btrace, gdbserver: check btrace target pointers
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
219d1afa 2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
252b5132
RH
36#ifndef REGISTER_WARNINGS
37#define REGISTER_WARNINGS 1
38#endif
39
c3332e24 40#ifndef INFER_ADDR_PREFIX
eecb386c 41#define INFER_ADDR_PREFIX 1
c3332e24
AM
42#endif
43
29b0f896
AM
44#ifndef DEFAULT_ARCH
45#define DEFAULT_ARCH "i386"
246fcdee 46#endif
252b5132 47
edde18a5
AM
48#ifndef INLINE
49#if __GNUC__ >= 2
50#define INLINE __inline__
51#else
52#define INLINE
53#endif
54#endif
55
6305a203
L
56/* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
61#define WAIT_PREFIX 0
62#define SEG_PREFIX 1
63#define ADDR_PREFIX 2
64#define DATA_PREFIX 3
c32fa91d 65#define REP_PREFIX 4
42164a71 66#define HLE_PREFIX REP_PREFIX
7e8b059b 67#define BND_PREFIX REP_PREFIX
c32fa91d 68#define LOCK_PREFIX 5
4e9ac44a
L
69#define REX_PREFIX 6 /* must come last. */
70#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
71
72/* we define the syntax here (modulo base,index,scale syntax) */
73#define REGISTER_PREFIX '%'
74#define IMMEDIATE_PREFIX '$'
75#define ABSOLUTE_PREFIX '*'
76
77/* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79#define WORD_MNEM_SUFFIX 'w'
80#define BYTE_MNEM_SUFFIX 'b'
81#define SHORT_MNEM_SUFFIX 's'
82#define LONG_MNEM_SUFFIX 'l'
83#define QWORD_MNEM_SUFFIX 'q'
84#define XMMWORD_MNEM_SUFFIX 'x'
c0f3af97 85#define YMMWORD_MNEM_SUFFIX 'y'
43234a1e 86#define ZMMWORD_MNEM_SUFFIX 'z'
6305a203
L
87/* Intel Syntax. Use a non-ascii letter since since it never appears
88 in instructions. */
89#define LONG_DOUBLE_MNEM_SUFFIX '\1'
90
91#define END_OF_INSN '\0'
92
93/*
94 'templates' is for grouping together 'template' structures for opcodes
95 of the same name. This is only used for storing the insns in the grand
96 ole hash table of insns.
97 The templates themselves start at START and range up to (but not including)
98 END.
99 */
100typedef struct
101{
d3ce72d0
NC
102 const insn_template *start;
103 const insn_template *end;
6305a203
L
104}
105templates;
106
107/* 386 operand encoding bytes: see 386 book for details of this. */
108typedef struct
109{
110 unsigned int regmem; /* codes register or memory operand */
111 unsigned int reg; /* codes register operand (or extended opcode) */
112 unsigned int mode; /* how to interpret regmem & reg */
113}
114modrm_byte;
115
116/* x86-64 extension prefix. */
117typedef int rex_byte;
118
6305a203
L
119/* 386 opcode byte to code indirect addressing. */
120typedef struct
121{
122 unsigned base;
123 unsigned index;
124 unsigned scale;
125}
126sib_byte;
127
6305a203
L
128/* x86 arch names, types and features */
129typedef struct
130{
131 const char *name; /* arch name */
8a2c8fef 132 unsigned int len; /* arch string length */
6305a203
L
133 enum processor_type type; /* arch type */
134 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 135 unsigned int skip; /* show_arch should skip this. */
6305a203
L
136}
137arch_entry;
138
293f5f65
L
139/* Used to turn off indicated flags. */
140typedef struct
141{
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 i386_cpu_flags flags; /* cpu feature flags */
145}
146noarch_entry;
147
78f12dd3 148static void update_code_flag (int, int);
e3bb37b5
L
149static void set_code_flag (int);
150static void set_16bit_gcc_code_flag (int);
151static void set_intel_syntax (int);
1efbbeb4 152static void set_intel_mnemonic (int);
db51cc60 153static void set_allow_index_reg (int);
7bab8ab5 154static void set_check (int);
e3bb37b5 155static void set_cpu_arch (int);
6482c264 156#ifdef TE_PE
e3bb37b5 157static void pe_directive_secrel (int);
6482c264 158#endif
e3bb37b5
L
159static void signed_cons (int);
160static char *output_invalid (int c);
ee86248c
JB
161static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
162 const char *);
163static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
164 const char *);
a7619375 165static int i386_att_operand (char *);
e3bb37b5 166static int i386_intel_operand (char *, int);
ee86248c
JB
167static int i386_intel_simplify (expressionS *);
168static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
169static const reg_entry *parse_register (char *, char **);
170static char *parse_insn (char *, char *);
171static char *parse_operands (char *, const char *);
172static void swap_operands (void);
4d456e3d 173static void swap_2_operands (int, int);
e3bb37b5
L
174static void optimize_imm (void);
175static void optimize_disp (void);
83b16ac6 176static const insn_template *match_template (char);
e3bb37b5
L
177static int check_string (void);
178static int process_suffix (void);
179static int check_byte_reg (void);
180static int check_long_reg (void);
181static int check_qword_reg (void);
182static int check_word_reg (void);
183static int finalize_imm (void);
184static int process_operands (void);
185static const seg_entry *build_modrm_byte (void);
186static void output_insn (void);
187static void output_imm (fragS *, offsetT);
188static void output_disp (fragS *, offsetT);
29b0f896 189#ifndef I386COFF
e3bb37b5 190static void s_bss (int);
252b5132 191#endif
17d4e2a2
L
192#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
193static void handle_large_common (int small ATTRIBUTE_UNUSED);
194#endif
252b5132 195
a847613f 196static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 197
43234a1e
L
198/* This struct describes rounding control and SAE in the instruction. */
199struct RC_Operation
200{
201 enum rc_type
202 {
203 rne = 0,
204 rd,
205 ru,
206 rz,
207 saeonly
208 } type;
209 int operand;
210};
211
212static struct RC_Operation rc_op;
213
214/* The struct describes masking, applied to OPERAND in the instruction.
215 MASK is a pointer to the corresponding mask register. ZEROING tells
216 whether merging or zeroing mask is used. */
217struct Mask_Operation
218{
219 const reg_entry *mask;
220 unsigned int zeroing;
221 /* The operand where this operation is associated. */
222 int operand;
223};
224
225static struct Mask_Operation mask_op;
226
227/* The struct describes broadcasting, applied to OPERAND. FACTOR is
228 broadcast factor. */
229struct Broadcast_Operation
230{
231 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
232 int type;
233
234 /* Index of broadcasted operand. */
235 int operand;
236};
237
238static struct Broadcast_Operation broadcast_op;
239
c0f3af97
L
240/* VEX prefix. */
241typedef struct
242{
43234a1e
L
243 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
244 unsigned char bytes[4];
c0f3af97
L
245 unsigned int length;
246 /* Destination or source register specifier. */
247 const reg_entry *register_specifier;
248} vex_prefix;
249
252b5132 250/* 'md_assemble ()' gathers together information and puts it into a
47926f60 251 i386_insn. */
252b5132 252
520dc8e8
AM
253union i386_op
254 {
255 expressionS *disps;
256 expressionS *imms;
257 const reg_entry *regs;
258 };
259
a65babc9
L
260enum i386_error
261 {
86e026a4 262 operand_size_mismatch,
a65babc9
L
263 operand_type_mismatch,
264 register_type_mismatch,
265 number_of_operands_mismatch,
266 invalid_instruction_suffix,
267 bad_imm4,
268 old_gcc_only,
269 unsupported_with_intel_mnemonic,
270 unsupported_syntax,
6c30d220
L
271 unsupported,
272 invalid_vsib_address,
7bab8ab5 273 invalid_vector_register_set,
43234a1e
L
274 unsupported_vector_index_register,
275 unsupported_broadcast,
276 broadcast_not_on_src_operand,
277 broadcast_needed,
278 unsupported_masking,
279 mask_not_on_destination,
280 no_default_mask,
281 unsupported_rc_sae,
282 rc_sae_operand_not_last_imm,
283 invalid_register_operand,
a65babc9
L
284 };
285
252b5132
RH
286struct _i386_insn
287 {
47926f60 288 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 289 insn_template tm;
252b5132 290
7d5e4556
L
291 /* SUFFIX holds the instruction size suffix for byte, word, dword
292 or qword, if given. */
252b5132
RH
293 char suffix;
294
47926f60 295 /* OPERANDS gives the number of given operands. */
252b5132
RH
296 unsigned int operands;
297
298 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
299 of given register, displacement, memory operands and immediate
47926f60 300 operands. */
252b5132
RH
301 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
302
303 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 304 use OP[i] for the corresponding operand. */
40fb9820 305 i386_operand_type types[MAX_OPERANDS];
252b5132 306
520dc8e8
AM
307 /* Displacement expression, immediate expression, or register for each
308 operand. */
309 union i386_op op[MAX_OPERANDS];
252b5132 310
3e73aa7c
JH
311 /* Flags for operands. */
312 unsigned int flags[MAX_OPERANDS];
313#define Operand_PCrel 1
314
252b5132 315 /* Relocation type for operand */
f86103b7 316 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 317
252b5132
RH
318 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
319 the base index byte below. */
320 const reg_entry *base_reg;
321 const reg_entry *index_reg;
322 unsigned int log2_scale_factor;
323
324 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 325 explicit segment overrides are given. */
ce8a8b2f 326 const seg_entry *seg[2];
252b5132 327
8325cc63
JB
328 /* Copied first memory operand string, for re-checking. */
329 char *memop1_string;
330
252b5132
RH
331 /* PREFIX holds all the given prefix opcodes (usually null).
332 PREFIXES is the number of prefix opcodes. */
333 unsigned int prefixes;
334 unsigned char prefix[MAX_PREFIXES];
335
336 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 337 addressing modes of this insn are encoded. */
252b5132 338 modrm_byte rm;
3e73aa7c 339 rex_byte rex;
43234a1e 340 rex_byte vrex;
252b5132 341 sib_byte sib;
c0f3af97 342 vex_prefix vex;
b6169b20 343
43234a1e
L
344 /* Masking attributes. */
345 struct Mask_Operation *mask;
346
347 /* Rounding control and SAE attributes. */
348 struct RC_Operation *rounding;
349
350 /* Broadcasting attributes. */
351 struct Broadcast_Operation *broadcast;
352
353 /* Compressed disp8*N attribute. */
354 unsigned int memshift;
355
86fa6981
L
356 /* Prefer load or store in encoding. */
357 enum
358 {
359 dir_encoding_default = 0,
360 dir_encoding_load,
361 dir_encoding_store
362 } dir_encoding;
891edac4 363
a501d77e
L
364 /* Prefer 8bit or 32bit displacement in encoding. */
365 enum
366 {
367 disp_encoding_default = 0,
368 disp_encoding_8bit,
369 disp_encoding_32bit
370 } disp_encoding;
f8a5c266 371
6b6b6807
L
372 /* Prefer the REX byte in encoding. */
373 bfd_boolean rex_encoding;
374
b6f8c7c4
L
375 /* Disable instruction size optimization. */
376 bfd_boolean no_optimize;
377
86fa6981
L
378 /* How to encode vector instructions. */
379 enum
380 {
381 vex_encoding_default = 0,
382 vex_encoding_vex2,
383 vex_encoding_vex3,
384 vex_encoding_evex
385 } vec_encoding;
386
d5de92cf
L
387 /* REP prefix. */
388 const char *rep_prefix;
389
165de32a
L
390 /* HLE prefix. */
391 const char *hle_prefix;
42164a71 392
7e8b059b
L
393 /* Have BND prefix. */
394 const char *bnd_prefix;
395
04ef582a
L
396 /* Have NOTRACK prefix. */
397 const char *notrack_prefix;
398
891edac4 399 /* Error message. */
a65babc9 400 enum i386_error error;
252b5132
RH
401 };
402
403typedef struct _i386_insn i386_insn;
404
43234a1e
L
405/* Link RC type with corresponding string, that'll be looked for in
406 asm. */
407struct RC_name
408{
409 enum rc_type type;
410 const char *name;
411 unsigned int len;
412};
413
414static const struct RC_name RC_NamesTable[] =
415{
416 { rne, STRING_COMMA_LEN ("rn-sae") },
417 { rd, STRING_COMMA_LEN ("rd-sae") },
418 { ru, STRING_COMMA_LEN ("ru-sae") },
419 { rz, STRING_COMMA_LEN ("rz-sae") },
420 { saeonly, STRING_COMMA_LEN ("sae") },
421};
422
252b5132
RH
423/* List of chars besides those in app.c:symbol_chars that can start an
424 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 425const char extra_symbol_chars[] = "*%-([{}"
252b5132 426#ifdef LEX_AT
32137342
NC
427 "@"
428#endif
429#ifdef LEX_QM
430 "?"
252b5132 431#endif
32137342 432 ;
252b5132 433
29b0f896
AM
434#if (defined (TE_I386AIX) \
435 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 436 && !defined (TE_GNU) \
29b0f896 437 && !defined (TE_LINUX) \
8d63c93e
RM
438 && !defined (TE_NACL) \
439 && !defined (TE_NETWARE) \
29b0f896 440 && !defined (TE_FreeBSD) \
5b806d27 441 && !defined (TE_DragonFly) \
29b0f896 442 && !defined (TE_NetBSD)))
252b5132 443/* This array holds the chars that always start a comment. If the
b3b91714
AM
444 pre-processor is disabled, these aren't very useful. The option
445 --divide will remove '/' from this list. */
446const char *i386_comment_chars = "#/";
447#define SVR4_COMMENT_CHARS 1
252b5132 448#define PREFIX_SEPARATOR '\\'
252b5132 449
b3b91714
AM
450#else
451const char *i386_comment_chars = "#";
452#define PREFIX_SEPARATOR '/'
453#endif
454
252b5132
RH
455/* This array holds the chars that only start a comment at the beginning of
456 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
457 .line and .file directives will appear in the pre-processed output.
458 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 459 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
460 #NO_APP at the beginning of its output.
461 Also note that comments started like this one will always work if
252b5132 462 '/' isn't otherwise defined. */
b3b91714 463const char line_comment_chars[] = "#/";
252b5132 464
63a0b638 465const char line_separator_chars[] = ";";
252b5132 466
ce8a8b2f
AM
467/* Chars that can be used to separate mant from exp in floating point
468 nums. */
252b5132
RH
469const char EXP_CHARS[] = "eE";
470
ce8a8b2f
AM
471/* Chars that mean this number is a floating point constant
472 As in 0f12.456
473 or 0d1.2345e12. */
252b5132
RH
474const char FLT_CHARS[] = "fFdDxX";
475
ce8a8b2f 476/* Tables for lexical analysis. */
252b5132
RH
477static char mnemonic_chars[256];
478static char register_chars[256];
479static char operand_chars[256];
480static char identifier_chars[256];
481static char digit_chars[256];
482
ce8a8b2f 483/* Lexical macros. */
252b5132
RH
484#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
485#define is_operand_char(x) (operand_chars[(unsigned char) x])
486#define is_register_char(x) (register_chars[(unsigned char) x])
487#define is_space_char(x) ((x) == ' ')
488#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
489#define is_digit_char(x) (digit_chars[(unsigned char) x])
490
0234cb7c 491/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
492static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
493
494/* md_assemble() always leaves the strings it's passed unaltered. To
495 effect this we maintain a stack of saved characters that we've smashed
496 with '\0's (indicating end of strings for various sub-fields of the
47926f60 497 assembler instruction). */
252b5132 498static char save_stack[32];
ce8a8b2f 499static char *save_stack_p;
252b5132
RH
500#define END_STRING_AND_SAVE(s) \
501 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
502#define RESTORE_END_STRING(s) \
503 do { *(s) = *--save_stack_p; } while (0)
504
47926f60 505/* The instruction we're assembling. */
252b5132
RH
506static i386_insn i;
507
508/* Possible templates for current insn. */
509static const templates *current_templates;
510
31b2323c
L
511/* Per instruction expressionS buffers: max displacements & immediates. */
512static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
513static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 514
47926f60 515/* Current operand we are working on. */
ee86248c 516static int this_operand = -1;
252b5132 517
3e73aa7c
JH
518/* We support four different modes. FLAG_CODE variable is used to distinguish
519 these. */
520
521enum flag_code {
522 CODE_32BIT,
523 CODE_16BIT,
524 CODE_64BIT };
525
526static enum flag_code flag_code;
4fa24527 527static unsigned int object_64bit;
862be3fb 528static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
529static int use_rela_relocations = 0;
530
7af8ed2d
NC
531#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
532 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
533 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
534
351f65ca
L
535/* The ELF ABI to use. */
536enum x86_elf_abi
537{
538 I386_ABI,
7f56bc95
L
539 X86_64_ABI,
540 X86_64_X32_ABI
351f65ca
L
541};
542
543static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 544#endif
351f65ca 545
167ad85b
TG
546#if defined (TE_PE) || defined (TE_PEP)
547/* Use big object file format. */
548static int use_big_obj = 0;
549#endif
550
8dcea932
L
551#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
552/* 1 if generating code for a shared library. */
553static int shared = 0;
554#endif
555
47926f60
KH
556/* 1 for intel syntax,
557 0 if att syntax. */
558static int intel_syntax = 0;
252b5132 559
e89c5eaa
L
560/* 1 for Intel64 ISA,
561 0 if AMD64 ISA. */
562static int intel64;
563
1efbbeb4
L
564/* 1 for intel mnemonic,
565 0 if att mnemonic. */
566static int intel_mnemonic = !SYSV386_COMPAT;
567
5209009a 568/* 1 if support old (<= 2.8.1) versions of gcc. */
1efbbeb4
L
569static int old_gcc = OLDGCC_COMPAT;
570
a60de03c
JB
571/* 1 if pseudo registers are permitted. */
572static int allow_pseudo_reg = 0;
573
47926f60
KH
574/* 1 if register prefix % not required. */
575static int allow_naked_reg = 0;
252b5132 576
33eaf5de 577/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
578 instructions supporting it, even if this prefix wasn't specified
579 explicitly. */
580static int add_bnd_prefix = 0;
581
ba104c83 582/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
583static int allow_index_reg = 0;
584
d022bddd
IT
585/* 1 if the assembler should ignore LOCK prefix, even if it was
586 specified explicitly. */
587static int omit_lock_prefix = 0;
588
e4e00185
AS
589/* 1 if the assembler should encode lfence, mfence, and sfence as
590 "lock addl $0, (%{re}sp)". */
591static int avoid_fence = 0;
592
0cb4071e
L
593/* 1 if the assembler should generate relax relocations. */
594
595static int generate_relax_relocations
596 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
597
7bab8ab5 598static enum check_kind
daf50ae7 599 {
7bab8ab5
JB
600 check_none = 0,
601 check_warning,
602 check_error
daf50ae7 603 }
7bab8ab5 604sse_check, operand_check = check_warning;
daf50ae7 605
b6f8c7c4
L
606/* Optimization:
607 1. Clear the REX_W bit with register operand if possible.
608 2. Above plus use 128bit vector instruction to clear the full vector
609 register.
610 */
611static int optimize = 0;
612
613/* Optimization:
614 1. Clear the REX_W bit with register operand if possible.
615 2. Above plus use 128bit vector instruction to clear the full vector
616 register.
617 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
618 "testb $imm7,%r8".
619 */
620static int optimize_for_space = 0;
621
2ca3ace5
L
622/* Register prefix used for error message. */
623static const char *register_prefix = "%";
624
47926f60
KH
625/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
626 leave, push, and pop instructions so that gcc has the same stack
627 frame as in 32 bit mode. */
628static char stackop_size = '\0';
eecb386c 629
12b55ccc
L
630/* Non-zero to optimize code alignment. */
631int optimize_align_code = 1;
632
47926f60
KH
633/* Non-zero to quieten some warnings. */
634static int quiet_warnings = 0;
a38cf1db 635
47926f60
KH
636/* CPU name. */
637static const char *cpu_arch_name = NULL;
6305a203 638static char *cpu_sub_arch_name = NULL;
a38cf1db 639
47926f60 640/* CPU feature flags. */
40fb9820
L
641static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
642
ccc9c027
L
643/* If we have selected a cpu we are generating instructions for. */
644static int cpu_arch_tune_set = 0;
645
9103f4f4 646/* Cpu we are generating instructions for. */
fbf3f584 647enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
648
649/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 650static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 651
ccc9c027 652/* CPU instruction set architecture used. */
fbf3f584 653enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 654
9103f4f4 655/* CPU feature flags of instruction set architecture used. */
fbf3f584 656i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 657
fddf5b5b
AM
658/* If set, conditional jumps are not automatically promoted to handle
659 larger than a byte offset. */
660static unsigned int no_cond_jump_promotion = 0;
661
c0f3af97
L
662/* Encode SSE instructions with VEX prefix. */
663static unsigned int sse2avx;
664
539f890d
L
665/* Encode scalar AVX instructions with specific vector length. */
666static enum
667 {
668 vex128 = 0,
669 vex256
670 } avxscalar;
671
43234a1e
L
672/* Encode scalar EVEX LIG instructions with specific vector length. */
673static enum
674 {
675 evexl128 = 0,
676 evexl256,
677 evexl512
678 } evexlig;
679
680/* Encode EVEX WIG instructions with specific evex.w. */
681static enum
682 {
683 evexw0 = 0,
684 evexw1
685 } evexwig;
686
d3d3c6db
IT
687/* Value to encode in EVEX RC bits, for SAE-only instructions. */
688static enum rc_type evexrcig = rne;
689
29b0f896 690/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 691static symbolS *GOT_symbol;
29b0f896 692
a4447b93
RH
693/* The dwarf2 return column, adjusted for 32 or 64 bit. */
694unsigned int x86_dwarf2_return_column;
695
696/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
697int x86_cie_data_alignment;
698
252b5132 699/* Interface to relax_segment.
fddf5b5b
AM
700 There are 3 major relax states for 386 jump insns because the
701 different types of jumps add different sizes to frags when we're
702 figuring out what sort of jump to choose to reach a given label. */
252b5132 703
47926f60 704/* Types. */
93c2a809
AM
705#define UNCOND_JUMP 0
706#define COND_JUMP 1
707#define COND_JUMP86 2
fddf5b5b 708
47926f60 709/* Sizes. */
252b5132
RH
710#define CODE16 1
711#define SMALL 0
29b0f896 712#define SMALL16 (SMALL | CODE16)
252b5132 713#define BIG 2
29b0f896 714#define BIG16 (BIG | CODE16)
252b5132
RH
715
716#ifndef INLINE
717#ifdef __GNUC__
718#define INLINE __inline__
719#else
720#define INLINE
721#endif
722#endif
723
fddf5b5b
AM
724#define ENCODE_RELAX_STATE(type, size) \
725 ((relax_substateT) (((type) << 2) | (size)))
726#define TYPE_FROM_RELAX_STATE(s) \
727 ((s) >> 2)
728#define DISP_SIZE_FROM_RELAX_STATE(s) \
729 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
730
731/* This table is used by relax_frag to promote short jumps to long
732 ones where necessary. SMALL (short) jumps may be promoted to BIG
733 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
734 don't allow a short jump in a 32 bit code segment to be promoted to
735 a 16 bit offset jump because it's slower (requires data size
736 prefix), and doesn't work, unless the destination is in the bottom
737 64k of the code segment (The top 16 bits of eip are zeroed). */
738
739const relax_typeS md_relax_table[] =
740{
24eab124
AM
741 /* The fields are:
742 1) most positive reach of this state,
743 2) most negative reach of this state,
93c2a809 744 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 745 4) which index into the table to try if we can't fit into this one. */
252b5132 746
fddf5b5b 747 /* UNCOND_JUMP states. */
93c2a809
AM
748 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
749 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
750 /* dword jmp adds 4 bytes to frag:
751 0 extra opcode bytes, 4 displacement bytes. */
252b5132 752 {0, 0, 4, 0},
93c2a809
AM
753 /* word jmp adds 2 byte2 to frag:
754 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
755 {0, 0, 2, 0},
756
93c2a809
AM
757 /* COND_JUMP states. */
758 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
759 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
760 /* dword conditionals adds 5 bytes to frag:
761 1 extra opcode byte, 4 displacement bytes. */
762 {0, 0, 5, 0},
fddf5b5b 763 /* word conditionals add 3 bytes to frag:
93c2a809
AM
764 1 extra opcode byte, 2 displacement bytes. */
765 {0, 0, 3, 0},
766
767 /* COND_JUMP86 states. */
768 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
769 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
770 /* dword conditionals adds 5 bytes to frag:
771 1 extra opcode byte, 4 displacement bytes. */
772 {0, 0, 5, 0},
773 /* word conditionals add 4 bytes to frag:
774 1 displacement byte and a 3 byte long branch insn. */
775 {0, 0, 4, 0}
252b5132
RH
776};
777
9103f4f4
L
778static const arch_entry cpu_arch[] =
779{
89507696
JB
780 /* Do not replace the first two entries - i386_target_format()
781 relies on them being there in this order. */
8a2c8fef 782 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 783 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 784 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 785 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 786 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 787 CPU_NONE_FLAGS, 0 },
8a2c8fef 788 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 789 CPU_I186_FLAGS, 0 },
8a2c8fef 790 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 791 CPU_I286_FLAGS, 0 },
8a2c8fef 792 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 793 CPU_I386_FLAGS, 0 },
8a2c8fef 794 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 795 CPU_I486_FLAGS, 0 },
8a2c8fef 796 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 797 CPU_I586_FLAGS, 0 },
8a2c8fef 798 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 799 CPU_I686_FLAGS, 0 },
8a2c8fef 800 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 801 CPU_I586_FLAGS, 0 },
8a2c8fef 802 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 803 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 804 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 805 CPU_P2_FLAGS, 0 },
8a2c8fef 806 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 807 CPU_P3_FLAGS, 0 },
8a2c8fef 808 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 809 CPU_P4_FLAGS, 0 },
8a2c8fef 810 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 811 CPU_CORE_FLAGS, 0 },
8a2c8fef 812 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 813 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 814 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 815 CPU_CORE_FLAGS, 1 },
8a2c8fef 816 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 817 CPU_CORE_FLAGS, 0 },
8a2c8fef 818 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 819 CPU_CORE2_FLAGS, 1 },
8a2c8fef 820 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 821 CPU_CORE2_FLAGS, 0 },
8a2c8fef 822 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 823 CPU_COREI7_FLAGS, 0 },
8a2c8fef 824 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 825 CPU_L1OM_FLAGS, 0 },
7a9068fe 826 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 827 CPU_K1OM_FLAGS, 0 },
81486035 828 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 829 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 830 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 831 CPU_K6_FLAGS, 0 },
8a2c8fef 832 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 833 CPU_K6_2_FLAGS, 0 },
8a2c8fef 834 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 835 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 836 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 837 CPU_K8_FLAGS, 1 },
8a2c8fef 838 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 839 CPU_K8_FLAGS, 0 },
8a2c8fef 840 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 841 CPU_K8_FLAGS, 0 },
8a2c8fef 842 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 843 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 844 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 845 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 846 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 847 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 848 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 849 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 850 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 851 CPU_BDVER4_FLAGS, 0 },
029f3522 852 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 853 CPU_ZNVER1_FLAGS, 0 },
7b458c12 854 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 855 CPU_BTVER1_FLAGS, 0 },
7b458c12 856 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 857 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 858 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 859 CPU_8087_FLAGS, 0 },
8a2c8fef 860 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 861 CPU_287_FLAGS, 0 },
8a2c8fef 862 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 863 CPU_387_FLAGS, 0 },
1848e567
L
864 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
865 CPU_687_FLAGS, 0 },
8a2c8fef 866 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 867 CPU_MMX_FLAGS, 0 },
8a2c8fef 868 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 869 CPU_SSE_FLAGS, 0 },
8a2c8fef 870 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 871 CPU_SSE2_FLAGS, 0 },
8a2c8fef 872 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 873 CPU_SSE3_FLAGS, 0 },
8a2c8fef 874 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 875 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 876 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 877 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 878 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 879 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 880 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 881 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 882 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 883 CPU_AVX_FLAGS, 0 },
6c30d220 884 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 885 CPU_AVX2_FLAGS, 0 },
43234a1e 886 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 887 CPU_AVX512F_FLAGS, 0 },
43234a1e 888 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 889 CPU_AVX512CD_FLAGS, 0 },
43234a1e 890 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 891 CPU_AVX512ER_FLAGS, 0 },
43234a1e 892 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 893 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 894 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 895 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 896 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 897 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 898 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 899 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 900 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 901 CPU_VMX_FLAGS, 0 },
8729a6f6 902 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 903 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 904 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 905 CPU_SMX_FLAGS, 0 },
8a2c8fef 906 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 907 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 908 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 909 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 910 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 911 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 912 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 913 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 914 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 915 CPU_AES_FLAGS, 0 },
8a2c8fef 916 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 917 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 918 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 919 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 920 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 921 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 922 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 923 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 924 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 925 CPU_F16C_FLAGS, 0 },
6c30d220 926 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 927 CPU_BMI2_FLAGS, 0 },
8a2c8fef 928 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 929 CPU_FMA_FLAGS, 0 },
8a2c8fef 930 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 931 CPU_FMA4_FLAGS, 0 },
8a2c8fef 932 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 933 CPU_XOP_FLAGS, 0 },
8a2c8fef 934 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 935 CPU_LWP_FLAGS, 0 },
8a2c8fef 936 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 937 CPU_MOVBE_FLAGS, 0 },
60aa667e 938 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 939 CPU_CX16_FLAGS, 0 },
8a2c8fef 940 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 941 CPU_EPT_FLAGS, 0 },
6c30d220 942 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 943 CPU_LZCNT_FLAGS, 0 },
42164a71 944 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 945 CPU_HLE_FLAGS, 0 },
42164a71 946 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 947 CPU_RTM_FLAGS, 0 },
6c30d220 948 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 949 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 950 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 951 CPU_CLFLUSH_FLAGS, 0 },
22109423 952 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 953 CPU_NOP_FLAGS, 0 },
8a2c8fef 954 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 955 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 956 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 957 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 958 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 959 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 960 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 961 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 962 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 963 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 964 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 965 CPU_SVME_FLAGS, 1 },
8a2c8fef 966 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 967 CPU_SVME_FLAGS, 0 },
8a2c8fef 968 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 969 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 970 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 971 CPU_ABM_FLAGS, 0 },
87973e9f 972 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 973 CPU_BMI_FLAGS, 0 },
2a2a0f38 974 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 975 CPU_TBM_FLAGS, 0 },
e2e1fcde 976 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 977 CPU_ADX_FLAGS, 0 },
e2e1fcde 978 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 979 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 980 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 981 CPU_PRFCHW_FLAGS, 0 },
5c111e37 982 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 983 CPU_SMAP_FLAGS, 0 },
7e8b059b 984 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 985 CPU_MPX_FLAGS, 0 },
a0046408 986 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 987 CPU_SHA_FLAGS, 0 },
963f3586 988 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 989 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 990 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 991 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 992 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 993 CPU_SE1_FLAGS, 0 },
c5e7287a 994 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 995 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 996 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 997 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 998 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 999 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
1000 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1001 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
1002 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1003 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1004 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1005 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1006 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1007 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1008 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1009 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1010 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1011 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1012 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1013 CPU_CLZERO_FLAGS, 0 },
9916071f 1014 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1015 CPU_MWAITX_FLAGS, 0 },
8eab4136 1016 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1017 CPU_OSPKE_FLAGS, 0 },
8bc52696 1018 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1019 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1020 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1021 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1022 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1023 CPU_IBT_FLAGS, 0 },
1024 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1025 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1026 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1027 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1028 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1029 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1030 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1031 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1032 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1033 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1034 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1035 CPU_PCONFIG_FLAGS, 0 },
293f5f65
L
1036};
1037
1038static const noarch_entry cpu_noarch[] =
1039{
1040 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1041 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1042 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1043 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
293f5f65
L
1044 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1045 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1046 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1047 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1048 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1049 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1050 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1051 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1052 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1053 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1054 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1055 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1056 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1057 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1058 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1059 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1060 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1061 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1062 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1063 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1064 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1065 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1066 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1067 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1068 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1069 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1070 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
e413e4e9
AM
1071};
1072
704209c0 1073#ifdef I386COFF
a6c24e68
NC
1074/* Like s_lcomm_internal in gas/read.c but the alignment string
1075 is allowed to be optional. */
1076
1077static symbolS *
1078pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1079{
1080 addressT align = 0;
1081
1082 SKIP_WHITESPACE ();
1083
7ab9ffdd 1084 if (needs_align
a6c24e68
NC
1085 && *input_line_pointer == ',')
1086 {
1087 align = parse_align (needs_align - 1);
7ab9ffdd 1088
a6c24e68
NC
1089 if (align == (addressT) -1)
1090 return NULL;
1091 }
1092 else
1093 {
1094 if (size >= 8)
1095 align = 3;
1096 else if (size >= 4)
1097 align = 2;
1098 else if (size >= 2)
1099 align = 1;
1100 else
1101 align = 0;
1102 }
1103
1104 bss_alloc (symbolP, size, align);
1105 return symbolP;
1106}
1107
704209c0 1108static void
a6c24e68
NC
1109pe_lcomm (int needs_align)
1110{
1111 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1112}
704209c0 1113#endif
a6c24e68 1114
29b0f896
AM
1115const pseudo_typeS md_pseudo_table[] =
1116{
1117#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1118 {"align", s_align_bytes, 0},
1119#else
1120 {"align", s_align_ptwo, 0},
1121#endif
1122 {"arch", set_cpu_arch, 0},
1123#ifndef I386COFF
1124 {"bss", s_bss, 0},
a6c24e68
NC
1125#else
1126 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1127#endif
1128 {"ffloat", float_cons, 'f'},
1129 {"dfloat", float_cons, 'd'},
1130 {"tfloat", float_cons, 'x'},
1131 {"value", cons, 2},
d182319b 1132 {"slong", signed_cons, 4},
29b0f896
AM
1133 {"noopt", s_ignore, 0},
1134 {"optim", s_ignore, 0},
1135 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1136 {"code16", set_code_flag, CODE_16BIT},
1137 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1138#ifdef BFD64
29b0f896 1139 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1140#endif
29b0f896
AM
1141 {"intel_syntax", set_intel_syntax, 1},
1142 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1143 {"intel_mnemonic", set_intel_mnemonic, 1},
1144 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1145 {"allow_index_reg", set_allow_index_reg, 1},
1146 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1147 {"sse_check", set_check, 0},
1148 {"operand_check", set_check, 1},
3b22753a
L
1149#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1150 {"largecomm", handle_large_common, 0},
07a53e5c 1151#else
68d20676 1152 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1153 {"loc", dwarf2_directive_loc, 0},
1154 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1155#endif
6482c264
NC
1156#ifdef TE_PE
1157 {"secrel32", pe_directive_secrel, 0},
1158#endif
29b0f896
AM
1159 {0, 0, 0}
1160};
1161
1162/* For interface with expression (). */
1163extern char *input_line_pointer;
1164
1165/* Hash table for instruction mnemonic lookup. */
1166static struct hash_control *op_hash;
1167
1168/* Hash table for register lookup. */
1169static struct hash_control *reg_hash;
1170\f
ce8a8b2f
AM
1171 /* Various efficient no-op patterns for aligning code labels.
1172 Note: Don't try to assemble the instructions in the comments.
1173 0L and 0w are not legal. */
62a02d25
L
1174static const unsigned char f32_1[] =
1175 {0x90}; /* nop */
1176static const unsigned char f32_2[] =
1177 {0x66,0x90}; /* xchg %ax,%ax */
1178static const unsigned char f32_3[] =
1179 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1180static const unsigned char f32_4[] =
1181 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1182static const unsigned char f32_5[] =
1183 {0x90, /* nop */
1184 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1185static const unsigned char f32_6[] =
1186 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1187static const unsigned char f32_7[] =
1188 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1189static const unsigned char f32_8[] =
1190 {0x90, /* nop */
1191 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1192static const unsigned char f32_9[] =
1193 {0x89,0xf6, /* movl %esi,%esi */
1194 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1195static const unsigned char f32_10[] =
1196 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1197 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1198static const unsigned char f32_11[] =
1199 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1200 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1201static const unsigned char f32_12[] =
1202 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1203 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
1204static const unsigned char f32_13[] =
1205 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1206 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1207static const unsigned char f32_14[] =
1208 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1209 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1210static const unsigned char f16_3[] =
1211 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
1212static const unsigned char f16_4[] =
1213 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1214static const unsigned char f16_5[] =
1215 {0x90, /* nop */
1216 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1217static const unsigned char f16_6[] =
1218 {0x89,0xf6, /* mov %si,%si */
1219 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1220static const unsigned char f16_7[] =
1221 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1222 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1223static const unsigned char f16_8[] =
1224 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1225 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1226static const unsigned char jump_31[] =
1227 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1228 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1229 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1230 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
1231/* 32-bit NOPs patterns. */
1232static const unsigned char *const f32_patt[] = {
1233 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
1234 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
1235};
1236/* 16-bit NOPs patterns. */
1237static const unsigned char *const f16_patt[] = {
1238 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
1239};
1240/* nopl (%[re]ax) */
1241static const unsigned char alt_3[] =
1242 {0x0f,0x1f,0x00};
1243/* nopl 0(%[re]ax) */
1244static const unsigned char alt_4[] =
1245 {0x0f,0x1f,0x40,0x00};
1246/* nopl 0(%[re]ax,%[re]ax,1) */
1247static const unsigned char alt_5[] =
1248 {0x0f,0x1f,0x44,0x00,0x00};
1249/* nopw 0(%[re]ax,%[re]ax,1) */
1250static const unsigned char alt_6[] =
1251 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1252/* nopl 0L(%[re]ax) */
1253static const unsigned char alt_7[] =
1254 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1255/* nopl 0L(%[re]ax,%[re]ax,1) */
1256static const unsigned char alt_8[] =
1257 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1258/* nopw 0L(%[re]ax,%[re]ax,1) */
1259static const unsigned char alt_9[] =
1260 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1261/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1262static const unsigned char alt_10[] =
1263 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1264/* 32-bit and 64-bit NOPs patterns. */
1265static const unsigned char *const alt_patt[] = {
1266 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1267 alt_9, alt_10
1268};
1269/* 64-bit only: nopw %cs:0L(%eax,%eax,1) */
1270static const unsigned char alt64_11[] =
1271 {0x67,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1272/* 64-bit NOPs patterns. */
1273static const unsigned char *const alt64_patt[] = {
1274 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1275 alt_9, alt_10, alt64_11
1276};
1277
1278/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1279 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1280
1281static void
1282i386_output_nops (char *where, const unsigned char *const *patt,
1283 int count, int max_single_nop_size)
1284
1285{
1286 while (count > max_single_nop_size)
1287 {
1288 count -= max_single_nop_size;
1289 memcpy (where + count, patt[max_single_nop_size - 1],
1290 max_single_nop_size);
1291 }
1292
1293 if (count)
1294 memcpy (where, patt[count - 1], count);
1295}
1296
1297
1298/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1299 single NOP instruction LIMIT. */
1300
1301void
1302i386_generate_nops (fragS *f, char *where, offsetT count, int limit)
1303{
1304 /* Output NOPs for .nop directive. */
1305 int max_single_nop_size;
1306 const unsigned char *const *patt;
1307
1308 if (flag_code == CODE_16BIT)
1309 {
1310 patt = f16_patt;
1311 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1312 }
1313 else if (flag_code == CODE_64BIT)
1314 {
1315 patt = alt64_patt;
1316 max_single_nop_size = sizeof (alt64_patt) / sizeof (alt64_patt[0]);
1317 }
1318 else
1319 {
1320 patt = alt_patt;
1321 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1322 }
1323 if (limit == 0)
1324 limit = max_single_nop_size;
1325 else if (limit > max_single_nop_size)
1326 {
1327 as_bad_where (f->fr_file, f->fr_line,
1328 _("invalide single nop size: %d (expect within [0, %d])"),
1329 limit, max_single_nop_size);
1330 return;
1331 }
1332
1333 i386_output_nops (where, patt, count, limit);
1334}
252b5132 1335
62a02d25
L
1336void
1337i386_align_code (fragS *fragP, int count)
1338{
76bc74dc
L
1339 /* Only align for at least a positive non-zero boundary. */
1340 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
33fef721 1341 return;
3e73aa7c 1342
ccc9c027
L
1343 /* We need to decide which NOP sequence to use for 32bit and
1344 64bit. When -mtune= is used:
4eed87de 1345
76bc74dc
L
1346 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1347 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1348 2. For the rest, alt_patt will be used.
1349
1350 When -mtune= isn't used, alt_patt will be used if
22109423 1351 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1352 be used.
ccc9c027
L
1353
1354 When -march= or .arch is used, we can't use anything beyond
1355 cpu_arch_isa_flags. */
1356
1357 if (flag_code == CODE_16BIT)
1358 {
ccc9c027 1359 if (count > 8)
33fef721 1360 {
76bc74dc
L
1361 memcpy (fragP->fr_literal + fragP->fr_fix,
1362 jump_31, count);
1363 /* Adjust jump offset. */
1364 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
252b5132 1365 }
76bc74dc
L
1366 else
1367 memcpy (fragP->fr_literal + fragP->fr_fix,
1368 f16_patt[count - 1], count);
252b5132 1369 }
33fef721 1370 else
ccc9c027 1371 {
bad6e36d 1372 const unsigned char *const *patt = NULL;
ccc9c027 1373
fbf3f584 1374 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1375 {
1376 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1377 switch (cpu_arch_tune)
1378 {
1379 case PROCESSOR_UNKNOWN:
1380 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1381 optimize with nops. */
1382 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1383 patt = alt_patt;
ccc9c027
L
1384 else
1385 patt = f32_patt;
1386 break;
ccc9c027
L
1387 case PROCESSOR_PENTIUM4:
1388 case PROCESSOR_NOCONA:
ef05d495 1389 case PROCESSOR_CORE:
76bc74dc 1390 case PROCESSOR_CORE2:
bd5295b2 1391 case PROCESSOR_COREI7:
3632d14b 1392 case PROCESSOR_L1OM:
7a9068fe 1393 case PROCESSOR_K1OM:
76bc74dc 1394 case PROCESSOR_GENERIC64:
ccc9c027
L
1395 case PROCESSOR_K6:
1396 case PROCESSOR_ATHLON:
1397 case PROCESSOR_K8:
4eed87de 1398 case PROCESSOR_AMDFAM10:
8aedb9fe 1399 case PROCESSOR_BD:
029f3522 1400 case PROCESSOR_ZNVER:
7b458c12 1401 case PROCESSOR_BT:
80b8656c 1402 patt = alt_patt;
ccc9c027 1403 break;
76bc74dc 1404 case PROCESSOR_I386:
ccc9c027
L
1405 case PROCESSOR_I486:
1406 case PROCESSOR_PENTIUM:
2dde1948 1407 case PROCESSOR_PENTIUMPRO:
81486035 1408 case PROCESSOR_IAMCU:
ccc9c027
L
1409 case PROCESSOR_GENERIC32:
1410 patt = f32_patt;
1411 break;
4eed87de 1412 }
ccc9c027
L
1413 }
1414 else
1415 {
fbf3f584 1416 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1417 {
1418 case PROCESSOR_UNKNOWN:
e6a14101 1419 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1420 PROCESSOR_UNKNOWN. */
1421 abort ();
1422 break;
1423
76bc74dc 1424 case PROCESSOR_I386:
ccc9c027
L
1425 case PROCESSOR_I486:
1426 case PROCESSOR_PENTIUM:
81486035 1427 case PROCESSOR_IAMCU:
ccc9c027
L
1428 case PROCESSOR_K6:
1429 case PROCESSOR_ATHLON:
1430 case PROCESSOR_K8:
4eed87de 1431 case PROCESSOR_AMDFAM10:
8aedb9fe 1432 case PROCESSOR_BD:
029f3522 1433 case PROCESSOR_ZNVER:
7b458c12 1434 case PROCESSOR_BT:
ccc9c027
L
1435 case PROCESSOR_GENERIC32:
1436 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1437 with nops. */
1438 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1439 patt = alt_patt;
ccc9c027
L
1440 else
1441 patt = f32_patt;
1442 break;
76bc74dc
L
1443 case PROCESSOR_PENTIUMPRO:
1444 case PROCESSOR_PENTIUM4:
1445 case PROCESSOR_NOCONA:
1446 case PROCESSOR_CORE:
ef05d495 1447 case PROCESSOR_CORE2:
bd5295b2 1448 case PROCESSOR_COREI7:
3632d14b 1449 case PROCESSOR_L1OM:
7a9068fe 1450 case PROCESSOR_K1OM:
22109423 1451 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1452 patt = alt_patt;
ccc9c027
L
1453 else
1454 patt = f32_patt;
1455 break;
1456 case PROCESSOR_GENERIC64:
80b8656c 1457 patt = alt_patt;
ccc9c027 1458 break;
4eed87de 1459 }
ccc9c027
L
1460 }
1461
76bc74dc
L
1462 if (patt == f32_patt)
1463 {
1464 /* If the padding is less than 15 bytes, we use the normal
1465 ones. Otherwise, we use a jump instruction and adjust
711eedef
L
1466 its offset. */
1467 int limit;
76ba9986 1468
711eedef
L
1469 /* For 64bit, the limit is 3 bytes. */
1470 if (flag_code == CODE_64BIT
1471 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1472 limit = 3;
1473 else
1474 limit = 15;
1475 if (count < limit)
76bc74dc
L
1476 memcpy (fragP->fr_literal + fragP->fr_fix,
1477 patt[count - 1], count);
1478 else
1479 {
1480 memcpy (fragP->fr_literal + fragP->fr_fix,
1481 jump_31, count);
1482 /* Adjust jump offset. */
1483 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1484 }
1485 }
1486 else
1487 {
80b8656c
L
1488 /* Maximum length of an instruction is 10 byte. If the
1489 padding is greater than 10 bytes and we don't use jump,
76bc74dc 1490 we have to break it into smaller pieces. */
62a02d25
L
1491 i386_output_nops (fragP->fr_literal + fragP->fr_fix,
1492 patt, count, 10);
76bc74dc 1493 }
ccc9c027 1494 }
33fef721 1495 fragP->fr_var = count;
252b5132
RH
1496}
1497
c6fb90c8 1498static INLINE int
0dfbf9d7 1499operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1500{
0dfbf9d7 1501 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1502 {
1503 case 3:
0dfbf9d7 1504 if (x->array[2])
c6fb90c8 1505 return 0;
1a0670f3 1506 /* Fall through. */
c6fb90c8 1507 case 2:
0dfbf9d7 1508 if (x->array[1])
c6fb90c8 1509 return 0;
1a0670f3 1510 /* Fall through. */
c6fb90c8 1511 case 1:
0dfbf9d7 1512 return !x->array[0];
c6fb90c8
L
1513 default:
1514 abort ();
1515 }
40fb9820
L
1516}
1517
c6fb90c8 1518static INLINE void
0dfbf9d7 1519operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1520{
0dfbf9d7 1521 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1522 {
1523 case 3:
0dfbf9d7 1524 x->array[2] = v;
1a0670f3 1525 /* Fall through. */
c6fb90c8 1526 case 2:
0dfbf9d7 1527 x->array[1] = v;
1a0670f3 1528 /* Fall through. */
c6fb90c8 1529 case 1:
0dfbf9d7 1530 x->array[0] = v;
1a0670f3 1531 /* Fall through. */
c6fb90c8
L
1532 break;
1533 default:
1534 abort ();
1535 }
1536}
40fb9820 1537
c6fb90c8 1538static INLINE int
0dfbf9d7
L
1539operand_type_equal (const union i386_operand_type *x,
1540 const union i386_operand_type *y)
c6fb90c8 1541{
0dfbf9d7 1542 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1543 {
1544 case 3:
0dfbf9d7 1545 if (x->array[2] != y->array[2])
c6fb90c8 1546 return 0;
1a0670f3 1547 /* Fall through. */
c6fb90c8 1548 case 2:
0dfbf9d7 1549 if (x->array[1] != y->array[1])
c6fb90c8 1550 return 0;
1a0670f3 1551 /* Fall through. */
c6fb90c8 1552 case 1:
0dfbf9d7 1553 return x->array[0] == y->array[0];
c6fb90c8
L
1554 break;
1555 default:
1556 abort ();
1557 }
1558}
40fb9820 1559
0dfbf9d7
L
1560static INLINE int
1561cpu_flags_all_zero (const union i386_cpu_flags *x)
1562{
1563 switch (ARRAY_SIZE(x->array))
1564 {
53467f57
IT
1565 case 4:
1566 if (x->array[3])
1567 return 0;
1568 /* Fall through. */
0dfbf9d7
L
1569 case 3:
1570 if (x->array[2])
1571 return 0;
1a0670f3 1572 /* Fall through. */
0dfbf9d7
L
1573 case 2:
1574 if (x->array[1])
1575 return 0;
1a0670f3 1576 /* Fall through. */
0dfbf9d7
L
1577 case 1:
1578 return !x->array[0];
1579 default:
1580 abort ();
1581 }
1582}
1583
0dfbf9d7
L
1584static INLINE int
1585cpu_flags_equal (const union i386_cpu_flags *x,
1586 const union i386_cpu_flags *y)
1587{
1588 switch (ARRAY_SIZE(x->array))
1589 {
53467f57
IT
1590 case 4:
1591 if (x->array[3] != y->array[3])
1592 return 0;
1593 /* Fall through. */
0dfbf9d7
L
1594 case 3:
1595 if (x->array[2] != y->array[2])
1596 return 0;
1a0670f3 1597 /* Fall through. */
0dfbf9d7
L
1598 case 2:
1599 if (x->array[1] != y->array[1])
1600 return 0;
1a0670f3 1601 /* Fall through. */
0dfbf9d7
L
1602 case 1:
1603 return x->array[0] == y->array[0];
1604 break;
1605 default:
1606 abort ();
1607 }
1608}
c6fb90c8
L
1609
1610static INLINE int
1611cpu_flags_check_cpu64 (i386_cpu_flags f)
1612{
1613 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1614 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1615}
1616
c6fb90c8
L
1617static INLINE i386_cpu_flags
1618cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1619{
c6fb90c8
L
1620 switch (ARRAY_SIZE (x.array))
1621 {
53467f57
IT
1622 case 4:
1623 x.array [3] &= y.array [3];
1624 /* Fall through. */
c6fb90c8
L
1625 case 3:
1626 x.array [2] &= y.array [2];
1a0670f3 1627 /* Fall through. */
c6fb90c8
L
1628 case 2:
1629 x.array [1] &= y.array [1];
1a0670f3 1630 /* Fall through. */
c6fb90c8
L
1631 case 1:
1632 x.array [0] &= y.array [0];
1633 break;
1634 default:
1635 abort ();
1636 }
1637 return x;
1638}
40fb9820 1639
c6fb90c8
L
1640static INLINE i386_cpu_flags
1641cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1642{
c6fb90c8 1643 switch (ARRAY_SIZE (x.array))
40fb9820 1644 {
53467f57
IT
1645 case 4:
1646 x.array [3] |= y.array [3];
1647 /* Fall through. */
c6fb90c8
L
1648 case 3:
1649 x.array [2] |= y.array [2];
1a0670f3 1650 /* Fall through. */
c6fb90c8
L
1651 case 2:
1652 x.array [1] |= y.array [1];
1a0670f3 1653 /* Fall through. */
c6fb90c8
L
1654 case 1:
1655 x.array [0] |= y.array [0];
40fb9820
L
1656 break;
1657 default:
1658 abort ();
1659 }
40fb9820
L
1660 return x;
1661}
1662
309d3373
JB
1663static INLINE i386_cpu_flags
1664cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1665{
1666 switch (ARRAY_SIZE (x.array))
1667 {
53467f57
IT
1668 case 4:
1669 x.array [3] &= ~y.array [3];
1670 /* Fall through. */
309d3373
JB
1671 case 3:
1672 x.array [2] &= ~y.array [2];
1a0670f3 1673 /* Fall through. */
309d3373
JB
1674 case 2:
1675 x.array [1] &= ~y.array [1];
1a0670f3 1676 /* Fall through. */
309d3373
JB
1677 case 1:
1678 x.array [0] &= ~y.array [0];
1679 break;
1680 default:
1681 abort ();
1682 }
1683 return x;
1684}
1685
c0f3af97
L
1686#define CPU_FLAGS_ARCH_MATCH 0x1
1687#define CPU_FLAGS_64BIT_MATCH 0x2
a5ff0eb2 1688#define CPU_FLAGS_AES_MATCH 0x4
ce2f5b3c
L
1689#define CPU_FLAGS_PCLMUL_MATCH 0x8
1690#define CPU_FLAGS_AVX_MATCH 0x10
c0f3af97 1691
a5ff0eb2 1692#define CPU_FLAGS_32BIT_MATCH \
ce2f5b3c
L
1693 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1694 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
c0f3af97
L
1695#define CPU_FLAGS_PERFECT_MATCH \
1696 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1697
1698/* Return CPU flags match bits. */
3629bb00 1699
40fb9820 1700static int
d3ce72d0 1701cpu_flags_match (const insn_template *t)
40fb9820 1702{
c0f3af97
L
1703 i386_cpu_flags x = t->cpu_flags;
1704 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1705
1706 x.bitfield.cpu64 = 0;
1707 x.bitfield.cpuno64 = 0;
1708
0dfbf9d7 1709 if (cpu_flags_all_zero (&x))
c0f3af97
L
1710 {
1711 /* This instruction is available on all archs. */
1712 match |= CPU_FLAGS_32BIT_MATCH;
1713 }
3629bb00
L
1714 else
1715 {
c0f3af97 1716 /* This instruction is available only on some archs. */
3629bb00
L
1717 i386_cpu_flags cpu = cpu_arch_flags;
1718
3629bb00 1719 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1720 if (!cpu_flags_all_zero (&cpu))
1721 {
a5ff0eb2
L
1722 if (x.bitfield.cpuavx)
1723 {
ce2f5b3c 1724 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
a5ff0eb2
L
1725 if (cpu.bitfield.cpuavx)
1726 {
1727 /* Check SSE2AVX. */
1728 if (!t->opcode_modifier.sse2avx|| sse2avx)
1729 {
1730 match |= (CPU_FLAGS_ARCH_MATCH
1731 | CPU_FLAGS_AVX_MATCH);
1732 /* Check AES. */
1733 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1734 match |= CPU_FLAGS_AES_MATCH;
ce2f5b3c
L
1735 /* Check PCLMUL. */
1736 if (!x.bitfield.cpupclmul
1737 || cpu.bitfield.cpupclmul)
1738 match |= CPU_FLAGS_PCLMUL_MATCH;
a5ff0eb2
L
1739 }
1740 }
1741 else
1742 match |= CPU_FLAGS_ARCH_MATCH;
1743 }
73b090a9
L
1744 else if (x.bitfield.cpuavx512vl)
1745 {
1746 /* Match AVX512VL. */
1747 if (cpu.bitfield.cpuavx512vl)
1748 {
1749 /* Need another match. */
1750 cpu.bitfield.cpuavx512vl = 0;
1751 if (!cpu_flags_all_zero (&cpu))
1752 match |= CPU_FLAGS_32BIT_MATCH;
1753 else
1754 match |= CPU_FLAGS_ARCH_MATCH;
1755 }
1756 else
1757 match |= CPU_FLAGS_ARCH_MATCH;
1758 }
a5ff0eb2 1759 else
c0f3af97
L
1760 match |= CPU_FLAGS_32BIT_MATCH;
1761 }
3629bb00 1762 }
c0f3af97 1763 return match;
40fb9820
L
1764}
1765
c6fb90c8
L
1766static INLINE i386_operand_type
1767operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1768{
c6fb90c8
L
1769 switch (ARRAY_SIZE (x.array))
1770 {
1771 case 3:
1772 x.array [2] &= y.array [2];
1a0670f3 1773 /* Fall through. */
c6fb90c8
L
1774 case 2:
1775 x.array [1] &= y.array [1];
1a0670f3 1776 /* Fall through. */
c6fb90c8
L
1777 case 1:
1778 x.array [0] &= y.array [0];
1779 break;
1780 default:
1781 abort ();
1782 }
1783 return x;
40fb9820
L
1784}
1785
c6fb90c8
L
1786static INLINE i386_operand_type
1787operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1788{
c6fb90c8 1789 switch (ARRAY_SIZE (x.array))
40fb9820 1790 {
c6fb90c8
L
1791 case 3:
1792 x.array [2] |= y.array [2];
1a0670f3 1793 /* Fall through. */
c6fb90c8
L
1794 case 2:
1795 x.array [1] |= y.array [1];
1a0670f3 1796 /* Fall through. */
c6fb90c8
L
1797 case 1:
1798 x.array [0] |= y.array [0];
40fb9820
L
1799 break;
1800 default:
1801 abort ();
1802 }
c6fb90c8
L
1803 return x;
1804}
40fb9820 1805
c6fb90c8
L
1806static INLINE i386_operand_type
1807operand_type_xor (i386_operand_type x, i386_operand_type y)
1808{
1809 switch (ARRAY_SIZE (x.array))
1810 {
1811 case 3:
1812 x.array [2] ^= y.array [2];
1a0670f3 1813 /* Fall through. */
c6fb90c8
L
1814 case 2:
1815 x.array [1] ^= y.array [1];
1a0670f3 1816 /* Fall through. */
c6fb90c8
L
1817 case 1:
1818 x.array [0] ^= y.array [0];
1819 break;
1820 default:
1821 abort ();
1822 }
40fb9820
L
1823 return x;
1824}
1825
1826static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1827static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1828static const i386_operand_type control = OPERAND_TYPE_CONTROL;
65da13b5
L
1829static const i386_operand_type inoutportreg
1830 = OPERAND_TYPE_INOUTPORTREG;
40fb9820
L
1831static const i386_operand_type reg16_inoutportreg
1832 = OPERAND_TYPE_REG16_INOUTPORTREG;
1833static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1834static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1835static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1836static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1837static const i386_operand_type anydisp
1838 = OPERAND_TYPE_ANYDISP;
40fb9820 1839static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 1840static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1841static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1842static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1843static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1844static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1845static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1846static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1847static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1848static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1849static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
a683cc34 1850static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
40fb9820
L
1851
1852enum operand_type
1853{
1854 reg,
40fb9820
L
1855 imm,
1856 disp,
1857 anymem
1858};
1859
c6fb90c8 1860static INLINE int
40fb9820
L
1861operand_type_check (i386_operand_type t, enum operand_type c)
1862{
1863 switch (c)
1864 {
1865 case reg:
dc821c5f 1866 return t.bitfield.reg;
40fb9820 1867
40fb9820
L
1868 case imm:
1869 return (t.bitfield.imm8
1870 || t.bitfield.imm8s
1871 || t.bitfield.imm16
1872 || t.bitfield.imm32
1873 || t.bitfield.imm32s
1874 || t.bitfield.imm64);
1875
1876 case disp:
1877 return (t.bitfield.disp8
1878 || t.bitfield.disp16
1879 || t.bitfield.disp32
1880 || t.bitfield.disp32s
1881 || t.bitfield.disp64);
1882
1883 case anymem:
1884 return (t.bitfield.disp8
1885 || t.bitfield.disp16
1886 || t.bitfield.disp32
1887 || t.bitfield.disp32s
1888 || t.bitfield.disp64
1889 || t.bitfield.baseindex);
1890
1891 default:
1892 abort ();
1893 }
2cfe26b6
AM
1894
1895 return 0;
40fb9820
L
1896}
1897
ca0d63fe 1898/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit on
5c07affc
L
1899 operand J for instruction template T. */
1900
1901static INLINE int
d3ce72d0 1902match_reg_size (const insn_template *t, unsigned int j)
5c07affc
L
1903{
1904 return !((i.types[j].bitfield.byte
1905 && !t->operand_types[j].bitfield.byte)
1906 || (i.types[j].bitfield.word
1907 && !t->operand_types[j].bitfield.word)
1908 || (i.types[j].bitfield.dword
1909 && !t->operand_types[j].bitfield.dword)
1910 || (i.types[j].bitfield.qword
ca0d63fe
JB
1911 && !t->operand_types[j].bitfield.qword)
1912 || (i.types[j].bitfield.tbyte
1913 && !t->operand_types[j].bitfield.tbyte));
5c07affc
L
1914}
1915
1b54b8d7
JB
1916/* Return 1 if there is no conflict in SIMD register on
1917 operand J for instruction template T. */
1918
1919static INLINE int
1920match_simd_size (const insn_template *t, unsigned int j)
1921{
1922 return !((i.types[j].bitfield.xmmword
1923 && !t->operand_types[j].bitfield.xmmword)
1924 || (i.types[j].bitfield.ymmword
1925 && !t->operand_types[j].bitfield.ymmword)
1926 || (i.types[j].bitfield.zmmword
1927 && !t->operand_types[j].bitfield.zmmword));
1928}
1929
5c07affc
L
1930/* Return 1 if there is no conflict in any size on operand J for
1931 instruction template T. */
1932
1933static INLINE int
d3ce72d0 1934match_mem_size (const insn_template *t, unsigned int j)
5c07affc
L
1935{
1936 return (match_reg_size (t, j)
1937 && !((i.types[j].bitfield.unspecified
af508cb9 1938 && !i.broadcast
5c07affc
L
1939 && !t->operand_types[j].bitfield.unspecified)
1940 || (i.types[j].bitfield.fword
1941 && !t->operand_types[j].bitfield.fword)
1b54b8d7
JB
1942 /* For scalar opcode templates to allow register and memory
1943 operands at the same time, some special casing is needed
1944 here. */
1945 || ((t->operand_types[j].bitfield.regsimd
1946 && !t->opcode_modifier.broadcast
1947 && (t->operand_types[j].bitfield.dword
1948 || t->operand_types[j].bitfield.qword))
1949 ? (i.types[j].bitfield.xmmword
1950 || i.types[j].bitfield.ymmword
1951 || i.types[j].bitfield.zmmword)
1952 : !match_simd_size(t, j))));
5c07affc
L
1953}
1954
1955/* Return 1 if there is no size conflict on any operands for
1956 instruction template T. */
1957
1958static INLINE int
d3ce72d0 1959operand_size_match (const insn_template *t)
5c07affc
L
1960{
1961 unsigned int j;
1962 int match = 1;
1963
1964 /* Don't check jump instructions. */
1965 if (t->opcode_modifier.jump
1966 || t->opcode_modifier.jumpbyte
1967 || t->opcode_modifier.jumpdword
1968 || t->opcode_modifier.jumpintersegment)
1969 return match;
1970
1971 /* Check memory and accumulator operand size. */
1972 for (j = 0; j < i.operands; j++)
1973 {
1b54b8d7
JB
1974 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
1975 && t->operand_types[j].bitfield.anysize)
5c07affc
L
1976 continue;
1977
1b54b8d7 1978 if (t->operand_types[j].bitfield.reg
dc821c5f 1979 && !match_reg_size (t, j))
5c07affc
L
1980 {
1981 match = 0;
1982 break;
1983 }
1984
1b54b8d7
JB
1985 if (t->operand_types[j].bitfield.regsimd
1986 && !match_simd_size (t, j))
1987 {
1988 match = 0;
1989 break;
1990 }
1991
1992 if (t->operand_types[j].bitfield.acc
1993 && (!match_reg_size (t, j) || !match_simd_size (t, j)))
1994 {
1995 match = 0;
1996 break;
1997 }
1998
5c07affc
L
1999 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
2000 {
2001 match = 0;
2002 break;
2003 }
2004 }
2005
891edac4 2006 if (match)
5c07affc 2007 return match;
891edac4
L
2008 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
2009 {
2010mismatch:
86e026a4 2011 i.error = operand_size_mismatch;
891edac4
L
2012 return 0;
2013 }
5c07affc
L
2014
2015 /* Check reverse. */
9c2799c2 2016 gas_assert (i.operands == 2);
5c07affc
L
2017
2018 match = 1;
2019 for (j = 0; j < 2; j++)
2020 {
dc821c5f
JB
2021 if ((t->operand_types[j].bitfield.reg
2022 || t->operand_types[j].bitfield.acc)
5c07affc 2023 && !match_reg_size (t, j ? 0 : 1))
891edac4 2024 goto mismatch;
5c07affc
L
2025
2026 if (i.types[j].bitfield.mem
2027 && !match_mem_size (t, j ? 0 : 1))
891edac4 2028 goto mismatch;
5c07affc
L
2029 }
2030
2031 return match;
2032}
2033
c6fb90c8 2034static INLINE int
40fb9820
L
2035operand_type_match (i386_operand_type overlap,
2036 i386_operand_type given)
2037{
2038 i386_operand_type temp = overlap;
2039
2040 temp.bitfield.jumpabsolute = 0;
7d5e4556 2041 temp.bitfield.unspecified = 0;
5c07affc
L
2042 temp.bitfield.byte = 0;
2043 temp.bitfield.word = 0;
2044 temp.bitfield.dword = 0;
2045 temp.bitfield.fword = 0;
2046 temp.bitfield.qword = 0;
2047 temp.bitfield.tbyte = 0;
2048 temp.bitfield.xmmword = 0;
c0f3af97 2049 temp.bitfield.ymmword = 0;
43234a1e 2050 temp.bitfield.zmmword = 0;
0dfbf9d7 2051 if (operand_type_all_zero (&temp))
891edac4 2052 goto mismatch;
40fb9820 2053
891edac4
L
2054 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2055 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2056 return 1;
2057
2058mismatch:
a65babc9 2059 i.error = operand_type_mismatch;
891edac4 2060 return 0;
40fb9820
L
2061}
2062
7d5e4556 2063/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2064 unless the expected operand type register overlap is null.
2065 Memory operand size of certain SIMD instructions is also being checked
2066 here. */
40fb9820 2067
c6fb90c8 2068static INLINE int
dc821c5f 2069operand_type_register_match (i386_operand_type g0,
40fb9820 2070 i386_operand_type t0,
40fb9820
L
2071 i386_operand_type g1,
2072 i386_operand_type t1)
2073{
10c17abd
JB
2074 if (!g0.bitfield.reg
2075 && !g0.bitfield.regsimd
2076 && (!operand_type_check (g0, anymem)
2077 || g0.bitfield.unspecified
2078 || !t0.bitfield.regsimd))
40fb9820
L
2079 return 1;
2080
10c17abd
JB
2081 if (!g1.bitfield.reg
2082 && !g1.bitfield.regsimd
2083 && (!operand_type_check (g1, anymem)
2084 || g1.bitfield.unspecified
2085 || !t1.bitfield.regsimd))
40fb9820
L
2086 return 1;
2087
dc821c5f
JB
2088 if (g0.bitfield.byte == g1.bitfield.byte
2089 && g0.bitfield.word == g1.bitfield.word
2090 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2091 && g0.bitfield.qword == g1.bitfield.qword
2092 && g0.bitfield.xmmword == g1.bitfield.xmmword
2093 && g0.bitfield.ymmword == g1.bitfield.ymmword
2094 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2095 return 1;
2096
dc821c5f
JB
2097 if (!(t0.bitfield.byte & t1.bitfield.byte)
2098 && !(t0.bitfield.word & t1.bitfield.word)
2099 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2100 && !(t0.bitfield.qword & t1.bitfield.qword)
2101 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2102 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2103 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2104 return 1;
2105
a65babc9 2106 i.error = register_type_mismatch;
891edac4
L
2107
2108 return 0;
40fb9820
L
2109}
2110
4c692bc7
JB
2111static INLINE unsigned int
2112register_number (const reg_entry *r)
2113{
2114 unsigned int nr = r->reg_num;
2115
2116 if (r->reg_flags & RegRex)
2117 nr += 8;
2118
200cbe0f
L
2119 if (r->reg_flags & RegVRex)
2120 nr += 16;
2121
4c692bc7
JB
2122 return nr;
2123}
2124
252b5132 2125static INLINE unsigned int
40fb9820 2126mode_from_disp_size (i386_operand_type t)
252b5132 2127{
b5014f7a 2128 if (t.bitfield.disp8)
40fb9820
L
2129 return 1;
2130 else if (t.bitfield.disp16
2131 || t.bitfield.disp32
2132 || t.bitfield.disp32s)
2133 return 2;
2134 else
2135 return 0;
252b5132
RH
2136}
2137
2138static INLINE int
65879393 2139fits_in_signed_byte (addressT num)
252b5132 2140{
65879393 2141 return num + 0x80 <= 0xff;
47926f60 2142}
252b5132
RH
2143
2144static INLINE int
65879393 2145fits_in_unsigned_byte (addressT num)
252b5132 2146{
65879393 2147 return num <= 0xff;
47926f60 2148}
252b5132
RH
2149
2150static INLINE int
65879393 2151fits_in_unsigned_word (addressT num)
252b5132 2152{
65879393 2153 return num <= 0xffff;
47926f60 2154}
252b5132
RH
2155
2156static INLINE int
65879393 2157fits_in_signed_word (addressT num)
252b5132 2158{
65879393 2159 return num + 0x8000 <= 0xffff;
47926f60 2160}
2a962e6d 2161
3e73aa7c 2162static INLINE int
65879393 2163fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2164{
2165#ifndef BFD64
2166 return 1;
2167#else
65879393 2168 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2169#endif
2170} /* fits_in_signed_long() */
2a962e6d 2171
3e73aa7c 2172static INLINE int
65879393 2173fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2174{
2175#ifndef BFD64
2176 return 1;
2177#else
65879393 2178 return num <= 0xffffffff;
3e73aa7c
JH
2179#endif
2180} /* fits_in_unsigned_long() */
252b5132 2181
43234a1e 2182static INLINE int
b5014f7a 2183fits_in_disp8 (offsetT num)
43234a1e
L
2184{
2185 int shift = i.memshift;
2186 unsigned int mask;
2187
2188 if (shift == -1)
2189 abort ();
2190
2191 mask = (1 << shift) - 1;
2192
2193 /* Return 0 if NUM isn't properly aligned. */
2194 if ((num & mask))
2195 return 0;
2196
2197 /* Check if NUM will fit in 8bit after shift. */
2198 return fits_in_signed_byte (num >> shift);
2199}
2200
a683cc34
SP
2201static INLINE int
2202fits_in_imm4 (offsetT num)
2203{
2204 return (num & 0xf) == num;
2205}
2206
b6f8c7c4
L
2207static INLINE int
2208fits_in_imm7 (offsetT num)
2209{
2210 return (num & 0x7f) == num;
2211}
2212
2213static INLINE int
2214fits_in_imm31 (offsetT num)
2215{
2216 return (num & 0x7fffffff) == num;
2217}
2218
40fb9820 2219static i386_operand_type
e3bb37b5 2220smallest_imm_type (offsetT num)
252b5132 2221{
40fb9820 2222 i386_operand_type t;
7ab9ffdd 2223
0dfbf9d7 2224 operand_type_set (&t, 0);
40fb9820
L
2225 t.bitfield.imm64 = 1;
2226
2227 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2228 {
2229 /* This code is disabled on the 486 because all the Imm1 forms
2230 in the opcode table are slower on the i486. They're the
2231 versions with the implicitly specified single-position
2232 displacement, which has another syntax if you really want to
2233 use that form. */
40fb9820
L
2234 t.bitfield.imm1 = 1;
2235 t.bitfield.imm8 = 1;
2236 t.bitfield.imm8s = 1;
2237 t.bitfield.imm16 = 1;
2238 t.bitfield.imm32 = 1;
2239 t.bitfield.imm32s = 1;
2240 }
2241 else if (fits_in_signed_byte (num))
2242 {
2243 t.bitfield.imm8 = 1;
2244 t.bitfield.imm8s = 1;
2245 t.bitfield.imm16 = 1;
2246 t.bitfield.imm32 = 1;
2247 t.bitfield.imm32s = 1;
2248 }
2249 else if (fits_in_unsigned_byte (num))
2250 {
2251 t.bitfield.imm8 = 1;
2252 t.bitfield.imm16 = 1;
2253 t.bitfield.imm32 = 1;
2254 t.bitfield.imm32s = 1;
2255 }
2256 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2257 {
2258 t.bitfield.imm16 = 1;
2259 t.bitfield.imm32 = 1;
2260 t.bitfield.imm32s = 1;
2261 }
2262 else if (fits_in_signed_long (num))
2263 {
2264 t.bitfield.imm32 = 1;
2265 t.bitfield.imm32s = 1;
2266 }
2267 else if (fits_in_unsigned_long (num))
2268 t.bitfield.imm32 = 1;
2269
2270 return t;
47926f60 2271}
252b5132 2272
847f7ad4 2273static offsetT
e3bb37b5 2274offset_in_range (offsetT val, int size)
847f7ad4 2275{
508866be 2276 addressT mask;
ba2adb93 2277
847f7ad4
AM
2278 switch (size)
2279 {
508866be
L
2280 case 1: mask = ((addressT) 1 << 8) - 1; break;
2281 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2282 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2283#ifdef BFD64
2284 case 8: mask = ((addressT) 2 << 63) - 1; break;
2285#endif
47926f60 2286 default: abort ();
847f7ad4
AM
2287 }
2288
9de868bf
L
2289#ifdef BFD64
2290 /* If BFD64, sign extend val for 32bit address mode. */
2291 if (flag_code != CODE_64BIT
2292 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2293 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2294 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2295#endif
ba2adb93 2296
47926f60 2297 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2298 {
2299 char buf1[40], buf2[40];
2300
2301 sprint_value (buf1, val);
2302 sprint_value (buf2, val & mask);
2303 as_warn (_("%s shortened to %s"), buf1, buf2);
2304 }
2305 return val & mask;
2306}
2307
c32fa91d
L
2308enum PREFIX_GROUP
2309{
2310 PREFIX_EXIST = 0,
2311 PREFIX_LOCK,
2312 PREFIX_REP,
04ef582a 2313 PREFIX_DS,
c32fa91d
L
2314 PREFIX_OTHER
2315};
2316
2317/* Returns
2318 a. PREFIX_EXIST if attempting to add a prefix where one from the
2319 same class already exists.
2320 b. PREFIX_LOCK if lock prefix is added.
2321 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2322 d. PREFIX_DS if ds prefix is added.
2323 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2324 */
2325
2326static enum PREFIX_GROUP
e3bb37b5 2327add_prefix (unsigned int prefix)
252b5132 2328{
c32fa91d 2329 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2330 unsigned int q;
252b5132 2331
29b0f896
AM
2332 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2333 && flag_code == CODE_64BIT)
b1905489 2334 {
161a04f6
L
2335 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2336 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2337 && (prefix & (REX_R | REX_X | REX_B))))
c32fa91d 2338 ret = PREFIX_EXIST;
b1905489
JB
2339 q = REX_PREFIX;
2340 }
3e73aa7c 2341 else
b1905489
JB
2342 {
2343 switch (prefix)
2344 {
2345 default:
2346 abort ();
2347
b1905489 2348 case DS_PREFIX_OPCODE:
04ef582a
L
2349 ret = PREFIX_DS;
2350 /* Fall through. */
2351 case CS_PREFIX_OPCODE:
b1905489
JB
2352 case ES_PREFIX_OPCODE:
2353 case FS_PREFIX_OPCODE:
2354 case GS_PREFIX_OPCODE:
2355 case SS_PREFIX_OPCODE:
2356 q = SEG_PREFIX;
2357 break;
2358
2359 case REPNE_PREFIX_OPCODE:
2360 case REPE_PREFIX_OPCODE:
c32fa91d
L
2361 q = REP_PREFIX;
2362 ret = PREFIX_REP;
2363 break;
2364
b1905489 2365 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2366 q = LOCK_PREFIX;
2367 ret = PREFIX_LOCK;
b1905489
JB
2368 break;
2369
2370 case FWAIT_OPCODE:
2371 q = WAIT_PREFIX;
2372 break;
2373
2374 case ADDR_PREFIX_OPCODE:
2375 q = ADDR_PREFIX;
2376 break;
2377
2378 case DATA_PREFIX_OPCODE:
2379 q = DATA_PREFIX;
2380 break;
2381 }
2382 if (i.prefix[q] != 0)
c32fa91d 2383 ret = PREFIX_EXIST;
b1905489 2384 }
252b5132 2385
b1905489 2386 if (ret)
252b5132 2387 {
b1905489
JB
2388 if (!i.prefix[q])
2389 ++i.prefixes;
2390 i.prefix[q] |= prefix;
252b5132 2391 }
b1905489
JB
2392 else
2393 as_bad (_("same type of prefix used twice"));
252b5132 2394
252b5132
RH
2395 return ret;
2396}
2397
2398static void
78f12dd3 2399update_code_flag (int value, int check)
eecb386c 2400{
78f12dd3
L
2401 PRINTF_LIKE ((*as_error));
2402
1e9cc1c2 2403 flag_code = (enum flag_code) value;
40fb9820
L
2404 if (flag_code == CODE_64BIT)
2405 {
2406 cpu_arch_flags.bitfield.cpu64 = 1;
2407 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2408 }
2409 else
2410 {
2411 cpu_arch_flags.bitfield.cpu64 = 0;
2412 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2413 }
2414 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2415 {
78f12dd3
L
2416 if (check)
2417 as_error = as_fatal;
2418 else
2419 as_error = as_bad;
2420 (*as_error) (_("64bit mode not supported on `%s'."),
2421 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2422 }
40fb9820 2423 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2424 {
78f12dd3
L
2425 if (check)
2426 as_error = as_fatal;
2427 else
2428 as_error = as_bad;
2429 (*as_error) (_("32bit mode not supported on `%s'."),
2430 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2431 }
eecb386c
AM
2432 stackop_size = '\0';
2433}
2434
78f12dd3
L
2435static void
2436set_code_flag (int value)
2437{
2438 update_code_flag (value, 0);
2439}
2440
eecb386c 2441static void
e3bb37b5 2442set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2443{
1e9cc1c2 2444 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2445 if (flag_code != CODE_16BIT)
2446 abort ();
2447 cpu_arch_flags.bitfield.cpu64 = 0;
2448 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2449 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2450}
2451
2452static void
e3bb37b5 2453set_intel_syntax (int syntax_flag)
252b5132
RH
2454{
2455 /* Find out if register prefixing is specified. */
2456 int ask_naked_reg = 0;
2457
2458 SKIP_WHITESPACE ();
29b0f896 2459 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2460 {
d02603dc
NC
2461 char *string;
2462 int e = get_symbol_name (&string);
252b5132 2463
47926f60 2464 if (strcmp (string, "prefix") == 0)
252b5132 2465 ask_naked_reg = 1;
47926f60 2466 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2467 ask_naked_reg = -1;
2468 else
d0b47220 2469 as_bad (_("bad argument to syntax directive."));
d02603dc 2470 (void) restore_line_pointer (e);
252b5132
RH
2471 }
2472 demand_empty_rest_of_line ();
c3332e24 2473
252b5132
RH
2474 intel_syntax = syntax_flag;
2475
2476 if (ask_naked_reg == 0)
f86103b7
AM
2477 allow_naked_reg = (intel_syntax
2478 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2479 else
2480 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2481
ee86248c 2482 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2483
e4a3b5a4 2484 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2485 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2486 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2487}
2488
1efbbeb4
L
2489static void
2490set_intel_mnemonic (int mnemonic_flag)
2491{
e1d4d893 2492 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2493}
2494
db51cc60
L
2495static void
2496set_allow_index_reg (int flag)
2497{
2498 allow_index_reg = flag;
2499}
2500
cb19c032 2501static void
7bab8ab5 2502set_check (int what)
cb19c032 2503{
7bab8ab5
JB
2504 enum check_kind *kind;
2505 const char *str;
2506
2507 if (what)
2508 {
2509 kind = &operand_check;
2510 str = "operand";
2511 }
2512 else
2513 {
2514 kind = &sse_check;
2515 str = "sse";
2516 }
2517
cb19c032
L
2518 SKIP_WHITESPACE ();
2519
2520 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2521 {
d02603dc
NC
2522 char *string;
2523 int e = get_symbol_name (&string);
cb19c032
L
2524
2525 if (strcmp (string, "none") == 0)
7bab8ab5 2526 *kind = check_none;
cb19c032 2527 else if (strcmp (string, "warning") == 0)
7bab8ab5 2528 *kind = check_warning;
cb19c032 2529 else if (strcmp (string, "error") == 0)
7bab8ab5 2530 *kind = check_error;
cb19c032 2531 else
7bab8ab5 2532 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2533 (void) restore_line_pointer (e);
cb19c032
L
2534 }
2535 else
7bab8ab5 2536 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2537
2538 demand_empty_rest_of_line ();
2539}
2540
8a9036a4
L
2541static void
2542check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2543 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2544{
2545#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2546 static const char *arch;
2547
2548 /* Intel LIOM is only supported on ELF. */
2549 if (!IS_ELF)
2550 return;
2551
2552 if (!arch)
2553 {
2554 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2555 use default_arch. */
2556 arch = cpu_arch_name;
2557 if (!arch)
2558 arch = default_arch;
2559 }
2560
81486035
L
2561 /* If we are targeting Intel MCU, we must enable it. */
2562 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2563 || new_flag.bitfield.cpuiamcu)
2564 return;
2565
3632d14b 2566 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2567 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2568 || new_flag.bitfield.cpul1om)
8a9036a4 2569 return;
76ba9986 2570
7a9068fe
L
2571 /* If we are targeting Intel K1OM, we must enable it. */
2572 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2573 || new_flag.bitfield.cpuk1om)
2574 return;
2575
8a9036a4
L
2576 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2577#endif
2578}
2579
e413e4e9 2580static void
e3bb37b5 2581set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2582{
47926f60 2583 SKIP_WHITESPACE ();
e413e4e9 2584
29b0f896 2585 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2586 {
d02603dc
NC
2587 char *string;
2588 int e = get_symbol_name (&string);
91d6fa6a 2589 unsigned int j;
40fb9820 2590 i386_cpu_flags flags;
e413e4e9 2591
91d6fa6a 2592 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2593 {
91d6fa6a 2594 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2595 {
91d6fa6a 2596 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2597
5c6af06e
JB
2598 if (*string != '.')
2599 {
91d6fa6a 2600 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2601 cpu_sub_arch_name = NULL;
91d6fa6a 2602 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2603 if (flag_code == CODE_64BIT)
2604 {
2605 cpu_arch_flags.bitfield.cpu64 = 1;
2606 cpu_arch_flags.bitfield.cpuno64 = 0;
2607 }
2608 else
2609 {
2610 cpu_arch_flags.bitfield.cpu64 = 0;
2611 cpu_arch_flags.bitfield.cpuno64 = 1;
2612 }
91d6fa6a
NC
2613 cpu_arch_isa = cpu_arch[j].type;
2614 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2615 if (!cpu_arch_tune_set)
2616 {
2617 cpu_arch_tune = cpu_arch_isa;
2618 cpu_arch_tune_flags = cpu_arch_isa_flags;
2619 }
5c6af06e
JB
2620 break;
2621 }
40fb9820 2622
293f5f65
L
2623 flags = cpu_flags_or (cpu_arch_flags,
2624 cpu_arch[j].flags);
81486035 2625
5b64d091 2626 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2627 {
6305a203
L
2628 if (cpu_sub_arch_name)
2629 {
2630 char *name = cpu_sub_arch_name;
2631 cpu_sub_arch_name = concat (name,
91d6fa6a 2632 cpu_arch[j].name,
1bf57e9f 2633 (const char *) NULL);
6305a203
L
2634 free (name);
2635 }
2636 else
91d6fa6a 2637 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2638 cpu_arch_flags = flags;
a586129e 2639 cpu_arch_isa_flags = flags;
5c6af06e 2640 }
d02603dc 2641 (void) restore_line_pointer (e);
5c6af06e
JB
2642 demand_empty_rest_of_line ();
2643 return;
e413e4e9
AM
2644 }
2645 }
293f5f65
L
2646
2647 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2648 {
33eaf5de 2649 /* Disable an ISA extension. */
293f5f65
L
2650 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2651 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2652 {
2653 flags = cpu_flags_and_not (cpu_arch_flags,
2654 cpu_noarch[j].flags);
2655 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2656 {
2657 if (cpu_sub_arch_name)
2658 {
2659 char *name = cpu_sub_arch_name;
2660 cpu_sub_arch_name = concat (name, string,
2661 (const char *) NULL);
2662 free (name);
2663 }
2664 else
2665 cpu_sub_arch_name = xstrdup (string);
2666 cpu_arch_flags = flags;
2667 cpu_arch_isa_flags = flags;
2668 }
2669 (void) restore_line_pointer (e);
2670 demand_empty_rest_of_line ();
2671 return;
2672 }
2673
2674 j = ARRAY_SIZE (cpu_arch);
2675 }
2676
91d6fa6a 2677 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2678 as_bad (_("no such architecture: `%s'"), string);
2679
2680 *input_line_pointer = e;
2681 }
2682 else
2683 as_bad (_("missing cpu architecture"));
2684
fddf5b5b
AM
2685 no_cond_jump_promotion = 0;
2686 if (*input_line_pointer == ','
29b0f896 2687 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2688 {
d02603dc
NC
2689 char *string;
2690 char e;
2691
2692 ++input_line_pointer;
2693 e = get_symbol_name (&string);
fddf5b5b
AM
2694
2695 if (strcmp (string, "nojumps") == 0)
2696 no_cond_jump_promotion = 1;
2697 else if (strcmp (string, "jumps") == 0)
2698 ;
2699 else
2700 as_bad (_("no such architecture modifier: `%s'"), string);
2701
d02603dc 2702 (void) restore_line_pointer (e);
fddf5b5b
AM
2703 }
2704
e413e4e9
AM
2705 demand_empty_rest_of_line ();
2706}
2707
8a9036a4
L
2708enum bfd_architecture
2709i386_arch (void)
2710{
3632d14b 2711 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2712 {
2713 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2714 || flag_code != CODE_64BIT)
2715 as_fatal (_("Intel L1OM is 64bit ELF only"));
2716 return bfd_arch_l1om;
2717 }
7a9068fe
L
2718 else if (cpu_arch_isa == PROCESSOR_K1OM)
2719 {
2720 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2721 || flag_code != CODE_64BIT)
2722 as_fatal (_("Intel K1OM is 64bit ELF only"));
2723 return bfd_arch_k1om;
2724 }
81486035
L
2725 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2726 {
2727 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2728 || flag_code == CODE_64BIT)
2729 as_fatal (_("Intel MCU is 32bit ELF only"));
2730 return bfd_arch_iamcu;
2731 }
8a9036a4
L
2732 else
2733 return bfd_arch_i386;
2734}
2735
b9d79e03 2736unsigned long
7016a5d5 2737i386_mach (void)
b9d79e03 2738{
351f65ca 2739 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2740 {
3632d14b 2741 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2742 {
351f65ca
L
2743 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2744 || default_arch[6] != '\0')
8a9036a4
L
2745 as_fatal (_("Intel L1OM is 64bit ELF only"));
2746 return bfd_mach_l1om;
2747 }
7a9068fe
L
2748 else if (cpu_arch_isa == PROCESSOR_K1OM)
2749 {
2750 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2751 || default_arch[6] != '\0')
2752 as_fatal (_("Intel K1OM is 64bit ELF only"));
2753 return bfd_mach_k1om;
2754 }
351f65ca 2755 else if (default_arch[6] == '\0')
8a9036a4 2756 return bfd_mach_x86_64;
351f65ca
L
2757 else
2758 return bfd_mach_x64_32;
8a9036a4 2759 }
5197d474
L
2760 else if (!strcmp (default_arch, "i386")
2761 || !strcmp (default_arch, "iamcu"))
81486035
L
2762 {
2763 if (cpu_arch_isa == PROCESSOR_IAMCU)
2764 {
2765 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2766 as_fatal (_("Intel MCU is 32bit ELF only"));
2767 return bfd_mach_i386_iamcu;
2768 }
2769 else
2770 return bfd_mach_i386_i386;
2771 }
b9d79e03 2772 else
2b5d6a91 2773 as_fatal (_("unknown architecture"));
b9d79e03 2774}
b9d79e03 2775\f
252b5132 2776void
7016a5d5 2777md_begin (void)
252b5132
RH
2778{
2779 const char *hash_err;
2780
86fa6981
L
2781 /* Support pseudo prefixes like {disp32}. */
2782 lex_type ['{'] = LEX_BEGIN_NAME;
2783
47926f60 2784 /* Initialize op_hash hash table. */
252b5132
RH
2785 op_hash = hash_new ();
2786
2787 {
d3ce72d0 2788 const insn_template *optab;
29b0f896 2789 templates *core_optab;
252b5132 2790
47926f60
KH
2791 /* Setup for loop. */
2792 optab = i386_optab;
add39d23 2793 core_optab = XNEW (templates);
252b5132
RH
2794 core_optab->start = optab;
2795
2796 while (1)
2797 {
2798 ++optab;
2799 if (optab->name == NULL
2800 || strcmp (optab->name, (optab - 1)->name) != 0)
2801 {
2802 /* different name --> ship out current template list;
47926f60 2803 add to hash table; & begin anew. */
252b5132
RH
2804 core_optab->end = optab;
2805 hash_err = hash_insert (op_hash,
2806 (optab - 1)->name,
5a49b8ac 2807 (void *) core_optab);
252b5132
RH
2808 if (hash_err)
2809 {
b37df7c4 2810 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2811 (optab - 1)->name,
2812 hash_err);
2813 }
2814 if (optab->name == NULL)
2815 break;
add39d23 2816 core_optab = XNEW (templates);
252b5132
RH
2817 core_optab->start = optab;
2818 }
2819 }
2820 }
2821
47926f60 2822 /* Initialize reg_hash hash table. */
252b5132
RH
2823 reg_hash = hash_new ();
2824 {
29b0f896 2825 const reg_entry *regtab;
c3fe08fa 2826 unsigned int regtab_size = i386_regtab_size;
252b5132 2827
c3fe08fa 2828 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2829 {
5a49b8ac 2830 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2831 if (hash_err)
b37df7c4 2832 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2833 regtab->reg_name,
2834 hash_err);
252b5132
RH
2835 }
2836 }
2837
47926f60 2838 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2839 {
29b0f896
AM
2840 int c;
2841 char *p;
252b5132
RH
2842
2843 for (c = 0; c < 256; c++)
2844 {
3882b010 2845 if (ISDIGIT (c))
252b5132
RH
2846 {
2847 digit_chars[c] = c;
2848 mnemonic_chars[c] = c;
2849 register_chars[c] = c;
2850 operand_chars[c] = c;
2851 }
3882b010 2852 else if (ISLOWER (c))
252b5132
RH
2853 {
2854 mnemonic_chars[c] = c;
2855 register_chars[c] = c;
2856 operand_chars[c] = c;
2857 }
3882b010 2858 else if (ISUPPER (c))
252b5132 2859 {
3882b010 2860 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2861 register_chars[c] = mnemonic_chars[c];
2862 operand_chars[c] = c;
2863 }
43234a1e 2864 else if (c == '{' || c == '}')
86fa6981
L
2865 {
2866 mnemonic_chars[c] = c;
2867 operand_chars[c] = c;
2868 }
252b5132 2869
3882b010 2870 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2871 identifier_chars[c] = c;
2872 else if (c >= 128)
2873 {
2874 identifier_chars[c] = c;
2875 operand_chars[c] = c;
2876 }
2877 }
2878
2879#ifdef LEX_AT
2880 identifier_chars['@'] = '@';
32137342
NC
2881#endif
2882#ifdef LEX_QM
2883 identifier_chars['?'] = '?';
2884 operand_chars['?'] = '?';
252b5132 2885#endif
252b5132 2886 digit_chars['-'] = '-';
c0f3af97 2887 mnemonic_chars['_'] = '_';
791fe849 2888 mnemonic_chars['-'] = '-';
0003779b 2889 mnemonic_chars['.'] = '.';
252b5132
RH
2890 identifier_chars['_'] = '_';
2891 identifier_chars['.'] = '.';
2892
2893 for (p = operand_special_chars; *p != '\0'; p++)
2894 operand_chars[(unsigned char) *p] = *p;
2895 }
2896
a4447b93
RH
2897 if (flag_code == CODE_64BIT)
2898 {
ca19b261
KT
2899#if defined (OBJ_COFF) && defined (TE_PE)
2900 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2901 ? 32 : 16);
2902#else
a4447b93 2903 x86_dwarf2_return_column = 16;
ca19b261 2904#endif
61ff971f 2905 x86_cie_data_alignment = -8;
a4447b93
RH
2906 }
2907 else
2908 {
2909 x86_dwarf2_return_column = 8;
2910 x86_cie_data_alignment = -4;
2911 }
252b5132
RH
2912}
2913
2914void
e3bb37b5 2915i386_print_statistics (FILE *file)
252b5132
RH
2916{
2917 hash_print_statistics (file, "i386 opcode", op_hash);
2918 hash_print_statistics (file, "i386 register", reg_hash);
2919}
2920\f
252b5132
RH
2921#ifdef DEBUG386
2922
ce8a8b2f 2923/* Debugging routines for md_assemble. */
d3ce72d0 2924static void pte (insn_template *);
40fb9820 2925static void pt (i386_operand_type);
e3bb37b5
L
2926static void pe (expressionS *);
2927static void ps (symbolS *);
252b5132
RH
2928
2929static void
e3bb37b5 2930pi (char *line, i386_insn *x)
252b5132 2931{
09137c09 2932 unsigned int j;
252b5132
RH
2933
2934 fprintf (stdout, "%s: template ", line);
2935 pte (&x->tm);
09f131f2
JH
2936 fprintf (stdout, " address: base %s index %s scale %x\n",
2937 x->base_reg ? x->base_reg->reg_name : "none",
2938 x->index_reg ? x->index_reg->reg_name : "none",
2939 x->log2_scale_factor);
2940 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 2941 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
2942 fprintf (stdout, " sib: base %x index %x scale %x\n",
2943 x->sib.base, x->sib.index, x->sib.scale);
2944 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
2945 (x->rex & REX_W) != 0,
2946 (x->rex & REX_R) != 0,
2947 (x->rex & REX_X) != 0,
2948 (x->rex & REX_B) != 0);
09137c09 2949 for (j = 0; j < x->operands; j++)
252b5132 2950 {
09137c09
SP
2951 fprintf (stdout, " #%d: ", j + 1);
2952 pt (x->types[j]);
252b5132 2953 fprintf (stdout, "\n");
dc821c5f 2954 if (x->types[j].bitfield.reg
09137c09 2955 || x->types[j].bitfield.regmmx
1b54b8d7 2956 || x->types[j].bitfield.regsimd
09137c09
SP
2957 || x->types[j].bitfield.sreg2
2958 || x->types[j].bitfield.sreg3
2959 || x->types[j].bitfield.control
2960 || x->types[j].bitfield.debug
2961 || x->types[j].bitfield.test)
2962 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2963 if (operand_type_check (x->types[j], imm))
2964 pe (x->op[j].imms);
2965 if (operand_type_check (x->types[j], disp))
2966 pe (x->op[j].disps);
252b5132
RH
2967 }
2968}
2969
2970static void
d3ce72d0 2971pte (insn_template *t)
252b5132 2972{
09137c09 2973 unsigned int j;
252b5132 2974 fprintf (stdout, " %d operands ", t->operands);
47926f60 2975 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
2976 if (t->extension_opcode != None)
2977 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 2978 if (t->opcode_modifier.d)
252b5132 2979 fprintf (stdout, "D");
40fb9820 2980 if (t->opcode_modifier.w)
252b5132
RH
2981 fprintf (stdout, "W");
2982 fprintf (stdout, "\n");
09137c09 2983 for (j = 0; j < t->operands; j++)
252b5132 2984 {
09137c09
SP
2985 fprintf (stdout, " #%d type ", j + 1);
2986 pt (t->operand_types[j]);
252b5132
RH
2987 fprintf (stdout, "\n");
2988 }
2989}
2990
2991static void
e3bb37b5 2992pe (expressionS *e)
252b5132 2993{
24eab124 2994 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
2995 fprintf (stdout, " add_number %ld (%lx)\n",
2996 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
2997 if (e->X_add_symbol)
2998 {
2999 fprintf (stdout, " add_symbol ");
3000 ps (e->X_add_symbol);
3001 fprintf (stdout, "\n");
3002 }
3003 if (e->X_op_symbol)
3004 {
3005 fprintf (stdout, " op_symbol ");
3006 ps (e->X_op_symbol);
3007 fprintf (stdout, "\n");
3008 }
3009}
3010
3011static void
e3bb37b5 3012ps (symbolS *s)
252b5132
RH
3013{
3014 fprintf (stdout, "%s type %s%s",
3015 S_GET_NAME (s),
3016 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3017 segment_name (S_GET_SEGMENT (s)));
3018}
3019
7b81dfbb 3020static struct type_name
252b5132 3021 {
40fb9820
L
3022 i386_operand_type mask;
3023 const char *name;
252b5132 3024 }
7b81dfbb 3025const type_names[] =
252b5132 3026{
40fb9820
L
3027 { OPERAND_TYPE_REG8, "r8" },
3028 { OPERAND_TYPE_REG16, "r16" },
3029 { OPERAND_TYPE_REG32, "r32" },
3030 { OPERAND_TYPE_REG64, "r64" },
3031 { OPERAND_TYPE_IMM8, "i8" },
3032 { OPERAND_TYPE_IMM8, "i8s" },
3033 { OPERAND_TYPE_IMM16, "i16" },
3034 { OPERAND_TYPE_IMM32, "i32" },
3035 { OPERAND_TYPE_IMM32S, "i32s" },
3036 { OPERAND_TYPE_IMM64, "i64" },
3037 { OPERAND_TYPE_IMM1, "i1" },
3038 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3039 { OPERAND_TYPE_DISP8, "d8" },
3040 { OPERAND_TYPE_DISP16, "d16" },
3041 { OPERAND_TYPE_DISP32, "d32" },
3042 { OPERAND_TYPE_DISP32S, "d32s" },
3043 { OPERAND_TYPE_DISP64, "d64" },
3044 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3045 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3046 { OPERAND_TYPE_CONTROL, "control reg" },
3047 { OPERAND_TYPE_TEST, "test reg" },
3048 { OPERAND_TYPE_DEBUG, "debug reg" },
3049 { OPERAND_TYPE_FLOATREG, "FReg" },
3050 { OPERAND_TYPE_FLOATACC, "FAcc" },
3051 { OPERAND_TYPE_SREG2, "SReg2" },
3052 { OPERAND_TYPE_SREG3, "SReg3" },
3053 { OPERAND_TYPE_ACC, "Acc" },
3054 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3055 { OPERAND_TYPE_REGMMX, "rMMX" },
3056 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3057 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3058 { OPERAND_TYPE_REGZMM, "rZMM" },
3059 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 3060 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
3061};
3062
3063static void
40fb9820 3064pt (i386_operand_type t)
252b5132 3065{
40fb9820 3066 unsigned int j;
c6fb90c8 3067 i386_operand_type a;
252b5132 3068
40fb9820 3069 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3070 {
3071 a = operand_type_and (t, type_names[j].mask);
0349dc08 3072 if (!operand_type_all_zero (&a))
c6fb90c8
L
3073 fprintf (stdout, "%s, ", type_names[j].name);
3074 }
252b5132
RH
3075 fflush (stdout);
3076}
3077
3078#endif /* DEBUG386 */
3079\f
252b5132 3080static bfd_reloc_code_real_type
3956db08 3081reloc (unsigned int size,
64e74474
AM
3082 int pcrel,
3083 int sign,
3084 bfd_reloc_code_real_type other)
252b5132 3085{
47926f60 3086 if (other != NO_RELOC)
3956db08 3087 {
91d6fa6a 3088 reloc_howto_type *rel;
3956db08
JB
3089
3090 if (size == 8)
3091 switch (other)
3092 {
64e74474
AM
3093 case BFD_RELOC_X86_64_GOT32:
3094 return BFD_RELOC_X86_64_GOT64;
3095 break;
553d1284
L
3096 case BFD_RELOC_X86_64_GOTPLT64:
3097 return BFD_RELOC_X86_64_GOTPLT64;
3098 break;
64e74474
AM
3099 case BFD_RELOC_X86_64_PLTOFF64:
3100 return BFD_RELOC_X86_64_PLTOFF64;
3101 break;
3102 case BFD_RELOC_X86_64_GOTPC32:
3103 other = BFD_RELOC_X86_64_GOTPC64;
3104 break;
3105 case BFD_RELOC_X86_64_GOTPCREL:
3106 other = BFD_RELOC_X86_64_GOTPCREL64;
3107 break;
3108 case BFD_RELOC_X86_64_TPOFF32:
3109 other = BFD_RELOC_X86_64_TPOFF64;
3110 break;
3111 case BFD_RELOC_X86_64_DTPOFF32:
3112 other = BFD_RELOC_X86_64_DTPOFF64;
3113 break;
3114 default:
3115 break;
3956db08 3116 }
e05278af 3117
8ce3d284 3118#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3119 if (other == BFD_RELOC_SIZE32)
3120 {
3121 if (size == 8)
1ab668bf 3122 other = BFD_RELOC_SIZE64;
8fd4256d 3123 if (pcrel)
1ab668bf
AM
3124 {
3125 as_bad (_("there are no pc-relative size relocations"));
3126 return NO_RELOC;
3127 }
8fd4256d 3128 }
8ce3d284 3129#endif
8fd4256d 3130
e05278af 3131 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3132 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3133 sign = -1;
3134
91d6fa6a
NC
3135 rel = bfd_reloc_type_lookup (stdoutput, other);
3136 if (!rel)
3956db08 3137 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3138 else if (size != bfd_get_reloc_size (rel))
3956db08 3139 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3140 bfd_get_reloc_size (rel),
3956db08 3141 size);
91d6fa6a 3142 else if (pcrel && !rel->pc_relative)
3956db08 3143 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3144 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3145 && !sign)
91d6fa6a 3146 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3147 && sign > 0))
3956db08
JB
3148 as_bad (_("relocated field and relocation type differ in signedness"));
3149 else
3150 return other;
3151 return NO_RELOC;
3152 }
252b5132
RH
3153
3154 if (pcrel)
3155 {
3e73aa7c 3156 if (!sign)
3956db08 3157 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3158 switch (size)
3159 {
3160 case 1: return BFD_RELOC_8_PCREL;
3161 case 2: return BFD_RELOC_16_PCREL;
d258b828 3162 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3163 case 8: return BFD_RELOC_64_PCREL;
252b5132 3164 }
3956db08 3165 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3166 }
3167 else
3168 {
3956db08 3169 if (sign > 0)
e5cb08ac 3170 switch (size)
3e73aa7c
JH
3171 {
3172 case 4: return BFD_RELOC_X86_64_32S;
3173 }
3174 else
3175 switch (size)
3176 {
3177 case 1: return BFD_RELOC_8;
3178 case 2: return BFD_RELOC_16;
3179 case 4: return BFD_RELOC_32;
3180 case 8: return BFD_RELOC_64;
3181 }
3956db08
JB
3182 as_bad (_("cannot do %s %u byte relocation"),
3183 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3184 }
3185
0cc9e1d3 3186 return NO_RELOC;
252b5132
RH
3187}
3188
47926f60
KH
3189/* Here we decide which fixups can be adjusted to make them relative to
3190 the beginning of the section instead of the symbol. Basically we need
3191 to make sure that the dynamic relocations are done correctly, so in
3192 some cases we force the original symbol to be used. */
3193
252b5132 3194int
e3bb37b5 3195tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3196{
6d249963 3197#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3198 if (!IS_ELF)
31312f95
AM
3199 return 1;
3200
a161fe53
AM
3201 /* Don't adjust pc-relative references to merge sections in 64-bit
3202 mode. */
3203 if (use_rela_relocations
3204 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3205 && fixP->fx_pcrel)
252b5132 3206 return 0;
31312f95 3207
8d01d9a9
AJ
3208 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3209 and changed later by validate_fix. */
3210 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3211 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3212 return 0;
3213
8fd4256d
L
3214 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3215 for size relocations. */
3216 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3217 || fixP->fx_r_type == BFD_RELOC_SIZE64
3218 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3219 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3220 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3221 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3222 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3223 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3224 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3225 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3226 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3227 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3228 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3229 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3230 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3231 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3232 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3233 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3234 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3235 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3236 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3237 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3238 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3239 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3240 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3241 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3242 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3243 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3244 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3245 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3246 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3247 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3248 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3249 return 0;
31312f95 3250#endif
252b5132
RH
3251 return 1;
3252}
252b5132 3253
b4cac588 3254static int
e3bb37b5 3255intel_float_operand (const char *mnemonic)
252b5132 3256{
9306ca4a
JB
3257 /* Note that the value returned is meaningful only for opcodes with (memory)
3258 operands, hence the code here is free to improperly handle opcodes that
3259 have no operands (for better performance and smaller code). */
3260
3261 if (mnemonic[0] != 'f')
3262 return 0; /* non-math */
3263
3264 switch (mnemonic[1])
3265 {
3266 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3267 the fs segment override prefix not currently handled because no
3268 call path can make opcodes without operands get here */
3269 case 'i':
3270 return 2 /* integer op */;
3271 case 'l':
3272 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3273 return 3; /* fldcw/fldenv */
3274 break;
3275 case 'n':
3276 if (mnemonic[2] != 'o' /* fnop */)
3277 return 3; /* non-waiting control op */
3278 break;
3279 case 'r':
3280 if (mnemonic[2] == 's')
3281 return 3; /* frstor/frstpm */
3282 break;
3283 case 's':
3284 if (mnemonic[2] == 'a')
3285 return 3; /* fsave */
3286 if (mnemonic[2] == 't')
3287 {
3288 switch (mnemonic[3])
3289 {
3290 case 'c': /* fstcw */
3291 case 'd': /* fstdw */
3292 case 'e': /* fstenv */
3293 case 's': /* fsts[gw] */
3294 return 3;
3295 }
3296 }
3297 break;
3298 case 'x':
3299 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3300 return 0; /* fxsave/fxrstor are not really math ops */
3301 break;
3302 }
252b5132 3303
9306ca4a 3304 return 1;
252b5132
RH
3305}
3306
c0f3af97
L
3307/* Build the VEX prefix. */
3308
3309static void
d3ce72d0 3310build_vex_prefix (const insn_template *t)
c0f3af97
L
3311{
3312 unsigned int register_specifier;
3313 unsigned int implied_prefix;
3314 unsigned int vector_length;
3315
3316 /* Check register specifier. */
3317 if (i.vex.register_specifier)
43234a1e
L
3318 {
3319 register_specifier =
3320 ~register_number (i.vex.register_specifier) & 0xf;
3321 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3322 }
c0f3af97
L
3323 else
3324 register_specifier = 0xf;
3325
33eaf5de 3326 /* Use 2-byte VEX prefix by swapping destination and source
fa99fab2 3327 operand. */
86fa6981
L
3328 if (i.vec_encoding != vex_encoding_vex3
3329 && i.dir_encoding == dir_encoding_default
fa99fab2 3330 && i.operands == i.reg_operands
7f399153 3331 && i.tm.opcode_modifier.vexopcode == VEX0F
86fa6981 3332 && i.tm.opcode_modifier.load
fa99fab2
L
3333 && i.rex == REX_B)
3334 {
3335 unsigned int xchg = i.operands - 1;
3336 union i386_op temp_op;
3337 i386_operand_type temp_type;
3338
3339 temp_type = i.types[xchg];
3340 i.types[xchg] = i.types[0];
3341 i.types[0] = temp_type;
3342 temp_op = i.op[xchg];
3343 i.op[xchg] = i.op[0];
3344 i.op[0] = temp_op;
3345
9c2799c2 3346 gas_assert (i.rm.mode == 3);
fa99fab2
L
3347
3348 i.rex = REX_R;
3349 xchg = i.rm.regmem;
3350 i.rm.regmem = i.rm.reg;
3351 i.rm.reg = xchg;
3352
3353 /* Use the next insn. */
3354 i.tm = t[1];
3355 }
3356
539f890d
L
3357 if (i.tm.opcode_modifier.vex == VEXScalar)
3358 vector_length = avxscalar;
10c17abd
JB
3359 else if (i.tm.opcode_modifier.vex == VEX256)
3360 vector_length = 1;
539f890d 3361 else
10c17abd
JB
3362 {
3363 unsigned int op;
3364
3365 vector_length = 0;
3366 for (op = 0; op < t->operands; ++op)
3367 if (t->operand_types[op].bitfield.xmmword
3368 && t->operand_types[op].bitfield.ymmword
3369 && i.types[op].bitfield.ymmword)
3370 {
3371 vector_length = 1;
3372 break;
3373 }
3374 }
c0f3af97
L
3375
3376 switch ((i.tm.base_opcode >> 8) & 0xff)
3377 {
3378 case 0:
3379 implied_prefix = 0;
3380 break;
3381 case DATA_PREFIX_OPCODE:
3382 implied_prefix = 1;
3383 break;
3384 case REPE_PREFIX_OPCODE:
3385 implied_prefix = 2;
3386 break;
3387 case REPNE_PREFIX_OPCODE:
3388 implied_prefix = 3;
3389 break;
3390 default:
3391 abort ();
3392 }
3393
3394 /* Use 2-byte VEX prefix if possible. */
86fa6981
L
3395 if (i.vec_encoding != vex_encoding_vex3
3396 && i.tm.opcode_modifier.vexopcode == VEX0F
04251de0 3397 && i.tm.opcode_modifier.vexw != VEXW1
c0f3af97
L
3398 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3399 {
3400 /* 2-byte VEX prefix. */
3401 unsigned int r;
3402
3403 i.vex.length = 2;
3404 i.vex.bytes[0] = 0xc5;
3405
3406 /* Check the REX.R bit. */
3407 r = (i.rex & REX_R) ? 0 : 1;
3408 i.vex.bytes[1] = (r << 7
3409 | register_specifier << 3
3410 | vector_length << 2
3411 | implied_prefix);
3412 }
3413 else
3414 {
3415 /* 3-byte VEX prefix. */
3416 unsigned int m, w;
3417
f88c9eb0 3418 i.vex.length = 3;
f88c9eb0 3419
7f399153 3420 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3421 {
7f399153
L
3422 case VEX0F:
3423 m = 0x1;
80de6e00 3424 i.vex.bytes[0] = 0xc4;
7f399153
L
3425 break;
3426 case VEX0F38:
3427 m = 0x2;
80de6e00 3428 i.vex.bytes[0] = 0xc4;
7f399153
L
3429 break;
3430 case VEX0F3A:
3431 m = 0x3;
80de6e00 3432 i.vex.bytes[0] = 0xc4;
7f399153
L
3433 break;
3434 case XOP08:
5dd85c99
SP
3435 m = 0x8;
3436 i.vex.bytes[0] = 0x8f;
7f399153
L
3437 break;
3438 case XOP09:
f88c9eb0
SP
3439 m = 0x9;
3440 i.vex.bytes[0] = 0x8f;
7f399153
L
3441 break;
3442 case XOP0A:
f88c9eb0
SP
3443 m = 0xa;
3444 i.vex.bytes[0] = 0x8f;
7f399153
L
3445 break;
3446 default:
3447 abort ();
f88c9eb0 3448 }
c0f3af97 3449
c0f3af97
L
3450 /* The high 3 bits of the second VEX byte are 1's compliment
3451 of RXB bits from REX. */
3452 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3453
3454 /* Check the REX.W bit. */
3455 w = (i.rex & REX_W) ? 1 : 0;
b28d1bda
IT
3456 if (i.tm.opcode_modifier.vexw == VEXW1)
3457 w = 1;
c0f3af97
L
3458
3459 i.vex.bytes[2] = (w << 7
3460 | register_specifier << 3
3461 | vector_length << 2
3462 | implied_prefix);
3463 }
3464}
3465
43234a1e
L
3466/* Build the EVEX prefix. */
3467
3468static void
3469build_evex_prefix (void)
3470{
3471 unsigned int register_specifier;
3472 unsigned int implied_prefix;
3473 unsigned int m, w;
3474 rex_byte vrex_used = 0;
3475
3476 /* Check register specifier. */
3477 if (i.vex.register_specifier)
3478 {
3479 gas_assert ((i.vrex & REX_X) == 0);
3480
3481 register_specifier = i.vex.register_specifier->reg_num;
3482 if ((i.vex.register_specifier->reg_flags & RegRex))
3483 register_specifier += 8;
3484 /* The upper 16 registers are encoded in the fourth byte of the
3485 EVEX prefix. */
3486 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3487 i.vex.bytes[3] = 0x8;
3488 register_specifier = ~register_specifier & 0xf;
3489 }
3490 else
3491 {
3492 register_specifier = 0xf;
3493
3494 /* Encode upper 16 vector index register in the fourth byte of
3495 the EVEX prefix. */
3496 if (!(i.vrex & REX_X))
3497 i.vex.bytes[3] = 0x8;
3498 else
3499 vrex_used |= REX_X;
3500 }
3501
3502 switch ((i.tm.base_opcode >> 8) & 0xff)
3503 {
3504 case 0:
3505 implied_prefix = 0;
3506 break;
3507 case DATA_PREFIX_OPCODE:
3508 implied_prefix = 1;
3509 break;
3510 case REPE_PREFIX_OPCODE:
3511 implied_prefix = 2;
3512 break;
3513 case REPNE_PREFIX_OPCODE:
3514 implied_prefix = 3;
3515 break;
3516 default:
3517 abort ();
3518 }
3519
3520 /* 4 byte EVEX prefix. */
3521 i.vex.length = 4;
3522 i.vex.bytes[0] = 0x62;
3523
3524 /* mmmm bits. */
3525 switch (i.tm.opcode_modifier.vexopcode)
3526 {
3527 case VEX0F:
3528 m = 1;
3529 break;
3530 case VEX0F38:
3531 m = 2;
3532 break;
3533 case VEX0F3A:
3534 m = 3;
3535 break;
3536 default:
3537 abort ();
3538 break;
3539 }
3540
3541 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3542 bits from REX. */
3543 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3544
3545 /* The fifth bit of the second EVEX byte is 1's compliment of the
3546 REX_R bit in VREX. */
3547 if (!(i.vrex & REX_R))
3548 i.vex.bytes[1] |= 0x10;
3549 else
3550 vrex_used |= REX_R;
3551
3552 if ((i.reg_operands + i.imm_operands) == i.operands)
3553 {
3554 /* When all operands are registers, the REX_X bit in REX is not
3555 used. We reuse it to encode the upper 16 registers, which is
3556 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3557 as 1's compliment. */
3558 if ((i.vrex & REX_B))
3559 {
3560 vrex_used |= REX_B;
3561 i.vex.bytes[1] &= ~0x40;
3562 }
3563 }
3564
3565 /* EVEX instructions shouldn't need the REX prefix. */
3566 i.vrex &= ~vrex_used;
3567 gas_assert (i.vrex == 0);
3568
3569 /* Check the REX.W bit. */
3570 w = (i.rex & REX_W) ? 1 : 0;
3571 if (i.tm.opcode_modifier.vexw)
3572 {
3573 if (i.tm.opcode_modifier.vexw == VEXW1)
3574 w = 1;
3575 }
3576 /* If w is not set it means we are dealing with WIG instruction. */
3577 else if (!w)
3578 {
3579 if (evexwig == evexw1)
3580 w = 1;
3581 }
3582
3583 /* Encode the U bit. */
3584 implied_prefix |= 0x4;
3585
3586 /* The third byte of the EVEX prefix. */
3587 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3588
3589 /* The fourth byte of the EVEX prefix. */
3590 /* The zeroing-masking bit. */
3591 if (i.mask && i.mask->zeroing)
3592 i.vex.bytes[3] |= 0x80;
3593
3594 /* Don't always set the broadcast bit if there is no RC. */
3595 if (!i.rounding)
3596 {
3597 /* Encode the vector length. */
3598 unsigned int vec_length;
3599
3600 switch (i.tm.opcode_modifier.evex)
3601 {
3602 case EVEXLIG: /* LL' is ignored */
3603 vec_length = evexlig << 5;
3604 break;
3605 case EVEX128:
3606 vec_length = 0 << 5;
3607 break;
3608 case EVEX256:
3609 vec_length = 1 << 5;
3610 break;
3611 case EVEX512:
3612 vec_length = 2 << 5;
3613 break;
3614 default:
3615 abort ();
3616 break;
3617 }
3618 i.vex.bytes[3] |= vec_length;
3619 /* Encode the broadcast bit. */
3620 if (i.broadcast)
3621 i.vex.bytes[3] |= 0x10;
3622 }
3623 else
3624 {
3625 if (i.rounding->type != saeonly)
3626 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3627 else
d3d3c6db 3628 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3629 }
3630
3631 if (i.mask && i.mask->mask)
3632 i.vex.bytes[3] |= i.mask->mask->reg_num;
3633}
3634
65da13b5
L
3635static void
3636process_immext (void)
3637{
3638 expressionS *exp;
3639
4c692bc7
JB
3640 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3641 && i.operands > 0)
65da13b5 3642 {
4c692bc7
JB
3643 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3644 with an opcode suffix which is coded in the same place as an
3645 8-bit immediate field would be.
3646 Here we check those operands and remove them afterwards. */
65da13b5
L
3647 unsigned int x;
3648
3649 for (x = 0; x < i.operands; x++)
4c692bc7 3650 if (register_number (i.op[x].regs) != x)
65da13b5 3651 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3652 register_prefix, i.op[x].regs->reg_name, x + 1,
3653 i.tm.name);
3654
3655 i.operands = 0;
65da13b5
L
3656 }
3657
9916071f
AP
3658 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3659 {
3660 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3661 suffix which is coded in the same place as an 8-bit immediate
3662 field would be.
3663 Here we check those operands and remove them afterwards. */
3664 unsigned int x;
3665
3666 if (i.operands != 3)
3667 abort();
3668
3669 for (x = 0; x < 2; x++)
3670 if (register_number (i.op[x].regs) != x)
3671 goto bad_register_operand;
3672
3673 /* Check for third operand for mwaitx/monitorx insn. */
3674 if (register_number (i.op[x].regs)
3675 != (x + (i.tm.extension_opcode == 0xfb)))
3676 {
3677bad_register_operand:
3678 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3679 register_prefix, i.op[x].regs->reg_name, x+1,
3680 i.tm.name);
3681 }
3682
3683 i.operands = 0;
3684 }
3685
c0f3af97 3686 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3687 which is coded in the same place as an 8-bit immediate field
3688 would be. Here we fake an 8-bit immediate operand from the
3689 opcode suffix stored in tm.extension_opcode.
3690
c1e679ec 3691 AVX instructions also use this encoding, for some of
c0f3af97 3692 3 argument instructions. */
65da13b5 3693
43234a1e 3694 gas_assert (i.imm_operands <= 1
7ab9ffdd 3695 && (i.operands <= 2
43234a1e
L
3696 || ((i.tm.opcode_modifier.vex
3697 || i.tm.opcode_modifier.evex)
7ab9ffdd 3698 && i.operands <= 4)));
65da13b5
L
3699
3700 exp = &im_expressions[i.imm_operands++];
3701 i.op[i.operands].imms = exp;
3702 i.types[i.operands] = imm8;
3703 i.operands++;
3704 exp->X_op = O_constant;
3705 exp->X_add_number = i.tm.extension_opcode;
3706 i.tm.extension_opcode = None;
3707}
3708
42164a71
L
3709
3710static int
3711check_hle (void)
3712{
3713 switch (i.tm.opcode_modifier.hleprefixok)
3714 {
3715 default:
3716 abort ();
82c2def5 3717 case HLEPrefixNone:
165de32a
L
3718 as_bad (_("invalid instruction `%s' after `%s'"),
3719 i.tm.name, i.hle_prefix);
42164a71 3720 return 0;
82c2def5 3721 case HLEPrefixLock:
42164a71
L
3722 if (i.prefix[LOCK_PREFIX])
3723 return 1;
165de32a 3724 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3725 return 0;
82c2def5 3726 case HLEPrefixAny:
42164a71 3727 return 1;
82c2def5 3728 case HLEPrefixRelease:
42164a71
L
3729 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3730 {
3731 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3732 i.tm.name);
3733 return 0;
3734 }
3735 if (i.mem_operands == 0
3736 || !operand_type_check (i.types[i.operands - 1], anymem))
3737 {
3738 as_bad (_("memory destination needed for instruction `%s'"
3739 " after `xrelease'"), i.tm.name);
3740 return 0;
3741 }
3742 return 1;
3743 }
3744}
3745
b6f8c7c4
L
3746/* Try the shortest encoding by shortening operand size. */
3747
3748static void
3749optimize_encoding (void)
3750{
3751 int j;
3752
3753 if (optimize_for_space
3754 && i.reg_operands == 1
3755 && i.imm_operands == 1
3756 && !i.types[1].bitfield.byte
3757 && i.op[0].imms->X_op == O_constant
3758 && fits_in_imm7 (i.op[0].imms->X_add_number)
3759 && ((i.tm.base_opcode == 0xa8
3760 && i.tm.extension_opcode == None)
3761 || (i.tm.base_opcode == 0xf6
3762 && i.tm.extension_opcode == 0x0)))
3763 {
3764 /* Optimize: -Os:
3765 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3766 */
3767 unsigned int base_regnum = i.op[1].regs->reg_num;
3768 if (flag_code == CODE_64BIT || base_regnum < 4)
3769 {
3770 i.types[1].bitfield.byte = 1;
3771 /* Ignore the suffix. */
3772 i.suffix = 0;
3773 if (base_regnum >= 4
3774 && !(i.op[1].regs->reg_flags & RegRex))
3775 {
3776 /* Handle SP, BP, SI and DI registers. */
3777 if (i.types[1].bitfield.word)
3778 j = 16;
3779 else if (i.types[1].bitfield.dword)
3780 j = 32;
3781 else
3782 j = 48;
3783 i.op[1].regs -= j;
3784 }
3785 }
3786 }
3787 else if (flag_code == CODE_64BIT
3788 && ((i.reg_operands == 1
3789 && i.imm_operands == 1
3790 && i.op[0].imms->X_op == O_constant
3791 && ((i.tm.base_opcode == 0xb0
3792 && i.tm.extension_opcode == None
3793 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3794 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3795 && (((i.tm.base_opcode == 0x24
3796 || i.tm.base_opcode == 0xa8)
3797 && i.tm.extension_opcode == None)
3798 || (i.tm.base_opcode == 0x80
3799 && i.tm.extension_opcode == 0x4)
3800 || ((i.tm.base_opcode == 0xf6
3801 || i.tm.base_opcode == 0xc6)
3802 && i.tm.extension_opcode == 0x0)))))
3803 || (i.reg_operands == 2
3804 && i.op[0].regs == i.op[1].regs
3805 && ((i.tm.base_opcode == 0x30
3806 || i.tm.base_opcode == 0x28)
3807 && i.tm.extension_opcode == None)))
3808 && i.types[1].bitfield.qword)
3809 {
3810 /* Optimize: -O:
3811 andq $imm31, %r64 -> andl $imm31, %r32
3812 testq $imm31, %r64 -> testl $imm31, %r32
3813 xorq %r64, %r64 -> xorl %r32, %r32
3814 subq %r64, %r64 -> subl %r32, %r32
3815 movq $imm31, %r64 -> movl $imm31, %r32
3816 movq $imm32, %r64 -> movl $imm32, %r32
3817 */
3818 i.tm.opcode_modifier.norex64 = 1;
3819 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3820 {
3821 /* Handle
3822 movq $imm31, %r64 -> movl $imm31, %r32
3823 movq $imm32, %r64 -> movl $imm32, %r32
3824 */
3825 i.tm.operand_types[0].bitfield.imm32 = 1;
3826 i.tm.operand_types[0].bitfield.imm32s = 0;
3827 i.tm.operand_types[0].bitfield.imm64 = 0;
3828 i.types[0].bitfield.imm32 = 1;
3829 i.types[0].bitfield.imm32s = 0;
3830 i.types[0].bitfield.imm64 = 0;
3831 i.types[1].bitfield.dword = 1;
3832 i.types[1].bitfield.qword = 0;
3833 if (i.tm.base_opcode == 0xc6)
3834 {
3835 /* Handle
3836 movq $imm31, %r64 -> movl $imm31, %r32
3837 */
3838 i.tm.base_opcode = 0xb0;
3839 i.tm.extension_opcode = None;
3840 i.tm.opcode_modifier.shortform = 1;
3841 i.tm.opcode_modifier.modrm = 0;
3842 }
3843 }
3844 }
3845 else if (optimize > 1
3846 && i.reg_operands == 3
3847 && i.op[0].regs == i.op[1].regs
3848 && !i.types[2].bitfield.xmmword
3849 && (i.tm.opcode_modifier.vex
3850 || (!i.mask
3851 && !i.rounding
3852 && i.tm.opcode_modifier.evex
3853 && cpu_arch_flags.bitfield.cpuavx512vl))
3854 && ((i.tm.base_opcode == 0x55
3855 || i.tm.base_opcode == 0x6655
3856 || i.tm.base_opcode == 0x66df
3857 || i.tm.base_opcode == 0x57
3858 || i.tm.base_opcode == 0x6657
3859 || i.tm.base_opcode == 0x66ef)
3860 && i.tm.extension_opcode == None))
3861 {
3862 /* Optimize: -O2:
3863 VOP, one of vandnps, vandnpd, vxorps and vxorpd:
3864 EVEX VOP %zmmM, %zmmM, %zmmN
3865 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3866 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3867 EVEX VOP %ymmM, %ymmM, %ymmN
3868 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3869 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3870 VEX VOP %ymmM, %ymmM, %ymmN
3871 -> VEX VOP %xmmM, %xmmM, %xmmN
3872 VOP, one of vpandn and vpxor:
3873 VEX VOP %ymmM, %ymmM, %ymmN
3874 -> VEX VOP %xmmM, %xmmM, %xmmN
3875 VOP, one of vpandnd and vpandnq:
3876 EVEX VOP %zmmM, %zmmM, %zmmN
3877 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3878 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3879 EVEX VOP %ymmM, %ymmM, %ymmN
3880 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3881 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3882 VOP, one of vpxord and vpxorq:
3883 EVEX VOP %zmmM, %zmmM, %zmmN
3884 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3885 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3886 EVEX VOP %ymmM, %ymmM, %ymmN
3887 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3888 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3889 */
3890 if (i.tm.opcode_modifier.evex)
3891 {
3892 /* If only lower 16 vector registers are used, we can use
3893 VEX encoding. */
3894 for (j = 0; j < 3; j++)
3895 if (register_number (i.op[j].regs) > 15)
3896 break;
3897
3898 if (j < 3)
3899 i.tm.opcode_modifier.evex = EVEX128;
3900 else
3901 {
3902 i.tm.opcode_modifier.vex = VEX128;
3903 i.tm.opcode_modifier.vexw = VEXW0;
3904 i.tm.opcode_modifier.evex = 0;
3905 }
3906 }
3907 else
3908 i.tm.opcode_modifier.vex = VEX128;
3909
3910 if (i.tm.opcode_modifier.vex)
3911 for (j = 0; j < 3; j++)
3912 {
3913 i.types[j].bitfield.xmmword = 1;
3914 i.types[j].bitfield.ymmword = 0;
3915 }
3916 }
3917}
3918
252b5132
RH
3919/* This is the guts of the machine-dependent assembler. LINE points to a
3920 machine dependent instruction. This function is supposed to emit
3921 the frags/bytes it assembles to. */
3922
3923void
65da13b5 3924md_assemble (char *line)
252b5132 3925{
40fb9820 3926 unsigned int j;
83b16ac6 3927 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 3928 const insn_template *t;
252b5132 3929
47926f60 3930 /* Initialize globals. */
252b5132
RH
3931 memset (&i, '\0', sizeof (i));
3932 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 3933 i.reloc[j] = NO_RELOC;
252b5132
RH
3934 memset (disp_expressions, '\0', sizeof (disp_expressions));
3935 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 3936 save_stack_p = save_stack;
252b5132
RH
3937
3938 /* First parse an instruction mnemonic & call i386_operand for the operands.
3939 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 3940 start of a (possibly prefixed) mnemonic. */
252b5132 3941
29b0f896
AM
3942 line = parse_insn (line, mnemonic);
3943 if (line == NULL)
3944 return;
83b16ac6 3945 mnem_suffix = i.suffix;
252b5132 3946
29b0f896 3947 line = parse_operands (line, mnemonic);
ee86248c 3948 this_operand = -1;
8325cc63
JB
3949 xfree (i.memop1_string);
3950 i.memop1_string = NULL;
29b0f896
AM
3951 if (line == NULL)
3952 return;
252b5132 3953
29b0f896
AM
3954 /* Now we've parsed the mnemonic into a set of templates, and have the
3955 operands at hand. */
3956
3957 /* All intel opcodes have reversed operands except for "bound" and
3958 "enter". We also don't reverse intersegment "jmp" and "call"
3959 instructions with 2 immediate operands so that the immediate segment
050dfa73 3960 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
3961 if (intel_syntax
3962 && i.operands > 1
29b0f896 3963 && (strcmp (mnemonic, "bound") != 0)
30123838 3964 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
3965 && !(operand_type_check (i.types[0], imm)
3966 && operand_type_check (i.types[1], imm)))
29b0f896
AM
3967 swap_operands ();
3968
ec56d5c0
JB
3969 /* The order of the immediates should be reversed
3970 for 2 immediates extrq and insertq instructions */
3971 if (i.imm_operands == 2
3972 && (strcmp (mnemonic, "extrq") == 0
3973 || strcmp (mnemonic, "insertq") == 0))
3974 swap_2_operands (0, 1);
3975
29b0f896
AM
3976 if (i.imm_operands)
3977 optimize_imm ();
3978
b300c311
L
3979 /* Don't optimize displacement for movabs since it only takes 64bit
3980 displacement. */
3981 if (i.disp_operands
a501d77e 3982 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
3983 && (flag_code != CODE_64BIT
3984 || strcmp (mnemonic, "movabs") != 0))
3985 optimize_disp ();
29b0f896
AM
3986
3987 /* Next, we find a template that matches the given insn,
3988 making sure the overlap of the given operands types is consistent
3989 with the template operand types. */
252b5132 3990
83b16ac6 3991 if (!(t = match_template (mnem_suffix)))
29b0f896 3992 return;
252b5132 3993
7bab8ab5 3994 if (sse_check != check_none
81f8a913 3995 && !i.tm.opcode_modifier.noavx
daf50ae7
L
3996 && (i.tm.cpu_flags.bitfield.cpusse
3997 || i.tm.cpu_flags.bitfield.cpusse2
3998 || i.tm.cpu_flags.bitfield.cpusse3
3999 || i.tm.cpu_flags.bitfield.cpussse3
4000 || i.tm.cpu_flags.bitfield.cpusse4_1
4001 || i.tm.cpu_flags.bitfield.cpusse4_2))
4002 {
7bab8ab5 4003 (sse_check == check_warning
daf50ae7
L
4004 ? as_warn
4005 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4006 }
4007
321fd21e
L
4008 /* Zap movzx and movsx suffix. The suffix has been set from
4009 "word ptr" or "byte ptr" on the source operand in Intel syntax
4010 or extracted from mnemonic in AT&T syntax. But we'll use
4011 the destination register to choose the suffix for encoding. */
4012 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4013 {
321fd21e
L
4014 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4015 there is no suffix, the default will be byte extension. */
4016 if (i.reg_operands != 2
4017 && !i.suffix
7ab9ffdd 4018 && intel_syntax)
321fd21e
L
4019 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4020
4021 i.suffix = 0;
cd61ebfe 4022 }
24eab124 4023
40fb9820 4024 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4025 if (!add_prefix (FWAIT_OPCODE))
4026 return;
252b5132 4027
d5de92cf
L
4028 /* Check if REP prefix is OK. */
4029 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4030 {
4031 as_bad (_("invalid instruction `%s' after `%s'"),
4032 i.tm.name, i.rep_prefix);
4033 return;
4034 }
4035
c1ba0266
L
4036 /* Check for lock without a lockable instruction. Destination operand
4037 must be memory unless it is xchg (0x86). */
c32fa91d
L
4038 if (i.prefix[LOCK_PREFIX]
4039 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4040 || i.mem_operands == 0
4041 || (i.tm.base_opcode != 0x86
4042 && !operand_type_check (i.types[i.operands - 1], anymem))))
c32fa91d
L
4043 {
4044 as_bad (_("expecting lockable instruction after `lock'"));
4045 return;
4046 }
4047
42164a71 4048 /* Check if HLE prefix is OK. */
165de32a 4049 if (i.hle_prefix && !check_hle ())
42164a71
L
4050 return;
4051
7e8b059b
L
4052 /* Check BND prefix. */
4053 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4054 as_bad (_("expecting valid branch instruction after `bnd'"));
4055
04ef582a 4056 /* Check NOTRACK prefix. */
9fef80d6
L
4057 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4058 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4059
327e8c42
JB
4060 if (i.tm.cpu_flags.bitfield.cpumpx)
4061 {
4062 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4063 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4064 else if (flag_code != CODE_16BIT
4065 ? i.prefix[ADDR_PREFIX]
4066 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4067 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4068 }
7e8b059b
L
4069
4070 /* Insert BND prefix. */
4071 if (add_bnd_prefix
4072 && i.tm.opcode_modifier.bndprefixok
4073 && !i.prefix[BND_PREFIX])
4074 add_prefix (BND_PREFIX_OPCODE);
4075
29b0f896 4076 /* Check string instruction segment overrides. */
40fb9820 4077 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
4078 {
4079 if (!check_string ())
5dd0794d 4080 return;
fc0763e6 4081 i.disp_operands = 0;
29b0f896 4082 }
5dd0794d 4083
b6f8c7c4
L
4084 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4085 optimize_encoding ();
4086
29b0f896
AM
4087 if (!process_suffix ())
4088 return;
e413e4e9 4089
bc0844ae
L
4090 /* Update operand types. */
4091 for (j = 0; j < i.operands; j++)
4092 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4093
29b0f896
AM
4094 /* Make still unresolved immediate matches conform to size of immediate
4095 given in i.suffix. */
4096 if (!finalize_imm ())
4097 return;
252b5132 4098
40fb9820 4099 if (i.types[0].bitfield.imm1)
29b0f896 4100 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4101
9afe6eb8
L
4102 /* We only need to check those implicit registers for instructions
4103 with 3 operands or less. */
4104 if (i.operands <= 3)
4105 for (j = 0; j < i.operands; j++)
4106 if (i.types[j].bitfield.inoutportreg
4107 || i.types[j].bitfield.shiftcount
1b54b8d7 4108 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
9afe6eb8 4109 i.reg_operands--;
40fb9820 4110
c0f3af97
L
4111 /* ImmExt should be processed after SSE2AVX. */
4112 if (!i.tm.opcode_modifier.sse2avx
4113 && i.tm.opcode_modifier.immext)
65da13b5 4114 process_immext ();
252b5132 4115
29b0f896
AM
4116 /* For insns with operands there are more diddles to do to the opcode. */
4117 if (i.operands)
4118 {
4119 if (!process_operands ())
4120 return;
4121 }
40fb9820 4122 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4123 {
4124 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4125 as_warn (_("translating to `%sp'"), i.tm.name);
4126 }
252b5132 4127
9e5e5283
L
4128 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
4129 {
4130 if (flag_code == CODE_16BIT)
4131 {
4132 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4133 i.tm.name);
4134 return;
4135 }
c0f3af97 4136
9e5e5283
L
4137 if (i.tm.opcode_modifier.vex)
4138 build_vex_prefix (t);
4139 else
4140 build_evex_prefix ();
4141 }
43234a1e 4142
5dd85c99
SP
4143 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4144 instructions may define INT_OPCODE as well, so avoid this corner
4145 case for those instructions that use MODRM. */
4146 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4147 && !i.tm.opcode_modifier.modrm
4148 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4149 {
4150 i.tm.base_opcode = INT3_OPCODE;
4151 i.imm_operands = 0;
4152 }
252b5132 4153
40fb9820
L
4154 if ((i.tm.opcode_modifier.jump
4155 || i.tm.opcode_modifier.jumpbyte
4156 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
4157 && i.op[0].disps->X_op == O_constant)
4158 {
4159 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4160 the absolute address given by the constant. Since ix86 jumps and
4161 calls are pc relative, we need to generate a reloc. */
4162 i.op[0].disps->X_add_symbol = &abs_symbol;
4163 i.op[0].disps->X_op = O_symbol;
4164 }
252b5132 4165
40fb9820 4166 if (i.tm.opcode_modifier.rex64)
161a04f6 4167 i.rex |= REX_W;
252b5132 4168
29b0f896
AM
4169 /* For 8 bit registers we need an empty rex prefix. Also if the
4170 instruction already has a prefix, we need to convert old
4171 registers to new ones. */
773f551c 4172
dc821c5f 4173 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
29b0f896 4174 && (i.op[0].regs->reg_flags & RegRex64) != 0)
dc821c5f 4175 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
29b0f896 4176 && (i.op[1].regs->reg_flags & RegRex64) != 0)
dc821c5f
JB
4177 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4178 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
29b0f896
AM
4179 && i.rex != 0))
4180 {
4181 int x;
726c5dcd 4182
29b0f896
AM
4183 i.rex |= REX_OPCODE;
4184 for (x = 0; x < 2; x++)
4185 {
4186 /* Look for 8 bit operand that uses old registers. */
dc821c5f 4187 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
29b0f896 4188 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4189 {
29b0f896
AM
4190 /* In case it is "hi" register, give up. */
4191 if (i.op[x].regs->reg_num > 3)
a540244d 4192 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4193 "instruction requiring REX prefix."),
a540244d 4194 register_prefix, i.op[x].regs->reg_name);
773f551c 4195
29b0f896
AM
4196 /* Otherwise it is equivalent to the extended register.
4197 Since the encoding doesn't change this is merely
4198 cosmetic cleanup for debug output. */
4199
4200 i.op[x].regs = i.op[x].regs + 8;
773f551c 4201 }
29b0f896
AM
4202 }
4203 }
773f551c 4204
6b6b6807
L
4205 if (i.rex == 0 && i.rex_encoding)
4206 {
4207 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4208 that uses legacy register. If it is "hi" register, don't add
4209 the REX_OPCODE byte. */
4210 int x;
4211 for (x = 0; x < 2; x++)
4212 if (i.types[x].bitfield.reg
4213 && i.types[x].bitfield.byte
4214 && (i.op[x].regs->reg_flags & RegRex64) == 0
4215 && i.op[x].regs->reg_num > 3)
4216 {
4217 i.rex_encoding = FALSE;
4218 break;
4219 }
4220
4221 if (i.rex_encoding)
4222 i.rex = REX_OPCODE;
4223 }
4224
7ab9ffdd 4225 if (i.rex != 0)
29b0f896
AM
4226 add_prefix (REX_OPCODE | i.rex);
4227
4228 /* We are ready to output the insn. */
4229 output_insn ();
4230}
4231
4232static char *
e3bb37b5 4233parse_insn (char *line, char *mnemonic)
29b0f896
AM
4234{
4235 char *l = line;
4236 char *token_start = l;
4237 char *mnem_p;
5c6af06e 4238 int supported;
d3ce72d0 4239 const insn_template *t;
b6169b20 4240 char *dot_p = NULL;
29b0f896 4241
29b0f896
AM
4242 while (1)
4243 {
4244 mnem_p = mnemonic;
4245 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4246 {
b6169b20
L
4247 if (*mnem_p == '.')
4248 dot_p = mnem_p;
29b0f896
AM
4249 mnem_p++;
4250 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4251 {
29b0f896
AM
4252 as_bad (_("no such instruction: `%s'"), token_start);
4253 return NULL;
4254 }
4255 l++;
4256 }
4257 if (!is_space_char (*l)
4258 && *l != END_OF_INSN
e44823cf
JB
4259 && (intel_syntax
4260 || (*l != PREFIX_SEPARATOR
4261 && *l != ',')))
29b0f896
AM
4262 {
4263 as_bad (_("invalid character %s in mnemonic"),
4264 output_invalid (*l));
4265 return NULL;
4266 }
4267 if (token_start == l)
4268 {
e44823cf 4269 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4270 as_bad (_("expecting prefix; got nothing"));
4271 else
4272 as_bad (_("expecting mnemonic; got nothing"));
4273 return NULL;
4274 }
45288df1 4275
29b0f896 4276 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4277 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4278
29b0f896
AM
4279 if (*l != END_OF_INSN
4280 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4281 && current_templates
40fb9820 4282 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4283 {
c6fb90c8 4284 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4285 {
4286 as_bad ((flag_code != CODE_64BIT
4287 ? _("`%s' is only supported in 64-bit mode")
4288 : _("`%s' is not supported in 64-bit mode")),
4289 current_templates->start->name);
4290 return NULL;
4291 }
29b0f896
AM
4292 /* If we are in 16-bit mode, do not allow addr16 or data16.
4293 Similarly, in 32-bit mode, do not allow addr32 or data32. */
40fb9820
L
4294 if ((current_templates->start->opcode_modifier.size16
4295 || current_templates->start->opcode_modifier.size32)
29b0f896 4296 && flag_code != CODE_64BIT
40fb9820 4297 && (current_templates->start->opcode_modifier.size32
29b0f896
AM
4298 ^ (flag_code == CODE_16BIT)))
4299 {
4300 as_bad (_("redundant %s prefix"),
4301 current_templates->start->name);
4302 return NULL;
45288df1 4303 }
86fa6981 4304 if (current_templates->start->opcode_length == 0)
29b0f896 4305 {
86fa6981
L
4306 /* Handle pseudo prefixes. */
4307 switch (current_templates->start->base_opcode)
4308 {
4309 case 0x0:
4310 /* {disp8} */
4311 i.disp_encoding = disp_encoding_8bit;
4312 break;
4313 case 0x1:
4314 /* {disp32} */
4315 i.disp_encoding = disp_encoding_32bit;
4316 break;
4317 case 0x2:
4318 /* {load} */
4319 i.dir_encoding = dir_encoding_load;
4320 break;
4321 case 0x3:
4322 /* {store} */
4323 i.dir_encoding = dir_encoding_store;
4324 break;
4325 case 0x4:
4326 /* {vex2} */
4327 i.vec_encoding = vex_encoding_vex2;
4328 break;
4329 case 0x5:
4330 /* {vex3} */
4331 i.vec_encoding = vex_encoding_vex3;
4332 break;
4333 case 0x6:
4334 /* {evex} */
4335 i.vec_encoding = vex_encoding_evex;
4336 break;
6b6b6807
L
4337 case 0x7:
4338 /* {rex} */
4339 i.rex_encoding = TRUE;
4340 break;
b6f8c7c4
L
4341 case 0x8:
4342 /* {nooptimize} */
4343 i.no_optimize = TRUE;
4344 break;
86fa6981
L
4345 default:
4346 abort ();
4347 }
4348 }
4349 else
4350 {
4351 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4352 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4353 {
4e9ac44a
L
4354 case PREFIX_EXIST:
4355 return NULL;
4356 case PREFIX_DS:
d777820b 4357 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4358 i.notrack_prefix = current_templates->start->name;
4359 break;
4360 case PREFIX_REP:
4361 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4362 i.hle_prefix = current_templates->start->name;
4363 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4364 i.bnd_prefix = current_templates->start->name;
4365 else
4366 i.rep_prefix = current_templates->start->name;
4367 break;
4368 default:
4369 break;
86fa6981 4370 }
29b0f896
AM
4371 }
4372 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4373 token_start = ++l;
4374 }
4375 else
4376 break;
4377 }
45288df1 4378
30a55f88 4379 if (!current_templates)
b6169b20 4380 {
f8a5c266
L
4381 /* Check if we should swap operand or force 32bit displacement in
4382 encoding. */
30a55f88 4383 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
86fa6981 4384 i.dir_encoding = dir_encoding_store;
8d63c93e 4385 else if (mnem_p - 3 == dot_p
a501d77e
L
4386 && dot_p[1] == 'd'
4387 && dot_p[2] == '8')
4388 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4389 else if (mnem_p - 4 == dot_p
f8a5c266
L
4390 && dot_p[1] == 'd'
4391 && dot_p[2] == '3'
4392 && dot_p[3] == '2')
a501d77e 4393 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4394 else
4395 goto check_suffix;
4396 mnem_p = dot_p;
4397 *dot_p = '\0';
d3ce72d0 4398 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4399 }
4400
29b0f896
AM
4401 if (!current_templates)
4402 {
b6169b20 4403check_suffix:
29b0f896
AM
4404 /* See if we can get a match by trimming off a suffix. */
4405 switch (mnem_p[-1])
4406 {
4407 case WORD_MNEM_SUFFIX:
9306ca4a
JB
4408 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4409 i.suffix = SHORT_MNEM_SUFFIX;
4410 else
1a0670f3 4411 /* Fall through. */
29b0f896
AM
4412 case BYTE_MNEM_SUFFIX:
4413 case QWORD_MNEM_SUFFIX:
4414 i.suffix = mnem_p[-1];
4415 mnem_p[-1] = '\0';
d3ce72d0
NC
4416 current_templates = (const templates *) hash_find (op_hash,
4417 mnemonic);
29b0f896
AM
4418 break;
4419 case SHORT_MNEM_SUFFIX:
4420 case LONG_MNEM_SUFFIX:
4421 if (!intel_syntax)
4422 {
4423 i.suffix = mnem_p[-1];
4424 mnem_p[-1] = '\0';
d3ce72d0
NC
4425 current_templates = (const templates *) hash_find (op_hash,
4426 mnemonic);
29b0f896
AM
4427 }
4428 break;
252b5132 4429
29b0f896
AM
4430 /* Intel Syntax. */
4431 case 'd':
4432 if (intel_syntax)
4433 {
9306ca4a 4434 if (intel_float_operand (mnemonic) == 1)
29b0f896
AM
4435 i.suffix = SHORT_MNEM_SUFFIX;
4436 else
4437 i.suffix = LONG_MNEM_SUFFIX;
4438 mnem_p[-1] = '\0';
d3ce72d0
NC
4439 current_templates = (const templates *) hash_find (op_hash,
4440 mnemonic);
29b0f896
AM
4441 }
4442 break;
4443 }
4444 if (!current_templates)
4445 {
4446 as_bad (_("no such instruction: `%s'"), token_start);
4447 return NULL;
4448 }
4449 }
252b5132 4450
40fb9820
L
4451 if (current_templates->start->opcode_modifier.jump
4452 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
4453 {
4454 /* Check for a branch hint. We allow ",pt" and ",pn" for
4455 predict taken and predict not taken respectively.
4456 I'm not sure that branch hints actually do anything on loop
4457 and jcxz insns (JumpByte) for current Pentium4 chips. They
4458 may work in the future and it doesn't hurt to accept them
4459 now. */
4460 if (l[0] == ',' && l[1] == 'p')
4461 {
4462 if (l[2] == 't')
4463 {
4464 if (!add_prefix (DS_PREFIX_OPCODE))
4465 return NULL;
4466 l += 3;
4467 }
4468 else if (l[2] == 'n')
4469 {
4470 if (!add_prefix (CS_PREFIX_OPCODE))
4471 return NULL;
4472 l += 3;
4473 }
4474 }
4475 }
4476 /* Any other comma loses. */
4477 if (*l == ',')
4478 {
4479 as_bad (_("invalid character %s in mnemonic"),
4480 output_invalid (*l));
4481 return NULL;
4482 }
252b5132 4483
29b0f896 4484 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4485 supported = 0;
4486 for (t = current_templates->start; t < current_templates->end; ++t)
4487 {
c0f3af97
L
4488 supported |= cpu_flags_match (t);
4489 if (supported == CPU_FLAGS_PERFECT_MATCH)
3629bb00 4490 goto skip;
5c6af06e 4491 }
3629bb00 4492
c0f3af97 4493 if (!(supported & CPU_FLAGS_64BIT_MATCH))
5c6af06e
JB
4494 {
4495 as_bad (flag_code == CODE_64BIT
4496 ? _("`%s' is not supported in 64-bit mode")
4497 : _("`%s' is only supported in 64-bit mode"),
4498 current_templates->start->name);
4499 return NULL;
4500 }
c0f3af97 4501 if (supported != CPU_FLAGS_PERFECT_MATCH)
29b0f896 4502 {
3629bb00 4503 as_bad (_("`%s' is not supported on `%s%s'"),
7ab9ffdd 4504 current_templates->start->name,
41aacd83 4505 cpu_arch_name ? cpu_arch_name : default_arch,
3629bb00
L
4506 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4507 return NULL;
29b0f896 4508 }
3629bb00
L
4509
4510skip:
4511 if (!cpu_arch_flags.bitfield.cpui386
40fb9820 4512 && (flag_code != CODE_16BIT))
29b0f896
AM
4513 {
4514 as_warn (_("use .code16 to ensure correct addressing mode"));
4515 }
252b5132 4516
29b0f896
AM
4517 return l;
4518}
252b5132 4519
29b0f896 4520static char *
e3bb37b5 4521parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4522{
4523 char *token_start;
3138f287 4524
29b0f896
AM
4525 /* 1 if operand is pending after ','. */
4526 unsigned int expecting_operand = 0;
252b5132 4527
29b0f896
AM
4528 /* Non-zero if operand parens not balanced. */
4529 unsigned int paren_not_balanced;
4530
4531 while (*l != END_OF_INSN)
4532 {
4533 /* Skip optional white space before operand. */
4534 if (is_space_char (*l))
4535 ++l;
d02603dc 4536 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4537 {
4538 as_bad (_("invalid character %s before operand %d"),
4539 output_invalid (*l),
4540 i.operands + 1);
4541 return NULL;
4542 }
d02603dc 4543 token_start = l; /* After white space. */
29b0f896
AM
4544 paren_not_balanced = 0;
4545 while (paren_not_balanced || *l != ',')
4546 {
4547 if (*l == END_OF_INSN)
4548 {
4549 if (paren_not_balanced)
4550 {
4551 if (!intel_syntax)
4552 as_bad (_("unbalanced parenthesis in operand %d."),
4553 i.operands + 1);
4554 else
4555 as_bad (_("unbalanced brackets in operand %d."),
4556 i.operands + 1);
4557 return NULL;
4558 }
4559 else
4560 break; /* we are done */
4561 }
d02603dc 4562 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4563 {
4564 as_bad (_("invalid character %s in operand %d"),
4565 output_invalid (*l),
4566 i.operands + 1);
4567 return NULL;
4568 }
4569 if (!intel_syntax)
4570 {
4571 if (*l == '(')
4572 ++paren_not_balanced;
4573 if (*l == ')')
4574 --paren_not_balanced;
4575 }
4576 else
4577 {
4578 if (*l == '[')
4579 ++paren_not_balanced;
4580 if (*l == ']')
4581 --paren_not_balanced;
4582 }
4583 l++;
4584 }
4585 if (l != token_start)
4586 { /* Yes, we've read in another operand. */
4587 unsigned int operand_ok;
4588 this_operand = i.operands++;
4589 if (i.operands > MAX_OPERANDS)
4590 {
4591 as_bad (_("spurious operands; (%d operands/instruction max)"),
4592 MAX_OPERANDS);
4593 return NULL;
4594 }
9d46ce34 4595 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4596 /* Now parse operand adding info to 'i' as we go along. */
4597 END_STRING_AND_SAVE (l);
4598
4599 if (intel_syntax)
4600 operand_ok =
4601 i386_intel_operand (token_start,
4602 intel_float_operand (mnemonic));
4603 else
a7619375 4604 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4605
4606 RESTORE_END_STRING (l);
4607 if (!operand_ok)
4608 return NULL;
4609 }
4610 else
4611 {
4612 if (expecting_operand)
4613 {
4614 expecting_operand_after_comma:
4615 as_bad (_("expecting operand after ','; got nothing"));
4616 return NULL;
4617 }
4618 if (*l == ',')
4619 {
4620 as_bad (_("expecting operand before ','; got nothing"));
4621 return NULL;
4622 }
4623 }
7f3f1ea2 4624
29b0f896
AM
4625 /* Now *l must be either ',' or END_OF_INSN. */
4626 if (*l == ',')
4627 {
4628 if (*++l == END_OF_INSN)
4629 {
4630 /* Just skip it, if it's \n complain. */
4631 goto expecting_operand_after_comma;
4632 }
4633 expecting_operand = 1;
4634 }
4635 }
4636 return l;
4637}
7f3f1ea2 4638
050dfa73 4639static void
4d456e3d 4640swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4641{
4642 union i386_op temp_op;
40fb9820 4643 i386_operand_type temp_type;
050dfa73 4644 enum bfd_reloc_code_real temp_reloc;
4eed87de 4645
050dfa73
MM
4646 temp_type = i.types[xchg2];
4647 i.types[xchg2] = i.types[xchg1];
4648 i.types[xchg1] = temp_type;
4649 temp_op = i.op[xchg2];
4650 i.op[xchg2] = i.op[xchg1];
4651 i.op[xchg1] = temp_op;
4652 temp_reloc = i.reloc[xchg2];
4653 i.reloc[xchg2] = i.reloc[xchg1];
4654 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4655
4656 if (i.mask)
4657 {
4658 if (i.mask->operand == xchg1)
4659 i.mask->operand = xchg2;
4660 else if (i.mask->operand == xchg2)
4661 i.mask->operand = xchg1;
4662 }
4663 if (i.broadcast)
4664 {
4665 if (i.broadcast->operand == xchg1)
4666 i.broadcast->operand = xchg2;
4667 else if (i.broadcast->operand == xchg2)
4668 i.broadcast->operand = xchg1;
4669 }
4670 if (i.rounding)
4671 {
4672 if (i.rounding->operand == xchg1)
4673 i.rounding->operand = xchg2;
4674 else if (i.rounding->operand == xchg2)
4675 i.rounding->operand = xchg1;
4676 }
050dfa73
MM
4677}
4678
29b0f896 4679static void
e3bb37b5 4680swap_operands (void)
29b0f896 4681{
b7c61d9a 4682 switch (i.operands)
050dfa73 4683 {
c0f3af97 4684 case 5:
b7c61d9a 4685 case 4:
4d456e3d 4686 swap_2_operands (1, i.operands - 2);
1a0670f3 4687 /* Fall through. */
b7c61d9a
L
4688 case 3:
4689 case 2:
4d456e3d 4690 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
4691 break;
4692 default:
4693 abort ();
29b0f896 4694 }
29b0f896
AM
4695
4696 if (i.mem_operands == 2)
4697 {
4698 const seg_entry *temp_seg;
4699 temp_seg = i.seg[0];
4700 i.seg[0] = i.seg[1];
4701 i.seg[1] = temp_seg;
4702 }
4703}
252b5132 4704
29b0f896
AM
4705/* Try to ensure constant immediates are represented in the smallest
4706 opcode possible. */
4707static void
e3bb37b5 4708optimize_imm (void)
29b0f896
AM
4709{
4710 char guess_suffix = 0;
4711 int op;
252b5132 4712
29b0f896
AM
4713 if (i.suffix)
4714 guess_suffix = i.suffix;
4715 else if (i.reg_operands)
4716 {
4717 /* Figure out a suffix from the last register operand specified.
4718 We can't do this properly yet, ie. excluding InOutPortReg,
4719 but the following works for instructions with immediates.
4720 In any case, we can't set i.suffix yet. */
4721 for (op = i.operands; --op >= 0;)
dc821c5f 4722 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
7ab9ffdd 4723 {
40fb9820
L
4724 guess_suffix = BYTE_MNEM_SUFFIX;
4725 break;
4726 }
dc821c5f 4727 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
252b5132 4728 {
40fb9820
L
4729 guess_suffix = WORD_MNEM_SUFFIX;
4730 break;
4731 }
dc821c5f 4732 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
40fb9820
L
4733 {
4734 guess_suffix = LONG_MNEM_SUFFIX;
4735 break;
4736 }
dc821c5f 4737 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
40fb9820
L
4738 {
4739 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 4740 break;
252b5132 4741 }
29b0f896
AM
4742 }
4743 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4744 guess_suffix = WORD_MNEM_SUFFIX;
4745
4746 for (op = i.operands; --op >= 0;)
40fb9820 4747 if (operand_type_check (i.types[op], imm))
29b0f896
AM
4748 {
4749 switch (i.op[op].imms->X_op)
252b5132 4750 {
29b0f896
AM
4751 case O_constant:
4752 /* If a suffix is given, this operand may be shortened. */
4753 switch (guess_suffix)
252b5132 4754 {
29b0f896 4755 case LONG_MNEM_SUFFIX:
40fb9820
L
4756 i.types[op].bitfield.imm32 = 1;
4757 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4758 break;
4759 case WORD_MNEM_SUFFIX:
40fb9820
L
4760 i.types[op].bitfield.imm16 = 1;
4761 i.types[op].bitfield.imm32 = 1;
4762 i.types[op].bitfield.imm32s = 1;
4763 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4764 break;
4765 case BYTE_MNEM_SUFFIX:
40fb9820
L
4766 i.types[op].bitfield.imm8 = 1;
4767 i.types[op].bitfield.imm8s = 1;
4768 i.types[op].bitfield.imm16 = 1;
4769 i.types[op].bitfield.imm32 = 1;
4770 i.types[op].bitfield.imm32s = 1;
4771 i.types[op].bitfield.imm64 = 1;
29b0f896 4772 break;
252b5132 4773 }
252b5132 4774
29b0f896
AM
4775 /* If this operand is at most 16 bits, convert it
4776 to a signed 16 bit number before trying to see
4777 whether it will fit in an even smaller size.
4778 This allows a 16-bit operand such as $0xffe0 to
4779 be recognised as within Imm8S range. */
40fb9820 4780 if ((i.types[op].bitfield.imm16)
29b0f896 4781 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 4782 {
29b0f896
AM
4783 i.op[op].imms->X_add_number =
4784 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4785 }
a28def75
L
4786#ifdef BFD64
4787 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 4788 if ((i.types[op].bitfield.imm32)
29b0f896
AM
4789 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4790 == 0))
4791 {
4792 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4793 ^ ((offsetT) 1 << 31))
4794 - ((offsetT) 1 << 31));
4795 }
a28def75 4796#endif
40fb9820 4797 i.types[op]
c6fb90c8
L
4798 = operand_type_or (i.types[op],
4799 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 4800
29b0f896
AM
4801 /* We must avoid matching of Imm32 templates when 64bit
4802 only immediate is available. */
4803 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 4804 i.types[op].bitfield.imm32 = 0;
29b0f896 4805 break;
252b5132 4806
29b0f896
AM
4807 case O_absent:
4808 case O_register:
4809 abort ();
4810
4811 /* Symbols and expressions. */
4812 default:
9cd96992
JB
4813 /* Convert symbolic operand to proper sizes for matching, but don't
4814 prevent matching a set of insns that only supports sizes other
4815 than those matching the insn suffix. */
4816 {
40fb9820 4817 i386_operand_type mask, allowed;
d3ce72d0 4818 const insn_template *t;
9cd96992 4819
0dfbf9d7
L
4820 operand_type_set (&mask, 0);
4821 operand_type_set (&allowed, 0);
40fb9820 4822
4eed87de
AM
4823 for (t = current_templates->start;
4824 t < current_templates->end;
4825 ++t)
c6fb90c8
L
4826 allowed = operand_type_or (allowed,
4827 t->operand_types[op]);
9cd96992
JB
4828 switch (guess_suffix)
4829 {
4830 case QWORD_MNEM_SUFFIX:
40fb9820
L
4831 mask.bitfield.imm64 = 1;
4832 mask.bitfield.imm32s = 1;
9cd96992
JB
4833 break;
4834 case LONG_MNEM_SUFFIX:
40fb9820 4835 mask.bitfield.imm32 = 1;
9cd96992
JB
4836 break;
4837 case WORD_MNEM_SUFFIX:
40fb9820 4838 mask.bitfield.imm16 = 1;
9cd96992
JB
4839 break;
4840 case BYTE_MNEM_SUFFIX:
40fb9820 4841 mask.bitfield.imm8 = 1;
9cd96992
JB
4842 break;
4843 default:
9cd96992
JB
4844 break;
4845 }
c6fb90c8 4846 allowed = operand_type_and (mask, allowed);
0dfbf9d7 4847 if (!operand_type_all_zero (&allowed))
c6fb90c8 4848 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 4849 }
29b0f896 4850 break;
252b5132 4851 }
29b0f896
AM
4852 }
4853}
47926f60 4854
29b0f896
AM
4855/* Try to use the smallest displacement type too. */
4856static void
e3bb37b5 4857optimize_disp (void)
29b0f896
AM
4858{
4859 int op;
3e73aa7c 4860
29b0f896 4861 for (op = i.operands; --op >= 0;)
40fb9820 4862 if (operand_type_check (i.types[op], disp))
252b5132 4863 {
b300c311 4864 if (i.op[op].disps->X_op == O_constant)
252b5132 4865 {
91d6fa6a 4866 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 4867
40fb9820 4868 if (i.types[op].bitfield.disp16
91d6fa6a 4869 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
4870 {
4871 /* If this operand is at most 16 bits, convert
4872 to a signed 16 bit number and don't use 64bit
4873 displacement. */
91d6fa6a 4874 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 4875 i.types[op].bitfield.disp64 = 0;
b300c311 4876 }
a28def75
L
4877#ifdef BFD64
4878 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 4879 if (i.types[op].bitfield.disp32
91d6fa6a 4880 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
4881 {
4882 /* If this operand is at most 32 bits, convert
4883 to a signed 32 bit number and don't use 64bit
4884 displacement. */
91d6fa6a
NC
4885 op_disp &= (((offsetT) 2 << 31) - 1);
4886 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 4887 i.types[op].bitfield.disp64 = 0;
b300c311 4888 }
a28def75 4889#endif
91d6fa6a 4890 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 4891 {
40fb9820
L
4892 i.types[op].bitfield.disp8 = 0;
4893 i.types[op].bitfield.disp16 = 0;
4894 i.types[op].bitfield.disp32 = 0;
4895 i.types[op].bitfield.disp32s = 0;
4896 i.types[op].bitfield.disp64 = 0;
b300c311
L
4897 i.op[op].disps = 0;
4898 i.disp_operands--;
4899 }
4900 else if (flag_code == CODE_64BIT)
4901 {
91d6fa6a 4902 if (fits_in_signed_long (op_disp))
28a9d8f5 4903 {
40fb9820
L
4904 i.types[op].bitfield.disp64 = 0;
4905 i.types[op].bitfield.disp32s = 1;
28a9d8f5 4906 }
0e1147d9 4907 if (i.prefix[ADDR_PREFIX]
91d6fa6a 4908 && fits_in_unsigned_long (op_disp))
40fb9820 4909 i.types[op].bitfield.disp32 = 1;
b300c311 4910 }
40fb9820
L
4911 if ((i.types[op].bitfield.disp32
4912 || i.types[op].bitfield.disp32s
4913 || i.types[op].bitfield.disp16)
b5014f7a 4914 && fits_in_disp8 (op_disp))
40fb9820 4915 i.types[op].bitfield.disp8 = 1;
252b5132 4916 }
67a4f2b7
AO
4917 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4918 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4919 {
4920 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4921 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
4922 i.types[op].bitfield.disp8 = 0;
4923 i.types[op].bitfield.disp16 = 0;
4924 i.types[op].bitfield.disp32 = 0;
4925 i.types[op].bitfield.disp32s = 0;
4926 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
4927 }
4928 else
b300c311 4929 /* We only support 64bit displacement on constants. */
40fb9820 4930 i.types[op].bitfield.disp64 = 0;
252b5132 4931 }
29b0f896
AM
4932}
4933
6c30d220
L
4934/* Check if operands are valid for the instruction. */
4935
4936static int
4937check_VecOperands (const insn_template *t)
4938{
43234a1e
L
4939 unsigned int op;
4940
6c30d220
L
4941 /* Without VSIB byte, we can't have a vector register for index. */
4942 if (!t->opcode_modifier.vecsib
4943 && i.index_reg
1b54b8d7
JB
4944 && (i.index_reg->reg_type.bitfield.xmmword
4945 || i.index_reg->reg_type.bitfield.ymmword
4946 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
4947 {
4948 i.error = unsupported_vector_index_register;
4949 return 1;
4950 }
4951
ad8ecc81
MZ
4952 /* Check if default mask is allowed. */
4953 if (t->opcode_modifier.nodefmask
4954 && (!i.mask || i.mask->mask->reg_num == 0))
4955 {
4956 i.error = no_default_mask;
4957 return 1;
4958 }
4959
7bab8ab5
JB
4960 /* For VSIB byte, we need a vector register for index, and all vector
4961 registers must be distinct. */
4962 if (t->opcode_modifier.vecsib)
4963 {
4964 if (!i.index_reg
6c30d220 4965 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 4966 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 4967 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 4968 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 4969 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 4970 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
4971 {
4972 i.error = invalid_vsib_address;
4973 return 1;
4974 }
4975
43234a1e
L
4976 gas_assert (i.reg_operands == 2 || i.mask);
4977 if (i.reg_operands == 2 && !i.mask)
4978 {
1b54b8d7
JB
4979 gas_assert (i.types[0].bitfield.regsimd);
4980 gas_assert (i.types[0].bitfield.xmmword
4981 || i.types[0].bitfield.ymmword);
4982 gas_assert (i.types[2].bitfield.regsimd);
4983 gas_assert (i.types[2].bitfield.xmmword
4984 || i.types[2].bitfield.ymmword);
43234a1e
L
4985 if (operand_check == check_none)
4986 return 0;
4987 if (register_number (i.op[0].regs)
4988 != register_number (i.index_reg)
4989 && register_number (i.op[2].regs)
4990 != register_number (i.index_reg)
4991 && register_number (i.op[0].regs)
4992 != register_number (i.op[2].regs))
4993 return 0;
4994 if (operand_check == check_error)
4995 {
4996 i.error = invalid_vector_register_set;
4997 return 1;
4998 }
4999 as_warn (_("mask, index, and destination registers should be distinct"));
5000 }
8444f82a
MZ
5001 else if (i.reg_operands == 1 && i.mask)
5002 {
1b54b8d7
JB
5003 if (i.types[1].bitfield.regsimd
5004 && (i.types[1].bitfield.xmmword
5005 || i.types[1].bitfield.ymmword
5006 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5007 && (register_number (i.op[1].regs)
5008 == register_number (i.index_reg)))
5009 {
5010 if (operand_check == check_error)
5011 {
5012 i.error = invalid_vector_register_set;
5013 return 1;
5014 }
5015 if (operand_check != check_none)
5016 as_warn (_("index and destination registers should be distinct"));
5017 }
5018 }
43234a1e 5019 }
7bab8ab5 5020
43234a1e
L
5021 /* Check if broadcast is supported by the instruction and is applied
5022 to the memory operand. */
5023 if (i.broadcast)
5024 {
5025 int broadcasted_opnd_size;
5026
5027 /* Check if specified broadcast is supported in this instruction,
5028 and it's applied to memory operand of DWORD or QWORD type,
5029 depending on VecESize. */
5030 if (i.broadcast->type != t->opcode_modifier.broadcast
5031 || !i.types[i.broadcast->operand].bitfield.mem
5032 || (t->opcode_modifier.vecesize == 0
5033 && !i.types[i.broadcast->operand].bitfield.dword
5034 && !i.types[i.broadcast->operand].bitfield.unspecified)
5035 || (t->opcode_modifier.vecesize == 1
5036 && !i.types[i.broadcast->operand].bitfield.qword
5037 && !i.types[i.broadcast->operand].bitfield.unspecified))
5038 goto bad_broadcast;
5039
5040 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
5041 if (i.broadcast->type == BROADCAST_1TO16)
5042 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
5043 else if (i.broadcast->type == BROADCAST_1TO8)
5044 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
b28d1bda
IT
5045 else if (i.broadcast->type == BROADCAST_1TO4)
5046 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
5047 else if (i.broadcast->type == BROADCAST_1TO2)
5048 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
43234a1e
L
5049 else
5050 goto bad_broadcast;
5051
5052 if ((broadcasted_opnd_size == 256
5053 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
5054 || (broadcasted_opnd_size == 512
5055 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
5056 {
5057 bad_broadcast:
5058 i.error = unsupported_broadcast;
5059 return 1;
5060 }
5061 }
5062 /* If broadcast is supported in this instruction, we need to check if
5063 operand of one-element size isn't specified without broadcast. */
5064 else if (t->opcode_modifier.broadcast && i.mem_operands)
5065 {
5066 /* Find memory operand. */
5067 for (op = 0; op < i.operands; op++)
5068 if (operand_type_check (i.types[op], anymem))
5069 break;
5070 gas_assert (op < i.operands);
5071 /* Check size of the memory operand. */
5072 if ((t->opcode_modifier.vecesize == 0
5073 && i.types[op].bitfield.dword)
5074 || (t->opcode_modifier.vecesize == 1
5075 && i.types[op].bitfield.qword))
5076 {
5077 i.error = broadcast_needed;
5078 return 1;
5079 }
5080 }
5081
5082 /* Check if requested masking is supported. */
5083 if (i.mask
5084 && (!t->opcode_modifier.masking
5085 || (i.mask->zeroing
5086 && t->opcode_modifier.masking == MERGING_MASKING)))
5087 {
5088 i.error = unsupported_masking;
5089 return 1;
5090 }
5091
5092 /* Check if masking is applied to dest operand. */
5093 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5094 {
5095 i.error = mask_not_on_destination;
5096 return 1;
5097 }
5098
43234a1e
L
5099 /* Check RC/SAE. */
5100 if (i.rounding)
5101 {
5102 if ((i.rounding->type != saeonly
5103 && !t->opcode_modifier.staticrounding)
5104 || (i.rounding->type == saeonly
5105 && (t->opcode_modifier.staticrounding
5106 || !t->opcode_modifier.sae)))
5107 {
5108 i.error = unsupported_rc_sae;
5109 return 1;
5110 }
5111 /* If the instruction has several immediate operands and one of
5112 them is rounding, the rounding operand should be the last
5113 immediate operand. */
5114 if (i.imm_operands > 1
5115 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5116 {
43234a1e 5117 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5118 return 1;
5119 }
6c30d220
L
5120 }
5121
43234a1e 5122 /* Check vector Disp8 operand. */
b5014f7a
JB
5123 if (t->opcode_modifier.disp8memshift
5124 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5125 {
5126 if (i.broadcast)
5127 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
5128 else
5129 i.memshift = t->opcode_modifier.disp8memshift;
5130
5131 for (op = 0; op < i.operands; op++)
5132 if (operand_type_check (i.types[op], disp)
5133 && i.op[op].disps->X_op == O_constant)
5134 {
b5014f7a 5135 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5136 {
b5014f7a
JB
5137 i.types[op].bitfield.disp8 = 1;
5138 return 0;
43234a1e 5139 }
b5014f7a 5140 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5141 }
5142 }
b5014f7a
JB
5143
5144 i.memshift = 0;
43234a1e 5145
6c30d220
L
5146 return 0;
5147}
5148
43f3e2ee 5149/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5150 operand types. */
5151
5152static int
5153VEX_check_operands (const insn_template *t)
5154{
86fa6981 5155 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5156 {
86fa6981
L
5157 /* This instruction must be encoded with EVEX prefix. */
5158 if (!t->opcode_modifier.evex)
5159 {
5160 i.error = unsupported;
5161 return 1;
5162 }
5163 return 0;
43234a1e
L
5164 }
5165
a683cc34 5166 if (!t->opcode_modifier.vex)
86fa6981
L
5167 {
5168 /* This instruction template doesn't have VEX prefix. */
5169 if (i.vec_encoding != vex_encoding_default)
5170 {
5171 i.error = unsupported;
5172 return 1;
5173 }
5174 return 0;
5175 }
a683cc34
SP
5176
5177 /* Only check VEX_Imm4, which must be the first operand. */
5178 if (t->operand_types[0].bitfield.vec_imm4)
5179 {
5180 if (i.op[0].imms->X_op != O_constant
5181 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5182 {
a65babc9 5183 i.error = bad_imm4;
891edac4
L
5184 return 1;
5185 }
a683cc34
SP
5186
5187 /* Turn off Imm8 so that update_imm won't complain. */
5188 i.types[0] = vec_imm4;
5189 }
5190
5191 return 0;
5192}
5193
d3ce72d0 5194static const insn_template *
83b16ac6 5195match_template (char mnem_suffix)
29b0f896
AM
5196{
5197 /* Points to template once we've found it. */
d3ce72d0 5198 const insn_template *t;
40fb9820 5199 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5200 i386_operand_type overlap4;
29b0f896 5201 unsigned int found_reverse_match;
83b16ac6 5202 i386_opcode_modifier suffix_check, mnemsuf_check;
40fb9820 5203 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5204 int addr_prefix_disp;
a5c311ca 5205 unsigned int j;
3629bb00 5206 unsigned int found_cpu_match;
45664ddb 5207 unsigned int check_register;
5614d22c 5208 enum i386_error specific_error = 0;
29b0f896 5209
c0f3af97
L
5210#if MAX_OPERANDS != 5
5211# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5212#endif
5213
29b0f896 5214 found_reverse_match = 0;
539e75ad 5215 addr_prefix_disp = -1;
40fb9820
L
5216
5217 memset (&suffix_check, 0, sizeof (suffix_check));
5218 if (i.suffix == BYTE_MNEM_SUFFIX)
5219 suffix_check.no_bsuf = 1;
5220 else if (i.suffix == WORD_MNEM_SUFFIX)
5221 suffix_check.no_wsuf = 1;
5222 else if (i.suffix == SHORT_MNEM_SUFFIX)
5223 suffix_check.no_ssuf = 1;
5224 else if (i.suffix == LONG_MNEM_SUFFIX)
5225 suffix_check.no_lsuf = 1;
5226 else if (i.suffix == QWORD_MNEM_SUFFIX)
5227 suffix_check.no_qsuf = 1;
5228 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 5229 suffix_check.no_ldsuf = 1;
29b0f896 5230
83b16ac6
JB
5231 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5232 if (intel_syntax)
5233 {
5234 switch (mnem_suffix)
5235 {
5236 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5237 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5238 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5239 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5240 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5241 }
5242 }
5243
01559ecc
L
5244 /* Must have right number of operands. */
5245 i.error = number_of_operands_mismatch;
5246
45aa61fe 5247 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5248 {
539e75ad
L
5249 addr_prefix_disp = -1;
5250
29b0f896
AM
5251 if (i.operands != t->operands)
5252 continue;
5253
50aecf8c 5254 /* Check processor support. */
a65babc9 5255 i.error = unsupported;
c0f3af97
L
5256 found_cpu_match = (cpu_flags_match (t)
5257 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
5258 if (!found_cpu_match)
5259 continue;
5260
e1d4d893 5261 /* Check old gcc support. */
a65babc9 5262 i.error = old_gcc_only;
e1d4d893
L
5263 if (!old_gcc && t->opcode_modifier.oldgcc)
5264 continue;
5265
5266 /* Check AT&T mnemonic. */
a65babc9 5267 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5268 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5269 continue;
5270
e92bae62 5271 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5272 i.error = unsupported_syntax;
5c07affc 5273 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5274 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5275 || (intel64 && t->opcode_modifier.amd64)
5276 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5277 continue;
5278
20592a94 5279 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 5280 i.error = invalid_instruction_suffix;
567e4e96
L
5281 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5282 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5283 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5284 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5285 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5286 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5287 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896 5288 continue;
83b16ac6
JB
5289 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5290 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5291 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5292 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5293 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5294 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5295 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5296 continue;
29b0f896 5297
5c07affc 5298 if (!operand_size_match (t))
7d5e4556 5299 continue;
539e75ad 5300
5c07affc
L
5301 for (j = 0; j < MAX_OPERANDS; j++)
5302 operand_types[j] = t->operand_types[j];
5303
45aa61fe
AM
5304 /* In general, don't allow 64-bit operands in 32-bit mode. */
5305 if (i.suffix == QWORD_MNEM_SUFFIX
5306 && flag_code != CODE_64BIT
5307 && (intel_syntax
40fb9820 5308 ? (!t->opcode_modifier.ignoresize
45aa61fe
AM
5309 && !intel_float_operand (t->name))
5310 : intel_float_operand (t->name) != 2)
40fb9820 5311 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5312 && !operand_types[0].bitfield.regsimd)
40fb9820 5313 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5314 && !operand_types[t->operands > 1].bitfield.regsimd))
45aa61fe
AM
5315 && (t->base_opcode != 0x0fc7
5316 || t->extension_opcode != 1 /* cmpxchg8b */))
5317 continue;
5318
192dc9c6
JB
5319 /* In general, don't allow 32-bit operands on pre-386. */
5320 else if (i.suffix == LONG_MNEM_SUFFIX
5321 && !cpu_arch_flags.bitfield.cpui386
5322 && (intel_syntax
5323 ? (!t->opcode_modifier.ignoresize
5324 && !intel_float_operand (t->name))
5325 : intel_float_operand (t->name) != 2)
5326 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5327 && !operand_types[0].bitfield.regsimd)
192dc9c6 5328 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5329 && !operand_types[t->operands > 1].bitfield.regsimd)))
192dc9c6
JB
5330 continue;
5331
29b0f896 5332 /* Do not verify operands when there are none. */
50aecf8c 5333 else
29b0f896 5334 {
c6fb90c8 5335 if (!t->operands)
2dbab7d5
L
5336 /* We've found a match; break out of loop. */
5337 break;
29b0f896 5338 }
252b5132 5339
539e75ad
L
5340 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5341 into Disp32/Disp16/Disp32 operand. */
5342 if (i.prefix[ADDR_PREFIX] != 0)
5343 {
40fb9820 5344 /* There should be only one Disp operand. */
539e75ad
L
5345 switch (flag_code)
5346 {
5347 case CODE_16BIT:
40fb9820
L
5348 for (j = 0; j < MAX_OPERANDS; j++)
5349 {
5350 if (operand_types[j].bitfield.disp16)
5351 {
5352 addr_prefix_disp = j;
5353 operand_types[j].bitfield.disp32 = 1;
5354 operand_types[j].bitfield.disp16 = 0;
5355 break;
5356 }
5357 }
539e75ad
L
5358 break;
5359 case CODE_32BIT:
40fb9820
L
5360 for (j = 0; j < MAX_OPERANDS; j++)
5361 {
5362 if (operand_types[j].bitfield.disp32)
5363 {
5364 addr_prefix_disp = j;
5365 operand_types[j].bitfield.disp32 = 0;
5366 operand_types[j].bitfield.disp16 = 1;
5367 break;
5368 }
5369 }
539e75ad
L
5370 break;
5371 case CODE_64BIT:
40fb9820
L
5372 for (j = 0; j < MAX_OPERANDS; j++)
5373 {
5374 if (operand_types[j].bitfield.disp64)
5375 {
5376 addr_prefix_disp = j;
5377 operand_types[j].bitfield.disp64 = 0;
5378 operand_types[j].bitfield.disp32 = 1;
5379 break;
5380 }
5381 }
539e75ad
L
5382 break;
5383 }
539e75ad
L
5384 }
5385
02a86693
L
5386 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5387 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5388 continue;
5389
56ffb741
L
5390 /* We check register size if needed. */
5391 check_register = t->opcode_modifier.checkregsize;
c6fb90c8 5392 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5393 switch (t->operands)
5394 {
5395 case 1:
40fb9820 5396 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5397 continue;
5398 break;
5399 case 2:
33eaf5de 5400 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5401 only in 32bit mode and we can use opcode 0x90. In 64bit
5402 mode, we can't use 0x90 for xchg %eax, %eax since it should
5403 zero-extend %eax to %rax. */
5404 if (flag_code == CODE_64BIT
5405 && t->base_opcode == 0x90
0dfbf9d7
L
5406 && operand_type_equal (&i.types [0], &acc32)
5407 && operand_type_equal (&i.types [1], &acc32))
8b38ad71 5408 continue;
86fa6981
L
5409 /* If we want store form, we reverse direction of operands. */
5410 if (i.dir_encoding == dir_encoding_store
5411 && t->opcode_modifier.d)
5412 goto check_reverse;
1a0670f3 5413 /* Fall through. */
b6169b20 5414
29b0f896 5415 case 3:
86fa6981
L
5416 /* If we want store form, we skip the current load. */
5417 if (i.dir_encoding == dir_encoding_store
5418 && i.mem_operands == 0
5419 && t->opcode_modifier.load)
fa99fab2 5420 continue;
1a0670f3 5421 /* Fall through. */
f48ff2ae 5422 case 4:
c0f3af97 5423 case 5:
c6fb90c8 5424 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
5425 if (!operand_type_match (overlap0, i.types[0])
5426 || !operand_type_match (overlap1, i.types[1])
45664ddb 5427 || (check_register
dc821c5f 5428 && !operand_type_register_match (i.types[0],
40fb9820 5429 operand_types[0],
dc821c5f 5430 i.types[1],
40fb9820 5431 operand_types[1])))
29b0f896
AM
5432 {
5433 /* Check if other direction is valid ... */
40fb9820 5434 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
29b0f896
AM
5435 continue;
5436
b6169b20 5437check_reverse:
29b0f896 5438 /* Try reversing direction of operands. */
c6fb90c8
L
5439 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5440 overlap1 = operand_type_and (i.types[1], operand_types[0]);
40fb9820
L
5441 if (!operand_type_match (overlap0, i.types[0])
5442 || !operand_type_match (overlap1, i.types[1])
45664ddb 5443 || (check_register
dc821c5f 5444 && !operand_type_register_match (i.types[0],
45664ddb 5445 operand_types[1],
45664ddb
L
5446 i.types[1],
5447 operand_types[0])))
29b0f896
AM
5448 {
5449 /* Does not match either direction. */
5450 continue;
5451 }
5452 /* found_reverse_match holds which of D or FloatDR
5453 we've found. */
40fb9820 5454 if (t->opcode_modifier.d)
8a2ed489 5455 found_reverse_match = Opcode_D;
40fb9820 5456 else if (t->opcode_modifier.floatd)
8a2ed489
L
5457 found_reverse_match = Opcode_FloatD;
5458 else
5459 found_reverse_match = 0;
40fb9820 5460 if (t->opcode_modifier.floatr)
8a2ed489 5461 found_reverse_match |= Opcode_FloatR;
29b0f896 5462 }
f48ff2ae 5463 else
29b0f896 5464 {
f48ff2ae 5465 /* Found a forward 2 operand match here. */
d1cbb4db
L
5466 switch (t->operands)
5467 {
c0f3af97
L
5468 case 5:
5469 overlap4 = operand_type_and (i.types[4],
5470 operand_types[4]);
1a0670f3 5471 /* Fall through. */
d1cbb4db 5472 case 4:
c6fb90c8
L
5473 overlap3 = operand_type_and (i.types[3],
5474 operand_types[3]);
1a0670f3 5475 /* Fall through. */
d1cbb4db 5476 case 3:
c6fb90c8
L
5477 overlap2 = operand_type_and (i.types[2],
5478 operand_types[2]);
d1cbb4db
L
5479 break;
5480 }
29b0f896 5481
f48ff2ae
L
5482 switch (t->operands)
5483 {
c0f3af97
L
5484 case 5:
5485 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 5486 || !operand_type_register_match (i.types[3],
c0f3af97 5487 operand_types[3],
c0f3af97
L
5488 i.types[4],
5489 operand_types[4]))
5490 continue;
1a0670f3 5491 /* Fall through. */
f48ff2ae 5492 case 4:
40fb9820 5493 if (!operand_type_match (overlap3, i.types[3])
45664ddb 5494 || (check_register
dc821c5f 5495 && !operand_type_register_match (i.types[2],
45664ddb 5496 operand_types[2],
45664ddb
L
5497 i.types[3],
5498 operand_types[3])))
f48ff2ae 5499 continue;
1a0670f3 5500 /* Fall through. */
f48ff2ae
L
5501 case 3:
5502 /* Here we make use of the fact that there are no
5503 reverse match 3 operand instructions, and all 3
5504 operand instructions only need to be checked for
5505 register consistency between operands 2 and 3. */
40fb9820 5506 if (!operand_type_match (overlap2, i.types[2])
45664ddb 5507 || (check_register
dc821c5f 5508 && !operand_type_register_match (i.types[1],
45664ddb 5509 operand_types[1],
45664ddb
L
5510 i.types[2],
5511 operand_types[2])))
f48ff2ae
L
5512 continue;
5513 break;
5514 }
29b0f896 5515 }
f48ff2ae 5516 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
5517 slip through to break. */
5518 }
3629bb00 5519 if (!found_cpu_match)
29b0f896
AM
5520 {
5521 found_reverse_match = 0;
5522 continue;
5523 }
c0f3af97 5524
5614d22c
JB
5525 /* Check if vector and VEX operands are valid. */
5526 if (check_VecOperands (t) || VEX_check_operands (t))
5527 {
5528 specific_error = i.error;
5529 continue;
5530 }
a683cc34 5531
29b0f896
AM
5532 /* We've found a match; break out of loop. */
5533 break;
5534 }
5535
5536 if (t == current_templates->end)
5537 {
5538 /* We found no match. */
a65babc9 5539 const char *err_msg;
5614d22c 5540 switch (specific_error ? specific_error : i.error)
a65babc9
L
5541 {
5542 default:
5543 abort ();
86e026a4 5544 case operand_size_mismatch:
a65babc9
L
5545 err_msg = _("operand size mismatch");
5546 break;
5547 case operand_type_mismatch:
5548 err_msg = _("operand type mismatch");
5549 break;
5550 case register_type_mismatch:
5551 err_msg = _("register type mismatch");
5552 break;
5553 case number_of_operands_mismatch:
5554 err_msg = _("number of operands mismatch");
5555 break;
5556 case invalid_instruction_suffix:
5557 err_msg = _("invalid instruction suffix");
5558 break;
5559 case bad_imm4:
4a2608e3 5560 err_msg = _("constant doesn't fit in 4 bits");
a65babc9
L
5561 break;
5562 case old_gcc_only:
5563 err_msg = _("only supported with old gcc");
5564 break;
5565 case unsupported_with_intel_mnemonic:
5566 err_msg = _("unsupported with Intel mnemonic");
5567 break;
5568 case unsupported_syntax:
5569 err_msg = _("unsupported syntax");
5570 break;
5571 case unsupported:
35262a23 5572 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
5573 current_templates->start->name);
5574 return NULL;
6c30d220
L
5575 case invalid_vsib_address:
5576 err_msg = _("invalid VSIB address");
5577 break;
7bab8ab5
JB
5578 case invalid_vector_register_set:
5579 err_msg = _("mask, index, and destination registers must be distinct");
5580 break;
6c30d220
L
5581 case unsupported_vector_index_register:
5582 err_msg = _("unsupported vector index register");
5583 break;
43234a1e
L
5584 case unsupported_broadcast:
5585 err_msg = _("unsupported broadcast");
5586 break;
5587 case broadcast_not_on_src_operand:
5588 err_msg = _("broadcast not on source memory operand");
5589 break;
5590 case broadcast_needed:
5591 err_msg = _("broadcast is needed for operand of such type");
5592 break;
5593 case unsupported_masking:
5594 err_msg = _("unsupported masking");
5595 break;
5596 case mask_not_on_destination:
5597 err_msg = _("mask not on destination operand");
5598 break;
5599 case no_default_mask:
5600 err_msg = _("default mask isn't allowed");
5601 break;
5602 case unsupported_rc_sae:
5603 err_msg = _("unsupported static rounding/sae");
5604 break;
5605 case rc_sae_operand_not_last_imm:
5606 if (intel_syntax)
5607 err_msg = _("RC/SAE operand must precede immediate operands");
5608 else
5609 err_msg = _("RC/SAE operand must follow immediate operands");
5610 break;
5611 case invalid_register_operand:
5612 err_msg = _("invalid register operand");
5613 break;
a65babc9
L
5614 }
5615 as_bad (_("%s for `%s'"), err_msg,
891edac4 5616 current_templates->start->name);
fa99fab2 5617 return NULL;
29b0f896 5618 }
252b5132 5619
29b0f896
AM
5620 if (!quiet_warnings)
5621 {
5622 if (!intel_syntax
40fb9820
L
5623 && (i.types[0].bitfield.jumpabsolute
5624 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
5625 {
5626 as_warn (_("indirect %s without `*'"), t->name);
5627 }
5628
40fb9820
L
5629 if (t->opcode_modifier.isprefix
5630 && t->opcode_modifier.ignoresize)
29b0f896
AM
5631 {
5632 /* Warn them that a data or address size prefix doesn't
5633 affect assembly of the next line of code. */
5634 as_warn (_("stand-alone `%s' prefix"), t->name);
5635 }
5636 }
5637
5638 /* Copy the template we found. */
5639 i.tm = *t;
539e75ad
L
5640
5641 if (addr_prefix_disp != -1)
5642 i.tm.operand_types[addr_prefix_disp]
5643 = operand_types[addr_prefix_disp];
5644
29b0f896
AM
5645 if (found_reverse_match)
5646 {
5647 /* If we found a reverse match we must alter the opcode
5648 direction bit. found_reverse_match holds bits to change
5649 (different for int & float insns). */
5650
5651 i.tm.base_opcode ^= found_reverse_match;
5652
539e75ad
L
5653 i.tm.operand_types[0] = operand_types[1];
5654 i.tm.operand_types[1] = operand_types[0];
29b0f896
AM
5655 }
5656
fa99fab2 5657 return t;
29b0f896
AM
5658}
5659
5660static int
e3bb37b5 5661check_string (void)
29b0f896 5662{
40fb9820
L
5663 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5664 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
5665 {
5666 if (i.seg[0] != NULL && i.seg[0] != &es)
5667 {
a87af027 5668 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5669 i.tm.name,
a87af027
JB
5670 mem_op + 1,
5671 register_prefix);
29b0f896
AM
5672 return 0;
5673 }
5674 /* There's only ever one segment override allowed per instruction.
5675 This instruction possibly has a legal segment override on the
5676 second operand, so copy the segment to where non-string
5677 instructions store it, allowing common code. */
5678 i.seg[0] = i.seg[1];
5679 }
40fb9820 5680 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
5681 {
5682 if (i.seg[1] != NULL && i.seg[1] != &es)
5683 {
a87af027 5684 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5685 i.tm.name,
a87af027
JB
5686 mem_op + 2,
5687 register_prefix);
29b0f896
AM
5688 return 0;
5689 }
5690 }
5691 return 1;
5692}
5693
5694static int
543613e9 5695process_suffix (void)
29b0f896
AM
5696{
5697 /* If matched instruction specifies an explicit instruction mnemonic
5698 suffix, use it. */
40fb9820
L
5699 if (i.tm.opcode_modifier.size16)
5700 i.suffix = WORD_MNEM_SUFFIX;
5701 else if (i.tm.opcode_modifier.size32)
5702 i.suffix = LONG_MNEM_SUFFIX;
5703 else if (i.tm.opcode_modifier.size64)
5704 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
5705 else if (i.reg_operands)
5706 {
5707 /* If there's no instruction mnemonic suffix we try to invent one
5708 based on register operands. */
5709 if (!i.suffix)
5710 {
5711 /* We take i.suffix from the last register operand specified,
5712 Destination register type is more significant than source
381d071f
L
5713 register type. crc32 in SSE4.2 prefers source register
5714 type. */
5715 if (i.tm.base_opcode == 0xf20f38f1)
5716 {
dc821c5f 5717 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
40fb9820 5718 i.suffix = WORD_MNEM_SUFFIX;
dc821c5f 5719 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
40fb9820 5720 i.suffix = LONG_MNEM_SUFFIX;
dc821c5f 5721 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
40fb9820 5722 i.suffix = QWORD_MNEM_SUFFIX;
381d071f 5723 }
9344ff29 5724 else if (i.tm.base_opcode == 0xf20f38f0)
20592a94 5725 {
dc821c5f 5726 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
20592a94
L
5727 i.suffix = BYTE_MNEM_SUFFIX;
5728 }
381d071f
L
5729
5730 if (!i.suffix)
5731 {
5732 int op;
5733
20592a94
L
5734 if (i.tm.base_opcode == 0xf20f38f1
5735 || i.tm.base_opcode == 0xf20f38f0)
5736 {
5737 /* We have to know the operand size for crc32. */
5738 as_bad (_("ambiguous memory operand size for `%s`"),
5739 i.tm.name);
5740 return 0;
5741 }
5742
381d071f 5743 for (op = i.operands; --op >= 0;)
b76bc5d5
JB
5744 if (!i.tm.operand_types[op].bitfield.inoutportreg
5745 && !i.tm.operand_types[op].bitfield.shiftcount)
381d071f 5746 {
dc821c5f 5747 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
40fb9820
L
5748 {
5749 i.suffix = BYTE_MNEM_SUFFIX;
5750 break;
5751 }
dc821c5f 5752 if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
40fb9820
L
5753 {
5754 i.suffix = WORD_MNEM_SUFFIX;
5755 break;
5756 }
dc821c5f 5757 if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
40fb9820
L
5758 {
5759 i.suffix = LONG_MNEM_SUFFIX;
5760 break;
5761 }
dc821c5f 5762 if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
40fb9820
L
5763 {
5764 i.suffix = QWORD_MNEM_SUFFIX;
5765 break;
5766 }
381d071f
L
5767 }
5768 }
29b0f896
AM
5769 }
5770 else if (i.suffix == BYTE_MNEM_SUFFIX)
5771 {
2eb952a4
L
5772 if (intel_syntax
5773 && i.tm.opcode_modifier.ignoresize
5774 && i.tm.opcode_modifier.no_bsuf)
5775 i.suffix = 0;
5776 else if (!check_byte_reg ())
29b0f896
AM
5777 return 0;
5778 }
5779 else if (i.suffix == LONG_MNEM_SUFFIX)
5780 {
2eb952a4
L
5781 if (intel_syntax
5782 && i.tm.opcode_modifier.ignoresize
5783 && i.tm.opcode_modifier.no_lsuf)
5784 i.suffix = 0;
5785 else if (!check_long_reg ())
29b0f896
AM
5786 return 0;
5787 }
5788 else if (i.suffix == QWORD_MNEM_SUFFIX)
5789 {
955e1e6a
L
5790 if (intel_syntax
5791 && i.tm.opcode_modifier.ignoresize
5792 && i.tm.opcode_modifier.no_qsuf)
5793 i.suffix = 0;
5794 else if (!check_qword_reg ())
29b0f896
AM
5795 return 0;
5796 }
5797 else if (i.suffix == WORD_MNEM_SUFFIX)
5798 {
2eb952a4
L
5799 if (intel_syntax
5800 && i.tm.opcode_modifier.ignoresize
5801 && i.tm.opcode_modifier.no_wsuf)
5802 i.suffix = 0;
5803 else if (!check_word_reg ())
29b0f896
AM
5804 return 0;
5805 }
c0f3af97 5806 else if (i.suffix == XMMWORD_MNEM_SUFFIX
43234a1e
L
5807 || i.suffix == YMMWORD_MNEM_SUFFIX
5808 || i.suffix == ZMMWORD_MNEM_SUFFIX)
582d5edd 5809 {
43234a1e 5810 /* Skip if the instruction has x/y/z suffix. match_template
582d5edd
L
5811 should check if it is a valid suffix. */
5812 }
40fb9820 5813 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
5814 /* Do nothing if the instruction is going to ignore the prefix. */
5815 ;
5816 else
5817 abort ();
5818 }
40fb9820 5819 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
5820 && !i.suffix
5821 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 5822 && i.tm.opcode_modifier.no_ssuf)
29b0f896
AM
5823 {
5824 i.suffix = stackop_size;
5825 }
9306ca4a
JB
5826 else if (intel_syntax
5827 && !i.suffix
40fb9820
L
5828 && (i.tm.operand_types[0].bitfield.jumpabsolute
5829 || i.tm.opcode_modifier.jumpbyte
5830 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
5831 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5832 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
5833 {
5834 switch (flag_code)
5835 {
5836 case CODE_64BIT:
40fb9820 5837 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
5838 {
5839 i.suffix = QWORD_MNEM_SUFFIX;
5840 break;
5841 }
1a0670f3 5842 /* Fall through. */
9306ca4a 5843 case CODE_32BIT:
40fb9820 5844 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
5845 i.suffix = LONG_MNEM_SUFFIX;
5846 break;
5847 case CODE_16BIT:
40fb9820 5848 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
5849 i.suffix = WORD_MNEM_SUFFIX;
5850 break;
5851 }
5852 }
252b5132 5853
9306ca4a 5854 if (!i.suffix)
29b0f896 5855 {
9306ca4a
JB
5856 if (!intel_syntax)
5857 {
40fb9820 5858 if (i.tm.opcode_modifier.w)
9306ca4a 5859 {
4eed87de
AM
5860 as_bad (_("no instruction mnemonic suffix given and "
5861 "no register operands; can't size instruction"));
9306ca4a
JB
5862 return 0;
5863 }
5864 }
5865 else
5866 {
40fb9820 5867 unsigned int suffixes;
7ab9ffdd 5868
40fb9820
L
5869 suffixes = !i.tm.opcode_modifier.no_bsuf;
5870 if (!i.tm.opcode_modifier.no_wsuf)
5871 suffixes |= 1 << 1;
5872 if (!i.tm.opcode_modifier.no_lsuf)
5873 suffixes |= 1 << 2;
fc4adea1 5874 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
5875 suffixes |= 1 << 3;
5876 if (!i.tm.opcode_modifier.no_ssuf)
5877 suffixes |= 1 << 4;
c2b9da16 5878 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
5879 suffixes |= 1 << 5;
5880
5881 /* There are more than suffix matches. */
5882 if (i.tm.opcode_modifier.w
9306ca4a 5883 || ((suffixes & (suffixes - 1))
40fb9820
L
5884 && !i.tm.opcode_modifier.defaultsize
5885 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
5886 {
5887 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5888 return 0;
5889 }
5890 }
29b0f896 5891 }
252b5132 5892
9306ca4a
JB
5893 /* Change the opcode based on the operand size given by i.suffix;
5894 We don't need to change things for byte insns. */
5895
582d5edd
L
5896 if (i.suffix
5897 && i.suffix != BYTE_MNEM_SUFFIX
c0f3af97 5898 && i.suffix != XMMWORD_MNEM_SUFFIX
43234a1e
L
5899 && i.suffix != YMMWORD_MNEM_SUFFIX
5900 && i.suffix != ZMMWORD_MNEM_SUFFIX)
29b0f896
AM
5901 {
5902 /* It's not a byte, select word/dword operation. */
40fb9820 5903 if (i.tm.opcode_modifier.w)
29b0f896 5904 {
40fb9820 5905 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
5906 i.tm.base_opcode |= 8;
5907 else
5908 i.tm.base_opcode |= 1;
5909 }
0f3f3d8b 5910
29b0f896
AM
5911 /* Now select between word & dword operations via the operand
5912 size prefix, except for instructions that will ignore this
5913 prefix anyway. */
ca61edf2 5914 if (i.tm.opcode_modifier.addrprefixop0)
cb712a9e 5915 {
ca61edf2
L
5916 /* The address size override prefix changes the size of the
5917 first operand. */
40fb9820 5918 if ((flag_code == CODE_32BIT
dc821c5f 5919 && i.op->regs[0].reg_type.bitfield.word)
40fb9820 5920 || (flag_code != CODE_32BIT
dc821c5f 5921 && i.op->regs[0].reg_type.bitfield.dword))
cb712a9e
L
5922 if (!add_prefix (ADDR_PREFIX_OPCODE))
5923 return 0;
5924 }
5925 else if (i.suffix != QWORD_MNEM_SUFFIX
5926 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
40fb9820
L
5927 && !i.tm.opcode_modifier.ignoresize
5928 && !i.tm.opcode_modifier.floatmf
cb712a9e
L
5929 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5930 || (flag_code == CODE_64BIT
40fb9820 5931 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
5932 {
5933 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 5934
40fb9820 5935 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 5936 prefix = ADDR_PREFIX_OPCODE;
252b5132 5937
29b0f896
AM
5938 if (!add_prefix (prefix))
5939 return 0;
24eab124 5940 }
252b5132 5941
29b0f896
AM
5942 /* Set mode64 for an operand. */
5943 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 5944 && flag_code == CODE_64BIT
40fb9820 5945 && !i.tm.opcode_modifier.norex64)
46e883c5
L
5946 {
5947 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d9a5e5e5
L
5948 need rex64. cmpxchg8b is also a special case. */
5949 if (! (i.operands == 2
5950 && i.tm.base_opcode == 0x90
5951 && i.tm.extension_opcode == None
0dfbf9d7
L
5952 && operand_type_equal (&i.types [0], &acc64)
5953 && operand_type_equal (&i.types [1], &acc64))
d9a5e5e5
L
5954 && ! (i.operands == 1
5955 && i.tm.base_opcode == 0xfc7
5956 && i.tm.extension_opcode == 1
40fb9820
L
5957 && !operand_type_check (i.types [0], reg)
5958 && operand_type_check (i.types [0], anymem)))
f6bee062 5959 i.rex |= REX_W;
46e883c5 5960 }
3e73aa7c 5961
29b0f896
AM
5962 /* Size floating point instruction. */
5963 if (i.suffix == LONG_MNEM_SUFFIX)
40fb9820 5964 if (i.tm.opcode_modifier.floatmf)
543613e9 5965 i.tm.base_opcode ^= 4;
29b0f896 5966 }
7ecd2f8b 5967
29b0f896
AM
5968 return 1;
5969}
3e73aa7c 5970
29b0f896 5971static int
543613e9 5972check_byte_reg (void)
29b0f896
AM
5973{
5974 int op;
543613e9 5975
29b0f896
AM
5976 for (op = i.operands; --op >= 0;)
5977 {
dc821c5f
JB
5978 /* Skip non-register operands. */
5979 if (!i.types[op].bitfield.reg)
5980 continue;
5981
29b0f896
AM
5982 /* If this is an eight bit register, it's OK. If it's the 16 or
5983 32 bit version of an eight bit register, we will just use the
5984 low portion, and that's OK too. */
dc821c5f 5985 if (i.types[op].bitfield.byte)
29b0f896
AM
5986 continue;
5987
5a819eb9
JB
5988 /* I/O port address operands are OK too. */
5989 if (i.tm.operand_types[op].bitfield.inoutportreg)
5990 continue;
5991
9344ff29
L
5992 /* crc32 doesn't generate this warning. */
5993 if (i.tm.base_opcode == 0xf20f38f0)
5994 continue;
5995
dc821c5f
JB
5996 if ((i.types[op].bitfield.word
5997 || i.types[op].bitfield.dword
5998 || i.types[op].bitfield.qword)
5a819eb9
JB
5999 && i.op[op].regs->reg_num < 4
6000 /* Prohibit these changes in 64bit mode, since the lowering
6001 would be more complicated. */
6002 && flag_code != CODE_64BIT)
29b0f896 6003 {
29b0f896 6004#if REGISTER_WARNINGS
5a819eb9 6005 if (!quiet_warnings)
a540244d
L
6006 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6007 register_prefix,
dc821c5f 6008 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
6009 ? REGNAM_AL - REGNAM_AX
6010 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 6011 register_prefix,
29b0f896
AM
6012 i.op[op].regs->reg_name,
6013 i.suffix);
6014#endif
6015 continue;
6016 }
6017 /* Any other register is bad. */
dc821c5f 6018 if (i.types[op].bitfield.reg
40fb9820 6019 || i.types[op].bitfield.regmmx
1b54b8d7 6020 || i.types[op].bitfield.regsimd
40fb9820
L
6021 || i.types[op].bitfield.sreg2
6022 || i.types[op].bitfield.sreg3
6023 || i.types[op].bitfield.control
6024 || i.types[op].bitfield.debug
ca0d63fe 6025 || i.types[op].bitfield.test)
29b0f896 6026 {
a540244d
L
6027 as_bad (_("`%s%s' not allowed with `%s%c'"),
6028 register_prefix,
29b0f896
AM
6029 i.op[op].regs->reg_name,
6030 i.tm.name,
6031 i.suffix);
6032 return 0;
6033 }
6034 }
6035 return 1;
6036}
6037
6038static int
e3bb37b5 6039check_long_reg (void)
29b0f896
AM
6040{
6041 int op;
6042
6043 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6044 /* Skip non-register operands. */
6045 if (!i.types[op].bitfield.reg)
6046 continue;
29b0f896
AM
6047 /* Reject eight bit registers, except where the template requires
6048 them. (eg. movzb) */
dc821c5f
JB
6049 else if (i.types[op].bitfield.byte
6050 && (i.tm.operand_types[op].bitfield.reg
6051 || i.tm.operand_types[op].bitfield.acc)
6052 && (i.tm.operand_types[op].bitfield.word
6053 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6054 {
a540244d
L
6055 as_bad (_("`%s%s' not allowed with `%s%c'"),
6056 register_prefix,
29b0f896
AM
6057 i.op[op].regs->reg_name,
6058 i.tm.name,
6059 i.suffix);
6060 return 0;
6061 }
e4630f71 6062 /* Warn if the e prefix on a general reg is missing. */
29b0f896 6063 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6064 && i.types[op].bitfield.word
6065 && (i.tm.operand_types[op].bitfield.reg
6066 || i.tm.operand_types[op].bitfield.acc)
6067 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
6068 {
6069 /* Prohibit these changes in the 64bit mode, since the
6070 lowering is more complicated. */
6071 if (flag_code == CODE_64BIT)
252b5132 6072 {
2b5d6a91 6073 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6074 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6075 i.suffix);
6076 return 0;
252b5132 6077 }
29b0f896 6078#if REGISTER_WARNINGS
cecf1424
JB
6079 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6080 register_prefix,
6081 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6082 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 6083#endif
252b5132 6084 }
e4630f71 6085 /* Warn if the r prefix on a general reg is present. */
dc821c5f
JB
6086 else if (i.types[op].bitfield.qword
6087 && (i.tm.operand_types[op].bitfield.reg
6088 || i.tm.operand_types[op].bitfield.acc)
6089 && i.tm.operand_types[op].bitfield.dword)
252b5132 6090 {
34828aad 6091 if (intel_syntax
ca61edf2 6092 && i.tm.opcode_modifier.toqword
1b54b8d7 6093 && !i.types[0].bitfield.regsimd)
34828aad 6094 {
ca61edf2 6095 /* Convert to QWORD. We want REX byte. */
34828aad
L
6096 i.suffix = QWORD_MNEM_SUFFIX;
6097 }
6098 else
6099 {
2b5d6a91 6100 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6101 register_prefix, i.op[op].regs->reg_name,
6102 i.suffix);
6103 return 0;
6104 }
29b0f896
AM
6105 }
6106 return 1;
6107}
252b5132 6108
29b0f896 6109static int
e3bb37b5 6110check_qword_reg (void)
29b0f896
AM
6111{
6112 int op;
252b5132 6113
29b0f896 6114 for (op = i.operands; --op >= 0; )
dc821c5f
JB
6115 /* Skip non-register operands. */
6116 if (!i.types[op].bitfield.reg)
6117 continue;
29b0f896
AM
6118 /* Reject eight bit registers, except where the template requires
6119 them. (eg. movzb) */
dc821c5f
JB
6120 else if (i.types[op].bitfield.byte
6121 && (i.tm.operand_types[op].bitfield.reg
6122 || i.tm.operand_types[op].bitfield.acc)
6123 && (i.tm.operand_types[op].bitfield.word
6124 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6125 {
a540244d
L
6126 as_bad (_("`%s%s' not allowed with `%s%c'"),
6127 register_prefix,
29b0f896
AM
6128 i.op[op].regs->reg_name,
6129 i.tm.name,
6130 i.suffix);
6131 return 0;
6132 }
e4630f71 6133 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6134 else if ((i.types[op].bitfield.word
6135 || i.types[op].bitfield.dword)
6136 && (i.tm.operand_types[op].bitfield.reg
6137 || i.tm.operand_types[op].bitfield.acc)
6138 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6139 {
6140 /* Prohibit these changes in the 64bit mode, since the
6141 lowering is more complicated. */
34828aad 6142 if (intel_syntax
ca61edf2 6143 && i.tm.opcode_modifier.todword
1b54b8d7 6144 && !i.types[0].bitfield.regsimd)
34828aad 6145 {
ca61edf2 6146 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6147 i.suffix = LONG_MNEM_SUFFIX;
6148 }
6149 else
6150 {
2b5d6a91 6151 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6152 register_prefix, i.op[op].regs->reg_name,
6153 i.suffix);
6154 return 0;
6155 }
252b5132 6156 }
29b0f896
AM
6157 return 1;
6158}
252b5132 6159
29b0f896 6160static int
e3bb37b5 6161check_word_reg (void)
29b0f896
AM
6162{
6163 int op;
6164 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6165 /* Skip non-register operands. */
6166 if (!i.types[op].bitfield.reg)
6167 continue;
29b0f896
AM
6168 /* Reject eight bit registers, except where the template requires
6169 them. (eg. movzb) */
dc821c5f
JB
6170 else if (i.types[op].bitfield.byte
6171 && (i.tm.operand_types[op].bitfield.reg
6172 || i.tm.operand_types[op].bitfield.acc)
6173 && (i.tm.operand_types[op].bitfield.word
6174 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6175 {
a540244d
L
6176 as_bad (_("`%s%s' not allowed with `%s%c'"),
6177 register_prefix,
29b0f896
AM
6178 i.op[op].regs->reg_name,
6179 i.tm.name,
6180 i.suffix);
6181 return 0;
6182 }
e4630f71 6183 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6184 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6185 && (i.types[op].bitfield.dword
6186 || i.types[op].bitfield.qword)
6187 && (i.tm.operand_types[op].bitfield.reg
6188 || i.tm.operand_types[op].bitfield.acc)
6189 && i.tm.operand_types[op].bitfield.word)
252b5132 6190 {
29b0f896
AM
6191 /* Prohibit these changes in the 64bit mode, since the
6192 lowering is more complicated. */
6193 if (flag_code == CODE_64BIT)
252b5132 6194 {
2b5d6a91 6195 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6196 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6197 i.suffix);
6198 return 0;
252b5132 6199 }
29b0f896 6200#if REGISTER_WARNINGS
cecf1424
JB
6201 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6202 register_prefix,
6203 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6204 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6205#endif
6206 }
6207 return 1;
6208}
252b5132 6209
29b0f896 6210static int
40fb9820 6211update_imm (unsigned int j)
29b0f896 6212{
bc0844ae 6213 i386_operand_type overlap = i.types[j];
40fb9820
L
6214 if ((overlap.bitfield.imm8
6215 || overlap.bitfield.imm8s
6216 || overlap.bitfield.imm16
6217 || overlap.bitfield.imm32
6218 || overlap.bitfield.imm32s
6219 || overlap.bitfield.imm64)
0dfbf9d7
L
6220 && !operand_type_equal (&overlap, &imm8)
6221 && !operand_type_equal (&overlap, &imm8s)
6222 && !operand_type_equal (&overlap, &imm16)
6223 && !operand_type_equal (&overlap, &imm32)
6224 && !operand_type_equal (&overlap, &imm32s)
6225 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6226 {
6227 if (i.suffix)
6228 {
40fb9820
L
6229 i386_operand_type temp;
6230
0dfbf9d7 6231 operand_type_set (&temp, 0);
7ab9ffdd 6232 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6233 {
6234 temp.bitfield.imm8 = overlap.bitfield.imm8;
6235 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6236 }
6237 else if (i.suffix == WORD_MNEM_SUFFIX)
6238 temp.bitfield.imm16 = overlap.bitfield.imm16;
6239 else if (i.suffix == QWORD_MNEM_SUFFIX)
6240 {
6241 temp.bitfield.imm64 = overlap.bitfield.imm64;
6242 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6243 }
6244 else
6245 temp.bitfield.imm32 = overlap.bitfield.imm32;
6246 overlap = temp;
29b0f896 6247 }
0dfbf9d7
L
6248 else if (operand_type_equal (&overlap, &imm16_32_32s)
6249 || operand_type_equal (&overlap, &imm16_32)
6250 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6251 {
40fb9820 6252 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6253 overlap = imm16;
40fb9820 6254 else
65da13b5 6255 overlap = imm32s;
29b0f896 6256 }
0dfbf9d7
L
6257 if (!operand_type_equal (&overlap, &imm8)
6258 && !operand_type_equal (&overlap, &imm8s)
6259 && !operand_type_equal (&overlap, &imm16)
6260 && !operand_type_equal (&overlap, &imm32)
6261 && !operand_type_equal (&overlap, &imm32s)
6262 && !operand_type_equal (&overlap, &imm64))
29b0f896 6263 {
4eed87de
AM
6264 as_bad (_("no instruction mnemonic suffix given; "
6265 "can't determine immediate size"));
29b0f896
AM
6266 return 0;
6267 }
6268 }
40fb9820 6269 i.types[j] = overlap;
29b0f896 6270
40fb9820
L
6271 return 1;
6272}
6273
6274static int
6275finalize_imm (void)
6276{
bc0844ae 6277 unsigned int j, n;
29b0f896 6278
bc0844ae
L
6279 /* Update the first 2 immediate operands. */
6280 n = i.operands > 2 ? 2 : i.operands;
6281 if (n)
6282 {
6283 for (j = 0; j < n; j++)
6284 if (update_imm (j) == 0)
6285 return 0;
40fb9820 6286
bc0844ae
L
6287 /* The 3rd operand can't be immediate operand. */
6288 gas_assert (operand_type_check (i.types[2], imm) == 0);
6289 }
29b0f896
AM
6290
6291 return 1;
6292}
6293
6294static int
e3bb37b5 6295process_operands (void)
29b0f896
AM
6296{
6297 /* Default segment register this instruction will use for memory
6298 accesses. 0 means unknown. This is only for optimizing out
6299 unnecessary segment overrides. */
6300 const seg_entry *default_seg = 0;
6301
2426c15f 6302 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6303 {
91d6fa6a
NC
6304 unsigned int dupl = i.operands;
6305 unsigned int dest = dupl - 1;
9fcfb3d7
L
6306 unsigned int j;
6307
c0f3af97 6308 /* The destination must be an xmm register. */
9c2799c2 6309 gas_assert (i.reg_operands
91d6fa6a 6310 && MAX_OPERANDS > dupl
7ab9ffdd 6311 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6312
1b54b8d7
JB
6313 if (i.tm.operand_types[0].bitfield.acc
6314 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6315 {
8cd7925b 6316 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6317 {
6318 /* Keep xmm0 for instructions with VEX prefix and 3
6319 sources. */
1b54b8d7
JB
6320 i.tm.operand_types[0].bitfield.acc = 0;
6321 i.tm.operand_types[0].bitfield.regsimd = 1;
c0f3af97
L
6322 goto duplicate;
6323 }
e2ec9d29 6324 else
c0f3af97
L
6325 {
6326 /* We remove the first xmm0 and keep the number of
6327 operands unchanged, which in fact duplicates the
6328 destination. */
6329 for (j = 1; j < i.operands; j++)
6330 {
6331 i.op[j - 1] = i.op[j];
6332 i.types[j - 1] = i.types[j];
6333 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6334 }
6335 }
6336 }
6337 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6338 {
91d6fa6a 6339 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6340 && (i.tm.opcode_modifier.vexsources
6341 == VEX3SOURCES));
c0f3af97
L
6342
6343 /* Add the implicit xmm0 for instructions with VEX prefix
6344 and 3 sources. */
6345 for (j = i.operands; j > 0; j--)
6346 {
6347 i.op[j] = i.op[j - 1];
6348 i.types[j] = i.types[j - 1];
6349 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6350 }
6351 i.op[0].regs
6352 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6353 i.types[0] = regxmm;
c0f3af97
L
6354 i.tm.operand_types[0] = regxmm;
6355
6356 i.operands += 2;
6357 i.reg_operands += 2;
6358 i.tm.operands += 2;
6359
91d6fa6a 6360 dupl++;
c0f3af97 6361 dest++;
91d6fa6a
NC
6362 i.op[dupl] = i.op[dest];
6363 i.types[dupl] = i.types[dest];
6364 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
e2ec9d29 6365 }
c0f3af97
L
6366 else
6367 {
6368duplicate:
6369 i.operands++;
6370 i.reg_operands++;
6371 i.tm.operands++;
6372
91d6fa6a
NC
6373 i.op[dupl] = i.op[dest];
6374 i.types[dupl] = i.types[dest];
6375 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
c0f3af97
L
6376 }
6377
6378 if (i.tm.opcode_modifier.immext)
6379 process_immext ();
6380 }
1b54b8d7
JB
6381 else if (i.tm.operand_types[0].bitfield.acc
6382 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
6383 {
6384 unsigned int j;
6385
9fcfb3d7
L
6386 for (j = 1; j < i.operands; j++)
6387 {
6388 i.op[j - 1] = i.op[j];
6389 i.types[j - 1] = i.types[j];
6390
6391 /* We need to adjust fields in i.tm since they are used by
6392 build_modrm_byte. */
6393 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6394 }
6395
e2ec9d29
L
6396 i.operands--;
6397 i.reg_operands--;
e2ec9d29
L
6398 i.tm.operands--;
6399 }
920d2ddc
IT
6400 else if (i.tm.opcode_modifier.implicitquadgroup)
6401 {
6402 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
10c17abd 6403 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
920d2ddc
IT
6404 unsigned int regnum = register_number (i.op[1].regs);
6405 unsigned int first_reg_in_group = regnum & ~3;
6406 unsigned int last_reg_in_group = first_reg_in_group + 3;
6407 if (regnum != first_reg_in_group) {
6408 as_warn (_("the second source register `%s%s' implicitly denotes"
6409 " `%s%.3s%d' to `%s%.3s%d' source group in `%s'"),
6410 register_prefix, i.op[1].regs->reg_name,
6411 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6412 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6413 i.tm.name);
6414 }
6415 }
e2ec9d29
L
6416 else if (i.tm.opcode_modifier.regkludge)
6417 {
6418 /* The imul $imm, %reg instruction is converted into
6419 imul $imm, %reg, %reg, and the clr %reg instruction
6420 is converted into xor %reg, %reg. */
6421
6422 unsigned int first_reg_op;
6423
6424 if (operand_type_check (i.types[0], reg))
6425 first_reg_op = 0;
6426 else
6427 first_reg_op = 1;
6428 /* Pretend we saw the extra register operand. */
9c2799c2 6429 gas_assert (i.reg_operands == 1
7ab9ffdd 6430 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
6431 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6432 i.types[first_reg_op + 1] = i.types[first_reg_op];
6433 i.operands++;
6434 i.reg_operands++;
29b0f896
AM
6435 }
6436
40fb9820 6437 if (i.tm.opcode_modifier.shortform)
29b0f896 6438 {
40fb9820
L
6439 if (i.types[0].bitfield.sreg2
6440 || i.types[0].bitfield.sreg3)
29b0f896 6441 {
4eed87de
AM
6442 if (i.tm.base_opcode == POP_SEG_SHORT
6443 && i.op[0].regs->reg_num == 1)
29b0f896 6444 {
a87af027 6445 as_bad (_("you can't `pop %scs'"), register_prefix);
4eed87de 6446 return 0;
29b0f896 6447 }
4eed87de
AM
6448 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6449 if ((i.op[0].regs->reg_flags & RegRex) != 0)
161a04f6 6450 i.rex |= REX_B;
4eed87de
AM
6451 }
6452 else
6453 {
7ab9ffdd 6454 /* The register or float register operand is in operand
85f10a01 6455 0 or 1. */
40fb9820 6456 unsigned int op;
7ab9ffdd 6457
ca0d63fe 6458 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
7ab9ffdd
L
6459 || operand_type_check (i.types[0], reg))
6460 op = 0;
6461 else
6462 op = 1;
4eed87de
AM
6463 /* Register goes in low 3 bits of opcode. */
6464 i.tm.base_opcode |= i.op[op].regs->reg_num;
6465 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 6466 i.rex |= REX_B;
40fb9820 6467 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 6468 {
4eed87de
AM
6469 /* Warn about some common errors, but press on regardless.
6470 The first case can be generated by gcc (<= 2.8.1). */
6471 if (i.operands == 2)
6472 {
6473 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 6474 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
6475 register_prefix, i.op[!intel_syntax].regs->reg_name,
6476 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
6477 }
6478 else
6479 {
6480 /* Extraneous `l' suffix on fp insn. */
a540244d
L
6481 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6482 register_prefix, i.op[0].regs->reg_name);
4eed87de 6483 }
29b0f896
AM
6484 }
6485 }
6486 }
40fb9820 6487 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
6488 {
6489 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
6490 must be put into the modrm byte). Now, we make the modrm and
6491 index base bytes based on all the info we've collected. */
29b0f896
AM
6492
6493 default_seg = build_modrm_byte ();
6494 }
8a2ed489 6495 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
6496 {
6497 default_seg = &ds;
6498 }
40fb9820 6499 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
6500 {
6501 /* For the string instructions that allow a segment override
6502 on one of their operands, the default segment is ds. */
6503 default_seg = &ds;
6504 }
6505
75178d9d
L
6506 if (i.tm.base_opcode == 0x8d /* lea */
6507 && i.seg[0]
6508 && !quiet_warnings)
30123838 6509 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
6510
6511 /* If a segment was explicitly specified, and the specified segment
6512 is not the default, use an opcode prefix to select it. If we
6513 never figured out what the default segment is, then default_seg
6514 will be zero at this point, and the specified segment prefix will
6515 always be used. */
29b0f896
AM
6516 if ((i.seg[0]) && (i.seg[0] != default_seg))
6517 {
6518 if (!add_prefix (i.seg[0]->seg_prefix))
6519 return 0;
6520 }
6521 return 1;
6522}
6523
6524static const seg_entry *
e3bb37b5 6525build_modrm_byte (void)
29b0f896
AM
6526{
6527 const seg_entry *default_seg = 0;
c0f3af97 6528 unsigned int source, dest;
8cd7925b 6529 int vex_3_sources;
c0f3af97
L
6530
6531 /* The first operand of instructions with VEX prefix and 3 sources
6532 must be VEX_Imm4. */
8cd7925b 6533 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
6534 if (vex_3_sources)
6535 {
91d6fa6a 6536 unsigned int nds, reg_slot;
4c2c6516 6537 expressionS *exp;
c0f3af97 6538
922d8de8 6539 if (i.tm.opcode_modifier.veximmext
a683cc34
SP
6540 && i.tm.opcode_modifier.immext)
6541 {
6542 dest = i.operands - 2;
6543 gas_assert (dest == 3);
6544 }
922d8de8 6545 else
a683cc34 6546 dest = i.operands - 1;
c0f3af97 6547 nds = dest - 1;
922d8de8 6548
a683cc34
SP
6549 /* There are 2 kinds of instructions:
6550 1. 5 operands: 4 register operands or 3 register operands
6551 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
43234a1e
L
6552 VexW0 or VexW1. The destination must be either XMM, YMM or
6553 ZMM register.
a683cc34
SP
6554 2. 4 operands: 4 register operands or 3 register operands
6555 plus 1 memory operand, VexXDS, and VexImmExt */
922d8de8 6556 gas_assert ((i.reg_operands == 4
a683cc34
SP
6557 || (i.reg_operands == 3 && i.mem_operands == 1))
6558 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6559 && (i.tm.opcode_modifier.veximmext
6560 || (i.imm_operands == 1
6561 && i.types[0].bitfield.vec_imm4
6562 && (i.tm.opcode_modifier.vexw == VEXW0
6563 || i.tm.opcode_modifier.vexw == VEXW1)
10c17abd 6564 && i.tm.operand_types[dest].bitfield.regsimd)));
a683cc34
SP
6565
6566 if (i.imm_operands == 0)
6567 {
6568 /* When there is no immediate operand, generate an 8bit
6569 immediate operand to encode the first operand. */
6570 exp = &im_expressions[i.imm_operands++];
6571 i.op[i.operands].imms = exp;
6572 i.types[i.operands] = imm8;
6573 i.operands++;
6574 /* If VexW1 is set, the first operand is the source and
6575 the second operand is encoded in the immediate operand. */
6576 if (i.tm.opcode_modifier.vexw == VEXW1)
6577 {
6578 source = 0;
6579 reg_slot = 1;
6580 }
6581 else
6582 {
6583 source = 1;
6584 reg_slot = 0;
6585 }
6586
6587 /* FMA swaps REG and NDS. */
6588 if (i.tm.cpu_flags.bitfield.cpufma)
6589 {
6590 unsigned int tmp;
6591 tmp = reg_slot;
6592 reg_slot = nds;
6593 nds = tmp;
6594 }
6595
10c17abd 6596 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
a683cc34 6597 exp->X_op = O_constant;
4c692bc7 6598 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
6599 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6600 }
922d8de8 6601 else
a683cc34
SP
6602 {
6603 unsigned int imm_slot;
6604
6605 if (i.tm.opcode_modifier.vexw == VEXW0)
6606 {
6607 /* If VexW0 is set, the third operand is the source and
6608 the second operand is encoded in the immediate
6609 operand. */
6610 source = 2;
6611 reg_slot = 1;
6612 }
6613 else
6614 {
6615 /* VexW1 is set, the second operand is the source and
6616 the third operand is encoded in the immediate
6617 operand. */
6618 source = 1;
6619 reg_slot = 2;
6620 }
6621
6622 if (i.tm.opcode_modifier.immext)
6623 {
33eaf5de 6624 /* When ImmExt is set, the immediate byte is the last
a683cc34
SP
6625 operand. */
6626 imm_slot = i.operands - 1;
6627 source--;
6628 reg_slot--;
6629 }
6630 else
6631 {
6632 imm_slot = 0;
6633
6634 /* Turn on Imm8 so that output_imm will generate it. */
6635 i.types[imm_slot].bitfield.imm8 = 1;
6636 }
6637
10c17abd 6638 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
a683cc34 6639 i.op[imm_slot].imms->X_add_number
4c692bc7 6640 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 6641 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
a683cc34
SP
6642 }
6643
10c17abd 6644 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
dae39acc 6645 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
6646 }
6647 else
6648 source = dest = 0;
29b0f896
AM
6649
6650 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
6651 implicit registers do not count. If there are 3 register
6652 operands, it must be a instruction with VexNDS. For a
6653 instruction with VexNDD, the destination register is encoded
6654 in VEX prefix. If there are 4 register operands, it must be
6655 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
6656 if (i.mem_operands == 0
6657 && ((i.reg_operands == 2
2426c15f 6658 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 6659 || (i.reg_operands == 3
2426c15f 6660 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 6661 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 6662 {
cab737b9
L
6663 switch (i.operands)
6664 {
6665 case 2:
6666 source = 0;
6667 break;
6668 case 3:
c81128dc
L
6669 /* When there are 3 operands, one of them may be immediate,
6670 which may be the first or the last operand. Otherwise,
c0f3af97
L
6671 the first operand must be shift count register (cl) or it
6672 is an instruction with VexNDS. */
9c2799c2 6673 gas_assert (i.imm_operands == 1
7ab9ffdd 6674 || (i.imm_operands == 0
2426c15f 6675 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 6676 || i.types[0].bitfield.shiftcount)));
40fb9820
L
6677 if (operand_type_check (i.types[0], imm)
6678 || i.types[0].bitfield.shiftcount)
6679 source = 1;
6680 else
6681 source = 0;
cab737b9
L
6682 break;
6683 case 4:
368d64cc
L
6684 /* When there are 4 operands, the first two must be 8bit
6685 immediate operands. The source operand will be the 3rd
c0f3af97
L
6686 one.
6687
6688 For instructions with VexNDS, if the first operand
6689 an imm8, the source operand is the 2nd one. If the last
6690 operand is imm8, the source operand is the first one. */
9c2799c2 6691 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
6692 && i.types[0].bitfield.imm8
6693 && i.types[1].bitfield.imm8)
2426c15f 6694 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
6695 && i.imm_operands == 1
6696 && (i.types[0].bitfield.imm8
43234a1e
L
6697 || i.types[i.operands - 1].bitfield.imm8
6698 || i.rounding)));
9f2670f2
L
6699 if (i.imm_operands == 2)
6700 source = 2;
6701 else
c0f3af97
L
6702 {
6703 if (i.types[0].bitfield.imm8)
6704 source = 1;
6705 else
6706 source = 0;
6707 }
c0f3af97
L
6708 break;
6709 case 5:
43234a1e
L
6710 if (i.tm.opcode_modifier.evex)
6711 {
6712 /* For EVEX instructions, when there are 5 operands, the
6713 first one must be immediate operand. If the second one
6714 is immediate operand, the source operand is the 3th
6715 one. If the last one is immediate operand, the source
6716 operand is the 2nd one. */
6717 gas_assert (i.imm_operands == 2
6718 && i.tm.opcode_modifier.sae
6719 && operand_type_check (i.types[0], imm));
6720 if (operand_type_check (i.types[1], imm))
6721 source = 2;
6722 else if (operand_type_check (i.types[4], imm))
6723 source = 1;
6724 else
6725 abort ();
6726 }
cab737b9
L
6727 break;
6728 default:
6729 abort ();
6730 }
6731
c0f3af97
L
6732 if (!vex_3_sources)
6733 {
6734 dest = source + 1;
6735
43234a1e
L
6736 /* RC/SAE operand could be between DEST and SRC. That happens
6737 when one operand is GPR and the other one is XMM/YMM/ZMM
6738 register. */
6739 if (i.rounding && i.rounding->operand == (int) dest)
6740 dest++;
6741
2426c15f 6742 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 6743 {
43234a1e 6744 /* For instructions with VexNDS, the register-only source
c5d0745b 6745 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
43234a1e
L
6746 register. It is encoded in VEX prefix. We need to
6747 clear RegMem bit before calling operand_type_equal. */
f12dc422
L
6748
6749 i386_operand_type op;
6750 unsigned int vvvv;
6751
6752 /* Check register-only source operand when two source
6753 operands are swapped. */
6754 if (!i.tm.operand_types[source].bitfield.baseindex
6755 && i.tm.operand_types[dest].bitfield.baseindex)
6756 {
6757 vvvv = source;
6758 source = dest;
6759 }
6760 else
6761 vvvv = dest;
6762
6763 op = i.tm.operand_types[vvvv];
fa99fab2 6764 op.bitfield.regmem = 0;
c0f3af97 6765 if ((dest + 1) >= i.operands
dc821c5f
JB
6766 || ((!op.bitfield.reg
6767 || (!op.bitfield.dword && !op.bitfield.qword))
10c17abd 6768 && !op.bitfield.regsimd
43234a1e 6769 && !operand_type_equal (&op, &regmask)))
c0f3af97 6770 abort ();
f12dc422 6771 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
6772 dest++;
6773 }
6774 }
29b0f896
AM
6775
6776 i.rm.mode = 3;
6777 /* One of the register operands will be encoded in the i.tm.reg
6778 field, the other in the combined i.tm.mode and i.tm.regmem
6779 fields. If no form of this instruction supports a memory
6780 destination operand, then we assume the source operand may
6781 sometimes be a memory operand and so we need to store the
6782 destination in the i.rm.reg field. */
40fb9820
L
6783 if (!i.tm.operand_types[dest].bitfield.regmem
6784 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
6785 {
6786 i.rm.reg = i.op[dest].regs->reg_num;
6787 i.rm.regmem = i.op[source].regs->reg_num;
6788 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6789 i.rex |= REX_R;
43234a1e
L
6790 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6791 i.vrex |= REX_R;
29b0f896 6792 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6793 i.rex |= REX_B;
43234a1e
L
6794 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6795 i.vrex |= REX_B;
29b0f896
AM
6796 }
6797 else
6798 {
6799 i.rm.reg = i.op[source].regs->reg_num;
6800 i.rm.regmem = i.op[dest].regs->reg_num;
6801 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6802 i.rex |= REX_B;
43234a1e
L
6803 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6804 i.vrex |= REX_B;
29b0f896 6805 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6806 i.rex |= REX_R;
43234a1e
L
6807 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6808 i.vrex |= REX_R;
29b0f896 6809 }
161a04f6 6810 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
c4a530c5 6811 {
40fb9820
L
6812 if (!i.types[0].bitfield.control
6813 && !i.types[1].bitfield.control)
c4a530c5 6814 abort ();
161a04f6 6815 i.rex &= ~(REX_R | REX_B);
c4a530c5
JB
6816 add_prefix (LOCK_PREFIX_OPCODE);
6817 }
29b0f896
AM
6818 }
6819 else
6820 { /* If it's not 2 reg operands... */
c0f3af97
L
6821 unsigned int mem;
6822
29b0f896
AM
6823 if (i.mem_operands)
6824 {
6825 unsigned int fake_zero_displacement = 0;
99018f42 6826 unsigned int op;
4eed87de 6827
7ab9ffdd
L
6828 for (op = 0; op < i.operands; op++)
6829 if (operand_type_check (i.types[op], anymem))
6830 break;
7ab9ffdd 6831 gas_assert (op < i.operands);
29b0f896 6832
6c30d220
L
6833 if (i.tm.opcode_modifier.vecsib)
6834 {
6835 if (i.index_reg->reg_num == RegEiz
6836 || i.index_reg->reg_num == RegRiz)
6837 abort ();
6838
6839 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6840 if (!i.base_reg)
6841 {
6842 i.sib.base = NO_BASE_REGISTER;
6843 i.sib.scale = i.log2_scale_factor;
6844 i.types[op].bitfield.disp8 = 0;
6845 i.types[op].bitfield.disp16 = 0;
6846 i.types[op].bitfield.disp64 = 0;
43083a50 6847 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
6848 {
6849 /* Must be 32 bit */
6850 i.types[op].bitfield.disp32 = 1;
6851 i.types[op].bitfield.disp32s = 0;
6852 }
6853 else
6854 {
6855 i.types[op].bitfield.disp32 = 0;
6856 i.types[op].bitfield.disp32s = 1;
6857 }
6858 }
6859 i.sib.index = i.index_reg->reg_num;
6860 if ((i.index_reg->reg_flags & RegRex) != 0)
6861 i.rex |= REX_X;
43234a1e
L
6862 if ((i.index_reg->reg_flags & RegVRex) != 0)
6863 i.vrex |= REX_X;
6c30d220
L
6864 }
6865
29b0f896
AM
6866 default_seg = &ds;
6867
6868 if (i.base_reg == 0)
6869 {
6870 i.rm.mode = 0;
6871 if (!i.disp_operands)
9bb129e8 6872 fake_zero_displacement = 1;
29b0f896
AM
6873 if (i.index_reg == 0)
6874 {
6c30d220 6875 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 6876 /* Operand is just <disp> */
20f0a1fc 6877 if (flag_code == CODE_64BIT)
29b0f896
AM
6878 {
6879 /* 64bit mode overwrites the 32bit absolute
6880 addressing by RIP relative addressing and
6881 absolute addressing is encoded by one of the
6882 redundant SIB forms. */
6883 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6884 i.sib.base = NO_BASE_REGISTER;
6885 i.sib.index = NO_INDEX_REGISTER;
fc225355 6886 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
40fb9820 6887 ? disp32s : disp32);
20f0a1fc 6888 }
fc225355
L
6889 else if ((flag_code == CODE_16BIT)
6890 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
6891 {
6892 i.rm.regmem = NO_BASE_REGISTER_16;
40fb9820 6893 i.types[op] = disp16;
20f0a1fc
NC
6894 }
6895 else
6896 {
6897 i.rm.regmem = NO_BASE_REGISTER;
40fb9820 6898 i.types[op] = disp32;
29b0f896
AM
6899 }
6900 }
6c30d220 6901 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 6902 {
6c30d220 6903 /* !i.base_reg && i.index_reg */
db51cc60
L
6904 if (i.index_reg->reg_num == RegEiz
6905 || i.index_reg->reg_num == RegRiz)
6906 i.sib.index = NO_INDEX_REGISTER;
6907 else
6908 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
6909 i.sib.base = NO_BASE_REGISTER;
6910 i.sib.scale = i.log2_scale_factor;
6911 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
6912 i.types[op].bitfield.disp8 = 0;
6913 i.types[op].bitfield.disp16 = 0;
6914 i.types[op].bitfield.disp64 = 0;
43083a50 6915 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
6916 {
6917 /* Must be 32 bit */
6918 i.types[op].bitfield.disp32 = 1;
6919 i.types[op].bitfield.disp32s = 0;
6920 }
29b0f896 6921 else
40fb9820
L
6922 {
6923 i.types[op].bitfield.disp32 = 0;
6924 i.types[op].bitfield.disp32s = 1;
6925 }
29b0f896 6926 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 6927 i.rex |= REX_X;
29b0f896
AM
6928 }
6929 }
6930 /* RIP addressing for 64bit mode. */
9a04903e
JB
6931 else if (i.base_reg->reg_num == RegRip ||
6932 i.base_reg->reg_num == RegEip)
29b0f896 6933 {
6c30d220 6934 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 6935 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
6936 i.types[op].bitfield.disp8 = 0;
6937 i.types[op].bitfield.disp16 = 0;
6938 i.types[op].bitfield.disp32 = 0;
6939 i.types[op].bitfield.disp32s = 1;
6940 i.types[op].bitfield.disp64 = 0;
71903a11 6941 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
6942 if (! i.disp_operands)
6943 fake_zero_displacement = 1;
29b0f896 6944 }
dc821c5f 6945 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 6946 {
6c30d220 6947 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
6948 switch (i.base_reg->reg_num)
6949 {
6950 case 3: /* (%bx) */
6951 if (i.index_reg == 0)
6952 i.rm.regmem = 7;
6953 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6954 i.rm.regmem = i.index_reg->reg_num - 6;
6955 break;
6956 case 5: /* (%bp) */
6957 default_seg = &ss;
6958 if (i.index_reg == 0)
6959 {
6960 i.rm.regmem = 6;
40fb9820 6961 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
6962 {
6963 /* fake (%bp) into 0(%bp) */
b5014f7a 6964 i.types[op].bitfield.disp8 = 1;
252b5132 6965 fake_zero_displacement = 1;
29b0f896
AM
6966 }
6967 }
6968 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6969 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6970 break;
6971 default: /* (%si) -> 4 or (%di) -> 5 */
6972 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6973 }
6974 i.rm.mode = mode_from_disp_size (i.types[op]);
6975 }
6976 else /* i.base_reg and 32/64 bit mode */
6977 {
6978 if (flag_code == CODE_64BIT
40fb9820
L
6979 && operand_type_check (i.types[op], disp))
6980 {
6981 i386_operand_type temp;
0dfbf9d7 6982 operand_type_set (&temp, 0);
40fb9820
L
6983 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
6984 i.types[op] = temp;
6985 if (i.prefix[ADDR_PREFIX] == 0)
6986 i.types[op].bitfield.disp32s = 1;
6987 else
6988 i.types[op].bitfield.disp32 = 1;
6989 }
20f0a1fc 6990
6c30d220
L
6991 if (!i.tm.opcode_modifier.vecsib)
6992 i.rm.regmem = i.base_reg->reg_num;
29b0f896 6993 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 6994 i.rex |= REX_B;
29b0f896
AM
6995 i.sib.base = i.base_reg->reg_num;
6996 /* x86-64 ignores REX prefix bit here to avoid decoder
6997 complications. */
848930b2
JB
6998 if (!(i.base_reg->reg_flags & RegRex)
6999 && (i.base_reg->reg_num == EBP_REG_NUM
7000 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7001 default_seg = &ss;
848930b2 7002 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7003 {
848930b2 7004 fake_zero_displacement = 1;
b5014f7a 7005 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7006 }
7007 i.sib.scale = i.log2_scale_factor;
7008 if (i.index_reg == 0)
7009 {
6c30d220 7010 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7011 /* <disp>(%esp) becomes two byte modrm with no index
7012 register. We've already stored the code for esp
7013 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7014 Any base register besides %esp will not use the
7015 extra modrm byte. */
7016 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7017 }
6c30d220 7018 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7019 {
db51cc60
L
7020 if (i.index_reg->reg_num == RegEiz
7021 || i.index_reg->reg_num == RegRiz)
7022 i.sib.index = NO_INDEX_REGISTER;
7023 else
7024 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7025 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7026 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7027 i.rex |= REX_X;
29b0f896 7028 }
67a4f2b7
AO
7029
7030 if (i.disp_operands
7031 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7032 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7033 i.rm.mode = 0;
7034 else
a501d77e
L
7035 {
7036 if (!fake_zero_displacement
7037 && !i.disp_operands
7038 && i.disp_encoding)
7039 {
7040 fake_zero_displacement = 1;
7041 if (i.disp_encoding == disp_encoding_8bit)
7042 i.types[op].bitfield.disp8 = 1;
7043 else
7044 i.types[op].bitfield.disp32 = 1;
7045 }
7046 i.rm.mode = mode_from_disp_size (i.types[op]);
7047 }
29b0f896 7048 }
252b5132 7049
29b0f896
AM
7050 if (fake_zero_displacement)
7051 {
7052 /* Fakes a zero displacement assuming that i.types[op]
7053 holds the correct displacement size. */
7054 expressionS *exp;
7055
9c2799c2 7056 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7057 exp = &disp_expressions[i.disp_operands++];
7058 i.op[op].disps = exp;
7059 exp->X_op = O_constant;
7060 exp->X_add_number = 0;
7061 exp->X_add_symbol = (symbolS *) 0;
7062 exp->X_op_symbol = (symbolS *) 0;
7063 }
c0f3af97
L
7064
7065 mem = op;
29b0f896 7066 }
c0f3af97
L
7067 else
7068 mem = ~0;
252b5132 7069
8c43a48b 7070 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7071 {
7072 if (operand_type_check (i.types[0], imm))
7073 i.vex.register_specifier = NULL;
7074 else
7075 {
7076 /* VEX.vvvv encodes one of the sources when the first
7077 operand is not an immediate. */
1ef99a7b 7078 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7079 i.vex.register_specifier = i.op[0].regs;
7080 else
7081 i.vex.register_specifier = i.op[1].regs;
7082 }
7083
7084 /* Destination is a XMM register encoded in the ModRM.reg
7085 and VEX.R bit. */
7086 i.rm.reg = i.op[2].regs->reg_num;
7087 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7088 i.rex |= REX_R;
7089
7090 /* ModRM.rm and VEX.B encodes the other source. */
7091 if (!i.mem_operands)
7092 {
7093 i.rm.mode = 3;
7094
1ef99a7b 7095 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7096 i.rm.regmem = i.op[1].regs->reg_num;
7097 else
7098 i.rm.regmem = i.op[0].regs->reg_num;
7099
7100 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7101 i.rex |= REX_B;
7102 }
7103 }
2426c15f 7104 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7105 {
7106 i.vex.register_specifier = i.op[2].regs;
7107 if (!i.mem_operands)
7108 {
7109 i.rm.mode = 3;
7110 i.rm.regmem = i.op[1].regs->reg_num;
7111 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7112 i.rex |= REX_B;
7113 }
7114 }
29b0f896
AM
7115 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7116 (if any) based on i.tm.extension_opcode. Again, we must be
7117 careful to make sure that segment/control/debug/test/MMX
7118 registers are coded into the i.rm.reg field. */
f88c9eb0 7119 else if (i.reg_operands)
29b0f896 7120 {
99018f42 7121 unsigned int op;
7ab9ffdd
L
7122 unsigned int vex_reg = ~0;
7123
7124 for (op = 0; op < i.operands; op++)
dc821c5f 7125 if (i.types[op].bitfield.reg
7ab9ffdd 7126 || i.types[op].bitfield.regmmx
1b54b8d7 7127 || i.types[op].bitfield.regsimd
7e8b059b 7128 || i.types[op].bitfield.regbnd
43234a1e 7129 || i.types[op].bitfield.regmask
7ab9ffdd
L
7130 || i.types[op].bitfield.sreg2
7131 || i.types[op].bitfield.sreg3
7132 || i.types[op].bitfield.control
7133 || i.types[op].bitfield.debug
7134 || i.types[op].bitfield.test)
7135 break;
c0209578 7136
7ab9ffdd
L
7137 if (vex_3_sources)
7138 op = dest;
2426c15f 7139 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7140 {
7141 /* For instructions with VexNDS, the register-only
7142 source operand is encoded in VEX prefix. */
7143 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7144
7ab9ffdd 7145 if (op > mem)
c0f3af97 7146 {
7ab9ffdd
L
7147 vex_reg = op++;
7148 gas_assert (op < i.operands);
c0f3af97
L
7149 }
7150 else
c0f3af97 7151 {
f12dc422
L
7152 /* Check register-only source operand when two source
7153 operands are swapped. */
7154 if (!i.tm.operand_types[op].bitfield.baseindex
7155 && i.tm.operand_types[op + 1].bitfield.baseindex)
7156 {
7157 vex_reg = op;
7158 op += 2;
7159 gas_assert (mem == (vex_reg + 1)
7160 && op < i.operands);
7161 }
7162 else
7163 {
7164 vex_reg = op + 1;
7165 gas_assert (vex_reg < i.operands);
7166 }
c0f3af97 7167 }
7ab9ffdd 7168 }
2426c15f 7169 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7170 {
f12dc422 7171 /* For instructions with VexNDD, the register destination
7ab9ffdd 7172 is encoded in VEX prefix. */
f12dc422
L
7173 if (i.mem_operands == 0)
7174 {
7175 /* There is no memory operand. */
7176 gas_assert ((op + 2) == i.operands);
7177 vex_reg = op + 1;
7178 }
7179 else
8d63c93e 7180 {
f12dc422
L
7181 /* There are only 2 operands. */
7182 gas_assert (op < 2 && i.operands == 2);
7183 vex_reg = 1;
7184 }
7ab9ffdd
L
7185 }
7186 else
7187 gas_assert (op < i.operands);
99018f42 7188
7ab9ffdd
L
7189 if (vex_reg != (unsigned int) ~0)
7190 {
f12dc422 7191 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7192
dc821c5f
JB
7193 if ((!type->bitfield.reg
7194 || (!type->bitfield.dword && !type->bitfield.qword))
10c17abd 7195 && !type->bitfield.regsimd
43234a1e 7196 && !operand_type_equal (type, &regmask))
7ab9ffdd 7197 abort ();
f88c9eb0 7198
7ab9ffdd
L
7199 i.vex.register_specifier = i.op[vex_reg].regs;
7200 }
7201
1b9f0c97
L
7202 /* Don't set OP operand twice. */
7203 if (vex_reg != op)
7ab9ffdd 7204 {
1b9f0c97
L
7205 /* If there is an extension opcode to put here, the
7206 register number must be put into the regmem field. */
7207 if (i.tm.extension_opcode != None)
7208 {
7209 i.rm.regmem = i.op[op].regs->reg_num;
7210 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7211 i.rex |= REX_B;
43234a1e
L
7212 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7213 i.vrex |= REX_B;
1b9f0c97
L
7214 }
7215 else
7216 {
7217 i.rm.reg = i.op[op].regs->reg_num;
7218 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7219 i.rex |= REX_R;
43234a1e
L
7220 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7221 i.vrex |= REX_R;
1b9f0c97 7222 }
7ab9ffdd 7223 }
252b5132 7224
29b0f896
AM
7225 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7226 must set it to 3 to indicate this is a register operand
7227 in the regmem field. */
7228 if (!i.mem_operands)
7229 i.rm.mode = 3;
7230 }
252b5132 7231
29b0f896 7232 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7233 if (i.tm.extension_opcode != None)
29b0f896
AM
7234 i.rm.reg = i.tm.extension_opcode;
7235 }
7236 return default_seg;
7237}
252b5132 7238
29b0f896 7239static void
e3bb37b5 7240output_branch (void)
29b0f896
AM
7241{
7242 char *p;
f8a5c266 7243 int size;
29b0f896
AM
7244 int code16;
7245 int prefix;
7246 relax_substateT subtype;
7247 symbolS *sym;
7248 offsetT off;
7249
f8a5c266 7250 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7251 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7252
7253 prefix = 0;
7254 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7255 {
29b0f896
AM
7256 prefix = 1;
7257 i.prefixes -= 1;
7258 code16 ^= CODE16;
252b5132 7259 }
29b0f896
AM
7260 /* Pentium4 branch hints. */
7261 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7262 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7263 {
29b0f896
AM
7264 prefix++;
7265 i.prefixes--;
7266 }
7267 if (i.prefix[REX_PREFIX] != 0)
7268 {
7269 prefix++;
7270 i.prefixes--;
2f66722d
AM
7271 }
7272
7e8b059b
L
7273 /* BND prefixed jump. */
7274 if (i.prefix[BND_PREFIX] != 0)
7275 {
7276 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7277 i.prefixes -= 1;
7278 }
7279
29b0f896
AM
7280 if (i.prefixes != 0 && !intel_syntax)
7281 as_warn (_("skipping prefixes on this instruction"));
7282
7283 /* It's always a symbol; End frag & setup for relax.
7284 Make sure there is enough room in this frag for the largest
7285 instruction we may generate in md_convert_frag. This is 2
7286 bytes for the opcode and room for the prefix and largest
7287 displacement. */
7288 frag_grow (prefix + 2 + 4);
7289 /* Prefix and 1 opcode byte go in fr_fix. */
7290 p = frag_more (prefix + 1);
7291 if (i.prefix[DATA_PREFIX] != 0)
7292 *p++ = DATA_PREFIX_OPCODE;
7293 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7294 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7295 *p++ = i.prefix[SEG_PREFIX];
7296 if (i.prefix[REX_PREFIX] != 0)
7297 *p++ = i.prefix[REX_PREFIX];
7298 *p = i.tm.base_opcode;
7299
7300 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7301 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7302 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7303 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7304 else
f8a5c266 7305 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7306 subtype |= code16;
3e73aa7c 7307
29b0f896
AM
7308 sym = i.op[0].disps->X_add_symbol;
7309 off = i.op[0].disps->X_add_number;
3e73aa7c 7310
29b0f896
AM
7311 if (i.op[0].disps->X_op != O_constant
7312 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7313 {
29b0f896
AM
7314 /* Handle complex expressions. */
7315 sym = make_expr_symbol (i.op[0].disps);
7316 off = 0;
7317 }
3e73aa7c 7318
29b0f896
AM
7319 /* 1 possible extra opcode + 4 byte displacement go in var part.
7320 Pass reloc in fr_var. */
d258b828 7321 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7322}
3e73aa7c 7323
bd7ab16b
L
7324#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7325/* Return TRUE iff PLT32 relocation should be used for branching to
7326 symbol S. */
7327
7328static bfd_boolean
7329need_plt32_p (symbolS *s)
7330{
7331 /* PLT32 relocation is ELF only. */
7332 if (!IS_ELF)
7333 return FALSE;
7334
7335 /* Since there is no need to prepare for PLT branch on x86-64, we
7336 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7337 be used as a marker for 32-bit PC-relative branches. */
7338 if (!object_64bit)
7339 return FALSE;
7340
7341 /* Weak or undefined symbol need PLT32 relocation. */
7342 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7343 return TRUE;
7344
7345 /* Non-global symbol doesn't need PLT32 relocation. */
7346 if (! S_IS_EXTERNAL (s))
7347 return FALSE;
7348
7349 /* Other global symbols need PLT32 relocation. NB: Symbol with
7350 non-default visibilities are treated as normal global symbol
7351 so that PLT32 relocation can be used as a marker for 32-bit
7352 PC-relative branches. It is useful for linker relaxation. */
7353 return TRUE;
7354}
7355#endif
7356
29b0f896 7357static void
e3bb37b5 7358output_jump (void)
29b0f896
AM
7359{
7360 char *p;
7361 int size;
3e02c1cc 7362 fixS *fixP;
bd7ab16b 7363 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7364
40fb9820 7365 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
7366 {
7367 /* This is a loop or jecxz type instruction. */
7368 size = 1;
7369 if (i.prefix[ADDR_PREFIX] != 0)
7370 {
7371 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7372 i.prefixes -= 1;
7373 }
7374 /* Pentium4 branch hints. */
7375 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7376 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7377 {
7378 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7379 i.prefixes--;
3e73aa7c
JH
7380 }
7381 }
29b0f896
AM
7382 else
7383 {
7384 int code16;
3e73aa7c 7385
29b0f896
AM
7386 code16 = 0;
7387 if (flag_code == CODE_16BIT)
7388 code16 = CODE16;
3e73aa7c 7389
29b0f896
AM
7390 if (i.prefix[DATA_PREFIX] != 0)
7391 {
7392 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7393 i.prefixes -= 1;
7394 code16 ^= CODE16;
7395 }
252b5132 7396
29b0f896
AM
7397 size = 4;
7398 if (code16)
7399 size = 2;
7400 }
9fcc94b6 7401
29b0f896
AM
7402 if (i.prefix[REX_PREFIX] != 0)
7403 {
7404 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7405 i.prefixes -= 1;
7406 }
252b5132 7407
7e8b059b
L
7408 /* BND prefixed jump. */
7409 if (i.prefix[BND_PREFIX] != 0)
7410 {
7411 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7412 i.prefixes -= 1;
7413 }
7414
29b0f896
AM
7415 if (i.prefixes != 0 && !intel_syntax)
7416 as_warn (_("skipping prefixes on this instruction"));
e0890092 7417
42164a71
L
7418 p = frag_more (i.tm.opcode_length + size);
7419 switch (i.tm.opcode_length)
7420 {
7421 case 2:
7422 *p++ = i.tm.base_opcode >> 8;
1a0670f3 7423 /* Fall through. */
42164a71
L
7424 case 1:
7425 *p++ = i.tm.base_opcode;
7426 break;
7427 default:
7428 abort ();
7429 }
e0890092 7430
bd7ab16b
L
7431#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7432 if (size == 4
7433 && jump_reloc == NO_RELOC
7434 && need_plt32_p (i.op[0].disps->X_add_symbol))
7435 jump_reloc = BFD_RELOC_X86_64_PLT32;
7436#endif
7437
7438 jump_reloc = reloc (size, 1, 1, jump_reloc);
7439
3e02c1cc 7440 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 7441 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
7442
7443 /* All jumps handled here are signed, but don't use a signed limit
7444 check for 32 and 16 bit jumps as we want to allow wrap around at
7445 4G and 64k respectively. */
7446 if (size == 1)
7447 fixP->fx_signed = 1;
29b0f896 7448}
e0890092 7449
29b0f896 7450static void
e3bb37b5 7451output_interseg_jump (void)
29b0f896
AM
7452{
7453 char *p;
7454 int size;
7455 int prefix;
7456 int code16;
252b5132 7457
29b0f896
AM
7458 code16 = 0;
7459 if (flag_code == CODE_16BIT)
7460 code16 = CODE16;
a217f122 7461
29b0f896
AM
7462 prefix = 0;
7463 if (i.prefix[DATA_PREFIX] != 0)
7464 {
7465 prefix = 1;
7466 i.prefixes -= 1;
7467 code16 ^= CODE16;
7468 }
7469 if (i.prefix[REX_PREFIX] != 0)
7470 {
7471 prefix++;
7472 i.prefixes -= 1;
7473 }
252b5132 7474
29b0f896
AM
7475 size = 4;
7476 if (code16)
7477 size = 2;
252b5132 7478
29b0f896
AM
7479 if (i.prefixes != 0 && !intel_syntax)
7480 as_warn (_("skipping prefixes on this instruction"));
252b5132 7481
29b0f896
AM
7482 /* 1 opcode; 2 segment; offset */
7483 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 7484
29b0f896
AM
7485 if (i.prefix[DATA_PREFIX] != 0)
7486 *p++ = DATA_PREFIX_OPCODE;
252b5132 7487
29b0f896
AM
7488 if (i.prefix[REX_PREFIX] != 0)
7489 *p++ = i.prefix[REX_PREFIX];
252b5132 7490
29b0f896
AM
7491 *p++ = i.tm.base_opcode;
7492 if (i.op[1].imms->X_op == O_constant)
7493 {
7494 offsetT n = i.op[1].imms->X_add_number;
252b5132 7495
29b0f896
AM
7496 if (size == 2
7497 && !fits_in_unsigned_word (n)
7498 && !fits_in_signed_word (n))
7499 {
7500 as_bad (_("16-bit jump out of range"));
7501 return;
7502 }
7503 md_number_to_chars (p, n, size);
7504 }
7505 else
7506 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 7507 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
7508 if (i.op[0].imms->X_op != O_constant)
7509 as_bad (_("can't handle non absolute segment in `%s'"),
7510 i.tm.name);
7511 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7512}
a217f122 7513
29b0f896 7514static void
e3bb37b5 7515output_insn (void)
29b0f896 7516{
2bbd9c25
JJ
7517 fragS *insn_start_frag;
7518 offsetT insn_start_off;
7519
29b0f896
AM
7520 /* Tie dwarf2 debug info to the address at the start of the insn.
7521 We can't do this after the insn has been output as the current
7522 frag may have been closed off. eg. by frag_var. */
7523 dwarf2_emit_insn (0);
7524
2bbd9c25
JJ
7525 insn_start_frag = frag_now;
7526 insn_start_off = frag_now_fix ();
7527
29b0f896 7528 /* Output jumps. */
40fb9820 7529 if (i.tm.opcode_modifier.jump)
29b0f896 7530 output_branch ();
40fb9820
L
7531 else if (i.tm.opcode_modifier.jumpbyte
7532 || i.tm.opcode_modifier.jumpdword)
29b0f896 7533 output_jump ();
40fb9820 7534 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
7535 output_interseg_jump ();
7536 else
7537 {
7538 /* Output normal instructions here. */
7539 char *p;
7540 unsigned char *q;
47465058 7541 unsigned int j;
331d2d0d 7542 unsigned int prefix;
4dffcebc 7543
e4e00185
AS
7544 if (avoid_fence
7545 && i.tm.base_opcode == 0xfae
7546 && i.operands == 1
7547 && i.imm_operands == 1
7548 && (i.op[0].imms->X_add_number == 0xe8
7549 || i.op[0].imms->X_add_number == 0xf0
7550 || i.op[0].imms->X_add_number == 0xf8))
7551 {
7552 /* Encode lfence, mfence, and sfence as
7553 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7554 offsetT val = 0x240483f0ULL;
7555 p = frag_more (5);
7556 md_number_to_chars (p, val, 5);
7557 return;
7558 }
7559
d022bddd
IT
7560 /* Some processors fail on LOCK prefix. This options makes
7561 assembler ignore LOCK prefix and serves as a workaround. */
7562 if (omit_lock_prefix)
7563 {
7564 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7565 return;
7566 i.prefix[LOCK_PREFIX] = 0;
7567 }
7568
43234a1e
L
7569 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7570 don't need the explicit prefix. */
7571 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 7572 {
c0f3af97 7573 switch (i.tm.opcode_length)
bc4bd9ab 7574 {
c0f3af97
L
7575 case 3:
7576 if (i.tm.base_opcode & 0xff000000)
4dffcebc 7577 {
c0f3af97
L
7578 prefix = (i.tm.base_opcode >> 24) & 0xff;
7579 goto check_prefix;
7580 }
7581 break;
7582 case 2:
7583 if ((i.tm.base_opcode & 0xff0000) != 0)
7584 {
7585 prefix = (i.tm.base_opcode >> 16) & 0xff;
7586 if (i.tm.cpu_flags.bitfield.cpupadlock)
7587 {
4dffcebc 7588check_prefix:
c0f3af97 7589 if (prefix != REPE_PREFIX_OPCODE
c32fa91d 7590 || (i.prefix[REP_PREFIX]
c0f3af97
L
7591 != REPE_PREFIX_OPCODE))
7592 add_prefix (prefix);
7593 }
7594 else
4dffcebc
L
7595 add_prefix (prefix);
7596 }
c0f3af97
L
7597 break;
7598 case 1:
7599 break;
390c91cf
L
7600 case 0:
7601 /* Check for pseudo prefixes. */
7602 as_bad_where (insn_start_frag->fr_file,
7603 insn_start_frag->fr_line,
7604 _("pseudo prefix without instruction"));
7605 return;
c0f3af97
L
7606 default:
7607 abort ();
bc4bd9ab 7608 }
c0f3af97 7609
6d19a37a 7610#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
7611 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7612 R_X86_64_GOTTPOFF relocation so that linker can safely
7613 perform IE->LE optimization. */
7614 if (x86_elf_abi == X86_64_X32_ABI
7615 && i.operands == 2
7616 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7617 && i.prefix[REX_PREFIX] == 0)
7618 add_prefix (REX_OPCODE);
6d19a37a 7619#endif
cf61b747 7620
c0f3af97
L
7621 /* The prefix bytes. */
7622 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7623 if (*q)
7624 FRAG_APPEND_1_CHAR (*q);
0f10071e 7625 }
ae5c1c7b 7626 else
c0f3af97
L
7627 {
7628 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7629 if (*q)
7630 switch (j)
7631 {
7632 case REX_PREFIX:
7633 /* REX byte is encoded in VEX prefix. */
7634 break;
7635 case SEG_PREFIX:
7636 case ADDR_PREFIX:
7637 FRAG_APPEND_1_CHAR (*q);
7638 break;
7639 default:
7640 /* There should be no other prefixes for instructions
7641 with VEX prefix. */
7642 abort ();
7643 }
7644
43234a1e
L
7645 /* For EVEX instructions i.vrex should become 0 after
7646 build_evex_prefix. For VEX instructions upper 16 registers
7647 aren't available, so VREX should be 0. */
7648 if (i.vrex)
7649 abort ();
c0f3af97
L
7650 /* Now the VEX prefix. */
7651 p = frag_more (i.vex.length);
7652 for (j = 0; j < i.vex.length; j++)
7653 p[j] = i.vex.bytes[j];
7654 }
252b5132 7655
29b0f896 7656 /* Now the opcode; be careful about word order here! */
4dffcebc 7657 if (i.tm.opcode_length == 1)
29b0f896
AM
7658 {
7659 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7660 }
7661 else
7662 {
4dffcebc 7663 switch (i.tm.opcode_length)
331d2d0d 7664 {
43234a1e
L
7665 case 4:
7666 p = frag_more (4);
7667 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7668 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7669 break;
4dffcebc 7670 case 3:
331d2d0d
L
7671 p = frag_more (3);
7672 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
7673 break;
7674 case 2:
7675 p = frag_more (2);
7676 break;
7677 default:
7678 abort ();
7679 break;
331d2d0d 7680 }
0f10071e 7681
29b0f896
AM
7682 /* Put out high byte first: can't use md_number_to_chars! */
7683 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7684 *p = i.tm.base_opcode & 0xff;
7685 }
3e73aa7c 7686
29b0f896 7687 /* Now the modrm byte and sib byte (if present). */
40fb9820 7688 if (i.tm.opcode_modifier.modrm)
29b0f896 7689 {
4a3523fa
L
7690 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7691 | i.rm.reg << 3
7692 | i.rm.mode << 6));
29b0f896
AM
7693 /* If i.rm.regmem == ESP (4)
7694 && i.rm.mode != (Register mode)
7695 && not 16 bit
7696 ==> need second modrm byte. */
7697 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7698 && i.rm.mode != 3
dc821c5f 7699 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
7700 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7701 | i.sib.index << 3
7702 | i.sib.scale << 6));
29b0f896 7703 }
3e73aa7c 7704
29b0f896 7705 if (i.disp_operands)
2bbd9c25 7706 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 7707
29b0f896 7708 if (i.imm_operands)
2bbd9c25 7709 output_imm (insn_start_frag, insn_start_off);
29b0f896 7710 }
252b5132 7711
29b0f896
AM
7712#ifdef DEBUG386
7713 if (flag_debug)
7714 {
7b81dfbb 7715 pi ("" /*line*/, &i);
29b0f896
AM
7716 }
7717#endif /* DEBUG386 */
7718}
252b5132 7719
e205caa7
L
7720/* Return the size of the displacement operand N. */
7721
7722static int
7723disp_size (unsigned int n)
7724{
7725 int size = 4;
43234a1e 7726
b5014f7a 7727 if (i.types[n].bitfield.disp64)
40fb9820
L
7728 size = 8;
7729 else if (i.types[n].bitfield.disp8)
7730 size = 1;
7731 else if (i.types[n].bitfield.disp16)
7732 size = 2;
e205caa7
L
7733 return size;
7734}
7735
7736/* Return the size of the immediate operand N. */
7737
7738static int
7739imm_size (unsigned int n)
7740{
7741 int size = 4;
40fb9820
L
7742 if (i.types[n].bitfield.imm64)
7743 size = 8;
7744 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7745 size = 1;
7746 else if (i.types[n].bitfield.imm16)
7747 size = 2;
e205caa7
L
7748 return size;
7749}
7750
29b0f896 7751static void
64e74474 7752output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
7753{
7754 char *p;
7755 unsigned int n;
252b5132 7756
29b0f896
AM
7757 for (n = 0; n < i.operands; n++)
7758 {
b5014f7a 7759 if (operand_type_check (i.types[n], disp))
29b0f896
AM
7760 {
7761 if (i.op[n].disps->X_op == O_constant)
7762 {
e205caa7 7763 int size = disp_size (n);
43234a1e 7764 offsetT val = i.op[n].disps->X_add_number;
252b5132 7765
b5014f7a 7766 val = offset_in_range (val >> i.memshift, size);
29b0f896
AM
7767 p = frag_more (size);
7768 md_number_to_chars (p, val, size);
7769 }
7770 else
7771 {
f86103b7 7772 enum bfd_reloc_code_real reloc_type;
e205caa7 7773 int size = disp_size (n);
40fb9820 7774 int sign = i.types[n].bitfield.disp32s;
29b0f896 7775 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 7776 fixS *fixP;
29b0f896 7777
e205caa7 7778 /* We can't have 8 bit displacement here. */
9c2799c2 7779 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 7780
29b0f896
AM
7781 /* The PC relative address is computed relative
7782 to the instruction boundary, so in case immediate
7783 fields follows, we need to adjust the value. */
7784 if (pcrel && i.imm_operands)
7785 {
29b0f896 7786 unsigned int n1;
e205caa7 7787 int sz = 0;
252b5132 7788
29b0f896 7789 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 7790 if (operand_type_check (i.types[n1], imm))
252b5132 7791 {
e205caa7
L
7792 /* Only one immediate is allowed for PC
7793 relative address. */
9c2799c2 7794 gas_assert (sz == 0);
e205caa7
L
7795 sz = imm_size (n1);
7796 i.op[n].disps->X_add_number -= sz;
252b5132 7797 }
29b0f896 7798 /* We should find the immediate. */
9c2799c2 7799 gas_assert (sz != 0);
29b0f896 7800 }
520dc8e8 7801
29b0f896 7802 p = frag_more (size);
d258b828 7803 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 7804 if (GOT_symbol
2bbd9c25 7805 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 7806 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
7807 || reloc_type == BFD_RELOC_X86_64_32S
7808 || (reloc_type == BFD_RELOC_64
7809 && object_64bit))
d6ab8113
JB
7810 && (i.op[n].disps->X_op == O_symbol
7811 || (i.op[n].disps->X_op == O_add
7812 && ((symbol_get_value_expression
7813 (i.op[n].disps->X_op_symbol)->X_op)
7814 == O_subtract))))
7815 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25
JJ
7816 {
7817 offsetT add;
7818
7819 if (insn_start_frag == frag_now)
7820 add = (p - frag_now->fr_literal) - insn_start_off;
7821 else
7822 {
7823 fragS *fr;
7824
7825 add = insn_start_frag->fr_fix - insn_start_off;
7826 for (fr = insn_start_frag->fr_next;
7827 fr && fr != frag_now; fr = fr->fr_next)
7828 add += fr->fr_fix;
7829 add += p - frag_now->fr_literal;
7830 }
7831
4fa24527 7832 if (!object_64bit)
7b81dfbb
AJ
7833 {
7834 reloc_type = BFD_RELOC_386_GOTPC;
7835 i.op[n].imms->X_add_number += add;
7836 }
7837 else if (reloc_type == BFD_RELOC_64)
7838 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 7839 else
7b81dfbb
AJ
7840 /* Don't do the adjustment for x86-64, as there
7841 the pcrel addressing is relative to the _next_
7842 insn, and that is taken care of in other code. */
d6ab8113 7843 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 7844 }
02a86693
L
7845 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7846 size, i.op[n].disps, pcrel,
7847 reloc_type);
7848 /* Check for "call/jmp *mem", "mov mem, %reg",
7849 "test %reg, mem" and "binop mem, %reg" where binop
7850 is one of adc, add, and, cmp, or, sbb, sub, xor
0cb4071e
L
7851 instructions. Always generate R_386_GOT32X for
7852 "sym*GOT" operand in 32-bit mode. */
7853 if ((generate_relax_relocations
7854 || (!object_64bit
7855 && i.rm.mode == 0
7856 && i.rm.regmem == 5))
7857 && (i.rm.mode == 2
7858 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
7859 && ((i.operands == 1
7860 && i.tm.base_opcode == 0xff
7861 && (i.rm.reg == 2 || i.rm.reg == 4))
7862 || (i.operands == 2
7863 && (i.tm.base_opcode == 0x8b
7864 || i.tm.base_opcode == 0x85
7865 || (i.tm.base_opcode & 0xc7) == 0x03))))
7866 {
7867 if (object_64bit)
7868 {
7869 fixP->fx_tcbit = i.rex != 0;
7870 if (i.base_reg
7871 && (i.base_reg->reg_num == RegRip
7872 || i.base_reg->reg_num == RegEip))
7873 fixP->fx_tcbit2 = 1;
7874 }
7875 else
7876 fixP->fx_tcbit2 = 1;
7877 }
29b0f896
AM
7878 }
7879 }
7880 }
7881}
252b5132 7882
29b0f896 7883static void
64e74474 7884output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
7885{
7886 char *p;
7887 unsigned int n;
252b5132 7888
29b0f896
AM
7889 for (n = 0; n < i.operands; n++)
7890 {
43234a1e
L
7891 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7892 if (i.rounding && (int) n == i.rounding->operand)
7893 continue;
7894
40fb9820 7895 if (operand_type_check (i.types[n], imm))
29b0f896
AM
7896 {
7897 if (i.op[n].imms->X_op == O_constant)
7898 {
e205caa7 7899 int size = imm_size (n);
29b0f896 7900 offsetT val;
b4cac588 7901
29b0f896
AM
7902 val = offset_in_range (i.op[n].imms->X_add_number,
7903 size);
7904 p = frag_more (size);
7905 md_number_to_chars (p, val, size);
7906 }
7907 else
7908 {
7909 /* Not absolute_section.
7910 Need a 32-bit fixup (don't support 8bit
7911 non-absolute imms). Try to support other
7912 sizes ... */
f86103b7 7913 enum bfd_reloc_code_real reloc_type;
e205caa7
L
7914 int size = imm_size (n);
7915 int sign;
29b0f896 7916
40fb9820 7917 if (i.types[n].bitfield.imm32s
a7d61044 7918 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 7919 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 7920 sign = 1;
e205caa7
L
7921 else
7922 sign = 0;
520dc8e8 7923
29b0f896 7924 p = frag_more (size);
d258b828 7925 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 7926
2bbd9c25
JJ
7927 /* This is tough to explain. We end up with this one if we
7928 * have operands that look like
7929 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7930 * obtain the absolute address of the GOT, and it is strongly
7931 * preferable from a performance point of view to avoid using
7932 * a runtime relocation for this. The actual sequence of
7933 * instructions often look something like:
7934 *
7935 * call .L66
7936 * .L66:
7937 * popl %ebx
7938 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7939 *
7940 * The call and pop essentially return the absolute address
7941 * of the label .L66 and store it in %ebx. The linker itself
7942 * will ultimately change the first operand of the addl so
7943 * that %ebx points to the GOT, but to keep things simple, the
7944 * .o file must have this operand set so that it generates not
7945 * the absolute address of .L66, but the absolute address of
7946 * itself. This allows the linker itself simply treat a GOTPC
7947 * relocation as asking for a pcrel offset to the GOT to be
7948 * added in, and the addend of the relocation is stored in the
7949 * operand field for the instruction itself.
7950 *
7951 * Our job here is to fix the operand so that it would add
7952 * the correct offset so that %ebx would point to itself. The
7953 * thing that is tricky is that .-.L66 will point to the
7954 * beginning of the instruction, so we need to further modify
7955 * the operand so that it will point to itself. There are
7956 * other cases where you have something like:
7957 *
7958 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7959 *
7960 * and here no correction would be required. Internally in
7961 * the assembler we treat operands of this form as not being
7962 * pcrel since the '.' is explicitly mentioned, and I wonder
7963 * whether it would simplify matters to do it this way. Who
7964 * knows. In earlier versions of the PIC patches, the
7965 * pcrel_adjust field was used to store the correction, but
7966 * since the expression is not pcrel, I felt it would be
7967 * confusing to do it this way. */
7968
d6ab8113 7969 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
7970 || reloc_type == BFD_RELOC_X86_64_32S
7971 || reloc_type == BFD_RELOC_64)
29b0f896
AM
7972 && GOT_symbol
7973 && GOT_symbol == i.op[n].imms->X_add_symbol
7974 && (i.op[n].imms->X_op == O_symbol
7975 || (i.op[n].imms->X_op == O_add
7976 && ((symbol_get_value_expression
7977 (i.op[n].imms->X_op_symbol)->X_op)
7978 == O_subtract))))
7979 {
2bbd9c25
JJ
7980 offsetT add;
7981
7982 if (insn_start_frag == frag_now)
7983 add = (p - frag_now->fr_literal) - insn_start_off;
7984 else
7985 {
7986 fragS *fr;
7987
7988 add = insn_start_frag->fr_fix - insn_start_off;
7989 for (fr = insn_start_frag->fr_next;
7990 fr && fr != frag_now; fr = fr->fr_next)
7991 add += fr->fr_fix;
7992 add += p - frag_now->fr_literal;
7993 }
7994
4fa24527 7995 if (!object_64bit)
d6ab8113 7996 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 7997 else if (size == 4)
d6ab8113 7998 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
7999 else if (size == 8)
8000 reloc_type = BFD_RELOC_X86_64_GOTPC64;
2bbd9c25 8001 i.op[n].imms->X_add_number += add;
29b0f896 8002 }
29b0f896
AM
8003 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8004 i.op[n].imms, 0, reloc_type);
8005 }
8006 }
8007 }
252b5132
RH
8008}
8009\f
d182319b
JB
8010/* x86_cons_fix_new is called via the expression parsing code when a
8011 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
8012static int cons_sign = -1;
8013
8014void
e3bb37b5 8015x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 8016 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 8017{
d258b828 8018 r = reloc (len, 0, cons_sign, r);
d182319b
JB
8019
8020#ifdef TE_PE
8021 if (exp->X_op == O_secrel)
8022 {
8023 exp->X_op = O_symbol;
8024 r = BFD_RELOC_32_SECREL;
8025 }
8026#endif
8027
8028 fix_new_exp (frag, off, len, exp, 0, r);
8029}
8030
357d1bd8
L
8031/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8032 purpose of the `.dc.a' internal pseudo-op. */
8033
8034int
8035x86_address_bytes (void)
8036{
8037 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8038 return 4;
8039 return stdoutput->arch_info->bits_per_address / 8;
8040}
8041
d382c579
TG
8042#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8043 || defined (LEX_AT)
d258b828 8044# define lex_got(reloc, adjust, types) NULL
718ddfc0 8045#else
f3c180ae
AM
8046/* Parse operands of the form
8047 <symbol>@GOTOFF+<nnn>
8048 and similar .plt or .got references.
8049
8050 If we find one, set up the correct relocation in RELOC and copy the
8051 input string, minus the `@GOTOFF' into a malloc'd buffer for
8052 parsing by the calling routine. Return this buffer, and if ADJUST
8053 is non-null set it to the length of the string we removed from the
8054 input line. Otherwise return NULL. */
8055static char *
91d6fa6a 8056lex_got (enum bfd_reloc_code_real *rel,
64e74474 8057 int *adjust,
d258b828 8058 i386_operand_type *types)
f3c180ae 8059{
7b81dfbb
AJ
8060 /* Some of the relocations depend on the size of what field is to
8061 be relocated. But in our callers i386_immediate and i386_displacement
8062 we don't yet know the operand size (this will be set by insn
8063 matching). Hence we record the word32 relocation here,
8064 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
8065 static const struct {
8066 const char *str;
cff8d58a 8067 int len;
4fa24527 8068 const enum bfd_reloc_code_real rel[2];
40fb9820 8069 const i386_operand_type types64;
f3c180ae 8070 } gotrel[] = {
8ce3d284 8071#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
8072 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8073 BFD_RELOC_SIZE32 },
8074 OPERAND_TYPE_IMM32_64 },
8ce3d284 8075#endif
cff8d58a
L
8076 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8077 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 8078 OPERAND_TYPE_IMM64 },
cff8d58a
L
8079 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8080 BFD_RELOC_X86_64_PLT32 },
40fb9820 8081 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8082 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8083 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 8084 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8085 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8086 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 8087 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8088 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8089 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 8090 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8091 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8092 BFD_RELOC_X86_64_TLSGD },
40fb9820 8093 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8094 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8095 _dummy_first_bfd_reloc_code_real },
40fb9820 8096 OPERAND_TYPE_NONE },
cff8d58a
L
8097 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8098 BFD_RELOC_X86_64_TLSLD },
40fb9820 8099 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8100 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8101 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 8102 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8103 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8104 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 8105 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8106 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8107 _dummy_first_bfd_reloc_code_real },
40fb9820 8108 OPERAND_TYPE_NONE },
cff8d58a
L
8109 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8110 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 8111 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8112 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8113 _dummy_first_bfd_reloc_code_real },
40fb9820 8114 OPERAND_TYPE_NONE },
cff8d58a
L
8115 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8116 _dummy_first_bfd_reloc_code_real },
40fb9820 8117 OPERAND_TYPE_NONE },
cff8d58a
L
8118 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8119 BFD_RELOC_X86_64_GOT32 },
40fb9820 8120 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
8121 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8122 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 8123 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8124 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8125 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 8126 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
8127 };
8128 char *cp;
8129 unsigned int j;
8130
d382c579 8131#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
8132 if (!IS_ELF)
8133 return NULL;
d382c579 8134#endif
718ddfc0 8135
f3c180ae 8136 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 8137 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
8138 return NULL;
8139
47465058 8140 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 8141 {
cff8d58a 8142 int len = gotrel[j].len;
28f81592 8143 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 8144 {
4fa24527 8145 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 8146 {
28f81592
AM
8147 int first, second;
8148 char *tmpbuf, *past_reloc;
f3c180ae 8149
91d6fa6a 8150 *rel = gotrel[j].rel[object_64bit];
f3c180ae 8151
3956db08
JB
8152 if (types)
8153 {
8154 if (flag_code != CODE_64BIT)
40fb9820
L
8155 {
8156 types->bitfield.imm32 = 1;
8157 types->bitfield.disp32 = 1;
8158 }
3956db08
JB
8159 else
8160 *types = gotrel[j].types64;
8161 }
8162
8fd4256d 8163 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
8164 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8165
28f81592 8166 /* The length of the first part of our input line. */
f3c180ae 8167 first = cp - input_line_pointer;
28f81592
AM
8168
8169 /* The second part goes from after the reloc token until
67c11a9b 8170 (and including) an end_of_line char or comma. */
28f81592 8171 past_reloc = cp + 1 + len;
67c11a9b
AM
8172 cp = past_reloc;
8173 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8174 ++cp;
8175 second = cp + 1 - past_reloc;
28f81592
AM
8176
8177 /* Allocate and copy string. The trailing NUL shouldn't
8178 be necessary, but be safe. */
add39d23 8179 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 8180 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
8181 if (second != 0 && *past_reloc != ' ')
8182 /* Replace the relocation token with ' ', so that
8183 errors like foo@GOTOFF1 will be detected. */
8184 tmpbuf[first++] = ' ';
af89796a
L
8185 else
8186 /* Increment length by 1 if the relocation token is
8187 removed. */
8188 len++;
8189 if (adjust)
8190 *adjust = len;
0787a12d
AM
8191 memcpy (tmpbuf + first, past_reloc, second);
8192 tmpbuf[first + second] = '\0';
f3c180ae
AM
8193 return tmpbuf;
8194 }
8195
4fa24527
JB
8196 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8197 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
8198 return NULL;
8199 }
8200 }
8201
8202 /* Might be a symbol version string. Don't as_bad here. */
8203 return NULL;
8204}
4e4f7c87 8205#endif
f3c180ae 8206
a988325c
NC
8207#ifdef TE_PE
8208#ifdef lex_got
8209#undef lex_got
8210#endif
8211/* Parse operands of the form
8212 <symbol>@SECREL32+<nnn>
8213
8214 If we find one, set up the correct relocation in RELOC and copy the
8215 input string, minus the `@SECREL32' into a malloc'd buffer for
8216 parsing by the calling routine. Return this buffer, and if ADJUST
8217 is non-null set it to the length of the string we removed from the
34bca508
L
8218 input line. Otherwise return NULL.
8219
a988325c
NC
8220 This function is copied from the ELF version above adjusted for PE targets. */
8221
8222static char *
8223lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8224 int *adjust ATTRIBUTE_UNUSED,
d258b828 8225 i386_operand_type *types)
a988325c
NC
8226{
8227 static const struct
8228 {
8229 const char *str;
8230 int len;
8231 const enum bfd_reloc_code_real rel[2];
8232 const i386_operand_type types64;
8233 }
8234 gotrel[] =
8235 {
8236 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8237 BFD_RELOC_32_SECREL },
8238 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8239 };
8240
8241 char *cp;
8242 unsigned j;
8243
8244 for (cp = input_line_pointer; *cp != '@'; cp++)
8245 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8246 return NULL;
8247
8248 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8249 {
8250 int len = gotrel[j].len;
8251
8252 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8253 {
8254 if (gotrel[j].rel[object_64bit] != 0)
8255 {
8256 int first, second;
8257 char *tmpbuf, *past_reloc;
8258
8259 *rel = gotrel[j].rel[object_64bit];
8260 if (adjust)
8261 *adjust = len;
8262
8263 if (types)
8264 {
8265 if (flag_code != CODE_64BIT)
8266 {
8267 types->bitfield.imm32 = 1;
8268 types->bitfield.disp32 = 1;
8269 }
8270 else
8271 *types = gotrel[j].types64;
8272 }
8273
8274 /* The length of the first part of our input line. */
8275 first = cp - input_line_pointer;
8276
8277 /* The second part goes from after the reloc token until
8278 (and including) an end_of_line char or comma. */
8279 past_reloc = cp + 1 + len;
8280 cp = past_reloc;
8281 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8282 ++cp;
8283 second = cp + 1 - past_reloc;
8284
8285 /* Allocate and copy string. The trailing NUL shouldn't
8286 be necessary, but be safe. */
add39d23 8287 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
8288 memcpy (tmpbuf, input_line_pointer, first);
8289 if (second != 0 && *past_reloc != ' ')
8290 /* Replace the relocation token with ' ', so that
8291 errors like foo@SECLREL321 will be detected. */
8292 tmpbuf[first++] = ' ';
8293 memcpy (tmpbuf + first, past_reloc, second);
8294 tmpbuf[first + second] = '\0';
8295 return tmpbuf;
8296 }
8297
8298 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8299 gotrel[j].str, 1 << (5 + object_64bit));
8300 return NULL;
8301 }
8302 }
8303
8304 /* Might be a symbol version string. Don't as_bad here. */
8305 return NULL;
8306}
8307
8308#endif /* TE_PE */
8309
62ebcb5c 8310bfd_reloc_code_real_type
e3bb37b5 8311x86_cons (expressionS *exp, int size)
f3c180ae 8312{
62ebcb5c
AM
8313 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8314
ee86248c
JB
8315 intel_syntax = -intel_syntax;
8316
3c7b9c2c 8317 exp->X_md = 0;
4fa24527 8318 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
8319 {
8320 /* Handle @GOTOFF and the like in an expression. */
8321 char *save;
8322 char *gotfree_input_line;
4a57f2cf 8323 int adjust = 0;
f3c180ae
AM
8324
8325 save = input_line_pointer;
d258b828 8326 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
8327 if (gotfree_input_line)
8328 input_line_pointer = gotfree_input_line;
8329
8330 expression (exp);
8331
8332 if (gotfree_input_line)
8333 {
8334 /* expression () has merrily parsed up to the end of line,
8335 or a comma - in the wrong buffer. Transfer how far
8336 input_line_pointer has moved to the right buffer. */
8337 input_line_pointer = (save
8338 + (input_line_pointer - gotfree_input_line)
8339 + adjust);
8340 free (gotfree_input_line);
3992d3b7
AM
8341 if (exp->X_op == O_constant
8342 || exp->X_op == O_absent
8343 || exp->X_op == O_illegal
0398aac5 8344 || exp->X_op == O_register
3992d3b7
AM
8345 || exp->X_op == O_big)
8346 {
8347 char c = *input_line_pointer;
8348 *input_line_pointer = 0;
8349 as_bad (_("missing or invalid expression `%s'"), save);
8350 *input_line_pointer = c;
8351 }
f3c180ae
AM
8352 }
8353 }
8354 else
8355 expression (exp);
ee86248c
JB
8356
8357 intel_syntax = -intel_syntax;
8358
8359 if (intel_syntax)
8360 i386_intel_simplify (exp);
62ebcb5c
AM
8361
8362 return got_reloc;
f3c180ae 8363}
f3c180ae 8364
9f32dd5b
L
8365static void
8366signed_cons (int size)
6482c264 8367{
d182319b
JB
8368 if (flag_code == CODE_64BIT)
8369 cons_sign = 1;
8370 cons (size);
8371 cons_sign = -1;
6482c264
NC
8372}
8373
d182319b 8374#ifdef TE_PE
6482c264 8375static void
7016a5d5 8376pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
8377{
8378 expressionS exp;
8379
8380 do
8381 {
8382 expression (&exp);
8383 if (exp.X_op == O_symbol)
8384 exp.X_op = O_secrel;
8385
8386 emit_expr (&exp, 4);
8387 }
8388 while (*input_line_pointer++ == ',');
8389
8390 input_line_pointer--;
8391 demand_empty_rest_of_line ();
8392}
6482c264
NC
8393#endif
8394
43234a1e
L
8395/* Handle Vector operations. */
8396
8397static char *
8398check_VecOperations (char *op_string, char *op_end)
8399{
8400 const reg_entry *mask;
8401 const char *saved;
8402 char *end_op;
8403
8404 while (*op_string
8405 && (op_end == NULL || op_string < op_end))
8406 {
8407 saved = op_string;
8408 if (*op_string == '{')
8409 {
8410 op_string++;
8411
8412 /* Check broadcasts. */
8413 if (strncmp (op_string, "1to", 3) == 0)
8414 {
8415 int bcst_type;
8416
8417 if (i.broadcast)
8418 goto duplicated_vec_op;
8419
8420 op_string += 3;
8421 if (*op_string == '8')
8422 bcst_type = BROADCAST_1TO8;
b28d1bda
IT
8423 else if (*op_string == '4')
8424 bcst_type = BROADCAST_1TO4;
8425 else if (*op_string == '2')
8426 bcst_type = BROADCAST_1TO2;
43234a1e
L
8427 else if (*op_string == '1'
8428 && *(op_string+1) == '6')
8429 {
8430 bcst_type = BROADCAST_1TO16;
8431 op_string++;
8432 }
8433 else
8434 {
8435 as_bad (_("Unsupported broadcast: `%s'"), saved);
8436 return NULL;
8437 }
8438 op_string++;
8439
8440 broadcast_op.type = bcst_type;
8441 broadcast_op.operand = this_operand;
8442 i.broadcast = &broadcast_op;
8443 }
8444 /* Check masking operation. */
8445 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8446 {
8447 /* k0 can't be used for write mask. */
6d2cd6b2 8448 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
43234a1e 8449 {
6d2cd6b2
JB
8450 as_bad (_("`%s%s' can't be used for write mask"),
8451 register_prefix, mask->reg_name);
43234a1e
L
8452 return NULL;
8453 }
8454
8455 if (!i.mask)
8456 {
8457 mask_op.mask = mask;
8458 mask_op.zeroing = 0;
8459 mask_op.operand = this_operand;
8460 i.mask = &mask_op;
8461 }
8462 else
8463 {
8464 if (i.mask->mask)
8465 goto duplicated_vec_op;
8466
8467 i.mask->mask = mask;
8468
8469 /* Only "{z}" is allowed here. No need to check
8470 zeroing mask explicitly. */
8471 if (i.mask->operand != this_operand)
8472 {
8473 as_bad (_("invalid write mask `%s'"), saved);
8474 return NULL;
8475 }
8476 }
8477
8478 op_string = end_op;
8479 }
8480 /* Check zeroing-flag for masking operation. */
8481 else if (*op_string == 'z')
8482 {
8483 if (!i.mask)
8484 {
8485 mask_op.mask = NULL;
8486 mask_op.zeroing = 1;
8487 mask_op.operand = this_operand;
8488 i.mask = &mask_op;
8489 }
8490 else
8491 {
8492 if (i.mask->zeroing)
8493 {
8494 duplicated_vec_op:
8495 as_bad (_("duplicated `%s'"), saved);
8496 return NULL;
8497 }
8498
8499 i.mask->zeroing = 1;
8500
8501 /* Only "{%k}" is allowed here. No need to check mask
8502 register explicitly. */
8503 if (i.mask->operand != this_operand)
8504 {
8505 as_bad (_("invalid zeroing-masking `%s'"),
8506 saved);
8507 return NULL;
8508 }
8509 }
8510
8511 op_string++;
8512 }
8513 else
8514 goto unknown_vec_op;
8515
8516 if (*op_string != '}')
8517 {
8518 as_bad (_("missing `}' in `%s'"), saved);
8519 return NULL;
8520 }
8521 op_string++;
8522 continue;
8523 }
8524 unknown_vec_op:
8525 /* We don't know this one. */
8526 as_bad (_("unknown vector operation: `%s'"), saved);
8527 return NULL;
8528 }
8529
6d2cd6b2
JB
8530 if (i.mask && i.mask->zeroing && !i.mask->mask)
8531 {
8532 as_bad (_("zeroing-masking only allowed with write mask"));
8533 return NULL;
8534 }
8535
43234a1e
L
8536 return op_string;
8537}
8538
252b5132 8539static int
70e41ade 8540i386_immediate (char *imm_start)
252b5132
RH
8541{
8542 char *save_input_line_pointer;
f3c180ae 8543 char *gotfree_input_line;
252b5132 8544 segT exp_seg = 0;
47926f60 8545 expressionS *exp;
40fb9820
L
8546 i386_operand_type types;
8547
0dfbf9d7 8548 operand_type_set (&types, ~0);
252b5132
RH
8549
8550 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8551 {
31b2323c
L
8552 as_bad (_("at most %d immediate operands are allowed"),
8553 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
8554 return 0;
8555 }
8556
8557 exp = &im_expressions[i.imm_operands++];
520dc8e8 8558 i.op[this_operand].imms = exp;
252b5132
RH
8559
8560 if (is_space_char (*imm_start))
8561 ++imm_start;
8562
8563 save_input_line_pointer = input_line_pointer;
8564 input_line_pointer = imm_start;
8565
d258b828 8566 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
8567 if (gotfree_input_line)
8568 input_line_pointer = gotfree_input_line;
252b5132
RH
8569
8570 exp_seg = expression (exp);
8571
83183c0c 8572 SKIP_WHITESPACE ();
43234a1e
L
8573
8574 /* Handle vector operations. */
8575 if (*input_line_pointer == '{')
8576 {
8577 input_line_pointer = check_VecOperations (input_line_pointer,
8578 NULL);
8579 if (input_line_pointer == NULL)
8580 return 0;
8581 }
8582
252b5132 8583 if (*input_line_pointer)
f3c180ae 8584 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
8585
8586 input_line_pointer = save_input_line_pointer;
f3c180ae 8587 if (gotfree_input_line)
ee86248c
JB
8588 {
8589 free (gotfree_input_line);
8590
8591 if (exp->X_op == O_constant || exp->X_op == O_register)
8592 exp->X_op = O_illegal;
8593 }
8594
8595 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8596}
252b5132 8597
ee86248c
JB
8598static int
8599i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8600 i386_operand_type types, const char *imm_start)
8601{
8602 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 8603 {
313c53d1
L
8604 if (imm_start)
8605 as_bad (_("missing or invalid immediate expression `%s'"),
8606 imm_start);
3992d3b7 8607 return 0;
252b5132 8608 }
3e73aa7c 8609 else if (exp->X_op == O_constant)
252b5132 8610 {
47926f60 8611 /* Size it properly later. */
40fb9820 8612 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
8613 /* If not 64bit, sign extend val. */
8614 if (flag_code != CODE_64BIT
4eed87de
AM
8615 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8616 exp->X_add_number
8617 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 8618 }
4c63da97 8619#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 8620 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 8621 && exp_seg != absolute_section
47926f60 8622 && exp_seg != text_section
24eab124
AM
8623 && exp_seg != data_section
8624 && exp_seg != bss_section
8625 && exp_seg != undefined_section
f86103b7 8626 && !bfd_is_com_section (exp_seg))
252b5132 8627 {
d0b47220 8628 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
8629 return 0;
8630 }
8631#endif
a841bdf5 8632 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 8633 {
313c53d1
L
8634 if (imm_start)
8635 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
8636 return 0;
8637 }
252b5132
RH
8638 else
8639 {
8640 /* This is an address. The size of the address will be
24eab124 8641 determined later, depending on destination register,
3e73aa7c 8642 suffix, or the default for the section. */
40fb9820
L
8643 i.types[this_operand].bitfield.imm8 = 1;
8644 i.types[this_operand].bitfield.imm16 = 1;
8645 i.types[this_operand].bitfield.imm32 = 1;
8646 i.types[this_operand].bitfield.imm32s = 1;
8647 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
8648 i.types[this_operand] = operand_type_and (i.types[this_operand],
8649 types);
252b5132
RH
8650 }
8651
8652 return 1;
8653}
8654
551c1ca1 8655static char *
e3bb37b5 8656i386_scale (char *scale)
252b5132 8657{
551c1ca1
AM
8658 offsetT val;
8659 char *save = input_line_pointer;
252b5132 8660
551c1ca1
AM
8661 input_line_pointer = scale;
8662 val = get_absolute_expression ();
8663
8664 switch (val)
252b5132 8665 {
551c1ca1 8666 case 1:
252b5132
RH
8667 i.log2_scale_factor = 0;
8668 break;
551c1ca1 8669 case 2:
252b5132
RH
8670 i.log2_scale_factor = 1;
8671 break;
551c1ca1 8672 case 4:
252b5132
RH
8673 i.log2_scale_factor = 2;
8674 break;
551c1ca1 8675 case 8:
252b5132
RH
8676 i.log2_scale_factor = 3;
8677 break;
8678 default:
a724f0f4
JB
8679 {
8680 char sep = *input_line_pointer;
8681
8682 *input_line_pointer = '\0';
8683 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8684 scale);
8685 *input_line_pointer = sep;
8686 input_line_pointer = save;
8687 return NULL;
8688 }
252b5132 8689 }
29b0f896 8690 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
8691 {
8692 as_warn (_("scale factor of %d without an index register"),
24eab124 8693 1 << i.log2_scale_factor);
252b5132 8694 i.log2_scale_factor = 0;
252b5132 8695 }
551c1ca1
AM
8696 scale = input_line_pointer;
8697 input_line_pointer = save;
8698 return scale;
252b5132
RH
8699}
8700
252b5132 8701static int
e3bb37b5 8702i386_displacement (char *disp_start, char *disp_end)
252b5132 8703{
29b0f896 8704 expressionS *exp;
252b5132
RH
8705 segT exp_seg = 0;
8706 char *save_input_line_pointer;
f3c180ae 8707 char *gotfree_input_line;
40fb9820
L
8708 int override;
8709 i386_operand_type bigdisp, types = anydisp;
3992d3b7 8710 int ret;
252b5132 8711
31b2323c
L
8712 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8713 {
8714 as_bad (_("at most %d displacement operands are allowed"),
8715 MAX_MEMORY_OPERANDS);
8716 return 0;
8717 }
8718
0dfbf9d7 8719 operand_type_set (&bigdisp, 0);
40fb9820
L
8720 if ((i.types[this_operand].bitfield.jumpabsolute)
8721 || (!current_templates->start->opcode_modifier.jump
8722 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 8723 {
40fb9820 8724 bigdisp.bitfield.disp32 = 1;
e05278af 8725 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
8726 if (flag_code == CODE_64BIT)
8727 {
8728 if (!override)
8729 {
8730 bigdisp.bitfield.disp32s = 1;
8731 bigdisp.bitfield.disp64 = 1;
8732 }
8733 }
8734 else if ((flag_code == CODE_16BIT) ^ override)
8735 {
8736 bigdisp.bitfield.disp32 = 0;
8737 bigdisp.bitfield.disp16 = 1;
8738 }
e05278af
JB
8739 }
8740 else
8741 {
8742 /* For PC-relative branches, the width of the displacement
8743 is dependent upon data size, not address size. */
e05278af 8744 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
8745 if (flag_code == CODE_64BIT)
8746 {
8747 if (override || i.suffix == WORD_MNEM_SUFFIX)
8748 bigdisp.bitfield.disp16 = 1;
8749 else
8750 {
8751 bigdisp.bitfield.disp32 = 1;
8752 bigdisp.bitfield.disp32s = 1;
8753 }
8754 }
8755 else
e05278af
JB
8756 {
8757 if (!override)
8758 override = (i.suffix == (flag_code != CODE_16BIT
8759 ? WORD_MNEM_SUFFIX
8760 : LONG_MNEM_SUFFIX));
40fb9820
L
8761 bigdisp.bitfield.disp32 = 1;
8762 if ((flag_code == CODE_16BIT) ^ override)
8763 {
8764 bigdisp.bitfield.disp32 = 0;
8765 bigdisp.bitfield.disp16 = 1;
8766 }
e05278af 8767 }
e05278af 8768 }
c6fb90c8
L
8769 i.types[this_operand] = operand_type_or (i.types[this_operand],
8770 bigdisp);
252b5132
RH
8771
8772 exp = &disp_expressions[i.disp_operands];
520dc8e8 8773 i.op[this_operand].disps = exp;
252b5132
RH
8774 i.disp_operands++;
8775 save_input_line_pointer = input_line_pointer;
8776 input_line_pointer = disp_start;
8777 END_STRING_AND_SAVE (disp_end);
8778
8779#ifndef GCC_ASM_O_HACK
8780#define GCC_ASM_O_HACK 0
8781#endif
8782#if GCC_ASM_O_HACK
8783 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 8784 if (i.types[this_operand].bitfield.baseIndex
24eab124 8785 && displacement_string_end[-1] == '+')
252b5132
RH
8786 {
8787 /* This hack is to avoid a warning when using the "o"
24eab124
AM
8788 constraint within gcc asm statements.
8789 For instance:
8790
8791 #define _set_tssldt_desc(n,addr,limit,type) \
8792 __asm__ __volatile__ ( \
8793 "movw %w2,%0\n\t" \
8794 "movw %w1,2+%0\n\t" \
8795 "rorl $16,%1\n\t" \
8796 "movb %b1,4+%0\n\t" \
8797 "movb %4,5+%0\n\t" \
8798 "movb $0,6+%0\n\t" \
8799 "movb %h1,7+%0\n\t" \
8800 "rorl $16,%1" \
8801 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8802
8803 This works great except that the output assembler ends
8804 up looking a bit weird if it turns out that there is
8805 no offset. You end up producing code that looks like:
8806
8807 #APP
8808 movw $235,(%eax)
8809 movw %dx,2+(%eax)
8810 rorl $16,%edx
8811 movb %dl,4+(%eax)
8812 movb $137,5+(%eax)
8813 movb $0,6+(%eax)
8814 movb %dh,7+(%eax)
8815 rorl $16,%edx
8816 #NO_APP
8817
47926f60 8818 So here we provide the missing zero. */
24eab124
AM
8819
8820 *displacement_string_end = '0';
252b5132
RH
8821 }
8822#endif
d258b828 8823 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
8824 if (gotfree_input_line)
8825 input_line_pointer = gotfree_input_line;
252b5132 8826
24eab124 8827 exp_seg = expression (exp);
252b5132 8828
636c26b0
AM
8829 SKIP_WHITESPACE ();
8830 if (*input_line_pointer)
8831 as_bad (_("junk `%s' after expression"), input_line_pointer);
8832#if GCC_ASM_O_HACK
8833 RESTORE_END_STRING (disp_end + 1);
8834#endif
636c26b0 8835 input_line_pointer = save_input_line_pointer;
636c26b0 8836 if (gotfree_input_line)
ee86248c
JB
8837 {
8838 free (gotfree_input_line);
8839
8840 if (exp->X_op == O_constant || exp->X_op == O_register)
8841 exp->X_op = O_illegal;
8842 }
8843
8844 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8845
8846 RESTORE_END_STRING (disp_end);
8847
8848 return ret;
8849}
8850
8851static int
8852i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8853 i386_operand_type types, const char *disp_start)
8854{
8855 i386_operand_type bigdisp;
8856 int ret = 1;
636c26b0 8857
24eab124
AM
8858 /* We do this to make sure that the section symbol is in
8859 the symbol table. We will ultimately change the relocation
47926f60 8860 to be relative to the beginning of the section. */
1ae12ab7 8861 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
8862 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8863 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 8864 {
636c26b0 8865 if (exp->X_op != O_symbol)
3992d3b7 8866 goto inv_disp;
636c26b0 8867
e5cb08ac 8868 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
8869 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8870 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 8871 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
8872 exp->X_op = O_subtract;
8873 exp->X_op_symbol = GOT_symbol;
1ae12ab7 8874 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 8875 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
8876 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8877 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 8878 else
29b0f896 8879 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 8880 }
252b5132 8881
3992d3b7
AM
8882 else if (exp->X_op == O_absent
8883 || exp->X_op == O_illegal
ee86248c 8884 || exp->X_op == O_big)
2daf4fd8 8885 {
3992d3b7
AM
8886 inv_disp:
8887 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 8888 disp_start);
3992d3b7 8889 ret = 0;
2daf4fd8
AM
8890 }
8891
0e1147d9
L
8892 else if (flag_code == CODE_64BIT
8893 && !i.prefix[ADDR_PREFIX]
8894 && exp->X_op == O_constant)
8895 {
8896 /* Since displacement is signed extended to 64bit, don't allow
8897 disp32 and turn off disp32s if they are out of range. */
8898 i.types[this_operand].bitfield.disp32 = 0;
8899 if (!fits_in_signed_long (exp->X_add_number))
8900 {
8901 i.types[this_operand].bitfield.disp32s = 0;
8902 if (i.types[this_operand].bitfield.baseindex)
8903 {
8904 as_bad (_("0x%lx out range of signed 32bit displacement"),
8905 (long) exp->X_add_number);
8906 ret = 0;
8907 }
8908 }
8909 }
8910
4c63da97 8911#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
8912 else if (exp->X_op != O_constant
8913 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8914 && exp_seg != absolute_section
8915 && exp_seg != text_section
8916 && exp_seg != data_section
8917 && exp_seg != bss_section
8918 && exp_seg != undefined_section
8919 && !bfd_is_com_section (exp_seg))
24eab124 8920 {
d0b47220 8921 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 8922 ret = 0;
24eab124 8923 }
252b5132 8924#endif
3956db08 8925
40fb9820
L
8926 /* Check if this is a displacement only operand. */
8927 bigdisp = i.types[this_operand];
8928 bigdisp.bitfield.disp8 = 0;
8929 bigdisp.bitfield.disp16 = 0;
8930 bigdisp.bitfield.disp32 = 0;
8931 bigdisp.bitfield.disp32s = 0;
8932 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 8933 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
8934 i.types[this_operand] = operand_type_and (i.types[this_operand],
8935 types);
3956db08 8936
3992d3b7 8937 return ret;
252b5132
RH
8938}
8939
2abc2bec
JB
8940/* Return the active addressing mode, taking address override and
8941 registers forming the address into consideration. Update the
8942 address override prefix if necessary. */
47926f60 8943
2abc2bec
JB
8944static enum flag_code
8945i386_addressing_mode (void)
252b5132 8946{
be05d201
L
8947 enum flag_code addr_mode;
8948
8949 if (i.prefix[ADDR_PREFIX])
8950 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8951 else
8952 {
8953 addr_mode = flag_code;
8954
24eab124 8955#if INFER_ADDR_PREFIX
be05d201
L
8956 if (i.mem_operands == 0)
8957 {
8958 /* Infer address prefix from the first memory operand. */
8959 const reg_entry *addr_reg = i.base_reg;
8960
8961 if (addr_reg == NULL)
8962 addr_reg = i.index_reg;
eecb386c 8963
be05d201
L
8964 if (addr_reg)
8965 {
8966 if (addr_reg->reg_num == RegEip
8967 || addr_reg->reg_num == RegEiz
dc821c5f 8968 || addr_reg->reg_type.bitfield.dword)
be05d201
L
8969 addr_mode = CODE_32BIT;
8970 else if (flag_code != CODE_64BIT
dc821c5f 8971 && addr_reg->reg_type.bitfield.word)
be05d201
L
8972 addr_mode = CODE_16BIT;
8973
8974 if (addr_mode != flag_code)
8975 {
8976 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8977 i.prefixes += 1;
8978 /* Change the size of any displacement too. At most one
8979 of Disp16 or Disp32 is set.
8980 FIXME. There doesn't seem to be any real need for
8981 separate Disp16 and Disp32 flags. The same goes for
8982 Imm16 and Imm32. Removing them would probably clean
8983 up the code quite a lot. */
8984 if (flag_code != CODE_64BIT
8985 && (i.types[this_operand].bitfield.disp16
8986 || i.types[this_operand].bitfield.disp32))
8987 i.types[this_operand]
8988 = operand_type_xor (i.types[this_operand], disp16_32);
8989 }
8990 }
8991 }
24eab124 8992#endif
be05d201
L
8993 }
8994
2abc2bec
JB
8995 return addr_mode;
8996}
8997
8998/* Make sure the memory operand we've been dealt is valid.
8999 Return 1 on success, 0 on a failure. */
9000
9001static int
9002i386_index_check (const char *operand_string)
9003{
9004 const char *kind = "base/index";
9005 enum flag_code addr_mode = i386_addressing_mode ();
9006
fc0763e6
JB
9007 if (current_templates->start->opcode_modifier.isstring
9008 && !current_templates->start->opcode_modifier.immext
9009 && (current_templates->end[-1].opcode_modifier.isstring
9010 || i.mem_operands))
9011 {
9012 /* Memory operands of string insns are special in that they only allow
9013 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
9014 const reg_entry *expected_reg;
9015 static const char *di_si[][2] =
9016 {
9017 { "esi", "edi" },
9018 { "si", "di" },
9019 { "rsi", "rdi" }
9020 };
9021 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
9022
9023 kind = "string address";
9024
8325cc63 9025 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6
JB
9026 {
9027 i386_operand_type type = current_templates->end[-1].operand_types[0];
9028
9029 if (!type.bitfield.baseindex
9030 || ((!i.mem_operands != !intel_syntax)
9031 && current_templates->end[-1].operand_types[1]
9032 .bitfield.baseindex))
9033 type = current_templates->end[-1].operand_types[1];
be05d201
L
9034 expected_reg = hash_find (reg_hash,
9035 di_si[addr_mode][type.bitfield.esseg]);
9036
fc0763e6
JB
9037 }
9038 else
be05d201 9039 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 9040
be05d201
L
9041 if (i.base_reg != expected_reg
9042 || i.index_reg
fc0763e6 9043 || operand_type_check (i.types[this_operand], disp))
fc0763e6 9044 {
be05d201
L
9045 /* The second memory operand must have the same size as
9046 the first one. */
9047 if (i.mem_operands
9048 && i.base_reg
9049 && !((addr_mode == CODE_64BIT
dc821c5f 9050 && i.base_reg->reg_type.bitfield.qword)
be05d201 9051 || (addr_mode == CODE_32BIT
dc821c5f
JB
9052 ? i.base_reg->reg_type.bitfield.dword
9053 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
9054 goto bad_address;
9055
fc0763e6
JB
9056 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9057 operand_string,
9058 intel_syntax ? '[' : '(',
9059 register_prefix,
be05d201 9060 expected_reg->reg_name,
fc0763e6 9061 intel_syntax ? ']' : ')');
be05d201 9062 return 1;
fc0763e6 9063 }
be05d201
L
9064 else
9065 return 1;
9066
9067bad_address:
9068 as_bad (_("`%s' is not a valid %s expression"),
9069 operand_string, kind);
9070 return 0;
3e73aa7c
JH
9071 }
9072 else
9073 {
be05d201
L
9074 if (addr_mode != CODE_16BIT)
9075 {
9076 /* 32-bit/64-bit checks. */
9077 if ((i.base_reg
9078 && (addr_mode == CODE_64BIT
dc821c5f
JB
9079 ? !i.base_reg->reg_type.bitfield.qword
9080 : !i.base_reg->reg_type.bitfield.dword)
be05d201
L
9081 && (i.index_reg
9082 || (i.base_reg->reg_num
9083 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
9084 || (i.index_reg
1b54b8d7
JB
9085 && !i.index_reg->reg_type.bitfield.xmmword
9086 && !i.index_reg->reg_type.bitfield.ymmword
9087 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 9088 && ((addr_mode == CODE_64BIT
dc821c5f 9089 ? !(i.index_reg->reg_type.bitfield.qword
be05d201 9090 || i.index_reg->reg_num == RegRiz)
dc821c5f 9091 : !(i.index_reg->reg_type.bitfield.dword
be05d201
L
9092 || i.index_reg->reg_num == RegEiz))
9093 || !i.index_reg->reg_type.bitfield.baseindex)))
9094 goto bad_address;
8178be5b
JB
9095
9096 /* bndmk, bndldx, and bndstx have special restrictions. */
9097 if (current_templates->start->base_opcode == 0xf30f1b
9098 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9099 {
9100 /* They cannot use RIP-relative addressing. */
9101 if (i.base_reg && i.base_reg->reg_num == RegRip)
9102 {
9103 as_bad (_("`%s' cannot be used here"), operand_string);
9104 return 0;
9105 }
9106
9107 /* bndldx and bndstx ignore their scale factor. */
9108 if (current_templates->start->base_opcode != 0xf30f1b
9109 && i.log2_scale_factor)
9110 as_warn (_("register scaling is being ignored here"));
9111 }
be05d201
L
9112 }
9113 else
3e73aa7c 9114 {
be05d201 9115 /* 16-bit checks. */
3e73aa7c 9116 if ((i.base_reg
dc821c5f 9117 && (!i.base_reg->reg_type.bitfield.word
40fb9820 9118 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 9119 || (i.index_reg
dc821c5f 9120 && (!i.index_reg->reg_type.bitfield.word
40fb9820 9121 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
9122 || !(i.base_reg
9123 && i.base_reg->reg_num < 6
9124 && i.index_reg->reg_num >= 6
9125 && i.log2_scale_factor == 0))))
be05d201 9126 goto bad_address;
3e73aa7c
JH
9127 }
9128 }
be05d201 9129 return 1;
24eab124 9130}
252b5132 9131
43234a1e
L
9132/* Handle vector immediates. */
9133
9134static int
9135RC_SAE_immediate (const char *imm_start)
9136{
9137 unsigned int match_found, j;
9138 const char *pstr = imm_start;
9139 expressionS *exp;
9140
9141 if (*pstr != '{')
9142 return 0;
9143
9144 pstr++;
9145 match_found = 0;
9146 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9147 {
9148 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9149 {
9150 if (!i.rounding)
9151 {
9152 rc_op.type = RC_NamesTable[j].type;
9153 rc_op.operand = this_operand;
9154 i.rounding = &rc_op;
9155 }
9156 else
9157 {
9158 as_bad (_("duplicated `%s'"), imm_start);
9159 return 0;
9160 }
9161 pstr += RC_NamesTable[j].len;
9162 match_found = 1;
9163 break;
9164 }
9165 }
9166 if (!match_found)
9167 return 0;
9168
9169 if (*pstr++ != '}')
9170 {
9171 as_bad (_("Missing '}': '%s'"), imm_start);
9172 return 0;
9173 }
9174 /* RC/SAE immediate string should contain nothing more. */;
9175 if (*pstr != 0)
9176 {
9177 as_bad (_("Junk after '}': '%s'"), imm_start);
9178 return 0;
9179 }
9180
9181 exp = &im_expressions[i.imm_operands++];
9182 i.op[this_operand].imms = exp;
9183
9184 exp->X_op = O_constant;
9185 exp->X_add_number = 0;
9186 exp->X_add_symbol = (symbolS *) 0;
9187 exp->X_op_symbol = (symbolS *) 0;
9188
9189 i.types[this_operand].bitfield.imm8 = 1;
9190 return 1;
9191}
9192
8325cc63
JB
9193/* Only string instructions can have a second memory operand, so
9194 reduce current_templates to just those if it contains any. */
9195static int
9196maybe_adjust_templates (void)
9197{
9198 const insn_template *t;
9199
9200 gas_assert (i.mem_operands == 1);
9201
9202 for (t = current_templates->start; t < current_templates->end; ++t)
9203 if (t->opcode_modifier.isstring)
9204 break;
9205
9206 if (t < current_templates->end)
9207 {
9208 static templates aux_templates;
9209 bfd_boolean recheck;
9210
9211 aux_templates.start = t;
9212 for (; t < current_templates->end; ++t)
9213 if (!t->opcode_modifier.isstring)
9214 break;
9215 aux_templates.end = t;
9216
9217 /* Determine whether to re-check the first memory operand. */
9218 recheck = (aux_templates.start != current_templates->start
9219 || t != current_templates->end);
9220
9221 current_templates = &aux_templates;
9222
9223 if (recheck)
9224 {
9225 i.mem_operands = 0;
9226 if (i.memop1_string != NULL
9227 && i386_index_check (i.memop1_string) == 0)
9228 return 0;
9229 i.mem_operands = 1;
9230 }
9231 }
9232
9233 return 1;
9234}
9235
fc0763e6 9236/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 9237 on error. */
252b5132 9238
252b5132 9239static int
a7619375 9240i386_att_operand (char *operand_string)
252b5132 9241{
af6bdddf
AM
9242 const reg_entry *r;
9243 char *end_op;
24eab124 9244 char *op_string = operand_string;
252b5132 9245
24eab124 9246 if (is_space_char (*op_string))
252b5132
RH
9247 ++op_string;
9248
24eab124 9249 /* We check for an absolute prefix (differentiating,
47926f60 9250 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
9251 if (*op_string == ABSOLUTE_PREFIX)
9252 {
9253 ++op_string;
9254 if (is_space_char (*op_string))
9255 ++op_string;
40fb9820 9256 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 9257 }
252b5132 9258
47926f60 9259 /* Check if operand is a register. */
4d1bb795 9260 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 9261 {
40fb9820
L
9262 i386_operand_type temp;
9263
24eab124
AM
9264 /* Check for a segment override by searching for ':' after a
9265 segment register. */
9266 op_string = end_op;
9267 if (is_space_char (*op_string))
9268 ++op_string;
40fb9820
L
9269 if (*op_string == ':'
9270 && (r->reg_type.bitfield.sreg2
9271 || r->reg_type.bitfield.sreg3))
24eab124
AM
9272 {
9273 switch (r->reg_num)
9274 {
9275 case 0:
9276 i.seg[i.mem_operands] = &es;
9277 break;
9278 case 1:
9279 i.seg[i.mem_operands] = &cs;
9280 break;
9281 case 2:
9282 i.seg[i.mem_operands] = &ss;
9283 break;
9284 case 3:
9285 i.seg[i.mem_operands] = &ds;
9286 break;
9287 case 4:
9288 i.seg[i.mem_operands] = &fs;
9289 break;
9290 case 5:
9291 i.seg[i.mem_operands] = &gs;
9292 break;
9293 }
252b5132 9294
24eab124 9295 /* Skip the ':' and whitespace. */
252b5132
RH
9296 ++op_string;
9297 if (is_space_char (*op_string))
24eab124 9298 ++op_string;
252b5132 9299
24eab124
AM
9300 if (!is_digit_char (*op_string)
9301 && !is_identifier_char (*op_string)
9302 && *op_string != '('
9303 && *op_string != ABSOLUTE_PREFIX)
9304 {
9305 as_bad (_("bad memory operand `%s'"), op_string);
9306 return 0;
9307 }
47926f60 9308 /* Handle case of %es:*foo. */
24eab124
AM
9309 if (*op_string == ABSOLUTE_PREFIX)
9310 {
9311 ++op_string;
9312 if (is_space_char (*op_string))
9313 ++op_string;
40fb9820 9314 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
9315 }
9316 goto do_memory_reference;
9317 }
43234a1e
L
9318
9319 /* Handle vector operations. */
9320 if (*op_string == '{')
9321 {
9322 op_string = check_VecOperations (op_string, NULL);
9323 if (op_string == NULL)
9324 return 0;
9325 }
9326
24eab124
AM
9327 if (*op_string)
9328 {
d0b47220 9329 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
9330 return 0;
9331 }
40fb9820
L
9332 temp = r->reg_type;
9333 temp.bitfield.baseindex = 0;
c6fb90c8
L
9334 i.types[this_operand] = operand_type_or (i.types[this_operand],
9335 temp);
7d5e4556 9336 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 9337 i.op[this_operand].regs = r;
24eab124
AM
9338 i.reg_operands++;
9339 }
af6bdddf
AM
9340 else if (*op_string == REGISTER_PREFIX)
9341 {
9342 as_bad (_("bad register name `%s'"), op_string);
9343 return 0;
9344 }
24eab124 9345 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 9346 {
24eab124 9347 ++op_string;
40fb9820 9348 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 9349 {
d0b47220 9350 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
9351 return 0;
9352 }
9353 if (!i386_immediate (op_string))
9354 return 0;
9355 }
43234a1e
L
9356 else if (RC_SAE_immediate (operand_string))
9357 {
9358 /* If it is a RC or SAE immediate, do nothing. */
9359 ;
9360 }
24eab124
AM
9361 else if (is_digit_char (*op_string)
9362 || is_identifier_char (*op_string)
d02603dc 9363 || *op_string == '"'
e5cb08ac 9364 || *op_string == '(')
24eab124 9365 {
47926f60 9366 /* This is a memory reference of some sort. */
af6bdddf 9367 char *base_string;
252b5132 9368
47926f60 9369 /* Start and end of displacement string expression (if found). */
eecb386c
AM
9370 char *displacement_string_start;
9371 char *displacement_string_end;
43234a1e 9372 char *vop_start;
252b5132 9373
24eab124 9374 do_memory_reference:
8325cc63
JB
9375 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9376 return 0;
24eab124 9377 if ((i.mem_operands == 1
40fb9820 9378 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
9379 || i.mem_operands == 2)
9380 {
9381 as_bad (_("too many memory references for `%s'"),
9382 current_templates->start->name);
9383 return 0;
9384 }
252b5132 9385
24eab124
AM
9386 /* Check for base index form. We detect the base index form by
9387 looking for an ')' at the end of the operand, searching
9388 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9389 after the '('. */
af6bdddf 9390 base_string = op_string + strlen (op_string);
c3332e24 9391
43234a1e
L
9392 /* Handle vector operations. */
9393 vop_start = strchr (op_string, '{');
9394 if (vop_start && vop_start < base_string)
9395 {
9396 if (check_VecOperations (vop_start, base_string) == NULL)
9397 return 0;
9398 base_string = vop_start;
9399 }
9400
af6bdddf
AM
9401 --base_string;
9402 if (is_space_char (*base_string))
9403 --base_string;
252b5132 9404
47926f60 9405 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
9406 displacement_string_start = op_string;
9407 displacement_string_end = base_string + 1;
252b5132 9408
24eab124
AM
9409 if (*base_string == ')')
9410 {
af6bdddf 9411 char *temp_string;
24eab124
AM
9412 unsigned int parens_balanced = 1;
9413 /* We've already checked that the number of left & right ()'s are
47926f60 9414 equal, so this loop will not be infinite. */
24eab124
AM
9415 do
9416 {
9417 base_string--;
9418 if (*base_string == ')')
9419 parens_balanced++;
9420 if (*base_string == '(')
9421 parens_balanced--;
9422 }
9423 while (parens_balanced);
c3332e24 9424
af6bdddf 9425 temp_string = base_string;
c3332e24 9426
24eab124 9427 /* Skip past '(' and whitespace. */
252b5132
RH
9428 ++base_string;
9429 if (is_space_char (*base_string))
24eab124 9430 ++base_string;
252b5132 9431
af6bdddf 9432 if (*base_string == ','
4eed87de
AM
9433 || ((i.base_reg = parse_register (base_string, &end_op))
9434 != NULL))
252b5132 9435 {
af6bdddf 9436 displacement_string_end = temp_string;
252b5132 9437
40fb9820 9438 i.types[this_operand].bitfield.baseindex = 1;
252b5132 9439
af6bdddf 9440 if (i.base_reg)
24eab124 9441 {
24eab124
AM
9442 base_string = end_op;
9443 if (is_space_char (*base_string))
9444 ++base_string;
af6bdddf
AM
9445 }
9446
9447 /* There may be an index reg or scale factor here. */
9448 if (*base_string == ',')
9449 {
9450 ++base_string;
9451 if (is_space_char (*base_string))
9452 ++base_string;
9453
4eed87de
AM
9454 if ((i.index_reg = parse_register (base_string, &end_op))
9455 != NULL)
24eab124 9456 {
af6bdddf 9457 base_string = end_op;
24eab124
AM
9458 if (is_space_char (*base_string))
9459 ++base_string;
af6bdddf
AM
9460 if (*base_string == ',')
9461 {
9462 ++base_string;
9463 if (is_space_char (*base_string))
9464 ++base_string;
9465 }
e5cb08ac 9466 else if (*base_string != ')')
af6bdddf 9467 {
4eed87de
AM
9468 as_bad (_("expecting `,' or `)' "
9469 "after index register in `%s'"),
af6bdddf
AM
9470 operand_string);
9471 return 0;
9472 }
24eab124 9473 }
af6bdddf 9474 else if (*base_string == REGISTER_PREFIX)
24eab124 9475 {
f76bf5e0
L
9476 end_op = strchr (base_string, ',');
9477 if (end_op)
9478 *end_op = '\0';
af6bdddf 9479 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
9480 return 0;
9481 }
252b5132 9482
47926f60 9483 /* Check for scale factor. */
551c1ca1 9484 if (*base_string != ')')
af6bdddf 9485 {
551c1ca1
AM
9486 char *end_scale = i386_scale (base_string);
9487
9488 if (!end_scale)
af6bdddf 9489 return 0;
24eab124 9490
551c1ca1 9491 base_string = end_scale;
af6bdddf
AM
9492 if (is_space_char (*base_string))
9493 ++base_string;
9494 if (*base_string != ')')
9495 {
4eed87de
AM
9496 as_bad (_("expecting `)' "
9497 "after scale factor in `%s'"),
af6bdddf
AM
9498 operand_string);
9499 return 0;
9500 }
9501 }
9502 else if (!i.index_reg)
24eab124 9503 {
4eed87de
AM
9504 as_bad (_("expecting index register or scale factor "
9505 "after `,'; got '%c'"),
af6bdddf 9506 *base_string);
24eab124
AM
9507 return 0;
9508 }
9509 }
af6bdddf 9510 else if (*base_string != ')')
24eab124 9511 {
4eed87de
AM
9512 as_bad (_("expecting `,' or `)' "
9513 "after base register in `%s'"),
af6bdddf 9514 operand_string);
24eab124
AM
9515 return 0;
9516 }
c3332e24 9517 }
af6bdddf 9518 else if (*base_string == REGISTER_PREFIX)
c3332e24 9519 {
f76bf5e0
L
9520 end_op = strchr (base_string, ',');
9521 if (end_op)
9522 *end_op = '\0';
af6bdddf 9523 as_bad (_("bad register name `%s'"), base_string);
24eab124 9524 return 0;
c3332e24 9525 }
24eab124
AM
9526 }
9527
9528 /* If there's an expression beginning the operand, parse it,
9529 assuming displacement_string_start and
9530 displacement_string_end are meaningful. */
9531 if (displacement_string_start != displacement_string_end)
9532 {
9533 if (!i386_displacement (displacement_string_start,
9534 displacement_string_end))
9535 return 0;
9536 }
9537
9538 /* Special case for (%dx) while doing input/output op. */
9539 if (i.base_reg
0dfbf9d7
L
9540 && operand_type_equal (&i.base_reg->reg_type,
9541 &reg16_inoutportreg)
24eab124
AM
9542 && i.index_reg == 0
9543 && i.log2_scale_factor == 0
9544 && i.seg[i.mem_operands] == 0
40fb9820 9545 && !operand_type_check (i.types[this_operand], disp))
24eab124 9546 {
65da13b5 9547 i.types[this_operand] = inoutportreg;
24eab124
AM
9548 return 1;
9549 }
9550
eecb386c
AM
9551 if (i386_index_check (operand_string) == 0)
9552 return 0;
5c07affc 9553 i.types[this_operand].bitfield.mem = 1;
8325cc63
JB
9554 if (i.mem_operands == 0)
9555 i.memop1_string = xstrdup (operand_string);
24eab124
AM
9556 i.mem_operands++;
9557 }
9558 else
ce8a8b2f
AM
9559 {
9560 /* It's not a memory operand; argh! */
24eab124
AM
9561 as_bad (_("invalid char %s beginning operand %d `%s'"),
9562 output_invalid (*op_string),
9563 this_operand + 1,
9564 op_string);
9565 return 0;
9566 }
47926f60 9567 return 1; /* Normal return. */
252b5132
RH
9568}
9569\f
fa94de6b
RM
9570/* Calculate the maximum variable size (i.e., excluding fr_fix)
9571 that an rs_machine_dependent frag may reach. */
9572
9573unsigned int
9574i386_frag_max_var (fragS *frag)
9575{
9576 /* The only relaxable frags are for jumps.
9577 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9578 gas_assert (frag->fr_type == rs_machine_dependent);
9579 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9580}
9581
b084df0b
L
9582#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9583static int
8dcea932 9584elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
9585{
9586 /* STT_GNU_IFUNC symbol must go through PLT. */
9587 if ((symbol_get_bfdsym (fr_symbol)->flags
9588 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9589 return 0;
9590
9591 if (!S_IS_EXTERNAL (fr_symbol))
9592 /* Symbol may be weak or local. */
9593 return !S_IS_WEAK (fr_symbol);
9594
8dcea932
L
9595 /* Global symbols with non-default visibility can't be preempted. */
9596 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9597 return 1;
9598
9599 if (fr_var != NO_RELOC)
9600 switch ((enum bfd_reloc_code_real) fr_var)
9601 {
9602 case BFD_RELOC_386_PLT32:
9603 case BFD_RELOC_X86_64_PLT32:
33eaf5de 9604 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
9605 return 0;
9606 default:
9607 abort ();
9608 }
9609
b084df0b
L
9610 /* Global symbols with default visibility in a shared library may be
9611 preempted by another definition. */
8dcea932 9612 return !shared;
b084df0b
L
9613}
9614#endif
9615
ee7fcc42
AM
9616/* md_estimate_size_before_relax()
9617
9618 Called just before relax() for rs_machine_dependent frags. The x86
9619 assembler uses these frags to handle variable size jump
9620 instructions.
9621
9622 Any symbol that is now undefined will not become defined.
9623 Return the correct fr_subtype in the frag.
9624 Return the initial "guess for variable size of frag" to caller.
9625 The guess is actually the growth beyond the fixed part. Whatever
9626 we do to grow the fixed or variable part contributes to our
9627 returned value. */
9628
252b5132 9629int
7016a5d5 9630md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 9631{
252b5132 9632 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
9633 check for un-relaxable symbols. On an ELF system, we can't relax
9634 an externally visible symbol, because it may be overridden by a
9635 shared library. */
9636 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 9637#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9638 || (IS_ELF
8dcea932
L
9639 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9640 fragP->fr_var))
fbeb56a4
DK
9641#endif
9642#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 9643 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 9644 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
9645#endif
9646 )
252b5132 9647 {
b98ef147
AM
9648 /* Symbol is undefined in this segment, or we need to keep a
9649 reloc so that weak symbols can be overridden. */
9650 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 9651 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
9652 unsigned char *opcode;
9653 int old_fr_fix;
f6af82bd 9654
ee7fcc42 9655 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 9656 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 9657 else if (size == 2)
f6af82bd 9658 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
9659#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9660 else if (need_plt32_p (fragP->fr_symbol))
9661 reloc_type = BFD_RELOC_X86_64_PLT32;
9662#endif
f6af82bd
AM
9663 else
9664 reloc_type = BFD_RELOC_32_PCREL;
252b5132 9665
ee7fcc42
AM
9666 old_fr_fix = fragP->fr_fix;
9667 opcode = (unsigned char *) fragP->fr_opcode;
9668
fddf5b5b 9669 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 9670 {
fddf5b5b
AM
9671 case UNCOND_JUMP:
9672 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 9673 opcode[0] = 0xe9;
252b5132 9674 fragP->fr_fix += size;
062cd5e7
AS
9675 fix_new (fragP, old_fr_fix, size,
9676 fragP->fr_symbol,
9677 fragP->fr_offset, 1,
9678 reloc_type);
252b5132
RH
9679 break;
9680
fddf5b5b 9681 case COND_JUMP86:
412167cb
AM
9682 if (size == 2
9683 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
9684 {
9685 /* Negate the condition, and branch past an
9686 unconditional jump. */
9687 opcode[0] ^= 1;
9688 opcode[1] = 3;
9689 /* Insert an unconditional jump. */
9690 opcode[2] = 0xe9;
9691 /* We added two extra opcode bytes, and have a two byte
9692 offset. */
9693 fragP->fr_fix += 2 + 2;
062cd5e7
AS
9694 fix_new (fragP, old_fr_fix + 2, 2,
9695 fragP->fr_symbol,
9696 fragP->fr_offset, 1,
9697 reloc_type);
fddf5b5b
AM
9698 break;
9699 }
9700 /* Fall through. */
9701
9702 case COND_JUMP:
412167cb
AM
9703 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9704 {
3e02c1cc
AM
9705 fixS *fixP;
9706
412167cb 9707 fragP->fr_fix += 1;
3e02c1cc
AM
9708 fixP = fix_new (fragP, old_fr_fix, 1,
9709 fragP->fr_symbol,
9710 fragP->fr_offset, 1,
9711 BFD_RELOC_8_PCREL);
9712 fixP->fx_signed = 1;
412167cb
AM
9713 break;
9714 }
93c2a809 9715
24eab124 9716 /* This changes the byte-displacement jump 0x7N
fddf5b5b 9717 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 9718 opcode[1] = opcode[0] + 0x10;
f6af82bd 9719 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
9720 /* We've added an opcode byte. */
9721 fragP->fr_fix += 1 + size;
062cd5e7
AS
9722 fix_new (fragP, old_fr_fix + 1, size,
9723 fragP->fr_symbol,
9724 fragP->fr_offset, 1,
9725 reloc_type);
252b5132 9726 break;
fddf5b5b
AM
9727
9728 default:
9729 BAD_CASE (fragP->fr_subtype);
9730 break;
252b5132
RH
9731 }
9732 frag_wane (fragP);
ee7fcc42 9733 return fragP->fr_fix - old_fr_fix;
252b5132 9734 }
93c2a809 9735
93c2a809
AM
9736 /* Guess size depending on current relax state. Initially the relax
9737 state will correspond to a short jump and we return 1, because
9738 the variable part of the frag (the branch offset) is one byte
9739 long. However, we can relax a section more than once and in that
9740 case we must either set fr_subtype back to the unrelaxed state,
9741 or return the value for the appropriate branch. */
9742 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
9743}
9744
47926f60
KH
9745/* Called after relax() is finished.
9746
9747 In: Address of frag.
9748 fr_type == rs_machine_dependent.
9749 fr_subtype is what the address relaxed to.
9750
9751 Out: Any fixSs and constants are set up.
9752 Caller will turn frag into a ".space 0". */
9753
252b5132 9754void
7016a5d5
TG
9755md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9756 fragS *fragP)
252b5132 9757{
29b0f896 9758 unsigned char *opcode;
252b5132 9759 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
9760 offsetT target_address;
9761 offsetT opcode_address;
252b5132 9762 unsigned int extension = 0;
847f7ad4 9763 offsetT displacement_from_opcode_start;
252b5132
RH
9764
9765 opcode = (unsigned char *) fragP->fr_opcode;
9766
47926f60 9767 /* Address we want to reach in file space. */
252b5132 9768 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 9769
47926f60 9770 /* Address opcode resides at in file space. */
252b5132
RH
9771 opcode_address = fragP->fr_address + fragP->fr_fix;
9772
47926f60 9773 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
9774 displacement_from_opcode_start = target_address - opcode_address;
9775
fddf5b5b 9776 if ((fragP->fr_subtype & BIG) == 0)
252b5132 9777 {
47926f60
KH
9778 /* Don't have to change opcode. */
9779 extension = 1; /* 1 opcode + 1 displacement */
252b5132 9780 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
9781 }
9782 else
9783 {
9784 if (no_cond_jump_promotion
9785 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
9786 as_warn_where (fragP->fr_file, fragP->fr_line,
9787 _("long jump required"));
252b5132 9788
fddf5b5b
AM
9789 switch (fragP->fr_subtype)
9790 {
9791 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9792 extension = 4; /* 1 opcode + 4 displacement */
9793 opcode[0] = 0xe9;
9794 where_to_put_displacement = &opcode[1];
9795 break;
252b5132 9796
fddf5b5b
AM
9797 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9798 extension = 2; /* 1 opcode + 2 displacement */
9799 opcode[0] = 0xe9;
9800 where_to_put_displacement = &opcode[1];
9801 break;
252b5132 9802
fddf5b5b
AM
9803 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9804 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9805 extension = 5; /* 2 opcode + 4 displacement */
9806 opcode[1] = opcode[0] + 0x10;
9807 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9808 where_to_put_displacement = &opcode[2];
9809 break;
252b5132 9810
fddf5b5b
AM
9811 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9812 extension = 3; /* 2 opcode + 2 displacement */
9813 opcode[1] = opcode[0] + 0x10;
9814 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9815 where_to_put_displacement = &opcode[2];
9816 break;
252b5132 9817
fddf5b5b
AM
9818 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9819 extension = 4;
9820 opcode[0] ^= 1;
9821 opcode[1] = 3;
9822 opcode[2] = 0xe9;
9823 where_to_put_displacement = &opcode[3];
9824 break;
9825
9826 default:
9827 BAD_CASE (fragP->fr_subtype);
9828 break;
9829 }
252b5132 9830 }
fddf5b5b 9831
7b81dfbb
AJ
9832 /* If size if less then four we are sure that the operand fits,
9833 but if it's 4, then it could be that the displacement is larger
9834 then -/+ 2GB. */
9835 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9836 && object_64bit
9837 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
9838 + ((addressT) 1 << 31))
9839 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
9840 {
9841 as_bad_where (fragP->fr_file, fragP->fr_line,
9842 _("jump target out of range"));
9843 /* Make us emit 0. */
9844 displacement_from_opcode_start = extension;
9845 }
47926f60 9846 /* Now put displacement after opcode. */
252b5132
RH
9847 md_number_to_chars ((char *) where_to_put_displacement,
9848 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 9849 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
9850 fragP->fr_fix += extension;
9851}
9852\f
7016a5d5 9853/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
9854 by our caller that we have all the info we need to fix it up.
9855
7016a5d5
TG
9856 Parameter valP is the pointer to the value of the bits.
9857
252b5132
RH
9858 On the 386, immediates, displacements, and data pointers are all in
9859 the same (little-endian) format, so we don't need to care about which
9860 we are handling. */
9861
94f592af 9862void
7016a5d5 9863md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 9864{
94f592af 9865 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 9866 valueT value = *valP;
252b5132 9867
f86103b7 9868#if !defined (TE_Mach)
93382f6d
AM
9869 if (fixP->fx_pcrel)
9870 {
9871 switch (fixP->fx_r_type)
9872 {
5865bb77
ILT
9873 default:
9874 break;
9875
d6ab8113
JB
9876 case BFD_RELOC_64:
9877 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9878 break;
93382f6d 9879 case BFD_RELOC_32:
ae8887b5 9880 case BFD_RELOC_X86_64_32S:
93382f6d
AM
9881 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9882 break;
9883 case BFD_RELOC_16:
9884 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9885 break;
9886 case BFD_RELOC_8:
9887 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9888 break;
9889 }
9890 }
252b5132 9891
a161fe53 9892 if (fixP->fx_addsy != NULL
31312f95 9893 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 9894 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 9895 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 9896 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 9897 && !use_rela_relocations)
252b5132 9898 {
31312f95
AM
9899 /* This is a hack. There should be a better way to handle this.
9900 This covers for the fact that bfd_install_relocation will
9901 subtract the current location (for partial_inplace, PC relative
9902 relocations); see more below. */
252b5132 9903#ifndef OBJ_AOUT
718ddfc0 9904 if (IS_ELF
252b5132
RH
9905#ifdef TE_PE
9906 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9907#endif
9908 )
9909 value += fixP->fx_where + fixP->fx_frag->fr_address;
9910#endif
9911#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9912 if (IS_ELF)
252b5132 9913 {
6539b54b 9914 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 9915
6539b54b 9916 if ((sym_seg == seg
2f66722d 9917 || (symbol_section_p (fixP->fx_addsy)
6539b54b 9918 && sym_seg != absolute_section))
af65af87 9919 && !generic_force_reloc (fixP))
2f66722d
AM
9920 {
9921 /* Yes, we add the values in twice. This is because
6539b54b
AM
9922 bfd_install_relocation subtracts them out again. I think
9923 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
9924 it. FIXME. */
9925 value += fixP->fx_where + fixP->fx_frag->fr_address;
9926 }
252b5132
RH
9927 }
9928#endif
9929#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
9930 /* For some reason, the PE format does not store a
9931 section address offset for a PC relative symbol. */
9932 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 9933 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
9934 value += md_pcrel_from (fixP);
9935#endif
9936 }
fbeb56a4 9937#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
9938 if (fixP->fx_addsy != NULL
9939 && S_IS_WEAK (fixP->fx_addsy)
9940 /* PR 16858: Do not modify weak function references. */
9941 && ! fixP->fx_pcrel)
fbeb56a4 9942 {
296a8689
NC
9943#if !defined (TE_PEP)
9944 /* For x86 PE weak function symbols are neither PC-relative
9945 nor do they set S_IS_FUNCTION. So the only reliable way
9946 to detect them is to check the flags of their containing
9947 section. */
9948 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9949 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9950 ;
9951 else
9952#endif
fbeb56a4
DK
9953 value -= S_GET_VALUE (fixP->fx_addsy);
9954 }
9955#endif
252b5132
RH
9956
9957 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 9958 and we must not disappoint it. */
252b5132 9959#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9960 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
9961 switch (fixP->fx_r_type)
9962 {
9963 case BFD_RELOC_386_PLT32:
3e73aa7c 9964 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
9965 /* Make the jump instruction point to the address of the operand. At
9966 runtime we merely add the offset to the actual PLT entry. */
9967 value = -4;
9968 break;
31312f95 9969
13ae64f3
JJ
9970 case BFD_RELOC_386_TLS_GD:
9971 case BFD_RELOC_386_TLS_LDM:
13ae64f3 9972 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
9973 case BFD_RELOC_386_TLS_IE:
9974 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 9975 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
9976 case BFD_RELOC_X86_64_TLSGD:
9977 case BFD_RELOC_X86_64_TLSLD:
9978 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 9979 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
9980 value = 0; /* Fully resolved at runtime. No addend. */
9981 /* Fallthrough */
9982 case BFD_RELOC_386_TLS_LE:
9983 case BFD_RELOC_386_TLS_LDO_32:
9984 case BFD_RELOC_386_TLS_LE_32:
9985 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 9986 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 9987 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 9988 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
9989 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9990 break;
9991
67a4f2b7
AO
9992 case BFD_RELOC_386_TLS_DESC_CALL:
9993 case BFD_RELOC_X86_64_TLSDESC_CALL:
9994 value = 0; /* Fully resolved at runtime. No addend. */
9995 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9996 fixP->fx_done = 0;
9997 return;
9998
47926f60
KH
9999 case BFD_RELOC_VTABLE_INHERIT:
10000 case BFD_RELOC_VTABLE_ENTRY:
10001 fixP->fx_done = 0;
94f592af 10002 return;
47926f60
KH
10003
10004 default:
10005 break;
10006 }
10007#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 10008 *valP = value;
f86103b7 10009#endif /* !defined (TE_Mach) */
3e73aa7c 10010
3e73aa7c 10011 /* Are we finished with this relocation now? */
c6682705 10012 if (fixP->fx_addsy == NULL)
3e73aa7c 10013 fixP->fx_done = 1;
fbeb56a4
DK
10014#if defined (OBJ_COFF) && defined (TE_PE)
10015 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10016 {
10017 fixP->fx_done = 0;
10018 /* Remember value for tc_gen_reloc. */
10019 fixP->fx_addnumber = value;
10020 /* Clear out the frag for now. */
10021 value = 0;
10022 }
10023#endif
3e73aa7c
JH
10024 else if (use_rela_relocations)
10025 {
10026 fixP->fx_no_overflow = 1;
062cd5e7
AS
10027 /* Remember value for tc_gen_reloc. */
10028 fixP->fx_addnumber = value;
3e73aa7c
JH
10029 value = 0;
10030 }
f86103b7 10031
94f592af 10032 md_number_to_chars (p, value, fixP->fx_size);
252b5132 10033}
252b5132 10034\f
6d4af3c2 10035const char *
499ac353 10036md_atof (int type, char *litP, int *sizeP)
252b5132 10037{
499ac353
NC
10038 /* This outputs the LITTLENUMs in REVERSE order;
10039 in accord with the bigendian 386. */
10040 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
10041}
10042\f
2d545b82 10043static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 10044
252b5132 10045static char *
e3bb37b5 10046output_invalid (int c)
252b5132 10047{
3882b010 10048 if (ISPRINT (c))
f9f21a03
L
10049 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10050 "'%c'", c);
252b5132 10051 else
f9f21a03 10052 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 10053 "(0x%x)", (unsigned char) c);
252b5132
RH
10054 return output_invalid_buf;
10055}
10056
af6bdddf 10057/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
10058
10059static const reg_entry *
4d1bb795 10060parse_real_register (char *reg_string, char **end_op)
252b5132 10061{
af6bdddf
AM
10062 char *s = reg_string;
10063 char *p;
252b5132
RH
10064 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10065 const reg_entry *r;
10066
10067 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10068 if (*s == REGISTER_PREFIX)
10069 ++s;
10070
10071 if (is_space_char (*s))
10072 ++s;
10073
10074 p = reg_name_given;
af6bdddf 10075 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
10076 {
10077 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
10078 return (const reg_entry *) NULL;
10079 s++;
252b5132
RH
10080 }
10081
6588847e
DN
10082 /* For naked regs, make sure that we are not dealing with an identifier.
10083 This prevents confusing an identifier like `eax_var' with register
10084 `eax'. */
10085 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10086 return (const reg_entry *) NULL;
10087
af6bdddf 10088 *end_op = s;
252b5132
RH
10089
10090 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10091
5f47d35b 10092 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 10093 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 10094 {
5f47d35b
AM
10095 if (is_space_char (*s))
10096 ++s;
10097 if (*s == '(')
10098 {
af6bdddf 10099 ++s;
5f47d35b
AM
10100 if (is_space_char (*s))
10101 ++s;
10102 if (*s >= '0' && *s <= '7')
10103 {
db557034 10104 int fpr = *s - '0';
af6bdddf 10105 ++s;
5f47d35b
AM
10106 if (is_space_char (*s))
10107 ++s;
10108 if (*s == ')')
10109 {
10110 *end_op = s + 1;
1e9cc1c2 10111 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
10112 know (r);
10113 return r + fpr;
5f47d35b 10114 }
5f47d35b 10115 }
47926f60 10116 /* We have "%st(" then garbage. */
5f47d35b
AM
10117 return (const reg_entry *) NULL;
10118 }
10119 }
10120
a60de03c
JB
10121 if (r == NULL || allow_pseudo_reg)
10122 return r;
10123
0dfbf9d7 10124 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
10125 return (const reg_entry *) NULL;
10126
dc821c5f 10127 if ((r->reg_type.bitfield.dword
192dc9c6
JB
10128 || r->reg_type.bitfield.sreg3
10129 || r->reg_type.bitfield.control
10130 || r->reg_type.bitfield.debug
10131 || r->reg_type.bitfield.test)
10132 && !cpu_arch_flags.bitfield.cpui386)
10133 return (const reg_entry *) NULL;
10134
ca0d63fe 10135 if (r->reg_type.bitfield.tbyte
309d3373
JB
10136 && !cpu_arch_flags.bitfield.cpu8087
10137 && !cpu_arch_flags.bitfield.cpu287
10138 && !cpu_arch_flags.bitfield.cpu387)
10139 return (const reg_entry *) NULL;
10140
1848e567 10141 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpuregmmx)
192dc9c6
JB
10142 return (const reg_entry *) NULL;
10143
1b54b8d7 10144 if (r->reg_type.bitfield.xmmword && !cpu_arch_flags.bitfield.cpuregxmm)
192dc9c6
JB
10145 return (const reg_entry *) NULL;
10146
1b54b8d7 10147 if (r->reg_type.bitfield.ymmword && !cpu_arch_flags.bitfield.cpuregymm)
40f12533
L
10148 return (const reg_entry *) NULL;
10149
1b54b8d7 10150 if (r->reg_type.bitfield.zmmword && !cpu_arch_flags.bitfield.cpuregzmm)
1848e567
L
10151 return (const reg_entry *) NULL;
10152
10153 if (r->reg_type.bitfield.regmask
10154 && !cpu_arch_flags.bitfield.cpuregmask)
43234a1e
L
10155 return (const reg_entry *) NULL;
10156
db51cc60 10157 /* Don't allow fake index register unless allow_index_reg isn't 0. */
a60de03c 10158 if (!allow_index_reg
db51cc60
L
10159 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
10160 return (const reg_entry *) NULL;
10161
43234a1e
L
10162 /* Upper 16 vector register is only available with VREX in 64bit
10163 mode. */
10164 if ((r->reg_flags & RegVRex))
10165 {
86fa6981
L
10166 if (i.vec_encoding == vex_encoding_default)
10167 i.vec_encoding = vex_encoding_evex;
10168
43234a1e 10169 if (!cpu_arch_flags.bitfield.cpuvrex
86fa6981 10170 || i.vec_encoding != vex_encoding_evex
43234a1e
L
10171 || flag_code != CODE_64BIT)
10172 return (const reg_entry *) NULL;
43234a1e
L
10173 }
10174
a60de03c 10175 if (((r->reg_flags & (RegRex64 | RegRex))
dc821c5f 10176 || r->reg_type.bitfield.qword)
40fb9820 10177 && (!cpu_arch_flags.bitfield.cpulm
0dfbf9d7 10178 || !operand_type_equal (&r->reg_type, &control))
1ae00879 10179 && flag_code != CODE_64BIT)
20f0a1fc 10180 return (const reg_entry *) NULL;
1ae00879 10181
b7240065
JB
10182 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10183 return (const reg_entry *) NULL;
10184
252b5132
RH
10185 return r;
10186}
4d1bb795
JB
10187
10188/* REG_STRING starts *before* REGISTER_PREFIX. */
10189
10190static const reg_entry *
10191parse_register (char *reg_string, char **end_op)
10192{
10193 const reg_entry *r;
10194
10195 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10196 r = parse_real_register (reg_string, end_op);
10197 else
10198 r = NULL;
10199 if (!r)
10200 {
10201 char *save = input_line_pointer;
10202 char c;
10203 symbolS *symbolP;
10204
10205 input_line_pointer = reg_string;
d02603dc 10206 c = get_symbol_name (&reg_string);
4d1bb795
JB
10207 symbolP = symbol_find (reg_string);
10208 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10209 {
10210 const expressionS *e = symbol_get_value_expression (symbolP);
10211
0398aac5 10212 know (e->X_op == O_register);
4eed87de 10213 know (e->X_add_number >= 0
c3fe08fa 10214 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 10215 r = i386_regtab + e->X_add_number;
d3bb6b49 10216 if ((r->reg_flags & RegVRex))
86fa6981 10217 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
10218 *end_op = input_line_pointer;
10219 }
10220 *input_line_pointer = c;
10221 input_line_pointer = save;
10222 }
10223 return r;
10224}
10225
10226int
10227i386_parse_name (char *name, expressionS *e, char *nextcharP)
10228{
10229 const reg_entry *r;
10230 char *end = input_line_pointer;
10231
10232 *end = *nextcharP;
10233 r = parse_register (name, &input_line_pointer);
10234 if (r && end <= input_line_pointer)
10235 {
10236 *nextcharP = *input_line_pointer;
10237 *input_line_pointer = 0;
10238 e->X_op = O_register;
10239 e->X_add_number = r - i386_regtab;
10240 return 1;
10241 }
10242 input_line_pointer = end;
10243 *end = 0;
ee86248c 10244 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
10245}
10246
10247void
10248md_operand (expressionS *e)
10249{
ee86248c
JB
10250 char *end;
10251 const reg_entry *r;
4d1bb795 10252
ee86248c
JB
10253 switch (*input_line_pointer)
10254 {
10255 case REGISTER_PREFIX:
10256 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
10257 if (r)
10258 {
10259 e->X_op = O_register;
10260 e->X_add_number = r - i386_regtab;
10261 input_line_pointer = end;
10262 }
ee86248c
JB
10263 break;
10264
10265 case '[':
9c2799c2 10266 gas_assert (intel_syntax);
ee86248c
JB
10267 end = input_line_pointer++;
10268 expression (e);
10269 if (*input_line_pointer == ']')
10270 {
10271 ++input_line_pointer;
10272 e->X_op_symbol = make_expr_symbol (e);
10273 e->X_add_symbol = NULL;
10274 e->X_add_number = 0;
10275 e->X_op = O_index;
10276 }
10277 else
10278 {
10279 e->X_op = O_absent;
10280 input_line_pointer = end;
10281 }
10282 break;
4d1bb795
JB
10283 }
10284}
10285
252b5132 10286\f
4cc782b5 10287#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 10288const char *md_shortopts = "kVQ:sqnO::";
252b5132 10289#else
b6f8c7c4 10290const char *md_shortopts = "qnO::";
252b5132 10291#endif
6e0b89ee 10292
3e73aa7c 10293#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
10294#define OPTION_64 (OPTION_MD_BASE + 1)
10295#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
10296#define OPTION_MARCH (OPTION_MD_BASE + 3)
10297#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
10298#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10299#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10300#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10301#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
10302#define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
c0f3af97 10303#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 10304#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
10305#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10306#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10307#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 10308#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
10309#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10310#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 10311#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 10312#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 10313#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 10314#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
10315#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10316#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 10317#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
0cb4071e 10318#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 25)
b3b91714 10319
99ad8390
NC
10320struct option md_longopts[] =
10321{
3e73aa7c 10322 {"32", no_argument, NULL, OPTION_32},
321098a5 10323#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10324 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 10325 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
10326#endif
10327#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 10328 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 10329 {"mshared", no_argument, NULL, OPTION_MSHARED},
6e0b89ee 10330#endif
b3b91714 10331 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
10332 {"march", required_argument, NULL, OPTION_MARCH},
10333 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
10334 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10335 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10336 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10337 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
10338 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
c0f3af97 10339 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 10340 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 10341 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 10342 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
7e8b059b 10343 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
10344 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10345 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
10346# if defined (TE_PE) || defined (TE_PEP)
10347 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10348#endif
d1982f93 10349 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 10350 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 10351 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 10352 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
10353 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10354 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
10355 {NULL, no_argument, NULL, 0}
10356};
10357size_t md_longopts_size = sizeof (md_longopts);
10358
10359int
17b9d67d 10360md_parse_option (int c, const char *arg)
252b5132 10361{
91d6fa6a 10362 unsigned int j;
293f5f65 10363 char *arch, *next, *saved;
9103f4f4 10364
252b5132
RH
10365 switch (c)
10366 {
12b55ccc
L
10367 case 'n':
10368 optimize_align_code = 0;
10369 break;
10370
a38cf1db
AM
10371 case 'q':
10372 quiet_warnings = 1;
252b5132
RH
10373 break;
10374
10375#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
10376 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10377 should be emitted or not. FIXME: Not implemented. */
10378 case 'Q':
252b5132
RH
10379 break;
10380
10381 /* -V: SVR4 argument to print version ID. */
10382 case 'V':
10383 print_version_id ();
10384 break;
10385
a38cf1db
AM
10386 /* -k: Ignore for FreeBSD compatibility. */
10387 case 'k':
252b5132 10388 break;
4cc782b5
ILT
10389
10390 case 's':
10391 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 10392 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 10393 break;
8dcea932
L
10394
10395 case OPTION_MSHARED:
10396 shared = 1;
10397 break;
99ad8390 10398#endif
321098a5 10399#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10400 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
10401 case OPTION_64:
10402 {
10403 const char **list, **l;
10404
3e73aa7c
JH
10405 list = bfd_target_list ();
10406 for (l = list; *l != NULL; l++)
8620418b 10407 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
10408 || strcmp (*l, "coff-x86-64") == 0
10409 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
10410 || strcmp (*l, "pei-x86-64") == 0
10411 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
10412 {
10413 default_arch = "x86_64";
10414 break;
10415 }
3e73aa7c 10416 if (*l == NULL)
2b5d6a91 10417 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
10418 free (list);
10419 }
10420 break;
10421#endif
252b5132 10422
351f65ca 10423#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 10424 case OPTION_X32:
351f65ca
L
10425 if (IS_ELF)
10426 {
10427 const char **list, **l;
10428
10429 list = bfd_target_list ();
10430 for (l = list; *l != NULL; l++)
10431 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10432 {
10433 default_arch = "x86_64:32";
10434 break;
10435 }
10436 if (*l == NULL)
2b5d6a91 10437 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
10438 free (list);
10439 }
10440 else
10441 as_fatal (_("32bit x86_64 is only supported for ELF"));
10442 break;
10443#endif
10444
6e0b89ee
AM
10445 case OPTION_32:
10446 default_arch = "i386";
10447 break;
10448
b3b91714
AM
10449 case OPTION_DIVIDE:
10450#ifdef SVR4_COMMENT_CHARS
10451 {
10452 char *n, *t;
10453 const char *s;
10454
add39d23 10455 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
10456 t = n;
10457 for (s = i386_comment_chars; *s != '\0'; s++)
10458 if (*s != '/')
10459 *t++ = *s;
10460 *t = '\0';
10461 i386_comment_chars = n;
10462 }
10463#endif
10464 break;
10465
9103f4f4 10466 case OPTION_MARCH:
293f5f65
L
10467 saved = xstrdup (arg);
10468 arch = saved;
10469 /* Allow -march=+nosse. */
10470 if (*arch == '+')
10471 arch++;
6305a203 10472 do
9103f4f4 10473 {
6305a203 10474 if (*arch == '.')
2b5d6a91 10475 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
10476 next = strchr (arch, '+');
10477 if (next)
10478 *next++ = '\0';
91d6fa6a 10479 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 10480 {
91d6fa6a 10481 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 10482 {
6305a203 10483 /* Processor. */
1ded5609
JB
10484 if (! cpu_arch[j].flags.bitfield.cpui386)
10485 continue;
10486
91d6fa6a 10487 cpu_arch_name = cpu_arch[j].name;
6305a203 10488 cpu_sub_arch_name = NULL;
91d6fa6a
NC
10489 cpu_arch_flags = cpu_arch[j].flags;
10490 cpu_arch_isa = cpu_arch[j].type;
10491 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
10492 if (!cpu_arch_tune_set)
10493 {
10494 cpu_arch_tune = cpu_arch_isa;
10495 cpu_arch_tune_flags = cpu_arch_isa_flags;
10496 }
10497 break;
10498 }
91d6fa6a
NC
10499 else if (*cpu_arch [j].name == '.'
10500 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 10501 {
33eaf5de 10502 /* ISA extension. */
6305a203 10503 i386_cpu_flags flags;
309d3373 10504
293f5f65
L
10505 flags = cpu_flags_or (cpu_arch_flags,
10506 cpu_arch[j].flags);
81486035 10507
5b64d091 10508 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
10509 {
10510 if (cpu_sub_arch_name)
10511 {
10512 char *name = cpu_sub_arch_name;
10513 cpu_sub_arch_name = concat (name,
91d6fa6a 10514 cpu_arch[j].name,
1bf57e9f 10515 (const char *) NULL);
6305a203
L
10516 free (name);
10517 }
10518 else
91d6fa6a 10519 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 10520 cpu_arch_flags = flags;
a586129e 10521 cpu_arch_isa_flags = flags;
6305a203
L
10522 }
10523 break;
ccc9c027 10524 }
9103f4f4 10525 }
6305a203 10526
293f5f65
L
10527 if (j >= ARRAY_SIZE (cpu_arch))
10528 {
33eaf5de 10529 /* Disable an ISA extension. */
293f5f65
L
10530 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10531 if (strcmp (arch, cpu_noarch [j].name) == 0)
10532 {
10533 i386_cpu_flags flags;
10534
10535 flags = cpu_flags_and_not (cpu_arch_flags,
10536 cpu_noarch[j].flags);
10537 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10538 {
10539 if (cpu_sub_arch_name)
10540 {
10541 char *name = cpu_sub_arch_name;
10542 cpu_sub_arch_name = concat (arch,
10543 (const char *) NULL);
10544 free (name);
10545 }
10546 else
10547 cpu_sub_arch_name = xstrdup (arch);
10548 cpu_arch_flags = flags;
10549 cpu_arch_isa_flags = flags;
10550 }
10551 break;
10552 }
10553
10554 if (j >= ARRAY_SIZE (cpu_noarch))
10555 j = ARRAY_SIZE (cpu_arch);
10556 }
10557
91d6fa6a 10558 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 10559 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
10560
10561 arch = next;
9103f4f4 10562 }
293f5f65
L
10563 while (next != NULL);
10564 free (saved);
9103f4f4
L
10565 break;
10566
10567 case OPTION_MTUNE:
10568 if (*arg == '.')
2b5d6a91 10569 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 10570 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 10571 {
91d6fa6a 10572 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 10573 {
ccc9c027 10574 cpu_arch_tune_set = 1;
91d6fa6a
NC
10575 cpu_arch_tune = cpu_arch [j].type;
10576 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
10577 break;
10578 }
10579 }
91d6fa6a 10580 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 10581 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
10582 break;
10583
1efbbeb4
L
10584 case OPTION_MMNEMONIC:
10585 if (strcasecmp (arg, "att") == 0)
10586 intel_mnemonic = 0;
10587 else if (strcasecmp (arg, "intel") == 0)
10588 intel_mnemonic = 1;
10589 else
2b5d6a91 10590 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
10591 break;
10592
10593 case OPTION_MSYNTAX:
10594 if (strcasecmp (arg, "att") == 0)
10595 intel_syntax = 0;
10596 else if (strcasecmp (arg, "intel") == 0)
10597 intel_syntax = 1;
10598 else
2b5d6a91 10599 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
10600 break;
10601
10602 case OPTION_MINDEX_REG:
10603 allow_index_reg = 1;
10604 break;
10605
10606 case OPTION_MNAKED_REG:
10607 allow_naked_reg = 1;
10608 break;
10609
10610 case OPTION_MOLD_GCC:
10611 old_gcc = 1;
1efbbeb4
L
10612 break;
10613
c0f3af97
L
10614 case OPTION_MSSE2AVX:
10615 sse2avx = 1;
10616 break;
10617
daf50ae7
L
10618 case OPTION_MSSE_CHECK:
10619 if (strcasecmp (arg, "error") == 0)
7bab8ab5 10620 sse_check = check_error;
daf50ae7 10621 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 10622 sse_check = check_warning;
daf50ae7 10623 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 10624 sse_check = check_none;
daf50ae7 10625 else
2b5d6a91 10626 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
10627 break;
10628
7bab8ab5
JB
10629 case OPTION_MOPERAND_CHECK:
10630 if (strcasecmp (arg, "error") == 0)
10631 operand_check = check_error;
10632 else if (strcasecmp (arg, "warning") == 0)
10633 operand_check = check_warning;
10634 else if (strcasecmp (arg, "none") == 0)
10635 operand_check = check_none;
10636 else
10637 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10638 break;
10639
539f890d
L
10640 case OPTION_MAVXSCALAR:
10641 if (strcasecmp (arg, "128") == 0)
10642 avxscalar = vex128;
10643 else if (strcasecmp (arg, "256") == 0)
10644 avxscalar = vex256;
10645 else
2b5d6a91 10646 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
10647 break;
10648
7e8b059b
L
10649 case OPTION_MADD_BND_PREFIX:
10650 add_bnd_prefix = 1;
10651 break;
10652
43234a1e
L
10653 case OPTION_MEVEXLIG:
10654 if (strcmp (arg, "128") == 0)
10655 evexlig = evexl128;
10656 else if (strcmp (arg, "256") == 0)
10657 evexlig = evexl256;
10658 else if (strcmp (arg, "512") == 0)
10659 evexlig = evexl512;
10660 else
10661 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10662 break;
10663
d3d3c6db
IT
10664 case OPTION_MEVEXRCIG:
10665 if (strcmp (arg, "rne") == 0)
10666 evexrcig = rne;
10667 else if (strcmp (arg, "rd") == 0)
10668 evexrcig = rd;
10669 else if (strcmp (arg, "ru") == 0)
10670 evexrcig = ru;
10671 else if (strcmp (arg, "rz") == 0)
10672 evexrcig = rz;
10673 else
10674 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10675 break;
10676
43234a1e
L
10677 case OPTION_MEVEXWIG:
10678 if (strcmp (arg, "0") == 0)
10679 evexwig = evexw0;
10680 else if (strcmp (arg, "1") == 0)
10681 evexwig = evexw1;
10682 else
10683 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10684 break;
10685
167ad85b
TG
10686# if defined (TE_PE) || defined (TE_PEP)
10687 case OPTION_MBIG_OBJ:
10688 use_big_obj = 1;
10689 break;
10690#endif
10691
d1982f93 10692 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
10693 if (strcasecmp (arg, "yes") == 0)
10694 omit_lock_prefix = 1;
10695 else if (strcasecmp (arg, "no") == 0)
10696 omit_lock_prefix = 0;
10697 else
10698 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10699 break;
10700
e4e00185
AS
10701 case OPTION_MFENCE_AS_LOCK_ADD:
10702 if (strcasecmp (arg, "yes") == 0)
10703 avoid_fence = 1;
10704 else if (strcasecmp (arg, "no") == 0)
10705 avoid_fence = 0;
10706 else
10707 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10708 break;
10709
0cb4071e
L
10710 case OPTION_MRELAX_RELOCATIONS:
10711 if (strcasecmp (arg, "yes") == 0)
10712 generate_relax_relocations = 1;
10713 else if (strcasecmp (arg, "no") == 0)
10714 generate_relax_relocations = 0;
10715 else
10716 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10717 break;
10718
5db04b09 10719 case OPTION_MAMD64:
e89c5eaa 10720 intel64 = 0;
5db04b09
L
10721 break;
10722
10723 case OPTION_MINTEL64:
e89c5eaa 10724 intel64 = 1;
5db04b09
L
10725 break;
10726
b6f8c7c4
L
10727 case 'O':
10728 if (arg == NULL)
10729 {
10730 optimize = 1;
10731 /* Turn off -Os. */
10732 optimize_for_space = 0;
10733 }
10734 else if (*arg == 's')
10735 {
10736 optimize_for_space = 1;
10737 /* Turn on all encoding optimizations. */
10738 optimize = -1;
10739 }
10740 else
10741 {
10742 optimize = atoi (arg);
10743 /* Turn off -Os. */
10744 optimize_for_space = 0;
10745 }
10746 break;
10747
252b5132
RH
10748 default:
10749 return 0;
10750 }
10751 return 1;
10752}
10753
8a2c8fef
L
10754#define MESSAGE_TEMPLATE \
10755" "
10756
293f5f65
L
10757static char *
10758output_message (FILE *stream, char *p, char *message, char *start,
10759 int *left_p, const char *name, int len)
10760{
10761 int size = sizeof (MESSAGE_TEMPLATE);
10762 int left = *left_p;
10763
10764 /* Reserve 2 spaces for ", " or ",\0" */
10765 left -= len + 2;
10766
10767 /* Check if there is any room. */
10768 if (left >= 0)
10769 {
10770 if (p != start)
10771 {
10772 *p++ = ',';
10773 *p++ = ' ';
10774 }
10775 p = mempcpy (p, name, len);
10776 }
10777 else
10778 {
10779 /* Output the current message now and start a new one. */
10780 *p++ = ',';
10781 *p = '\0';
10782 fprintf (stream, "%s\n", message);
10783 p = start;
10784 left = size - (start - message) - len - 2;
10785
10786 gas_assert (left >= 0);
10787
10788 p = mempcpy (p, name, len);
10789 }
10790
10791 *left_p = left;
10792 return p;
10793}
10794
8a2c8fef 10795static void
1ded5609 10796show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
10797{
10798 static char message[] = MESSAGE_TEMPLATE;
10799 char *start = message + 27;
10800 char *p;
10801 int size = sizeof (MESSAGE_TEMPLATE);
10802 int left;
10803 const char *name;
10804 int len;
10805 unsigned int j;
10806
10807 p = start;
10808 left = size - (start - message);
10809 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10810 {
10811 /* Should it be skipped? */
10812 if (cpu_arch [j].skip)
10813 continue;
10814
10815 name = cpu_arch [j].name;
10816 len = cpu_arch [j].len;
10817 if (*name == '.')
10818 {
10819 /* It is an extension. Skip if we aren't asked to show it. */
10820 if (ext)
10821 {
10822 name++;
10823 len--;
10824 }
10825 else
10826 continue;
10827 }
10828 else if (ext)
10829 {
10830 /* It is an processor. Skip if we show only extension. */
10831 continue;
10832 }
1ded5609
JB
10833 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10834 {
10835 /* It is an impossible processor - skip. */
10836 continue;
10837 }
8a2c8fef 10838
293f5f65 10839 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
10840 }
10841
293f5f65
L
10842 /* Display disabled extensions. */
10843 if (ext)
10844 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10845 {
10846 name = cpu_noarch [j].name;
10847 len = cpu_noarch [j].len;
10848 p = output_message (stream, p, message, start, &left, name,
10849 len);
10850 }
10851
8a2c8fef
L
10852 *p = '\0';
10853 fprintf (stream, "%s\n", message);
10854}
10855
252b5132 10856void
8a2c8fef 10857md_show_usage (FILE *stream)
252b5132 10858{
4cc782b5
ILT
10859#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10860 fprintf (stream, _("\
a38cf1db
AM
10861 -Q ignored\n\
10862 -V print assembler version number\n\
b3b91714
AM
10863 -k ignored\n"));
10864#endif
10865 fprintf (stream, _("\
12b55ccc 10866 -n Do not optimize code alignment\n\
b3b91714
AM
10867 -q quieten some warnings\n"));
10868#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10869 fprintf (stream, _("\
a38cf1db 10870 -s ignored\n"));
b3b91714 10871#endif
321098a5
L
10872#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10873 || defined (TE_PE) || defined (TE_PEP))
751d281c 10874 fprintf (stream, _("\
570561f7 10875 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 10876#endif
b3b91714
AM
10877#ifdef SVR4_COMMENT_CHARS
10878 fprintf (stream, _("\
10879 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
10880#else
10881 fprintf (stream, _("\
b3b91714 10882 --divide ignored\n"));
4cc782b5 10883#endif
9103f4f4 10884 fprintf (stream, _("\
6305a203 10885 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 10886 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 10887 show_arch (stream, 0, 1);
8a2c8fef
L
10888 fprintf (stream, _("\
10889 EXTENSION is combination of:\n"));
1ded5609 10890 show_arch (stream, 1, 0);
6305a203 10891 fprintf (stream, _("\
8a2c8fef 10892 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 10893 show_arch (stream, 0, 0);
ba104c83 10894 fprintf (stream, _("\
c0f3af97
L
10895 -msse2avx encode SSE instructions with VEX prefix\n"));
10896 fprintf (stream, _("\
daf50ae7
L
10897 -msse-check=[none|error|warning]\n\
10898 check SSE instructions\n"));
10899 fprintf (stream, _("\
7bab8ab5
JB
10900 -moperand-check=[none|error|warning]\n\
10901 check operand combinations for validity\n"));
10902 fprintf (stream, _("\
539f890d
L
10903 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10904 length\n"));
10905 fprintf (stream, _("\
43234a1e
L
10906 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10907 length\n"));
10908 fprintf (stream, _("\
10909 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10910 for EVEX.W bit ignored instructions\n"));
10911 fprintf (stream, _("\
d3d3c6db
IT
10912 -mevexrcig=[rne|rd|ru|rz]\n\
10913 encode EVEX instructions with specific EVEX.RC value\n\
10914 for SAE-only ignored instructions\n"));
10915 fprintf (stream, _("\
ba104c83
L
10916 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10917 fprintf (stream, _("\
10918 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10919 fprintf (stream, _("\
10920 -mindex-reg support pseudo index registers\n"));
10921 fprintf (stream, _("\
10922 -mnaked-reg don't require `%%' prefix for registers\n"));
10923 fprintf (stream, _("\
10924 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
7e8b059b
L
10925 fprintf (stream, _("\
10926 -madd-bnd-prefix add BND prefix for all valid branches\n"));
8dcea932
L
10927 fprintf (stream, _("\
10928 -mshared disable branch optimization for shared code\n"));
167ad85b
TG
10929# if defined (TE_PE) || defined (TE_PEP)
10930 fprintf (stream, _("\
10931 -mbig-obj generate big object files\n"));
10932#endif
d022bddd
IT
10933 fprintf (stream, _("\
10934 -momit-lock-prefix=[no|yes]\n\
10935 strip all lock prefixes\n"));
5db04b09 10936 fprintf (stream, _("\
e4e00185
AS
10937 -mfence-as-lock-add=[no|yes]\n\
10938 encode lfence, mfence and sfence as\n\
10939 lock addl $0x0, (%%{re}sp)\n"));
10940 fprintf (stream, _("\
0cb4071e
L
10941 -mrelax-relocations=[no|yes]\n\
10942 generate relax relocations\n"));
10943 fprintf (stream, _("\
5db04b09
L
10944 -mamd64 accept only AMD64 ISA\n"));
10945 fprintf (stream, _("\
10946 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
10947}
10948
3e73aa7c 10949#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 10950 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 10951 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
10952
10953/* Pick the target format to use. */
10954
47926f60 10955const char *
e3bb37b5 10956i386_target_format (void)
252b5132 10957{
351f65ca
L
10958 if (!strncmp (default_arch, "x86_64", 6))
10959 {
10960 update_code_flag (CODE_64BIT, 1);
10961 if (default_arch[6] == '\0')
7f56bc95 10962 x86_elf_abi = X86_64_ABI;
351f65ca 10963 else
7f56bc95 10964 x86_elf_abi = X86_64_X32_ABI;
351f65ca 10965 }
3e73aa7c 10966 else if (!strcmp (default_arch, "i386"))
78f12dd3 10967 update_code_flag (CODE_32BIT, 1);
5197d474
L
10968 else if (!strcmp (default_arch, "iamcu"))
10969 {
10970 update_code_flag (CODE_32BIT, 1);
10971 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
10972 {
10973 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
10974 cpu_arch_name = "iamcu";
10975 cpu_sub_arch_name = NULL;
10976 cpu_arch_flags = iamcu_flags;
10977 cpu_arch_isa = PROCESSOR_IAMCU;
10978 cpu_arch_isa_flags = iamcu_flags;
10979 if (!cpu_arch_tune_set)
10980 {
10981 cpu_arch_tune = cpu_arch_isa;
10982 cpu_arch_tune_flags = cpu_arch_isa_flags;
10983 }
10984 }
8d471ec1 10985 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
10986 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
10987 cpu_arch_name);
10988 }
3e73aa7c 10989 else
2b5d6a91 10990 as_fatal (_("unknown architecture"));
89507696
JB
10991
10992 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10993 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10994 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10995 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10996
252b5132
RH
10997 switch (OUTPUT_FLAVOR)
10998 {
9384f2ff 10999#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 11000 case bfd_target_aout_flavour:
47926f60 11001 return AOUT_TARGET_FORMAT;
4c63da97 11002#endif
9384f2ff
AM
11003#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11004# if defined (TE_PE) || defined (TE_PEP)
11005 case bfd_target_coff_flavour:
167ad85b
TG
11006 if (flag_code == CODE_64BIT)
11007 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11008 else
11009 return "pe-i386";
9384f2ff 11010# elif defined (TE_GO32)
0561d57c
JK
11011 case bfd_target_coff_flavour:
11012 return "coff-go32";
9384f2ff 11013# else
252b5132
RH
11014 case bfd_target_coff_flavour:
11015 return "coff-i386";
9384f2ff 11016# endif
4c63da97 11017#endif
3e73aa7c 11018#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 11019 case bfd_target_elf_flavour:
3e73aa7c 11020 {
351f65ca
L
11021 const char *format;
11022
11023 switch (x86_elf_abi)
4fa24527 11024 {
351f65ca
L
11025 default:
11026 format = ELF_TARGET_FORMAT;
11027 break;
7f56bc95 11028 case X86_64_ABI:
351f65ca 11029 use_rela_relocations = 1;
4fa24527 11030 object_64bit = 1;
351f65ca
L
11031 format = ELF_TARGET_FORMAT64;
11032 break;
7f56bc95 11033 case X86_64_X32_ABI:
4fa24527 11034 use_rela_relocations = 1;
351f65ca 11035 object_64bit = 1;
862be3fb 11036 disallow_64bit_reloc = 1;
351f65ca
L
11037 format = ELF_TARGET_FORMAT32;
11038 break;
4fa24527 11039 }
3632d14b 11040 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 11041 {
7f56bc95 11042 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
11043 as_fatal (_("Intel L1OM is 64bit only"));
11044 return ELF_TARGET_L1OM_FORMAT;
11045 }
b49f93f6 11046 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
11047 {
11048 if (x86_elf_abi != X86_64_ABI)
11049 as_fatal (_("Intel K1OM is 64bit only"));
11050 return ELF_TARGET_K1OM_FORMAT;
11051 }
81486035
L
11052 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11053 {
11054 if (x86_elf_abi != I386_ABI)
11055 as_fatal (_("Intel MCU is 32bit only"));
11056 return ELF_TARGET_IAMCU_FORMAT;
11057 }
8a9036a4 11058 else
351f65ca 11059 return format;
3e73aa7c 11060 }
e57f8c65
TG
11061#endif
11062#if defined (OBJ_MACH_O)
11063 case bfd_target_mach_o_flavour:
d382c579
TG
11064 if (flag_code == CODE_64BIT)
11065 {
11066 use_rela_relocations = 1;
11067 object_64bit = 1;
11068 return "mach-o-x86-64";
11069 }
11070 else
11071 return "mach-o-i386";
4c63da97 11072#endif
252b5132
RH
11073 default:
11074 abort ();
11075 return NULL;
11076 }
11077}
11078
47926f60 11079#endif /* OBJ_MAYBE_ more than one */
252b5132 11080\f
252b5132 11081symbolS *
7016a5d5 11082md_undefined_symbol (char *name)
252b5132 11083{
18dc2407
ILT
11084 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11085 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11086 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11087 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
11088 {
11089 if (!GOT_symbol)
11090 {
11091 if (symbol_find (name))
11092 as_bad (_("GOT already in symbol table"));
11093 GOT_symbol = symbol_new (name, undefined_section,
11094 (valueT) 0, &zero_address_frag);
11095 };
11096 return GOT_symbol;
11097 }
252b5132
RH
11098 return 0;
11099}
11100
11101/* Round up a section size to the appropriate boundary. */
47926f60 11102
252b5132 11103valueT
7016a5d5 11104md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 11105{
4c63da97
AM
11106#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11107 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11108 {
11109 /* For a.out, force the section size to be aligned. If we don't do
11110 this, BFD will align it for us, but it will not write out the
11111 final bytes of the section. This may be a bug in BFD, but it is
11112 easier to fix it here since that is how the other a.out targets
11113 work. */
11114 int align;
11115
11116 align = bfd_get_section_alignment (stdoutput, segment);
8d3842cd 11117 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 11118 }
252b5132
RH
11119#endif
11120
11121 return size;
11122}
11123
11124/* On the i386, PC-relative offsets are relative to the start of the
11125 next instruction. That is, the address of the offset, plus its
11126 size, since the offset is always the last part of the insn. */
11127
11128long
e3bb37b5 11129md_pcrel_from (fixS *fixP)
252b5132
RH
11130{
11131 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11132}
11133
11134#ifndef I386COFF
11135
11136static void
e3bb37b5 11137s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 11138{
29b0f896 11139 int temp;
252b5132 11140
8a75718c
JB
11141#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11142 if (IS_ELF)
11143 obj_elf_section_change_hook ();
11144#endif
252b5132
RH
11145 temp = get_absolute_expression ();
11146 subseg_set (bss_section, (subsegT) temp);
11147 demand_empty_rest_of_line ();
11148}
11149
11150#endif
11151
252b5132 11152void
e3bb37b5 11153i386_validate_fix (fixS *fixp)
252b5132 11154{
02a86693 11155 if (fixp->fx_subsy)
252b5132 11156 {
02a86693 11157 if (fixp->fx_subsy == GOT_symbol)
23df1078 11158 {
02a86693
L
11159 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11160 {
11161 if (!object_64bit)
11162 abort ();
11163#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11164 if (fixp->fx_tcbit2)
56ceb5b5
L
11165 fixp->fx_r_type = (fixp->fx_tcbit
11166 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11167 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
11168 else
11169#endif
11170 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11171 }
d6ab8113 11172 else
02a86693
L
11173 {
11174 if (!object_64bit)
11175 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11176 else
11177 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11178 }
11179 fixp->fx_subsy = 0;
23df1078 11180 }
252b5132 11181 }
02a86693
L
11182#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11183 else if (!object_64bit)
11184 {
11185 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11186 && fixp->fx_tcbit2)
11187 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11188 }
11189#endif
252b5132
RH
11190}
11191
252b5132 11192arelent *
7016a5d5 11193tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
11194{
11195 arelent *rel;
11196 bfd_reloc_code_real_type code;
11197
11198 switch (fixp->fx_r_type)
11199 {
8ce3d284 11200#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
11201 case BFD_RELOC_SIZE32:
11202 case BFD_RELOC_SIZE64:
11203 if (S_IS_DEFINED (fixp->fx_addsy)
11204 && !S_IS_EXTERNAL (fixp->fx_addsy))
11205 {
11206 /* Resolve size relocation against local symbol to size of
11207 the symbol plus addend. */
11208 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11209 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11210 && !fits_in_unsigned_long (value))
11211 as_bad_where (fixp->fx_file, fixp->fx_line,
11212 _("symbol size computation overflow"));
11213 fixp->fx_addsy = NULL;
11214 fixp->fx_subsy = NULL;
11215 md_apply_fix (fixp, (valueT *) &value, NULL);
11216 return NULL;
11217 }
8ce3d284 11218#endif
1a0670f3 11219 /* Fall through. */
8fd4256d 11220
3e73aa7c
JH
11221 case BFD_RELOC_X86_64_PLT32:
11222 case BFD_RELOC_X86_64_GOT32:
11223 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11224 case BFD_RELOC_X86_64_GOTPCRELX:
11225 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
11226 case BFD_RELOC_386_PLT32:
11227 case BFD_RELOC_386_GOT32:
02a86693 11228 case BFD_RELOC_386_GOT32X:
252b5132
RH
11229 case BFD_RELOC_386_GOTOFF:
11230 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
11231 case BFD_RELOC_386_TLS_GD:
11232 case BFD_RELOC_386_TLS_LDM:
11233 case BFD_RELOC_386_TLS_LDO_32:
11234 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
11235 case BFD_RELOC_386_TLS_IE:
11236 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
11237 case BFD_RELOC_386_TLS_LE_32:
11238 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
11239 case BFD_RELOC_386_TLS_GOTDESC:
11240 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
11241 case BFD_RELOC_X86_64_TLSGD:
11242 case BFD_RELOC_X86_64_TLSLD:
11243 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 11244 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
11245 case BFD_RELOC_X86_64_GOTTPOFF:
11246 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
11247 case BFD_RELOC_X86_64_TPOFF64:
11248 case BFD_RELOC_X86_64_GOTOFF64:
11249 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
11250 case BFD_RELOC_X86_64_GOT64:
11251 case BFD_RELOC_X86_64_GOTPCREL64:
11252 case BFD_RELOC_X86_64_GOTPC64:
11253 case BFD_RELOC_X86_64_GOTPLT64:
11254 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
11255 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11256 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
11257 case BFD_RELOC_RVA:
11258 case BFD_RELOC_VTABLE_ENTRY:
11259 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
11260#ifdef TE_PE
11261 case BFD_RELOC_32_SECREL:
11262#endif
252b5132
RH
11263 code = fixp->fx_r_type;
11264 break;
dbbaec26
L
11265 case BFD_RELOC_X86_64_32S:
11266 if (!fixp->fx_pcrel)
11267 {
11268 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11269 code = fixp->fx_r_type;
11270 break;
11271 }
1a0670f3 11272 /* Fall through. */
252b5132 11273 default:
93382f6d 11274 if (fixp->fx_pcrel)
252b5132 11275 {
93382f6d
AM
11276 switch (fixp->fx_size)
11277 {
11278 default:
b091f402
AM
11279 as_bad_where (fixp->fx_file, fixp->fx_line,
11280 _("can not do %d byte pc-relative relocation"),
11281 fixp->fx_size);
93382f6d
AM
11282 code = BFD_RELOC_32_PCREL;
11283 break;
11284 case 1: code = BFD_RELOC_8_PCREL; break;
11285 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 11286 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
11287#ifdef BFD64
11288 case 8: code = BFD_RELOC_64_PCREL; break;
11289#endif
93382f6d
AM
11290 }
11291 }
11292 else
11293 {
11294 switch (fixp->fx_size)
11295 {
11296 default:
b091f402
AM
11297 as_bad_where (fixp->fx_file, fixp->fx_line,
11298 _("can not do %d byte relocation"),
11299 fixp->fx_size);
93382f6d
AM
11300 code = BFD_RELOC_32;
11301 break;
11302 case 1: code = BFD_RELOC_8; break;
11303 case 2: code = BFD_RELOC_16; break;
11304 case 4: code = BFD_RELOC_32; break;
937149dd 11305#ifdef BFD64
3e73aa7c 11306 case 8: code = BFD_RELOC_64; break;
937149dd 11307#endif
93382f6d 11308 }
252b5132
RH
11309 }
11310 break;
11311 }
252b5132 11312
d182319b
JB
11313 if ((code == BFD_RELOC_32
11314 || code == BFD_RELOC_32_PCREL
11315 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
11316 && GOT_symbol
11317 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 11318 {
4fa24527 11319 if (!object_64bit)
d6ab8113
JB
11320 code = BFD_RELOC_386_GOTPC;
11321 else
11322 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 11323 }
7b81dfbb
AJ
11324 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11325 && GOT_symbol
11326 && fixp->fx_addsy == GOT_symbol)
11327 {
11328 code = BFD_RELOC_X86_64_GOTPC64;
11329 }
252b5132 11330
add39d23
TS
11331 rel = XNEW (arelent);
11332 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 11333 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
11334
11335 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 11336
3e73aa7c
JH
11337 if (!use_rela_relocations)
11338 {
11339 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11340 vtable entry to be used in the relocation's section offset. */
11341 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11342 rel->address = fixp->fx_offset;
fbeb56a4
DK
11343#if defined (OBJ_COFF) && defined (TE_PE)
11344 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11345 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11346 else
11347#endif
c6682705 11348 rel->addend = 0;
3e73aa7c
JH
11349 }
11350 /* Use the rela in 64bit mode. */
252b5132 11351 else
3e73aa7c 11352 {
862be3fb
L
11353 if (disallow_64bit_reloc)
11354 switch (code)
11355 {
862be3fb
L
11356 case BFD_RELOC_X86_64_DTPOFF64:
11357 case BFD_RELOC_X86_64_TPOFF64:
11358 case BFD_RELOC_64_PCREL:
11359 case BFD_RELOC_X86_64_GOTOFF64:
11360 case BFD_RELOC_X86_64_GOT64:
11361 case BFD_RELOC_X86_64_GOTPCREL64:
11362 case BFD_RELOC_X86_64_GOTPC64:
11363 case BFD_RELOC_X86_64_GOTPLT64:
11364 case BFD_RELOC_X86_64_PLTOFF64:
11365 as_bad_where (fixp->fx_file, fixp->fx_line,
11366 _("cannot represent relocation type %s in x32 mode"),
11367 bfd_get_reloc_code_name (code));
11368 break;
11369 default:
11370 break;
11371 }
11372
062cd5e7
AS
11373 if (!fixp->fx_pcrel)
11374 rel->addend = fixp->fx_offset;
11375 else
11376 switch (code)
11377 {
11378 case BFD_RELOC_X86_64_PLT32:
11379 case BFD_RELOC_X86_64_GOT32:
11380 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11381 case BFD_RELOC_X86_64_GOTPCRELX:
11382 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
11383 case BFD_RELOC_X86_64_TLSGD:
11384 case BFD_RELOC_X86_64_TLSLD:
11385 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
11386 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11387 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
11388 rel->addend = fixp->fx_offset - fixp->fx_size;
11389 break;
11390 default:
11391 rel->addend = (section->vma
11392 - fixp->fx_size
11393 + fixp->fx_addnumber
11394 + md_pcrel_from (fixp));
11395 break;
11396 }
3e73aa7c
JH
11397 }
11398
252b5132
RH
11399 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11400 if (rel->howto == NULL)
11401 {
11402 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 11403 _("cannot represent relocation type %s"),
252b5132
RH
11404 bfd_get_reloc_code_name (code));
11405 /* Set howto to a garbage value so that we can keep going. */
11406 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 11407 gas_assert (rel->howto != NULL);
252b5132
RH
11408 }
11409
11410 return rel;
11411}
11412
ee86248c 11413#include "tc-i386-intel.c"
54cfded0 11414
a60de03c
JB
11415void
11416tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 11417{
a60de03c
JB
11418 int saved_naked_reg;
11419 char saved_register_dot;
54cfded0 11420
a60de03c
JB
11421 saved_naked_reg = allow_naked_reg;
11422 allow_naked_reg = 1;
11423 saved_register_dot = register_chars['.'];
11424 register_chars['.'] = '.';
11425 allow_pseudo_reg = 1;
11426 expression_and_evaluate (exp);
11427 allow_pseudo_reg = 0;
11428 register_chars['.'] = saved_register_dot;
11429 allow_naked_reg = saved_naked_reg;
11430
e96d56a1 11431 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 11432 {
a60de03c
JB
11433 if ((addressT) exp->X_add_number < i386_regtab_size)
11434 {
11435 exp->X_op = O_constant;
11436 exp->X_add_number = i386_regtab[exp->X_add_number]
11437 .dw2_regnum[flag_code >> 1];
11438 }
11439 else
11440 exp->X_op = O_illegal;
54cfded0 11441 }
54cfded0
AM
11442}
11443
11444void
11445tc_x86_frame_initial_instructions (void)
11446{
a60de03c
JB
11447 static unsigned int sp_regno[2];
11448
11449 if (!sp_regno[flag_code >> 1])
11450 {
11451 char *saved_input = input_line_pointer;
11452 char sp[][4] = {"esp", "rsp"};
11453 expressionS exp;
a4447b93 11454
a60de03c
JB
11455 input_line_pointer = sp[flag_code >> 1];
11456 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 11457 gas_assert (exp.X_op == O_constant);
a60de03c
JB
11458 sp_regno[flag_code >> 1] = exp.X_add_number;
11459 input_line_pointer = saved_input;
11460 }
a4447b93 11461
61ff971f
L
11462 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11463 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 11464}
d2b2c203 11465
d7921315
L
11466int
11467x86_dwarf2_addr_size (void)
11468{
11469#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11470 if (x86_elf_abi == X86_64_X32_ABI)
11471 return 4;
11472#endif
11473 return bfd_arch_bits_per_address (stdoutput) / 8;
11474}
11475
d2b2c203
DJ
11476int
11477i386_elf_section_type (const char *str, size_t len)
11478{
11479 if (flag_code == CODE_64BIT
11480 && len == sizeof ("unwind") - 1
11481 && strncmp (str, "unwind", 6) == 0)
11482 return SHT_X86_64_UNWIND;
11483
11484 return -1;
11485}
bb41ade5 11486
ad5fec3b
EB
11487#ifdef TE_SOLARIS
11488void
11489i386_solaris_fix_up_eh_frame (segT sec)
11490{
11491 if (flag_code == CODE_64BIT)
11492 elf_section_type (sec) = SHT_X86_64_UNWIND;
11493}
11494#endif
11495
bb41ade5
AM
11496#ifdef TE_PE
11497void
11498tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11499{
91d6fa6a 11500 expressionS exp;
bb41ade5 11501
91d6fa6a
NC
11502 exp.X_op = O_secrel;
11503 exp.X_add_symbol = symbol;
11504 exp.X_add_number = 0;
11505 emit_expr (&exp, size);
bb41ade5
AM
11506}
11507#endif
3b22753a
L
11508
11509#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11510/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11511
01e1a5bc 11512bfd_vma
6d4af3c2 11513x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
11514{
11515 if (flag_code == CODE_64BIT)
11516 {
11517 if (letter == 'l')
11518 return SHF_X86_64_LARGE;
11519
8f3bae45 11520 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 11521 }
3b22753a 11522 else
8f3bae45 11523 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
11524 return -1;
11525}
11526
01e1a5bc 11527bfd_vma
3b22753a
L
11528x86_64_section_word (char *str, size_t len)
11529{
8620418b 11530 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
11531 return SHF_X86_64_LARGE;
11532
11533 return -1;
11534}
11535
11536static void
11537handle_large_common (int small ATTRIBUTE_UNUSED)
11538{
11539 if (flag_code != CODE_64BIT)
11540 {
11541 s_comm_internal (0, elf_common_parse);
11542 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11543 }
11544 else
11545 {
11546 static segT lbss_section;
11547 asection *saved_com_section_ptr = elf_com_section_ptr;
11548 asection *saved_bss_section = bss_section;
11549
11550 if (lbss_section == NULL)
11551 {
11552 flagword applicable;
11553 segT seg = now_seg;
11554 subsegT subseg = now_subseg;
11555
11556 /* The .lbss section is for local .largecomm symbols. */
11557 lbss_section = subseg_new (".lbss", 0);
11558 applicable = bfd_applicable_section_flags (stdoutput);
11559 bfd_set_section_flags (stdoutput, lbss_section,
11560 applicable & SEC_ALLOC);
11561 seg_info (lbss_section)->bss = 1;
11562
11563 subseg_set (seg, subseg);
11564 }
11565
11566 elf_com_section_ptr = &_bfd_elf_large_com_section;
11567 bss_section = lbss_section;
11568
11569 s_comm_internal (0, elf_common_parse);
11570
11571 elf_com_section_ptr = saved_com_section_ptr;
11572 bss_section = saved_bss_section;
11573 }
11574}
11575#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 2.991722 seconds and 4 git commands to generate.