*** empty log message ***
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
f7e42eb4 2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
c75ef631 3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
47926f60 4 Free Software Foundation, Inc.
252b5132
RH
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
ec2655a6 10 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
252b5132 22
47926f60
KH
23/* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 25 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
252b5132 29
252b5132 30#include "as.h"
3882b010 31#include "safe-ctype.h"
252b5132 32#include "subsegs.h"
316e2c05 33#include "dwarf2dbg.h"
54cfded0 34#include "dw2gencfi.h"
d2b2c203 35#include "elf/x86-64.h"
40fb9820 36#include "opcodes/i386-init.h"
252b5132 37
252b5132
RH
38#ifndef REGISTER_WARNINGS
39#define REGISTER_WARNINGS 1
40#endif
41
c3332e24 42#ifndef INFER_ADDR_PREFIX
eecb386c 43#define INFER_ADDR_PREFIX 1
c3332e24
AM
44#endif
45
29b0f896
AM
46#ifndef DEFAULT_ARCH
47#define DEFAULT_ARCH "i386"
246fcdee 48#endif
252b5132 49
edde18a5
AM
50#ifndef INLINE
51#if __GNUC__ >= 2
52#define INLINE __inline__
53#else
54#define INLINE
55#endif
56#endif
57
6305a203
L
58/* Prefixes will be emitted in the order defined below.
59 WAIT_PREFIX must be the first prefix since FWAIT is really is an
60 instruction, and so must come before any prefixes.
61 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
c32fa91d 62 REP_PREFIX, LOCK_PREFIX. */
6305a203
L
63#define WAIT_PREFIX 0
64#define SEG_PREFIX 1
65#define ADDR_PREFIX 2
66#define DATA_PREFIX 3
c32fa91d
L
67#define REP_PREFIX 4
68#define LOCK_PREFIX 5
69#define REX_PREFIX 6 /* must come last. */
70#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
71
72/* we define the syntax here (modulo base,index,scale syntax) */
73#define REGISTER_PREFIX '%'
74#define IMMEDIATE_PREFIX '$'
75#define ABSOLUTE_PREFIX '*'
76
77/* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79#define WORD_MNEM_SUFFIX 'w'
80#define BYTE_MNEM_SUFFIX 'b'
81#define SHORT_MNEM_SUFFIX 's'
82#define LONG_MNEM_SUFFIX 'l'
83#define QWORD_MNEM_SUFFIX 'q'
84#define XMMWORD_MNEM_SUFFIX 'x'
c0f3af97 85#define YMMWORD_MNEM_SUFFIX 'y'
6305a203
L
86/* Intel Syntax. Use a non-ascii letter since since it never appears
87 in instructions. */
88#define LONG_DOUBLE_MNEM_SUFFIX '\1'
89
90#define END_OF_INSN '\0'
91
92/*
93 'templates' is for grouping together 'template' structures for opcodes
94 of the same name. This is only used for storing the insns in the grand
95 ole hash table of insns.
96 The templates themselves start at START and range up to (but not including)
97 END.
98 */
99typedef struct
100{
d3ce72d0
NC
101 const insn_template *start;
102 const insn_template *end;
6305a203
L
103}
104templates;
105
106/* 386 operand encoding bytes: see 386 book for details of this. */
107typedef struct
108{
109 unsigned int regmem; /* codes register or memory operand */
110 unsigned int reg; /* codes register operand (or extended opcode) */
111 unsigned int mode; /* how to interpret regmem & reg */
112}
113modrm_byte;
114
115/* x86-64 extension prefix. */
116typedef int rex_byte;
117
6305a203
L
118/* 386 opcode byte to code indirect addressing. */
119typedef struct
120{
121 unsigned base;
122 unsigned index;
123 unsigned scale;
124}
125sib_byte;
126
6305a203
L
127/* x86 arch names, types and features */
128typedef struct
129{
130 const char *name; /* arch name */
8a2c8fef 131 unsigned int len; /* arch string length */
6305a203
L
132 enum processor_type type; /* arch type */
133 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 134 unsigned int skip; /* show_arch should skip this. */
22109423 135 unsigned int negated; /* turn off indicated flags. */
6305a203
L
136}
137arch_entry;
138
78f12dd3 139static void update_code_flag (int, int);
e3bb37b5
L
140static void set_code_flag (int);
141static void set_16bit_gcc_code_flag (int);
142static void set_intel_syntax (int);
1efbbeb4 143static void set_intel_mnemonic (int);
db51cc60 144static void set_allow_index_reg (int);
cb19c032 145static void set_sse_check (int);
e3bb37b5 146static void set_cpu_arch (int);
6482c264 147#ifdef TE_PE
e3bb37b5 148static void pe_directive_secrel (int);
6482c264 149#endif
e3bb37b5
L
150static void signed_cons (int);
151static char *output_invalid (int c);
ee86248c
JB
152static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
153 const char *);
154static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
155 const char *);
a7619375 156static int i386_att_operand (char *);
e3bb37b5 157static int i386_intel_operand (char *, int);
ee86248c
JB
158static int i386_intel_simplify (expressionS *);
159static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
160static const reg_entry *parse_register (char *, char **);
161static char *parse_insn (char *, char *);
162static char *parse_operands (char *, const char *);
163static void swap_operands (void);
4d456e3d 164static void swap_2_operands (int, int);
e3bb37b5
L
165static void optimize_imm (void);
166static void optimize_disp (void);
d3ce72d0 167static const insn_template *match_template (void);
e3bb37b5
L
168static int check_string (void);
169static int process_suffix (void);
170static int check_byte_reg (void);
171static int check_long_reg (void);
172static int check_qword_reg (void);
173static int check_word_reg (void);
174static int finalize_imm (void);
175static int process_operands (void);
176static const seg_entry *build_modrm_byte (void);
177static void output_insn (void);
178static void output_imm (fragS *, offsetT);
179static void output_disp (fragS *, offsetT);
29b0f896 180#ifndef I386COFF
e3bb37b5 181static void s_bss (int);
252b5132 182#endif
17d4e2a2
L
183#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
184static void handle_large_common (int small ATTRIBUTE_UNUSED);
185#endif
252b5132 186
a847613f 187static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 188
c0f3af97
L
189/* VEX prefix. */
190typedef struct
191{
192 /* VEX prefix is either 2 byte or 3 byte. */
193 unsigned char bytes[3];
194 unsigned int length;
195 /* Destination or source register specifier. */
196 const reg_entry *register_specifier;
197} vex_prefix;
198
252b5132 199/* 'md_assemble ()' gathers together information and puts it into a
47926f60 200 i386_insn. */
252b5132 201
520dc8e8
AM
202union i386_op
203 {
204 expressionS *disps;
205 expressionS *imms;
206 const reg_entry *regs;
207 };
208
a65babc9
L
209enum i386_error
210 {
86e026a4 211 operand_size_mismatch,
a65babc9
L
212 operand_type_mismatch,
213 register_type_mismatch,
214 number_of_operands_mismatch,
215 invalid_instruction_suffix,
216 bad_imm4,
217 old_gcc_only,
218 unsupported_with_intel_mnemonic,
219 unsupported_syntax,
220 unsupported
221 };
222
252b5132
RH
223struct _i386_insn
224 {
47926f60 225 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 226 insn_template tm;
252b5132 227
7d5e4556
L
228 /* SUFFIX holds the instruction size suffix for byte, word, dword
229 or qword, if given. */
252b5132
RH
230 char suffix;
231
47926f60 232 /* OPERANDS gives the number of given operands. */
252b5132
RH
233 unsigned int operands;
234
235 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
236 of given register, displacement, memory operands and immediate
47926f60 237 operands. */
252b5132
RH
238 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
239
240 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 241 use OP[i] for the corresponding operand. */
40fb9820 242 i386_operand_type types[MAX_OPERANDS];
252b5132 243
520dc8e8
AM
244 /* Displacement expression, immediate expression, or register for each
245 operand. */
246 union i386_op op[MAX_OPERANDS];
252b5132 247
3e73aa7c
JH
248 /* Flags for operands. */
249 unsigned int flags[MAX_OPERANDS];
250#define Operand_PCrel 1
251
252b5132 252 /* Relocation type for operand */
f86103b7 253 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 254
252b5132
RH
255 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
256 the base index byte below. */
257 const reg_entry *base_reg;
258 const reg_entry *index_reg;
259 unsigned int log2_scale_factor;
260
261 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 262 explicit segment overrides are given. */
ce8a8b2f 263 const seg_entry *seg[2];
252b5132
RH
264
265 /* PREFIX holds all the given prefix opcodes (usually null).
266 PREFIXES is the number of prefix opcodes. */
267 unsigned int prefixes;
268 unsigned char prefix[MAX_PREFIXES];
269
270 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 271 addressing modes of this insn are encoded. */
252b5132 272 modrm_byte rm;
3e73aa7c 273 rex_byte rex;
252b5132 274 sib_byte sib;
c0f3af97 275 vex_prefix vex;
b6169b20
L
276
277 /* Swap operand in encoding. */
4473e004 278 unsigned int swap_operand;
891edac4 279
f8a5c266
L
280 /* Force 32bit displacement in encoding. */
281 unsigned int disp32_encoding;
282
891edac4 283 /* Error message. */
a65babc9 284 enum i386_error error;
252b5132
RH
285 };
286
287typedef struct _i386_insn i386_insn;
288
289/* List of chars besides those in app.c:symbol_chars that can start an
290 operand. Used to prevent the scrubber eating vital white-space. */
32137342 291const char extra_symbol_chars[] = "*%-(["
252b5132 292#ifdef LEX_AT
32137342
NC
293 "@"
294#endif
295#ifdef LEX_QM
296 "?"
252b5132 297#endif
32137342 298 ;
252b5132 299
29b0f896
AM
300#if (defined (TE_I386AIX) \
301 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 302 && !defined (TE_GNU) \
29b0f896 303 && !defined (TE_LINUX) \
32137342 304 && !defined (TE_NETWARE) \
29b0f896
AM
305 && !defined (TE_FreeBSD) \
306 && !defined (TE_NetBSD)))
252b5132 307/* This array holds the chars that always start a comment. If the
b3b91714
AM
308 pre-processor is disabled, these aren't very useful. The option
309 --divide will remove '/' from this list. */
310const char *i386_comment_chars = "#/";
311#define SVR4_COMMENT_CHARS 1
252b5132 312#define PREFIX_SEPARATOR '\\'
252b5132 313
b3b91714
AM
314#else
315const char *i386_comment_chars = "#";
316#define PREFIX_SEPARATOR '/'
317#endif
318
252b5132
RH
319/* This array holds the chars that only start a comment at the beginning of
320 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
321 .line and .file directives will appear in the pre-processed output.
322 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 323 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
324 #NO_APP at the beginning of its output.
325 Also note that comments started like this one will always work if
252b5132 326 '/' isn't otherwise defined. */
b3b91714 327const char line_comment_chars[] = "#/";
252b5132 328
63a0b638 329const char line_separator_chars[] = ";";
252b5132 330
ce8a8b2f
AM
331/* Chars that can be used to separate mant from exp in floating point
332 nums. */
252b5132
RH
333const char EXP_CHARS[] = "eE";
334
ce8a8b2f
AM
335/* Chars that mean this number is a floating point constant
336 As in 0f12.456
337 or 0d1.2345e12. */
252b5132
RH
338const char FLT_CHARS[] = "fFdDxX";
339
ce8a8b2f 340/* Tables for lexical analysis. */
252b5132
RH
341static char mnemonic_chars[256];
342static char register_chars[256];
343static char operand_chars[256];
344static char identifier_chars[256];
345static char digit_chars[256];
346
ce8a8b2f 347/* Lexical macros. */
252b5132
RH
348#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
349#define is_operand_char(x) (operand_chars[(unsigned char) x])
350#define is_register_char(x) (register_chars[(unsigned char) x])
351#define is_space_char(x) ((x) == ' ')
352#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
353#define is_digit_char(x) (digit_chars[(unsigned char) x])
354
0234cb7c 355/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
356static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
357
358/* md_assemble() always leaves the strings it's passed unaltered. To
359 effect this we maintain a stack of saved characters that we've smashed
360 with '\0's (indicating end of strings for various sub-fields of the
47926f60 361 assembler instruction). */
252b5132 362static char save_stack[32];
ce8a8b2f 363static char *save_stack_p;
252b5132
RH
364#define END_STRING_AND_SAVE(s) \
365 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
366#define RESTORE_END_STRING(s) \
367 do { *(s) = *--save_stack_p; } while (0)
368
47926f60 369/* The instruction we're assembling. */
252b5132
RH
370static i386_insn i;
371
372/* Possible templates for current insn. */
373static const templates *current_templates;
374
31b2323c
L
375/* Per instruction expressionS buffers: max displacements & immediates. */
376static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
377static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 378
47926f60 379/* Current operand we are working on. */
ee86248c 380static int this_operand = -1;
252b5132 381
3e73aa7c
JH
382/* We support four different modes. FLAG_CODE variable is used to distinguish
383 these. */
384
385enum flag_code {
386 CODE_32BIT,
387 CODE_16BIT,
388 CODE_64BIT };
389
390static enum flag_code flag_code;
4fa24527 391static unsigned int object_64bit;
7f56bc95 392static unsigned int disallow_64bit_disp;
3e73aa7c
JH
393static int use_rela_relocations = 0;
394
7af8ed2d
NC
395#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
396 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
397 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
398
351f65ca
L
399/* The ELF ABI to use. */
400enum x86_elf_abi
401{
402 I386_ABI,
7f56bc95
L
403 X86_64_ABI,
404 X86_64_X32_ABI
351f65ca
L
405};
406
407static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 408#endif
351f65ca 409
3e73aa7c 410/* The names used to print error messages. */
b77a7acd 411static const char *flag_code_names[] =
3e73aa7c
JH
412 {
413 "32",
414 "16",
415 "64"
416 };
252b5132 417
47926f60
KH
418/* 1 for intel syntax,
419 0 if att syntax. */
420static int intel_syntax = 0;
252b5132 421
1efbbeb4
L
422/* 1 for intel mnemonic,
423 0 if att mnemonic. */
424static int intel_mnemonic = !SYSV386_COMPAT;
425
5209009a 426/* 1 if support old (<= 2.8.1) versions of gcc. */
1efbbeb4
L
427static int old_gcc = OLDGCC_COMPAT;
428
a60de03c
JB
429/* 1 if pseudo registers are permitted. */
430static int allow_pseudo_reg = 0;
431
47926f60
KH
432/* 1 if register prefix % not required. */
433static int allow_naked_reg = 0;
252b5132 434
ba104c83 435/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
436static int allow_index_reg = 0;
437
daf50ae7
L
438static enum
439 {
440 sse_check_none = 0,
441 sse_check_warning,
442 sse_check_error
443 }
444sse_check;
445
2ca3ace5
L
446/* Register prefix used for error message. */
447static const char *register_prefix = "%";
448
47926f60
KH
449/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
450 leave, push, and pop instructions so that gcc has the same stack
451 frame as in 32 bit mode. */
452static char stackop_size = '\0';
eecb386c 453
12b55ccc
L
454/* Non-zero to optimize code alignment. */
455int optimize_align_code = 1;
456
47926f60
KH
457/* Non-zero to quieten some warnings. */
458static int quiet_warnings = 0;
a38cf1db 459
47926f60
KH
460/* CPU name. */
461static const char *cpu_arch_name = NULL;
6305a203 462static char *cpu_sub_arch_name = NULL;
a38cf1db 463
47926f60 464/* CPU feature flags. */
40fb9820
L
465static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
466
ccc9c027
L
467/* If we have selected a cpu we are generating instructions for. */
468static int cpu_arch_tune_set = 0;
469
9103f4f4 470/* Cpu we are generating instructions for. */
fbf3f584 471enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
472
473/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 474static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 475
ccc9c027 476/* CPU instruction set architecture used. */
fbf3f584 477enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 478
9103f4f4 479/* CPU feature flags of instruction set architecture used. */
fbf3f584 480i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 481
fddf5b5b
AM
482/* If set, conditional jumps are not automatically promoted to handle
483 larger than a byte offset. */
484static unsigned int no_cond_jump_promotion = 0;
485
c0f3af97
L
486/* Encode SSE instructions with VEX prefix. */
487static unsigned int sse2avx;
488
539f890d
L
489/* Encode scalar AVX instructions with specific vector length. */
490static enum
491 {
492 vex128 = 0,
493 vex256
494 } avxscalar;
495
29b0f896 496/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 497static symbolS *GOT_symbol;
29b0f896 498
a4447b93
RH
499/* The dwarf2 return column, adjusted for 32 or 64 bit. */
500unsigned int x86_dwarf2_return_column;
501
502/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
503int x86_cie_data_alignment;
504
252b5132 505/* Interface to relax_segment.
fddf5b5b
AM
506 There are 3 major relax states for 386 jump insns because the
507 different types of jumps add different sizes to frags when we're
508 figuring out what sort of jump to choose to reach a given label. */
252b5132 509
47926f60 510/* Types. */
93c2a809
AM
511#define UNCOND_JUMP 0
512#define COND_JUMP 1
513#define COND_JUMP86 2
fddf5b5b 514
47926f60 515/* Sizes. */
252b5132
RH
516#define CODE16 1
517#define SMALL 0
29b0f896 518#define SMALL16 (SMALL | CODE16)
252b5132 519#define BIG 2
29b0f896 520#define BIG16 (BIG | CODE16)
252b5132
RH
521
522#ifndef INLINE
523#ifdef __GNUC__
524#define INLINE __inline__
525#else
526#define INLINE
527#endif
528#endif
529
fddf5b5b
AM
530#define ENCODE_RELAX_STATE(type, size) \
531 ((relax_substateT) (((type) << 2) | (size)))
532#define TYPE_FROM_RELAX_STATE(s) \
533 ((s) >> 2)
534#define DISP_SIZE_FROM_RELAX_STATE(s) \
535 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
536
537/* This table is used by relax_frag to promote short jumps to long
538 ones where necessary. SMALL (short) jumps may be promoted to BIG
539 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
540 don't allow a short jump in a 32 bit code segment to be promoted to
541 a 16 bit offset jump because it's slower (requires data size
542 prefix), and doesn't work, unless the destination is in the bottom
543 64k of the code segment (The top 16 bits of eip are zeroed). */
544
545const relax_typeS md_relax_table[] =
546{
24eab124
AM
547 /* The fields are:
548 1) most positive reach of this state,
549 2) most negative reach of this state,
93c2a809 550 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 551 4) which index into the table to try if we can't fit into this one. */
252b5132 552
fddf5b5b 553 /* UNCOND_JUMP states. */
93c2a809
AM
554 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
555 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
556 /* dword jmp adds 4 bytes to frag:
557 0 extra opcode bytes, 4 displacement bytes. */
252b5132 558 {0, 0, 4, 0},
93c2a809
AM
559 /* word jmp adds 2 byte2 to frag:
560 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
561 {0, 0, 2, 0},
562
93c2a809
AM
563 /* COND_JUMP states. */
564 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
565 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
566 /* dword conditionals adds 5 bytes to frag:
567 1 extra opcode byte, 4 displacement bytes. */
568 {0, 0, 5, 0},
fddf5b5b 569 /* word conditionals add 3 bytes to frag:
93c2a809
AM
570 1 extra opcode byte, 2 displacement bytes. */
571 {0, 0, 3, 0},
572
573 /* COND_JUMP86 states. */
574 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
575 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
576 /* dword conditionals adds 5 bytes to frag:
577 1 extra opcode byte, 4 displacement bytes. */
578 {0, 0, 5, 0},
579 /* word conditionals add 4 bytes to frag:
580 1 displacement byte and a 3 byte long branch insn. */
581 {0, 0, 4, 0}
252b5132
RH
582};
583
9103f4f4
L
584static const arch_entry cpu_arch[] =
585{
89507696
JB
586 /* Do not replace the first two entries - i386_target_format()
587 relies on them being there in this order. */
8a2c8fef 588 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
22109423 589 CPU_GENERIC32_FLAGS, 0, 0 },
8a2c8fef 590 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
22109423 591 CPU_GENERIC64_FLAGS, 0, 0 },
8a2c8fef 592 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
22109423 593 CPU_NONE_FLAGS, 0, 0 },
8a2c8fef 594 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
22109423 595 CPU_I186_FLAGS, 0, 0 },
8a2c8fef 596 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
22109423 597 CPU_I286_FLAGS, 0, 0 },
8a2c8fef 598 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
22109423 599 CPU_I386_FLAGS, 0, 0 },
8a2c8fef 600 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
22109423 601 CPU_I486_FLAGS, 0, 0 },
8a2c8fef 602 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
22109423 603 CPU_I586_FLAGS, 0, 0 },
8a2c8fef 604 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
22109423 605 CPU_I686_FLAGS, 0, 0 },
8a2c8fef 606 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
22109423 607 CPU_I586_FLAGS, 0, 0 },
8a2c8fef 608 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
22109423 609 CPU_PENTIUMPRO_FLAGS, 0, 0 },
8a2c8fef 610 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
22109423 611 CPU_P2_FLAGS, 0, 0 },
8a2c8fef 612 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
22109423 613 CPU_P3_FLAGS, 0, 0 },
8a2c8fef 614 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
22109423 615 CPU_P4_FLAGS, 0, 0 },
8a2c8fef 616 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
22109423 617 CPU_CORE_FLAGS, 0, 0 },
8a2c8fef 618 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
22109423 619 CPU_NOCONA_FLAGS, 0, 0 },
8a2c8fef 620 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
22109423 621 CPU_CORE_FLAGS, 1, 0 },
8a2c8fef 622 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
22109423 623 CPU_CORE_FLAGS, 0, 0 },
8a2c8fef 624 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
22109423 625 CPU_CORE2_FLAGS, 1, 0 },
8a2c8fef 626 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
22109423 627 CPU_CORE2_FLAGS, 0, 0 },
8a2c8fef 628 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
22109423 629 CPU_COREI7_FLAGS, 0, 0 },
8a2c8fef 630 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
22109423 631 CPU_L1OM_FLAGS, 0, 0 },
8a2c8fef 632 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
22109423 633 CPU_K6_FLAGS, 0, 0 },
8a2c8fef 634 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
22109423 635 CPU_K6_2_FLAGS, 0, 0 },
8a2c8fef 636 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
22109423 637 CPU_ATHLON_FLAGS, 0, 0 },
8a2c8fef 638 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
22109423 639 CPU_K8_FLAGS, 1, 0 },
8a2c8fef 640 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
22109423 641 CPU_K8_FLAGS, 0, 0 },
8a2c8fef 642 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
22109423 643 CPU_K8_FLAGS, 0, 0 },
8a2c8fef 644 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
22109423 645 CPU_AMDFAM10_FLAGS, 0, 0 },
68339fdf 646 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BDVER1,
22109423 647 CPU_BDVER1_FLAGS, 0, 0 },
8a2c8fef 648 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
22109423 649 CPU_8087_FLAGS, 0, 0 },
8a2c8fef 650 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
22109423 651 CPU_287_FLAGS, 0, 0 },
8a2c8fef 652 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
22109423 653 CPU_387_FLAGS, 0, 0 },
8a2c8fef 654 { STRING_COMMA_LEN (".no87"), PROCESSOR_UNKNOWN,
22109423 655 CPU_ANY87_FLAGS, 0, 1 },
8a2c8fef 656 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
22109423 657 CPU_MMX_FLAGS, 0, 0 },
8a2c8fef 658 { STRING_COMMA_LEN (".nommx"), PROCESSOR_UNKNOWN,
22109423 659 CPU_3DNOWA_FLAGS, 0, 1 },
8a2c8fef 660 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
22109423 661 CPU_SSE_FLAGS, 0, 0 },
8a2c8fef 662 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
22109423 663 CPU_SSE2_FLAGS, 0, 0 },
8a2c8fef 664 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
22109423 665 CPU_SSE3_FLAGS, 0, 0 },
8a2c8fef 666 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
22109423 667 CPU_SSSE3_FLAGS, 0, 0 },
8a2c8fef 668 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
22109423 669 CPU_SSE4_1_FLAGS, 0, 0 },
8a2c8fef 670 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
22109423 671 CPU_SSE4_2_FLAGS, 0, 0 },
8a2c8fef 672 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
22109423 673 CPU_SSE4_2_FLAGS, 0, 0 },
8a2c8fef 674 { STRING_COMMA_LEN (".nosse"), PROCESSOR_UNKNOWN,
22109423 675 CPU_ANY_SSE_FLAGS, 0, 1 },
8a2c8fef 676 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
22109423 677 CPU_AVX_FLAGS, 0, 0 },
8a2c8fef 678 { STRING_COMMA_LEN (".noavx"), PROCESSOR_UNKNOWN,
22109423 679 CPU_ANY_AVX_FLAGS, 0, 1 },
8a2c8fef 680 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
22109423 681 CPU_VMX_FLAGS, 0, 0 },
8a2c8fef 682 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
22109423 683 CPU_SMX_FLAGS, 0, 0 },
8a2c8fef 684 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
22109423 685 CPU_XSAVE_FLAGS, 0, 0 },
c7b8aa3a 686 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
22109423 687 CPU_XSAVEOPT_FLAGS, 0, 0 },
8a2c8fef 688 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
22109423 689 CPU_AES_FLAGS, 0, 0 },
8a2c8fef 690 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
22109423 691 CPU_PCLMUL_FLAGS, 0, 0 },
8a2c8fef 692 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
22109423 693 CPU_PCLMUL_FLAGS, 1, 0 },
c7b8aa3a 694 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
22109423 695 CPU_FSGSBASE_FLAGS, 0, 0 },
c7b8aa3a 696 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
22109423 697 CPU_RDRND_FLAGS, 0, 0 },
c7b8aa3a 698 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
22109423 699 CPU_F16C_FLAGS, 0, 0 },
8a2c8fef 700 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
22109423 701 CPU_FMA_FLAGS, 0, 0 },
8a2c8fef 702 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
22109423 703 CPU_FMA4_FLAGS, 0, 0 },
8a2c8fef 704 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
22109423 705 CPU_XOP_FLAGS, 0, 0 },
8a2c8fef 706 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
22109423 707 CPU_LWP_FLAGS, 0, 0 },
8a2c8fef 708 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
22109423 709 CPU_MOVBE_FLAGS, 0, 0 },
8a2c8fef 710 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
22109423 711 CPU_EPT_FLAGS, 0, 0 },
8a2c8fef 712 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
22109423
L
713 CPU_CLFLUSH_FLAGS, 0, 0 },
714 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
715 CPU_NOP_FLAGS, 0, 0 },
8a2c8fef 716 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
22109423 717 CPU_SYSCALL_FLAGS, 0, 0 },
8a2c8fef 718 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
22109423 719 CPU_RDTSCP_FLAGS, 0, 0 },
8a2c8fef 720 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
22109423 721 CPU_3DNOW_FLAGS, 0, 0 },
8a2c8fef 722 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
22109423 723 CPU_3DNOWA_FLAGS, 0, 0 },
8a2c8fef 724 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
22109423 725 CPU_PADLOCK_FLAGS, 0, 0 },
8a2c8fef 726 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
22109423 727 CPU_SVME_FLAGS, 1, 0 },
8a2c8fef 728 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
22109423 729 CPU_SVME_FLAGS, 0, 0 },
8a2c8fef 730 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
22109423 731 CPU_SSE4A_FLAGS, 0, 0 },
8a2c8fef 732 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
22109423 733 CPU_ABM_FLAGS, 0, 0 },
87973e9f
QN
734 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
735 CPU_BMI_FLAGS, 0, 0 },
e413e4e9
AM
736};
737
704209c0 738#ifdef I386COFF
a6c24e68
NC
739/* Like s_lcomm_internal in gas/read.c but the alignment string
740 is allowed to be optional. */
741
742static symbolS *
743pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
744{
745 addressT align = 0;
746
747 SKIP_WHITESPACE ();
748
7ab9ffdd 749 if (needs_align
a6c24e68
NC
750 && *input_line_pointer == ',')
751 {
752 align = parse_align (needs_align - 1);
7ab9ffdd 753
a6c24e68
NC
754 if (align == (addressT) -1)
755 return NULL;
756 }
757 else
758 {
759 if (size >= 8)
760 align = 3;
761 else if (size >= 4)
762 align = 2;
763 else if (size >= 2)
764 align = 1;
765 else
766 align = 0;
767 }
768
769 bss_alloc (symbolP, size, align);
770 return symbolP;
771}
772
704209c0 773static void
a6c24e68
NC
774pe_lcomm (int needs_align)
775{
776 s_comm_internal (needs_align * 2, pe_lcomm_internal);
777}
704209c0 778#endif
a6c24e68 779
29b0f896
AM
780const pseudo_typeS md_pseudo_table[] =
781{
782#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
783 {"align", s_align_bytes, 0},
784#else
785 {"align", s_align_ptwo, 0},
786#endif
787 {"arch", set_cpu_arch, 0},
788#ifndef I386COFF
789 {"bss", s_bss, 0},
a6c24e68
NC
790#else
791 {"lcomm", pe_lcomm, 1},
29b0f896
AM
792#endif
793 {"ffloat", float_cons, 'f'},
794 {"dfloat", float_cons, 'd'},
795 {"tfloat", float_cons, 'x'},
796 {"value", cons, 2},
d182319b 797 {"slong", signed_cons, 4},
29b0f896
AM
798 {"noopt", s_ignore, 0},
799 {"optim", s_ignore, 0},
800 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
801 {"code16", set_code_flag, CODE_16BIT},
802 {"code32", set_code_flag, CODE_32BIT},
803 {"code64", set_code_flag, CODE_64BIT},
804 {"intel_syntax", set_intel_syntax, 1},
805 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
806 {"intel_mnemonic", set_intel_mnemonic, 1},
807 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
808 {"allow_index_reg", set_allow_index_reg, 1},
809 {"disallow_index_reg", set_allow_index_reg, 0},
cb19c032 810 {"sse_check", set_sse_check, 0},
3b22753a
L
811#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
812 {"largecomm", handle_large_common, 0},
07a53e5c 813#else
e3bb37b5 814 {"file", (void (*) (int)) dwarf2_directive_file, 0},
07a53e5c
RH
815 {"loc", dwarf2_directive_loc, 0},
816 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 817#endif
6482c264
NC
818#ifdef TE_PE
819 {"secrel32", pe_directive_secrel, 0},
820#endif
29b0f896
AM
821 {0, 0, 0}
822};
823
824/* For interface with expression (). */
825extern char *input_line_pointer;
826
827/* Hash table for instruction mnemonic lookup. */
828static struct hash_control *op_hash;
829
830/* Hash table for register lookup. */
831static struct hash_control *reg_hash;
832\f
252b5132 833void
e3bb37b5 834i386_align_code (fragS *fragP, int count)
252b5132 835{
ce8a8b2f
AM
836 /* Various efficient no-op patterns for aligning code labels.
837 Note: Don't try to assemble the instructions in the comments.
838 0L and 0w are not legal. */
252b5132
RH
839 static const char f32_1[] =
840 {0x90}; /* nop */
841 static const char f32_2[] =
ccc9c027 842 {0x66,0x90}; /* xchg %ax,%ax */
252b5132
RH
843 static const char f32_3[] =
844 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
845 static const char f32_4[] =
846 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
847 static const char f32_5[] =
848 {0x90, /* nop */
849 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
850 static const char f32_6[] =
851 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
852 static const char f32_7[] =
853 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
854 static const char f32_8[] =
855 {0x90, /* nop */
856 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
857 static const char f32_9[] =
858 {0x89,0xf6, /* movl %esi,%esi */
859 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
860 static const char f32_10[] =
861 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
862 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
863 static const char f32_11[] =
864 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
865 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
866 static const char f32_12[] =
867 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
868 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
869 static const char f32_13[] =
870 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
871 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
872 static const char f32_14[] =
873 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
874 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
c3332e24
AM
875 static const char f16_3[] =
876 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
252b5132
RH
877 static const char f16_4[] =
878 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
879 static const char f16_5[] =
880 {0x90, /* nop */
881 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
882 static const char f16_6[] =
883 {0x89,0xf6, /* mov %si,%si */
884 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
885 static const char f16_7[] =
886 {0x8d,0x74,0x00, /* lea 0(%si),%si */
887 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
888 static const char f16_8[] =
889 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
890 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
76bc74dc
L
891 static const char jump_31[] =
892 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
893 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
894 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
895 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
252b5132
RH
896 static const char *const f32_patt[] = {
897 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
76bc74dc 898 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
252b5132
RH
899 };
900 static const char *const f16_patt[] = {
76bc74dc 901 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
252b5132 902 };
ccc9c027
L
903 /* nopl (%[re]ax) */
904 static const char alt_3[] =
905 {0x0f,0x1f,0x00};
906 /* nopl 0(%[re]ax) */
907 static const char alt_4[] =
908 {0x0f,0x1f,0x40,0x00};
909 /* nopl 0(%[re]ax,%[re]ax,1) */
910 static const char alt_5[] =
911 {0x0f,0x1f,0x44,0x00,0x00};
912 /* nopw 0(%[re]ax,%[re]ax,1) */
913 static const char alt_6[] =
914 {0x66,0x0f,0x1f,0x44,0x00,0x00};
915 /* nopl 0L(%[re]ax) */
916 static const char alt_7[] =
917 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
918 /* nopl 0L(%[re]ax,%[re]ax,1) */
919 static const char alt_8[] =
920 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
921 /* nopw 0L(%[re]ax,%[re]ax,1) */
922 static const char alt_9[] =
923 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
924 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
925 static const char alt_10[] =
926 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
927 /* data16
928 nopw %cs:0L(%[re]ax,%[re]ax,1) */
929 static const char alt_long_11[] =
930 {0x66,
931 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
932 /* data16
933 data16
934 nopw %cs:0L(%[re]ax,%[re]ax,1) */
935 static const char alt_long_12[] =
936 {0x66,
937 0x66,
938 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
939 /* data16
940 data16
941 data16
942 nopw %cs:0L(%[re]ax,%[re]ax,1) */
943 static const char alt_long_13[] =
944 {0x66,
945 0x66,
946 0x66,
947 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
948 /* data16
949 data16
950 data16
951 data16
952 nopw %cs:0L(%[re]ax,%[re]ax,1) */
953 static const char alt_long_14[] =
954 {0x66,
955 0x66,
956 0x66,
957 0x66,
958 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
959 /* data16
960 data16
961 data16
962 data16
963 data16
964 nopw %cs:0L(%[re]ax,%[re]ax,1) */
965 static const char alt_long_15[] =
966 {0x66,
967 0x66,
968 0x66,
969 0x66,
970 0x66,
971 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
972 /* nopl 0(%[re]ax,%[re]ax,1)
973 nopw 0(%[re]ax,%[re]ax,1) */
974 static const char alt_short_11[] =
975 {0x0f,0x1f,0x44,0x00,0x00,
976 0x66,0x0f,0x1f,0x44,0x00,0x00};
977 /* nopw 0(%[re]ax,%[re]ax,1)
978 nopw 0(%[re]ax,%[re]ax,1) */
979 static const char alt_short_12[] =
980 {0x66,0x0f,0x1f,0x44,0x00,0x00,
981 0x66,0x0f,0x1f,0x44,0x00,0x00};
982 /* nopw 0(%[re]ax,%[re]ax,1)
983 nopl 0L(%[re]ax) */
984 static const char alt_short_13[] =
985 {0x66,0x0f,0x1f,0x44,0x00,0x00,
986 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
987 /* nopl 0L(%[re]ax)
988 nopl 0L(%[re]ax) */
989 static const char alt_short_14[] =
990 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
991 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
992 /* nopl 0L(%[re]ax)
993 nopl 0L(%[re]ax,%[re]ax,1) */
994 static const char alt_short_15[] =
995 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
996 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
997 static const char *const alt_short_patt[] = {
998 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
999 alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
1000 alt_short_14, alt_short_15
1001 };
1002 static const char *const alt_long_patt[] = {
1003 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1004 alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
1005 alt_long_14, alt_long_15
1006 };
252b5132 1007
76bc74dc
L
1008 /* Only align for at least a positive non-zero boundary. */
1009 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
33fef721 1010 return;
3e73aa7c 1011
ccc9c027
L
1012 /* We need to decide which NOP sequence to use for 32bit and
1013 64bit. When -mtune= is used:
4eed87de 1014
76bc74dc
L
1015 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1016 PROCESSOR_GENERIC32, f32_patt will be used.
1017 2. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
bd5295b2
L
1018 PROCESSOR_CORE, PROCESSOR_CORE2, PROCESSOR_COREI7, and
1019 PROCESSOR_GENERIC64, alt_long_patt will be used.
76bc74dc 1020 3. For PROCESSOR_ATHLON, PROCESSOR_K6, PROCESSOR_K8 and
68339fdf 1021 PROCESSOR_AMDFAM10, and PROCESSOR_BDVER1, alt_short_patt
69dd9865 1022 will be used.
ccc9c027 1023
76bc74dc 1024 When -mtune= isn't used, alt_long_patt will be used if
22109423 1025 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1026 be used.
ccc9c027
L
1027
1028 When -march= or .arch is used, we can't use anything beyond
1029 cpu_arch_isa_flags. */
1030
1031 if (flag_code == CODE_16BIT)
1032 {
ccc9c027 1033 if (count > 8)
33fef721 1034 {
76bc74dc
L
1035 memcpy (fragP->fr_literal + fragP->fr_fix,
1036 jump_31, count);
1037 /* Adjust jump offset. */
1038 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
252b5132 1039 }
76bc74dc
L
1040 else
1041 memcpy (fragP->fr_literal + fragP->fr_fix,
1042 f16_patt[count - 1], count);
252b5132 1043 }
33fef721 1044 else
ccc9c027
L
1045 {
1046 const char *const *patt = NULL;
1047
fbf3f584 1048 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1049 {
1050 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1051 switch (cpu_arch_tune)
1052 {
1053 case PROCESSOR_UNKNOWN:
1054 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1055 optimize with nops. */
1056 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
76bc74dc 1057 patt = alt_long_patt;
ccc9c027
L
1058 else
1059 patt = f32_patt;
1060 break;
ccc9c027
L
1061 case PROCESSOR_PENTIUMPRO:
1062 case PROCESSOR_PENTIUM4:
1063 case PROCESSOR_NOCONA:
ef05d495 1064 case PROCESSOR_CORE:
76bc74dc 1065 case PROCESSOR_CORE2:
bd5295b2 1066 case PROCESSOR_COREI7:
3632d14b 1067 case PROCESSOR_L1OM:
76bc74dc
L
1068 case PROCESSOR_GENERIC64:
1069 patt = alt_long_patt;
1070 break;
ccc9c027
L
1071 case PROCESSOR_K6:
1072 case PROCESSOR_ATHLON:
1073 case PROCESSOR_K8:
4eed87de 1074 case PROCESSOR_AMDFAM10:
68339fdf 1075 case PROCESSOR_BDVER1:
ccc9c027
L
1076 patt = alt_short_patt;
1077 break;
76bc74dc 1078 case PROCESSOR_I386:
ccc9c027
L
1079 case PROCESSOR_I486:
1080 case PROCESSOR_PENTIUM:
1081 case PROCESSOR_GENERIC32:
1082 patt = f32_patt;
1083 break;
4eed87de 1084 }
ccc9c027
L
1085 }
1086 else
1087 {
fbf3f584 1088 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1089 {
1090 case PROCESSOR_UNKNOWN:
e6a14101 1091 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1092 PROCESSOR_UNKNOWN. */
1093 abort ();
1094 break;
1095
76bc74dc 1096 case PROCESSOR_I386:
ccc9c027
L
1097 case PROCESSOR_I486:
1098 case PROCESSOR_PENTIUM:
ccc9c027
L
1099 case PROCESSOR_K6:
1100 case PROCESSOR_ATHLON:
1101 case PROCESSOR_K8:
4eed87de 1102 case PROCESSOR_AMDFAM10:
68339fdf 1103 case PROCESSOR_BDVER1:
ccc9c027
L
1104 case PROCESSOR_GENERIC32:
1105 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1106 with nops. */
1107 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
ccc9c027
L
1108 patt = alt_short_patt;
1109 else
1110 patt = f32_patt;
1111 break;
76bc74dc
L
1112 case PROCESSOR_PENTIUMPRO:
1113 case PROCESSOR_PENTIUM4:
1114 case PROCESSOR_NOCONA:
1115 case PROCESSOR_CORE:
ef05d495 1116 case PROCESSOR_CORE2:
bd5295b2 1117 case PROCESSOR_COREI7:
3632d14b 1118 case PROCESSOR_L1OM:
22109423 1119 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
ccc9c027
L
1120 patt = alt_long_patt;
1121 else
1122 patt = f32_patt;
1123 break;
1124 case PROCESSOR_GENERIC64:
76bc74dc 1125 patt = alt_long_patt;
ccc9c027 1126 break;
4eed87de 1127 }
ccc9c027
L
1128 }
1129
76bc74dc
L
1130 if (patt == f32_patt)
1131 {
1132 /* If the padding is less than 15 bytes, we use the normal
1133 ones. Otherwise, we use a jump instruction and adjust
711eedef
L
1134 its offset. */
1135 int limit;
76ba9986 1136
711eedef
L
1137 /* For 64bit, the limit is 3 bytes. */
1138 if (flag_code == CODE_64BIT
1139 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1140 limit = 3;
1141 else
1142 limit = 15;
1143 if (count < limit)
76bc74dc
L
1144 memcpy (fragP->fr_literal + fragP->fr_fix,
1145 patt[count - 1], count);
1146 else
1147 {
1148 memcpy (fragP->fr_literal + fragP->fr_fix,
1149 jump_31, count);
1150 /* Adjust jump offset. */
1151 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1152 }
1153 }
1154 else
1155 {
1156 /* Maximum length of an instruction is 15 byte. If the
1157 padding is greater than 15 bytes and we don't use jump,
1158 we have to break it into smaller pieces. */
1159 int padding = count;
1160 while (padding > 15)
1161 {
1162 padding -= 15;
1163 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1164 patt [14], 15);
1165 }
1166
1167 if (padding)
1168 memcpy (fragP->fr_literal + fragP->fr_fix,
1169 patt [padding - 1], padding);
1170 }
ccc9c027 1171 }
33fef721 1172 fragP->fr_var = count;
252b5132
RH
1173}
1174
c6fb90c8 1175static INLINE int
0dfbf9d7 1176operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1177{
0dfbf9d7 1178 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1179 {
1180 case 3:
0dfbf9d7 1181 if (x->array[2])
c6fb90c8
L
1182 return 0;
1183 case 2:
0dfbf9d7 1184 if (x->array[1])
c6fb90c8
L
1185 return 0;
1186 case 1:
0dfbf9d7 1187 return !x->array[0];
c6fb90c8
L
1188 default:
1189 abort ();
1190 }
40fb9820
L
1191}
1192
c6fb90c8 1193static INLINE void
0dfbf9d7 1194operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1195{
0dfbf9d7 1196 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1197 {
1198 case 3:
0dfbf9d7 1199 x->array[2] = v;
c6fb90c8 1200 case 2:
0dfbf9d7 1201 x->array[1] = v;
c6fb90c8 1202 case 1:
0dfbf9d7 1203 x->array[0] = v;
c6fb90c8
L
1204 break;
1205 default:
1206 abort ();
1207 }
1208}
40fb9820 1209
c6fb90c8 1210static INLINE int
0dfbf9d7
L
1211operand_type_equal (const union i386_operand_type *x,
1212 const union i386_operand_type *y)
c6fb90c8 1213{
0dfbf9d7 1214 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1215 {
1216 case 3:
0dfbf9d7 1217 if (x->array[2] != y->array[2])
c6fb90c8
L
1218 return 0;
1219 case 2:
0dfbf9d7 1220 if (x->array[1] != y->array[1])
c6fb90c8
L
1221 return 0;
1222 case 1:
0dfbf9d7 1223 return x->array[0] == y->array[0];
c6fb90c8
L
1224 break;
1225 default:
1226 abort ();
1227 }
1228}
40fb9820 1229
0dfbf9d7
L
1230static INLINE int
1231cpu_flags_all_zero (const union i386_cpu_flags *x)
1232{
1233 switch (ARRAY_SIZE(x->array))
1234 {
1235 case 3:
1236 if (x->array[2])
1237 return 0;
1238 case 2:
1239 if (x->array[1])
1240 return 0;
1241 case 1:
1242 return !x->array[0];
1243 default:
1244 abort ();
1245 }
1246}
1247
1248static INLINE void
1249cpu_flags_set (union i386_cpu_flags *x, unsigned int v)
1250{
1251 switch (ARRAY_SIZE(x->array))
1252 {
1253 case 3:
1254 x->array[2] = v;
1255 case 2:
1256 x->array[1] = v;
1257 case 1:
1258 x->array[0] = v;
1259 break;
1260 default:
1261 abort ();
1262 }
1263}
1264
1265static INLINE int
1266cpu_flags_equal (const union i386_cpu_flags *x,
1267 const union i386_cpu_flags *y)
1268{
1269 switch (ARRAY_SIZE(x->array))
1270 {
1271 case 3:
1272 if (x->array[2] != y->array[2])
1273 return 0;
1274 case 2:
1275 if (x->array[1] != y->array[1])
1276 return 0;
1277 case 1:
1278 return x->array[0] == y->array[0];
1279 break;
1280 default:
1281 abort ();
1282 }
1283}
c6fb90c8
L
1284
1285static INLINE int
1286cpu_flags_check_cpu64 (i386_cpu_flags f)
1287{
1288 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1289 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1290}
1291
c6fb90c8
L
1292static INLINE i386_cpu_flags
1293cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1294{
c6fb90c8
L
1295 switch (ARRAY_SIZE (x.array))
1296 {
1297 case 3:
1298 x.array [2] &= y.array [2];
1299 case 2:
1300 x.array [1] &= y.array [1];
1301 case 1:
1302 x.array [0] &= y.array [0];
1303 break;
1304 default:
1305 abort ();
1306 }
1307 return x;
1308}
40fb9820 1309
c6fb90c8
L
1310static INLINE i386_cpu_flags
1311cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1312{
c6fb90c8 1313 switch (ARRAY_SIZE (x.array))
40fb9820 1314 {
c6fb90c8
L
1315 case 3:
1316 x.array [2] |= y.array [2];
1317 case 2:
1318 x.array [1] |= y.array [1];
1319 case 1:
1320 x.array [0] |= y.array [0];
40fb9820
L
1321 break;
1322 default:
1323 abort ();
1324 }
40fb9820
L
1325 return x;
1326}
1327
309d3373
JB
1328static INLINE i386_cpu_flags
1329cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1330{
1331 switch (ARRAY_SIZE (x.array))
1332 {
1333 case 3:
1334 x.array [2] &= ~y.array [2];
1335 case 2:
1336 x.array [1] &= ~y.array [1];
1337 case 1:
1338 x.array [0] &= ~y.array [0];
1339 break;
1340 default:
1341 abort ();
1342 }
1343 return x;
1344}
1345
c0f3af97
L
1346#define CPU_FLAGS_ARCH_MATCH 0x1
1347#define CPU_FLAGS_64BIT_MATCH 0x2
a5ff0eb2 1348#define CPU_FLAGS_AES_MATCH 0x4
ce2f5b3c
L
1349#define CPU_FLAGS_PCLMUL_MATCH 0x8
1350#define CPU_FLAGS_AVX_MATCH 0x10
c0f3af97 1351
a5ff0eb2 1352#define CPU_FLAGS_32BIT_MATCH \
ce2f5b3c
L
1353 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1354 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
c0f3af97
L
1355#define CPU_FLAGS_PERFECT_MATCH \
1356 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1357
1358/* Return CPU flags match bits. */
3629bb00 1359
40fb9820 1360static int
d3ce72d0 1361cpu_flags_match (const insn_template *t)
40fb9820 1362{
c0f3af97
L
1363 i386_cpu_flags x = t->cpu_flags;
1364 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1365
1366 x.bitfield.cpu64 = 0;
1367 x.bitfield.cpuno64 = 0;
1368
0dfbf9d7 1369 if (cpu_flags_all_zero (&x))
c0f3af97
L
1370 {
1371 /* This instruction is available on all archs. */
1372 match |= CPU_FLAGS_32BIT_MATCH;
1373 }
3629bb00
L
1374 else
1375 {
c0f3af97 1376 /* This instruction is available only on some archs. */
3629bb00
L
1377 i386_cpu_flags cpu = cpu_arch_flags;
1378
1379 cpu.bitfield.cpu64 = 0;
1380 cpu.bitfield.cpuno64 = 0;
1381 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1382 if (!cpu_flags_all_zero (&cpu))
1383 {
a5ff0eb2
L
1384 if (x.bitfield.cpuavx)
1385 {
ce2f5b3c 1386 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
a5ff0eb2
L
1387 if (cpu.bitfield.cpuavx)
1388 {
1389 /* Check SSE2AVX. */
1390 if (!t->opcode_modifier.sse2avx|| sse2avx)
1391 {
1392 match |= (CPU_FLAGS_ARCH_MATCH
1393 | CPU_FLAGS_AVX_MATCH);
1394 /* Check AES. */
1395 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1396 match |= CPU_FLAGS_AES_MATCH;
ce2f5b3c
L
1397 /* Check PCLMUL. */
1398 if (!x.bitfield.cpupclmul
1399 || cpu.bitfield.cpupclmul)
1400 match |= CPU_FLAGS_PCLMUL_MATCH;
a5ff0eb2
L
1401 }
1402 }
1403 else
1404 match |= CPU_FLAGS_ARCH_MATCH;
1405 }
1406 else
c0f3af97
L
1407 match |= CPU_FLAGS_32BIT_MATCH;
1408 }
3629bb00 1409 }
c0f3af97 1410 return match;
40fb9820
L
1411}
1412
c6fb90c8
L
1413static INLINE i386_operand_type
1414operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1415{
c6fb90c8
L
1416 switch (ARRAY_SIZE (x.array))
1417 {
1418 case 3:
1419 x.array [2] &= y.array [2];
1420 case 2:
1421 x.array [1] &= y.array [1];
1422 case 1:
1423 x.array [0] &= y.array [0];
1424 break;
1425 default:
1426 abort ();
1427 }
1428 return x;
40fb9820
L
1429}
1430
c6fb90c8
L
1431static INLINE i386_operand_type
1432operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1433{
c6fb90c8 1434 switch (ARRAY_SIZE (x.array))
40fb9820 1435 {
c6fb90c8
L
1436 case 3:
1437 x.array [2] |= y.array [2];
1438 case 2:
1439 x.array [1] |= y.array [1];
1440 case 1:
1441 x.array [0] |= y.array [0];
40fb9820
L
1442 break;
1443 default:
1444 abort ();
1445 }
c6fb90c8
L
1446 return x;
1447}
40fb9820 1448
c6fb90c8
L
1449static INLINE i386_operand_type
1450operand_type_xor (i386_operand_type x, i386_operand_type y)
1451{
1452 switch (ARRAY_SIZE (x.array))
1453 {
1454 case 3:
1455 x.array [2] ^= y.array [2];
1456 case 2:
1457 x.array [1] ^= y.array [1];
1458 case 1:
1459 x.array [0] ^= y.array [0];
1460 break;
1461 default:
1462 abort ();
1463 }
40fb9820
L
1464 return x;
1465}
1466
1467static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1468static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1469static const i386_operand_type control = OPERAND_TYPE_CONTROL;
65da13b5
L
1470static const i386_operand_type inoutportreg
1471 = OPERAND_TYPE_INOUTPORTREG;
40fb9820
L
1472static const i386_operand_type reg16_inoutportreg
1473 = OPERAND_TYPE_REG16_INOUTPORTREG;
1474static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1475static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1476static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1477static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1478static const i386_operand_type anydisp
1479 = OPERAND_TYPE_ANYDISP;
40fb9820 1480static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
c0f3af97 1481static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
40fb9820
L
1482static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1483static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1484static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1485static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1486static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1487static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1488static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1489static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1490static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
a683cc34 1491static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
40fb9820
L
1492
1493enum operand_type
1494{
1495 reg,
40fb9820
L
1496 imm,
1497 disp,
1498 anymem
1499};
1500
c6fb90c8 1501static INLINE int
40fb9820
L
1502operand_type_check (i386_operand_type t, enum operand_type c)
1503{
1504 switch (c)
1505 {
1506 case reg:
1507 return (t.bitfield.reg8
1508 || t.bitfield.reg16
1509 || t.bitfield.reg32
1510 || t.bitfield.reg64);
1511
40fb9820
L
1512 case imm:
1513 return (t.bitfield.imm8
1514 || t.bitfield.imm8s
1515 || t.bitfield.imm16
1516 || t.bitfield.imm32
1517 || t.bitfield.imm32s
1518 || t.bitfield.imm64);
1519
1520 case disp:
1521 return (t.bitfield.disp8
1522 || t.bitfield.disp16
1523 || t.bitfield.disp32
1524 || t.bitfield.disp32s
1525 || t.bitfield.disp64);
1526
1527 case anymem:
1528 return (t.bitfield.disp8
1529 || t.bitfield.disp16
1530 || t.bitfield.disp32
1531 || t.bitfield.disp32s
1532 || t.bitfield.disp64
1533 || t.bitfield.baseindex);
1534
1535 default:
1536 abort ();
1537 }
2cfe26b6
AM
1538
1539 return 0;
40fb9820
L
1540}
1541
5c07affc
L
1542/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1543 operand J for instruction template T. */
1544
1545static INLINE int
d3ce72d0 1546match_reg_size (const insn_template *t, unsigned int j)
5c07affc
L
1547{
1548 return !((i.types[j].bitfield.byte
1549 && !t->operand_types[j].bitfield.byte)
1550 || (i.types[j].bitfield.word
1551 && !t->operand_types[j].bitfield.word)
1552 || (i.types[j].bitfield.dword
1553 && !t->operand_types[j].bitfield.dword)
1554 || (i.types[j].bitfield.qword
1555 && !t->operand_types[j].bitfield.qword));
1556}
1557
1558/* Return 1 if there is no conflict in any size on operand J for
1559 instruction template T. */
1560
1561static INLINE int
d3ce72d0 1562match_mem_size (const insn_template *t, unsigned int j)
5c07affc
L
1563{
1564 return (match_reg_size (t, j)
1565 && !((i.types[j].bitfield.unspecified
1566 && !t->operand_types[j].bitfield.unspecified)
1567 || (i.types[j].bitfield.fword
1568 && !t->operand_types[j].bitfield.fword)
1569 || (i.types[j].bitfield.tbyte
1570 && !t->operand_types[j].bitfield.tbyte)
1571 || (i.types[j].bitfield.xmmword
c0f3af97
L
1572 && !t->operand_types[j].bitfield.xmmword)
1573 || (i.types[j].bitfield.ymmword
1574 && !t->operand_types[j].bitfield.ymmword)));
5c07affc
L
1575}
1576
1577/* Return 1 if there is no size conflict on any operands for
1578 instruction template T. */
1579
1580static INLINE int
d3ce72d0 1581operand_size_match (const insn_template *t)
5c07affc
L
1582{
1583 unsigned int j;
1584 int match = 1;
1585
1586 /* Don't check jump instructions. */
1587 if (t->opcode_modifier.jump
1588 || t->opcode_modifier.jumpbyte
1589 || t->opcode_modifier.jumpdword
1590 || t->opcode_modifier.jumpintersegment)
1591 return match;
1592
1593 /* Check memory and accumulator operand size. */
1594 for (j = 0; j < i.operands; j++)
1595 {
1596 if (t->operand_types[j].bitfield.anysize)
1597 continue;
1598
1599 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1600 {
1601 match = 0;
1602 break;
1603 }
1604
1605 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1606 {
1607 match = 0;
1608 break;
1609 }
1610 }
1611
891edac4 1612 if (match)
5c07affc 1613 return match;
891edac4
L
1614 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1615 {
1616mismatch:
86e026a4 1617 i.error = operand_size_mismatch;
891edac4
L
1618 return 0;
1619 }
5c07affc
L
1620
1621 /* Check reverse. */
9c2799c2 1622 gas_assert (i.operands == 2);
5c07affc
L
1623
1624 match = 1;
1625 for (j = 0; j < 2; j++)
1626 {
1627 if (t->operand_types[j].bitfield.acc
1628 && !match_reg_size (t, j ? 0 : 1))
891edac4 1629 goto mismatch;
5c07affc
L
1630
1631 if (i.types[j].bitfield.mem
1632 && !match_mem_size (t, j ? 0 : 1))
891edac4 1633 goto mismatch;
5c07affc
L
1634 }
1635
1636 return match;
1637}
1638
c6fb90c8 1639static INLINE int
40fb9820
L
1640operand_type_match (i386_operand_type overlap,
1641 i386_operand_type given)
1642{
1643 i386_operand_type temp = overlap;
1644
1645 temp.bitfield.jumpabsolute = 0;
7d5e4556 1646 temp.bitfield.unspecified = 0;
5c07affc
L
1647 temp.bitfield.byte = 0;
1648 temp.bitfield.word = 0;
1649 temp.bitfield.dword = 0;
1650 temp.bitfield.fword = 0;
1651 temp.bitfield.qword = 0;
1652 temp.bitfield.tbyte = 0;
1653 temp.bitfield.xmmword = 0;
c0f3af97 1654 temp.bitfield.ymmword = 0;
0dfbf9d7 1655 if (operand_type_all_zero (&temp))
891edac4 1656 goto mismatch;
40fb9820 1657
891edac4
L
1658 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1659 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1660 return 1;
1661
1662mismatch:
a65babc9 1663 i.error = operand_type_mismatch;
891edac4 1664 return 0;
40fb9820
L
1665}
1666
7d5e4556 1667/* If given types g0 and g1 are registers they must be of the same type
40fb9820
L
1668 unless the expected operand type register overlap is null.
1669 Note that Acc in a template matches every size of reg. */
1670
c6fb90c8 1671static INLINE int
40fb9820
L
1672operand_type_register_match (i386_operand_type m0,
1673 i386_operand_type g0,
1674 i386_operand_type t0,
1675 i386_operand_type m1,
1676 i386_operand_type g1,
1677 i386_operand_type t1)
1678{
1679 if (!operand_type_check (g0, reg))
1680 return 1;
1681
1682 if (!operand_type_check (g1, reg))
1683 return 1;
1684
1685 if (g0.bitfield.reg8 == g1.bitfield.reg8
1686 && g0.bitfield.reg16 == g1.bitfield.reg16
1687 && g0.bitfield.reg32 == g1.bitfield.reg32
1688 && g0.bitfield.reg64 == g1.bitfield.reg64)
1689 return 1;
1690
1691 if (m0.bitfield.acc)
1692 {
1693 t0.bitfield.reg8 = 1;
1694 t0.bitfield.reg16 = 1;
1695 t0.bitfield.reg32 = 1;
1696 t0.bitfield.reg64 = 1;
1697 }
1698
1699 if (m1.bitfield.acc)
1700 {
1701 t1.bitfield.reg8 = 1;
1702 t1.bitfield.reg16 = 1;
1703 t1.bitfield.reg32 = 1;
1704 t1.bitfield.reg64 = 1;
1705 }
1706
891edac4
L
1707 if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1708 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1709 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1710 && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1711 return 1;
1712
a65babc9 1713 i.error = register_type_mismatch;
891edac4
L
1714
1715 return 0;
40fb9820
L
1716}
1717
252b5132 1718static INLINE unsigned int
40fb9820 1719mode_from_disp_size (i386_operand_type t)
252b5132 1720{
40fb9820
L
1721 if (t.bitfield.disp8)
1722 return 1;
1723 else if (t.bitfield.disp16
1724 || t.bitfield.disp32
1725 || t.bitfield.disp32s)
1726 return 2;
1727 else
1728 return 0;
252b5132
RH
1729}
1730
1731static INLINE int
e3bb37b5 1732fits_in_signed_byte (offsetT num)
252b5132
RH
1733{
1734 return (num >= -128) && (num <= 127);
47926f60 1735}
252b5132
RH
1736
1737static INLINE int
e3bb37b5 1738fits_in_unsigned_byte (offsetT num)
252b5132
RH
1739{
1740 return (num & 0xff) == num;
47926f60 1741}
252b5132
RH
1742
1743static INLINE int
e3bb37b5 1744fits_in_unsigned_word (offsetT num)
252b5132
RH
1745{
1746 return (num & 0xffff) == num;
47926f60 1747}
252b5132
RH
1748
1749static INLINE int
e3bb37b5 1750fits_in_signed_word (offsetT num)
252b5132
RH
1751{
1752 return (-32768 <= num) && (num <= 32767);
47926f60 1753}
2a962e6d 1754
3e73aa7c 1755static INLINE int
e3bb37b5 1756fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
1757{
1758#ifndef BFD64
1759 return 1;
1760#else
1761 return (!(((offsetT) -1 << 31) & num)
1762 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
1763#endif
1764} /* fits_in_signed_long() */
2a962e6d 1765
3e73aa7c 1766static INLINE int
e3bb37b5 1767fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
1768{
1769#ifndef BFD64
1770 return 1;
1771#else
1772 return (num & (((offsetT) 2 << 31) - 1)) == num;
1773#endif
1774} /* fits_in_unsigned_long() */
252b5132 1775
a683cc34
SP
1776static INLINE int
1777fits_in_imm4 (offsetT num)
1778{
1779 return (num & 0xf) == num;
1780}
1781
40fb9820 1782static i386_operand_type
e3bb37b5 1783smallest_imm_type (offsetT num)
252b5132 1784{
40fb9820 1785 i386_operand_type t;
7ab9ffdd 1786
0dfbf9d7 1787 operand_type_set (&t, 0);
40fb9820
L
1788 t.bitfield.imm64 = 1;
1789
1790 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
1791 {
1792 /* This code is disabled on the 486 because all the Imm1 forms
1793 in the opcode table are slower on the i486. They're the
1794 versions with the implicitly specified single-position
1795 displacement, which has another syntax if you really want to
1796 use that form. */
40fb9820
L
1797 t.bitfield.imm1 = 1;
1798 t.bitfield.imm8 = 1;
1799 t.bitfield.imm8s = 1;
1800 t.bitfield.imm16 = 1;
1801 t.bitfield.imm32 = 1;
1802 t.bitfield.imm32s = 1;
1803 }
1804 else if (fits_in_signed_byte (num))
1805 {
1806 t.bitfield.imm8 = 1;
1807 t.bitfield.imm8s = 1;
1808 t.bitfield.imm16 = 1;
1809 t.bitfield.imm32 = 1;
1810 t.bitfield.imm32s = 1;
1811 }
1812 else if (fits_in_unsigned_byte (num))
1813 {
1814 t.bitfield.imm8 = 1;
1815 t.bitfield.imm16 = 1;
1816 t.bitfield.imm32 = 1;
1817 t.bitfield.imm32s = 1;
1818 }
1819 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
1820 {
1821 t.bitfield.imm16 = 1;
1822 t.bitfield.imm32 = 1;
1823 t.bitfield.imm32s = 1;
1824 }
1825 else if (fits_in_signed_long (num))
1826 {
1827 t.bitfield.imm32 = 1;
1828 t.bitfield.imm32s = 1;
1829 }
1830 else if (fits_in_unsigned_long (num))
1831 t.bitfield.imm32 = 1;
1832
1833 return t;
47926f60 1834}
252b5132 1835
847f7ad4 1836static offsetT
e3bb37b5 1837offset_in_range (offsetT val, int size)
847f7ad4 1838{
508866be 1839 addressT mask;
ba2adb93 1840
847f7ad4
AM
1841 switch (size)
1842 {
508866be
L
1843 case 1: mask = ((addressT) 1 << 8) - 1; break;
1844 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 1845 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
1846#ifdef BFD64
1847 case 8: mask = ((addressT) 2 << 63) - 1; break;
1848#endif
47926f60 1849 default: abort ();
847f7ad4
AM
1850 }
1851
9de868bf
L
1852#ifdef BFD64
1853 /* If BFD64, sign extend val for 32bit address mode. */
1854 if (flag_code != CODE_64BIT
1855 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
1856 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
1857 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 1858#endif
ba2adb93 1859
47926f60 1860 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
1861 {
1862 char buf1[40], buf2[40];
1863
1864 sprint_value (buf1, val);
1865 sprint_value (buf2, val & mask);
1866 as_warn (_("%s shortened to %s"), buf1, buf2);
1867 }
1868 return val & mask;
1869}
1870
c32fa91d
L
1871enum PREFIX_GROUP
1872{
1873 PREFIX_EXIST = 0,
1874 PREFIX_LOCK,
1875 PREFIX_REP,
1876 PREFIX_OTHER
1877};
1878
1879/* Returns
1880 a. PREFIX_EXIST if attempting to add a prefix where one from the
1881 same class already exists.
1882 b. PREFIX_LOCK if lock prefix is added.
1883 c. PREFIX_REP if rep/repne prefix is added.
1884 d. PREFIX_OTHER if other prefix is added.
1885 */
1886
1887static enum PREFIX_GROUP
e3bb37b5 1888add_prefix (unsigned int prefix)
252b5132 1889{
c32fa91d 1890 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 1891 unsigned int q;
252b5132 1892
29b0f896
AM
1893 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
1894 && flag_code == CODE_64BIT)
b1905489 1895 {
161a04f6
L
1896 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
1897 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
1898 && (prefix & (REX_R | REX_X | REX_B))))
c32fa91d 1899 ret = PREFIX_EXIST;
b1905489
JB
1900 q = REX_PREFIX;
1901 }
3e73aa7c 1902 else
b1905489
JB
1903 {
1904 switch (prefix)
1905 {
1906 default:
1907 abort ();
1908
1909 case CS_PREFIX_OPCODE:
1910 case DS_PREFIX_OPCODE:
1911 case ES_PREFIX_OPCODE:
1912 case FS_PREFIX_OPCODE:
1913 case GS_PREFIX_OPCODE:
1914 case SS_PREFIX_OPCODE:
1915 q = SEG_PREFIX;
1916 break;
1917
1918 case REPNE_PREFIX_OPCODE:
1919 case REPE_PREFIX_OPCODE:
c32fa91d
L
1920 q = REP_PREFIX;
1921 ret = PREFIX_REP;
1922 break;
1923
b1905489 1924 case LOCK_PREFIX_OPCODE:
c32fa91d
L
1925 q = LOCK_PREFIX;
1926 ret = PREFIX_LOCK;
b1905489
JB
1927 break;
1928
1929 case FWAIT_OPCODE:
1930 q = WAIT_PREFIX;
1931 break;
1932
1933 case ADDR_PREFIX_OPCODE:
1934 q = ADDR_PREFIX;
1935 break;
1936
1937 case DATA_PREFIX_OPCODE:
1938 q = DATA_PREFIX;
1939 break;
1940 }
1941 if (i.prefix[q] != 0)
c32fa91d 1942 ret = PREFIX_EXIST;
b1905489 1943 }
252b5132 1944
b1905489 1945 if (ret)
252b5132 1946 {
b1905489
JB
1947 if (!i.prefix[q])
1948 ++i.prefixes;
1949 i.prefix[q] |= prefix;
252b5132 1950 }
b1905489
JB
1951 else
1952 as_bad (_("same type of prefix used twice"));
252b5132 1953
252b5132
RH
1954 return ret;
1955}
1956
1957static void
78f12dd3 1958update_code_flag (int value, int check)
eecb386c 1959{
78f12dd3
L
1960 PRINTF_LIKE ((*as_error));
1961
1e9cc1c2 1962 flag_code = (enum flag_code) value;
40fb9820
L
1963 if (flag_code == CODE_64BIT)
1964 {
1965 cpu_arch_flags.bitfield.cpu64 = 1;
1966 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
1967 }
1968 else
1969 {
1970 cpu_arch_flags.bitfield.cpu64 = 0;
1971 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
1972 }
1973 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 1974 {
78f12dd3
L
1975 if (check)
1976 as_error = as_fatal;
1977 else
1978 as_error = as_bad;
1979 (*as_error) (_("64bit mode not supported on `%s'."),
1980 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 1981 }
40fb9820 1982 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 1983 {
78f12dd3
L
1984 if (check)
1985 as_error = as_fatal;
1986 else
1987 as_error = as_bad;
1988 (*as_error) (_("32bit mode not supported on `%s'."),
1989 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 1990 }
eecb386c
AM
1991 stackop_size = '\0';
1992}
1993
78f12dd3
L
1994static void
1995set_code_flag (int value)
1996{
1997 update_code_flag (value, 0);
1998}
1999
eecb386c 2000static void
e3bb37b5 2001set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2002{
1e9cc1c2 2003 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2004 if (flag_code != CODE_16BIT)
2005 abort ();
2006 cpu_arch_flags.bitfield.cpu64 = 0;
2007 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2008 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2009}
2010
2011static void
e3bb37b5 2012set_intel_syntax (int syntax_flag)
252b5132
RH
2013{
2014 /* Find out if register prefixing is specified. */
2015 int ask_naked_reg = 0;
2016
2017 SKIP_WHITESPACE ();
29b0f896 2018 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132
RH
2019 {
2020 char *string = input_line_pointer;
2021 int e = get_symbol_end ();
2022
47926f60 2023 if (strcmp (string, "prefix") == 0)
252b5132 2024 ask_naked_reg = 1;
47926f60 2025 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2026 ask_naked_reg = -1;
2027 else
d0b47220 2028 as_bad (_("bad argument to syntax directive."));
252b5132
RH
2029 *input_line_pointer = e;
2030 }
2031 demand_empty_rest_of_line ();
c3332e24 2032
252b5132
RH
2033 intel_syntax = syntax_flag;
2034
2035 if (ask_naked_reg == 0)
f86103b7
AM
2036 allow_naked_reg = (intel_syntax
2037 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2038 else
2039 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2040
ee86248c 2041 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2042
e4a3b5a4 2043 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2044 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2045 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2046}
2047
1efbbeb4
L
2048static void
2049set_intel_mnemonic (int mnemonic_flag)
2050{
e1d4d893 2051 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2052}
2053
db51cc60
L
2054static void
2055set_allow_index_reg (int flag)
2056{
2057 allow_index_reg = flag;
2058}
2059
cb19c032
L
2060static void
2061set_sse_check (int dummy ATTRIBUTE_UNUSED)
2062{
2063 SKIP_WHITESPACE ();
2064
2065 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2066 {
2067 char *string = input_line_pointer;
2068 int e = get_symbol_end ();
2069
2070 if (strcmp (string, "none") == 0)
2071 sse_check = sse_check_none;
2072 else if (strcmp (string, "warning") == 0)
2073 sse_check = sse_check_warning;
2074 else if (strcmp (string, "error") == 0)
2075 sse_check = sse_check_error;
2076 else
2077 as_bad (_("bad argument to sse_check directive."));
2078 *input_line_pointer = e;
2079 }
2080 else
2081 as_bad (_("missing argument for sse_check directive"));
2082
2083 demand_empty_rest_of_line ();
2084}
2085
8a9036a4
L
2086static void
2087check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2088 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2089{
2090#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2091 static const char *arch;
2092
2093 /* Intel LIOM is only supported on ELF. */
2094 if (!IS_ELF)
2095 return;
2096
2097 if (!arch)
2098 {
2099 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2100 use default_arch. */
2101 arch = cpu_arch_name;
2102 if (!arch)
2103 arch = default_arch;
2104 }
2105
3632d14b 2106 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2107 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2108 || new_flag.bitfield.cpul1om)
8a9036a4 2109 return;
76ba9986 2110
8a9036a4
L
2111 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2112#endif
2113}
2114
e413e4e9 2115static void
e3bb37b5 2116set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2117{
47926f60 2118 SKIP_WHITESPACE ();
e413e4e9 2119
29b0f896 2120 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9
AM
2121 {
2122 char *string = input_line_pointer;
2123 int e = get_symbol_end ();
91d6fa6a 2124 unsigned int j;
40fb9820 2125 i386_cpu_flags flags;
e413e4e9 2126
91d6fa6a 2127 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2128 {
91d6fa6a 2129 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2130 {
91d6fa6a 2131 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2132
5c6af06e
JB
2133 if (*string != '.')
2134 {
91d6fa6a 2135 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2136 cpu_sub_arch_name = NULL;
91d6fa6a 2137 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2138 if (flag_code == CODE_64BIT)
2139 {
2140 cpu_arch_flags.bitfield.cpu64 = 1;
2141 cpu_arch_flags.bitfield.cpuno64 = 0;
2142 }
2143 else
2144 {
2145 cpu_arch_flags.bitfield.cpu64 = 0;
2146 cpu_arch_flags.bitfield.cpuno64 = 1;
2147 }
91d6fa6a
NC
2148 cpu_arch_isa = cpu_arch[j].type;
2149 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2150 if (!cpu_arch_tune_set)
2151 {
2152 cpu_arch_tune = cpu_arch_isa;
2153 cpu_arch_tune_flags = cpu_arch_isa_flags;
2154 }
5c6af06e
JB
2155 break;
2156 }
40fb9820 2157
22109423 2158 if (!cpu_arch[j].negated)
309d3373 2159 flags = cpu_flags_or (cpu_arch_flags,
91d6fa6a 2160 cpu_arch[j].flags);
309d3373
JB
2161 else
2162 flags = cpu_flags_and_not (cpu_arch_flags,
49021df2 2163 cpu_arch[j].flags);
0dfbf9d7 2164 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2165 {
6305a203
L
2166 if (cpu_sub_arch_name)
2167 {
2168 char *name = cpu_sub_arch_name;
2169 cpu_sub_arch_name = concat (name,
91d6fa6a 2170 cpu_arch[j].name,
1bf57e9f 2171 (const char *) NULL);
6305a203
L
2172 free (name);
2173 }
2174 else
91d6fa6a 2175 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2176 cpu_arch_flags = flags;
5c6af06e
JB
2177 }
2178 *input_line_pointer = e;
2179 demand_empty_rest_of_line ();
2180 return;
e413e4e9
AM
2181 }
2182 }
91d6fa6a 2183 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2184 as_bad (_("no such architecture: `%s'"), string);
2185
2186 *input_line_pointer = e;
2187 }
2188 else
2189 as_bad (_("missing cpu architecture"));
2190
fddf5b5b
AM
2191 no_cond_jump_promotion = 0;
2192 if (*input_line_pointer == ','
29b0f896 2193 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b
AM
2194 {
2195 char *string = ++input_line_pointer;
2196 int e = get_symbol_end ();
2197
2198 if (strcmp (string, "nojumps") == 0)
2199 no_cond_jump_promotion = 1;
2200 else if (strcmp (string, "jumps") == 0)
2201 ;
2202 else
2203 as_bad (_("no such architecture modifier: `%s'"), string);
2204
2205 *input_line_pointer = e;
2206 }
2207
e413e4e9
AM
2208 demand_empty_rest_of_line ();
2209}
2210
8a9036a4
L
2211enum bfd_architecture
2212i386_arch (void)
2213{
3632d14b 2214 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2215 {
2216 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2217 || flag_code != CODE_64BIT)
2218 as_fatal (_("Intel L1OM is 64bit ELF only"));
2219 return bfd_arch_l1om;
2220 }
2221 else
2222 return bfd_arch_i386;
2223}
2224
b9d79e03
JH
2225unsigned long
2226i386_mach ()
2227{
351f65ca 2228 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2229 {
3632d14b 2230 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2231 {
351f65ca
L
2232 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2233 || default_arch[6] != '\0')
8a9036a4
L
2234 as_fatal (_("Intel L1OM is 64bit ELF only"));
2235 return bfd_mach_l1om;
2236 }
351f65ca 2237 else if (default_arch[6] == '\0')
8a9036a4 2238 return bfd_mach_x86_64;
351f65ca
L
2239 else
2240 return bfd_mach_x64_32;
8a9036a4 2241 }
b9d79e03
JH
2242 else if (!strcmp (default_arch, "i386"))
2243 return bfd_mach_i386_i386;
2244 else
2245 as_fatal (_("Unknown architecture"));
2246}
b9d79e03 2247\f
252b5132
RH
2248void
2249md_begin ()
2250{
2251 const char *hash_err;
2252
47926f60 2253 /* Initialize op_hash hash table. */
252b5132
RH
2254 op_hash = hash_new ();
2255
2256 {
d3ce72d0 2257 const insn_template *optab;
29b0f896 2258 templates *core_optab;
252b5132 2259
47926f60
KH
2260 /* Setup for loop. */
2261 optab = i386_optab;
252b5132
RH
2262 core_optab = (templates *) xmalloc (sizeof (templates));
2263 core_optab->start = optab;
2264
2265 while (1)
2266 {
2267 ++optab;
2268 if (optab->name == NULL
2269 || strcmp (optab->name, (optab - 1)->name) != 0)
2270 {
2271 /* different name --> ship out current template list;
47926f60 2272 add to hash table; & begin anew. */
252b5132
RH
2273 core_optab->end = optab;
2274 hash_err = hash_insert (op_hash,
2275 (optab - 1)->name,
5a49b8ac 2276 (void *) core_optab);
252b5132
RH
2277 if (hash_err)
2278 {
252b5132
RH
2279 as_fatal (_("Internal Error: Can't hash %s: %s"),
2280 (optab - 1)->name,
2281 hash_err);
2282 }
2283 if (optab->name == NULL)
2284 break;
2285 core_optab = (templates *) xmalloc (sizeof (templates));
2286 core_optab->start = optab;
2287 }
2288 }
2289 }
2290
47926f60 2291 /* Initialize reg_hash hash table. */
252b5132
RH
2292 reg_hash = hash_new ();
2293 {
29b0f896 2294 const reg_entry *regtab;
c3fe08fa 2295 unsigned int regtab_size = i386_regtab_size;
252b5132 2296
c3fe08fa 2297 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2298 {
5a49b8ac 2299 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2300 if (hash_err)
3e73aa7c
JH
2301 as_fatal (_("Internal Error: Can't hash %s: %s"),
2302 regtab->reg_name,
2303 hash_err);
252b5132
RH
2304 }
2305 }
2306
47926f60 2307 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2308 {
29b0f896
AM
2309 int c;
2310 char *p;
252b5132
RH
2311
2312 for (c = 0; c < 256; c++)
2313 {
3882b010 2314 if (ISDIGIT (c))
252b5132
RH
2315 {
2316 digit_chars[c] = c;
2317 mnemonic_chars[c] = c;
2318 register_chars[c] = c;
2319 operand_chars[c] = c;
2320 }
3882b010 2321 else if (ISLOWER (c))
252b5132
RH
2322 {
2323 mnemonic_chars[c] = c;
2324 register_chars[c] = c;
2325 operand_chars[c] = c;
2326 }
3882b010 2327 else if (ISUPPER (c))
252b5132 2328 {
3882b010 2329 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2330 register_chars[c] = mnemonic_chars[c];
2331 operand_chars[c] = c;
2332 }
2333
3882b010 2334 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2335 identifier_chars[c] = c;
2336 else if (c >= 128)
2337 {
2338 identifier_chars[c] = c;
2339 operand_chars[c] = c;
2340 }
2341 }
2342
2343#ifdef LEX_AT
2344 identifier_chars['@'] = '@';
32137342
NC
2345#endif
2346#ifdef LEX_QM
2347 identifier_chars['?'] = '?';
2348 operand_chars['?'] = '?';
252b5132 2349#endif
252b5132 2350 digit_chars['-'] = '-';
c0f3af97 2351 mnemonic_chars['_'] = '_';
791fe849 2352 mnemonic_chars['-'] = '-';
0003779b 2353 mnemonic_chars['.'] = '.';
252b5132
RH
2354 identifier_chars['_'] = '_';
2355 identifier_chars['.'] = '.';
2356
2357 for (p = operand_special_chars; *p != '\0'; p++)
2358 operand_chars[(unsigned char) *p] = *p;
2359 }
2360
2361#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 2362 if (IS_ELF)
252b5132
RH
2363 {
2364 record_alignment (text_section, 2);
2365 record_alignment (data_section, 2);
2366 record_alignment (bss_section, 2);
2367 }
2368#endif
a4447b93
RH
2369
2370 if (flag_code == CODE_64BIT)
2371 {
2372 x86_dwarf2_return_column = 16;
2373 x86_cie_data_alignment = -8;
2374 }
2375 else
2376 {
2377 x86_dwarf2_return_column = 8;
2378 x86_cie_data_alignment = -4;
2379 }
252b5132
RH
2380}
2381
2382void
e3bb37b5 2383i386_print_statistics (FILE *file)
252b5132
RH
2384{
2385 hash_print_statistics (file, "i386 opcode", op_hash);
2386 hash_print_statistics (file, "i386 register", reg_hash);
2387}
2388\f
252b5132
RH
2389#ifdef DEBUG386
2390
ce8a8b2f 2391/* Debugging routines for md_assemble. */
d3ce72d0 2392static void pte (insn_template *);
40fb9820 2393static void pt (i386_operand_type);
e3bb37b5
L
2394static void pe (expressionS *);
2395static void ps (symbolS *);
252b5132
RH
2396
2397static void
e3bb37b5 2398pi (char *line, i386_insn *x)
252b5132 2399{
09137c09 2400 unsigned int j;
252b5132
RH
2401
2402 fprintf (stdout, "%s: template ", line);
2403 pte (&x->tm);
09f131f2
JH
2404 fprintf (stdout, " address: base %s index %s scale %x\n",
2405 x->base_reg ? x->base_reg->reg_name : "none",
2406 x->index_reg ? x->index_reg->reg_name : "none",
2407 x->log2_scale_factor);
2408 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 2409 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
2410 fprintf (stdout, " sib: base %x index %x scale %x\n",
2411 x->sib.base, x->sib.index, x->sib.scale);
2412 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
2413 (x->rex & REX_W) != 0,
2414 (x->rex & REX_R) != 0,
2415 (x->rex & REX_X) != 0,
2416 (x->rex & REX_B) != 0);
09137c09 2417 for (j = 0; j < x->operands; j++)
252b5132 2418 {
09137c09
SP
2419 fprintf (stdout, " #%d: ", j + 1);
2420 pt (x->types[j]);
252b5132 2421 fprintf (stdout, "\n");
09137c09
SP
2422 if (x->types[j].bitfield.reg8
2423 || x->types[j].bitfield.reg16
2424 || x->types[j].bitfield.reg32
2425 || x->types[j].bitfield.reg64
2426 || x->types[j].bitfield.regmmx
2427 || x->types[j].bitfield.regxmm
2428 || x->types[j].bitfield.regymm
2429 || x->types[j].bitfield.sreg2
2430 || x->types[j].bitfield.sreg3
2431 || x->types[j].bitfield.control
2432 || x->types[j].bitfield.debug
2433 || x->types[j].bitfield.test)
2434 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2435 if (operand_type_check (x->types[j], imm))
2436 pe (x->op[j].imms);
2437 if (operand_type_check (x->types[j], disp))
2438 pe (x->op[j].disps);
252b5132
RH
2439 }
2440}
2441
2442static void
d3ce72d0 2443pte (insn_template *t)
252b5132 2444{
09137c09 2445 unsigned int j;
252b5132 2446 fprintf (stdout, " %d operands ", t->operands);
47926f60 2447 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
2448 if (t->extension_opcode != None)
2449 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 2450 if (t->opcode_modifier.d)
252b5132 2451 fprintf (stdout, "D");
40fb9820 2452 if (t->opcode_modifier.w)
252b5132
RH
2453 fprintf (stdout, "W");
2454 fprintf (stdout, "\n");
09137c09 2455 for (j = 0; j < t->operands; j++)
252b5132 2456 {
09137c09
SP
2457 fprintf (stdout, " #%d type ", j + 1);
2458 pt (t->operand_types[j]);
252b5132
RH
2459 fprintf (stdout, "\n");
2460 }
2461}
2462
2463static void
e3bb37b5 2464pe (expressionS *e)
252b5132 2465{
24eab124 2466 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
2467 fprintf (stdout, " add_number %ld (%lx)\n",
2468 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
2469 if (e->X_add_symbol)
2470 {
2471 fprintf (stdout, " add_symbol ");
2472 ps (e->X_add_symbol);
2473 fprintf (stdout, "\n");
2474 }
2475 if (e->X_op_symbol)
2476 {
2477 fprintf (stdout, " op_symbol ");
2478 ps (e->X_op_symbol);
2479 fprintf (stdout, "\n");
2480 }
2481}
2482
2483static void
e3bb37b5 2484ps (symbolS *s)
252b5132
RH
2485{
2486 fprintf (stdout, "%s type %s%s",
2487 S_GET_NAME (s),
2488 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2489 segment_name (S_GET_SEGMENT (s)));
2490}
2491
7b81dfbb 2492static struct type_name
252b5132 2493 {
40fb9820
L
2494 i386_operand_type mask;
2495 const char *name;
252b5132 2496 }
7b81dfbb 2497const type_names[] =
252b5132 2498{
40fb9820
L
2499 { OPERAND_TYPE_REG8, "r8" },
2500 { OPERAND_TYPE_REG16, "r16" },
2501 { OPERAND_TYPE_REG32, "r32" },
2502 { OPERAND_TYPE_REG64, "r64" },
2503 { OPERAND_TYPE_IMM8, "i8" },
2504 { OPERAND_TYPE_IMM8, "i8s" },
2505 { OPERAND_TYPE_IMM16, "i16" },
2506 { OPERAND_TYPE_IMM32, "i32" },
2507 { OPERAND_TYPE_IMM32S, "i32s" },
2508 { OPERAND_TYPE_IMM64, "i64" },
2509 { OPERAND_TYPE_IMM1, "i1" },
2510 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2511 { OPERAND_TYPE_DISP8, "d8" },
2512 { OPERAND_TYPE_DISP16, "d16" },
2513 { OPERAND_TYPE_DISP32, "d32" },
2514 { OPERAND_TYPE_DISP32S, "d32s" },
2515 { OPERAND_TYPE_DISP64, "d64" },
2516 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2517 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2518 { OPERAND_TYPE_CONTROL, "control reg" },
2519 { OPERAND_TYPE_TEST, "test reg" },
2520 { OPERAND_TYPE_DEBUG, "debug reg" },
2521 { OPERAND_TYPE_FLOATREG, "FReg" },
2522 { OPERAND_TYPE_FLOATACC, "FAcc" },
2523 { OPERAND_TYPE_SREG2, "SReg2" },
2524 { OPERAND_TYPE_SREG3, "SReg3" },
2525 { OPERAND_TYPE_ACC, "Acc" },
2526 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2527 { OPERAND_TYPE_REGMMX, "rMMX" },
2528 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 2529 { OPERAND_TYPE_REGYMM, "rYMM" },
40fb9820 2530 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
2531};
2532
2533static void
40fb9820 2534pt (i386_operand_type t)
252b5132 2535{
40fb9820 2536 unsigned int j;
c6fb90c8 2537 i386_operand_type a;
252b5132 2538
40fb9820 2539 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
2540 {
2541 a = operand_type_and (t, type_names[j].mask);
0349dc08 2542 if (!operand_type_all_zero (&a))
c6fb90c8
L
2543 fprintf (stdout, "%s, ", type_names[j].name);
2544 }
252b5132
RH
2545 fflush (stdout);
2546}
2547
2548#endif /* DEBUG386 */
2549\f
252b5132 2550static bfd_reloc_code_real_type
3956db08 2551reloc (unsigned int size,
64e74474
AM
2552 int pcrel,
2553 int sign,
2554 bfd_reloc_code_real_type other)
252b5132 2555{
47926f60 2556 if (other != NO_RELOC)
3956db08 2557 {
91d6fa6a 2558 reloc_howto_type *rel;
3956db08
JB
2559
2560 if (size == 8)
2561 switch (other)
2562 {
64e74474
AM
2563 case BFD_RELOC_X86_64_GOT32:
2564 return BFD_RELOC_X86_64_GOT64;
2565 break;
2566 case BFD_RELOC_X86_64_PLTOFF64:
2567 return BFD_RELOC_X86_64_PLTOFF64;
2568 break;
2569 case BFD_RELOC_X86_64_GOTPC32:
2570 other = BFD_RELOC_X86_64_GOTPC64;
2571 break;
2572 case BFD_RELOC_X86_64_GOTPCREL:
2573 other = BFD_RELOC_X86_64_GOTPCREL64;
2574 break;
2575 case BFD_RELOC_X86_64_TPOFF32:
2576 other = BFD_RELOC_X86_64_TPOFF64;
2577 break;
2578 case BFD_RELOC_X86_64_DTPOFF32:
2579 other = BFD_RELOC_X86_64_DTPOFF64;
2580 break;
2581 default:
2582 break;
3956db08 2583 }
e05278af
JB
2584
2585 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
2586 if (size == 4 && flag_code != CODE_64BIT)
2587 sign = -1;
2588
91d6fa6a
NC
2589 rel = bfd_reloc_type_lookup (stdoutput, other);
2590 if (!rel)
3956db08 2591 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 2592 else if (size != bfd_get_reloc_size (rel))
3956db08 2593 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 2594 bfd_get_reloc_size (rel),
3956db08 2595 size);
91d6fa6a 2596 else if (pcrel && !rel->pc_relative)
3956db08 2597 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 2598 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 2599 && !sign)
91d6fa6a 2600 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 2601 && sign > 0))
3956db08
JB
2602 as_bad (_("relocated field and relocation type differ in signedness"));
2603 else
2604 return other;
2605 return NO_RELOC;
2606 }
252b5132
RH
2607
2608 if (pcrel)
2609 {
3e73aa7c 2610 if (!sign)
3956db08 2611 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
2612 switch (size)
2613 {
2614 case 1: return BFD_RELOC_8_PCREL;
2615 case 2: return BFD_RELOC_16_PCREL;
2616 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 2617 case 8: return BFD_RELOC_64_PCREL;
252b5132 2618 }
3956db08 2619 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
2620 }
2621 else
2622 {
3956db08 2623 if (sign > 0)
e5cb08ac 2624 switch (size)
3e73aa7c
JH
2625 {
2626 case 4: return BFD_RELOC_X86_64_32S;
2627 }
2628 else
2629 switch (size)
2630 {
2631 case 1: return BFD_RELOC_8;
2632 case 2: return BFD_RELOC_16;
2633 case 4: return BFD_RELOC_32;
2634 case 8: return BFD_RELOC_64;
2635 }
3956db08
JB
2636 as_bad (_("cannot do %s %u byte relocation"),
2637 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
2638 }
2639
0cc9e1d3 2640 return NO_RELOC;
252b5132
RH
2641}
2642
47926f60
KH
2643/* Here we decide which fixups can be adjusted to make them relative to
2644 the beginning of the section instead of the symbol. Basically we need
2645 to make sure that the dynamic relocations are done correctly, so in
2646 some cases we force the original symbol to be used. */
2647
252b5132 2648int
e3bb37b5 2649tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 2650{
6d249963 2651#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 2652 if (!IS_ELF)
31312f95
AM
2653 return 1;
2654
a161fe53
AM
2655 /* Don't adjust pc-relative references to merge sections in 64-bit
2656 mode. */
2657 if (use_rela_relocations
2658 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
2659 && fixP->fx_pcrel)
252b5132 2660 return 0;
31312f95 2661
8d01d9a9
AJ
2662 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2663 and changed later by validate_fix. */
2664 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
2665 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
2666 return 0;
2667
ce8a8b2f 2668 /* adjust_reloc_syms doesn't know about the GOT. */
252b5132
RH
2669 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
2670 || fixP->fx_r_type == BFD_RELOC_386_PLT32
2671 || fixP->fx_r_type == BFD_RELOC_386_GOT32
13ae64f3
JJ
2672 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
2673 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
2674 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
2675 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
2676 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
2677 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
2678 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
2679 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
2680 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
2681 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
2682 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
2683 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 2684 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
bffbf940
JJ
2685 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
2686 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
2687 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 2688 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
2689 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
2690 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
2691 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
2692 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
2693 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
2694 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
2695 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2696 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2697 return 0;
31312f95 2698#endif
252b5132
RH
2699 return 1;
2700}
252b5132 2701
b4cac588 2702static int
e3bb37b5 2703intel_float_operand (const char *mnemonic)
252b5132 2704{
9306ca4a
JB
2705 /* Note that the value returned is meaningful only for opcodes with (memory)
2706 operands, hence the code here is free to improperly handle opcodes that
2707 have no operands (for better performance and smaller code). */
2708
2709 if (mnemonic[0] != 'f')
2710 return 0; /* non-math */
2711
2712 switch (mnemonic[1])
2713 {
2714 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
2715 the fs segment override prefix not currently handled because no
2716 call path can make opcodes without operands get here */
2717 case 'i':
2718 return 2 /* integer op */;
2719 case 'l':
2720 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
2721 return 3; /* fldcw/fldenv */
2722 break;
2723 case 'n':
2724 if (mnemonic[2] != 'o' /* fnop */)
2725 return 3; /* non-waiting control op */
2726 break;
2727 case 'r':
2728 if (mnemonic[2] == 's')
2729 return 3; /* frstor/frstpm */
2730 break;
2731 case 's':
2732 if (mnemonic[2] == 'a')
2733 return 3; /* fsave */
2734 if (mnemonic[2] == 't')
2735 {
2736 switch (mnemonic[3])
2737 {
2738 case 'c': /* fstcw */
2739 case 'd': /* fstdw */
2740 case 'e': /* fstenv */
2741 case 's': /* fsts[gw] */
2742 return 3;
2743 }
2744 }
2745 break;
2746 case 'x':
2747 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
2748 return 0; /* fxsave/fxrstor are not really math ops */
2749 break;
2750 }
252b5132 2751
9306ca4a 2752 return 1;
252b5132
RH
2753}
2754
c0f3af97
L
2755/* Build the VEX prefix. */
2756
2757static void
d3ce72d0 2758build_vex_prefix (const insn_template *t)
c0f3af97
L
2759{
2760 unsigned int register_specifier;
2761 unsigned int implied_prefix;
2762 unsigned int vector_length;
2763
2764 /* Check register specifier. */
2765 if (i.vex.register_specifier)
2766 {
2767 register_specifier = i.vex.register_specifier->reg_num;
2768 if ((i.vex.register_specifier->reg_flags & RegRex))
2769 register_specifier += 8;
2770 register_specifier = ~register_specifier & 0xf;
2771 }
2772 else
2773 register_specifier = 0xf;
2774
fa99fab2
L
2775 /* Use 2-byte VEX prefix by swappping destination and source
2776 operand. */
2777 if (!i.swap_operand
2778 && i.operands == i.reg_operands
7f399153 2779 && i.tm.opcode_modifier.vexopcode == VEX0F
fa99fab2
L
2780 && i.tm.opcode_modifier.s
2781 && i.rex == REX_B)
2782 {
2783 unsigned int xchg = i.operands - 1;
2784 union i386_op temp_op;
2785 i386_operand_type temp_type;
2786
2787 temp_type = i.types[xchg];
2788 i.types[xchg] = i.types[0];
2789 i.types[0] = temp_type;
2790 temp_op = i.op[xchg];
2791 i.op[xchg] = i.op[0];
2792 i.op[0] = temp_op;
2793
9c2799c2 2794 gas_assert (i.rm.mode == 3);
fa99fab2
L
2795
2796 i.rex = REX_R;
2797 xchg = i.rm.regmem;
2798 i.rm.regmem = i.rm.reg;
2799 i.rm.reg = xchg;
2800
2801 /* Use the next insn. */
2802 i.tm = t[1];
2803 }
2804
539f890d
L
2805 if (i.tm.opcode_modifier.vex == VEXScalar)
2806 vector_length = avxscalar;
2807 else
2808 vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
c0f3af97
L
2809
2810 switch ((i.tm.base_opcode >> 8) & 0xff)
2811 {
2812 case 0:
2813 implied_prefix = 0;
2814 break;
2815 case DATA_PREFIX_OPCODE:
2816 implied_prefix = 1;
2817 break;
2818 case REPE_PREFIX_OPCODE:
2819 implied_prefix = 2;
2820 break;
2821 case REPNE_PREFIX_OPCODE:
2822 implied_prefix = 3;
2823 break;
2824 default:
2825 abort ();
2826 }
2827
2828 /* Use 2-byte VEX prefix if possible. */
7f399153 2829 if (i.tm.opcode_modifier.vexopcode == VEX0F
04251de0 2830 && i.tm.opcode_modifier.vexw != VEXW1
c0f3af97
L
2831 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
2832 {
2833 /* 2-byte VEX prefix. */
2834 unsigned int r;
2835
2836 i.vex.length = 2;
2837 i.vex.bytes[0] = 0xc5;
2838
2839 /* Check the REX.R bit. */
2840 r = (i.rex & REX_R) ? 0 : 1;
2841 i.vex.bytes[1] = (r << 7
2842 | register_specifier << 3
2843 | vector_length << 2
2844 | implied_prefix);
2845 }
2846 else
2847 {
2848 /* 3-byte VEX prefix. */
2849 unsigned int m, w;
2850
f88c9eb0 2851 i.vex.length = 3;
f88c9eb0 2852
7f399153 2853 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 2854 {
7f399153
L
2855 case VEX0F:
2856 m = 0x1;
80de6e00 2857 i.vex.bytes[0] = 0xc4;
7f399153
L
2858 break;
2859 case VEX0F38:
2860 m = 0x2;
80de6e00 2861 i.vex.bytes[0] = 0xc4;
7f399153
L
2862 break;
2863 case VEX0F3A:
2864 m = 0x3;
80de6e00 2865 i.vex.bytes[0] = 0xc4;
7f399153
L
2866 break;
2867 case XOP08:
5dd85c99
SP
2868 m = 0x8;
2869 i.vex.bytes[0] = 0x8f;
7f399153
L
2870 break;
2871 case XOP09:
f88c9eb0
SP
2872 m = 0x9;
2873 i.vex.bytes[0] = 0x8f;
7f399153
L
2874 break;
2875 case XOP0A:
f88c9eb0
SP
2876 m = 0xa;
2877 i.vex.bytes[0] = 0x8f;
7f399153
L
2878 break;
2879 default:
2880 abort ();
f88c9eb0 2881 }
c0f3af97 2882
c0f3af97
L
2883 /* The high 3 bits of the second VEX byte are 1's compliment
2884 of RXB bits from REX. */
2885 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
2886
2887 /* Check the REX.W bit. */
2888 w = (i.rex & REX_W) ? 1 : 0;
1ef99a7b 2889 if (i.tm.opcode_modifier.vexw)
c0f3af97
L
2890 {
2891 if (w)
2892 abort ();
2893
1ef99a7b 2894 if (i.tm.opcode_modifier.vexw == VEXW1)
c0f3af97
L
2895 w = 1;
2896 }
2897
2898 i.vex.bytes[2] = (w << 7
2899 | register_specifier << 3
2900 | vector_length << 2
2901 | implied_prefix);
2902 }
2903}
2904
65da13b5
L
2905static void
2906process_immext (void)
2907{
2908 expressionS *exp;
2909
2910 if (i.tm.cpu_flags.bitfield.cpusse3 && i.operands > 0)
2911 {
1fed0ba1
L
2912 /* SSE3 Instructions have the fixed operands with an opcode
2913 suffix which is coded in the same place as an 8-bit immediate
2914 field would be. Here we check those operands and remove them
2915 afterwards. */
65da13b5
L
2916 unsigned int x;
2917
2918 for (x = 0; x < i.operands; x++)
2919 if (i.op[x].regs->reg_num != x)
2920 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
2921 register_prefix, i.op[x].regs->reg_name, x + 1,
2922 i.tm.name);
2923
2924 i.operands = 0;
65da13b5
L
2925 }
2926
c0f3af97 2927 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
2928 which is coded in the same place as an 8-bit immediate field
2929 would be. Here we fake an 8-bit immediate operand from the
2930 opcode suffix stored in tm.extension_opcode.
2931
c1e679ec 2932 AVX instructions also use this encoding, for some of
c0f3af97 2933 3 argument instructions. */
65da13b5 2934
9c2799c2 2935 gas_assert (i.imm_operands == 0
7ab9ffdd
L
2936 && (i.operands <= 2
2937 || (i.tm.opcode_modifier.vex
2938 && i.operands <= 4)));
65da13b5
L
2939
2940 exp = &im_expressions[i.imm_operands++];
2941 i.op[i.operands].imms = exp;
2942 i.types[i.operands] = imm8;
2943 i.operands++;
2944 exp->X_op = O_constant;
2945 exp->X_add_number = i.tm.extension_opcode;
2946 i.tm.extension_opcode = None;
2947}
2948
252b5132
RH
2949/* This is the guts of the machine-dependent assembler. LINE points to a
2950 machine dependent instruction. This function is supposed to emit
2951 the frags/bytes it assembles to. */
2952
2953void
65da13b5 2954md_assemble (char *line)
252b5132 2955{
40fb9820 2956 unsigned int j;
252b5132 2957 char mnemonic[MAX_MNEM_SIZE];
d3ce72d0 2958 const insn_template *t;
252b5132 2959
47926f60 2960 /* Initialize globals. */
252b5132
RH
2961 memset (&i, '\0', sizeof (i));
2962 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 2963 i.reloc[j] = NO_RELOC;
252b5132
RH
2964 memset (disp_expressions, '\0', sizeof (disp_expressions));
2965 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 2966 save_stack_p = save_stack;
252b5132
RH
2967
2968 /* First parse an instruction mnemonic & call i386_operand for the operands.
2969 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 2970 start of a (possibly prefixed) mnemonic. */
252b5132 2971
29b0f896
AM
2972 line = parse_insn (line, mnemonic);
2973 if (line == NULL)
2974 return;
252b5132 2975
29b0f896 2976 line = parse_operands (line, mnemonic);
ee86248c 2977 this_operand = -1;
29b0f896
AM
2978 if (line == NULL)
2979 return;
252b5132 2980
29b0f896
AM
2981 /* Now we've parsed the mnemonic into a set of templates, and have the
2982 operands at hand. */
2983
2984 /* All intel opcodes have reversed operands except for "bound" and
2985 "enter". We also don't reverse intersegment "jmp" and "call"
2986 instructions with 2 immediate operands so that the immediate segment
050dfa73 2987 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
2988 if (intel_syntax
2989 && i.operands > 1
29b0f896 2990 && (strcmp (mnemonic, "bound") != 0)
30123838 2991 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
2992 && !(operand_type_check (i.types[0], imm)
2993 && operand_type_check (i.types[1], imm)))
29b0f896
AM
2994 swap_operands ();
2995
ec56d5c0
JB
2996 /* The order of the immediates should be reversed
2997 for 2 immediates extrq and insertq instructions */
2998 if (i.imm_operands == 2
2999 && (strcmp (mnemonic, "extrq") == 0
3000 || strcmp (mnemonic, "insertq") == 0))
3001 swap_2_operands (0, 1);
3002
29b0f896
AM
3003 if (i.imm_operands)
3004 optimize_imm ();
3005
b300c311
L
3006 /* Don't optimize displacement for movabs since it only takes 64bit
3007 displacement. */
3008 if (i.disp_operands
7f56bc95
L
3009 && !i.disp32_encoding)
3010 {
3011 if (flag_code == CODE_64BIT)
3012 {
3013 if (strcmp (mnemonic, "movabs") == 0)
3014 {
3015 if (disallow_64bit_disp)
3016 as_bad (_("'movabs' isn't supported in x32 mode"));
3017 }
3018 else
3019 optimize_disp ();
3020 }
3021 else
3022 optimize_disp ();
3023 }
29b0f896
AM
3024
3025 /* Next, we find a template that matches the given insn,
3026 making sure the overlap of the given operands types is consistent
3027 with the template operand types. */
252b5132 3028
fa99fab2 3029 if (!(t = match_template ()))
29b0f896 3030 return;
252b5132 3031
daf50ae7 3032 if (sse_check != sse_check_none
81f8a913 3033 && !i.tm.opcode_modifier.noavx
daf50ae7
L
3034 && (i.tm.cpu_flags.bitfield.cpusse
3035 || i.tm.cpu_flags.bitfield.cpusse2
3036 || i.tm.cpu_flags.bitfield.cpusse3
3037 || i.tm.cpu_flags.bitfield.cpussse3
3038 || i.tm.cpu_flags.bitfield.cpusse4_1
3039 || i.tm.cpu_flags.bitfield.cpusse4_2))
3040 {
3041 (sse_check == sse_check_warning
3042 ? as_warn
3043 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3044 }
3045
321fd21e
L
3046 /* Zap movzx and movsx suffix. The suffix has been set from
3047 "word ptr" or "byte ptr" on the source operand in Intel syntax
3048 or extracted from mnemonic in AT&T syntax. But we'll use
3049 the destination register to choose the suffix for encoding. */
3050 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 3051 {
321fd21e
L
3052 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3053 there is no suffix, the default will be byte extension. */
3054 if (i.reg_operands != 2
3055 && !i.suffix
7ab9ffdd 3056 && intel_syntax)
321fd21e
L
3057 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3058
3059 i.suffix = 0;
cd61ebfe 3060 }
24eab124 3061
40fb9820 3062 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
3063 if (!add_prefix (FWAIT_OPCODE))
3064 return;
252b5132 3065
c1ba0266
L
3066 /* Check for lock without a lockable instruction. Destination operand
3067 must be memory unless it is xchg (0x86). */
c32fa91d
L
3068 if (i.prefix[LOCK_PREFIX]
3069 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
3070 || i.mem_operands == 0
3071 || (i.tm.base_opcode != 0x86
3072 && !operand_type_check (i.types[i.operands - 1], anymem))))
c32fa91d
L
3073 {
3074 as_bad (_("expecting lockable instruction after `lock'"));
3075 return;
3076 }
3077
29b0f896 3078 /* Check string instruction segment overrides. */
40fb9820 3079 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
3080 {
3081 if (!check_string ())
5dd0794d 3082 return;
fc0763e6 3083 i.disp_operands = 0;
29b0f896 3084 }
5dd0794d 3085
29b0f896
AM
3086 if (!process_suffix ())
3087 return;
e413e4e9 3088
bc0844ae
L
3089 /* Update operand types. */
3090 for (j = 0; j < i.operands; j++)
3091 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3092
29b0f896
AM
3093 /* Make still unresolved immediate matches conform to size of immediate
3094 given in i.suffix. */
3095 if (!finalize_imm ())
3096 return;
252b5132 3097
40fb9820 3098 if (i.types[0].bitfield.imm1)
29b0f896 3099 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 3100
9afe6eb8
L
3101 /* We only need to check those implicit registers for instructions
3102 with 3 operands or less. */
3103 if (i.operands <= 3)
3104 for (j = 0; j < i.operands; j++)
3105 if (i.types[j].bitfield.inoutportreg
3106 || i.types[j].bitfield.shiftcount
3107 || i.types[j].bitfield.acc
3108 || i.types[j].bitfield.floatacc)
3109 i.reg_operands--;
40fb9820 3110
c0f3af97
L
3111 /* ImmExt should be processed after SSE2AVX. */
3112 if (!i.tm.opcode_modifier.sse2avx
3113 && i.tm.opcode_modifier.immext)
65da13b5 3114 process_immext ();
252b5132 3115
29b0f896
AM
3116 /* For insns with operands there are more diddles to do to the opcode. */
3117 if (i.operands)
3118 {
3119 if (!process_operands ())
3120 return;
3121 }
40fb9820 3122 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
3123 {
3124 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3125 as_warn (_("translating to `%sp'"), i.tm.name);
3126 }
252b5132 3127
c0f3af97 3128 if (i.tm.opcode_modifier.vex)
fa99fab2 3129 build_vex_prefix (t);
c0f3af97 3130
5dd85c99
SP
3131 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3132 instructions may define INT_OPCODE as well, so avoid this corner
3133 case for those instructions that use MODRM. */
3134 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
3135 && !i.tm.opcode_modifier.modrm
3136 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
3137 {
3138 i.tm.base_opcode = INT3_OPCODE;
3139 i.imm_operands = 0;
3140 }
252b5132 3141
40fb9820
L
3142 if ((i.tm.opcode_modifier.jump
3143 || i.tm.opcode_modifier.jumpbyte
3144 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
3145 && i.op[0].disps->X_op == O_constant)
3146 {
3147 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3148 the absolute address given by the constant. Since ix86 jumps and
3149 calls are pc relative, we need to generate a reloc. */
3150 i.op[0].disps->X_add_symbol = &abs_symbol;
3151 i.op[0].disps->X_op = O_symbol;
3152 }
252b5132 3153
40fb9820 3154 if (i.tm.opcode_modifier.rex64)
161a04f6 3155 i.rex |= REX_W;
252b5132 3156
29b0f896
AM
3157 /* For 8 bit registers we need an empty rex prefix. Also if the
3158 instruction already has a prefix, we need to convert old
3159 registers to new ones. */
773f551c 3160
40fb9820 3161 if ((i.types[0].bitfield.reg8
29b0f896 3162 && (i.op[0].regs->reg_flags & RegRex64) != 0)
40fb9820 3163 || (i.types[1].bitfield.reg8
29b0f896 3164 && (i.op[1].regs->reg_flags & RegRex64) != 0)
40fb9820
L
3165 || ((i.types[0].bitfield.reg8
3166 || i.types[1].bitfield.reg8)
29b0f896
AM
3167 && i.rex != 0))
3168 {
3169 int x;
726c5dcd 3170
29b0f896
AM
3171 i.rex |= REX_OPCODE;
3172 for (x = 0; x < 2; x++)
3173 {
3174 /* Look for 8 bit operand that uses old registers. */
40fb9820 3175 if (i.types[x].bitfield.reg8
29b0f896 3176 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 3177 {
29b0f896
AM
3178 /* In case it is "hi" register, give up. */
3179 if (i.op[x].regs->reg_num > 3)
a540244d 3180 as_bad (_("can't encode register '%s%s' in an "
4eed87de 3181 "instruction requiring REX prefix."),
a540244d 3182 register_prefix, i.op[x].regs->reg_name);
773f551c 3183
29b0f896
AM
3184 /* Otherwise it is equivalent to the extended register.
3185 Since the encoding doesn't change this is merely
3186 cosmetic cleanup for debug output. */
3187
3188 i.op[x].regs = i.op[x].regs + 8;
773f551c 3189 }
29b0f896
AM
3190 }
3191 }
773f551c 3192
7ab9ffdd 3193 if (i.rex != 0)
29b0f896
AM
3194 add_prefix (REX_OPCODE | i.rex);
3195
3196 /* We are ready to output the insn. */
3197 output_insn ();
3198}
3199
3200static char *
e3bb37b5 3201parse_insn (char *line, char *mnemonic)
29b0f896
AM
3202{
3203 char *l = line;
3204 char *token_start = l;
3205 char *mnem_p;
5c6af06e 3206 int supported;
d3ce72d0 3207 const insn_template *t;
b6169b20 3208 char *dot_p = NULL;
29b0f896
AM
3209
3210 /* Non-zero if we found a prefix only acceptable with string insns. */
3211 const char *expecting_string_instruction = NULL;
45288df1 3212
29b0f896
AM
3213 while (1)
3214 {
3215 mnem_p = mnemonic;
3216 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3217 {
b6169b20
L
3218 if (*mnem_p == '.')
3219 dot_p = mnem_p;
29b0f896
AM
3220 mnem_p++;
3221 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 3222 {
29b0f896
AM
3223 as_bad (_("no such instruction: `%s'"), token_start);
3224 return NULL;
3225 }
3226 l++;
3227 }
3228 if (!is_space_char (*l)
3229 && *l != END_OF_INSN
e44823cf
JB
3230 && (intel_syntax
3231 || (*l != PREFIX_SEPARATOR
3232 && *l != ',')))
29b0f896
AM
3233 {
3234 as_bad (_("invalid character %s in mnemonic"),
3235 output_invalid (*l));
3236 return NULL;
3237 }
3238 if (token_start == l)
3239 {
e44823cf 3240 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
3241 as_bad (_("expecting prefix; got nothing"));
3242 else
3243 as_bad (_("expecting mnemonic; got nothing"));
3244 return NULL;
3245 }
45288df1 3246
29b0f896 3247 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 3248 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 3249
29b0f896
AM
3250 if (*l != END_OF_INSN
3251 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3252 && current_templates
40fb9820 3253 && current_templates->start->opcode_modifier.isprefix)
29b0f896 3254 {
c6fb90c8 3255 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
3256 {
3257 as_bad ((flag_code != CODE_64BIT
3258 ? _("`%s' is only supported in 64-bit mode")
3259 : _("`%s' is not supported in 64-bit mode")),
3260 current_templates->start->name);
3261 return NULL;
3262 }
29b0f896
AM
3263 /* If we are in 16-bit mode, do not allow addr16 or data16.
3264 Similarly, in 32-bit mode, do not allow addr32 or data32. */
40fb9820
L
3265 if ((current_templates->start->opcode_modifier.size16
3266 || current_templates->start->opcode_modifier.size32)
29b0f896 3267 && flag_code != CODE_64BIT
40fb9820 3268 && (current_templates->start->opcode_modifier.size32
29b0f896
AM
3269 ^ (flag_code == CODE_16BIT)))
3270 {
3271 as_bad (_("redundant %s prefix"),
3272 current_templates->start->name);
3273 return NULL;
45288df1 3274 }
29b0f896
AM
3275 /* Add prefix, checking for repeated prefixes. */
3276 switch (add_prefix (current_templates->start->base_opcode))
3277 {
c32fa91d 3278 case PREFIX_EXIST:
29b0f896 3279 return NULL;
c32fa91d 3280 case PREFIX_REP:
29b0f896
AM
3281 expecting_string_instruction = current_templates->start->name;
3282 break;
c32fa91d
L
3283 default:
3284 break;
29b0f896
AM
3285 }
3286 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3287 token_start = ++l;
3288 }
3289 else
3290 break;
3291 }
45288df1 3292
30a55f88 3293 if (!current_templates)
b6169b20 3294 {
f8a5c266
L
3295 /* Check if we should swap operand or force 32bit displacement in
3296 encoding. */
30a55f88
L
3297 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3298 i.swap_operand = 1;
f8a5c266
L
3299 else if (mnem_p - 4 == dot_p
3300 && dot_p[1] == 'd'
3301 && dot_p[2] == '3'
3302 && dot_p[3] == '2')
3303 i.disp32_encoding = 1;
30a55f88
L
3304 else
3305 goto check_suffix;
3306 mnem_p = dot_p;
3307 *dot_p = '\0';
d3ce72d0 3308 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
3309 }
3310
29b0f896
AM
3311 if (!current_templates)
3312 {
b6169b20 3313check_suffix:
29b0f896
AM
3314 /* See if we can get a match by trimming off a suffix. */
3315 switch (mnem_p[-1])
3316 {
3317 case WORD_MNEM_SUFFIX:
9306ca4a
JB
3318 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
3319 i.suffix = SHORT_MNEM_SUFFIX;
3320 else
29b0f896
AM
3321 case BYTE_MNEM_SUFFIX:
3322 case QWORD_MNEM_SUFFIX:
3323 i.suffix = mnem_p[-1];
3324 mnem_p[-1] = '\0';
d3ce72d0
NC
3325 current_templates = (const templates *) hash_find (op_hash,
3326 mnemonic);
29b0f896
AM
3327 break;
3328 case SHORT_MNEM_SUFFIX:
3329 case LONG_MNEM_SUFFIX:
3330 if (!intel_syntax)
3331 {
3332 i.suffix = mnem_p[-1];
3333 mnem_p[-1] = '\0';
d3ce72d0
NC
3334 current_templates = (const templates *) hash_find (op_hash,
3335 mnemonic);
29b0f896
AM
3336 }
3337 break;
252b5132 3338
29b0f896
AM
3339 /* Intel Syntax. */
3340 case 'd':
3341 if (intel_syntax)
3342 {
9306ca4a 3343 if (intel_float_operand (mnemonic) == 1)
29b0f896
AM
3344 i.suffix = SHORT_MNEM_SUFFIX;
3345 else
3346 i.suffix = LONG_MNEM_SUFFIX;
3347 mnem_p[-1] = '\0';
d3ce72d0
NC
3348 current_templates = (const templates *) hash_find (op_hash,
3349 mnemonic);
29b0f896
AM
3350 }
3351 break;
3352 }
3353 if (!current_templates)
3354 {
3355 as_bad (_("no such instruction: `%s'"), token_start);
3356 return NULL;
3357 }
3358 }
252b5132 3359
40fb9820
L
3360 if (current_templates->start->opcode_modifier.jump
3361 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
3362 {
3363 /* Check for a branch hint. We allow ",pt" and ",pn" for
3364 predict taken and predict not taken respectively.
3365 I'm not sure that branch hints actually do anything on loop
3366 and jcxz insns (JumpByte) for current Pentium4 chips. They
3367 may work in the future and it doesn't hurt to accept them
3368 now. */
3369 if (l[0] == ',' && l[1] == 'p')
3370 {
3371 if (l[2] == 't')
3372 {
3373 if (!add_prefix (DS_PREFIX_OPCODE))
3374 return NULL;
3375 l += 3;
3376 }
3377 else if (l[2] == 'n')
3378 {
3379 if (!add_prefix (CS_PREFIX_OPCODE))
3380 return NULL;
3381 l += 3;
3382 }
3383 }
3384 }
3385 /* Any other comma loses. */
3386 if (*l == ',')
3387 {
3388 as_bad (_("invalid character %s in mnemonic"),
3389 output_invalid (*l));
3390 return NULL;
3391 }
252b5132 3392
29b0f896 3393 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
3394 supported = 0;
3395 for (t = current_templates->start; t < current_templates->end; ++t)
3396 {
c0f3af97
L
3397 supported |= cpu_flags_match (t);
3398 if (supported == CPU_FLAGS_PERFECT_MATCH)
3629bb00 3399 goto skip;
5c6af06e 3400 }
3629bb00 3401
c0f3af97 3402 if (!(supported & CPU_FLAGS_64BIT_MATCH))
5c6af06e
JB
3403 {
3404 as_bad (flag_code == CODE_64BIT
3405 ? _("`%s' is not supported in 64-bit mode")
3406 : _("`%s' is only supported in 64-bit mode"),
3407 current_templates->start->name);
3408 return NULL;
3409 }
c0f3af97 3410 if (supported != CPU_FLAGS_PERFECT_MATCH)
29b0f896 3411 {
3629bb00 3412 as_bad (_("`%s' is not supported on `%s%s'"),
7ab9ffdd 3413 current_templates->start->name,
41aacd83 3414 cpu_arch_name ? cpu_arch_name : default_arch,
3629bb00
L
3415 cpu_sub_arch_name ? cpu_sub_arch_name : "");
3416 return NULL;
29b0f896 3417 }
3629bb00
L
3418
3419skip:
3420 if (!cpu_arch_flags.bitfield.cpui386
40fb9820 3421 && (flag_code != CODE_16BIT))
29b0f896
AM
3422 {
3423 as_warn (_("use .code16 to ensure correct addressing mode"));
3424 }
252b5132 3425
29b0f896 3426 /* Check for rep/repne without a string instruction. */
f41bbced 3427 if (expecting_string_instruction)
29b0f896 3428 {
f41bbced
JB
3429 static templates override;
3430
3431 for (t = current_templates->start; t < current_templates->end; ++t)
40fb9820 3432 if (t->opcode_modifier.isstring)
f41bbced
JB
3433 break;
3434 if (t >= current_templates->end)
3435 {
3436 as_bad (_("expecting string instruction after `%s'"),
64e74474 3437 expecting_string_instruction);
f41bbced
JB
3438 return NULL;
3439 }
3440 for (override.start = t; t < current_templates->end; ++t)
40fb9820 3441 if (!t->opcode_modifier.isstring)
f41bbced
JB
3442 break;
3443 override.end = t;
3444 current_templates = &override;
29b0f896 3445 }
252b5132 3446
29b0f896
AM
3447 return l;
3448}
252b5132 3449
29b0f896 3450static char *
e3bb37b5 3451parse_operands (char *l, const char *mnemonic)
29b0f896
AM
3452{
3453 char *token_start;
3138f287 3454
29b0f896
AM
3455 /* 1 if operand is pending after ','. */
3456 unsigned int expecting_operand = 0;
252b5132 3457
29b0f896
AM
3458 /* Non-zero if operand parens not balanced. */
3459 unsigned int paren_not_balanced;
3460
3461 while (*l != END_OF_INSN)
3462 {
3463 /* Skip optional white space before operand. */
3464 if (is_space_char (*l))
3465 ++l;
3466 if (!is_operand_char (*l) && *l != END_OF_INSN)
3467 {
3468 as_bad (_("invalid character %s before operand %d"),
3469 output_invalid (*l),
3470 i.operands + 1);
3471 return NULL;
3472 }
3473 token_start = l; /* after white space */
3474 paren_not_balanced = 0;
3475 while (paren_not_balanced || *l != ',')
3476 {
3477 if (*l == END_OF_INSN)
3478 {
3479 if (paren_not_balanced)
3480 {
3481 if (!intel_syntax)
3482 as_bad (_("unbalanced parenthesis in operand %d."),
3483 i.operands + 1);
3484 else
3485 as_bad (_("unbalanced brackets in operand %d."),
3486 i.operands + 1);
3487 return NULL;
3488 }
3489 else
3490 break; /* we are done */
3491 }
3492 else if (!is_operand_char (*l) && !is_space_char (*l))
3493 {
3494 as_bad (_("invalid character %s in operand %d"),
3495 output_invalid (*l),
3496 i.operands + 1);
3497 return NULL;
3498 }
3499 if (!intel_syntax)
3500 {
3501 if (*l == '(')
3502 ++paren_not_balanced;
3503 if (*l == ')')
3504 --paren_not_balanced;
3505 }
3506 else
3507 {
3508 if (*l == '[')
3509 ++paren_not_balanced;
3510 if (*l == ']')
3511 --paren_not_balanced;
3512 }
3513 l++;
3514 }
3515 if (l != token_start)
3516 { /* Yes, we've read in another operand. */
3517 unsigned int operand_ok;
3518 this_operand = i.operands++;
7d5e4556 3519 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
3520 if (i.operands > MAX_OPERANDS)
3521 {
3522 as_bad (_("spurious operands; (%d operands/instruction max)"),
3523 MAX_OPERANDS);
3524 return NULL;
3525 }
3526 /* Now parse operand adding info to 'i' as we go along. */
3527 END_STRING_AND_SAVE (l);
3528
3529 if (intel_syntax)
3530 operand_ok =
3531 i386_intel_operand (token_start,
3532 intel_float_operand (mnemonic));
3533 else
a7619375 3534 operand_ok = i386_att_operand (token_start);
29b0f896
AM
3535
3536 RESTORE_END_STRING (l);
3537 if (!operand_ok)
3538 return NULL;
3539 }
3540 else
3541 {
3542 if (expecting_operand)
3543 {
3544 expecting_operand_after_comma:
3545 as_bad (_("expecting operand after ','; got nothing"));
3546 return NULL;
3547 }
3548 if (*l == ',')
3549 {
3550 as_bad (_("expecting operand before ','; got nothing"));
3551 return NULL;
3552 }
3553 }
7f3f1ea2 3554
29b0f896
AM
3555 /* Now *l must be either ',' or END_OF_INSN. */
3556 if (*l == ',')
3557 {
3558 if (*++l == END_OF_INSN)
3559 {
3560 /* Just skip it, if it's \n complain. */
3561 goto expecting_operand_after_comma;
3562 }
3563 expecting_operand = 1;
3564 }
3565 }
3566 return l;
3567}
7f3f1ea2 3568
050dfa73 3569static void
4d456e3d 3570swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
3571{
3572 union i386_op temp_op;
40fb9820 3573 i386_operand_type temp_type;
050dfa73 3574 enum bfd_reloc_code_real temp_reloc;
4eed87de 3575
050dfa73
MM
3576 temp_type = i.types[xchg2];
3577 i.types[xchg2] = i.types[xchg1];
3578 i.types[xchg1] = temp_type;
3579 temp_op = i.op[xchg2];
3580 i.op[xchg2] = i.op[xchg1];
3581 i.op[xchg1] = temp_op;
3582 temp_reloc = i.reloc[xchg2];
3583 i.reloc[xchg2] = i.reloc[xchg1];
3584 i.reloc[xchg1] = temp_reloc;
3585}
3586
29b0f896 3587static void
e3bb37b5 3588swap_operands (void)
29b0f896 3589{
b7c61d9a 3590 switch (i.operands)
050dfa73 3591 {
c0f3af97 3592 case 5:
b7c61d9a 3593 case 4:
4d456e3d 3594 swap_2_operands (1, i.operands - 2);
b7c61d9a
L
3595 case 3:
3596 case 2:
4d456e3d 3597 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
3598 break;
3599 default:
3600 abort ();
29b0f896 3601 }
29b0f896
AM
3602
3603 if (i.mem_operands == 2)
3604 {
3605 const seg_entry *temp_seg;
3606 temp_seg = i.seg[0];
3607 i.seg[0] = i.seg[1];
3608 i.seg[1] = temp_seg;
3609 }
3610}
252b5132 3611
29b0f896
AM
3612/* Try to ensure constant immediates are represented in the smallest
3613 opcode possible. */
3614static void
e3bb37b5 3615optimize_imm (void)
29b0f896
AM
3616{
3617 char guess_suffix = 0;
3618 int op;
252b5132 3619
29b0f896
AM
3620 if (i.suffix)
3621 guess_suffix = i.suffix;
3622 else if (i.reg_operands)
3623 {
3624 /* Figure out a suffix from the last register operand specified.
3625 We can't do this properly yet, ie. excluding InOutPortReg,
3626 but the following works for instructions with immediates.
3627 In any case, we can't set i.suffix yet. */
3628 for (op = i.operands; --op >= 0;)
40fb9820 3629 if (i.types[op].bitfield.reg8)
7ab9ffdd 3630 {
40fb9820
L
3631 guess_suffix = BYTE_MNEM_SUFFIX;
3632 break;
3633 }
3634 else if (i.types[op].bitfield.reg16)
252b5132 3635 {
40fb9820
L
3636 guess_suffix = WORD_MNEM_SUFFIX;
3637 break;
3638 }
3639 else if (i.types[op].bitfield.reg32)
3640 {
3641 guess_suffix = LONG_MNEM_SUFFIX;
3642 break;
3643 }
3644 else if (i.types[op].bitfield.reg64)
3645 {
3646 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 3647 break;
252b5132 3648 }
29b0f896
AM
3649 }
3650 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
3651 guess_suffix = WORD_MNEM_SUFFIX;
3652
3653 for (op = i.operands; --op >= 0;)
40fb9820 3654 if (operand_type_check (i.types[op], imm))
29b0f896
AM
3655 {
3656 switch (i.op[op].imms->X_op)
252b5132 3657 {
29b0f896
AM
3658 case O_constant:
3659 /* If a suffix is given, this operand may be shortened. */
3660 switch (guess_suffix)
252b5132 3661 {
29b0f896 3662 case LONG_MNEM_SUFFIX:
40fb9820
L
3663 i.types[op].bitfield.imm32 = 1;
3664 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
3665 break;
3666 case WORD_MNEM_SUFFIX:
40fb9820
L
3667 i.types[op].bitfield.imm16 = 1;
3668 i.types[op].bitfield.imm32 = 1;
3669 i.types[op].bitfield.imm32s = 1;
3670 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
3671 break;
3672 case BYTE_MNEM_SUFFIX:
40fb9820
L
3673 i.types[op].bitfield.imm8 = 1;
3674 i.types[op].bitfield.imm8s = 1;
3675 i.types[op].bitfield.imm16 = 1;
3676 i.types[op].bitfield.imm32 = 1;
3677 i.types[op].bitfield.imm32s = 1;
3678 i.types[op].bitfield.imm64 = 1;
29b0f896 3679 break;
252b5132 3680 }
252b5132 3681
29b0f896
AM
3682 /* If this operand is at most 16 bits, convert it
3683 to a signed 16 bit number before trying to see
3684 whether it will fit in an even smaller size.
3685 This allows a 16-bit operand such as $0xffe0 to
3686 be recognised as within Imm8S range. */
40fb9820 3687 if ((i.types[op].bitfield.imm16)
29b0f896 3688 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 3689 {
29b0f896
AM
3690 i.op[op].imms->X_add_number =
3691 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
3692 }
40fb9820 3693 if ((i.types[op].bitfield.imm32)
29b0f896
AM
3694 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
3695 == 0))
3696 {
3697 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
3698 ^ ((offsetT) 1 << 31))
3699 - ((offsetT) 1 << 31));
3700 }
40fb9820 3701 i.types[op]
c6fb90c8
L
3702 = operand_type_or (i.types[op],
3703 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 3704
29b0f896
AM
3705 /* We must avoid matching of Imm32 templates when 64bit
3706 only immediate is available. */
3707 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 3708 i.types[op].bitfield.imm32 = 0;
29b0f896 3709 break;
252b5132 3710
29b0f896
AM
3711 case O_absent:
3712 case O_register:
3713 abort ();
3714
3715 /* Symbols and expressions. */
3716 default:
9cd96992
JB
3717 /* Convert symbolic operand to proper sizes for matching, but don't
3718 prevent matching a set of insns that only supports sizes other
3719 than those matching the insn suffix. */
3720 {
40fb9820 3721 i386_operand_type mask, allowed;
d3ce72d0 3722 const insn_template *t;
9cd96992 3723
0dfbf9d7
L
3724 operand_type_set (&mask, 0);
3725 operand_type_set (&allowed, 0);
40fb9820 3726
4eed87de
AM
3727 for (t = current_templates->start;
3728 t < current_templates->end;
3729 ++t)
c6fb90c8
L
3730 allowed = operand_type_or (allowed,
3731 t->operand_types[op]);
9cd96992
JB
3732 switch (guess_suffix)
3733 {
3734 case QWORD_MNEM_SUFFIX:
40fb9820
L
3735 mask.bitfield.imm64 = 1;
3736 mask.bitfield.imm32s = 1;
9cd96992
JB
3737 break;
3738 case LONG_MNEM_SUFFIX:
40fb9820 3739 mask.bitfield.imm32 = 1;
9cd96992
JB
3740 break;
3741 case WORD_MNEM_SUFFIX:
40fb9820 3742 mask.bitfield.imm16 = 1;
9cd96992
JB
3743 break;
3744 case BYTE_MNEM_SUFFIX:
40fb9820 3745 mask.bitfield.imm8 = 1;
9cd96992
JB
3746 break;
3747 default:
9cd96992
JB
3748 break;
3749 }
c6fb90c8 3750 allowed = operand_type_and (mask, allowed);
0dfbf9d7 3751 if (!operand_type_all_zero (&allowed))
c6fb90c8 3752 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 3753 }
29b0f896 3754 break;
252b5132 3755 }
29b0f896
AM
3756 }
3757}
47926f60 3758
29b0f896
AM
3759/* Try to use the smallest displacement type too. */
3760static void
e3bb37b5 3761optimize_disp (void)
29b0f896
AM
3762{
3763 int op;
3e73aa7c 3764
29b0f896 3765 for (op = i.operands; --op >= 0;)
40fb9820 3766 if (operand_type_check (i.types[op], disp))
252b5132 3767 {
b300c311 3768 if (i.op[op].disps->X_op == O_constant)
252b5132 3769 {
91d6fa6a 3770 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 3771
40fb9820 3772 if (i.types[op].bitfield.disp16
91d6fa6a 3773 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
3774 {
3775 /* If this operand is at most 16 bits, convert
3776 to a signed 16 bit number and don't use 64bit
3777 displacement. */
91d6fa6a 3778 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 3779 i.types[op].bitfield.disp64 = 0;
b300c311 3780 }
40fb9820 3781 if (i.types[op].bitfield.disp32
91d6fa6a 3782 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
3783 {
3784 /* If this operand is at most 32 bits, convert
3785 to a signed 32 bit number and don't use 64bit
3786 displacement. */
91d6fa6a
NC
3787 op_disp &= (((offsetT) 2 << 31) - 1);
3788 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 3789 i.types[op].bitfield.disp64 = 0;
b300c311 3790 }
91d6fa6a 3791 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 3792 {
40fb9820
L
3793 i.types[op].bitfield.disp8 = 0;
3794 i.types[op].bitfield.disp16 = 0;
3795 i.types[op].bitfield.disp32 = 0;
3796 i.types[op].bitfield.disp32s = 0;
3797 i.types[op].bitfield.disp64 = 0;
b300c311
L
3798 i.op[op].disps = 0;
3799 i.disp_operands--;
3800 }
3801 else if (flag_code == CODE_64BIT)
3802 {
91d6fa6a 3803 if (fits_in_signed_long (op_disp))
28a9d8f5 3804 {
40fb9820
L
3805 i.types[op].bitfield.disp64 = 0;
3806 i.types[op].bitfield.disp32s = 1;
28a9d8f5 3807 }
0e1147d9 3808 if (i.prefix[ADDR_PREFIX]
91d6fa6a 3809 && fits_in_unsigned_long (op_disp))
40fb9820 3810 i.types[op].bitfield.disp32 = 1;
b300c311 3811 }
40fb9820
L
3812 if ((i.types[op].bitfield.disp32
3813 || i.types[op].bitfield.disp32s
3814 || i.types[op].bitfield.disp16)
91d6fa6a 3815 && fits_in_signed_byte (op_disp))
40fb9820 3816 i.types[op].bitfield.disp8 = 1;
252b5132 3817 }
67a4f2b7
AO
3818 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
3819 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
3820 {
3821 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
3822 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
3823 i.types[op].bitfield.disp8 = 0;
3824 i.types[op].bitfield.disp16 = 0;
3825 i.types[op].bitfield.disp32 = 0;
3826 i.types[op].bitfield.disp32s = 0;
3827 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
3828 }
3829 else
b300c311 3830 /* We only support 64bit displacement on constants. */
40fb9820 3831 i.types[op].bitfield.disp64 = 0;
252b5132 3832 }
29b0f896
AM
3833}
3834
43f3e2ee 3835/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
3836 operand types. */
3837
3838static int
3839VEX_check_operands (const insn_template *t)
3840{
3841 if (!t->opcode_modifier.vex)
3842 return 0;
3843
3844 /* Only check VEX_Imm4, which must be the first operand. */
3845 if (t->operand_types[0].bitfield.vec_imm4)
3846 {
3847 if (i.op[0].imms->X_op != O_constant
3848 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 3849 {
a65babc9 3850 i.error = bad_imm4;
891edac4
L
3851 return 1;
3852 }
a683cc34
SP
3853
3854 /* Turn off Imm8 so that update_imm won't complain. */
3855 i.types[0] = vec_imm4;
3856 }
3857
3858 return 0;
3859}
3860
d3ce72d0 3861static const insn_template *
e3bb37b5 3862match_template (void)
29b0f896
AM
3863{
3864 /* Points to template once we've found it. */
d3ce72d0 3865 const insn_template *t;
40fb9820 3866 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 3867 i386_operand_type overlap4;
29b0f896 3868 unsigned int found_reverse_match;
40fb9820
L
3869 i386_opcode_modifier suffix_check;
3870 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 3871 int addr_prefix_disp;
a5c311ca 3872 unsigned int j;
3629bb00 3873 unsigned int found_cpu_match;
45664ddb 3874 unsigned int check_register;
29b0f896 3875
c0f3af97
L
3876#if MAX_OPERANDS != 5
3877# error "MAX_OPERANDS must be 5."
f48ff2ae
L
3878#endif
3879
29b0f896 3880 found_reverse_match = 0;
539e75ad 3881 addr_prefix_disp = -1;
40fb9820
L
3882
3883 memset (&suffix_check, 0, sizeof (suffix_check));
3884 if (i.suffix == BYTE_MNEM_SUFFIX)
3885 suffix_check.no_bsuf = 1;
3886 else if (i.suffix == WORD_MNEM_SUFFIX)
3887 suffix_check.no_wsuf = 1;
3888 else if (i.suffix == SHORT_MNEM_SUFFIX)
3889 suffix_check.no_ssuf = 1;
3890 else if (i.suffix == LONG_MNEM_SUFFIX)
3891 suffix_check.no_lsuf = 1;
3892 else if (i.suffix == QWORD_MNEM_SUFFIX)
3893 suffix_check.no_qsuf = 1;
3894 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 3895 suffix_check.no_ldsuf = 1;
29b0f896 3896
01559ecc
L
3897 /* Must have right number of operands. */
3898 i.error = number_of_operands_mismatch;
3899
45aa61fe 3900 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 3901 {
539e75ad
L
3902 addr_prefix_disp = -1;
3903
29b0f896
AM
3904 if (i.operands != t->operands)
3905 continue;
3906
50aecf8c 3907 /* Check processor support. */
a65babc9 3908 i.error = unsupported;
c0f3af97
L
3909 found_cpu_match = (cpu_flags_match (t)
3910 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
3911 if (!found_cpu_match)
3912 continue;
3913
e1d4d893 3914 /* Check old gcc support. */
a65babc9 3915 i.error = old_gcc_only;
e1d4d893
L
3916 if (!old_gcc && t->opcode_modifier.oldgcc)
3917 continue;
3918
3919 /* Check AT&T mnemonic. */
a65babc9 3920 i.error = unsupported_with_intel_mnemonic;
e1d4d893 3921 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
3922 continue;
3923
891edac4 3924 /* Check AT&T/Intel syntax. */
a65babc9 3925 i.error = unsupported_syntax;
5c07affc
L
3926 if ((intel_syntax && t->opcode_modifier.attsyntax)
3927 || (!intel_syntax && t->opcode_modifier.intelsyntax))
1efbbeb4
L
3928 continue;
3929
20592a94 3930 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 3931 i.error = invalid_instruction_suffix;
567e4e96
L
3932 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
3933 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
3934 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
3935 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
3936 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
3937 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
3938 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896
AM
3939 continue;
3940
5c07affc 3941 if (!operand_size_match (t))
7d5e4556 3942 continue;
539e75ad 3943
5c07affc
L
3944 for (j = 0; j < MAX_OPERANDS; j++)
3945 operand_types[j] = t->operand_types[j];
3946
45aa61fe
AM
3947 /* In general, don't allow 64-bit operands in 32-bit mode. */
3948 if (i.suffix == QWORD_MNEM_SUFFIX
3949 && flag_code != CODE_64BIT
3950 && (intel_syntax
40fb9820 3951 ? (!t->opcode_modifier.ignoresize
45aa61fe
AM
3952 && !intel_float_operand (t->name))
3953 : intel_float_operand (t->name) != 2)
40fb9820 3954 && ((!operand_types[0].bitfield.regmmx
c0f3af97
L
3955 && !operand_types[0].bitfield.regxmm
3956 && !operand_types[0].bitfield.regymm)
40fb9820 3957 || (!operand_types[t->operands > 1].bitfield.regmmx
c0f3af97
L
3958 && !!operand_types[t->operands > 1].bitfield.regxmm
3959 && !!operand_types[t->operands > 1].bitfield.regymm))
45aa61fe
AM
3960 && (t->base_opcode != 0x0fc7
3961 || t->extension_opcode != 1 /* cmpxchg8b */))
3962 continue;
3963
192dc9c6
JB
3964 /* In general, don't allow 32-bit operands on pre-386. */
3965 else if (i.suffix == LONG_MNEM_SUFFIX
3966 && !cpu_arch_flags.bitfield.cpui386
3967 && (intel_syntax
3968 ? (!t->opcode_modifier.ignoresize
3969 && !intel_float_operand (t->name))
3970 : intel_float_operand (t->name) != 2)
3971 && ((!operand_types[0].bitfield.regmmx
3972 && !operand_types[0].bitfield.regxmm)
3973 || (!operand_types[t->operands > 1].bitfield.regmmx
3974 && !!operand_types[t->operands > 1].bitfield.regxmm)))
3975 continue;
3976
29b0f896 3977 /* Do not verify operands when there are none. */
50aecf8c 3978 else
29b0f896 3979 {
c6fb90c8 3980 if (!t->operands)
2dbab7d5
L
3981 /* We've found a match; break out of loop. */
3982 break;
29b0f896 3983 }
252b5132 3984
539e75ad
L
3985 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
3986 into Disp32/Disp16/Disp32 operand. */
3987 if (i.prefix[ADDR_PREFIX] != 0)
3988 {
40fb9820 3989 /* There should be only one Disp operand. */
539e75ad
L
3990 switch (flag_code)
3991 {
3992 case CODE_16BIT:
40fb9820
L
3993 for (j = 0; j < MAX_OPERANDS; j++)
3994 {
3995 if (operand_types[j].bitfield.disp16)
3996 {
3997 addr_prefix_disp = j;
3998 operand_types[j].bitfield.disp32 = 1;
3999 operand_types[j].bitfield.disp16 = 0;
4000 break;
4001 }
4002 }
539e75ad
L
4003 break;
4004 case CODE_32BIT:
40fb9820
L
4005 for (j = 0; j < MAX_OPERANDS; j++)
4006 {
4007 if (operand_types[j].bitfield.disp32)
4008 {
4009 addr_prefix_disp = j;
4010 operand_types[j].bitfield.disp32 = 0;
4011 operand_types[j].bitfield.disp16 = 1;
4012 break;
4013 }
4014 }
539e75ad
L
4015 break;
4016 case CODE_64BIT:
40fb9820
L
4017 for (j = 0; j < MAX_OPERANDS; j++)
4018 {
4019 if (operand_types[j].bitfield.disp64)
4020 {
4021 addr_prefix_disp = j;
4022 operand_types[j].bitfield.disp64 = 0;
4023 operand_types[j].bitfield.disp32 = 1;
4024 break;
4025 }
4026 }
539e75ad
L
4027 break;
4028 }
539e75ad
L
4029 }
4030
56ffb741
L
4031 /* We check register size if needed. */
4032 check_register = t->opcode_modifier.checkregsize;
c6fb90c8 4033 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
4034 switch (t->operands)
4035 {
4036 case 1:
40fb9820 4037 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
4038 continue;
4039 break;
4040 case 2:
8b38ad71
L
4041 /* xchg %eax, %eax is a special case. It is an aliase for nop
4042 only in 32bit mode and we can use opcode 0x90. In 64bit
4043 mode, we can't use 0x90 for xchg %eax, %eax since it should
4044 zero-extend %eax to %rax. */
4045 if (flag_code == CODE_64BIT
4046 && t->base_opcode == 0x90
0dfbf9d7
L
4047 && operand_type_equal (&i.types [0], &acc32)
4048 && operand_type_equal (&i.types [1], &acc32))
8b38ad71 4049 continue;
b6169b20
L
4050 if (i.swap_operand)
4051 {
4052 /* If we swap operand in encoding, we either match
4053 the next one or reverse direction of operands. */
4054 if (t->opcode_modifier.s)
4055 continue;
4056 else if (t->opcode_modifier.d)
4057 goto check_reverse;
4058 }
4059
29b0f896 4060 case 3:
fa99fab2
L
4061 /* If we swap operand in encoding, we match the next one. */
4062 if (i.swap_operand && t->opcode_modifier.s)
4063 continue;
f48ff2ae 4064 case 4:
c0f3af97 4065 case 5:
c6fb90c8 4066 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
4067 if (!operand_type_match (overlap0, i.types[0])
4068 || !operand_type_match (overlap1, i.types[1])
45664ddb
L
4069 || (check_register
4070 && !operand_type_register_match (overlap0, i.types[0],
40fb9820
L
4071 operand_types[0],
4072 overlap1, i.types[1],
4073 operand_types[1])))
29b0f896
AM
4074 {
4075 /* Check if other direction is valid ... */
40fb9820 4076 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
29b0f896
AM
4077 continue;
4078
b6169b20 4079check_reverse:
29b0f896 4080 /* Try reversing direction of operands. */
c6fb90c8
L
4081 overlap0 = operand_type_and (i.types[0], operand_types[1]);
4082 overlap1 = operand_type_and (i.types[1], operand_types[0]);
40fb9820
L
4083 if (!operand_type_match (overlap0, i.types[0])
4084 || !operand_type_match (overlap1, i.types[1])
45664ddb
L
4085 || (check_register
4086 && !operand_type_register_match (overlap0,
4087 i.types[0],
4088 operand_types[1],
4089 overlap1,
4090 i.types[1],
4091 operand_types[0])))
29b0f896
AM
4092 {
4093 /* Does not match either direction. */
4094 continue;
4095 }
4096 /* found_reverse_match holds which of D or FloatDR
4097 we've found. */
40fb9820 4098 if (t->opcode_modifier.d)
8a2ed489 4099 found_reverse_match = Opcode_D;
40fb9820 4100 else if (t->opcode_modifier.floatd)
8a2ed489
L
4101 found_reverse_match = Opcode_FloatD;
4102 else
4103 found_reverse_match = 0;
40fb9820 4104 if (t->opcode_modifier.floatr)
8a2ed489 4105 found_reverse_match |= Opcode_FloatR;
29b0f896 4106 }
f48ff2ae 4107 else
29b0f896 4108 {
f48ff2ae 4109 /* Found a forward 2 operand match here. */
d1cbb4db
L
4110 switch (t->operands)
4111 {
c0f3af97
L
4112 case 5:
4113 overlap4 = operand_type_and (i.types[4],
4114 operand_types[4]);
d1cbb4db 4115 case 4:
c6fb90c8
L
4116 overlap3 = operand_type_and (i.types[3],
4117 operand_types[3]);
d1cbb4db 4118 case 3:
c6fb90c8
L
4119 overlap2 = operand_type_and (i.types[2],
4120 operand_types[2]);
d1cbb4db
L
4121 break;
4122 }
29b0f896 4123
f48ff2ae
L
4124 switch (t->operands)
4125 {
c0f3af97
L
4126 case 5:
4127 if (!operand_type_match (overlap4, i.types[4])
4128 || !operand_type_register_match (overlap3,
4129 i.types[3],
4130 operand_types[3],
4131 overlap4,
4132 i.types[4],
4133 operand_types[4]))
4134 continue;
f48ff2ae 4135 case 4:
40fb9820 4136 if (!operand_type_match (overlap3, i.types[3])
45664ddb
L
4137 || (check_register
4138 && !operand_type_register_match (overlap2,
4139 i.types[2],
4140 operand_types[2],
4141 overlap3,
4142 i.types[3],
4143 operand_types[3])))
f48ff2ae
L
4144 continue;
4145 case 3:
4146 /* Here we make use of the fact that there are no
4147 reverse match 3 operand instructions, and all 3
4148 operand instructions only need to be checked for
4149 register consistency between operands 2 and 3. */
40fb9820 4150 if (!operand_type_match (overlap2, i.types[2])
45664ddb
L
4151 || (check_register
4152 && !operand_type_register_match (overlap1,
4153 i.types[1],
4154 operand_types[1],
4155 overlap2,
4156 i.types[2],
4157 operand_types[2])))
f48ff2ae
L
4158 continue;
4159 break;
4160 }
29b0f896 4161 }
f48ff2ae 4162 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
4163 slip through to break. */
4164 }
3629bb00 4165 if (!found_cpu_match)
29b0f896
AM
4166 {
4167 found_reverse_match = 0;
4168 continue;
4169 }
c0f3af97 4170
a683cc34
SP
4171 /* Check if VEX operands are valid. */
4172 if (VEX_check_operands (t))
4173 continue;
4174
29b0f896
AM
4175 /* We've found a match; break out of loop. */
4176 break;
4177 }
4178
4179 if (t == current_templates->end)
4180 {
4181 /* We found no match. */
a65babc9
L
4182 const char *err_msg;
4183 switch (i.error)
4184 {
4185 default:
4186 abort ();
86e026a4 4187 case operand_size_mismatch:
a65babc9
L
4188 err_msg = _("operand size mismatch");
4189 break;
4190 case operand_type_mismatch:
4191 err_msg = _("operand type mismatch");
4192 break;
4193 case register_type_mismatch:
4194 err_msg = _("register type mismatch");
4195 break;
4196 case number_of_operands_mismatch:
4197 err_msg = _("number of operands mismatch");
4198 break;
4199 case invalid_instruction_suffix:
4200 err_msg = _("invalid instruction suffix");
4201 break;
4202 case bad_imm4:
4203 err_msg = _("Imm4 isn't the first operand");
4204 break;
4205 case old_gcc_only:
4206 err_msg = _("only supported with old gcc");
4207 break;
4208 case unsupported_with_intel_mnemonic:
4209 err_msg = _("unsupported with Intel mnemonic");
4210 break;
4211 case unsupported_syntax:
4212 err_msg = _("unsupported syntax");
4213 break;
4214 case unsupported:
4215 err_msg = _("unsupported");
4216 break;
4217 }
4218 as_bad (_("%s for `%s'"), err_msg,
891edac4 4219 current_templates->start->name);
fa99fab2 4220 return NULL;
29b0f896 4221 }
252b5132 4222
29b0f896
AM
4223 if (!quiet_warnings)
4224 {
4225 if (!intel_syntax
40fb9820
L
4226 && (i.types[0].bitfield.jumpabsolute
4227 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
4228 {
4229 as_warn (_("indirect %s without `*'"), t->name);
4230 }
4231
40fb9820
L
4232 if (t->opcode_modifier.isprefix
4233 && t->opcode_modifier.ignoresize)
29b0f896
AM
4234 {
4235 /* Warn them that a data or address size prefix doesn't
4236 affect assembly of the next line of code. */
4237 as_warn (_("stand-alone `%s' prefix"), t->name);
4238 }
4239 }
4240
4241 /* Copy the template we found. */
4242 i.tm = *t;
539e75ad
L
4243
4244 if (addr_prefix_disp != -1)
4245 i.tm.operand_types[addr_prefix_disp]
4246 = operand_types[addr_prefix_disp];
4247
29b0f896
AM
4248 if (found_reverse_match)
4249 {
4250 /* If we found a reverse match we must alter the opcode
4251 direction bit. found_reverse_match holds bits to change
4252 (different for int & float insns). */
4253
4254 i.tm.base_opcode ^= found_reverse_match;
4255
539e75ad
L
4256 i.tm.operand_types[0] = operand_types[1];
4257 i.tm.operand_types[1] = operand_types[0];
29b0f896
AM
4258 }
4259
fa99fab2 4260 return t;
29b0f896
AM
4261}
4262
4263static int
e3bb37b5 4264check_string (void)
29b0f896 4265{
40fb9820
L
4266 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
4267 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
4268 {
4269 if (i.seg[0] != NULL && i.seg[0] != &es)
4270 {
a87af027 4271 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 4272 i.tm.name,
a87af027
JB
4273 mem_op + 1,
4274 register_prefix);
29b0f896
AM
4275 return 0;
4276 }
4277 /* There's only ever one segment override allowed per instruction.
4278 This instruction possibly has a legal segment override on the
4279 second operand, so copy the segment to where non-string
4280 instructions store it, allowing common code. */
4281 i.seg[0] = i.seg[1];
4282 }
40fb9820 4283 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
4284 {
4285 if (i.seg[1] != NULL && i.seg[1] != &es)
4286 {
a87af027 4287 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 4288 i.tm.name,
a87af027
JB
4289 mem_op + 2,
4290 register_prefix);
29b0f896
AM
4291 return 0;
4292 }
4293 }
4294 return 1;
4295}
4296
4297static int
543613e9 4298process_suffix (void)
29b0f896
AM
4299{
4300 /* If matched instruction specifies an explicit instruction mnemonic
4301 suffix, use it. */
40fb9820
L
4302 if (i.tm.opcode_modifier.size16)
4303 i.suffix = WORD_MNEM_SUFFIX;
4304 else if (i.tm.opcode_modifier.size32)
4305 i.suffix = LONG_MNEM_SUFFIX;
4306 else if (i.tm.opcode_modifier.size64)
4307 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
4308 else if (i.reg_operands)
4309 {
4310 /* If there's no instruction mnemonic suffix we try to invent one
4311 based on register operands. */
4312 if (!i.suffix)
4313 {
4314 /* We take i.suffix from the last register operand specified,
4315 Destination register type is more significant than source
381d071f
L
4316 register type. crc32 in SSE4.2 prefers source register
4317 type. */
4318 if (i.tm.base_opcode == 0xf20f38f1)
4319 {
40fb9820
L
4320 if (i.types[0].bitfield.reg16)
4321 i.suffix = WORD_MNEM_SUFFIX;
4322 else if (i.types[0].bitfield.reg32)
4323 i.suffix = LONG_MNEM_SUFFIX;
4324 else if (i.types[0].bitfield.reg64)
4325 i.suffix = QWORD_MNEM_SUFFIX;
381d071f 4326 }
9344ff29 4327 else if (i.tm.base_opcode == 0xf20f38f0)
20592a94 4328 {
40fb9820 4329 if (i.types[0].bitfield.reg8)
20592a94
L
4330 i.suffix = BYTE_MNEM_SUFFIX;
4331 }
381d071f
L
4332
4333 if (!i.suffix)
4334 {
4335 int op;
4336
20592a94
L
4337 if (i.tm.base_opcode == 0xf20f38f1
4338 || i.tm.base_opcode == 0xf20f38f0)
4339 {
4340 /* We have to know the operand size for crc32. */
4341 as_bad (_("ambiguous memory operand size for `%s`"),
4342 i.tm.name);
4343 return 0;
4344 }
4345
381d071f 4346 for (op = i.operands; --op >= 0;)
40fb9820 4347 if (!i.tm.operand_types[op].bitfield.inoutportreg)
381d071f 4348 {
40fb9820
L
4349 if (i.types[op].bitfield.reg8)
4350 {
4351 i.suffix = BYTE_MNEM_SUFFIX;
4352 break;
4353 }
4354 else if (i.types[op].bitfield.reg16)
4355 {
4356 i.suffix = WORD_MNEM_SUFFIX;
4357 break;
4358 }
4359 else if (i.types[op].bitfield.reg32)
4360 {
4361 i.suffix = LONG_MNEM_SUFFIX;
4362 break;
4363 }
4364 else if (i.types[op].bitfield.reg64)
4365 {
4366 i.suffix = QWORD_MNEM_SUFFIX;
4367 break;
4368 }
381d071f
L
4369 }
4370 }
29b0f896
AM
4371 }
4372 else if (i.suffix == BYTE_MNEM_SUFFIX)
4373 {
2eb952a4
L
4374 if (intel_syntax
4375 && i.tm.opcode_modifier.ignoresize
4376 && i.tm.opcode_modifier.no_bsuf)
4377 i.suffix = 0;
4378 else if (!check_byte_reg ())
29b0f896
AM
4379 return 0;
4380 }
4381 else if (i.suffix == LONG_MNEM_SUFFIX)
4382 {
2eb952a4
L
4383 if (intel_syntax
4384 && i.tm.opcode_modifier.ignoresize
4385 && i.tm.opcode_modifier.no_lsuf)
4386 i.suffix = 0;
4387 else if (!check_long_reg ())
29b0f896
AM
4388 return 0;
4389 }
4390 else if (i.suffix == QWORD_MNEM_SUFFIX)
4391 {
955e1e6a
L
4392 if (intel_syntax
4393 && i.tm.opcode_modifier.ignoresize
4394 && i.tm.opcode_modifier.no_qsuf)
4395 i.suffix = 0;
4396 else if (!check_qword_reg ())
29b0f896
AM
4397 return 0;
4398 }
4399 else if (i.suffix == WORD_MNEM_SUFFIX)
4400 {
2eb952a4
L
4401 if (intel_syntax
4402 && i.tm.opcode_modifier.ignoresize
4403 && i.tm.opcode_modifier.no_wsuf)
4404 i.suffix = 0;
4405 else if (!check_word_reg ())
29b0f896
AM
4406 return 0;
4407 }
c0f3af97
L
4408 else if (i.suffix == XMMWORD_MNEM_SUFFIX
4409 || i.suffix == YMMWORD_MNEM_SUFFIX)
582d5edd 4410 {
c0f3af97 4411 /* Skip if the instruction has x/y suffix. match_template
582d5edd
L
4412 should check if it is a valid suffix. */
4413 }
40fb9820 4414 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
4415 /* Do nothing if the instruction is going to ignore the prefix. */
4416 ;
4417 else
4418 abort ();
4419 }
40fb9820 4420 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
4421 && !i.suffix
4422 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 4423 && i.tm.opcode_modifier.no_ssuf)
29b0f896
AM
4424 {
4425 i.suffix = stackop_size;
4426 }
9306ca4a
JB
4427 else if (intel_syntax
4428 && !i.suffix
40fb9820
L
4429 && (i.tm.operand_types[0].bitfield.jumpabsolute
4430 || i.tm.opcode_modifier.jumpbyte
4431 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
4432 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
4433 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
4434 {
4435 switch (flag_code)
4436 {
4437 case CODE_64BIT:
40fb9820 4438 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
4439 {
4440 i.suffix = QWORD_MNEM_SUFFIX;
4441 break;
4442 }
4443 case CODE_32BIT:
40fb9820 4444 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
4445 i.suffix = LONG_MNEM_SUFFIX;
4446 break;
4447 case CODE_16BIT:
40fb9820 4448 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
4449 i.suffix = WORD_MNEM_SUFFIX;
4450 break;
4451 }
4452 }
252b5132 4453
9306ca4a 4454 if (!i.suffix)
29b0f896 4455 {
9306ca4a
JB
4456 if (!intel_syntax)
4457 {
40fb9820 4458 if (i.tm.opcode_modifier.w)
9306ca4a 4459 {
4eed87de
AM
4460 as_bad (_("no instruction mnemonic suffix given and "
4461 "no register operands; can't size instruction"));
9306ca4a
JB
4462 return 0;
4463 }
4464 }
4465 else
4466 {
40fb9820 4467 unsigned int suffixes;
7ab9ffdd 4468
40fb9820
L
4469 suffixes = !i.tm.opcode_modifier.no_bsuf;
4470 if (!i.tm.opcode_modifier.no_wsuf)
4471 suffixes |= 1 << 1;
4472 if (!i.tm.opcode_modifier.no_lsuf)
4473 suffixes |= 1 << 2;
fc4adea1 4474 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
4475 suffixes |= 1 << 3;
4476 if (!i.tm.opcode_modifier.no_ssuf)
4477 suffixes |= 1 << 4;
4478 if (!i.tm.opcode_modifier.no_qsuf)
4479 suffixes |= 1 << 5;
4480
4481 /* There are more than suffix matches. */
4482 if (i.tm.opcode_modifier.w
9306ca4a 4483 || ((suffixes & (suffixes - 1))
40fb9820
L
4484 && !i.tm.opcode_modifier.defaultsize
4485 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
4486 {
4487 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4488 return 0;
4489 }
4490 }
29b0f896 4491 }
252b5132 4492
9306ca4a
JB
4493 /* Change the opcode based on the operand size given by i.suffix;
4494 We don't need to change things for byte insns. */
4495
582d5edd
L
4496 if (i.suffix
4497 && i.suffix != BYTE_MNEM_SUFFIX
c0f3af97
L
4498 && i.suffix != XMMWORD_MNEM_SUFFIX
4499 && i.suffix != YMMWORD_MNEM_SUFFIX)
29b0f896
AM
4500 {
4501 /* It's not a byte, select word/dword operation. */
40fb9820 4502 if (i.tm.opcode_modifier.w)
29b0f896 4503 {
40fb9820 4504 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
4505 i.tm.base_opcode |= 8;
4506 else
4507 i.tm.base_opcode |= 1;
4508 }
0f3f3d8b 4509
29b0f896
AM
4510 /* Now select between word & dword operations via the operand
4511 size prefix, except for instructions that will ignore this
4512 prefix anyway. */
ca61edf2 4513 if (i.tm.opcode_modifier.addrprefixop0)
cb712a9e 4514 {
ca61edf2
L
4515 /* The address size override prefix changes the size of the
4516 first operand. */
40fb9820
L
4517 if ((flag_code == CODE_32BIT
4518 && i.op->regs[0].reg_type.bitfield.reg16)
4519 || (flag_code != CODE_32BIT
4520 && i.op->regs[0].reg_type.bitfield.reg32))
cb712a9e
L
4521 if (!add_prefix (ADDR_PREFIX_OPCODE))
4522 return 0;
4523 }
4524 else if (i.suffix != QWORD_MNEM_SUFFIX
4525 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
40fb9820
L
4526 && !i.tm.opcode_modifier.ignoresize
4527 && !i.tm.opcode_modifier.floatmf
cb712a9e
L
4528 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
4529 || (flag_code == CODE_64BIT
40fb9820 4530 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
4531 {
4532 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 4533
40fb9820 4534 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 4535 prefix = ADDR_PREFIX_OPCODE;
252b5132 4536
29b0f896
AM
4537 if (!add_prefix (prefix))
4538 return 0;
24eab124 4539 }
252b5132 4540
29b0f896
AM
4541 /* Set mode64 for an operand. */
4542 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 4543 && flag_code == CODE_64BIT
40fb9820 4544 && !i.tm.opcode_modifier.norex64)
46e883c5
L
4545 {
4546 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d9a5e5e5
L
4547 need rex64. cmpxchg8b is also a special case. */
4548 if (! (i.operands == 2
4549 && i.tm.base_opcode == 0x90
4550 && i.tm.extension_opcode == None
0dfbf9d7
L
4551 && operand_type_equal (&i.types [0], &acc64)
4552 && operand_type_equal (&i.types [1], &acc64))
d9a5e5e5
L
4553 && ! (i.operands == 1
4554 && i.tm.base_opcode == 0xfc7
4555 && i.tm.extension_opcode == 1
40fb9820
L
4556 && !operand_type_check (i.types [0], reg)
4557 && operand_type_check (i.types [0], anymem)))
f6bee062 4558 i.rex |= REX_W;
46e883c5 4559 }
3e73aa7c 4560
29b0f896
AM
4561 /* Size floating point instruction. */
4562 if (i.suffix == LONG_MNEM_SUFFIX)
40fb9820 4563 if (i.tm.opcode_modifier.floatmf)
543613e9 4564 i.tm.base_opcode ^= 4;
29b0f896 4565 }
7ecd2f8b 4566
29b0f896
AM
4567 return 1;
4568}
3e73aa7c 4569
29b0f896 4570static int
543613e9 4571check_byte_reg (void)
29b0f896
AM
4572{
4573 int op;
543613e9 4574
29b0f896
AM
4575 for (op = i.operands; --op >= 0;)
4576 {
4577 /* If this is an eight bit register, it's OK. If it's the 16 or
4578 32 bit version of an eight bit register, we will just use the
4579 low portion, and that's OK too. */
40fb9820 4580 if (i.types[op].bitfield.reg8)
29b0f896
AM
4581 continue;
4582
9344ff29
L
4583 /* crc32 doesn't generate this warning. */
4584 if (i.tm.base_opcode == 0xf20f38f0)
4585 continue;
4586
40fb9820
L
4587 if ((i.types[op].bitfield.reg16
4588 || i.types[op].bitfield.reg32
4589 || i.types[op].bitfield.reg64)
4590 && i.op[op].regs->reg_num < 4)
29b0f896
AM
4591 {
4592 /* Prohibit these changes in the 64bit mode, since the
4593 lowering is more complicated. */
4594 if (flag_code == CODE_64BIT
40fb9820 4595 && !i.tm.operand_types[op].bitfield.inoutportreg)
29b0f896 4596 {
2ca3ace5
L
4597 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4598 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
4599 i.suffix);
4600 return 0;
4601 }
4602#if REGISTER_WARNINGS
4603 if (!quiet_warnings
40fb9820 4604 && !i.tm.operand_types[op].bitfield.inoutportreg)
a540244d
L
4605 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4606 register_prefix,
40fb9820 4607 (i.op[op].regs + (i.types[op].bitfield.reg16
29b0f896
AM
4608 ? REGNAM_AL - REGNAM_AX
4609 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 4610 register_prefix,
29b0f896
AM
4611 i.op[op].regs->reg_name,
4612 i.suffix);
4613#endif
4614 continue;
4615 }
4616 /* Any other register is bad. */
40fb9820
L
4617 if (i.types[op].bitfield.reg16
4618 || i.types[op].bitfield.reg32
4619 || i.types[op].bitfield.reg64
4620 || i.types[op].bitfield.regmmx
4621 || i.types[op].bitfield.regxmm
c0f3af97 4622 || i.types[op].bitfield.regymm
40fb9820
L
4623 || i.types[op].bitfield.sreg2
4624 || i.types[op].bitfield.sreg3
4625 || i.types[op].bitfield.control
4626 || i.types[op].bitfield.debug
4627 || i.types[op].bitfield.test
4628 || i.types[op].bitfield.floatreg
4629 || i.types[op].bitfield.floatacc)
29b0f896 4630 {
a540244d
L
4631 as_bad (_("`%s%s' not allowed with `%s%c'"),
4632 register_prefix,
29b0f896
AM
4633 i.op[op].regs->reg_name,
4634 i.tm.name,
4635 i.suffix);
4636 return 0;
4637 }
4638 }
4639 return 1;
4640}
4641
4642static int
e3bb37b5 4643check_long_reg (void)
29b0f896
AM
4644{
4645 int op;
4646
4647 for (op = i.operands; --op >= 0;)
4648 /* Reject eight bit registers, except where the template requires
4649 them. (eg. movzb) */
40fb9820
L
4650 if (i.types[op].bitfield.reg8
4651 && (i.tm.operand_types[op].bitfield.reg16
4652 || i.tm.operand_types[op].bitfield.reg32
4653 || i.tm.operand_types[op].bitfield.acc))
29b0f896 4654 {
a540244d
L
4655 as_bad (_("`%s%s' not allowed with `%s%c'"),
4656 register_prefix,
29b0f896
AM
4657 i.op[op].regs->reg_name,
4658 i.tm.name,
4659 i.suffix);
4660 return 0;
4661 }
4662 /* Warn if the e prefix on a general reg is missing. */
4663 else if ((!quiet_warnings || flag_code == CODE_64BIT)
40fb9820
L
4664 && i.types[op].bitfield.reg16
4665 && (i.tm.operand_types[op].bitfield.reg32
4666 || i.tm.operand_types[op].bitfield.acc))
29b0f896
AM
4667 {
4668 /* Prohibit these changes in the 64bit mode, since the
4669 lowering is more complicated. */
4670 if (flag_code == CODE_64BIT)
252b5132 4671 {
2ca3ace5
L
4672 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4673 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
4674 i.suffix);
4675 return 0;
252b5132 4676 }
29b0f896
AM
4677#if REGISTER_WARNINGS
4678 else
a540244d
L
4679 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4680 register_prefix,
29b0f896 4681 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
a540244d 4682 register_prefix,
29b0f896
AM
4683 i.op[op].regs->reg_name,
4684 i.suffix);
4685#endif
252b5132 4686 }
29b0f896 4687 /* Warn if the r prefix on a general reg is missing. */
40fb9820
L
4688 else if (i.types[op].bitfield.reg64
4689 && (i.tm.operand_types[op].bitfield.reg32
4690 || i.tm.operand_types[op].bitfield.acc))
252b5132 4691 {
34828aad 4692 if (intel_syntax
ca61edf2 4693 && i.tm.opcode_modifier.toqword
40fb9820 4694 && !i.types[0].bitfield.regxmm)
34828aad 4695 {
ca61edf2 4696 /* Convert to QWORD. We want REX byte. */
34828aad
L
4697 i.suffix = QWORD_MNEM_SUFFIX;
4698 }
4699 else
4700 {
4701 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4702 register_prefix, i.op[op].regs->reg_name,
4703 i.suffix);
4704 return 0;
4705 }
29b0f896
AM
4706 }
4707 return 1;
4708}
252b5132 4709
29b0f896 4710static int
e3bb37b5 4711check_qword_reg (void)
29b0f896
AM
4712{
4713 int op;
252b5132 4714
29b0f896
AM
4715 for (op = i.operands; --op >= 0; )
4716 /* Reject eight bit registers, except where the template requires
4717 them. (eg. movzb) */
40fb9820
L
4718 if (i.types[op].bitfield.reg8
4719 && (i.tm.operand_types[op].bitfield.reg16
4720 || i.tm.operand_types[op].bitfield.reg32
4721 || i.tm.operand_types[op].bitfield.acc))
29b0f896 4722 {
a540244d
L
4723 as_bad (_("`%s%s' not allowed with `%s%c'"),
4724 register_prefix,
29b0f896
AM
4725 i.op[op].regs->reg_name,
4726 i.tm.name,
4727 i.suffix);
4728 return 0;
4729 }
4730 /* Warn if the e prefix on a general reg is missing. */
40fb9820
L
4731 else if ((i.types[op].bitfield.reg16
4732 || i.types[op].bitfield.reg32)
4733 && (i.tm.operand_types[op].bitfield.reg32
4734 || i.tm.operand_types[op].bitfield.acc))
29b0f896
AM
4735 {
4736 /* Prohibit these changes in the 64bit mode, since the
4737 lowering is more complicated. */
34828aad 4738 if (intel_syntax
ca61edf2 4739 && i.tm.opcode_modifier.todword
40fb9820 4740 && !i.types[0].bitfield.regxmm)
34828aad 4741 {
ca61edf2 4742 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
4743 i.suffix = LONG_MNEM_SUFFIX;
4744 }
4745 else
4746 {
4747 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4748 register_prefix, i.op[op].regs->reg_name,
4749 i.suffix);
4750 return 0;
4751 }
252b5132 4752 }
29b0f896
AM
4753 return 1;
4754}
252b5132 4755
29b0f896 4756static int
e3bb37b5 4757check_word_reg (void)
29b0f896
AM
4758{
4759 int op;
4760 for (op = i.operands; --op >= 0;)
4761 /* Reject eight bit registers, except where the template requires
4762 them. (eg. movzb) */
40fb9820
L
4763 if (i.types[op].bitfield.reg8
4764 && (i.tm.operand_types[op].bitfield.reg16
4765 || i.tm.operand_types[op].bitfield.reg32
4766 || i.tm.operand_types[op].bitfield.acc))
29b0f896 4767 {
a540244d
L
4768 as_bad (_("`%s%s' not allowed with `%s%c'"),
4769 register_prefix,
29b0f896
AM
4770 i.op[op].regs->reg_name,
4771 i.tm.name,
4772 i.suffix);
4773 return 0;
4774 }
4775 /* Warn if the e prefix on a general reg is present. */
4776 else if ((!quiet_warnings || flag_code == CODE_64BIT)
40fb9820
L
4777 && i.types[op].bitfield.reg32
4778 && (i.tm.operand_types[op].bitfield.reg16
4779 || i.tm.operand_types[op].bitfield.acc))
252b5132 4780 {
29b0f896
AM
4781 /* Prohibit these changes in the 64bit mode, since the
4782 lowering is more complicated. */
4783 if (flag_code == CODE_64BIT)
252b5132 4784 {
2ca3ace5
L
4785 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4786 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
4787 i.suffix);
4788 return 0;
252b5132 4789 }
29b0f896
AM
4790 else
4791#if REGISTER_WARNINGS
a540244d
L
4792 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4793 register_prefix,
29b0f896 4794 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
a540244d 4795 register_prefix,
29b0f896
AM
4796 i.op[op].regs->reg_name,
4797 i.suffix);
4798#endif
4799 }
4800 return 1;
4801}
252b5132 4802
29b0f896 4803static int
40fb9820 4804update_imm (unsigned int j)
29b0f896 4805{
bc0844ae 4806 i386_operand_type overlap = i.types[j];
40fb9820
L
4807 if ((overlap.bitfield.imm8
4808 || overlap.bitfield.imm8s
4809 || overlap.bitfield.imm16
4810 || overlap.bitfield.imm32
4811 || overlap.bitfield.imm32s
4812 || overlap.bitfield.imm64)
0dfbf9d7
L
4813 && !operand_type_equal (&overlap, &imm8)
4814 && !operand_type_equal (&overlap, &imm8s)
4815 && !operand_type_equal (&overlap, &imm16)
4816 && !operand_type_equal (&overlap, &imm32)
4817 && !operand_type_equal (&overlap, &imm32s)
4818 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
4819 {
4820 if (i.suffix)
4821 {
40fb9820
L
4822 i386_operand_type temp;
4823
0dfbf9d7 4824 operand_type_set (&temp, 0);
7ab9ffdd 4825 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
4826 {
4827 temp.bitfield.imm8 = overlap.bitfield.imm8;
4828 temp.bitfield.imm8s = overlap.bitfield.imm8s;
4829 }
4830 else if (i.suffix == WORD_MNEM_SUFFIX)
4831 temp.bitfield.imm16 = overlap.bitfield.imm16;
4832 else if (i.suffix == QWORD_MNEM_SUFFIX)
4833 {
4834 temp.bitfield.imm64 = overlap.bitfield.imm64;
4835 temp.bitfield.imm32s = overlap.bitfield.imm32s;
4836 }
4837 else
4838 temp.bitfield.imm32 = overlap.bitfield.imm32;
4839 overlap = temp;
29b0f896 4840 }
0dfbf9d7
L
4841 else if (operand_type_equal (&overlap, &imm16_32_32s)
4842 || operand_type_equal (&overlap, &imm16_32)
4843 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 4844 {
40fb9820 4845 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 4846 overlap = imm16;
40fb9820 4847 else
65da13b5 4848 overlap = imm32s;
29b0f896 4849 }
0dfbf9d7
L
4850 if (!operand_type_equal (&overlap, &imm8)
4851 && !operand_type_equal (&overlap, &imm8s)
4852 && !operand_type_equal (&overlap, &imm16)
4853 && !operand_type_equal (&overlap, &imm32)
4854 && !operand_type_equal (&overlap, &imm32s)
4855 && !operand_type_equal (&overlap, &imm64))
29b0f896 4856 {
4eed87de
AM
4857 as_bad (_("no instruction mnemonic suffix given; "
4858 "can't determine immediate size"));
29b0f896
AM
4859 return 0;
4860 }
4861 }
40fb9820 4862 i.types[j] = overlap;
29b0f896 4863
40fb9820
L
4864 return 1;
4865}
4866
4867static int
4868finalize_imm (void)
4869{
bc0844ae 4870 unsigned int j, n;
29b0f896 4871
bc0844ae
L
4872 /* Update the first 2 immediate operands. */
4873 n = i.operands > 2 ? 2 : i.operands;
4874 if (n)
4875 {
4876 for (j = 0; j < n; j++)
4877 if (update_imm (j) == 0)
4878 return 0;
40fb9820 4879
bc0844ae
L
4880 /* The 3rd operand can't be immediate operand. */
4881 gas_assert (operand_type_check (i.types[2], imm) == 0);
4882 }
29b0f896
AM
4883
4884 return 1;
4885}
4886
c0f3af97
L
4887static int
4888bad_implicit_operand (int xmm)
4889{
91d6fa6a
NC
4890 const char *ireg = xmm ? "xmm0" : "ymm0";
4891
c0f3af97
L
4892 if (intel_syntax)
4893 as_bad (_("the last operand of `%s' must be `%s%s'"),
91d6fa6a 4894 i.tm.name, register_prefix, ireg);
c0f3af97
L
4895 else
4896 as_bad (_("the first operand of `%s' must be `%s%s'"),
91d6fa6a 4897 i.tm.name, register_prefix, ireg);
c0f3af97
L
4898 return 0;
4899}
4900
29b0f896 4901static int
e3bb37b5 4902process_operands (void)
29b0f896
AM
4903{
4904 /* Default segment register this instruction will use for memory
4905 accesses. 0 means unknown. This is only for optimizing out
4906 unnecessary segment overrides. */
4907 const seg_entry *default_seg = 0;
4908
2426c15f 4909 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 4910 {
91d6fa6a
NC
4911 unsigned int dupl = i.operands;
4912 unsigned int dest = dupl - 1;
9fcfb3d7
L
4913 unsigned int j;
4914
c0f3af97 4915 /* The destination must be an xmm register. */
9c2799c2 4916 gas_assert (i.reg_operands
91d6fa6a 4917 && MAX_OPERANDS > dupl
7ab9ffdd 4918 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97
L
4919
4920 if (i.tm.opcode_modifier.firstxmm0)
e2ec9d29 4921 {
c0f3af97 4922 /* The first operand is implicit and must be xmm0. */
9c2799c2 4923 gas_assert (operand_type_equal (&i.types[0], &regxmm));
c0f3af97
L
4924 if (i.op[0].regs->reg_num != 0)
4925 return bad_implicit_operand (1);
4926
8cd7925b 4927 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
4928 {
4929 /* Keep xmm0 for instructions with VEX prefix and 3
4930 sources. */
4931 goto duplicate;
4932 }
e2ec9d29 4933 else
c0f3af97
L
4934 {
4935 /* We remove the first xmm0 and keep the number of
4936 operands unchanged, which in fact duplicates the
4937 destination. */
4938 for (j = 1; j < i.operands; j++)
4939 {
4940 i.op[j - 1] = i.op[j];
4941 i.types[j - 1] = i.types[j];
4942 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
4943 }
4944 }
4945 }
4946 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 4947 {
91d6fa6a 4948 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
4949 && (i.tm.opcode_modifier.vexsources
4950 == VEX3SOURCES));
c0f3af97
L
4951
4952 /* Add the implicit xmm0 for instructions with VEX prefix
4953 and 3 sources. */
4954 for (j = i.operands; j > 0; j--)
4955 {
4956 i.op[j] = i.op[j - 1];
4957 i.types[j] = i.types[j - 1];
4958 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
4959 }
4960 i.op[0].regs
4961 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 4962 i.types[0] = regxmm;
c0f3af97
L
4963 i.tm.operand_types[0] = regxmm;
4964
4965 i.operands += 2;
4966 i.reg_operands += 2;
4967 i.tm.operands += 2;
4968
91d6fa6a 4969 dupl++;
c0f3af97 4970 dest++;
91d6fa6a
NC
4971 i.op[dupl] = i.op[dest];
4972 i.types[dupl] = i.types[dest];
4973 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
e2ec9d29 4974 }
c0f3af97
L
4975 else
4976 {
4977duplicate:
4978 i.operands++;
4979 i.reg_operands++;
4980 i.tm.operands++;
4981
91d6fa6a
NC
4982 i.op[dupl] = i.op[dest];
4983 i.types[dupl] = i.types[dest];
4984 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
c0f3af97
L
4985 }
4986
4987 if (i.tm.opcode_modifier.immext)
4988 process_immext ();
4989 }
4990 else if (i.tm.opcode_modifier.firstxmm0)
4991 {
4992 unsigned int j;
4993
4994 /* The first operand is implicit and must be xmm0/ymm0. */
9c2799c2 4995 gas_assert (i.reg_operands
7ab9ffdd
L
4996 && (operand_type_equal (&i.types[0], &regxmm)
4997 || operand_type_equal (&i.types[0], &regymm)));
c0f3af97
L
4998 if (i.op[0].regs->reg_num != 0)
4999 return bad_implicit_operand (i.types[0].bitfield.regxmm);
9fcfb3d7
L
5000
5001 for (j = 1; j < i.operands; j++)
5002 {
5003 i.op[j - 1] = i.op[j];
5004 i.types[j - 1] = i.types[j];
5005
5006 /* We need to adjust fields in i.tm since they are used by
5007 build_modrm_byte. */
5008 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
5009 }
5010
e2ec9d29
L
5011 i.operands--;
5012 i.reg_operands--;
e2ec9d29
L
5013 i.tm.operands--;
5014 }
5015 else if (i.tm.opcode_modifier.regkludge)
5016 {
5017 /* The imul $imm, %reg instruction is converted into
5018 imul $imm, %reg, %reg, and the clr %reg instruction
5019 is converted into xor %reg, %reg. */
5020
5021 unsigned int first_reg_op;
5022
5023 if (operand_type_check (i.types[0], reg))
5024 first_reg_op = 0;
5025 else
5026 first_reg_op = 1;
5027 /* Pretend we saw the extra register operand. */
9c2799c2 5028 gas_assert (i.reg_operands == 1
7ab9ffdd 5029 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
5030 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
5031 i.types[first_reg_op + 1] = i.types[first_reg_op];
5032 i.operands++;
5033 i.reg_operands++;
29b0f896
AM
5034 }
5035
40fb9820 5036 if (i.tm.opcode_modifier.shortform)
29b0f896 5037 {
40fb9820
L
5038 if (i.types[0].bitfield.sreg2
5039 || i.types[0].bitfield.sreg3)
29b0f896 5040 {
4eed87de
AM
5041 if (i.tm.base_opcode == POP_SEG_SHORT
5042 && i.op[0].regs->reg_num == 1)
29b0f896 5043 {
a87af027 5044 as_bad (_("you can't `pop %scs'"), register_prefix);
4eed87de 5045 return 0;
29b0f896 5046 }
4eed87de
AM
5047 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
5048 if ((i.op[0].regs->reg_flags & RegRex) != 0)
161a04f6 5049 i.rex |= REX_B;
4eed87de
AM
5050 }
5051 else
5052 {
7ab9ffdd 5053 /* The register or float register operand is in operand
85f10a01 5054 0 or 1. */
40fb9820 5055 unsigned int op;
7ab9ffdd
L
5056
5057 if (i.types[0].bitfield.floatreg
5058 || operand_type_check (i.types[0], reg))
5059 op = 0;
5060 else
5061 op = 1;
4eed87de
AM
5062 /* Register goes in low 3 bits of opcode. */
5063 i.tm.base_opcode |= i.op[op].regs->reg_num;
5064 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 5065 i.rex |= REX_B;
40fb9820 5066 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 5067 {
4eed87de
AM
5068 /* Warn about some common errors, but press on regardless.
5069 The first case can be generated by gcc (<= 2.8.1). */
5070 if (i.operands == 2)
5071 {
5072 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 5073 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
5074 register_prefix, i.op[!intel_syntax].regs->reg_name,
5075 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
5076 }
5077 else
5078 {
5079 /* Extraneous `l' suffix on fp insn. */
a540244d
L
5080 as_warn (_("translating to `%s %s%s'"), i.tm.name,
5081 register_prefix, i.op[0].regs->reg_name);
4eed87de 5082 }
29b0f896
AM
5083 }
5084 }
5085 }
40fb9820 5086 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
5087 {
5088 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
5089 must be put into the modrm byte). Now, we make the modrm and
5090 index base bytes based on all the info we've collected. */
29b0f896
AM
5091
5092 default_seg = build_modrm_byte ();
5093 }
8a2ed489 5094 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
5095 {
5096 default_seg = &ds;
5097 }
40fb9820 5098 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
5099 {
5100 /* For the string instructions that allow a segment override
5101 on one of their operands, the default segment is ds. */
5102 default_seg = &ds;
5103 }
5104
75178d9d
L
5105 if (i.tm.base_opcode == 0x8d /* lea */
5106 && i.seg[0]
5107 && !quiet_warnings)
30123838 5108 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
5109
5110 /* If a segment was explicitly specified, and the specified segment
5111 is not the default, use an opcode prefix to select it. If we
5112 never figured out what the default segment is, then default_seg
5113 will be zero at this point, and the specified segment prefix will
5114 always be used. */
29b0f896
AM
5115 if ((i.seg[0]) && (i.seg[0] != default_seg))
5116 {
5117 if (!add_prefix (i.seg[0]->seg_prefix))
5118 return 0;
5119 }
5120 return 1;
5121}
5122
5123static const seg_entry *
e3bb37b5 5124build_modrm_byte (void)
29b0f896
AM
5125{
5126 const seg_entry *default_seg = 0;
c0f3af97 5127 unsigned int source, dest;
8cd7925b 5128 int vex_3_sources;
c0f3af97
L
5129
5130 /* The first operand of instructions with VEX prefix and 3 sources
5131 must be VEX_Imm4. */
8cd7925b 5132 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
5133 if (vex_3_sources)
5134 {
91d6fa6a 5135 unsigned int nds, reg_slot;
4c2c6516 5136 expressionS *exp;
c0f3af97 5137
922d8de8 5138 if (i.tm.opcode_modifier.veximmext
a683cc34
SP
5139 && i.tm.opcode_modifier.immext)
5140 {
5141 dest = i.operands - 2;
5142 gas_assert (dest == 3);
5143 }
922d8de8 5144 else
a683cc34 5145 dest = i.operands - 1;
c0f3af97 5146 nds = dest - 1;
922d8de8 5147
a683cc34
SP
5148 /* There are 2 kinds of instructions:
5149 1. 5 operands: 4 register operands or 3 register operands
5150 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
5151 VexW0 or VexW1. The destination must be either XMM or YMM
5152 register.
5153 2. 4 operands: 4 register operands or 3 register operands
5154 plus 1 memory operand, VexXDS, and VexImmExt */
922d8de8 5155 gas_assert ((i.reg_operands == 4
a683cc34
SP
5156 || (i.reg_operands == 3 && i.mem_operands == 1))
5157 && i.tm.opcode_modifier.vexvvvv == VEXXDS
5158 && (i.tm.opcode_modifier.veximmext
5159 || (i.imm_operands == 1
5160 && i.types[0].bitfield.vec_imm4
5161 && (i.tm.opcode_modifier.vexw == VEXW0
5162 || i.tm.opcode_modifier.vexw == VEXW1)
5163 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
5164 || operand_type_equal (&i.tm.operand_types[dest], &regymm)))));
5165
5166 if (i.imm_operands == 0)
5167 {
5168 /* When there is no immediate operand, generate an 8bit
5169 immediate operand to encode the first operand. */
5170 exp = &im_expressions[i.imm_operands++];
5171 i.op[i.operands].imms = exp;
5172 i.types[i.operands] = imm8;
5173 i.operands++;
5174 /* If VexW1 is set, the first operand is the source and
5175 the second operand is encoded in the immediate operand. */
5176 if (i.tm.opcode_modifier.vexw == VEXW1)
5177 {
5178 source = 0;
5179 reg_slot = 1;
5180 }
5181 else
5182 {
5183 source = 1;
5184 reg_slot = 0;
5185 }
5186
5187 /* FMA swaps REG and NDS. */
5188 if (i.tm.cpu_flags.bitfield.cpufma)
5189 {
5190 unsigned int tmp;
5191 tmp = reg_slot;
5192 reg_slot = nds;
5193 nds = tmp;
5194 }
5195
24981e7b
L
5196 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
5197 &regxmm)
a683cc34
SP
5198 || operand_type_equal (&i.tm.operand_types[reg_slot],
5199 &regymm));
5200 exp->X_op = O_constant;
5201 exp->X_add_number
5202 = ((i.op[reg_slot].regs->reg_num
24981e7b
L
5203 + ((i.op[reg_slot].regs->reg_flags & RegRex) ? 8 : 0))
5204 << 4);
a683cc34 5205 }
922d8de8 5206 else
a683cc34
SP
5207 {
5208 unsigned int imm_slot;
5209
5210 if (i.tm.opcode_modifier.vexw == VEXW0)
5211 {
5212 /* If VexW0 is set, the third operand is the source and
5213 the second operand is encoded in the immediate
5214 operand. */
5215 source = 2;
5216 reg_slot = 1;
5217 }
5218 else
5219 {
5220 /* VexW1 is set, the second operand is the source and
5221 the third operand is encoded in the immediate
5222 operand. */
5223 source = 1;
5224 reg_slot = 2;
5225 }
5226
5227 if (i.tm.opcode_modifier.immext)
5228 {
5229 /* When ImmExt is set, the immdiate byte is the last
5230 operand. */
5231 imm_slot = i.operands - 1;
5232 source--;
5233 reg_slot--;
5234 }
5235 else
5236 {
5237 imm_slot = 0;
5238
5239 /* Turn on Imm8 so that output_imm will generate it. */
5240 i.types[imm_slot].bitfield.imm8 = 1;
5241 }
5242
24981e7b
L
5243 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
5244 &regxmm)
5245 || operand_type_equal (&i.tm.operand_types[reg_slot],
5246 &regymm));
a683cc34
SP
5247 i.op[imm_slot].imms->X_add_number
5248 |= ((i.op[reg_slot].regs->reg_num
24981e7b
L
5249 + ((i.op[reg_slot].regs->reg_flags & RegRex) ? 8 : 0))
5250 << 4);
a683cc34
SP
5251 }
5252
5253 gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
5254 || operand_type_equal (&i.tm.operand_types[nds],
5255 &regymm));
dae39acc 5256 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
5257 }
5258 else
5259 source = dest = 0;
29b0f896
AM
5260
5261 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
5262 implicit registers do not count. If there are 3 register
5263 operands, it must be a instruction with VexNDS. For a
5264 instruction with VexNDD, the destination register is encoded
5265 in VEX prefix. If there are 4 register operands, it must be
5266 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
5267 if (i.mem_operands == 0
5268 && ((i.reg_operands == 2
2426c15f 5269 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 5270 || (i.reg_operands == 3
2426c15f 5271 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 5272 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 5273 {
cab737b9
L
5274 switch (i.operands)
5275 {
5276 case 2:
5277 source = 0;
5278 break;
5279 case 3:
c81128dc
L
5280 /* When there are 3 operands, one of them may be immediate,
5281 which may be the first or the last operand. Otherwise,
c0f3af97
L
5282 the first operand must be shift count register (cl) or it
5283 is an instruction with VexNDS. */
9c2799c2 5284 gas_assert (i.imm_operands == 1
7ab9ffdd 5285 || (i.imm_operands == 0
2426c15f 5286 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 5287 || i.types[0].bitfield.shiftcount)));
40fb9820
L
5288 if (operand_type_check (i.types[0], imm)
5289 || i.types[0].bitfield.shiftcount)
5290 source = 1;
5291 else
5292 source = 0;
cab737b9
L
5293 break;
5294 case 4:
368d64cc
L
5295 /* When there are 4 operands, the first two must be 8bit
5296 immediate operands. The source operand will be the 3rd
c0f3af97
L
5297 one.
5298
5299 For instructions with VexNDS, if the first operand
5300 an imm8, the source operand is the 2nd one. If the last
5301 operand is imm8, the source operand is the first one. */
9c2799c2 5302 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
5303 && i.types[0].bitfield.imm8
5304 && i.types[1].bitfield.imm8)
2426c15f 5305 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
5306 && i.imm_operands == 1
5307 && (i.types[0].bitfield.imm8
5308 || i.types[i.operands - 1].bitfield.imm8)));
9f2670f2
L
5309 if (i.imm_operands == 2)
5310 source = 2;
5311 else
c0f3af97
L
5312 {
5313 if (i.types[0].bitfield.imm8)
5314 source = 1;
5315 else
5316 source = 0;
5317 }
c0f3af97
L
5318 break;
5319 case 5:
cab737b9
L
5320 break;
5321 default:
5322 abort ();
5323 }
5324
c0f3af97
L
5325 if (!vex_3_sources)
5326 {
5327 dest = source + 1;
5328
2426c15f 5329 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97
L
5330 {
5331 /* For instructions with VexNDS, the register-only
f12dc422
L
5332 source operand must be 32/64bit integer, XMM or
5333 YMM register. It is encoded in VEX prefix. We
5334 need to clear RegMem bit before calling
5335 operand_type_equal. */
5336
5337 i386_operand_type op;
5338 unsigned int vvvv;
5339
5340 /* Check register-only source operand when two source
5341 operands are swapped. */
5342 if (!i.tm.operand_types[source].bitfield.baseindex
5343 && i.tm.operand_types[dest].bitfield.baseindex)
5344 {
5345 vvvv = source;
5346 source = dest;
5347 }
5348 else
5349 vvvv = dest;
5350
5351 op = i.tm.operand_types[vvvv];
fa99fab2 5352 op.bitfield.regmem = 0;
c0f3af97 5353 if ((dest + 1) >= i.operands
f12dc422
L
5354 || (op.bitfield.reg32 != 1
5355 && !op.bitfield.reg64 != 1
5356 && !operand_type_equal (&op, &regxmm)
fa99fab2 5357 && !operand_type_equal (&op, &regymm)))
c0f3af97 5358 abort ();
f12dc422 5359 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
5360 dest++;
5361 }
5362 }
29b0f896
AM
5363
5364 i.rm.mode = 3;
5365 /* One of the register operands will be encoded in the i.tm.reg
5366 field, the other in the combined i.tm.mode and i.tm.regmem
5367 fields. If no form of this instruction supports a memory
5368 destination operand, then we assume the source operand may
5369 sometimes be a memory operand and so we need to store the
5370 destination in the i.rm.reg field. */
40fb9820
L
5371 if (!i.tm.operand_types[dest].bitfield.regmem
5372 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
5373 {
5374 i.rm.reg = i.op[dest].regs->reg_num;
5375 i.rm.regmem = i.op[source].regs->reg_num;
5376 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 5377 i.rex |= REX_R;
29b0f896 5378 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 5379 i.rex |= REX_B;
29b0f896
AM
5380 }
5381 else
5382 {
5383 i.rm.reg = i.op[source].regs->reg_num;
5384 i.rm.regmem = i.op[dest].regs->reg_num;
5385 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 5386 i.rex |= REX_B;
29b0f896 5387 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 5388 i.rex |= REX_R;
29b0f896 5389 }
161a04f6 5390 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
c4a530c5 5391 {
40fb9820
L
5392 if (!i.types[0].bitfield.control
5393 && !i.types[1].bitfield.control)
c4a530c5 5394 abort ();
161a04f6 5395 i.rex &= ~(REX_R | REX_B);
c4a530c5
JB
5396 add_prefix (LOCK_PREFIX_OPCODE);
5397 }
29b0f896
AM
5398 }
5399 else
5400 { /* If it's not 2 reg operands... */
c0f3af97
L
5401 unsigned int mem;
5402
29b0f896
AM
5403 if (i.mem_operands)
5404 {
5405 unsigned int fake_zero_displacement = 0;
99018f42 5406 unsigned int op;
4eed87de 5407
7ab9ffdd
L
5408 for (op = 0; op < i.operands; op++)
5409 if (operand_type_check (i.types[op], anymem))
5410 break;
7ab9ffdd 5411 gas_assert (op < i.operands);
29b0f896
AM
5412
5413 default_seg = &ds;
5414
5415 if (i.base_reg == 0)
5416 {
5417 i.rm.mode = 0;
5418 if (!i.disp_operands)
5419 fake_zero_displacement = 1;
5420 if (i.index_reg == 0)
5421 {
5422 /* Operand is just <disp> */
20f0a1fc 5423 if (flag_code == CODE_64BIT)
29b0f896
AM
5424 {
5425 /* 64bit mode overwrites the 32bit absolute
5426 addressing by RIP relative addressing and
5427 absolute addressing is encoded by one of the
5428 redundant SIB forms. */
5429 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
5430 i.sib.base = NO_BASE_REGISTER;
5431 i.sib.index = NO_INDEX_REGISTER;
fc225355 5432 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
40fb9820 5433 ? disp32s : disp32);
20f0a1fc 5434 }
fc225355
L
5435 else if ((flag_code == CODE_16BIT)
5436 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
5437 {
5438 i.rm.regmem = NO_BASE_REGISTER_16;
40fb9820 5439 i.types[op] = disp16;
20f0a1fc
NC
5440 }
5441 else
5442 {
5443 i.rm.regmem = NO_BASE_REGISTER;
40fb9820 5444 i.types[op] = disp32;
29b0f896
AM
5445 }
5446 }
5447 else /* !i.base_reg && i.index_reg */
5448 {
db51cc60
L
5449 if (i.index_reg->reg_num == RegEiz
5450 || i.index_reg->reg_num == RegRiz)
5451 i.sib.index = NO_INDEX_REGISTER;
5452 else
5453 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
5454 i.sib.base = NO_BASE_REGISTER;
5455 i.sib.scale = i.log2_scale_factor;
5456 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
5457 i.types[op].bitfield.disp8 = 0;
5458 i.types[op].bitfield.disp16 = 0;
5459 i.types[op].bitfield.disp64 = 0;
29b0f896 5460 if (flag_code != CODE_64BIT)
40fb9820
L
5461 {
5462 /* Must be 32 bit */
5463 i.types[op].bitfield.disp32 = 1;
5464 i.types[op].bitfield.disp32s = 0;
5465 }
29b0f896 5466 else
40fb9820
L
5467 {
5468 i.types[op].bitfield.disp32 = 0;
5469 i.types[op].bitfield.disp32s = 1;
5470 }
29b0f896 5471 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 5472 i.rex |= REX_X;
29b0f896
AM
5473 }
5474 }
5475 /* RIP addressing for 64bit mode. */
9a04903e
JB
5476 else if (i.base_reg->reg_num == RegRip ||
5477 i.base_reg->reg_num == RegEip)
29b0f896
AM
5478 {
5479 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
5480 i.types[op].bitfield.disp8 = 0;
5481 i.types[op].bitfield.disp16 = 0;
5482 i.types[op].bitfield.disp32 = 0;
5483 i.types[op].bitfield.disp32s = 1;
5484 i.types[op].bitfield.disp64 = 0;
71903a11 5485 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
5486 if (! i.disp_operands)
5487 fake_zero_displacement = 1;
29b0f896 5488 }
40fb9820 5489 else if (i.base_reg->reg_type.bitfield.reg16)
29b0f896
AM
5490 {
5491 switch (i.base_reg->reg_num)
5492 {
5493 case 3: /* (%bx) */
5494 if (i.index_reg == 0)
5495 i.rm.regmem = 7;
5496 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
5497 i.rm.regmem = i.index_reg->reg_num - 6;
5498 break;
5499 case 5: /* (%bp) */
5500 default_seg = &ss;
5501 if (i.index_reg == 0)
5502 {
5503 i.rm.regmem = 6;
40fb9820 5504 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
5505 {
5506 /* fake (%bp) into 0(%bp) */
40fb9820 5507 i.types[op].bitfield.disp8 = 1;
252b5132 5508 fake_zero_displacement = 1;
29b0f896
AM
5509 }
5510 }
5511 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
5512 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
5513 break;
5514 default: /* (%si) -> 4 or (%di) -> 5 */
5515 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
5516 }
5517 i.rm.mode = mode_from_disp_size (i.types[op]);
5518 }
5519 else /* i.base_reg and 32/64 bit mode */
5520 {
5521 if (flag_code == CODE_64BIT
40fb9820
L
5522 && operand_type_check (i.types[op], disp))
5523 {
5524 i386_operand_type temp;
0dfbf9d7 5525 operand_type_set (&temp, 0);
40fb9820
L
5526 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
5527 i.types[op] = temp;
5528 if (i.prefix[ADDR_PREFIX] == 0)
5529 i.types[op].bitfield.disp32s = 1;
5530 else
5531 i.types[op].bitfield.disp32 = 1;
5532 }
20f0a1fc 5533
29b0f896
AM
5534 i.rm.regmem = i.base_reg->reg_num;
5535 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 5536 i.rex |= REX_B;
29b0f896
AM
5537 i.sib.base = i.base_reg->reg_num;
5538 /* x86-64 ignores REX prefix bit here to avoid decoder
5539 complications. */
5540 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
5541 {
5542 default_seg = &ss;
5543 if (i.disp_operands == 0)
5544 {
5545 fake_zero_displacement = 1;
40fb9820 5546 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
5547 }
5548 }
5549 else if (i.base_reg->reg_num == ESP_REG_NUM)
5550 {
5551 default_seg = &ss;
5552 }
5553 i.sib.scale = i.log2_scale_factor;
5554 if (i.index_reg == 0)
5555 {
5556 /* <disp>(%esp) becomes two byte modrm with no index
5557 register. We've already stored the code for esp
5558 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
5559 Any base register besides %esp will not use the
5560 extra modrm byte. */
5561 i.sib.index = NO_INDEX_REGISTER;
29b0f896
AM
5562 }
5563 else
5564 {
db51cc60
L
5565 if (i.index_reg->reg_num == RegEiz
5566 || i.index_reg->reg_num == RegRiz)
5567 i.sib.index = NO_INDEX_REGISTER;
5568 else
5569 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
5570 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
5571 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 5572 i.rex |= REX_X;
29b0f896 5573 }
67a4f2b7
AO
5574
5575 if (i.disp_operands
5576 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5577 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
5578 i.rm.mode = 0;
5579 else
5580 i.rm.mode = mode_from_disp_size (i.types[op]);
29b0f896 5581 }
252b5132 5582
29b0f896
AM
5583 if (fake_zero_displacement)
5584 {
5585 /* Fakes a zero displacement assuming that i.types[op]
5586 holds the correct displacement size. */
5587 expressionS *exp;
5588
9c2799c2 5589 gas_assert (i.op[op].disps == 0);
29b0f896
AM
5590 exp = &disp_expressions[i.disp_operands++];
5591 i.op[op].disps = exp;
5592 exp->X_op = O_constant;
5593 exp->X_add_number = 0;
5594 exp->X_add_symbol = (symbolS *) 0;
5595 exp->X_op_symbol = (symbolS *) 0;
5596 }
c0f3af97
L
5597
5598 mem = op;
29b0f896 5599 }
c0f3af97
L
5600 else
5601 mem = ~0;
252b5132 5602
8c43a48b 5603 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
5604 {
5605 if (operand_type_check (i.types[0], imm))
5606 i.vex.register_specifier = NULL;
5607 else
5608 {
5609 /* VEX.vvvv encodes one of the sources when the first
5610 operand is not an immediate. */
1ef99a7b 5611 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
5612 i.vex.register_specifier = i.op[0].regs;
5613 else
5614 i.vex.register_specifier = i.op[1].regs;
5615 }
5616
5617 /* Destination is a XMM register encoded in the ModRM.reg
5618 and VEX.R bit. */
5619 i.rm.reg = i.op[2].regs->reg_num;
5620 if ((i.op[2].regs->reg_flags & RegRex) != 0)
5621 i.rex |= REX_R;
5622
5623 /* ModRM.rm and VEX.B encodes the other source. */
5624 if (!i.mem_operands)
5625 {
5626 i.rm.mode = 3;
5627
1ef99a7b 5628 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
5629 i.rm.regmem = i.op[1].regs->reg_num;
5630 else
5631 i.rm.regmem = i.op[0].regs->reg_num;
5632
5633 if ((i.op[1].regs->reg_flags & RegRex) != 0)
5634 i.rex |= REX_B;
5635 }
5636 }
2426c15f 5637 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
5638 {
5639 i.vex.register_specifier = i.op[2].regs;
5640 if (!i.mem_operands)
5641 {
5642 i.rm.mode = 3;
5643 i.rm.regmem = i.op[1].regs->reg_num;
5644 if ((i.op[1].regs->reg_flags & RegRex) != 0)
5645 i.rex |= REX_B;
5646 }
5647 }
29b0f896
AM
5648 /* Fill in i.rm.reg or i.rm.regmem field with register operand
5649 (if any) based on i.tm.extension_opcode. Again, we must be
5650 careful to make sure that segment/control/debug/test/MMX
5651 registers are coded into the i.rm.reg field. */
f88c9eb0 5652 else if (i.reg_operands)
29b0f896 5653 {
99018f42 5654 unsigned int op;
7ab9ffdd
L
5655 unsigned int vex_reg = ~0;
5656
5657 for (op = 0; op < i.operands; op++)
5658 if (i.types[op].bitfield.reg8
5659 || i.types[op].bitfield.reg16
5660 || i.types[op].bitfield.reg32
5661 || i.types[op].bitfield.reg64
5662 || i.types[op].bitfield.regmmx
5663 || i.types[op].bitfield.regxmm
5664 || i.types[op].bitfield.regymm
5665 || i.types[op].bitfield.sreg2
5666 || i.types[op].bitfield.sreg3
5667 || i.types[op].bitfield.control
5668 || i.types[op].bitfield.debug
5669 || i.types[op].bitfield.test)
5670 break;
c0209578 5671
7ab9ffdd
L
5672 if (vex_3_sources)
5673 op = dest;
2426c15f 5674 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
5675 {
5676 /* For instructions with VexNDS, the register-only
5677 source operand is encoded in VEX prefix. */
5678 gas_assert (mem != (unsigned int) ~0);
c0f3af97 5679
7ab9ffdd 5680 if (op > mem)
c0f3af97 5681 {
7ab9ffdd
L
5682 vex_reg = op++;
5683 gas_assert (op < i.operands);
c0f3af97
L
5684 }
5685 else
c0f3af97 5686 {
f12dc422
L
5687 /* Check register-only source operand when two source
5688 operands are swapped. */
5689 if (!i.tm.operand_types[op].bitfield.baseindex
5690 && i.tm.operand_types[op + 1].bitfield.baseindex)
5691 {
5692 vex_reg = op;
5693 op += 2;
5694 gas_assert (mem == (vex_reg + 1)
5695 && op < i.operands);
5696 }
5697 else
5698 {
5699 vex_reg = op + 1;
5700 gas_assert (vex_reg < i.operands);
5701 }
c0f3af97 5702 }
7ab9ffdd 5703 }
2426c15f 5704 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 5705 {
f12dc422 5706 /* For instructions with VexNDD, the register destination
7ab9ffdd 5707 is encoded in VEX prefix. */
f12dc422
L
5708 if (i.mem_operands == 0)
5709 {
5710 /* There is no memory operand. */
5711 gas_assert ((op + 2) == i.operands);
5712 vex_reg = op + 1;
5713 }
5714 else
5715 {
5716 /* There are only 2 operands. */
5717 gas_assert (op < 2 && i.operands == 2);
5718 vex_reg = 1;
5719 }
7ab9ffdd
L
5720 }
5721 else
5722 gas_assert (op < i.operands);
99018f42 5723
7ab9ffdd
L
5724 if (vex_reg != (unsigned int) ~0)
5725 {
f12dc422 5726 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 5727
f12dc422
L
5728 if (type->bitfield.reg32 != 1
5729 && type->bitfield.reg64 != 1
5730 && !operand_type_equal (type, &regxmm)
5731 && !operand_type_equal (type, &regymm))
7ab9ffdd 5732 abort ();
f88c9eb0 5733
7ab9ffdd
L
5734 i.vex.register_specifier = i.op[vex_reg].regs;
5735 }
5736
1b9f0c97
L
5737 /* Don't set OP operand twice. */
5738 if (vex_reg != op)
7ab9ffdd 5739 {
1b9f0c97
L
5740 /* If there is an extension opcode to put here, the
5741 register number must be put into the regmem field. */
5742 if (i.tm.extension_opcode != None)
5743 {
5744 i.rm.regmem = i.op[op].regs->reg_num;
5745 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5746 i.rex |= REX_B;
5747 }
5748 else
5749 {
5750 i.rm.reg = i.op[op].regs->reg_num;
5751 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5752 i.rex |= REX_R;
5753 }
7ab9ffdd 5754 }
252b5132 5755
29b0f896
AM
5756 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
5757 must set it to 3 to indicate this is a register operand
5758 in the regmem field. */
5759 if (!i.mem_operands)
5760 i.rm.mode = 3;
5761 }
252b5132 5762
29b0f896 5763 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 5764 if (i.tm.extension_opcode != None)
29b0f896
AM
5765 i.rm.reg = i.tm.extension_opcode;
5766 }
5767 return default_seg;
5768}
252b5132 5769
29b0f896 5770static void
e3bb37b5 5771output_branch (void)
29b0f896
AM
5772{
5773 char *p;
f8a5c266 5774 int size;
29b0f896
AM
5775 int code16;
5776 int prefix;
5777 relax_substateT subtype;
5778 symbolS *sym;
5779 offsetT off;
5780
f8a5c266
L
5781 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
5782 size = i.disp32_encoding ? BIG : SMALL;
29b0f896
AM
5783
5784 prefix = 0;
5785 if (i.prefix[DATA_PREFIX] != 0)
252b5132 5786 {
29b0f896
AM
5787 prefix = 1;
5788 i.prefixes -= 1;
5789 code16 ^= CODE16;
252b5132 5790 }
29b0f896
AM
5791 /* Pentium4 branch hints. */
5792 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
5793 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 5794 {
29b0f896
AM
5795 prefix++;
5796 i.prefixes--;
5797 }
5798 if (i.prefix[REX_PREFIX] != 0)
5799 {
5800 prefix++;
5801 i.prefixes--;
2f66722d
AM
5802 }
5803
29b0f896
AM
5804 if (i.prefixes != 0 && !intel_syntax)
5805 as_warn (_("skipping prefixes on this instruction"));
5806
5807 /* It's always a symbol; End frag & setup for relax.
5808 Make sure there is enough room in this frag for the largest
5809 instruction we may generate in md_convert_frag. This is 2
5810 bytes for the opcode and room for the prefix and largest
5811 displacement. */
5812 frag_grow (prefix + 2 + 4);
5813 /* Prefix and 1 opcode byte go in fr_fix. */
5814 p = frag_more (prefix + 1);
5815 if (i.prefix[DATA_PREFIX] != 0)
5816 *p++ = DATA_PREFIX_OPCODE;
5817 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
5818 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
5819 *p++ = i.prefix[SEG_PREFIX];
5820 if (i.prefix[REX_PREFIX] != 0)
5821 *p++ = i.prefix[REX_PREFIX];
5822 *p = i.tm.base_opcode;
5823
5824 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 5825 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 5826 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 5827 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 5828 else
f8a5c266 5829 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 5830 subtype |= code16;
3e73aa7c 5831
29b0f896
AM
5832 sym = i.op[0].disps->X_add_symbol;
5833 off = i.op[0].disps->X_add_number;
3e73aa7c 5834
29b0f896
AM
5835 if (i.op[0].disps->X_op != O_constant
5836 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 5837 {
29b0f896
AM
5838 /* Handle complex expressions. */
5839 sym = make_expr_symbol (i.op[0].disps);
5840 off = 0;
5841 }
3e73aa7c 5842
29b0f896
AM
5843 /* 1 possible extra opcode + 4 byte displacement go in var part.
5844 Pass reloc in fr_var. */
5845 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
5846}
3e73aa7c 5847
29b0f896 5848static void
e3bb37b5 5849output_jump (void)
29b0f896
AM
5850{
5851 char *p;
5852 int size;
3e02c1cc 5853 fixS *fixP;
29b0f896 5854
40fb9820 5855 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
5856 {
5857 /* This is a loop or jecxz type instruction. */
5858 size = 1;
5859 if (i.prefix[ADDR_PREFIX] != 0)
5860 {
5861 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
5862 i.prefixes -= 1;
5863 }
5864 /* Pentium4 branch hints. */
5865 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
5866 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
5867 {
5868 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
5869 i.prefixes--;
3e73aa7c
JH
5870 }
5871 }
29b0f896
AM
5872 else
5873 {
5874 int code16;
3e73aa7c 5875
29b0f896
AM
5876 code16 = 0;
5877 if (flag_code == CODE_16BIT)
5878 code16 = CODE16;
3e73aa7c 5879
29b0f896
AM
5880 if (i.prefix[DATA_PREFIX] != 0)
5881 {
5882 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
5883 i.prefixes -= 1;
5884 code16 ^= CODE16;
5885 }
252b5132 5886
29b0f896
AM
5887 size = 4;
5888 if (code16)
5889 size = 2;
5890 }
9fcc94b6 5891
29b0f896
AM
5892 if (i.prefix[REX_PREFIX] != 0)
5893 {
5894 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
5895 i.prefixes -= 1;
5896 }
252b5132 5897
29b0f896
AM
5898 if (i.prefixes != 0 && !intel_syntax)
5899 as_warn (_("skipping prefixes on this instruction"));
e0890092 5900
29b0f896
AM
5901 p = frag_more (1 + size);
5902 *p++ = i.tm.base_opcode;
e0890092 5903
3e02c1cc
AM
5904 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5905 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
5906
5907 /* All jumps handled here are signed, but don't use a signed limit
5908 check for 32 and 16 bit jumps as we want to allow wrap around at
5909 4G and 64k respectively. */
5910 if (size == 1)
5911 fixP->fx_signed = 1;
29b0f896 5912}
e0890092 5913
29b0f896 5914static void
e3bb37b5 5915output_interseg_jump (void)
29b0f896
AM
5916{
5917 char *p;
5918 int size;
5919 int prefix;
5920 int code16;
252b5132 5921
29b0f896
AM
5922 code16 = 0;
5923 if (flag_code == CODE_16BIT)
5924 code16 = CODE16;
a217f122 5925
29b0f896
AM
5926 prefix = 0;
5927 if (i.prefix[DATA_PREFIX] != 0)
5928 {
5929 prefix = 1;
5930 i.prefixes -= 1;
5931 code16 ^= CODE16;
5932 }
5933 if (i.prefix[REX_PREFIX] != 0)
5934 {
5935 prefix++;
5936 i.prefixes -= 1;
5937 }
252b5132 5938
29b0f896
AM
5939 size = 4;
5940 if (code16)
5941 size = 2;
252b5132 5942
29b0f896
AM
5943 if (i.prefixes != 0 && !intel_syntax)
5944 as_warn (_("skipping prefixes on this instruction"));
252b5132 5945
29b0f896
AM
5946 /* 1 opcode; 2 segment; offset */
5947 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 5948
29b0f896
AM
5949 if (i.prefix[DATA_PREFIX] != 0)
5950 *p++ = DATA_PREFIX_OPCODE;
252b5132 5951
29b0f896
AM
5952 if (i.prefix[REX_PREFIX] != 0)
5953 *p++ = i.prefix[REX_PREFIX];
252b5132 5954
29b0f896
AM
5955 *p++ = i.tm.base_opcode;
5956 if (i.op[1].imms->X_op == O_constant)
5957 {
5958 offsetT n = i.op[1].imms->X_add_number;
252b5132 5959
29b0f896
AM
5960 if (size == 2
5961 && !fits_in_unsigned_word (n)
5962 && !fits_in_signed_word (n))
5963 {
5964 as_bad (_("16-bit jump out of range"));
5965 return;
5966 }
5967 md_number_to_chars (p, n, size);
5968 }
5969 else
5970 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5971 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
5972 if (i.op[0].imms->X_op != O_constant)
5973 as_bad (_("can't handle non absolute segment in `%s'"),
5974 i.tm.name);
5975 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
5976}
a217f122 5977
29b0f896 5978static void
e3bb37b5 5979output_insn (void)
29b0f896 5980{
2bbd9c25
JJ
5981 fragS *insn_start_frag;
5982 offsetT insn_start_off;
5983
29b0f896
AM
5984 /* Tie dwarf2 debug info to the address at the start of the insn.
5985 We can't do this after the insn has been output as the current
5986 frag may have been closed off. eg. by frag_var. */
5987 dwarf2_emit_insn (0);
5988
2bbd9c25
JJ
5989 insn_start_frag = frag_now;
5990 insn_start_off = frag_now_fix ();
5991
29b0f896 5992 /* Output jumps. */
40fb9820 5993 if (i.tm.opcode_modifier.jump)
29b0f896 5994 output_branch ();
40fb9820
L
5995 else if (i.tm.opcode_modifier.jumpbyte
5996 || i.tm.opcode_modifier.jumpdword)
29b0f896 5997 output_jump ();
40fb9820 5998 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
5999 output_interseg_jump ();
6000 else
6001 {
6002 /* Output normal instructions here. */
6003 char *p;
6004 unsigned char *q;
47465058 6005 unsigned int j;
331d2d0d 6006 unsigned int prefix;
4dffcebc 6007
c0f3af97
L
6008 /* Since the VEX prefix contains the implicit prefix, we don't
6009 need the explicit prefix. */
6010 if (!i.tm.opcode_modifier.vex)
bc4bd9ab 6011 {
c0f3af97 6012 switch (i.tm.opcode_length)
bc4bd9ab 6013 {
c0f3af97
L
6014 case 3:
6015 if (i.tm.base_opcode & 0xff000000)
4dffcebc 6016 {
c0f3af97
L
6017 prefix = (i.tm.base_opcode >> 24) & 0xff;
6018 goto check_prefix;
6019 }
6020 break;
6021 case 2:
6022 if ((i.tm.base_opcode & 0xff0000) != 0)
6023 {
6024 prefix = (i.tm.base_opcode >> 16) & 0xff;
6025 if (i.tm.cpu_flags.bitfield.cpupadlock)
6026 {
4dffcebc 6027check_prefix:
c0f3af97 6028 if (prefix != REPE_PREFIX_OPCODE
c32fa91d 6029 || (i.prefix[REP_PREFIX]
c0f3af97
L
6030 != REPE_PREFIX_OPCODE))
6031 add_prefix (prefix);
6032 }
6033 else
4dffcebc
L
6034 add_prefix (prefix);
6035 }
c0f3af97
L
6036 break;
6037 case 1:
6038 break;
6039 default:
6040 abort ();
bc4bd9ab 6041 }
c0f3af97
L
6042
6043 /* The prefix bytes. */
6044 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
6045 if (*q)
6046 FRAG_APPEND_1_CHAR (*q);
0f10071e 6047 }
252b5132 6048
c0f3af97
L
6049 if (i.tm.opcode_modifier.vex)
6050 {
6051 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
6052 if (*q)
6053 switch (j)
6054 {
6055 case REX_PREFIX:
6056 /* REX byte is encoded in VEX prefix. */
6057 break;
6058 case SEG_PREFIX:
6059 case ADDR_PREFIX:
6060 FRAG_APPEND_1_CHAR (*q);
6061 break;
6062 default:
6063 /* There should be no other prefixes for instructions
6064 with VEX prefix. */
6065 abort ();
6066 }
6067
6068 /* Now the VEX prefix. */
6069 p = frag_more (i.vex.length);
6070 for (j = 0; j < i.vex.length; j++)
6071 p[j] = i.vex.bytes[j];
6072 }
252b5132 6073
29b0f896 6074 /* Now the opcode; be careful about word order here! */
4dffcebc 6075 if (i.tm.opcode_length == 1)
29b0f896
AM
6076 {
6077 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
6078 }
6079 else
6080 {
4dffcebc 6081 switch (i.tm.opcode_length)
331d2d0d 6082 {
4dffcebc 6083 case 3:
331d2d0d
L
6084 p = frag_more (3);
6085 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
6086 break;
6087 case 2:
6088 p = frag_more (2);
6089 break;
6090 default:
6091 abort ();
6092 break;
331d2d0d 6093 }
0f10071e 6094
29b0f896
AM
6095 /* Put out high byte first: can't use md_number_to_chars! */
6096 *p++ = (i.tm.base_opcode >> 8) & 0xff;
6097 *p = i.tm.base_opcode & 0xff;
6098 }
3e73aa7c 6099
29b0f896 6100 /* Now the modrm byte and sib byte (if present). */
40fb9820 6101 if (i.tm.opcode_modifier.modrm)
29b0f896 6102 {
4a3523fa
L
6103 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
6104 | i.rm.reg << 3
6105 | i.rm.mode << 6));
29b0f896
AM
6106 /* If i.rm.regmem == ESP (4)
6107 && i.rm.mode != (Register mode)
6108 && not 16 bit
6109 ==> need second modrm byte. */
6110 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
6111 && i.rm.mode != 3
40fb9820 6112 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
4a3523fa
L
6113 FRAG_APPEND_1_CHAR ((i.sib.base << 0
6114 | i.sib.index << 3
6115 | i.sib.scale << 6));
29b0f896 6116 }
3e73aa7c 6117
29b0f896 6118 if (i.disp_operands)
2bbd9c25 6119 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 6120
29b0f896 6121 if (i.imm_operands)
2bbd9c25 6122 output_imm (insn_start_frag, insn_start_off);
29b0f896 6123 }
252b5132 6124
29b0f896
AM
6125#ifdef DEBUG386
6126 if (flag_debug)
6127 {
7b81dfbb 6128 pi ("" /*line*/, &i);
29b0f896
AM
6129 }
6130#endif /* DEBUG386 */
6131}
252b5132 6132
e205caa7
L
6133/* Return the size of the displacement operand N. */
6134
6135static int
6136disp_size (unsigned int n)
6137{
6138 int size = 4;
40fb9820
L
6139 if (i.types[n].bitfield.disp64)
6140 size = 8;
6141 else if (i.types[n].bitfield.disp8)
6142 size = 1;
6143 else if (i.types[n].bitfield.disp16)
6144 size = 2;
e205caa7
L
6145 return size;
6146}
6147
6148/* Return the size of the immediate operand N. */
6149
6150static int
6151imm_size (unsigned int n)
6152{
6153 int size = 4;
40fb9820
L
6154 if (i.types[n].bitfield.imm64)
6155 size = 8;
6156 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
6157 size = 1;
6158 else if (i.types[n].bitfield.imm16)
6159 size = 2;
e205caa7
L
6160 return size;
6161}
6162
29b0f896 6163static void
64e74474 6164output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
6165{
6166 char *p;
6167 unsigned int n;
252b5132 6168
29b0f896
AM
6169 for (n = 0; n < i.operands; n++)
6170 {
40fb9820 6171 if (operand_type_check (i.types[n], disp))
29b0f896
AM
6172 {
6173 if (i.op[n].disps->X_op == O_constant)
6174 {
e205caa7 6175 int size = disp_size (n);
29b0f896 6176 offsetT val;
252b5132 6177
29b0f896
AM
6178 val = offset_in_range (i.op[n].disps->X_add_number,
6179 size);
6180 p = frag_more (size);
6181 md_number_to_chars (p, val, size);
6182 }
6183 else
6184 {
f86103b7 6185 enum bfd_reloc_code_real reloc_type;
e205caa7 6186 int size = disp_size (n);
40fb9820 6187 int sign = i.types[n].bitfield.disp32s;
29b0f896
AM
6188 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
6189
e205caa7 6190 /* We can't have 8 bit displacement here. */
9c2799c2 6191 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 6192
29b0f896
AM
6193 /* The PC relative address is computed relative
6194 to the instruction boundary, so in case immediate
6195 fields follows, we need to adjust the value. */
6196 if (pcrel && i.imm_operands)
6197 {
29b0f896 6198 unsigned int n1;
e205caa7 6199 int sz = 0;
252b5132 6200
29b0f896 6201 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 6202 if (operand_type_check (i.types[n1], imm))
252b5132 6203 {
e205caa7
L
6204 /* Only one immediate is allowed for PC
6205 relative address. */
9c2799c2 6206 gas_assert (sz == 0);
e205caa7
L
6207 sz = imm_size (n1);
6208 i.op[n].disps->X_add_number -= sz;
252b5132 6209 }
29b0f896 6210 /* We should find the immediate. */
9c2799c2 6211 gas_assert (sz != 0);
29b0f896 6212 }
520dc8e8 6213
29b0f896 6214 p = frag_more (size);
2bbd9c25 6215 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 6216 if (GOT_symbol
2bbd9c25 6217 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 6218 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
6219 || reloc_type == BFD_RELOC_X86_64_32S
6220 || (reloc_type == BFD_RELOC_64
6221 && object_64bit))
d6ab8113
JB
6222 && (i.op[n].disps->X_op == O_symbol
6223 || (i.op[n].disps->X_op == O_add
6224 && ((symbol_get_value_expression
6225 (i.op[n].disps->X_op_symbol)->X_op)
6226 == O_subtract))))
6227 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25
JJ
6228 {
6229 offsetT add;
6230
6231 if (insn_start_frag == frag_now)
6232 add = (p - frag_now->fr_literal) - insn_start_off;
6233 else
6234 {
6235 fragS *fr;
6236
6237 add = insn_start_frag->fr_fix - insn_start_off;
6238 for (fr = insn_start_frag->fr_next;
6239 fr && fr != frag_now; fr = fr->fr_next)
6240 add += fr->fr_fix;
6241 add += p - frag_now->fr_literal;
6242 }
6243
4fa24527 6244 if (!object_64bit)
7b81dfbb
AJ
6245 {
6246 reloc_type = BFD_RELOC_386_GOTPC;
6247 i.op[n].imms->X_add_number += add;
6248 }
6249 else if (reloc_type == BFD_RELOC_64)
6250 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 6251 else
7b81dfbb
AJ
6252 /* Don't do the adjustment for x86-64, as there
6253 the pcrel addressing is relative to the _next_
6254 insn, and that is taken care of in other code. */
d6ab8113 6255 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 6256 }
062cd5e7 6257 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2bbd9c25 6258 i.op[n].disps, pcrel, reloc_type);
29b0f896
AM
6259 }
6260 }
6261 }
6262}
252b5132 6263
29b0f896 6264static void
64e74474 6265output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
6266{
6267 char *p;
6268 unsigned int n;
252b5132 6269
29b0f896
AM
6270 for (n = 0; n < i.operands; n++)
6271 {
40fb9820 6272 if (operand_type_check (i.types[n], imm))
29b0f896
AM
6273 {
6274 if (i.op[n].imms->X_op == O_constant)
6275 {
e205caa7 6276 int size = imm_size (n);
29b0f896 6277 offsetT val;
b4cac588 6278
29b0f896
AM
6279 val = offset_in_range (i.op[n].imms->X_add_number,
6280 size);
6281 p = frag_more (size);
6282 md_number_to_chars (p, val, size);
6283 }
6284 else
6285 {
6286 /* Not absolute_section.
6287 Need a 32-bit fixup (don't support 8bit
6288 non-absolute imms). Try to support other
6289 sizes ... */
f86103b7 6290 enum bfd_reloc_code_real reloc_type;
e205caa7
L
6291 int size = imm_size (n);
6292 int sign;
29b0f896 6293
40fb9820 6294 if (i.types[n].bitfield.imm32s
a7d61044 6295 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 6296 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 6297 sign = 1;
e205caa7
L
6298 else
6299 sign = 0;
520dc8e8 6300
29b0f896
AM
6301 p = frag_more (size);
6302 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 6303
2bbd9c25
JJ
6304 /* This is tough to explain. We end up with this one if we
6305 * have operands that look like
6306 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
6307 * obtain the absolute address of the GOT, and it is strongly
6308 * preferable from a performance point of view to avoid using
6309 * a runtime relocation for this. The actual sequence of
6310 * instructions often look something like:
6311 *
6312 * call .L66
6313 * .L66:
6314 * popl %ebx
6315 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
6316 *
6317 * The call and pop essentially return the absolute address
6318 * of the label .L66 and store it in %ebx. The linker itself
6319 * will ultimately change the first operand of the addl so
6320 * that %ebx points to the GOT, but to keep things simple, the
6321 * .o file must have this operand set so that it generates not
6322 * the absolute address of .L66, but the absolute address of
6323 * itself. This allows the linker itself simply treat a GOTPC
6324 * relocation as asking for a pcrel offset to the GOT to be
6325 * added in, and the addend of the relocation is stored in the
6326 * operand field for the instruction itself.
6327 *
6328 * Our job here is to fix the operand so that it would add
6329 * the correct offset so that %ebx would point to itself. The
6330 * thing that is tricky is that .-.L66 will point to the
6331 * beginning of the instruction, so we need to further modify
6332 * the operand so that it will point to itself. There are
6333 * other cases where you have something like:
6334 *
6335 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
6336 *
6337 * and here no correction would be required. Internally in
6338 * the assembler we treat operands of this form as not being
6339 * pcrel since the '.' is explicitly mentioned, and I wonder
6340 * whether it would simplify matters to do it this way. Who
6341 * knows. In earlier versions of the PIC patches, the
6342 * pcrel_adjust field was used to store the correction, but
6343 * since the expression is not pcrel, I felt it would be
6344 * confusing to do it this way. */
6345
d6ab8113 6346 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
6347 || reloc_type == BFD_RELOC_X86_64_32S
6348 || reloc_type == BFD_RELOC_64)
29b0f896
AM
6349 && GOT_symbol
6350 && GOT_symbol == i.op[n].imms->X_add_symbol
6351 && (i.op[n].imms->X_op == O_symbol
6352 || (i.op[n].imms->X_op == O_add
6353 && ((symbol_get_value_expression
6354 (i.op[n].imms->X_op_symbol)->X_op)
6355 == O_subtract))))
6356 {
2bbd9c25
JJ
6357 offsetT add;
6358
6359 if (insn_start_frag == frag_now)
6360 add = (p - frag_now->fr_literal) - insn_start_off;
6361 else
6362 {
6363 fragS *fr;
6364
6365 add = insn_start_frag->fr_fix - insn_start_off;
6366 for (fr = insn_start_frag->fr_next;
6367 fr && fr != frag_now; fr = fr->fr_next)
6368 add += fr->fr_fix;
6369 add += p - frag_now->fr_literal;
6370 }
6371
4fa24527 6372 if (!object_64bit)
d6ab8113 6373 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 6374 else if (size == 4)
d6ab8113 6375 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
6376 else if (size == 8)
6377 reloc_type = BFD_RELOC_X86_64_GOTPC64;
2bbd9c25 6378 i.op[n].imms->X_add_number += add;
29b0f896 6379 }
29b0f896
AM
6380 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6381 i.op[n].imms, 0, reloc_type);
6382 }
6383 }
6384 }
252b5132
RH
6385}
6386\f
d182319b
JB
6387/* x86_cons_fix_new is called via the expression parsing code when a
6388 reloc is needed. We use this hook to get the correct .got reloc. */
6389static enum bfd_reloc_code_real got_reloc = NO_RELOC;
6390static int cons_sign = -1;
6391
6392void
e3bb37b5 6393x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
64e74474 6394 expressionS *exp)
d182319b
JB
6395{
6396 enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, got_reloc);
6397
6398 got_reloc = NO_RELOC;
6399
6400#ifdef TE_PE
6401 if (exp->X_op == O_secrel)
6402 {
6403 exp->X_op = O_symbol;
6404 r = BFD_RELOC_32_SECREL;
6405 }
6406#endif
6407
6408 fix_new_exp (frag, off, len, exp, 0, r);
6409}
6410
718ddfc0
JB
6411#if (!defined (OBJ_ELF) && !defined (OBJ_MAYBE_ELF)) || defined (LEX_AT)
6412# define lex_got(reloc, adjust, types) NULL
6413#else
f3c180ae
AM
6414/* Parse operands of the form
6415 <symbol>@GOTOFF+<nnn>
6416 and similar .plt or .got references.
6417
6418 If we find one, set up the correct relocation in RELOC and copy the
6419 input string, minus the `@GOTOFF' into a malloc'd buffer for
6420 parsing by the calling routine. Return this buffer, and if ADJUST
6421 is non-null set it to the length of the string we removed from the
6422 input line. Otherwise return NULL. */
6423static char *
91d6fa6a 6424lex_got (enum bfd_reloc_code_real *rel,
64e74474 6425 int *adjust,
40fb9820 6426 i386_operand_type *types)
f3c180ae 6427{
7b81dfbb
AJ
6428 /* Some of the relocations depend on the size of what field is to
6429 be relocated. But in our callers i386_immediate and i386_displacement
6430 we don't yet know the operand size (this will be set by insn
6431 matching). Hence we record the word32 relocation here,
6432 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
6433 static const struct {
6434 const char *str;
cff8d58a 6435 int len;
4fa24527 6436 const enum bfd_reloc_code_real rel[2];
40fb9820 6437 const i386_operand_type types64;
f3c180ae 6438 } gotrel[] = {
cff8d58a
L
6439 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
6440 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 6441 OPERAND_TYPE_IMM64 },
cff8d58a
L
6442 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
6443 BFD_RELOC_X86_64_PLT32 },
40fb9820 6444 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
6445 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
6446 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 6447 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
6448 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
6449 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 6450 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
6451 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
6452 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 6453 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
6454 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
6455 BFD_RELOC_X86_64_TLSGD },
40fb9820 6456 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
6457 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
6458 _dummy_first_bfd_reloc_code_real },
40fb9820 6459 OPERAND_TYPE_NONE },
cff8d58a
L
6460 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
6461 BFD_RELOC_X86_64_TLSLD },
40fb9820 6462 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
6463 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
6464 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 6465 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
6466 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
6467 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 6468 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
6469 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
6470 _dummy_first_bfd_reloc_code_real },
40fb9820 6471 OPERAND_TYPE_NONE },
cff8d58a
L
6472 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
6473 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 6474 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
6475 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
6476 _dummy_first_bfd_reloc_code_real },
40fb9820 6477 OPERAND_TYPE_NONE },
cff8d58a
L
6478 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
6479 _dummy_first_bfd_reloc_code_real },
40fb9820 6480 OPERAND_TYPE_NONE },
cff8d58a
L
6481 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
6482 BFD_RELOC_X86_64_GOT32 },
40fb9820 6483 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
6484 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
6485 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 6486 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
6487 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
6488 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 6489 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
6490 };
6491 char *cp;
6492 unsigned int j;
6493
718ddfc0
JB
6494 if (!IS_ELF)
6495 return NULL;
6496
f3c180ae 6497 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 6498 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
6499 return NULL;
6500
47465058 6501 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 6502 {
cff8d58a 6503 int len = gotrel[j].len;
28f81592 6504 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 6505 {
4fa24527 6506 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 6507 {
28f81592
AM
6508 int first, second;
6509 char *tmpbuf, *past_reloc;
f3c180ae 6510
91d6fa6a 6511 *rel = gotrel[j].rel[object_64bit];
28f81592
AM
6512 if (adjust)
6513 *adjust = len;
f3c180ae 6514
3956db08
JB
6515 if (types)
6516 {
6517 if (flag_code != CODE_64BIT)
40fb9820
L
6518 {
6519 types->bitfield.imm32 = 1;
6520 types->bitfield.disp32 = 1;
6521 }
3956db08
JB
6522 else
6523 *types = gotrel[j].types64;
6524 }
6525
f3c180ae
AM
6526 if (GOT_symbol == NULL)
6527 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
6528
28f81592 6529 /* The length of the first part of our input line. */
f3c180ae 6530 first = cp - input_line_pointer;
28f81592
AM
6531
6532 /* The second part goes from after the reloc token until
67c11a9b 6533 (and including) an end_of_line char or comma. */
28f81592 6534 past_reloc = cp + 1 + len;
67c11a9b
AM
6535 cp = past_reloc;
6536 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
6537 ++cp;
6538 second = cp + 1 - past_reloc;
28f81592
AM
6539
6540 /* Allocate and copy string. The trailing NUL shouldn't
6541 be necessary, but be safe. */
1e9cc1c2 6542 tmpbuf = (char *) xmalloc (first + second + 2);
f3c180ae 6543 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
6544 if (second != 0 && *past_reloc != ' ')
6545 /* Replace the relocation token with ' ', so that
6546 errors like foo@GOTOFF1 will be detected. */
6547 tmpbuf[first++] = ' ';
6548 memcpy (tmpbuf + first, past_reloc, second);
6549 tmpbuf[first + second] = '\0';
f3c180ae
AM
6550 return tmpbuf;
6551 }
6552
4fa24527
JB
6553 as_bad (_("@%s reloc is not supported with %d-bit output format"),
6554 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
6555 return NULL;
6556 }
6557 }
6558
6559 /* Might be a symbol version string. Don't as_bad here. */
6560 return NULL;
6561}
6562
f3c180ae 6563void
e3bb37b5 6564x86_cons (expressionS *exp, int size)
f3c180ae 6565{
ee86248c
JB
6566 intel_syntax = -intel_syntax;
6567
3c7b9c2c 6568 exp->X_md = 0;
4fa24527 6569 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
6570 {
6571 /* Handle @GOTOFF and the like in an expression. */
6572 char *save;
6573 char *gotfree_input_line;
6574 int adjust;
6575
6576 save = input_line_pointer;
3956db08 6577 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
6578 if (gotfree_input_line)
6579 input_line_pointer = gotfree_input_line;
6580
6581 expression (exp);
6582
6583 if (gotfree_input_line)
6584 {
6585 /* expression () has merrily parsed up to the end of line,
6586 or a comma - in the wrong buffer. Transfer how far
6587 input_line_pointer has moved to the right buffer. */
6588 input_line_pointer = (save
6589 + (input_line_pointer - gotfree_input_line)
6590 + adjust);
6591 free (gotfree_input_line);
3992d3b7
AM
6592 if (exp->X_op == O_constant
6593 || exp->X_op == O_absent
6594 || exp->X_op == O_illegal
0398aac5 6595 || exp->X_op == O_register
3992d3b7
AM
6596 || exp->X_op == O_big)
6597 {
6598 char c = *input_line_pointer;
6599 *input_line_pointer = 0;
6600 as_bad (_("missing or invalid expression `%s'"), save);
6601 *input_line_pointer = c;
6602 }
f3c180ae
AM
6603 }
6604 }
6605 else
6606 expression (exp);
ee86248c
JB
6607
6608 intel_syntax = -intel_syntax;
6609
6610 if (intel_syntax)
6611 i386_intel_simplify (exp);
f3c180ae
AM
6612}
6613#endif
6614
9f32dd5b
L
6615static void
6616signed_cons (int size)
6482c264 6617{
d182319b
JB
6618 if (flag_code == CODE_64BIT)
6619 cons_sign = 1;
6620 cons (size);
6621 cons_sign = -1;
6482c264
NC
6622}
6623
d182319b 6624#ifdef TE_PE
6482c264
NC
6625static void
6626pe_directive_secrel (dummy)
6627 int dummy ATTRIBUTE_UNUSED;
6628{
6629 expressionS exp;
6630
6631 do
6632 {
6633 expression (&exp);
6634 if (exp.X_op == O_symbol)
6635 exp.X_op = O_secrel;
6636
6637 emit_expr (&exp, 4);
6638 }
6639 while (*input_line_pointer++ == ',');
6640
6641 input_line_pointer--;
6642 demand_empty_rest_of_line ();
6643}
6482c264
NC
6644#endif
6645
252b5132 6646static int
70e41ade 6647i386_immediate (char *imm_start)
252b5132
RH
6648{
6649 char *save_input_line_pointer;
f3c180ae 6650 char *gotfree_input_line;
252b5132 6651 segT exp_seg = 0;
47926f60 6652 expressionS *exp;
40fb9820
L
6653 i386_operand_type types;
6654
0dfbf9d7 6655 operand_type_set (&types, ~0);
252b5132
RH
6656
6657 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
6658 {
31b2323c
L
6659 as_bad (_("at most %d immediate operands are allowed"),
6660 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
6661 return 0;
6662 }
6663
6664 exp = &im_expressions[i.imm_operands++];
520dc8e8 6665 i.op[this_operand].imms = exp;
252b5132
RH
6666
6667 if (is_space_char (*imm_start))
6668 ++imm_start;
6669
6670 save_input_line_pointer = input_line_pointer;
6671 input_line_pointer = imm_start;
6672
3956db08 6673 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
6674 if (gotfree_input_line)
6675 input_line_pointer = gotfree_input_line;
252b5132
RH
6676
6677 exp_seg = expression (exp);
6678
83183c0c 6679 SKIP_WHITESPACE ();
252b5132 6680 if (*input_line_pointer)
f3c180ae 6681 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
6682
6683 input_line_pointer = save_input_line_pointer;
f3c180ae 6684 if (gotfree_input_line)
ee86248c
JB
6685 {
6686 free (gotfree_input_line);
6687
6688 if (exp->X_op == O_constant || exp->X_op == O_register)
6689 exp->X_op = O_illegal;
6690 }
6691
6692 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
6693}
252b5132 6694
ee86248c
JB
6695static int
6696i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
6697 i386_operand_type types, const char *imm_start)
6698{
6699 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 6700 {
313c53d1
L
6701 if (imm_start)
6702 as_bad (_("missing or invalid immediate expression `%s'"),
6703 imm_start);
3992d3b7 6704 return 0;
252b5132 6705 }
3e73aa7c 6706 else if (exp->X_op == O_constant)
252b5132 6707 {
47926f60 6708 /* Size it properly later. */
40fb9820 6709 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
6710 /* If not 64bit, sign extend val. */
6711 if (flag_code != CODE_64BIT
4eed87de
AM
6712 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
6713 exp->X_add_number
6714 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 6715 }
4c63da97 6716#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 6717 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 6718 && exp_seg != absolute_section
47926f60 6719 && exp_seg != text_section
24eab124
AM
6720 && exp_seg != data_section
6721 && exp_seg != bss_section
6722 && exp_seg != undefined_section
f86103b7 6723 && !bfd_is_com_section (exp_seg))
252b5132 6724 {
d0b47220 6725 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
6726 return 0;
6727 }
6728#endif
bb8f5920
L
6729 else if (!intel_syntax && exp->X_op == O_register)
6730 {
313c53d1
L
6731 if (imm_start)
6732 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
6733 return 0;
6734 }
252b5132
RH
6735 else
6736 {
6737 /* This is an address. The size of the address will be
24eab124 6738 determined later, depending on destination register,
3e73aa7c 6739 suffix, or the default for the section. */
40fb9820
L
6740 i.types[this_operand].bitfield.imm8 = 1;
6741 i.types[this_operand].bitfield.imm16 = 1;
6742 i.types[this_operand].bitfield.imm32 = 1;
6743 i.types[this_operand].bitfield.imm32s = 1;
6744 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
6745 i.types[this_operand] = operand_type_and (i.types[this_operand],
6746 types);
252b5132
RH
6747 }
6748
6749 return 1;
6750}
6751
551c1ca1 6752static char *
e3bb37b5 6753i386_scale (char *scale)
252b5132 6754{
551c1ca1
AM
6755 offsetT val;
6756 char *save = input_line_pointer;
252b5132 6757
551c1ca1
AM
6758 input_line_pointer = scale;
6759 val = get_absolute_expression ();
6760
6761 switch (val)
252b5132 6762 {
551c1ca1 6763 case 1:
252b5132
RH
6764 i.log2_scale_factor = 0;
6765 break;
551c1ca1 6766 case 2:
252b5132
RH
6767 i.log2_scale_factor = 1;
6768 break;
551c1ca1 6769 case 4:
252b5132
RH
6770 i.log2_scale_factor = 2;
6771 break;
551c1ca1 6772 case 8:
252b5132
RH
6773 i.log2_scale_factor = 3;
6774 break;
6775 default:
a724f0f4
JB
6776 {
6777 char sep = *input_line_pointer;
6778
6779 *input_line_pointer = '\0';
6780 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
6781 scale);
6782 *input_line_pointer = sep;
6783 input_line_pointer = save;
6784 return NULL;
6785 }
252b5132 6786 }
29b0f896 6787 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
6788 {
6789 as_warn (_("scale factor of %d without an index register"),
24eab124 6790 1 << i.log2_scale_factor);
252b5132 6791 i.log2_scale_factor = 0;
252b5132 6792 }
551c1ca1
AM
6793 scale = input_line_pointer;
6794 input_line_pointer = save;
6795 return scale;
252b5132
RH
6796}
6797
252b5132 6798static int
e3bb37b5 6799i386_displacement (char *disp_start, char *disp_end)
252b5132 6800{
29b0f896 6801 expressionS *exp;
252b5132
RH
6802 segT exp_seg = 0;
6803 char *save_input_line_pointer;
f3c180ae 6804 char *gotfree_input_line;
40fb9820
L
6805 int override;
6806 i386_operand_type bigdisp, types = anydisp;
3992d3b7 6807 int ret;
252b5132 6808
31b2323c
L
6809 if (i.disp_operands == MAX_MEMORY_OPERANDS)
6810 {
6811 as_bad (_("at most %d displacement operands are allowed"),
6812 MAX_MEMORY_OPERANDS);
6813 return 0;
6814 }
6815
0dfbf9d7 6816 operand_type_set (&bigdisp, 0);
40fb9820
L
6817 if ((i.types[this_operand].bitfield.jumpabsolute)
6818 || (!current_templates->start->opcode_modifier.jump
6819 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 6820 {
40fb9820 6821 bigdisp.bitfield.disp32 = 1;
e05278af 6822 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
6823 if (flag_code == CODE_64BIT)
6824 {
6825 if (!override)
6826 {
6827 bigdisp.bitfield.disp32s = 1;
6828 bigdisp.bitfield.disp64 = 1;
6829 }
6830 }
6831 else if ((flag_code == CODE_16BIT) ^ override)
6832 {
6833 bigdisp.bitfield.disp32 = 0;
6834 bigdisp.bitfield.disp16 = 1;
6835 }
e05278af
JB
6836 }
6837 else
6838 {
6839 /* For PC-relative branches, the width of the displacement
6840 is dependent upon data size, not address size. */
e05278af 6841 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
6842 if (flag_code == CODE_64BIT)
6843 {
6844 if (override || i.suffix == WORD_MNEM_SUFFIX)
6845 bigdisp.bitfield.disp16 = 1;
6846 else
6847 {
6848 bigdisp.bitfield.disp32 = 1;
6849 bigdisp.bitfield.disp32s = 1;
6850 }
6851 }
6852 else
e05278af
JB
6853 {
6854 if (!override)
6855 override = (i.suffix == (flag_code != CODE_16BIT
6856 ? WORD_MNEM_SUFFIX
6857 : LONG_MNEM_SUFFIX));
40fb9820
L
6858 bigdisp.bitfield.disp32 = 1;
6859 if ((flag_code == CODE_16BIT) ^ override)
6860 {
6861 bigdisp.bitfield.disp32 = 0;
6862 bigdisp.bitfield.disp16 = 1;
6863 }
e05278af 6864 }
e05278af 6865 }
c6fb90c8
L
6866 i.types[this_operand] = operand_type_or (i.types[this_operand],
6867 bigdisp);
252b5132
RH
6868
6869 exp = &disp_expressions[i.disp_operands];
520dc8e8 6870 i.op[this_operand].disps = exp;
252b5132
RH
6871 i.disp_operands++;
6872 save_input_line_pointer = input_line_pointer;
6873 input_line_pointer = disp_start;
6874 END_STRING_AND_SAVE (disp_end);
6875
6876#ifndef GCC_ASM_O_HACK
6877#define GCC_ASM_O_HACK 0
6878#endif
6879#if GCC_ASM_O_HACK
6880 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 6881 if (i.types[this_operand].bitfield.baseIndex
24eab124 6882 && displacement_string_end[-1] == '+')
252b5132
RH
6883 {
6884 /* This hack is to avoid a warning when using the "o"
24eab124
AM
6885 constraint within gcc asm statements.
6886 For instance:
6887
6888 #define _set_tssldt_desc(n,addr,limit,type) \
6889 __asm__ __volatile__ ( \
6890 "movw %w2,%0\n\t" \
6891 "movw %w1,2+%0\n\t" \
6892 "rorl $16,%1\n\t" \
6893 "movb %b1,4+%0\n\t" \
6894 "movb %4,5+%0\n\t" \
6895 "movb $0,6+%0\n\t" \
6896 "movb %h1,7+%0\n\t" \
6897 "rorl $16,%1" \
6898 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
6899
6900 This works great except that the output assembler ends
6901 up looking a bit weird if it turns out that there is
6902 no offset. You end up producing code that looks like:
6903
6904 #APP
6905 movw $235,(%eax)
6906 movw %dx,2+(%eax)
6907 rorl $16,%edx
6908 movb %dl,4+(%eax)
6909 movb $137,5+(%eax)
6910 movb $0,6+(%eax)
6911 movb %dh,7+(%eax)
6912 rorl $16,%edx
6913 #NO_APP
6914
47926f60 6915 So here we provide the missing zero. */
24eab124
AM
6916
6917 *displacement_string_end = '0';
252b5132
RH
6918 }
6919#endif
3956db08 6920 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
6921 if (gotfree_input_line)
6922 input_line_pointer = gotfree_input_line;
252b5132 6923
24eab124 6924 exp_seg = expression (exp);
252b5132 6925
636c26b0
AM
6926 SKIP_WHITESPACE ();
6927 if (*input_line_pointer)
6928 as_bad (_("junk `%s' after expression"), input_line_pointer);
6929#if GCC_ASM_O_HACK
6930 RESTORE_END_STRING (disp_end + 1);
6931#endif
636c26b0 6932 input_line_pointer = save_input_line_pointer;
636c26b0 6933 if (gotfree_input_line)
ee86248c
JB
6934 {
6935 free (gotfree_input_line);
6936
6937 if (exp->X_op == O_constant || exp->X_op == O_register)
6938 exp->X_op = O_illegal;
6939 }
6940
6941 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
6942
6943 RESTORE_END_STRING (disp_end);
6944
6945 return ret;
6946}
6947
6948static int
6949i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
6950 i386_operand_type types, const char *disp_start)
6951{
6952 i386_operand_type bigdisp;
6953 int ret = 1;
636c26b0 6954
24eab124
AM
6955 /* We do this to make sure that the section symbol is in
6956 the symbol table. We will ultimately change the relocation
47926f60 6957 to be relative to the beginning of the section. */
1ae12ab7 6958 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
6959 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
6960 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 6961 {
636c26b0 6962 if (exp->X_op != O_symbol)
3992d3b7 6963 goto inv_disp;
636c26b0 6964
e5cb08ac 6965 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
6966 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
6967 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 6968 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
6969 exp->X_op = O_subtract;
6970 exp->X_op_symbol = GOT_symbol;
1ae12ab7 6971 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 6972 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
6973 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
6974 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 6975 else
29b0f896 6976 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 6977 }
252b5132 6978
3992d3b7
AM
6979 else if (exp->X_op == O_absent
6980 || exp->X_op == O_illegal
ee86248c 6981 || exp->X_op == O_big)
2daf4fd8 6982 {
3992d3b7
AM
6983 inv_disp:
6984 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 6985 disp_start);
3992d3b7 6986 ret = 0;
2daf4fd8
AM
6987 }
6988
0e1147d9
L
6989 else if (flag_code == CODE_64BIT
6990 && !i.prefix[ADDR_PREFIX]
6991 && exp->X_op == O_constant)
6992 {
6993 /* Since displacement is signed extended to 64bit, don't allow
6994 disp32 and turn off disp32s if they are out of range. */
6995 i.types[this_operand].bitfield.disp32 = 0;
6996 if (!fits_in_signed_long (exp->X_add_number))
6997 {
6998 i.types[this_operand].bitfield.disp32s = 0;
6999 if (i.types[this_operand].bitfield.baseindex)
7000 {
7001 as_bad (_("0x%lx out range of signed 32bit displacement"),
7002 (long) exp->X_add_number);
7003 ret = 0;
7004 }
7005 }
7006 }
7007
4c63da97 7008#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
7009 else if (exp->X_op != O_constant
7010 && OUTPUT_FLAVOR == bfd_target_aout_flavour
7011 && exp_seg != absolute_section
7012 && exp_seg != text_section
7013 && exp_seg != data_section
7014 && exp_seg != bss_section
7015 && exp_seg != undefined_section
7016 && !bfd_is_com_section (exp_seg))
24eab124 7017 {
d0b47220 7018 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 7019 ret = 0;
24eab124 7020 }
252b5132 7021#endif
3956db08 7022
40fb9820
L
7023 /* Check if this is a displacement only operand. */
7024 bigdisp = i.types[this_operand];
7025 bigdisp.bitfield.disp8 = 0;
7026 bigdisp.bitfield.disp16 = 0;
7027 bigdisp.bitfield.disp32 = 0;
7028 bigdisp.bitfield.disp32s = 0;
7029 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 7030 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
7031 i.types[this_operand] = operand_type_and (i.types[this_operand],
7032 types);
3956db08 7033
3992d3b7 7034 return ret;
252b5132
RH
7035}
7036
eecb386c 7037/* Make sure the memory operand we've been dealt is valid.
47926f60
KH
7038 Return 1 on success, 0 on a failure. */
7039
252b5132 7040static int
e3bb37b5 7041i386_index_check (const char *operand_string)
252b5132 7042{
3e73aa7c 7043 int ok;
fc0763e6 7044 const char *kind = "base/index";
24eab124 7045#if INFER_ADDR_PREFIX
eecb386c
AM
7046 int fudged = 0;
7047
24eab124
AM
7048 tryprefix:
7049#endif
3e73aa7c 7050 ok = 1;
fc0763e6
JB
7051 if (current_templates->start->opcode_modifier.isstring
7052 && !current_templates->start->opcode_modifier.immext
7053 && (current_templates->end[-1].opcode_modifier.isstring
7054 || i.mem_operands))
7055 {
7056 /* Memory operands of string insns are special in that they only allow
7057 a single register (rDI, rSI, or rBX) as their memory address. */
7058 unsigned int expected;
7059
7060 kind = "string address";
7061
7062 if (current_templates->start->opcode_modifier.w)
7063 {
7064 i386_operand_type type = current_templates->end[-1].operand_types[0];
7065
7066 if (!type.bitfield.baseindex
7067 || ((!i.mem_operands != !intel_syntax)
7068 && current_templates->end[-1].operand_types[1]
7069 .bitfield.baseindex))
7070 type = current_templates->end[-1].operand_types[1];
7071 expected = type.bitfield.esseg ? 7 /* rDI */ : 6 /* rSI */;
7072 }
7073 else
7074 expected = 3 /* rBX */;
7075
7076 if (!i.base_reg || i.index_reg
7077 || operand_type_check (i.types[this_operand], disp))
7078 ok = -1;
7079 else if (!(flag_code == CODE_64BIT
7080 ? i.prefix[ADDR_PREFIX]
7081 ? i.base_reg->reg_type.bitfield.reg32
7082 : i.base_reg->reg_type.bitfield.reg64
7083 : (flag_code == CODE_16BIT) ^ !i.prefix[ADDR_PREFIX]
7084 ? i.base_reg->reg_type.bitfield.reg32
7085 : i.base_reg->reg_type.bitfield.reg16))
7086 ok = 0;
7087 else if (i.base_reg->reg_num != expected)
7088 ok = -1;
7089
7090 if (ok < 0)
7091 {
7092 unsigned int j;
7093
7094 for (j = 0; j < i386_regtab_size; ++j)
7095 if ((flag_code == CODE_64BIT
7096 ? i.prefix[ADDR_PREFIX]
7097 ? i386_regtab[j].reg_type.bitfield.reg32
7098 : i386_regtab[j].reg_type.bitfield.reg64
7099 : (flag_code == CODE_16BIT) ^ !i.prefix[ADDR_PREFIX]
7100 ? i386_regtab[j].reg_type.bitfield.reg32
7101 : i386_regtab[j].reg_type.bitfield.reg16)
7102 && i386_regtab[j].reg_num == expected)
7103 break;
9c2799c2 7104 gas_assert (j < i386_regtab_size);
fc0763e6
JB
7105 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
7106 operand_string,
7107 intel_syntax ? '[' : '(',
7108 register_prefix,
7109 i386_regtab[j].reg_name,
7110 intel_syntax ? ']' : ')');
7111 ok = 1;
7112 }
7113 }
7114 else if (flag_code == CODE_64BIT)
64e74474 7115 {
64e74474 7116 if ((i.base_reg
40fb9820
L
7117 && ((i.prefix[ADDR_PREFIX] == 0
7118 && !i.base_reg->reg_type.bitfield.reg64)
7119 || (i.prefix[ADDR_PREFIX]
7120 && !i.base_reg->reg_type.bitfield.reg32))
7121 && (i.index_reg
9a04903e
JB
7122 || i.base_reg->reg_num !=
7123 (i.prefix[ADDR_PREFIX] == 0 ? RegRip : RegEip)))
64e74474 7124 || (i.index_reg
40fb9820
L
7125 && (!i.index_reg->reg_type.bitfield.baseindex
7126 || (i.prefix[ADDR_PREFIX] == 0
db51cc60
L
7127 && i.index_reg->reg_num != RegRiz
7128 && !i.index_reg->reg_type.bitfield.reg64
7129 )
40fb9820 7130 || (i.prefix[ADDR_PREFIX]
db51cc60 7131 && i.index_reg->reg_num != RegEiz
40fb9820 7132 && !i.index_reg->reg_type.bitfield.reg32))))
64e74474 7133 ok = 0;
3e73aa7c
JH
7134 }
7135 else
7136 {
7137 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
7138 {
7139 /* 16bit checks. */
7140 if ((i.base_reg
40fb9820
L
7141 && (!i.base_reg->reg_type.bitfield.reg16
7142 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 7143 || (i.index_reg
40fb9820
L
7144 && (!i.index_reg->reg_type.bitfield.reg16
7145 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
7146 || !(i.base_reg
7147 && i.base_reg->reg_num < 6
7148 && i.index_reg->reg_num >= 6
7149 && i.log2_scale_factor == 0))))
3e73aa7c
JH
7150 ok = 0;
7151 }
7152 else
e5cb08ac 7153 {
3e73aa7c
JH
7154 /* 32bit checks. */
7155 if ((i.base_reg
40fb9820 7156 && !i.base_reg->reg_type.bitfield.reg32)
3e73aa7c 7157 || (i.index_reg
db51cc60
L
7158 && ((!i.index_reg->reg_type.bitfield.reg32
7159 && i.index_reg->reg_num != RegEiz)
40fb9820 7160 || !i.index_reg->reg_type.bitfield.baseindex)))
e5cb08ac 7161 ok = 0;
3e73aa7c
JH
7162 }
7163 }
7164 if (!ok)
24eab124
AM
7165 {
7166#if INFER_ADDR_PREFIX
fc0763e6 7167 if (!i.mem_operands && !i.prefix[ADDR_PREFIX])
24eab124
AM
7168 {
7169 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
7170 i.prefixes += 1;
b23bac36
AM
7171 /* Change the size of any displacement too. At most one of
7172 Disp16 or Disp32 is set.
7173 FIXME. There doesn't seem to be any real need for separate
7174 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
47926f60 7175 Removing them would probably clean up the code quite a lot. */
4eed87de 7176 if (flag_code != CODE_64BIT
40fb9820
L
7177 && (i.types[this_operand].bitfield.disp16
7178 || i.types[this_operand].bitfield.disp32))
7179 i.types[this_operand]
c6fb90c8 7180 = operand_type_xor (i.types[this_operand], disp16_32);
eecb386c 7181 fudged = 1;
24eab124
AM
7182 goto tryprefix;
7183 }
eecb386c 7184 if (fudged)
fc0763e6
JB
7185 as_bad (_("`%s' is not a valid %s expression"),
7186 operand_string,
7187 kind);
eecb386c 7188 else
c388dee8 7189#endif
fc0763e6 7190 as_bad (_("`%s' is not a valid %s-bit %s expression"),
eecb386c 7191 operand_string,
fc0763e6
JB
7192 flag_code_names[i.prefix[ADDR_PREFIX]
7193 ? flag_code == CODE_32BIT
7194 ? CODE_16BIT
7195 : CODE_32BIT
7196 : flag_code],
7197 kind);
24eab124 7198 }
20f0a1fc 7199 return ok;
24eab124 7200}
252b5132 7201
fc0763e6 7202/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 7203 on error. */
252b5132 7204
252b5132 7205static int
a7619375 7206i386_att_operand (char *operand_string)
252b5132 7207{
af6bdddf
AM
7208 const reg_entry *r;
7209 char *end_op;
24eab124 7210 char *op_string = operand_string;
252b5132 7211
24eab124 7212 if (is_space_char (*op_string))
252b5132
RH
7213 ++op_string;
7214
24eab124 7215 /* We check for an absolute prefix (differentiating,
47926f60 7216 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
7217 if (*op_string == ABSOLUTE_PREFIX)
7218 {
7219 ++op_string;
7220 if (is_space_char (*op_string))
7221 ++op_string;
40fb9820 7222 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 7223 }
252b5132 7224
47926f60 7225 /* Check if operand is a register. */
4d1bb795 7226 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 7227 {
40fb9820
L
7228 i386_operand_type temp;
7229
24eab124
AM
7230 /* Check for a segment override by searching for ':' after a
7231 segment register. */
7232 op_string = end_op;
7233 if (is_space_char (*op_string))
7234 ++op_string;
40fb9820
L
7235 if (*op_string == ':'
7236 && (r->reg_type.bitfield.sreg2
7237 || r->reg_type.bitfield.sreg3))
24eab124
AM
7238 {
7239 switch (r->reg_num)
7240 {
7241 case 0:
7242 i.seg[i.mem_operands] = &es;
7243 break;
7244 case 1:
7245 i.seg[i.mem_operands] = &cs;
7246 break;
7247 case 2:
7248 i.seg[i.mem_operands] = &ss;
7249 break;
7250 case 3:
7251 i.seg[i.mem_operands] = &ds;
7252 break;
7253 case 4:
7254 i.seg[i.mem_operands] = &fs;
7255 break;
7256 case 5:
7257 i.seg[i.mem_operands] = &gs;
7258 break;
7259 }
252b5132 7260
24eab124 7261 /* Skip the ':' and whitespace. */
252b5132
RH
7262 ++op_string;
7263 if (is_space_char (*op_string))
24eab124 7264 ++op_string;
252b5132 7265
24eab124
AM
7266 if (!is_digit_char (*op_string)
7267 && !is_identifier_char (*op_string)
7268 && *op_string != '('
7269 && *op_string != ABSOLUTE_PREFIX)
7270 {
7271 as_bad (_("bad memory operand `%s'"), op_string);
7272 return 0;
7273 }
47926f60 7274 /* Handle case of %es:*foo. */
24eab124
AM
7275 if (*op_string == ABSOLUTE_PREFIX)
7276 {
7277 ++op_string;
7278 if (is_space_char (*op_string))
7279 ++op_string;
40fb9820 7280 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
7281 }
7282 goto do_memory_reference;
7283 }
7284 if (*op_string)
7285 {
d0b47220 7286 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
7287 return 0;
7288 }
40fb9820
L
7289 temp = r->reg_type;
7290 temp.bitfield.baseindex = 0;
c6fb90c8
L
7291 i.types[this_operand] = operand_type_or (i.types[this_operand],
7292 temp);
7d5e4556 7293 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 7294 i.op[this_operand].regs = r;
24eab124
AM
7295 i.reg_operands++;
7296 }
af6bdddf
AM
7297 else if (*op_string == REGISTER_PREFIX)
7298 {
7299 as_bad (_("bad register name `%s'"), op_string);
7300 return 0;
7301 }
24eab124 7302 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 7303 {
24eab124 7304 ++op_string;
40fb9820 7305 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 7306 {
d0b47220 7307 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
7308 return 0;
7309 }
7310 if (!i386_immediate (op_string))
7311 return 0;
7312 }
7313 else if (is_digit_char (*op_string)
7314 || is_identifier_char (*op_string)
e5cb08ac 7315 || *op_string == '(')
24eab124 7316 {
47926f60 7317 /* This is a memory reference of some sort. */
af6bdddf 7318 char *base_string;
252b5132 7319
47926f60 7320 /* Start and end of displacement string expression (if found). */
eecb386c
AM
7321 char *displacement_string_start;
7322 char *displacement_string_end;
252b5132 7323
24eab124 7324 do_memory_reference:
24eab124 7325 if ((i.mem_operands == 1
40fb9820 7326 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
7327 || i.mem_operands == 2)
7328 {
7329 as_bad (_("too many memory references for `%s'"),
7330 current_templates->start->name);
7331 return 0;
7332 }
252b5132 7333
24eab124
AM
7334 /* Check for base index form. We detect the base index form by
7335 looking for an ')' at the end of the operand, searching
7336 for the '(' matching it, and finding a REGISTER_PREFIX or ','
7337 after the '('. */
af6bdddf 7338 base_string = op_string + strlen (op_string);
c3332e24 7339
af6bdddf
AM
7340 --base_string;
7341 if (is_space_char (*base_string))
7342 --base_string;
252b5132 7343
47926f60 7344 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
7345 displacement_string_start = op_string;
7346 displacement_string_end = base_string + 1;
252b5132 7347
24eab124
AM
7348 if (*base_string == ')')
7349 {
af6bdddf 7350 char *temp_string;
24eab124
AM
7351 unsigned int parens_balanced = 1;
7352 /* We've already checked that the number of left & right ()'s are
47926f60 7353 equal, so this loop will not be infinite. */
24eab124
AM
7354 do
7355 {
7356 base_string--;
7357 if (*base_string == ')')
7358 parens_balanced++;
7359 if (*base_string == '(')
7360 parens_balanced--;
7361 }
7362 while (parens_balanced);
c3332e24 7363
af6bdddf 7364 temp_string = base_string;
c3332e24 7365
24eab124 7366 /* Skip past '(' and whitespace. */
252b5132
RH
7367 ++base_string;
7368 if (is_space_char (*base_string))
24eab124 7369 ++base_string;
252b5132 7370
af6bdddf 7371 if (*base_string == ','
4eed87de
AM
7372 || ((i.base_reg = parse_register (base_string, &end_op))
7373 != NULL))
252b5132 7374 {
af6bdddf 7375 displacement_string_end = temp_string;
252b5132 7376
40fb9820 7377 i.types[this_operand].bitfield.baseindex = 1;
252b5132 7378
af6bdddf 7379 if (i.base_reg)
24eab124 7380 {
24eab124
AM
7381 base_string = end_op;
7382 if (is_space_char (*base_string))
7383 ++base_string;
af6bdddf
AM
7384 }
7385
7386 /* There may be an index reg or scale factor here. */
7387 if (*base_string == ',')
7388 {
7389 ++base_string;
7390 if (is_space_char (*base_string))
7391 ++base_string;
7392
4eed87de
AM
7393 if ((i.index_reg = parse_register (base_string, &end_op))
7394 != NULL)
24eab124 7395 {
af6bdddf 7396 base_string = end_op;
24eab124
AM
7397 if (is_space_char (*base_string))
7398 ++base_string;
af6bdddf
AM
7399 if (*base_string == ',')
7400 {
7401 ++base_string;
7402 if (is_space_char (*base_string))
7403 ++base_string;
7404 }
e5cb08ac 7405 else if (*base_string != ')')
af6bdddf 7406 {
4eed87de
AM
7407 as_bad (_("expecting `,' or `)' "
7408 "after index register in `%s'"),
af6bdddf
AM
7409 operand_string);
7410 return 0;
7411 }
24eab124 7412 }
af6bdddf 7413 else if (*base_string == REGISTER_PREFIX)
24eab124 7414 {
af6bdddf 7415 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
7416 return 0;
7417 }
252b5132 7418
47926f60 7419 /* Check for scale factor. */
551c1ca1 7420 if (*base_string != ')')
af6bdddf 7421 {
551c1ca1
AM
7422 char *end_scale = i386_scale (base_string);
7423
7424 if (!end_scale)
af6bdddf 7425 return 0;
24eab124 7426
551c1ca1 7427 base_string = end_scale;
af6bdddf
AM
7428 if (is_space_char (*base_string))
7429 ++base_string;
7430 if (*base_string != ')')
7431 {
4eed87de
AM
7432 as_bad (_("expecting `)' "
7433 "after scale factor in `%s'"),
af6bdddf
AM
7434 operand_string);
7435 return 0;
7436 }
7437 }
7438 else if (!i.index_reg)
24eab124 7439 {
4eed87de
AM
7440 as_bad (_("expecting index register or scale factor "
7441 "after `,'; got '%c'"),
af6bdddf 7442 *base_string);
24eab124
AM
7443 return 0;
7444 }
7445 }
af6bdddf 7446 else if (*base_string != ')')
24eab124 7447 {
4eed87de
AM
7448 as_bad (_("expecting `,' or `)' "
7449 "after base register in `%s'"),
af6bdddf 7450 operand_string);
24eab124
AM
7451 return 0;
7452 }
c3332e24 7453 }
af6bdddf 7454 else if (*base_string == REGISTER_PREFIX)
c3332e24 7455 {
af6bdddf 7456 as_bad (_("bad register name `%s'"), base_string);
24eab124 7457 return 0;
c3332e24 7458 }
24eab124
AM
7459 }
7460
7461 /* If there's an expression beginning the operand, parse it,
7462 assuming displacement_string_start and
7463 displacement_string_end are meaningful. */
7464 if (displacement_string_start != displacement_string_end)
7465 {
7466 if (!i386_displacement (displacement_string_start,
7467 displacement_string_end))
7468 return 0;
7469 }
7470
7471 /* Special case for (%dx) while doing input/output op. */
7472 if (i.base_reg
0dfbf9d7
L
7473 && operand_type_equal (&i.base_reg->reg_type,
7474 &reg16_inoutportreg)
24eab124
AM
7475 && i.index_reg == 0
7476 && i.log2_scale_factor == 0
7477 && i.seg[i.mem_operands] == 0
40fb9820 7478 && !operand_type_check (i.types[this_operand], disp))
24eab124 7479 {
65da13b5 7480 i.types[this_operand] = inoutportreg;
24eab124
AM
7481 return 1;
7482 }
7483
eecb386c
AM
7484 if (i386_index_check (operand_string) == 0)
7485 return 0;
5c07affc 7486 i.types[this_operand].bitfield.mem = 1;
24eab124
AM
7487 i.mem_operands++;
7488 }
7489 else
ce8a8b2f
AM
7490 {
7491 /* It's not a memory operand; argh! */
24eab124
AM
7492 as_bad (_("invalid char %s beginning operand %d `%s'"),
7493 output_invalid (*op_string),
7494 this_operand + 1,
7495 op_string);
7496 return 0;
7497 }
47926f60 7498 return 1; /* Normal return. */
252b5132
RH
7499}
7500\f
ee7fcc42
AM
7501/* md_estimate_size_before_relax()
7502
7503 Called just before relax() for rs_machine_dependent frags. The x86
7504 assembler uses these frags to handle variable size jump
7505 instructions.
7506
7507 Any symbol that is now undefined will not become defined.
7508 Return the correct fr_subtype in the frag.
7509 Return the initial "guess for variable size of frag" to caller.
7510 The guess is actually the growth beyond the fixed part. Whatever
7511 we do to grow the fixed or variable part contributes to our
7512 returned value. */
7513
252b5132
RH
7514int
7515md_estimate_size_before_relax (fragP, segment)
29b0f896
AM
7516 fragS *fragP;
7517 segT segment;
252b5132 7518{
252b5132 7519 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
7520 check for un-relaxable symbols. On an ELF system, we can't relax
7521 an externally visible symbol, because it may be overridden by a
7522 shared library. */
7523 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 7524#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 7525 || (IS_ELF
31312f95 7526 && (S_IS_EXTERNAL (fragP->fr_symbol)
915bcca5
L
7527 || S_IS_WEAK (fragP->fr_symbol)
7528 || ((symbol_get_bfdsym (fragP->fr_symbol)->flags
7529 & BSF_GNU_INDIRECT_FUNCTION))))
fbeb56a4
DK
7530#endif
7531#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 7532 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 7533 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
7534#endif
7535 )
252b5132 7536 {
b98ef147
AM
7537 /* Symbol is undefined in this segment, or we need to keep a
7538 reloc so that weak symbols can be overridden. */
7539 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 7540 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
7541 unsigned char *opcode;
7542 int old_fr_fix;
f6af82bd 7543
ee7fcc42 7544 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 7545 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 7546 else if (size == 2)
f6af82bd
AM
7547 reloc_type = BFD_RELOC_16_PCREL;
7548 else
7549 reloc_type = BFD_RELOC_32_PCREL;
252b5132 7550
ee7fcc42
AM
7551 old_fr_fix = fragP->fr_fix;
7552 opcode = (unsigned char *) fragP->fr_opcode;
7553
fddf5b5b 7554 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 7555 {
fddf5b5b
AM
7556 case UNCOND_JUMP:
7557 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 7558 opcode[0] = 0xe9;
252b5132 7559 fragP->fr_fix += size;
062cd5e7
AS
7560 fix_new (fragP, old_fr_fix, size,
7561 fragP->fr_symbol,
7562 fragP->fr_offset, 1,
7563 reloc_type);
252b5132
RH
7564 break;
7565
fddf5b5b 7566 case COND_JUMP86:
412167cb
AM
7567 if (size == 2
7568 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
7569 {
7570 /* Negate the condition, and branch past an
7571 unconditional jump. */
7572 opcode[0] ^= 1;
7573 opcode[1] = 3;
7574 /* Insert an unconditional jump. */
7575 opcode[2] = 0xe9;
7576 /* We added two extra opcode bytes, and have a two byte
7577 offset. */
7578 fragP->fr_fix += 2 + 2;
062cd5e7
AS
7579 fix_new (fragP, old_fr_fix + 2, 2,
7580 fragP->fr_symbol,
7581 fragP->fr_offset, 1,
7582 reloc_type);
fddf5b5b
AM
7583 break;
7584 }
7585 /* Fall through. */
7586
7587 case COND_JUMP:
412167cb
AM
7588 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
7589 {
3e02c1cc
AM
7590 fixS *fixP;
7591
412167cb 7592 fragP->fr_fix += 1;
3e02c1cc
AM
7593 fixP = fix_new (fragP, old_fr_fix, 1,
7594 fragP->fr_symbol,
7595 fragP->fr_offset, 1,
7596 BFD_RELOC_8_PCREL);
7597 fixP->fx_signed = 1;
412167cb
AM
7598 break;
7599 }
93c2a809 7600
24eab124 7601 /* This changes the byte-displacement jump 0x7N
fddf5b5b 7602 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 7603 opcode[1] = opcode[0] + 0x10;
f6af82bd 7604 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
7605 /* We've added an opcode byte. */
7606 fragP->fr_fix += 1 + size;
062cd5e7
AS
7607 fix_new (fragP, old_fr_fix + 1, size,
7608 fragP->fr_symbol,
7609 fragP->fr_offset, 1,
7610 reloc_type);
252b5132 7611 break;
fddf5b5b
AM
7612
7613 default:
7614 BAD_CASE (fragP->fr_subtype);
7615 break;
252b5132
RH
7616 }
7617 frag_wane (fragP);
ee7fcc42 7618 return fragP->fr_fix - old_fr_fix;
252b5132 7619 }
93c2a809 7620
93c2a809
AM
7621 /* Guess size depending on current relax state. Initially the relax
7622 state will correspond to a short jump and we return 1, because
7623 the variable part of the frag (the branch offset) is one byte
7624 long. However, we can relax a section more than once and in that
7625 case we must either set fr_subtype back to the unrelaxed state,
7626 or return the value for the appropriate branch. */
7627 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
7628}
7629
47926f60
KH
7630/* Called after relax() is finished.
7631
7632 In: Address of frag.
7633 fr_type == rs_machine_dependent.
7634 fr_subtype is what the address relaxed to.
7635
7636 Out: Any fixSs and constants are set up.
7637 Caller will turn frag into a ".space 0". */
7638
252b5132
RH
7639void
7640md_convert_frag (abfd, sec, fragP)
ab9da554
ILT
7641 bfd *abfd ATTRIBUTE_UNUSED;
7642 segT sec ATTRIBUTE_UNUSED;
29b0f896 7643 fragS *fragP;
252b5132 7644{
29b0f896 7645 unsigned char *opcode;
252b5132 7646 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
7647 offsetT target_address;
7648 offsetT opcode_address;
252b5132 7649 unsigned int extension = 0;
847f7ad4 7650 offsetT displacement_from_opcode_start;
252b5132
RH
7651
7652 opcode = (unsigned char *) fragP->fr_opcode;
7653
47926f60 7654 /* Address we want to reach in file space. */
252b5132 7655 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 7656
47926f60 7657 /* Address opcode resides at in file space. */
252b5132
RH
7658 opcode_address = fragP->fr_address + fragP->fr_fix;
7659
47926f60 7660 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
7661 displacement_from_opcode_start = target_address - opcode_address;
7662
fddf5b5b 7663 if ((fragP->fr_subtype & BIG) == 0)
252b5132 7664 {
47926f60
KH
7665 /* Don't have to change opcode. */
7666 extension = 1; /* 1 opcode + 1 displacement */
252b5132 7667 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
7668 }
7669 else
7670 {
7671 if (no_cond_jump_promotion
7672 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
7673 as_warn_where (fragP->fr_file, fragP->fr_line,
7674 _("long jump required"));
252b5132 7675
fddf5b5b
AM
7676 switch (fragP->fr_subtype)
7677 {
7678 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
7679 extension = 4; /* 1 opcode + 4 displacement */
7680 opcode[0] = 0xe9;
7681 where_to_put_displacement = &opcode[1];
7682 break;
252b5132 7683
fddf5b5b
AM
7684 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
7685 extension = 2; /* 1 opcode + 2 displacement */
7686 opcode[0] = 0xe9;
7687 where_to_put_displacement = &opcode[1];
7688 break;
252b5132 7689
fddf5b5b
AM
7690 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
7691 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
7692 extension = 5; /* 2 opcode + 4 displacement */
7693 opcode[1] = opcode[0] + 0x10;
7694 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
7695 where_to_put_displacement = &opcode[2];
7696 break;
252b5132 7697
fddf5b5b
AM
7698 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
7699 extension = 3; /* 2 opcode + 2 displacement */
7700 opcode[1] = opcode[0] + 0x10;
7701 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
7702 where_to_put_displacement = &opcode[2];
7703 break;
252b5132 7704
fddf5b5b
AM
7705 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
7706 extension = 4;
7707 opcode[0] ^= 1;
7708 opcode[1] = 3;
7709 opcode[2] = 0xe9;
7710 where_to_put_displacement = &opcode[3];
7711 break;
7712
7713 default:
7714 BAD_CASE (fragP->fr_subtype);
7715 break;
7716 }
252b5132 7717 }
fddf5b5b 7718
7b81dfbb
AJ
7719 /* If size if less then four we are sure that the operand fits,
7720 but if it's 4, then it could be that the displacement is larger
7721 then -/+ 2GB. */
7722 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
7723 && object_64bit
7724 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
7725 + ((addressT) 1 << 31))
7726 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
7727 {
7728 as_bad_where (fragP->fr_file, fragP->fr_line,
7729 _("jump target out of range"));
7730 /* Make us emit 0. */
7731 displacement_from_opcode_start = extension;
7732 }
47926f60 7733 /* Now put displacement after opcode. */
252b5132
RH
7734 md_number_to_chars ((char *) where_to_put_displacement,
7735 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 7736 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
7737 fragP->fr_fix += extension;
7738}
7739\f
252b5132
RH
7740/* Apply a fixup (fixS) to segment data, once it has been determined
7741 by our caller that we have all the info we need to fix it up.
7742
7743 On the 386, immediates, displacements, and data pointers are all in
7744 the same (little-endian) format, so we don't need to care about which
7745 we are handling. */
7746
94f592af 7747void
55cf6793 7748md_apply_fix (fixP, valP, seg)
47926f60
KH
7749 /* The fix we're to put in. */
7750 fixS *fixP;
47926f60 7751 /* Pointer to the value of the bits. */
c6682705 7752 valueT *valP;
47926f60
KH
7753 /* Segment fix is from. */
7754 segT seg ATTRIBUTE_UNUSED;
252b5132 7755{
94f592af 7756 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 7757 valueT value = *valP;
252b5132 7758
f86103b7 7759#if !defined (TE_Mach)
93382f6d
AM
7760 if (fixP->fx_pcrel)
7761 {
7762 switch (fixP->fx_r_type)
7763 {
5865bb77
ILT
7764 default:
7765 break;
7766
d6ab8113
JB
7767 case BFD_RELOC_64:
7768 fixP->fx_r_type = BFD_RELOC_64_PCREL;
7769 break;
93382f6d 7770 case BFD_RELOC_32:
ae8887b5 7771 case BFD_RELOC_X86_64_32S:
93382f6d
AM
7772 fixP->fx_r_type = BFD_RELOC_32_PCREL;
7773 break;
7774 case BFD_RELOC_16:
7775 fixP->fx_r_type = BFD_RELOC_16_PCREL;
7776 break;
7777 case BFD_RELOC_8:
7778 fixP->fx_r_type = BFD_RELOC_8_PCREL;
7779 break;
7780 }
7781 }
252b5132 7782
a161fe53 7783 if (fixP->fx_addsy != NULL
31312f95 7784 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 7785 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95
AM
7786 || fixP->fx_r_type == BFD_RELOC_16_PCREL
7787 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
7788 && !use_rela_relocations)
252b5132 7789 {
31312f95
AM
7790 /* This is a hack. There should be a better way to handle this.
7791 This covers for the fact that bfd_install_relocation will
7792 subtract the current location (for partial_inplace, PC relative
7793 relocations); see more below. */
252b5132 7794#ifndef OBJ_AOUT
718ddfc0 7795 if (IS_ELF
252b5132
RH
7796#ifdef TE_PE
7797 || OUTPUT_FLAVOR == bfd_target_coff_flavour
7798#endif
7799 )
7800 value += fixP->fx_where + fixP->fx_frag->fr_address;
7801#endif
7802#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 7803 if (IS_ELF)
252b5132 7804 {
6539b54b 7805 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 7806
6539b54b 7807 if ((sym_seg == seg
2f66722d 7808 || (symbol_section_p (fixP->fx_addsy)
6539b54b 7809 && sym_seg != absolute_section))
af65af87 7810 && !generic_force_reloc (fixP))
2f66722d
AM
7811 {
7812 /* Yes, we add the values in twice. This is because
6539b54b
AM
7813 bfd_install_relocation subtracts them out again. I think
7814 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
7815 it. FIXME. */
7816 value += fixP->fx_where + fixP->fx_frag->fr_address;
7817 }
252b5132
RH
7818 }
7819#endif
7820#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
7821 /* For some reason, the PE format does not store a
7822 section address offset for a PC relative symbol. */
7823 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 7824 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
7825 value += md_pcrel_from (fixP);
7826#endif
7827 }
fbeb56a4
DK
7828#if defined (OBJ_COFF) && defined (TE_PE)
7829 if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
7830 {
7831 value -= S_GET_VALUE (fixP->fx_addsy);
7832 }
7833#endif
252b5132
RH
7834
7835 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 7836 and we must not disappoint it. */
252b5132 7837#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 7838 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
7839 switch (fixP->fx_r_type)
7840 {
7841 case BFD_RELOC_386_PLT32:
3e73aa7c 7842 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
7843 /* Make the jump instruction point to the address of the operand. At
7844 runtime we merely add the offset to the actual PLT entry. */
7845 value = -4;
7846 break;
31312f95 7847
13ae64f3
JJ
7848 case BFD_RELOC_386_TLS_GD:
7849 case BFD_RELOC_386_TLS_LDM:
13ae64f3 7850 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
7851 case BFD_RELOC_386_TLS_IE:
7852 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 7853 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
7854 case BFD_RELOC_X86_64_TLSGD:
7855 case BFD_RELOC_X86_64_TLSLD:
7856 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 7857 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
7858 value = 0; /* Fully resolved at runtime. No addend. */
7859 /* Fallthrough */
7860 case BFD_RELOC_386_TLS_LE:
7861 case BFD_RELOC_386_TLS_LDO_32:
7862 case BFD_RELOC_386_TLS_LE_32:
7863 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 7864 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 7865 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 7866 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
7867 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7868 break;
7869
67a4f2b7
AO
7870 case BFD_RELOC_386_TLS_DESC_CALL:
7871 case BFD_RELOC_X86_64_TLSDESC_CALL:
7872 value = 0; /* Fully resolved at runtime. No addend. */
7873 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7874 fixP->fx_done = 0;
7875 return;
7876
00f7efb6
JJ
7877 case BFD_RELOC_386_GOT32:
7878 case BFD_RELOC_X86_64_GOT32:
47926f60
KH
7879 value = 0; /* Fully resolved at runtime. No addend. */
7880 break;
47926f60
KH
7881
7882 case BFD_RELOC_VTABLE_INHERIT:
7883 case BFD_RELOC_VTABLE_ENTRY:
7884 fixP->fx_done = 0;
94f592af 7885 return;
47926f60
KH
7886
7887 default:
7888 break;
7889 }
7890#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 7891 *valP = value;
f86103b7 7892#endif /* !defined (TE_Mach) */
3e73aa7c 7893
3e73aa7c 7894 /* Are we finished with this relocation now? */
c6682705 7895 if (fixP->fx_addsy == NULL)
3e73aa7c 7896 fixP->fx_done = 1;
fbeb56a4
DK
7897#if defined (OBJ_COFF) && defined (TE_PE)
7898 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
7899 {
7900 fixP->fx_done = 0;
7901 /* Remember value for tc_gen_reloc. */
7902 fixP->fx_addnumber = value;
7903 /* Clear out the frag for now. */
7904 value = 0;
7905 }
7906#endif
3e73aa7c
JH
7907 else if (use_rela_relocations)
7908 {
7909 fixP->fx_no_overflow = 1;
062cd5e7
AS
7910 /* Remember value for tc_gen_reloc. */
7911 fixP->fx_addnumber = value;
3e73aa7c
JH
7912 value = 0;
7913 }
f86103b7 7914
94f592af 7915 md_number_to_chars (p, value, fixP->fx_size);
252b5132 7916}
252b5132 7917\f
252b5132 7918char *
499ac353 7919md_atof (int type, char *litP, int *sizeP)
252b5132 7920{
499ac353
NC
7921 /* This outputs the LITTLENUMs in REVERSE order;
7922 in accord with the bigendian 386. */
7923 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
7924}
7925\f
2d545b82 7926static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 7927
252b5132 7928static char *
e3bb37b5 7929output_invalid (int c)
252b5132 7930{
3882b010 7931 if (ISPRINT (c))
f9f21a03
L
7932 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
7933 "'%c'", c);
252b5132 7934 else
f9f21a03 7935 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 7936 "(0x%x)", (unsigned char) c);
252b5132
RH
7937 return output_invalid_buf;
7938}
7939
af6bdddf 7940/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
7941
7942static const reg_entry *
4d1bb795 7943parse_real_register (char *reg_string, char **end_op)
252b5132 7944{
af6bdddf
AM
7945 char *s = reg_string;
7946 char *p;
252b5132
RH
7947 char reg_name_given[MAX_REG_NAME_SIZE + 1];
7948 const reg_entry *r;
7949
7950 /* Skip possible REGISTER_PREFIX and possible whitespace. */
7951 if (*s == REGISTER_PREFIX)
7952 ++s;
7953
7954 if (is_space_char (*s))
7955 ++s;
7956
7957 p = reg_name_given;
af6bdddf 7958 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
7959 {
7960 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
7961 return (const reg_entry *) NULL;
7962 s++;
252b5132
RH
7963 }
7964
6588847e
DN
7965 /* For naked regs, make sure that we are not dealing with an identifier.
7966 This prevents confusing an identifier like `eax_var' with register
7967 `eax'. */
7968 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
7969 return (const reg_entry *) NULL;
7970
af6bdddf 7971 *end_op = s;
252b5132
RH
7972
7973 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
7974
5f47d35b 7975 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 7976 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 7977 {
5f47d35b
AM
7978 if (is_space_char (*s))
7979 ++s;
7980 if (*s == '(')
7981 {
af6bdddf 7982 ++s;
5f47d35b
AM
7983 if (is_space_char (*s))
7984 ++s;
7985 if (*s >= '0' && *s <= '7')
7986 {
db557034 7987 int fpr = *s - '0';
af6bdddf 7988 ++s;
5f47d35b
AM
7989 if (is_space_char (*s))
7990 ++s;
7991 if (*s == ')')
7992 {
7993 *end_op = s + 1;
1e9cc1c2 7994 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
7995 know (r);
7996 return r + fpr;
5f47d35b 7997 }
5f47d35b 7998 }
47926f60 7999 /* We have "%st(" then garbage. */
5f47d35b
AM
8000 return (const reg_entry *) NULL;
8001 }
8002 }
8003
a60de03c
JB
8004 if (r == NULL || allow_pseudo_reg)
8005 return r;
8006
0dfbf9d7 8007 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
8008 return (const reg_entry *) NULL;
8009
192dc9c6
JB
8010 if ((r->reg_type.bitfield.reg32
8011 || r->reg_type.bitfield.sreg3
8012 || r->reg_type.bitfield.control
8013 || r->reg_type.bitfield.debug
8014 || r->reg_type.bitfield.test)
8015 && !cpu_arch_flags.bitfield.cpui386)
8016 return (const reg_entry *) NULL;
8017
309d3373
JB
8018 if (r->reg_type.bitfield.floatreg
8019 && !cpu_arch_flags.bitfield.cpu8087
8020 && !cpu_arch_flags.bitfield.cpu287
8021 && !cpu_arch_flags.bitfield.cpu387)
8022 return (const reg_entry *) NULL;
8023
192dc9c6
JB
8024 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
8025 return (const reg_entry *) NULL;
8026
8027 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpusse)
8028 return (const reg_entry *) NULL;
8029
40f12533
L
8030 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuavx)
8031 return (const reg_entry *) NULL;
8032
db51cc60 8033 /* Don't allow fake index register unless allow_index_reg isn't 0. */
a60de03c 8034 if (!allow_index_reg
db51cc60
L
8035 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
8036 return (const reg_entry *) NULL;
8037
a60de03c
JB
8038 if (((r->reg_flags & (RegRex64 | RegRex))
8039 || r->reg_type.bitfield.reg64)
40fb9820 8040 && (!cpu_arch_flags.bitfield.cpulm
0dfbf9d7 8041 || !operand_type_equal (&r->reg_type, &control))
1ae00879 8042 && flag_code != CODE_64BIT)
20f0a1fc 8043 return (const reg_entry *) NULL;
1ae00879 8044
b7240065
JB
8045 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
8046 return (const reg_entry *) NULL;
8047
252b5132
RH
8048 return r;
8049}
4d1bb795
JB
8050
8051/* REG_STRING starts *before* REGISTER_PREFIX. */
8052
8053static const reg_entry *
8054parse_register (char *reg_string, char **end_op)
8055{
8056 const reg_entry *r;
8057
8058 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
8059 r = parse_real_register (reg_string, end_op);
8060 else
8061 r = NULL;
8062 if (!r)
8063 {
8064 char *save = input_line_pointer;
8065 char c;
8066 symbolS *symbolP;
8067
8068 input_line_pointer = reg_string;
8069 c = get_symbol_end ();
8070 symbolP = symbol_find (reg_string);
8071 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
8072 {
8073 const expressionS *e = symbol_get_value_expression (symbolP);
8074
0398aac5 8075 know (e->X_op == O_register);
4eed87de 8076 know (e->X_add_number >= 0
c3fe08fa 8077 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795
JB
8078 r = i386_regtab + e->X_add_number;
8079 *end_op = input_line_pointer;
8080 }
8081 *input_line_pointer = c;
8082 input_line_pointer = save;
8083 }
8084 return r;
8085}
8086
8087int
8088i386_parse_name (char *name, expressionS *e, char *nextcharP)
8089{
8090 const reg_entry *r;
8091 char *end = input_line_pointer;
8092
8093 *end = *nextcharP;
8094 r = parse_register (name, &input_line_pointer);
8095 if (r && end <= input_line_pointer)
8096 {
8097 *nextcharP = *input_line_pointer;
8098 *input_line_pointer = 0;
8099 e->X_op = O_register;
8100 e->X_add_number = r - i386_regtab;
8101 return 1;
8102 }
8103 input_line_pointer = end;
8104 *end = 0;
ee86248c 8105 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
8106}
8107
8108void
8109md_operand (expressionS *e)
8110{
ee86248c
JB
8111 char *end;
8112 const reg_entry *r;
4d1bb795 8113
ee86248c
JB
8114 switch (*input_line_pointer)
8115 {
8116 case REGISTER_PREFIX:
8117 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
8118 if (r)
8119 {
8120 e->X_op = O_register;
8121 e->X_add_number = r - i386_regtab;
8122 input_line_pointer = end;
8123 }
ee86248c
JB
8124 break;
8125
8126 case '[':
9c2799c2 8127 gas_assert (intel_syntax);
ee86248c
JB
8128 end = input_line_pointer++;
8129 expression (e);
8130 if (*input_line_pointer == ']')
8131 {
8132 ++input_line_pointer;
8133 e->X_op_symbol = make_expr_symbol (e);
8134 e->X_add_symbol = NULL;
8135 e->X_add_number = 0;
8136 e->X_op = O_index;
8137 }
8138 else
8139 {
8140 e->X_op = O_absent;
8141 input_line_pointer = end;
8142 }
8143 break;
4d1bb795
JB
8144 }
8145}
8146
252b5132 8147\f
4cc782b5 8148#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12b55ccc 8149const char *md_shortopts = "kVQ:sqn";
252b5132 8150#else
12b55ccc 8151const char *md_shortopts = "qn";
252b5132 8152#endif
6e0b89ee 8153
3e73aa7c 8154#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
8155#define OPTION_64 (OPTION_MD_BASE + 1)
8156#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
8157#define OPTION_MARCH (OPTION_MD_BASE + 3)
8158#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
8159#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
8160#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
8161#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
8162#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
8163#define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
c0f3af97 8164#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 8165#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
40a9833c 8166#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 12)
570561f7 8167#define OPTION_X32 (OPTION_MD_BASE + 13)
b3b91714 8168
99ad8390
NC
8169struct option md_longopts[] =
8170{
3e73aa7c 8171 {"32", no_argument, NULL, OPTION_32},
321098a5
L
8172#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
8173 || defined (TE_PE) || defined (TE_PEP))
3e73aa7c 8174 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
8175#endif
8176#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 8177 {"x32", no_argument, NULL, OPTION_X32},
6e0b89ee 8178#endif
b3b91714 8179 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
8180 {"march", required_argument, NULL, OPTION_MARCH},
8181 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
8182 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
8183 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
8184 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
8185 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
8186 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
c0f3af97 8187 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 8188 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
539f890d 8189 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
252b5132
RH
8190 {NULL, no_argument, NULL, 0}
8191};
8192size_t md_longopts_size = sizeof (md_longopts);
8193
8194int
9103f4f4 8195md_parse_option (int c, char *arg)
252b5132 8196{
91d6fa6a 8197 unsigned int j;
6305a203 8198 char *arch, *next;
9103f4f4 8199
252b5132
RH
8200 switch (c)
8201 {
12b55ccc
L
8202 case 'n':
8203 optimize_align_code = 0;
8204 break;
8205
a38cf1db
AM
8206 case 'q':
8207 quiet_warnings = 1;
252b5132
RH
8208 break;
8209
8210#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
8211 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
8212 should be emitted or not. FIXME: Not implemented. */
8213 case 'Q':
252b5132
RH
8214 break;
8215
8216 /* -V: SVR4 argument to print version ID. */
8217 case 'V':
8218 print_version_id ();
8219 break;
8220
a38cf1db
AM
8221 /* -k: Ignore for FreeBSD compatibility. */
8222 case 'k':
252b5132 8223 break;
4cc782b5
ILT
8224
8225 case 's':
8226 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 8227 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 8228 break;
99ad8390 8229#endif
321098a5
L
8230#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
8231 || defined (TE_PE) || defined (TE_PEP))
3e73aa7c
JH
8232 case OPTION_64:
8233 {
8234 const char **list, **l;
8235
3e73aa7c
JH
8236 list = bfd_target_list ();
8237 for (l = list; *l != NULL; l++)
8620418b 8238 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
8239 || strcmp (*l, "coff-x86-64") == 0
8240 || strcmp (*l, "pe-x86-64") == 0
8241 || strcmp (*l, "pei-x86-64") == 0)
6e0b89ee
AM
8242 {
8243 default_arch = "x86_64";
8244 break;
8245 }
3e73aa7c 8246 if (*l == NULL)
6e0b89ee 8247 as_fatal (_("No compiled in support for x86_64"));
3e73aa7c
JH
8248 free (list);
8249 }
8250 break;
8251#endif
252b5132 8252
351f65ca 8253#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 8254 case OPTION_X32:
351f65ca
L
8255 if (IS_ELF)
8256 {
8257 const char **list, **l;
8258
8259 list = bfd_target_list ();
8260 for (l = list; *l != NULL; l++)
8261 if (CONST_STRNEQ (*l, "elf32-x86-64"))
8262 {
8263 default_arch = "x86_64:32";
8264 break;
8265 }
8266 if (*l == NULL)
8267 as_fatal (_("No compiled in support for 32bit x86_64"));
8268 free (list);
8269 }
8270 else
8271 as_fatal (_("32bit x86_64 is only supported for ELF"));
8272 break;
8273#endif
8274
6e0b89ee
AM
8275 case OPTION_32:
8276 default_arch = "i386";
8277 break;
8278
b3b91714
AM
8279 case OPTION_DIVIDE:
8280#ifdef SVR4_COMMENT_CHARS
8281 {
8282 char *n, *t;
8283 const char *s;
8284
8285 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
8286 t = n;
8287 for (s = i386_comment_chars; *s != '\0'; s++)
8288 if (*s != '/')
8289 *t++ = *s;
8290 *t = '\0';
8291 i386_comment_chars = n;
8292 }
8293#endif
8294 break;
8295
9103f4f4 8296 case OPTION_MARCH:
6305a203
L
8297 arch = xstrdup (arg);
8298 do
9103f4f4 8299 {
6305a203
L
8300 if (*arch == '.')
8301 as_fatal (_("Invalid -march= option: `%s'"), arg);
8302 next = strchr (arch, '+');
8303 if (next)
8304 *next++ = '\0';
91d6fa6a 8305 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 8306 {
91d6fa6a 8307 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 8308 {
6305a203 8309 /* Processor. */
1ded5609
JB
8310 if (! cpu_arch[j].flags.bitfield.cpui386)
8311 continue;
8312
91d6fa6a 8313 cpu_arch_name = cpu_arch[j].name;
6305a203 8314 cpu_sub_arch_name = NULL;
91d6fa6a
NC
8315 cpu_arch_flags = cpu_arch[j].flags;
8316 cpu_arch_isa = cpu_arch[j].type;
8317 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
8318 if (!cpu_arch_tune_set)
8319 {
8320 cpu_arch_tune = cpu_arch_isa;
8321 cpu_arch_tune_flags = cpu_arch_isa_flags;
8322 }
8323 break;
8324 }
91d6fa6a
NC
8325 else if (*cpu_arch [j].name == '.'
8326 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203
L
8327 {
8328 /* ISA entension. */
8329 i386_cpu_flags flags;
309d3373 8330
49021df2 8331 if (!cpu_arch[j].negated)
309d3373 8332 flags = cpu_flags_or (cpu_arch_flags,
91d6fa6a 8333 cpu_arch[j].flags);
309d3373
JB
8334 else
8335 flags = cpu_flags_and_not (cpu_arch_flags,
49021df2 8336 cpu_arch[j].flags);
0dfbf9d7 8337 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
8338 {
8339 if (cpu_sub_arch_name)
8340 {
8341 char *name = cpu_sub_arch_name;
8342 cpu_sub_arch_name = concat (name,
91d6fa6a 8343 cpu_arch[j].name,
1bf57e9f 8344 (const char *) NULL);
6305a203
L
8345 free (name);
8346 }
8347 else
91d6fa6a 8348 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203
L
8349 cpu_arch_flags = flags;
8350 }
8351 break;
ccc9c027 8352 }
9103f4f4 8353 }
6305a203 8354
91d6fa6a 8355 if (j >= ARRAY_SIZE (cpu_arch))
6305a203
L
8356 as_fatal (_("Invalid -march= option: `%s'"), arg);
8357
8358 arch = next;
9103f4f4 8359 }
6305a203 8360 while (next != NULL );
9103f4f4
L
8361 break;
8362
8363 case OPTION_MTUNE:
8364 if (*arg == '.')
8365 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
91d6fa6a 8366 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 8367 {
91d6fa6a 8368 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 8369 {
ccc9c027 8370 cpu_arch_tune_set = 1;
91d6fa6a
NC
8371 cpu_arch_tune = cpu_arch [j].type;
8372 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
8373 break;
8374 }
8375 }
91d6fa6a 8376 if (j >= ARRAY_SIZE (cpu_arch))
9103f4f4
L
8377 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
8378 break;
8379
1efbbeb4
L
8380 case OPTION_MMNEMONIC:
8381 if (strcasecmp (arg, "att") == 0)
8382 intel_mnemonic = 0;
8383 else if (strcasecmp (arg, "intel") == 0)
8384 intel_mnemonic = 1;
8385 else
8386 as_fatal (_("Invalid -mmnemonic= option: `%s'"), arg);
8387 break;
8388
8389 case OPTION_MSYNTAX:
8390 if (strcasecmp (arg, "att") == 0)
8391 intel_syntax = 0;
8392 else if (strcasecmp (arg, "intel") == 0)
8393 intel_syntax = 1;
8394 else
8395 as_fatal (_("Invalid -msyntax= option: `%s'"), arg);
8396 break;
8397
8398 case OPTION_MINDEX_REG:
8399 allow_index_reg = 1;
8400 break;
8401
8402 case OPTION_MNAKED_REG:
8403 allow_naked_reg = 1;
8404 break;
8405
8406 case OPTION_MOLD_GCC:
8407 old_gcc = 1;
1efbbeb4
L
8408 break;
8409
c0f3af97
L
8410 case OPTION_MSSE2AVX:
8411 sse2avx = 1;
8412 break;
8413
daf50ae7
L
8414 case OPTION_MSSE_CHECK:
8415 if (strcasecmp (arg, "error") == 0)
8416 sse_check = sse_check_error;
8417 else if (strcasecmp (arg, "warning") == 0)
8418 sse_check = sse_check_warning;
8419 else if (strcasecmp (arg, "none") == 0)
8420 sse_check = sse_check_none;
8421 else
8422 as_fatal (_("Invalid -msse-check= option: `%s'"), arg);
8423 break;
8424
539f890d
L
8425 case OPTION_MAVXSCALAR:
8426 if (strcasecmp (arg, "128") == 0)
8427 avxscalar = vex128;
8428 else if (strcasecmp (arg, "256") == 0)
8429 avxscalar = vex256;
8430 else
8431 as_fatal (_("Invalid -mavxscalar= option: `%s'"), arg);
8432 break;
8433
252b5132
RH
8434 default:
8435 return 0;
8436 }
8437 return 1;
8438}
8439
8a2c8fef
L
8440#define MESSAGE_TEMPLATE \
8441" "
8442
8443static void
1ded5609 8444show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
8445{
8446 static char message[] = MESSAGE_TEMPLATE;
8447 char *start = message + 27;
8448 char *p;
8449 int size = sizeof (MESSAGE_TEMPLATE);
8450 int left;
8451 const char *name;
8452 int len;
8453 unsigned int j;
8454
8455 p = start;
8456 left = size - (start - message);
8457 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
8458 {
8459 /* Should it be skipped? */
8460 if (cpu_arch [j].skip)
8461 continue;
8462
8463 name = cpu_arch [j].name;
8464 len = cpu_arch [j].len;
8465 if (*name == '.')
8466 {
8467 /* It is an extension. Skip if we aren't asked to show it. */
8468 if (ext)
8469 {
8470 name++;
8471 len--;
8472 }
8473 else
8474 continue;
8475 }
8476 else if (ext)
8477 {
8478 /* It is an processor. Skip if we show only extension. */
8479 continue;
8480 }
1ded5609
JB
8481 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
8482 {
8483 /* It is an impossible processor - skip. */
8484 continue;
8485 }
8a2c8fef
L
8486
8487 /* Reserve 2 spaces for ", " or ",\0" */
8488 left -= len + 2;
8489
8490 /* Check if there is any room. */
8491 if (left >= 0)
8492 {
8493 if (p != start)
8494 {
8495 *p++ = ',';
8496 *p++ = ' ';
8497 }
8498 p = mempcpy (p, name, len);
8499 }
8500 else
8501 {
8502 /* Output the current message now and start a new one. */
8503 *p++ = ',';
8504 *p = '\0';
8505 fprintf (stream, "%s\n", message);
8506 p = start;
8507 left = size - (start - message) - len - 2;
8508
8509 gas_assert (left >= 0);
8510
8511 p = mempcpy (p, name, len);
8512 }
8513 }
8514
8515 *p = '\0';
8516 fprintf (stream, "%s\n", message);
8517}
8518
252b5132 8519void
8a2c8fef 8520md_show_usage (FILE *stream)
252b5132 8521{
4cc782b5
ILT
8522#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8523 fprintf (stream, _("\
a38cf1db
AM
8524 -Q ignored\n\
8525 -V print assembler version number\n\
b3b91714
AM
8526 -k ignored\n"));
8527#endif
8528 fprintf (stream, _("\
12b55ccc 8529 -n Do not optimize code alignment\n\
b3b91714
AM
8530 -q quieten some warnings\n"));
8531#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8532 fprintf (stream, _("\
a38cf1db 8533 -s ignored\n"));
b3b91714 8534#endif
321098a5
L
8535#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
8536 || defined (TE_PE) || defined (TE_PEP))
751d281c 8537 fprintf (stream, _("\
570561f7 8538 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 8539#endif
b3b91714
AM
8540#ifdef SVR4_COMMENT_CHARS
8541 fprintf (stream, _("\
8542 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
8543#else
8544 fprintf (stream, _("\
b3b91714 8545 --divide ignored\n"));
4cc782b5 8546#endif
9103f4f4 8547 fprintf (stream, _("\
6305a203 8548 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 8549 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 8550 show_arch (stream, 0, 1);
8a2c8fef
L
8551 fprintf (stream, _("\
8552 EXTENSION is combination of:\n"));
1ded5609 8553 show_arch (stream, 1, 0);
6305a203 8554 fprintf (stream, _("\
8a2c8fef 8555 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 8556 show_arch (stream, 0, 0);
ba104c83 8557 fprintf (stream, _("\
c0f3af97
L
8558 -msse2avx encode SSE instructions with VEX prefix\n"));
8559 fprintf (stream, _("\
daf50ae7
L
8560 -msse-check=[none|error|warning]\n\
8561 check SSE instructions\n"));
8562 fprintf (stream, _("\
539f890d
L
8563 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
8564 length\n"));
8565 fprintf (stream, _("\
ba104c83
L
8566 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
8567 fprintf (stream, _("\
8568 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
8569 fprintf (stream, _("\
8570 -mindex-reg support pseudo index registers\n"));
8571 fprintf (stream, _("\
8572 -mnaked-reg don't require `%%' prefix for registers\n"));
8573 fprintf (stream, _("\
8574 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
252b5132
RH
8575}
8576
3e73aa7c 8577#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 8578 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 8579 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
8580
8581/* Pick the target format to use. */
8582
47926f60 8583const char *
e3bb37b5 8584i386_target_format (void)
252b5132 8585{
351f65ca
L
8586 if (!strncmp (default_arch, "x86_64", 6))
8587 {
8588 update_code_flag (CODE_64BIT, 1);
8589 if (default_arch[6] == '\0')
7f56bc95 8590 x86_elf_abi = X86_64_ABI;
351f65ca 8591 else
7f56bc95 8592 x86_elf_abi = X86_64_X32_ABI;
351f65ca 8593 }
3e73aa7c 8594 else if (!strcmp (default_arch, "i386"))
78f12dd3 8595 update_code_flag (CODE_32BIT, 1);
3e73aa7c
JH
8596 else
8597 as_fatal (_("Unknown architecture"));
89507696
JB
8598
8599 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
8600 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
8601 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
8602 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
8603
252b5132
RH
8604 switch (OUTPUT_FLAVOR)
8605 {
9384f2ff 8606#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 8607 case bfd_target_aout_flavour:
47926f60 8608 return AOUT_TARGET_FORMAT;
4c63da97 8609#endif
9384f2ff
AM
8610#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
8611# if defined (TE_PE) || defined (TE_PEP)
8612 case bfd_target_coff_flavour:
8613 return flag_code == CODE_64BIT ? "pe-x86-64" : "pe-i386";
8614# elif defined (TE_GO32)
0561d57c
JK
8615 case bfd_target_coff_flavour:
8616 return "coff-go32";
9384f2ff 8617# else
252b5132
RH
8618 case bfd_target_coff_flavour:
8619 return "coff-i386";
9384f2ff 8620# endif
4c63da97 8621#endif
3e73aa7c 8622#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 8623 case bfd_target_elf_flavour:
3e73aa7c 8624 {
351f65ca
L
8625 const char *format;
8626
8627 switch (x86_elf_abi)
4fa24527 8628 {
351f65ca
L
8629 default:
8630 format = ELF_TARGET_FORMAT;
8631 break;
7f56bc95 8632 case X86_64_ABI:
351f65ca 8633 use_rela_relocations = 1;
4fa24527 8634 object_64bit = 1;
351f65ca
L
8635 format = ELF_TARGET_FORMAT64;
8636 break;
7f56bc95 8637 case X86_64_X32_ABI:
4fa24527 8638 use_rela_relocations = 1;
351f65ca 8639 object_64bit = 1;
7f56bc95 8640 disallow_64bit_disp = 1;
351f65ca
L
8641 format = ELF_TARGET_FORMAT32;
8642 break;
4fa24527 8643 }
3632d14b 8644 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 8645 {
7f56bc95 8646 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
8647 as_fatal (_("Intel L1OM is 64bit only"));
8648 return ELF_TARGET_L1OM_FORMAT;
8649 }
8650 else
351f65ca 8651 return format;
3e73aa7c 8652 }
e57f8c65
TG
8653#endif
8654#if defined (OBJ_MACH_O)
8655 case bfd_target_mach_o_flavour:
8656 return flag_code == CODE_64BIT ? "mach-o-x86-64" : "mach-o-i386";
4c63da97 8657#endif
252b5132
RH
8658 default:
8659 abort ();
8660 return NULL;
8661 }
8662}
8663
47926f60 8664#endif /* OBJ_MAYBE_ more than one */
a847613f
AM
8665
8666#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
e3bb37b5
L
8667void
8668i386_elf_emit_arch_note (void)
a847613f 8669{
718ddfc0 8670 if (IS_ELF && cpu_arch_name != NULL)
a847613f
AM
8671 {
8672 char *p;
8673 asection *seg = now_seg;
8674 subsegT subseg = now_subseg;
8675 Elf_Internal_Note i_note;
8676 Elf_External_Note e_note;
8677 asection *note_secp;
8678 int len;
8679
8680 /* Create the .note section. */
8681 note_secp = subseg_new (".note", 0);
8682 bfd_set_section_flags (stdoutput,
8683 note_secp,
8684 SEC_HAS_CONTENTS | SEC_READONLY);
8685
8686 /* Process the arch string. */
8687 len = strlen (cpu_arch_name);
8688
8689 i_note.namesz = len + 1;
8690 i_note.descsz = 0;
8691 i_note.type = NT_ARCH;
8692 p = frag_more (sizeof (e_note.namesz));
8693 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
8694 p = frag_more (sizeof (e_note.descsz));
8695 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
8696 p = frag_more (sizeof (e_note.type));
8697 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
8698 p = frag_more (len + 1);
8699 strcpy (p, cpu_arch_name);
8700
8701 frag_align (2, 0, 0);
8702
8703 subseg_set (seg, subseg);
8704 }
8705}
8706#endif
252b5132 8707\f
252b5132
RH
8708symbolS *
8709md_undefined_symbol (name)
8710 char *name;
8711{
18dc2407
ILT
8712 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
8713 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
8714 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
8715 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
8716 {
8717 if (!GOT_symbol)
8718 {
8719 if (symbol_find (name))
8720 as_bad (_("GOT already in symbol table"));
8721 GOT_symbol = symbol_new (name, undefined_section,
8722 (valueT) 0, &zero_address_frag);
8723 };
8724 return GOT_symbol;
8725 }
252b5132
RH
8726 return 0;
8727}
8728
8729/* Round up a section size to the appropriate boundary. */
47926f60 8730
252b5132
RH
8731valueT
8732md_section_align (segment, size)
ab9da554 8733 segT segment ATTRIBUTE_UNUSED;
252b5132
RH
8734 valueT size;
8735{
4c63da97
AM
8736#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8737 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
8738 {
8739 /* For a.out, force the section size to be aligned. If we don't do
8740 this, BFD will align it for us, but it will not write out the
8741 final bytes of the section. This may be a bug in BFD, but it is
8742 easier to fix it here since that is how the other a.out targets
8743 work. */
8744 int align;
8745
8746 align = bfd_get_section_alignment (stdoutput, segment);
8747 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
8748 }
252b5132
RH
8749#endif
8750
8751 return size;
8752}
8753
8754/* On the i386, PC-relative offsets are relative to the start of the
8755 next instruction. That is, the address of the offset, plus its
8756 size, since the offset is always the last part of the insn. */
8757
8758long
e3bb37b5 8759md_pcrel_from (fixS *fixP)
252b5132
RH
8760{
8761 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
8762}
8763
8764#ifndef I386COFF
8765
8766static void
e3bb37b5 8767s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 8768{
29b0f896 8769 int temp;
252b5132 8770
8a75718c
JB
8771#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8772 if (IS_ELF)
8773 obj_elf_section_change_hook ();
8774#endif
252b5132
RH
8775 temp = get_absolute_expression ();
8776 subseg_set (bss_section, (subsegT) temp);
8777 demand_empty_rest_of_line ();
8778}
8779
8780#endif
8781
252b5132 8782void
e3bb37b5 8783i386_validate_fix (fixS *fixp)
252b5132
RH
8784{
8785 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
8786 {
23df1078
JH
8787 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
8788 {
4fa24527 8789 if (!object_64bit)
23df1078
JH
8790 abort ();
8791 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
8792 }
8793 else
8794 {
4fa24527 8795 if (!object_64bit)
d6ab8113
JB
8796 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
8797 else
8798 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
23df1078 8799 }
252b5132
RH
8800 fixp->fx_subsy = 0;
8801 }
8802}
8803
252b5132
RH
8804arelent *
8805tc_gen_reloc (section, fixp)
ab9da554 8806 asection *section ATTRIBUTE_UNUSED;
252b5132
RH
8807 fixS *fixp;
8808{
8809 arelent *rel;
8810 bfd_reloc_code_real_type code;
8811
8812 switch (fixp->fx_r_type)
8813 {
3e73aa7c
JH
8814 case BFD_RELOC_X86_64_PLT32:
8815 case BFD_RELOC_X86_64_GOT32:
8816 case BFD_RELOC_X86_64_GOTPCREL:
252b5132
RH
8817 case BFD_RELOC_386_PLT32:
8818 case BFD_RELOC_386_GOT32:
8819 case BFD_RELOC_386_GOTOFF:
8820 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
8821 case BFD_RELOC_386_TLS_GD:
8822 case BFD_RELOC_386_TLS_LDM:
8823 case BFD_RELOC_386_TLS_LDO_32:
8824 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
8825 case BFD_RELOC_386_TLS_IE:
8826 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
8827 case BFD_RELOC_386_TLS_LE_32:
8828 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
8829 case BFD_RELOC_386_TLS_GOTDESC:
8830 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
8831 case BFD_RELOC_X86_64_TLSGD:
8832 case BFD_RELOC_X86_64_TLSLD:
8833 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 8834 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
8835 case BFD_RELOC_X86_64_GOTTPOFF:
8836 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
8837 case BFD_RELOC_X86_64_TPOFF64:
8838 case BFD_RELOC_X86_64_GOTOFF64:
8839 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
8840 case BFD_RELOC_X86_64_GOT64:
8841 case BFD_RELOC_X86_64_GOTPCREL64:
8842 case BFD_RELOC_X86_64_GOTPC64:
8843 case BFD_RELOC_X86_64_GOTPLT64:
8844 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
8845 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
8846 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
8847 case BFD_RELOC_RVA:
8848 case BFD_RELOC_VTABLE_ENTRY:
8849 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
8850#ifdef TE_PE
8851 case BFD_RELOC_32_SECREL:
8852#endif
252b5132
RH
8853 code = fixp->fx_r_type;
8854 break;
dbbaec26
L
8855 case BFD_RELOC_X86_64_32S:
8856 if (!fixp->fx_pcrel)
8857 {
8858 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
8859 code = fixp->fx_r_type;
8860 break;
8861 }
252b5132 8862 default:
93382f6d 8863 if (fixp->fx_pcrel)
252b5132 8864 {
93382f6d
AM
8865 switch (fixp->fx_size)
8866 {
8867 default:
b091f402
AM
8868 as_bad_where (fixp->fx_file, fixp->fx_line,
8869 _("can not do %d byte pc-relative relocation"),
8870 fixp->fx_size);
93382f6d
AM
8871 code = BFD_RELOC_32_PCREL;
8872 break;
8873 case 1: code = BFD_RELOC_8_PCREL; break;
8874 case 2: code = BFD_RELOC_16_PCREL; break;
8875 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
8876#ifdef BFD64
8877 case 8: code = BFD_RELOC_64_PCREL; break;
8878#endif
93382f6d
AM
8879 }
8880 }
8881 else
8882 {
8883 switch (fixp->fx_size)
8884 {
8885 default:
b091f402
AM
8886 as_bad_where (fixp->fx_file, fixp->fx_line,
8887 _("can not do %d byte relocation"),
8888 fixp->fx_size);
93382f6d
AM
8889 code = BFD_RELOC_32;
8890 break;
8891 case 1: code = BFD_RELOC_8; break;
8892 case 2: code = BFD_RELOC_16; break;
8893 case 4: code = BFD_RELOC_32; break;
937149dd 8894#ifdef BFD64
3e73aa7c 8895 case 8: code = BFD_RELOC_64; break;
937149dd 8896#endif
93382f6d 8897 }
252b5132
RH
8898 }
8899 break;
8900 }
252b5132 8901
d182319b
JB
8902 if ((code == BFD_RELOC_32
8903 || code == BFD_RELOC_32_PCREL
8904 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
8905 && GOT_symbol
8906 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 8907 {
4fa24527 8908 if (!object_64bit)
d6ab8113
JB
8909 code = BFD_RELOC_386_GOTPC;
8910 else
8911 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 8912 }
7b81dfbb
AJ
8913 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
8914 && GOT_symbol
8915 && fixp->fx_addsy == GOT_symbol)
8916 {
8917 code = BFD_RELOC_X86_64_GOTPC64;
8918 }
252b5132
RH
8919
8920 rel = (arelent *) xmalloc (sizeof (arelent));
49309057
ILT
8921 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
8922 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
8923
8924 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 8925
3e73aa7c
JH
8926 if (!use_rela_relocations)
8927 {
8928 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
8929 vtable entry to be used in the relocation's section offset. */
8930 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
8931 rel->address = fixp->fx_offset;
fbeb56a4
DK
8932#if defined (OBJ_COFF) && defined (TE_PE)
8933 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
8934 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
8935 else
8936#endif
c6682705 8937 rel->addend = 0;
3e73aa7c
JH
8938 }
8939 /* Use the rela in 64bit mode. */
252b5132 8940 else
3e73aa7c 8941 {
062cd5e7
AS
8942 if (!fixp->fx_pcrel)
8943 rel->addend = fixp->fx_offset;
8944 else
8945 switch (code)
8946 {
8947 case BFD_RELOC_X86_64_PLT32:
8948 case BFD_RELOC_X86_64_GOT32:
8949 case BFD_RELOC_X86_64_GOTPCREL:
bffbf940
JJ
8950 case BFD_RELOC_X86_64_TLSGD:
8951 case BFD_RELOC_X86_64_TLSLD:
8952 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
8953 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
8954 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
8955 rel->addend = fixp->fx_offset - fixp->fx_size;
8956 break;
8957 default:
8958 rel->addend = (section->vma
8959 - fixp->fx_size
8960 + fixp->fx_addnumber
8961 + md_pcrel_from (fixp));
8962 break;
8963 }
3e73aa7c
JH
8964 }
8965
252b5132
RH
8966 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
8967 if (rel->howto == NULL)
8968 {
8969 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 8970 _("cannot represent relocation type %s"),
252b5132
RH
8971 bfd_get_reloc_code_name (code));
8972 /* Set howto to a garbage value so that we can keep going. */
8973 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 8974 gas_assert (rel->howto != NULL);
252b5132
RH
8975 }
8976
8977 return rel;
8978}
8979
ee86248c 8980#include "tc-i386-intel.c"
54cfded0 8981
a60de03c
JB
8982void
8983tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 8984{
a60de03c
JB
8985 int saved_naked_reg;
8986 char saved_register_dot;
54cfded0 8987
a60de03c
JB
8988 saved_naked_reg = allow_naked_reg;
8989 allow_naked_reg = 1;
8990 saved_register_dot = register_chars['.'];
8991 register_chars['.'] = '.';
8992 allow_pseudo_reg = 1;
8993 expression_and_evaluate (exp);
8994 allow_pseudo_reg = 0;
8995 register_chars['.'] = saved_register_dot;
8996 allow_naked_reg = saved_naked_reg;
8997
e96d56a1 8998 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 8999 {
a60de03c
JB
9000 if ((addressT) exp->X_add_number < i386_regtab_size)
9001 {
9002 exp->X_op = O_constant;
9003 exp->X_add_number = i386_regtab[exp->X_add_number]
9004 .dw2_regnum[flag_code >> 1];
9005 }
9006 else
9007 exp->X_op = O_illegal;
54cfded0 9008 }
54cfded0
AM
9009}
9010
9011void
9012tc_x86_frame_initial_instructions (void)
9013{
a60de03c
JB
9014 static unsigned int sp_regno[2];
9015
9016 if (!sp_regno[flag_code >> 1])
9017 {
9018 char *saved_input = input_line_pointer;
9019 char sp[][4] = {"esp", "rsp"};
9020 expressionS exp;
a4447b93 9021
a60de03c
JB
9022 input_line_pointer = sp[flag_code >> 1];
9023 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 9024 gas_assert (exp.X_op == O_constant);
a60de03c
JB
9025 sp_regno[flag_code >> 1] = exp.X_add_number;
9026 input_line_pointer = saved_input;
9027 }
a4447b93 9028
a60de03c 9029 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
a4447b93 9030 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 9031}
d2b2c203
DJ
9032
9033int
9034i386_elf_section_type (const char *str, size_t len)
9035{
9036 if (flag_code == CODE_64BIT
9037 && len == sizeof ("unwind") - 1
9038 && strncmp (str, "unwind", 6) == 0)
9039 return SHT_X86_64_UNWIND;
9040
9041 return -1;
9042}
bb41ade5 9043
ad5fec3b
EB
9044#ifdef TE_SOLARIS
9045void
9046i386_solaris_fix_up_eh_frame (segT sec)
9047{
9048 if (flag_code == CODE_64BIT)
9049 elf_section_type (sec) = SHT_X86_64_UNWIND;
9050}
9051#endif
9052
bb41ade5
AM
9053#ifdef TE_PE
9054void
9055tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
9056{
91d6fa6a 9057 expressionS exp;
bb41ade5 9058
91d6fa6a
NC
9059 exp.X_op = O_secrel;
9060 exp.X_add_symbol = symbol;
9061 exp.X_add_number = 0;
9062 emit_expr (&exp, size);
bb41ade5
AM
9063}
9064#endif
3b22753a
L
9065
9066#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9067/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
9068
01e1a5bc 9069bfd_vma
3b22753a
L
9070x86_64_section_letter (int letter, char **ptr_msg)
9071{
9072 if (flag_code == CODE_64BIT)
9073 {
9074 if (letter == 'l')
9075 return SHF_X86_64_LARGE;
9076
8f3bae45 9077 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 9078 }
3b22753a 9079 else
8f3bae45 9080 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
9081 return -1;
9082}
9083
01e1a5bc 9084bfd_vma
3b22753a
L
9085x86_64_section_word (char *str, size_t len)
9086{
8620418b 9087 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
9088 return SHF_X86_64_LARGE;
9089
9090 return -1;
9091}
9092
9093static void
9094handle_large_common (int small ATTRIBUTE_UNUSED)
9095{
9096 if (flag_code != CODE_64BIT)
9097 {
9098 s_comm_internal (0, elf_common_parse);
9099 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
9100 }
9101 else
9102 {
9103 static segT lbss_section;
9104 asection *saved_com_section_ptr = elf_com_section_ptr;
9105 asection *saved_bss_section = bss_section;
9106
9107 if (lbss_section == NULL)
9108 {
9109 flagword applicable;
9110 segT seg = now_seg;
9111 subsegT subseg = now_subseg;
9112
9113 /* The .lbss section is for local .largecomm symbols. */
9114 lbss_section = subseg_new (".lbss", 0);
9115 applicable = bfd_applicable_section_flags (stdoutput);
9116 bfd_set_section_flags (stdoutput, lbss_section,
9117 applicable & SEC_ALLOC);
9118 seg_info (lbss_section)->bss = 1;
9119
9120 subseg_set (seg, subseg);
9121 }
9122
9123 elf_com_section_ptr = &_bfd_elf_large_com_section;
9124 bss_section = lbss_section;
9125
9126 s_comm_internal (0, elf_common_parse);
9127
9128 elf_com_section_ptr = saved_com_section_ptr;
9129 bss_section = saved_bss_section;
9130 }
9131}
9132#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 1.316902 seconds and 4 git commands to generate.