *) NULL;
10849
6e041cf4
JB
10850 if (!cpu_arch_flags.bitfield.cpuavx512f)
10851 {
10852 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10853 return (const reg_entry *) NULL;
40f12533 10854
6e041cf4
JB
10855 if (!cpu_arch_flags.bitfield.cpuavx)
10856 {
10857 if (r->reg_type.bitfield.ymmword)
10858 return (const reg_entry *) NULL;
1848e567 10859
6e041cf4
JB
10860 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10861 return (const reg_entry *) NULL;
10862 }
10863 }
43234a1e 10864
1adf7f56
JB
10865 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10866 return (const reg_entry *) NULL;
10867
db51cc60 10868 /* Don't allow fake index register unless allow_index_reg isn't 0. */
e968fc9b 10869 if (!allow_index_reg && r->reg_num == RegIZ)
db51cc60
L
10870 return (const reg_entry *) NULL;
10871
1d3f8286
JB
10872 /* Upper 16 vector registers are only available with VREX in 64bit
10873 mode, and require EVEX encoding. */
10874 if (r->reg_flags & RegVRex)
43234a1e 10875 {
e951d5ca 10876 if (!cpu_arch_flags.bitfield.cpuavx512f
43234a1e
L
10877 || flag_code != CODE_64BIT)
10878 return (const reg_entry *) NULL;
1d3f8286
JB
10879
10880 i.vec_encoding = vex_encoding_evex;
43234a1e
L
10881 }
10882
4787f4a5
JB
10883 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10884 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
1ae00879 10885 && flag_code != CODE_64BIT)
20f0a1fc 10886 return (const reg_entry *) NULL;
1ae00879 10887
b7240065
JB
10888 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10889 return (const reg_entry *) NULL;
10890
252b5132
RH
10891 return r;
10892}
4d1bb795
JB
10893
10894/* REG_STRING starts *before* REGISTER_PREFIX. */
10895
10896static const reg_entry *
10897parse_register (char *reg_string, char **end_op)
10898{
10899 const reg_entry *r;
10900
10901 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10902 r = parse_real_register (reg_string, end_op);
10903 else
10904 r = NULL;
10905 if (!r)
10906 {
10907 char *save = input_line_pointer;
10908 char c;
10909 symbolS *symbolP;
10910
10911 input_line_pointer = reg_string;
d02603dc 10912 c = get_symbol_name (&reg_string);
4d1bb795
JB
10913 symbolP = symbol_find (reg_string);
10914 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10915 {
10916 const expressionS *e = symbol_get_value_expression (symbolP);
10917
0398aac5 10918 know (e->X_op == O_register);
4eed87de 10919 know (e->X_add_number >= 0
c3fe08fa 10920 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 10921 r = i386_regtab + e->X_add_number;
d3bb6b49 10922 if ((r->reg_flags & RegVRex))
86fa6981 10923 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
10924 *end_op = input_line_pointer;
10925 }
10926 *input_line_pointer = c;
10927 input_line_pointer = save;
10928 }
10929 return r;
10930}
10931
10932int
10933i386_parse_name (char *name, expressionS *e, char *nextcharP)
10934{
10935 const reg_entry *r;
10936 char *end = input_line_pointer;
10937
10938 *end = *nextcharP;
10939 r = parse_register (name, &input_line_pointer);
10940 if (r && end <= input_line_pointer)
10941 {
10942 *nextcharP = *input_line_pointer;
10943 *input_line_pointer = 0;
10944 e->X_op = O_register;
10945 e->X_add_number = r - i386_regtab;
10946 return 1;
10947 }
10948 input_line_pointer = end;
10949 *end = 0;
ee86248c 10950 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
10951}
10952
10953void
10954md_operand (expressionS *e)
10955{
ee86248c
JB
10956 char *end;
10957 const reg_entry *r;
4d1bb795 10958
ee86248c
JB
10959 switch (*input_line_pointer)
10960 {
10961 case REGISTER_PREFIX:
10962 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
10963 if (r)
10964 {
10965 e->X_op = O_register;
10966 e->X_add_number = r - i386_regtab;
10967 input_line_pointer = end;
10968 }
ee86248c
JB
10969 break;
10970
10971 case '[':
9c2799c2 10972 gas_assert (intel_syntax);
ee86248c
JB
10973 end = input_line_pointer++;
10974 expression (e);
10975 if (*input_line_pointer == ']')
10976 {
10977 ++input_line_pointer;
10978 e->X_op_symbol = make_expr_symbol (e);
10979 e->X_add_symbol = NULL;
10980 e->X_add_number = 0;
10981 e->X_op = O_index;
10982 }
10983 else
10984 {
10985 e->X_op = O_absent;
10986 input_line_pointer = end;
10987 }
10988 break;
4d1bb795
JB
10989 }
10990}
10991
252b5132 10992\f
4cc782b5 10993#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 10994const char *md_shortopts = "kVQ:sqnO::";
252b5132 10995#else
b6f8c7c4 10996const char *md_shortopts = "qnO::";
252b5132 10997#endif
6e0b89ee 10998
3e73aa7c 10999#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
11000#define OPTION_64 (OPTION_MD_BASE + 1)
11001#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
11002#define OPTION_MARCH (OPTION_MD_BASE + 3)
11003#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
11004#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
11005#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
11006#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
11007#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 11008#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 11009#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 11010#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
11011#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
11012#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
11013#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 11014#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
11015#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
11016#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 11017#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 11018#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 11019#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 11020#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
11021#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
11022#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 11023#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b4a3a7b4 11024#define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
03751133 11025#define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
b3b91714 11026
99ad8390
NC
11027struct option md_longopts[] =
11028{
3e73aa7c 11029 {"32", no_argument, NULL, OPTION_32},
321098a5 11030#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 11031 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 11032 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
11033#endif
11034#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 11035 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 11036 {"mshared", no_argument, NULL, OPTION_MSHARED},
b4a3a7b4 11037 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
6e0b89ee 11038#endif
b3b91714 11039 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
11040 {"march", required_argument, NULL, OPTION_MARCH},
11041 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
11042 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
11043 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
11044 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
11045 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 11046 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 11047 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 11048 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 11049 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
03751133 11050 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
7e8b059b 11051 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
11052 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
11053 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
11054# if defined (TE_PE) || defined (TE_PEP)
11055 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
11056#endif
d1982f93 11057 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 11058 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 11059 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 11060 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
11061 {"mamd64", no_argument, NULL, OPTION_MAMD64},
11062 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
11063 {NULL, no_argument, NULL, 0}
11064};
11065size_t md_longopts_size = sizeof (md_longopts);
11066
11067int
17b9d67d 11068md_parse_option (int c, const char *arg)
252b5132 11069{
91d6fa6a 11070 unsigned int j;
293f5f65 11071 char *arch, *next, *saved;
9103f4f4 11072
252b5132
RH
11073 switch (c)
11074 {
12b55ccc
L
11075 case 'n':
11076 optimize_align_code = 0;
11077 break;
11078
a38cf1db
AM
11079 case 'q':
11080 quiet_warnings = 1;
252b5132
RH
11081 break;
11082
11083#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
11084 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
11085 should be emitted or not. FIXME: Not implemented. */
11086 case 'Q':
252b5132
RH
11087 break;
11088
11089 /* -V: SVR4 argument to print version ID. */
11090 case 'V':
11091 print_version_id ();
11092 break;
11093
a38cf1db
AM
11094 /* -k: Ignore for FreeBSD compatibility. */
11095 case 'k':
252b5132 11096 break;
4cc782b5
ILT
11097
11098 case 's':
11099 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 11100 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 11101 break;
8dcea932
L
11102
11103 case OPTION_MSHARED:
11104 shared = 1;
11105 break;
b4a3a7b4
L
11106
11107 case OPTION_X86_USED_NOTE:
11108 if (strcasecmp (arg, "yes") == 0)
11109 x86_used_note = 1;
11110 else if (strcasecmp (arg, "no") == 0)
11111 x86_used_note = 0;
11112 else
11113 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
11114 break;
11115
11116
99ad8390 11117#endif
321098a5 11118#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 11119 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
11120 case OPTION_64:
11121 {
11122 const char **list, **l;
11123
3e73aa7c
JH
11124 list = bfd_target_list ();
11125 for (l = list; *l != NULL; l++)
8620418b 11126 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
11127 || strcmp (*l, "coff-x86-64") == 0
11128 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
11129 || strcmp (*l, "pei-x86-64") == 0
11130 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
11131 {
11132 default_arch = "x86_64";
11133 break;
11134 }
3e73aa7c 11135 if (*l == NULL)
2b5d6a91 11136 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
11137 free (list);
11138 }
11139 break;
11140#endif
252b5132 11141
351f65ca 11142#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 11143 case OPTION_X32:
351f65ca
L
11144 if (IS_ELF)
11145 {
11146 const char **list, **l;
11147
11148 list = bfd_target_list ();
11149 for (l = list; *l != NULL; l++)
11150 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11151 {
11152 default_arch = "x86_64:32";
11153 break;
11154 }
11155 if (*l == NULL)
2b5d6a91 11156 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
11157 free (list);
11158 }
11159 else
11160 as_fatal (_("32bit x86_64 is only supported for ELF"));
11161 break;
11162#endif
11163
6e0b89ee
AM
11164 case OPTION_32:
11165 default_arch = "i386";
11166 break;
11167
b3b91714
AM
11168 case OPTION_DIVIDE:
11169#ifdef SVR4_COMMENT_CHARS
11170 {
11171 char *n, *t;
11172 const char *s;
11173
add39d23 11174 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
11175 t = n;
11176 for (s = i386_comment_chars; *s != '\0'; s++)
11177 if (*s != '/')
11178 *t++ = *s;
11179 *t = '\0';
11180 i386_comment_chars = n;
11181 }
11182#endif
11183 break;
11184
9103f4f4 11185 case OPTION_MARCH:
293f5f65
L
11186 saved = xstrdup (arg);
11187 arch = saved;
11188 /* Allow -march=+nosse. */
11189 if (*arch == '+')
11190 arch++;
6305a203 11191 do
9103f4f4 11192 {
6305a203 11193 if (*arch == '.')
2b5d6a91 11194 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11195 next = strchr (arch, '+');
11196 if (next)
11197 *next++ = '\0';
91d6fa6a 11198 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11199 {
91d6fa6a 11200 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 11201 {
6305a203 11202 /* Processor. */
1ded5609
JB
11203 if (! cpu_arch[j].flags.bitfield.cpui386)
11204 continue;
11205
91d6fa6a 11206 cpu_arch_name = cpu_arch[j].name;
6305a203 11207 cpu_sub_arch_name = NULL;
91d6fa6a
NC
11208 cpu_arch_flags = cpu_arch[j].flags;
11209 cpu_arch_isa = cpu_arch[j].type;
11210 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
11211 if (!cpu_arch_tune_set)
11212 {
11213 cpu_arch_tune = cpu_arch_isa;
11214 cpu_arch_tune_flags = cpu_arch_isa_flags;
11215 }
11216 break;
11217 }
91d6fa6a
NC
11218 else if (*cpu_arch [j].name == '.'
11219 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 11220 {
33eaf5de 11221 /* ISA extension. */
6305a203 11222 i386_cpu_flags flags;
309d3373 11223
293f5f65
L
11224 flags = cpu_flags_or (cpu_arch_flags,
11225 cpu_arch[j].flags);
81486035 11226
5b64d091 11227 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
11228 {
11229 if (cpu_sub_arch_name)
11230 {
11231 char *name = cpu_sub_arch_name;
11232 cpu_sub_arch_name = concat (name,
91d6fa6a 11233 cpu_arch[j].name,
1bf57e9f 11234 (const char *) NULL);
6305a203
L
11235 free (name);
11236 }
11237 else
91d6fa6a 11238 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 11239 cpu_arch_flags = flags;
a586129e 11240 cpu_arch_isa_flags = flags;
6305a203 11241 }
0089dace
L
11242 else
11243 cpu_arch_isa_flags
11244 = cpu_flags_or (cpu_arch_isa_flags,
11245 cpu_arch[j].flags);
6305a203 11246 break;
ccc9c027 11247 }
9103f4f4 11248 }
6305a203 11249
293f5f65
L
11250 if (j >= ARRAY_SIZE (cpu_arch))
11251 {
33eaf5de 11252 /* Disable an ISA extension. */
293f5f65
L
11253 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11254 if (strcmp (arch, cpu_noarch [j].name) == 0)
11255 {
11256 i386_cpu_flags flags;
11257
11258 flags = cpu_flags_and_not (cpu_arch_flags,
11259 cpu_noarch[j].flags);
11260 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11261 {
11262 if (cpu_sub_arch_name)
11263 {
11264 char *name = cpu_sub_arch_name;
11265 cpu_sub_arch_name = concat (arch,
11266 (const char *) NULL);
11267 free (name);
11268 }
11269 else
11270 cpu_sub_arch_name = xstrdup (arch);
11271 cpu_arch_flags = flags;
11272 cpu_arch_isa_flags = flags;
11273 }
11274 break;
11275 }
11276
11277 if (j >= ARRAY_SIZE (cpu_noarch))
11278 j = ARRAY_SIZE (cpu_arch);
11279 }
11280
91d6fa6a 11281 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11282 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11283
11284 arch = next;
9103f4f4 11285 }
293f5f65
L
11286 while (next != NULL);
11287 free (saved);
9103f4f4
L
11288 break;
11289
11290 case OPTION_MTUNE:
11291 if (*arg == '.')
2b5d6a91 11292 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 11293 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11294 {
91d6fa6a 11295 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 11296 {
ccc9c027 11297 cpu_arch_tune_set = 1;
91d6fa6a
NC
11298 cpu_arch_tune = cpu_arch [j].type;
11299 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
11300 break;
11301 }
11302 }
91d6fa6a 11303 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11304 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
11305 break;
11306
1efbbeb4
L
11307 case OPTION_MMNEMONIC:
11308 if (strcasecmp (arg, "att") == 0)
11309 intel_mnemonic = 0;
11310 else if (strcasecmp (arg, "intel") == 0)
11311 intel_mnemonic = 1;
11312 else
2b5d6a91 11313 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
11314 break;
11315
11316 case OPTION_MSYNTAX:
11317 if (strcasecmp (arg, "att") == 0)
11318 intel_syntax = 0;
11319 else if (strcasecmp (arg, "intel") == 0)
11320 intel_syntax = 1;
11321 else
2b5d6a91 11322 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
11323 break;
11324
11325 case OPTION_MINDEX_REG:
11326 allow_index_reg = 1;
11327 break;
11328
11329 case OPTION_MNAKED_REG:
11330 allow_naked_reg = 1;
11331 break;
11332
c0f3af97
L
11333 case OPTION_MSSE2AVX:
11334 sse2avx = 1;
11335 break;
11336
daf50ae7
L
11337 case OPTION_MSSE_CHECK:
11338 if (strcasecmp (arg, "error") == 0)
7bab8ab5 11339 sse_check = check_error;
daf50ae7 11340 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 11341 sse_check = check_warning;
daf50ae7 11342 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 11343 sse_check = check_none;
daf50ae7 11344 else
2b5d6a91 11345 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
11346 break;
11347
7bab8ab5
JB
11348 case OPTION_MOPERAND_CHECK:
11349 if (strcasecmp (arg, "error") == 0)
11350 operand_check = check_error;
11351 else if (strcasecmp (arg, "warning") == 0)
11352 operand_check = check_warning;
11353 else if (strcasecmp (arg, "none") == 0)
11354 operand_check = check_none;
11355 else
11356 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11357 break;
11358
539f890d
L
11359 case OPTION_MAVXSCALAR:
11360 if (strcasecmp (arg, "128") == 0)
11361 avxscalar = vex128;
11362 else if (strcasecmp (arg, "256") == 0)
11363 avxscalar = vex256;
11364 else
2b5d6a91 11365 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
11366 break;
11367
03751133
L
11368 case OPTION_MVEXWIG:
11369 if (strcmp (arg, "0") == 0)
11370 vexwig = evexw0;
11371 else if (strcmp (arg, "1") == 0)
11372 vexwig = evexw1;
11373 else
11374 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
11375 break;
11376
7e8b059b
L
11377 case OPTION_MADD_BND_PREFIX:
11378 add_bnd_prefix = 1;
11379 break;
11380
43234a1e
L
11381 case OPTION_MEVEXLIG:
11382 if (strcmp (arg, "128") == 0)
11383 evexlig = evexl128;
11384 else if (strcmp (arg, "256") == 0)
11385 evexlig = evexl256;
11386 else if (strcmp (arg, "512") == 0)
11387 evexlig = evexl512;
11388 else
11389 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11390 break;
11391
d3d3c6db
IT
11392 case OPTION_MEVEXRCIG:
11393 if (strcmp (arg, "rne") == 0)
11394 evexrcig = rne;
11395 else if (strcmp (arg, "rd") == 0)
11396 evexrcig = rd;
11397 else if (strcmp (arg, "ru") == 0)
11398 evexrcig = ru;
11399 else if (strcmp (arg, "rz") == 0)
11400 evexrcig = rz;
11401 else
11402 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11403 break;
11404
43234a1e
L
11405 case OPTION_MEVEXWIG:
11406 if (strcmp (arg, "0") == 0)
11407 evexwig = evexw0;
11408 else if (strcmp (arg, "1") == 0)
11409 evexwig = evexw1;
11410 else
11411 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11412 break;
11413
167ad85b
TG
11414# if defined (TE_PE) || defined (TE_PEP)
11415 case OPTION_MBIG_OBJ:
11416 use_big_obj = 1;
11417 break;
11418#endif
11419
d1982f93 11420 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
11421 if (strcasecmp (arg, "yes") == 0)
11422 omit_lock_prefix = 1;
11423 else if (strcasecmp (arg, "no") == 0)
11424 omit_lock_prefix = 0;
11425 else
11426 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11427 break;
11428
e4e00185
AS
11429 case OPTION_MFENCE_AS_LOCK_ADD:
11430 if (strcasecmp (arg, "yes") == 0)
11431 avoid_fence = 1;
11432 else if (strcasecmp (arg, "no") == 0)
11433 avoid_fence = 0;
11434 else
11435 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11436 break;
11437
0cb4071e
L
11438 case OPTION_MRELAX_RELOCATIONS:
11439 if (strcasecmp (arg, "yes") == 0)
11440 generate_relax_relocations = 1;
11441 else if (strcasecmp (arg, "no") == 0)
11442 generate_relax_relocations = 0;
11443 else
11444 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11445 break;
11446
5db04b09 11447 case OPTION_MAMD64:
e89c5eaa 11448 intel64 = 0;
5db04b09
L
11449 break;
11450
11451 case OPTION_MINTEL64:
e89c5eaa 11452 intel64 = 1;
5db04b09
L
11453 break;
11454
b6f8c7c4
L
11455 case 'O':
11456 if (arg == NULL)
11457 {
11458 optimize = 1;
11459 /* Turn off -Os. */
11460 optimize_for_space = 0;
11461 }
11462 else if (*arg == 's')
11463 {
11464 optimize_for_space = 1;
11465 /* Turn on all encoding optimizations. */
41fd2579 11466 optimize = INT_MAX;
b6f8c7c4
L
11467 }
11468 else
11469 {
11470 optimize = atoi (arg);
11471 /* Turn off -Os. */
11472 optimize_for_space = 0;
11473 }
11474 break;
11475
252b5132
RH
11476 default:
11477 return 0;
11478 }
11479 return 1;
11480}
11481
8a2c8fef
L
11482#define MESSAGE_TEMPLATE \
11483" "
11484
293f5f65
L
11485static char *
11486output_message (FILE *stream, char *p, char *message, char *start,
11487 int *left_p, const char *name, int len)
11488{
11489 int size = sizeof (MESSAGE_TEMPLATE);
11490 int left = *left_p;
11491
11492 /* Reserve 2 spaces for ", " or ",\0" */
11493 left -= len + 2;
11494
11495 /* Check if there is any room. */
11496 if (left >= 0)
11497 {
11498 if (p != start)
11499 {
11500 *p++ = ',';
11501 *p++ = ' ';
11502 }
11503 p = mempcpy (p, name, len);
11504 }
11505 else
11506 {
11507 /* Output the current message now and start a new one. */
11508 *p++ = ',';
11509 *p = '\0';
11510 fprintf (stream, "%s\n", message);
11511 p = start;
11512 left = size - (start - message) - len - 2;
11513
11514 gas_assert (left >= 0);
11515
11516 p = mempcpy (p, name, len);
11517 }
11518
11519 *left_p = left;
11520 return p;
11521}
11522
8a2c8fef 11523static void
1ded5609 11524show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
11525{
11526 static char message[] = MESSAGE_TEMPLATE;
11527 char *start = message + 27;
11528 char *p;
11529 int size = sizeof (MESSAGE_TEMPLATE);
11530 int left;
11531 const char *name;
11532 int len;
11533 unsigned int j;
11534
11535 p = start;
11536 left = size - (start - message);
11537 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11538 {
11539 /* Should it be skipped? */
11540 if (cpu_arch [j].skip)
11541 continue;
11542
11543 name = cpu_arch [j].name;
11544 len = cpu_arch [j].len;
11545 if (*name == '.')
11546 {
11547 /* It is an extension. Skip if we aren't asked to show it. */
11548 if (ext)
11549 {
11550 name++;
11551 len--;
11552 }
11553 else
11554 continue;
11555 }
11556 else if (ext)
11557 {
11558 /* It is an processor. Skip if we show only extension. */
11559 continue;
11560 }
1ded5609
JB
11561 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11562 {
11563 /* It is an impossible processor - skip. */
11564 continue;
11565 }
8a2c8fef 11566
293f5f65 11567 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
11568 }
11569
293f5f65
L
11570 /* Display disabled extensions. */
11571 if (ext)
11572 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11573 {
11574 name = cpu_noarch [j].name;
11575 len = cpu_noarch [j].len;
11576 p = output_message (stream, p, message, start, &left, name,
11577 len);
11578 }
11579
8a2c8fef
L
11580 *p = '\0';
11581 fprintf (stream, "%s\n", message);
11582}
11583
252b5132 11584void
8a2c8fef 11585md_show_usage (FILE *stream)
252b5132 11586{
4cc782b5
ILT
11587#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11588 fprintf (stream, _("\
a38cf1db
AM
11589 -Q ignored\n\
11590 -V print assembler version number\n\
b3b91714
AM
11591 -k ignored\n"));
11592#endif
11593 fprintf (stream, _("\
12b55ccc 11594 -n Do not optimize code alignment\n\
b3b91714
AM
11595 -q quieten some warnings\n"));
11596#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11597 fprintf (stream, _("\
a38cf1db 11598 -s ignored\n"));
b3b91714 11599#endif
d7f449c0
L
11600#if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11601 || defined (TE_PE) || defined (TE_PEP))
751d281c 11602 fprintf (stream, _("\
570561f7 11603 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 11604#endif
b3b91714
AM
11605#ifdef SVR4_COMMENT_CHARS
11606 fprintf (stream, _("\
11607 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
11608#else
11609 fprintf (stream, _("\
b3b91714 11610 --divide ignored\n"));
4cc782b5 11611#endif
9103f4f4 11612 fprintf (stream, _("\
6305a203 11613 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 11614 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 11615 show_arch (stream, 0, 1);
8a2c8fef
L
11616 fprintf (stream, _("\
11617 EXTENSION is combination of:\n"));
1ded5609 11618 show_arch (stream, 1, 0);
6305a203 11619 fprintf (stream, _("\
8a2c8fef 11620 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 11621 show_arch (stream, 0, 0);
ba104c83 11622 fprintf (stream, _("\
c0f3af97
L
11623 -msse2avx encode SSE instructions with VEX prefix\n"));
11624 fprintf (stream, _("\
7c5c05ef 11625 -msse-check=[none|error|warning] (default: warning)\n\
daf50ae7
L
11626 check SSE instructions\n"));
11627 fprintf (stream, _("\
7c5c05ef 11628 -moperand-check=[none|error|warning] (default: warning)\n\
7bab8ab5
JB
11629 check operand combinations for validity\n"));
11630 fprintf (stream, _("\
7c5c05ef
L
11631 -mavxscalar=[128|256] (default: 128)\n\
11632 encode scalar AVX instructions with specific vector\n\
539f890d
L
11633 length\n"));
11634 fprintf (stream, _("\
03751133
L
11635 -mvexwig=[0|1] (default: 0)\n\
11636 encode VEX instructions with specific VEX.W value\n\
11637 for VEX.W bit ignored instructions\n"));
11638 fprintf (stream, _("\
7c5c05ef
L
11639 -mevexlig=[128|256|512] (default: 128)\n\
11640 encode scalar EVEX instructions with specific vector\n\
43234a1e
L
11641 length\n"));
11642 fprintf (stream, _("\
7c5c05ef
L
11643 -mevexwig=[0|1] (default: 0)\n\
11644 encode EVEX instructions with specific EVEX.W value\n\
43234a1e
L
11645 for EVEX.W bit ignored instructions\n"));
11646 fprintf (stream, _("\
7c5c05ef 11647 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
d3d3c6db
IT
11648 encode EVEX instructions with specific EVEX.RC value\n\
11649 for SAE-only ignored instructions\n"));
11650 fprintf (stream, _("\
7c5c05ef
L
11651 -mmnemonic=[att|intel] "));
11652 if (SYSV386_COMPAT)
11653 fprintf (stream, _("(default: att)\n"));
11654 else
11655 fprintf (stream, _("(default: intel)\n"));
11656 fprintf (stream, _("\
11657 use AT&T/Intel mnemonic\n"));
ba104c83 11658 fprintf (stream, _("\
7c5c05ef
L
11659 -msyntax=[att|intel] (default: att)\n\
11660 use AT&T/Intel syntax\n"));
ba104c83
L
11661 fprintf (stream, _("\
11662 -mindex-reg support pseudo index registers\n"));
11663 fprintf (stream, _("\
11664 -mnaked-reg don't require `%%' prefix for registers\n"));
11665 fprintf (stream, _("\
7e8b059b 11666 -madd-bnd-prefix add BND prefix for all valid branches\n"));
b4a3a7b4 11667#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8dcea932
L
11668 fprintf (stream, _("\
11669 -mshared disable branch optimization for shared code\n"));
b4a3a7b4
L
11670 fprintf (stream, _("\
11671 -mx86-used-note=[no|yes] "));
11672 if (DEFAULT_X86_USED_NOTE)
11673 fprintf (stream, _("(default: yes)\n"));
11674 else
11675 fprintf (stream, _("(default: no)\n"));
11676 fprintf (stream, _("\
11677 generate x86 used ISA and feature properties\n"));
11678#endif
11679#if defined (TE_PE) || defined (TE_PEP)
167ad85b
TG
11680 fprintf (stream, _("\
11681 -mbig-obj generate big object files\n"));
11682#endif
d022bddd 11683 fprintf (stream, _("\
7c5c05ef 11684 -momit-lock-prefix=[no|yes] (default: no)\n\
d022bddd 11685 strip all lock prefixes\n"));
5db04b09 11686 fprintf (stream, _("\
7c5c05ef 11687 -mfence-as-lock-add=[no|yes] (default: no)\n\
e4e00185
AS
11688 encode lfence, mfence and sfence as\n\
11689 lock addl $0x0, (%%{re}sp)\n"));
11690 fprintf (stream, _("\
7c5c05ef
L
11691 -mrelax-relocations=[no|yes] "));
11692 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11693 fprintf (stream, _("(default: yes)\n"));
11694 else
11695 fprintf (stream, _("(default: no)\n"));
11696 fprintf (stream, _("\
0cb4071e
L
11697 generate relax relocations\n"));
11698 fprintf (stream, _("\
7c5c05ef 11699 -mamd64 accept only AMD64 ISA [default]\n"));
5db04b09
L
11700 fprintf (stream, _("\
11701 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
11702}
11703
3e73aa7c 11704#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 11705 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 11706 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
11707
11708/* Pick the target format to use. */
11709
47926f60 11710const char *
e3bb37b5 11711i386_target_format (void)
252b5132 11712{
351f65ca
L
11713 if (!strncmp (default_arch, "x86_64", 6))
11714 {
11715 update_code_flag (CODE_64BIT, 1);
11716 if (default_arch[6] == '\0')
7f56bc95 11717 x86_elf_abi = X86_64_ABI;
351f65ca 11718 else
7f56bc95 11719 x86_elf_abi = X86_64_X32_ABI;
351f65ca 11720 }
3e73aa7c 11721 else if (!strcmp (default_arch, "i386"))
78f12dd3 11722 update_code_flag (CODE_32BIT, 1);
5197d474
L
11723 else if (!strcmp (default_arch, "iamcu"))
11724 {
11725 update_code_flag (CODE_32BIT, 1);
11726 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11727 {
11728 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11729 cpu_arch_name = "iamcu";
11730 cpu_sub_arch_name = NULL;
11731 cpu_arch_flags = iamcu_flags;
11732 cpu_arch_isa = PROCESSOR_IAMCU;
11733 cpu_arch_isa_flags = iamcu_flags;
11734 if (!cpu_arch_tune_set)
11735 {
11736 cpu_arch_tune = cpu_arch_isa;
11737 cpu_arch_tune_flags = cpu_arch_isa_flags;
11738 }
11739 }
8d471ec1 11740 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
11741 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11742 cpu_arch_name);
11743 }
3e73aa7c 11744 else
2b5d6a91 11745 as_fatal (_("unknown architecture"));
89507696
JB
11746
11747 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11748 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11749 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11750 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11751
252b5132
RH
11752 switch (OUTPUT_FLAVOR)
11753 {
9384f2ff 11754#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 11755 case bfd_target_aout_flavour:
47926f60 11756 return AOUT_TARGET_FORMAT;
4c63da97 11757#endif
9384f2ff
AM
11758#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11759# if defined (TE_PE) || defined (TE_PEP)
11760 case bfd_target_coff_flavour:
167ad85b
TG
11761 if (flag_code == CODE_64BIT)
11762 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11763 else
11764 return "pe-i386";
9384f2ff 11765# elif defined (TE_GO32)
0561d57c
JK
11766 case bfd_target_coff_flavour:
11767 return "coff-go32";
9384f2ff 11768# else
252b5132
RH
11769 case bfd_target_coff_flavour:
11770 return "coff-i386";
9384f2ff 11771# endif
4c63da97 11772#endif
3e73aa7c 11773#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 11774 case bfd_target_elf_flavour:
3e73aa7c 11775 {
351f65ca
L
11776 const char *format;
11777
11778 switch (x86_elf_abi)
4fa24527 11779 {
351f65ca
L
11780 default:
11781 format = ELF_TARGET_FORMAT;
11782 break;
7f56bc95 11783 case X86_64_ABI:
351f65ca 11784 use_rela_relocations = 1;
4fa24527 11785 object_64bit = 1;
351f65ca
L
11786 format = ELF_TARGET_FORMAT64;
11787 break;
7f56bc95 11788 case X86_64_X32_ABI:
4fa24527 11789 use_rela_relocations = 1;
351f65ca 11790 object_64bit = 1;
862be3fb 11791 disallow_64bit_reloc = 1;
351f65ca
L
11792 format = ELF_TARGET_FORMAT32;
11793 break;
4fa24527 11794 }
3632d14b 11795 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 11796 {
7f56bc95 11797 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
11798 as_fatal (_("Intel L1OM is 64bit only"));
11799 return ELF_TARGET_L1OM_FORMAT;
11800 }
b49f93f6 11801 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
11802 {
11803 if (x86_elf_abi != X86_64_ABI)
11804 as_fatal (_("Intel K1OM is 64bit only"));
11805 return ELF_TARGET_K1OM_FORMAT;
11806 }
81486035
L
11807 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11808 {
11809 if (x86_elf_abi != I386_ABI)
11810 as_fatal (_("Intel MCU is 32bit only"));
11811 return ELF_TARGET_IAMCU_FORMAT;
11812 }
8a9036a4 11813 else
351f65ca 11814 return format;
3e73aa7c 11815 }
e57f8c65
TG
11816#endif
11817#if defined (OBJ_MACH_O)
11818 case bfd_target_mach_o_flavour:
d382c579
TG
11819 if (flag_code == CODE_64BIT)
11820 {
11821 use_rela_relocations = 1;
11822 object_64bit = 1;
11823 return "mach-o-x86-64";
11824 }
11825 else
11826 return "mach-o-i386";
4c63da97 11827#endif
252b5132
RH
11828 default:
11829 abort ();
11830 return NULL;
11831 }
11832}
11833
47926f60 11834#endif /* OBJ_MAYBE_ more than one */
252b5132 11835\f
252b5132 11836symbolS *
7016a5d5 11837md_undefined_symbol (char *name)
252b5132 11838{
18dc2407
ILT
11839 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11840 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11841 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11842 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
11843 {
11844 if (!GOT_symbol)
11845 {
11846 if (symbol_find (name))
11847 as_bad (_("GOT already in symbol table"));
11848 GOT_symbol = symbol_new (name, undefined_section,
11849 (valueT) 0, &zero_address_frag);
11850 };
11851 return GOT_symbol;
11852 }
252b5132
RH
11853 return 0;
11854}
11855
11856/* Round up a section size to the appropriate boundary. */
47926f60 11857
252b5132 11858valueT
7016a5d5 11859md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 11860{
4c63da97
AM
11861#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11862 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11863 {
11864 /* For a.out, force the section size to be aligned. If we don't do
11865 this, BFD will align it for us, but it will not write out the
11866 final bytes of the section. This may be a bug in BFD, but it is
11867 easier to fix it here since that is how the other a.out targets
11868 work. */
11869 int align;
11870
11871 align = bfd_get_section_alignment (stdoutput, segment);
8d3842cd 11872 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 11873 }
252b5132
RH
11874#endif
11875
11876 return size;
11877}
11878
11879/* On the i386, PC-relative offsets are relative to the start of the
11880 next instruction. That is, the address of the offset, plus its
11881 size, since the offset is always the last part of the insn. */
11882
11883long
e3bb37b5 11884md_pcrel_from (fixS *fixP)
252b5132
RH
11885{
11886 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11887}
11888
11889#ifndef I386COFF
11890
11891static void
e3bb37b5 11892s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 11893{
29b0f896 11894 int temp;
252b5132 11895
8a75718c
JB
11896#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11897 if (IS_ELF)
11898 obj_elf_section_change_hook ();
11899#endif
252b5132
RH
11900 temp = get_absolute_expression ();
11901 subseg_set (bss_section, (subsegT) temp);
11902 demand_empty_rest_of_line ();
11903}
11904
11905#endif
11906
252b5132 11907void
e3bb37b5 11908i386_validate_fix (fixS *fixp)
252b5132 11909{
02a86693 11910 if (fixp->fx_subsy)
252b5132 11911 {
02a86693 11912 if (fixp->fx_subsy == GOT_symbol)
23df1078 11913 {
02a86693
L
11914 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11915 {
11916 if (!object_64bit)
11917 abort ();
11918#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11919 if (fixp->fx_tcbit2)
56ceb5b5
L
11920 fixp->fx_r_type = (fixp->fx_tcbit
11921 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11922 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
11923 else
11924#endif
11925 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11926 }
d6ab8113 11927 else
02a86693
L
11928 {
11929 if (!object_64bit)
11930 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11931 else
11932 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11933 }
11934 fixp->fx_subsy = 0;
23df1078 11935 }
252b5132 11936 }
02a86693
L
11937#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11938 else if (!object_64bit)
11939 {
11940 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11941 && fixp->fx_tcbit2)
11942 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11943 }
11944#endif
252b5132
RH
11945}
11946
252b5132 11947arelent *
7016a5d5 11948tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
11949{
11950 arelent *rel;
11951 bfd_reloc_code_real_type code;
11952
11953 switch (fixp->fx_r_type)
11954 {
8ce3d284 11955#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
11956 case BFD_RELOC_SIZE32:
11957 case BFD_RELOC_SIZE64:
11958 if (S_IS_DEFINED (fixp->fx_addsy)
11959 && !S_IS_EXTERNAL (fixp->fx_addsy))
11960 {
11961 /* Resolve size relocation against local symbol to size of
11962 the symbol plus addend. */
11963 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11964 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11965 && !fits_in_unsigned_long (value))
11966 as_bad_where (fixp->fx_file, fixp->fx_line,
11967 _("symbol size computation overflow"));
11968 fixp->fx_addsy = NULL;
11969 fixp->fx_subsy = NULL;
11970 md_apply_fix (fixp, (valueT *) &value, NULL);
11971 return NULL;
11972 }
8ce3d284 11973#endif
1a0670f3 11974 /* Fall through. */
8fd4256d 11975
3e73aa7c
JH
11976 case BFD_RELOC_X86_64_PLT32:
11977 case BFD_RELOC_X86_64_GOT32:
11978 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11979 case BFD_RELOC_X86_64_GOTPCRELX:
11980 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
11981 case BFD_RELOC_386_PLT32:
11982 case BFD_RELOC_386_GOT32:
02a86693 11983 case BFD_RELOC_386_GOT32X:
252b5132
RH
11984 case BFD_RELOC_386_GOTOFF:
11985 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
11986 case BFD_RELOC_386_TLS_GD:
11987 case BFD_RELOC_386_TLS_LDM:
11988 case BFD_RELOC_386_TLS_LDO_32:
11989 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
11990 case BFD_RELOC_386_TLS_IE:
11991 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
11992 case BFD_RELOC_386_TLS_LE_32:
11993 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
11994 case BFD_RELOC_386_TLS_GOTDESC:
11995 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
11996 case BFD_RELOC_X86_64_TLSGD:
11997 case BFD_RELOC_X86_64_TLSLD:
11998 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 11999 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
12000 case BFD_RELOC_X86_64_GOTTPOFF:
12001 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
12002 case BFD_RELOC_X86_64_TPOFF64:
12003 case BFD_RELOC_X86_64_GOTOFF64:
12004 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
12005 case BFD_RELOC_X86_64_GOT64:
12006 case BFD_RELOC_X86_64_GOTPCREL64:
12007 case BFD_RELOC_X86_64_GOTPC64:
12008 case BFD_RELOC_X86_64_GOTPLT64:
12009 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
12010 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12011 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
12012 case BFD_RELOC_RVA:
12013 case BFD_RELOC_VTABLE_ENTRY:
12014 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
12015#ifdef TE_PE
12016 case BFD_RELOC_32_SECREL:
12017#endif
252b5132
RH
12018 code = fixp->fx_r_type;
12019 break;
dbbaec26
L
12020 case BFD_RELOC_X86_64_32S:
12021 if (!fixp->fx_pcrel)
12022 {
12023 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
12024 code = fixp->fx_r_type;
12025 break;
12026 }
1a0670f3 12027 /* Fall through. */
252b5132 12028 default:
93382f6d 12029 if (fixp->fx_pcrel)
252b5132 12030 {
93382f6d
AM
12031 switch (fixp->fx_size)
12032 {
12033 default:
b091f402
AM
12034 as_bad_where (fixp->fx_file, fixp->fx_line,
12035 _("can not do %d byte pc-relative relocation"),
12036 fixp->fx_size);
93382f6d
AM
12037 code = BFD_RELOC_32_PCREL;
12038 break;
12039 case 1: code = BFD_RELOC_8_PCREL; break;
12040 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 12041 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
12042#ifdef BFD64
12043 case 8: code = BFD_RELOC_64_PCREL; break;
12044#endif
93382f6d
AM
12045 }
12046 }
12047 else
12048 {
12049 switch (fixp->fx_size)
12050 {
12051 default:
b091f402
AM
12052 as_bad_where (fixp->fx_file, fixp->fx_line,
12053 _("can not do %d byte relocation"),
12054 fixp->fx_size);
93382f6d
AM
12055 code = BFD_RELOC_32;
12056 break;
12057 case 1: code = BFD_RELOC_8; break;
12058 case 2: code = BFD_RELOC_16; break;
12059 case 4: code = BFD_RELOC_32; break;
937149dd 12060#ifdef BFD64
3e73aa7c 12061 case 8: code = BFD_RELOC_64; break;
937149dd 12062#endif
93382f6d 12063 }
252b5132
RH
12064 }
12065 break;
12066 }
252b5132 12067
d182319b
JB
12068 if ((code == BFD_RELOC_32
12069 || code == BFD_RELOC_32_PCREL
12070 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
12071 && GOT_symbol
12072 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 12073 {
4fa24527 12074 if (!object_64bit)
d6ab8113
JB
12075 code = BFD_RELOC_386_GOTPC;
12076 else
12077 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 12078 }
7b81dfbb
AJ
12079 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
12080 && GOT_symbol
12081 && fixp->fx_addsy == GOT_symbol)
12082 {
12083 code = BFD_RELOC_X86_64_GOTPC64;
12084 }
252b5132 12085
add39d23
TS
12086 rel = XNEW (arelent);
12087 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 12088 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
12089
12090 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 12091
3e73aa7c
JH
12092 if (!use_rela_relocations)
12093 {
12094 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
12095 vtable entry to be used in the relocation's section offset. */
12096 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12097 rel->address = fixp->fx_offset;
fbeb56a4
DK
12098#if defined (OBJ_COFF) && defined (TE_PE)
12099 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
12100 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
12101 else
12102#endif
c6682705 12103 rel->addend = 0;
3e73aa7c
JH
12104 }
12105 /* Use the rela in 64bit mode. */
252b5132 12106 else
3e73aa7c 12107 {
862be3fb
L
12108 if (disallow_64bit_reloc)
12109 switch (code)
12110 {
862be3fb
L
12111 case BFD_RELOC_X86_64_DTPOFF64:
12112 case BFD_RELOC_X86_64_TPOFF64:
12113 case BFD_RELOC_64_PCREL:
12114 case BFD_RELOC_X86_64_GOTOFF64:
12115 case BFD_RELOC_X86_64_GOT64:
12116 case BFD_RELOC_X86_64_GOTPCREL64:
12117 case BFD_RELOC_X86_64_GOTPC64:
12118 case BFD_RELOC_X86_64_GOTPLT64:
12119 case BFD_RELOC_X86_64_PLTOFF64:
12120 as_bad_where (fixp->fx_file, fixp->fx_line,
12121 _("cannot represent relocation type %s in x32 mode"),
12122 bfd_get_reloc_code_name (code));
12123 break;
12124 default:
12125 break;
12126 }
12127
062cd5e7
AS
12128 if (!fixp->fx_pcrel)
12129 rel->addend = fixp->fx_offset;
12130 else
12131 switch (code)
12132 {
12133 case BFD_RELOC_X86_64_PLT32:
12134 case BFD_RELOC_X86_64_GOT32:
12135 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
12136 case BFD_RELOC_X86_64_GOTPCRELX:
12137 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
12138 case BFD_RELOC_X86_64_TLSGD:
12139 case BFD_RELOC_X86_64_TLSLD:
12140 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
12141 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12142 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
12143 rel->addend = fixp->fx_offset - fixp->fx_size;
12144 break;
12145 default:
12146 rel->addend = (section->vma
12147 - fixp->fx_size
12148 + fixp->fx_addnumber
12149 + md_pcrel_from (fixp));
12150 break;
12151 }
3e73aa7c
JH
12152 }
12153
252b5132
RH
12154 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12155 if (rel->howto == NULL)
12156 {
12157 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 12158 _("cannot represent relocation type %s"),
252b5132
RH
12159 bfd_get_reloc_code_name (code));
12160 /* Set howto to a garbage value so that we can keep going. */
12161 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 12162 gas_assert (rel->howto != NULL);
252b5132
RH
12163 }
12164
12165 return rel;
12166}
12167
ee86248c 12168#include "tc-i386-intel.c"
54cfded0 12169
a60de03c
JB
12170void
12171tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 12172{
a60de03c
JB
12173 int saved_naked_reg;
12174 char saved_register_dot;
54cfded0 12175
a60de03c
JB
12176 saved_naked_reg = allow_naked_reg;
12177 allow_naked_reg = 1;
12178 saved_register_dot = register_chars['.'];
12179 register_chars['.'] = '.';
12180 allow_pseudo_reg = 1;
12181 expression_and_evaluate (exp);
12182 allow_pseudo_reg = 0;
12183 register_chars['.'] = saved_register_dot;
12184 allow_naked_reg = saved_naked_reg;
12185
e96d56a1 12186 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 12187 {
a60de03c
JB
12188 if ((addressT) exp->X_add_number < i386_regtab_size)
12189 {
12190 exp->X_op = O_constant;
12191 exp->X_add_number = i386_regtab[exp->X_add_number]
12192 .dw2_regnum[flag_code >> 1];
12193 }
12194 else
12195 exp->X_op = O_illegal;
54cfded0 12196 }
54cfded0
AM
12197}
12198
12199void
12200tc_x86_frame_initial_instructions (void)
12201{
a60de03c
JB
12202 static unsigned int sp_regno[2];
12203
12204 if (!sp_regno[flag_code >> 1])
12205 {
12206 char *saved_input = input_line_pointer;
12207 char sp[][4] = {"esp", "rsp"};
12208 expressionS exp;
a4447b93 12209
a60de03c
JB
12210 input_line_pointer = sp[flag_code >> 1];
12211 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 12212 gas_assert (exp.X_op == O_constant);
a60de03c
JB
12213 sp_regno[flag_code >> 1] = exp.X_add_number;
12214 input_line_pointer = saved_input;
12215 }
a4447b93 12216
61ff971f
L
12217 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12218 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 12219}
d2b2c203 12220
d7921315
L
12221int
12222x86_dwarf2_addr_size (void)
12223{
12224#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12225 if (x86_elf_abi == X86_64_X32_ABI)
12226 return 4;
12227#endif
12228 return bfd_arch_bits_per_address (stdoutput) / 8;
12229}
12230
d2b2c203
DJ
12231int
12232i386_elf_section_type (const char *str, size_t len)
12233{
12234 if (flag_code == CODE_64BIT
12235 && len == sizeof ("unwind") - 1
12236 && strncmp (str, "unwind", 6) == 0)
12237 return SHT_X86_64_UNWIND;
12238
12239 return -1;
12240}
bb41ade5 12241
ad5fec3b
EB
12242#ifdef TE_SOLARIS
12243void
12244i386_solaris_fix_up_eh_frame (segT sec)
12245{
12246 if (flag_code == CODE_64BIT)
12247 elf_section_type (sec) = SHT_X86_64_UNWIND;
12248}
12249#endif
12250
bb41ade5
AM
12251#ifdef TE_PE
12252void
12253tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12254{
91d6fa6a 12255 expressionS exp;
bb41ade5 12256
91d6fa6a
NC
12257 exp.X_op = O_secrel;
12258 exp.X_add_symbol = symbol;
12259 exp.X_add_number = 0;
12260 emit_expr (&exp, size);
bb41ade5
AM
12261}
12262#endif
3b22753a
L
12263
12264#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12265/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12266
01e1a5bc 12267bfd_vma
6d4af3c2 12268x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
12269{
12270 if (flag_code == CODE_64BIT)
12271 {
12272 if (letter == 'l')
12273 return SHF_X86_64_LARGE;
12274
8f3bae45 12275 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 12276 }
3b22753a 12277 else
8f3bae45 12278 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
12279 return -1;
12280}
12281
01e1a5bc 12282bfd_vma
3b22753a
L
12283x86_64_section_word (char *str, size_t len)
12284{
8620418b 12285 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
12286 return SHF_X86_64_LARGE;
12287
12288 return -1;
12289}
12290
12291static void
12292handle_large_common (int small ATTRIBUTE_UNUSED)
12293{
12294 if (flag_code != CODE_64BIT)
12295 {
12296 s_comm_internal (0, elf_common_parse);
12297 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12298 }
12299 else
12300 {
12301 static segT lbss_section;
12302 asection *saved_com_section_ptr = elf_com_section_ptr;
12303 asection *saved_bss_section = bss_section;
12304
12305 if (lbss_section == NULL)
12306 {
12307 flagword applicable;
12308 segT seg = now_seg;
12309 subsegT subseg = now_subseg;
12310
12311 /* The .lbss section is for local .largecomm symbols. */
12312 lbss_section = subseg_new (".lbss", 0);
12313 applicable = bfd_applicable_section_flags (stdoutput);
12314 bfd_set_section_flags (stdoutput, lbss_section,
12315 applicable & SEC_ALLOC);
12316 seg_info (lbss_section)->bss = 1;
12317
12318 subseg_set (seg, subseg);
12319 }
12320
12321 elf_com_section_ptr = &_bfd_elf_large_com_section;
12322 bss_section = lbss_section;
12323
12324 s_comm_internal (0, elf_common_parse);
12325
12326 elf_com_section_ptr = saved_com_section_ptr;
12327 bss_section = saved_bss_section;
12328 }
12329}
12330#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 2.099941 seconds and 4 git commands to generate.