x86-64: Properly encode and decode movsxd
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
b3adc24a 2 Copyright (C) 1989-2020 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
41fd2579
L
36#ifdef HAVE_LIMITS_H
37#include <limits.h>
38#else
39#ifdef HAVE_SYS_PARAM_H
40#include <sys/param.h>
41#endif
42#ifndef INT_MAX
43#define INT_MAX (int) (((unsigned) (-1)) >> 1)
44#endif
45#endif
46
252b5132
RH
47#ifndef REGISTER_WARNINGS
48#define REGISTER_WARNINGS 1
49#endif
50
c3332e24 51#ifndef INFER_ADDR_PREFIX
eecb386c 52#define INFER_ADDR_PREFIX 1
c3332e24
AM
53#endif
54
29b0f896
AM
55#ifndef DEFAULT_ARCH
56#define DEFAULT_ARCH "i386"
246fcdee 57#endif
252b5132 58
edde18a5
AM
59#ifndef INLINE
60#if __GNUC__ >= 2
61#define INLINE __inline__
62#else
63#define INLINE
64#endif
65#endif
66
6305a203
L
67/* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
72#define WAIT_PREFIX 0
73#define SEG_PREFIX 1
74#define ADDR_PREFIX 2
75#define DATA_PREFIX 3
c32fa91d 76#define REP_PREFIX 4
42164a71 77#define HLE_PREFIX REP_PREFIX
7e8b059b 78#define BND_PREFIX REP_PREFIX
c32fa91d 79#define LOCK_PREFIX 5
4e9ac44a
L
80#define REX_PREFIX 6 /* must come last. */
81#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
82
83/* we define the syntax here (modulo base,index,scale syntax) */
84#define REGISTER_PREFIX '%'
85#define IMMEDIATE_PREFIX '$'
86#define ABSOLUTE_PREFIX '*'
87
88/* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90#define WORD_MNEM_SUFFIX 'w'
91#define BYTE_MNEM_SUFFIX 'b'
92#define SHORT_MNEM_SUFFIX 's'
93#define LONG_MNEM_SUFFIX 'l'
94#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
95/* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97#define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99#define END_OF_INSN '\0'
100
79dec6b7
JB
101/* This matches the C -> StaticRounding alias in the opcode table. */
102#define commutative staticrounding
103
6305a203
L
104/*
105 'templates' is for grouping together 'template' structures for opcodes
106 of the same name. This is only used for storing the insns in the grand
107 ole hash table of insns.
108 The templates themselves start at START and range up to (but not including)
109 END.
110 */
111typedef struct
112{
d3ce72d0
NC
113 const insn_template *start;
114 const insn_template *end;
6305a203
L
115}
116templates;
117
118/* 386 operand encoding bytes: see 386 book for details of this. */
119typedef struct
120{
121 unsigned int regmem; /* codes register or memory operand */
122 unsigned int reg; /* codes register operand (or extended opcode) */
123 unsigned int mode; /* how to interpret regmem & reg */
124}
125modrm_byte;
126
127/* x86-64 extension prefix. */
128typedef int rex_byte;
129
6305a203
L
130/* 386 opcode byte to code indirect addressing. */
131typedef struct
132{
133 unsigned base;
134 unsigned index;
135 unsigned scale;
136}
137sib_byte;
138
6305a203
L
139/* x86 arch names, types and features */
140typedef struct
141{
142 const char *name; /* arch name */
8a2c8fef 143 unsigned int len; /* arch string length */
6305a203
L
144 enum processor_type type; /* arch type */
145 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 146 unsigned int skip; /* show_arch should skip this. */
6305a203
L
147}
148arch_entry;
149
293f5f65
L
150/* Used to turn off indicated flags. */
151typedef struct
152{
153 const char *name; /* arch name */
154 unsigned int len; /* arch string length */
155 i386_cpu_flags flags; /* cpu feature flags */
156}
157noarch_entry;
158
78f12dd3 159static void update_code_flag (int, int);
e3bb37b5
L
160static void set_code_flag (int);
161static void set_16bit_gcc_code_flag (int);
162static void set_intel_syntax (int);
1efbbeb4 163static void set_intel_mnemonic (int);
db51cc60 164static void set_allow_index_reg (int);
7bab8ab5 165static void set_check (int);
e3bb37b5 166static void set_cpu_arch (int);
6482c264 167#ifdef TE_PE
e3bb37b5 168static void pe_directive_secrel (int);
6482c264 169#endif
e3bb37b5
L
170static void signed_cons (int);
171static char *output_invalid (int c);
ee86248c
JB
172static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
173 const char *);
174static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
175 const char *);
a7619375 176static int i386_att_operand (char *);
e3bb37b5 177static int i386_intel_operand (char *, int);
ee86248c
JB
178static int i386_intel_simplify (expressionS *);
179static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
180static const reg_entry *parse_register (char *, char **);
181static char *parse_insn (char *, char *);
182static char *parse_operands (char *, const char *);
183static void swap_operands (void);
4d456e3d 184static void swap_2_operands (int, int);
48bcea9f 185static enum flag_code i386_addressing_mode (void);
e3bb37b5
L
186static void optimize_imm (void);
187static void optimize_disp (void);
83b16ac6 188static const insn_template *match_template (char);
e3bb37b5
L
189static int check_string (void);
190static int process_suffix (void);
191static int check_byte_reg (void);
192static int check_long_reg (void);
193static int check_qword_reg (void);
194static int check_word_reg (void);
195static int finalize_imm (void);
196static int process_operands (void);
197static const seg_entry *build_modrm_byte (void);
198static void output_insn (void);
199static void output_imm (fragS *, offsetT);
200static void output_disp (fragS *, offsetT);
29b0f896 201#ifndef I386COFF
e3bb37b5 202static void s_bss (int);
252b5132 203#endif
17d4e2a2
L
204#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
205static void handle_large_common (int small ATTRIBUTE_UNUSED);
b4a3a7b4
L
206
207/* GNU_PROPERTY_X86_ISA_1_USED. */
208static unsigned int x86_isa_1_used;
209/* GNU_PROPERTY_X86_FEATURE_2_USED. */
210static unsigned int x86_feature_2_used;
211/* Generate x86 used ISA and feature properties. */
212static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
17d4e2a2 213#endif
252b5132 214
a847613f 215static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 216
43234a1e
L
217/* This struct describes rounding control and SAE in the instruction. */
218struct RC_Operation
219{
220 enum rc_type
221 {
222 rne = 0,
223 rd,
224 ru,
225 rz,
226 saeonly
227 } type;
228 int operand;
229};
230
231static struct RC_Operation rc_op;
232
233/* The struct describes masking, applied to OPERAND in the instruction.
234 MASK is a pointer to the corresponding mask register. ZEROING tells
235 whether merging or zeroing mask is used. */
236struct Mask_Operation
237{
238 const reg_entry *mask;
239 unsigned int zeroing;
240 /* The operand where this operation is associated. */
241 int operand;
242};
243
244static struct Mask_Operation mask_op;
245
246/* The struct describes broadcasting, applied to OPERAND. FACTOR is
247 broadcast factor. */
248struct Broadcast_Operation
249{
8e6e0792 250 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
251 int type;
252
253 /* Index of broadcasted operand. */
254 int operand;
4a1b91ea
L
255
256 /* Number of bytes to broadcast. */
257 int bytes;
43234a1e
L
258};
259
260static struct Broadcast_Operation broadcast_op;
261
c0f3af97
L
262/* VEX prefix. */
263typedef struct
264{
43234a1e
L
265 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
266 unsigned char bytes[4];
c0f3af97
L
267 unsigned int length;
268 /* Destination or source register specifier. */
269 const reg_entry *register_specifier;
270} vex_prefix;
271
252b5132 272/* 'md_assemble ()' gathers together information and puts it into a
47926f60 273 i386_insn. */
252b5132 274
520dc8e8
AM
275union i386_op
276 {
277 expressionS *disps;
278 expressionS *imms;
279 const reg_entry *regs;
280 };
281
a65babc9
L
282enum i386_error
283 {
86e026a4 284 operand_size_mismatch,
a65babc9
L
285 operand_type_mismatch,
286 register_type_mismatch,
287 number_of_operands_mismatch,
288 invalid_instruction_suffix,
289 bad_imm4,
a65babc9
L
290 unsupported_with_intel_mnemonic,
291 unsupported_syntax,
6c30d220
L
292 unsupported,
293 invalid_vsib_address,
7bab8ab5 294 invalid_vector_register_set,
43234a1e
L
295 unsupported_vector_index_register,
296 unsupported_broadcast,
43234a1e
L
297 broadcast_needed,
298 unsupported_masking,
299 mask_not_on_destination,
300 no_default_mask,
301 unsupported_rc_sae,
302 rc_sae_operand_not_last_imm,
303 invalid_register_operand,
a65babc9
L
304 };
305
252b5132
RH
306struct _i386_insn
307 {
47926f60 308 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 309 insn_template tm;
252b5132 310
7d5e4556
L
311 /* SUFFIX holds the instruction size suffix for byte, word, dword
312 or qword, if given. */
252b5132
RH
313 char suffix;
314
47926f60 315 /* OPERANDS gives the number of given operands. */
252b5132
RH
316 unsigned int operands;
317
318 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
319 of given register, displacement, memory operands and immediate
47926f60 320 operands. */
252b5132
RH
321 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
322
323 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 324 use OP[i] for the corresponding operand. */
40fb9820 325 i386_operand_type types[MAX_OPERANDS];
252b5132 326
520dc8e8
AM
327 /* Displacement expression, immediate expression, or register for each
328 operand. */
329 union i386_op op[MAX_OPERANDS];
252b5132 330
3e73aa7c
JH
331 /* Flags for operands. */
332 unsigned int flags[MAX_OPERANDS];
333#define Operand_PCrel 1
c48dadc9 334#define Operand_Mem 2
3e73aa7c 335
252b5132 336 /* Relocation type for operand */
f86103b7 337 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 338
252b5132
RH
339 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
340 the base index byte below. */
341 const reg_entry *base_reg;
342 const reg_entry *index_reg;
343 unsigned int log2_scale_factor;
344
345 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 346 explicit segment overrides are given. */
ce8a8b2f 347 const seg_entry *seg[2];
252b5132 348
8325cc63
JB
349 /* Copied first memory operand string, for re-checking. */
350 char *memop1_string;
351
252b5132
RH
352 /* PREFIX holds all the given prefix opcodes (usually null).
353 PREFIXES is the number of prefix opcodes. */
354 unsigned int prefixes;
355 unsigned char prefix[MAX_PREFIXES];
356
6f2f06be
JB
357 /* The operand to a branch insn indicates an absolute branch. */
358 bfd_boolean jumpabsolute;
359
b4a3a7b4
L
360 /* Has MMX register operands. */
361 bfd_boolean has_regmmx;
362
363 /* Has XMM register operands. */
364 bfd_boolean has_regxmm;
365
366 /* Has YMM register operands. */
367 bfd_boolean has_regymm;
368
369 /* Has ZMM register operands. */
370 bfd_boolean has_regzmm;
371
e379e5f3
L
372 /* Has GOTPC or TLS relocation. */
373 bfd_boolean has_gotpc_tls_reloc;
374
252b5132 375 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 376 addressing modes of this insn are encoded. */
252b5132 377 modrm_byte rm;
3e73aa7c 378 rex_byte rex;
43234a1e 379 rex_byte vrex;
252b5132 380 sib_byte sib;
c0f3af97 381 vex_prefix vex;
b6169b20 382
43234a1e
L
383 /* Masking attributes. */
384 struct Mask_Operation *mask;
385
386 /* Rounding control and SAE attributes. */
387 struct RC_Operation *rounding;
388
389 /* Broadcasting attributes. */
390 struct Broadcast_Operation *broadcast;
391
392 /* Compressed disp8*N attribute. */
393 unsigned int memshift;
394
86fa6981
L
395 /* Prefer load or store in encoding. */
396 enum
397 {
398 dir_encoding_default = 0,
399 dir_encoding_load,
64c49ab3
JB
400 dir_encoding_store,
401 dir_encoding_swap
86fa6981 402 } dir_encoding;
891edac4 403
a501d77e
L
404 /* Prefer 8bit or 32bit displacement in encoding. */
405 enum
406 {
407 disp_encoding_default = 0,
408 disp_encoding_8bit,
409 disp_encoding_32bit
410 } disp_encoding;
f8a5c266 411
6b6b6807
L
412 /* Prefer the REX byte in encoding. */
413 bfd_boolean rex_encoding;
414
b6f8c7c4
L
415 /* Disable instruction size optimization. */
416 bfd_boolean no_optimize;
417
86fa6981
L
418 /* How to encode vector instructions. */
419 enum
420 {
421 vex_encoding_default = 0,
42e04b36 422 vex_encoding_vex,
86fa6981
L
423 vex_encoding_vex3,
424 vex_encoding_evex
425 } vec_encoding;
426
d5de92cf
L
427 /* REP prefix. */
428 const char *rep_prefix;
429
165de32a
L
430 /* HLE prefix. */
431 const char *hle_prefix;
42164a71 432
7e8b059b
L
433 /* Have BND prefix. */
434 const char *bnd_prefix;
435
04ef582a
L
436 /* Have NOTRACK prefix. */
437 const char *notrack_prefix;
438
891edac4 439 /* Error message. */
a65babc9 440 enum i386_error error;
252b5132
RH
441 };
442
443typedef struct _i386_insn i386_insn;
444
43234a1e
L
445/* Link RC type with corresponding string, that'll be looked for in
446 asm. */
447struct RC_name
448{
449 enum rc_type type;
450 const char *name;
451 unsigned int len;
452};
453
454static const struct RC_name RC_NamesTable[] =
455{
456 { rne, STRING_COMMA_LEN ("rn-sae") },
457 { rd, STRING_COMMA_LEN ("rd-sae") },
458 { ru, STRING_COMMA_LEN ("ru-sae") },
459 { rz, STRING_COMMA_LEN ("rz-sae") },
460 { saeonly, STRING_COMMA_LEN ("sae") },
461};
462
252b5132
RH
463/* List of chars besides those in app.c:symbol_chars that can start an
464 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 465const char extra_symbol_chars[] = "*%-([{}"
252b5132 466#ifdef LEX_AT
32137342
NC
467 "@"
468#endif
469#ifdef LEX_QM
470 "?"
252b5132 471#endif
32137342 472 ;
252b5132 473
29b0f896
AM
474#if (defined (TE_I386AIX) \
475 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 476 && !defined (TE_GNU) \
29b0f896 477 && !defined (TE_LINUX) \
8d63c93e 478 && !defined (TE_NACL) \
29b0f896 479 && !defined (TE_FreeBSD) \
5b806d27 480 && !defined (TE_DragonFly) \
29b0f896 481 && !defined (TE_NetBSD)))
252b5132 482/* This array holds the chars that always start a comment. If the
b3b91714
AM
483 pre-processor is disabled, these aren't very useful. The option
484 --divide will remove '/' from this list. */
485const char *i386_comment_chars = "#/";
486#define SVR4_COMMENT_CHARS 1
252b5132 487#define PREFIX_SEPARATOR '\\'
252b5132 488
b3b91714
AM
489#else
490const char *i386_comment_chars = "#";
491#define PREFIX_SEPARATOR '/'
492#endif
493
252b5132
RH
494/* This array holds the chars that only start a comment at the beginning of
495 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
496 .line and .file directives will appear in the pre-processed output.
497 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 498 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
499 #NO_APP at the beginning of its output.
500 Also note that comments started like this one will always work if
252b5132 501 '/' isn't otherwise defined. */
b3b91714 502const char line_comment_chars[] = "#/";
252b5132 503
63a0b638 504const char line_separator_chars[] = ";";
252b5132 505
ce8a8b2f
AM
506/* Chars that can be used to separate mant from exp in floating point
507 nums. */
252b5132
RH
508const char EXP_CHARS[] = "eE";
509
ce8a8b2f
AM
510/* Chars that mean this number is a floating point constant
511 As in 0f12.456
512 or 0d1.2345e12. */
252b5132
RH
513const char FLT_CHARS[] = "fFdDxX";
514
ce8a8b2f 515/* Tables for lexical analysis. */
252b5132
RH
516static char mnemonic_chars[256];
517static char register_chars[256];
518static char operand_chars[256];
519static char identifier_chars[256];
520static char digit_chars[256];
521
ce8a8b2f 522/* Lexical macros. */
252b5132
RH
523#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
524#define is_operand_char(x) (operand_chars[(unsigned char) x])
525#define is_register_char(x) (register_chars[(unsigned char) x])
526#define is_space_char(x) ((x) == ' ')
527#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
528#define is_digit_char(x) (digit_chars[(unsigned char) x])
529
0234cb7c 530/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
531static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
532
533/* md_assemble() always leaves the strings it's passed unaltered. To
534 effect this we maintain a stack of saved characters that we've smashed
535 with '\0's (indicating end of strings for various sub-fields of the
47926f60 536 assembler instruction). */
252b5132 537static char save_stack[32];
ce8a8b2f 538static char *save_stack_p;
252b5132
RH
539#define END_STRING_AND_SAVE(s) \
540 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
541#define RESTORE_END_STRING(s) \
542 do { *(s) = *--save_stack_p; } while (0)
543
47926f60 544/* The instruction we're assembling. */
252b5132
RH
545static i386_insn i;
546
547/* Possible templates for current insn. */
548static const templates *current_templates;
549
31b2323c
L
550/* Per instruction expressionS buffers: max displacements & immediates. */
551static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
552static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 553
47926f60 554/* Current operand we are working on. */
ee86248c 555static int this_operand = -1;
252b5132 556
3e73aa7c
JH
557/* We support four different modes. FLAG_CODE variable is used to distinguish
558 these. */
559
560enum flag_code {
561 CODE_32BIT,
562 CODE_16BIT,
563 CODE_64BIT };
564
565static enum flag_code flag_code;
4fa24527 566static unsigned int object_64bit;
862be3fb 567static unsigned int disallow_64bit_reloc;
3e73aa7c 568static int use_rela_relocations = 0;
e379e5f3
L
569/* __tls_get_addr/___tls_get_addr symbol for TLS. */
570static const char *tls_get_addr;
3e73aa7c 571
7af8ed2d
NC
572#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
573 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
574 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
575
351f65ca
L
576/* The ELF ABI to use. */
577enum x86_elf_abi
578{
579 I386_ABI,
7f56bc95
L
580 X86_64_ABI,
581 X86_64_X32_ABI
351f65ca
L
582};
583
584static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 585#endif
351f65ca 586
167ad85b
TG
587#if defined (TE_PE) || defined (TE_PEP)
588/* Use big object file format. */
589static int use_big_obj = 0;
590#endif
591
8dcea932
L
592#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
593/* 1 if generating code for a shared library. */
594static int shared = 0;
595#endif
596
47926f60
KH
597/* 1 for intel syntax,
598 0 if att syntax. */
599static int intel_syntax = 0;
252b5132 600
e89c5eaa
L
601/* 1 for Intel64 ISA,
602 0 if AMD64 ISA. */
603static int intel64;
604
1efbbeb4
L
605/* 1 for intel mnemonic,
606 0 if att mnemonic. */
607static int intel_mnemonic = !SYSV386_COMPAT;
608
a60de03c
JB
609/* 1 if pseudo registers are permitted. */
610static int allow_pseudo_reg = 0;
611
47926f60
KH
612/* 1 if register prefix % not required. */
613static int allow_naked_reg = 0;
252b5132 614
33eaf5de 615/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
616 instructions supporting it, even if this prefix wasn't specified
617 explicitly. */
618static int add_bnd_prefix = 0;
619
ba104c83 620/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
621static int allow_index_reg = 0;
622
d022bddd
IT
623/* 1 if the assembler should ignore LOCK prefix, even if it was
624 specified explicitly. */
625static int omit_lock_prefix = 0;
626
e4e00185
AS
627/* 1 if the assembler should encode lfence, mfence, and sfence as
628 "lock addl $0, (%{re}sp)". */
629static int avoid_fence = 0;
630
e379e5f3
L
631/* Type of the previous instruction. */
632static struct
633 {
634 segT seg;
635 const char *file;
636 const char *name;
637 unsigned int line;
638 enum last_insn_kind
639 {
640 last_insn_other = 0,
641 last_insn_directive,
642 last_insn_prefix
643 } kind;
644 } last_insn;
645
0cb4071e
L
646/* 1 if the assembler should generate relax relocations. */
647
648static int generate_relax_relocations
649 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
650
7bab8ab5 651static enum check_kind
daf50ae7 652 {
7bab8ab5
JB
653 check_none = 0,
654 check_warning,
655 check_error
daf50ae7 656 }
7bab8ab5 657sse_check, operand_check = check_warning;
daf50ae7 658
e379e5f3
L
659/* Non-zero if branches should be aligned within power of 2 boundary. */
660static int align_branch_power = 0;
661
662/* Types of branches to align. */
663enum align_branch_kind
664 {
665 align_branch_none = 0,
666 align_branch_jcc = 1,
667 align_branch_fused = 2,
668 align_branch_jmp = 3,
669 align_branch_call = 4,
670 align_branch_indirect = 5,
671 align_branch_ret = 6
672 };
673
674/* Type bits of branches to align. */
675enum align_branch_bit
676 {
677 align_branch_jcc_bit = 1 << align_branch_jcc,
678 align_branch_fused_bit = 1 << align_branch_fused,
679 align_branch_jmp_bit = 1 << align_branch_jmp,
680 align_branch_call_bit = 1 << align_branch_call,
681 align_branch_indirect_bit = 1 << align_branch_indirect,
682 align_branch_ret_bit = 1 << align_branch_ret
683 };
684
685static unsigned int align_branch = (align_branch_jcc_bit
686 | align_branch_fused_bit
687 | align_branch_jmp_bit);
688
689/* The maximum padding size for fused jcc. CMP like instruction can
690 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
691 prefixes. */
692#define MAX_FUSED_JCC_PADDING_SIZE 20
693
694/* The maximum number of prefixes added for an instruction. */
695static unsigned int align_branch_prefix_size = 5;
696
b6f8c7c4
L
697/* Optimization:
698 1. Clear the REX_W bit with register operand if possible.
699 2. Above plus use 128bit vector instruction to clear the full vector
700 register.
701 */
702static int optimize = 0;
703
704/* Optimization:
705 1. Clear the REX_W bit with register operand if possible.
706 2. Above plus use 128bit vector instruction to clear the full vector
707 register.
708 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
709 "testb $imm7,%r8".
710 */
711static int optimize_for_space = 0;
712
2ca3ace5
L
713/* Register prefix used for error message. */
714static const char *register_prefix = "%";
715
47926f60
KH
716/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
717 leave, push, and pop instructions so that gcc has the same stack
718 frame as in 32 bit mode. */
719static char stackop_size = '\0';
eecb386c 720
12b55ccc
L
721/* Non-zero to optimize code alignment. */
722int optimize_align_code = 1;
723
47926f60
KH
724/* Non-zero to quieten some warnings. */
725static int quiet_warnings = 0;
a38cf1db 726
47926f60
KH
727/* CPU name. */
728static const char *cpu_arch_name = NULL;
6305a203 729static char *cpu_sub_arch_name = NULL;
a38cf1db 730
47926f60 731/* CPU feature flags. */
40fb9820
L
732static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
733
ccc9c027
L
734/* If we have selected a cpu we are generating instructions for. */
735static int cpu_arch_tune_set = 0;
736
9103f4f4 737/* Cpu we are generating instructions for. */
fbf3f584 738enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
739
740/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 741static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 742
ccc9c027 743/* CPU instruction set architecture used. */
fbf3f584 744enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 745
9103f4f4 746/* CPU feature flags of instruction set architecture used. */
fbf3f584 747i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 748
fddf5b5b
AM
749/* If set, conditional jumps are not automatically promoted to handle
750 larger than a byte offset. */
751static unsigned int no_cond_jump_promotion = 0;
752
c0f3af97
L
753/* Encode SSE instructions with VEX prefix. */
754static unsigned int sse2avx;
755
539f890d
L
756/* Encode scalar AVX instructions with specific vector length. */
757static enum
758 {
759 vex128 = 0,
760 vex256
761 } avxscalar;
762
03751133
L
763/* Encode VEX WIG instructions with specific vex.w. */
764static enum
765 {
766 vexw0 = 0,
767 vexw1
768 } vexwig;
769
43234a1e
L
770/* Encode scalar EVEX LIG instructions with specific vector length. */
771static enum
772 {
773 evexl128 = 0,
774 evexl256,
775 evexl512
776 } evexlig;
777
778/* Encode EVEX WIG instructions with specific evex.w. */
779static enum
780 {
781 evexw0 = 0,
782 evexw1
783 } evexwig;
784
d3d3c6db
IT
785/* Value to encode in EVEX RC bits, for SAE-only instructions. */
786static enum rc_type evexrcig = rne;
787
29b0f896 788/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 789static symbolS *GOT_symbol;
29b0f896 790
a4447b93
RH
791/* The dwarf2 return column, adjusted for 32 or 64 bit. */
792unsigned int x86_dwarf2_return_column;
793
794/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
795int x86_cie_data_alignment;
796
252b5132 797/* Interface to relax_segment.
fddf5b5b
AM
798 There are 3 major relax states for 386 jump insns because the
799 different types of jumps add different sizes to frags when we're
e379e5f3
L
800 figuring out what sort of jump to choose to reach a given label.
801
802 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
803 branches which are handled by md_estimate_size_before_relax() and
804 i386_generic_table_relax_frag(). */
252b5132 805
47926f60 806/* Types. */
93c2a809
AM
807#define UNCOND_JUMP 0
808#define COND_JUMP 1
809#define COND_JUMP86 2
e379e5f3
L
810#define BRANCH_PADDING 3
811#define BRANCH_PREFIX 4
812#define FUSED_JCC_PADDING 5
fddf5b5b 813
47926f60 814/* Sizes. */
252b5132
RH
815#define CODE16 1
816#define SMALL 0
29b0f896 817#define SMALL16 (SMALL | CODE16)
252b5132 818#define BIG 2
29b0f896 819#define BIG16 (BIG | CODE16)
252b5132
RH
820
821#ifndef INLINE
822#ifdef __GNUC__
823#define INLINE __inline__
824#else
825#define INLINE
826#endif
827#endif
828
fddf5b5b
AM
829#define ENCODE_RELAX_STATE(type, size) \
830 ((relax_substateT) (((type) << 2) | (size)))
831#define TYPE_FROM_RELAX_STATE(s) \
832 ((s) >> 2)
833#define DISP_SIZE_FROM_RELAX_STATE(s) \
834 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
835
836/* This table is used by relax_frag to promote short jumps to long
837 ones where necessary. SMALL (short) jumps may be promoted to BIG
838 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
839 don't allow a short jump in a 32 bit code segment to be promoted to
840 a 16 bit offset jump because it's slower (requires data size
841 prefix), and doesn't work, unless the destination is in the bottom
842 64k of the code segment (The top 16 bits of eip are zeroed). */
843
844const relax_typeS md_relax_table[] =
845{
24eab124
AM
846 /* The fields are:
847 1) most positive reach of this state,
848 2) most negative reach of this state,
93c2a809 849 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 850 4) which index into the table to try if we can't fit into this one. */
252b5132 851
fddf5b5b 852 /* UNCOND_JUMP states. */
93c2a809
AM
853 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
854 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
855 /* dword jmp adds 4 bytes to frag:
856 0 extra opcode bytes, 4 displacement bytes. */
252b5132 857 {0, 0, 4, 0},
93c2a809
AM
858 /* word jmp adds 2 byte2 to frag:
859 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
860 {0, 0, 2, 0},
861
93c2a809
AM
862 /* COND_JUMP states. */
863 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
864 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
865 /* dword conditionals adds 5 bytes to frag:
866 1 extra opcode byte, 4 displacement bytes. */
867 {0, 0, 5, 0},
fddf5b5b 868 /* word conditionals add 3 bytes to frag:
93c2a809
AM
869 1 extra opcode byte, 2 displacement bytes. */
870 {0, 0, 3, 0},
871
872 /* COND_JUMP86 states. */
873 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
874 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
875 /* dword conditionals adds 5 bytes to frag:
876 1 extra opcode byte, 4 displacement bytes. */
877 {0, 0, 5, 0},
878 /* word conditionals add 4 bytes to frag:
879 1 displacement byte and a 3 byte long branch insn. */
880 {0, 0, 4, 0}
252b5132
RH
881};
882
9103f4f4
L
883static const arch_entry cpu_arch[] =
884{
89507696
JB
885 /* Do not replace the first two entries - i386_target_format()
886 relies on them being there in this order. */
8a2c8fef 887 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 888 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 889 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 890 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 891 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 892 CPU_NONE_FLAGS, 0 },
8a2c8fef 893 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 894 CPU_I186_FLAGS, 0 },
8a2c8fef 895 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 896 CPU_I286_FLAGS, 0 },
8a2c8fef 897 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 898 CPU_I386_FLAGS, 0 },
8a2c8fef 899 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 900 CPU_I486_FLAGS, 0 },
8a2c8fef 901 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 902 CPU_I586_FLAGS, 0 },
8a2c8fef 903 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 904 CPU_I686_FLAGS, 0 },
8a2c8fef 905 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 906 CPU_I586_FLAGS, 0 },
8a2c8fef 907 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 908 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 909 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 910 CPU_P2_FLAGS, 0 },
8a2c8fef 911 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 912 CPU_P3_FLAGS, 0 },
8a2c8fef 913 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 914 CPU_P4_FLAGS, 0 },
8a2c8fef 915 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 916 CPU_CORE_FLAGS, 0 },
8a2c8fef 917 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 918 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 919 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 920 CPU_CORE_FLAGS, 1 },
8a2c8fef 921 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 922 CPU_CORE_FLAGS, 0 },
8a2c8fef 923 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 924 CPU_CORE2_FLAGS, 1 },
8a2c8fef 925 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 926 CPU_CORE2_FLAGS, 0 },
8a2c8fef 927 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 928 CPU_COREI7_FLAGS, 0 },
8a2c8fef 929 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 930 CPU_L1OM_FLAGS, 0 },
7a9068fe 931 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 932 CPU_K1OM_FLAGS, 0 },
81486035 933 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 934 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 935 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 936 CPU_K6_FLAGS, 0 },
8a2c8fef 937 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 938 CPU_K6_2_FLAGS, 0 },
8a2c8fef 939 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 940 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 941 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 942 CPU_K8_FLAGS, 1 },
8a2c8fef 943 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 944 CPU_K8_FLAGS, 0 },
8a2c8fef 945 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 946 CPU_K8_FLAGS, 0 },
8a2c8fef 947 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 948 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 949 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 950 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 951 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 952 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 953 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 954 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 955 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 956 CPU_BDVER4_FLAGS, 0 },
029f3522 957 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 958 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
959 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
960 CPU_ZNVER2_FLAGS, 0 },
7b458c12 961 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 962 CPU_BTVER1_FLAGS, 0 },
7b458c12 963 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 964 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 965 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 966 CPU_8087_FLAGS, 0 },
8a2c8fef 967 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 968 CPU_287_FLAGS, 0 },
8a2c8fef 969 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 970 CPU_387_FLAGS, 0 },
1848e567
L
971 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
972 CPU_687_FLAGS, 0 },
d871f3f4
L
973 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
974 CPU_CMOV_FLAGS, 0 },
975 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
976 CPU_FXSR_FLAGS, 0 },
8a2c8fef 977 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 978 CPU_MMX_FLAGS, 0 },
8a2c8fef 979 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 980 CPU_SSE_FLAGS, 0 },
8a2c8fef 981 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 982 CPU_SSE2_FLAGS, 0 },
8a2c8fef 983 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 984 CPU_SSE3_FLAGS, 0 },
8a2c8fef 985 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 986 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 987 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 988 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 989 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 990 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 991 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 992 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 993 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 994 CPU_AVX_FLAGS, 0 },
6c30d220 995 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 996 CPU_AVX2_FLAGS, 0 },
43234a1e 997 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 998 CPU_AVX512F_FLAGS, 0 },
43234a1e 999 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 1000 CPU_AVX512CD_FLAGS, 0 },
43234a1e 1001 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 1002 CPU_AVX512ER_FLAGS, 0 },
43234a1e 1003 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 1004 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 1005 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 1006 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 1007 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 1008 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 1009 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 1010 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 1011 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 1012 CPU_VMX_FLAGS, 0 },
8729a6f6 1013 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 1014 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 1015 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 1016 CPU_SMX_FLAGS, 0 },
8a2c8fef 1017 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 1018 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 1019 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 1020 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 1021 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 1022 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 1023 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 1024 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 1025 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 1026 CPU_AES_FLAGS, 0 },
8a2c8fef 1027 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 1028 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 1029 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 1030 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 1031 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 1032 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 1033 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 1034 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 1035 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 1036 CPU_F16C_FLAGS, 0 },
6c30d220 1037 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 1038 CPU_BMI2_FLAGS, 0 },
8a2c8fef 1039 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 1040 CPU_FMA_FLAGS, 0 },
8a2c8fef 1041 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 1042 CPU_FMA4_FLAGS, 0 },
8a2c8fef 1043 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 1044 CPU_XOP_FLAGS, 0 },
8a2c8fef 1045 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 1046 CPU_LWP_FLAGS, 0 },
8a2c8fef 1047 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 1048 CPU_MOVBE_FLAGS, 0 },
60aa667e 1049 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 1050 CPU_CX16_FLAGS, 0 },
8a2c8fef 1051 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 1052 CPU_EPT_FLAGS, 0 },
6c30d220 1053 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 1054 CPU_LZCNT_FLAGS, 0 },
42164a71 1055 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 1056 CPU_HLE_FLAGS, 0 },
42164a71 1057 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 1058 CPU_RTM_FLAGS, 0 },
6c30d220 1059 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 1060 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 1061 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 1062 CPU_CLFLUSH_FLAGS, 0 },
22109423 1063 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 1064 CPU_NOP_FLAGS, 0 },
8a2c8fef 1065 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 1066 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 1067 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 1068 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 1069 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 1070 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 1071 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 1072 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 1073 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 1074 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 1075 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 1076 CPU_SVME_FLAGS, 1 },
8a2c8fef 1077 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 1078 CPU_SVME_FLAGS, 0 },
8a2c8fef 1079 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 1080 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 1081 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 1082 CPU_ABM_FLAGS, 0 },
87973e9f 1083 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 1084 CPU_BMI_FLAGS, 0 },
2a2a0f38 1085 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 1086 CPU_TBM_FLAGS, 0 },
e2e1fcde 1087 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 1088 CPU_ADX_FLAGS, 0 },
e2e1fcde 1089 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 1090 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 1091 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 1092 CPU_PRFCHW_FLAGS, 0 },
5c111e37 1093 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 1094 CPU_SMAP_FLAGS, 0 },
7e8b059b 1095 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 1096 CPU_MPX_FLAGS, 0 },
a0046408 1097 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 1098 CPU_SHA_FLAGS, 0 },
963f3586 1099 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 1100 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 1101 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 1102 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 1103 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 1104 CPU_SE1_FLAGS, 0 },
c5e7287a 1105 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 1106 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 1107 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 1108 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 1109 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 1110 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
1111 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1112 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
1113 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1114 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1115 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1116 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1117 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1118 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1119 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1120 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1121 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1122 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1123 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1124 CPU_CLZERO_FLAGS, 0 },
9916071f 1125 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1126 CPU_MWAITX_FLAGS, 0 },
8eab4136 1127 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1128 CPU_OSPKE_FLAGS, 0 },
8bc52696 1129 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1130 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1131 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1132 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1133 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1134 CPU_IBT_FLAGS, 0 },
1135 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1136 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1137 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1138 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1139 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1140 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1141 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1142 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1143 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1144 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1145 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1146 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1147 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1148 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1149 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1150 CPU_CLDEMOTE_FLAGS, 0 },
c0a30a9f
L
1151 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1152 CPU_MOVDIRI_FLAGS, 0 },
1153 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1154 CPU_MOVDIR64B_FLAGS, 0 },
d6aab7a1
XG
1155 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1156 CPU_AVX512_BF16_FLAGS, 0 },
9186c494
L
1157 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1158 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
dd455cf5
L
1159 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1160 CPU_ENQCMD_FLAGS, 0 },
142861df
JB
1161 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1162 CPU_RDPRU_FLAGS, 0 },
1163 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1164 CPU_MCOMMIT_FLAGS, 0 },
293f5f65
L
1165};
1166
1167static const noarch_entry cpu_noarch[] =
1168{
1169 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1170 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1171 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1172 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
d871f3f4
L
1173 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1174 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
293f5f65
L
1175 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1176 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1177 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1178 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1179 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1180 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1181 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1182 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1183 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1184 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1185 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1186 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1187 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1188 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1189 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1190 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1191 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1192 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1193 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1194 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1195 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1196 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1197 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1198 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1199 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1200 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1201 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
c0a30a9f
L
1202 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1203 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
d6aab7a1 1204 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
9186c494 1205 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
dd455cf5 1206 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
e413e4e9
AM
1207};
1208
704209c0 1209#ifdef I386COFF
a6c24e68
NC
1210/* Like s_lcomm_internal in gas/read.c but the alignment string
1211 is allowed to be optional. */
1212
1213static symbolS *
1214pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1215{
1216 addressT align = 0;
1217
1218 SKIP_WHITESPACE ();
1219
7ab9ffdd 1220 if (needs_align
a6c24e68
NC
1221 && *input_line_pointer == ',')
1222 {
1223 align = parse_align (needs_align - 1);
7ab9ffdd 1224
a6c24e68
NC
1225 if (align == (addressT) -1)
1226 return NULL;
1227 }
1228 else
1229 {
1230 if (size >= 8)
1231 align = 3;
1232 else if (size >= 4)
1233 align = 2;
1234 else if (size >= 2)
1235 align = 1;
1236 else
1237 align = 0;
1238 }
1239
1240 bss_alloc (symbolP, size, align);
1241 return symbolP;
1242}
1243
704209c0 1244static void
a6c24e68
NC
1245pe_lcomm (int needs_align)
1246{
1247 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1248}
704209c0 1249#endif
a6c24e68 1250
29b0f896
AM
1251const pseudo_typeS md_pseudo_table[] =
1252{
1253#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1254 {"align", s_align_bytes, 0},
1255#else
1256 {"align", s_align_ptwo, 0},
1257#endif
1258 {"arch", set_cpu_arch, 0},
1259#ifndef I386COFF
1260 {"bss", s_bss, 0},
a6c24e68
NC
1261#else
1262 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1263#endif
1264 {"ffloat", float_cons, 'f'},
1265 {"dfloat", float_cons, 'd'},
1266 {"tfloat", float_cons, 'x'},
1267 {"value", cons, 2},
d182319b 1268 {"slong", signed_cons, 4},
29b0f896
AM
1269 {"noopt", s_ignore, 0},
1270 {"optim", s_ignore, 0},
1271 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1272 {"code16", set_code_flag, CODE_16BIT},
1273 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1274#ifdef BFD64
29b0f896 1275 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1276#endif
29b0f896
AM
1277 {"intel_syntax", set_intel_syntax, 1},
1278 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1279 {"intel_mnemonic", set_intel_mnemonic, 1},
1280 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1281 {"allow_index_reg", set_allow_index_reg, 1},
1282 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1283 {"sse_check", set_check, 0},
1284 {"operand_check", set_check, 1},
3b22753a
L
1285#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1286 {"largecomm", handle_large_common, 0},
07a53e5c 1287#else
68d20676 1288 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1289 {"loc", dwarf2_directive_loc, 0},
1290 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1291#endif
6482c264
NC
1292#ifdef TE_PE
1293 {"secrel32", pe_directive_secrel, 0},
1294#endif
29b0f896
AM
1295 {0, 0, 0}
1296};
1297
1298/* For interface with expression (). */
1299extern char *input_line_pointer;
1300
1301/* Hash table for instruction mnemonic lookup. */
1302static struct hash_control *op_hash;
1303
1304/* Hash table for register lookup. */
1305static struct hash_control *reg_hash;
1306\f
ce8a8b2f
AM
1307 /* Various efficient no-op patterns for aligning code labels.
1308 Note: Don't try to assemble the instructions in the comments.
1309 0L and 0w are not legal. */
62a02d25
L
1310static const unsigned char f32_1[] =
1311 {0x90}; /* nop */
1312static const unsigned char f32_2[] =
1313 {0x66,0x90}; /* xchg %ax,%ax */
1314static const unsigned char f32_3[] =
1315 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1316static const unsigned char f32_4[] =
1317 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1318static const unsigned char f32_6[] =
1319 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1320static const unsigned char f32_7[] =
1321 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1322static const unsigned char f16_3[] =
3ae729d5 1323 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1324static const unsigned char f16_4[] =
3ae729d5
L
1325 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1326static const unsigned char jump_disp8[] =
1327 {0xeb}; /* jmp disp8 */
1328static const unsigned char jump32_disp32[] =
1329 {0xe9}; /* jmp disp32 */
1330static const unsigned char jump16_disp32[] =
1331 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1332/* 32-bit NOPs patterns. */
1333static const unsigned char *const f32_patt[] = {
3ae729d5 1334 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1335};
1336/* 16-bit NOPs patterns. */
1337static const unsigned char *const f16_patt[] = {
3ae729d5 1338 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1339};
1340/* nopl (%[re]ax) */
1341static const unsigned char alt_3[] =
1342 {0x0f,0x1f,0x00};
1343/* nopl 0(%[re]ax) */
1344static const unsigned char alt_4[] =
1345 {0x0f,0x1f,0x40,0x00};
1346/* nopl 0(%[re]ax,%[re]ax,1) */
1347static const unsigned char alt_5[] =
1348 {0x0f,0x1f,0x44,0x00,0x00};
1349/* nopw 0(%[re]ax,%[re]ax,1) */
1350static const unsigned char alt_6[] =
1351 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1352/* nopl 0L(%[re]ax) */
1353static const unsigned char alt_7[] =
1354 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1355/* nopl 0L(%[re]ax,%[re]ax,1) */
1356static const unsigned char alt_8[] =
1357 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1358/* nopw 0L(%[re]ax,%[re]ax,1) */
1359static const unsigned char alt_9[] =
1360 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1361/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1362static const unsigned char alt_10[] =
1363 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1364/* data16 nopw %cs:0L(%eax,%eax,1) */
1365static const unsigned char alt_11[] =
1366 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1367/* 32-bit and 64-bit NOPs patterns. */
1368static const unsigned char *const alt_patt[] = {
1369 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1370 alt_9, alt_10, alt_11
62a02d25
L
1371};
1372
1373/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1374 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1375
1376static void
1377i386_output_nops (char *where, const unsigned char *const *patt,
1378 int count, int max_single_nop_size)
1379
1380{
3ae729d5
L
1381 /* Place the longer NOP first. */
1382 int last;
1383 int offset;
3076e594
NC
1384 const unsigned char *nops;
1385
1386 if (max_single_nop_size < 1)
1387 {
1388 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1389 max_single_nop_size);
1390 return;
1391 }
1392
1393 nops = patt[max_single_nop_size - 1];
3ae729d5
L
1394
1395 /* Use the smaller one if the requsted one isn't available. */
1396 if (nops == NULL)
62a02d25 1397 {
3ae729d5
L
1398 max_single_nop_size--;
1399 nops = patt[max_single_nop_size - 1];
62a02d25
L
1400 }
1401
3ae729d5
L
1402 last = count % max_single_nop_size;
1403
1404 count -= last;
1405 for (offset = 0; offset < count; offset += max_single_nop_size)
1406 memcpy (where + offset, nops, max_single_nop_size);
1407
1408 if (last)
1409 {
1410 nops = patt[last - 1];
1411 if (nops == NULL)
1412 {
1413 /* Use the smaller one plus one-byte NOP if the needed one
1414 isn't available. */
1415 last--;
1416 nops = patt[last - 1];
1417 memcpy (where + offset, nops, last);
1418 where[offset + last] = *patt[0];
1419 }
1420 else
1421 memcpy (where + offset, nops, last);
1422 }
62a02d25
L
1423}
1424
3ae729d5
L
1425static INLINE int
1426fits_in_imm7 (offsetT num)
1427{
1428 return (num & 0x7f) == num;
1429}
1430
1431static INLINE int
1432fits_in_imm31 (offsetT num)
1433{
1434 return (num & 0x7fffffff) == num;
1435}
62a02d25
L
1436
1437/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1438 single NOP instruction LIMIT. */
1439
1440void
3ae729d5 1441i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1442{
3ae729d5 1443 const unsigned char *const *patt = NULL;
62a02d25 1444 int max_single_nop_size;
3ae729d5
L
1445 /* Maximum number of NOPs before switching to jump over NOPs. */
1446 int max_number_of_nops;
62a02d25 1447
3ae729d5 1448 switch (fragP->fr_type)
62a02d25 1449 {
3ae729d5
L
1450 case rs_fill_nop:
1451 case rs_align_code:
1452 break;
e379e5f3
L
1453 case rs_machine_dependent:
1454 /* Allow NOP padding for jumps and calls. */
1455 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1456 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1457 break;
1458 /* Fall through. */
3ae729d5 1459 default:
62a02d25
L
1460 return;
1461 }
1462
ccc9c027
L
1463 /* We need to decide which NOP sequence to use for 32bit and
1464 64bit. When -mtune= is used:
4eed87de 1465
76bc74dc
L
1466 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1467 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1468 2. For the rest, alt_patt will be used.
1469
1470 When -mtune= isn't used, alt_patt will be used if
22109423 1471 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1472 be used.
ccc9c027
L
1473
1474 When -march= or .arch is used, we can't use anything beyond
1475 cpu_arch_isa_flags. */
1476
1477 if (flag_code == CODE_16BIT)
1478 {
3ae729d5
L
1479 patt = f16_patt;
1480 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1481 /* Limit number of NOPs to 2 in 16-bit mode. */
1482 max_number_of_nops = 2;
252b5132 1483 }
33fef721 1484 else
ccc9c027 1485 {
fbf3f584 1486 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1487 {
1488 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1489 switch (cpu_arch_tune)
1490 {
1491 case PROCESSOR_UNKNOWN:
1492 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1493 optimize with nops. */
1494 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1495 patt = alt_patt;
ccc9c027
L
1496 else
1497 patt = f32_patt;
1498 break;
ccc9c027
L
1499 case PROCESSOR_PENTIUM4:
1500 case PROCESSOR_NOCONA:
ef05d495 1501 case PROCESSOR_CORE:
76bc74dc 1502 case PROCESSOR_CORE2:
bd5295b2 1503 case PROCESSOR_COREI7:
3632d14b 1504 case PROCESSOR_L1OM:
7a9068fe 1505 case PROCESSOR_K1OM:
76bc74dc 1506 case PROCESSOR_GENERIC64:
ccc9c027
L
1507 case PROCESSOR_K6:
1508 case PROCESSOR_ATHLON:
1509 case PROCESSOR_K8:
4eed87de 1510 case PROCESSOR_AMDFAM10:
8aedb9fe 1511 case PROCESSOR_BD:
029f3522 1512 case PROCESSOR_ZNVER:
7b458c12 1513 case PROCESSOR_BT:
80b8656c 1514 patt = alt_patt;
ccc9c027 1515 break;
76bc74dc 1516 case PROCESSOR_I386:
ccc9c027
L
1517 case PROCESSOR_I486:
1518 case PROCESSOR_PENTIUM:
2dde1948 1519 case PROCESSOR_PENTIUMPRO:
81486035 1520 case PROCESSOR_IAMCU:
ccc9c027
L
1521 case PROCESSOR_GENERIC32:
1522 patt = f32_patt;
1523 break;
4eed87de 1524 }
ccc9c027
L
1525 }
1526 else
1527 {
fbf3f584 1528 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1529 {
1530 case PROCESSOR_UNKNOWN:
e6a14101 1531 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1532 PROCESSOR_UNKNOWN. */
1533 abort ();
1534 break;
1535
76bc74dc 1536 case PROCESSOR_I386:
ccc9c027
L
1537 case PROCESSOR_I486:
1538 case PROCESSOR_PENTIUM:
81486035 1539 case PROCESSOR_IAMCU:
ccc9c027
L
1540 case PROCESSOR_K6:
1541 case PROCESSOR_ATHLON:
1542 case PROCESSOR_K8:
4eed87de 1543 case PROCESSOR_AMDFAM10:
8aedb9fe 1544 case PROCESSOR_BD:
029f3522 1545 case PROCESSOR_ZNVER:
7b458c12 1546 case PROCESSOR_BT:
ccc9c027
L
1547 case PROCESSOR_GENERIC32:
1548 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1549 with nops. */
1550 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1551 patt = alt_patt;
ccc9c027
L
1552 else
1553 patt = f32_patt;
1554 break;
76bc74dc
L
1555 case PROCESSOR_PENTIUMPRO:
1556 case PROCESSOR_PENTIUM4:
1557 case PROCESSOR_NOCONA:
1558 case PROCESSOR_CORE:
ef05d495 1559 case PROCESSOR_CORE2:
bd5295b2 1560 case PROCESSOR_COREI7:
3632d14b 1561 case PROCESSOR_L1OM:
7a9068fe 1562 case PROCESSOR_K1OM:
22109423 1563 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1564 patt = alt_patt;
ccc9c027
L
1565 else
1566 patt = f32_patt;
1567 break;
1568 case PROCESSOR_GENERIC64:
80b8656c 1569 patt = alt_patt;
ccc9c027 1570 break;
4eed87de 1571 }
ccc9c027
L
1572 }
1573
76bc74dc
L
1574 if (patt == f32_patt)
1575 {
3ae729d5
L
1576 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1577 /* Limit number of NOPs to 2 for older processors. */
1578 max_number_of_nops = 2;
76bc74dc
L
1579 }
1580 else
1581 {
3ae729d5
L
1582 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1583 /* Limit number of NOPs to 7 for newer processors. */
1584 max_number_of_nops = 7;
1585 }
1586 }
1587
1588 if (limit == 0)
1589 limit = max_single_nop_size;
1590
1591 if (fragP->fr_type == rs_fill_nop)
1592 {
1593 /* Output NOPs for .nop directive. */
1594 if (limit > max_single_nop_size)
1595 {
1596 as_bad_where (fragP->fr_file, fragP->fr_line,
1597 _("invalid single nop size: %d "
1598 "(expect within [0, %d])"),
1599 limit, max_single_nop_size);
1600 return;
1601 }
1602 }
e379e5f3 1603 else if (fragP->fr_type != rs_machine_dependent)
3ae729d5
L
1604 fragP->fr_var = count;
1605
1606 if ((count / max_single_nop_size) > max_number_of_nops)
1607 {
1608 /* Generate jump over NOPs. */
1609 offsetT disp = count - 2;
1610 if (fits_in_imm7 (disp))
1611 {
1612 /* Use "jmp disp8" if possible. */
1613 count = disp;
1614 where[0] = jump_disp8[0];
1615 where[1] = count;
1616 where += 2;
1617 }
1618 else
1619 {
1620 unsigned int size_of_jump;
1621
1622 if (flag_code == CODE_16BIT)
1623 {
1624 where[0] = jump16_disp32[0];
1625 where[1] = jump16_disp32[1];
1626 size_of_jump = 2;
1627 }
1628 else
1629 {
1630 where[0] = jump32_disp32[0];
1631 size_of_jump = 1;
1632 }
1633
1634 count -= size_of_jump + 4;
1635 if (!fits_in_imm31 (count))
1636 {
1637 as_bad_where (fragP->fr_file, fragP->fr_line,
1638 _("jump over nop padding out of range"));
1639 return;
1640 }
1641
1642 md_number_to_chars (where + size_of_jump, count, 4);
1643 where += size_of_jump + 4;
76bc74dc 1644 }
ccc9c027 1645 }
3ae729d5
L
1646
1647 /* Generate multiple NOPs. */
1648 i386_output_nops (where, patt, count, limit);
252b5132
RH
1649}
1650
c6fb90c8 1651static INLINE int
0dfbf9d7 1652operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1653{
0dfbf9d7 1654 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1655 {
1656 case 3:
0dfbf9d7 1657 if (x->array[2])
c6fb90c8 1658 return 0;
1a0670f3 1659 /* Fall through. */
c6fb90c8 1660 case 2:
0dfbf9d7 1661 if (x->array[1])
c6fb90c8 1662 return 0;
1a0670f3 1663 /* Fall through. */
c6fb90c8 1664 case 1:
0dfbf9d7 1665 return !x->array[0];
c6fb90c8
L
1666 default:
1667 abort ();
1668 }
40fb9820
L
1669}
1670
c6fb90c8 1671static INLINE void
0dfbf9d7 1672operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1673{
0dfbf9d7 1674 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1675 {
1676 case 3:
0dfbf9d7 1677 x->array[2] = v;
1a0670f3 1678 /* Fall through. */
c6fb90c8 1679 case 2:
0dfbf9d7 1680 x->array[1] = v;
1a0670f3 1681 /* Fall through. */
c6fb90c8 1682 case 1:
0dfbf9d7 1683 x->array[0] = v;
1a0670f3 1684 /* Fall through. */
c6fb90c8
L
1685 break;
1686 default:
1687 abort ();
1688 }
bab6aec1
JB
1689
1690 x->bitfield.class = ClassNone;
75e5731b 1691 x->bitfield.instance = InstanceNone;
c6fb90c8 1692}
40fb9820 1693
c6fb90c8 1694static INLINE int
0dfbf9d7
L
1695operand_type_equal (const union i386_operand_type *x,
1696 const union i386_operand_type *y)
c6fb90c8 1697{
0dfbf9d7 1698 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1699 {
1700 case 3:
0dfbf9d7 1701 if (x->array[2] != y->array[2])
c6fb90c8 1702 return 0;
1a0670f3 1703 /* Fall through. */
c6fb90c8 1704 case 2:
0dfbf9d7 1705 if (x->array[1] != y->array[1])
c6fb90c8 1706 return 0;
1a0670f3 1707 /* Fall through. */
c6fb90c8 1708 case 1:
0dfbf9d7 1709 return x->array[0] == y->array[0];
c6fb90c8
L
1710 break;
1711 default:
1712 abort ();
1713 }
1714}
40fb9820 1715
0dfbf9d7
L
1716static INLINE int
1717cpu_flags_all_zero (const union i386_cpu_flags *x)
1718{
1719 switch (ARRAY_SIZE(x->array))
1720 {
53467f57
IT
1721 case 4:
1722 if (x->array[3])
1723 return 0;
1724 /* Fall through. */
0dfbf9d7
L
1725 case 3:
1726 if (x->array[2])
1727 return 0;
1a0670f3 1728 /* Fall through. */
0dfbf9d7
L
1729 case 2:
1730 if (x->array[1])
1731 return 0;
1a0670f3 1732 /* Fall through. */
0dfbf9d7
L
1733 case 1:
1734 return !x->array[0];
1735 default:
1736 abort ();
1737 }
1738}
1739
0dfbf9d7
L
1740static INLINE int
1741cpu_flags_equal (const union i386_cpu_flags *x,
1742 const union i386_cpu_flags *y)
1743{
1744 switch (ARRAY_SIZE(x->array))
1745 {
53467f57
IT
1746 case 4:
1747 if (x->array[3] != y->array[3])
1748 return 0;
1749 /* Fall through. */
0dfbf9d7
L
1750 case 3:
1751 if (x->array[2] != y->array[2])
1752 return 0;
1a0670f3 1753 /* Fall through. */
0dfbf9d7
L
1754 case 2:
1755 if (x->array[1] != y->array[1])
1756 return 0;
1a0670f3 1757 /* Fall through. */
0dfbf9d7
L
1758 case 1:
1759 return x->array[0] == y->array[0];
1760 break;
1761 default:
1762 abort ();
1763 }
1764}
c6fb90c8
L
1765
1766static INLINE int
1767cpu_flags_check_cpu64 (i386_cpu_flags f)
1768{
1769 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1770 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1771}
1772
c6fb90c8
L
1773static INLINE i386_cpu_flags
1774cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1775{
c6fb90c8
L
1776 switch (ARRAY_SIZE (x.array))
1777 {
53467f57
IT
1778 case 4:
1779 x.array [3] &= y.array [3];
1780 /* Fall through. */
c6fb90c8
L
1781 case 3:
1782 x.array [2] &= y.array [2];
1a0670f3 1783 /* Fall through. */
c6fb90c8
L
1784 case 2:
1785 x.array [1] &= y.array [1];
1a0670f3 1786 /* Fall through. */
c6fb90c8
L
1787 case 1:
1788 x.array [0] &= y.array [0];
1789 break;
1790 default:
1791 abort ();
1792 }
1793 return x;
1794}
40fb9820 1795
c6fb90c8
L
1796static INLINE i386_cpu_flags
1797cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1798{
c6fb90c8 1799 switch (ARRAY_SIZE (x.array))
40fb9820 1800 {
53467f57
IT
1801 case 4:
1802 x.array [3] |= y.array [3];
1803 /* Fall through. */
c6fb90c8
L
1804 case 3:
1805 x.array [2] |= y.array [2];
1a0670f3 1806 /* Fall through. */
c6fb90c8
L
1807 case 2:
1808 x.array [1] |= y.array [1];
1a0670f3 1809 /* Fall through. */
c6fb90c8
L
1810 case 1:
1811 x.array [0] |= y.array [0];
40fb9820
L
1812 break;
1813 default:
1814 abort ();
1815 }
40fb9820
L
1816 return x;
1817}
1818
309d3373
JB
1819static INLINE i386_cpu_flags
1820cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1821{
1822 switch (ARRAY_SIZE (x.array))
1823 {
53467f57
IT
1824 case 4:
1825 x.array [3] &= ~y.array [3];
1826 /* Fall through. */
309d3373
JB
1827 case 3:
1828 x.array [2] &= ~y.array [2];
1a0670f3 1829 /* Fall through. */
309d3373
JB
1830 case 2:
1831 x.array [1] &= ~y.array [1];
1a0670f3 1832 /* Fall through. */
309d3373
JB
1833 case 1:
1834 x.array [0] &= ~y.array [0];
1835 break;
1836 default:
1837 abort ();
1838 }
1839 return x;
1840}
1841
c0f3af97
L
1842#define CPU_FLAGS_ARCH_MATCH 0x1
1843#define CPU_FLAGS_64BIT_MATCH 0x2
1844
c0f3af97 1845#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1846 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1847
1848/* Return CPU flags match bits. */
3629bb00 1849
40fb9820 1850static int
d3ce72d0 1851cpu_flags_match (const insn_template *t)
40fb9820 1852{
c0f3af97
L
1853 i386_cpu_flags x = t->cpu_flags;
1854 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1855
1856 x.bitfield.cpu64 = 0;
1857 x.bitfield.cpuno64 = 0;
1858
0dfbf9d7 1859 if (cpu_flags_all_zero (&x))
c0f3af97
L
1860 {
1861 /* This instruction is available on all archs. */
db12e14e 1862 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1863 }
3629bb00
L
1864 else
1865 {
c0f3af97 1866 /* This instruction is available only on some archs. */
3629bb00
L
1867 i386_cpu_flags cpu = cpu_arch_flags;
1868
ab592e75
JB
1869 /* AVX512VL is no standalone feature - match it and then strip it. */
1870 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1871 return match;
1872 x.bitfield.cpuavx512vl = 0;
1873
3629bb00 1874 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1875 if (!cpu_flags_all_zero (&cpu))
1876 {
a5ff0eb2
L
1877 if (x.bitfield.cpuavx)
1878 {
929f69fa 1879 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1880 if (cpu.bitfield.cpuavx
1881 && (!t->opcode_modifier.sse2avx || sse2avx)
1882 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1883 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1884 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1885 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1886 }
929f69fa
JB
1887 else if (x.bitfield.cpuavx512f)
1888 {
1889 /* We need to check a few extra flags with AVX512F. */
1890 if (cpu.bitfield.cpuavx512f
1891 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1892 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1893 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1894 match |= CPU_FLAGS_ARCH_MATCH;
1895 }
a5ff0eb2 1896 else
db12e14e 1897 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1898 }
3629bb00 1899 }
c0f3af97 1900 return match;
40fb9820
L
1901}
1902
c6fb90c8
L
1903static INLINE i386_operand_type
1904operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1905{
bab6aec1
JB
1906 if (x.bitfield.class != y.bitfield.class)
1907 x.bitfield.class = ClassNone;
75e5731b
JB
1908 if (x.bitfield.instance != y.bitfield.instance)
1909 x.bitfield.instance = InstanceNone;
bab6aec1 1910
c6fb90c8
L
1911 switch (ARRAY_SIZE (x.array))
1912 {
1913 case 3:
1914 x.array [2] &= y.array [2];
1a0670f3 1915 /* Fall through. */
c6fb90c8
L
1916 case 2:
1917 x.array [1] &= y.array [1];
1a0670f3 1918 /* Fall through. */
c6fb90c8
L
1919 case 1:
1920 x.array [0] &= y.array [0];
1921 break;
1922 default:
1923 abort ();
1924 }
1925 return x;
40fb9820
L
1926}
1927
73053c1f
JB
1928static INLINE i386_operand_type
1929operand_type_and_not (i386_operand_type x, i386_operand_type y)
1930{
bab6aec1 1931 gas_assert (y.bitfield.class == ClassNone);
75e5731b 1932 gas_assert (y.bitfield.instance == InstanceNone);
bab6aec1 1933
73053c1f
JB
1934 switch (ARRAY_SIZE (x.array))
1935 {
1936 case 3:
1937 x.array [2] &= ~y.array [2];
1938 /* Fall through. */
1939 case 2:
1940 x.array [1] &= ~y.array [1];
1941 /* Fall through. */
1942 case 1:
1943 x.array [0] &= ~y.array [0];
1944 break;
1945 default:
1946 abort ();
1947 }
1948 return x;
1949}
1950
c6fb90c8
L
1951static INLINE i386_operand_type
1952operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1953{
bab6aec1
JB
1954 gas_assert (x.bitfield.class == ClassNone ||
1955 y.bitfield.class == ClassNone ||
1956 x.bitfield.class == y.bitfield.class);
75e5731b
JB
1957 gas_assert (x.bitfield.instance == InstanceNone ||
1958 y.bitfield.instance == InstanceNone ||
1959 x.bitfield.instance == y.bitfield.instance);
bab6aec1 1960
c6fb90c8 1961 switch (ARRAY_SIZE (x.array))
40fb9820 1962 {
c6fb90c8
L
1963 case 3:
1964 x.array [2] |= y.array [2];
1a0670f3 1965 /* Fall through. */
c6fb90c8
L
1966 case 2:
1967 x.array [1] |= y.array [1];
1a0670f3 1968 /* Fall through. */
c6fb90c8
L
1969 case 1:
1970 x.array [0] |= y.array [0];
40fb9820
L
1971 break;
1972 default:
1973 abort ();
1974 }
c6fb90c8
L
1975 return x;
1976}
40fb9820 1977
c6fb90c8
L
1978static INLINE i386_operand_type
1979operand_type_xor (i386_operand_type x, i386_operand_type y)
1980{
bab6aec1 1981 gas_assert (y.bitfield.class == ClassNone);
75e5731b 1982 gas_assert (y.bitfield.instance == InstanceNone);
bab6aec1 1983
c6fb90c8
L
1984 switch (ARRAY_SIZE (x.array))
1985 {
1986 case 3:
1987 x.array [2] ^= y.array [2];
1a0670f3 1988 /* Fall through. */
c6fb90c8
L
1989 case 2:
1990 x.array [1] ^= y.array [1];
1a0670f3 1991 /* Fall through. */
c6fb90c8
L
1992 case 1:
1993 x.array [0] ^= y.array [0];
1994 break;
1995 default:
1996 abort ();
1997 }
40fb9820
L
1998 return x;
1999}
2000
40fb9820
L
2001static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
2002static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
2003static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
2004static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
bab6aec1
JB
2005static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
2006static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
40fb9820 2007static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 2008static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
2009static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
2010static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
2011static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
2012static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
2013static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
2014static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
2015static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
2016static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
2017static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
2018
2019enum operand_type
2020{
2021 reg,
40fb9820
L
2022 imm,
2023 disp,
2024 anymem
2025};
2026
c6fb90c8 2027static INLINE int
40fb9820
L
2028operand_type_check (i386_operand_type t, enum operand_type c)
2029{
2030 switch (c)
2031 {
2032 case reg:
bab6aec1 2033 return t.bitfield.class == Reg;
40fb9820 2034
40fb9820
L
2035 case imm:
2036 return (t.bitfield.imm8
2037 || t.bitfield.imm8s
2038 || t.bitfield.imm16
2039 || t.bitfield.imm32
2040 || t.bitfield.imm32s
2041 || t.bitfield.imm64);
2042
2043 case disp:
2044 return (t.bitfield.disp8
2045 || t.bitfield.disp16
2046 || t.bitfield.disp32
2047 || t.bitfield.disp32s
2048 || t.bitfield.disp64);
2049
2050 case anymem:
2051 return (t.bitfield.disp8
2052 || t.bitfield.disp16
2053 || t.bitfield.disp32
2054 || t.bitfield.disp32s
2055 || t.bitfield.disp64
2056 || t.bitfield.baseindex);
2057
2058 default:
2059 abort ();
2060 }
2cfe26b6
AM
2061
2062 return 0;
40fb9820
L
2063}
2064
7a54636a
L
2065/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2066 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
2067
2068static INLINE int
7a54636a
L
2069match_operand_size (const insn_template *t, unsigned int wanted,
2070 unsigned int given)
5c07affc 2071{
3ac21baa
JB
2072 return !((i.types[given].bitfield.byte
2073 && !t->operand_types[wanted].bitfield.byte)
2074 || (i.types[given].bitfield.word
2075 && !t->operand_types[wanted].bitfield.word)
2076 || (i.types[given].bitfield.dword
2077 && !t->operand_types[wanted].bitfield.dword)
2078 || (i.types[given].bitfield.qword
2079 && !t->operand_types[wanted].bitfield.qword)
2080 || (i.types[given].bitfield.tbyte
2081 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
2082}
2083
dd40ce22
L
2084/* Return 1 if there is no conflict in SIMD register between operand
2085 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
2086
2087static INLINE int
dd40ce22
L
2088match_simd_size (const insn_template *t, unsigned int wanted,
2089 unsigned int given)
1b54b8d7 2090{
3ac21baa
JB
2091 return !((i.types[given].bitfield.xmmword
2092 && !t->operand_types[wanted].bitfield.xmmword)
2093 || (i.types[given].bitfield.ymmword
2094 && !t->operand_types[wanted].bitfield.ymmword)
2095 || (i.types[given].bitfield.zmmword
2096 && !t->operand_types[wanted].bitfield.zmmword));
1b54b8d7
JB
2097}
2098
7a54636a
L
2099/* Return 1 if there is no conflict in any size between operand GIVEN
2100 and opeand WANTED for instruction template T. */
5c07affc
L
2101
2102static INLINE int
dd40ce22
L
2103match_mem_size (const insn_template *t, unsigned int wanted,
2104 unsigned int given)
5c07affc 2105{
7a54636a 2106 return (match_operand_size (t, wanted, given)
3ac21baa 2107 && !((i.types[given].bitfield.unspecified
af508cb9 2108 && !i.broadcast
3ac21baa
JB
2109 && !t->operand_types[wanted].bitfield.unspecified)
2110 || (i.types[given].bitfield.fword
2111 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
2112 /* For scalar opcode templates to allow register and memory
2113 operands at the same time, some special casing is needed
d6793fa1
JB
2114 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2115 down-conversion vpmov*. */
3528c362 2116 || ((t->operand_types[wanted].bitfield.class == RegSIMD
1b54b8d7 2117 && !t->opcode_modifier.broadcast
3ac21baa
JB
2118 && (t->operand_types[wanted].bitfield.byte
2119 || t->operand_types[wanted].bitfield.word
2120 || t->operand_types[wanted].bitfield.dword
2121 || t->operand_types[wanted].bitfield.qword))
2122 ? (i.types[given].bitfield.xmmword
2123 || i.types[given].bitfield.ymmword
2124 || i.types[given].bitfield.zmmword)
2125 : !match_simd_size(t, wanted, given))));
5c07affc
L
2126}
2127
3ac21baa
JB
2128/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2129 operands for instruction template T, and it has MATCH_REVERSE set if there
2130 is no size conflict on any operands for the template with operands reversed
2131 (and the template allows for reversing in the first place). */
5c07affc 2132
3ac21baa
JB
2133#define MATCH_STRAIGHT 1
2134#define MATCH_REVERSE 2
2135
2136static INLINE unsigned int
d3ce72d0 2137operand_size_match (const insn_template *t)
5c07affc 2138{
3ac21baa 2139 unsigned int j, match = MATCH_STRAIGHT;
5c07affc 2140
0cfa3eb3 2141 /* Don't check non-absolute jump instructions. */
5c07affc 2142 if (t->opcode_modifier.jump
0cfa3eb3 2143 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
5c07affc
L
2144 return match;
2145
2146 /* Check memory and accumulator operand size. */
2147 for (j = 0; j < i.operands; j++)
2148 {
3528c362
JB
2149 if (i.types[j].bitfield.class != Reg
2150 && i.types[j].bitfield.class != RegSIMD
601e8564 2151 && t->opcode_modifier.anysize)
5c07affc
L
2152 continue;
2153
bab6aec1 2154 if (t->operand_types[j].bitfield.class == Reg
7a54636a 2155 && !match_operand_size (t, j, j))
5c07affc
L
2156 {
2157 match = 0;
2158 break;
2159 }
2160
3528c362 2161 if (t->operand_types[j].bitfield.class == RegSIMD
3ac21baa 2162 && !match_simd_size (t, j, j))
1b54b8d7
JB
2163 {
2164 match = 0;
2165 break;
2166 }
2167
75e5731b 2168 if (t->operand_types[j].bitfield.instance == Accum
7a54636a 2169 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2170 {
2171 match = 0;
2172 break;
2173 }
2174
c48dadc9 2175 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
5c07affc
L
2176 {
2177 match = 0;
2178 break;
2179 }
2180 }
2181
3ac21baa 2182 if (!t->opcode_modifier.d)
891edac4
L
2183 {
2184mismatch:
3ac21baa
JB
2185 if (!match)
2186 i.error = operand_size_mismatch;
2187 return match;
891edac4 2188 }
5c07affc
L
2189
2190 /* Check reverse. */
f5eb1d70 2191 gas_assert (i.operands >= 2 && i.operands <= 3);
5c07affc 2192
f5eb1d70 2193 for (j = 0; j < i.operands; j++)
5c07affc 2194 {
f5eb1d70
JB
2195 unsigned int given = i.operands - j - 1;
2196
bab6aec1 2197 if (t->operand_types[j].bitfield.class == Reg
f5eb1d70 2198 && !match_operand_size (t, j, given))
891edac4 2199 goto mismatch;
5c07affc 2200
3528c362 2201 if (t->operand_types[j].bitfield.class == RegSIMD
f5eb1d70 2202 && !match_simd_size (t, j, given))
dbbc8b7e
JB
2203 goto mismatch;
2204
75e5731b 2205 if (t->operand_types[j].bitfield.instance == Accum
f5eb1d70
JB
2206 && (!match_operand_size (t, j, given)
2207 || !match_simd_size (t, j, given)))
dbbc8b7e
JB
2208 goto mismatch;
2209
f5eb1d70 2210 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
891edac4 2211 goto mismatch;
5c07affc
L
2212 }
2213
3ac21baa 2214 return match | MATCH_REVERSE;
5c07affc
L
2215}
2216
c6fb90c8 2217static INLINE int
40fb9820
L
2218operand_type_match (i386_operand_type overlap,
2219 i386_operand_type given)
2220{
2221 i386_operand_type temp = overlap;
2222
7d5e4556 2223 temp.bitfield.unspecified = 0;
5c07affc
L
2224 temp.bitfield.byte = 0;
2225 temp.bitfield.word = 0;
2226 temp.bitfield.dword = 0;
2227 temp.bitfield.fword = 0;
2228 temp.bitfield.qword = 0;
2229 temp.bitfield.tbyte = 0;
2230 temp.bitfield.xmmword = 0;
c0f3af97 2231 temp.bitfield.ymmword = 0;
43234a1e 2232 temp.bitfield.zmmword = 0;
0dfbf9d7 2233 if (operand_type_all_zero (&temp))
891edac4 2234 goto mismatch;
40fb9820 2235
6f2f06be 2236 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
891edac4
L
2237 return 1;
2238
2239mismatch:
a65babc9 2240 i.error = operand_type_mismatch;
891edac4 2241 return 0;
40fb9820
L
2242}
2243
7d5e4556 2244/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2245 unless the expected operand type register overlap is null.
2246 Memory operand size of certain SIMD instructions is also being checked
2247 here. */
40fb9820 2248
c6fb90c8 2249static INLINE int
dc821c5f 2250operand_type_register_match (i386_operand_type g0,
40fb9820 2251 i386_operand_type t0,
40fb9820
L
2252 i386_operand_type g1,
2253 i386_operand_type t1)
2254{
bab6aec1 2255 if (g0.bitfield.class != Reg
3528c362 2256 && g0.bitfield.class != RegSIMD
10c17abd
JB
2257 && (!operand_type_check (g0, anymem)
2258 || g0.bitfield.unspecified
3528c362 2259 || t0.bitfield.class != RegSIMD))
40fb9820
L
2260 return 1;
2261
bab6aec1 2262 if (g1.bitfield.class != Reg
3528c362 2263 && g1.bitfield.class != RegSIMD
10c17abd
JB
2264 && (!operand_type_check (g1, anymem)
2265 || g1.bitfield.unspecified
3528c362 2266 || t1.bitfield.class != RegSIMD))
40fb9820
L
2267 return 1;
2268
dc821c5f
JB
2269 if (g0.bitfield.byte == g1.bitfield.byte
2270 && g0.bitfield.word == g1.bitfield.word
2271 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2272 && g0.bitfield.qword == g1.bitfield.qword
2273 && g0.bitfield.xmmword == g1.bitfield.xmmword
2274 && g0.bitfield.ymmword == g1.bitfield.ymmword
2275 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2276 return 1;
2277
dc821c5f
JB
2278 if (!(t0.bitfield.byte & t1.bitfield.byte)
2279 && !(t0.bitfield.word & t1.bitfield.word)
2280 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2281 && !(t0.bitfield.qword & t1.bitfield.qword)
2282 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2283 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2284 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2285 return 1;
2286
a65babc9 2287 i.error = register_type_mismatch;
891edac4
L
2288
2289 return 0;
40fb9820
L
2290}
2291
4c692bc7
JB
2292static INLINE unsigned int
2293register_number (const reg_entry *r)
2294{
2295 unsigned int nr = r->reg_num;
2296
2297 if (r->reg_flags & RegRex)
2298 nr += 8;
2299
200cbe0f
L
2300 if (r->reg_flags & RegVRex)
2301 nr += 16;
2302
4c692bc7
JB
2303 return nr;
2304}
2305
252b5132 2306static INLINE unsigned int
40fb9820 2307mode_from_disp_size (i386_operand_type t)
252b5132 2308{
b5014f7a 2309 if (t.bitfield.disp8)
40fb9820
L
2310 return 1;
2311 else if (t.bitfield.disp16
2312 || t.bitfield.disp32
2313 || t.bitfield.disp32s)
2314 return 2;
2315 else
2316 return 0;
252b5132
RH
2317}
2318
2319static INLINE int
65879393 2320fits_in_signed_byte (addressT num)
252b5132 2321{
65879393 2322 return num + 0x80 <= 0xff;
47926f60 2323}
252b5132
RH
2324
2325static INLINE int
65879393 2326fits_in_unsigned_byte (addressT num)
252b5132 2327{
65879393 2328 return num <= 0xff;
47926f60 2329}
252b5132
RH
2330
2331static INLINE int
65879393 2332fits_in_unsigned_word (addressT num)
252b5132 2333{
65879393 2334 return num <= 0xffff;
47926f60 2335}
252b5132
RH
2336
2337static INLINE int
65879393 2338fits_in_signed_word (addressT num)
252b5132 2339{
65879393 2340 return num + 0x8000 <= 0xffff;
47926f60 2341}
2a962e6d 2342
3e73aa7c 2343static INLINE int
65879393 2344fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2345{
2346#ifndef BFD64
2347 return 1;
2348#else
65879393 2349 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2350#endif
2351} /* fits_in_signed_long() */
2a962e6d 2352
3e73aa7c 2353static INLINE int
65879393 2354fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2355{
2356#ifndef BFD64
2357 return 1;
2358#else
65879393 2359 return num <= 0xffffffff;
3e73aa7c
JH
2360#endif
2361} /* fits_in_unsigned_long() */
252b5132 2362
43234a1e 2363static INLINE int
b5014f7a 2364fits_in_disp8 (offsetT num)
43234a1e
L
2365{
2366 int shift = i.memshift;
2367 unsigned int mask;
2368
2369 if (shift == -1)
2370 abort ();
2371
2372 mask = (1 << shift) - 1;
2373
2374 /* Return 0 if NUM isn't properly aligned. */
2375 if ((num & mask))
2376 return 0;
2377
2378 /* Check if NUM will fit in 8bit after shift. */
2379 return fits_in_signed_byte (num >> shift);
2380}
2381
a683cc34
SP
2382static INLINE int
2383fits_in_imm4 (offsetT num)
2384{
2385 return (num & 0xf) == num;
2386}
2387
40fb9820 2388static i386_operand_type
e3bb37b5 2389smallest_imm_type (offsetT num)
252b5132 2390{
40fb9820 2391 i386_operand_type t;
7ab9ffdd 2392
0dfbf9d7 2393 operand_type_set (&t, 0);
40fb9820
L
2394 t.bitfield.imm64 = 1;
2395
2396 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2397 {
2398 /* This code is disabled on the 486 because all the Imm1 forms
2399 in the opcode table are slower on the i486. They're the
2400 versions with the implicitly specified single-position
2401 displacement, which has another syntax if you really want to
2402 use that form. */
40fb9820
L
2403 t.bitfield.imm1 = 1;
2404 t.bitfield.imm8 = 1;
2405 t.bitfield.imm8s = 1;
2406 t.bitfield.imm16 = 1;
2407 t.bitfield.imm32 = 1;
2408 t.bitfield.imm32s = 1;
2409 }
2410 else if (fits_in_signed_byte (num))
2411 {
2412 t.bitfield.imm8 = 1;
2413 t.bitfield.imm8s = 1;
2414 t.bitfield.imm16 = 1;
2415 t.bitfield.imm32 = 1;
2416 t.bitfield.imm32s = 1;
2417 }
2418 else if (fits_in_unsigned_byte (num))
2419 {
2420 t.bitfield.imm8 = 1;
2421 t.bitfield.imm16 = 1;
2422 t.bitfield.imm32 = 1;
2423 t.bitfield.imm32s = 1;
2424 }
2425 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2426 {
2427 t.bitfield.imm16 = 1;
2428 t.bitfield.imm32 = 1;
2429 t.bitfield.imm32s = 1;
2430 }
2431 else if (fits_in_signed_long (num))
2432 {
2433 t.bitfield.imm32 = 1;
2434 t.bitfield.imm32s = 1;
2435 }
2436 else if (fits_in_unsigned_long (num))
2437 t.bitfield.imm32 = 1;
2438
2439 return t;
47926f60 2440}
252b5132 2441
847f7ad4 2442static offsetT
e3bb37b5 2443offset_in_range (offsetT val, int size)
847f7ad4 2444{
508866be 2445 addressT mask;
ba2adb93 2446
847f7ad4
AM
2447 switch (size)
2448 {
508866be
L
2449 case 1: mask = ((addressT) 1 << 8) - 1; break;
2450 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2451 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2452#ifdef BFD64
2453 case 8: mask = ((addressT) 2 << 63) - 1; break;
2454#endif
47926f60 2455 default: abort ();
847f7ad4
AM
2456 }
2457
9de868bf
L
2458#ifdef BFD64
2459 /* If BFD64, sign extend val for 32bit address mode. */
2460 if (flag_code != CODE_64BIT
2461 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2462 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2463 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2464#endif
ba2adb93 2465
47926f60 2466 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2467 {
2468 char buf1[40], buf2[40];
2469
2470 sprint_value (buf1, val);
2471 sprint_value (buf2, val & mask);
2472 as_warn (_("%s shortened to %s"), buf1, buf2);
2473 }
2474 return val & mask;
2475}
2476
c32fa91d
L
2477enum PREFIX_GROUP
2478{
2479 PREFIX_EXIST = 0,
2480 PREFIX_LOCK,
2481 PREFIX_REP,
04ef582a 2482 PREFIX_DS,
c32fa91d
L
2483 PREFIX_OTHER
2484};
2485
2486/* Returns
2487 a. PREFIX_EXIST if attempting to add a prefix where one from the
2488 same class already exists.
2489 b. PREFIX_LOCK if lock prefix is added.
2490 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2491 d. PREFIX_DS if ds prefix is added.
2492 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2493 */
2494
2495static enum PREFIX_GROUP
e3bb37b5 2496add_prefix (unsigned int prefix)
252b5132 2497{
c32fa91d 2498 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2499 unsigned int q;
252b5132 2500
29b0f896
AM
2501 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2502 && flag_code == CODE_64BIT)
b1905489 2503 {
161a04f6 2504 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2505 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2506 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2507 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2508 ret = PREFIX_EXIST;
b1905489
JB
2509 q = REX_PREFIX;
2510 }
3e73aa7c 2511 else
b1905489
JB
2512 {
2513 switch (prefix)
2514 {
2515 default:
2516 abort ();
2517
b1905489 2518 case DS_PREFIX_OPCODE:
04ef582a
L
2519 ret = PREFIX_DS;
2520 /* Fall through. */
2521 case CS_PREFIX_OPCODE:
b1905489
JB
2522 case ES_PREFIX_OPCODE:
2523 case FS_PREFIX_OPCODE:
2524 case GS_PREFIX_OPCODE:
2525 case SS_PREFIX_OPCODE:
2526 q = SEG_PREFIX;
2527 break;
2528
2529 case REPNE_PREFIX_OPCODE:
2530 case REPE_PREFIX_OPCODE:
c32fa91d
L
2531 q = REP_PREFIX;
2532 ret = PREFIX_REP;
2533 break;
2534
b1905489 2535 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2536 q = LOCK_PREFIX;
2537 ret = PREFIX_LOCK;
b1905489
JB
2538 break;
2539
2540 case FWAIT_OPCODE:
2541 q = WAIT_PREFIX;
2542 break;
2543
2544 case ADDR_PREFIX_OPCODE:
2545 q = ADDR_PREFIX;
2546 break;
2547
2548 case DATA_PREFIX_OPCODE:
2549 q = DATA_PREFIX;
2550 break;
2551 }
2552 if (i.prefix[q] != 0)
c32fa91d 2553 ret = PREFIX_EXIST;
b1905489 2554 }
252b5132 2555
b1905489 2556 if (ret)
252b5132 2557 {
b1905489
JB
2558 if (!i.prefix[q])
2559 ++i.prefixes;
2560 i.prefix[q] |= prefix;
252b5132 2561 }
b1905489
JB
2562 else
2563 as_bad (_("same type of prefix used twice"));
252b5132 2564
252b5132
RH
2565 return ret;
2566}
2567
2568static void
78f12dd3 2569update_code_flag (int value, int check)
eecb386c 2570{
78f12dd3
L
2571 PRINTF_LIKE ((*as_error));
2572
1e9cc1c2 2573 flag_code = (enum flag_code) value;
40fb9820
L
2574 if (flag_code == CODE_64BIT)
2575 {
2576 cpu_arch_flags.bitfield.cpu64 = 1;
2577 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2578 }
2579 else
2580 {
2581 cpu_arch_flags.bitfield.cpu64 = 0;
2582 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2583 }
2584 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2585 {
78f12dd3
L
2586 if (check)
2587 as_error = as_fatal;
2588 else
2589 as_error = as_bad;
2590 (*as_error) (_("64bit mode not supported on `%s'."),
2591 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2592 }
40fb9820 2593 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2594 {
78f12dd3
L
2595 if (check)
2596 as_error = as_fatal;
2597 else
2598 as_error = as_bad;
2599 (*as_error) (_("32bit mode not supported on `%s'."),
2600 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2601 }
eecb386c
AM
2602 stackop_size = '\0';
2603}
2604
78f12dd3
L
2605static void
2606set_code_flag (int value)
2607{
2608 update_code_flag (value, 0);
2609}
2610
eecb386c 2611static void
e3bb37b5 2612set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2613{
1e9cc1c2 2614 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2615 if (flag_code != CODE_16BIT)
2616 abort ();
2617 cpu_arch_flags.bitfield.cpu64 = 0;
2618 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2619 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2620}
2621
2622static void
e3bb37b5 2623set_intel_syntax (int syntax_flag)
252b5132
RH
2624{
2625 /* Find out if register prefixing is specified. */
2626 int ask_naked_reg = 0;
2627
2628 SKIP_WHITESPACE ();
29b0f896 2629 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2630 {
d02603dc
NC
2631 char *string;
2632 int e = get_symbol_name (&string);
252b5132 2633
47926f60 2634 if (strcmp (string, "prefix") == 0)
252b5132 2635 ask_naked_reg = 1;
47926f60 2636 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2637 ask_naked_reg = -1;
2638 else
d0b47220 2639 as_bad (_("bad argument to syntax directive."));
d02603dc 2640 (void) restore_line_pointer (e);
252b5132
RH
2641 }
2642 demand_empty_rest_of_line ();
c3332e24 2643
252b5132
RH
2644 intel_syntax = syntax_flag;
2645
2646 if (ask_naked_reg == 0)
f86103b7
AM
2647 allow_naked_reg = (intel_syntax
2648 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2649 else
2650 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2651
ee86248c 2652 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2653
e4a3b5a4 2654 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2655 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2656 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2657}
2658
1efbbeb4
L
2659static void
2660set_intel_mnemonic (int mnemonic_flag)
2661{
e1d4d893 2662 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2663}
2664
db51cc60
L
2665static void
2666set_allow_index_reg (int flag)
2667{
2668 allow_index_reg = flag;
2669}
2670
cb19c032 2671static void
7bab8ab5 2672set_check (int what)
cb19c032 2673{
7bab8ab5
JB
2674 enum check_kind *kind;
2675 const char *str;
2676
2677 if (what)
2678 {
2679 kind = &operand_check;
2680 str = "operand";
2681 }
2682 else
2683 {
2684 kind = &sse_check;
2685 str = "sse";
2686 }
2687
cb19c032
L
2688 SKIP_WHITESPACE ();
2689
2690 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2691 {
d02603dc
NC
2692 char *string;
2693 int e = get_symbol_name (&string);
cb19c032
L
2694
2695 if (strcmp (string, "none") == 0)
7bab8ab5 2696 *kind = check_none;
cb19c032 2697 else if (strcmp (string, "warning") == 0)
7bab8ab5 2698 *kind = check_warning;
cb19c032 2699 else if (strcmp (string, "error") == 0)
7bab8ab5 2700 *kind = check_error;
cb19c032 2701 else
7bab8ab5 2702 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2703 (void) restore_line_pointer (e);
cb19c032
L
2704 }
2705 else
7bab8ab5 2706 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2707
2708 demand_empty_rest_of_line ();
2709}
2710
8a9036a4
L
2711static void
2712check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2713 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2714{
2715#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2716 static const char *arch;
2717
2718 /* Intel LIOM is only supported on ELF. */
2719 if (!IS_ELF)
2720 return;
2721
2722 if (!arch)
2723 {
2724 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2725 use default_arch. */
2726 arch = cpu_arch_name;
2727 if (!arch)
2728 arch = default_arch;
2729 }
2730
81486035
L
2731 /* If we are targeting Intel MCU, we must enable it. */
2732 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2733 || new_flag.bitfield.cpuiamcu)
2734 return;
2735
3632d14b 2736 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2737 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2738 || new_flag.bitfield.cpul1om)
8a9036a4 2739 return;
76ba9986 2740
7a9068fe
L
2741 /* If we are targeting Intel K1OM, we must enable it. */
2742 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2743 || new_flag.bitfield.cpuk1om)
2744 return;
2745
8a9036a4
L
2746 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2747#endif
2748}
2749
e413e4e9 2750static void
e3bb37b5 2751set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2752{
47926f60 2753 SKIP_WHITESPACE ();
e413e4e9 2754
29b0f896 2755 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2756 {
d02603dc
NC
2757 char *string;
2758 int e = get_symbol_name (&string);
91d6fa6a 2759 unsigned int j;
40fb9820 2760 i386_cpu_flags flags;
e413e4e9 2761
91d6fa6a 2762 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2763 {
91d6fa6a 2764 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2765 {
91d6fa6a 2766 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2767
5c6af06e
JB
2768 if (*string != '.')
2769 {
91d6fa6a 2770 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2771 cpu_sub_arch_name = NULL;
91d6fa6a 2772 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2773 if (flag_code == CODE_64BIT)
2774 {
2775 cpu_arch_flags.bitfield.cpu64 = 1;
2776 cpu_arch_flags.bitfield.cpuno64 = 0;
2777 }
2778 else
2779 {
2780 cpu_arch_flags.bitfield.cpu64 = 0;
2781 cpu_arch_flags.bitfield.cpuno64 = 1;
2782 }
91d6fa6a
NC
2783 cpu_arch_isa = cpu_arch[j].type;
2784 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2785 if (!cpu_arch_tune_set)
2786 {
2787 cpu_arch_tune = cpu_arch_isa;
2788 cpu_arch_tune_flags = cpu_arch_isa_flags;
2789 }
5c6af06e
JB
2790 break;
2791 }
40fb9820 2792
293f5f65
L
2793 flags = cpu_flags_or (cpu_arch_flags,
2794 cpu_arch[j].flags);
81486035 2795
5b64d091 2796 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2797 {
6305a203
L
2798 if (cpu_sub_arch_name)
2799 {
2800 char *name = cpu_sub_arch_name;
2801 cpu_sub_arch_name = concat (name,
91d6fa6a 2802 cpu_arch[j].name,
1bf57e9f 2803 (const char *) NULL);
6305a203
L
2804 free (name);
2805 }
2806 else
91d6fa6a 2807 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2808 cpu_arch_flags = flags;
a586129e 2809 cpu_arch_isa_flags = flags;
5c6af06e 2810 }
0089dace
L
2811 else
2812 cpu_arch_isa_flags
2813 = cpu_flags_or (cpu_arch_isa_flags,
2814 cpu_arch[j].flags);
d02603dc 2815 (void) restore_line_pointer (e);
5c6af06e
JB
2816 demand_empty_rest_of_line ();
2817 return;
e413e4e9
AM
2818 }
2819 }
293f5f65
L
2820
2821 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2822 {
33eaf5de 2823 /* Disable an ISA extension. */
293f5f65
L
2824 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2825 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2826 {
2827 flags = cpu_flags_and_not (cpu_arch_flags,
2828 cpu_noarch[j].flags);
2829 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2830 {
2831 if (cpu_sub_arch_name)
2832 {
2833 char *name = cpu_sub_arch_name;
2834 cpu_sub_arch_name = concat (name, string,
2835 (const char *) NULL);
2836 free (name);
2837 }
2838 else
2839 cpu_sub_arch_name = xstrdup (string);
2840 cpu_arch_flags = flags;
2841 cpu_arch_isa_flags = flags;
2842 }
2843 (void) restore_line_pointer (e);
2844 demand_empty_rest_of_line ();
2845 return;
2846 }
2847
2848 j = ARRAY_SIZE (cpu_arch);
2849 }
2850
91d6fa6a 2851 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2852 as_bad (_("no such architecture: `%s'"), string);
2853
2854 *input_line_pointer = e;
2855 }
2856 else
2857 as_bad (_("missing cpu architecture"));
2858
fddf5b5b
AM
2859 no_cond_jump_promotion = 0;
2860 if (*input_line_pointer == ','
29b0f896 2861 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2862 {
d02603dc
NC
2863 char *string;
2864 char e;
2865
2866 ++input_line_pointer;
2867 e = get_symbol_name (&string);
fddf5b5b
AM
2868
2869 if (strcmp (string, "nojumps") == 0)
2870 no_cond_jump_promotion = 1;
2871 else if (strcmp (string, "jumps") == 0)
2872 ;
2873 else
2874 as_bad (_("no such architecture modifier: `%s'"), string);
2875
d02603dc 2876 (void) restore_line_pointer (e);
fddf5b5b
AM
2877 }
2878
e413e4e9
AM
2879 demand_empty_rest_of_line ();
2880}
2881
8a9036a4
L
2882enum bfd_architecture
2883i386_arch (void)
2884{
3632d14b 2885 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2886 {
2887 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2888 || flag_code != CODE_64BIT)
2889 as_fatal (_("Intel L1OM is 64bit ELF only"));
2890 return bfd_arch_l1om;
2891 }
7a9068fe
L
2892 else if (cpu_arch_isa == PROCESSOR_K1OM)
2893 {
2894 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2895 || flag_code != CODE_64BIT)
2896 as_fatal (_("Intel K1OM is 64bit ELF only"));
2897 return bfd_arch_k1om;
2898 }
81486035
L
2899 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2900 {
2901 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2902 || flag_code == CODE_64BIT)
2903 as_fatal (_("Intel MCU is 32bit ELF only"));
2904 return bfd_arch_iamcu;
2905 }
8a9036a4
L
2906 else
2907 return bfd_arch_i386;
2908}
2909
b9d79e03 2910unsigned long
7016a5d5 2911i386_mach (void)
b9d79e03 2912{
351f65ca 2913 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2914 {
3632d14b 2915 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2916 {
351f65ca
L
2917 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2918 || default_arch[6] != '\0')
8a9036a4
L
2919 as_fatal (_("Intel L1OM is 64bit ELF only"));
2920 return bfd_mach_l1om;
2921 }
7a9068fe
L
2922 else if (cpu_arch_isa == PROCESSOR_K1OM)
2923 {
2924 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2925 || default_arch[6] != '\0')
2926 as_fatal (_("Intel K1OM is 64bit ELF only"));
2927 return bfd_mach_k1om;
2928 }
351f65ca 2929 else if (default_arch[6] == '\0')
8a9036a4 2930 return bfd_mach_x86_64;
351f65ca
L
2931 else
2932 return bfd_mach_x64_32;
8a9036a4 2933 }
5197d474
L
2934 else if (!strcmp (default_arch, "i386")
2935 || !strcmp (default_arch, "iamcu"))
81486035
L
2936 {
2937 if (cpu_arch_isa == PROCESSOR_IAMCU)
2938 {
2939 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2940 as_fatal (_("Intel MCU is 32bit ELF only"));
2941 return bfd_mach_i386_iamcu;
2942 }
2943 else
2944 return bfd_mach_i386_i386;
2945 }
b9d79e03 2946 else
2b5d6a91 2947 as_fatal (_("unknown architecture"));
b9d79e03 2948}
b9d79e03 2949\f
252b5132 2950void
7016a5d5 2951md_begin (void)
252b5132
RH
2952{
2953 const char *hash_err;
2954
86fa6981
L
2955 /* Support pseudo prefixes like {disp32}. */
2956 lex_type ['{'] = LEX_BEGIN_NAME;
2957
47926f60 2958 /* Initialize op_hash hash table. */
252b5132
RH
2959 op_hash = hash_new ();
2960
2961 {
d3ce72d0 2962 const insn_template *optab;
29b0f896 2963 templates *core_optab;
252b5132 2964
47926f60
KH
2965 /* Setup for loop. */
2966 optab = i386_optab;
add39d23 2967 core_optab = XNEW (templates);
252b5132
RH
2968 core_optab->start = optab;
2969
2970 while (1)
2971 {
2972 ++optab;
2973 if (optab->name == NULL
2974 || strcmp (optab->name, (optab - 1)->name) != 0)
2975 {
2976 /* different name --> ship out current template list;
47926f60 2977 add to hash table; & begin anew. */
252b5132
RH
2978 core_optab->end = optab;
2979 hash_err = hash_insert (op_hash,
2980 (optab - 1)->name,
5a49b8ac 2981 (void *) core_optab);
252b5132
RH
2982 if (hash_err)
2983 {
b37df7c4 2984 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2985 (optab - 1)->name,
2986 hash_err);
2987 }
2988 if (optab->name == NULL)
2989 break;
add39d23 2990 core_optab = XNEW (templates);
252b5132
RH
2991 core_optab->start = optab;
2992 }
2993 }
2994 }
2995
47926f60 2996 /* Initialize reg_hash hash table. */
252b5132
RH
2997 reg_hash = hash_new ();
2998 {
29b0f896 2999 const reg_entry *regtab;
c3fe08fa 3000 unsigned int regtab_size = i386_regtab_size;
252b5132 3001
c3fe08fa 3002 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 3003 {
5a49b8ac 3004 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 3005 if (hash_err)
b37df7c4 3006 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
3007 regtab->reg_name,
3008 hash_err);
252b5132
RH
3009 }
3010 }
3011
47926f60 3012 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 3013 {
29b0f896
AM
3014 int c;
3015 char *p;
252b5132
RH
3016
3017 for (c = 0; c < 256; c++)
3018 {
3882b010 3019 if (ISDIGIT (c))
252b5132
RH
3020 {
3021 digit_chars[c] = c;
3022 mnemonic_chars[c] = c;
3023 register_chars[c] = c;
3024 operand_chars[c] = c;
3025 }
3882b010 3026 else if (ISLOWER (c))
252b5132
RH
3027 {
3028 mnemonic_chars[c] = c;
3029 register_chars[c] = c;
3030 operand_chars[c] = c;
3031 }
3882b010 3032 else if (ISUPPER (c))
252b5132 3033 {
3882b010 3034 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
3035 register_chars[c] = mnemonic_chars[c];
3036 operand_chars[c] = c;
3037 }
43234a1e 3038 else if (c == '{' || c == '}')
86fa6981
L
3039 {
3040 mnemonic_chars[c] = c;
3041 operand_chars[c] = c;
3042 }
252b5132 3043
3882b010 3044 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
3045 identifier_chars[c] = c;
3046 else if (c >= 128)
3047 {
3048 identifier_chars[c] = c;
3049 operand_chars[c] = c;
3050 }
3051 }
3052
3053#ifdef LEX_AT
3054 identifier_chars['@'] = '@';
32137342
NC
3055#endif
3056#ifdef LEX_QM
3057 identifier_chars['?'] = '?';
3058 operand_chars['?'] = '?';
252b5132 3059#endif
252b5132 3060 digit_chars['-'] = '-';
c0f3af97 3061 mnemonic_chars['_'] = '_';
791fe849 3062 mnemonic_chars['-'] = '-';
0003779b 3063 mnemonic_chars['.'] = '.';
252b5132
RH
3064 identifier_chars['_'] = '_';
3065 identifier_chars['.'] = '.';
3066
3067 for (p = operand_special_chars; *p != '\0'; p++)
3068 operand_chars[(unsigned char) *p] = *p;
3069 }
3070
a4447b93
RH
3071 if (flag_code == CODE_64BIT)
3072 {
ca19b261
KT
3073#if defined (OBJ_COFF) && defined (TE_PE)
3074 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3075 ? 32 : 16);
3076#else
a4447b93 3077 x86_dwarf2_return_column = 16;
ca19b261 3078#endif
61ff971f 3079 x86_cie_data_alignment = -8;
a4447b93
RH
3080 }
3081 else
3082 {
3083 x86_dwarf2_return_column = 8;
3084 x86_cie_data_alignment = -4;
3085 }
e379e5f3
L
3086
3087 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3088 can be turned into BRANCH_PREFIX frag. */
3089 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3090 abort ();
252b5132
RH
3091}
3092
3093void
e3bb37b5 3094i386_print_statistics (FILE *file)
252b5132
RH
3095{
3096 hash_print_statistics (file, "i386 opcode", op_hash);
3097 hash_print_statistics (file, "i386 register", reg_hash);
3098}
3099\f
252b5132
RH
3100#ifdef DEBUG386
3101
ce8a8b2f 3102/* Debugging routines for md_assemble. */
d3ce72d0 3103static void pte (insn_template *);
40fb9820 3104static void pt (i386_operand_type);
e3bb37b5
L
3105static void pe (expressionS *);
3106static void ps (symbolS *);
252b5132
RH
3107
3108static void
2c703856 3109pi (const char *line, i386_insn *x)
252b5132 3110{
09137c09 3111 unsigned int j;
252b5132
RH
3112
3113 fprintf (stdout, "%s: template ", line);
3114 pte (&x->tm);
09f131f2
JH
3115 fprintf (stdout, " address: base %s index %s scale %x\n",
3116 x->base_reg ? x->base_reg->reg_name : "none",
3117 x->index_reg ? x->index_reg->reg_name : "none",
3118 x->log2_scale_factor);
3119 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 3120 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
3121 fprintf (stdout, " sib: base %x index %x scale %x\n",
3122 x->sib.base, x->sib.index, x->sib.scale);
3123 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
3124 (x->rex & REX_W) != 0,
3125 (x->rex & REX_R) != 0,
3126 (x->rex & REX_X) != 0,
3127 (x->rex & REX_B) != 0);
09137c09 3128 for (j = 0; j < x->operands; j++)
252b5132 3129 {
09137c09
SP
3130 fprintf (stdout, " #%d: ", j + 1);
3131 pt (x->types[j]);
252b5132 3132 fprintf (stdout, "\n");
bab6aec1 3133 if (x->types[j].bitfield.class == Reg
3528c362
JB
3134 || x->types[j].bitfield.class == RegMMX
3135 || x->types[j].bitfield.class == RegSIMD
00cee14f 3136 || x->types[j].bitfield.class == SReg
4a5c67ed
JB
3137 || x->types[j].bitfield.class == RegCR
3138 || x->types[j].bitfield.class == RegDR
3139 || x->types[j].bitfield.class == RegTR)
09137c09
SP
3140 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3141 if (operand_type_check (x->types[j], imm))
3142 pe (x->op[j].imms);
3143 if (operand_type_check (x->types[j], disp))
3144 pe (x->op[j].disps);
252b5132
RH
3145 }
3146}
3147
3148static void
d3ce72d0 3149pte (insn_template *t)
252b5132 3150{
09137c09 3151 unsigned int j;
252b5132 3152 fprintf (stdout, " %d operands ", t->operands);
47926f60 3153 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
3154 if (t->extension_opcode != None)
3155 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 3156 if (t->opcode_modifier.d)
252b5132 3157 fprintf (stdout, "D");
40fb9820 3158 if (t->opcode_modifier.w)
252b5132
RH
3159 fprintf (stdout, "W");
3160 fprintf (stdout, "\n");
09137c09 3161 for (j = 0; j < t->operands; j++)
252b5132 3162 {
09137c09
SP
3163 fprintf (stdout, " #%d type ", j + 1);
3164 pt (t->operand_types[j]);
252b5132
RH
3165 fprintf (stdout, "\n");
3166 }
3167}
3168
3169static void
e3bb37b5 3170pe (expressionS *e)
252b5132 3171{
24eab124 3172 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
3173 fprintf (stdout, " add_number %ld (%lx)\n",
3174 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
3175 if (e->X_add_symbol)
3176 {
3177 fprintf (stdout, " add_symbol ");
3178 ps (e->X_add_symbol);
3179 fprintf (stdout, "\n");
3180 }
3181 if (e->X_op_symbol)
3182 {
3183 fprintf (stdout, " op_symbol ");
3184 ps (e->X_op_symbol);
3185 fprintf (stdout, "\n");
3186 }
3187}
3188
3189static void
e3bb37b5 3190ps (symbolS *s)
252b5132
RH
3191{
3192 fprintf (stdout, "%s type %s%s",
3193 S_GET_NAME (s),
3194 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3195 segment_name (S_GET_SEGMENT (s)));
3196}
3197
7b81dfbb 3198static struct type_name
252b5132 3199 {
40fb9820
L
3200 i386_operand_type mask;
3201 const char *name;
252b5132 3202 }
7b81dfbb 3203const type_names[] =
252b5132 3204{
40fb9820
L
3205 { OPERAND_TYPE_REG8, "r8" },
3206 { OPERAND_TYPE_REG16, "r16" },
3207 { OPERAND_TYPE_REG32, "r32" },
3208 { OPERAND_TYPE_REG64, "r64" },
2c703856
JB
3209 { OPERAND_TYPE_ACC8, "acc8" },
3210 { OPERAND_TYPE_ACC16, "acc16" },
3211 { OPERAND_TYPE_ACC32, "acc32" },
3212 { OPERAND_TYPE_ACC64, "acc64" },
40fb9820
L
3213 { OPERAND_TYPE_IMM8, "i8" },
3214 { OPERAND_TYPE_IMM8, "i8s" },
3215 { OPERAND_TYPE_IMM16, "i16" },
3216 { OPERAND_TYPE_IMM32, "i32" },
3217 { OPERAND_TYPE_IMM32S, "i32s" },
3218 { OPERAND_TYPE_IMM64, "i64" },
3219 { OPERAND_TYPE_IMM1, "i1" },
3220 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3221 { OPERAND_TYPE_DISP8, "d8" },
3222 { OPERAND_TYPE_DISP16, "d16" },
3223 { OPERAND_TYPE_DISP32, "d32" },
3224 { OPERAND_TYPE_DISP32S, "d32s" },
3225 { OPERAND_TYPE_DISP64, "d64" },
3226 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3227 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3228 { OPERAND_TYPE_CONTROL, "control reg" },
3229 { OPERAND_TYPE_TEST, "test reg" },
3230 { OPERAND_TYPE_DEBUG, "debug reg" },
3231 { OPERAND_TYPE_FLOATREG, "FReg" },
3232 { OPERAND_TYPE_FLOATACC, "FAcc" },
21df382b 3233 { OPERAND_TYPE_SREG, "SReg" },
40fb9820
L
3234 { OPERAND_TYPE_REGMMX, "rMMX" },
3235 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3236 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3237 { OPERAND_TYPE_REGZMM, "rZMM" },
3238 { OPERAND_TYPE_REGMASK, "Mask reg" },
252b5132
RH
3239};
3240
3241static void
40fb9820 3242pt (i386_operand_type t)
252b5132 3243{
40fb9820 3244 unsigned int j;
c6fb90c8 3245 i386_operand_type a;
252b5132 3246
40fb9820 3247 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3248 {
3249 a = operand_type_and (t, type_names[j].mask);
2c703856 3250 if (operand_type_equal (&a, &type_names[j].mask))
c6fb90c8
L
3251 fprintf (stdout, "%s, ", type_names[j].name);
3252 }
252b5132
RH
3253 fflush (stdout);
3254}
3255
3256#endif /* DEBUG386 */
3257\f
252b5132 3258static bfd_reloc_code_real_type
3956db08 3259reloc (unsigned int size,
64e74474
AM
3260 int pcrel,
3261 int sign,
3262 bfd_reloc_code_real_type other)
252b5132 3263{
47926f60 3264 if (other != NO_RELOC)
3956db08 3265 {
91d6fa6a 3266 reloc_howto_type *rel;
3956db08
JB
3267
3268 if (size == 8)
3269 switch (other)
3270 {
64e74474
AM
3271 case BFD_RELOC_X86_64_GOT32:
3272 return BFD_RELOC_X86_64_GOT64;
3273 break;
553d1284
L
3274 case BFD_RELOC_X86_64_GOTPLT64:
3275 return BFD_RELOC_X86_64_GOTPLT64;
3276 break;
64e74474
AM
3277 case BFD_RELOC_X86_64_PLTOFF64:
3278 return BFD_RELOC_X86_64_PLTOFF64;
3279 break;
3280 case BFD_RELOC_X86_64_GOTPC32:
3281 other = BFD_RELOC_X86_64_GOTPC64;
3282 break;
3283 case BFD_RELOC_X86_64_GOTPCREL:
3284 other = BFD_RELOC_X86_64_GOTPCREL64;
3285 break;
3286 case BFD_RELOC_X86_64_TPOFF32:
3287 other = BFD_RELOC_X86_64_TPOFF64;
3288 break;
3289 case BFD_RELOC_X86_64_DTPOFF32:
3290 other = BFD_RELOC_X86_64_DTPOFF64;
3291 break;
3292 default:
3293 break;
3956db08 3294 }
e05278af 3295
8ce3d284 3296#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3297 if (other == BFD_RELOC_SIZE32)
3298 {
3299 if (size == 8)
1ab668bf 3300 other = BFD_RELOC_SIZE64;
8fd4256d 3301 if (pcrel)
1ab668bf
AM
3302 {
3303 as_bad (_("there are no pc-relative size relocations"));
3304 return NO_RELOC;
3305 }
8fd4256d 3306 }
8ce3d284 3307#endif
8fd4256d 3308
e05278af 3309 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3310 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3311 sign = -1;
3312
91d6fa6a
NC
3313 rel = bfd_reloc_type_lookup (stdoutput, other);
3314 if (!rel)
3956db08 3315 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3316 else if (size != bfd_get_reloc_size (rel))
3956db08 3317 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3318 bfd_get_reloc_size (rel),
3956db08 3319 size);
91d6fa6a 3320 else if (pcrel && !rel->pc_relative)
3956db08 3321 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3322 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3323 && !sign)
91d6fa6a 3324 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3325 && sign > 0))
3956db08
JB
3326 as_bad (_("relocated field and relocation type differ in signedness"));
3327 else
3328 return other;
3329 return NO_RELOC;
3330 }
252b5132
RH
3331
3332 if (pcrel)
3333 {
3e73aa7c 3334 if (!sign)
3956db08 3335 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3336 switch (size)
3337 {
3338 case 1: return BFD_RELOC_8_PCREL;
3339 case 2: return BFD_RELOC_16_PCREL;
d258b828 3340 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3341 case 8: return BFD_RELOC_64_PCREL;
252b5132 3342 }
3956db08 3343 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3344 }
3345 else
3346 {
3956db08 3347 if (sign > 0)
e5cb08ac 3348 switch (size)
3e73aa7c
JH
3349 {
3350 case 4: return BFD_RELOC_X86_64_32S;
3351 }
3352 else
3353 switch (size)
3354 {
3355 case 1: return BFD_RELOC_8;
3356 case 2: return BFD_RELOC_16;
3357 case 4: return BFD_RELOC_32;
3358 case 8: return BFD_RELOC_64;
3359 }
3956db08
JB
3360 as_bad (_("cannot do %s %u byte relocation"),
3361 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3362 }
3363
0cc9e1d3 3364 return NO_RELOC;
252b5132
RH
3365}
3366
47926f60
KH
3367/* Here we decide which fixups can be adjusted to make them relative to
3368 the beginning of the section instead of the symbol. Basically we need
3369 to make sure that the dynamic relocations are done correctly, so in
3370 some cases we force the original symbol to be used. */
3371
252b5132 3372int
e3bb37b5 3373tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3374{
6d249963 3375#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3376 if (!IS_ELF)
31312f95
AM
3377 return 1;
3378
a161fe53
AM
3379 /* Don't adjust pc-relative references to merge sections in 64-bit
3380 mode. */
3381 if (use_rela_relocations
3382 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3383 && fixP->fx_pcrel)
252b5132 3384 return 0;
31312f95 3385
8d01d9a9
AJ
3386 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3387 and changed later by validate_fix. */
3388 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3389 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3390 return 0;
3391
8fd4256d
L
3392 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3393 for size relocations. */
3394 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3395 || fixP->fx_r_type == BFD_RELOC_SIZE64
3396 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3397 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3398 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3399 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3400 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3401 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3402 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3403 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3404 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3405 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3406 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3407 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3408 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3409 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3410 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3411 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3412 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3413 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3414 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3415 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3416 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3417 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3418 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3419 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3420 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3421 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3422 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3423 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3424 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3425 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3426 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3427 return 0;
31312f95 3428#endif
252b5132
RH
3429 return 1;
3430}
252b5132 3431
b4cac588 3432static int
e3bb37b5 3433intel_float_operand (const char *mnemonic)
252b5132 3434{
9306ca4a
JB
3435 /* Note that the value returned is meaningful only for opcodes with (memory)
3436 operands, hence the code here is free to improperly handle opcodes that
3437 have no operands (for better performance and smaller code). */
3438
3439 if (mnemonic[0] != 'f')
3440 return 0; /* non-math */
3441
3442 switch (mnemonic[1])
3443 {
3444 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3445 the fs segment override prefix not currently handled because no
3446 call path can make opcodes without operands get here */
3447 case 'i':
3448 return 2 /* integer op */;
3449 case 'l':
3450 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3451 return 3; /* fldcw/fldenv */
3452 break;
3453 case 'n':
3454 if (mnemonic[2] != 'o' /* fnop */)
3455 return 3; /* non-waiting control op */
3456 break;
3457 case 'r':
3458 if (mnemonic[2] == 's')
3459 return 3; /* frstor/frstpm */
3460 break;
3461 case 's':
3462 if (mnemonic[2] == 'a')
3463 return 3; /* fsave */
3464 if (mnemonic[2] == 't')
3465 {
3466 switch (mnemonic[3])
3467 {
3468 case 'c': /* fstcw */
3469 case 'd': /* fstdw */
3470 case 'e': /* fstenv */
3471 case 's': /* fsts[gw] */
3472 return 3;
3473 }
3474 }
3475 break;
3476 case 'x':
3477 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3478 return 0; /* fxsave/fxrstor are not really math ops */
3479 break;
3480 }
252b5132 3481
9306ca4a 3482 return 1;
252b5132
RH
3483}
3484
c0f3af97
L
3485/* Build the VEX prefix. */
3486
3487static void
d3ce72d0 3488build_vex_prefix (const insn_template *t)
c0f3af97
L
3489{
3490 unsigned int register_specifier;
3491 unsigned int implied_prefix;
3492 unsigned int vector_length;
03751133 3493 unsigned int w;
c0f3af97
L
3494
3495 /* Check register specifier. */
3496 if (i.vex.register_specifier)
43234a1e
L
3497 {
3498 register_specifier =
3499 ~register_number (i.vex.register_specifier) & 0xf;
3500 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3501 }
c0f3af97
L
3502 else
3503 register_specifier = 0xf;
3504
79f0fa25
L
3505 /* Use 2-byte VEX prefix by swapping destination and source operand
3506 if there are more than 1 register operand. */
3507 if (i.reg_operands > 1
3508 && i.vec_encoding != vex_encoding_vex3
86fa6981 3509 && i.dir_encoding == dir_encoding_default
fa99fab2 3510 && i.operands == i.reg_operands
dbbc8b7e 3511 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
7f399153 3512 && i.tm.opcode_modifier.vexopcode == VEX0F
dbbc8b7e 3513 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
fa99fab2
L
3514 && i.rex == REX_B)
3515 {
3516 unsigned int xchg = i.operands - 1;
3517 union i386_op temp_op;
3518 i386_operand_type temp_type;
3519
3520 temp_type = i.types[xchg];
3521 i.types[xchg] = i.types[0];
3522 i.types[0] = temp_type;
3523 temp_op = i.op[xchg];
3524 i.op[xchg] = i.op[0];
3525 i.op[0] = temp_op;
3526
9c2799c2 3527 gas_assert (i.rm.mode == 3);
fa99fab2
L
3528
3529 i.rex = REX_R;
3530 xchg = i.rm.regmem;
3531 i.rm.regmem = i.rm.reg;
3532 i.rm.reg = xchg;
3533
dbbc8b7e
JB
3534 if (i.tm.opcode_modifier.d)
3535 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3536 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3537 else /* Use the next insn. */
3538 i.tm = t[1];
fa99fab2
L
3539 }
3540
79dec6b7
JB
3541 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3542 are no memory operands and at least 3 register ones. */
3543 if (i.reg_operands >= 3
3544 && i.vec_encoding != vex_encoding_vex3
3545 && i.reg_operands == i.operands - i.imm_operands
3546 && i.tm.opcode_modifier.vex
3547 && i.tm.opcode_modifier.commutative
3548 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3549 && i.rex == REX_B
3550 && i.vex.register_specifier
3551 && !(i.vex.register_specifier->reg_flags & RegRex))
3552 {
3553 unsigned int xchg = i.operands - i.reg_operands;
3554 union i386_op temp_op;
3555 i386_operand_type temp_type;
3556
3557 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3558 gas_assert (!i.tm.opcode_modifier.sae);
3559 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3560 &i.types[i.operands - 3]));
3561 gas_assert (i.rm.mode == 3);
3562
3563 temp_type = i.types[xchg];
3564 i.types[xchg] = i.types[xchg + 1];
3565 i.types[xchg + 1] = temp_type;
3566 temp_op = i.op[xchg];
3567 i.op[xchg] = i.op[xchg + 1];
3568 i.op[xchg + 1] = temp_op;
3569
3570 i.rex = 0;
3571 xchg = i.rm.regmem | 8;
3572 i.rm.regmem = ~register_specifier & 0xf;
3573 gas_assert (!(i.rm.regmem & 8));
3574 i.vex.register_specifier += xchg - i.rm.regmem;
3575 register_specifier = ~xchg & 0xf;
3576 }
3577
539f890d
L
3578 if (i.tm.opcode_modifier.vex == VEXScalar)
3579 vector_length = avxscalar;
10c17abd
JB
3580 else if (i.tm.opcode_modifier.vex == VEX256)
3581 vector_length = 1;
539f890d 3582 else
10c17abd 3583 {
56522fc5 3584 unsigned int op;
10c17abd 3585
c7213af9
L
3586 /* Determine vector length from the last multi-length vector
3587 operand. */
10c17abd 3588 vector_length = 0;
56522fc5 3589 for (op = t->operands; op--;)
10c17abd
JB
3590 if (t->operand_types[op].bitfield.xmmword
3591 && t->operand_types[op].bitfield.ymmword
3592 && i.types[op].bitfield.ymmword)
3593 {
3594 vector_length = 1;
3595 break;
3596 }
3597 }
c0f3af97
L
3598
3599 switch ((i.tm.base_opcode >> 8) & 0xff)
3600 {
3601 case 0:
3602 implied_prefix = 0;
3603 break;
3604 case DATA_PREFIX_OPCODE:
3605 implied_prefix = 1;
3606 break;
3607 case REPE_PREFIX_OPCODE:
3608 implied_prefix = 2;
3609 break;
3610 case REPNE_PREFIX_OPCODE:
3611 implied_prefix = 3;
3612 break;
3613 default:
3614 abort ();
3615 }
3616
03751133
L
3617 /* Check the REX.W bit and VEXW. */
3618 if (i.tm.opcode_modifier.vexw == VEXWIG)
3619 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3620 else if (i.tm.opcode_modifier.vexw)
3621 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3622 else
931d03b7 3623 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
03751133 3624
c0f3af97 3625 /* Use 2-byte VEX prefix if possible. */
03751133
L
3626 if (w == 0
3627 && i.vec_encoding != vex_encoding_vex3
86fa6981 3628 && i.tm.opcode_modifier.vexopcode == VEX0F
c0f3af97
L
3629 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3630 {
3631 /* 2-byte VEX prefix. */
3632 unsigned int r;
3633
3634 i.vex.length = 2;
3635 i.vex.bytes[0] = 0xc5;
3636
3637 /* Check the REX.R bit. */
3638 r = (i.rex & REX_R) ? 0 : 1;
3639 i.vex.bytes[1] = (r << 7
3640 | register_specifier << 3
3641 | vector_length << 2
3642 | implied_prefix);
3643 }
3644 else
3645 {
3646 /* 3-byte VEX prefix. */
03751133 3647 unsigned int m;
c0f3af97 3648
f88c9eb0 3649 i.vex.length = 3;
f88c9eb0 3650
7f399153 3651 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3652 {
7f399153
L
3653 case VEX0F:
3654 m = 0x1;
80de6e00 3655 i.vex.bytes[0] = 0xc4;
7f399153
L
3656 break;
3657 case VEX0F38:
3658 m = 0x2;
80de6e00 3659 i.vex.bytes[0] = 0xc4;
7f399153
L
3660 break;
3661 case VEX0F3A:
3662 m = 0x3;
80de6e00 3663 i.vex.bytes[0] = 0xc4;
7f399153
L
3664 break;
3665 case XOP08:
5dd85c99
SP
3666 m = 0x8;
3667 i.vex.bytes[0] = 0x8f;
7f399153
L
3668 break;
3669 case XOP09:
f88c9eb0
SP
3670 m = 0x9;
3671 i.vex.bytes[0] = 0x8f;
7f399153
L
3672 break;
3673 case XOP0A:
f88c9eb0
SP
3674 m = 0xa;
3675 i.vex.bytes[0] = 0x8f;
7f399153
L
3676 break;
3677 default:
3678 abort ();
f88c9eb0 3679 }
c0f3af97 3680
c0f3af97
L
3681 /* The high 3 bits of the second VEX byte are 1's compliment
3682 of RXB bits from REX. */
3683 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3684
c0f3af97
L
3685 i.vex.bytes[2] = (w << 7
3686 | register_specifier << 3
3687 | vector_length << 2
3688 | implied_prefix);
3689 }
3690}
3691
e771e7c9
JB
3692static INLINE bfd_boolean
3693is_evex_encoding (const insn_template *t)
3694{
7091c612 3695 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
e771e7c9 3696 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
a80195f1 3697 || t->opcode_modifier.sae;
e771e7c9
JB
3698}
3699
7a8655d2
JB
3700static INLINE bfd_boolean
3701is_any_vex_encoding (const insn_template *t)
3702{
3703 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3704 || is_evex_encoding (t);
3705}
3706
43234a1e
L
3707/* Build the EVEX prefix. */
3708
3709static void
3710build_evex_prefix (void)
3711{
3712 unsigned int register_specifier;
3713 unsigned int implied_prefix;
3714 unsigned int m, w;
3715 rex_byte vrex_used = 0;
3716
3717 /* Check register specifier. */
3718 if (i.vex.register_specifier)
3719 {
3720 gas_assert ((i.vrex & REX_X) == 0);
3721
3722 register_specifier = i.vex.register_specifier->reg_num;
3723 if ((i.vex.register_specifier->reg_flags & RegRex))
3724 register_specifier += 8;
3725 /* The upper 16 registers are encoded in the fourth byte of the
3726 EVEX prefix. */
3727 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3728 i.vex.bytes[3] = 0x8;
3729 register_specifier = ~register_specifier & 0xf;
3730 }
3731 else
3732 {
3733 register_specifier = 0xf;
3734
3735 /* Encode upper 16 vector index register in the fourth byte of
3736 the EVEX prefix. */
3737 if (!(i.vrex & REX_X))
3738 i.vex.bytes[3] = 0x8;
3739 else
3740 vrex_used |= REX_X;
3741 }
3742
3743 switch ((i.tm.base_opcode >> 8) & 0xff)
3744 {
3745 case 0:
3746 implied_prefix = 0;
3747 break;
3748 case DATA_PREFIX_OPCODE:
3749 implied_prefix = 1;
3750 break;
3751 case REPE_PREFIX_OPCODE:
3752 implied_prefix = 2;
3753 break;
3754 case REPNE_PREFIX_OPCODE:
3755 implied_prefix = 3;
3756 break;
3757 default:
3758 abort ();
3759 }
3760
3761 /* 4 byte EVEX prefix. */
3762 i.vex.length = 4;
3763 i.vex.bytes[0] = 0x62;
3764
3765 /* mmmm bits. */
3766 switch (i.tm.opcode_modifier.vexopcode)
3767 {
3768 case VEX0F:
3769 m = 1;
3770 break;
3771 case VEX0F38:
3772 m = 2;
3773 break;
3774 case VEX0F3A:
3775 m = 3;
3776 break;
3777 default:
3778 abort ();
3779 break;
3780 }
3781
3782 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3783 bits from REX. */
3784 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3785
3786 /* The fifth bit of the second EVEX byte is 1's compliment of the
3787 REX_R bit in VREX. */
3788 if (!(i.vrex & REX_R))
3789 i.vex.bytes[1] |= 0x10;
3790 else
3791 vrex_used |= REX_R;
3792
3793 if ((i.reg_operands + i.imm_operands) == i.operands)
3794 {
3795 /* When all operands are registers, the REX_X bit in REX is not
3796 used. We reuse it to encode the upper 16 registers, which is
3797 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3798 as 1's compliment. */
3799 if ((i.vrex & REX_B))
3800 {
3801 vrex_used |= REX_B;
3802 i.vex.bytes[1] &= ~0x40;
3803 }
3804 }
3805
3806 /* EVEX instructions shouldn't need the REX prefix. */
3807 i.vrex &= ~vrex_used;
3808 gas_assert (i.vrex == 0);
3809
6865c043
L
3810 /* Check the REX.W bit and VEXW. */
3811 if (i.tm.opcode_modifier.vexw == VEXWIG)
3812 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3813 else if (i.tm.opcode_modifier.vexw)
3814 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3815 else
931d03b7 3816 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
43234a1e
L
3817
3818 /* Encode the U bit. */
3819 implied_prefix |= 0x4;
3820
3821 /* The third byte of the EVEX prefix. */
3822 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3823
3824 /* The fourth byte of the EVEX prefix. */
3825 /* The zeroing-masking bit. */
3826 if (i.mask && i.mask->zeroing)
3827 i.vex.bytes[3] |= 0x80;
3828
3829 /* Don't always set the broadcast bit if there is no RC. */
3830 if (!i.rounding)
3831 {
3832 /* Encode the vector length. */
3833 unsigned int vec_length;
3834
e771e7c9
JB
3835 if (!i.tm.opcode_modifier.evex
3836 || i.tm.opcode_modifier.evex == EVEXDYN)
3837 {
56522fc5 3838 unsigned int op;
e771e7c9 3839
c7213af9
L
3840 /* Determine vector length from the last multi-length vector
3841 operand. */
e771e7c9 3842 vec_length = 0;
56522fc5 3843 for (op = i.operands; op--;)
e771e7c9
JB
3844 if (i.tm.operand_types[op].bitfield.xmmword
3845 + i.tm.operand_types[op].bitfield.ymmword
3846 + i.tm.operand_types[op].bitfield.zmmword > 1)
3847 {
3848 if (i.types[op].bitfield.zmmword)
c7213af9
L
3849 {
3850 i.tm.opcode_modifier.evex = EVEX512;
3851 break;
3852 }
e771e7c9 3853 else if (i.types[op].bitfield.ymmword)
c7213af9
L
3854 {
3855 i.tm.opcode_modifier.evex = EVEX256;
3856 break;
3857 }
e771e7c9 3858 else if (i.types[op].bitfield.xmmword)
c7213af9
L
3859 {
3860 i.tm.opcode_modifier.evex = EVEX128;
3861 break;
3862 }
625cbd7a
JB
3863 else if (i.broadcast && (int) op == i.broadcast->operand)
3864 {
4a1b91ea 3865 switch (i.broadcast->bytes)
625cbd7a
JB
3866 {
3867 case 64:
3868 i.tm.opcode_modifier.evex = EVEX512;
3869 break;
3870 case 32:
3871 i.tm.opcode_modifier.evex = EVEX256;
3872 break;
3873 case 16:
3874 i.tm.opcode_modifier.evex = EVEX128;
3875 break;
3876 default:
c7213af9 3877 abort ();
625cbd7a 3878 }
c7213af9 3879 break;
625cbd7a 3880 }
e771e7c9 3881 }
c7213af9 3882
56522fc5 3883 if (op >= MAX_OPERANDS)
c7213af9 3884 abort ();
e771e7c9
JB
3885 }
3886
43234a1e
L
3887 switch (i.tm.opcode_modifier.evex)
3888 {
3889 case EVEXLIG: /* LL' is ignored */
3890 vec_length = evexlig << 5;
3891 break;
3892 case EVEX128:
3893 vec_length = 0 << 5;
3894 break;
3895 case EVEX256:
3896 vec_length = 1 << 5;
3897 break;
3898 case EVEX512:
3899 vec_length = 2 << 5;
3900 break;
3901 default:
3902 abort ();
3903 break;
3904 }
3905 i.vex.bytes[3] |= vec_length;
3906 /* Encode the broadcast bit. */
3907 if (i.broadcast)
3908 i.vex.bytes[3] |= 0x10;
3909 }
3910 else
3911 {
3912 if (i.rounding->type != saeonly)
3913 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3914 else
d3d3c6db 3915 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3916 }
3917
3918 if (i.mask && i.mask->mask)
3919 i.vex.bytes[3] |= i.mask->mask->reg_num;
3920}
3921
65da13b5
L
3922static void
3923process_immext (void)
3924{
3925 expressionS *exp;
3926
c0f3af97 3927 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3928 which is coded in the same place as an 8-bit immediate field
3929 would be. Here we fake an 8-bit immediate operand from the
3930 opcode suffix stored in tm.extension_opcode.
3931
c1e679ec 3932 AVX instructions also use this encoding, for some of
c0f3af97 3933 3 argument instructions. */
65da13b5 3934
43234a1e 3935 gas_assert (i.imm_operands <= 1
7ab9ffdd 3936 && (i.operands <= 2
7a8655d2 3937 || (is_any_vex_encoding (&i.tm)
7ab9ffdd 3938 && i.operands <= 4)));
65da13b5
L
3939
3940 exp = &im_expressions[i.imm_operands++];
3941 i.op[i.operands].imms = exp;
3942 i.types[i.operands] = imm8;
3943 i.operands++;
3944 exp->X_op = O_constant;
3945 exp->X_add_number = i.tm.extension_opcode;
3946 i.tm.extension_opcode = None;
3947}
3948
42164a71
L
3949
3950static int
3951check_hle (void)
3952{
3953 switch (i.tm.opcode_modifier.hleprefixok)
3954 {
3955 default:
3956 abort ();
82c2def5 3957 case HLEPrefixNone:
165de32a
L
3958 as_bad (_("invalid instruction `%s' after `%s'"),
3959 i.tm.name, i.hle_prefix);
42164a71 3960 return 0;
82c2def5 3961 case HLEPrefixLock:
42164a71
L
3962 if (i.prefix[LOCK_PREFIX])
3963 return 1;
165de32a 3964 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3965 return 0;
82c2def5 3966 case HLEPrefixAny:
42164a71 3967 return 1;
82c2def5 3968 case HLEPrefixRelease:
42164a71
L
3969 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3970 {
3971 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3972 i.tm.name);
3973 return 0;
3974 }
8dc0818e 3975 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
42164a71
L
3976 {
3977 as_bad (_("memory destination needed for instruction `%s'"
3978 " after `xrelease'"), i.tm.name);
3979 return 0;
3980 }
3981 return 1;
3982 }
3983}
3984
b6f8c7c4
L
3985/* Try the shortest encoding by shortening operand size. */
3986
3987static void
3988optimize_encoding (void)
3989{
a0a1771e 3990 unsigned int j;
b6f8c7c4
L
3991
3992 if (optimize_for_space
72aea328 3993 && !is_any_vex_encoding (&i.tm)
b6f8c7c4
L
3994 && i.reg_operands == 1
3995 && i.imm_operands == 1
3996 && !i.types[1].bitfield.byte
3997 && i.op[0].imms->X_op == O_constant
3998 && fits_in_imm7 (i.op[0].imms->X_add_number)
72aea328 3999 && (i.tm.base_opcode == 0xa8
b6f8c7c4
L
4000 || (i.tm.base_opcode == 0xf6
4001 && i.tm.extension_opcode == 0x0)))
4002 {
4003 /* Optimize: -Os:
4004 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4005 */
4006 unsigned int base_regnum = i.op[1].regs->reg_num;
4007 if (flag_code == CODE_64BIT || base_regnum < 4)
4008 {
4009 i.types[1].bitfield.byte = 1;
4010 /* Ignore the suffix. */
4011 i.suffix = 0;
7697afb6
JB
4012 /* Convert to byte registers. */
4013 if (i.types[1].bitfield.word)
4014 j = 16;
4015 else if (i.types[1].bitfield.dword)
4016 j = 32;
4017 else
4018 j = 48;
4019 if (!(i.op[1].regs->reg_flags & RegRex) && base_regnum < 4)
4020 j += 8;
4021 i.op[1].regs -= j;
b6f8c7c4
L
4022 }
4023 }
4024 else if (flag_code == CODE_64BIT
72aea328 4025 && !is_any_vex_encoding (&i.tm)
d3d50934
L
4026 && ((i.types[1].bitfield.qword
4027 && i.reg_operands == 1
b6f8c7c4
L
4028 && i.imm_operands == 1
4029 && i.op[0].imms->X_op == O_constant
507916b8 4030 && ((i.tm.base_opcode == 0xb8
b6f8c7c4
L
4031 && i.tm.extension_opcode == None
4032 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4033 || (fits_in_imm31 (i.op[0].imms->X_add_number)
72aea328
JB
4034 && ((i.tm.base_opcode == 0x24
4035 || i.tm.base_opcode == 0xa8)
b6f8c7c4
L
4036 || (i.tm.base_opcode == 0x80
4037 && i.tm.extension_opcode == 0x4)
4038 || ((i.tm.base_opcode == 0xf6
507916b8 4039 || (i.tm.base_opcode | 1) == 0xc7)
b8364fa7
JB
4040 && i.tm.extension_opcode == 0x0)))
4041 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4042 && i.tm.base_opcode == 0x83
4043 && i.tm.extension_opcode == 0x4)))
d3d50934
L
4044 || (i.types[0].bitfield.qword
4045 && ((i.reg_operands == 2
4046 && i.op[0].regs == i.op[1].regs
72aea328
JB
4047 && (i.tm.base_opcode == 0x30
4048 || i.tm.base_opcode == 0x28))
d3d50934
L
4049 || (i.reg_operands == 1
4050 && i.operands == 1
72aea328 4051 && i.tm.base_opcode == 0x30)))))
b6f8c7c4
L
4052 {
4053 /* Optimize: -O:
4054 andq $imm31, %r64 -> andl $imm31, %r32
b8364fa7 4055 andq $imm7, %r64 -> andl $imm7, %r32
b6f8c7c4
L
4056 testq $imm31, %r64 -> testl $imm31, %r32
4057 xorq %r64, %r64 -> xorl %r32, %r32
4058 subq %r64, %r64 -> subl %r32, %r32
4059 movq $imm31, %r64 -> movl $imm31, %r32
4060 movq $imm32, %r64 -> movl $imm32, %r32
4061 */
4062 i.tm.opcode_modifier.norex64 = 1;
507916b8 4063 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
4064 {
4065 /* Handle
4066 movq $imm31, %r64 -> movl $imm31, %r32
4067 movq $imm32, %r64 -> movl $imm32, %r32
4068 */
4069 i.tm.operand_types[0].bitfield.imm32 = 1;
4070 i.tm.operand_types[0].bitfield.imm32s = 0;
4071 i.tm.operand_types[0].bitfield.imm64 = 0;
4072 i.types[0].bitfield.imm32 = 1;
4073 i.types[0].bitfield.imm32s = 0;
4074 i.types[0].bitfield.imm64 = 0;
4075 i.types[1].bitfield.dword = 1;
4076 i.types[1].bitfield.qword = 0;
507916b8 4077 if ((i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
4078 {
4079 /* Handle
4080 movq $imm31, %r64 -> movl $imm31, %r32
4081 */
507916b8 4082 i.tm.base_opcode = 0xb8;
b6f8c7c4 4083 i.tm.extension_opcode = None;
507916b8 4084 i.tm.opcode_modifier.w = 0;
b6f8c7c4
L
4085 i.tm.opcode_modifier.shortform = 1;
4086 i.tm.opcode_modifier.modrm = 0;
4087 }
4088 }
4089 }
5641ec01
JB
4090 else if (optimize > 1
4091 && !optimize_for_space
72aea328 4092 && !is_any_vex_encoding (&i.tm)
5641ec01
JB
4093 && i.reg_operands == 2
4094 && i.op[0].regs == i.op[1].regs
4095 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4096 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4097 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4098 {
4099 /* Optimize: -O2:
4100 andb %rN, %rN -> testb %rN, %rN
4101 andw %rN, %rN -> testw %rN, %rN
4102 andq %rN, %rN -> testq %rN, %rN
4103 orb %rN, %rN -> testb %rN, %rN
4104 orw %rN, %rN -> testw %rN, %rN
4105 orq %rN, %rN -> testq %rN, %rN
4106
4107 and outside of 64-bit mode
4108
4109 andl %rN, %rN -> testl %rN, %rN
4110 orl %rN, %rN -> testl %rN, %rN
4111 */
4112 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4113 }
99112332 4114 else if (i.reg_operands == 3
b6f8c7c4
L
4115 && i.op[0].regs == i.op[1].regs
4116 && !i.types[2].bitfield.xmmword
4117 && (i.tm.opcode_modifier.vex
7a69eac3 4118 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 4119 && !i.rounding
e771e7c9 4120 && is_evex_encoding (&i.tm)
80c34c38 4121 && (i.vec_encoding != vex_encoding_evex
dd22218c 4122 || cpu_arch_isa_flags.bitfield.cpuavx512vl
80c34c38 4123 || i.tm.cpu_flags.bitfield.cpuavx512vl
7091c612 4124 || (i.tm.operand_types[2].bitfield.zmmword
dd22218c 4125 && i.types[2].bitfield.ymmword))))
b6f8c7c4
L
4126 && ((i.tm.base_opcode == 0x55
4127 || i.tm.base_opcode == 0x6655
4128 || i.tm.base_opcode == 0x66df
4129 || i.tm.base_opcode == 0x57
4130 || i.tm.base_opcode == 0x6657
8305403a
L
4131 || i.tm.base_opcode == 0x66ef
4132 || i.tm.base_opcode == 0x66f8
4133 || i.tm.base_opcode == 0x66f9
4134 || i.tm.base_opcode == 0x66fa
1424ad86
JB
4135 || i.tm.base_opcode == 0x66fb
4136 || i.tm.base_opcode == 0x42
4137 || i.tm.base_opcode == 0x6642
4138 || i.tm.base_opcode == 0x47
4139 || i.tm.base_opcode == 0x6647)
b6f8c7c4
L
4140 && i.tm.extension_opcode == None))
4141 {
99112332 4142 /* Optimize: -O1:
8305403a
L
4143 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4144 vpsubq and vpsubw:
b6f8c7c4
L
4145 EVEX VOP %zmmM, %zmmM, %zmmN
4146 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4147 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4148 EVEX VOP %ymmM, %ymmM, %ymmN
4149 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4150 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4151 VEX VOP %ymmM, %ymmM, %ymmN
4152 -> VEX VOP %xmmM, %xmmM, %xmmN
4153 VOP, one of vpandn and vpxor:
4154 VEX VOP %ymmM, %ymmM, %ymmN
4155 -> VEX VOP %xmmM, %xmmM, %xmmN
4156 VOP, one of vpandnd and vpandnq:
4157 EVEX VOP %zmmM, %zmmM, %zmmN
4158 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4159 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4160 EVEX VOP %ymmM, %ymmM, %ymmN
4161 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4162 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4163 VOP, one of vpxord and vpxorq:
4164 EVEX VOP %zmmM, %zmmM, %zmmN
4165 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4166 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4167 EVEX VOP %ymmM, %ymmM, %ymmN
4168 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4169 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
1424ad86
JB
4170 VOP, one of kxord and kxorq:
4171 VEX VOP %kM, %kM, %kN
4172 -> VEX kxorw %kM, %kM, %kN
4173 VOP, one of kandnd and kandnq:
4174 VEX VOP %kM, %kM, %kN
4175 -> VEX kandnw %kM, %kM, %kN
b6f8c7c4 4176 */
e771e7c9 4177 if (is_evex_encoding (&i.tm))
b6f8c7c4 4178 {
7b1d7ca1 4179 if (i.vec_encoding != vex_encoding_evex)
b6f8c7c4
L
4180 {
4181 i.tm.opcode_modifier.vex = VEX128;
4182 i.tm.opcode_modifier.vexw = VEXW0;
4183 i.tm.opcode_modifier.evex = 0;
4184 }
7b1d7ca1 4185 else if (optimize > 1)
dd22218c
L
4186 i.tm.opcode_modifier.evex = EVEX128;
4187 else
4188 return;
b6f8c7c4 4189 }
f74a6307 4190 else if (i.tm.operand_types[0].bitfield.class == RegMask)
1424ad86
JB
4191 {
4192 i.tm.base_opcode &= 0xff;
4193 i.tm.opcode_modifier.vexw = VEXW0;
4194 }
b6f8c7c4
L
4195 else
4196 i.tm.opcode_modifier.vex = VEX128;
4197
4198 if (i.tm.opcode_modifier.vex)
4199 for (j = 0; j < 3; j++)
4200 {
4201 i.types[j].bitfield.xmmword = 1;
4202 i.types[j].bitfield.ymmword = 0;
4203 }
4204 }
392a5972 4205 else if (i.vec_encoding != vex_encoding_evex
97ed31ae 4206 && !i.types[0].bitfield.zmmword
392a5972 4207 && !i.types[1].bitfield.zmmword
97ed31ae 4208 && !i.mask
a0a1771e 4209 && !i.broadcast
97ed31ae 4210 && is_evex_encoding (&i.tm)
392a5972
L
4211 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4212 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
a0a1771e
JB
4213 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4214 || (i.tm.base_opcode & ~4) == 0x66db
4215 || (i.tm.base_opcode & ~4) == 0x66eb)
97ed31ae
L
4216 && i.tm.extension_opcode == None)
4217 {
4218 /* Optimize: -O1:
4219 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4220 vmovdqu32 and vmovdqu64:
4221 EVEX VOP %xmmM, %xmmN
4222 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4223 EVEX VOP %ymmM, %ymmN
4224 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4225 EVEX VOP %xmmM, mem
4226 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4227 EVEX VOP %ymmM, mem
4228 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4229 EVEX VOP mem, %xmmN
4230 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4231 EVEX VOP mem, %ymmN
4232 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
a0a1771e
JB
4233 VOP, one of vpand, vpandn, vpor, vpxor:
4234 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4235 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4236 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4237 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4238 EVEX VOP{d,q} mem, %xmmM, %xmmN
4239 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4240 EVEX VOP{d,q} mem, %ymmM, %ymmN
4241 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
97ed31ae 4242 */
a0a1771e 4243 for (j = 0; j < i.operands; j++)
392a5972
L
4244 if (operand_type_check (i.types[j], disp)
4245 && i.op[j].disps->X_op == O_constant)
4246 {
4247 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4248 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4249 bytes, we choose EVEX Disp8 over VEX Disp32. */
4250 int evex_disp8, vex_disp8;
4251 unsigned int memshift = i.memshift;
4252 offsetT n = i.op[j].disps->X_add_number;
4253
4254 evex_disp8 = fits_in_disp8 (n);
4255 i.memshift = 0;
4256 vex_disp8 = fits_in_disp8 (n);
4257 if (evex_disp8 != vex_disp8)
4258 {
4259 i.memshift = memshift;
4260 return;
4261 }
4262
4263 i.types[j].bitfield.disp8 = vex_disp8;
4264 break;
4265 }
4266 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4267 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
97ed31ae
L
4268 i.tm.opcode_modifier.vex
4269 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4270 i.tm.opcode_modifier.vexw = VEXW0;
79dec6b7
JB
4271 /* VPAND, VPOR, and VPXOR are commutative. */
4272 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4273 i.tm.opcode_modifier.commutative = 1;
97ed31ae
L
4274 i.tm.opcode_modifier.evex = 0;
4275 i.tm.opcode_modifier.masking = 0;
a0a1771e 4276 i.tm.opcode_modifier.broadcast = 0;
97ed31ae
L
4277 i.tm.opcode_modifier.disp8memshift = 0;
4278 i.memshift = 0;
a0a1771e
JB
4279 if (j < i.operands)
4280 i.types[j].bitfield.disp8
4281 = fits_in_disp8 (i.op[j].disps->X_add_number);
97ed31ae 4282 }
b6f8c7c4
L
4283}
4284
252b5132
RH
4285/* This is the guts of the machine-dependent assembler. LINE points to a
4286 machine dependent instruction. This function is supposed to emit
4287 the frags/bytes it assembles to. */
4288
4289void
65da13b5 4290md_assemble (char *line)
252b5132 4291{
40fb9820 4292 unsigned int j;
83b16ac6 4293 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 4294 const insn_template *t;
252b5132 4295
47926f60 4296 /* Initialize globals. */
252b5132
RH
4297 memset (&i, '\0', sizeof (i));
4298 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 4299 i.reloc[j] = NO_RELOC;
252b5132
RH
4300 memset (disp_expressions, '\0', sizeof (disp_expressions));
4301 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 4302 save_stack_p = save_stack;
252b5132
RH
4303
4304 /* First parse an instruction mnemonic & call i386_operand for the operands.
4305 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 4306 start of a (possibly prefixed) mnemonic. */
252b5132 4307
29b0f896
AM
4308 line = parse_insn (line, mnemonic);
4309 if (line == NULL)
4310 return;
83b16ac6 4311 mnem_suffix = i.suffix;
252b5132 4312
29b0f896 4313 line = parse_operands (line, mnemonic);
ee86248c 4314 this_operand = -1;
8325cc63
JB
4315 xfree (i.memop1_string);
4316 i.memop1_string = NULL;
29b0f896
AM
4317 if (line == NULL)
4318 return;
252b5132 4319
29b0f896
AM
4320 /* Now we've parsed the mnemonic into a set of templates, and have the
4321 operands at hand. */
4322
4323 /* All intel opcodes have reversed operands except for "bound" and
4324 "enter". We also don't reverse intersegment "jmp" and "call"
4325 instructions with 2 immediate operands so that the immediate segment
050dfa73 4326 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
4327 if (intel_syntax
4328 && i.operands > 1
29b0f896 4329 && (strcmp (mnemonic, "bound") != 0)
30123838 4330 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
4331 && !(operand_type_check (i.types[0], imm)
4332 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4333 swap_operands ();
4334
ec56d5c0
JB
4335 /* The order of the immediates should be reversed
4336 for 2 immediates extrq and insertq instructions */
4337 if (i.imm_operands == 2
4338 && (strcmp (mnemonic, "extrq") == 0
4339 || strcmp (mnemonic, "insertq") == 0))
4340 swap_2_operands (0, 1);
4341
29b0f896
AM
4342 if (i.imm_operands)
4343 optimize_imm ();
4344
b300c311
L
4345 /* Don't optimize displacement for movabs since it only takes 64bit
4346 displacement. */
4347 if (i.disp_operands
a501d77e 4348 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4349 && (flag_code != CODE_64BIT
4350 || strcmp (mnemonic, "movabs") != 0))
4351 optimize_disp ();
29b0f896
AM
4352
4353 /* Next, we find a template that matches the given insn,
4354 making sure the overlap of the given operands types is consistent
4355 with the template operand types. */
252b5132 4356
83b16ac6 4357 if (!(t = match_template (mnem_suffix)))
29b0f896 4358 return;
252b5132 4359
7bab8ab5 4360 if (sse_check != check_none
81f8a913 4361 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4362 && !i.tm.cpu_flags.bitfield.cpuavx
569d50f1 4363 && !i.tm.cpu_flags.bitfield.cpuavx512f
daf50ae7
L
4364 && (i.tm.cpu_flags.bitfield.cpusse
4365 || i.tm.cpu_flags.bitfield.cpusse2
4366 || i.tm.cpu_flags.bitfield.cpusse3
4367 || i.tm.cpu_flags.bitfield.cpussse3
4368 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e 4369 || i.tm.cpu_flags.bitfield.cpusse4_2
569d50f1 4370 || i.tm.cpu_flags.bitfield.cpusse4a
6e3e5c9e
JB
4371 || i.tm.cpu_flags.bitfield.cpupclmul
4372 || i.tm.cpu_flags.bitfield.cpuaes
569d50f1 4373 || i.tm.cpu_flags.bitfield.cpusha
6e3e5c9e 4374 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4375 {
7bab8ab5 4376 (sse_check == check_warning
daf50ae7
L
4377 ? as_warn
4378 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4379 }
4380
321fd21e
L
4381 /* Zap movzx and movsx suffix. The suffix has been set from
4382 "word ptr" or "byte ptr" on the source operand in Intel syntax
4383 or extracted from mnemonic in AT&T syntax. But we'll use
4384 the destination register to choose the suffix for encoding. */
4385 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4386 {
321fd21e
L
4387 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4388 there is no suffix, the default will be byte extension. */
4389 if (i.reg_operands != 2
4390 && !i.suffix
7ab9ffdd 4391 && intel_syntax)
321fd21e
L
4392 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4393
4394 i.suffix = 0;
cd61ebfe 4395 }
24eab124 4396
40fb9820 4397 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4398 if (!add_prefix (FWAIT_OPCODE))
4399 return;
252b5132 4400
d5de92cf
L
4401 /* Check if REP prefix is OK. */
4402 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4403 {
4404 as_bad (_("invalid instruction `%s' after `%s'"),
4405 i.tm.name, i.rep_prefix);
4406 return;
4407 }
4408
c1ba0266
L
4409 /* Check for lock without a lockable instruction. Destination operand
4410 must be memory unless it is xchg (0x86). */
c32fa91d
L
4411 if (i.prefix[LOCK_PREFIX]
4412 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4413 || i.mem_operands == 0
4414 || (i.tm.base_opcode != 0x86
8dc0818e 4415 && !(i.flags[i.operands - 1] & Operand_Mem))))
c32fa91d
L
4416 {
4417 as_bad (_("expecting lockable instruction after `lock'"));
4418 return;
4419 }
4420
7a8655d2
JB
4421 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4422 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4423 {
4424 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4425 return;
4426 }
4427
42164a71 4428 /* Check if HLE prefix is OK. */
165de32a 4429 if (i.hle_prefix && !check_hle ())
42164a71
L
4430 return;
4431
7e8b059b
L
4432 /* Check BND prefix. */
4433 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4434 as_bad (_("expecting valid branch instruction after `bnd'"));
4435
04ef582a 4436 /* Check NOTRACK prefix. */
9fef80d6
L
4437 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4438 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4439
327e8c42
JB
4440 if (i.tm.cpu_flags.bitfield.cpumpx)
4441 {
4442 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4443 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4444 else if (flag_code != CODE_16BIT
4445 ? i.prefix[ADDR_PREFIX]
4446 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4447 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4448 }
7e8b059b
L
4449
4450 /* Insert BND prefix. */
76d3a78a
JB
4451 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4452 {
4453 if (!i.prefix[BND_PREFIX])
4454 add_prefix (BND_PREFIX_OPCODE);
4455 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4456 {
4457 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4458 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4459 }
4460 }
7e8b059b 4461
29b0f896 4462 /* Check string instruction segment overrides. */
51c8edf6 4463 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
29b0f896 4464 {
51c8edf6 4465 gas_assert (i.mem_operands);
29b0f896 4466 if (!check_string ())
5dd0794d 4467 return;
fc0763e6 4468 i.disp_operands = 0;
29b0f896 4469 }
5dd0794d 4470
b6f8c7c4
L
4471 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4472 optimize_encoding ();
4473
29b0f896
AM
4474 if (!process_suffix ())
4475 return;
e413e4e9 4476
bc0844ae
L
4477 /* Update operand types. */
4478 for (j = 0; j < i.operands; j++)
4479 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4480
29b0f896
AM
4481 /* Make still unresolved immediate matches conform to size of immediate
4482 given in i.suffix. */
4483 if (!finalize_imm ())
4484 return;
252b5132 4485
40fb9820 4486 if (i.types[0].bitfield.imm1)
29b0f896 4487 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4488
9afe6eb8
L
4489 /* We only need to check those implicit registers for instructions
4490 with 3 operands or less. */
4491 if (i.operands <= 3)
4492 for (j = 0; j < i.operands; j++)
75e5731b
JB
4493 if (i.types[j].bitfield.instance != InstanceNone
4494 && !i.types[j].bitfield.xmmword)
9afe6eb8 4495 i.reg_operands--;
40fb9820 4496
c0f3af97
L
4497 /* ImmExt should be processed after SSE2AVX. */
4498 if (!i.tm.opcode_modifier.sse2avx
4499 && i.tm.opcode_modifier.immext)
65da13b5 4500 process_immext ();
252b5132 4501
29b0f896
AM
4502 /* For insns with operands there are more diddles to do to the opcode. */
4503 if (i.operands)
4504 {
4505 if (!process_operands ())
4506 return;
4507 }
40fb9820 4508 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4509 {
4510 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4511 as_warn (_("translating to `%sp'"), i.tm.name);
4512 }
252b5132 4513
7a8655d2 4514 if (is_any_vex_encoding (&i.tm))
9e5e5283 4515 {
c1dc7af5 4516 if (!cpu_arch_flags.bitfield.cpui286)
9e5e5283 4517 {
c1dc7af5 4518 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
9e5e5283
L
4519 i.tm.name);
4520 return;
4521 }
c0f3af97 4522
9e5e5283
L
4523 if (i.tm.opcode_modifier.vex)
4524 build_vex_prefix (t);
4525 else
4526 build_evex_prefix ();
4527 }
43234a1e 4528
5dd85c99
SP
4529 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4530 instructions may define INT_OPCODE as well, so avoid this corner
4531 case for those instructions that use MODRM. */
4532 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4533 && !i.tm.opcode_modifier.modrm
4534 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4535 {
4536 i.tm.base_opcode = INT3_OPCODE;
4537 i.imm_operands = 0;
4538 }
252b5132 4539
0cfa3eb3
JB
4540 if ((i.tm.opcode_modifier.jump == JUMP
4541 || i.tm.opcode_modifier.jump == JUMP_BYTE
4542 || i.tm.opcode_modifier.jump == JUMP_DWORD)
29b0f896
AM
4543 && i.op[0].disps->X_op == O_constant)
4544 {
4545 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4546 the absolute address given by the constant. Since ix86 jumps and
4547 calls are pc relative, we need to generate a reloc. */
4548 i.op[0].disps->X_add_symbol = &abs_symbol;
4549 i.op[0].disps->X_op = O_symbol;
4550 }
252b5132 4551
40fb9820 4552 if (i.tm.opcode_modifier.rex64)
161a04f6 4553 i.rex |= REX_W;
252b5132 4554
29b0f896
AM
4555 /* For 8 bit registers we need an empty rex prefix. Also if the
4556 instruction already has a prefix, we need to convert old
4557 registers to new ones. */
773f551c 4558
bab6aec1 4559 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
29b0f896 4560 && (i.op[0].regs->reg_flags & RegRex64) != 0)
bab6aec1 4561 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
29b0f896 4562 && (i.op[1].regs->reg_flags & RegRex64) != 0)
bab6aec1
JB
4563 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4564 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
29b0f896
AM
4565 && i.rex != 0))
4566 {
4567 int x;
726c5dcd 4568
29b0f896
AM
4569 i.rex |= REX_OPCODE;
4570 for (x = 0; x < 2; x++)
4571 {
4572 /* Look for 8 bit operand that uses old registers. */
bab6aec1 4573 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
29b0f896 4574 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4575 {
3f93af61 4576 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
29b0f896
AM
4577 /* In case it is "hi" register, give up. */
4578 if (i.op[x].regs->reg_num > 3)
a540244d 4579 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4580 "instruction requiring REX prefix."),
a540244d 4581 register_prefix, i.op[x].regs->reg_name);
773f551c 4582
29b0f896
AM
4583 /* Otherwise it is equivalent to the extended register.
4584 Since the encoding doesn't change this is merely
4585 cosmetic cleanup for debug output. */
4586
4587 i.op[x].regs = i.op[x].regs + 8;
773f551c 4588 }
29b0f896
AM
4589 }
4590 }
773f551c 4591
6b6b6807
L
4592 if (i.rex == 0 && i.rex_encoding)
4593 {
4594 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
3f93af61 4595 that uses legacy register. If it is "hi" register, don't add
6b6b6807
L
4596 the REX_OPCODE byte. */
4597 int x;
4598 for (x = 0; x < 2; x++)
bab6aec1 4599 if (i.types[x].bitfield.class == Reg
6b6b6807
L
4600 && i.types[x].bitfield.byte
4601 && (i.op[x].regs->reg_flags & RegRex64) == 0
4602 && i.op[x].regs->reg_num > 3)
4603 {
3f93af61 4604 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
6b6b6807
L
4605 i.rex_encoding = FALSE;
4606 break;
4607 }
4608
4609 if (i.rex_encoding)
4610 i.rex = REX_OPCODE;
4611 }
4612
7ab9ffdd 4613 if (i.rex != 0)
29b0f896
AM
4614 add_prefix (REX_OPCODE | i.rex);
4615
4616 /* We are ready to output the insn. */
4617 output_insn ();
e379e5f3
L
4618
4619 last_insn.seg = now_seg;
4620
4621 if (i.tm.opcode_modifier.isprefix)
4622 {
4623 last_insn.kind = last_insn_prefix;
4624 last_insn.name = i.tm.name;
4625 last_insn.file = as_where (&last_insn.line);
4626 }
4627 else
4628 last_insn.kind = last_insn_other;
29b0f896
AM
4629}
4630
4631static char *
e3bb37b5 4632parse_insn (char *line, char *mnemonic)
29b0f896
AM
4633{
4634 char *l = line;
4635 char *token_start = l;
4636 char *mnem_p;
5c6af06e 4637 int supported;
d3ce72d0 4638 const insn_template *t;
b6169b20 4639 char *dot_p = NULL;
29b0f896 4640
29b0f896
AM
4641 while (1)
4642 {
4643 mnem_p = mnemonic;
4644 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4645 {
b6169b20
L
4646 if (*mnem_p == '.')
4647 dot_p = mnem_p;
29b0f896
AM
4648 mnem_p++;
4649 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4650 {
29b0f896
AM
4651 as_bad (_("no such instruction: `%s'"), token_start);
4652 return NULL;
4653 }
4654 l++;
4655 }
4656 if (!is_space_char (*l)
4657 && *l != END_OF_INSN
e44823cf
JB
4658 && (intel_syntax
4659 || (*l != PREFIX_SEPARATOR
4660 && *l != ',')))
29b0f896
AM
4661 {
4662 as_bad (_("invalid character %s in mnemonic"),
4663 output_invalid (*l));
4664 return NULL;
4665 }
4666 if (token_start == l)
4667 {
e44823cf 4668 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4669 as_bad (_("expecting prefix; got nothing"));
4670 else
4671 as_bad (_("expecting mnemonic; got nothing"));
4672 return NULL;
4673 }
45288df1 4674
29b0f896 4675 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4676 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4677
29b0f896
AM
4678 if (*l != END_OF_INSN
4679 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4680 && current_templates
40fb9820 4681 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4682 {
c6fb90c8 4683 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4684 {
4685 as_bad ((flag_code != CODE_64BIT
4686 ? _("`%s' is only supported in 64-bit mode")
4687 : _("`%s' is not supported in 64-bit mode")),
4688 current_templates->start->name);
4689 return NULL;
4690 }
29b0f896
AM
4691 /* If we are in 16-bit mode, do not allow addr16 or data16.
4692 Similarly, in 32-bit mode, do not allow addr32 or data32. */
673fe0f0
JB
4693 if ((current_templates->start->opcode_modifier.size == SIZE16
4694 || current_templates->start->opcode_modifier.size == SIZE32)
29b0f896 4695 && flag_code != CODE_64BIT
673fe0f0 4696 && ((current_templates->start->opcode_modifier.size == SIZE32)
29b0f896
AM
4697 ^ (flag_code == CODE_16BIT)))
4698 {
4699 as_bad (_("redundant %s prefix"),
4700 current_templates->start->name);
4701 return NULL;
45288df1 4702 }
86fa6981 4703 if (current_templates->start->opcode_length == 0)
29b0f896 4704 {
86fa6981
L
4705 /* Handle pseudo prefixes. */
4706 switch (current_templates->start->base_opcode)
4707 {
4708 case 0x0:
4709 /* {disp8} */
4710 i.disp_encoding = disp_encoding_8bit;
4711 break;
4712 case 0x1:
4713 /* {disp32} */
4714 i.disp_encoding = disp_encoding_32bit;
4715 break;
4716 case 0x2:
4717 /* {load} */
4718 i.dir_encoding = dir_encoding_load;
4719 break;
4720 case 0x3:
4721 /* {store} */
4722 i.dir_encoding = dir_encoding_store;
4723 break;
4724 case 0x4:
42e04b36
L
4725 /* {vex} */
4726 i.vec_encoding = vex_encoding_vex;
86fa6981
L
4727 break;
4728 case 0x5:
4729 /* {vex3} */
4730 i.vec_encoding = vex_encoding_vex3;
4731 break;
4732 case 0x6:
4733 /* {evex} */
4734 i.vec_encoding = vex_encoding_evex;
4735 break;
6b6b6807
L
4736 case 0x7:
4737 /* {rex} */
4738 i.rex_encoding = TRUE;
4739 break;
b6f8c7c4
L
4740 case 0x8:
4741 /* {nooptimize} */
4742 i.no_optimize = TRUE;
4743 break;
86fa6981
L
4744 default:
4745 abort ();
4746 }
4747 }
4748 else
4749 {
4750 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4751 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4752 {
4e9ac44a
L
4753 case PREFIX_EXIST:
4754 return NULL;
4755 case PREFIX_DS:
d777820b 4756 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4757 i.notrack_prefix = current_templates->start->name;
4758 break;
4759 case PREFIX_REP:
4760 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4761 i.hle_prefix = current_templates->start->name;
4762 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4763 i.bnd_prefix = current_templates->start->name;
4764 else
4765 i.rep_prefix = current_templates->start->name;
4766 break;
4767 default:
4768 break;
86fa6981 4769 }
29b0f896
AM
4770 }
4771 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4772 token_start = ++l;
4773 }
4774 else
4775 break;
4776 }
45288df1 4777
30a55f88 4778 if (!current_templates)
b6169b20 4779 {
07d5e953
JB
4780 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4781 Check if we should swap operand or force 32bit displacement in
f8a5c266 4782 encoding. */
30a55f88 4783 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
64c49ab3 4784 i.dir_encoding = dir_encoding_swap;
8d63c93e 4785 else if (mnem_p - 3 == dot_p
a501d77e
L
4786 && dot_p[1] == 'd'
4787 && dot_p[2] == '8')
4788 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4789 else if (mnem_p - 4 == dot_p
f8a5c266
L
4790 && dot_p[1] == 'd'
4791 && dot_p[2] == '3'
4792 && dot_p[3] == '2')
a501d77e 4793 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4794 else
4795 goto check_suffix;
4796 mnem_p = dot_p;
4797 *dot_p = '\0';
d3ce72d0 4798 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4799 }
4800
29b0f896
AM
4801 if (!current_templates)
4802 {
b6169b20 4803check_suffix:
1c529385 4804 if (mnem_p > mnemonic)
29b0f896 4805 {
1c529385
LH
4806 /* See if we can get a match by trimming off a suffix. */
4807 switch (mnem_p[-1])
29b0f896 4808 {
1c529385
LH
4809 case WORD_MNEM_SUFFIX:
4810 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
29b0f896
AM
4811 i.suffix = SHORT_MNEM_SUFFIX;
4812 else
1c529385
LH
4813 /* Fall through. */
4814 case BYTE_MNEM_SUFFIX:
4815 case QWORD_MNEM_SUFFIX:
4816 i.suffix = mnem_p[-1];
29b0f896 4817 mnem_p[-1] = '\0';
d3ce72d0 4818 current_templates = (const templates *) hash_find (op_hash,
1c529385
LH
4819 mnemonic);
4820 break;
4821 case SHORT_MNEM_SUFFIX:
4822 case LONG_MNEM_SUFFIX:
4823 if (!intel_syntax)
4824 {
4825 i.suffix = mnem_p[-1];
4826 mnem_p[-1] = '\0';
4827 current_templates = (const templates *) hash_find (op_hash,
4828 mnemonic);
4829 }
4830 break;
4831
4832 /* Intel Syntax. */
4833 case 'd':
4834 if (intel_syntax)
4835 {
4836 if (intel_float_operand (mnemonic) == 1)
4837 i.suffix = SHORT_MNEM_SUFFIX;
4838 else
4839 i.suffix = LONG_MNEM_SUFFIX;
4840 mnem_p[-1] = '\0';
4841 current_templates = (const templates *) hash_find (op_hash,
4842 mnemonic);
4843 }
4844 break;
29b0f896 4845 }
29b0f896 4846 }
1c529385 4847
29b0f896
AM
4848 if (!current_templates)
4849 {
4850 as_bad (_("no such instruction: `%s'"), token_start);
4851 return NULL;
4852 }
4853 }
252b5132 4854
0cfa3eb3
JB
4855 if (current_templates->start->opcode_modifier.jump == JUMP
4856 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
29b0f896
AM
4857 {
4858 /* Check for a branch hint. We allow ",pt" and ",pn" for
4859 predict taken and predict not taken respectively.
4860 I'm not sure that branch hints actually do anything on loop
4861 and jcxz insns (JumpByte) for current Pentium4 chips. They
4862 may work in the future and it doesn't hurt to accept them
4863 now. */
4864 if (l[0] == ',' && l[1] == 'p')
4865 {
4866 if (l[2] == 't')
4867 {
4868 if (!add_prefix (DS_PREFIX_OPCODE))
4869 return NULL;
4870 l += 3;
4871 }
4872 else if (l[2] == 'n')
4873 {
4874 if (!add_prefix (CS_PREFIX_OPCODE))
4875 return NULL;
4876 l += 3;
4877 }
4878 }
4879 }
4880 /* Any other comma loses. */
4881 if (*l == ',')
4882 {
4883 as_bad (_("invalid character %s in mnemonic"),
4884 output_invalid (*l));
4885 return NULL;
4886 }
252b5132 4887
29b0f896 4888 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4889 supported = 0;
4890 for (t = current_templates->start; t < current_templates->end; ++t)
4891 {
c0f3af97
L
4892 supported |= cpu_flags_match (t);
4893 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4894 {
4895 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4896 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4897
548d0ee6
JB
4898 return l;
4899 }
29b0f896 4900 }
3629bb00 4901
548d0ee6
JB
4902 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4903 as_bad (flag_code == CODE_64BIT
4904 ? _("`%s' is not supported in 64-bit mode")
4905 : _("`%s' is only supported in 64-bit mode"),
4906 current_templates->start->name);
4907 else
4908 as_bad (_("`%s' is not supported on `%s%s'"),
4909 current_templates->start->name,
4910 cpu_arch_name ? cpu_arch_name : default_arch,
4911 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4912
548d0ee6 4913 return NULL;
29b0f896 4914}
252b5132 4915
29b0f896 4916static char *
e3bb37b5 4917parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4918{
4919 char *token_start;
3138f287 4920
29b0f896
AM
4921 /* 1 if operand is pending after ','. */
4922 unsigned int expecting_operand = 0;
252b5132 4923
29b0f896
AM
4924 /* Non-zero if operand parens not balanced. */
4925 unsigned int paren_not_balanced;
4926
4927 while (*l != END_OF_INSN)
4928 {
4929 /* Skip optional white space before operand. */
4930 if (is_space_char (*l))
4931 ++l;
d02603dc 4932 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4933 {
4934 as_bad (_("invalid character %s before operand %d"),
4935 output_invalid (*l),
4936 i.operands + 1);
4937 return NULL;
4938 }
d02603dc 4939 token_start = l; /* After white space. */
29b0f896
AM
4940 paren_not_balanced = 0;
4941 while (paren_not_balanced || *l != ',')
4942 {
4943 if (*l == END_OF_INSN)
4944 {
4945 if (paren_not_balanced)
4946 {
4947 if (!intel_syntax)
4948 as_bad (_("unbalanced parenthesis in operand %d."),
4949 i.operands + 1);
4950 else
4951 as_bad (_("unbalanced brackets in operand %d."),
4952 i.operands + 1);
4953 return NULL;
4954 }
4955 else
4956 break; /* we are done */
4957 }
d02603dc 4958 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4959 {
4960 as_bad (_("invalid character %s in operand %d"),
4961 output_invalid (*l),
4962 i.operands + 1);
4963 return NULL;
4964 }
4965 if (!intel_syntax)
4966 {
4967 if (*l == '(')
4968 ++paren_not_balanced;
4969 if (*l == ')')
4970 --paren_not_balanced;
4971 }
4972 else
4973 {
4974 if (*l == '[')
4975 ++paren_not_balanced;
4976 if (*l == ']')
4977 --paren_not_balanced;
4978 }
4979 l++;
4980 }
4981 if (l != token_start)
4982 { /* Yes, we've read in another operand. */
4983 unsigned int operand_ok;
4984 this_operand = i.operands++;
4985 if (i.operands > MAX_OPERANDS)
4986 {
4987 as_bad (_("spurious operands; (%d operands/instruction max)"),
4988 MAX_OPERANDS);
4989 return NULL;
4990 }
9d46ce34 4991 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4992 /* Now parse operand adding info to 'i' as we go along. */
4993 END_STRING_AND_SAVE (l);
4994
1286ab78
L
4995 if (i.mem_operands > 1)
4996 {
4997 as_bad (_("too many memory references for `%s'"),
4998 mnemonic);
4999 return 0;
5000 }
5001
29b0f896
AM
5002 if (intel_syntax)
5003 operand_ok =
5004 i386_intel_operand (token_start,
5005 intel_float_operand (mnemonic));
5006 else
a7619375 5007 operand_ok = i386_att_operand (token_start);
29b0f896
AM
5008
5009 RESTORE_END_STRING (l);
5010 if (!operand_ok)
5011 return NULL;
5012 }
5013 else
5014 {
5015 if (expecting_operand)
5016 {
5017 expecting_operand_after_comma:
5018 as_bad (_("expecting operand after ','; got nothing"));
5019 return NULL;
5020 }
5021 if (*l == ',')
5022 {
5023 as_bad (_("expecting operand before ','; got nothing"));
5024 return NULL;
5025 }
5026 }
7f3f1ea2 5027
29b0f896
AM
5028 /* Now *l must be either ',' or END_OF_INSN. */
5029 if (*l == ',')
5030 {
5031 if (*++l == END_OF_INSN)
5032 {
5033 /* Just skip it, if it's \n complain. */
5034 goto expecting_operand_after_comma;
5035 }
5036 expecting_operand = 1;
5037 }
5038 }
5039 return l;
5040}
7f3f1ea2 5041
050dfa73 5042static void
4d456e3d 5043swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
5044{
5045 union i386_op temp_op;
40fb9820 5046 i386_operand_type temp_type;
c48dadc9 5047 unsigned int temp_flags;
050dfa73 5048 enum bfd_reloc_code_real temp_reloc;
4eed87de 5049
050dfa73
MM
5050 temp_type = i.types[xchg2];
5051 i.types[xchg2] = i.types[xchg1];
5052 i.types[xchg1] = temp_type;
c48dadc9
JB
5053
5054 temp_flags = i.flags[xchg2];
5055 i.flags[xchg2] = i.flags[xchg1];
5056 i.flags[xchg1] = temp_flags;
5057
050dfa73
MM
5058 temp_op = i.op[xchg2];
5059 i.op[xchg2] = i.op[xchg1];
5060 i.op[xchg1] = temp_op;
c48dadc9 5061
050dfa73
MM
5062 temp_reloc = i.reloc[xchg2];
5063 i.reloc[xchg2] = i.reloc[xchg1];
5064 i.reloc[xchg1] = temp_reloc;
43234a1e
L
5065
5066 if (i.mask)
5067 {
5068 if (i.mask->operand == xchg1)
5069 i.mask->operand = xchg2;
5070 else if (i.mask->operand == xchg2)
5071 i.mask->operand = xchg1;
5072 }
5073 if (i.broadcast)
5074 {
5075 if (i.broadcast->operand == xchg1)
5076 i.broadcast->operand = xchg2;
5077 else if (i.broadcast->operand == xchg2)
5078 i.broadcast->operand = xchg1;
5079 }
5080 if (i.rounding)
5081 {
5082 if (i.rounding->operand == xchg1)
5083 i.rounding->operand = xchg2;
5084 else if (i.rounding->operand == xchg2)
5085 i.rounding->operand = xchg1;
5086 }
050dfa73
MM
5087}
5088
29b0f896 5089static void
e3bb37b5 5090swap_operands (void)
29b0f896 5091{
b7c61d9a 5092 switch (i.operands)
050dfa73 5093 {
c0f3af97 5094 case 5:
b7c61d9a 5095 case 4:
4d456e3d 5096 swap_2_operands (1, i.operands - 2);
1a0670f3 5097 /* Fall through. */
b7c61d9a
L
5098 case 3:
5099 case 2:
4d456e3d 5100 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
5101 break;
5102 default:
5103 abort ();
29b0f896 5104 }
29b0f896
AM
5105
5106 if (i.mem_operands == 2)
5107 {
5108 const seg_entry *temp_seg;
5109 temp_seg = i.seg[0];
5110 i.seg[0] = i.seg[1];
5111 i.seg[1] = temp_seg;
5112 }
5113}
252b5132 5114
29b0f896
AM
5115/* Try to ensure constant immediates are represented in the smallest
5116 opcode possible. */
5117static void
e3bb37b5 5118optimize_imm (void)
29b0f896
AM
5119{
5120 char guess_suffix = 0;
5121 int op;
252b5132 5122
29b0f896
AM
5123 if (i.suffix)
5124 guess_suffix = i.suffix;
5125 else if (i.reg_operands)
5126 {
5127 /* Figure out a suffix from the last register operand specified.
75e5731b
JB
5128 We can't do this properly yet, i.e. excluding special register
5129 instances, but the following works for instructions with
5130 immediates. In any case, we can't set i.suffix yet. */
29b0f896 5131 for (op = i.operands; --op >= 0;)
bab6aec1
JB
5132 if (i.types[op].bitfield.class != Reg)
5133 continue;
5134 else if (i.types[op].bitfield.byte)
7ab9ffdd 5135 {
40fb9820
L
5136 guess_suffix = BYTE_MNEM_SUFFIX;
5137 break;
5138 }
bab6aec1 5139 else if (i.types[op].bitfield.word)
252b5132 5140 {
40fb9820
L
5141 guess_suffix = WORD_MNEM_SUFFIX;
5142 break;
5143 }
bab6aec1 5144 else if (i.types[op].bitfield.dword)
40fb9820
L
5145 {
5146 guess_suffix = LONG_MNEM_SUFFIX;
5147 break;
5148 }
bab6aec1 5149 else if (i.types[op].bitfield.qword)
40fb9820
L
5150 {
5151 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 5152 break;
252b5132 5153 }
29b0f896
AM
5154 }
5155 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5156 guess_suffix = WORD_MNEM_SUFFIX;
5157
5158 for (op = i.operands; --op >= 0;)
40fb9820 5159 if (operand_type_check (i.types[op], imm))
29b0f896
AM
5160 {
5161 switch (i.op[op].imms->X_op)
252b5132 5162 {
29b0f896
AM
5163 case O_constant:
5164 /* If a suffix is given, this operand may be shortened. */
5165 switch (guess_suffix)
252b5132 5166 {
29b0f896 5167 case LONG_MNEM_SUFFIX:
40fb9820
L
5168 i.types[op].bitfield.imm32 = 1;
5169 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5170 break;
5171 case WORD_MNEM_SUFFIX:
40fb9820
L
5172 i.types[op].bitfield.imm16 = 1;
5173 i.types[op].bitfield.imm32 = 1;
5174 i.types[op].bitfield.imm32s = 1;
5175 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5176 break;
5177 case BYTE_MNEM_SUFFIX:
40fb9820
L
5178 i.types[op].bitfield.imm8 = 1;
5179 i.types[op].bitfield.imm8s = 1;
5180 i.types[op].bitfield.imm16 = 1;
5181 i.types[op].bitfield.imm32 = 1;
5182 i.types[op].bitfield.imm32s = 1;
5183 i.types[op].bitfield.imm64 = 1;
29b0f896 5184 break;
252b5132 5185 }
252b5132 5186
29b0f896
AM
5187 /* If this operand is at most 16 bits, convert it
5188 to a signed 16 bit number before trying to see
5189 whether it will fit in an even smaller size.
5190 This allows a 16-bit operand such as $0xffe0 to
5191 be recognised as within Imm8S range. */
40fb9820 5192 if ((i.types[op].bitfield.imm16)
29b0f896 5193 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 5194 {
29b0f896
AM
5195 i.op[op].imms->X_add_number =
5196 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5197 }
a28def75
L
5198#ifdef BFD64
5199 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 5200 if ((i.types[op].bitfield.imm32)
29b0f896
AM
5201 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5202 == 0))
5203 {
5204 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5205 ^ ((offsetT) 1 << 31))
5206 - ((offsetT) 1 << 31));
5207 }
a28def75 5208#endif
40fb9820 5209 i.types[op]
c6fb90c8
L
5210 = operand_type_or (i.types[op],
5211 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 5212
29b0f896
AM
5213 /* We must avoid matching of Imm32 templates when 64bit
5214 only immediate is available. */
5215 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 5216 i.types[op].bitfield.imm32 = 0;
29b0f896 5217 break;
252b5132 5218
29b0f896
AM
5219 case O_absent:
5220 case O_register:
5221 abort ();
5222
5223 /* Symbols and expressions. */
5224 default:
9cd96992
JB
5225 /* Convert symbolic operand to proper sizes for matching, but don't
5226 prevent matching a set of insns that only supports sizes other
5227 than those matching the insn suffix. */
5228 {
40fb9820 5229 i386_operand_type mask, allowed;
d3ce72d0 5230 const insn_template *t;
9cd96992 5231
0dfbf9d7
L
5232 operand_type_set (&mask, 0);
5233 operand_type_set (&allowed, 0);
40fb9820 5234
4eed87de
AM
5235 for (t = current_templates->start;
5236 t < current_templates->end;
5237 ++t)
bab6aec1
JB
5238 {
5239 allowed = operand_type_or (allowed, t->operand_types[op]);
5240 allowed = operand_type_and (allowed, anyimm);
5241 }
9cd96992
JB
5242 switch (guess_suffix)
5243 {
5244 case QWORD_MNEM_SUFFIX:
40fb9820
L
5245 mask.bitfield.imm64 = 1;
5246 mask.bitfield.imm32s = 1;
9cd96992
JB
5247 break;
5248 case LONG_MNEM_SUFFIX:
40fb9820 5249 mask.bitfield.imm32 = 1;
9cd96992
JB
5250 break;
5251 case WORD_MNEM_SUFFIX:
40fb9820 5252 mask.bitfield.imm16 = 1;
9cd96992
JB
5253 break;
5254 case BYTE_MNEM_SUFFIX:
40fb9820 5255 mask.bitfield.imm8 = 1;
9cd96992
JB
5256 break;
5257 default:
9cd96992
JB
5258 break;
5259 }
c6fb90c8 5260 allowed = operand_type_and (mask, allowed);
0dfbf9d7 5261 if (!operand_type_all_zero (&allowed))
c6fb90c8 5262 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 5263 }
29b0f896 5264 break;
252b5132 5265 }
29b0f896
AM
5266 }
5267}
47926f60 5268
29b0f896
AM
5269/* Try to use the smallest displacement type too. */
5270static void
e3bb37b5 5271optimize_disp (void)
29b0f896
AM
5272{
5273 int op;
3e73aa7c 5274
29b0f896 5275 for (op = i.operands; --op >= 0;)
40fb9820 5276 if (operand_type_check (i.types[op], disp))
252b5132 5277 {
b300c311 5278 if (i.op[op].disps->X_op == O_constant)
252b5132 5279 {
91d6fa6a 5280 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 5281
40fb9820 5282 if (i.types[op].bitfield.disp16
91d6fa6a 5283 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
5284 {
5285 /* If this operand is at most 16 bits, convert
5286 to a signed 16 bit number and don't use 64bit
5287 displacement. */
91d6fa6a 5288 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 5289 i.types[op].bitfield.disp64 = 0;
b300c311 5290 }
a28def75
L
5291#ifdef BFD64
5292 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 5293 if (i.types[op].bitfield.disp32
91d6fa6a 5294 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
5295 {
5296 /* If this operand is at most 32 bits, convert
5297 to a signed 32 bit number and don't use 64bit
5298 displacement. */
91d6fa6a
NC
5299 op_disp &= (((offsetT) 2 << 31) - 1);
5300 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 5301 i.types[op].bitfield.disp64 = 0;
b300c311 5302 }
a28def75 5303#endif
91d6fa6a 5304 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 5305 {
40fb9820
L
5306 i.types[op].bitfield.disp8 = 0;
5307 i.types[op].bitfield.disp16 = 0;
5308 i.types[op].bitfield.disp32 = 0;
5309 i.types[op].bitfield.disp32s = 0;
5310 i.types[op].bitfield.disp64 = 0;
b300c311
L
5311 i.op[op].disps = 0;
5312 i.disp_operands--;
5313 }
5314 else if (flag_code == CODE_64BIT)
5315 {
91d6fa6a 5316 if (fits_in_signed_long (op_disp))
28a9d8f5 5317 {
40fb9820
L
5318 i.types[op].bitfield.disp64 = 0;
5319 i.types[op].bitfield.disp32s = 1;
28a9d8f5 5320 }
0e1147d9 5321 if (i.prefix[ADDR_PREFIX]
91d6fa6a 5322 && fits_in_unsigned_long (op_disp))
40fb9820 5323 i.types[op].bitfield.disp32 = 1;
b300c311 5324 }
40fb9820
L
5325 if ((i.types[op].bitfield.disp32
5326 || i.types[op].bitfield.disp32s
5327 || i.types[op].bitfield.disp16)
b5014f7a 5328 && fits_in_disp8 (op_disp))
40fb9820 5329 i.types[op].bitfield.disp8 = 1;
252b5132 5330 }
67a4f2b7
AO
5331 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5332 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5333 {
5334 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5335 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
5336 i.types[op].bitfield.disp8 = 0;
5337 i.types[op].bitfield.disp16 = 0;
5338 i.types[op].bitfield.disp32 = 0;
5339 i.types[op].bitfield.disp32s = 0;
5340 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
5341 }
5342 else
b300c311 5343 /* We only support 64bit displacement on constants. */
40fb9820 5344 i.types[op].bitfield.disp64 = 0;
252b5132 5345 }
29b0f896
AM
5346}
5347
4a1b91ea
L
5348/* Return 1 if there is a match in broadcast bytes between operand
5349 GIVEN and instruction template T. */
5350
5351static INLINE int
5352match_broadcast_size (const insn_template *t, unsigned int given)
5353{
5354 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5355 && i.types[given].bitfield.byte)
5356 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5357 && i.types[given].bitfield.word)
5358 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5359 && i.types[given].bitfield.dword)
5360 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5361 && i.types[given].bitfield.qword));
5362}
5363
6c30d220
L
5364/* Check if operands are valid for the instruction. */
5365
5366static int
5367check_VecOperands (const insn_template *t)
5368{
43234a1e 5369 unsigned int op;
e2195274
JB
5370 i386_cpu_flags cpu;
5371 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5372
5373 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5374 any one operand are implicity requiring AVX512VL support if the actual
5375 operand size is YMMword or XMMword. Since this function runs after
5376 template matching, there's no need to check for YMMword/XMMword in
5377 the template. */
5378 cpu = cpu_flags_and (t->cpu_flags, avx512);
5379 if (!cpu_flags_all_zero (&cpu)
5380 && !t->cpu_flags.bitfield.cpuavx512vl
5381 && !cpu_arch_flags.bitfield.cpuavx512vl)
5382 {
5383 for (op = 0; op < t->operands; ++op)
5384 {
5385 if (t->operand_types[op].bitfield.zmmword
5386 && (i.types[op].bitfield.ymmword
5387 || i.types[op].bitfield.xmmword))
5388 {
5389 i.error = unsupported;
5390 return 1;
5391 }
5392 }
5393 }
43234a1e 5394
6c30d220
L
5395 /* Without VSIB byte, we can't have a vector register for index. */
5396 if (!t->opcode_modifier.vecsib
5397 && i.index_reg
1b54b8d7
JB
5398 && (i.index_reg->reg_type.bitfield.xmmword
5399 || i.index_reg->reg_type.bitfield.ymmword
5400 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5401 {
5402 i.error = unsupported_vector_index_register;
5403 return 1;
5404 }
5405
ad8ecc81
MZ
5406 /* Check if default mask is allowed. */
5407 if (t->opcode_modifier.nodefmask
5408 && (!i.mask || i.mask->mask->reg_num == 0))
5409 {
5410 i.error = no_default_mask;
5411 return 1;
5412 }
5413
7bab8ab5
JB
5414 /* For VSIB byte, we need a vector register for index, and all vector
5415 registers must be distinct. */
5416 if (t->opcode_modifier.vecsib)
5417 {
5418 if (!i.index_reg
6c30d220 5419 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 5420 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 5421 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 5422 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 5423 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 5424 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5425 {
5426 i.error = invalid_vsib_address;
5427 return 1;
5428 }
5429
43234a1e
L
5430 gas_assert (i.reg_operands == 2 || i.mask);
5431 if (i.reg_operands == 2 && !i.mask)
5432 {
3528c362 5433 gas_assert (i.types[0].bitfield.class == RegSIMD);
1b54b8d7
JB
5434 gas_assert (i.types[0].bitfield.xmmword
5435 || i.types[0].bitfield.ymmword);
3528c362 5436 gas_assert (i.types[2].bitfield.class == RegSIMD);
1b54b8d7
JB
5437 gas_assert (i.types[2].bitfield.xmmword
5438 || i.types[2].bitfield.ymmword);
43234a1e
L
5439 if (operand_check == check_none)
5440 return 0;
5441 if (register_number (i.op[0].regs)
5442 != register_number (i.index_reg)
5443 && register_number (i.op[2].regs)
5444 != register_number (i.index_reg)
5445 && register_number (i.op[0].regs)
5446 != register_number (i.op[2].regs))
5447 return 0;
5448 if (operand_check == check_error)
5449 {
5450 i.error = invalid_vector_register_set;
5451 return 1;
5452 }
5453 as_warn (_("mask, index, and destination registers should be distinct"));
5454 }
8444f82a
MZ
5455 else if (i.reg_operands == 1 && i.mask)
5456 {
3528c362 5457 if (i.types[1].bitfield.class == RegSIMD
1b54b8d7
JB
5458 && (i.types[1].bitfield.xmmword
5459 || i.types[1].bitfield.ymmword
5460 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5461 && (register_number (i.op[1].regs)
5462 == register_number (i.index_reg)))
5463 {
5464 if (operand_check == check_error)
5465 {
5466 i.error = invalid_vector_register_set;
5467 return 1;
5468 }
5469 if (operand_check != check_none)
5470 as_warn (_("index and destination registers should be distinct"));
5471 }
5472 }
43234a1e 5473 }
7bab8ab5 5474
43234a1e
L
5475 /* Check if broadcast is supported by the instruction and is applied
5476 to the memory operand. */
5477 if (i.broadcast)
5478 {
8e6e0792 5479 i386_operand_type type, overlap;
43234a1e
L
5480
5481 /* Check if specified broadcast is supported in this instruction,
4a1b91ea 5482 and its broadcast bytes match the memory operand. */
32546502 5483 op = i.broadcast->operand;
8e6e0792 5484 if (!t->opcode_modifier.broadcast
c48dadc9 5485 || !(i.flags[op] & Operand_Mem)
c39e5b26 5486 || (!i.types[op].bitfield.unspecified
4a1b91ea 5487 && !match_broadcast_size (t, op)))
43234a1e
L
5488 {
5489 bad_broadcast:
5490 i.error = unsupported_broadcast;
5491 return 1;
5492 }
8e6e0792 5493
4a1b91ea
L
5494 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5495 * i.broadcast->type);
8e6e0792 5496 operand_type_set (&type, 0);
4a1b91ea 5497 switch (i.broadcast->bytes)
8e6e0792 5498 {
4a1b91ea
L
5499 case 2:
5500 type.bitfield.word = 1;
5501 break;
5502 case 4:
5503 type.bitfield.dword = 1;
5504 break;
8e6e0792
JB
5505 case 8:
5506 type.bitfield.qword = 1;
5507 break;
5508 case 16:
5509 type.bitfield.xmmword = 1;
5510 break;
5511 case 32:
5512 type.bitfield.ymmword = 1;
5513 break;
5514 case 64:
5515 type.bitfield.zmmword = 1;
5516 break;
5517 default:
5518 goto bad_broadcast;
5519 }
5520
5521 overlap = operand_type_and (type, t->operand_types[op]);
5522 if (operand_type_all_zero (&overlap))
5523 goto bad_broadcast;
5524
5525 if (t->opcode_modifier.checkregsize)
5526 {
5527 unsigned int j;
5528
e2195274 5529 type.bitfield.baseindex = 1;
8e6e0792
JB
5530 for (j = 0; j < i.operands; ++j)
5531 {
5532 if (j != op
5533 && !operand_type_register_match(i.types[j],
5534 t->operand_types[j],
5535 type,
5536 t->operand_types[op]))
5537 goto bad_broadcast;
5538 }
5539 }
43234a1e
L
5540 }
5541 /* If broadcast is supported in this instruction, we need to check if
5542 operand of one-element size isn't specified without broadcast. */
5543 else if (t->opcode_modifier.broadcast && i.mem_operands)
5544 {
5545 /* Find memory operand. */
5546 for (op = 0; op < i.operands; op++)
8dc0818e 5547 if (i.flags[op] & Operand_Mem)
43234a1e
L
5548 break;
5549 gas_assert (op < i.operands);
5550 /* Check size of the memory operand. */
4a1b91ea 5551 if (match_broadcast_size (t, op))
43234a1e
L
5552 {
5553 i.error = broadcast_needed;
5554 return 1;
5555 }
5556 }
c39e5b26
JB
5557 else
5558 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5559
5560 /* Check if requested masking is supported. */
ae2387fe 5561 if (i.mask)
43234a1e 5562 {
ae2387fe
JB
5563 switch (t->opcode_modifier.masking)
5564 {
5565 case BOTH_MASKING:
5566 break;
5567 case MERGING_MASKING:
5568 if (i.mask->zeroing)
5569 {
5570 case 0:
5571 i.error = unsupported_masking;
5572 return 1;
5573 }
5574 break;
5575 case DYNAMIC_MASKING:
5576 /* Memory destinations allow only merging masking. */
5577 if (i.mask->zeroing && i.mem_operands)
5578 {
5579 /* Find memory operand. */
5580 for (op = 0; op < i.operands; op++)
c48dadc9 5581 if (i.flags[op] & Operand_Mem)
ae2387fe
JB
5582 break;
5583 gas_assert (op < i.operands);
5584 if (op == i.operands - 1)
5585 {
5586 i.error = unsupported_masking;
5587 return 1;
5588 }
5589 }
5590 break;
5591 default:
5592 abort ();
5593 }
43234a1e
L
5594 }
5595
5596 /* Check if masking is applied to dest operand. */
5597 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5598 {
5599 i.error = mask_not_on_destination;
5600 return 1;
5601 }
5602
43234a1e
L
5603 /* Check RC/SAE. */
5604 if (i.rounding)
5605 {
a80195f1
JB
5606 if (!t->opcode_modifier.sae
5607 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
43234a1e
L
5608 {
5609 i.error = unsupported_rc_sae;
5610 return 1;
5611 }
5612 /* If the instruction has several immediate operands and one of
5613 them is rounding, the rounding operand should be the last
5614 immediate operand. */
5615 if (i.imm_operands > 1
5616 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5617 {
43234a1e 5618 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5619 return 1;
5620 }
6c30d220
L
5621 }
5622
43234a1e 5623 /* Check vector Disp8 operand. */
b5014f7a
JB
5624 if (t->opcode_modifier.disp8memshift
5625 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5626 {
5627 if (i.broadcast)
4a1b91ea 5628 i.memshift = t->opcode_modifier.broadcast - 1;
7091c612 5629 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 5630 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
5631 else
5632 {
5633 const i386_operand_type *type = NULL;
5634
5635 i.memshift = 0;
5636 for (op = 0; op < i.operands; op++)
8dc0818e 5637 if (i.flags[op] & Operand_Mem)
7091c612 5638 {
4174bfff
JB
5639 if (t->opcode_modifier.evex == EVEXLIG)
5640 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5641 else if (t->operand_types[op].bitfield.xmmword
5642 + t->operand_types[op].bitfield.ymmword
5643 + t->operand_types[op].bitfield.zmmword <= 1)
7091c612
JB
5644 type = &t->operand_types[op];
5645 else if (!i.types[op].bitfield.unspecified)
5646 type = &i.types[op];
5647 }
3528c362 5648 else if (i.types[op].bitfield.class == RegSIMD
4174bfff 5649 && t->opcode_modifier.evex != EVEXLIG)
7091c612
JB
5650 {
5651 if (i.types[op].bitfield.zmmword)
5652 i.memshift = 6;
5653 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5654 i.memshift = 5;
5655 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5656 i.memshift = 4;
5657 }
5658
5659 if (type)
5660 {
5661 if (type->bitfield.zmmword)
5662 i.memshift = 6;
5663 else if (type->bitfield.ymmword)
5664 i.memshift = 5;
5665 else if (type->bitfield.xmmword)
5666 i.memshift = 4;
5667 }
5668
5669 /* For the check in fits_in_disp8(). */
5670 if (i.memshift == 0)
5671 i.memshift = -1;
5672 }
43234a1e
L
5673
5674 for (op = 0; op < i.operands; op++)
5675 if (operand_type_check (i.types[op], disp)
5676 && i.op[op].disps->X_op == O_constant)
5677 {
b5014f7a 5678 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5679 {
b5014f7a
JB
5680 i.types[op].bitfield.disp8 = 1;
5681 return 0;
43234a1e 5682 }
b5014f7a 5683 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5684 }
5685 }
b5014f7a
JB
5686
5687 i.memshift = 0;
43234a1e 5688
6c30d220
L
5689 return 0;
5690}
5691
43f3e2ee 5692/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5693 operand types. */
5694
5695static int
5696VEX_check_operands (const insn_template *t)
5697{
86fa6981 5698 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5699 {
86fa6981 5700 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 5701 if (!is_evex_encoding (t))
86fa6981
L
5702 {
5703 i.error = unsupported;
5704 return 1;
5705 }
5706 return 0;
43234a1e
L
5707 }
5708
a683cc34 5709 if (!t->opcode_modifier.vex)
86fa6981
L
5710 {
5711 /* This instruction template doesn't have VEX prefix. */
5712 if (i.vec_encoding != vex_encoding_default)
5713 {
5714 i.error = unsupported;
5715 return 1;
5716 }
5717 return 0;
5718 }
a683cc34 5719
9d3bf266
JB
5720 /* Check the special Imm4 cases; must be the first operand. */
5721 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
a683cc34
SP
5722 {
5723 if (i.op[0].imms->X_op != O_constant
5724 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5725 {
a65babc9 5726 i.error = bad_imm4;
891edac4
L
5727 return 1;
5728 }
a683cc34 5729
9d3bf266
JB
5730 /* Turn off Imm<N> so that update_imm won't complain. */
5731 operand_type_set (&i.types[0], 0);
a683cc34
SP
5732 }
5733
5734 return 0;
5735}
5736
d3ce72d0 5737static const insn_template *
83b16ac6 5738match_template (char mnem_suffix)
29b0f896
AM
5739{
5740 /* Points to template once we've found it. */
d3ce72d0 5741 const insn_template *t;
40fb9820 5742 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5743 i386_operand_type overlap4;
29b0f896 5744 unsigned int found_reverse_match;
dc2be329 5745 i386_opcode_modifier suffix_check;
40fb9820 5746 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5747 int addr_prefix_disp;
45a4bb20 5748 unsigned int j, size_match, check_register;
5614d22c 5749 enum i386_error specific_error = 0;
29b0f896 5750
c0f3af97
L
5751#if MAX_OPERANDS != 5
5752# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5753#endif
5754
29b0f896 5755 found_reverse_match = 0;
539e75ad 5756 addr_prefix_disp = -1;
40fb9820 5757
dc2be329 5758 /* Prepare for mnemonic suffix check. */
40fb9820 5759 memset (&suffix_check, 0, sizeof (suffix_check));
dc2be329
L
5760 switch (mnem_suffix)
5761 {
5762 case BYTE_MNEM_SUFFIX:
5763 suffix_check.no_bsuf = 1;
5764 break;
5765 case WORD_MNEM_SUFFIX:
5766 suffix_check.no_wsuf = 1;
5767 break;
5768 case SHORT_MNEM_SUFFIX:
5769 suffix_check.no_ssuf = 1;
5770 break;
5771 case LONG_MNEM_SUFFIX:
5772 suffix_check.no_lsuf = 1;
5773 break;
5774 case QWORD_MNEM_SUFFIX:
5775 suffix_check.no_qsuf = 1;
5776 break;
5777 default:
5778 /* NB: In Intel syntax, normally we can check for memory operand
5779 size when there is no mnemonic suffix. But jmp and call have
5780 2 different encodings with Dword memory operand size, one with
5781 No_ldSuf and the other without. i.suffix is set to
5782 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
5783 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5784 suffix_check.no_ldsuf = 1;
83b16ac6
JB
5785 }
5786
01559ecc
L
5787 /* Must have right number of operands. */
5788 i.error = number_of_operands_mismatch;
5789
45aa61fe 5790 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5791 {
539e75ad 5792 addr_prefix_disp = -1;
dbbc8b7e 5793 found_reverse_match = 0;
539e75ad 5794
29b0f896
AM
5795 if (i.operands != t->operands)
5796 continue;
5797
50aecf8c 5798 /* Check processor support. */
a65babc9 5799 i.error = unsupported;
45a4bb20 5800 if (cpu_flags_match (t) != CPU_FLAGS_PERFECT_MATCH)
50aecf8c
L
5801 continue;
5802
e1d4d893 5803 /* Check AT&T mnemonic. */
a65babc9 5804 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5805 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5806 continue;
5807
e92bae62 5808 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5809 i.error = unsupported_syntax;
5c07affc 5810 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5811 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5812 || (intel64 && t->opcode_modifier.amd64)
5813 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5814 continue;
5815
dc2be329 5816 /* Check the suffix. */
a65babc9 5817 i.error = invalid_instruction_suffix;
dc2be329
L
5818 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5819 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5820 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5821 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5822 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5823 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
83b16ac6 5824 continue;
29b0f896 5825
3ac21baa
JB
5826 size_match = operand_size_match (t);
5827 if (!size_match)
7d5e4556 5828 continue;
539e75ad 5829
6f2f06be
JB
5830 /* This is intentionally not
5831
0cfa3eb3 5832 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
6f2f06be
JB
5833
5834 as the case of a missing * on the operand is accepted (perhaps with
5835 a warning, issued further down). */
0cfa3eb3 5836 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
6f2f06be
JB
5837 {
5838 i.error = operand_type_mismatch;
5839 continue;
5840 }
5841
5c07affc
L
5842 for (j = 0; j < MAX_OPERANDS; j++)
5843 operand_types[j] = t->operand_types[j];
5844
45aa61fe
AM
5845 /* In general, don't allow 64-bit operands in 32-bit mode. */
5846 if (i.suffix == QWORD_MNEM_SUFFIX
5847 && flag_code != CODE_64BIT
5848 && (intel_syntax
40fb9820 5849 ? (!t->opcode_modifier.ignoresize
625cbd7a 5850 && !t->opcode_modifier.broadcast
45aa61fe
AM
5851 && !intel_float_operand (t->name))
5852 : intel_float_operand (t->name) != 2)
3528c362
JB
5853 && ((operand_types[0].bitfield.class != RegMMX
5854 && operand_types[0].bitfield.class != RegSIMD)
5855 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5856 && operand_types[t->operands > 1].bitfield.class != RegSIMD))
45aa61fe
AM
5857 && (t->base_opcode != 0x0fc7
5858 || t->extension_opcode != 1 /* cmpxchg8b */))
5859 continue;
5860
192dc9c6
JB
5861 /* In general, don't allow 32-bit operands on pre-386. */
5862 else if (i.suffix == LONG_MNEM_SUFFIX
5863 && !cpu_arch_flags.bitfield.cpui386
5864 && (intel_syntax
5865 ? (!t->opcode_modifier.ignoresize
5866 && !intel_float_operand (t->name))
5867 : intel_float_operand (t->name) != 2)
3528c362
JB
5868 && ((operand_types[0].bitfield.class != RegMMX
5869 && operand_types[0].bitfield.class != RegSIMD)
5870 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5871 && operand_types[t->operands > 1].bitfield.class
5872 != RegSIMD)))
192dc9c6
JB
5873 continue;
5874
29b0f896 5875 /* Do not verify operands when there are none. */
50aecf8c 5876 else
29b0f896 5877 {
c6fb90c8 5878 if (!t->operands)
2dbab7d5
L
5879 /* We've found a match; break out of loop. */
5880 break;
29b0f896 5881 }
252b5132 5882
48bcea9f
JB
5883 if (!t->opcode_modifier.jump
5884 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
5885 {
5886 /* There should be only one Disp operand. */
5887 for (j = 0; j < MAX_OPERANDS; j++)
5888 if (operand_type_check (operand_types[j], disp))
539e75ad 5889 break;
48bcea9f
JB
5890 if (j < MAX_OPERANDS)
5891 {
5892 bfd_boolean override = (i.prefix[ADDR_PREFIX] != 0);
5893
5894 addr_prefix_disp = j;
5895
5896 /* Address size prefix will turn Disp64/Disp32S/Disp32/Disp16
5897 operand into Disp32/Disp32/Disp16/Disp32 operand. */
5898 switch (flag_code)
40fb9820 5899 {
48bcea9f
JB
5900 case CODE_16BIT:
5901 override = !override;
5902 /* Fall through. */
5903 case CODE_32BIT:
5904 if (operand_types[j].bitfield.disp32
5905 && operand_types[j].bitfield.disp16)
40fb9820 5906 {
48bcea9f
JB
5907 operand_types[j].bitfield.disp16 = override;
5908 operand_types[j].bitfield.disp32 = !override;
40fb9820 5909 }
48bcea9f
JB
5910 operand_types[j].bitfield.disp32s = 0;
5911 operand_types[j].bitfield.disp64 = 0;
5912 break;
5913
5914 case CODE_64BIT:
5915 if (operand_types[j].bitfield.disp32s
5916 || operand_types[j].bitfield.disp64)
40fb9820 5917 {
48bcea9f
JB
5918 operand_types[j].bitfield.disp64 &= !override;
5919 operand_types[j].bitfield.disp32s &= !override;
5920 operand_types[j].bitfield.disp32 = override;
40fb9820 5921 }
48bcea9f
JB
5922 operand_types[j].bitfield.disp16 = 0;
5923 break;
40fb9820 5924 }
539e75ad 5925 }
48bcea9f 5926 }
539e75ad 5927
02a86693
L
5928 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5929 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5930 continue;
5931
56ffb741 5932 /* We check register size if needed. */
e2195274
JB
5933 if (t->opcode_modifier.checkregsize)
5934 {
5935 check_register = (1 << t->operands) - 1;
5936 if (i.broadcast)
5937 check_register &= ~(1 << i.broadcast->operand);
5938 }
5939 else
5940 check_register = 0;
5941
c6fb90c8 5942 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5943 switch (t->operands)
5944 {
5945 case 1:
40fb9820 5946 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5947 continue;
5948 break;
5949 case 2:
33eaf5de 5950 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5951 only in 32bit mode and we can use opcode 0x90. In 64bit
5952 mode, we can't use 0x90 for xchg %eax, %eax since it should
5953 zero-extend %eax to %rax. */
5954 if (flag_code == CODE_64BIT
5955 && t->base_opcode == 0x90
75e5731b
JB
5956 && i.types[0].bitfield.instance == Accum
5957 && i.types[0].bitfield.dword
5958 && i.types[1].bitfield.instance == Accum
5959 && i.types[1].bitfield.dword)
8b38ad71 5960 continue;
1212781b
JB
5961 /* xrelease mov %eax, <disp> is another special case. It must not
5962 match the accumulator-only encoding of mov. */
5963 if (flag_code != CODE_64BIT
5964 && i.hle_prefix
5965 && t->base_opcode == 0xa0
75e5731b 5966 && i.types[0].bitfield.instance == Accum
8dc0818e 5967 && (i.flags[1] & Operand_Mem))
1212781b 5968 continue;
f5eb1d70
JB
5969 /* Fall through. */
5970
5971 case 3:
3ac21baa
JB
5972 if (!(size_match & MATCH_STRAIGHT))
5973 goto check_reverse;
64c49ab3
JB
5974 /* Reverse direction of operands if swapping is possible in the first
5975 place (operands need to be symmetric) and
5976 - the load form is requested, and the template is a store form,
5977 - the store form is requested, and the template is a load form,
5978 - the non-default (swapped) form is requested. */
5979 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
f5eb1d70 5980 if (t->opcode_modifier.d && i.reg_operands == i.operands
64c49ab3
JB
5981 && !operand_type_all_zero (&overlap1))
5982 switch (i.dir_encoding)
5983 {
5984 case dir_encoding_load:
5985 if (operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 5986 || t->opcode_modifier.regmem)
64c49ab3
JB
5987 goto check_reverse;
5988 break;
5989
5990 case dir_encoding_store:
5991 if (!operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 5992 && !t->opcode_modifier.regmem)
64c49ab3
JB
5993 goto check_reverse;
5994 break;
5995
5996 case dir_encoding_swap:
5997 goto check_reverse;
5998
5999 case dir_encoding_default:
6000 break;
6001 }
86fa6981 6002 /* If we want store form, we skip the current load. */
64c49ab3
JB
6003 if ((i.dir_encoding == dir_encoding_store
6004 || i.dir_encoding == dir_encoding_swap)
86fa6981
L
6005 && i.mem_operands == 0
6006 && t->opcode_modifier.load)
fa99fab2 6007 continue;
1a0670f3 6008 /* Fall through. */
f48ff2ae 6009 case 4:
c0f3af97 6010 case 5:
c6fb90c8 6011 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
6012 if (!operand_type_match (overlap0, i.types[0])
6013 || !operand_type_match (overlap1, i.types[1])
e2195274 6014 || ((check_register & 3) == 3
dc821c5f 6015 && !operand_type_register_match (i.types[0],
40fb9820 6016 operand_types[0],
dc821c5f 6017 i.types[1],
40fb9820 6018 operand_types[1])))
29b0f896
AM
6019 {
6020 /* Check if other direction is valid ... */
38e314eb 6021 if (!t->opcode_modifier.d)
29b0f896
AM
6022 continue;
6023
b6169b20 6024check_reverse:
3ac21baa
JB
6025 if (!(size_match & MATCH_REVERSE))
6026 continue;
29b0f896 6027 /* Try reversing direction of operands. */
f5eb1d70
JB
6028 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
6029 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
40fb9820 6030 if (!operand_type_match (overlap0, i.types[0])
f5eb1d70 6031 || !operand_type_match (overlap1, i.types[i.operands - 1])
45664ddb 6032 || (check_register
dc821c5f 6033 && !operand_type_register_match (i.types[0],
f5eb1d70
JB
6034 operand_types[i.operands - 1],
6035 i.types[i.operands - 1],
45664ddb 6036 operand_types[0])))
29b0f896
AM
6037 {
6038 /* Does not match either direction. */
6039 continue;
6040 }
38e314eb 6041 /* found_reverse_match holds which of D or FloatR
29b0f896 6042 we've found. */
38e314eb
JB
6043 if (!t->opcode_modifier.d)
6044 found_reverse_match = 0;
6045 else if (operand_types[0].bitfield.tbyte)
8a2ed489 6046 found_reverse_match = Opcode_FloatD;
dbbc8b7e 6047 else if (operand_types[0].bitfield.xmmword
f5eb1d70 6048 || operand_types[i.operands - 1].bitfield.xmmword
3528c362
JB
6049 || operand_types[0].bitfield.class == RegMMX
6050 || operand_types[i.operands - 1].bitfield.class == RegMMX
dbbc8b7e
JB
6051 || is_any_vex_encoding(t))
6052 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6053 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
8a2ed489 6054 else
38e314eb 6055 found_reverse_match = Opcode_D;
40fb9820 6056 if (t->opcode_modifier.floatr)
8a2ed489 6057 found_reverse_match |= Opcode_FloatR;
29b0f896 6058 }
f48ff2ae 6059 else
29b0f896 6060 {
f48ff2ae 6061 /* Found a forward 2 operand match here. */
d1cbb4db
L
6062 switch (t->operands)
6063 {
c0f3af97
L
6064 case 5:
6065 overlap4 = operand_type_and (i.types[4],
6066 operand_types[4]);
1a0670f3 6067 /* Fall through. */
d1cbb4db 6068 case 4:
c6fb90c8
L
6069 overlap3 = operand_type_and (i.types[3],
6070 operand_types[3]);
1a0670f3 6071 /* Fall through. */
d1cbb4db 6072 case 3:
c6fb90c8
L
6073 overlap2 = operand_type_and (i.types[2],
6074 operand_types[2]);
d1cbb4db
L
6075 break;
6076 }
29b0f896 6077
f48ff2ae
L
6078 switch (t->operands)
6079 {
c0f3af97
L
6080 case 5:
6081 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 6082 || !operand_type_register_match (i.types[3],
c0f3af97 6083 operand_types[3],
c0f3af97
L
6084 i.types[4],
6085 operand_types[4]))
6086 continue;
1a0670f3 6087 /* Fall through. */
f48ff2ae 6088 case 4:
40fb9820 6089 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
6090 || ((check_register & 0xa) == 0xa
6091 && !operand_type_register_match (i.types[1],
f7768225
JB
6092 operand_types[1],
6093 i.types[3],
e2195274
JB
6094 operand_types[3]))
6095 || ((check_register & 0xc) == 0xc
6096 && !operand_type_register_match (i.types[2],
6097 operand_types[2],
6098 i.types[3],
6099 operand_types[3])))
f48ff2ae 6100 continue;
1a0670f3 6101 /* Fall through. */
f48ff2ae
L
6102 case 3:
6103 /* Here we make use of the fact that there are no
23e42951 6104 reverse match 3 operand instructions. */
40fb9820 6105 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
6106 || ((check_register & 5) == 5
6107 && !operand_type_register_match (i.types[0],
23e42951
JB
6108 operand_types[0],
6109 i.types[2],
e2195274
JB
6110 operand_types[2]))
6111 || ((check_register & 6) == 6
6112 && !operand_type_register_match (i.types[1],
6113 operand_types[1],
6114 i.types[2],
6115 operand_types[2])))
f48ff2ae
L
6116 continue;
6117 break;
6118 }
29b0f896 6119 }
f48ff2ae 6120 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
6121 slip through to break. */
6122 }
c0f3af97 6123
5614d22c
JB
6124 /* Check if vector and VEX operands are valid. */
6125 if (check_VecOperands (t) || VEX_check_operands (t))
6126 {
6127 specific_error = i.error;
6128 continue;
6129 }
a683cc34 6130
29b0f896
AM
6131 /* We've found a match; break out of loop. */
6132 break;
6133 }
6134
6135 if (t == current_templates->end)
6136 {
6137 /* We found no match. */
a65babc9 6138 const char *err_msg;
5614d22c 6139 switch (specific_error ? specific_error : i.error)
a65babc9
L
6140 {
6141 default:
6142 abort ();
86e026a4 6143 case operand_size_mismatch:
a65babc9
L
6144 err_msg = _("operand size mismatch");
6145 break;
6146 case operand_type_mismatch:
6147 err_msg = _("operand type mismatch");
6148 break;
6149 case register_type_mismatch:
6150 err_msg = _("register type mismatch");
6151 break;
6152 case number_of_operands_mismatch:
6153 err_msg = _("number of operands mismatch");
6154 break;
6155 case invalid_instruction_suffix:
6156 err_msg = _("invalid instruction suffix");
6157 break;
6158 case bad_imm4:
4a2608e3 6159 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 6160 break;
a65babc9
L
6161 case unsupported_with_intel_mnemonic:
6162 err_msg = _("unsupported with Intel mnemonic");
6163 break;
6164 case unsupported_syntax:
6165 err_msg = _("unsupported syntax");
6166 break;
6167 case unsupported:
35262a23 6168 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
6169 current_templates->start->name);
6170 return NULL;
6c30d220
L
6171 case invalid_vsib_address:
6172 err_msg = _("invalid VSIB address");
6173 break;
7bab8ab5
JB
6174 case invalid_vector_register_set:
6175 err_msg = _("mask, index, and destination registers must be distinct");
6176 break;
6c30d220
L
6177 case unsupported_vector_index_register:
6178 err_msg = _("unsupported vector index register");
6179 break;
43234a1e
L
6180 case unsupported_broadcast:
6181 err_msg = _("unsupported broadcast");
6182 break;
43234a1e
L
6183 case broadcast_needed:
6184 err_msg = _("broadcast is needed for operand of such type");
6185 break;
6186 case unsupported_masking:
6187 err_msg = _("unsupported masking");
6188 break;
6189 case mask_not_on_destination:
6190 err_msg = _("mask not on destination operand");
6191 break;
6192 case no_default_mask:
6193 err_msg = _("default mask isn't allowed");
6194 break;
6195 case unsupported_rc_sae:
6196 err_msg = _("unsupported static rounding/sae");
6197 break;
6198 case rc_sae_operand_not_last_imm:
6199 if (intel_syntax)
6200 err_msg = _("RC/SAE operand must precede immediate operands");
6201 else
6202 err_msg = _("RC/SAE operand must follow immediate operands");
6203 break;
6204 case invalid_register_operand:
6205 err_msg = _("invalid register operand");
6206 break;
a65babc9
L
6207 }
6208 as_bad (_("%s for `%s'"), err_msg,
891edac4 6209 current_templates->start->name);
fa99fab2 6210 return NULL;
29b0f896 6211 }
252b5132 6212
29b0f896
AM
6213 if (!quiet_warnings)
6214 {
6215 if (!intel_syntax
0cfa3eb3 6216 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6f2f06be 6217 as_warn (_("indirect %s without `*'"), t->name);
29b0f896 6218
40fb9820
L
6219 if (t->opcode_modifier.isprefix
6220 && t->opcode_modifier.ignoresize)
29b0f896
AM
6221 {
6222 /* Warn them that a data or address size prefix doesn't
6223 affect assembly of the next line of code. */
6224 as_warn (_("stand-alone `%s' prefix"), t->name);
6225 }
6226 }
6227
6228 /* Copy the template we found. */
6229 i.tm = *t;
539e75ad
L
6230
6231 if (addr_prefix_disp != -1)
6232 i.tm.operand_types[addr_prefix_disp]
6233 = operand_types[addr_prefix_disp];
6234
29b0f896
AM
6235 if (found_reverse_match)
6236 {
dfd69174
JB
6237 /* If we found a reverse match we must alter the opcode direction
6238 bit and clear/flip the regmem modifier one. found_reverse_match
6239 holds bits to change (different for int & float insns). */
29b0f896
AM
6240
6241 i.tm.base_opcode ^= found_reverse_match;
6242
f5eb1d70
JB
6243 i.tm.operand_types[0] = operand_types[i.operands - 1];
6244 i.tm.operand_types[i.operands - 1] = operand_types[0];
dfd69174
JB
6245
6246 /* Certain SIMD insns have their load forms specified in the opcode
6247 table, and hence we need to _set_ RegMem instead of clearing it.
6248 We need to avoid setting the bit though on insns like KMOVW. */
6249 i.tm.opcode_modifier.regmem
6250 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6251 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6252 && !i.tm.opcode_modifier.regmem;
29b0f896
AM
6253 }
6254
fa99fab2 6255 return t;
29b0f896
AM
6256}
6257
6258static int
e3bb37b5 6259check_string (void)
29b0f896 6260{
51c8edf6
JB
6261 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6262 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
8dc0818e 6263
51c8edf6 6264 if (i.seg[op] != NULL && i.seg[op] != &es)
29b0f896 6265 {
51c8edf6
JB
6266 as_bad (_("`%s' operand %u must use `%ses' segment"),
6267 i.tm.name,
6268 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6269 register_prefix);
6270 return 0;
29b0f896 6271 }
51c8edf6
JB
6272
6273 /* There's only ever one segment override allowed per instruction.
6274 This instruction possibly has a legal segment override on the
6275 second operand, so copy the segment to where non-string
6276 instructions store it, allowing common code. */
6277 i.seg[op] = i.seg[1];
6278
29b0f896
AM
6279 return 1;
6280}
6281
6282static int
543613e9 6283process_suffix (void)
29b0f896
AM
6284{
6285 /* If matched instruction specifies an explicit instruction mnemonic
6286 suffix, use it. */
673fe0f0 6287 if (i.tm.opcode_modifier.size == SIZE16)
40fb9820 6288 i.suffix = WORD_MNEM_SUFFIX;
673fe0f0 6289 else if (i.tm.opcode_modifier.size == SIZE32)
40fb9820 6290 i.suffix = LONG_MNEM_SUFFIX;
673fe0f0 6291 else if (i.tm.opcode_modifier.size == SIZE64)
40fb9820 6292 i.suffix = QWORD_MNEM_SUFFIX;
13e600d0
JB
6293 else if (i.reg_operands
6294 && (i.operands > 1 || i.types[0].bitfield.class == Reg))
29b0f896
AM
6295 {
6296 /* If there's no instruction mnemonic suffix we try to invent one
13e600d0 6297 based on GPR operands. */
29b0f896
AM
6298 if (!i.suffix)
6299 {
6300 /* We take i.suffix from the last register operand specified,
6301 Destination register type is more significant than source
381d071f
L
6302 register type. crc32 in SSE4.2 prefers source register
6303 type. */
1a035124 6304 unsigned int op = i.tm.base_opcode != 0xf20f38f0 ? i.operands : 1;
20592a94 6305
1a035124
JB
6306 while (op--)
6307 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6308 || i.tm.operand_types[op].bitfield.instance == Accum)
6309 {
6310 if (i.types[op].bitfield.class != Reg)
6311 continue;
6312 if (i.types[op].bitfield.byte)
6313 i.suffix = BYTE_MNEM_SUFFIX;
6314 else if (i.types[op].bitfield.word)
6315 i.suffix = WORD_MNEM_SUFFIX;
6316 else if (i.types[op].bitfield.dword)
6317 i.suffix = LONG_MNEM_SUFFIX;
6318 else if (i.types[op].bitfield.qword)
6319 i.suffix = QWORD_MNEM_SUFFIX;
6320 else
6321 continue;
6322 break;
6323 }
29b0f896
AM
6324 }
6325 else if (i.suffix == BYTE_MNEM_SUFFIX)
6326 {
2eb952a4
L
6327 if (intel_syntax
6328 && i.tm.opcode_modifier.ignoresize
6329 && i.tm.opcode_modifier.no_bsuf)
6330 i.suffix = 0;
6331 else if (!check_byte_reg ())
29b0f896
AM
6332 return 0;
6333 }
6334 else if (i.suffix == LONG_MNEM_SUFFIX)
6335 {
2eb952a4
L
6336 if (intel_syntax
6337 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6338 && i.tm.opcode_modifier.no_lsuf
6339 && !i.tm.opcode_modifier.todword
6340 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
6341 i.suffix = 0;
6342 else if (!check_long_reg ())
29b0f896
AM
6343 return 0;
6344 }
6345 else if (i.suffix == QWORD_MNEM_SUFFIX)
6346 {
955e1e6a
L
6347 if (intel_syntax
6348 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6349 && i.tm.opcode_modifier.no_qsuf
6350 && !i.tm.opcode_modifier.todword
6351 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
6352 i.suffix = 0;
6353 else if (!check_qword_reg ())
29b0f896
AM
6354 return 0;
6355 }
6356 else if (i.suffix == WORD_MNEM_SUFFIX)
6357 {
2eb952a4
L
6358 if (intel_syntax
6359 && i.tm.opcode_modifier.ignoresize
6360 && i.tm.opcode_modifier.no_wsuf)
6361 i.suffix = 0;
6362 else if (!check_word_reg ())
29b0f896
AM
6363 return 0;
6364 }
40fb9820 6365 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
6366 /* Do nothing if the instruction is going to ignore the prefix. */
6367 ;
6368 else
6369 abort ();
6370 }
40fb9820 6371 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
6372 && !i.suffix
6373 /* exclude fldenv/frstor/fsave/fstenv */
c006a730 6374 && i.tm.opcode_modifier.no_ssuf)
29b0f896 6375 {
13e600d0
JB
6376 i.suffix = stackop_size;
6377 if (stackop_size == LONG_MNEM_SUFFIX)
06f74c5c
L
6378 {
6379 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6380 .code16gcc directive to support 16-bit mode with
6381 32-bit address. For IRET without a suffix, generate
6382 16-bit IRET (opcode 0xcf) to return from an interrupt
6383 handler. */
13e600d0
JB
6384 if (i.tm.base_opcode == 0xcf)
6385 {
6386 i.suffix = WORD_MNEM_SUFFIX;
6387 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6388 }
6389 /* Warn about changed behavior for segment register push/pop. */
6390 else if ((i.tm.base_opcode | 1) == 0x07)
6391 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6392 i.tm.name);
06f74c5c 6393 }
29b0f896 6394 }
c006a730 6395 else if (!i.suffix
0cfa3eb3
JB
6396 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6397 || i.tm.opcode_modifier.jump == JUMP_BYTE
6398 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
64e74474
AM
6399 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6400 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
6401 {
6402 switch (flag_code)
6403 {
6404 case CODE_64BIT:
40fb9820 6405 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
6406 {
6407 i.suffix = QWORD_MNEM_SUFFIX;
6408 break;
6409 }
1a0670f3 6410 /* Fall through. */
9306ca4a 6411 case CODE_32BIT:
40fb9820 6412 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
6413 i.suffix = LONG_MNEM_SUFFIX;
6414 break;
6415 case CODE_16BIT:
40fb9820 6416 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
6417 i.suffix = WORD_MNEM_SUFFIX;
6418 break;
6419 }
6420 }
252b5132 6421
c006a730
JB
6422 if (!i.suffix
6423 && !i.tm.opcode_modifier.defaultsize
6424 && !i.tm.opcode_modifier.ignoresize)
29b0f896 6425 {
c006a730
JB
6426 unsigned int suffixes;
6427
6428 suffixes = !i.tm.opcode_modifier.no_bsuf;
6429 if (!i.tm.opcode_modifier.no_wsuf)
6430 suffixes |= 1 << 1;
6431 if (!i.tm.opcode_modifier.no_lsuf)
6432 suffixes |= 1 << 2;
6433 if (!i.tm.opcode_modifier.no_ldsuf)
6434 suffixes |= 1 << 3;
6435 if (!i.tm.opcode_modifier.no_ssuf)
6436 suffixes |= 1 << 4;
6437 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6438 suffixes |= 1 << 5;
6439
6440 /* Are multiple suffixes allowed? */
6441 if (suffixes & (suffixes - 1))
9306ca4a 6442 {
c006a730 6443 if (intel_syntax)
9306ca4a 6444 {
c006a730 6445 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
9306ca4a
JB
6446 return 0;
6447 }
c006a730 6448 if (operand_check == check_error)
9306ca4a 6449 {
c006a730
JB
6450 as_bad (_("no instruction mnemonic suffix given and "
6451 "no register operands; can't size `%s'"), i.tm.name);
9306ca4a
JB
6452 return 0;
6453 }
c006a730
JB
6454 if (operand_check == check_warning)
6455 as_warn (_("no instruction mnemonic suffix given and "
6456 "no register operands; using default for `%s'"),
6457 i.tm.name);
6458
6459 if (i.tm.opcode_modifier.floatmf)
6460 i.suffix = SHORT_MNEM_SUFFIX;
6461 else if (flag_code == CODE_16BIT)
6462 i.suffix = WORD_MNEM_SUFFIX;
1a035124 6463 else if (!i.tm.opcode_modifier.no_lsuf)
c006a730 6464 i.suffix = LONG_MNEM_SUFFIX;
1a035124
JB
6465 else
6466 i.suffix = QWORD_MNEM_SUFFIX;
9306ca4a 6467 }
29b0f896 6468 }
252b5132 6469
d2224064
JB
6470 /* Change the opcode based on the operand size given by i.suffix. */
6471 switch (i.suffix)
29b0f896 6472 {
d2224064
JB
6473 /* Size floating point instruction. */
6474 case LONG_MNEM_SUFFIX:
6475 if (i.tm.opcode_modifier.floatmf)
6476 {
6477 i.tm.base_opcode ^= 4;
6478 break;
6479 }
6480 /* fall through */
6481 case WORD_MNEM_SUFFIX:
6482 case QWORD_MNEM_SUFFIX:
29b0f896 6483 /* It's not a byte, select word/dword operation. */
40fb9820 6484 if (i.tm.opcode_modifier.w)
29b0f896 6485 {
40fb9820 6486 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
6487 i.tm.base_opcode |= 8;
6488 else
6489 i.tm.base_opcode |= 1;
6490 }
d2224064
JB
6491 /* fall through */
6492 case SHORT_MNEM_SUFFIX:
29b0f896
AM
6493 /* Now select between word & dword operations via the operand
6494 size prefix, except for instructions that will ignore this
6495 prefix anyway. */
75c0a438 6496 if (i.reg_operands > 0
bab6aec1 6497 && i.types[0].bitfield.class == Reg
75c0a438 6498 && i.tm.opcode_modifier.addrprefixopreg
474da251 6499 && (i.tm.operand_types[0].bitfield.instance == Accum
75c0a438 6500 || i.operands == 1))
cb712a9e 6501 {
ca61edf2
L
6502 /* The address size override prefix changes the size of the
6503 first operand. */
40fb9820 6504 if ((flag_code == CODE_32BIT
75c0a438 6505 && i.op[0].regs->reg_type.bitfield.word)
40fb9820 6506 || (flag_code != CODE_32BIT
75c0a438 6507 && i.op[0].regs->reg_type.bitfield.dword))
cb712a9e
L
6508 if (!add_prefix (ADDR_PREFIX_OPCODE))
6509 return 0;
6510 }
6511 else if (i.suffix != QWORD_MNEM_SUFFIX
40fb9820
L
6512 && !i.tm.opcode_modifier.ignoresize
6513 && !i.tm.opcode_modifier.floatmf
a38d7118 6514 && !is_any_vex_encoding (&i.tm)
cb712a9e
L
6515 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6516 || (flag_code == CODE_64BIT
0cfa3eb3 6517 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
24eab124
AM
6518 {
6519 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 6520
0cfa3eb3 6521 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
29b0f896 6522 prefix = ADDR_PREFIX_OPCODE;
252b5132 6523
29b0f896
AM
6524 if (!add_prefix (prefix))
6525 return 0;
24eab124 6526 }
252b5132 6527
29b0f896
AM
6528 /* Set mode64 for an operand. */
6529 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 6530 && flag_code == CODE_64BIT
d2224064 6531 && !i.tm.opcode_modifier.norex64
46e883c5 6532 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
6533 need rex64. */
6534 && ! (i.operands == 2
6535 && i.tm.base_opcode == 0x90
6536 && i.tm.extension_opcode == None
75e5731b
JB
6537 && i.types[0].bitfield.instance == Accum
6538 && i.types[0].bitfield.qword
6539 && i.types[1].bitfield.instance == Accum
6540 && i.types[1].bitfield.qword))
d2224064 6541 i.rex |= REX_W;
3e73aa7c 6542
d2224064 6543 break;
29b0f896 6544 }
7ecd2f8b 6545
c0a30a9f
L
6546 if (i.reg_operands != 0
6547 && i.operands > 1
6548 && i.tm.opcode_modifier.addrprefixopreg
474da251 6549 && i.tm.operand_types[0].bitfield.instance != Accum)
c0a30a9f
L
6550 {
6551 /* Check invalid register operand when the address size override
6552 prefix changes the size of register operands. */
6553 unsigned int op;
6554 enum { need_word, need_dword, need_qword } need;
6555
6556 if (flag_code == CODE_32BIT)
6557 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6558 else
6559 {
6560 if (i.prefix[ADDR_PREFIX])
6561 need = need_dword;
6562 else
6563 need = flag_code == CODE_64BIT ? need_qword : need_word;
6564 }
6565
6566 for (op = 0; op < i.operands; op++)
bab6aec1 6567 if (i.types[op].bitfield.class == Reg
c0a30a9f
L
6568 && ((need == need_word
6569 && !i.op[op].regs->reg_type.bitfield.word)
6570 || (need == need_dword
6571 && !i.op[op].regs->reg_type.bitfield.dword)
6572 || (need == need_qword
6573 && !i.op[op].regs->reg_type.bitfield.qword)))
6574 {
6575 as_bad (_("invalid register operand size for `%s'"),
6576 i.tm.name);
6577 return 0;
6578 }
6579 }
6580
29b0f896
AM
6581 return 1;
6582}
3e73aa7c 6583
29b0f896 6584static int
543613e9 6585check_byte_reg (void)
29b0f896
AM
6586{
6587 int op;
543613e9 6588
29b0f896
AM
6589 for (op = i.operands; --op >= 0;)
6590 {
dc821c5f 6591 /* Skip non-register operands. */
bab6aec1 6592 if (i.types[op].bitfield.class != Reg)
dc821c5f
JB
6593 continue;
6594
29b0f896
AM
6595 /* If this is an eight bit register, it's OK. If it's the 16 or
6596 32 bit version of an eight bit register, we will just use the
6597 low portion, and that's OK too. */
dc821c5f 6598 if (i.types[op].bitfield.byte)
29b0f896
AM
6599 continue;
6600
5a819eb9 6601 /* I/O port address operands are OK too. */
75e5731b
JB
6602 if (i.tm.operand_types[op].bitfield.instance == RegD
6603 && i.tm.operand_types[op].bitfield.word)
5a819eb9
JB
6604 continue;
6605
9344ff29
L
6606 /* crc32 doesn't generate this warning. */
6607 if (i.tm.base_opcode == 0xf20f38f0)
6608 continue;
6609
dc821c5f
JB
6610 if ((i.types[op].bitfield.word
6611 || i.types[op].bitfield.dword
6612 || i.types[op].bitfield.qword)
5a819eb9
JB
6613 && i.op[op].regs->reg_num < 4
6614 /* Prohibit these changes in 64bit mode, since the lowering
6615 would be more complicated. */
6616 && flag_code != CODE_64BIT)
29b0f896 6617 {
29b0f896 6618#if REGISTER_WARNINGS
5a819eb9 6619 if (!quiet_warnings)
a540244d
L
6620 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6621 register_prefix,
dc821c5f 6622 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
6623 ? REGNAM_AL - REGNAM_AX
6624 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 6625 register_prefix,
29b0f896
AM
6626 i.op[op].regs->reg_name,
6627 i.suffix);
6628#endif
6629 continue;
6630 }
6631 /* Any other register is bad. */
bab6aec1 6632 if (i.types[op].bitfield.class == Reg
3528c362
JB
6633 || i.types[op].bitfield.class == RegMMX
6634 || i.types[op].bitfield.class == RegSIMD
00cee14f 6635 || i.types[op].bitfield.class == SReg
4a5c67ed
JB
6636 || i.types[op].bitfield.class == RegCR
6637 || i.types[op].bitfield.class == RegDR
6638 || i.types[op].bitfield.class == RegTR)
29b0f896 6639 {
a540244d
L
6640 as_bad (_("`%s%s' not allowed with `%s%c'"),
6641 register_prefix,
29b0f896
AM
6642 i.op[op].regs->reg_name,
6643 i.tm.name,
6644 i.suffix);
6645 return 0;
6646 }
6647 }
6648 return 1;
6649}
6650
6651static int
e3bb37b5 6652check_long_reg (void)
29b0f896
AM
6653{
6654 int op;
6655
6656 for (op = i.operands; --op >= 0;)
dc821c5f 6657 /* Skip non-register operands. */
bab6aec1 6658 if (i.types[op].bitfield.class != Reg)
dc821c5f 6659 continue;
29b0f896
AM
6660 /* Reject eight bit registers, except where the template requires
6661 them. (eg. movzb) */
dc821c5f 6662 else if (i.types[op].bitfield.byte
bab6aec1 6663 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6664 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
6665 && (i.tm.operand_types[op].bitfield.word
6666 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6667 {
a540244d
L
6668 as_bad (_("`%s%s' not allowed with `%s%c'"),
6669 register_prefix,
29b0f896
AM
6670 i.op[op].regs->reg_name,
6671 i.tm.name,
6672 i.suffix);
6673 return 0;
6674 }
be4c5e58
L
6675 /* Error if the e prefix on a general reg is missing. */
6676 else if (i.types[op].bitfield.word
bab6aec1 6677 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6678 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6679 && i.tm.operand_types[op].bitfield.dword)
29b0f896 6680 {
be4c5e58
L
6681 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6682 register_prefix, i.op[op].regs->reg_name,
6683 i.suffix);
6684 return 0;
252b5132 6685 }
e4630f71 6686 /* Warn if the r prefix on a general reg is present. */
dc821c5f 6687 else if (i.types[op].bitfield.qword
bab6aec1 6688 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6689 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6690 && i.tm.operand_types[op].bitfield.dword)
252b5132 6691 {
34828aad 6692 if (intel_syntax
bc31405e
L
6693 && (i.tm.opcode_modifier.toqword
6694 /* Also convert to QWORD for MOVSXD. */
6695 || i.tm.base_opcode == 0x63)
3528c362 6696 && i.types[0].bitfield.class != RegSIMD)
34828aad 6697 {
ca61edf2 6698 /* Convert to QWORD. We want REX byte. */
34828aad
L
6699 i.suffix = QWORD_MNEM_SUFFIX;
6700 }
6701 else
6702 {
2b5d6a91 6703 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6704 register_prefix, i.op[op].regs->reg_name,
6705 i.suffix);
6706 return 0;
6707 }
29b0f896
AM
6708 }
6709 return 1;
6710}
252b5132 6711
29b0f896 6712static int
e3bb37b5 6713check_qword_reg (void)
29b0f896
AM
6714{
6715 int op;
252b5132 6716
29b0f896 6717 for (op = i.operands; --op >= 0; )
dc821c5f 6718 /* Skip non-register operands. */
bab6aec1 6719 if (i.types[op].bitfield.class != Reg)
dc821c5f 6720 continue;
29b0f896
AM
6721 /* Reject eight bit registers, except where the template requires
6722 them. (eg. movzb) */
dc821c5f 6723 else if (i.types[op].bitfield.byte
bab6aec1 6724 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6725 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
6726 && (i.tm.operand_types[op].bitfield.word
6727 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6728 {
a540244d
L
6729 as_bad (_("`%s%s' not allowed with `%s%c'"),
6730 register_prefix,
29b0f896
AM
6731 i.op[op].regs->reg_name,
6732 i.tm.name,
6733 i.suffix);
6734 return 0;
6735 }
e4630f71 6736 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6737 else if ((i.types[op].bitfield.word
6738 || i.types[op].bitfield.dword)
bab6aec1 6739 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6740 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6741 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6742 {
6743 /* Prohibit these changes in the 64bit mode, since the
6744 lowering is more complicated. */
34828aad 6745 if (intel_syntax
ca61edf2 6746 && i.tm.opcode_modifier.todword
3528c362 6747 && i.types[0].bitfield.class != RegSIMD)
34828aad 6748 {
ca61edf2 6749 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6750 i.suffix = LONG_MNEM_SUFFIX;
6751 }
6752 else
6753 {
2b5d6a91 6754 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6755 register_prefix, i.op[op].regs->reg_name,
6756 i.suffix);
6757 return 0;
6758 }
252b5132 6759 }
29b0f896
AM
6760 return 1;
6761}
252b5132 6762
29b0f896 6763static int
e3bb37b5 6764check_word_reg (void)
29b0f896
AM
6765{
6766 int op;
6767 for (op = i.operands; --op >= 0;)
dc821c5f 6768 /* Skip non-register operands. */
bab6aec1 6769 if (i.types[op].bitfield.class != Reg)
dc821c5f 6770 continue;
29b0f896
AM
6771 /* Reject eight bit registers, except where the template requires
6772 them. (eg. movzb) */
dc821c5f 6773 else if (i.types[op].bitfield.byte
bab6aec1 6774 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6775 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
6776 && (i.tm.operand_types[op].bitfield.word
6777 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6778 {
a540244d
L
6779 as_bad (_("`%s%s' not allowed with `%s%c'"),
6780 register_prefix,
29b0f896
AM
6781 i.op[op].regs->reg_name,
6782 i.tm.name,
6783 i.suffix);
6784 return 0;
6785 }
e4630f71 6786 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6787 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6788 && (i.types[op].bitfield.dword
6789 || i.types[op].bitfield.qword)
bab6aec1 6790 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6791 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6792 && i.tm.operand_types[op].bitfield.word)
252b5132 6793 {
29b0f896
AM
6794 /* Prohibit these changes in the 64bit mode, since the
6795 lowering is more complicated. */
6796 if (flag_code == CODE_64BIT)
252b5132 6797 {
2b5d6a91 6798 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6799 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6800 i.suffix);
6801 return 0;
252b5132 6802 }
29b0f896 6803#if REGISTER_WARNINGS
cecf1424
JB
6804 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6805 register_prefix,
6806 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6807 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6808#endif
6809 }
6810 return 1;
6811}
252b5132 6812
29b0f896 6813static int
40fb9820 6814update_imm (unsigned int j)
29b0f896 6815{
bc0844ae 6816 i386_operand_type overlap = i.types[j];
40fb9820
L
6817 if ((overlap.bitfield.imm8
6818 || overlap.bitfield.imm8s
6819 || overlap.bitfield.imm16
6820 || overlap.bitfield.imm32
6821 || overlap.bitfield.imm32s
6822 || overlap.bitfield.imm64)
0dfbf9d7
L
6823 && !operand_type_equal (&overlap, &imm8)
6824 && !operand_type_equal (&overlap, &imm8s)
6825 && !operand_type_equal (&overlap, &imm16)
6826 && !operand_type_equal (&overlap, &imm32)
6827 && !operand_type_equal (&overlap, &imm32s)
6828 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6829 {
6830 if (i.suffix)
6831 {
40fb9820
L
6832 i386_operand_type temp;
6833
0dfbf9d7 6834 operand_type_set (&temp, 0);
7ab9ffdd 6835 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6836 {
6837 temp.bitfield.imm8 = overlap.bitfield.imm8;
6838 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6839 }
6840 else if (i.suffix == WORD_MNEM_SUFFIX)
6841 temp.bitfield.imm16 = overlap.bitfield.imm16;
6842 else if (i.suffix == QWORD_MNEM_SUFFIX)
6843 {
6844 temp.bitfield.imm64 = overlap.bitfield.imm64;
6845 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6846 }
6847 else
6848 temp.bitfield.imm32 = overlap.bitfield.imm32;
6849 overlap = temp;
29b0f896 6850 }
0dfbf9d7
L
6851 else if (operand_type_equal (&overlap, &imm16_32_32s)
6852 || operand_type_equal (&overlap, &imm16_32)
6853 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6854 {
40fb9820 6855 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6856 overlap = imm16;
40fb9820 6857 else
65da13b5 6858 overlap = imm32s;
29b0f896 6859 }
0dfbf9d7
L
6860 if (!operand_type_equal (&overlap, &imm8)
6861 && !operand_type_equal (&overlap, &imm8s)
6862 && !operand_type_equal (&overlap, &imm16)
6863 && !operand_type_equal (&overlap, &imm32)
6864 && !operand_type_equal (&overlap, &imm32s)
6865 && !operand_type_equal (&overlap, &imm64))
29b0f896 6866 {
4eed87de
AM
6867 as_bad (_("no instruction mnemonic suffix given; "
6868 "can't determine immediate size"));
29b0f896
AM
6869 return 0;
6870 }
6871 }
40fb9820 6872 i.types[j] = overlap;
29b0f896 6873
40fb9820
L
6874 return 1;
6875}
6876
6877static int
6878finalize_imm (void)
6879{
bc0844ae 6880 unsigned int j, n;
29b0f896 6881
bc0844ae
L
6882 /* Update the first 2 immediate operands. */
6883 n = i.operands > 2 ? 2 : i.operands;
6884 if (n)
6885 {
6886 for (j = 0; j < n; j++)
6887 if (update_imm (j) == 0)
6888 return 0;
40fb9820 6889
bc0844ae
L
6890 /* The 3rd operand can't be immediate operand. */
6891 gas_assert (operand_type_check (i.types[2], imm) == 0);
6892 }
29b0f896
AM
6893
6894 return 1;
6895}
6896
6897static int
e3bb37b5 6898process_operands (void)
29b0f896
AM
6899{
6900 /* Default segment register this instruction will use for memory
6901 accesses. 0 means unknown. This is only for optimizing out
6902 unnecessary segment overrides. */
6903 const seg_entry *default_seg = 0;
6904
2426c15f 6905 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6906 {
91d6fa6a
NC
6907 unsigned int dupl = i.operands;
6908 unsigned int dest = dupl - 1;
9fcfb3d7
L
6909 unsigned int j;
6910
c0f3af97 6911 /* The destination must be an xmm register. */
9c2799c2 6912 gas_assert (i.reg_operands
91d6fa6a 6913 && MAX_OPERANDS > dupl
7ab9ffdd 6914 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6915
75e5731b 6916 if (i.tm.operand_types[0].bitfield.instance == Accum
1b54b8d7 6917 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6918 {
8cd7925b 6919 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6920 {
6921 /* Keep xmm0 for instructions with VEX prefix and 3
6922 sources. */
75e5731b 6923 i.tm.operand_types[0].bitfield.instance = InstanceNone;
3528c362 6924 i.tm.operand_types[0].bitfield.class = RegSIMD;
c0f3af97
L
6925 goto duplicate;
6926 }
e2ec9d29 6927 else
c0f3af97
L
6928 {
6929 /* We remove the first xmm0 and keep the number of
6930 operands unchanged, which in fact duplicates the
6931 destination. */
6932 for (j = 1; j < i.operands; j++)
6933 {
6934 i.op[j - 1] = i.op[j];
6935 i.types[j - 1] = i.types[j];
6936 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
8dc0818e 6937 i.flags[j - 1] = i.flags[j];
c0f3af97
L
6938 }
6939 }
6940 }
6941 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6942 {
91d6fa6a 6943 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6944 && (i.tm.opcode_modifier.vexsources
6945 == VEX3SOURCES));
c0f3af97
L
6946
6947 /* Add the implicit xmm0 for instructions with VEX prefix
6948 and 3 sources. */
6949 for (j = i.operands; j > 0; j--)
6950 {
6951 i.op[j] = i.op[j - 1];
6952 i.types[j] = i.types[j - 1];
6953 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
8dc0818e 6954 i.flags[j] = i.flags[j - 1];
c0f3af97
L
6955 }
6956 i.op[0].regs
6957 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6958 i.types[0] = regxmm;
c0f3af97
L
6959 i.tm.operand_types[0] = regxmm;
6960
6961 i.operands += 2;
6962 i.reg_operands += 2;
6963 i.tm.operands += 2;
6964
91d6fa6a 6965 dupl++;
c0f3af97 6966 dest++;
91d6fa6a
NC
6967 i.op[dupl] = i.op[dest];
6968 i.types[dupl] = i.types[dest];
6969 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 6970 i.flags[dupl] = i.flags[dest];
e2ec9d29 6971 }
c0f3af97
L
6972 else
6973 {
6974duplicate:
6975 i.operands++;
6976 i.reg_operands++;
6977 i.tm.operands++;
6978
91d6fa6a
NC
6979 i.op[dupl] = i.op[dest];
6980 i.types[dupl] = i.types[dest];
6981 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 6982 i.flags[dupl] = i.flags[dest];
c0f3af97
L
6983 }
6984
6985 if (i.tm.opcode_modifier.immext)
6986 process_immext ();
6987 }
75e5731b 6988 else if (i.tm.operand_types[0].bitfield.instance == Accum
1b54b8d7 6989 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
6990 {
6991 unsigned int j;
6992
9fcfb3d7
L
6993 for (j = 1; j < i.operands; j++)
6994 {
6995 i.op[j - 1] = i.op[j];
6996 i.types[j - 1] = i.types[j];
6997
6998 /* We need to adjust fields in i.tm since they are used by
6999 build_modrm_byte. */
7000 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
8dc0818e
JB
7001
7002 i.flags[j - 1] = i.flags[j];
9fcfb3d7
L
7003 }
7004
e2ec9d29
L
7005 i.operands--;
7006 i.reg_operands--;
e2ec9d29
L
7007 i.tm.operands--;
7008 }
920d2ddc
IT
7009 else if (i.tm.opcode_modifier.implicitquadgroup)
7010 {
a477a8c4
JB
7011 unsigned int regnum, first_reg_in_group, last_reg_in_group;
7012
920d2ddc 7013 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
3528c362 7014 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
a477a8c4
JB
7015 regnum = register_number (i.op[1].regs);
7016 first_reg_in_group = regnum & ~3;
7017 last_reg_in_group = first_reg_in_group + 3;
7018 if (regnum != first_reg_in_group)
7019 as_warn (_("source register `%s%s' implicitly denotes"
7020 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7021 register_prefix, i.op[1].regs->reg_name,
7022 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7023 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7024 i.tm.name);
7025 }
e2ec9d29
L
7026 else if (i.tm.opcode_modifier.regkludge)
7027 {
7028 /* The imul $imm, %reg instruction is converted into
7029 imul $imm, %reg, %reg, and the clr %reg instruction
7030 is converted into xor %reg, %reg. */
7031
7032 unsigned int first_reg_op;
7033
7034 if (operand_type_check (i.types[0], reg))
7035 first_reg_op = 0;
7036 else
7037 first_reg_op = 1;
7038 /* Pretend we saw the extra register operand. */
9c2799c2 7039 gas_assert (i.reg_operands == 1
7ab9ffdd 7040 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
7041 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7042 i.types[first_reg_op + 1] = i.types[first_reg_op];
7043 i.operands++;
7044 i.reg_operands++;
29b0f896
AM
7045 }
7046
85b80b0f 7047 if (i.tm.opcode_modifier.modrm)
29b0f896
AM
7048 {
7049 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
7050 must be put into the modrm byte). Now, we make the modrm and
7051 index base bytes based on all the info we've collected. */
29b0f896
AM
7052
7053 default_seg = build_modrm_byte ();
7054 }
00cee14f 7055 else if (i.types[0].bitfield.class == SReg)
85b80b0f
JB
7056 {
7057 if (flag_code != CODE_64BIT
7058 ? i.tm.base_opcode == POP_SEG_SHORT
7059 && i.op[0].regs->reg_num == 1
7060 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7061 && i.op[0].regs->reg_num < 4)
7062 {
7063 as_bad (_("you can't `%s %s%s'"),
7064 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7065 return 0;
7066 }
7067 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7068 {
7069 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7070 i.tm.opcode_length = 2;
7071 }
7072 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7073 }
8a2ed489 7074 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
7075 {
7076 default_seg = &ds;
7077 }
40fb9820 7078 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
7079 {
7080 /* For the string instructions that allow a segment override
7081 on one of their operands, the default segment is ds. */
7082 default_seg = &ds;
7083 }
85b80b0f
JB
7084 else if (i.tm.opcode_modifier.shortform)
7085 {
7086 /* The register or float register operand is in operand
7087 0 or 1. */
bab6aec1 7088 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
85b80b0f
JB
7089
7090 /* Register goes in low 3 bits of opcode. */
7091 i.tm.base_opcode |= i.op[op].regs->reg_num;
7092 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7093 i.rex |= REX_B;
7094 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7095 {
7096 /* Warn about some common errors, but press on regardless.
7097 The first case can be generated by gcc (<= 2.8.1). */
7098 if (i.operands == 2)
7099 {
7100 /* Reversed arguments on faddp, fsubp, etc. */
7101 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7102 register_prefix, i.op[!intel_syntax].regs->reg_name,
7103 register_prefix, i.op[intel_syntax].regs->reg_name);
7104 }
7105 else
7106 {
7107 /* Extraneous `l' suffix on fp insn. */
7108 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7109 register_prefix, i.op[0].regs->reg_name);
7110 }
7111 }
7112 }
29b0f896 7113
75178d9d
L
7114 if (i.tm.base_opcode == 0x8d /* lea */
7115 && i.seg[0]
7116 && !quiet_warnings)
30123838 7117 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
7118
7119 /* If a segment was explicitly specified, and the specified segment
7120 is not the default, use an opcode prefix to select it. If we
7121 never figured out what the default segment is, then default_seg
7122 will be zero at this point, and the specified segment prefix will
7123 always be used. */
29b0f896
AM
7124 if ((i.seg[0]) && (i.seg[0] != default_seg))
7125 {
7126 if (!add_prefix (i.seg[0]->seg_prefix))
7127 return 0;
7128 }
7129 return 1;
7130}
7131
7132static const seg_entry *
e3bb37b5 7133build_modrm_byte (void)
29b0f896
AM
7134{
7135 const seg_entry *default_seg = 0;
c0f3af97 7136 unsigned int source, dest;
8cd7925b 7137 int vex_3_sources;
c0f3af97 7138
8cd7925b 7139 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
7140 if (vex_3_sources)
7141 {
91d6fa6a 7142 unsigned int nds, reg_slot;
4c2c6516 7143 expressionS *exp;
c0f3af97 7144
6b8d3588 7145 dest = i.operands - 1;
c0f3af97 7146 nds = dest - 1;
922d8de8 7147
a683cc34 7148 /* There are 2 kinds of instructions:
bed3d976 7149 1. 5 operands: 4 register operands or 3 register operands
9d3bf266 7150 plus 1 memory operand plus one Imm4 operand, VexXDS, and
bed3d976 7151 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 7152 ZMM register.
bed3d976 7153 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 7154 plus 1 memory operand, with VexXDS. */
922d8de8 7155 gas_assert ((i.reg_operands == 4
bed3d976
JB
7156 || (i.reg_operands == 3 && i.mem_operands == 1))
7157 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323 7158 && i.tm.opcode_modifier.vexw
3528c362 7159 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
a683cc34 7160
48db9223
JB
7161 /* If VexW1 is set, the first non-immediate operand is the source and
7162 the second non-immediate one is encoded in the immediate operand. */
7163 if (i.tm.opcode_modifier.vexw == VEXW1)
7164 {
7165 source = i.imm_operands;
7166 reg_slot = i.imm_operands + 1;
7167 }
7168 else
7169 {
7170 source = i.imm_operands + 1;
7171 reg_slot = i.imm_operands;
7172 }
7173
a683cc34 7174 if (i.imm_operands == 0)
bed3d976
JB
7175 {
7176 /* When there is no immediate operand, generate an 8bit
7177 immediate operand to encode the first operand. */
7178 exp = &im_expressions[i.imm_operands++];
7179 i.op[i.operands].imms = exp;
7180 i.types[i.operands] = imm8;
7181 i.operands++;
7182
3528c362 7183 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
bed3d976
JB
7184 exp->X_op = O_constant;
7185 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
7186 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7187 }
922d8de8 7188 else
bed3d976 7189 {
9d3bf266
JB
7190 gas_assert (i.imm_operands == 1);
7191 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7192 gas_assert (!i.tm.opcode_modifier.immext);
a683cc34 7193
9d3bf266
JB
7194 /* Turn on Imm8 again so that output_imm will generate it. */
7195 i.types[0].bitfield.imm8 = 1;
bed3d976 7196
3528c362 7197 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
9d3bf266 7198 i.op[0].imms->X_add_number
bed3d976 7199 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 7200 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 7201 }
a683cc34 7202
3528c362 7203 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
dae39acc 7204 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
7205 }
7206 else
7207 source = dest = 0;
29b0f896
AM
7208
7209 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
7210 implicit registers do not count. If there are 3 register
7211 operands, it must be a instruction with VexNDS. For a
7212 instruction with VexNDD, the destination register is encoded
7213 in VEX prefix. If there are 4 register operands, it must be
7214 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
7215 if (i.mem_operands == 0
7216 && ((i.reg_operands == 2
2426c15f 7217 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 7218 || (i.reg_operands == 3
2426c15f 7219 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 7220 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 7221 {
cab737b9
L
7222 switch (i.operands)
7223 {
7224 case 2:
7225 source = 0;
7226 break;
7227 case 3:
c81128dc
L
7228 /* When there are 3 operands, one of them may be immediate,
7229 which may be the first or the last operand. Otherwise,
c0f3af97
L
7230 the first operand must be shift count register (cl) or it
7231 is an instruction with VexNDS. */
9c2799c2 7232 gas_assert (i.imm_operands == 1
7ab9ffdd 7233 || (i.imm_operands == 0
2426c15f 7234 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
75e5731b
JB
7235 || (i.types[0].bitfield.instance == RegC
7236 && i.types[0].bitfield.byte))));
40fb9820 7237 if (operand_type_check (i.types[0], imm)
75e5731b
JB
7238 || (i.types[0].bitfield.instance == RegC
7239 && i.types[0].bitfield.byte))
40fb9820
L
7240 source = 1;
7241 else
7242 source = 0;
cab737b9
L
7243 break;
7244 case 4:
368d64cc
L
7245 /* When there are 4 operands, the first two must be 8bit
7246 immediate operands. The source operand will be the 3rd
c0f3af97
L
7247 one.
7248
7249 For instructions with VexNDS, if the first operand
7250 an imm8, the source operand is the 2nd one. If the last
7251 operand is imm8, the source operand is the first one. */
9c2799c2 7252 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
7253 && i.types[0].bitfield.imm8
7254 && i.types[1].bitfield.imm8)
2426c15f 7255 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
7256 && i.imm_operands == 1
7257 && (i.types[0].bitfield.imm8
43234a1e
L
7258 || i.types[i.operands - 1].bitfield.imm8
7259 || i.rounding)));
9f2670f2
L
7260 if (i.imm_operands == 2)
7261 source = 2;
7262 else
c0f3af97
L
7263 {
7264 if (i.types[0].bitfield.imm8)
7265 source = 1;
7266 else
7267 source = 0;
7268 }
c0f3af97
L
7269 break;
7270 case 5:
e771e7c9 7271 if (is_evex_encoding (&i.tm))
43234a1e
L
7272 {
7273 /* For EVEX instructions, when there are 5 operands, the
7274 first one must be immediate operand. If the second one
7275 is immediate operand, the source operand is the 3th
7276 one. If the last one is immediate operand, the source
7277 operand is the 2nd one. */
7278 gas_assert (i.imm_operands == 2
7279 && i.tm.opcode_modifier.sae
7280 && operand_type_check (i.types[0], imm));
7281 if (operand_type_check (i.types[1], imm))
7282 source = 2;
7283 else if (operand_type_check (i.types[4], imm))
7284 source = 1;
7285 else
7286 abort ();
7287 }
cab737b9
L
7288 break;
7289 default:
7290 abort ();
7291 }
7292
c0f3af97
L
7293 if (!vex_3_sources)
7294 {
7295 dest = source + 1;
7296
43234a1e
L
7297 /* RC/SAE operand could be between DEST and SRC. That happens
7298 when one operand is GPR and the other one is XMM/YMM/ZMM
7299 register. */
7300 if (i.rounding && i.rounding->operand == (int) dest)
7301 dest++;
7302
2426c15f 7303 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 7304 {
43234a1e 7305 /* For instructions with VexNDS, the register-only source
c5d0745b 7306 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
dfd69174 7307 register. It is encoded in VEX prefix. */
f12dc422
L
7308
7309 i386_operand_type op;
7310 unsigned int vvvv;
7311
7312 /* Check register-only source operand when two source
7313 operands are swapped. */
7314 if (!i.tm.operand_types[source].bitfield.baseindex
7315 && i.tm.operand_types[dest].bitfield.baseindex)
7316 {
7317 vvvv = source;
7318 source = dest;
7319 }
7320 else
7321 vvvv = dest;
7322
7323 op = i.tm.operand_types[vvvv];
c0f3af97 7324 if ((dest + 1) >= i.operands
bab6aec1 7325 || ((op.bitfield.class != Reg
dc821c5f 7326 || (!op.bitfield.dword && !op.bitfield.qword))
3528c362 7327 && op.bitfield.class != RegSIMD
43234a1e 7328 && !operand_type_equal (&op, &regmask)))
c0f3af97 7329 abort ();
f12dc422 7330 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
7331 dest++;
7332 }
7333 }
29b0f896
AM
7334
7335 i.rm.mode = 3;
dfd69174
JB
7336 /* One of the register operands will be encoded in the i.rm.reg
7337 field, the other in the combined i.rm.mode and i.rm.regmem
29b0f896
AM
7338 fields. If no form of this instruction supports a memory
7339 destination operand, then we assume the source operand may
7340 sometimes be a memory operand and so we need to store the
7341 destination in the i.rm.reg field. */
dfd69174 7342 if (!i.tm.opcode_modifier.regmem
40fb9820 7343 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
7344 {
7345 i.rm.reg = i.op[dest].regs->reg_num;
7346 i.rm.regmem = i.op[source].regs->reg_num;
3528c362
JB
7347 if (i.op[dest].regs->reg_type.bitfield.class == RegMMX
7348 || i.op[source].regs->reg_type.bitfield.class == RegMMX)
b4a3a7b4 7349 i.has_regmmx = TRUE;
3528c362
JB
7350 else if (i.op[dest].regs->reg_type.bitfield.class == RegSIMD
7351 || i.op[source].regs->reg_type.bitfield.class == RegSIMD)
b4a3a7b4
L
7352 {
7353 if (i.types[dest].bitfield.zmmword
7354 || i.types[source].bitfield.zmmword)
7355 i.has_regzmm = TRUE;
7356 else if (i.types[dest].bitfield.ymmword
7357 || i.types[source].bitfield.ymmword)
7358 i.has_regymm = TRUE;
7359 else
7360 i.has_regxmm = TRUE;
7361 }
29b0f896 7362 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7363 i.rex |= REX_R;
43234a1e
L
7364 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7365 i.vrex |= REX_R;
29b0f896 7366 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7367 i.rex |= REX_B;
43234a1e
L
7368 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7369 i.vrex |= REX_B;
29b0f896
AM
7370 }
7371 else
7372 {
7373 i.rm.reg = i.op[source].regs->reg_num;
7374 i.rm.regmem = i.op[dest].regs->reg_num;
7375 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7376 i.rex |= REX_B;
43234a1e
L
7377 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7378 i.vrex |= REX_B;
29b0f896 7379 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7380 i.rex |= REX_R;
43234a1e
L
7381 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7382 i.vrex |= REX_R;
29b0f896 7383 }
e0c7f900 7384 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 7385 {
4a5c67ed 7386 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
c4a530c5 7387 abort ();
e0c7f900 7388 i.rex &= ~REX_R;
c4a530c5
JB
7389 add_prefix (LOCK_PREFIX_OPCODE);
7390 }
29b0f896
AM
7391 }
7392 else
7393 { /* If it's not 2 reg operands... */
c0f3af97
L
7394 unsigned int mem;
7395
29b0f896
AM
7396 if (i.mem_operands)
7397 {
7398 unsigned int fake_zero_displacement = 0;
99018f42 7399 unsigned int op;
4eed87de 7400
7ab9ffdd 7401 for (op = 0; op < i.operands; op++)
8dc0818e 7402 if (i.flags[op] & Operand_Mem)
7ab9ffdd 7403 break;
7ab9ffdd 7404 gas_assert (op < i.operands);
29b0f896 7405
6c30d220
L
7406 if (i.tm.opcode_modifier.vecsib)
7407 {
e968fc9b 7408 if (i.index_reg->reg_num == RegIZ)
6c30d220
L
7409 abort ();
7410
7411 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7412 if (!i.base_reg)
7413 {
7414 i.sib.base = NO_BASE_REGISTER;
7415 i.sib.scale = i.log2_scale_factor;
7416 i.types[op].bitfield.disp8 = 0;
7417 i.types[op].bitfield.disp16 = 0;
7418 i.types[op].bitfield.disp64 = 0;
43083a50 7419 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
7420 {
7421 /* Must be 32 bit */
7422 i.types[op].bitfield.disp32 = 1;
7423 i.types[op].bitfield.disp32s = 0;
7424 }
7425 else
7426 {
7427 i.types[op].bitfield.disp32 = 0;
7428 i.types[op].bitfield.disp32s = 1;
7429 }
7430 }
7431 i.sib.index = i.index_reg->reg_num;
7432 if ((i.index_reg->reg_flags & RegRex) != 0)
7433 i.rex |= REX_X;
43234a1e
L
7434 if ((i.index_reg->reg_flags & RegVRex) != 0)
7435 i.vrex |= REX_X;
6c30d220
L
7436 }
7437
29b0f896
AM
7438 default_seg = &ds;
7439
7440 if (i.base_reg == 0)
7441 {
7442 i.rm.mode = 0;
7443 if (!i.disp_operands)
9bb129e8 7444 fake_zero_displacement = 1;
29b0f896
AM
7445 if (i.index_reg == 0)
7446 {
73053c1f
JB
7447 i386_operand_type newdisp;
7448
6c30d220 7449 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7450 /* Operand is just <disp> */
20f0a1fc 7451 if (flag_code == CODE_64BIT)
29b0f896
AM
7452 {
7453 /* 64bit mode overwrites the 32bit absolute
7454 addressing by RIP relative addressing and
7455 absolute addressing is encoded by one of the
7456 redundant SIB forms. */
7457 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7458 i.sib.base = NO_BASE_REGISTER;
7459 i.sib.index = NO_INDEX_REGISTER;
73053c1f 7460 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 7461 }
fc225355
L
7462 else if ((flag_code == CODE_16BIT)
7463 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
7464 {
7465 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 7466 newdisp = disp16;
20f0a1fc
NC
7467 }
7468 else
7469 {
7470 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 7471 newdisp = disp32;
29b0f896 7472 }
73053c1f
JB
7473 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7474 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 7475 }
6c30d220 7476 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7477 {
6c30d220 7478 /* !i.base_reg && i.index_reg */
e968fc9b 7479 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7480 i.sib.index = NO_INDEX_REGISTER;
7481 else
7482 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7483 i.sib.base = NO_BASE_REGISTER;
7484 i.sib.scale = i.log2_scale_factor;
7485 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
7486 i.types[op].bitfield.disp8 = 0;
7487 i.types[op].bitfield.disp16 = 0;
7488 i.types[op].bitfield.disp64 = 0;
43083a50 7489 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
7490 {
7491 /* Must be 32 bit */
7492 i.types[op].bitfield.disp32 = 1;
7493 i.types[op].bitfield.disp32s = 0;
7494 }
29b0f896 7495 else
40fb9820
L
7496 {
7497 i.types[op].bitfield.disp32 = 0;
7498 i.types[op].bitfield.disp32s = 1;
7499 }
29b0f896 7500 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7501 i.rex |= REX_X;
29b0f896
AM
7502 }
7503 }
7504 /* RIP addressing for 64bit mode. */
e968fc9b 7505 else if (i.base_reg->reg_num == RegIP)
29b0f896 7506 {
6c30d220 7507 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7508 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
7509 i.types[op].bitfield.disp8 = 0;
7510 i.types[op].bitfield.disp16 = 0;
7511 i.types[op].bitfield.disp32 = 0;
7512 i.types[op].bitfield.disp32s = 1;
7513 i.types[op].bitfield.disp64 = 0;
71903a11 7514 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
7515 if (! i.disp_operands)
7516 fake_zero_displacement = 1;
29b0f896 7517 }
dc821c5f 7518 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 7519 {
6c30d220 7520 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7521 switch (i.base_reg->reg_num)
7522 {
7523 case 3: /* (%bx) */
7524 if (i.index_reg == 0)
7525 i.rm.regmem = 7;
7526 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7527 i.rm.regmem = i.index_reg->reg_num - 6;
7528 break;
7529 case 5: /* (%bp) */
7530 default_seg = &ss;
7531 if (i.index_reg == 0)
7532 {
7533 i.rm.regmem = 6;
40fb9820 7534 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
7535 {
7536 /* fake (%bp) into 0(%bp) */
b5014f7a 7537 i.types[op].bitfield.disp8 = 1;
252b5132 7538 fake_zero_displacement = 1;
29b0f896
AM
7539 }
7540 }
7541 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7542 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7543 break;
7544 default: /* (%si) -> 4 or (%di) -> 5 */
7545 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7546 }
7547 i.rm.mode = mode_from_disp_size (i.types[op]);
7548 }
7549 else /* i.base_reg and 32/64 bit mode */
7550 {
7551 if (flag_code == CODE_64BIT
40fb9820
L
7552 && operand_type_check (i.types[op], disp))
7553 {
73053c1f
JB
7554 i.types[op].bitfield.disp16 = 0;
7555 i.types[op].bitfield.disp64 = 0;
40fb9820 7556 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
7557 {
7558 i.types[op].bitfield.disp32 = 0;
7559 i.types[op].bitfield.disp32s = 1;
7560 }
40fb9820 7561 else
73053c1f
JB
7562 {
7563 i.types[op].bitfield.disp32 = 1;
7564 i.types[op].bitfield.disp32s = 0;
7565 }
40fb9820 7566 }
20f0a1fc 7567
6c30d220
L
7568 if (!i.tm.opcode_modifier.vecsib)
7569 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7570 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7571 i.rex |= REX_B;
29b0f896
AM
7572 i.sib.base = i.base_reg->reg_num;
7573 /* x86-64 ignores REX prefix bit here to avoid decoder
7574 complications. */
848930b2
JB
7575 if (!(i.base_reg->reg_flags & RegRex)
7576 && (i.base_reg->reg_num == EBP_REG_NUM
7577 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7578 default_seg = &ss;
848930b2 7579 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7580 {
848930b2 7581 fake_zero_displacement = 1;
b5014f7a 7582 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7583 }
7584 i.sib.scale = i.log2_scale_factor;
7585 if (i.index_reg == 0)
7586 {
6c30d220 7587 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7588 /* <disp>(%esp) becomes two byte modrm with no index
7589 register. We've already stored the code for esp
7590 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7591 Any base register besides %esp will not use the
7592 extra modrm byte. */
7593 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7594 }
6c30d220 7595 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7596 {
e968fc9b 7597 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7598 i.sib.index = NO_INDEX_REGISTER;
7599 else
7600 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7601 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7602 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7603 i.rex |= REX_X;
29b0f896 7604 }
67a4f2b7
AO
7605
7606 if (i.disp_operands
7607 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7608 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7609 i.rm.mode = 0;
7610 else
a501d77e
L
7611 {
7612 if (!fake_zero_displacement
7613 && !i.disp_operands
7614 && i.disp_encoding)
7615 {
7616 fake_zero_displacement = 1;
7617 if (i.disp_encoding == disp_encoding_8bit)
7618 i.types[op].bitfield.disp8 = 1;
7619 else
7620 i.types[op].bitfield.disp32 = 1;
7621 }
7622 i.rm.mode = mode_from_disp_size (i.types[op]);
7623 }
29b0f896 7624 }
252b5132 7625
29b0f896
AM
7626 if (fake_zero_displacement)
7627 {
7628 /* Fakes a zero displacement assuming that i.types[op]
7629 holds the correct displacement size. */
7630 expressionS *exp;
7631
9c2799c2 7632 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7633 exp = &disp_expressions[i.disp_operands++];
7634 i.op[op].disps = exp;
7635 exp->X_op = O_constant;
7636 exp->X_add_number = 0;
7637 exp->X_add_symbol = (symbolS *) 0;
7638 exp->X_op_symbol = (symbolS *) 0;
7639 }
c0f3af97
L
7640
7641 mem = op;
29b0f896 7642 }
c0f3af97
L
7643 else
7644 mem = ~0;
252b5132 7645
8c43a48b 7646 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7647 {
7648 if (operand_type_check (i.types[0], imm))
7649 i.vex.register_specifier = NULL;
7650 else
7651 {
7652 /* VEX.vvvv encodes one of the sources when the first
7653 operand is not an immediate. */
1ef99a7b 7654 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7655 i.vex.register_specifier = i.op[0].regs;
7656 else
7657 i.vex.register_specifier = i.op[1].regs;
7658 }
7659
7660 /* Destination is a XMM register encoded in the ModRM.reg
7661 and VEX.R bit. */
7662 i.rm.reg = i.op[2].regs->reg_num;
7663 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7664 i.rex |= REX_R;
7665
7666 /* ModRM.rm and VEX.B encodes the other source. */
7667 if (!i.mem_operands)
7668 {
7669 i.rm.mode = 3;
7670
1ef99a7b 7671 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7672 i.rm.regmem = i.op[1].regs->reg_num;
7673 else
7674 i.rm.regmem = i.op[0].regs->reg_num;
7675
7676 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7677 i.rex |= REX_B;
7678 }
7679 }
2426c15f 7680 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7681 {
7682 i.vex.register_specifier = i.op[2].regs;
7683 if (!i.mem_operands)
7684 {
7685 i.rm.mode = 3;
7686 i.rm.regmem = i.op[1].regs->reg_num;
7687 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7688 i.rex |= REX_B;
7689 }
7690 }
29b0f896
AM
7691 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7692 (if any) based on i.tm.extension_opcode. Again, we must be
7693 careful to make sure that segment/control/debug/test/MMX
7694 registers are coded into the i.rm.reg field. */
f88c9eb0 7695 else if (i.reg_operands)
29b0f896 7696 {
99018f42 7697 unsigned int op;
7ab9ffdd
L
7698 unsigned int vex_reg = ~0;
7699
7700 for (op = 0; op < i.operands; op++)
b4a3a7b4 7701 {
bab6aec1 7702 if (i.types[op].bitfield.class == Reg
f74a6307
JB
7703 || i.types[op].bitfield.class == RegBND
7704 || i.types[op].bitfield.class == RegMask
00cee14f 7705 || i.types[op].bitfield.class == SReg
4a5c67ed
JB
7706 || i.types[op].bitfield.class == RegCR
7707 || i.types[op].bitfield.class == RegDR
7708 || i.types[op].bitfield.class == RegTR)
b4a3a7b4 7709 break;
3528c362 7710 if (i.types[op].bitfield.class == RegSIMD)
b4a3a7b4
L
7711 {
7712 if (i.types[op].bitfield.zmmword)
7713 i.has_regzmm = TRUE;
7714 else if (i.types[op].bitfield.ymmword)
7715 i.has_regymm = TRUE;
7716 else
7717 i.has_regxmm = TRUE;
7718 break;
7719 }
3528c362 7720 if (i.types[op].bitfield.class == RegMMX)
b4a3a7b4
L
7721 {
7722 i.has_regmmx = TRUE;
7723 break;
7724 }
7725 }
c0209578 7726
7ab9ffdd
L
7727 if (vex_3_sources)
7728 op = dest;
2426c15f 7729 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7730 {
7731 /* For instructions with VexNDS, the register-only
7732 source operand is encoded in VEX prefix. */
7733 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7734
7ab9ffdd 7735 if (op > mem)
c0f3af97 7736 {
7ab9ffdd
L
7737 vex_reg = op++;
7738 gas_assert (op < i.operands);
c0f3af97
L
7739 }
7740 else
c0f3af97 7741 {
f12dc422
L
7742 /* Check register-only source operand when two source
7743 operands are swapped. */
7744 if (!i.tm.operand_types[op].bitfield.baseindex
7745 && i.tm.operand_types[op + 1].bitfield.baseindex)
7746 {
7747 vex_reg = op;
7748 op += 2;
7749 gas_assert (mem == (vex_reg + 1)
7750 && op < i.operands);
7751 }
7752 else
7753 {
7754 vex_reg = op + 1;
7755 gas_assert (vex_reg < i.operands);
7756 }
c0f3af97 7757 }
7ab9ffdd 7758 }
2426c15f 7759 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7760 {
f12dc422 7761 /* For instructions with VexNDD, the register destination
7ab9ffdd 7762 is encoded in VEX prefix. */
f12dc422
L
7763 if (i.mem_operands == 0)
7764 {
7765 /* There is no memory operand. */
7766 gas_assert ((op + 2) == i.operands);
7767 vex_reg = op + 1;
7768 }
7769 else
8d63c93e 7770 {
ed438a93
JB
7771 /* There are only 2 non-immediate operands. */
7772 gas_assert (op < i.imm_operands + 2
7773 && i.operands == i.imm_operands + 2);
7774 vex_reg = i.imm_operands + 1;
f12dc422 7775 }
7ab9ffdd
L
7776 }
7777 else
7778 gas_assert (op < i.operands);
99018f42 7779
7ab9ffdd
L
7780 if (vex_reg != (unsigned int) ~0)
7781 {
f12dc422 7782 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7783
bab6aec1 7784 if ((type->bitfield.class != Reg
dc821c5f 7785 || (!type->bitfield.dword && !type->bitfield.qword))
3528c362 7786 && type->bitfield.class != RegSIMD
43234a1e 7787 && !operand_type_equal (type, &regmask))
7ab9ffdd 7788 abort ();
f88c9eb0 7789
7ab9ffdd
L
7790 i.vex.register_specifier = i.op[vex_reg].regs;
7791 }
7792
1b9f0c97
L
7793 /* Don't set OP operand twice. */
7794 if (vex_reg != op)
7ab9ffdd 7795 {
1b9f0c97
L
7796 /* If there is an extension opcode to put here, the
7797 register number must be put into the regmem field. */
7798 if (i.tm.extension_opcode != None)
7799 {
7800 i.rm.regmem = i.op[op].regs->reg_num;
7801 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7802 i.rex |= REX_B;
43234a1e
L
7803 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7804 i.vrex |= REX_B;
1b9f0c97
L
7805 }
7806 else
7807 {
7808 i.rm.reg = i.op[op].regs->reg_num;
7809 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7810 i.rex |= REX_R;
43234a1e
L
7811 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7812 i.vrex |= REX_R;
1b9f0c97 7813 }
7ab9ffdd 7814 }
252b5132 7815
29b0f896
AM
7816 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7817 must set it to 3 to indicate this is a register operand
7818 in the regmem field. */
7819 if (!i.mem_operands)
7820 i.rm.mode = 3;
7821 }
252b5132 7822
29b0f896 7823 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7824 if (i.tm.extension_opcode != None)
29b0f896
AM
7825 i.rm.reg = i.tm.extension_opcode;
7826 }
7827 return default_seg;
7828}
252b5132 7829
376cd056
JB
7830static unsigned int
7831flip_code16 (unsigned int code16)
7832{
7833 gas_assert (i.tm.operands == 1);
7834
7835 return !(i.prefix[REX_PREFIX] & REX_W)
7836 && (code16 ? i.tm.operand_types[0].bitfield.disp32
7837 || i.tm.operand_types[0].bitfield.disp32s
7838 : i.tm.operand_types[0].bitfield.disp16)
7839 ? CODE16 : 0;
7840}
7841
29b0f896 7842static void
e3bb37b5 7843output_branch (void)
29b0f896
AM
7844{
7845 char *p;
f8a5c266 7846 int size;
29b0f896
AM
7847 int code16;
7848 int prefix;
7849 relax_substateT subtype;
7850 symbolS *sym;
7851 offsetT off;
7852
f8a5c266 7853 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7854 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7855
7856 prefix = 0;
7857 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7858 {
29b0f896
AM
7859 prefix = 1;
7860 i.prefixes -= 1;
376cd056 7861 code16 ^= flip_code16(code16);
252b5132 7862 }
29b0f896
AM
7863 /* Pentium4 branch hints. */
7864 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7865 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7866 {
29b0f896
AM
7867 prefix++;
7868 i.prefixes--;
7869 }
7870 if (i.prefix[REX_PREFIX] != 0)
7871 {
7872 prefix++;
7873 i.prefixes--;
2f66722d
AM
7874 }
7875
7e8b059b
L
7876 /* BND prefixed jump. */
7877 if (i.prefix[BND_PREFIX] != 0)
7878 {
6cb0a70e
JB
7879 prefix++;
7880 i.prefixes--;
7e8b059b
L
7881 }
7882
f2810fe0
JB
7883 if (i.prefixes != 0)
7884 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
29b0f896
AM
7885
7886 /* It's always a symbol; End frag & setup for relax.
7887 Make sure there is enough room in this frag for the largest
7888 instruction we may generate in md_convert_frag. This is 2
7889 bytes for the opcode and room for the prefix and largest
7890 displacement. */
7891 frag_grow (prefix + 2 + 4);
7892 /* Prefix and 1 opcode byte go in fr_fix. */
7893 p = frag_more (prefix + 1);
7894 if (i.prefix[DATA_PREFIX] != 0)
7895 *p++ = DATA_PREFIX_OPCODE;
7896 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7897 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7898 *p++ = i.prefix[SEG_PREFIX];
6cb0a70e
JB
7899 if (i.prefix[BND_PREFIX] != 0)
7900 *p++ = BND_PREFIX_OPCODE;
29b0f896
AM
7901 if (i.prefix[REX_PREFIX] != 0)
7902 *p++ = i.prefix[REX_PREFIX];
7903 *p = i.tm.base_opcode;
7904
7905 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7906 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7907 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7908 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7909 else
f8a5c266 7910 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7911 subtype |= code16;
3e73aa7c 7912
29b0f896
AM
7913 sym = i.op[0].disps->X_add_symbol;
7914 off = i.op[0].disps->X_add_number;
3e73aa7c 7915
29b0f896
AM
7916 if (i.op[0].disps->X_op != O_constant
7917 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7918 {
29b0f896
AM
7919 /* Handle complex expressions. */
7920 sym = make_expr_symbol (i.op[0].disps);
7921 off = 0;
7922 }
3e73aa7c 7923
29b0f896
AM
7924 /* 1 possible extra opcode + 4 byte displacement go in var part.
7925 Pass reloc in fr_var. */
d258b828 7926 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7927}
3e73aa7c 7928
bd7ab16b
L
7929#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7930/* Return TRUE iff PLT32 relocation should be used for branching to
7931 symbol S. */
7932
7933static bfd_boolean
7934need_plt32_p (symbolS *s)
7935{
7936 /* PLT32 relocation is ELF only. */
7937 if (!IS_ELF)
7938 return FALSE;
7939
a5def729
RO
7940#ifdef TE_SOLARIS
7941 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7942 krtld support it. */
7943 return FALSE;
7944#endif
7945
bd7ab16b
L
7946 /* Since there is no need to prepare for PLT branch on x86-64, we
7947 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7948 be used as a marker for 32-bit PC-relative branches. */
7949 if (!object_64bit)
7950 return FALSE;
7951
7952 /* Weak or undefined symbol need PLT32 relocation. */
7953 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7954 return TRUE;
7955
7956 /* Non-global symbol doesn't need PLT32 relocation. */
7957 if (! S_IS_EXTERNAL (s))
7958 return FALSE;
7959
7960 /* Other global symbols need PLT32 relocation. NB: Symbol with
7961 non-default visibilities are treated as normal global symbol
7962 so that PLT32 relocation can be used as a marker for 32-bit
7963 PC-relative branches. It is useful for linker relaxation. */
7964 return TRUE;
7965}
7966#endif
7967
29b0f896 7968static void
e3bb37b5 7969output_jump (void)
29b0f896
AM
7970{
7971 char *p;
7972 int size;
3e02c1cc 7973 fixS *fixP;
bd7ab16b 7974 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7975
0cfa3eb3 7976 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
29b0f896
AM
7977 {
7978 /* This is a loop or jecxz type instruction. */
7979 size = 1;
7980 if (i.prefix[ADDR_PREFIX] != 0)
7981 {
7982 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7983 i.prefixes -= 1;
7984 }
7985 /* Pentium4 branch hints. */
7986 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7987 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7988 {
7989 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7990 i.prefixes--;
3e73aa7c
JH
7991 }
7992 }
29b0f896
AM
7993 else
7994 {
7995 int code16;
3e73aa7c 7996
29b0f896
AM
7997 code16 = 0;
7998 if (flag_code == CODE_16BIT)
7999 code16 = CODE16;
3e73aa7c 8000
29b0f896
AM
8001 if (i.prefix[DATA_PREFIX] != 0)
8002 {
8003 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
8004 i.prefixes -= 1;
376cd056 8005 code16 ^= flip_code16(code16);
29b0f896 8006 }
252b5132 8007
29b0f896
AM
8008 size = 4;
8009 if (code16)
8010 size = 2;
8011 }
9fcc94b6 8012
6cb0a70e
JB
8013 /* BND prefixed jump. */
8014 if (i.prefix[BND_PREFIX] != 0)
29b0f896 8015 {
6cb0a70e 8016 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
29b0f896
AM
8017 i.prefixes -= 1;
8018 }
252b5132 8019
6cb0a70e 8020 if (i.prefix[REX_PREFIX] != 0)
7e8b059b 8021 {
6cb0a70e 8022 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7e8b059b
L
8023 i.prefixes -= 1;
8024 }
8025
f2810fe0
JB
8026 if (i.prefixes != 0)
8027 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
e0890092 8028
42164a71
L
8029 p = frag_more (i.tm.opcode_length + size);
8030 switch (i.tm.opcode_length)
8031 {
8032 case 2:
8033 *p++ = i.tm.base_opcode >> 8;
1a0670f3 8034 /* Fall through. */
42164a71
L
8035 case 1:
8036 *p++ = i.tm.base_opcode;
8037 break;
8038 default:
8039 abort ();
8040 }
e0890092 8041
bd7ab16b
L
8042#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8043 if (size == 4
8044 && jump_reloc == NO_RELOC
8045 && need_plt32_p (i.op[0].disps->X_add_symbol))
8046 jump_reloc = BFD_RELOC_X86_64_PLT32;
8047#endif
8048
8049 jump_reloc = reloc (size, 1, 1, jump_reloc);
8050
3e02c1cc 8051 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 8052 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
8053
8054 /* All jumps handled here are signed, but don't use a signed limit
8055 check for 32 and 16 bit jumps as we want to allow wrap around at
8056 4G and 64k respectively. */
8057 if (size == 1)
8058 fixP->fx_signed = 1;
29b0f896 8059}
e0890092 8060
29b0f896 8061static void
e3bb37b5 8062output_interseg_jump (void)
29b0f896
AM
8063{
8064 char *p;
8065 int size;
8066 int prefix;
8067 int code16;
252b5132 8068
29b0f896
AM
8069 code16 = 0;
8070 if (flag_code == CODE_16BIT)
8071 code16 = CODE16;
a217f122 8072
29b0f896
AM
8073 prefix = 0;
8074 if (i.prefix[DATA_PREFIX] != 0)
8075 {
8076 prefix = 1;
8077 i.prefixes -= 1;
8078 code16 ^= CODE16;
8079 }
6cb0a70e
JB
8080
8081 gas_assert (!i.prefix[REX_PREFIX]);
252b5132 8082
29b0f896
AM
8083 size = 4;
8084 if (code16)
8085 size = 2;
252b5132 8086
f2810fe0
JB
8087 if (i.prefixes != 0)
8088 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
252b5132 8089
29b0f896
AM
8090 /* 1 opcode; 2 segment; offset */
8091 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 8092
29b0f896
AM
8093 if (i.prefix[DATA_PREFIX] != 0)
8094 *p++ = DATA_PREFIX_OPCODE;
252b5132 8095
29b0f896
AM
8096 if (i.prefix[REX_PREFIX] != 0)
8097 *p++ = i.prefix[REX_PREFIX];
252b5132 8098
29b0f896
AM
8099 *p++ = i.tm.base_opcode;
8100 if (i.op[1].imms->X_op == O_constant)
8101 {
8102 offsetT n = i.op[1].imms->X_add_number;
252b5132 8103
29b0f896
AM
8104 if (size == 2
8105 && !fits_in_unsigned_word (n)
8106 && !fits_in_signed_word (n))
8107 {
8108 as_bad (_("16-bit jump out of range"));
8109 return;
8110 }
8111 md_number_to_chars (p, n, size);
8112 }
8113 else
8114 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 8115 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
8116 if (i.op[0].imms->X_op != O_constant)
8117 as_bad (_("can't handle non absolute segment in `%s'"),
8118 i.tm.name);
8119 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8120}
a217f122 8121
b4a3a7b4
L
8122#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8123void
8124x86_cleanup (void)
8125{
8126 char *p;
8127 asection *seg = now_seg;
8128 subsegT subseg = now_subseg;
8129 asection *sec;
8130 unsigned int alignment, align_size_1;
8131 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8132 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8133 unsigned int padding;
8134
8135 if (!IS_ELF || !x86_used_note)
8136 return;
8137
b4a3a7b4
L
8138 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8139
8140 /* The .note.gnu.property section layout:
8141
8142 Field Length Contents
8143 ---- ---- ----
8144 n_namsz 4 4
8145 n_descsz 4 The note descriptor size
8146 n_type 4 NT_GNU_PROPERTY_TYPE_0
8147 n_name 4 "GNU"
8148 n_desc n_descsz The program property array
8149 .... .... ....
8150 */
8151
8152 /* Create the .note.gnu.property section. */
8153 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
fd361982 8154 bfd_set_section_flags (sec,
b4a3a7b4
L
8155 (SEC_ALLOC
8156 | SEC_LOAD
8157 | SEC_DATA
8158 | SEC_HAS_CONTENTS
8159 | SEC_READONLY));
8160
8161 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8162 {
8163 align_size_1 = 7;
8164 alignment = 3;
8165 }
8166 else
8167 {
8168 align_size_1 = 3;
8169 alignment = 2;
8170 }
8171
fd361982 8172 bfd_set_section_alignment (sec, alignment);
b4a3a7b4
L
8173 elf_section_type (sec) = SHT_NOTE;
8174
8175 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8176 + 4-byte data */
8177 isa_1_descsz_raw = 4 + 4 + 4;
8178 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8179 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8180
8181 feature_2_descsz_raw = isa_1_descsz;
8182 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8183 + 4-byte data */
8184 feature_2_descsz_raw += 4 + 4 + 4;
8185 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8186 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8187 & ~align_size_1);
8188
8189 descsz = feature_2_descsz;
8190 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8191 p = frag_more (4 + 4 + 4 + 4 + descsz);
8192
8193 /* Write n_namsz. */
8194 md_number_to_chars (p, (valueT) 4, 4);
8195
8196 /* Write n_descsz. */
8197 md_number_to_chars (p + 4, (valueT) descsz, 4);
8198
8199 /* Write n_type. */
8200 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8201
8202 /* Write n_name. */
8203 memcpy (p + 4 * 3, "GNU", 4);
8204
8205 /* Write 4-byte type. */
8206 md_number_to_chars (p + 4 * 4,
8207 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8208
8209 /* Write 4-byte data size. */
8210 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8211
8212 /* Write 4-byte data. */
8213 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8214
8215 /* Zero out paddings. */
8216 padding = isa_1_descsz - isa_1_descsz_raw;
8217 if (padding)
8218 memset (p + 4 * 7, 0, padding);
8219
8220 /* Write 4-byte type. */
8221 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8222 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8223
8224 /* Write 4-byte data size. */
8225 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8226
8227 /* Write 4-byte data. */
8228 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8229 (valueT) x86_feature_2_used, 4);
8230
8231 /* Zero out paddings. */
8232 padding = feature_2_descsz - feature_2_descsz_raw;
8233 if (padding)
8234 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8235
8236 /* We probably can't restore the current segment, for there likely
8237 isn't one yet... */
8238 if (seg && subseg)
8239 subseg_set (seg, subseg);
8240}
8241#endif
8242
9c33702b
JB
8243static unsigned int
8244encoding_length (const fragS *start_frag, offsetT start_off,
8245 const char *frag_now_ptr)
8246{
8247 unsigned int len = 0;
8248
8249 if (start_frag != frag_now)
8250 {
8251 const fragS *fr = start_frag;
8252
8253 do {
8254 len += fr->fr_fix;
8255 fr = fr->fr_next;
8256 } while (fr && fr != frag_now);
8257 }
8258
8259 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8260}
8261
e379e5f3
L
8262/* Return 1 for test, and, cmp, add, sub, inc and dec which may
8263 be macro-fused with conditional jumps. */
8264
8265static int
8266maybe_fused_with_jcc_p (void)
8267{
8268 /* No RIP address. */
8269 if (i.base_reg && i.base_reg->reg_num == RegIP)
8270 return 0;
8271
8272 /* No VEX/EVEX encoding. */
8273 if (is_any_vex_encoding (&i.tm))
8274 return 0;
8275
8276 /* and, add, sub with destination register. */
8277 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
8278 || i.tm.base_opcode <= 5
8279 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
8280 || ((i.tm.base_opcode | 3) == 0x83
8281 && ((i.tm.extension_opcode | 1) == 0x5
8282 || i.tm.extension_opcode == 0x0)))
8283 return (i.types[1].bitfield.class == Reg
8284 || i.types[1].bitfield.instance == Accum);
8285
8286 /* test, cmp with any register. */
8287 if ((i.tm.base_opcode | 1) == 0x85
8288 || (i.tm.base_opcode | 1) == 0xa9
8289 || ((i.tm.base_opcode | 1) == 0xf7
8290 && i.tm.extension_opcode == 0)
8291 || (i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
8292 || ((i.tm.base_opcode | 3) == 0x83
8293 && (i.tm.extension_opcode == 0x7)))
8294 return (i.types[0].bitfield.class == Reg
8295 || i.types[0].bitfield.instance == Accum
8296 || i.types[1].bitfield.class == Reg
8297 || i.types[1].bitfield.instance == Accum);
8298
8299 /* inc, dec with any register. */
8300 if ((i.tm.cpu_flags.bitfield.cpuno64
8301 && (i.tm.base_opcode | 0xf) == 0x4f)
8302 || ((i.tm.base_opcode | 1) == 0xff
8303 && i.tm.extension_opcode <= 0x1))
8304 return (i.types[0].bitfield.class == Reg
8305 || i.types[0].bitfield.instance == Accum);
8306
8307 return 0;
8308}
8309
8310/* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
8311
8312static int
8313add_fused_jcc_padding_frag_p (void)
8314{
8315 /* NB: Don't work with COND_JUMP86 without i386. */
8316 if (!align_branch_power
8317 || now_seg == absolute_section
8318 || !cpu_arch_flags.bitfield.cpui386
8319 || !(align_branch & align_branch_fused_bit))
8320 return 0;
8321
8322 if (maybe_fused_with_jcc_p ())
8323 {
8324 if (last_insn.kind == last_insn_other
8325 || last_insn.seg != now_seg)
8326 return 1;
8327 if (flag_debug)
8328 as_warn_where (last_insn.file, last_insn.line,
8329 _("`%s` skips -malign-branch-boundary on `%s`"),
8330 last_insn.name, i.tm.name);
8331 }
8332
8333 return 0;
8334}
8335
8336/* Return 1 if a BRANCH_PREFIX frag should be generated. */
8337
8338static int
8339add_branch_prefix_frag_p (void)
8340{
8341 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
8342 to PadLock instructions since they include prefixes in opcode. */
8343 if (!align_branch_power
8344 || !align_branch_prefix_size
8345 || now_seg == absolute_section
8346 || i.tm.cpu_flags.bitfield.cpupadlock
8347 || !cpu_arch_flags.bitfield.cpui386)
8348 return 0;
8349
8350 /* Don't add prefix if it is a prefix or there is no operand in case
8351 that segment prefix is special. */
8352 if (!i.operands || i.tm.opcode_modifier.isprefix)
8353 return 0;
8354
8355 if (last_insn.kind == last_insn_other
8356 || last_insn.seg != now_seg)
8357 return 1;
8358
8359 if (flag_debug)
8360 as_warn_where (last_insn.file, last_insn.line,
8361 _("`%s` skips -malign-branch-boundary on `%s`"),
8362 last_insn.name, i.tm.name);
8363
8364 return 0;
8365}
8366
8367/* Return 1 if a BRANCH_PADDING frag should be generated. */
8368
8369static int
8370add_branch_padding_frag_p (enum align_branch_kind *branch_p)
8371{
8372 int add_padding;
8373
8374 /* NB: Don't work with COND_JUMP86 without i386. */
8375 if (!align_branch_power
8376 || now_seg == absolute_section
8377 || !cpu_arch_flags.bitfield.cpui386)
8378 return 0;
8379
8380 add_padding = 0;
8381
8382 /* Check for jcc and direct jmp. */
8383 if (i.tm.opcode_modifier.jump == JUMP)
8384 {
8385 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
8386 {
8387 *branch_p = align_branch_jmp;
8388 add_padding = align_branch & align_branch_jmp_bit;
8389 }
8390 else
8391 {
8392 *branch_p = align_branch_jcc;
8393 if ((align_branch & align_branch_jcc_bit))
8394 add_padding = 1;
8395 }
8396 }
8397 else if (is_any_vex_encoding (&i.tm))
8398 return 0;
8399 else if ((i.tm.base_opcode | 1) == 0xc3)
8400 {
8401 /* Near ret. */
8402 *branch_p = align_branch_ret;
8403 if ((align_branch & align_branch_ret_bit))
8404 add_padding = 1;
8405 }
8406 else
8407 {
8408 /* Check for indirect jmp, direct and indirect calls. */
8409 if (i.tm.base_opcode == 0xe8)
8410 {
8411 /* Direct call. */
8412 *branch_p = align_branch_call;
8413 if ((align_branch & align_branch_call_bit))
8414 add_padding = 1;
8415 }
8416 else if (i.tm.base_opcode == 0xff
8417 && (i.tm.extension_opcode == 2
8418 || i.tm.extension_opcode == 4))
8419 {
8420 /* Indirect call and jmp. */
8421 *branch_p = align_branch_indirect;
8422 if ((align_branch & align_branch_indirect_bit))
8423 add_padding = 1;
8424 }
8425
8426 if (add_padding
8427 && i.disp_operands
8428 && tls_get_addr
8429 && (i.op[0].disps->X_op == O_symbol
8430 || (i.op[0].disps->X_op == O_subtract
8431 && i.op[0].disps->X_op_symbol == GOT_symbol)))
8432 {
8433 symbolS *s = i.op[0].disps->X_add_symbol;
8434 /* No padding to call to global or undefined tls_get_addr. */
8435 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
8436 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
8437 return 0;
8438 }
8439 }
8440
8441 if (add_padding
8442 && last_insn.kind != last_insn_other
8443 && last_insn.seg == now_seg)
8444 {
8445 if (flag_debug)
8446 as_warn_where (last_insn.file, last_insn.line,
8447 _("`%s` skips -malign-branch-boundary on `%s`"),
8448 last_insn.name, i.tm.name);
8449 return 0;
8450 }
8451
8452 return add_padding;
8453}
8454
29b0f896 8455static void
e3bb37b5 8456output_insn (void)
29b0f896 8457{
2bbd9c25
JJ
8458 fragS *insn_start_frag;
8459 offsetT insn_start_off;
e379e5f3
L
8460 fragS *fragP = NULL;
8461 enum align_branch_kind branch = align_branch_none;
2bbd9c25 8462
b4a3a7b4
L
8463#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8464 if (IS_ELF && x86_used_note)
8465 {
8466 if (i.tm.cpu_flags.bitfield.cpucmov)
8467 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8468 if (i.tm.cpu_flags.bitfield.cpusse)
8469 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8470 if (i.tm.cpu_flags.bitfield.cpusse2)
8471 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8472 if (i.tm.cpu_flags.bitfield.cpusse3)
8473 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8474 if (i.tm.cpu_flags.bitfield.cpussse3)
8475 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8476 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8477 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8478 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8479 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8480 if (i.tm.cpu_flags.bitfield.cpuavx)
8481 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8482 if (i.tm.cpu_flags.bitfield.cpuavx2)
8483 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8484 if (i.tm.cpu_flags.bitfield.cpufma)
8485 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8486 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8487 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8488 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8489 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8490 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8491 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8492 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8493 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8494 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8495 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8496 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8497 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8498 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8499 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8500 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8501 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8502 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8503 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8504 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8505 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8506 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8507 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8508 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8509 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8510 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8511 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8512 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8513 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
462cac58
L
8514 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8515 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
b4a3a7b4
L
8516
8517 if (i.tm.cpu_flags.bitfield.cpu8087
8518 || i.tm.cpu_flags.bitfield.cpu287
8519 || i.tm.cpu_flags.bitfield.cpu387
8520 || i.tm.cpu_flags.bitfield.cpu687
8521 || i.tm.cpu_flags.bitfield.cpufisttp)
8522 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
319ff62c
JB
8523 if (i.has_regmmx
8524 || i.tm.base_opcode == 0xf77 /* emms */
8525 || i.tm.base_opcode == 0xf0e /* femms */)
b4a3a7b4
L
8526 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8527 if (i.has_regxmm)
8528 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8529 if (i.has_regymm)
8530 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8531 if (i.has_regzmm)
8532 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8533 if (i.tm.cpu_flags.bitfield.cpufxsr)
8534 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8535 if (i.tm.cpu_flags.bitfield.cpuxsave)
8536 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8537 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8538 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8539 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8540 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8541 }
8542#endif
8543
29b0f896
AM
8544 /* Tie dwarf2 debug info to the address at the start of the insn.
8545 We can't do this after the insn has been output as the current
8546 frag may have been closed off. eg. by frag_var. */
8547 dwarf2_emit_insn (0);
8548
2bbd9c25
JJ
8549 insn_start_frag = frag_now;
8550 insn_start_off = frag_now_fix ();
8551
e379e5f3
L
8552 if (add_branch_padding_frag_p (&branch))
8553 {
8554 char *p;
8555 /* Branch can be 8 bytes. Leave some room for prefixes. */
8556 unsigned int max_branch_padding_size = 14;
8557
8558 /* Align section to boundary. */
8559 record_alignment (now_seg, align_branch_power);
8560
8561 /* Make room for padding. */
8562 frag_grow (max_branch_padding_size);
8563
8564 /* Start of the padding. */
8565 p = frag_more (0);
8566
8567 fragP = frag_now;
8568
8569 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
8570 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
8571 NULL, 0, p);
8572
8573 fragP->tc_frag_data.branch_type = branch;
8574 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
8575 }
8576
29b0f896 8577 /* Output jumps. */
0cfa3eb3 8578 if (i.tm.opcode_modifier.jump == JUMP)
29b0f896 8579 output_branch ();
0cfa3eb3
JB
8580 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
8581 || i.tm.opcode_modifier.jump == JUMP_DWORD)
29b0f896 8582 output_jump ();
0cfa3eb3 8583 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
29b0f896
AM
8584 output_interseg_jump ();
8585 else
8586 {
8587 /* Output normal instructions here. */
8588 char *p;
8589 unsigned char *q;
47465058 8590 unsigned int j;
331d2d0d 8591 unsigned int prefix;
4dffcebc 8592
e4e00185 8593 if (avoid_fence
c3949f43
JB
8594 && (i.tm.base_opcode == 0xfaee8
8595 || i.tm.base_opcode == 0xfaef0
8596 || i.tm.base_opcode == 0xfaef8))
e4e00185
AS
8597 {
8598 /* Encode lfence, mfence, and sfence as
8599 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8600 offsetT val = 0x240483f0ULL;
8601 p = frag_more (5);
8602 md_number_to_chars (p, val, 5);
8603 return;
8604 }
8605
d022bddd
IT
8606 /* Some processors fail on LOCK prefix. This options makes
8607 assembler ignore LOCK prefix and serves as a workaround. */
8608 if (omit_lock_prefix)
8609 {
8610 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8611 return;
8612 i.prefix[LOCK_PREFIX] = 0;
8613 }
8614
e379e5f3
L
8615 if (branch)
8616 /* Skip if this is a branch. */
8617 ;
8618 else if (add_fused_jcc_padding_frag_p ())
8619 {
8620 /* Make room for padding. */
8621 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
8622 p = frag_more (0);
8623
8624 fragP = frag_now;
8625
8626 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
8627 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
8628 NULL, 0, p);
8629
8630 fragP->tc_frag_data.branch_type = align_branch_fused;
8631 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
8632 }
8633 else if (add_branch_prefix_frag_p ())
8634 {
8635 unsigned int max_prefix_size = align_branch_prefix_size;
8636
8637 /* Make room for padding. */
8638 frag_grow (max_prefix_size);
8639 p = frag_more (0);
8640
8641 fragP = frag_now;
8642
8643 frag_var (rs_machine_dependent, max_prefix_size, 0,
8644 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
8645 NULL, 0, p);
8646
8647 fragP->tc_frag_data.max_bytes = max_prefix_size;
8648 }
8649
43234a1e
L
8650 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8651 don't need the explicit prefix. */
8652 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 8653 {
c0f3af97 8654 switch (i.tm.opcode_length)
bc4bd9ab 8655 {
c0f3af97
L
8656 case 3:
8657 if (i.tm.base_opcode & 0xff000000)
4dffcebc 8658 {
c0f3af97 8659 prefix = (i.tm.base_opcode >> 24) & 0xff;
c3949f43
JB
8660 if (!i.tm.cpu_flags.bitfield.cpupadlock
8661 || prefix != REPE_PREFIX_OPCODE
8662 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8663 add_prefix (prefix);
c0f3af97
L
8664 }
8665 break;
8666 case 2:
8667 if ((i.tm.base_opcode & 0xff0000) != 0)
8668 {
8669 prefix = (i.tm.base_opcode >> 16) & 0xff;
c3949f43 8670 add_prefix (prefix);
4dffcebc 8671 }
c0f3af97
L
8672 break;
8673 case 1:
8674 break;
390c91cf
L
8675 case 0:
8676 /* Check for pseudo prefixes. */
8677 as_bad_where (insn_start_frag->fr_file,
8678 insn_start_frag->fr_line,
8679 _("pseudo prefix without instruction"));
8680 return;
c0f3af97
L
8681 default:
8682 abort ();
bc4bd9ab 8683 }
c0f3af97 8684
6d19a37a 8685#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
8686 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8687 R_X86_64_GOTTPOFF relocation so that linker can safely
14470f07
L
8688 perform IE->LE optimization. A dummy REX_OPCODE prefix
8689 is also needed for lea with R_X86_64_GOTPC32_TLSDESC
8690 relocation for GDesc -> IE/LE optimization. */
cf61b747
L
8691 if (x86_elf_abi == X86_64_X32_ABI
8692 && i.operands == 2
14470f07
L
8693 && (i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8694 || i.reloc[0] == BFD_RELOC_X86_64_GOTPC32_TLSDESC)
cf61b747
L
8695 && i.prefix[REX_PREFIX] == 0)
8696 add_prefix (REX_OPCODE);
6d19a37a 8697#endif
cf61b747 8698
c0f3af97
L
8699 /* The prefix bytes. */
8700 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8701 if (*q)
8702 FRAG_APPEND_1_CHAR (*q);
0f10071e 8703 }
ae5c1c7b 8704 else
c0f3af97
L
8705 {
8706 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8707 if (*q)
8708 switch (j)
8709 {
8710 case REX_PREFIX:
8711 /* REX byte is encoded in VEX prefix. */
8712 break;
8713 case SEG_PREFIX:
8714 case ADDR_PREFIX:
8715 FRAG_APPEND_1_CHAR (*q);
8716 break;
8717 default:
8718 /* There should be no other prefixes for instructions
8719 with VEX prefix. */
8720 abort ();
8721 }
8722
43234a1e
L
8723 /* For EVEX instructions i.vrex should become 0 after
8724 build_evex_prefix. For VEX instructions upper 16 registers
8725 aren't available, so VREX should be 0. */
8726 if (i.vrex)
8727 abort ();
c0f3af97
L
8728 /* Now the VEX prefix. */
8729 p = frag_more (i.vex.length);
8730 for (j = 0; j < i.vex.length; j++)
8731 p[j] = i.vex.bytes[j];
8732 }
252b5132 8733
29b0f896 8734 /* Now the opcode; be careful about word order here! */
4dffcebc 8735 if (i.tm.opcode_length == 1)
29b0f896
AM
8736 {
8737 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8738 }
8739 else
8740 {
4dffcebc 8741 switch (i.tm.opcode_length)
331d2d0d 8742 {
43234a1e
L
8743 case 4:
8744 p = frag_more (4);
8745 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8746 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8747 break;
4dffcebc 8748 case 3:
331d2d0d
L
8749 p = frag_more (3);
8750 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
8751 break;
8752 case 2:
8753 p = frag_more (2);
8754 break;
8755 default:
8756 abort ();
8757 break;
331d2d0d 8758 }
0f10071e 8759
29b0f896
AM
8760 /* Put out high byte first: can't use md_number_to_chars! */
8761 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8762 *p = i.tm.base_opcode & 0xff;
8763 }
3e73aa7c 8764
29b0f896 8765 /* Now the modrm byte and sib byte (if present). */
40fb9820 8766 if (i.tm.opcode_modifier.modrm)
29b0f896 8767 {
4a3523fa
L
8768 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8769 | i.rm.reg << 3
8770 | i.rm.mode << 6));
29b0f896
AM
8771 /* If i.rm.regmem == ESP (4)
8772 && i.rm.mode != (Register mode)
8773 && not 16 bit
8774 ==> need second modrm byte. */
8775 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8776 && i.rm.mode != 3
dc821c5f 8777 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
8778 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8779 | i.sib.index << 3
8780 | i.sib.scale << 6));
29b0f896 8781 }
3e73aa7c 8782
29b0f896 8783 if (i.disp_operands)
2bbd9c25 8784 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 8785
29b0f896 8786 if (i.imm_operands)
2bbd9c25 8787 output_imm (insn_start_frag, insn_start_off);
9c33702b
JB
8788
8789 /*
8790 * frag_now_fix () returning plain abs_section_offset when we're in the
8791 * absolute section, and abs_section_offset not getting updated as data
8792 * gets added to the frag breaks the logic below.
8793 */
8794 if (now_seg != absolute_section)
8795 {
8796 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8797 if (j > 15)
8798 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8799 j);
e379e5f3
L
8800 else if (fragP)
8801 {
8802 /* NB: Don't add prefix with GOTPC relocation since
8803 output_disp() above depends on the fixed encoding
8804 length. Can't add prefix with TLS relocation since
8805 it breaks TLS linker optimization. */
8806 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
8807 /* Prefix count on the current instruction. */
8808 unsigned int count = i.vex.length;
8809 unsigned int k;
8810 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
8811 /* REX byte is encoded in VEX/EVEX prefix. */
8812 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
8813 count++;
8814
8815 /* Count prefixes for extended opcode maps. */
8816 if (!i.vex.length)
8817 switch (i.tm.opcode_length)
8818 {
8819 case 3:
8820 if (((i.tm.base_opcode >> 16) & 0xff) == 0xf)
8821 {
8822 count++;
8823 switch ((i.tm.base_opcode >> 8) & 0xff)
8824 {
8825 case 0x38:
8826 case 0x3a:
8827 count++;
8828 break;
8829 default:
8830 break;
8831 }
8832 }
8833 break;
8834 case 2:
8835 if (((i.tm.base_opcode >> 8) & 0xff) == 0xf)
8836 count++;
8837 break;
8838 case 1:
8839 break;
8840 default:
8841 abort ();
8842 }
8843
8844 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
8845 == BRANCH_PREFIX)
8846 {
8847 /* Set the maximum prefix size in BRANCH_PREFIX
8848 frag. */
8849 if (fragP->tc_frag_data.max_bytes > max)
8850 fragP->tc_frag_data.max_bytes = max;
8851 if (fragP->tc_frag_data.max_bytes > count)
8852 fragP->tc_frag_data.max_bytes -= count;
8853 else
8854 fragP->tc_frag_data.max_bytes = 0;
8855 }
8856 else
8857 {
8858 /* Remember the maximum prefix size in FUSED_JCC_PADDING
8859 frag. */
8860 unsigned int max_prefix_size;
8861 if (align_branch_prefix_size > max)
8862 max_prefix_size = max;
8863 else
8864 max_prefix_size = align_branch_prefix_size;
8865 if (max_prefix_size > count)
8866 fragP->tc_frag_data.max_prefix_length
8867 = max_prefix_size - count;
8868 }
8869
8870 /* Use existing segment prefix if possible. Use CS
8871 segment prefix in 64-bit mode. In 32-bit mode, use SS
8872 segment prefix with ESP/EBP base register and use DS
8873 segment prefix without ESP/EBP base register. */
8874 if (i.prefix[SEG_PREFIX])
8875 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
8876 else if (flag_code == CODE_64BIT)
8877 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
8878 else if (i.base_reg
8879 && (i.base_reg->reg_num == 4
8880 || i.base_reg->reg_num == 5))
8881 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
8882 else
8883 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
8884 }
9c33702b 8885 }
29b0f896 8886 }
252b5132 8887
e379e5f3
L
8888 /* NB: Don't work with COND_JUMP86 without i386. */
8889 if (align_branch_power
8890 && now_seg != absolute_section
8891 && cpu_arch_flags.bitfield.cpui386)
8892 {
8893 /* Terminate each frag so that we can add prefix and check for
8894 fused jcc. */
8895 frag_wane (frag_now);
8896 frag_new (0);
8897 }
8898
29b0f896
AM
8899#ifdef DEBUG386
8900 if (flag_debug)
8901 {
7b81dfbb 8902 pi ("" /*line*/, &i);
29b0f896
AM
8903 }
8904#endif /* DEBUG386 */
8905}
252b5132 8906
e205caa7
L
8907/* Return the size of the displacement operand N. */
8908
8909static int
8910disp_size (unsigned int n)
8911{
8912 int size = 4;
43234a1e 8913
b5014f7a 8914 if (i.types[n].bitfield.disp64)
40fb9820
L
8915 size = 8;
8916 else if (i.types[n].bitfield.disp8)
8917 size = 1;
8918 else if (i.types[n].bitfield.disp16)
8919 size = 2;
e205caa7
L
8920 return size;
8921}
8922
8923/* Return the size of the immediate operand N. */
8924
8925static int
8926imm_size (unsigned int n)
8927{
8928 int size = 4;
40fb9820
L
8929 if (i.types[n].bitfield.imm64)
8930 size = 8;
8931 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8932 size = 1;
8933 else if (i.types[n].bitfield.imm16)
8934 size = 2;
e205caa7
L
8935 return size;
8936}
8937
29b0f896 8938static void
64e74474 8939output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8940{
8941 char *p;
8942 unsigned int n;
252b5132 8943
29b0f896
AM
8944 for (n = 0; n < i.operands; n++)
8945 {
b5014f7a 8946 if (operand_type_check (i.types[n], disp))
29b0f896
AM
8947 {
8948 if (i.op[n].disps->X_op == O_constant)
8949 {
e205caa7 8950 int size = disp_size (n);
43234a1e 8951 offsetT val = i.op[n].disps->X_add_number;
252b5132 8952
629cfaf1
JB
8953 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8954 size);
29b0f896
AM
8955 p = frag_more (size);
8956 md_number_to_chars (p, val, size);
8957 }
8958 else
8959 {
f86103b7 8960 enum bfd_reloc_code_real reloc_type;
e205caa7 8961 int size = disp_size (n);
40fb9820 8962 int sign = i.types[n].bitfield.disp32s;
29b0f896 8963 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 8964 fixS *fixP;
29b0f896 8965
e205caa7 8966 /* We can't have 8 bit displacement here. */
9c2799c2 8967 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 8968
29b0f896
AM
8969 /* The PC relative address is computed relative
8970 to the instruction boundary, so in case immediate
8971 fields follows, we need to adjust the value. */
8972 if (pcrel && i.imm_operands)
8973 {
29b0f896 8974 unsigned int n1;
e205caa7 8975 int sz = 0;
252b5132 8976
29b0f896 8977 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 8978 if (operand_type_check (i.types[n1], imm))
252b5132 8979 {
e205caa7
L
8980 /* Only one immediate is allowed for PC
8981 relative address. */
9c2799c2 8982 gas_assert (sz == 0);
e205caa7
L
8983 sz = imm_size (n1);
8984 i.op[n].disps->X_add_number -= sz;
252b5132 8985 }
29b0f896 8986 /* We should find the immediate. */
9c2799c2 8987 gas_assert (sz != 0);
29b0f896 8988 }
520dc8e8 8989
29b0f896 8990 p = frag_more (size);
d258b828 8991 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 8992 if (GOT_symbol
2bbd9c25 8993 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 8994 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8995 || reloc_type == BFD_RELOC_X86_64_32S
8996 || (reloc_type == BFD_RELOC_64
8997 && object_64bit))
d6ab8113
JB
8998 && (i.op[n].disps->X_op == O_symbol
8999 || (i.op[n].disps->X_op == O_add
9000 && ((symbol_get_value_expression
9001 (i.op[n].disps->X_op_symbol)->X_op)
9002 == O_subtract))))
9003 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25 9004 {
4fa24527 9005 if (!object_64bit)
7b81dfbb
AJ
9006 {
9007 reloc_type = BFD_RELOC_386_GOTPC;
e379e5f3 9008 i.has_gotpc_tls_reloc = TRUE;
d583596c
JB
9009 i.op[n].imms->X_add_number +=
9010 encoding_length (insn_start_frag, insn_start_off, p);
7b81dfbb
AJ
9011 }
9012 else if (reloc_type == BFD_RELOC_64)
9013 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 9014 else
7b81dfbb
AJ
9015 /* Don't do the adjustment for x86-64, as there
9016 the pcrel addressing is relative to the _next_
9017 insn, and that is taken care of in other code. */
d6ab8113 9018 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 9019 }
e379e5f3
L
9020 else if (align_branch_power)
9021 {
9022 switch (reloc_type)
9023 {
9024 case BFD_RELOC_386_TLS_GD:
9025 case BFD_RELOC_386_TLS_LDM:
9026 case BFD_RELOC_386_TLS_IE:
9027 case BFD_RELOC_386_TLS_IE_32:
9028 case BFD_RELOC_386_TLS_GOTIE:
9029 case BFD_RELOC_386_TLS_GOTDESC:
9030 case BFD_RELOC_386_TLS_DESC_CALL:
9031 case BFD_RELOC_X86_64_TLSGD:
9032 case BFD_RELOC_X86_64_TLSLD:
9033 case BFD_RELOC_X86_64_GOTTPOFF:
9034 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9035 case BFD_RELOC_X86_64_TLSDESC_CALL:
9036 i.has_gotpc_tls_reloc = TRUE;
9037 default:
9038 break;
9039 }
9040 }
02a86693
L
9041 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
9042 size, i.op[n].disps, pcrel,
9043 reloc_type);
9044 /* Check for "call/jmp *mem", "mov mem, %reg",
9045 "test %reg, mem" and "binop mem, %reg" where binop
9046 is one of adc, add, and, cmp, or, sbb, sub, xor
e60f4d3b
L
9047 instructions without data prefix. Always generate
9048 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
9049 if (i.prefix[DATA_PREFIX] == 0
9050 && (generate_relax_relocations
9051 || (!object_64bit
9052 && i.rm.mode == 0
9053 && i.rm.regmem == 5))
0cb4071e
L
9054 && (i.rm.mode == 2
9055 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
9056 && ((i.operands == 1
9057 && i.tm.base_opcode == 0xff
9058 && (i.rm.reg == 2 || i.rm.reg == 4))
9059 || (i.operands == 2
9060 && (i.tm.base_opcode == 0x8b
9061 || i.tm.base_opcode == 0x85
9062 || (i.tm.base_opcode & 0xc7) == 0x03))))
9063 {
9064 if (object_64bit)
9065 {
9066 fixP->fx_tcbit = i.rex != 0;
9067 if (i.base_reg
e968fc9b 9068 && (i.base_reg->reg_num == RegIP))
02a86693
L
9069 fixP->fx_tcbit2 = 1;
9070 }
9071 else
9072 fixP->fx_tcbit2 = 1;
9073 }
29b0f896
AM
9074 }
9075 }
9076 }
9077}
252b5132 9078
29b0f896 9079static void
64e74474 9080output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
9081{
9082 char *p;
9083 unsigned int n;
252b5132 9084
29b0f896
AM
9085 for (n = 0; n < i.operands; n++)
9086 {
43234a1e
L
9087 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
9088 if (i.rounding && (int) n == i.rounding->operand)
9089 continue;
9090
40fb9820 9091 if (operand_type_check (i.types[n], imm))
29b0f896
AM
9092 {
9093 if (i.op[n].imms->X_op == O_constant)
9094 {
e205caa7 9095 int size = imm_size (n);
29b0f896 9096 offsetT val;
b4cac588 9097
29b0f896
AM
9098 val = offset_in_range (i.op[n].imms->X_add_number,
9099 size);
9100 p = frag_more (size);
9101 md_number_to_chars (p, val, size);
9102 }
9103 else
9104 {
9105 /* Not absolute_section.
9106 Need a 32-bit fixup (don't support 8bit
9107 non-absolute imms). Try to support other
9108 sizes ... */
f86103b7 9109 enum bfd_reloc_code_real reloc_type;
e205caa7
L
9110 int size = imm_size (n);
9111 int sign;
29b0f896 9112
40fb9820 9113 if (i.types[n].bitfield.imm32s
a7d61044 9114 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 9115 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 9116 sign = 1;
e205caa7
L
9117 else
9118 sign = 0;
520dc8e8 9119
29b0f896 9120 p = frag_more (size);
d258b828 9121 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 9122
2bbd9c25
JJ
9123 /* This is tough to explain. We end up with this one if we
9124 * have operands that look like
9125 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
9126 * obtain the absolute address of the GOT, and it is strongly
9127 * preferable from a performance point of view to avoid using
9128 * a runtime relocation for this. The actual sequence of
9129 * instructions often look something like:
9130 *
9131 * call .L66
9132 * .L66:
9133 * popl %ebx
9134 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
9135 *
9136 * The call and pop essentially return the absolute address
9137 * of the label .L66 and store it in %ebx. The linker itself
9138 * will ultimately change the first operand of the addl so
9139 * that %ebx points to the GOT, but to keep things simple, the
9140 * .o file must have this operand set so that it generates not
9141 * the absolute address of .L66, but the absolute address of
9142 * itself. This allows the linker itself simply treat a GOTPC
9143 * relocation as asking for a pcrel offset to the GOT to be
9144 * added in, and the addend of the relocation is stored in the
9145 * operand field for the instruction itself.
9146 *
9147 * Our job here is to fix the operand so that it would add
9148 * the correct offset so that %ebx would point to itself. The
9149 * thing that is tricky is that .-.L66 will point to the
9150 * beginning of the instruction, so we need to further modify
9151 * the operand so that it will point to itself. There are
9152 * other cases where you have something like:
9153 *
9154 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
9155 *
9156 * and here no correction would be required. Internally in
9157 * the assembler we treat operands of this form as not being
9158 * pcrel since the '.' is explicitly mentioned, and I wonder
9159 * whether it would simplify matters to do it this way. Who
9160 * knows. In earlier versions of the PIC patches, the
9161 * pcrel_adjust field was used to store the correction, but
9162 * since the expression is not pcrel, I felt it would be
9163 * confusing to do it this way. */
9164
d6ab8113 9165 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
9166 || reloc_type == BFD_RELOC_X86_64_32S
9167 || reloc_type == BFD_RELOC_64)
29b0f896
AM
9168 && GOT_symbol
9169 && GOT_symbol == i.op[n].imms->X_add_symbol
9170 && (i.op[n].imms->X_op == O_symbol
9171 || (i.op[n].imms->X_op == O_add
9172 && ((symbol_get_value_expression
9173 (i.op[n].imms->X_op_symbol)->X_op)
9174 == O_subtract))))
9175 {
4fa24527 9176 if (!object_64bit)
d6ab8113 9177 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 9178 else if (size == 4)
d6ab8113 9179 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
9180 else if (size == 8)
9181 reloc_type = BFD_RELOC_X86_64_GOTPC64;
e379e5f3 9182 i.has_gotpc_tls_reloc = TRUE;
d583596c
JB
9183 i.op[n].imms->X_add_number +=
9184 encoding_length (insn_start_frag, insn_start_off, p);
29b0f896 9185 }
29b0f896
AM
9186 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
9187 i.op[n].imms, 0, reloc_type);
9188 }
9189 }
9190 }
252b5132
RH
9191}
9192\f
d182319b
JB
9193/* x86_cons_fix_new is called via the expression parsing code when a
9194 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
9195static int cons_sign = -1;
9196
9197void
e3bb37b5 9198x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 9199 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 9200{
d258b828 9201 r = reloc (len, 0, cons_sign, r);
d182319b
JB
9202
9203#ifdef TE_PE
9204 if (exp->X_op == O_secrel)
9205 {
9206 exp->X_op = O_symbol;
9207 r = BFD_RELOC_32_SECREL;
9208 }
9209#endif
9210
9211 fix_new_exp (frag, off, len, exp, 0, r);
9212}
9213
357d1bd8
L
9214/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
9215 purpose of the `.dc.a' internal pseudo-op. */
9216
9217int
9218x86_address_bytes (void)
9219{
9220 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
9221 return 4;
9222 return stdoutput->arch_info->bits_per_address / 8;
9223}
9224
d382c579
TG
9225#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
9226 || defined (LEX_AT)
d258b828 9227# define lex_got(reloc, adjust, types) NULL
718ddfc0 9228#else
f3c180ae
AM
9229/* Parse operands of the form
9230 <symbol>@GOTOFF+<nnn>
9231 and similar .plt or .got references.
9232
9233 If we find one, set up the correct relocation in RELOC and copy the
9234 input string, minus the `@GOTOFF' into a malloc'd buffer for
9235 parsing by the calling routine. Return this buffer, and if ADJUST
9236 is non-null set it to the length of the string we removed from the
9237 input line. Otherwise return NULL. */
9238static char *
91d6fa6a 9239lex_got (enum bfd_reloc_code_real *rel,
64e74474 9240 int *adjust,
d258b828 9241 i386_operand_type *types)
f3c180ae 9242{
7b81dfbb
AJ
9243 /* Some of the relocations depend on the size of what field is to
9244 be relocated. But in our callers i386_immediate and i386_displacement
9245 we don't yet know the operand size (this will be set by insn
9246 matching). Hence we record the word32 relocation here,
9247 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
9248 static const struct {
9249 const char *str;
cff8d58a 9250 int len;
4fa24527 9251 const enum bfd_reloc_code_real rel[2];
40fb9820 9252 const i386_operand_type types64;
f3c180ae 9253 } gotrel[] = {
8ce3d284 9254#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
9255 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
9256 BFD_RELOC_SIZE32 },
9257 OPERAND_TYPE_IMM32_64 },
8ce3d284 9258#endif
cff8d58a
L
9259 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
9260 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 9261 OPERAND_TYPE_IMM64 },
cff8d58a
L
9262 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
9263 BFD_RELOC_X86_64_PLT32 },
40fb9820 9264 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9265 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
9266 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 9267 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
9268 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
9269 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 9270 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
9271 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
9272 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 9273 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9274 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
9275 BFD_RELOC_X86_64_TLSGD },
40fb9820 9276 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9277 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
9278 _dummy_first_bfd_reloc_code_real },
40fb9820 9279 OPERAND_TYPE_NONE },
cff8d58a
L
9280 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
9281 BFD_RELOC_X86_64_TLSLD },
40fb9820 9282 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9283 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
9284 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 9285 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9286 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
9287 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 9288 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
9289 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
9290 _dummy_first_bfd_reloc_code_real },
40fb9820 9291 OPERAND_TYPE_NONE },
cff8d58a
L
9292 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
9293 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 9294 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
9295 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
9296 _dummy_first_bfd_reloc_code_real },
40fb9820 9297 OPERAND_TYPE_NONE },
cff8d58a
L
9298 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
9299 _dummy_first_bfd_reloc_code_real },
40fb9820 9300 OPERAND_TYPE_NONE },
cff8d58a
L
9301 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
9302 BFD_RELOC_X86_64_GOT32 },
40fb9820 9303 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
9304 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
9305 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 9306 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9307 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
9308 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 9309 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
9310 };
9311 char *cp;
9312 unsigned int j;
9313
d382c579 9314#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
9315 if (!IS_ELF)
9316 return NULL;
d382c579 9317#endif
718ddfc0 9318
f3c180ae 9319 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 9320 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
9321 return NULL;
9322
47465058 9323 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 9324 {
cff8d58a 9325 int len = gotrel[j].len;
28f81592 9326 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 9327 {
4fa24527 9328 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 9329 {
28f81592
AM
9330 int first, second;
9331 char *tmpbuf, *past_reloc;
f3c180ae 9332
91d6fa6a 9333 *rel = gotrel[j].rel[object_64bit];
f3c180ae 9334
3956db08
JB
9335 if (types)
9336 {
9337 if (flag_code != CODE_64BIT)
40fb9820
L
9338 {
9339 types->bitfield.imm32 = 1;
9340 types->bitfield.disp32 = 1;
9341 }
3956db08
JB
9342 else
9343 *types = gotrel[j].types64;
9344 }
9345
8fd4256d 9346 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
9347 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
9348
28f81592 9349 /* The length of the first part of our input line. */
f3c180ae 9350 first = cp - input_line_pointer;
28f81592
AM
9351
9352 /* The second part goes from after the reloc token until
67c11a9b 9353 (and including) an end_of_line char or comma. */
28f81592 9354 past_reloc = cp + 1 + len;
67c11a9b
AM
9355 cp = past_reloc;
9356 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9357 ++cp;
9358 second = cp + 1 - past_reloc;
28f81592
AM
9359
9360 /* Allocate and copy string. The trailing NUL shouldn't
9361 be necessary, but be safe. */
add39d23 9362 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 9363 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
9364 if (second != 0 && *past_reloc != ' ')
9365 /* Replace the relocation token with ' ', so that
9366 errors like foo@GOTOFF1 will be detected. */
9367 tmpbuf[first++] = ' ';
af89796a
L
9368 else
9369 /* Increment length by 1 if the relocation token is
9370 removed. */
9371 len++;
9372 if (adjust)
9373 *adjust = len;
0787a12d
AM
9374 memcpy (tmpbuf + first, past_reloc, second);
9375 tmpbuf[first + second] = '\0';
f3c180ae
AM
9376 return tmpbuf;
9377 }
9378
4fa24527
JB
9379 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9380 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
9381 return NULL;
9382 }
9383 }
9384
9385 /* Might be a symbol version string. Don't as_bad here. */
9386 return NULL;
9387}
4e4f7c87 9388#endif
f3c180ae 9389
a988325c
NC
9390#ifdef TE_PE
9391#ifdef lex_got
9392#undef lex_got
9393#endif
9394/* Parse operands of the form
9395 <symbol>@SECREL32+<nnn>
9396
9397 If we find one, set up the correct relocation in RELOC and copy the
9398 input string, minus the `@SECREL32' into a malloc'd buffer for
9399 parsing by the calling routine. Return this buffer, and if ADJUST
9400 is non-null set it to the length of the string we removed from the
34bca508
L
9401 input line. Otherwise return NULL.
9402
a988325c
NC
9403 This function is copied from the ELF version above adjusted for PE targets. */
9404
9405static char *
9406lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
9407 int *adjust ATTRIBUTE_UNUSED,
d258b828 9408 i386_operand_type *types)
a988325c
NC
9409{
9410 static const struct
9411 {
9412 const char *str;
9413 int len;
9414 const enum bfd_reloc_code_real rel[2];
9415 const i386_operand_type types64;
9416 }
9417 gotrel[] =
9418 {
9419 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
9420 BFD_RELOC_32_SECREL },
9421 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9422 };
9423
9424 char *cp;
9425 unsigned j;
9426
9427 for (cp = input_line_pointer; *cp != '@'; cp++)
9428 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9429 return NULL;
9430
9431 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9432 {
9433 int len = gotrel[j].len;
9434
9435 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9436 {
9437 if (gotrel[j].rel[object_64bit] != 0)
9438 {
9439 int first, second;
9440 char *tmpbuf, *past_reloc;
9441
9442 *rel = gotrel[j].rel[object_64bit];
9443 if (adjust)
9444 *adjust = len;
9445
9446 if (types)
9447 {
9448 if (flag_code != CODE_64BIT)
9449 {
9450 types->bitfield.imm32 = 1;
9451 types->bitfield.disp32 = 1;
9452 }
9453 else
9454 *types = gotrel[j].types64;
9455 }
9456
9457 /* The length of the first part of our input line. */
9458 first = cp - input_line_pointer;
9459
9460 /* The second part goes from after the reloc token until
9461 (and including) an end_of_line char or comma. */
9462 past_reloc = cp + 1 + len;
9463 cp = past_reloc;
9464 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9465 ++cp;
9466 second = cp + 1 - past_reloc;
9467
9468 /* Allocate and copy string. The trailing NUL shouldn't
9469 be necessary, but be safe. */
add39d23 9470 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
9471 memcpy (tmpbuf, input_line_pointer, first);
9472 if (second != 0 && *past_reloc != ' ')
9473 /* Replace the relocation token with ' ', so that
9474 errors like foo@SECLREL321 will be detected. */
9475 tmpbuf[first++] = ' ';
9476 memcpy (tmpbuf + first, past_reloc, second);
9477 tmpbuf[first + second] = '\0';
9478 return tmpbuf;
9479 }
9480
9481 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9482 gotrel[j].str, 1 << (5 + object_64bit));
9483 return NULL;
9484 }
9485 }
9486
9487 /* Might be a symbol version string. Don't as_bad here. */
9488 return NULL;
9489}
9490
9491#endif /* TE_PE */
9492
62ebcb5c 9493bfd_reloc_code_real_type
e3bb37b5 9494x86_cons (expressionS *exp, int size)
f3c180ae 9495{
62ebcb5c
AM
9496 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9497
ee86248c
JB
9498 intel_syntax = -intel_syntax;
9499
3c7b9c2c 9500 exp->X_md = 0;
4fa24527 9501 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
9502 {
9503 /* Handle @GOTOFF and the like in an expression. */
9504 char *save;
9505 char *gotfree_input_line;
4a57f2cf 9506 int adjust = 0;
f3c180ae
AM
9507
9508 save = input_line_pointer;
d258b828 9509 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
9510 if (gotfree_input_line)
9511 input_line_pointer = gotfree_input_line;
9512
9513 expression (exp);
9514
9515 if (gotfree_input_line)
9516 {
9517 /* expression () has merrily parsed up to the end of line,
9518 or a comma - in the wrong buffer. Transfer how far
9519 input_line_pointer has moved to the right buffer. */
9520 input_line_pointer = (save
9521 + (input_line_pointer - gotfree_input_line)
9522 + adjust);
9523 free (gotfree_input_line);
3992d3b7
AM
9524 if (exp->X_op == O_constant
9525 || exp->X_op == O_absent
9526 || exp->X_op == O_illegal
0398aac5 9527 || exp->X_op == O_register
3992d3b7
AM
9528 || exp->X_op == O_big)
9529 {
9530 char c = *input_line_pointer;
9531 *input_line_pointer = 0;
9532 as_bad (_("missing or invalid expression `%s'"), save);
9533 *input_line_pointer = c;
9534 }
b9519cfe
L
9535 else if ((got_reloc == BFD_RELOC_386_PLT32
9536 || got_reloc == BFD_RELOC_X86_64_PLT32)
9537 && exp->X_op != O_symbol)
9538 {
9539 char c = *input_line_pointer;
9540 *input_line_pointer = 0;
9541 as_bad (_("invalid PLT expression `%s'"), save);
9542 *input_line_pointer = c;
9543 }
f3c180ae
AM
9544 }
9545 }
9546 else
9547 expression (exp);
ee86248c
JB
9548
9549 intel_syntax = -intel_syntax;
9550
9551 if (intel_syntax)
9552 i386_intel_simplify (exp);
62ebcb5c
AM
9553
9554 return got_reloc;
f3c180ae 9555}
f3c180ae 9556
9f32dd5b
L
9557static void
9558signed_cons (int size)
6482c264 9559{
d182319b
JB
9560 if (flag_code == CODE_64BIT)
9561 cons_sign = 1;
9562 cons (size);
9563 cons_sign = -1;
6482c264
NC
9564}
9565
d182319b 9566#ifdef TE_PE
6482c264 9567static void
7016a5d5 9568pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
9569{
9570 expressionS exp;
9571
9572 do
9573 {
9574 expression (&exp);
9575 if (exp.X_op == O_symbol)
9576 exp.X_op = O_secrel;
9577
9578 emit_expr (&exp, 4);
9579 }
9580 while (*input_line_pointer++ == ',');
9581
9582 input_line_pointer--;
9583 demand_empty_rest_of_line ();
9584}
6482c264
NC
9585#endif
9586
43234a1e
L
9587/* Handle Vector operations. */
9588
9589static char *
9590check_VecOperations (char *op_string, char *op_end)
9591{
9592 const reg_entry *mask;
9593 const char *saved;
9594 char *end_op;
9595
9596 while (*op_string
9597 && (op_end == NULL || op_string < op_end))
9598 {
9599 saved = op_string;
9600 if (*op_string == '{')
9601 {
9602 op_string++;
9603
9604 /* Check broadcasts. */
9605 if (strncmp (op_string, "1to", 3) == 0)
9606 {
9607 int bcst_type;
9608
9609 if (i.broadcast)
9610 goto duplicated_vec_op;
9611
9612 op_string += 3;
9613 if (*op_string == '8')
8e6e0792 9614 bcst_type = 8;
b28d1bda 9615 else if (*op_string == '4')
8e6e0792 9616 bcst_type = 4;
b28d1bda 9617 else if (*op_string == '2')
8e6e0792 9618 bcst_type = 2;
43234a1e
L
9619 else if (*op_string == '1'
9620 && *(op_string+1) == '6')
9621 {
8e6e0792 9622 bcst_type = 16;
43234a1e
L
9623 op_string++;
9624 }
9625 else
9626 {
9627 as_bad (_("Unsupported broadcast: `%s'"), saved);
9628 return NULL;
9629 }
9630 op_string++;
9631
9632 broadcast_op.type = bcst_type;
9633 broadcast_op.operand = this_operand;
1f75763a 9634 broadcast_op.bytes = 0;
43234a1e
L
9635 i.broadcast = &broadcast_op;
9636 }
9637 /* Check masking operation. */
9638 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9639 {
9640 /* k0 can't be used for write mask. */
f74a6307 9641 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
43234a1e 9642 {
6d2cd6b2
JB
9643 as_bad (_("`%s%s' can't be used for write mask"),
9644 register_prefix, mask->reg_name);
43234a1e
L
9645 return NULL;
9646 }
9647
9648 if (!i.mask)
9649 {
9650 mask_op.mask = mask;
9651 mask_op.zeroing = 0;
9652 mask_op.operand = this_operand;
9653 i.mask = &mask_op;
9654 }
9655 else
9656 {
9657 if (i.mask->mask)
9658 goto duplicated_vec_op;
9659
9660 i.mask->mask = mask;
9661
9662 /* Only "{z}" is allowed here. No need to check
9663 zeroing mask explicitly. */
9664 if (i.mask->operand != this_operand)
9665 {
9666 as_bad (_("invalid write mask `%s'"), saved);
9667 return NULL;
9668 }
9669 }
9670
9671 op_string = end_op;
9672 }
9673 /* Check zeroing-flag for masking operation. */
9674 else if (*op_string == 'z')
9675 {
9676 if (!i.mask)
9677 {
9678 mask_op.mask = NULL;
9679 mask_op.zeroing = 1;
9680 mask_op.operand = this_operand;
9681 i.mask = &mask_op;
9682 }
9683 else
9684 {
9685 if (i.mask->zeroing)
9686 {
9687 duplicated_vec_op:
9688 as_bad (_("duplicated `%s'"), saved);
9689 return NULL;
9690 }
9691
9692 i.mask->zeroing = 1;
9693
9694 /* Only "{%k}" is allowed here. No need to check mask
9695 register explicitly. */
9696 if (i.mask->operand != this_operand)
9697 {
9698 as_bad (_("invalid zeroing-masking `%s'"),
9699 saved);
9700 return NULL;
9701 }
9702 }
9703
9704 op_string++;
9705 }
9706 else
9707 goto unknown_vec_op;
9708
9709 if (*op_string != '}')
9710 {
9711 as_bad (_("missing `}' in `%s'"), saved);
9712 return NULL;
9713 }
9714 op_string++;
0ba3a731
L
9715
9716 /* Strip whitespace since the addition of pseudo prefixes
9717 changed how the scrubber treats '{'. */
9718 if (is_space_char (*op_string))
9719 ++op_string;
9720
43234a1e
L
9721 continue;
9722 }
9723 unknown_vec_op:
9724 /* We don't know this one. */
9725 as_bad (_("unknown vector operation: `%s'"), saved);
9726 return NULL;
9727 }
9728
6d2cd6b2
JB
9729 if (i.mask && i.mask->zeroing && !i.mask->mask)
9730 {
9731 as_bad (_("zeroing-masking only allowed with write mask"));
9732 return NULL;
9733 }
9734
43234a1e
L
9735 return op_string;
9736}
9737
252b5132 9738static int
70e41ade 9739i386_immediate (char *imm_start)
252b5132
RH
9740{
9741 char *save_input_line_pointer;
f3c180ae 9742 char *gotfree_input_line;
252b5132 9743 segT exp_seg = 0;
47926f60 9744 expressionS *exp;
40fb9820
L
9745 i386_operand_type types;
9746
0dfbf9d7 9747 operand_type_set (&types, ~0);
252b5132
RH
9748
9749 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9750 {
31b2323c
L
9751 as_bad (_("at most %d immediate operands are allowed"),
9752 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
9753 return 0;
9754 }
9755
9756 exp = &im_expressions[i.imm_operands++];
520dc8e8 9757 i.op[this_operand].imms = exp;
252b5132
RH
9758
9759 if (is_space_char (*imm_start))
9760 ++imm_start;
9761
9762 save_input_line_pointer = input_line_pointer;
9763 input_line_pointer = imm_start;
9764
d258b828 9765 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9766 if (gotfree_input_line)
9767 input_line_pointer = gotfree_input_line;
252b5132
RH
9768
9769 exp_seg = expression (exp);
9770
83183c0c 9771 SKIP_WHITESPACE ();
43234a1e
L
9772
9773 /* Handle vector operations. */
9774 if (*input_line_pointer == '{')
9775 {
9776 input_line_pointer = check_VecOperations (input_line_pointer,
9777 NULL);
9778 if (input_line_pointer == NULL)
9779 return 0;
9780 }
9781
252b5132 9782 if (*input_line_pointer)
f3c180ae 9783 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
9784
9785 input_line_pointer = save_input_line_pointer;
f3c180ae 9786 if (gotfree_input_line)
ee86248c
JB
9787 {
9788 free (gotfree_input_line);
9789
9790 if (exp->X_op == O_constant || exp->X_op == O_register)
9791 exp->X_op = O_illegal;
9792 }
9793
9794 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9795}
252b5132 9796
ee86248c
JB
9797static int
9798i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9799 i386_operand_type types, const char *imm_start)
9800{
9801 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 9802 {
313c53d1
L
9803 if (imm_start)
9804 as_bad (_("missing or invalid immediate expression `%s'"),
9805 imm_start);
3992d3b7 9806 return 0;
252b5132 9807 }
3e73aa7c 9808 else if (exp->X_op == O_constant)
252b5132 9809 {
47926f60 9810 /* Size it properly later. */
40fb9820 9811 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
9812 /* If not 64bit, sign extend val. */
9813 if (flag_code != CODE_64BIT
4eed87de
AM
9814 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9815 exp->X_add_number
9816 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 9817 }
4c63da97 9818#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 9819 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 9820 && exp_seg != absolute_section
47926f60 9821 && exp_seg != text_section
24eab124
AM
9822 && exp_seg != data_section
9823 && exp_seg != bss_section
9824 && exp_seg != undefined_section
f86103b7 9825 && !bfd_is_com_section (exp_seg))
252b5132 9826 {
d0b47220 9827 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
9828 return 0;
9829 }
9830#endif
a841bdf5 9831 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 9832 {
313c53d1
L
9833 if (imm_start)
9834 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
9835 return 0;
9836 }
252b5132
RH
9837 else
9838 {
9839 /* This is an address. The size of the address will be
24eab124 9840 determined later, depending on destination register,
3e73aa7c 9841 suffix, or the default for the section. */
40fb9820
L
9842 i.types[this_operand].bitfield.imm8 = 1;
9843 i.types[this_operand].bitfield.imm16 = 1;
9844 i.types[this_operand].bitfield.imm32 = 1;
9845 i.types[this_operand].bitfield.imm32s = 1;
9846 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
9847 i.types[this_operand] = operand_type_and (i.types[this_operand],
9848 types);
252b5132
RH
9849 }
9850
9851 return 1;
9852}
9853
551c1ca1 9854static char *
e3bb37b5 9855i386_scale (char *scale)
252b5132 9856{
551c1ca1
AM
9857 offsetT val;
9858 char *save = input_line_pointer;
252b5132 9859
551c1ca1
AM
9860 input_line_pointer = scale;
9861 val = get_absolute_expression ();
9862
9863 switch (val)
252b5132 9864 {
551c1ca1 9865 case 1:
252b5132
RH
9866 i.log2_scale_factor = 0;
9867 break;
551c1ca1 9868 case 2:
252b5132
RH
9869 i.log2_scale_factor = 1;
9870 break;
551c1ca1 9871 case 4:
252b5132
RH
9872 i.log2_scale_factor = 2;
9873 break;
551c1ca1 9874 case 8:
252b5132
RH
9875 i.log2_scale_factor = 3;
9876 break;
9877 default:
a724f0f4
JB
9878 {
9879 char sep = *input_line_pointer;
9880
9881 *input_line_pointer = '\0';
9882 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9883 scale);
9884 *input_line_pointer = sep;
9885 input_line_pointer = save;
9886 return NULL;
9887 }
252b5132 9888 }
29b0f896 9889 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
9890 {
9891 as_warn (_("scale factor of %d without an index register"),
24eab124 9892 1 << i.log2_scale_factor);
252b5132 9893 i.log2_scale_factor = 0;
252b5132 9894 }
551c1ca1
AM
9895 scale = input_line_pointer;
9896 input_line_pointer = save;
9897 return scale;
252b5132
RH
9898}
9899
252b5132 9900static int
e3bb37b5 9901i386_displacement (char *disp_start, char *disp_end)
252b5132 9902{
29b0f896 9903 expressionS *exp;
252b5132
RH
9904 segT exp_seg = 0;
9905 char *save_input_line_pointer;
f3c180ae 9906 char *gotfree_input_line;
40fb9820
L
9907 int override;
9908 i386_operand_type bigdisp, types = anydisp;
3992d3b7 9909 int ret;
252b5132 9910
31b2323c
L
9911 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9912 {
9913 as_bad (_("at most %d displacement operands are allowed"),
9914 MAX_MEMORY_OPERANDS);
9915 return 0;
9916 }
9917
0dfbf9d7 9918 operand_type_set (&bigdisp, 0);
6f2f06be 9919 if (i.jumpabsolute
48bcea9f 9920 || i.types[this_operand].bitfield.baseindex
0cfa3eb3
JB
9921 || (current_templates->start->opcode_modifier.jump != JUMP
9922 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
e05278af 9923 {
48bcea9f 9924 i386_addressing_mode ();
e05278af 9925 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
9926 if (flag_code == CODE_64BIT)
9927 {
9928 if (!override)
9929 {
9930 bigdisp.bitfield.disp32s = 1;
9931 bigdisp.bitfield.disp64 = 1;
9932 }
48bcea9f
JB
9933 else
9934 bigdisp.bitfield.disp32 = 1;
40fb9820
L
9935 }
9936 else if ((flag_code == CODE_16BIT) ^ override)
40fb9820 9937 bigdisp.bitfield.disp16 = 1;
48bcea9f
JB
9938 else
9939 bigdisp.bitfield.disp32 = 1;
e05278af
JB
9940 }
9941 else
9942 {
376cd056
JB
9943 /* For PC-relative branches, the width of the displacement may be
9944 dependent upon data size, but is never dependent upon address size.
9945 Also make sure to not unintentionally match against a non-PC-relative
9946 branch template. */
9947 static templates aux_templates;
9948 const insn_template *t = current_templates->start;
9949 bfd_boolean has_intel64 = FALSE;
9950
9951 aux_templates.start = t;
9952 while (++t < current_templates->end)
9953 {
9954 if (t->opcode_modifier.jump
9955 != current_templates->start->opcode_modifier.jump)
9956 break;
9957 if (t->opcode_modifier.intel64)
9958 has_intel64 = TRUE;
9959 }
9960 if (t < current_templates->end)
9961 {
9962 aux_templates.end = t;
9963 current_templates = &aux_templates;
9964 }
9965
e05278af 9966 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
9967 if (flag_code == CODE_64BIT)
9968 {
376cd056
JB
9969 if ((override || i.suffix == WORD_MNEM_SUFFIX)
9970 && (!intel64 || !has_intel64))
40fb9820
L
9971 bigdisp.bitfield.disp16 = 1;
9972 else
48bcea9f 9973 bigdisp.bitfield.disp32s = 1;
40fb9820
L
9974 }
9975 else
e05278af
JB
9976 {
9977 if (!override)
9978 override = (i.suffix == (flag_code != CODE_16BIT
9979 ? WORD_MNEM_SUFFIX
9980 : LONG_MNEM_SUFFIX));
40fb9820
L
9981 bigdisp.bitfield.disp32 = 1;
9982 if ((flag_code == CODE_16BIT) ^ override)
9983 {
9984 bigdisp.bitfield.disp32 = 0;
9985 bigdisp.bitfield.disp16 = 1;
9986 }
e05278af 9987 }
e05278af 9988 }
c6fb90c8
L
9989 i.types[this_operand] = operand_type_or (i.types[this_operand],
9990 bigdisp);
252b5132
RH
9991
9992 exp = &disp_expressions[i.disp_operands];
520dc8e8 9993 i.op[this_operand].disps = exp;
252b5132
RH
9994 i.disp_operands++;
9995 save_input_line_pointer = input_line_pointer;
9996 input_line_pointer = disp_start;
9997 END_STRING_AND_SAVE (disp_end);
9998
9999#ifndef GCC_ASM_O_HACK
10000#define GCC_ASM_O_HACK 0
10001#endif
10002#if GCC_ASM_O_HACK
10003 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 10004 if (i.types[this_operand].bitfield.baseIndex
24eab124 10005 && displacement_string_end[-1] == '+')
252b5132
RH
10006 {
10007 /* This hack is to avoid a warning when using the "o"
24eab124
AM
10008 constraint within gcc asm statements.
10009 For instance:
10010
10011 #define _set_tssldt_desc(n,addr,limit,type) \
10012 __asm__ __volatile__ ( \
10013 "movw %w2,%0\n\t" \
10014 "movw %w1,2+%0\n\t" \
10015 "rorl $16,%1\n\t" \
10016 "movb %b1,4+%0\n\t" \
10017 "movb %4,5+%0\n\t" \
10018 "movb $0,6+%0\n\t" \
10019 "movb %h1,7+%0\n\t" \
10020 "rorl $16,%1" \
10021 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
10022
10023 This works great except that the output assembler ends
10024 up looking a bit weird if it turns out that there is
10025 no offset. You end up producing code that looks like:
10026
10027 #APP
10028 movw $235,(%eax)
10029 movw %dx,2+(%eax)
10030 rorl $16,%edx
10031 movb %dl,4+(%eax)
10032 movb $137,5+(%eax)
10033 movb $0,6+(%eax)
10034 movb %dh,7+(%eax)
10035 rorl $16,%edx
10036 #NO_APP
10037
47926f60 10038 So here we provide the missing zero. */
24eab124
AM
10039
10040 *displacement_string_end = '0';
252b5132
RH
10041 }
10042#endif
d258b828 10043 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
10044 if (gotfree_input_line)
10045 input_line_pointer = gotfree_input_line;
252b5132 10046
24eab124 10047 exp_seg = expression (exp);
252b5132 10048
636c26b0
AM
10049 SKIP_WHITESPACE ();
10050 if (*input_line_pointer)
10051 as_bad (_("junk `%s' after expression"), input_line_pointer);
10052#if GCC_ASM_O_HACK
10053 RESTORE_END_STRING (disp_end + 1);
10054#endif
636c26b0 10055 input_line_pointer = save_input_line_pointer;
636c26b0 10056 if (gotfree_input_line)
ee86248c
JB
10057 {
10058 free (gotfree_input_line);
10059
10060 if (exp->X_op == O_constant || exp->X_op == O_register)
10061 exp->X_op = O_illegal;
10062 }
10063
10064 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
10065
10066 RESTORE_END_STRING (disp_end);
10067
10068 return ret;
10069}
10070
10071static int
10072i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10073 i386_operand_type types, const char *disp_start)
10074{
10075 i386_operand_type bigdisp;
10076 int ret = 1;
636c26b0 10077
24eab124
AM
10078 /* We do this to make sure that the section symbol is in
10079 the symbol table. We will ultimately change the relocation
47926f60 10080 to be relative to the beginning of the section. */
1ae12ab7 10081 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
10082 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
10083 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 10084 {
636c26b0 10085 if (exp->X_op != O_symbol)
3992d3b7 10086 goto inv_disp;
636c26b0 10087
e5cb08ac 10088 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
10089 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
10090 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 10091 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
10092 exp->X_op = O_subtract;
10093 exp->X_op_symbol = GOT_symbol;
1ae12ab7 10094 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 10095 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
10096 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10097 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 10098 else
29b0f896 10099 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 10100 }
252b5132 10101
3992d3b7
AM
10102 else if (exp->X_op == O_absent
10103 || exp->X_op == O_illegal
ee86248c 10104 || exp->X_op == O_big)
2daf4fd8 10105 {
3992d3b7
AM
10106 inv_disp:
10107 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 10108 disp_start);
3992d3b7 10109 ret = 0;
2daf4fd8
AM
10110 }
10111
0e1147d9
L
10112 else if (flag_code == CODE_64BIT
10113 && !i.prefix[ADDR_PREFIX]
10114 && exp->X_op == O_constant)
10115 {
10116 /* Since displacement is signed extended to 64bit, don't allow
10117 disp32 and turn off disp32s if they are out of range. */
10118 i.types[this_operand].bitfield.disp32 = 0;
10119 if (!fits_in_signed_long (exp->X_add_number))
10120 {
10121 i.types[this_operand].bitfield.disp32s = 0;
10122 if (i.types[this_operand].bitfield.baseindex)
10123 {
10124 as_bad (_("0x%lx out range of signed 32bit displacement"),
10125 (long) exp->X_add_number);
10126 ret = 0;
10127 }
10128 }
10129 }
10130
4c63da97 10131#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
10132 else if (exp->X_op != O_constant
10133 && OUTPUT_FLAVOR == bfd_target_aout_flavour
10134 && exp_seg != absolute_section
10135 && exp_seg != text_section
10136 && exp_seg != data_section
10137 && exp_seg != bss_section
10138 && exp_seg != undefined_section
10139 && !bfd_is_com_section (exp_seg))
24eab124 10140 {
d0b47220 10141 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 10142 ret = 0;
24eab124 10143 }
252b5132 10144#endif
3956db08 10145
48bcea9f
JB
10146 if (current_templates->start->opcode_modifier.jump == JUMP_BYTE
10147 /* Constants get taken care of by optimize_disp(). */
10148 && exp->X_op != O_constant)
10149 i.types[this_operand].bitfield.disp8 = 1;
10150
40fb9820
L
10151 /* Check if this is a displacement only operand. */
10152 bigdisp = i.types[this_operand];
10153 bigdisp.bitfield.disp8 = 0;
10154 bigdisp.bitfield.disp16 = 0;
10155 bigdisp.bitfield.disp32 = 0;
10156 bigdisp.bitfield.disp32s = 0;
10157 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 10158 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
10159 i.types[this_operand] = operand_type_and (i.types[this_operand],
10160 types);
3956db08 10161
3992d3b7 10162 return ret;
252b5132
RH
10163}
10164
2abc2bec
JB
10165/* Return the active addressing mode, taking address override and
10166 registers forming the address into consideration. Update the
10167 address override prefix if necessary. */
47926f60 10168
2abc2bec
JB
10169static enum flag_code
10170i386_addressing_mode (void)
252b5132 10171{
be05d201
L
10172 enum flag_code addr_mode;
10173
10174 if (i.prefix[ADDR_PREFIX])
10175 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
10176 else
10177 {
10178 addr_mode = flag_code;
10179
24eab124 10180#if INFER_ADDR_PREFIX
be05d201
L
10181 if (i.mem_operands == 0)
10182 {
10183 /* Infer address prefix from the first memory operand. */
10184 const reg_entry *addr_reg = i.base_reg;
10185
10186 if (addr_reg == NULL)
10187 addr_reg = i.index_reg;
eecb386c 10188
be05d201
L
10189 if (addr_reg)
10190 {
e968fc9b 10191 if (addr_reg->reg_type.bitfield.dword)
be05d201
L
10192 addr_mode = CODE_32BIT;
10193 else if (flag_code != CODE_64BIT
dc821c5f 10194 && addr_reg->reg_type.bitfield.word)
be05d201
L
10195 addr_mode = CODE_16BIT;
10196
10197 if (addr_mode != flag_code)
10198 {
10199 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10200 i.prefixes += 1;
10201 /* Change the size of any displacement too. At most one
10202 of Disp16 or Disp32 is set.
10203 FIXME. There doesn't seem to be any real need for
10204 separate Disp16 and Disp32 flags. The same goes for
10205 Imm16 and Imm32. Removing them would probably clean
10206 up the code quite a lot. */
10207 if (flag_code != CODE_64BIT
10208 && (i.types[this_operand].bitfield.disp16
10209 || i.types[this_operand].bitfield.disp32))
10210 i.types[this_operand]
10211 = operand_type_xor (i.types[this_operand], disp16_32);
10212 }
10213 }
10214 }
24eab124 10215#endif
be05d201
L
10216 }
10217
2abc2bec
JB
10218 return addr_mode;
10219}
10220
10221/* Make sure the memory operand we've been dealt is valid.
10222 Return 1 on success, 0 on a failure. */
10223
10224static int
10225i386_index_check (const char *operand_string)
10226{
10227 const char *kind = "base/index";
10228 enum flag_code addr_mode = i386_addressing_mode ();
10229
fc0763e6 10230 if (current_templates->start->opcode_modifier.isstring
c3949f43 10231 && !current_templates->start->cpu_flags.bitfield.cpupadlock
fc0763e6
JB
10232 && (current_templates->end[-1].opcode_modifier.isstring
10233 || i.mem_operands))
10234 {
10235 /* Memory operands of string insns are special in that they only allow
10236 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
10237 const reg_entry *expected_reg;
10238 static const char *di_si[][2] =
10239 {
10240 { "esi", "edi" },
10241 { "si", "di" },
10242 { "rsi", "rdi" }
10243 };
10244 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
10245
10246 kind = "string address";
10247
8325cc63 10248 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6 10249 {
51c8edf6
JB
10250 int es_op = current_templates->end[-1].opcode_modifier.isstring
10251 - IS_STRING_ES_OP0;
10252 int op = 0;
fc0763e6 10253
51c8edf6 10254 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
fc0763e6
JB
10255 || ((!i.mem_operands != !intel_syntax)
10256 && current_templates->end[-1].operand_types[1]
10257 .bitfield.baseindex))
51c8edf6
JB
10258 op = 1;
10259 expected_reg = hash_find (reg_hash, di_si[addr_mode][op == es_op]);
fc0763e6
JB
10260 }
10261 else
be05d201 10262 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 10263
be05d201
L
10264 if (i.base_reg != expected_reg
10265 || i.index_reg
fc0763e6 10266 || operand_type_check (i.types[this_operand], disp))
fc0763e6 10267 {
be05d201
L
10268 /* The second memory operand must have the same size as
10269 the first one. */
10270 if (i.mem_operands
10271 && i.base_reg
10272 && !((addr_mode == CODE_64BIT
dc821c5f 10273 && i.base_reg->reg_type.bitfield.qword)
be05d201 10274 || (addr_mode == CODE_32BIT
dc821c5f
JB
10275 ? i.base_reg->reg_type.bitfield.dword
10276 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
10277 goto bad_address;
10278
fc0763e6
JB
10279 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
10280 operand_string,
10281 intel_syntax ? '[' : '(',
10282 register_prefix,
be05d201 10283 expected_reg->reg_name,
fc0763e6 10284 intel_syntax ? ']' : ')');
be05d201 10285 return 1;
fc0763e6 10286 }
be05d201
L
10287 else
10288 return 1;
10289
10290bad_address:
10291 as_bad (_("`%s' is not a valid %s expression"),
10292 operand_string, kind);
10293 return 0;
3e73aa7c
JH
10294 }
10295 else
10296 {
be05d201
L
10297 if (addr_mode != CODE_16BIT)
10298 {
10299 /* 32-bit/64-bit checks. */
10300 if ((i.base_reg
e968fc9b
JB
10301 && ((addr_mode == CODE_64BIT
10302 ? !i.base_reg->reg_type.bitfield.qword
10303 : !i.base_reg->reg_type.bitfield.dword)
10304 || (i.index_reg && i.base_reg->reg_num == RegIP)
10305 || i.base_reg->reg_num == RegIZ))
be05d201 10306 || (i.index_reg
1b54b8d7
JB
10307 && !i.index_reg->reg_type.bitfield.xmmword
10308 && !i.index_reg->reg_type.bitfield.ymmword
10309 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 10310 && ((addr_mode == CODE_64BIT
e968fc9b
JB
10311 ? !i.index_reg->reg_type.bitfield.qword
10312 : !i.index_reg->reg_type.bitfield.dword)
be05d201
L
10313 || !i.index_reg->reg_type.bitfield.baseindex)))
10314 goto bad_address;
8178be5b
JB
10315
10316 /* bndmk, bndldx, and bndstx have special restrictions. */
10317 if (current_templates->start->base_opcode == 0xf30f1b
10318 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
10319 {
10320 /* They cannot use RIP-relative addressing. */
e968fc9b 10321 if (i.base_reg && i.base_reg->reg_num == RegIP)
8178be5b
JB
10322 {
10323 as_bad (_("`%s' cannot be used here"), operand_string);
10324 return 0;
10325 }
10326
10327 /* bndldx and bndstx ignore their scale factor. */
10328 if (current_templates->start->base_opcode != 0xf30f1b
10329 && i.log2_scale_factor)
10330 as_warn (_("register scaling is being ignored here"));
10331 }
be05d201
L
10332 }
10333 else
3e73aa7c 10334 {
be05d201 10335 /* 16-bit checks. */
3e73aa7c 10336 if ((i.base_reg
dc821c5f 10337 && (!i.base_reg->reg_type.bitfield.word
40fb9820 10338 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 10339 || (i.index_reg
dc821c5f 10340 && (!i.index_reg->reg_type.bitfield.word
40fb9820 10341 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
10342 || !(i.base_reg
10343 && i.base_reg->reg_num < 6
10344 && i.index_reg->reg_num >= 6
10345 && i.log2_scale_factor == 0))))
be05d201 10346 goto bad_address;
3e73aa7c
JH
10347 }
10348 }
be05d201 10349 return 1;
24eab124 10350}
252b5132 10351
43234a1e
L
10352/* Handle vector immediates. */
10353
10354static int
10355RC_SAE_immediate (const char *imm_start)
10356{
10357 unsigned int match_found, j;
10358 const char *pstr = imm_start;
10359 expressionS *exp;
10360
10361 if (*pstr != '{')
10362 return 0;
10363
10364 pstr++;
10365 match_found = 0;
10366 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
10367 {
10368 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
10369 {
10370 if (!i.rounding)
10371 {
10372 rc_op.type = RC_NamesTable[j].type;
10373 rc_op.operand = this_operand;
10374 i.rounding = &rc_op;
10375 }
10376 else
10377 {
10378 as_bad (_("duplicated `%s'"), imm_start);
10379 return 0;
10380 }
10381 pstr += RC_NamesTable[j].len;
10382 match_found = 1;
10383 break;
10384 }
10385 }
10386 if (!match_found)
10387 return 0;
10388
10389 if (*pstr++ != '}')
10390 {
10391 as_bad (_("Missing '}': '%s'"), imm_start);
10392 return 0;
10393 }
10394 /* RC/SAE immediate string should contain nothing more. */;
10395 if (*pstr != 0)
10396 {
10397 as_bad (_("Junk after '}': '%s'"), imm_start);
10398 return 0;
10399 }
10400
10401 exp = &im_expressions[i.imm_operands++];
10402 i.op[this_operand].imms = exp;
10403
10404 exp->X_op = O_constant;
10405 exp->X_add_number = 0;
10406 exp->X_add_symbol = (symbolS *) 0;
10407 exp->X_op_symbol = (symbolS *) 0;
10408
10409 i.types[this_operand].bitfield.imm8 = 1;
10410 return 1;
10411}
10412
8325cc63
JB
10413/* Only string instructions can have a second memory operand, so
10414 reduce current_templates to just those if it contains any. */
10415static int
10416maybe_adjust_templates (void)
10417{
10418 const insn_template *t;
10419
10420 gas_assert (i.mem_operands == 1);
10421
10422 for (t = current_templates->start; t < current_templates->end; ++t)
10423 if (t->opcode_modifier.isstring)
10424 break;
10425
10426 if (t < current_templates->end)
10427 {
10428 static templates aux_templates;
10429 bfd_boolean recheck;
10430
10431 aux_templates.start = t;
10432 for (; t < current_templates->end; ++t)
10433 if (!t->opcode_modifier.isstring)
10434 break;
10435 aux_templates.end = t;
10436
10437 /* Determine whether to re-check the first memory operand. */
10438 recheck = (aux_templates.start != current_templates->start
10439 || t != current_templates->end);
10440
10441 current_templates = &aux_templates;
10442
10443 if (recheck)
10444 {
10445 i.mem_operands = 0;
10446 if (i.memop1_string != NULL
10447 && i386_index_check (i.memop1_string) == 0)
10448 return 0;
10449 i.mem_operands = 1;
10450 }
10451 }
10452
10453 return 1;
10454}
10455
fc0763e6 10456/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 10457 on error. */
252b5132 10458
252b5132 10459static int
a7619375 10460i386_att_operand (char *operand_string)
252b5132 10461{
af6bdddf
AM
10462 const reg_entry *r;
10463 char *end_op;
24eab124 10464 char *op_string = operand_string;
252b5132 10465
24eab124 10466 if (is_space_char (*op_string))
252b5132
RH
10467 ++op_string;
10468
24eab124 10469 /* We check for an absolute prefix (differentiating,
47926f60 10470 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
10471 if (*op_string == ABSOLUTE_PREFIX)
10472 {
10473 ++op_string;
10474 if (is_space_char (*op_string))
10475 ++op_string;
6f2f06be 10476 i.jumpabsolute = TRUE;
24eab124 10477 }
252b5132 10478
47926f60 10479 /* Check if operand is a register. */
4d1bb795 10480 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 10481 {
40fb9820
L
10482 i386_operand_type temp;
10483
24eab124
AM
10484 /* Check for a segment override by searching for ':' after a
10485 segment register. */
10486 op_string = end_op;
10487 if (is_space_char (*op_string))
10488 ++op_string;
00cee14f 10489 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
24eab124
AM
10490 {
10491 switch (r->reg_num)
10492 {
10493 case 0:
10494 i.seg[i.mem_operands] = &es;
10495 break;
10496 case 1:
10497 i.seg[i.mem_operands] = &cs;
10498 break;
10499 case 2:
10500 i.seg[i.mem_operands] = &ss;
10501 break;
10502 case 3:
10503 i.seg[i.mem_operands] = &ds;
10504 break;
10505 case 4:
10506 i.seg[i.mem_operands] = &fs;
10507 break;
10508 case 5:
10509 i.seg[i.mem_operands] = &gs;
10510 break;
10511 }
252b5132 10512
24eab124 10513 /* Skip the ':' and whitespace. */
252b5132
RH
10514 ++op_string;
10515 if (is_space_char (*op_string))
24eab124 10516 ++op_string;
252b5132 10517
24eab124
AM
10518 if (!is_digit_char (*op_string)
10519 && !is_identifier_char (*op_string)
10520 && *op_string != '('
10521 && *op_string != ABSOLUTE_PREFIX)
10522 {
10523 as_bad (_("bad memory operand `%s'"), op_string);
10524 return 0;
10525 }
47926f60 10526 /* Handle case of %es:*foo. */
24eab124
AM
10527 if (*op_string == ABSOLUTE_PREFIX)
10528 {
10529 ++op_string;
10530 if (is_space_char (*op_string))
10531 ++op_string;
6f2f06be 10532 i.jumpabsolute = TRUE;
24eab124
AM
10533 }
10534 goto do_memory_reference;
10535 }
43234a1e
L
10536
10537 /* Handle vector operations. */
10538 if (*op_string == '{')
10539 {
10540 op_string = check_VecOperations (op_string, NULL);
10541 if (op_string == NULL)
10542 return 0;
10543 }
10544
24eab124
AM
10545 if (*op_string)
10546 {
d0b47220 10547 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
10548 return 0;
10549 }
40fb9820
L
10550 temp = r->reg_type;
10551 temp.bitfield.baseindex = 0;
c6fb90c8
L
10552 i.types[this_operand] = operand_type_or (i.types[this_operand],
10553 temp);
7d5e4556 10554 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 10555 i.op[this_operand].regs = r;
24eab124
AM
10556 i.reg_operands++;
10557 }
af6bdddf
AM
10558 else if (*op_string == REGISTER_PREFIX)
10559 {
10560 as_bad (_("bad register name `%s'"), op_string);
10561 return 0;
10562 }
24eab124 10563 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 10564 {
24eab124 10565 ++op_string;
6f2f06be 10566 if (i.jumpabsolute)
24eab124 10567 {
d0b47220 10568 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
10569 return 0;
10570 }
10571 if (!i386_immediate (op_string))
10572 return 0;
10573 }
43234a1e
L
10574 else if (RC_SAE_immediate (operand_string))
10575 {
10576 /* If it is a RC or SAE immediate, do nothing. */
10577 ;
10578 }
24eab124
AM
10579 else if (is_digit_char (*op_string)
10580 || is_identifier_char (*op_string)
d02603dc 10581 || *op_string == '"'
e5cb08ac 10582 || *op_string == '(')
24eab124 10583 {
47926f60 10584 /* This is a memory reference of some sort. */
af6bdddf 10585 char *base_string;
252b5132 10586
47926f60 10587 /* Start and end of displacement string expression (if found). */
eecb386c
AM
10588 char *displacement_string_start;
10589 char *displacement_string_end;
43234a1e 10590 char *vop_start;
252b5132 10591
24eab124 10592 do_memory_reference:
8325cc63
JB
10593 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10594 return 0;
24eab124 10595 if ((i.mem_operands == 1
40fb9820 10596 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
10597 || i.mem_operands == 2)
10598 {
10599 as_bad (_("too many memory references for `%s'"),
10600 current_templates->start->name);
10601 return 0;
10602 }
252b5132 10603
24eab124
AM
10604 /* Check for base index form. We detect the base index form by
10605 looking for an ')' at the end of the operand, searching
10606 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10607 after the '('. */
af6bdddf 10608 base_string = op_string + strlen (op_string);
c3332e24 10609
43234a1e
L
10610 /* Handle vector operations. */
10611 vop_start = strchr (op_string, '{');
10612 if (vop_start && vop_start < base_string)
10613 {
10614 if (check_VecOperations (vop_start, base_string) == NULL)
10615 return 0;
10616 base_string = vop_start;
10617 }
10618
af6bdddf
AM
10619 --base_string;
10620 if (is_space_char (*base_string))
10621 --base_string;
252b5132 10622
47926f60 10623 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
10624 displacement_string_start = op_string;
10625 displacement_string_end = base_string + 1;
252b5132 10626
24eab124
AM
10627 if (*base_string == ')')
10628 {
af6bdddf 10629 char *temp_string;
24eab124
AM
10630 unsigned int parens_balanced = 1;
10631 /* We've already checked that the number of left & right ()'s are
47926f60 10632 equal, so this loop will not be infinite. */
24eab124
AM
10633 do
10634 {
10635 base_string--;
10636 if (*base_string == ')')
10637 parens_balanced++;
10638 if (*base_string == '(')
10639 parens_balanced--;
10640 }
10641 while (parens_balanced);
c3332e24 10642
af6bdddf 10643 temp_string = base_string;
c3332e24 10644
24eab124 10645 /* Skip past '(' and whitespace. */
252b5132
RH
10646 ++base_string;
10647 if (is_space_char (*base_string))
24eab124 10648 ++base_string;
252b5132 10649
af6bdddf 10650 if (*base_string == ','
4eed87de
AM
10651 || ((i.base_reg = parse_register (base_string, &end_op))
10652 != NULL))
252b5132 10653 {
af6bdddf 10654 displacement_string_end = temp_string;
252b5132 10655
40fb9820 10656 i.types[this_operand].bitfield.baseindex = 1;
252b5132 10657
af6bdddf 10658 if (i.base_reg)
24eab124 10659 {
24eab124
AM
10660 base_string = end_op;
10661 if (is_space_char (*base_string))
10662 ++base_string;
af6bdddf
AM
10663 }
10664
10665 /* There may be an index reg or scale factor here. */
10666 if (*base_string == ',')
10667 {
10668 ++base_string;
10669 if (is_space_char (*base_string))
10670 ++base_string;
10671
4eed87de
AM
10672 if ((i.index_reg = parse_register (base_string, &end_op))
10673 != NULL)
24eab124 10674 {
af6bdddf 10675 base_string = end_op;
24eab124
AM
10676 if (is_space_char (*base_string))
10677 ++base_string;
af6bdddf
AM
10678 if (*base_string == ',')
10679 {
10680 ++base_string;
10681 if (is_space_char (*base_string))
10682 ++base_string;
10683 }
e5cb08ac 10684 else if (*base_string != ')')
af6bdddf 10685 {
4eed87de
AM
10686 as_bad (_("expecting `,' or `)' "
10687 "after index register in `%s'"),
af6bdddf
AM
10688 operand_string);
10689 return 0;
10690 }
24eab124 10691 }
af6bdddf 10692 else if (*base_string == REGISTER_PREFIX)
24eab124 10693 {
f76bf5e0
L
10694 end_op = strchr (base_string, ',');
10695 if (end_op)
10696 *end_op = '\0';
af6bdddf 10697 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
10698 return 0;
10699 }
252b5132 10700
47926f60 10701 /* Check for scale factor. */
551c1ca1 10702 if (*base_string != ')')
af6bdddf 10703 {
551c1ca1
AM
10704 char *end_scale = i386_scale (base_string);
10705
10706 if (!end_scale)
af6bdddf 10707 return 0;
24eab124 10708
551c1ca1 10709 base_string = end_scale;
af6bdddf
AM
10710 if (is_space_char (*base_string))
10711 ++base_string;
10712 if (*base_string != ')')
10713 {
4eed87de
AM
10714 as_bad (_("expecting `)' "
10715 "after scale factor in `%s'"),
af6bdddf
AM
10716 operand_string);
10717 return 0;
10718 }
10719 }
10720 else if (!i.index_reg)
24eab124 10721 {
4eed87de
AM
10722 as_bad (_("expecting index register or scale factor "
10723 "after `,'; got '%c'"),
af6bdddf 10724 *base_string);
24eab124
AM
10725 return 0;
10726 }
10727 }
af6bdddf 10728 else if (*base_string != ')')
24eab124 10729 {
4eed87de
AM
10730 as_bad (_("expecting `,' or `)' "
10731 "after base register in `%s'"),
af6bdddf 10732 operand_string);
24eab124
AM
10733 return 0;
10734 }
c3332e24 10735 }
af6bdddf 10736 else if (*base_string == REGISTER_PREFIX)
c3332e24 10737 {
f76bf5e0
L
10738 end_op = strchr (base_string, ',');
10739 if (end_op)
10740 *end_op = '\0';
af6bdddf 10741 as_bad (_("bad register name `%s'"), base_string);
24eab124 10742 return 0;
c3332e24 10743 }
24eab124
AM
10744 }
10745
10746 /* If there's an expression beginning the operand, parse it,
10747 assuming displacement_string_start and
10748 displacement_string_end are meaningful. */
10749 if (displacement_string_start != displacement_string_end)
10750 {
10751 if (!i386_displacement (displacement_string_start,
10752 displacement_string_end))
10753 return 0;
10754 }
10755
10756 /* Special case for (%dx) while doing input/output op. */
10757 if (i.base_reg
75e5731b
JB
10758 && i.base_reg->reg_type.bitfield.instance == RegD
10759 && i.base_reg->reg_type.bitfield.word
24eab124
AM
10760 && i.index_reg == 0
10761 && i.log2_scale_factor == 0
10762 && i.seg[i.mem_operands] == 0
40fb9820 10763 && !operand_type_check (i.types[this_operand], disp))
24eab124 10764 {
2fb5be8d 10765 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
10766 return 1;
10767 }
10768
eecb386c
AM
10769 if (i386_index_check (operand_string) == 0)
10770 return 0;
c48dadc9 10771 i.flags[this_operand] |= Operand_Mem;
8325cc63
JB
10772 if (i.mem_operands == 0)
10773 i.memop1_string = xstrdup (operand_string);
24eab124
AM
10774 i.mem_operands++;
10775 }
10776 else
ce8a8b2f
AM
10777 {
10778 /* It's not a memory operand; argh! */
24eab124
AM
10779 as_bad (_("invalid char %s beginning operand %d `%s'"),
10780 output_invalid (*op_string),
10781 this_operand + 1,
10782 op_string);
10783 return 0;
10784 }
47926f60 10785 return 1; /* Normal return. */
252b5132
RH
10786}
10787\f
fa94de6b
RM
10788/* Calculate the maximum variable size (i.e., excluding fr_fix)
10789 that an rs_machine_dependent frag may reach. */
10790
10791unsigned int
10792i386_frag_max_var (fragS *frag)
10793{
10794 /* The only relaxable frags are for jumps.
10795 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10796 gas_assert (frag->fr_type == rs_machine_dependent);
10797 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10798}
10799
b084df0b
L
10800#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10801static int
8dcea932 10802elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
10803{
10804 /* STT_GNU_IFUNC symbol must go through PLT. */
10805 if ((symbol_get_bfdsym (fr_symbol)->flags
10806 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10807 return 0;
10808
10809 if (!S_IS_EXTERNAL (fr_symbol))
10810 /* Symbol may be weak or local. */
10811 return !S_IS_WEAK (fr_symbol);
10812
8dcea932
L
10813 /* Global symbols with non-default visibility can't be preempted. */
10814 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10815 return 1;
10816
10817 if (fr_var != NO_RELOC)
10818 switch ((enum bfd_reloc_code_real) fr_var)
10819 {
10820 case BFD_RELOC_386_PLT32:
10821 case BFD_RELOC_X86_64_PLT32:
33eaf5de 10822 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
10823 return 0;
10824 default:
10825 abort ();
10826 }
10827
b084df0b
L
10828 /* Global symbols with default visibility in a shared library may be
10829 preempted by another definition. */
8dcea932 10830 return !shared;
b084df0b
L
10831}
10832#endif
10833
e379e5f3
L
10834/* Return the next non-empty frag. */
10835
10836static fragS *
10837i386_next_non_empty_frag (fragS *fragP)
10838{
10839 /* There may be a frag with a ".fill 0" when there is no room in
10840 the current frag for frag_grow in output_insn. */
10841 for (fragP = fragP->fr_next;
10842 (fragP != NULL
10843 && fragP->fr_type == rs_fill
10844 && fragP->fr_fix == 0);
10845 fragP = fragP->fr_next)
10846 ;
10847 return fragP;
10848}
10849
10850/* Return the next jcc frag after BRANCH_PADDING. */
10851
10852static fragS *
10853i386_next_jcc_frag (fragS *fragP)
10854{
10855 if (!fragP)
10856 return NULL;
10857
10858 if (fragP->fr_type == rs_machine_dependent
10859 && (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
10860 == BRANCH_PADDING))
10861 {
10862 fragP = i386_next_non_empty_frag (fragP);
10863 if (fragP->fr_type != rs_machine_dependent)
10864 return NULL;
10865 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == COND_JUMP)
10866 return fragP;
10867 }
10868
10869 return NULL;
10870}
10871
10872/* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
10873
10874static void
10875i386_classify_machine_dependent_frag (fragS *fragP)
10876{
10877 fragS *cmp_fragP;
10878 fragS *pad_fragP;
10879 fragS *branch_fragP;
10880 fragS *next_fragP;
10881 unsigned int max_prefix_length;
10882
10883 if (fragP->tc_frag_data.classified)
10884 return;
10885
10886 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
10887 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
10888 for (next_fragP = fragP;
10889 next_fragP != NULL;
10890 next_fragP = next_fragP->fr_next)
10891 {
10892 next_fragP->tc_frag_data.classified = 1;
10893 if (next_fragP->fr_type == rs_machine_dependent)
10894 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
10895 {
10896 case BRANCH_PADDING:
10897 /* The BRANCH_PADDING frag must be followed by a branch
10898 frag. */
10899 branch_fragP = i386_next_non_empty_frag (next_fragP);
10900 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
10901 break;
10902 case FUSED_JCC_PADDING:
10903 /* Check if this is a fused jcc:
10904 FUSED_JCC_PADDING
10905 CMP like instruction
10906 BRANCH_PADDING
10907 COND_JUMP
10908 */
10909 cmp_fragP = i386_next_non_empty_frag (next_fragP);
10910 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
10911 branch_fragP = i386_next_jcc_frag (pad_fragP);
10912 if (branch_fragP)
10913 {
10914 /* The BRANCH_PADDING frag is merged with the
10915 FUSED_JCC_PADDING frag. */
10916 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
10917 /* CMP like instruction size. */
10918 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
10919 frag_wane (pad_fragP);
10920 /* Skip to branch_fragP. */
10921 next_fragP = branch_fragP;
10922 }
10923 else if (next_fragP->tc_frag_data.max_prefix_length)
10924 {
10925 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
10926 a fused jcc. */
10927 next_fragP->fr_subtype
10928 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
10929 next_fragP->tc_frag_data.max_bytes
10930 = next_fragP->tc_frag_data.max_prefix_length;
10931 /* This will be updated in the BRANCH_PREFIX scan. */
10932 next_fragP->tc_frag_data.max_prefix_length = 0;
10933 }
10934 else
10935 frag_wane (next_fragP);
10936 break;
10937 }
10938 }
10939
10940 /* Stop if there is no BRANCH_PREFIX. */
10941 if (!align_branch_prefix_size)
10942 return;
10943
10944 /* Scan for BRANCH_PREFIX. */
10945 for (; fragP != NULL; fragP = fragP->fr_next)
10946 {
10947 if (fragP->fr_type != rs_machine_dependent
10948 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
10949 != BRANCH_PREFIX))
10950 continue;
10951
10952 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
10953 COND_JUMP_PREFIX. */
10954 max_prefix_length = 0;
10955 for (next_fragP = fragP;
10956 next_fragP != NULL;
10957 next_fragP = next_fragP->fr_next)
10958 {
10959 if (next_fragP->fr_type == rs_fill)
10960 /* Skip rs_fill frags. */
10961 continue;
10962 else if (next_fragP->fr_type != rs_machine_dependent)
10963 /* Stop for all other frags. */
10964 break;
10965
10966 /* rs_machine_dependent frags. */
10967 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
10968 == BRANCH_PREFIX)
10969 {
10970 /* Count BRANCH_PREFIX frags. */
10971 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
10972 {
10973 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
10974 frag_wane (next_fragP);
10975 }
10976 else
10977 max_prefix_length
10978 += next_fragP->tc_frag_data.max_bytes;
10979 }
10980 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
10981 == BRANCH_PADDING)
10982 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
10983 == FUSED_JCC_PADDING))
10984 {
10985 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
10986 fragP->tc_frag_data.u.padding_fragP = next_fragP;
10987 break;
10988 }
10989 else
10990 /* Stop for other rs_machine_dependent frags. */
10991 break;
10992 }
10993
10994 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
10995
10996 /* Skip to the next frag. */
10997 fragP = next_fragP;
10998 }
10999}
11000
11001/* Compute padding size for
11002
11003 FUSED_JCC_PADDING
11004 CMP like instruction
11005 BRANCH_PADDING
11006 COND_JUMP/UNCOND_JUMP
11007
11008 or
11009
11010 BRANCH_PADDING
11011 COND_JUMP/UNCOND_JUMP
11012 */
11013
11014static int
11015i386_branch_padding_size (fragS *fragP, offsetT address)
11016{
11017 unsigned int offset, size, padding_size;
11018 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
11019
11020 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
11021 if (!address)
11022 address = fragP->fr_address;
11023 address += fragP->fr_fix;
11024
11025 /* CMP like instrunction size. */
11026 size = fragP->tc_frag_data.cmp_size;
11027
11028 /* The base size of the branch frag. */
11029 size += branch_fragP->fr_fix;
11030
11031 /* Add opcode and displacement bytes for the rs_machine_dependent
11032 branch frag. */
11033 if (branch_fragP->fr_type == rs_machine_dependent)
11034 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
11035
11036 /* Check if branch is within boundary and doesn't end at the last
11037 byte. */
11038 offset = address & ((1U << align_branch_power) - 1);
11039 if ((offset + size) >= (1U << align_branch_power))
11040 /* Padding needed to avoid crossing boundary. */
11041 padding_size = (1U << align_branch_power) - offset;
11042 else
11043 /* No padding needed. */
11044 padding_size = 0;
11045
11046 /* The return value may be saved in tc_frag_data.length which is
11047 unsigned byte. */
11048 if (!fits_in_unsigned_byte (padding_size))
11049 abort ();
11050
11051 return padding_size;
11052}
11053
11054/* i386_generic_table_relax_frag()
11055
11056 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
11057 grow/shrink padding to align branch frags. Hand others to
11058 relax_frag(). */
11059
11060long
11061i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
11062{
11063 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11064 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11065 {
11066 long padding_size = i386_branch_padding_size (fragP, 0);
11067 long grow = padding_size - fragP->tc_frag_data.length;
11068
11069 /* When the BRANCH_PREFIX frag is used, the computed address
11070 must match the actual address and there should be no padding. */
11071 if (fragP->tc_frag_data.padding_address
11072 && (fragP->tc_frag_data.padding_address != fragP->fr_address
11073 || padding_size))
11074 abort ();
11075
11076 /* Update the padding size. */
11077 if (grow)
11078 fragP->tc_frag_data.length = padding_size;
11079
11080 return grow;
11081 }
11082 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11083 {
11084 fragS *padding_fragP, *next_fragP;
11085 long padding_size, left_size, last_size;
11086
11087 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11088 if (!padding_fragP)
11089 /* Use the padding set by the leading BRANCH_PREFIX frag. */
11090 return (fragP->tc_frag_data.length
11091 - fragP->tc_frag_data.last_length);
11092
11093 /* Compute the relative address of the padding frag in the very
11094 first time where the BRANCH_PREFIX frag sizes are zero. */
11095 if (!fragP->tc_frag_data.padding_address)
11096 fragP->tc_frag_data.padding_address
11097 = padding_fragP->fr_address - (fragP->fr_address - stretch);
11098
11099 /* First update the last length from the previous interation. */
11100 left_size = fragP->tc_frag_data.prefix_length;
11101 for (next_fragP = fragP;
11102 next_fragP != padding_fragP;
11103 next_fragP = next_fragP->fr_next)
11104 if (next_fragP->fr_type == rs_machine_dependent
11105 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11106 == BRANCH_PREFIX))
11107 {
11108 if (left_size)
11109 {
11110 int max = next_fragP->tc_frag_data.max_bytes;
11111 if (max)
11112 {
11113 int size;
11114 if (max > left_size)
11115 size = left_size;
11116 else
11117 size = max;
11118 left_size -= size;
11119 next_fragP->tc_frag_data.last_length = size;
11120 }
11121 }
11122 else
11123 next_fragP->tc_frag_data.last_length = 0;
11124 }
11125
11126 /* Check the padding size for the padding frag. */
11127 padding_size = i386_branch_padding_size
11128 (padding_fragP, (fragP->fr_address
11129 + fragP->tc_frag_data.padding_address));
11130
11131 last_size = fragP->tc_frag_data.prefix_length;
11132 /* Check if there is change from the last interation. */
11133 if (padding_size == last_size)
11134 {
11135 /* Update the expected address of the padding frag. */
11136 padding_fragP->tc_frag_data.padding_address
11137 = (fragP->fr_address + padding_size
11138 + fragP->tc_frag_data.padding_address);
11139 return 0;
11140 }
11141
11142 if (padding_size > fragP->tc_frag_data.max_prefix_length)
11143 {
11144 /* No padding if there is no sufficient room. Clear the
11145 expected address of the padding frag. */
11146 padding_fragP->tc_frag_data.padding_address = 0;
11147 padding_size = 0;
11148 }
11149 else
11150 /* Store the expected address of the padding frag. */
11151 padding_fragP->tc_frag_data.padding_address
11152 = (fragP->fr_address + padding_size
11153 + fragP->tc_frag_data.padding_address);
11154
11155 fragP->tc_frag_data.prefix_length = padding_size;
11156
11157 /* Update the length for the current interation. */
11158 left_size = padding_size;
11159 for (next_fragP = fragP;
11160 next_fragP != padding_fragP;
11161 next_fragP = next_fragP->fr_next)
11162 if (next_fragP->fr_type == rs_machine_dependent
11163 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11164 == BRANCH_PREFIX))
11165 {
11166 if (left_size)
11167 {
11168 int max = next_fragP->tc_frag_data.max_bytes;
11169 if (max)
11170 {
11171 int size;
11172 if (max > left_size)
11173 size = left_size;
11174 else
11175 size = max;
11176 left_size -= size;
11177 next_fragP->tc_frag_data.length = size;
11178 }
11179 }
11180 else
11181 next_fragP->tc_frag_data.length = 0;
11182 }
11183
11184 return (fragP->tc_frag_data.length
11185 - fragP->tc_frag_data.last_length);
11186 }
11187 return relax_frag (segment, fragP, stretch);
11188}
11189
ee7fcc42
AM
11190/* md_estimate_size_before_relax()
11191
11192 Called just before relax() for rs_machine_dependent frags. The x86
11193 assembler uses these frags to handle variable size jump
11194 instructions.
11195
11196 Any symbol that is now undefined will not become defined.
11197 Return the correct fr_subtype in the frag.
11198 Return the initial "guess for variable size of frag" to caller.
11199 The guess is actually the growth beyond the fixed part. Whatever
11200 we do to grow the fixed or variable part contributes to our
11201 returned value. */
11202
252b5132 11203int
7016a5d5 11204md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 11205{
e379e5f3
L
11206 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11207 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
11208 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11209 {
11210 i386_classify_machine_dependent_frag (fragP);
11211 return fragP->tc_frag_data.length;
11212 }
11213
252b5132 11214 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
11215 check for un-relaxable symbols. On an ELF system, we can't relax
11216 an externally visible symbol, because it may be overridden by a
11217 shared library. */
11218 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 11219#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 11220 || (IS_ELF
8dcea932
L
11221 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
11222 fragP->fr_var))
fbeb56a4
DK
11223#endif
11224#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 11225 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 11226 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
11227#endif
11228 )
252b5132 11229 {
b98ef147
AM
11230 /* Symbol is undefined in this segment, or we need to keep a
11231 reloc so that weak symbols can be overridden. */
11232 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 11233 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
11234 unsigned char *opcode;
11235 int old_fr_fix;
f6af82bd 11236
ee7fcc42 11237 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 11238 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 11239 else if (size == 2)
f6af82bd 11240 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
11241#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11242 else if (need_plt32_p (fragP->fr_symbol))
11243 reloc_type = BFD_RELOC_X86_64_PLT32;
11244#endif
f6af82bd
AM
11245 else
11246 reloc_type = BFD_RELOC_32_PCREL;
252b5132 11247
ee7fcc42
AM
11248 old_fr_fix = fragP->fr_fix;
11249 opcode = (unsigned char *) fragP->fr_opcode;
11250
fddf5b5b 11251 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 11252 {
fddf5b5b
AM
11253 case UNCOND_JUMP:
11254 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 11255 opcode[0] = 0xe9;
252b5132 11256 fragP->fr_fix += size;
062cd5e7
AS
11257 fix_new (fragP, old_fr_fix, size,
11258 fragP->fr_symbol,
11259 fragP->fr_offset, 1,
11260 reloc_type);
252b5132
RH
11261 break;
11262
fddf5b5b 11263 case COND_JUMP86:
412167cb
AM
11264 if (size == 2
11265 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
11266 {
11267 /* Negate the condition, and branch past an
11268 unconditional jump. */
11269 opcode[0] ^= 1;
11270 opcode[1] = 3;
11271 /* Insert an unconditional jump. */
11272 opcode[2] = 0xe9;
11273 /* We added two extra opcode bytes, and have a two byte
11274 offset. */
11275 fragP->fr_fix += 2 + 2;
062cd5e7
AS
11276 fix_new (fragP, old_fr_fix + 2, 2,
11277 fragP->fr_symbol,
11278 fragP->fr_offset, 1,
11279 reloc_type);
fddf5b5b
AM
11280 break;
11281 }
11282 /* Fall through. */
11283
11284 case COND_JUMP:
412167cb
AM
11285 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
11286 {
3e02c1cc
AM
11287 fixS *fixP;
11288
412167cb 11289 fragP->fr_fix += 1;
3e02c1cc
AM
11290 fixP = fix_new (fragP, old_fr_fix, 1,
11291 fragP->fr_symbol,
11292 fragP->fr_offset, 1,
11293 BFD_RELOC_8_PCREL);
11294 fixP->fx_signed = 1;
412167cb
AM
11295 break;
11296 }
93c2a809 11297
24eab124 11298 /* This changes the byte-displacement jump 0x7N
fddf5b5b 11299 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 11300 opcode[1] = opcode[0] + 0x10;
f6af82bd 11301 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
11302 /* We've added an opcode byte. */
11303 fragP->fr_fix += 1 + size;
062cd5e7
AS
11304 fix_new (fragP, old_fr_fix + 1, size,
11305 fragP->fr_symbol,
11306 fragP->fr_offset, 1,
11307 reloc_type);
252b5132 11308 break;
fddf5b5b
AM
11309
11310 default:
11311 BAD_CASE (fragP->fr_subtype);
11312 break;
252b5132
RH
11313 }
11314 frag_wane (fragP);
ee7fcc42 11315 return fragP->fr_fix - old_fr_fix;
252b5132 11316 }
93c2a809 11317
93c2a809
AM
11318 /* Guess size depending on current relax state. Initially the relax
11319 state will correspond to a short jump and we return 1, because
11320 the variable part of the frag (the branch offset) is one byte
11321 long. However, we can relax a section more than once and in that
11322 case we must either set fr_subtype back to the unrelaxed state,
11323 or return the value for the appropriate branch. */
11324 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
11325}
11326
47926f60
KH
11327/* Called after relax() is finished.
11328
11329 In: Address of frag.
11330 fr_type == rs_machine_dependent.
11331 fr_subtype is what the address relaxed to.
11332
11333 Out: Any fixSs and constants are set up.
11334 Caller will turn frag into a ".space 0". */
11335
252b5132 11336void
7016a5d5
TG
11337md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
11338 fragS *fragP)
252b5132 11339{
29b0f896 11340 unsigned char *opcode;
252b5132 11341 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
11342 offsetT target_address;
11343 offsetT opcode_address;
252b5132 11344 unsigned int extension = 0;
847f7ad4 11345 offsetT displacement_from_opcode_start;
252b5132 11346
e379e5f3
L
11347 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11348 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
11349 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11350 {
11351 /* Generate nop padding. */
11352 unsigned int size = fragP->tc_frag_data.length;
11353 if (size)
11354 {
11355 if (size > fragP->tc_frag_data.max_bytes)
11356 abort ();
11357
11358 if (flag_debug)
11359 {
11360 const char *msg;
11361 const char *branch = "branch";
11362 const char *prefix = "";
11363 fragS *padding_fragP;
11364 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11365 == BRANCH_PREFIX)
11366 {
11367 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11368 switch (fragP->tc_frag_data.default_prefix)
11369 {
11370 default:
11371 abort ();
11372 break;
11373 case CS_PREFIX_OPCODE:
11374 prefix = " cs";
11375 break;
11376 case DS_PREFIX_OPCODE:
11377 prefix = " ds";
11378 break;
11379 case ES_PREFIX_OPCODE:
11380 prefix = " es";
11381 break;
11382 case FS_PREFIX_OPCODE:
11383 prefix = " fs";
11384 break;
11385 case GS_PREFIX_OPCODE:
11386 prefix = " gs";
11387 break;
11388 case SS_PREFIX_OPCODE:
11389 prefix = " ss";
11390 break;
11391 }
11392 if (padding_fragP)
11393 msg = _("%s:%u: add %d%s at 0x%llx to align "
11394 "%s within %d-byte boundary\n");
11395 else
11396 msg = _("%s:%u: add additional %d%s at 0x%llx to "
11397 "align %s within %d-byte boundary\n");
11398 }
11399 else
11400 {
11401 padding_fragP = fragP;
11402 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
11403 "%s within %d-byte boundary\n");
11404 }
11405
11406 if (padding_fragP)
11407 switch (padding_fragP->tc_frag_data.branch_type)
11408 {
11409 case align_branch_jcc:
11410 branch = "jcc";
11411 break;
11412 case align_branch_fused:
11413 branch = "fused jcc";
11414 break;
11415 case align_branch_jmp:
11416 branch = "jmp";
11417 break;
11418 case align_branch_call:
11419 branch = "call";
11420 break;
11421 case align_branch_indirect:
11422 branch = "indiret branch";
11423 break;
11424 case align_branch_ret:
11425 branch = "ret";
11426 break;
11427 default:
11428 break;
11429 }
11430
11431 fprintf (stdout, msg,
11432 fragP->fr_file, fragP->fr_line, size, prefix,
11433 (long long) fragP->fr_address, branch,
11434 1 << align_branch_power);
11435 }
11436 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11437 memset (fragP->fr_opcode,
11438 fragP->tc_frag_data.default_prefix, size);
11439 else
11440 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
11441 size, 0);
11442 fragP->fr_fix += size;
11443 }
11444 return;
11445 }
11446
252b5132
RH
11447 opcode = (unsigned char *) fragP->fr_opcode;
11448
47926f60 11449 /* Address we want to reach in file space. */
252b5132 11450 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 11451
47926f60 11452 /* Address opcode resides at in file space. */
252b5132
RH
11453 opcode_address = fragP->fr_address + fragP->fr_fix;
11454
47926f60 11455 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
11456 displacement_from_opcode_start = target_address - opcode_address;
11457
fddf5b5b 11458 if ((fragP->fr_subtype & BIG) == 0)
252b5132 11459 {
47926f60
KH
11460 /* Don't have to change opcode. */
11461 extension = 1; /* 1 opcode + 1 displacement */
252b5132 11462 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
11463 }
11464 else
11465 {
11466 if (no_cond_jump_promotion
11467 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
11468 as_warn_where (fragP->fr_file, fragP->fr_line,
11469 _("long jump required"));
252b5132 11470
fddf5b5b
AM
11471 switch (fragP->fr_subtype)
11472 {
11473 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
11474 extension = 4; /* 1 opcode + 4 displacement */
11475 opcode[0] = 0xe9;
11476 where_to_put_displacement = &opcode[1];
11477 break;
252b5132 11478
fddf5b5b
AM
11479 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
11480 extension = 2; /* 1 opcode + 2 displacement */
11481 opcode[0] = 0xe9;
11482 where_to_put_displacement = &opcode[1];
11483 break;
252b5132 11484
fddf5b5b
AM
11485 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
11486 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
11487 extension = 5; /* 2 opcode + 4 displacement */
11488 opcode[1] = opcode[0] + 0x10;
11489 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11490 where_to_put_displacement = &opcode[2];
11491 break;
252b5132 11492
fddf5b5b
AM
11493 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
11494 extension = 3; /* 2 opcode + 2 displacement */
11495 opcode[1] = opcode[0] + 0x10;
11496 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11497 where_to_put_displacement = &opcode[2];
11498 break;
252b5132 11499
fddf5b5b
AM
11500 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
11501 extension = 4;
11502 opcode[0] ^= 1;
11503 opcode[1] = 3;
11504 opcode[2] = 0xe9;
11505 where_to_put_displacement = &opcode[3];
11506 break;
11507
11508 default:
11509 BAD_CASE (fragP->fr_subtype);
11510 break;
11511 }
252b5132 11512 }
fddf5b5b 11513
7b81dfbb
AJ
11514 /* If size if less then four we are sure that the operand fits,
11515 but if it's 4, then it could be that the displacement is larger
11516 then -/+ 2GB. */
11517 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
11518 && object_64bit
11519 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
11520 + ((addressT) 1 << 31))
11521 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
11522 {
11523 as_bad_where (fragP->fr_file, fragP->fr_line,
11524 _("jump target out of range"));
11525 /* Make us emit 0. */
11526 displacement_from_opcode_start = extension;
11527 }
47926f60 11528 /* Now put displacement after opcode. */
252b5132
RH
11529 md_number_to_chars ((char *) where_to_put_displacement,
11530 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 11531 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
11532 fragP->fr_fix += extension;
11533}
11534\f
7016a5d5 11535/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
11536 by our caller that we have all the info we need to fix it up.
11537
7016a5d5
TG
11538 Parameter valP is the pointer to the value of the bits.
11539
252b5132
RH
11540 On the 386, immediates, displacements, and data pointers are all in
11541 the same (little-endian) format, so we don't need to care about which
11542 we are handling. */
11543
94f592af 11544void
7016a5d5 11545md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 11546{
94f592af 11547 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 11548 valueT value = *valP;
252b5132 11549
f86103b7 11550#if !defined (TE_Mach)
93382f6d
AM
11551 if (fixP->fx_pcrel)
11552 {
11553 switch (fixP->fx_r_type)
11554 {
5865bb77
ILT
11555 default:
11556 break;
11557
d6ab8113
JB
11558 case BFD_RELOC_64:
11559 fixP->fx_r_type = BFD_RELOC_64_PCREL;
11560 break;
93382f6d 11561 case BFD_RELOC_32:
ae8887b5 11562 case BFD_RELOC_X86_64_32S:
93382f6d
AM
11563 fixP->fx_r_type = BFD_RELOC_32_PCREL;
11564 break;
11565 case BFD_RELOC_16:
11566 fixP->fx_r_type = BFD_RELOC_16_PCREL;
11567 break;
11568 case BFD_RELOC_8:
11569 fixP->fx_r_type = BFD_RELOC_8_PCREL;
11570 break;
11571 }
11572 }
252b5132 11573
a161fe53 11574 if (fixP->fx_addsy != NULL
31312f95 11575 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 11576 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 11577 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 11578 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 11579 && !use_rela_relocations)
252b5132 11580 {
31312f95
AM
11581 /* This is a hack. There should be a better way to handle this.
11582 This covers for the fact that bfd_install_relocation will
11583 subtract the current location (for partial_inplace, PC relative
11584 relocations); see more below. */
252b5132 11585#ifndef OBJ_AOUT
718ddfc0 11586 if (IS_ELF
252b5132
RH
11587#ifdef TE_PE
11588 || OUTPUT_FLAVOR == bfd_target_coff_flavour
11589#endif
11590 )
11591 value += fixP->fx_where + fixP->fx_frag->fr_address;
11592#endif
11593#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 11594 if (IS_ELF)
252b5132 11595 {
6539b54b 11596 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 11597
6539b54b 11598 if ((sym_seg == seg
2f66722d 11599 || (symbol_section_p (fixP->fx_addsy)
6539b54b 11600 && sym_seg != absolute_section))
af65af87 11601 && !generic_force_reloc (fixP))
2f66722d
AM
11602 {
11603 /* Yes, we add the values in twice. This is because
6539b54b
AM
11604 bfd_install_relocation subtracts them out again. I think
11605 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
11606 it. FIXME. */
11607 value += fixP->fx_where + fixP->fx_frag->fr_address;
11608 }
252b5132
RH
11609 }
11610#endif
11611#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
11612 /* For some reason, the PE format does not store a
11613 section address offset for a PC relative symbol. */
11614 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 11615 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
11616 value += md_pcrel_from (fixP);
11617#endif
11618 }
fbeb56a4 11619#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
11620 if (fixP->fx_addsy != NULL
11621 && S_IS_WEAK (fixP->fx_addsy)
11622 /* PR 16858: Do not modify weak function references. */
11623 && ! fixP->fx_pcrel)
fbeb56a4 11624 {
296a8689
NC
11625#if !defined (TE_PEP)
11626 /* For x86 PE weak function symbols are neither PC-relative
11627 nor do they set S_IS_FUNCTION. So the only reliable way
11628 to detect them is to check the flags of their containing
11629 section. */
11630 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
11631 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
11632 ;
11633 else
11634#endif
fbeb56a4
DK
11635 value -= S_GET_VALUE (fixP->fx_addsy);
11636 }
11637#endif
252b5132
RH
11638
11639 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 11640 and we must not disappoint it. */
252b5132 11641#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 11642 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
11643 switch (fixP->fx_r_type)
11644 {
11645 case BFD_RELOC_386_PLT32:
3e73aa7c 11646 case BFD_RELOC_X86_64_PLT32:
b9519cfe
L
11647 /* Make the jump instruction point to the address of the operand.
11648 At runtime we merely add the offset to the actual PLT entry.
11649 NB: Subtract the offset size only for jump instructions. */
11650 if (fixP->fx_pcrel)
11651 value = -4;
47926f60 11652 break;
31312f95 11653
13ae64f3
JJ
11654 case BFD_RELOC_386_TLS_GD:
11655 case BFD_RELOC_386_TLS_LDM:
13ae64f3 11656 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
11657 case BFD_RELOC_386_TLS_IE:
11658 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 11659 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
11660 case BFD_RELOC_X86_64_TLSGD:
11661 case BFD_RELOC_X86_64_TLSLD:
11662 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 11663 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
11664 value = 0; /* Fully resolved at runtime. No addend. */
11665 /* Fallthrough */
11666 case BFD_RELOC_386_TLS_LE:
11667 case BFD_RELOC_386_TLS_LDO_32:
11668 case BFD_RELOC_386_TLS_LE_32:
11669 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 11670 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 11671 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 11672 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
11673 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11674 break;
11675
67a4f2b7
AO
11676 case BFD_RELOC_386_TLS_DESC_CALL:
11677 case BFD_RELOC_X86_64_TLSDESC_CALL:
11678 value = 0; /* Fully resolved at runtime. No addend. */
11679 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11680 fixP->fx_done = 0;
11681 return;
11682
47926f60
KH
11683 case BFD_RELOC_VTABLE_INHERIT:
11684 case BFD_RELOC_VTABLE_ENTRY:
11685 fixP->fx_done = 0;
94f592af 11686 return;
47926f60
KH
11687
11688 default:
11689 break;
11690 }
11691#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 11692 *valP = value;
f86103b7 11693#endif /* !defined (TE_Mach) */
3e73aa7c 11694
3e73aa7c 11695 /* Are we finished with this relocation now? */
c6682705 11696 if (fixP->fx_addsy == NULL)
3e73aa7c 11697 fixP->fx_done = 1;
fbeb56a4
DK
11698#if defined (OBJ_COFF) && defined (TE_PE)
11699 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
11700 {
11701 fixP->fx_done = 0;
11702 /* Remember value for tc_gen_reloc. */
11703 fixP->fx_addnumber = value;
11704 /* Clear out the frag for now. */
11705 value = 0;
11706 }
11707#endif
3e73aa7c
JH
11708 else if (use_rela_relocations)
11709 {
11710 fixP->fx_no_overflow = 1;
062cd5e7
AS
11711 /* Remember value for tc_gen_reloc. */
11712 fixP->fx_addnumber = value;
3e73aa7c
JH
11713 value = 0;
11714 }
f86103b7 11715
94f592af 11716 md_number_to_chars (p, value, fixP->fx_size);
252b5132 11717}
252b5132 11718\f
6d4af3c2 11719const char *
499ac353 11720md_atof (int type, char *litP, int *sizeP)
252b5132 11721{
499ac353
NC
11722 /* This outputs the LITTLENUMs in REVERSE order;
11723 in accord with the bigendian 386. */
11724 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
11725}
11726\f
2d545b82 11727static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 11728
252b5132 11729static char *
e3bb37b5 11730output_invalid (int c)
252b5132 11731{
3882b010 11732 if (ISPRINT (c))
f9f21a03
L
11733 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11734 "'%c'", c);
252b5132 11735 else
f9f21a03 11736 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 11737 "(0x%x)", (unsigned char) c);
252b5132
RH
11738 return output_invalid_buf;
11739}
11740
af6bdddf 11741/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
11742
11743static const reg_entry *
4d1bb795 11744parse_real_register (char *reg_string, char **end_op)
252b5132 11745{
af6bdddf
AM
11746 char *s = reg_string;
11747 char *p;
252b5132
RH
11748 char reg_name_given[MAX_REG_NAME_SIZE + 1];
11749 const reg_entry *r;
11750
11751 /* Skip possible REGISTER_PREFIX and possible whitespace. */
11752 if (*s == REGISTER_PREFIX)
11753 ++s;
11754
11755 if (is_space_char (*s))
11756 ++s;
11757
11758 p = reg_name_given;
af6bdddf 11759 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
11760 {
11761 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
11762 return (const reg_entry *) NULL;
11763 s++;
252b5132
RH
11764 }
11765
6588847e
DN
11766 /* For naked regs, make sure that we are not dealing with an identifier.
11767 This prevents confusing an identifier like `eax_var' with register
11768 `eax'. */
11769 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
11770 return (const reg_entry *) NULL;
11771
af6bdddf 11772 *end_op = s;
252b5132
RH
11773
11774 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
11775
5f47d35b 11776 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 11777 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 11778 {
0e0eea78
JB
11779 if (!cpu_arch_flags.bitfield.cpu8087
11780 && !cpu_arch_flags.bitfield.cpu287
11781 && !cpu_arch_flags.bitfield.cpu387)
11782 return (const reg_entry *) NULL;
11783
5f47d35b
AM
11784 if (is_space_char (*s))
11785 ++s;
11786 if (*s == '(')
11787 {
af6bdddf 11788 ++s;
5f47d35b
AM
11789 if (is_space_char (*s))
11790 ++s;
11791 if (*s >= '0' && *s <= '7')
11792 {
db557034 11793 int fpr = *s - '0';
af6bdddf 11794 ++s;
5f47d35b
AM
11795 if (is_space_char (*s))
11796 ++s;
11797 if (*s == ')')
11798 {
11799 *end_op = s + 1;
1e9cc1c2 11800 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
11801 know (r);
11802 return r + fpr;
5f47d35b 11803 }
5f47d35b 11804 }
47926f60 11805 /* We have "%st(" then garbage. */
5f47d35b
AM
11806 return (const reg_entry *) NULL;
11807 }
11808 }
11809
a60de03c
JB
11810 if (r == NULL || allow_pseudo_reg)
11811 return r;
11812
0dfbf9d7 11813 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
11814 return (const reg_entry *) NULL;
11815
dc821c5f 11816 if ((r->reg_type.bitfield.dword
00cee14f 11817 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
4a5c67ed
JB
11818 || r->reg_type.bitfield.class == RegCR
11819 || r->reg_type.bitfield.class == RegDR
11820 || r->reg_type.bitfield.class == RegTR)
192dc9c6
JB
11821 && !cpu_arch_flags.bitfield.cpui386)
11822 return (const reg_entry *) NULL;
11823
3528c362 11824 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
192dc9c6
JB
11825 return (const reg_entry *) NULL;
11826
6e041cf4
JB
11827 if (!cpu_arch_flags.bitfield.cpuavx512f)
11828 {
f74a6307
JB
11829 if (r->reg_type.bitfield.zmmword
11830 || r->reg_type.bitfield.class == RegMask)
6e041cf4 11831 return (const reg_entry *) NULL;
40f12533 11832
6e041cf4
JB
11833 if (!cpu_arch_flags.bitfield.cpuavx)
11834 {
11835 if (r->reg_type.bitfield.ymmword)
11836 return (const reg_entry *) NULL;
1848e567 11837
6e041cf4
JB
11838 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
11839 return (const reg_entry *) NULL;
11840 }
11841 }
43234a1e 11842
f74a6307 11843 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
1adf7f56
JB
11844 return (const reg_entry *) NULL;
11845
db51cc60 11846 /* Don't allow fake index register unless allow_index_reg isn't 0. */
e968fc9b 11847 if (!allow_index_reg && r->reg_num == RegIZ)
db51cc60
L
11848 return (const reg_entry *) NULL;
11849
1d3f8286
JB
11850 /* Upper 16 vector registers are only available with VREX in 64bit
11851 mode, and require EVEX encoding. */
11852 if (r->reg_flags & RegVRex)
43234a1e 11853 {
e951d5ca 11854 if (!cpu_arch_flags.bitfield.cpuavx512f
43234a1e
L
11855 || flag_code != CODE_64BIT)
11856 return (const reg_entry *) NULL;
1d3f8286
JB
11857
11858 i.vec_encoding = vex_encoding_evex;
43234a1e
L
11859 }
11860
4787f4a5 11861 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
4a5c67ed 11862 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
1ae00879 11863 && flag_code != CODE_64BIT)
20f0a1fc 11864 return (const reg_entry *) NULL;
1ae00879 11865
00cee14f
JB
11866 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
11867 && !intel_syntax)
b7240065
JB
11868 return (const reg_entry *) NULL;
11869
252b5132
RH
11870 return r;
11871}
4d1bb795
JB
11872
11873/* REG_STRING starts *before* REGISTER_PREFIX. */
11874
11875static const reg_entry *
11876parse_register (char *reg_string, char **end_op)
11877{
11878 const reg_entry *r;
11879
11880 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
11881 r = parse_real_register (reg_string, end_op);
11882 else
11883 r = NULL;
11884 if (!r)
11885 {
11886 char *save = input_line_pointer;
11887 char c;
11888 symbolS *symbolP;
11889
11890 input_line_pointer = reg_string;
d02603dc 11891 c = get_symbol_name (&reg_string);
4d1bb795
JB
11892 symbolP = symbol_find (reg_string);
11893 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
11894 {
11895 const expressionS *e = symbol_get_value_expression (symbolP);
11896
0398aac5 11897 know (e->X_op == O_register);
4eed87de 11898 know (e->X_add_number >= 0
c3fe08fa 11899 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 11900 r = i386_regtab + e->X_add_number;
d3bb6b49 11901 if ((r->reg_flags & RegVRex))
86fa6981 11902 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
11903 *end_op = input_line_pointer;
11904 }
11905 *input_line_pointer = c;
11906 input_line_pointer = save;
11907 }
11908 return r;
11909}
11910
11911int
11912i386_parse_name (char *name, expressionS *e, char *nextcharP)
11913{
11914 const reg_entry *r;
11915 char *end = input_line_pointer;
11916
11917 *end = *nextcharP;
11918 r = parse_register (name, &input_line_pointer);
11919 if (r && end <= input_line_pointer)
11920 {
11921 *nextcharP = *input_line_pointer;
11922 *input_line_pointer = 0;
11923 e->X_op = O_register;
11924 e->X_add_number = r - i386_regtab;
11925 return 1;
11926 }
11927 input_line_pointer = end;
11928 *end = 0;
ee86248c 11929 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
11930}
11931
11932void
11933md_operand (expressionS *e)
11934{
ee86248c
JB
11935 char *end;
11936 const reg_entry *r;
4d1bb795 11937
ee86248c
JB
11938 switch (*input_line_pointer)
11939 {
11940 case REGISTER_PREFIX:
11941 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
11942 if (r)
11943 {
11944 e->X_op = O_register;
11945 e->X_add_number = r - i386_regtab;
11946 input_line_pointer = end;
11947 }
ee86248c
JB
11948 break;
11949
11950 case '[':
9c2799c2 11951 gas_assert (intel_syntax);
ee86248c
JB
11952 end = input_line_pointer++;
11953 expression (e);
11954 if (*input_line_pointer == ']')
11955 {
11956 ++input_line_pointer;
11957 e->X_op_symbol = make_expr_symbol (e);
11958 e->X_add_symbol = NULL;
11959 e->X_add_number = 0;
11960 e->X_op = O_index;
11961 }
11962 else
11963 {
11964 e->X_op = O_absent;
11965 input_line_pointer = end;
11966 }
11967 break;
4d1bb795
JB
11968 }
11969}
11970
252b5132 11971\f
4cc782b5 11972#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 11973const char *md_shortopts = "kVQ:sqnO::";
252b5132 11974#else
b6f8c7c4 11975const char *md_shortopts = "qnO::";
252b5132 11976#endif
6e0b89ee 11977
3e73aa7c 11978#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
11979#define OPTION_64 (OPTION_MD_BASE + 1)
11980#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
11981#define OPTION_MARCH (OPTION_MD_BASE + 3)
11982#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
11983#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
11984#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
11985#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
11986#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 11987#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 11988#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 11989#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
11990#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
11991#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
11992#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 11993#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
11994#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
11995#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 11996#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 11997#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 11998#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 11999#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
12000#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
12001#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 12002#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b4a3a7b4 12003#define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
03751133 12004#define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
e379e5f3
L
12005#define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
12006#define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
12007#define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
76cf450b 12008#define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
b3b91714 12009
99ad8390
NC
12010struct option md_longopts[] =
12011{
3e73aa7c 12012 {"32", no_argument, NULL, OPTION_32},
321098a5 12013#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 12014 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 12015 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
12016#endif
12017#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 12018 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 12019 {"mshared", no_argument, NULL, OPTION_MSHARED},
b4a3a7b4 12020 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
6e0b89ee 12021#endif
b3b91714 12022 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
12023 {"march", required_argument, NULL, OPTION_MARCH},
12024 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
12025 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
12026 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
12027 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
12028 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 12029 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 12030 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 12031 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 12032 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
03751133 12033 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
7e8b059b 12034 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
12035 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
12036 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
12037# if defined (TE_PE) || defined (TE_PEP)
12038 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
12039#endif
d1982f93 12040 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 12041 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 12042 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 12043 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
e379e5f3
L
12044 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
12045 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
12046 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
76cf450b 12047 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
5db04b09
L
12048 {"mamd64", no_argument, NULL, OPTION_MAMD64},
12049 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
12050 {NULL, no_argument, NULL, 0}
12051};
12052size_t md_longopts_size = sizeof (md_longopts);
12053
12054int
17b9d67d 12055md_parse_option (int c, const char *arg)
252b5132 12056{
91d6fa6a 12057 unsigned int j;
e379e5f3 12058 char *arch, *next, *saved, *type;
9103f4f4 12059
252b5132
RH
12060 switch (c)
12061 {
12b55ccc
L
12062 case 'n':
12063 optimize_align_code = 0;
12064 break;
12065
a38cf1db
AM
12066 case 'q':
12067 quiet_warnings = 1;
252b5132
RH
12068 break;
12069
12070#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
12071 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
12072 should be emitted or not. FIXME: Not implemented. */
12073 case 'Q':
d4693039
JB
12074 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
12075 return 0;
252b5132
RH
12076 break;
12077
12078 /* -V: SVR4 argument to print version ID. */
12079 case 'V':
12080 print_version_id ();
12081 break;
12082
a38cf1db
AM
12083 /* -k: Ignore for FreeBSD compatibility. */
12084 case 'k':
252b5132 12085 break;
4cc782b5
ILT
12086
12087 case 's':
12088 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 12089 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 12090 break;
8dcea932
L
12091
12092 case OPTION_MSHARED:
12093 shared = 1;
12094 break;
b4a3a7b4
L
12095
12096 case OPTION_X86_USED_NOTE:
12097 if (strcasecmp (arg, "yes") == 0)
12098 x86_used_note = 1;
12099 else if (strcasecmp (arg, "no") == 0)
12100 x86_used_note = 0;
12101 else
12102 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
12103 break;
12104
12105
99ad8390 12106#endif
321098a5 12107#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 12108 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
12109 case OPTION_64:
12110 {
12111 const char **list, **l;
12112
3e73aa7c
JH
12113 list = bfd_target_list ();
12114 for (l = list; *l != NULL; l++)
8620418b 12115 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
12116 || strcmp (*l, "coff-x86-64") == 0
12117 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
12118 || strcmp (*l, "pei-x86-64") == 0
12119 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
12120 {
12121 default_arch = "x86_64";
12122 break;
12123 }
3e73aa7c 12124 if (*l == NULL)
2b5d6a91 12125 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
12126 free (list);
12127 }
12128 break;
12129#endif
252b5132 12130
351f65ca 12131#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 12132 case OPTION_X32:
351f65ca
L
12133 if (IS_ELF)
12134 {
12135 const char **list, **l;
12136
12137 list = bfd_target_list ();
12138 for (l = list; *l != NULL; l++)
12139 if (CONST_STRNEQ (*l, "elf32-x86-64"))
12140 {
12141 default_arch = "x86_64:32";
12142 break;
12143 }
12144 if (*l == NULL)
2b5d6a91 12145 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
12146 free (list);
12147 }
12148 else
12149 as_fatal (_("32bit x86_64 is only supported for ELF"));
12150 break;
12151#endif
12152
6e0b89ee
AM
12153 case OPTION_32:
12154 default_arch = "i386";
12155 break;
12156
b3b91714
AM
12157 case OPTION_DIVIDE:
12158#ifdef SVR4_COMMENT_CHARS
12159 {
12160 char *n, *t;
12161 const char *s;
12162
add39d23 12163 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
12164 t = n;
12165 for (s = i386_comment_chars; *s != '\0'; s++)
12166 if (*s != '/')
12167 *t++ = *s;
12168 *t = '\0';
12169 i386_comment_chars = n;
12170 }
12171#endif
12172 break;
12173
9103f4f4 12174 case OPTION_MARCH:
293f5f65
L
12175 saved = xstrdup (arg);
12176 arch = saved;
12177 /* Allow -march=+nosse. */
12178 if (*arch == '+')
12179 arch++;
6305a203 12180 do
9103f4f4 12181 {
6305a203 12182 if (*arch == '.')
2b5d6a91 12183 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
12184 next = strchr (arch, '+');
12185 if (next)
12186 *next++ = '\0';
91d6fa6a 12187 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 12188 {
91d6fa6a 12189 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 12190 {
6305a203 12191 /* Processor. */
1ded5609
JB
12192 if (! cpu_arch[j].flags.bitfield.cpui386)
12193 continue;
12194
91d6fa6a 12195 cpu_arch_name = cpu_arch[j].name;
6305a203 12196 cpu_sub_arch_name = NULL;
91d6fa6a
NC
12197 cpu_arch_flags = cpu_arch[j].flags;
12198 cpu_arch_isa = cpu_arch[j].type;
12199 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
12200 if (!cpu_arch_tune_set)
12201 {
12202 cpu_arch_tune = cpu_arch_isa;
12203 cpu_arch_tune_flags = cpu_arch_isa_flags;
12204 }
12205 break;
12206 }
91d6fa6a
NC
12207 else if (*cpu_arch [j].name == '.'
12208 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 12209 {
33eaf5de 12210 /* ISA extension. */
6305a203 12211 i386_cpu_flags flags;
309d3373 12212
293f5f65
L
12213 flags = cpu_flags_or (cpu_arch_flags,
12214 cpu_arch[j].flags);
81486035 12215
5b64d091 12216 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
12217 {
12218 if (cpu_sub_arch_name)
12219 {
12220 char *name = cpu_sub_arch_name;
12221 cpu_sub_arch_name = concat (name,
91d6fa6a 12222 cpu_arch[j].name,
1bf57e9f 12223 (const char *) NULL);
6305a203
L
12224 free (name);
12225 }
12226 else
91d6fa6a 12227 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 12228 cpu_arch_flags = flags;
a586129e 12229 cpu_arch_isa_flags = flags;
6305a203 12230 }
0089dace
L
12231 else
12232 cpu_arch_isa_flags
12233 = cpu_flags_or (cpu_arch_isa_flags,
12234 cpu_arch[j].flags);
6305a203 12235 break;
ccc9c027 12236 }
9103f4f4 12237 }
6305a203 12238
293f5f65
L
12239 if (j >= ARRAY_SIZE (cpu_arch))
12240 {
33eaf5de 12241 /* Disable an ISA extension. */
293f5f65
L
12242 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12243 if (strcmp (arch, cpu_noarch [j].name) == 0)
12244 {
12245 i386_cpu_flags flags;
12246
12247 flags = cpu_flags_and_not (cpu_arch_flags,
12248 cpu_noarch[j].flags);
12249 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12250 {
12251 if (cpu_sub_arch_name)
12252 {
12253 char *name = cpu_sub_arch_name;
12254 cpu_sub_arch_name = concat (arch,
12255 (const char *) NULL);
12256 free (name);
12257 }
12258 else
12259 cpu_sub_arch_name = xstrdup (arch);
12260 cpu_arch_flags = flags;
12261 cpu_arch_isa_flags = flags;
12262 }
12263 break;
12264 }
12265
12266 if (j >= ARRAY_SIZE (cpu_noarch))
12267 j = ARRAY_SIZE (cpu_arch);
12268 }
12269
91d6fa6a 12270 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 12271 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
12272
12273 arch = next;
9103f4f4 12274 }
293f5f65
L
12275 while (next != NULL);
12276 free (saved);
9103f4f4
L
12277 break;
12278
12279 case OPTION_MTUNE:
12280 if (*arg == '.')
2b5d6a91 12281 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 12282 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 12283 {
91d6fa6a 12284 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 12285 {
ccc9c027 12286 cpu_arch_tune_set = 1;
91d6fa6a
NC
12287 cpu_arch_tune = cpu_arch [j].type;
12288 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
12289 break;
12290 }
12291 }
91d6fa6a 12292 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 12293 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
12294 break;
12295
1efbbeb4
L
12296 case OPTION_MMNEMONIC:
12297 if (strcasecmp (arg, "att") == 0)
12298 intel_mnemonic = 0;
12299 else if (strcasecmp (arg, "intel") == 0)
12300 intel_mnemonic = 1;
12301 else
2b5d6a91 12302 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
12303 break;
12304
12305 case OPTION_MSYNTAX:
12306 if (strcasecmp (arg, "att") == 0)
12307 intel_syntax = 0;
12308 else if (strcasecmp (arg, "intel") == 0)
12309 intel_syntax = 1;
12310 else
2b5d6a91 12311 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
12312 break;
12313
12314 case OPTION_MINDEX_REG:
12315 allow_index_reg = 1;
12316 break;
12317
12318 case OPTION_MNAKED_REG:
12319 allow_naked_reg = 1;
12320 break;
12321
c0f3af97
L
12322 case OPTION_MSSE2AVX:
12323 sse2avx = 1;
12324 break;
12325
daf50ae7
L
12326 case OPTION_MSSE_CHECK:
12327 if (strcasecmp (arg, "error") == 0)
7bab8ab5 12328 sse_check = check_error;
daf50ae7 12329 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 12330 sse_check = check_warning;
daf50ae7 12331 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 12332 sse_check = check_none;
daf50ae7 12333 else
2b5d6a91 12334 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
12335 break;
12336
7bab8ab5
JB
12337 case OPTION_MOPERAND_CHECK:
12338 if (strcasecmp (arg, "error") == 0)
12339 operand_check = check_error;
12340 else if (strcasecmp (arg, "warning") == 0)
12341 operand_check = check_warning;
12342 else if (strcasecmp (arg, "none") == 0)
12343 operand_check = check_none;
12344 else
12345 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
12346 break;
12347
539f890d
L
12348 case OPTION_MAVXSCALAR:
12349 if (strcasecmp (arg, "128") == 0)
12350 avxscalar = vex128;
12351 else if (strcasecmp (arg, "256") == 0)
12352 avxscalar = vex256;
12353 else
2b5d6a91 12354 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
12355 break;
12356
03751133
L
12357 case OPTION_MVEXWIG:
12358 if (strcmp (arg, "0") == 0)
40c9c8de 12359 vexwig = vexw0;
03751133 12360 else if (strcmp (arg, "1") == 0)
40c9c8de 12361 vexwig = vexw1;
03751133
L
12362 else
12363 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
12364 break;
12365
7e8b059b
L
12366 case OPTION_MADD_BND_PREFIX:
12367 add_bnd_prefix = 1;
12368 break;
12369
43234a1e
L
12370 case OPTION_MEVEXLIG:
12371 if (strcmp (arg, "128") == 0)
12372 evexlig = evexl128;
12373 else if (strcmp (arg, "256") == 0)
12374 evexlig = evexl256;
12375 else if (strcmp (arg, "512") == 0)
12376 evexlig = evexl512;
12377 else
12378 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
12379 break;
12380
d3d3c6db
IT
12381 case OPTION_MEVEXRCIG:
12382 if (strcmp (arg, "rne") == 0)
12383 evexrcig = rne;
12384 else if (strcmp (arg, "rd") == 0)
12385 evexrcig = rd;
12386 else if (strcmp (arg, "ru") == 0)
12387 evexrcig = ru;
12388 else if (strcmp (arg, "rz") == 0)
12389 evexrcig = rz;
12390 else
12391 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
12392 break;
12393
43234a1e
L
12394 case OPTION_MEVEXWIG:
12395 if (strcmp (arg, "0") == 0)
12396 evexwig = evexw0;
12397 else if (strcmp (arg, "1") == 0)
12398 evexwig = evexw1;
12399 else
12400 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
12401 break;
12402
167ad85b
TG
12403# if defined (TE_PE) || defined (TE_PEP)
12404 case OPTION_MBIG_OBJ:
12405 use_big_obj = 1;
12406 break;
12407#endif
12408
d1982f93 12409 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
12410 if (strcasecmp (arg, "yes") == 0)
12411 omit_lock_prefix = 1;
12412 else if (strcasecmp (arg, "no") == 0)
12413 omit_lock_prefix = 0;
12414 else
12415 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
12416 break;
12417
e4e00185
AS
12418 case OPTION_MFENCE_AS_LOCK_ADD:
12419 if (strcasecmp (arg, "yes") == 0)
12420 avoid_fence = 1;
12421 else if (strcasecmp (arg, "no") == 0)
12422 avoid_fence = 0;
12423 else
12424 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
12425 break;
12426
0cb4071e
L
12427 case OPTION_MRELAX_RELOCATIONS:
12428 if (strcasecmp (arg, "yes") == 0)
12429 generate_relax_relocations = 1;
12430 else if (strcasecmp (arg, "no") == 0)
12431 generate_relax_relocations = 0;
12432 else
12433 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
12434 break;
12435
e379e5f3
L
12436 case OPTION_MALIGN_BRANCH_BOUNDARY:
12437 {
12438 char *end;
12439 long int align = strtoul (arg, &end, 0);
12440 if (*end == '\0')
12441 {
12442 if (align == 0)
12443 {
12444 align_branch_power = 0;
12445 break;
12446 }
12447 else if (align >= 16)
12448 {
12449 int align_power;
12450 for (align_power = 0;
12451 (align & 1) == 0;
12452 align >>= 1, align_power++)
12453 continue;
12454 /* Limit alignment power to 31. */
12455 if (align == 1 && align_power < 32)
12456 {
12457 align_branch_power = align_power;
12458 break;
12459 }
12460 }
12461 }
12462 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
12463 }
12464 break;
12465
12466 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
12467 {
12468 char *end;
12469 int align = strtoul (arg, &end, 0);
12470 /* Some processors only support 5 prefixes. */
12471 if (*end == '\0' && align >= 0 && align < 6)
12472 {
12473 align_branch_prefix_size = align;
12474 break;
12475 }
12476 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
12477 arg);
12478 }
12479 break;
12480
12481 case OPTION_MALIGN_BRANCH:
12482 align_branch = 0;
12483 saved = xstrdup (arg);
12484 type = saved;
12485 do
12486 {
12487 next = strchr (type, '+');
12488 if (next)
12489 *next++ = '\0';
12490 if (strcasecmp (type, "jcc") == 0)
12491 align_branch |= align_branch_jcc_bit;
12492 else if (strcasecmp (type, "fused") == 0)
12493 align_branch |= align_branch_fused_bit;
12494 else if (strcasecmp (type, "jmp") == 0)
12495 align_branch |= align_branch_jmp_bit;
12496 else if (strcasecmp (type, "call") == 0)
12497 align_branch |= align_branch_call_bit;
12498 else if (strcasecmp (type, "ret") == 0)
12499 align_branch |= align_branch_ret_bit;
12500 else if (strcasecmp (type, "indirect") == 0)
12501 align_branch |= align_branch_indirect_bit;
12502 else
12503 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
12504 type = next;
12505 }
12506 while (next != NULL);
12507 free (saved);
12508 break;
12509
76cf450b
L
12510 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
12511 align_branch_power = 5;
12512 align_branch_prefix_size = 5;
12513 align_branch = (align_branch_jcc_bit
12514 | align_branch_fused_bit
12515 | align_branch_jmp_bit);
12516 break;
12517
5db04b09 12518 case OPTION_MAMD64:
e89c5eaa 12519 intel64 = 0;
5db04b09
L
12520 break;
12521
12522 case OPTION_MINTEL64:
e89c5eaa 12523 intel64 = 1;
5db04b09
L
12524 break;
12525
b6f8c7c4
L
12526 case 'O':
12527 if (arg == NULL)
12528 {
12529 optimize = 1;
12530 /* Turn off -Os. */
12531 optimize_for_space = 0;
12532 }
12533 else if (*arg == 's')
12534 {
12535 optimize_for_space = 1;
12536 /* Turn on all encoding optimizations. */
41fd2579 12537 optimize = INT_MAX;
b6f8c7c4
L
12538 }
12539 else
12540 {
12541 optimize = atoi (arg);
12542 /* Turn off -Os. */
12543 optimize_for_space = 0;
12544 }
12545 break;
12546
252b5132
RH
12547 default:
12548 return 0;
12549 }
12550 return 1;
12551}
12552
8a2c8fef
L
12553#define MESSAGE_TEMPLATE \
12554" "
12555
293f5f65
L
12556static char *
12557output_message (FILE *stream, char *p, char *message, char *start,
12558 int *left_p, const char *name, int len)
12559{
12560 int size = sizeof (MESSAGE_TEMPLATE);
12561 int left = *left_p;
12562
12563 /* Reserve 2 spaces for ", " or ",\0" */
12564 left -= len + 2;
12565
12566 /* Check if there is any room. */
12567 if (left >= 0)
12568 {
12569 if (p != start)
12570 {
12571 *p++ = ',';
12572 *p++ = ' ';
12573 }
12574 p = mempcpy (p, name, len);
12575 }
12576 else
12577 {
12578 /* Output the current message now and start a new one. */
12579 *p++ = ',';
12580 *p = '\0';
12581 fprintf (stream, "%s\n", message);
12582 p = start;
12583 left = size - (start - message) - len - 2;
12584
12585 gas_assert (left >= 0);
12586
12587 p = mempcpy (p, name, len);
12588 }
12589
12590 *left_p = left;
12591 return p;
12592}
12593
8a2c8fef 12594static void
1ded5609 12595show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
12596{
12597 static char message[] = MESSAGE_TEMPLATE;
12598 char *start = message + 27;
12599 char *p;
12600 int size = sizeof (MESSAGE_TEMPLATE);
12601 int left;
12602 const char *name;
12603 int len;
12604 unsigned int j;
12605
12606 p = start;
12607 left = size - (start - message);
12608 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12609 {
12610 /* Should it be skipped? */
12611 if (cpu_arch [j].skip)
12612 continue;
12613
12614 name = cpu_arch [j].name;
12615 len = cpu_arch [j].len;
12616 if (*name == '.')
12617 {
12618 /* It is an extension. Skip if we aren't asked to show it. */
12619 if (ext)
12620 {
12621 name++;
12622 len--;
12623 }
12624 else
12625 continue;
12626 }
12627 else if (ext)
12628 {
12629 /* It is an processor. Skip if we show only extension. */
12630 continue;
12631 }
1ded5609
JB
12632 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
12633 {
12634 /* It is an impossible processor - skip. */
12635 continue;
12636 }
8a2c8fef 12637
293f5f65 12638 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
12639 }
12640
293f5f65
L
12641 /* Display disabled extensions. */
12642 if (ext)
12643 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12644 {
12645 name = cpu_noarch [j].name;
12646 len = cpu_noarch [j].len;
12647 p = output_message (stream, p, message, start, &left, name,
12648 len);
12649 }
12650
8a2c8fef
L
12651 *p = '\0';
12652 fprintf (stream, "%s\n", message);
12653}
12654
252b5132 12655void
8a2c8fef 12656md_show_usage (FILE *stream)
252b5132 12657{
4cc782b5
ILT
12658#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12659 fprintf (stream, _("\
d4693039 12660 -Qy, -Qn ignored\n\
a38cf1db 12661 -V print assembler version number\n\
b3b91714
AM
12662 -k ignored\n"));
12663#endif
12664 fprintf (stream, _("\
12b55ccc 12665 -n Do not optimize code alignment\n\
b3b91714
AM
12666 -q quieten some warnings\n"));
12667#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12668 fprintf (stream, _("\
a38cf1db 12669 -s ignored\n"));
b3b91714 12670#endif
d7f449c0
L
12671#if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12672 || defined (TE_PE) || defined (TE_PEP))
751d281c 12673 fprintf (stream, _("\
570561f7 12674 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 12675#endif
b3b91714
AM
12676#ifdef SVR4_COMMENT_CHARS
12677 fprintf (stream, _("\
12678 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
12679#else
12680 fprintf (stream, _("\
b3b91714 12681 --divide ignored\n"));
4cc782b5 12682#endif
9103f4f4 12683 fprintf (stream, _("\
6305a203 12684 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 12685 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 12686 show_arch (stream, 0, 1);
8a2c8fef
L
12687 fprintf (stream, _("\
12688 EXTENSION is combination of:\n"));
1ded5609 12689 show_arch (stream, 1, 0);
6305a203 12690 fprintf (stream, _("\
8a2c8fef 12691 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 12692 show_arch (stream, 0, 0);
ba104c83 12693 fprintf (stream, _("\
c0f3af97
L
12694 -msse2avx encode SSE instructions with VEX prefix\n"));
12695 fprintf (stream, _("\
7c5c05ef 12696 -msse-check=[none|error|warning] (default: warning)\n\
daf50ae7
L
12697 check SSE instructions\n"));
12698 fprintf (stream, _("\
7c5c05ef 12699 -moperand-check=[none|error|warning] (default: warning)\n\
7bab8ab5
JB
12700 check operand combinations for validity\n"));
12701 fprintf (stream, _("\
7c5c05ef
L
12702 -mavxscalar=[128|256] (default: 128)\n\
12703 encode scalar AVX instructions with specific vector\n\
539f890d
L
12704 length\n"));
12705 fprintf (stream, _("\
03751133
L
12706 -mvexwig=[0|1] (default: 0)\n\
12707 encode VEX instructions with specific VEX.W value\n\
12708 for VEX.W bit ignored instructions\n"));
12709 fprintf (stream, _("\
7c5c05ef
L
12710 -mevexlig=[128|256|512] (default: 128)\n\
12711 encode scalar EVEX instructions with specific vector\n\
43234a1e
L
12712 length\n"));
12713 fprintf (stream, _("\
7c5c05ef
L
12714 -mevexwig=[0|1] (default: 0)\n\
12715 encode EVEX instructions with specific EVEX.W value\n\
43234a1e
L
12716 for EVEX.W bit ignored instructions\n"));
12717 fprintf (stream, _("\
7c5c05ef 12718 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
d3d3c6db
IT
12719 encode EVEX instructions with specific EVEX.RC value\n\
12720 for SAE-only ignored instructions\n"));
12721 fprintf (stream, _("\
7c5c05ef
L
12722 -mmnemonic=[att|intel] "));
12723 if (SYSV386_COMPAT)
12724 fprintf (stream, _("(default: att)\n"));
12725 else
12726 fprintf (stream, _("(default: intel)\n"));
12727 fprintf (stream, _("\
12728 use AT&T/Intel mnemonic\n"));
ba104c83 12729 fprintf (stream, _("\
7c5c05ef
L
12730 -msyntax=[att|intel] (default: att)\n\
12731 use AT&T/Intel syntax\n"));
ba104c83
L
12732 fprintf (stream, _("\
12733 -mindex-reg support pseudo index registers\n"));
12734 fprintf (stream, _("\
12735 -mnaked-reg don't require `%%' prefix for registers\n"));
12736 fprintf (stream, _("\
7e8b059b 12737 -madd-bnd-prefix add BND prefix for all valid branches\n"));
b4a3a7b4 12738#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8dcea932
L
12739 fprintf (stream, _("\
12740 -mshared disable branch optimization for shared code\n"));
b4a3a7b4
L
12741 fprintf (stream, _("\
12742 -mx86-used-note=[no|yes] "));
12743 if (DEFAULT_X86_USED_NOTE)
12744 fprintf (stream, _("(default: yes)\n"));
12745 else
12746 fprintf (stream, _("(default: no)\n"));
12747 fprintf (stream, _("\
12748 generate x86 used ISA and feature properties\n"));
12749#endif
12750#if defined (TE_PE) || defined (TE_PEP)
167ad85b
TG
12751 fprintf (stream, _("\
12752 -mbig-obj generate big object files\n"));
12753#endif
d022bddd 12754 fprintf (stream, _("\
7c5c05ef 12755 -momit-lock-prefix=[no|yes] (default: no)\n\
d022bddd 12756 strip all lock prefixes\n"));
5db04b09 12757 fprintf (stream, _("\
7c5c05ef 12758 -mfence-as-lock-add=[no|yes] (default: no)\n\
e4e00185
AS
12759 encode lfence, mfence and sfence as\n\
12760 lock addl $0x0, (%%{re}sp)\n"));
12761 fprintf (stream, _("\
7c5c05ef
L
12762 -mrelax-relocations=[no|yes] "));
12763 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
12764 fprintf (stream, _("(default: yes)\n"));
12765 else
12766 fprintf (stream, _("(default: no)\n"));
12767 fprintf (stream, _("\
0cb4071e
L
12768 generate relax relocations\n"));
12769 fprintf (stream, _("\
e379e5f3
L
12770 -malign-branch-boundary=NUM (default: 0)\n\
12771 align branches within NUM byte boundary\n"));
12772 fprintf (stream, _("\
12773 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
12774 TYPE is combination of jcc, fused, jmp, call, ret,\n\
12775 indirect\n\
12776 specify types of branches to align\n"));
12777 fprintf (stream, _("\
12778 -malign-branch-prefix-size=NUM (default: 5)\n\
12779 align branches with NUM prefixes per instruction\n"));
12780 fprintf (stream, _("\
76cf450b
L
12781 -mbranches-within-32B-boundaries\n\
12782 align branches within 32 byte boundary\n"));
12783 fprintf (stream, _("\
7c5c05ef 12784 -mamd64 accept only AMD64 ISA [default]\n"));
5db04b09
L
12785 fprintf (stream, _("\
12786 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
12787}
12788
3e73aa7c 12789#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 12790 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 12791 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
12792
12793/* Pick the target format to use. */
12794
47926f60 12795const char *
e3bb37b5 12796i386_target_format (void)
252b5132 12797{
351f65ca
L
12798 if (!strncmp (default_arch, "x86_64", 6))
12799 {
12800 update_code_flag (CODE_64BIT, 1);
12801 if (default_arch[6] == '\0')
7f56bc95 12802 x86_elf_abi = X86_64_ABI;
351f65ca 12803 else
7f56bc95 12804 x86_elf_abi = X86_64_X32_ABI;
351f65ca 12805 }
3e73aa7c 12806 else if (!strcmp (default_arch, "i386"))
78f12dd3 12807 update_code_flag (CODE_32BIT, 1);
5197d474
L
12808 else if (!strcmp (default_arch, "iamcu"))
12809 {
12810 update_code_flag (CODE_32BIT, 1);
12811 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
12812 {
12813 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
12814 cpu_arch_name = "iamcu";
12815 cpu_sub_arch_name = NULL;
12816 cpu_arch_flags = iamcu_flags;
12817 cpu_arch_isa = PROCESSOR_IAMCU;
12818 cpu_arch_isa_flags = iamcu_flags;
12819 if (!cpu_arch_tune_set)
12820 {
12821 cpu_arch_tune = cpu_arch_isa;
12822 cpu_arch_tune_flags = cpu_arch_isa_flags;
12823 }
12824 }
8d471ec1 12825 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
12826 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
12827 cpu_arch_name);
12828 }
3e73aa7c 12829 else
2b5d6a91 12830 as_fatal (_("unknown architecture"));
89507696
JB
12831
12832 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
12833 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12834 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
12835 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12836
252b5132
RH
12837 switch (OUTPUT_FLAVOR)
12838 {
9384f2ff 12839#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 12840 case bfd_target_aout_flavour:
47926f60 12841 return AOUT_TARGET_FORMAT;
4c63da97 12842#endif
9384f2ff
AM
12843#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
12844# if defined (TE_PE) || defined (TE_PEP)
12845 case bfd_target_coff_flavour:
167ad85b
TG
12846 if (flag_code == CODE_64BIT)
12847 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
12848 else
12849 return "pe-i386";
9384f2ff 12850# elif defined (TE_GO32)
0561d57c
JK
12851 case bfd_target_coff_flavour:
12852 return "coff-go32";
9384f2ff 12853# else
252b5132
RH
12854 case bfd_target_coff_flavour:
12855 return "coff-i386";
9384f2ff 12856# endif
4c63da97 12857#endif
3e73aa7c 12858#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 12859 case bfd_target_elf_flavour:
3e73aa7c 12860 {
351f65ca
L
12861 const char *format;
12862
12863 switch (x86_elf_abi)
4fa24527 12864 {
351f65ca
L
12865 default:
12866 format = ELF_TARGET_FORMAT;
e379e5f3
L
12867#ifndef TE_SOLARIS
12868 tls_get_addr = "___tls_get_addr";
12869#endif
351f65ca 12870 break;
7f56bc95 12871 case X86_64_ABI:
351f65ca 12872 use_rela_relocations = 1;
4fa24527 12873 object_64bit = 1;
e379e5f3
L
12874#ifndef TE_SOLARIS
12875 tls_get_addr = "__tls_get_addr";
12876#endif
351f65ca
L
12877 format = ELF_TARGET_FORMAT64;
12878 break;
7f56bc95 12879 case X86_64_X32_ABI:
4fa24527 12880 use_rela_relocations = 1;
351f65ca 12881 object_64bit = 1;
e379e5f3
L
12882#ifndef TE_SOLARIS
12883 tls_get_addr = "__tls_get_addr";
12884#endif
862be3fb 12885 disallow_64bit_reloc = 1;
351f65ca
L
12886 format = ELF_TARGET_FORMAT32;
12887 break;
4fa24527 12888 }
3632d14b 12889 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 12890 {
7f56bc95 12891 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
12892 as_fatal (_("Intel L1OM is 64bit only"));
12893 return ELF_TARGET_L1OM_FORMAT;
12894 }
b49f93f6 12895 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
12896 {
12897 if (x86_elf_abi != X86_64_ABI)
12898 as_fatal (_("Intel K1OM is 64bit only"));
12899 return ELF_TARGET_K1OM_FORMAT;
12900 }
81486035
L
12901 else if (cpu_arch_isa == PROCESSOR_IAMCU)
12902 {
12903 if (x86_elf_abi != I386_ABI)
12904 as_fatal (_("Intel MCU is 32bit only"));
12905 return ELF_TARGET_IAMCU_FORMAT;
12906 }
8a9036a4 12907 else
351f65ca 12908 return format;
3e73aa7c 12909 }
e57f8c65
TG
12910#endif
12911#if defined (OBJ_MACH_O)
12912 case bfd_target_mach_o_flavour:
d382c579
TG
12913 if (flag_code == CODE_64BIT)
12914 {
12915 use_rela_relocations = 1;
12916 object_64bit = 1;
12917 return "mach-o-x86-64";
12918 }
12919 else
12920 return "mach-o-i386";
4c63da97 12921#endif
252b5132
RH
12922 default:
12923 abort ();
12924 return NULL;
12925 }
12926}
12927
47926f60 12928#endif /* OBJ_MAYBE_ more than one */
252b5132 12929\f
252b5132 12930symbolS *
7016a5d5 12931md_undefined_symbol (char *name)
252b5132 12932{
18dc2407
ILT
12933 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
12934 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
12935 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
12936 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
12937 {
12938 if (!GOT_symbol)
12939 {
12940 if (symbol_find (name))
12941 as_bad (_("GOT already in symbol table"));
12942 GOT_symbol = symbol_new (name, undefined_section,
12943 (valueT) 0, &zero_address_frag);
12944 };
12945 return GOT_symbol;
12946 }
252b5132
RH
12947 return 0;
12948}
12949
12950/* Round up a section size to the appropriate boundary. */
47926f60 12951
252b5132 12952valueT
7016a5d5 12953md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 12954{
4c63da97
AM
12955#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
12956 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
12957 {
12958 /* For a.out, force the section size to be aligned. If we don't do
12959 this, BFD will align it for us, but it will not write out the
12960 final bytes of the section. This may be a bug in BFD, but it is
12961 easier to fix it here since that is how the other a.out targets
12962 work. */
12963 int align;
12964
fd361982 12965 align = bfd_section_alignment (segment);
8d3842cd 12966 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 12967 }
252b5132
RH
12968#endif
12969
12970 return size;
12971}
12972
12973/* On the i386, PC-relative offsets are relative to the start of the
12974 next instruction. That is, the address of the offset, plus its
12975 size, since the offset is always the last part of the insn. */
12976
12977long
e3bb37b5 12978md_pcrel_from (fixS *fixP)
252b5132
RH
12979{
12980 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
12981}
12982
12983#ifndef I386COFF
12984
12985static void
e3bb37b5 12986s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 12987{
29b0f896 12988 int temp;
252b5132 12989
8a75718c
JB
12990#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12991 if (IS_ELF)
12992 obj_elf_section_change_hook ();
12993#endif
252b5132
RH
12994 temp = get_absolute_expression ();
12995 subseg_set (bss_section, (subsegT) temp);
12996 demand_empty_rest_of_line ();
12997}
12998
12999#endif
13000
e379e5f3
L
13001/* Remember constant directive. */
13002
13003void
13004i386_cons_align (int ignore ATTRIBUTE_UNUSED)
13005{
13006 if (last_insn.kind != last_insn_directive
13007 && (bfd_section_flags (now_seg) & SEC_CODE))
13008 {
13009 last_insn.seg = now_seg;
13010 last_insn.kind = last_insn_directive;
13011 last_insn.name = "constant directive";
13012 last_insn.file = as_where (&last_insn.line);
13013 }
13014}
13015
252b5132 13016void
e3bb37b5 13017i386_validate_fix (fixS *fixp)
252b5132 13018{
02a86693 13019 if (fixp->fx_subsy)
252b5132 13020 {
02a86693 13021 if (fixp->fx_subsy == GOT_symbol)
23df1078 13022 {
02a86693
L
13023 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
13024 {
13025 if (!object_64bit)
13026 abort ();
13027#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13028 if (fixp->fx_tcbit2)
56ceb5b5
L
13029 fixp->fx_r_type = (fixp->fx_tcbit
13030 ? BFD_RELOC_X86_64_REX_GOTPCRELX
13031 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
13032 else
13033#endif
13034 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
13035 }
d6ab8113 13036 else
02a86693
L
13037 {
13038 if (!object_64bit)
13039 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
13040 else
13041 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
13042 }
13043 fixp->fx_subsy = 0;
23df1078 13044 }
252b5132 13045 }
02a86693
L
13046#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13047 else if (!object_64bit)
13048 {
13049 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
13050 && fixp->fx_tcbit2)
13051 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
13052 }
13053#endif
252b5132
RH
13054}
13055
252b5132 13056arelent *
7016a5d5 13057tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
13058{
13059 arelent *rel;
13060 bfd_reloc_code_real_type code;
13061
13062 switch (fixp->fx_r_type)
13063 {
8ce3d284 13064#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
13065 case BFD_RELOC_SIZE32:
13066 case BFD_RELOC_SIZE64:
13067 if (S_IS_DEFINED (fixp->fx_addsy)
13068 && !S_IS_EXTERNAL (fixp->fx_addsy))
13069 {
13070 /* Resolve size relocation against local symbol to size of
13071 the symbol plus addend. */
13072 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
13073 if (fixp->fx_r_type == BFD_RELOC_SIZE32
13074 && !fits_in_unsigned_long (value))
13075 as_bad_where (fixp->fx_file, fixp->fx_line,
13076 _("symbol size computation overflow"));
13077 fixp->fx_addsy = NULL;
13078 fixp->fx_subsy = NULL;
13079 md_apply_fix (fixp, (valueT *) &value, NULL);
13080 return NULL;
13081 }
8ce3d284 13082#endif
1a0670f3 13083 /* Fall through. */
8fd4256d 13084
3e73aa7c
JH
13085 case BFD_RELOC_X86_64_PLT32:
13086 case BFD_RELOC_X86_64_GOT32:
13087 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
13088 case BFD_RELOC_X86_64_GOTPCRELX:
13089 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
13090 case BFD_RELOC_386_PLT32:
13091 case BFD_RELOC_386_GOT32:
02a86693 13092 case BFD_RELOC_386_GOT32X:
252b5132
RH
13093 case BFD_RELOC_386_GOTOFF:
13094 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
13095 case BFD_RELOC_386_TLS_GD:
13096 case BFD_RELOC_386_TLS_LDM:
13097 case BFD_RELOC_386_TLS_LDO_32:
13098 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
13099 case BFD_RELOC_386_TLS_IE:
13100 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
13101 case BFD_RELOC_386_TLS_LE_32:
13102 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
13103 case BFD_RELOC_386_TLS_GOTDESC:
13104 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
13105 case BFD_RELOC_X86_64_TLSGD:
13106 case BFD_RELOC_X86_64_TLSLD:
13107 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 13108 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
13109 case BFD_RELOC_X86_64_GOTTPOFF:
13110 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
13111 case BFD_RELOC_X86_64_TPOFF64:
13112 case BFD_RELOC_X86_64_GOTOFF64:
13113 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
13114 case BFD_RELOC_X86_64_GOT64:
13115 case BFD_RELOC_X86_64_GOTPCREL64:
13116 case BFD_RELOC_X86_64_GOTPC64:
13117 case BFD_RELOC_X86_64_GOTPLT64:
13118 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
13119 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13120 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
13121 case BFD_RELOC_RVA:
13122 case BFD_RELOC_VTABLE_ENTRY:
13123 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
13124#ifdef TE_PE
13125 case BFD_RELOC_32_SECREL:
13126#endif
252b5132
RH
13127 code = fixp->fx_r_type;
13128 break;
dbbaec26
L
13129 case BFD_RELOC_X86_64_32S:
13130 if (!fixp->fx_pcrel)
13131 {
13132 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
13133 code = fixp->fx_r_type;
13134 break;
13135 }
1a0670f3 13136 /* Fall through. */
252b5132 13137 default:
93382f6d 13138 if (fixp->fx_pcrel)
252b5132 13139 {
93382f6d
AM
13140 switch (fixp->fx_size)
13141 {
13142 default:
b091f402
AM
13143 as_bad_where (fixp->fx_file, fixp->fx_line,
13144 _("can not do %d byte pc-relative relocation"),
13145 fixp->fx_size);
93382f6d
AM
13146 code = BFD_RELOC_32_PCREL;
13147 break;
13148 case 1: code = BFD_RELOC_8_PCREL; break;
13149 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 13150 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
13151#ifdef BFD64
13152 case 8: code = BFD_RELOC_64_PCREL; break;
13153#endif
93382f6d
AM
13154 }
13155 }
13156 else
13157 {
13158 switch (fixp->fx_size)
13159 {
13160 default:
b091f402
AM
13161 as_bad_where (fixp->fx_file, fixp->fx_line,
13162 _("can not do %d byte relocation"),
13163 fixp->fx_size);
93382f6d
AM
13164 code = BFD_RELOC_32;
13165 break;
13166 case 1: code = BFD_RELOC_8; break;
13167 case 2: code = BFD_RELOC_16; break;
13168 case 4: code = BFD_RELOC_32; break;
937149dd 13169#ifdef BFD64
3e73aa7c 13170 case 8: code = BFD_RELOC_64; break;
937149dd 13171#endif
93382f6d 13172 }
252b5132
RH
13173 }
13174 break;
13175 }
252b5132 13176
d182319b
JB
13177 if ((code == BFD_RELOC_32
13178 || code == BFD_RELOC_32_PCREL
13179 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
13180 && GOT_symbol
13181 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 13182 {
4fa24527 13183 if (!object_64bit)
d6ab8113
JB
13184 code = BFD_RELOC_386_GOTPC;
13185 else
13186 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 13187 }
7b81dfbb
AJ
13188 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
13189 && GOT_symbol
13190 && fixp->fx_addsy == GOT_symbol)
13191 {
13192 code = BFD_RELOC_X86_64_GOTPC64;
13193 }
252b5132 13194
add39d23
TS
13195 rel = XNEW (arelent);
13196 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 13197 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
13198
13199 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 13200
3e73aa7c
JH
13201 if (!use_rela_relocations)
13202 {
13203 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
13204 vtable entry to be used in the relocation's section offset. */
13205 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13206 rel->address = fixp->fx_offset;
fbeb56a4
DK
13207#if defined (OBJ_COFF) && defined (TE_PE)
13208 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
13209 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
13210 else
13211#endif
c6682705 13212 rel->addend = 0;
3e73aa7c
JH
13213 }
13214 /* Use the rela in 64bit mode. */
252b5132 13215 else
3e73aa7c 13216 {
862be3fb
L
13217 if (disallow_64bit_reloc)
13218 switch (code)
13219 {
862be3fb
L
13220 case BFD_RELOC_X86_64_DTPOFF64:
13221 case BFD_RELOC_X86_64_TPOFF64:
13222 case BFD_RELOC_64_PCREL:
13223 case BFD_RELOC_X86_64_GOTOFF64:
13224 case BFD_RELOC_X86_64_GOT64:
13225 case BFD_RELOC_X86_64_GOTPCREL64:
13226 case BFD_RELOC_X86_64_GOTPC64:
13227 case BFD_RELOC_X86_64_GOTPLT64:
13228 case BFD_RELOC_X86_64_PLTOFF64:
13229 as_bad_where (fixp->fx_file, fixp->fx_line,
13230 _("cannot represent relocation type %s in x32 mode"),
13231 bfd_get_reloc_code_name (code));
13232 break;
13233 default:
13234 break;
13235 }
13236
062cd5e7
AS
13237 if (!fixp->fx_pcrel)
13238 rel->addend = fixp->fx_offset;
13239 else
13240 switch (code)
13241 {
13242 case BFD_RELOC_X86_64_PLT32:
13243 case BFD_RELOC_X86_64_GOT32:
13244 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
13245 case BFD_RELOC_X86_64_GOTPCRELX:
13246 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
13247 case BFD_RELOC_X86_64_TLSGD:
13248 case BFD_RELOC_X86_64_TLSLD:
13249 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
13250 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13251 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
13252 rel->addend = fixp->fx_offset - fixp->fx_size;
13253 break;
13254 default:
13255 rel->addend = (section->vma
13256 - fixp->fx_size
13257 + fixp->fx_addnumber
13258 + md_pcrel_from (fixp));
13259 break;
13260 }
3e73aa7c
JH
13261 }
13262
252b5132
RH
13263 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
13264 if (rel->howto == NULL)
13265 {
13266 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 13267 _("cannot represent relocation type %s"),
252b5132
RH
13268 bfd_get_reloc_code_name (code));
13269 /* Set howto to a garbage value so that we can keep going. */
13270 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 13271 gas_assert (rel->howto != NULL);
252b5132
RH
13272 }
13273
13274 return rel;
13275}
13276
ee86248c 13277#include "tc-i386-intel.c"
54cfded0 13278
a60de03c
JB
13279void
13280tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 13281{
a60de03c
JB
13282 int saved_naked_reg;
13283 char saved_register_dot;
54cfded0 13284
a60de03c
JB
13285 saved_naked_reg = allow_naked_reg;
13286 allow_naked_reg = 1;
13287 saved_register_dot = register_chars['.'];
13288 register_chars['.'] = '.';
13289 allow_pseudo_reg = 1;
13290 expression_and_evaluate (exp);
13291 allow_pseudo_reg = 0;
13292 register_chars['.'] = saved_register_dot;
13293 allow_naked_reg = saved_naked_reg;
13294
e96d56a1 13295 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 13296 {
a60de03c
JB
13297 if ((addressT) exp->X_add_number < i386_regtab_size)
13298 {
13299 exp->X_op = O_constant;
13300 exp->X_add_number = i386_regtab[exp->X_add_number]
13301 .dw2_regnum[flag_code >> 1];
13302 }
13303 else
13304 exp->X_op = O_illegal;
54cfded0 13305 }
54cfded0
AM
13306}
13307
13308void
13309tc_x86_frame_initial_instructions (void)
13310{
a60de03c
JB
13311 static unsigned int sp_regno[2];
13312
13313 if (!sp_regno[flag_code >> 1])
13314 {
13315 char *saved_input = input_line_pointer;
13316 char sp[][4] = {"esp", "rsp"};
13317 expressionS exp;
a4447b93 13318
a60de03c
JB
13319 input_line_pointer = sp[flag_code >> 1];
13320 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 13321 gas_assert (exp.X_op == O_constant);
a60de03c
JB
13322 sp_regno[flag_code >> 1] = exp.X_add_number;
13323 input_line_pointer = saved_input;
13324 }
a4447b93 13325
61ff971f
L
13326 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
13327 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 13328}
d2b2c203 13329
d7921315
L
13330int
13331x86_dwarf2_addr_size (void)
13332{
13333#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13334 if (x86_elf_abi == X86_64_X32_ABI)
13335 return 4;
13336#endif
13337 return bfd_arch_bits_per_address (stdoutput) / 8;
13338}
13339
d2b2c203
DJ
13340int
13341i386_elf_section_type (const char *str, size_t len)
13342{
13343 if (flag_code == CODE_64BIT
13344 && len == sizeof ("unwind") - 1
13345 && strncmp (str, "unwind", 6) == 0)
13346 return SHT_X86_64_UNWIND;
13347
13348 return -1;
13349}
bb41ade5 13350
ad5fec3b
EB
13351#ifdef TE_SOLARIS
13352void
13353i386_solaris_fix_up_eh_frame (segT sec)
13354{
13355 if (flag_code == CODE_64BIT)
13356 elf_section_type (sec) = SHT_X86_64_UNWIND;
13357}
13358#endif
13359
bb41ade5
AM
13360#ifdef TE_PE
13361void
13362tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
13363{
91d6fa6a 13364 expressionS exp;
bb41ade5 13365
91d6fa6a
NC
13366 exp.X_op = O_secrel;
13367 exp.X_add_symbol = symbol;
13368 exp.X_add_number = 0;
13369 emit_expr (&exp, size);
bb41ade5
AM
13370}
13371#endif
3b22753a
L
13372
13373#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13374/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
13375
01e1a5bc 13376bfd_vma
6d4af3c2 13377x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
13378{
13379 if (flag_code == CODE_64BIT)
13380 {
13381 if (letter == 'l')
13382 return SHF_X86_64_LARGE;
13383
8f3bae45 13384 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 13385 }
3b22753a 13386 else
8f3bae45 13387 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
13388 return -1;
13389}
13390
01e1a5bc 13391bfd_vma
3b22753a
L
13392x86_64_section_word (char *str, size_t len)
13393{
8620418b 13394 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
13395 return SHF_X86_64_LARGE;
13396
13397 return -1;
13398}
13399
13400static void
13401handle_large_common (int small ATTRIBUTE_UNUSED)
13402{
13403 if (flag_code != CODE_64BIT)
13404 {
13405 s_comm_internal (0, elf_common_parse);
13406 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
13407 }
13408 else
13409 {
13410 static segT lbss_section;
13411 asection *saved_com_section_ptr = elf_com_section_ptr;
13412 asection *saved_bss_section = bss_section;
13413
13414 if (lbss_section == NULL)
13415 {
13416 flagword applicable;
13417 segT seg = now_seg;
13418 subsegT subseg = now_subseg;
13419
13420 /* The .lbss section is for local .largecomm symbols. */
13421 lbss_section = subseg_new (".lbss", 0);
13422 applicable = bfd_applicable_section_flags (stdoutput);
fd361982 13423 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
3b22753a
L
13424 seg_info (lbss_section)->bss = 1;
13425
13426 subseg_set (seg, subseg);
13427 }
13428
13429 elf_com_section_ptr = &_bfd_elf_large_com_section;
13430 bss_section = lbss_section;
13431
13432 s_comm_internal (0, elf_common_parse);
13433
13434 elf_com_section_ptr = saved_com_section_ptr;
13435 bss_section = saved_bss_section;
13436 }
13437}
13438#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 2.915328 seconds and 4 git commands to generate.