Support ELF SHF_GNU_MBIND and PT_GNU_MBIND_XXX
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
CommitLineData
252b5132 1/* tc-mips.c -- assemble code for a MIPS chip.
2571583a 2 Copyright (C) 1993-2017 Free Software Foundation, Inc.
252b5132
RH
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
ec2655a6 12 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
252b5132
RH
24
25#include "as.h"
26#include "config.h"
27#include "subsegs.h"
3882b010 28#include "safe-ctype.h"
252b5132 29
252b5132
RH
30#include "opcode/mips.h"
31#include "itbl-ops.h"
c5dd6aab 32#include "dwarf2dbg.h"
5862107c 33#include "dw2gencfi.h"
252b5132 34
42429eac
RS
35/* Check assumptions made in this file. */
36typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
252b5132
RH
39#ifdef DEBUG
40#define DBG(x) printf x
41#else
42#define DBG(x)
43#endif
44
263b2574 45#define streq(a, b) (strcmp (a, b) == 0)
46
9e12b7a2
RS
47#define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
252b5132 50/* Clean up namespace so we can include obj-elf.h too. */
17a2f251
TS
51static int mips_output_flavor (void);
52static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
252b5132
RH
53#undef OBJ_PROCESS_STAB
54#undef OUTPUT_FLAVOR
55#undef S_GET_ALIGN
56#undef S_GET_SIZE
57#undef S_SET_ALIGN
58#undef S_SET_SIZE
252b5132
RH
59#undef obj_frob_file
60#undef obj_frob_file_after_relocs
61#undef obj_frob_symbol
62#undef obj_pop_insert
63#undef obj_sec_sym_ok_for_reloc
64#undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66#include "obj-elf.h"
67/* Fix any of them that we actually care about. */
68#undef OUTPUT_FLAVOR
69#define OUTPUT_FLAVOR mips_output_flavor()
252b5132 70
252b5132 71#include "elf/mips.h"
252b5132
RH
72
73#ifndef ECOFF_DEBUGGING
74#define NO_ECOFF_DEBUGGING
75#define ECOFF_DEBUGGING 0
76#endif
77
ecb4347a
DJ
78int mips_flag_mdebug = -1;
79
dcd410fe
RO
80/* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83#ifdef TE_IRIX
84int mips_flag_pdr = FALSE;
85#else
86int mips_flag_pdr = TRUE;
87#endif
88
252b5132
RH
89#include "ecoff.h"
90
252b5132 91static char *mips_regmask_frag;
351cdf24 92static char *mips_flags_frag;
252b5132 93
85b51719 94#define ZERO 0
741fe287 95#define ATREG 1
df58fc94
RS
96#define S0 16
97#define S7 23
252b5132
RH
98#define TREG 24
99#define PIC_CALL_REG 25
100#define KT0 26
101#define KT1 27
102#define GP 28
103#define SP 29
104#define FP 30
105#define RA 31
106
107#define ILLEGAL_REG (32)
108
741fe287
MR
109#define AT mips_opts.at
110
252b5132
RH
111extern int target_big_endian;
112
252b5132 113/* The name of the readonly data section. */
e8044f35 114#define RDATA_SECTION_NAME ".rodata"
252b5132 115
a4e06468
RS
116/* Ways in which an instruction can be "appended" to the output. */
117enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129};
130
47e39b9d
RS
131/* Information about an instruction, including its format, operands
132 and fixups. */
133struct mips_cl_insn
134{
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
47e39b9d 138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
5c04167a
RS
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
47e39b9d
RS
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
a38419a5
RS
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
47e39b9d 155
708587a4 156 /* True if this instruction occurred in a .set noreorder block. */
47e39b9d
RS
157 unsigned int noreorder_p : 1;
158
2fa15973
RS
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
15be625d
CM
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
e407c74b
NC
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
47e39b9d
RS
168};
169
a325df1d
TS
170/* The ABI to use. */
171enum mips_abi_level
172{
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179};
180
181/* MIPS ABI we are using for this output file. */
316f5878 182static enum mips_abi_level mips_abi = NO_ABI;
a325df1d 183
143d77c5
EC
184/* Whether or not we have code that can call pic code. */
185int mips_abicalls = FALSE;
186
aa6975fb
ILT
187/* Whether or not we have code which can be put into a shared
188 library. */
189static bfd_boolean mips_in_shared = TRUE;
190
252b5132
RH
191/* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
e972090a
NC
195struct mips_set_options
196{
252b5132
RH
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
846ef2d0
RS
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
252b5132
RH
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
df58fc94
RS
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
252b5132
RH
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
741fe287
MR
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
252b5132
RH
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
833794fc
MR
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
a325df1d
TS
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
bad1aba3 245 int gp;
0b35dfee 246 int fp;
fef14a42
TS
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
aed1a261
RS
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
037b32b9
AN
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
351cdf24
MF
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
252b5132
RH
265};
266
919731af 267/* Specifies whether module level options have been checked yet. */
268static bfd_boolean file_mips_opts_checked = FALSE;
269
7361da2c
AB
270/* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274static int mips_nan2008 = -1;
a325df1d 275
0b35dfee 276/* This is the struct we use to hold the module level set of options.
bad1aba3 277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
0b35dfee 278 fp fields to -1 to indicate that they have not been initialized. */
037b32b9 279
0b35dfee 280static struct mips_set_options file_mips_opts =
281{
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
bad1aba3 285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
351cdf24 286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
0b35dfee 287};
252b5132 288
0b35dfee 289/* This is similar to file_mips_opts, but for the current set of options. */
ba92f887 290
e972090a
NC
291static struct mips_set_options mips_opts =
292{
846ef2d0 293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
b015e599 294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
833794fc 295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
bad1aba3 296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
351cdf24 297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
e7af610e 298};
252b5132 299
846ef2d0
RS
300/* Which bits of file_ase were explicitly set or cleared by ASE options. */
301static unsigned int file_ase_explicit;
302
252b5132
RH
303/* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306unsigned long mips_gprmask;
307unsigned long mips_cprmask[4];
308
738f4d98 309/* True if any MIPS16 code was produced. */
a4672219
TS
310static int file_ase_mips16;
311
3994f87e
TS
312#define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
ae52f483
AB
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
3994f87e 316 || mips_opts.isa == ISA_MIPS64 \
ae52f483
AB
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
3994f87e 320
df58fc94
RS
321/* True if any microMIPS code was produced. */
322static int file_ase_micromips;
323
b12dd2e4
CF
324/* True if we want to create R_MIPS_JALR for jalr $25. */
325#ifdef TE_IRIX
1180b5a4 326#define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
b12dd2e4 327#else
1180b5a4
RS
328/* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331#define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
b12dd2e4
CF
334#endif
335
ec68c924 336/* The argument of the -march= flag. The architecture we are assembling. */
316f5878 337static const char *mips_arch_string;
ec68c924
EC
338
339/* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341static int mips_tune = CPU_UNKNOWN;
316f5878 342static const char *mips_tune_string;
ec68c924 343
316f5878 344/* True when generating 32-bit code for a 64-bit processor. */
252b5132
RH
345static int mips_32bitmode = 0;
346
316f5878
RS
347/* True if the given ABI requires 32-bit registers. */
348#define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350/* Likewise 64-bit registers. */
707bfff6 351#define ABI_NEEDS_64BIT_REGS(ABI) \
134c0c8b 352 ((ABI) == N32_ABI \
707bfff6 353 || (ABI) == N64_ABI \
316f5878
RS
354 || (ABI) == O64_ABI)
355
7361da2c
AB
356#define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
ad3fea08 360/* Return true if ISA supports 64 bit wide gp registers. */
707bfff6
TS
361#define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
ae52f483
AB
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
7361da2c
AB
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
9ce8a5dd 370
ad3fea08
TS
371/* Return true if ISA supports 64 bit wide float registers. */
372#define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
ae52f483
AB
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
7361da2c 379 || (ISA) == ISA_MIPS32R6 \
ad3fea08 380 || (ISA) == ISA_MIPS64 \
ae52f483
AB
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
7361da2c
AB
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
ad3fea08 385
af7ee8bf
CD
386/* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
707bfff6 388#define ISA_HAS_DROR(ISA) \
df58fc94 389 ((ISA) == ISA_MIPS64R2 \
ae52f483
AB
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
7361da2c 392 || (ISA) == ISA_MIPS64R6 \
df58fc94
RS
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
af7ee8bf
CD
396
397/* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
707bfff6
TS
399#define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
ae52f483
AB
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
7361da2c 403 || (ISA) == ISA_MIPS32R6 \
707bfff6 404 || (ISA) == ISA_MIPS64R2 \
ae52f483
AB
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
7361da2c 407 || (ISA) == ISA_MIPS64R6 \
846ef2d0 408 || (mips_opts.ase & ASE_SMARTMIPS) \
df58fc94
RS
409 || mips_opts.micromips \
410 )
707bfff6 411
7455baf8 412/* Return true if ISA supports single-precision floats in odd registers. */
351cdf24
MF
413#define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
7361da2c 418 || (ISA) == ISA_MIPS32R6 \
351cdf24
MF
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
7361da2c 423 || (ISA) == ISA_MIPS64R6 \
351cdf24
MF
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
af7ee8bf 426
ad3fea08
TS
427/* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429#define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
ae52f483
AB
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
7361da2c
AB
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439/* Return true if ISA supports legacy NAN. */
440#define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
ae52f483
AB
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
ad3fea08 454
bad1aba3 455#define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
ca4e0257 459
bad1aba3 460#define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
ca4e0257 464
316f5878 465#define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
e013f690 466
316f5878 467#define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
e013f690 468
3b91255e
RS
469/* True if relocations are stored in-place. */
470#define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
aed1a261
RS
472/* The ABI-derived address size. */
473#define HAVE_64BIT_ADDRESSES \
bad1aba3 474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
aed1a261 475#define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
e013f690 476
aed1a261
RS
477/* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479#define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481#define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
ca4e0257 482
b7c7d6c1
TS
483/* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
f899b4b8 486#define ADDRESS_ADD_INSN \
b7c7d6c1 487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
f899b4b8
TS
488
489#define ADDRESS_ADDI_INSN \
b7c7d6c1 490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
f899b4b8
TS
491
492#define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495#define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
a4672219 498/* Return true if the given CPU supports the MIPS16 ASE. */
3396de36
TS
499#define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
a4672219 502
2309ddf2 503/* Return true if the given CPU supports the microMIPS ASE. */
df58fc94
RS
504#define CPU_HAS_MICROMIPS(cpu) 0
505
60b63b72
RS
506/* True if CPU has a dror instruction. */
507#define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509/* True if CPU has a ror instruction. */
510#define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
dd6a37e7 512/* True if CPU is in the Octeon family */
2c629856
N
513#define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
dd6a37e7 515
dd3cbb7e 516/* True if CPU has seq/sne and seqi/snei instructions. */
dd6a37e7 517#define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
dd3cbb7e 518
0aa27725
RS
519/* True, if CPU has support for ldc1 and sdc1. */
520#define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
c8978940
CD
523/* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535#define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
ae52f483
AB
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
7361da2c 540 || mips_opts.isa == ISA_MIPS32R6 \
c8978940
CD
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
ae52f483
AB
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
7361da2c 545 || mips_opts.isa == ISA_MIPS64R6 \
c8978940 546 || mips_opts.arch == CPU_R4010 \
e407c74b 547 || mips_opts.arch == CPU_R5900 \
c8978940
CD
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
3aa3176b
TS
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
c8978940 552 || mips_opts.arch == CPU_RM7000 \
c8978940 553 || mips_opts.arch == CPU_VR5500 \
df58fc94 554 || mips_opts.micromips \
c8978940 555 )
252b5132
RH
556
557/* Whether the processor uses hardware interlocks to protect reads
81912461
ILT
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
67dc82bc 560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
df58fc94
RS
561 level I and microMIPS mode instructions are always interlocked. */
562#define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
e407c74b 565 || mips_opts.arch == CPU_R5900 \
df58fc94
RS
566 || mips_opts.micromips \
567 )
252b5132 568
81912461
ILT
569/* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
43885403
MF
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
81912461 574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
df58fc94
RS
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
bdaaa2e1 577/* Itbl support may require additional care here. */
81912461
ILT
578#define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
df58fc94 583 || mips_opts.micromips \
81912461
ILT
584 )
585
586/* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
df58fc94
RS
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592#define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
252b5132 596
6b76fefe
CM
597/* Is this a mfhi or mflo instruction? */
598#define MF_HILO_INSN(PINFO) \
b19e8a9b
AN
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
df58fc94
RS
601/* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604#define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
42429eac 607/* The minimum and maximum signed values that can be stored in a GPR. */
bad1aba3 608#define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
42429eac
RS
609#define GPR_SMIN (-GPR_SMAX - 1)
610
252b5132
RH
611/* MIPS PIC level. */
612
a161fe53 613enum mips_pic_level mips_pic;
252b5132 614
c9914766 615/* 1 if we should generate 32 bit offsets from the $gp register in
252b5132 616 SVR4_PIC mode. Currently has no meaning in other modes. */
c9914766 617static int mips_big_got = 0;
252b5132
RH
618
619/* 1 if trap instructions should used for overflow rather than break
620 instructions. */
c9914766 621static int mips_trap = 0;
252b5132 622
119d663a 623/* 1 if double width floating point constants should not be constructed
b6ff326e 624 by assembling two single width halves into two single width floating
119d663a
NC
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
d547a75e 627 in the status register, and the setting of this bit cannot be determined
119d663a
NC
628 automatically at assemble time. */
629static int mips_disable_float_construction;
630
252b5132
RH
631/* Non-zero if any .set noreorder directives were used. */
632
633static int mips_any_noreorder;
634
6b76fefe
CM
635/* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637static int mips_7000_hilo_fix;
638
02ffd3e4 639/* The size of objects in the small data section. */
156c2f8b 640static unsigned int g_switch_value = 8;
252b5132
RH
641/* Whether the -G option was used. */
642static int g_switch_seen = 0;
643
644#define N_RMASK 0xc4
645#define N_VFP 0xd4
646
647/* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
fba2b7f9
GK
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
252b5132
RH
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
17a2f251 659static int nopic_need_relax (symbolS *, int);
252b5132
RH
660
661/* handle of the OPCODE hash table */
662static struct hash_control *op_hash = NULL;
663
664/* The opcode hash table we use for the mips16. */
665static struct hash_control *mips16_op_hash = NULL;
666
df58fc94
RS
667/* The opcode hash table we use for the microMIPS ASE. */
668static struct hash_control *micromips_op_hash = NULL;
669
252b5132
RH
670/* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672const char comment_chars[] = "#";
673
674/* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677/* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
bdaaa2e1 679 #NO_APP at the beginning of its output. */
252b5132
RH
680/* Also note that C style comments are always supported. */
681const char line_comment_chars[] = "#";
682
bdaaa2e1 683/* This array holds machine specific line separator characters. */
63a0b638 684const char line_separator_chars[] = ";";
252b5132
RH
685
686/* Chars that can be used to separate mant from exp in floating point nums */
687const char EXP_CHARS[] = "eE";
688
689/* Chars that mean this number is a floating point constant */
690/* As in 0f12.456 */
691/* or 0d1.2345e12 */
692const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694/* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
e3de51ce
RS
699/* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705};
706
707/* Information about an error that was found while assembling the current
708 instruction. */
709struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732};
733
734/* The error that should be reported for the current instruction. */
735static struct mips_insn_error insn_error;
252b5132
RH
736
737static int auto_align = 1;
738
739/* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743static offsetT mips_cprestore_offset = -1;
744
67c1ffbe 745/* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
6478892d 746 more optimizations, it can use a register value instead of a memory-saved
956cd1d6 747 offset and even an other register than $gp as global pointer. */
6478892d
TS
748static offsetT mips_cpreturn_offset = -1;
749static int mips_cpreturn_register = -1;
750static int mips_gp_register = GP;
def2e0dd 751static int mips_gprel_offset = 0;
6478892d 752
7a621144
DJ
753/* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755static int mips_cprestore_valid = 0;
756
252b5132
RH
757/* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759static int mips_frame_reg = SP;
760
7a621144
DJ
761/* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763static int mips_frame_reg_valid = 0;
764
252b5132
RH
765/* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768/* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772static int mips_optimize = 2;
773
774/* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776static int mips_debug = 0;
777
7d8e00cf
RS
778/* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779#define MAX_VR4130_NOPS 4
780
781/* The maximum number of NOPs needed to fill delay slots. */
782#define MAX_DELAY_NOPS 2
783
784/* The maximum number of NOPs needed for any purpose. */
785#define MAX_NOPS 4
71400594
RS
786
787/* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792static struct mips_cl_insn history[1 + MAX_NOPS];
252b5132 793
fc76e730 794/* Arrays of operands for each instruction. */
14daeee3 795#define MAX_OPERANDS 6
fc76e730
RS
796struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798};
799static struct mips_operand_array *mips_operands;
800static struct mips_operand_array *mips16_operands;
801static struct mips_operand_array *micromips_operands;
802
1e915849 803/* Nop instructions used by emit_nop. */
df58fc94
RS
804static struct mips_cl_insn nop_insn;
805static struct mips_cl_insn mips16_nop_insn;
806static struct mips_cl_insn micromips_nop16_insn;
807static struct mips_cl_insn micromips_nop32_insn;
1e915849
RS
808
809/* The appropriate nop for the current mode. */
833794fc
MR
810#define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
df58fc94
RS
817
818/* The size of NOP_INSN in bytes. */
833794fc
MR
819#define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
252b5132 822
252b5132
RH
823/* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827static fragS *prev_nop_frag;
828
829/* The number of nop instructions we created in prev_nop_frag. */
830static int prev_nop_frag_holds;
831
832/* The number of nop instructions that we know we need in
bdaaa2e1 833 prev_nop_frag. */
252b5132
RH
834static int prev_nop_frag_required;
835
836/* The number of instructions we've seen since prev_nop_frag. */
837static int prev_nop_frag_since;
838
e8044f35
RS
839/* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
252b5132
RH
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
bdaaa2e1 848 corresponding LO relocation. */
252b5132 849
e972090a
NC
850struct mips_hi_fixup
851{
252b5132
RH
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858};
859
860/* The list of unmatched HI relocs. */
861
862static struct mips_hi_fixup *mips_hi_fixup_list;
863
64bdfcaf
RS
864/* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867static fragS *prev_reloc_op_frag;
868
252b5132
RH
869/* Map mips16 register numbers to normal MIPS register numbers. */
870
e972090a
NC
871static const unsigned int mips16_to_32_reg_map[] =
872{
252b5132
RH
873 16, 17, 2, 3, 4, 5, 6, 7
874};
60b63b72 875
df58fc94
RS
876/* Map microMIPS register numbers to normal MIPS register numbers. */
877
df58fc94 878#define micromips_to_32_reg_d_map mips16_to_32_reg_map
df58fc94
RS
879
880/* The microMIPS registers with type h. */
e76ff5ab 881static const unsigned int micromips_to_32_reg_h_map1[] =
df58fc94
RS
882{
883 5, 5, 6, 4, 4, 4, 4, 4
884};
e76ff5ab 885static const unsigned int micromips_to_32_reg_h_map2[] =
df58fc94
RS
886{
887 6, 7, 7, 21, 22, 5, 6, 7
888};
889
df58fc94
RS
890/* The microMIPS registers with type m. */
891static const unsigned int micromips_to_32_reg_m_map[] =
892{
893 0, 17, 2, 3, 16, 18, 19, 20
894};
895
896#define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
71400594
RS
898/* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
c67a084a
NC
900enum fix_vr4120_class
901{
71400594
RS
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909};
910
c67a084a
NC
911/* ...likewise -mfix-loongson2f-jump. */
912static bfd_boolean mips_fix_loongson2f_jump;
913
914/* ...likewise -mfix-loongson2f-nop. */
915static bfd_boolean mips_fix_loongson2f_nop;
916
917/* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918static bfd_boolean mips_fix_loongson2f;
919
71400594
RS
920/* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925/* True if -mfix-vr4120 is in force. */
d766e8ec 926static int mips_fix_vr4120;
4a6a3df4 927
7d8e00cf
RS
928/* ...likewise -mfix-vr4130. */
929static int mips_fix_vr4130;
930
6a32d874
CM
931/* ...likewise -mfix-24k. */
932static int mips_fix_24k;
933
a8d14a88
CM
934/* ...likewise -mfix-rm7000 */
935static int mips_fix_rm7000;
936
d954098f
DD
937/* ...likewise -mfix-cn63xxp1 */
938static bfd_boolean mips_fix_cn63xxp1;
939
4a6a3df4
AO
940/* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945static int mips_relax_branch;
8b10b0b3
MR
946
947/* TRUE if checks are suppressed for invalid branches between ISA modes.
948 Needed for broken assembly produced by some GCC versions and some
949 sloppy code out there, where branches to data labels are present. */
950static bfd_boolean mips_ignore_branch_isa;
252b5132 951\f
4d7206a2
RS
952/* The expansion of many macros depends on the type of symbol that
953 they refer to. For example, when generating position-dependent code,
954 a macro that refers to a symbol may have two different expansions,
955 one which uses GP-relative addresses and one which uses absolute
956 addresses. When generating SVR4-style PIC, a macro may have
957 different expansions for local and global symbols.
958
959 We handle these situations by generating both sequences and putting
960 them in variant frags. In position-dependent code, the first sequence
961 will be the GP-relative one and the second sequence will be the
962 absolute one. In SVR4 PIC, the first sequence will be for global
963 symbols and the second will be for local symbols.
964
584892a6
RS
965 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
966 SECOND are the lengths of the two sequences in bytes. These fields
967 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
968 the subtype has the following flags:
4d7206a2 969
584892a6
RS
970 RELAX_USE_SECOND
971 Set if it has been decided that we should use the second
972 sequence instead of the first.
973
974 RELAX_SECOND_LONGER
975 Set in the first variant frag if the macro's second implementation
976 is longer than its first. This refers to the macro as a whole,
977 not an individual relaxation.
978
979 RELAX_NOMACRO
980 Set in the first variant frag if the macro appeared in a .set nomacro
981 block and if one alternative requires a warning but the other does not.
982
983 RELAX_DELAY_SLOT
984 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
985 delay slot.
4d7206a2 986
df58fc94
RS
987 RELAX_DELAY_SLOT_16BIT
988 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
989 16-bit instruction.
990
991 RELAX_DELAY_SLOT_SIZE_FIRST
992 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
993 the macro is of the wrong size for the branch delay slot.
994
995 RELAX_DELAY_SLOT_SIZE_SECOND
996 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
997 the macro is of the wrong size for the branch delay slot.
998
4d7206a2
RS
999 The frag's "opcode" points to the first fixup for relaxable code.
1000
1001 Relaxable macros are generated using a sequence such as:
1002
1003 relax_start (SYMBOL);
1004 ... generate first expansion ...
1005 relax_switch ();
1006 ... generate second expansion ...
1007 relax_end ();
1008
1009 The code and fixups for the unwanted alternative are discarded
1010 by md_convert_frag. */
584892a6 1011#define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
4d7206a2 1012
584892a6
RS
1013#define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1014#define RELAX_SECOND(X) ((X) & 0xff)
1015#define RELAX_USE_SECOND 0x10000
1016#define RELAX_SECOND_LONGER 0x20000
1017#define RELAX_NOMACRO 0x40000
1018#define RELAX_DELAY_SLOT 0x80000
df58fc94
RS
1019#define RELAX_DELAY_SLOT_16BIT 0x100000
1020#define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1021#define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
252b5132 1022
4a6a3df4
AO
1023/* Branch without likely bit. If label is out of range, we turn:
1024
134c0c8b 1025 beq reg1, reg2, label
4a6a3df4
AO
1026 delay slot
1027
1028 into
1029
1030 bne reg1, reg2, 0f
1031 nop
1032 j label
1033 0: delay slot
1034
1035 with the following opcode replacements:
1036
1037 beq <-> bne
1038 blez <-> bgtz
1039 bltz <-> bgez
1040 bc1f <-> bc1t
1041
1042 bltzal <-> bgezal (with jal label instead of j label)
1043
1044 Even though keeping the delay slot instruction in the delay slot of
1045 the branch would be more efficient, it would be very tricky to do
1046 correctly, because we'd have to introduce a variable frag *after*
1047 the delay slot instruction, and expand that instead. Let's do it
1048 the easy way for now, even if the branch-not-taken case now costs
1049 one additional instruction. Out-of-range branches are not supposed
1050 to be common, anyway.
1051
1052 Branch likely. If label is out of range, we turn:
1053
1054 beql reg1, reg2, label
1055 delay slot (annulled if branch not taken)
1056
1057 into
1058
1059 beql reg1, reg2, 1f
1060 nop
1061 beql $0, $0, 2f
1062 nop
1063 1: j[al] label
1064 delay slot (executed only if branch taken)
1065 2:
1066
1067 It would be possible to generate a shorter sequence by losing the
1068 likely bit, generating something like:
b34976b6 1069
4a6a3df4
AO
1070 bne reg1, reg2, 0f
1071 nop
1072 j[al] label
1073 delay slot (executed only if branch taken)
1074 0:
1075
1076 beql -> bne
1077 bnel -> beq
1078 blezl -> bgtz
1079 bgtzl -> blez
1080 bltzl -> bgez
1081 bgezl -> bltz
1082 bc1fl -> bc1t
1083 bc1tl -> bc1f
1084
1085 bltzall -> bgezal (with jal label instead of j label)
1086 bgezall -> bltzal (ditto)
1087
1088
1089 but it's not clear that it would actually improve performance. */
66b3e8da
MR
1090#define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1091 ((relax_substateT) \
1092 (0xc0000000 \
1093 | ((at) & 0x1f) \
1094 | ((toofar) ? 0x20 : 0) \
1095 | ((link) ? 0x40 : 0) \
1096 | ((likely) ? 0x80 : 0) \
1097 | ((uncond) ? 0x100 : 0)))
4a6a3df4 1098#define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
66b3e8da
MR
1099#define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1100#define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1101#define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1102#define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1103#define RELAX_BRANCH_AT(i) ((i) & 0x1f)
4a6a3df4 1104
252b5132
RH
1105/* For mips16 code, we use an entirely different form of relaxation.
1106 mips16 supports two versions of most instructions which take
1107 immediate values: a small one which takes some small value, and a
1108 larger one which takes a 16 bit value. Since branches also follow
1109 this pattern, relaxing these values is required.
1110
1111 We can assemble both mips16 and normal MIPS code in a single
1112 object. Therefore, we need to support this type of relaxation at
1113 the same time that we support the relaxation described above. We
1114 use the high bit of the subtype field to distinguish these cases.
1115
1116 The information we store for this type of relaxation is the
1117 argument code found in the opcode file for this relocation, whether
1118 the user explicitly requested a small or extended form, and whether
1119 the relocation is in a jump or jal delay slot. That tells us the
1120 size of the value, and how it should be stored. We also store
1121 whether the fragment is considered to be extended or not. We also
1122 store whether this is known to be a branch to a different section,
1123 whether we have tried to relax this frag yet, and whether we have
1124 ever extended a PC relative fragment because of a shift count. */
1125#define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1126 (0x80000000 \
1127 | ((type) & 0xff) \
1128 | ((small) ? 0x100 : 0) \
1129 | ((ext) ? 0x200 : 0) \
1130 | ((dslot) ? 0x400 : 0) \
1131 | ((jal_dslot) ? 0x800 : 0))
4a6a3df4 1132#define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
252b5132
RH
1133#define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1134#define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1135#define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1136#define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1137#define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1138#define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1139#define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1140#define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1141#define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1142#define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1143#define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
885add95 1144
df58fc94
RS
1145/* For microMIPS code, we use relaxation similar to one we use for
1146 MIPS16 code. Some instructions that take immediate values support
1147 two encodings: a small one which takes some small value, and a
1148 larger one which takes a 16 bit value. As some branches also follow
1149 this pattern, relaxing these values is required.
1150
1151 We can assemble both microMIPS and normal MIPS code in a single
1152 object. Therefore, we need to support this type of relaxation at
1153 the same time that we support the relaxation described above. We
1154 use one of the high bits of the subtype field to distinguish these
1155 cases.
1156
1157 The information we store for this type of relaxation is the argument
1158 code found in the opcode file for this relocation, the register
8484fb75
MR
1159 selected as the assembler temporary, whether in the 32-bit
1160 instruction mode, whether the branch is unconditional, whether it is
7bd374a4
MR
1161 compact, whether there is no delay-slot instruction available to fill
1162 in, whether it stores the link address implicitly in $ra, whether
1163 relaxation of out-of-range 32-bit branches to a sequence of
8484fb75
MR
1164 instructions is enabled, and whether the displacement of a branch is
1165 too large to fit as an immediate argument of a 16-bit and a 32-bit
1166 branch, respectively. */
1167#define RELAX_MICROMIPS_ENCODE(type, at, insn32, \
7bd374a4 1168 uncond, compact, link, nods, \
40209cad
MR
1169 relax32, toofar16, toofar32) \
1170 (0x40000000 \
1171 | ((type) & 0xff) \
1172 | (((at) & 0x1f) << 8) \
8484fb75
MR
1173 | ((insn32) ? 0x2000 : 0) \
1174 | ((uncond) ? 0x4000 : 0) \
1175 | ((compact) ? 0x8000 : 0) \
1176 | ((link) ? 0x10000 : 0) \
7bd374a4
MR
1177 | ((nods) ? 0x20000 : 0) \
1178 | ((relax32) ? 0x40000 : 0) \
1179 | ((toofar16) ? 0x80000 : 0) \
1180 | ((toofar32) ? 0x100000 : 0))
df58fc94
RS
1181#define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1182#define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1183#define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
8484fb75
MR
1184#define RELAX_MICROMIPS_INSN32(i) (((i) & 0x2000) != 0)
1185#define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x4000) != 0)
1186#define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x8000) != 0)
1187#define RELAX_MICROMIPS_LINK(i) (((i) & 0x10000) != 0)
7bd374a4
MR
1188#define RELAX_MICROMIPS_NODS(i) (((i) & 0x20000) != 0)
1189#define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x40000) != 0)
8484fb75 1190
7bd374a4
MR
1191#define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x80000) != 0)
1192#define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x80000)
1193#define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x80000)
1194#define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x100000) != 0)
1195#define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x100000)
1196#define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x100000)
df58fc94 1197
43c0598f
RS
1198/* Sign-extend 16-bit value X. */
1199#define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1200
885add95
CD
1201/* Is the given value a sign-extended 32-bit value? */
1202#define IS_SEXT_32BIT_NUM(x) \
1203 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1204 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1205
1206/* Is the given value a sign-extended 16-bit value? */
1207#define IS_SEXT_16BIT_NUM(x) \
1208 (((x) &~ (offsetT) 0x7fff) == 0 \
1209 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1210
df58fc94
RS
1211/* Is the given value a sign-extended 12-bit value? */
1212#define IS_SEXT_12BIT_NUM(x) \
1213 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1214
7f3c4072
CM
1215/* Is the given value a sign-extended 9-bit value? */
1216#define IS_SEXT_9BIT_NUM(x) \
1217 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1218
2051e8c4
MR
1219/* Is the given value a zero-extended 32-bit value? Or a negated one? */
1220#define IS_ZEXT_32BIT_NUM(x) \
1221 (((x) &~ (offsetT) 0xffffffff) == 0 \
1222 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1223
bf12938e
RS
1224/* Extract bits MASK << SHIFT from STRUCT and shift them right
1225 SHIFT places. */
1226#define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1227 (((STRUCT) >> (SHIFT)) & (MASK))
1228
bf12938e 1229/* Extract the operand given by FIELD from mips_cl_insn INSN. */
df58fc94
RS
1230#define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1231 (!(MICROMIPS) \
1232 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1233 : EXTRACT_BITS ((INSN).insn_opcode, \
1234 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
bf12938e
RS
1235#define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1236 EXTRACT_BITS ((INSN).insn_opcode, \
1237 MIPS16OP_MASK_##FIELD, \
1238 MIPS16OP_SH_##FIELD)
5c04167a
RS
1239
1240/* The MIPS16 EXTEND opcode, shifted left 16 places. */
1241#define MIPS16_EXTEND (0xf000U << 16)
4d7206a2 1242\f
df58fc94
RS
1243/* Whether or not we are emitting a branch-likely macro. */
1244static bfd_boolean emit_branch_likely_macro = FALSE;
1245
4d7206a2
RS
1246/* Global variables used when generating relaxable macros. See the
1247 comment above RELAX_ENCODE for more details about how relaxation
1248 is used. */
1249static struct {
1250 /* 0 if we're not emitting a relaxable macro.
1251 1 if we're emitting the first of the two relaxation alternatives.
1252 2 if we're emitting the second alternative. */
1253 int sequence;
1254
1255 /* The first relaxable fixup in the current frag. (In other words,
1256 the first fixup that refers to relaxable code.) */
1257 fixS *first_fixup;
1258
1259 /* sizes[0] says how many bytes of the first alternative are stored in
1260 the current frag. Likewise sizes[1] for the second alternative. */
1261 unsigned int sizes[2];
1262
1263 /* The symbol on which the choice of sequence depends. */
1264 symbolS *symbol;
1265} mips_relax;
252b5132 1266\f
584892a6
RS
1267/* Global variables used to decide whether a macro needs a warning. */
1268static struct {
1269 /* True if the macro is in a branch delay slot. */
1270 bfd_boolean delay_slot_p;
1271
df58fc94
RS
1272 /* Set to the length in bytes required if the macro is in a delay slot
1273 that requires a specific length of instruction, otherwise zero. */
1274 unsigned int delay_slot_length;
1275
584892a6
RS
1276 /* For relaxable macros, sizes[0] is the length of the first alternative
1277 in bytes and sizes[1] is the length of the second alternative.
1278 For non-relaxable macros, both elements give the length of the
1279 macro in bytes. */
1280 unsigned int sizes[2];
1281
df58fc94
RS
1282 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1283 instruction of the first alternative in bytes and first_insn_sizes[1]
1284 is the length of the first instruction of the second alternative.
1285 For non-relaxable macros, both elements give the length of the first
1286 instruction in bytes.
1287
1288 Set to zero if we haven't yet seen the first instruction. */
1289 unsigned int first_insn_sizes[2];
1290
1291 /* For relaxable macros, insns[0] is the number of instructions for the
1292 first alternative and insns[1] is the number of instructions for the
1293 second alternative.
1294
1295 For non-relaxable macros, both elements give the number of
1296 instructions for the macro. */
1297 unsigned int insns[2];
1298
584892a6
RS
1299 /* The first variant frag for this macro. */
1300 fragS *first_frag;
1301} mips_macro_warning;
1302\f
252b5132
RH
1303/* Prototypes for static functions. */
1304
252b5132
RH
1305enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1306
b34976b6 1307static void append_insn
df58fc94
RS
1308 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1309 bfd_boolean expansionp);
7d10b47d 1310static void mips_no_prev_insn (void);
c67a084a 1311static void macro_build (expressionS *, const char *, const char *, ...);
b34976b6 1312static void mips16_macro_build
03ea81db 1313 (expressionS *, const char *, const char *, va_list *);
67c0d1eb 1314static void load_register (int, expressionS *, int);
584892a6
RS
1315static void macro_start (void);
1316static void macro_end (void);
833794fc 1317static void macro (struct mips_cl_insn *ip, char *str);
17a2f251 1318static void mips16_macro (struct mips_cl_insn * ip);
17a2f251
TS
1319static void mips_ip (char *str, struct mips_cl_insn * ip);
1320static void mips16_ip (char *str, struct mips_cl_insn * ip);
b34976b6 1321static void mips16_immed
3b4dbbbf 1322 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
43c0598f 1323 unsigned int, unsigned long *);
5e0116d5 1324static size_t my_getSmallExpression
17a2f251
TS
1325 (expressionS *, bfd_reloc_code_real_type *, char *);
1326static void my_getExpression (expressionS *, char *);
1327static void s_align (int);
1328static void s_change_sec (int);
1329static void s_change_section (int);
1330static void s_cons (int);
1331static void s_float_cons (int);
1332static void s_mips_globl (int);
1333static void s_option (int);
1334static void s_mipsset (int);
1335static void s_abicalls (int);
1336static void s_cpload (int);
1337static void s_cpsetup (int);
1338static void s_cplocal (int);
1339static void s_cprestore (int);
1340static void s_cpreturn (int);
741d6ea8
JM
1341static void s_dtprelword (int);
1342static void s_dtpreldword (int);
d0f13682
CLT
1343static void s_tprelword (int);
1344static void s_tpreldword (int);
17a2f251
TS
1345static void s_gpvalue (int);
1346static void s_gpword (int);
1347static void s_gpdword (int);
a3f278e2 1348static void s_ehword (int);
17a2f251
TS
1349static void s_cpadd (int);
1350static void s_insn (int);
ba92f887 1351static void s_nan (int);
919731af 1352static void s_module (int);
17a2f251
TS
1353static void s_mips_ent (int);
1354static void s_mips_end (int);
1355static void s_mips_frame (int);
1356static void s_mips_mask (int reg_type);
1357static void s_mips_stab (int);
1358static void s_mips_weakext (int);
1359static void s_mips_file (int);
1360static void s_mips_loc (int);
9e009953 1361static bfd_boolean pic_need_relax (symbolS *);
4a6a3df4 1362static int relaxed_branch_length (fragS *, asection *, int);
df58fc94
RS
1363static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1364static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
919731af 1365static void file_mips_check_options (void);
e7af610e
NC
1366
1367/* Table and functions used to map between CPU/ISA names, and
1368 ISA levels, and CPU numbers. */
1369
e972090a
NC
1370struct mips_cpu_info
1371{
e7af610e 1372 const char *name; /* CPU or ISA name. */
d16afab6
RS
1373 int flags; /* MIPS_CPU_* flags. */
1374 int ase; /* Set of ASEs implemented by the CPU. */
e7af610e
NC
1375 int isa; /* ISA level. */
1376 int cpu; /* CPU number (default CPU if ISA). */
1377};
1378
ad3fea08 1379#define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
ad3fea08 1380
17a2f251
TS
1381static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1382static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1383static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
252b5132 1384\f
c31f3936
RS
1385/* Command-line options. */
1386const char *md_shortopts = "O::g::G:";
1387
1388enum options
1389 {
1390 OPTION_MARCH = OPTION_MD_BASE,
1391 OPTION_MTUNE,
1392 OPTION_MIPS1,
1393 OPTION_MIPS2,
1394 OPTION_MIPS3,
1395 OPTION_MIPS4,
1396 OPTION_MIPS5,
1397 OPTION_MIPS32,
1398 OPTION_MIPS64,
1399 OPTION_MIPS32R2,
ae52f483
AB
1400 OPTION_MIPS32R3,
1401 OPTION_MIPS32R5,
7361da2c 1402 OPTION_MIPS32R6,
c31f3936 1403 OPTION_MIPS64R2,
ae52f483
AB
1404 OPTION_MIPS64R3,
1405 OPTION_MIPS64R5,
7361da2c 1406 OPTION_MIPS64R6,
c31f3936
RS
1407 OPTION_MIPS16,
1408 OPTION_NO_MIPS16,
1409 OPTION_MIPS3D,
1410 OPTION_NO_MIPS3D,
1411 OPTION_MDMX,
1412 OPTION_NO_MDMX,
1413 OPTION_DSP,
1414 OPTION_NO_DSP,
1415 OPTION_MT,
1416 OPTION_NO_MT,
1417 OPTION_VIRT,
1418 OPTION_NO_VIRT,
56d438b1
CF
1419 OPTION_MSA,
1420 OPTION_NO_MSA,
c31f3936
RS
1421 OPTION_SMARTMIPS,
1422 OPTION_NO_SMARTMIPS,
1423 OPTION_DSPR2,
1424 OPTION_NO_DSPR2,
8f4f9071
MF
1425 OPTION_DSPR3,
1426 OPTION_NO_DSPR3,
c31f3936
RS
1427 OPTION_EVA,
1428 OPTION_NO_EVA,
7d64c587
AB
1429 OPTION_XPA,
1430 OPTION_NO_XPA,
c31f3936
RS
1431 OPTION_MICROMIPS,
1432 OPTION_NO_MICROMIPS,
1433 OPTION_MCU,
1434 OPTION_NO_MCU,
1435 OPTION_COMPAT_ARCH_BASE,
1436 OPTION_M4650,
1437 OPTION_NO_M4650,
1438 OPTION_M4010,
1439 OPTION_NO_M4010,
1440 OPTION_M4100,
1441 OPTION_NO_M4100,
1442 OPTION_M3900,
1443 OPTION_NO_M3900,
1444 OPTION_M7000_HILO_FIX,
1445 OPTION_MNO_7000_HILO_FIX,
1446 OPTION_FIX_24K,
1447 OPTION_NO_FIX_24K,
a8d14a88
CM
1448 OPTION_FIX_RM7000,
1449 OPTION_NO_FIX_RM7000,
c31f3936
RS
1450 OPTION_FIX_LOONGSON2F_JUMP,
1451 OPTION_NO_FIX_LOONGSON2F_JUMP,
1452 OPTION_FIX_LOONGSON2F_NOP,
1453 OPTION_NO_FIX_LOONGSON2F_NOP,
1454 OPTION_FIX_VR4120,
1455 OPTION_NO_FIX_VR4120,
1456 OPTION_FIX_VR4130,
1457 OPTION_NO_FIX_VR4130,
1458 OPTION_FIX_CN63XXP1,
1459 OPTION_NO_FIX_CN63XXP1,
1460 OPTION_TRAP,
1461 OPTION_BREAK,
1462 OPTION_EB,
1463 OPTION_EL,
1464 OPTION_FP32,
1465 OPTION_GP32,
1466 OPTION_CONSTRUCT_FLOATS,
1467 OPTION_NO_CONSTRUCT_FLOATS,
1468 OPTION_FP64,
351cdf24 1469 OPTION_FPXX,
c31f3936
RS
1470 OPTION_GP64,
1471 OPTION_RELAX_BRANCH,
1472 OPTION_NO_RELAX_BRANCH,
8b10b0b3
MR
1473 OPTION_IGNORE_BRANCH_ISA,
1474 OPTION_NO_IGNORE_BRANCH_ISA,
833794fc
MR
1475 OPTION_INSN32,
1476 OPTION_NO_INSN32,
c31f3936
RS
1477 OPTION_MSHARED,
1478 OPTION_MNO_SHARED,
1479 OPTION_MSYM32,
1480 OPTION_MNO_SYM32,
1481 OPTION_SOFT_FLOAT,
1482 OPTION_HARD_FLOAT,
1483 OPTION_SINGLE_FLOAT,
1484 OPTION_DOUBLE_FLOAT,
1485 OPTION_32,
c31f3936
RS
1486 OPTION_CALL_SHARED,
1487 OPTION_CALL_NONPIC,
1488 OPTION_NON_SHARED,
1489 OPTION_XGOT,
1490 OPTION_MABI,
1491 OPTION_N32,
1492 OPTION_64,
1493 OPTION_MDEBUG,
1494 OPTION_NO_MDEBUG,
1495 OPTION_PDR,
1496 OPTION_NO_PDR,
1497 OPTION_MVXWORKS_PIC,
ba92f887 1498 OPTION_NAN,
351cdf24
MF
1499 OPTION_ODD_SPREG,
1500 OPTION_NO_ODD_SPREG,
c31f3936
RS
1501 OPTION_END_OF_ENUM
1502 };
1503
1504struct option md_longopts[] =
1505{
1506 /* Options which specify architecture. */
1507 {"march", required_argument, NULL, OPTION_MARCH},
1508 {"mtune", required_argument, NULL, OPTION_MTUNE},
1509 {"mips0", no_argument, NULL, OPTION_MIPS1},
1510 {"mips1", no_argument, NULL, OPTION_MIPS1},
1511 {"mips2", no_argument, NULL, OPTION_MIPS2},
1512 {"mips3", no_argument, NULL, OPTION_MIPS3},
1513 {"mips4", no_argument, NULL, OPTION_MIPS4},
1514 {"mips5", no_argument, NULL, OPTION_MIPS5},
1515 {"mips32", no_argument, NULL, OPTION_MIPS32},
1516 {"mips64", no_argument, NULL, OPTION_MIPS64},
1517 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
ae52f483
AB
1518 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1519 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
7361da2c 1520 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
c31f3936 1521 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
ae52f483
AB
1522 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1523 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
7361da2c 1524 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
c31f3936
RS
1525
1526 /* Options which specify Application Specific Extensions (ASEs). */
1527 {"mips16", no_argument, NULL, OPTION_MIPS16},
1528 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1529 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1530 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1531 {"mdmx", no_argument, NULL, OPTION_MDMX},
1532 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1533 {"mdsp", no_argument, NULL, OPTION_DSP},
1534 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1535 {"mmt", no_argument, NULL, OPTION_MT},
1536 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1537 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1538 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1539 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1540 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
8f4f9071
MF
1541 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1542 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
c31f3936
RS
1543 {"meva", no_argument, NULL, OPTION_EVA},
1544 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1545 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1546 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1547 {"mmcu", no_argument, NULL, OPTION_MCU},
1548 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1549 {"mvirt", no_argument, NULL, OPTION_VIRT},
1550 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
56d438b1
CF
1551 {"mmsa", no_argument, NULL, OPTION_MSA},
1552 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
7d64c587
AB
1553 {"mxpa", no_argument, NULL, OPTION_XPA},
1554 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
c31f3936
RS
1555
1556 /* Old-style architecture options. Don't add more of these. */
1557 {"m4650", no_argument, NULL, OPTION_M4650},
1558 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1559 {"m4010", no_argument, NULL, OPTION_M4010},
1560 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1561 {"m4100", no_argument, NULL, OPTION_M4100},
1562 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1563 {"m3900", no_argument, NULL, OPTION_M3900},
1564 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1565
1566 /* Options which enable bug fixes. */
1567 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1568 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1569 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1570 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1571 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1572 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1573 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1574 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1575 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1576 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1577 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1578 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1579 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
a8d14a88
CM
1580 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1581 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
c31f3936
RS
1582 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1583 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1584
1585 /* Miscellaneous options. */
1586 {"trap", no_argument, NULL, OPTION_TRAP},
1587 {"no-break", no_argument, NULL, OPTION_TRAP},
1588 {"break", no_argument, NULL, OPTION_BREAK},
1589 {"no-trap", no_argument, NULL, OPTION_BREAK},
1590 {"EB", no_argument, NULL, OPTION_EB},
1591 {"EL", no_argument, NULL, OPTION_EL},
1592 {"mfp32", no_argument, NULL, OPTION_FP32},
1593 {"mgp32", no_argument, NULL, OPTION_GP32},
1594 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1595 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1596 {"mfp64", no_argument, NULL, OPTION_FP64},
351cdf24 1597 {"mfpxx", no_argument, NULL, OPTION_FPXX},
c31f3936
RS
1598 {"mgp64", no_argument, NULL, OPTION_GP64},
1599 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1600 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
8b10b0b3
MR
1601 {"mignore-branch-isa", no_argument, NULL, OPTION_IGNORE_BRANCH_ISA},
1602 {"mno-ignore-branch-isa", no_argument, NULL, OPTION_NO_IGNORE_BRANCH_ISA},
833794fc
MR
1603 {"minsn32", no_argument, NULL, OPTION_INSN32},
1604 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
c31f3936
RS
1605 {"mshared", no_argument, NULL, OPTION_MSHARED},
1606 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1607 {"msym32", no_argument, NULL, OPTION_MSYM32},
1608 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1609 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1610 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1611 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1612 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
351cdf24
MF
1613 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1614 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
c31f3936
RS
1615
1616 /* Strictly speaking this next option is ELF specific,
1617 but we allow it for other ports as well in order to
1618 make testing easier. */
1619 {"32", no_argument, NULL, OPTION_32},
1620
1621 /* ELF-specific options. */
c31f3936
RS
1622 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1623 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1624 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1625 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1626 {"xgot", no_argument, NULL, OPTION_XGOT},
1627 {"mabi", required_argument, NULL, OPTION_MABI},
1628 {"n32", no_argument, NULL, OPTION_N32},
1629 {"64", no_argument, NULL, OPTION_64},
1630 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1631 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1632 {"mpdr", no_argument, NULL, OPTION_PDR},
1633 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1634 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
ba92f887 1635 {"mnan", required_argument, NULL, OPTION_NAN},
c31f3936
RS
1636
1637 {NULL, no_argument, NULL, 0}
1638};
1639size_t md_longopts_size = sizeof (md_longopts);
1640\f
c6278170
RS
1641/* Information about either an Application Specific Extension or an
1642 optional architecture feature that, for simplicity, we treat in the
1643 same way as an ASE. */
1644struct mips_ase
1645{
1646 /* The name of the ASE, used in both the command-line and .set options. */
1647 const char *name;
1648
1649 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1650 and 64-bit architectures, the flags here refer to the subset that
1651 is available on both. */
1652 unsigned int flags;
1653
1654 /* The ASE_* flag used for instructions that are available on 64-bit
1655 architectures but that are not included in FLAGS. */
1656 unsigned int flags64;
1657
1658 /* The command-line options that turn the ASE on and off. */
1659 int option_on;
1660 int option_off;
1661
1662 /* The minimum required architecture revisions for MIPS32, MIPS64,
1663 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1664 int mips32_rev;
1665 int mips64_rev;
1666 int micromips32_rev;
1667 int micromips64_rev;
7361da2c
AB
1668
1669 /* The architecture where the ASE was removed or -1 if the extension has not
1670 been removed. */
1671 int rem_rev;
c6278170
RS
1672};
1673
1674/* A table of all supported ASEs. */
1675static const struct mips_ase mips_ases[] = {
1676 { "dsp", ASE_DSP, ASE_DSP64,
1677 OPTION_DSP, OPTION_NO_DSP,
7361da2c
AB
1678 2, 2, 2, 2,
1679 -1 },
c6278170
RS
1680
1681 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1682 OPTION_DSPR2, OPTION_NO_DSPR2,
7361da2c
AB
1683 2, 2, 2, 2,
1684 -1 },
c6278170 1685
8f4f9071
MF
1686 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1687 OPTION_DSPR3, OPTION_NO_DSPR3,
1688 6, 6, -1, -1,
1689 -1 },
1690
c6278170
RS
1691 { "eva", ASE_EVA, 0,
1692 OPTION_EVA, OPTION_NO_EVA,
7361da2c
AB
1693 2, 2, 2, 2,
1694 -1 },
c6278170
RS
1695
1696 { "mcu", ASE_MCU, 0,
1697 OPTION_MCU, OPTION_NO_MCU,
7361da2c
AB
1698 2, 2, 2, 2,
1699 -1 },
c6278170
RS
1700
1701 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1702 { "mdmx", ASE_MDMX, 0,
1703 OPTION_MDMX, OPTION_NO_MDMX,
7361da2c
AB
1704 -1, 1, -1, -1,
1705 6 },
c6278170
RS
1706
1707 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1708 { "mips3d", ASE_MIPS3D, 0,
1709 OPTION_MIPS3D, OPTION_NO_MIPS3D,
7361da2c
AB
1710 2, 1, -1, -1,
1711 6 },
c6278170
RS
1712
1713 { "mt", ASE_MT, 0,
1714 OPTION_MT, OPTION_NO_MT,
7361da2c
AB
1715 2, 2, -1, -1,
1716 -1 },
c6278170
RS
1717
1718 { "smartmips", ASE_SMARTMIPS, 0,
1719 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
7361da2c
AB
1720 1, -1, -1, -1,
1721 6 },
c6278170
RS
1722
1723 { "virt", ASE_VIRT, ASE_VIRT64,
1724 OPTION_VIRT, OPTION_NO_VIRT,
7361da2c
AB
1725 2, 2, 2, 2,
1726 -1 },
56d438b1
CF
1727
1728 { "msa", ASE_MSA, ASE_MSA64,
1729 OPTION_MSA, OPTION_NO_MSA,
7361da2c
AB
1730 2, 2, 2, 2,
1731 -1 },
7d64c587
AB
1732
1733 { "xpa", ASE_XPA, 0,
1734 OPTION_XPA, OPTION_NO_XPA,
7361da2c
AB
1735 2, 2, -1, -1,
1736 -1 },
c6278170
RS
1737};
1738
1739/* The set of ASEs that require -mfp64. */
82bda27b 1740#define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
c6278170
RS
1741
1742/* Groups of ASE_* flags that represent different revisions of an ASE. */
1743static const unsigned int mips_ase_groups[] = {
8f4f9071 1744 ASE_DSP | ASE_DSPR2 | ASE_DSPR3
c6278170
RS
1745};
1746\f
252b5132
RH
1747/* Pseudo-op table.
1748
1749 The following pseudo-ops from the Kane and Heinrich MIPS book
1750 should be defined here, but are currently unsupported: .alias,
1751 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1752
1753 The following pseudo-ops from the Kane and Heinrich MIPS book are
1754 specific to the type of debugging information being generated, and
1755 should be defined by the object format: .aent, .begin, .bend,
1756 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1757 .vreg.
1758
1759 The following pseudo-ops from the Kane and Heinrich MIPS book are
1760 not MIPS CPU specific, but are also not specific to the object file
1761 format. This file is probably the best place to define them, but
d84bcf09 1762 they are not currently supported: .asm0, .endr, .lab, .struct. */
252b5132 1763
e972090a
NC
1764static const pseudo_typeS mips_pseudo_table[] =
1765{
beae10d5 1766 /* MIPS specific pseudo-ops. */
252b5132
RH
1767 {"option", s_option, 0},
1768 {"set", s_mipsset, 0},
1769 {"rdata", s_change_sec, 'r'},
1770 {"sdata", s_change_sec, 's'},
1771 {"livereg", s_ignore, 0},
1772 {"abicalls", s_abicalls, 0},
1773 {"cpload", s_cpload, 0},
6478892d
TS
1774 {"cpsetup", s_cpsetup, 0},
1775 {"cplocal", s_cplocal, 0},
252b5132 1776 {"cprestore", s_cprestore, 0},
6478892d 1777 {"cpreturn", s_cpreturn, 0},
741d6ea8
JM
1778 {"dtprelword", s_dtprelword, 0},
1779 {"dtpreldword", s_dtpreldword, 0},
d0f13682
CLT
1780 {"tprelword", s_tprelword, 0},
1781 {"tpreldword", s_tpreldword, 0},
6478892d 1782 {"gpvalue", s_gpvalue, 0},
252b5132 1783 {"gpword", s_gpword, 0},
10181a0d 1784 {"gpdword", s_gpdword, 0},
a3f278e2 1785 {"ehword", s_ehword, 0},
252b5132
RH
1786 {"cpadd", s_cpadd, 0},
1787 {"insn", s_insn, 0},
ba92f887 1788 {"nan", s_nan, 0},
919731af 1789 {"module", s_module, 0},
252b5132 1790
beae10d5 1791 /* Relatively generic pseudo-ops that happen to be used on MIPS
252b5132 1792 chips. */
38a57ae7 1793 {"asciiz", stringer, 8 + 1},
252b5132
RH
1794 {"bss", s_change_sec, 'b'},
1795 {"err", s_err, 0},
1796 {"half", s_cons, 1},
1797 {"dword", s_cons, 3},
1798 {"weakext", s_mips_weakext, 0},
7c752c2a
TS
1799 {"origin", s_org, 0},
1800 {"repeat", s_rept, 0},
252b5132 1801
998b3c36
MR
1802 /* For MIPS this is non-standard, but we define it for consistency. */
1803 {"sbss", s_change_sec, 'B'},
1804
beae10d5 1805 /* These pseudo-ops are defined in read.c, but must be overridden
252b5132
RH
1806 here for one reason or another. */
1807 {"align", s_align, 0},
1808 {"byte", s_cons, 0},
1809 {"data", s_change_sec, 'd'},
1810 {"double", s_float_cons, 'd'},
1811 {"float", s_float_cons, 'f'},
1812 {"globl", s_mips_globl, 0},
1813 {"global", s_mips_globl, 0},
1814 {"hword", s_cons, 1},
1815 {"int", s_cons, 2},
1816 {"long", s_cons, 2},
1817 {"octa", s_cons, 4},
1818 {"quad", s_cons, 3},
cca86cc8 1819 {"section", s_change_section, 0},
252b5132
RH
1820 {"short", s_cons, 1},
1821 {"single", s_float_cons, 'f'},
754e2bb9 1822 {"stabd", s_mips_stab, 'd'},
252b5132 1823 {"stabn", s_mips_stab, 'n'},
754e2bb9 1824 {"stabs", s_mips_stab, 's'},
252b5132
RH
1825 {"text", s_change_sec, 't'},
1826 {"word", s_cons, 2},
add56521 1827
add56521 1828 { "extern", ecoff_directive_extern, 0},
add56521 1829
43841e91 1830 { NULL, NULL, 0 },
252b5132
RH
1831};
1832
e972090a
NC
1833static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1834{
beae10d5
KH
1835 /* These pseudo-ops should be defined by the object file format.
1836 However, a.out doesn't support them, so we have versions here. */
252b5132
RH
1837 {"aent", s_mips_ent, 1},
1838 {"bgnb", s_ignore, 0},
1839 {"end", s_mips_end, 0},
1840 {"endb", s_ignore, 0},
1841 {"ent", s_mips_ent, 0},
c5dd6aab 1842 {"file", s_mips_file, 0},
252b5132
RH
1843 {"fmask", s_mips_mask, 'F'},
1844 {"frame", s_mips_frame, 0},
c5dd6aab 1845 {"loc", s_mips_loc, 0},
252b5132
RH
1846 {"mask", s_mips_mask, 'R'},
1847 {"verstamp", s_ignore, 0},
43841e91 1848 { NULL, NULL, 0 },
252b5132
RH
1849};
1850
3ae8dd8d
MR
1851/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1852 purpose of the `.dc.a' internal pseudo-op. */
1853
1854int
1855mips_address_bytes (void)
1856{
919731af 1857 file_mips_check_options ();
3ae8dd8d
MR
1858 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1859}
1860
17a2f251 1861extern void pop_insert (const pseudo_typeS *);
252b5132
RH
1862
1863void
17a2f251 1864mips_pop_insert (void)
252b5132
RH
1865{
1866 pop_insert (mips_pseudo_table);
1867 if (! ECOFF_DEBUGGING)
1868 pop_insert (mips_nonecoff_pseudo_table);
1869}
1870\f
1871/* Symbols labelling the current insn. */
1872
e972090a
NC
1873struct insn_label_list
1874{
252b5132
RH
1875 struct insn_label_list *next;
1876 symbolS *label;
1877};
1878
252b5132 1879static struct insn_label_list *free_insn_labels;
742a56fe 1880#define label_list tc_segment_info_data.labels
252b5132 1881
17a2f251 1882static void mips_clear_insn_labels (void);
df58fc94
RS
1883static void mips_mark_labels (void);
1884static void mips_compressed_mark_labels (void);
252b5132
RH
1885
1886static inline void
17a2f251 1887mips_clear_insn_labels (void)
252b5132 1888{
ed9e98c2 1889 struct insn_label_list **pl;
a8dbcb85 1890 segment_info_type *si;
252b5132 1891
a8dbcb85
TS
1892 if (now_seg)
1893 {
1894 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1895 ;
3739860c 1896
a8dbcb85
TS
1897 si = seg_info (now_seg);
1898 *pl = si->label_list;
1899 si->label_list = NULL;
1900 }
252b5132 1901}
a8dbcb85 1902
df58fc94
RS
1903/* Mark instruction labels in MIPS16/microMIPS mode. */
1904
1905static inline void
1906mips_mark_labels (void)
1907{
1908 if (HAVE_CODE_COMPRESSION)
1909 mips_compressed_mark_labels ();
1910}
252b5132
RH
1911\f
1912static char *expr_end;
1913
e423441d 1914/* An expression in a macro instruction. This is set by mips_ip and
b0e6f033 1915 mips16_ip and when populated is always an O_constant. */
252b5132
RH
1916
1917static expressionS imm_expr;
252b5132 1918
77bd4346
RS
1919/* The relocatable field in an instruction and the relocs associated
1920 with it. These variables are used for instructions like LUI and
1921 JAL as well as true offsets. They are also used for address
1922 operands in macros. */
252b5132 1923
77bd4346 1924static expressionS offset_expr;
f6688943
TS
1925static bfd_reloc_code_real_type offset_reloc[3]
1926 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 1927
df58fc94
RS
1928/* This is set to the resulting size of the instruction to be produced
1929 by mips16_ip if an explicit extension is used or by mips_ip if an
1930 explicit size is supplied. */
252b5132 1931
df58fc94 1932static unsigned int forced_insn_length;
252b5132 1933
e1b47bd5
RS
1934/* True if we are assembling an instruction. All dot symbols defined during
1935 this time should be treated as code labels. */
1936
1937static bfd_boolean mips_assembling_insn;
1938
ecb4347a
DJ
1939/* The pdr segment for per procedure frame/regmask info. Not used for
1940 ECOFF debugging. */
252b5132
RH
1941
1942static segT pdr_seg;
252b5132 1943
e013f690
TS
1944/* The default target format to use. */
1945
aeffff67
RS
1946#if defined (TE_FreeBSD)
1947#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1948#elif defined (TE_TMIPS)
1949#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1950#else
1951#define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1952#endif
1953
e013f690 1954const char *
17a2f251 1955mips_target_format (void)
e013f690
TS
1956{
1957 switch (OUTPUT_FLAVOR)
1958 {
e013f690 1959 case bfd_target_elf_flavour:
0a44bf69
RS
1960#ifdef TE_VXWORKS
1961 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1962 return (target_big_endian
1963 ? "elf32-bigmips-vxworks"
1964 : "elf32-littlemips-vxworks");
1965#endif
e013f690 1966 return (target_big_endian
cfe86eaa 1967 ? (HAVE_64BIT_OBJECTS
aeffff67 1968 ? ELF_TARGET ("elf64-", "big")
cfe86eaa 1969 : (HAVE_NEWABI
aeffff67
RS
1970 ? ELF_TARGET ("elf32-n", "big")
1971 : ELF_TARGET ("elf32-", "big")))
cfe86eaa 1972 : (HAVE_64BIT_OBJECTS
aeffff67 1973 ? ELF_TARGET ("elf64-", "little")
cfe86eaa 1974 : (HAVE_NEWABI
aeffff67
RS
1975 ? ELF_TARGET ("elf32-n", "little")
1976 : ELF_TARGET ("elf32-", "little"))));
e013f690
TS
1977 default:
1978 abort ();
1979 return NULL;
1980 }
1981}
1982
c6278170
RS
1983/* Return the ISA revision that is currently in use, or 0 if we are
1984 generating code for MIPS V or below. */
1985
1986static int
1987mips_isa_rev (void)
1988{
1989 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1990 return 2;
1991
ae52f483
AB
1992 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1993 return 3;
1994
1995 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1996 return 5;
1997
7361da2c
AB
1998 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
1999 return 6;
2000
c6278170
RS
2001 /* microMIPS implies revision 2 or above. */
2002 if (mips_opts.micromips)
2003 return 2;
2004
2005 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
2006 return 1;
2007
2008 return 0;
2009}
2010
2011/* Return the mask of all ASEs that are revisions of those in FLAGS. */
2012
2013static unsigned int
2014mips_ase_mask (unsigned int flags)
2015{
2016 unsigned int i;
2017
2018 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2019 if (flags & mips_ase_groups[i])
2020 flags |= mips_ase_groups[i];
2021 return flags;
2022}
2023
2024/* Check whether the current ISA supports ASE. Issue a warning if
2025 appropriate. */
2026
2027static void
2028mips_check_isa_supports_ase (const struct mips_ase *ase)
2029{
2030 const char *base;
2031 int min_rev, size;
2032 static unsigned int warned_isa;
2033 static unsigned int warned_fp32;
2034
2035 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2036 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2037 else
2038 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2039 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2040 && (warned_isa & ase->flags) != ase->flags)
2041 {
2042 warned_isa |= ase->flags;
2043 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2044 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2045 if (min_rev < 0)
1661c76c 2046 as_warn (_("the %d-bit %s architecture does not support the"
c6278170
RS
2047 " `%s' extension"), size, base, ase->name);
2048 else
1661c76c 2049 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
c6278170
RS
2050 ase->name, base, size, min_rev);
2051 }
7361da2c
AB
2052 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2053 && (warned_isa & ase->flags) != ase->flags)
2054 {
2055 warned_isa |= ase->flags;
2056 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2057 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2058 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2059 ase->name, base, size, ase->rem_rev);
2060 }
2061
c6278170 2062 if ((ase->flags & FP64_ASES)
0b35dfee 2063 && mips_opts.fp != 64
c6278170
RS
2064 && (warned_fp32 & ase->flags) != ase->flags)
2065 {
2066 warned_fp32 |= ase->flags;
1661c76c 2067 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
c6278170
RS
2068 }
2069}
2070
2071/* Check all enabled ASEs to see whether they are supported by the
2072 chosen architecture. */
2073
2074static void
2075mips_check_isa_supports_ases (void)
2076{
2077 unsigned int i, mask;
2078
2079 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2080 {
2081 mask = mips_ase_mask (mips_ases[i].flags);
2082 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2083 mips_check_isa_supports_ase (&mips_ases[i]);
2084 }
2085}
2086
2087/* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2088 that were affected. */
2089
2090static unsigned int
919731af 2091mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2092 bfd_boolean enabled_p)
c6278170
RS
2093{
2094 unsigned int mask;
2095
2096 mask = mips_ase_mask (ase->flags);
919731af 2097 opts->ase &= ~mask;
c6278170 2098 if (enabled_p)
919731af 2099 opts->ase |= ase->flags;
c6278170
RS
2100 return mask;
2101}
2102
2103/* Return the ASE called NAME, or null if none. */
2104
2105static const struct mips_ase *
2106mips_lookup_ase (const char *name)
2107{
2108 unsigned int i;
2109
2110 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2111 if (strcmp (name, mips_ases[i].name) == 0)
2112 return &mips_ases[i];
2113 return NULL;
2114}
2115
df58fc94 2116/* Return the length of a microMIPS instruction in bytes. If bits of
100b4f2e
MR
2117 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2118 otherwise it is a 32-bit instruction. */
df58fc94
RS
2119
2120static inline unsigned int
2121micromips_insn_length (const struct mips_opcode *mo)
2122{
7fd53920 2123 return mips_opcode_32bit_p (mo) ? 4 : 2;
df58fc94
RS
2124}
2125
5c04167a
RS
2126/* Return the length of MIPS16 instruction OPCODE. */
2127
2128static inline unsigned int
2129mips16_opcode_length (unsigned long opcode)
2130{
2131 return (opcode >> 16) == 0 ? 2 : 4;
2132}
2133
1e915849
RS
2134/* Return the length of instruction INSN. */
2135
2136static inline unsigned int
2137insn_length (const struct mips_cl_insn *insn)
2138{
df58fc94
RS
2139 if (mips_opts.micromips)
2140 return micromips_insn_length (insn->insn_mo);
2141 else if (mips_opts.mips16)
5c04167a 2142 return mips16_opcode_length (insn->insn_opcode);
df58fc94 2143 else
1e915849 2144 return 4;
1e915849
RS
2145}
2146
2147/* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2148
2149static void
2150create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2151{
2152 size_t i;
2153
2154 insn->insn_mo = mo;
1e915849
RS
2155 insn->insn_opcode = mo->match;
2156 insn->frag = NULL;
2157 insn->where = 0;
2158 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2159 insn->fixp[i] = NULL;
2160 insn->fixed_p = (mips_opts.noreorder > 0);
2161 insn->noreorder_p = (mips_opts.noreorder > 0);
2162 insn->mips16_absolute_jump_p = 0;
15be625d 2163 insn->complete_p = 0;
e407c74b 2164 insn->cleared_p = 0;
1e915849
RS
2165}
2166
fc76e730
RS
2167/* Get a list of all the operands in INSN. */
2168
2169static const struct mips_operand_array *
2170insn_operands (const struct mips_cl_insn *insn)
2171{
2172 if (insn->insn_mo >= &mips_opcodes[0]
2173 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2174 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2175
2176 if (insn->insn_mo >= &mips16_opcodes[0]
2177 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2178 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2179
2180 if (insn->insn_mo >= &micromips_opcodes[0]
2181 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2182 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2183
2184 abort ();
2185}
2186
2187/* Get a description of operand OPNO of INSN. */
2188
2189static const struct mips_operand *
2190insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2191{
2192 const struct mips_operand_array *operands;
2193
2194 operands = insn_operands (insn);
2195 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2196 abort ();
2197 return operands->operand[opno];
2198}
2199
e077a1c8
RS
2200/* Install UVAL as the value of OPERAND in INSN. */
2201
2202static inline void
2203insn_insert_operand (struct mips_cl_insn *insn,
2204 const struct mips_operand *operand, unsigned int uval)
2205{
2206 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2207}
2208
fc76e730
RS
2209/* Extract the value of OPERAND from INSN. */
2210
2211static inline unsigned
2212insn_extract_operand (const struct mips_cl_insn *insn,
2213 const struct mips_operand *operand)
2214{
2215 return mips_extract_operand (operand, insn->insn_opcode);
2216}
2217
df58fc94 2218/* Record the current MIPS16/microMIPS mode in now_seg. */
742a56fe
RS
2219
2220static void
df58fc94 2221mips_record_compressed_mode (void)
742a56fe
RS
2222{
2223 segment_info_type *si;
2224
2225 si = seg_info (now_seg);
2226 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2227 si->tc_segment_info_data.mips16 = mips_opts.mips16;
df58fc94
RS
2228 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2229 si->tc_segment_info_data.micromips = mips_opts.micromips;
742a56fe
RS
2230}
2231
4d68580a
RS
2232/* Read a standard MIPS instruction from BUF. */
2233
2234static unsigned long
2235read_insn (char *buf)
2236{
2237 if (target_big_endian)
2238 return bfd_getb32 ((bfd_byte *) buf);
2239 else
2240 return bfd_getl32 ((bfd_byte *) buf);
2241}
2242
2243/* Write standard MIPS instruction INSN to BUF. Return a pointer to
2244 the next byte. */
2245
2246static char *
2247write_insn (char *buf, unsigned int insn)
2248{
2249 md_number_to_chars (buf, insn, 4);
2250 return buf + 4;
2251}
2252
2253/* Read a microMIPS or MIPS16 opcode from BUF, given that it
2254 has length LENGTH. */
2255
2256static unsigned long
2257read_compressed_insn (char *buf, unsigned int length)
2258{
2259 unsigned long insn;
2260 unsigned int i;
2261
2262 insn = 0;
2263 for (i = 0; i < length; i += 2)
2264 {
2265 insn <<= 16;
2266 if (target_big_endian)
2267 insn |= bfd_getb16 ((char *) buf);
2268 else
2269 insn |= bfd_getl16 ((char *) buf);
2270 buf += 2;
2271 }
2272 return insn;
2273}
2274
5c04167a
RS
2275/* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2276 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2277
2278static char *
2279write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2280{
2281 unsigned int i;
2282
2283 for (i = 0; i < length; i += 2)
2284 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2285 return buf + length;
2286}
2287
1e915849
RS
2288/* Install INSN at the location specified by its "frag" and "where" fields. */
2289
2290static void
2291install_insn (const struct mips_cl_insn *insn)
2292{
2293 char *f = insn->frag->fr_literal + insn->where;
5c04167a
RS
2294 if (HAVE_CODE_COMPRESSION)
2295 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
1e915849 2296 else
4d68580a 2297 write_insn (f, insn->insn_opcode);
df58fc94 2298 mips_record_compressed_mode ();
1e915849
RS
2299}
2300
2301/* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2302 and install the opcode in the new location. */
2303
2304static void
2305move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2306{
2307 size_t i;
2308
2309 insn->frag = frag;
2310 insn->where = where;
2311 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2312 if (insn->fixp[i] != NULL)
2313 {
2314 insn->fixp[i]->fx_frag = frag;
2315 insn->fixp[i]->fx_where = where;
2316 }
2317 install_insn (insn);
2318}
2319
2320/* Add INSN to the end of the output. */
2321
2322static void
2323add_fixed_insn (struct mips_cl_insn *insn)
2324{
2325 char *f = frag_more (insn_length (insn));
2326 move_insn (insn, frag_now, f - frag_now->fr_literal);
2327}
2328
2329/* Start a variant frag and move INSN to the start of the variant part,
2330 marking it as fixed. The other arguments are as for frag_var. */
2331
2332static void
2333add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2334 relax_substateT subtype, symbolS *symbol, offsetT offset)
2335{
2336 frag_grow (max_chars);
2337 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2338 insn->fixed_p = 1;
2339 frag_var (rs_machine_dependent, max_chars, var,
2340 subtype, symbol, offset, NULL);
2341}
2342
2343/* Insert N copies of INSN into the history buffer, starting at
2344 position FIRST. Neither FIRST nor N need to be clipped. */
2345
2346static void
2347insert_into_history (unsigned int first, unsigned int n,
2348 const struct mips_cl_insn *insn)
2349{
2350 if (mips_relax.sequence != 2)
2351 {
2352 unsigned int i;
2353
2354 for (i = ARRAY_SIZE (history); i-- > first;)
2355 if (i >= first + n)
2356 history[i] = history[i - n];
2357 else
2358 history[i] = *insn;
2359 }
2360}
2361
e3de51ce
RS
2362/* Clear the error in insn_error. */
2363
2364static void
2365clear_insn_error (void)
2366{
2367 memset (&insn_error, 0, sizeof (insn_error));
2368}
2369
2370/* Possibly record error message MSG for the current instruction.
2371 If the error is about a particular argument, ARGNUM is the 1-based
2372 number of that argument, otherwise it is 0. FORMAT is the format
2373 of MSG. Return true if MSG was used, false if the current message
2374 was kept. */
2375
2376static bfd_boolean
2377set_insn_error_format (int argnum, enum mips_insn_error_format format,
2378 const char *msg)
2379{
2380 if (argnum == 0)
2381 {
2382 /* Give priority to errors against specific arguments, and to
2383 the first whole-instruction message. */
2384 if (insn_error.msg)
2385 return FALSE;
2386 }
2387 else
2388 {
2389 /* Keep insn_error if it is against a later argument. */
2390 if (argnum < insn_error.min_argnum)
2391 return FALSE;
2392
2393 /* If both errors are against the same argument but are different,
2394 give up on reporting a specific error for this argument.
2395 See the comment about mips_insn_error for details. */
2396 if (argnum == insn_error.min_argnum
2397 && insn_error.msg
2398 && strcmp (insn_error.msg, msg) != 0)
2399 {
2400 insn_error.msg = 0;
2401 insn_error.min_argnum += 1;
2402 return FALSE;
2403 }
2404 }
2405 insn_error.min_argnum = argnum;
2406 insn_error.format = format;
2407 insn_error.msg = msg;
2408 return TRUE;
2409}
2410
2411/* Record an instruction error with no % format fields. ARGNUM and MSG are
2412 as for set_insn_error_format. */
2413
2414static void
2415set_insn_error (int argnum, const char *msg)
2416{
2417 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2418}
2419
2420/* Record an instruction error with one %d field I. ARGNUM and MSG are
2421 as for set_insn_error_format. */
2422
2423static void
2424set_insn_error_i (int argnum, const char *msg, int i)
2425{
2426 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2427 insn_error.u.i = i;
2428}
2429
2430/* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2431 are as for set_insn_error_format. */
2432
2433static void
2434set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2435{
2436 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2437 {
2438 insn_error.u.ss[0] = s1;
2439 insn_error.u.ss[1] = s2;
2440 }
2441}
2442
2443/* Report the error in insn_error, which is against assembly code STR. */
2444
2445static void
2446report_insn_error (const char *str)
2447{
e1fa0163 2448 const char *msg = concat (insn_error.msg, " `%s'", NULL);
e3de51ce 2449
e3de51ce
RS
2450 switch (insn_error.format)
2451 {
2452 case ERR_FMT_PLAIN:
2453 as_bad (msg, str);
2454 break;
2455
2456 case ERR_FMT_I:
2457 as_bad (msg, insn_error.u.i, str);
2458 break;
2459
2460 case ERR_FMT_SS:
2461 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2462 break;
2463 }
e1fa0163
NC
2464
2465 free ((char *) msg);
e3de51ce
RS
2466}
2467
71400594
RS
2468/* Initialize vr4120_conflicts. There is a bit of duplication here:
2469 the idea is to make it obvious at a glance that each errata is
2470 included. */
2471
2472static void
2473init_vr4120_conflicts (void)
2474{
2475#define CONFLICT(FIRST, SECOND) \
2476 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2477
2478 /* Errata 21 - [D]DIV[U] after [D]MACC */
2479 CONFLICT (MACC, DIV);
2480 CONFLICT (DMACC, DIV);
2481
2482 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2483 CONFLICT (DMULT, DMULT);
2484 CONFLICT (DMULT, DMACC);
2485 CONFLICT (DMACC, DMULT);
2486 CONFLICT (DMACC, DMACC);
2487
2488 /* Errata 24 - MT{LO,HI} after [D]MACC */
2489 CONFLICT (MACC, MTHILO);
2490 CONFLICT (DMACC, MTHILO);
2491
2492 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2493 instruction is executed immediately after a MACC or DMACC
2494 instruction, the result of [either instruction] is incorrect." */
2495 CONFLICT (MACC, MULT);
2496 CONFLICT (MACC, DMULT);
2497 CONFLICT (DMACC, MULT);
2498 CONFLICT (DMACC, DMULT);
2499
2500 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2501 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2502 DDIV or DDIVU instruction, the result of the MACC or
2503 DMACC instruction is incorrect.". */
2504 CONFLICT (DMULT, MACC);
2505 CONFLICT (DMULT, DMACC);
2506 CONFLICT (DIV, MACC);
2507 CONFLICT (DIV, DMACC);
2508
2509#undef CONFLICT
2510}
2511
707bfff6
TS
2512struct regname {
2513 const char *name;
2514 unsigned int num;
2515};
2516
14daeee3 2517#define RNUM_MASK 0x00000ff
56d438b1 2518#define RTYPE_MASK 0x0ffff00
14daeee3
RS
2519#define RTYPE_NUM 0x0000100
2520#define RTYPE_FPU 0x0000200
2521#define RTYPE_FCC 0x0000400
2522#define RTYPE_VEC 0x0000800
2523#define RTYPE_GP 0x0001000
2524#define RTYPE_CP0 0x0002000
2525#define RTYPE_PC 0x0004000
2526#define RTYPE_ACC 0x0008000
2527#define RTYPE_CCC 0x0010000
2528#define RTYPE_VI 0x0020000
2529#define RTYPE_VF 0x0040000
2530#define RTYPE_R5900_I 0x0080000
2531#define RTYPE_R5900_Q 0x0100000
2532#define RTYPE_R5900_R 0x0200000
2533#define RTYPE_R5900_ACC 0x0400000
56d438b1 2534#define RTYPE_MSA 0x0800000
14daeee3 2535#define RWARN 0x8000000
707bfff6
TS
2536
2537#define GENERIC_REGISTER_NUMBERS \
2538 {"$0", RTYPE_NUM | 0}, \
2539 {"$1", RTYPE_NUM | 1}, \
2540 {"$2", RTYPE_NUM | 2}, \
2541 {"$3", RTYPE_NUM | 3}, \
2542 {"$4", RTYPE_NUM | 4}, \
2543 {"$5", RTYPE_NUM | 5}, \
2544 {"$6", RTYPE_NUM | 6}, \
2545 {"$7", RTYPE_NUM | 7}, \
2546 {"$8", RTYPE_NUM | 8}, \
2547 {"$9", RTYPE_NUM | 9}, \
2548 {"$10", RTYPE_NUM | 10}, \
2549 {"$11", RTYPE_NUM | 11}, \
2550 {"$12", RTYPE_NUM | 12}, \
2551 {"$13", RTYPE_NUM | 13}, \
2552 {"$14", RTYPE_NUM | 14}, \
2553 {"$15", RTYPE_NUM | 15}, \
2554 {"$16", RTYPE_NUM | 16}, \
2555 {"$17", RTYPE_NUM | 17}, \
2556 {"$18", RTYPE_NUM | 18}, \
2557 {"$19", RTYPE_NUM | 19}, \
2558 {"$20", RTYPE_NUM | 20}, \
2559 {"$21", RTYPE_NUM | 21}, \
2560 {"$22", RTYPE_NUM | 22}, \
2561 {"$23", RTYPE_NUM | 23}, \
2562 {"$24", RTYPE_NUM | 24}, \
2563 {"$25", RTYPE_NUM | 25}, \
2564 {"$26", RTYPE_NUM | 26}, \
2565 {"$27", RTYPE_NUM | 27}, \
2566 {"$28", RTYPE_NUM | 28}, \
2567 {"$29", RTYPE_NUM | 29}, \
2568 {"$30", RTYPE_NUM | 30}, \
3739860c 2569 {"$31", RTYPE_NUM | 31}
707bfff6
TS
2570
2571#define FPU_REGISTER_NAMES \
2572 {"$f0", RTYPE_FPU | 0}, \
2573 {"$f1", RTYPE_FPU | 1}, \
2574 {"$f2", RTYPE_FPU | 2}, \
2575 {"$f3", RTYPE_FPU | 3}, \
2576 {"$f4", RTYPE_FPU | 4}, \
2577 {"$f5", RTYPE_FPU | 5}, \
2578 {"$f6", RTYPE_FPU | 6}, \
2579 {"$f7", RTYPE_FPU | 7}, \
2580 {"$f8", RTYPE_FPU | 8}, \
2581 {"$f9", RTYPE_FPU | 9}, \
2582 {"$f10", RTYPE_FPU | 10}, \
2583 {"$f11", RTYPE_FPU | 11}, \
2584 {"$f12", RTYPE_FPU | 12}, \
2585 {"$f13", RTYPE_FPU | 13}, \
2586 {"$f14", RTYPE_FPU | 14}, \
2587 {"$f15", RTYPE_FPU | 15}, \
2588 {"$f16", RTYPE_FPU | 16}, \
2589 {"$f17", RTYPE_FPU | 17}, \
2590 {"$f18", RTYPE_FPU | 18}, \
2591 {"$f19", RTYPE_FPU | 19}, \
2592 {"$f20", RTYPE_FPU | 20}, \
2593 {"$f21", RTYPE_FPU | 21}, \
2594 {"$f22", RTYPE_FPU | 22}, \
2595 {"$f23", RTYPE_FPU | 23}, \
2596 {"$f24", RTYPE_FPU | 24}, \
2597 {"$f25", RTYPE_FPU | 25}, \
2598 {"$f26", RTYPE_FPU | 26}, \
2599 {"$f27", RTYPE_FPU | 27}, \
2600 {"$f28", RTYPE_FPU | 28}, \
2601 {"$f29", RTYPE_FPU | 29}, \
2602 {"$f30", RTYPE_FPU | 30}, \
2603 {"$f31", RTYPE_FPU | 31}
2604
2605#define FPU_CONDITION_CODE_NAMES \
2606 {"$fcc0", RTYPE_FCC | 0}, \
2607 {"$fcc1", RTYPE_FCC | 1}, \
2608 {"$fcc2", RTYPE_FCC | 2}, \
2609 {"$fcc3", RTYPE_FCC | 3}, \
2610 {"$fcc4", RTYPE_FCC | 4}, \
2611 {"$fcc5", RTYPE_FCC | 5}, \
2612 {"$fcc6", RTYPE_FCC | 6}, \
2613 {"$fcc7", RTYPE_FCC | 7}
2614
2615#define COPROC_CONDITION_CODE_NAMES \
2616 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2617 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2618 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2619 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2620 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2621 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2622 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2623 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2624
2625#define N32N64_SYMBOLIC_REGISTER_NAMES \
2626 {"$a4", RTYPE_GP | 8}, \
2627 {"$a5", RTYPE_GP | 9}, \
2628 {"$a6", RTYPE_GP | 10}, \
2629 {"$a7", RTYPE_GP | 11}, \
2630 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2631 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2632 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2633 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2634 {"$t0", RTYPE_GP | 12}, \
2635 {"$t1", RTYPE_GP | 13}, \
2636 {"$t2", RTYPE_GP | 14}, \
2637 {"$t3", RTYPE_GP | 15}
2638
2639#define O32_SYMBOLIC_REGISTER_NAMES \
2640 {"$t0", RTYPE_GP | 8}, \
2641 {"$t1", RTYPE_GP | 9}, \
2642 {"$t2", RTYPE_GP | 10}, \
2643 {"$t3", RTYPE_GP | 11}, \
2644 {"$t4", RTYPE_GP | 12}, \
2645 {"$t5", RTYPE_GP | 13}, \
2646 {"$t6", RTYPE_GP | 14}, \
2647 {"$t7", RTYPE_GP | 15}, \
2648 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2649 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2650 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
3739860c 2651 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
707bfff6
TS
2652
2653/* Remaining symbolic register names */
2654#define SYMBOLIC_REGISTER_NAMES \
2655 {"$zero", RTYPE_GP | 0}, \
2656 {"$at", RTYPE_GP | 1}, \
2657 {"$AT", RTYPE_GP | 1}, \
2658 {"$v0", RTYPE_GP | 2}, \
2659 {"$v1", RTYPE_GP | 3}, \
2660 {"$a0", RTYPE_GP | 4}, \
2661 {"$a1", RTYPE_GP | 5}, \
2662 {"$a2", RTYPE_GP | 6}, \
2663 {"$a3", RTYPE_GP | 7}, \
2664 {"$s0", RTYPE_GP | 16}, \
2665 {"$s1", RTYPE_GP | 17}, \
2666 {"$s2", RTYPE_GP | 18}, \
2667 {"$s3", RTYPE_GP | 19}, \
2668 {"$s4", RTYPE_GP | 20}, \
2669 {"$s5", RTYPE_GP | 21}, \
2670 {"$s6", RTYPE_GP | 22}, \
2671 {"$s7", RTYPE_GP | 23}, \
2672 {"$t8", RTYPE_GP | 24}, \
2673 {"$t9", RTYPE_GP | 25}, \
2674 {"$k0", RTYPE_GP | 26}, \
2675 {"$kt0", RTYPE_GP | 26}, \
2676 {"$k1", RTYPE_GP | 27}, \
2677 {"$kt1", RTYPE_GP | 27}, \
2678 {"$gp", RTYPE_GP | 28}, \
2679 {"$sp", RTYPE_GP | 29}, \
2680 {"$s8", RTYPE_GP | 30}, \
2681 {"$fp", RTYPE_GP | 30}, \
2682 {"$ra", RTYPE_GP | 31}
2683
2684#define MIPS16_SPECIAL_REGISTER_NAMES \
2685 {"$pc", RTYPE_PC | 0}
2686
2687#define MDMX_VECTOR_REGISTER_NAMES \
2688 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2689 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2690 {"$v2", RTYPE_VEC | 2}, \
2691 {"$v3", RTYPE_VEC | 3}, \
2692 {"$v4", RTYPE_VEC | 4}, \
2693 {"$v5", RTYPE_VEC | 5}, \
2694 {"$v6", RTYPE_VEC | 6}, \
2695 {"$v7", RTYPE_VEC | 7}, \
2696 {"$v8", RTYPE_VEC | 8}, \
2697 {"$v9", RTYPE_VEC | 9}, \
2698 {"$v10", RTYPE_VEC | 10}, \
2699 {"$v11", RTYPE_VEC | 11}, \
2700 {"$v12", RTYPE_VEC | 12}, \
2701 {"$v13", RTYPE_VEC | 13}, \
2702 {"$v14", RTYPE_VEC | 14}, \
2703 {"$v15", RTYPE_VEC | 15}, \
2704 {"$v16", RTYPE_VEC | 16}, \
2705 {"$v17", RTYPE_VEC | 17}, \
2706 {"$v18", RTYPE_VEC | 18}, \
2707 {"$v19", RTYPE_VEC | 19}, \
2708 {"$v20", RTYPE_VEC | 20}, \
2709 {"$v21", RTYPE_VEC | 21}, \
2710 {"$v22", RTYPE_VEC | 22}, \
2711 {"$v23", RTYPE_VEC | 23}, \
2712 {"$v24", RTYPE_VEC | 24}, \
2713 {"$v25", RTYPE_VEC | 25}, \
2714 {"$v26", RTYPE_VEC | 26}, \
2715 {"$v27", RTYPE_VEC | 27}, \
2716 {"$v28", RTYPE_VEC | 28}, \
2717 {"$v29", RTYPE_VEC | 29}, \
2718 {"$v30", RTYPE_VEC | 30}, \
2719 {"$v31", RTYPE_VEC | 31}
2720
14daeee3
RS
2721#define R5900_I_NAMES \
2722 {"$I", RTYPE_R5900_I | 0}
2723
2724#define R5900_Q_NAMES \
2725 {"$Q", RTYPE_R5900_Q | 0}
2726
2727#define R5900_R_NAMES \
2728 {"$R", RTYPE_R5900_R | 0}
2729
2730#define R5900_ACC_NAMES \
2731 {"$ACC", RTYPE_R5900_ACC | 0 }
2732
707bfff6
TS
2733#define MIPS_DSP_ACCUMULATOR_NAMES \
2734 {"$ac0", RTYPE_ACC | 0}, \
2735 {"$ac1", RTYPE_ACC | 1}, \
2736 {"$ac2", RTYPE_ACC | 2}, \
2737 {"$ac3", RTYPE_ACC | 3}
2738
2739static const struct regname reg_names[] = {
2740 GENERIC_REGISTER_NUMBERS,
2741 FPU_REGISTER_NAMES,
2742 FPU_CONDITION_CODE_NAMES,
2743 COPROC_CONDITION_CODE_NAMES,
2744
2745 /* The $txx registers depends on the abi,
2746 these will be added later into the symbol table from
3739860c 2747 one of the tables below once mips_abi is set after
707bfff6
TS
2748 parsing of arguments from the command line. */
2749 SYMBOLIC_REGISTER_NAMES,
2750
2751 MIPS16_SPECIAL_REGISTER_NAMES,
2752 MDMX_VECTOR_REGISTER_NAMES,
14daeee3
RS
2753 R5900_I_NAMES,
2754 R5900_Q_NAMES,
2755 R5900_R_NAMES,
2756 R5900_ACC_NAMES,
707bfff6
TS
2757 MIPS_DSP_ACCUMULATOR_NAMES,
2758 {0, 0}
2759};
2760
2761static const struct regname reg_names_o32[] = {
2762 O32_SYMBOLIC_REGISTER_NAMES,
2763 {0, 0}
2764};
2765
2766static const struct regname reg_names_n32n64[] = {
2767 N32N64_SYMBOLIC_REGISTER_NAMES,
2768 {0, 0}
2769};
2770
a92713e6
RS
2771/* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2772 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2773 of these register symbols, return the associated vector register,
2774 otherwise return SYMVAL itself. */
df58fc94 2775
a92713e6
RS
2776static unsigned int
2777mips_prefer_vec_regno (unsigned int symval)
707bfff6 2778{
a92713e6
RS
2779 if ((symval & -2) == (RTYPE_GP | 2))
2780 return RTYPE_VEC | (symval & 1);
2781 return symval;
2782}
2783
14daeee3
RS
2784/* Return true if string [S, E) is a valid register name, storing its
2785 symbol value in *SYMVAL_PTR if so. */
a92713e6
RS
2786
2787static bfd_boolean
14daeee3 2788mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
a92713e6 2789{
707bfff6 2790 char save_c;
14daeee3 2791 symbolS *symbol;
707bfff6
TS
2792
2793 /* Terminate name. */
2794 save_c = *e;
2795 *e = '\0';
2796
a92713e6
RS
2797 /* Look up the name. */
2798 symbol = symbol_find (s);
2799 *e = save_c;
2800
2801 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2802 return FALSE;
2803
14daeee3
RS
2804 *symval_ptr = S_GET_VALUE (symbol);
2805 return TRUE;
2806}
2807
2808/* Return true if the string at *SPTR is a valid register name. Allow it
2809 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2810 is nonnull.
2811
2812 When returning true, move *SPTR past the register, store the
2813 register's symbol value in *SYMVAL_PTR and the channel mask in
2814 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2815 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2816 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2817
2818static bfd_boolean
2819mips_parse_register (char **sptr, unsigned int *symval_ptr,
2820 unsigned int *channels_ptr)
2821{
2822 char *s, *e, *m;
2823 const char *q;
2824 unsigned int channels, symval, bit;
2825
2826 /* Find end of name. */
2827 s = e = *sptr;
2828 if (is_name_beginner (*e))
2829 ++e;
2830 while (is_part_of_name (*e))
2831 ++e;
2832
2833 channels = 0;
2834 if (!mips_parse_register_1 (s, e, &symval))
2835 {
2836 if (!channels_ptr)
2837 return FALSE;
2838
2839 /* Eat characters from the end of the string that are valid
2840 channel suffixes. The preceding register must be $ACC or
2841 end with a digit, so there is no ambiguity. */
2842 bit = 1;
2843 m = e;
2844 for (q = "wzyx"; *q; q++, bit <<= 1)
2845 if (m > s && m[-1] == *q)
2846 {
2847 --m;
2848 channels |= bit;
2849 }
2850
2851 if (channels == 0
2852 || !mips_parse_register_1 (s, m, &symval)
2853 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2854 return FALSE;
2855 }
2856
a92713e6 2857 *sptr = e;
14daeee3
RS
2858 *symval_ptr = symval;
2859 if (channels_ptr)
2860 *channels_ptr = channels;
a92713e6
RS
2861 return TRUE;
2862}
2863
2864/* Check if SPTR points at a valid register specifier according to TYPES.
2865 If so, then return 1, advance S to consume the specifier and store
2866 the register's number in REGNOP, otherwise return 0. */
2867
2868static int
2869reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2870{
2871 unsigned int regno;
2872
14daeee3 2873 if (mips_parse_register (s, &regno, NULL))
707bfff6 2874 {
a92713e6
RS
2875 if (types & RTYPE_VEC)
2876 regno = mips_prefer_vec_regno (regno);
2877 if (regno & types)
2878 regno &= RNUM_MASK;
2879 else
2880 regno = ~0;
707bfff6 2881 }
a92713e6 2882 else
707bfff6 2883 {
a92713e6 2884 if (types & RWARN)
1661c76c 2885 as_warn (_("unrecognized register name `%s'"), *s);
a92713e6 2886 regno = ~0;
707bfff6 2887 }
707bfff6 2888 if (regnop)
a92713e6
RS
2889 *regnop = regno;
2890 return regno <= RNUM_MASK;
707bfff6
TS
2891}
2892
14daeee3
RS
2893/* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2894 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2895
2896static char *
2897mips_parse_vu0_channels (char *s, unsigned int *channels)
2898{
2899 unsigned int i;
2900
2901 *channels = 0;
2902 for (i = 0; i < 4; i++)
2903 if (*s == "xyzw"[i])
2904 {
2905 *channels |= 1 << (3 - i);
2906 ++s;
2907 }
2908 return s;
2909}
2910
a92713e6
RS
2911/* Token types for parsed operand lists. */
2912enum mips_operand_token_type {
2913 /* A plain register, e.g. $f2. */
2914 OT_REG,
df58fc94 2915
14daeee3
RS
2916 /* A 4-bit XYZW channel mask. */
2917 OT_CHANNELS,
2918
56d438b1
CF
2919 /* A constant vector index, e.g. [1]. */
2920 OT_INTEGER_INDEX,
2921
2922 /* A register vector index, e.g. [$2]. */
2923 OT_REG_INDEX,
df58fc94 2924
a92713e6
RS
2925 /* A continuous range of registers, e.g. $s0-$s4. */
2926 OT_REG_RANGE,
2927
2928 /* A (possibly relocated) expression. */
2929 OT_INTEGER,
2930
2931 /* A floating-point value. */
2932 OT_FLOAT,
2933
2934 /* A single character. This can be '(', ')' or ',', but '(' only appears
2935 before OT_REGs. */
2936 OT_CHAR,
2937
14daeee3
RS
2938 /* A doubled character, either "--" or "++". */
2939 OT_DOUBLE_CHAR,
2940
a92713e6
RS
2941 /* The end of the operand list. */
2942 OT_END
2943};
2944
2945/* A parsed operand token. */
2946struct mips_operand_token
2947{
2948 /* The type of token. */
2949 enum mips_operand_token_type type;
2950 union
2951 {
56d438b1 2952 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
a92713e6
RS
2953 unsigned int regno;
2954
14daeee3
RS
2955 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2956 unsigned int channels;
2957
56d438b1
CF
2958 /* The integer value of an OT_INTEGER_INDEX. */
2959 addressT index;
a92713e6
RS
2960
2961 /* The two register symbol values involved in an OT_REG_RANGE. */
2962 struct {
2963 unsigned int regno1;
2964 unsigned int regno2;
2965 } reg_range;
2966
2967 /* The value of an OT_INTEGER. The value is represented as an
2968 expression and the relocation operators that were applied to
2969 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2970 relocation operators were used. */
2971 struct {
2972 expressionS value;
2973 bfd_reloc_code_real_type relocs[3];
2974 } integer;
2975
2976 /* The binary data for an OT_FLOAT constant, and the number of bytes
2977 in the constant. */
2978 struct {
2979 unsigned char data[8];
2980 int length;
2981 } flt;
2982
14daeee3 2983 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
a92713e6
RS
2984 char ch;
2985 } u;
2986};
2987
2988/* An obstack used to construct lists of mips_operand_tokens. */
2989static struct obstack mips_operand_tokens;
2990
2991/* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2992
2993static void
2994mips_add_token (struct mips_operand_token *token,
2995 enum mips_operand_token_type type)
2996{
2997 token->type = type;
2998 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2999}
3000
3001/* Check whether S is '(' followed by a register name. Add OT_CHAR
3002 and OT_REG tokens for them if so, and return a pointer to the first
3003 unconsumed character. Return null otherwise. */
3004
3005static char *
3006mips_parse_base_start (char *s)
3007{
3008 struct mips_operand_token token;
14daeee3
RS
3009 unsigned int regno, channels;
3010 bfd_boolean decrement_p;
df58fc94 3011
a92713e6
RS
3012 if (*s != '(')
3013 return 0;
3014
3015 ++s;
3016 SKIP_SPACE_TABS (s);
14daeee3
RS
3017
3018 /* Only match "--" as part of a base expression. In other contexts "--X"
3019 is a double negative. */
3020 decrement_p = (s[0] == '-' && s[1] == '-');
3021 if (decrement_p)
3022 {
3023 s += 2;
3024 SKIP_SPACE_TABS (s);
3025 }
3026
3027 /* Allow a channel specifier because that leads to better error messages
3028 than treating something like "$vf0x++" as an expression. */
3029 if (!mips_parse_register (&s, &regno, &channels))
a92713e6
RS
3030 return 0;
3031
3032 token.u.ch = '(';
3033 mips_add_token (&token, OT_CHAR);
3034
14daeee3
RS
3035 if (decrement_p)
3036 {
3037 token.u.ch = '-';
3038 mips_add_token (&token, OT_DOUBLE_CHAR);
3039 }
3040
a92713e6
RS
3041 token.u.regno = regno;
3042 mips_add_token (&token, OT_REG);
3043
14daeee3
RS
3044 if (channels)
3045 {
3046 token.u.channels = channels;
3047 mips_add_token (&token, OT_CHANNELS);
3048 }
3049
3050 /* For consistency, only match "++" as part of base expressions too. */
3051 SKIP_SPACE_TABS (s);
3052 if (s[0] == '+' && s[1] == '+')
3053 {
3054 s += 2;
3055 token.u.ch = '+';
3056 mips_add_token (&token, OT_DOUBLE_CHAR);
3057 }
3058
a92713e6
RS
3059 return s;
3060}
3061
3062/* Parse one or more tokens from S. Return a pointer to the first
3063 unconsumed character on success. Return null if an error was found
3064 and store the error text in insn_error. FLOAT_FORMAT is as for
3065 mips_parse_arguments. */
3066
3067static char *
3068mips_parse_argument_token (char *s, char float_format)
3069{
6d4af3c2
AM
3070 char *end, *save_in;
3071 const char *err;
14daeee3 3072 unsigned int regno1, regno2, channels;
a92713e6
RS
3073 struct mips_operand_token token;
3074
3075 /* First look for "($reg", since we want to treat that as an
3076 OT_CHAR and OT_REG rather than an expression. */
3077 end = mips_parse_base_start (s);
3078 if (end)
3079 return end;
3080
3081 /* Handle other characters that end up as OT_CHARs. */
3082 if (*s == ')' || *s == ',')
3083 {
3084 token.u.ch = *s;
3085 mips_add_token (&token, OT_CHAR);
3086 ++s;
3087 return s;
3088 }
3089
3090 /* Handle tokens that start with a register. */
14daeee3 3091 if (mips_parse_register (&s, &regno1, &channels))
df58fc94 3092 {
14daeee3
RS
3093 if (channels)
3094 {
3095 /* A register and a VU0 channel suffix. */
3096 token.u.regno = regno1;
3097 mips_add_token (&token, OT_REG);
3098
3099 token.u.channels = channels;
3100 mips_add_token (&token, OT_CHANNELS);
3101 return s;
3102 }
3103
a92713e6
RS
3104 SKIP_SPACE_TABS (s);
3105 if (*s == '-')
df58fc94 3106 {
a92713e6
RS
3107 /* A register range. */
3108 ++s;
3109 SKIP_SPACE_TABS (s);
14daeee3 3110 if (!mips_parse_register (&s, &regno2, NULL))
a92713e6 3111 {
1661c76c 3112 set_insn_error (0, _("invalid register range"));
a92713e6
RS
3113 return 0;
3114 }
df58fc94 3115
a92713e6
RS
3116 token.u.reg_range.regno1 = regno1;
3117 token.u.reg_range.regno2 = regno2;
3118 mips_add_token (&token, OT_REG_RANGE);
3119 return s;
3120 }
a92713e6 3121
56d438b1
CF
3122 /* Add the register itself. */
3123 token.u.regno = regno1;
3124 mips_add_token (&token, OT_REG);
3125
3126 /* Check for a vector index. */
3127 if (*s == '[')
3128 {
a92713e6
RS
3129 ++s;
3130 SKIP_SPACE_TABS (s);
56d438b1
CF
3131 if (mips_parse_register (&s, &token.u.regno, NULL))
3132 mips_add_token (&token, OT_REG_INDEX);
3133 else
a92713e6 3134 {
56d438b1
CF
3135 expressionS element;
3136
3137 my_getExpression (&element, s);
3138 if (element.X_op != O_constant)
3139 {
3140 set_insn_error (0, _("vector element must be constant"));
3141 return 0;
3142 }
3143 s = expr_end;
3144 token.u.index = element.X_add_number;
3145 mips_add_token (&token, OT_INTEGER_INDEX);
a92713e6 3146 }
a92713e6
RS
3147 SKIP_SPACE_TABS (s);
3148 if (*s != ']')
3149 {
1661c76c 3150 set_insn_error (0, _("missing `]'"));
a92713e6
RS
3151 return 0;
3152 }
3153 ++s;
df58fc94 3154 }
a92713e6 3155 return s;
df58fc94
RS
3156 }
3157
a92713e6
RS
3158 if (float_format)
3159 {
3160 /* First try to treat expressions as floats. */
3161 save_in = input_line_pointer;
3162 input_line_pointer = s;
3163 err = md_atof (float_format, (char *) token.u.flt.data,
3164 &token.u.flt.length);
3165 end = input_line_pointer;
3166 input_line_pointer = save_in;
3167 if (err && *err)
3168 {
e3de51ce 3169 set_insn_error (0, err);
a92713e6
RS
3170 return 0;
3171 }
3172 if (s != end)
3173 {
3174 mips_add_token (&token, OT_FLOAT);
3175 return end;
3176 }
3177 }
3178
3179 /* Treat everything else as an integer expression. */
3180 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3181 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3182 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3183 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3184 s = expr_end;
3185 mips_add_token (&token, OT_INTEGER);
3186 return s;
3187}
3188
3189/* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3190 if expressions should be treated as 32-bit floating-point constants,
3191 'd' if they should be treated as 64-bit floating-point constants,
3192 or 0 if they should be treated as integer expressions (the usual case).
3193
3194 Return a list of tokens on success, otherwise return 0. The caller
3195 must obstack_free the list after use. */
3196
3197static struct mips_operand_token *
3198mips_parse_arguments (char *s, char float_format)
3199{
3200 struct mips_operand_token token;
3201
3202 SKIP_SPACE_TABS (s);
3203 while (*s)
3204 {
3205 s = mips_parse_argument_token (s, float_format);
3206 if (!s)
3207 {
3208 obstack_free (&mips_operand_tokens,
3209 obstack_finish (&mips_operand_tokens));
3210 return 0;
3211 }
3212 SKIP_SPACE_TABS (s);
3213 }
3214 mips_add_token (&token, OT_END);
3215 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
df58fc94
RS
3216}
3217
d301a56b
RS
3218/* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3219 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
037b32b9
AN
3220
3221static bfd_boolean
f79e2745 3222is_opcode_valid (const struct mips_opcode *mo)
037b32b9
AN
3223{
3224 int isa = mips_opts.isa;
846ef2d0 3225 int ase = mips_opts.ase;
037b32b9 3226 int fp_s, fp_d;
c6278170 3227 unsigned int i;
037b32b9 3228
be0fcbee 3229 if (ISA_HAS_64BIT_REGS (isa))
c6278170
RS
3230 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3231 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3232 ase |= mips_ases[i].flags64;
037b32b9 3233
d301a56b 3234 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
037b32b9
AN
3235 return FALSE;
3236
3237 /* Check whether the instruction or macro requires single-precision or
3238 double-precision floating-point support. Note that this information is
3239 stored differently in the opcode table for insns and macros. */
3240 if (mo->pinfo == INSN_MACRO)
3241 {
3242 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3243 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3244 }
3245 else
3246 {
3247 fp_s = mo->pinfo & FP_S;
3248 fp_d = mo->pinfo & FP_D;
3249 }
3250
3251 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3252 return FALSE;
3253
3254 if (fp_s && mips_opts.soft_float)
3255 return FALSE;
3256
3257 return TRUE;
3258}
3259
3260/* Return TRUE if the MIPS16 opcode MO is valid on the currently
3261 selected ISA and architecture. */
3262
3263static bfd_boolean
3264is_opcode_valid_16 (const struct mips_opcode *mo)
3265{
d301a56b 3266 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
037b32b9
AN
3267}
3268
df58fc94 3269/* Return TRUE if the size of the microMIPS opcode MO matches one
7fd53920
MR
3270 explicitly requested. Always TRUE in the standard MIPS mode.
3271 Use is_size_valid_16 for MIPS16 opcodes. */
df58fc94
RS
3272
3273static bfd_boolean
3274is_size_valid (const struct mips_opcode *mo)
3275{
3276 if (!mips_opts.micromips)
3277 return TRUE;
3278
833794fc
MR
3279 if (mips_opts.insn32)
3280 {
3281 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3282 return FALSE;
3283 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3284 return FALSE;
3285 }
df58fc94
RS
3286 if (!forced_insn_length)
3287 return TRUE;
3288 if (mo->pinfo == INSN_MACRO)
3289 return FALSE;
3290 return forced_insn_length == micromips_insn_length (mo);
3291}
3292
7fd53920
MR
3293/* Return TRUE if the size of the MIPS16 opcode MO matches one
3294 explicitly requested. */
3295
3296static bfd_boolean
3297is_size_valid_16 (const struct mips_opcode *mo)
3298{
3299 if (!forced_insn_length)
3300 return TRUE;
3301 if (mo->pinfo == INSN_MACRO)
3302 return FALSE;
3303 if (forced_insn_length == 2 && mips_opcode_32bit_p (mo))
3304 return FALSE;
0674ee5d
MR
3305 if (forced_insn_length == 4 && (mo->pinfo2 & INSN2_SHORT_ONLY))
3306 return FALSE;
7fd53920
MR
3307 return TRUE;
3308}
3309
df58fc94 3310/* Return TRUE if the microMIPS opcode MO is valid for the delay slot
e64af278
MR
3311 of the preceding instruction. Always TRUE in the standard MIPS mode.
3312
3313 We don't accept macros in 16-bit delay slots to avoid a case where
3314 a macro expansion fails because it relies on a preceding 32-bit real
3315 instruction to have matched and does not handle the operands correctly.
3316 The only macros that may expand to 16-bit instructions are JAL that
3317 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3318 and BGT (that likewise cannot be placed in a delay slot) that decay to
3319 a NOP. In all these cases the macros precede any corresponding real
3320 instruction definitions in the opcode table, so they will match in the
3321 second pass where the size of the delay slot is ignored and therefore
3322 produce correct code. */
df58fc94
RS
3323
3324static bfd_boolean
3325is_delay_slot_valid (const struct mips_opcode *mo)
3326{
3327 if (!mips_opts.micromips)
3328 return TRUE;
3329
3330 if (mo->pinfo == INSN_MACRO)
c06dec14 3331 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
df58fc94
RS
3332 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3333 && micromips_insn_length (mo) != 4)
3334 return FALSE;
3335 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3336 && micromips_insn_length (mo) != 2)
3337 return FALSE;
3338
3339 return TRUE;
3340}
3341
fc76e730
RS
3342/* For consistency checking, verify that all bits of OPCODE are specified
3343 either by the match/mask part of the instruction definition, or by the
3344 operand list. Also build up a list of operands in OPERANDS.
3345
3346 INSN_BITS says which bits of the instruction are significant.
3347 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3348 provides the mips_operand description of each operand. DECODE_OPERAND
3349 is null for MIPS16 instructions. */
ab902481
RS
3350
3351static int
3352validate_mips_insn (const struct mips_opcode *opcode,
3353 unsigned long insn_bits,
fc76e730
RS
3354 const struct mips_operand *(*decode_operand) (const char *),
3355 struct mips_operand_array *operands)
ab902481
RS
3356{
3357 const char *s;
fc76e730 3358 unsigned long used_bits, doubled, undefined, opno, mask;
ab902481
RS
3359 const struct mips_operand *operand;
3360
fc76e730
RS
3361 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3362 if ((mask & opcode->match) != opcode->match)
ab902481
RS
3363 {
3364 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3365 opcode->name, opcode->args);
3366 return 0;
3367 }
3368 used_bits = 0;
fc76e730 3369 opno = 0;
14daeee3
RS
3370 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3371 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
ab902481
RS
3372 for (s = opcode->args; *s; ++s)
3373 switch (*s)
3374 {
3375 case ',':
3376 case '(':
3377 case ')':
3378 break;
3379
14daeee3
RS
3380 case '#':
3381 s++;
3382 break;
3383
ab902481 3384 default:
fc76e730 3385 if (!decode_operand)
7fd53920 3386 operand = decode_mips16_operand (*s, mips_opcode_32bit_p (opcode));
fc76e730
RS
3387 else
3388 operand = decode_operand (s);
3389 if (!operand && opcode->pinfo != INSN_MACRO)
ab902481
RS
3390 {
3391 as_bad (_("internal: unknown operand type: %s %s"),
3392 opcode->name, opcode->args);
3393 return 0;
3394 }
fc76e730
RS
3395 gas_assert (opno < MAX_OPERANDS);
3396 operands->operand[opno] = operand;
14daeee3 3397 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
fc76e730 3398 {
14daeee3 3399 used_bits = mips_insert_operand (operand, used_bits, -1);
fc76e730
RS
3400 if (operand->type == OP_MDMX_IMM_REG)
3401 /* Bit 5 is the format selector (OB vs QH). The opcode table
3402 has separate entries for each format. */
3403 used_bits &= ~(1 << (operand->lsb + 5));
3404 if (operand->type == OP_ENTRY_EXIT_LIST)
3405 used_bits &= ~(mask & 0x700);
3406 }
ab902481 3407 /* Skip prefix characters. */
7361da2c 3408 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
ab902481 3409 ++s;
fc76e730 3410 opno += 1;
ab902481
RS
3411 break;
3412 }
fc76e730 3413 doubled = used_bits & mask & insn_bits;
ab902481
RS
3414 if (doubled)
3415 {
3416 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3417 " %s %s"), doubled, opcode->name, opcode->args);
3418 return 0;
3419 }
fc76e730 3420 used_bits |= mask;
ab902481 3421 undefined = ~used_bits & insn_bits;
fc76e730 3422 if (opcode->pinfo != INSN_MACRO && undefined)
ab902481
RS
3423 {
3424 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3425 undefined, opcode->name, opcode->args);
3426 return 0;
3427 }
3428 used_bits &= ~insn_bits;
3429 if (used_bits)
3430 {
3431 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3432 used_bits, opcode->name, opcode->args);
3433 return 0;
3434 }
3435 return 1;
3436}
3437
fc76e730
RS
3438/* The MIPS16 version of validate_mips_insn. */
3439
3440static int
3441validate_mips16_insn (const struct mips_opcode *opcode,
3442 struct mips_operand_array *operands)
3443{
7fd53920 3444 unsigned long insn_bits = mips_opcode_32bit_p (opcode) ? 0xffffffff : 0xffff;
fc76e730 3445
7fd53920 3446 return validate_mips_insn (opcode, insn_bits, 0, operands);
fc76e730
RS
3447}
3448
ab902481
RS
3449/* The microMIPS version of validate_mips_insn. */
3450
3451static int
fc76e730
RS
3452validate_micromips_insn (const struct mips_opcode *opc,
3453 struct mips_operand_array *operands)
ab902481
RS
3454{
3455 unsigned long insn_bits;
3456 unsigned long major;
3457 unsigned int length;
3458
fc76e730
RS
3459 if (opc->pinfo == INSN_MACRO)
3460 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3461 operands);
3462
ab902481
RS
3463 length = micromips_insn_length (opc);
3464 if (length != 2 && length != 4)
3465 {
1661c76c 3466 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
ab902481
RS
3467 "%s %s"), length, opc->name, opc->args);
3468 return 0;
3469 }
3470 major = opc->match >> (10 + 8 * (length - 2));
3471 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3472 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3473 {
1661c76c 3474 as_bad (_("internal error: bad microMIPS opcode "
ab902481
RS
3475 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3476 return 0;
3477 }
3478
3479 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3480 insn_bits = 1 << 4 * length;
3481 insn_bits <<= 4 * length;
3482 insn_bits -= 1;
fc76e730
RS
3483 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3484 operands);
ab902481
RS
3485}
3486
707bfff6
TS
3487/* This function is called once, at assembler startup time. It should set up
3488 all the tables, etc. that the MD part of the assembler will need. */
156c2f8b 3489
252b5132 3490void
17a2f251 3491md_begin (void)
252b5132 3492{
3994f87e 3493 const char *retval = NULL;
156c2f8b 3494 int i = 0;
252b5132 3495 int broken = 0;
1f25f5d3 3496
0a44bf69
RS
3497 if (mips_pic != NO_PIC)
3498 {
3499 if (g_switch_seen && g_switch_value != 0)
3500 as_bad (_("-G may not be used in position-independent code"));
3501 g_switch_value = 0;
3502 }
00acd688
CM
3503 else if (mips_abicalls)
3504 {
3505 if (g_switch_seen && g_switch_value != 0)
3506 as_bad (_("-G may not be used with abicalls"));
3507 g_switch_value = 0;
3508 }
0a44bf69 3509
0b35dfee 3510 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
1661c76c 3511 as_warn (_("could not set architecture and machine"));
252b5132 3512
252b5132
RH
3513 op_hash = hash_new ();
3514
fc76e730 3515 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
252b5132
RH
3516 for (i = 0; i < NUMOPCODES;)
3517 {
3518 const char *name = mips_opcodes[i].name;
3519
17a2f251 3520 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
252b5132
RH
3521 if (retval != NULL)
3522 {
3523 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3524 mips_opcodes[i].name, retval);
3525 /* Probably a memory allocation problem? Give up now. */
1661c76c 3526 as_fatal (_("broken assembler, no assembly attempted"));
252b5132
RH
3527 }
3528 do
3529 {
fc76e730
RS
3530 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3531 decode_mips_operand, &mips_operands[i]))
3532 broken = 1;
3533 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
252b5132 3534 {
fc76e730
RS
3535 create_insn (&nop_insn, mips_opcodes + i);
3536 if (mips_fix_loongson2f_nop)
3537 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3538 nop_insn.fixed_p = 1;
252b5132
RH
3539 }
3540 ++i;
3541 }
3542 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3543 }
3544
3545 mips16_op_hash = hash_new ();
fc76e730
RS
3546 mips16_operands = XCNEWVEC (struct mips_operand_array,
3547 bfd_mips16_num_opcodes);
252b5132
RH
3548
3549 i = 0;
3550 while (i < bfd_mips16_num_opcodes)
3551 {
3552 const char *name = mips16_opcodes[i].name;
3553
17a2f251 3554 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
252b5132
RH
3555 if (retval != NULL)
3556 as_fatal (_("internal: can't hash `%s': %s"),
3557 mips16_opcodes[i].name, retval);
3558 do
3559 {
fc76e730
RS
3560 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3561 broken = 1;
1e915849
RS
3562 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3563 {
3564 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3565 mips16_nop_insn.fixed_p = 1;
3566 }
252b5132
RH
3567 ++i;
3568 }
3569 while (i < bfd_mips16_num_opcodes
3570 && strcmp (mips16_opcodes[i].name, name) == 0);
3571 }
3572
df58fc94 3573 micromips_op_hash = hash_new ();
fc76e730
RS
3574 micromips_operands = XCNEWVEC (struct mips_operand_array,
3575 bfd_micromips_num_opcodes);
df58fc94
RS
3576
3577 i = 0;
3578 while (i < bfd_micromips_num_opcodes)
3579 {
3580 const char *name = micromips_opcodes[i].name;
3581
3582 retval = hash_insert (micromips_op_hash, name,
3583 (void *) &micromips_opcodes[i]);
3584 if (retval != NULL)
3585 as_fatal (_("internal: can't hash `%s': %s"),
3586 micromips_opcodes[i].name, retval);
3587 do
fc76e730
RS
3588 {
3589 struct mips_cl_insn *micromips_nop_insn;
3590
3591 if (!validate_micromips_insn (&micromips_opcodes[i],
3592 &micromips_operands[i]))
3593 broken = 1;
3594
3595 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3596 {
3597 if (micromips_insn_length (micromips_opcodes + i) == 2)
3598 micromips_nop_insn = &micromips_nop16_insn;
3599 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3600 micromips_nop_insn = &micromips_nop32_insn;
3601 else
3602 continue;
3603
3604 if (micromips_nop_insn->insn_mo == NULL
3605 && strcmp (name, "nop") == 0)
3606 {
3607 create_insn (micromips_nop_insn, micromips_opcodes + i);
3608 micromips_nop_insn->fixed_p = 1;
3609 }
3610 }
3611 }
df58fc94
RS
3612 while (++i < bfd_micromips_num_opcodes
3613 && strcmp (micromips_opcodes[i].name, name) == 0);
3614 }
3615
252b5132 3616 if (broken)
1661c76c 3617 as_fatal (_("broken assembler, no assembly attempted"));
252b5132
RH
3618
3619 /* We add all the general register names to the symbol table. This
3620 helps us detect invalid uses of them. */
3739860c 3621 for (i = 0; reg_names[i].name; i++)
707bfff6 3622 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
8fc4ee9b 3623 reg_names[i].num, /* & RNUM_MASK, */
707bfff6
TS
3624 &zero_address_frag));
3625 if (HAVE_NEWABI)
3739860c 3626 for (i = 0; reg_names_n32n64[i].name; i++)
707bfff6 3627 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
8fc4ee9b 3628 reg_names_n32n64[i].num, /* & RNUM_MASK, */
252b5132 3629 &zero_address_frag));
707bfff6 3630 else
3739860c 3631 for (i = 0; reg_names_o32[i].name; i++)
707bfff6 3632 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
8fc4ee9b 3633 reg_names_o32[i].num, /* & RNUM_MASK, */
6047c971 3634 &zero_address_frag));
6047c971 3635
14daeee3
RS
3636 for (i = 0; i < 32; i++)
3637 {
92fce9bd 3638 char regname[6];
14daeee3
RS
3639
3640 /* R5900 VU0 floating-point register. */
92fce9bd 3641 sprintf (regname, "$vf%d", i);
14daeee3
RS
3642 symbol_table_insert (symbol_new (regname, reg_section,
3643 RTYPE_VF | i, &zero_address_frag));
3644
3645 /* R5900 VU0 integer register. */
92fce9bd 3646 sprintf (regname, "$vi%d", i);
14daeee3
RS
3647 symbol_table_insert (symbol_new (regname, reg_section,
3648 RTYPE_VI | i, &zero_address_frag));
3649
56d438b1 3650 /* MSA register. */
92fce9bd 3651 sprintf (regname, "$w%d", i);
56d438b1
CF
3652 symbol_table_insert (symbol_new (regname, reg_section,
3653 RTYPE_MSA | i, &zero_address_frag));
14daeee3
RS
3654 }
3655
a92713e6
RS
3656 obstack_init (&mips_operand_tokens);
3657
7d10b47d 3658 mips_no_prev_insn ();
252b5132
RH
3659
3660 mips_gprmask = 0;
3661 mips_cprmask[0] = 0;
3662 mips_cprmask[1] = 0;
3663 mips_cprmask[2] = 0;
3664 mips_cprmask[3] = 0;
3665
3666 /* set the default alignment for the text section (2**2) */
3667 record_alignment (text_section, 2);
3668
4d0d148d 3669 bfd_set_gp_size (stdoutput, g_switch_value);
252b5132 3670
f3ded42a
RS
3671 /* On a native system other than VxWorks, sections must be aligned
3672 to 16 byte boundaries. When configured for an embedded ELF
3673 target, we don't bother. */
3674 if (strncmp (TARGET_OS, "elf", 3) != 0
3675 && strncmp (TARGET_OS, "vxworks", 7) != 0)
252b5132 3676 {
f3ded42a
RS
3677 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3678 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3679 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3680 }
252b5132 3681
f3ded42a
RS
3682 /* Create a .reginfo section for register masks and a .mdebug
3683 section for debugging information. */
3684 {
3685 segT seg;
3686 subsegT subseg;
3687 flagword flags;
3688 segT sec;
3689
3690 seg = now_seg;
3691 subseg = now_subseg;
3692
3693 /* The ABI says this section should be loaded so that the
3694 running program can access it. However, we don't load it
3695 if we are configured for an embedded target */
3696 flags = SEC_READONLY | SEC_DATA;
3697 if (strncmp (TARGET_OS, "elf", 3) != 0)
3698 flags |= SEC_ALLOC | SEC_LOAD;
3699
3700 if (mips_abi != N64_ABI)
252b5132 3701 {
f3ded42a 3702 sec = subseg_new (".reginfo", (subsegT) 0);
bdaaa2e1 3703
f3ded42a
RS
3704 bfd_set_section_flags (stdoutput, sec, flags);
3705 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
252b5132 3706
f3ded42a
RS
3707 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3708 }
3709 else
3710 {
3711 /* The 64-bit ABI uses a .MIPS.options section rather than
3712 .reginfo section. */
3713 sec = subseg_new (".MIPS.options", (subsegT) 0);
3714 bfd_set_section_flags (stdoutput, sec, flags);
3715 bfd_set_section_alignment (stdoutput, sec, 3);
252b5132 3716
f3ded42a
RS
3717 /* Set up the option header. */
3718 {
3719 Elf_Internal_Options opthdr;
3720 char *f;
3721
3722 opthdr.kind = ODK_REGINFO;
3723 opthdr.size = (sizeof (Elf_External_Options)
3724 + sizeof (Elf64_External_RegInfo));
3725 opthdr.section = 0;
3726 opthdr.info = 0;
3727 f = frag_more (sizeof (Elf_External_Options));
3728 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3729 (Elf_External_Options *) f);
3730
3731 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3732 }
3733 }
252b5132 3734
351cdf24
MF
3735 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3736 bfd_set_section_flags (stdoutput, sec,
3737 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3738 bfd_set_section_alignment (stdoutput, sec, 3);
3739 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3740
f3ded42a
RS
3741 if (ECOFF_DEBUGGING)
3742 {
3743 sec = subseg_new (".mdebug", (subsegT) 0);
3744 (void) bfd_set_section_flags (stdoutput, sec,
3745 SEC_HAS_CONTENTS | SEC_READONLY);
3746 (void) bfd_set_section_alignment (stdoutput, sec, 2);
252b5132 3747 }
f3ded42a
RS
3748 else if (mips_flag_pdr)
3749 {
3750 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3751 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3752 SEC_READONLY | SEC_RELOC
3753 | SEC_DEBUGGING);
3754 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3755 }
3756
3757 subseg_set (seg, subseg);
3758 }
252b5132 3759
71400594
RS
3760 if (mips_fix_vr4120)
3761 init_vr4120_conflicts ();
252b5132
RH
3762}
3763
351cdf24
MF
3764static inline void
3765fpabi_incompatible_with (int fpabi, const char *what)
3766{
3767 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3768 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3769}
3770
3771static inline void
3772fpabi_requires (int fpabi, const char *what)
3773{
3774 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3775 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3776}
3777
3778/* Check -mabi and register sizes against the specified FP ABI. */
3779static void
3780check_fpabi (int fpabi)
3781{
351cdf24
MF
3782 switch (fpabi)
3783 {
3784 case Val_GNU_MIPS_ABI_FP_DOUBLE:
ea79f94a
MF
3785 if (file_mips_opts.soft_float)
3786 fpabi_incompatible_with (fpabi, "softfloat");
3787 else if (file_mips_opts.single_float)
3788 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3789 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3790 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3791 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3792 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
351cdf24
MF
3793 break;
3794
3795 case Val_GNU_MIPS_ABI_FP_XX:
3796 if (mips_abi != O32_ABI)
3797 fpabi_requires (fpabi, "-mabi=32");
ea79f94a
MF
3798 else if (file_mips_opts.soft_float)
3799 fpabi_incompatible_with (fpabi, "softfloat");
3800 else if (file_mips_opts.single_float)
3801 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3802 else if (file_mips_opts.fp != 0)
3803 fpabi_requires (fpabi, "fp=xx");
351cdf24
MF
3804 break;
3805
3806 case Val_GNU_MIPS_ABI_FP_64A:
3807 case Val_GNU_MIPS_ABI_FP_64:
3808 if (mips_abi != O32_ABI)
3809 fpabi_requires (fpabi, "-mabi=32");
ea79f94a
MF
3810 else if (file_mips_opts.soft_float)
3811 fpabi_incompatible_with (fpabi, "softfloat");
3812 else if (file_mips_opts.single_float)
3813 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3814 else if (file_mips_opts.fp != 64)
3815 fpabi_requires (fpabi, "fp=64");
3816 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3817 fpabi_incompatible_with (fpabi, "nooddspreg");
3818 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3819 fpabi_requires (fpabi, "nooddspreg");
351cdf24
MF
3820 break;
3821
3822 case Val_GNU_MIPS_ABI_FP_SINGLE:
3823 if (file_mips_opts.soft_float)
3824 fpabi_incompatible_with (fpabi, "softfloat");
3825 else if (!file_mips_opts.single_float)
3826 fpabi_requires (fpabi, "singlefloat");
3827 break;
3828
3829 case Val_GNU_MIPS_ABI_FP_SOFT:
3830 if (!file_mips_opts.soft_float)
3831 fpabi_requires (fpabi, "softfloat");
3832 break;
3833
3834 case Val_GNU_MIPS_ABI_FP_OLD_64:
3835 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3836 Tag_GNU_MIPS_ABI_FP, fpabi);
3837 break;
3838
3350cc01
CM
3839 case Val_GNU_MIPS_ABI_FP_NAN2008:
3840 /* Silently ignore compatibility value. */
3841 break;
3842
351cdf24
MF
3843 default:
3844 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3845 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3846 break;
3847 }
351cdf24
MF
3848}
3849
919731af 3850/* Perform consistency checks on the current options. */
3851
3852static void
3853mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3854{
3855 /* Check the size of integer registers agrees with the ABI and ISA. */
3856 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3857 as_bad (_("`gp=64' used with a 32-bit processor"));
3858 else if (abi_checks
3859 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3860 as_bad (_("`gp=32' used with a 64-bit ABI"));
3861 else if (abi_checks
3862 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3863 as_bad (_("`gp=64' used with a 32-bit ABI"));
3864
3865 /* Check the size of the float registers agrees with the ABI and ISA. */
3866 switch (opts->fp)
3867 {
351cdf24
MF
3868 case 0:
3869 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3870 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3871 else if (opts->single_float == 1)
3872 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3873 break;
919731af 3874 case 64:
3875 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3876 as_bad (_("`fp=64' used with a 32-bit fpu"));
3877 else if (abi_checks
3878 && ABI_NEEDS_32BIT_REGS (mips_abi)
3879 && !ISA_HAS_MXHC1 (opts->isa))
3880 as_warn (_("`fp=64' used with a 32-bit ABI"));
3881 break;
3882 case 32:
3883 if (abi_checks
3884 && ABI_NEEDS_64BIT_REGS (mips_abi))
3885 as_warn (_("`fp=32' used with a 64-bit ABI"));
5f4678bb 3886 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
7361da2c 3887 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
919731af 3888 break;
3889 default:
3890 as_bad (_("Unknown size of floating point registers"));
3891 break;
3892 }
3893
351cdf24
MF
3894 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3895 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3896
919731af 3897 if (opts->micromips == 1 && opts->mips16 == 1)
1357373c 3898 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
5f4678bb 3899 else if (ISA_IS_R6 (opts->isa)
7361da2c
AB
3900 && (opts->micromips == 1
3901 || opts->mips16 == 1))
1357373c 3902 as_fatal (_("`%s' cannot be used with `%s'"),
7361da2c 3903 opts->micromips ? "micromips" : "mips16",
5f4678bb 3904 mips_cpu_info_from_isa (opts->isa)->name);
7361da2c
AB
3905
3906 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3907 as_fatal (_("branch relaxation is not supported in `%s'"),
3908 mips_cpu_info_from_isa (opts->isa)->name);
919731af 3909}
3910
3911/* Perform consistency checks on the module level options exactly once.
3912 This is a deferred check that happens:
3913 at the first .set directive
3914 or, at the first pseudo op that generates code (inc .dc.a)
3915 or, at the first instruction
3916 or, at the end. */
3917
3918static void
3919file_mips_check_options (void)
3920{
3921 const struct mips_cpu_info *arch_info = 0;
3922
3923 if (file_mips_opts_checked)
3924 return;
3925
3926 /* The following code determines the register size.
3927 Similar code was added to GCC 3.3 (see override_options() in
3928 config/mips/mips.c). The GAS and GCC code should be kept in sync
3929 as much as possible. */
3930
3931 if (file_mips_opts.gp < 0)
3932 {
3933 /* Infer the integer register size from the ABI and processor.
3934 Restrict ourselves to 32-bit registers if that's all the
3935 processor has, or if the ABI cannot handle 64-bit registers. */
3936 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3937 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3938 ? 32 : 64;
3939 }
3940
3941 if (file_mips_opts.fp < 0)
3942 {
3943 /* No user specified float register size.
3944 ??? GAS treats single-float processors as though they had 64-bit
3945 float registers (although it complains when double-precision
3946 instructions are used). As things stand, saying they have 32-bit
3947 registers would lead to spurious "register must be even" messages.
3948 So here we assume float registers are never smaller than the
3949 integer ones. */
3950 if (file_mips_opts.gp == 64)
3951 /* 64-bit integer registers implies 64-bit float registers. */
3952 file_mips_opts.fp = 64;
3953 else if ((file_mips_opts.ase & FP64_ASES)
3954 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3955 /* Handle ASEs that require 64-bit float registers, if possible. */
3956 file_mips_opts.fp = 64;
7361da2c
AB
3957 else if (ISA_IS_R6 (mips_opts.isa))
3958 /* R6 implies 64-bit float registers. */
3959 file_mips_opts.fp = 64;
919731af 3960 else
3961 /* 32-bit float registers. */
3962 file_mips_opts.fp = 32;
3963 }
3964
3965 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3966
351cdf24
MF
3967 /* Disable operations on odd-numbered floating-point registers by default
3968 when using the FPXX ABI. */
3969 if (file_mips_opts.oddspreg < 0)
3970 {
3971 if (file_mips_opts.fp == 0)
3972 file_mips_opts.oddspreg = 0;
3973 else
3974 file_mips_opts.oddspreg = 1;
3975 }
3976
919731af 3977 /* End of GCC-shared inference code. */
3978
3979 /* This flag is set when we have a 64-bit capable CPU but use only
3980 32-bit wide registers. Note that EABI does not use it. */
3981 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3982 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3983 || mips_abi == O32_ABI))
3984 mips_32bitmode = 1;
3985
3986 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3987 as_bad (_("trap exception not supported at ISA 1"));
3988
3989 /* If the selected architecture includes support for ASEs, enable
3990 generation of code for them. */
3991 if (file_mips_opts.mips16 == -1)
3992 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
3993 if (file_mips_opts.micromips == -1)
3994 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
3995 ? 1 : 0;
3996
7361da2c
AB
3997 if (mips_nan2008 == -1)
3998 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
3999 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
4000 as_fatal (_("`%s' does not support legacy NaN"),
4001 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
4002
919731af 4003 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
4004 being selected implicitly. */
4005 if (file_mips_opts.fp != 64)
4006 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
4007
4008 /* If the user didn't explicitly select or deselect a particular ASE,
4009 use the default setting for the CPU. */
4010 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
4011
4012 /* Set up the current options. These may change throughout assembly. */
4013 mips_opts = file_mips_opts;
4014
4015 mips_check_isa_supports_ases ();
4016 mips_check_options (&file_mips_opts, TRUE);
4017 file_mips_opts_checked = TRUE;
4018
4019 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
4020 as_warn (_("could not set architecture and machine"));
4021}
4022
252b5132 4023void
17a2f251 4024md_assemble (char *str)
252b5132
RH
4025{
4026 struct mips_cl_insn insn;
f6688943
TS
4027 bfd_reloc_code_real_type unused_reloc[3]
4028 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 4029
919731af 4030 file_mips_check_options ();
4031
252b5132 4032 imm_expr.X_op = O_absent;
252b5132 4033 offset_expr.X_op = O_absent;
f6688943
TS
4034 offset_reloc[0] = BFD_RELOC_UNUSED;
4035 offset_reloc[1] = BFD_RELOC_UNUSED;
4036 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132 4037
e1b47bd5
RS
4038 mips_mark_labels ();
4039 mips_assembling_insn = TRUE;
e3de51ce 4040 clear_insn_error ();
e1b47bd5 4041
252b5132
RH
4042 if (mips_opts.mips16)
4043 mips16_ip (str, &insn);
4044 else
4045 {
4046 mips_ip (str, &insn);
beae10d5
KH
4047 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4048 str, insn.insn_opcode));
252b5132
RH
4049 }
4050
e3de51ce
RS
4051 if (insn_error.msg)
4052 report_insn_error (str);
e1b47bd5 4053 else if (insn.insn_mo->pinfo == INSN_MACRO)
252b5132 4054 {
584892a6 4055 macro_start ();
252b5132
RH
4056 if (mips_opts.mips16)
4057 mips16_macro (&insn);
4058 else
833794fc 4059 macro (&insn, str);
584892a6 4060 macro_end ();
252b5132
RH
4061 }
4062 else
4063 {
77bd4346 4064 if (offset_expr.X_op != O_absent)
df58fc94 4065 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
252b5132 4066 else
df58fc94 4067 append_insn (&insn, NULL, unused_reloc, FALSE);
252b5132 4068 }
e1b47bd5
RS
4069
4070 mips_assembling_insn = FALSE;
252b5132
RH
4071}
4072
738e5348
RS
4073/* Convenience functions for abstracting away the differences between
4074 MIPS16 and non-MIPS16 relocations. */
4075
4076static inline bfd_boolean
4077mips16_reloc_p (bfd_reloc_code_real_type reloc)
4078{
4079 switch (reloc)
4080 {
4081 case BFD_RELOC_MIPS16_JMP:
4082 case BFD_RELOC_MIPS16_GPREL:
4083 case BFD_RELOC_MIPS16_GOT16:
4084 case BFD_RELOC_MIPS16_CALL16:
4085 case BFD_RELOC_MIPS16_HI16_S:
4086 case BFD_RELOC_MIPS16_HI16:
4087 case BFD_RELOC_MIPS16_LO16:
c9775dde 4088 case BFD_RELOC_MIPS16_16_PCREL_S1:
738e5348
RS
4089 return TRUE;
4090
4091 default:
4092 return FALSE;
4093 }
4094}
4095
df58fc94
RS
4096static inline bfd_boolean
4097micromips_reloc_p (bfd_reloc_code_real_type reloc)
4098{
4099 switch (reloc)
4100 {
4101 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4102 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4103 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4104 case BFD_RELOC_MICROMIPS_GPREL16:
4105 case BFD_RELOC_MICROMIPS_JMP:
4106 case BFD_RELOC_MICROMIPS_HI16:
4107 case BFD_RELOC_MICROMIPS_HI16_S:
4108 case BFD_RELOC_MICROMIPS_LO16:
4109 case BFD_RELOC_MICROMIPS_LITERAL:
4110 case BFD_RELOC_MICROMIPS_GOT16:
4111 case BFD_RELOC_MICROMIPS_CALL16:
4112 case BFD_RELOC_MICROMIPS_GOT_HI16:
4113 case BFD_RELOC_MICROMIPS_GOT_LO16:
4114 case BFD_RELOC_MICROMIPS_CALL_HI16:
4115 case BFD_RELOC_MICROMIPS_CALL_LO16:
4116 case BFD_RELOC_MICROMIPS_SUB:
4117 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4118 case BFD_RELOC_MICROMIPS_GOT_OFST:
4119 case BFD_RELOC_MICROMIPS_GOT_DISP:
4120 case BFD_RELOC_MICROMIPS_HIGHEST:
4121 case BFD_RELOC_MICROMIPS_HIGHER:
4122 case BFD_RELOC_MICROMIPS_SCN_DISP:
4123 case BFD_RELOC_MICROMIPS_JALR:
4124 return TRUE;
4125
4126 default:
4127 return FALSE;
4128 }
4129}
4130
2309ddf2
MR
4131static inline bfd_boolean
4132jmp_reloc_p (bfd_reloc_code_real_type reloc)
4133{
4134 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4135}
4136
0e9c5a5c
MR
4137static inline bfd_boolean
4138b_reloc_p (bfd_reloc_code_real_type reloc)
4139{
4140 return (reloc == BFD_RELOC_MIPS_26_PCREL_S2
4141 || reloc == BFD_RELOC_MIPS_21_PCREL_S2
4142 || reloc == BFD_RELOC_16_PCREL_S2
c9775dde 4143 || reloc == BFD_RELOC_MIPS16_16_PCREL_S1
0e9c5a5c
MR
4144 || reloc == BFD_RELOC_MICROMIPS_16_PCREL_S1
4145 || reloc == BFD_RELOC_MICROMIPS_10_PCREL_S1
4146 || reloc == BFD_RELOC_MICROMIPS_7_PCREL_S1);
4147}
4148
738e5348
RS
4149static inline bfd_boolean
4150got16_reloc_p (bfd_reloc_code_real_type reloc)
4151{
2309ddf2 4152 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
df58fc94 4153 || reloc == BFD_RELOC_MICROMIPS_GOT16);
738e5348
RS
4154}
4155
4156static inline bfd_boolean
4157hi16_reloc_p (bfd_reloc_code_real_type reloc)
4158{
2309ddf2 4159 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
df58fc94 4160 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
738e5348
RS
4161}
4162
4163static inline bfd_boolean
4164lo16_reloc_p (bfd_reloc_code_real_type reloc)
4165{
2309ddf2 4166 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
df58fc94
RS
4167 || reloc == BFD_RELOC_MICROMIPS_LO16);
4168}
4169
df58fc94
RS
4170static inline bfd_boolean
4171jalr_reloc_p (bfd_reloc_code_real_type reloc)
4172{
2309ddf2 4173 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
738e5348
RS
4174}
4175
f2ae14a1
RS
4176static inline bfd_boolean
4177gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4178{
4179 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4180 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4181}
4182
2de39019
CM
4183/* Return true if RELOC is a PC-relative relocation that does not have
4184 full address range. */
4185
4186static inline bfd_boolean
4187limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4188{
4189 switch (reloc)
4190 {
4191 case BFD_RELOC_16_PCREL_S2:
c9775dde 4192 case BFD_RELOC_MIPS16_16_PCREL_S1:
2de39019
CM
4193 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4194 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4195 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
7361da2c
AB
4196 case BFD_RELOC_MIPS_21_PCREL_S2:
4197 case BFD_RELOC_MIPS_26_PCREL_S2:
4198 case BFD_RELOC_MIPS_18_PCREL_S3:
4199 case BFD_RELOC_MIPS_19_PCREL_S2:
2de39019
CM
4200 return TRUE;
4201
b47468a6 4202 case BFD_RELOC_32_PCREL:
7361da2c
AB
4203 case BFD_RELOC_HI16_S_PCREL:
4204 case BFD_RELOC_LO16_PCREL:
b47468a6
CM
4205 return HAVE_64BIT_ADDRESSES;
4206
2de39019
CM
4207 default:
4208 return FALSE;
4209 }
4210}
b47468a6 4211
5919d012 4212/* Return true if the given relocation might need a matching %lo().
0a44bf69
RS
4213 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4214 need a matching %lo() when applied to local symbols. */
5919d012
RS
4215
4216static inline bfd_boolean
17a2f251 4217reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
5919d012 4218{
3b91255e 4219 return (HAVE_IN_PLACE_ADDENDS
738e5348 4220 && (hi16_reloc_p (reloc)
0a44bf69
RS
4221 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4222 all GOT16 relocations evaluate to "G". */
738e5348
RS
4223 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4224}
4225
4226/* Return the type of %lo() reloc needed by RELOC, given that
4227 reloc_needs_lo_p. */
4228
4229static inline bfd_reloc_code_real_type
4230matching_lo_reloc (bfd_reloc_code_real_type reloc)
4231{
df58fc94
RS
4232 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4233 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4234 : BFD_RELOC_LO16));
5919d012
RS
4235}
4236
4237/* Return true if the given fixup is followed by a matching R_MIPS_LO16
4238 relocation. */
4239
4240static inline bfd_boolean
17a2f251 4241fixup_has_matching_lo_p (fixS *fixp)
5919d012
RS
4242{
4243 return (fixp->fx_next != NULL
738e5348 4244 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
5919d012
RS
4245 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4246 && fixp->fx_offset == fixp->fx_next->fx_offset);
4247}
4248
462427c4
RS
4249/* Move all labels in LABELS to the current insertion point. TEXT_P
4250 says whether the labels refer to text or data. */
404a8071
RS
4251
4252static void
462427c4 4253mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
404a8071
RS
4254{
4255 struct insn_label_list *l;
4256 valueT val;
4257
462427c4 4258 for (l = labels; l != NULL; l = l->next)
404a8071 4259 {
9c2799c2 4260 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
404a8071
RS
4261 symbol_set_frag (l->label, frag_now);
4262 val = (valueT) frag_now_fix ();
df58fc94 4263 /* MIPS16/microMIPS text labels are stored as odd. */
462427c4 4264 if (text_p && HAVE_CODE_COMPRESSION)
404a8071
RS
4265 ++val;
4266 S_SET_VALUE (l->label, val);
4267 }
4268}
4269
462427c4
RS
4270/* Move all labels in insn_labels to the current insertion point
4271 and treat them as text labels. */
4272
4273static void
4274mips_move_text_labels (void)
4275{
4276 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4277}
4278
9e009953
MR
4279/* Duplicate the test for LINK_ONCE sections as in `adjust_reloc_syms'. */
4280
5f0fe04b
TS
4281static bfd_boolean
4282s_is_linkonce (symbolS *sym, segT from_seg)
4283{
4284 bfd_boolean linkonce = FALSE;
4285 segT symseg = S_GET_SEGMENT (sym);
4286
4287 if (symseg != from_seg && !S_IS_LOCAL (sym))
4288 {
4289 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4290 linkonce = TRUE;
5f0fe04b
TS
4291 /* The GNU toolchain uses an extension for ELF: a section
4292 beginning with the magic string .gnu.linkonce is a
4293 linkonce section. */
4294 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4295 sizeof ".gnu.linkonce" - 1) == 0)
4296 linkonce = TRUE;
5f0fe04b
TS
4297 }
4298 return linkonce;
4299}
4300
e1b47bd5 4301/* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
df58fc94
RS
4302 linker to handle them specially, such as generating jalx instructions
4303 when needed. We also make them odd for the duration of the assembly,
4304 in order to generate the right sort of code. We will make them even
252b5132
RH
4305 in the adjust_symtab routine, while leaving them marked. This is
4306 convenient for the debugger and the disassembler. The linker knows
4307 to make them odd again. */
4308
4309static void
e1b47bd5 4310mips_compressed_mark_label (symbolS *label)
252b5132 4311{
df58fc94 4312 gas_assert (HAVE_CODE_COMPRESSION);
a8dbcb85 4313
f3ded42a
RS
4314 if (mips_opts.mips16)
4315 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4316 else
4317 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
e1b47bd5
RS
4318 if ((S_GET_VALUE (label) & 1) == 0
4319 /* Don't adjust the address if the label is global or weak, or
4320 in a link-once section, since we'll be emitting symbol reloc
4321 references to it which will be patched up by the linker, and
4322 the final value of the symbol may or may not be MIPS16/microMIPS. */
4323 && !S_IS_WEAK (label)
4324 && !S_IS_EXTERNAL (label)
4325 && !s_is_linkonce (label, now_seg))
4326 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4327}
4328
4329/* Mark preceding MIPS16 or microMIPS instruction labels. */
4330
4331static void
4332mips_compressed_mark_labels (void)
4333{
4334 struct insn_label_list *l;
4335
4336 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4337 mips_compressed_mark_label (l->label);
252b5132
RH
4338}
4339
4d7206a2
RS
4340/* End the current frag. Make it a variant frag and record the
4341 relaxation info. */
4342
4343static void
4344relax_close_frag (void)
4345{
584892a6 4346 mips_macro_warning.first_frag = frag_now;
4d7206a2 4347 frag_var (rs_machine_dependent, 0, 0,
584892a6 4348 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4d7206a2
RS
4349 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4350
4351 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4352 mips_relax.first_fixup = 0;
4353}
4354
4355/* Start a new relaxation sequence whose expansion depends on SYMBOL.
4356 See the comment above RELAX_ENCODE for more details. */
4357
4358static void
4359relax_start (symbolS *symbol)
4360{
9c2799c2 4361 gas_assert (mips_relax.sequence == 0);
4d7206a2
RS
4362 mips_relax.sequence = 1;
4363 mips_relax.symbol = symbol;
4364}
4365
4366/* Start generating the second version of a relaxable sequence.
4367 See the comment above RELAX_ENCODE for more details. */
252b5132
RH
4368
4369static void
4d7206a2
RS
4370relax_switch (void)
4371{
9c2799c2 4372 gas_assert (mips_relax.sequence == 1);
4d7206a2
RS
4373 mips_relax.sequence = 2;
4374}
4375
4376/* End the current relaxable sequence. */
4377
4378static void
4379relax_end (void)
4380{
9c2799c2 4381 gas_assert (mips_relax.sequence == 2);
4d7206a2
RS
4382 relax_close_frag ();
4383 mips_relax.sequence = 0;
4384}
4385
11625dd8
RS
4386/* Return true if IP is a delayed branch or jump. */
4387
4388static inline bfd_boolean
4389delayed_branch_p (const struct mips_cl_insn *ip)
4390{
4391 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4392 | INSN_COND_BRANCH_DELAY
4393 | INSN_COND_BRANCH_LIKELY)) != 0;
4394}
4395
4396/* Return true if IP is a compact branch or jump. */
4397
4398static inline bfd_boolean
4399compact_branch_p (const struct mips_cl_insn *ip)
4400{
26545944
RS
4401 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4402 | INSN2_COND_BRANCH)) != 0;
11625dd8
RS
4403}
4404
4405/* Return true if IP is an unconditional branch or jump. */
4406
4407static inline bfd_boolean
4408uncond_branch_p (const struct mips_cl_insn *ip)
4409{
4410 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
26545944 4411 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
11625dd8
RS
4412}
4413
4414/* Return true if IP is a branch-likely instruction. */
4415
4416static inline bfd_boolean
4417branch_likely_p (const struct mips_cl_insn *ip)
4418{
4419 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4420}
4421
14fe068b
RS
4422/* Return the type of nop that should be used to fill the delay slot
4423 of delayed branch IP. */
4424
4425static struct mips_cl_insn *
4426get_delay_slot_nop (const struct mips_cl_insn *ip)
4427{
4428 if (mips_opts.micromips
4429 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4430 return &micromips_nop32_insn;
4431 return NOP_INSN;
4432}
4433
fc76e730
RS
4434/* Return a mask that has bit N set if OPCODE reads the register(s)
4435 in operand N. */
df58fc94
RS
4436
4437static unsigned int
fc76e730 4438insn_read_mask (const struct mips_opcode *opcode)
df58fc94 4439{
fc76e730
RS
4440 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4441}
df58fc94 4442
fc76e730
RS
4443/* Return a mask that has bit N set if OPCODE writes to the register(s)
4444 in operand N. */
4445
4446static unsigned int
4447insn_write_mask (const struct mips_opcode *opcode)
4448{
4449 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4450}
4451
4452/* Return a mask of the registers specified by operand OPERAND of INSN.
4453 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4454 is set. */
4455
4456static unsigned int
4457operand_reg_mask (const struct mips_cl_insn *insn,
4458 const struct mips_operand *operand,
4459 unsigned int type_mask)
4460{
4461 unsigned int uval, vsel;
4462
4463 switch (operand->type)
df58fc94 4464 {
fc76e730
RS
4465 case OP_INT:
4466 case OP_MAPPED_INT:
4467 case OP_MSB:
4468 case OP_PCREL:
4469 case OP_PERF_REG:
4470 case OP_ADDIUSP_INT:
4471 case OP_ENTRY_EXIT_LIST:
4472 case OP_REPEAT_DEST_REG:
4473 case OP_REPEAT_PREV_REG:
4474 case OP_PC:
14daeee3
RS
4475 case OP_VU0_SUFFIX:
4476 case OP_VU0_MATCH_SUFFIX:
56d438b1 4477 case OP_IMM_INDEX:
fc76e730
RS
4478 abort ();
4479
4480 case OP_REG:
0f35dbc4 4481 case OP_OPTIONAL_REG:
fc76e730
RS
4482 {
4483 const struct mips_reg_operand *reg_op;
4484
4485 reg_op = (const struct mips_reg_operand *) operand;
4486 if (!(type_mask & (1 << reg_op->reg_type)))
4487 return 0;
4488 uval = insn_extract_operand (insn, operand);
4489 return 1 << mips_decode_reg_operand (reg_op, uval);
4490 }
4491
4492 case OP_REG_PAIR:
4493 {
4494 const struct mips_reg_pair_operand *pair_op;
4495
4496 pair_op = (const struct mips_reg_pair_operand *) operand;
4497 if (!(type_mask & (1 << pair_op->reg_type)))
4498 return 0;
4499 uval = insn_extract_operand (insn, operand);
4500 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4501 }
4502
4503 case OP_CLO_CLZ_DEST:
4504 if (!(type_mask & (1 << OP_REG_GP)))
4505 return 0;
4506 uval = insn_extract_operand (insn, operand);
4507 return (1 << (uval & 31)) | (1 << (uval >> 5));
4508
7361da2c
AB
4509 case OP_SAME_RS_RT:
4510 if (!(type_mask & (1 << OP_REG_GP)))
4511 return 0;
4512 uval = insn_extract_operand (insn, operand);
4513 gas_assert ((uval & 31) == (uval >> 5));
4514 return 1 << (uval & 31);
4515
4516 case OP_CHECK_PREV:
4517 case OP_NON_ZERO_REG:
4518 if (!(type_mask & (1 << OP_REG_GP)))
4519 return 0;
4520 uval = insn_extract_operand (insn, operand);
4521 return 1 << (uval & 31);
4522
fc76e730
RS
4523 case OP_LWM_SWM_LIST:
4524 abort ();
4525
4526 case OP_SAVE_RESTORE_LIST:
4527 abort ();
4528
4529 case OP_MDMX_IMM_REG:
4530 if (!(type_mask & (1 << OP_REG_VEC)))
4531 return 0;
4532 uval = insn_extract_operand (insn, operand);
4533 vsel = uval >> 5;
4534 if ((vsel & 0x18) == 0x18)
4535 return 0;
4536 return 1 << (uval & 31);
56d438b1
CF
4537
4538 case OP_REG_INDEX:
4539 if (!(type_mask & (1 << OP_REG_GP)))
4540 return 0;
4541 return 1 << insn_extract_operand (insn, operand);
df58fc94 4542 }
fc76e730
RS
4543 abort ();
4544}
4545
4546/* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4547 where bit N of OPNO_MASK is set if operand N should be included.
4548 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4549 is set. */
4550
4551static unsigned int
4552insn_reg_mask (const struct mips_cl_insn *insn,
4553 unsigned int type_mask, unsigned int opno_mask)
4554{
4555 unsigned int opno, reg_mask;
4556
4557 opno = 0;
4558 reg_mask = 0;
4559 while (opno_mask != 0)
4560 {
4561 if (opno_mask & 1)
4562 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4563 opno_mask >>= 1;
4564 opno += 1;
4565 }
4566 return reg_mask;
df58fc94
RS
4567}
4568
4c260379
RS
4569/* Return the mask of core registers that IP reads. */
4570
4571static unsigned int
4572gpr_read_mask (const struct mips_cl_insn *ip)
4573{
4574 unsigned long pinfo, pinfo2;
4575 unsigned int mask;
4576
fc76e730 4577 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4c260379
RS
4578 pinfo = ip->insn_mo->pinfo;
4579 pinfo2 = ip->insn_mo->pinfo2;
fc76e730 4580 if (pinfo & INSN_UDI)
4c260379 4581 {
fc76e730
RS
4582 /* UDI instructions have traditionally been assumed to read RS
4583 and RT. */
4584 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4585 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4c260379 4586 }
fc76e730
RS
4587 if (pinfo & INSN_READ_GPR_24)
4588 mask |= 1 << 24;
4589 if (pinfo2 & INSN2_READ_GPR_16)
4590 mask |= 1 << 16;
4591 if (pinfo2 & INSN2_READ_SP)
4592 mask |= 1 << SP;
26545944 4593 if (pinfo2 & INSN2_READ_GPR_31)
fc76e730 4594 mask |= 1 << 31;
fe35f09f
RS
4595 /* Don't include register 0. */
4596 return mask & ~1;
4c260379
RS
4597}
4598
4599/* Return the mask of core registers that IP writes. */
4600
4601static unsigned int
4602gpr_write_mask (const struct mips_cl_insn *ip)
4603{
4604 unsigned long pinfo, pinfo2;
4605 unsigned int mask;
4606
fc76e730 4607 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4c260379
RS
4608 pinfo = ip->insn_mo->pinfo;
4609 pinfo2 = ip->insn_mo->pinfo2;
fc76e730
RS
4610 if (pinfo & INSN_WRITE_GPR_24)
4611 mask |= 1 << 24;
4612 if (pinfo & INSN_WRITE_GPR_31)
4613 mask |= 1 << 31;
4614 if (pinfo & INSN_UDI)
4615 /* UDI instructions have traditionally been assumed to write to RD. */
4616 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4617 if (pinfo2 & INSN2_WRITE_SP)
4618 mask |= 1 << SP;
fe35f09f
RS
4619 /* Don't include register 0. */
4620 return mask & ~1;
4c260379
RS
4621}
4622
4623/* Return the mask of floating-point registers that IP reads. */
4624
4625static unsigned int
4626fpr_read_mask (const struct mips_cl_insn *ip)
4627{
fc76e730 4628 unsigned long pinfo;
4c260379
RS
4629 unsigned int mask;
4630
9d5de888
CF
4631 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4632 | (1 << OP_REG_MSA)),
fc76e730 4633 insn_read_mask (ip->insn_mo));
4c260379 4634 pinfo = ip->insn_mo->pinfo;
4c260379
RS
4635 /* Conservatively treat all operands to an FP_D instruction are doubles.
4636 (This is overly pessimistic for things like cvt.d.s.) */
bad1aba3 4637 if (FPR_SIZE != 64 && (pinfo & FP_D))
4c260379
RS
4638 mask |= mask << 1;
4639 return mask;
4640}
4641
4642/* Return the mask of floating-point registers that IP writes. */
4643
4644static unsigned int
4645fpr_write_mask (const struct mips_cl_insn *ip)
4646{
fc76e730 4647 unsigned long pinfo;
4c260379
RS
4648 unsigned int mask;
4649
9d5de888
CF
4650 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4651 | (1 << OP_REG_MSA)),
fc76e730 4652 insn_write_mask (ip->insn_mo));
4c260379 4653 pinfo = ip->insn_mo->pinfo;
4c260379
RS
4654 /* Conservatively treat all operands to an FP_D instruction are doubles.
4655 (This is overly pessimistic for things like cvt.s.d.) */
bad1aba3 4656 if (FPR_SIZE != 64 && (pinfo & FP_D))
4c260379
RS
4657 mask |= mask << 1;
4658 return mask;
4659}
4660
a1d78564
RS
4661/* Operand OPNUM of INSN is an odd-numbered floating-point register.
4662 Check whether that is allowed. */
4663
4664static bfd_boolean
4665mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4666{
4667 const char *s = insn->name;
351cdf24
MF
4668 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4669 || FPR_SIZE == 64)
4670 && mips_opts.oddspreg;
a1d78564
RS
4671
4672 if (insn->pinfo == INSN_MACRO)
4673 /* Let a macro pass, we'll catch it later when it is expanded. */
4674 return TRUE;
4675
351cdf24
MF
4676 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4677 otherwise it depends on oddspreg. */
4678 if ((insn->pinfo & FP_S)
4679 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
43885403 4680 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
351cdf24 4681 return FPR_SIZE == 32 || oddspreg;
a1d78564 4682
351cdf24
MF
4683 /* Allow odd registers for single-precision ops and double-precision if the
4684 floating-point registers are 64-bit wide. */
4685 switch (insn->pinfo & (FP_S | FP_D))
4686 {
4687 case FP_S:
4688 case 0:
4689 return oddspreg;
4690 case FP_D:
4691 return FPR_SIZE == 64;
4692 default:
4693 break;
a1d78564
RS
4694 }
4695
351cdf24
MF
4696 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4697 s = strchr (insn->name, '.');
4698 if (s != NULL && opnum == 2)
4699 s = strchr (s + 1, '.');
4700 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4701 return oddspreg;
a1d78564 4702
351cdf24 4703 return FPR_SIZE == 64;
a1d78564
RS
4704}
4705
a1d78564
RS
4706/* Information about an instruction argument that we're trying to match. */
4707struct mips_arg_info
4708{
4709 /* The instruction so far. */
4710 struct mips_cl_insn *insn;
4711
a92713e6
RS
4712 /* The first unconsumed operand token. */
4713 struct mips_operand_token *token;
4714
a1d78564
RS
4715 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4716 int opnum;
4717
4718 /* The 1-based argument number, for error reporting. This does not
4719 count elided optional registers, etc.. */
4720 int argnum;
4721
4722 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4723 unsigned int last_regno;
4724
4725 /* If the first operand was an OP_REG, this is the register that it
4726 specified, otherwise it is ILLEGAL_REG. */
4727 unsigned int dest_regno;
4728
4729 /* The value of the last OP_INT operand. Only used for OP_MSB,
4730 where it gives the lsb position. */
4731 unsigned int last_op_int;
4732
60f20e8b 4733 /* If true, match routines should assume that no later instruction
2b0f3761 4734 alternative matches and should therefore be as accommodating as
60f20e8b
RS
4735 possible. Match routines should not report errors if something
4736 is only invalid for !LAX_MATCH. */
4737 bfd_boolean lax_match;
a1d78564 4738
a1d78564
RS
4739 /* True if a reference to the current AT register was seen. */
4740 bfd_boolean seen_at;
4741};
4742
1a00e612
RS
4743/* Record that the argument is out of range. */
4744
4745static void
4746match_out_of_range (struct mips_arg_info *arg)
4747{
4748 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4749}
4750
4751/* Record that the argument isn't constant but needs to be. */
4752
4753static void
4754match_not_constant (struct mips_arg_info *arg)
4755{
4756 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4757 arg->argnum);
4758}
4759
a92713e6
RS
4760/* Try to match an OT_CHAR token for character CH. Consume the token
4761 and return true on success, otherwise return false. */
a1d78564 4762
a92713e6
RS
4763static bfd_boolean
4764match_char (struct mips_arg_info *arg, char ch)
a1d78564 4765{
a92713e6
RS
4766 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4767 {
4768 ++arg->token;
4769 if (ch == ',')
4770 arg->argnum += 1;
4771 return TRUE;
4772 }
4773 return FALSE;
4774}
a1d78564 4775
a92713e6
RS
4776/* Try to get an expression from the next tokens in ARG. Consume the
4777 tokens and return true on success, storing the expression value in
4778 VALUE and relocation types in R. */
4779
4780static bfd_boolean
4781match_expression (struct mips_arg_info *arg, expressionS *value,
4782 bfd_reloc_code_real_type *r)
4783{
d436c1c2
RS
4784 /* If the next token is a '(' that was parsed as being part of a base
4785 expression, assume we have an elided offset. The later match will fail
4786 if this turns out to be wrong. */
4787 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
a1d78564 4788 {
d436c1c2
RS
4789 value->X_op = O_constant;
4790 value->X_add_number = 0;
4791 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
a92713e6
RS
4792 return TRUE;
4793 }
4794
d436c1c2
RS
4795 /* Reject register-based expressions such as "0+$2" and "(($2))".
4796 For plain registers the default error seems more appropriate. */
4797 if (arg->token->type == OT_INTEGER
4798 && arg->token->u.integer.value.X_op == O_register)
a92713e6 4799 {
d436c1c2
RS
4800 set_insn_error (arg->argnum, _("register value used as expression"));
4801 return FALSE;
a1d78564 4802 }
d436c1c2
RS
4803
4804 if (arg->token->type == OT_INTEGER)
a92713e6 4805 {
d436c1c2
RS
4806 *value = arg->token->u.integer.value;
4807 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4808 ++arg->token;
4809 return TRUE;
a92713e6 4810 }
a92713e6 4811
d436c1c2
RS
4812 set_insn_error_i
4813 (arg->argnum, _("operand %d must be an immediate expression"),
4814 arg->argnum);
4815 return FALSE;
a92713e6
RS
4816}
4817
4818/* Try to get a constant expression from the next tokens in ARG. Consume
4819 the tokens and return return true on success, storing the constant value
4820 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4821 error. */
4822
4823static bfd_boolean
1a00e612 4824match_const_int (struct mips_arg_info *arg, offsetT *value)
a92713e6
RS
4825{
4826 expressionS ex;
4827 bfd_reloc_code_real_type r[3];
a1d78564 4828
a92713e6
RS
4829 if (!match_expression (arg, &ex, r))
4830 return FALSE;
4831
4832 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
a1d78564
RS
4833 *value = ex.X_add_number;
4834 else
4835 {
1a00e612
RS
4836 match_not_constant (arg);
4837 return FALSE;
a1d78564 4838 }
a92713e6 4839 return TRUE;
a1d78564
RS
4840}
4841
4842/* Return the RTYPE_* flags for a register operand of type TYPE that
4843 appears in instruction OPCODE. */
4844
4845static unsigned int
4846convert_reg_type (const struct mips_opcode *opcode,
4847 enum mips_reg_operand_type type)
4848{
4849 switch (type)
4850 {
4851 case OP_REG_GP:
4852 return RTYPE_NUM | RTYPE_GP;
4853
4854 case OP_REG_FP:
4855 /* Allow vector register names for MDMX if the instruction is a 64-bit
4856 FPR load, store or move (including moves to and from GPRs). */
4857 if ((mips_opts.ase & ASE_MDMX)
4858 && (opcode->pinfo & FP_D)
43885403 4859 && (opcode->pinfo & (INSN_COPROC_MOVE
a1d78564 4860 | INSN_COPROC_MEMORY_DELAY
43885403 4861 | INSN_LOAD_COPROC
67dc82bc 4862 | INSN_LOAD_MEMORY
a1d78564
RS
4863 | INSN_STORE_MEMORY)))
4864 return RTYPE_FPU | RTYPE_VEC;
4865 return RTYPE_FPU;
4866
4867 case OP_REG_CCC:
4868 if (opcode->pinfo & (FP_D | FP_S))
4869 return RTYPE_CCC | RTYPE_FCC;
4870 return RTYPE_CCC;
4871
4872 case OP_REG_VEC:
4873 if (opcode->membership & INSN_5400)
4874 return RTYPE_FPU;
4875 return RTYPE_FPU | RTYPE_VEC;
4876
4877 case OP_REG_ACC:
4878 return RTYPE_ACC;
4879
4880 case OP_REG_COPRO:
4881 if (opcode->name[strlen (opcode->name) - 1] == '0')
4882 return RTYPE_NUM | RTYPE_CP0;
4883 return RTYPE_NUM;
4884
4885 case OP_REG_HW:
4886 return RTYPE_NUM;
14daeee3
RS
4887
4888 case OP_REG_VI:
4889 return RTYPE_NUM | RTYPE_VI;
4890
4891 case OP_REG_VF:
4892 return RTYPE_NUM | RTYPE_VF;
4893
4894 case OP_REG_R5900_I:
4895 return RTYPE_R5900_I;
4896
4897 case OP_REG_R5900_Q:
4898 return RTYPE_R5900_Q;
4899
4900 case OP_REG_R5900_R:
4901 return RTYPE_R5900_R;
4902
4903 case OP_REG_R5900_ACC:
4904 return RTYPE_R5900_ACC;
56d438b1
CF
4905
4906 case OP_REG_MSA:
4907 return RTYPE_MSA;
4908
4909 case OP_REG_MSA_CTRL:
4910 return RTYPE_NUM;
a1d78564
RS
4911 }
4912 abort ();
4913}
4914
4915/* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4916
4917static void
4918check_regno (struct mips_arg_info *arg,
4919 enum mips_reg_operand_type type, unsigned int regno)
4920{
4921 if (AT && type == OP_REG_GP && regno == AT)
4922 arg->seen_at = TRUE;
4923
4924 if (type == OP_REG_FP
4925 && (regno & 1) != 0
a1d78564 4926 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
351cdf24
MF
4927 {
4928 /* This was a warning prior to introducing O32 FPXX and FP64 support
4929 so maintain a warning for FP32 but raise an error for the new
4930 cases. */
4931 if (FPR_SIZE == 32)
4932 as_warn (_("float register should be even, was %d"), regno);
4933 else
4934 as_bad (_("float register should be even, was %d"), regno);
4935 }
a1d78564
RS
4936
4937 if (type == OP_REG_CCC)
4938 {
4939 const char *name;
4940 size_t length;
4941
4942 name = arg->insn->insn_mo->name;
4943 length = strlen (name);
4944 if ((regno & 1) != 0
4945 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4946 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
1661c76c 4947 as_warn (_("condition code register should be even for %s, was %d"),
a1d78564
RS
4948 name, regno);
4949
4950 if ((regno & 3) != 0
4951 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
1661c76c 4952 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
a1d78564
RS
4953 name, regno);
4954 }
4955}
4956
a92713e6
RS
4957/* ARG is a register with symbol value SYMVAL. Try to interpret it as
4958 a register of type TYPE. Return true on success, storing the register
4959 number in *REGNO and warning about any dubious uses. */
4960
4961static bfd_boolean
4962match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4963 unsigned int symval, unsigned int *regno)
4964{
4965 if (type == OP_REG_VEC)
4966 symval = mips_prefer_vec_regno (symval);
4967 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4968 return FALSE;
4969
4970 *regno = symval & RNUM_MASK;
4971 check_regno (arg, type, *regno);
4972 return TRUE;
4973}
4974
4975/* Try to interpret the next token in ARG as a register of type TYPE.
4976 Consume the token and return true on success, storing the register
4977 number in *REGNO. Return false on failure. */
4978
4979static bfd_boolean
4980match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4981 unsigned int *regno)
4982{
4983 if (arg->token->type == OT_REG
4984 && match_regno (arg, type, arg->token->u.regno, regno))
4985 {
4986 ++arg->token;
4987 return TRUE;
4988 }
4989 return FALSE;
4990}
4991
4992/* Try to interpret the next token in ARG as a range of registers of type TYPE.
4993 Consume the token and return true on success, storing the register numbers
4994 in *REGNO1 and *REGNO2. Return false on failure. */
4995
4996static bfd_boolean
4997match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4998 unsigned int *regno1, unsigned int *regno2)
4999{
5000 if (match_reg (arg, type, regno1))
5001 {
5002 *regno2 = *regno1;
5003 return TRUE;
5004 }
5005 if (arg->token->type == OT_REG_RANGE
5006 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
5007 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
5008 && *regno1 <= *regno2)
5009 {
5010 ++arg->token;
5011 return TRUE;
5012 }
5013 return FALSE;
5014}
5015
a1d78564
RS
5016/* OP_INT matcher. */
5017
a92713e6 5018static bfd_boolean
a1d78564 5019match_int_operand (struct mips_arg_info *arg,
a92713e6 5020 const struct mips_operand *operand_base)
a1d78564
RS
5021{
5022 const struct mips_int_operand *operand;
3ccad066 5023 unsigned int uval;
a1d78564
RS
5024 int min_val, max_val, factor;
5025 offsetT sval;
a1d78564
RS
5026
5027 operand = (const struct mips_int_operand *) operand_base;
5028 factor = 1 << operand->shift;
3ccad066
RS
5029 min_val = mips_int_operand_min (operand);
5030 max_val = mips_int_operand_max (operand);
a1d78564 5031
d436c1c2
RS
5032 if (operand_base->lsb == 0
5033 && operand_base->size == 16
5034 && operand->shift == 0
5035 && operand->bias == 0
5036 && (operand->max_val == 32767 || operand->max_val == 65535))
a1d78564
RS
5037 {
5038 /* The operand can be relocated. */
a92713e6
RS
5039 if (!match_expression (arg, &offset_expr, offset_reloc))
5040 return FALSE;
5041
5042 if (offset_reloc[0] != BFD_RELOC_UNUSED)
33eaf5de 5043 /* Relocation operators were used. Accept the argument and
a1d78564
RS
5044 leave the relocation value in offset_expr and offset_relocs
5045 for the caller to process. */
a92713e6
RS
5046 return TRUE;
5047
5048 if (offset_expr.X_op != O_constant)
a1d78564 5049 {
60f20e8b
RS
5050 /* Accept non-constant operands if no later alternative matches,
5051 leaving it for the caller to process. */
5052 if (!arg->lax_match)
5053 return FALSE;
a92713e6
RS
5054 offset_reloc[0] = BFD_RELOC_LO16;
5055 return TRUE;
a1d78564 5056 }
a92713e6 5057
a1d78564
RS
5058 /* Clear the global state; we're going to install the operand
5059 ourselves. */
a92713e6 5060 sval = offset_expr.X_add_number;
a1d78564 5061 offset_expr.X_op = O_absent;
60f20e8b
RS
5062
5063 /* For compatibility with older assemblers, we accept
5064 0x8000-0xffff as signed 16-bit numbers when only
5065 signed numbers are allowed. */
5066 if (sval > max_val)
5067 {
5068 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5069 if (!arg->lax_match && sval <= max_val)
5070 return FALSE;
5071 }
a1d78564
RS
5072 }
5073 else
5074 {
1a00e612 5075 if (!match_const_int (arg, &sval))
a92713e6 5076 return FALSE;
a1d78564
RS
5077 }
5078
5079 arg->last_op_int = sval;
5080
1a00e612 5081 if (sval < min_val || sval > max_val || sval % factor)
a1d78564 5082 {
1a00e612
RS
5083 match_out_of_range (arg);
5084 return FALSE;
a1d78564
RS
5085 }
5086
5087 uval = (unsigned int) sval >> operand->shift;
5088 uval -= operand->bias;
5089
5090 /* Handle -mfix-cn63xxp1. */
5091 if (arg->opnum == 1
5092 && mips_fix_cn63xxp1
5093 && !mips_opts.micromips
5094 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5095 switch (uval)
5096 {
5097 case 5:
5098 case 25:
5099 case 26:
5100 case 27:
5101 case 28:
5102 case 29:
5103 case 30:
5104 case 31:
5105 /* These are ok. */
5106 break;
5107
5108 default:
5109 /* The rest must be changed to 28. */
5110 uval = 28;
5111 break;
5112 }
5113
5114 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5115 return TRUE;
a1d78564
RS
5116}
5117
5118/* OP_MAPPED_INT matcher. */
5119
a92713e6 5120static bfd_boolean
a1d78564 5121match_mapped_int_operand (struct mips_arg_info *arg,
a92713e6 5122 const struct mips_operand *operand_base)
a1d78564
RS
5123{
5124 const struct mips_mapped_int_operand *operand;
5125 unsigned int uval, num_vals;
5126 offsetT sval;
5127
5128 operand = (const struct mips_mapped_int_operand *) operand_base;
1a00e612 5129 if (!match_const_int (arg, &sval))
a92713e6 5130 return FALSE;
a1d78564
RS
5131
5132 num_vals = 1 << operand_base->size;
5133 for (uval = 0; uval < num_vals; uval++)
5134 if (operand->int_map[uval] == sval)
5135 break;
5136 if (uval == num_vals)
1a00e612
RS
5137 {
5138 match_out_of_range (arg);
5139 return FALSE;
5140 }
a1d78564
RS
5141
5142 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5143 return TRUE;
a1d78564
RS
5144}
5145
5146/* OP_MSB matcher. */
5147
a92713e6 5148static bfd_boolean
a1d78564 5149match_msb_operand (struct mips_arg_info *arg,
a92713e6 5150 const struct mips_operand *operand_base)
a1d78564
RS
5151{
5152 const struct mips_msb_operand *operand;
5153 int min_val, max_val, max_high;
5154 offsetT size, sval, high;
5155
5156 operand = (const struct mips_msb_operand *) operand_base;
5157 min_val = operand->bias;
5158 max_val = min_val + (1 << operand_base->size) - 1;
5159 max_high = operand->opsize;
5160
1a00e612 5161 if (!match_const_int (arg, &size))
a92713e6 5162 return FALSE;
a1d78564
RS
5163
5164 high = size + arg->last_op_int;
5165 sval = operand->add_lsb ? high : size;
5166
5167 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5168 {
1a00e612
RS
5169 match_out_of_range (arg);
5170 return FALSE;
a1d78564
RS
5171 }
5172 insn_insert_operand (arg->insn, operand_base, sval - min_val);
a92713e6 5173 return TRUE;
a1d78564
RS
5174}
5175
5176/* OP_REG matcher. */
5177
a92713e6 5178static bfd_boolean
a1d78564 5179match_reg_operand (struct mips_arg_info *arg,
a92713e6 5180 const struct mips_operand *operand_base)
a1d78564
RS
5181{
5182 const struct mips_reg_operand *operand;
a92713e6 5183 unsigned int regno, uval, num_vals;
a1d78564
RS
5184
5185 operand = (const struct mips_reg_operand *) operand_base;
a92713e6
RS
5186 if (!match_reg (arg, operand->reg_type, &regno))
5187 return FALSE;
a1d78564
RS
5188
5189 if (operand->reg_map)
5190 {
5191 num_vals = 1 << operand->root.size;
5192 for (uval = 0; uval < num_vals; uval++)
5193 if (operand->reg_map[uval] == regno)
5194 break;
5195 if (num_vals == uval)
a92713e6 5196 return FALSE;
a1d78564
RS
5197 }
5198 else
5199 uval = regno;
5200
a1d78564
RS
5201 arg->last_regno = regno;
5202 if (arg->opnum == 1)
5203 arg->dest_regno = regno;
5204 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5205 return TRUE;
a1d78564
RS
5206}
5207
5208/* OP_REG_PAIR matcher. */
5209
a92713e6 5210static bfd_boolean
a1d78564 5211match_reg_pair_operand (struct mips_arg_info *arg,
a92713e6 5212 const struct mips_operand *operand_base)
a1d78564
RS
5213{
5214 const struct mips_reg_pair_operand *operand;
a92713e6 5215 unsigned int regno1, regno2, uval, num_vals;
a1d78564
RS
5216
5217 operand = (const struct mips_reg_pair_operand *) operand_base;
a92713e6
RS
5218 if (!match_reg (arg, operand->reg_type, &regno1)
5219 || !match_char (arg, ',')
5220 || !match_reg (arg, operand->reg_type, &regno2))
5221 return FALSE;
a1d78564
RS
5222
5223 num_vals = 1 << operand_base->size;
5224 for (uval = 0; uval < num_vals; uval++)
5225 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5226 break;
5227 if (uval == num_vals)
a92713e6 5228 return FALSE;
a1d78564 5229
a1d78564 5230 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5231 return TRUE;
a1d78564
RS
5232}
5233
5234/* OP_PCREL matcher. The caller chooses the relocation type. */
5235
a92713e6
RS
5236static bfd_boolean
5237match_pcrel_operand (struct mips_arg_info *arg)
a1d78564 5238{
a92713e6
RS
5239 bfd_reloc_code_real_type r[3];
5240
5241 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
a1d78564
RS
5242}
5243
5244/* OP_PERF_REG matcher. */
5245
a92713e6 5246static bfd_boolean
a1d78564 5247match_perf_reg_operand (struct mips_arg_info *arg,
a92713e6 5248 const struct mips_operand *operand)
a1d78564
RS
5249{
5250 offsetT sval;
5251
1a00e612 5252 if (!match_const_int (arg, &sval))
a92713e6 5253 return FALSE;
a1d78564
RS
5254
5255 if (sval != 0
5256 && (sval != 1
5257 || (mips_opts.arch == CPU_R5900
5258 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5259 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5260 {
1a00e612
RS
5261 set_insn_error (arg->argnum, _("invalid performance register"));
5262 return FALSE;
a1d78564
RS
5263 }
5264
5265 insn_insert_operand (arg->insn, operand, sval);
a92713e6 5266 return TRUE;
a1d78564
RS
5267}
5268
5269/* OP_ADDIUSP matcher. */
5270
a92713e6 5271static bfd_boolean
a1d78564 5272match_addiusp_operand (struct mips_arg_info *arg,
a92713e6 5273 const struct mips_operand *operand)
a1d78564
RS
5274{
5275 offsetT sval;
5276 unsigned int uval;
5277
1a00e612 5278 if (!match_const_int (arg, &sval))
a92713e6 5279 return FALSE;
a1d78564
RS
5280
5281 if (sval % 4)
1a00e612
RS
5282 {
5283 match_out_of_range (arg);
5284 return FALSE;
5285 }
a1d78564
RS
5286
5287 sval /= 4;
5288 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
1a00e612
RS
5289 {
5290 match_out_of_range (arg);
5291 return FALSE;
5292 }
a1d78564
RS
5293
5294 uval = (unsigned int) sval;
5295 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5296 insn_insert_operand (arg->insn, operand, uval);
a92713e6 5297 return TRUE;
a1d78564
RS
5298}
5299
5300/* OP_CLO_CLZ_DEST matcher. */
5301
a92713e6 5302static bfd_boolean
a1d78564 5303match_clo_clz_dest_operand (struct mips_arg_info *arg,
a92713e6 5304 const struct mips_operand *operand)
a1d78564
RS
5305{
5306 unsigned int regno;
5307
a92713e6
RS
5308 if (!match_reg (arg, OP_REG_GP, &regno))
5309 return FALSE;
a1d78564 5310
a1d78564 5311 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
a92713e6 5312 return TRUE;
a1d78564
RS
5313}
5314
7361da2c
AB
5315/* OP_CHECK_PREV matcher. */
5316
5317static bfd_boolean
5318match_check_prev_operand (struct mips_arg_info *arg,
5319 const struct mips_operand *operand_base)
5320{
5321 const struct mips_check_prev_operand *operand;
5322 unsigned int regno;
5323
5324 operand = (const struct mips_check_prev_operand *) operand_base;
5325
5326 if (!match_reg (arg, OP_REG_GP, &regno))
5327 return FALSE;
5328
5329 if (!operand->zero_ok && regno == 0)
5330 return FALSE;
5331
5332 if ((operand->less_than_ok && regno < arg->last_regno)
5333 || (operand->greater_than_ok && regno > arg->last_regno)
5334 || (operand->equal_ok && regno == arg->last_regno))
5335 {
5336 arg->last_regno = regno;
5337 insn_insert_operand (arg->insn, operand_base, regno);
5338 return TRUE;
5339 }
5340
5341 return FALSE;
5342}
5343
5344/* OP_SAME_RS_RT matcher. */
5345
5346static bfd_boolean
5347match_same_rs_rt_operand (struct mips_arg_info *arg,
5348 const struct mips_operand *operand)
5349{
5350 unsigned int regno;
5351
5352 if (!match_reg (arg, OP_REG_GP, &regno))
5353 return FALSE;
5354
5355 if (regno == 0)
5356 {
5357 set_insn_error (arg->argnum, _("the source register must not be $0"));
5358 return FALSE;
5359 }
5360
5361 arg->last_regno = regno;
5362
5363 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5364 return TRUE;
5365}
5366
a1d78564
RS
5367/* OP_LWM_SWM_LIST matcher. */
5368
a92713e6 5369static bfd_boolean
a1d78564 5370match_lwm_swm_list_operand (struct mips_arg_info *arg,
a92713e6 5371 const struct mips_operand *operand)
a1d78564 5372{
a92713e6
RS
5373 unsigned int reglist, sregs, ra, regno1, regno2;
5374 struct mips_arg_info reset;
a1d78564 5375
a92713e6
RS
5376 reglist = 0;
5377 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5378 return FALSE;
5379 do
5380 {
5381 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5382 {
5383 reglist |= 1 << FP;
5384 regno2 = S7;
5385 }
5386 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5387 reset = *arg;
5388 }
5389 while (match_char (arg, ',')
5390 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5391 *arg = reset;
a1d78564
RS
5392
5393 if (operand->size == 2)
5394 {
5395 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5396
5397 s0, ra
5398 s0, s1, ra, s2, s3
5399 s0-s2, ra
5400
5401 and any permutations of these. */
5402 if ((reglist & 0xfff1ffff) != 0x80010000)
a92713e6 5403 return FALSE;
a1d78564
RS
5404
5405 sregs = (reglist >> 17) & 7;
5406 ra = 0;
5407 }
5408 else
5409 {
5410 /* The list must include at least one of ra and s0-sN,
5411 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5412 which are $23 and $30 respectively.) E.g.:
5413
5414 ra
5415 s0
5416 ra, s0, s1, s2
5417 s0-s8
5418 s0-s5, ra
5419
5420 and any permutations of these. */
5421 if ((reglist & 0x3f00ffff) != 0)
a92713e6 5422 return FALSE;
a1d78564
RS
5423
5424 ra = (reglist >> 27) & 0x10;
5425 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5426 }
5427 sregs += 1;
5428 if ((sregs & -sregs) != sregs)
a92713e6 5429 return FALSE;
a1d78564
RS
5430
5431 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
a92713e6 5432 return TRUE;
a1d78564
RS
5433}
5434
364215c8
RS
5435/* OP_ENTRY_EXIT_LIST matcher. */
5436
a92713e6 5437static unsigned int
364215c8 5438match_entry_exit_operand (struct mips_arg_info *arg,
a92713e6 5439 const struct mips_operand *operand)
364215c8
RS
5440{
5441 unsigned int mask;
5442 bfd_boolean is_exit;
5443
5444 /* The format is the same for both ENTRY and EXIT, but the constraints
5445 are different. */
5446 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5447 mask = (is_exit ? 7 << 3 : 0);
a92713e6 5448 do
364215c8
RS
5449 {
5450 unsigned int regno1, regno2;
5451 bfd_boolean is_freg;
5452
a92713e6 5453 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
364215c8 5454 is_freg = FALSE;
a92713e6 5455 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
364215c8
RS
5456 is_freg = TRUE;
5457 else
a92713e6 5458 return FALSE;
364215c8
RS
5459
5460 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5461 {
5462 mask &= ~(7 << 3);
5463 mask |= (5 + regno2) << 3;
5464 }
5465 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5466 mask |= (regno2 - 3) << 3;
5467 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5468 mask |= (regno2 - 15) << 1;
5469 else if (regno1 == RA && regno2 == RA)
5470 mask |= 1;
5471 else
a92713e6 5472 return FALSE;
364215c8 5473 }
a92713e6
RS
5474 while (match_char (arg, ','));
5475
364215c8 5476 insn_insert_operand (arg->insn, operand, mask);
a92713e6 5477 return TRUE;
364215c8
RS
5478}
5479
5480/* OP_SAVE_RESTORE_LIST matcher. */
5481
a92713e6
RS
5482static bfd_boolean
5483match_save_restore_list_operand (struct mips_arg_info *arg)
364215c8
RS
5484{
5485 unsigned int opcode, args, statics, sregs;
5486 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
364215c8 5487 offsetT frame_size;
364215c8 5488
364215c8
RS
5489 opcode = arg->insn->insn_opcode;
5490 frame_size = 0;
5491 num_frame_sizes = 0;
5492 args = 0;
5493 statics = 0;
5494 sregs = 0;
a92713e6 5495 do
364215c8
RS
5496 {
5497 unsigned int regno1, regno2;
5498
a92713e6 5499 if (arg->token->type == OT_INTEGER)
364215c8
RS
5500 {
5501 /* Handle the frame size. */
1a00e612 5502 if (!match_const_int (arg, &frame_size))
a92713e6 5503 return FALSE;
364215c8 5504 num_frame_sizes += 1;
364215c8
RS
5505 }
5506 else
5507 {
a92713e6
RS
5508 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5509 return FALSE;
364215c8
RS
5510
5511 while (regno1 <= regno2)
5512 {
5513 if (regno1 >= 4 && regno1 <= 7)
5514 {
5515 if (num_frame_sizes == 0)
5516 /* args $a0-$a3 */
5517 args |= 1 << (regno1 - 4);
5518 else
5519 /* statics $a0-$a3 */
5520 statics |= 1 << (regno1 - 4);
5521 }
5522 else if (regno1 >= 16 && regno1 <= 23)
5523 /* $s0-$s7 */
5524 sregs |= 1 << (regno1 - 16);
5525 else if (regno1 == 30)
5526 /* $s8 */
5527 sregs |= 1 << 8;
5528 else if (regno1 == 31)
5529 /* Add $ra to insn. */
5530 opcode |= 0x40;
5531 else
a92713e6 5532 return FALSE;
364215c8
RS
5533 regno1 += 1;
5534 if (regno1 == 24)
5535 regno1 = 30;
5536 }
5537 }
364215c8 5538 }
a92713e6 5539 while (match_char (arg, ','));
364215c8
RS
5540
5541 /* Encode args/statics combination. */
5542 if (args & statics)
a92713e6 5543 return FALSE;
364215c8
RS
5544 else if (args == 0xf)
5545 /* All $a0-$a3 are args. */
5546 opcode |= MIPS16_ALL_ARGS << 16;
5547 else if (statics == 0xf)
5548 /* All $a0-$a3 are statics. */
5549 opcode |= MIPS16_ALL_STATICS << 16;
5550 else
5551 {
5552 /* Count arg registers. */
5553 num_args = 0;
5554 while (args & 0x1)
5555 {
5556 args >>= 1;
5557 num_args += 1;
5558 }
5559 if (args != 0)
a92713e6 5560 return FALSE;
364215c8
RS
5561
5562 /* Count static registers. */
5563 num_statics = 0;
5564 while (statics & 0x8)
5565 {
5566 statics = (statics << 1) & 0xf;
5567 num_statics += 1;
5568 }
5569 if (statics != 0)
a92713e6 5570 return FALSE;
364215c8
RS
5571
5572 /* Encode args/statics. */
5573 opcode |= ((num_args << 2) | num_statics) << 16;
5574 }
5575
5576 /* Encode $s0/$s1. */
5577 if (sregs & (1 << 0)) /* $s0 */
5578 opcode |= 0x20;
5579 if (sregs & (1 << 1)) /* $s1 */
5580 opcode |= 0x10;
5581 sregs >>= 2;
5582
5583 /* Encode $s2-$s8. */
5584 num_sregs = 0;
5585 while (sregs & 1)
5586 {
5587 sregs >>= 1;
5588 num_sregs += 1;
5589 }
5590 if (sregs != 0)
a92713e6 5591 return FALSE;
364215c8
RS
5592 opcode |= num_sregs << 24;
5593
5594 /* Encode frame size. */
5595 if (num_frame_sizes == 0)
1a00e612
RS
5596 {
5597 set_insn_error (arg->argnum, _("missing frame size"));
5598 return FALSE;
5599 }
5600 if (num_frame_sizes > 1)
5601 {
5602 set_insn_error (arg->argnum, _("frame size specified twice"));
5603 return FALSE;
5604 }
5605 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5606 {
5607 set_insn_error (arg->argnum, _("invalid frame size"));
5608 return FALSE;
5609 }
5610 if (frame_size != 128 || (opcode >> 16) != 0)
364215c8
RS
5611 {
5612 frame_size /= 8;
5613 opcode |= (((frame_size & 0xf0) << 16)
5614 | (frame_size & 0x0f));
5615 }
5616
364215c8
RS
5617 /* Finally build the instruction. */
5618 if ((opcode >> 16) != 0 || frame_size == 0)
5619 opcode |= MIPS16_EXTEND;
5620 arg->insn->insn_opcode = opcode;
a92713e6 5621 return TRUE;
364215c8
RS
5622}
5623
a1d78564
RS
5624/* OP_MDMX_IMM_REG matcher. */
5625
a92713e6 5626static bfd_boolean
a1d78564 5627match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
a92713e6 5628 const struct mips_operand *operand)
a1d78564 5629{
a92713e6 5630 unsigned int regno, uval;
a1d78564
RS
5631 bfd_boolean is_qh;
5632 const struct mips_opcode *opcode;
5633
5634 /* The mips_opcode records whether this is an octobyte or quadhalf
5635 instruction. Start out with that bit in place. */
5636 opcode = arg->insn->insn_mo;
5637 uval = mips_extract_operand (operand, opcode->match);
5638 is_qh = (uval != 0);
5639
56d438b1 5640 if (arg->token->type == OT_REG)
a1d78564
RS
5641 {
5642 if ((opcode->membership & INSN_5400)
5643 && strcmp (opcode->name, "rzu.ob") == 0)
5644 {
1a00e612
RS
5645 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5646 arg->argnum);
5647 return FALSE;
a1d78564
RS
5648 }
5649
56d438b1
CF
5650 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5651 return FALSE;
5652 ++arg->token;
5653
a1d78564
RS
5654 /* Check whether this is a vector register or a broadcast of
5655 a single element. */
56d438b1 5656 if (arg->token->type == OT_INTEGER_INDEX)
a1d78564 5657 {
56d438b1 5658 if (arg->token->u.index > (is_qh ? 3 : 7))
a1d78564 5659 {
1a00e612
RS
5660 set_insn_error (arg->argnum, _("invalid element selector"));
5661 return FALSE;
a1d78564 5662 }
56d438b1
CF
5663 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5664 ++arg->token;
a1d78564
RS
5665 }
5666 else
5667 {
5668 /* A full vector. */
5669 if ((opcode->membership & INSN_5400)
5670 && (strcmp (opcode->name, "sll.ob") == 0
5671 || strcmp (opcode->name, "srl.ob") == 0))
5672 {
1a00e612
RS
5673 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5674 arg->argnum);
5675 return FALSE;
a1d78564
RS
5676 }
5677
5678 if (is_qh)
5679 uval |= MDMX_FMTSEL_VEC_QH << 5;
5680 else
5681 uval |= MDMX_FMTSEL_VEC_OB << 5;
5682 }
a1d78564
RS
5683 uval |= regno;
5684 }
5685 else
5686 {
5687 offsetT sval;
5688
1a00e612 5689 if (!match_const_int (arg, &sval))
a92713e6 5690 return FALSE;
a1d78564
RS
5691 if (sval < 0 || sval > 31)
5692 {
1a00e612
RS
5693 match_out_of_range (arg);
5694 return FALSE;
a1d78564
RS
5695 }
5696 uval |= (sval & 31);
5697 if (is_qh)
5698 uval |= MDMX_FMTSEL_IMM_QH << 5;
5699 else
5700 uval |= MDMX_FMTSEL_IMM_OB << 5;
5701 }
5702 insn_insert_operand (arg->insn, operand, uval);
a92713e6 5703 return TRUE;
a1d78564
RS
5704}
5705
56d438b1
CF
5706/* OP_IMM_INDEX matcher. */
5707
5708static bfd_boolean
5709match_imm_index_operand (struct mips_arg_info *arg,
5710 const struct mips_operand *operand)
5711{
5712 unsigned int max_val;
5713
5714 if (arg->token->type != OT_INTEGER_INDEX)
5715 return FALSE;
5716
5717 max_val = (1 << operand->size) - 1;
5718 if (arg->token->u.index > max_val)
5719 {
5720 match_out_of_range (arg);
5721 return FALSE;
5722 }
5723 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5724 ++arg->token;
5725 return TRUE;
5726}
5727
5728/* OP_REG_INDEX matcher. */
5729
5730static bfd_boolean
5731match_reg_index_operand (struct mips_arg_info *arg,
5732 const struct mips_operand *operand)
5733{
5734 unsigned int regno;
5735
5736 if (arg->token->type != OT_REG_INDEX)
5737 return FALSE;
5738
5739 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5740 return FALSE;
5741
5742 insn_insert_operand (arg->insn, operand, regno);
5743 ++arg->token;
5744 return TRUE;
5745}
5746
a1d78564
RS
5747/* OP_PC matcher. */
5748
a92713e6
RS
5749static bfd_boolean
5750match_pc_operand (struct mips_arg_info *arg)
a1d78564 5751{
a92713e6
RS
5752 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5753 {
5754 ++arg->token;
5755 return TRUE;
5756 }
5757 return FALSE;
a1d78564
RS
5758}
5759
7361da2c
AB
5760/* OP_NON_ZERO_REG matcher. */
5761
5762static bfd_boolean
5763match_non_zero_reg_operand (struct mips_arg_info *arg,
5764 const struct mips_operand *operand)
5765{
5766 unsigned int regno;
5767
5768 if (!match_reg (arg, OP_REG_GP, &regno))
5769 return FALSE;
5770
5771 if (regno == 0)
5772 return FALSE;
5773
5774 arg->last_regno = regno;
5775 insn_insert_operand (arg->insn, operand, regno);
5776 return TRUE;
5777}
5778
a1d78564
RS
5779/* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5780 register that we need to match. */
5781
a92713e6
RS
5782static bfd_boolean
5783match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
a1d78564
RS
5784{
5785 unsigned int regno;
5786
a92713e6 5787 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
a1d78564
RS
5788}
5789
89565f1b
RS
5790/* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5791 the length of the value in bytes (4 for float, 8 for double) and
5792 USING_GPRS says whether the destination is a GPR rather than an FPR.
5793
5794 Return the constant in IMM and OFFSET as follows:
5795
5796 - If the constant should be loaded via memory, set IMM to O_absent and
5797 OFFSET to the memory address.
5798
5799 - Otherwise, if the constant should be loaded into two 32-bit registers,
5800 set IMM to the O_constant to load into the high register and OFFSET
5801 to the corresponding value for the low register.
5802
5803 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5804
5805 These constants only appear as the last operand in an instruction,
5806 and every instruction that accepts them in any variant accepts them
5807 in all variants. This means we don't have to worry about backing out
5808 any changes if the instruction does not match. We just match
5809 unconditionally and report an error if the constant is invalid. */
5810
a92713e6
RS
5811static bfd_boolean
5812match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5813 expressionS *offset, int length, bfd_boolean using_gprs)
89565f1b 5814{
a92713e6 5815 char *p;
89565f1b
RS
5816 segT seg, new_seg;
5817 subsegT subseg;
5818 const char *newname;
a92713e6 5819 unsigned char *data;
89565f1b
RS
5820
5821 /* Where the constant is placed is based on how the MIPS assembler
5822 does things:
5823
5824 length == 4 && using_gprs -- immediate value only
5825 length == 8 && using_gprs -- .rdata or immediate value
5826 length == 4 && !using_gprs -- .lit4 or immediate value
5827 length == 8 && !using_gprs -- .lit8 or immediate value
5828
5829 The .lit4 and .lit8 sections are only used if permitted by the
5830 -G argument. */
a92713e6 5831 if (arg->token->type != OT_FLOAT)
1a00e612
RS
5832 {
5833 set_insn_error (arg->argnum, _("floating-point expression required"));
5834 return FALSE;
5835 }
a92713e6
RS
5836
5837 gas_assert (arg->token->u.flt.length == length);
5838 data = arg->token->u.flt.data;
5839 ++arg->token;
89565f1b
RS
5840
5841 /* Handle 32-bit constants for which an immediate value is best. */
5842 if (length == 4
5843 && (using_gprs
5844 || g_switch_value < 4
5845 || (data[0] == 0 && data[1] == 0)
5846 || (data[2] == 0 && data[3] == 0)))
5847 {
5848 imm->X_op = O_constant;
5849 if (!target_big_endian)
5850 imm->X_add_number = bfd_getl32 (data);
5851 else
5852 imm->X_add_number = bfd_getb32 (data);
5853 offset->X_op = O_absent;
a92713e6 5854 return TRUE;
89565f1b
RS
5855 }
5856
5857 /* Handle 64-bit constants for which an immediate value is best. */
5858 if (length == 8
5859 && !mips_disable_float_construction
351cdf24
MF
5860 /* Constants can only be constructed in GPRs and copied to FPRs if the
5861 GPRs are at least as wide as the FPRs or MTHC1 is available.
5862 Unlike most tests for 32-bit floating-point registers this check
5863 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5864 permit 64-bit moves without MXHC1.
5865 Force the constant into memory otherwise. */
5866 && (using_gprs
5867 || GPR_SIZE == 64
5868 || ISA_HAS_MXHC1 (mips_opts.isa)
5869 || FPR_SIZE == 32)
89565f1b
RS
5870 && ((data[0] == 0 && data[1] == 0)
5871 || (data[2] == 0 && data[3] == 0))
5872 && ((data[4] == 0 && data[5] == 0)
5873 || (data[6] == 0 && data[7] == 0)))
5874 {
5875 /* The value is simple enough to load with a couple of instructions.
5876 If using 32-bit registers, set IMM to the high order 32 bits and
5877 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5878 64 bit constant. */
351cdf24 5879 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
89565f1b
RS
5880 {
5881 imm->X_op = O_constant;
5882 offset->X_op = O_constant;
5883 if (!target_big_endian)
5884 {
5885 imm->X_add_number = bfd_getl32 (data + 4);
5886 offset->X_add_number = bfd_getl32 (data);
5887 }
5888 else
5889 {
5890 imm->X_add_number = bfd_getb32 (data);
5891 offset->X_add_number = bfd_getb32 (data + 4);
5892 }
5893 if (offset->X_add_number == 0)
5894 offset->X_op = O_absent;
5895 }
5896 else
5897 {
5898 imm->X_op = O_constant;
5899 if (!target_big_endian)
5900 imm->X_add_number = bfd_getl64 (data);
5901 else
5902 imm->X_add_number = bfd_getb64 (data);
5903 offset->X_op = O_absent;
5904 }
a92713e6 5905 return TRUE;
89565f1b
RS
5906 }
5907
5908 /* Switch to the right section. */
5909 seg = now_seg;
5910 subseg = now_subseg;
5911 if (length == 4)
5912 {
5913 gas_assert (!using_gprs && g_switch_value >= 4);
5914 newname = ".lit4";
5915 }
5916 else
5917 {
5918 if (using_gprs || g_switch_value < 8)
5919 newname = RDATA_SECTION_NAME;
5920 else
5921 newname = ".lit8";
5922 }
5923
5924 new_seg = subseg_new (newname, (subsegT) 0);
5925 bfd_set_section_flags (stdoutput, new_seg,
5926 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5927 frag_align (length == 4 ? 2 : 3, 0, 0);
5928 if (strncmp (TARGET_OS, "elf", 3) != 0)
5929 record_alignment (new_seg, 4);
5930 else
5931 record_alignment (new_seg, length == 4 ? 2 : 3);
5932 if (seg == now_seg)
1661c76c 5933 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
89565f1b
RS
5934
5935 /* Set the argument to the current address in the section. */
5936 imm->X_op = O_absent;
5937 offset->X_op = O_symbol;
5938 offset->X_add_symbol = symbol_temp_new_now ();
5939 offset->X_add_number = 0;
5940
5941 /* Put the floating point number into the section. */
5942 p = frag_more (length);
5943 memcpy (p, data, length);
5944
5945 /* Switch back to the original section. */
5946 subseg_set (seg, subseg);
a92713e6 5947 return TRUE;
89565f1b
RS
5948}
5949
14daeee3
RS
5950/* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5951 them. */
5952
5953static bfd_boolean
5954match_vu0_suffix_operand (struct mips_arg_info *arg,
5955 const struct mips_operand *operand,
5956 bfd_boolean match_p)
5957{
5958 unsigned int uval;
5959
5960 /* The operand can be an XYZW mask or a single 2-bit channel index
5961 (with X being 0). */
5962 gas_assert (operand->size == 2 || operand->size == 4);
5963
ee5734f0 5964 /* The suffix can be omitted when it is already part of the opcode. */
14daeee3 5965 if (arg->token->type != OT_CHANNELS)
ee5734f0 5966 return match_p;
14daeee3
RS
5967
5968 uval = arg->token->u.channels;
5969 if (operand->size == 2)
5970 {
5971 /* Check that a single bit is set and convert it into a 2-bit index. */
5972 if ((uval & -uval) != uval)
5973 return FALSE;
5974 uval = 4 - ffs (uval);
5975 }
5976
5977 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5978 return FALSE;
5979
5980 ++arg->token;
5981 if (!match_p)
5982 insn_insert_operand (arg->insn, operand, uval);
5983 return TRUE;
5984}
5985
a1d78564
RS
5986/* S is the text seen for ARG. Match it against OPERAND. Return the end
5987 of the argument text if the match is successful, otherwise return null. */
5988
a92713e6 5989static bfd_boolean
a1d78564 5990match_operand (struct mips_arg_info *arg,
a92713e6 5991 const struct mips_operand *operand)
a1d78564
RS
5992{
5993 switch (operand->type)
5994 {
5995 case OP_INT:
a92713e6 5996 return match_int_operand (arg, operand);
a1d78564
RS
5997
5998 case OP_MAPPED_INT:
a92713e6 5999 return match_mapped_int_operand (arg, operand);
a1d78564
RS
6000
6001 case OP_MSB:
a92713e6 6002 return match_msb_operand (arg, operand);
a1d78564
RS
6003
6004 case OP_REG:
0f35dbc4 6005 case OP_OPTIONAL_REG:
a92713e6 6006 return match_reg_operand (arg, operand);
a1d78564
RS
6007
6008 case OP_REG_PAIR:
a92713e6 6009 return match_reg_pair_operand (arg, operand);
a1d78564
RS
6010
6011 case OP_PCREL:
a92713e6 6012 return match_pcrel_operand (arg);
a1d78564
RS
6013
6014 case OP_PERF_REG:
a92713e6 6015 return match_perf_reg_operand (arg, operand);
a1d78564
RS
6016
6017 case OP_ADDIUSP_INT:
a92713e6 6018 return match_addiusp_operand (arg, operand);
a1d78564
RS
6019
6020 case OP_CLO_CLZ_DEST:
a92713e6 6021 return match_clo_clz_dest_operand (arg, operand);
a1d78564
RS
6022
6023 case OP_LWM_SWM_LIST:
a92713e6 6024 return match_lwm_swm_list_operand (arg, operand);
a1d78564
RS
6025
6026 case OP_ENTRY_EXIT_LIST:
a92713e6 6027 return match_entry_exit_operand (arg, operand);
364215c8 6028
a1d78564 6029 case OP_SAVE_RESTORE_LIST:
a92713e6 6030 return match_save_restore_list_operand (arg);
a1d78564
RS
6031
6032 case OP_MDMX_IMM_REG:
a92713e6 6033 return match_mdmx_imm_reg_operand (arg, operand);
a1d78564
RS
6034
6035 case OP_REPEAT_DEST_REG:
a92713e6 6036 return match_tied_reg_operand (arg, arg->dest_regno);
a1d78564
RS
6037
6038 case OP_REPEAT_PREV_REG:
a92713e6 6039 return match_tied_reg_operand (arg, arg->last_regno);
a1d78564
RS
6040
6041 case OP_PC:
a92713e6 6042 return match_pc_operand (arg);
14daeee3
RS
6043
6044 case OP_VU0_SUFFIX:
6045 return match_vu0_suffix_operand (arg, operand, FALSE);
6046
6047 case OP_VU0_MATCH_SUFFIX:
6048 return match_vu0_suffix_operand (arg, operand, TRUE);
56d438b1
CF
6049
6050 case OP_IMM_INDEX:
6051 return match_imm_index_operand (arg, operand);
6052
6053 case OP_REG_INDEX:
6054 return match_reg_index_operand (arg, operand);
7361da2c
AB
6055
6056 case OP_SAME_RS_RT:
6057 return match_same_rs_rt_operand (arg, operand);
6058
6059 case OP_CHECK_PREV:
6060 return match_check_prev_operand (arg, operand);
6061
6062 case OP_NON_ZERO_REG:
6063 return match_non_zero_reg_operand (arg, operand);
a1d78564
RS
6064 }
6065 abort ();
6066}
6067
6068/* ARG is the state after successfully matching an instruction.
6069 Issue any queued-up warnings. */
6070
6071static void
6072check_completed_insn (struct mips_arg_info *arg)
6073{
6074 if (arg->seen_at)
6075 {
6076 if (AT == ATREG)
1661c76c 6077 as_warn (_("used $at without \".set noat\""));
a1d78564 6078 else
1661c76c 6079 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
a1d78564
RS
6080 }
6081}
a1d78564 6082
85fcb30f
RS
6083/* Return true if modifying general-purpose register REG needs a delay. */
6084
6085static bfd_boolean
6086reg_needs_delay (unsigned int reg)
6087{
6088 unsigned long prev_pinfo;
6089
6090 prev_pinfo = history[0].insn_mo->pinfo;
6091 if (!mips_opts.noreorder
67dc82bc 6092 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
43885403 6093 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
85fcb30f
RS
6094 && (gpr_write_mask (&history[0]) & (1 << reg)))
6095 return TRUE;
6096
6097 return FALSE;
6098}
6099
71400594
RS
6100/* Classify an instruction according to the FIX_VR4120_* enumeration.
6101 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6102 by VR4120 errata. */
4d7206a2 6103
71400594
RS
6104static unsigned int
6105classify_vr4120_insn (const char *name)
252b5132 6106{
71400594
RS
6107 if (strncmp (name, "macc", 4) == 0)
6108 return FIX_VR4120_MACC;
6109 if (strncmp (name, "dmacc", 5) == 0)
6110 return FIX_VR4120_DMACC;
6111 if (strncmp (name, "mult", 4) == 0)
6112 return FIX_VR4120_MULT;
6113 if (strncmp (name, "dmult", 5) == 0)
6114 return FIX_VR4120_DMULT;
6115 if (strstr (name, "div"))
6116 return FIX_VR4120_DIV;
6117 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6118 return FIX_VR4120_MTHILO;
6119 return NUM_FIX_VR4120_CLASSES;
6120}
252b5132 6121
a8d14a88
CM
6122#define INSN_ERET 0x42000018
6123#define INSN_DERET 0x4200001f
6124#define INSN_DMULT 0x1c
6125#define INSN_DMULTU 0x1d
ff239038 6126
71400594
RS
6127/* Return the number of instructions that must separate INSN1 and INSN2,
6128 where INSN1 is the earlier instruction. Return the worst-case value
6129 for any INSN2 if INSN2 is null. */
252b5132 6130
71400594
RS
6131static unsigned int
6132insns_between (const struct mips_cl_insn *insn1,
6133 const struct mips_cl_insn *insn2)
6134{
6135 unsigned long pinfo1, pinfo2;
4c260379 6136 unsigned int mask;
71400594 6137
85fcb30f
RS
6138 /* If INFO2 is null, pessimistically assume that all flags are set for
6139 the second instruction. */
71400594
RS
6140 pinfo1 = insn1->insn_mo->pinfo;
6141 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
252b5132 6142
71400594
RS
6143 /* For most targets, write-after-read dependencies on the HI and LO
6144 registers must be separated by at least two instructions. */
6145 if (!hilo_interlocks)
252b5132 6146 {
71400594
RS
6147 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6148 return 2;
6149 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6150 return 2;
6151 }
6152
6153 /* If we're working around r7000 errata, there must be two instructions
6154 between an mfhi or mflo and any instruction that uses the result. */
6155 if (mips_7000_hilo_fix
df58fc94 6156 && !mips_opts.micromips
71400594 6157 && MF_HILO_INSN (pinfo1)
85fcb30f 6158 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
71400594
RS
6159 return 2;
6160
ff239038
CM
6161 /* If we're working around 24K errata, one instruction is required
6162 if an ERET or DERET is followed by a branch instruction. */
df58fc94 6163 if (mips_fix_24k && !mips_opts.micromips)
ff239038
CM
6164 {
6165 if (insn1->insn_opcode == INSN_ERET
6166 || insn1->insn_opcode == INSN_DERET)
6167 {
6168 if (insn2 == NULL
6169 || insn2->insn_opcode == INSN_ERET
6170 || insn2->insn_opcode == INSN_DERET
11625dd8 6171 || delayed_branch_p (insn2))
ff239038
CM
6172 return 1;
6173 }
6174 }
6175
a8d14a88
CM
6176 /* If we're working around PMC RM7000 errata, there must be three
6177 nops between a dmult and a load instruction. */
6178 if (mips_fix_rm7000 && !mips_opts.micromips)
6179 {
6180 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6181 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6182 {
6183 if (pinfo2 & INSN_LOAD_MEMORY)
6184 return 3;
6185 }
6186 }
6187
71400594
RS
6188 /* If working around VR4120 errata, check for combinations that need
6189 a single intervening instruction. */
df58fc94 6190 if (mips_fix_vr4120 && !mips_opts.micromips)
71400594
RS
6191 {
6192 unsigned int class1, class2;
252b5132 6193
71400594
RS
6194 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6195 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
252b5132 6196 {
71400594
RS
6197 if (insn2 == NULL)
6198 return 1;
6199 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6200 if (vr4120_conflicts[class1] & (1 << class2))
6201 return 1;
252b5132 6202 }
71400594
RS
6203 }
6204
df58fc94 6205 if (!HAVE_CODE_COMPRESSION)
71400594
RS
6206 {
6207 /* Check for GPR or coprocessor load delays. All such delays
6208 are on the RT register. */
6209 /* Itbl support may require additional care here. */
67dc82bc 6210 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
43885403 6211 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
252b5132 6212 {
85fcb30f 6213 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
71400594
RS
6214 return 1;
6215 }
6216
6217 /* Check for generic coprocessor hazards.
6218
6219 This case is not handled very well. There is no special
6220 knowledge of CP0 handling, and the coprocessors other than
6221 the floating point unit are not distinguished at all. */
6222 /* Itbl support may require additional care here. FIXME!
6223 Need to modify this to include knowledge about
6224 user specified delays! */
43885403 6225 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
71400594
RS
6226 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6227 {
6228 /* Handle cases where INSN1 writes to a known general coprocessor
6229 register. There must be a one instruction delay before INSN2
6230 if INSN2 reads that register, otherwise no delay is needed. */
4c260379
RS
6231 mask = fpr_write_mask (insn1);
6232 if (mask != 0)
252b5132 6233 {
4c260379 6234 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
71400594 6235 return 1;
252b5132
RH
6236 }
6237 else
6238 {
71400594
RS
6239 /* Read-after-write dependencies on the control registers
6240 require a two-instruction gap. */
6241 if ((pinfo1 & INSN_WRITE_COND_CODE)
6242 && (pinfo2 & INSN_READ_COND_CODE))
6243 return 2;
6244
6245 /* We don't know exactly what INSN1 does. If INSN2 is
6246 also a coprocessor instruction, assume there must be
6247 a one instruction gap. */
6248 if (pinfo2 & INSN_COP)
6249 return 1;
252b5132
RH
6250 }
6251 }
6b76fefe 6252
71400594
RS
6253 /* Check for read-after-write dependencies on the coprocessor
6254 control registers in cases where INSN1 does not need a general
6255 coprocessor delay. This means that INSN1 is a floating point
6256 comparison instruction. */
6257 /* Itbl support may require additional care here. */
6258 else if (!cop_interlocks
6259 && (pinfo1 & INSN_WRITE_COND_CODE)
6260 && (pinfo2 & INSN_READ_COND_CODE))
6261 return 1;
6262 }
6b76fefe 6263
7361da2c
AB
6264 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6265 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6266 and pause. */
6267 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6268 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6269 || (insn2 && delayed_branch_p (insn2))))
6270 return 1;
6271
71400594
RS
6272 return 0;
6273}
6b76fefe 6274
7d8e00cf
RS
6275/* Return the number of nops that would be needed to work around the
6276 VR4130 mflo/mfhi errata if instruction INSN immediately followed
932d1a1b
RS
6277 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6278 that are contained within the first IGNORE instructions of HIST. */
7d8e00cf
RS
6279
6280static int
932d1a1b 6281nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
7d8e00cf
RS
6282 const struct mips_cl_insn *insn)
6283{
4c260379
RS
6284 int i, j;
6285 unsigned int mask;
7d8e00cf
RS
6286
6287 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6288 are not affected by the errata. */
6289 if (insn != 0
6290 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6291 || strcmp (insn->insn_mo->name, "mtlo") == 0
6292 || strcmp (insn->insn_mo->name, "mthi") == 0))
6293 return 0;
6294
6295 /* Search for the first MFLO or MFHI. */
6296 for (i = 0; i < MAX_VR4130_NOPS; i++)
91d6fa6a 6297 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
7d8e00cf
RS
6298 {
6299 /* Extract the destination register. */
4c260379 6300 mask = gpr_write_mask (&hist[i]);
7d8e00cf
RS
6301
6302 /* No nops are needed if INSN reads that register. */
4c260379 6303 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
7d8e00cf
RS
6304 return 0;
6305
6306 /* ...or if any of the intervening instructions do. */
6307 for (j = 0; j < i; j++)
4c260379 6308 if (gpr_read_mask (&hist[j]) & mask)
7d8e00cf
RS
6309 return 0;
6310
932d1a1b
RS
6311 if (i >= ignore)
6312 return MAX_VR4130_NOPS - i;
7d8e00cf
RS
6313 }
6314 return 0;
6315}
6316
134c0c8b
MR
6317#define BASE_REG_EQ(INSN1, INSN2) \
6318 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
15be625d
CM
6319 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6320
6321/* Return the minimum alignment for this store instruction. */
6322
6323static int
6324fix_24k_align_to (const struct mips_opcode *mo)
6325{
6326 if (strcmp (mo->name, "sh") == 0)
6327 return 2;
6328
6329 if (strcmp (mo->name, "swc1") == 0
6330 || strcmp (mo->name, "swc2") == 0
6331 || strcmp (mo->name, "sw") == 0
6332 || strcmp (mo->name, "sc") == 0
6333 || strcmp (mo->name, "s.s") == 0)
6334 return 4;
6335
6336 if (strcmp (mo->name, "sdc1") == 0
6337 || strcmp (mo->name, "sdc2") == 0
6338 || strcmp (mo->name, "s.d") == 0)
6339 return 8;
6340
6341 /* sb, swl, swr */
6342 return 1;
6343}
6344
6345struct fix_24k_store_info
6346 {
6347 /* Immediate offset, if any, for this store instruction. */
6348 short off;
6349 /* Alignment required by this store instruction. */
6350 int align_to;
6351 /* True for register offsets. */
6352 int register_offset;
6353 };
6354
6355/* Comparison function used by qsort. */
6356
6357static int
6358fix_24k_sort (const void *a, const void *b)
6359{
6360 const struct fix_24k_store_info *pos1 = a;
6361 const struct fix_24k_store_info *pos2 = b;
6362
6363 return (pos1->off - pos2->off);
6364}
6365
6366/* INSN is a store instruction. Try to record the store information
6367 in STINFO. Return false if the information isn't known. */
6368
6369static bfd_boolean
6370fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
ab9794cf 6371 const struct mips_cl_insn *insn)
15be625d
CM
6372{
6373 /* The instruction must have a known offset. */
6374 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6375 return FALSE;
6376
6377 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6378 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6379 return TRUE;
6380}
6381
932d1a1b
RS
6382/* Return the number of nops that would be needed to work around the 24k
6383 "lost data on stores during refill" errata if instruction INSN
6384 immediately followed the 2 instructions described by HIST.
6385 Ignore hazards that are contained within the first IGNORE
6386 instructions of HIST.
6387
6388 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6389 for the data cache refills and store data. The following describes
6390 the scenario where the store data could be lost.
6391
6392 * A data cache miss, due to either a load or a store, causing fill
6393 data to be supplied by the memory subsystem
6394 * The first three doublewords of fill data are returned and written
6395 into the cache
6396 * A sequence of four stores occurs in consecutive cycles around the
6397 final doubleword of the fill:
6398 * Store A
6399 * Store B
6400 * Store C
6401 * Zero, One or more instructions
6402 * Store D
6403
6404 The four stores A-D must be to different doublewords of the line that
6405 is being filled. The fourth instruction in the sequence above permits
6406 the fill of the final doubleword to be transferred from the FSB into
6407 the cache. In the sequence above, the stores may be either integer
6408 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6409 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6410 different doublewords on the line. If the floating point unit is
6411 running in 1:2 mode, it is not possible to create the sequence above
6412 using only floating point store instructions.
15be625d
CM
6413
6414 In this case, the cache line being filled is incorrectly marked
6415 invalid, thereby losing the data from any store to the line that
6416 occurs between the original miss and the completion of the five
6417 cycle sequence shown above.
6418
932d1a1b 6419 The workarounds are:
15be625d 6420
932d1a1b
RS
6421 * Run the data cache in write-through mode.
6422 * Insert a non-store instruction between
6423 Store A and Store B or Store B and Store C. */
3739860c 6424
15be625d 6425static int
932d1a1b 6426nops_for_24k (int ignore, const struct mips_cl_insn *hist,
15be625d
CM
6427 const struct mips_cl_insn *insn)
6428{
6429 struct fix_24k_store_info pos[3];
6430 int align, i, base_offset;
6431
932d1a1b
RS
6432 if (ignore >= 2)
6433 return 0;
6434
ab9794cf
RS
6435 /* If the previous instruction wasn't a store, there's nothing to
6436 worry about. */
15be625d
CM
6437 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6438 return 0;
6439
ab9794cf
RS
6440 /* If the instructions after the previous one are unknown, we have
6441 to assume the worst. */
6442 if (!insn)
15be625d
CM
6443 return 1;
6444
ab9794cf
RS
6445 /* Check whether we are dealing with three consecutive stores. */
6446 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6447 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
15be625d
CM
6448 return 0;
6449
6450 /* If we don't know the relationship between the store addresses,
6451 assume the worst. */
ab9794cf 6452 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
15be625d
CM
6453 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6454 return 1;
6455
6456 if (!fix_24k_record_store_info (&pos[0], insn)
6457 || !fix_24k_record_store_info (&pos[1], &hist[0])
6458 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6459 return 1;
6460
6461 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6462
6463 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6464 X bytes and such that the base register + X is known to be aligned
6465 to align bytes. */
6466
6467 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6468 align = 8;
6469 else
6470 {
6471 align = pos[0].align_to;
6472 base_offset = pos[0].off;
6473 for (i = 1; i < 3; i++)
6474 if (align < pos[i].align_to)
6475 {
6476 align = pos[i].align_to;
6477 base_offset = pos[i].off;
6478 }
6479 for (i = 0; i < 3; i++)
6480 pos[i].off -= base_offset;
6481 }
6482
6483 pos[0].off &= ~align + 1;
6484 pos[1].off &= ~align + 1;
6485 pos[2].off &= ~align + 1;
6486
6487 /* If any two stores write to the same chunk, they also write to the
6488 same doubleword. The offsets are still sorted at this point. */
6489 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6490 return 0;
6491
6492 /* A range of at least 9 bytes is needed for the stores to be in
6493 non-overlapping doublewords. */
6494 if (pos[2].off - pos[0].off <= 8)
6495 return 0;
6496
6497 if (pos[2].off - pos[1].off >= 24
6498 || pos[1].off - pos[0].off >= 24
6499 || pos[2].off - pos[0].off >= 32)
6500 return 0;
6501
6502 return 1;
6503}
6504
71400594 6505/* Return the number of nops that would be needed if instruction INSN
91d6fa6a 6506 immediately followed the MAX_NOPS instructions given by HIST,
932d1a1b
RS
6507 where HIST[0] is the most recent instruction. Ignore hazards
6508 between INSN and the first IGNORE instructions in HIST.
6509
6510 If INSN is null, return the worse-case number of nops for any
6511 instruction. */
bdaaa2e1 6512
71400594 6513static int
932d1a1b 6514nops_for_insn (int ignore, const struct mips_cl_insn *hist,
71400594
RS
6515 const struct mips_cl_insn *insn)
6516{
6517 int i, nops, tmp_nops;
bdaaa2e1 6518
71400594 6519 nops = 0;
932d1a1b 6520 for (i = ignore; i < MAX_DELAY_NOPS; i++)
65b02341 6521 {
91d6fa6a 6522 tmp_nops = insns_between (hist + i, insn) - i;
65b02341
RS
6523 if (tmp_nops > nops)
6524 nops = tmp_nops;
6525 }
7d8e00cf 6526
df58fc94 6527 if (mips_fix_vr4130 && !mips_opts.micromips)
7d8e00cf 6528 {
932d1a1b 6529 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
7d8e00cf
RS
6530 if (tmp_nops > nops)
6531 nops = tmp_nops;
6532 }
6533
df58fc94 6534 if (mips_fix_24k && !mips_opts.micromips)
15be625d 6535 {
932d1a1b 6536 tmp_nops = nops_for_24k (ignore, hist, insn);
15be625d
CM
6537 if (tmp_nops > nops)
6538 nops = tmp_nops;
6539 }
6540
71400594
RS
6541 return nops;
6542}
252b5132 6543
71400594 6544/* The variable arguments provide NUM_INSNS extra instructions that
91d6fa6a 6545 might be added to HIST. Return the largest number of nops that
932d1a1b
RS
6546 would be needed after the extended sequence, ignoring hazards
6547 in the first IGNORE instructions. */
252b5132 6548
71400594 6549static int
932d1a1b
RS
6550nops_for_sequence (int num_insns, int ignore,
6551 const struct mips_cl_insn *hist, ...)
71400594
RS
6552{
6553 va_list args;
6554 struct mips_cl_insn buffer[MAX_NOPS];
6555 struct mips_cl_insn *cursor;
6556 int nops;
6557
91d6fa6a 6558 va_start (args, hist);
71400594 6559 cursor = buffer + num_insns;
91d6fa6a 6560 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
71400594
RS
6561 while (cursor > buffer)
6562 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6563
932d1a1b 6564 nops = nops_for_insn (ignore, buffer, NULL);
71400594
RS
6565 va_end (args);
6566 return nops;
6567}
252b5132 6568
71400594
RS
6569/* Like nops_for_insn, but if INSN is a branch, take into account the
6570 worst-case delay for the branch target. */
252b5132 6571
71400594 6572static int
932d1a1b 6573nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
71400594
RS
6574 const struct mips_cl_insn *insn)
6575{
6576 int nops, tmp_nops;
60b63b72 6577
932d1a1b 6578 nops = nops_for_insn (ignore, hist, insn);
11625dd8 6579 if (delayed_branch_p (insn))
71400594 6580 {
932d1a1b 6581 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
14fe068b 6582 hist, insn, get_delay_slot_nop (insn));
71400594
RS
6583 if (tmp_nops > nops)
6584 nops = tmp_nops;
6585 }
11625dd8 6586 else if (compact_branch_p (insn))
71400594 6587 {
932d1a1b 6588 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
71400594
RS
6589 if (tmp_nops > nops)
6590 nops = tmp_nops;
6591 }
6592 return nops;
6593}
6594
c67a084a
NC
6595/* Fix NOP issue: Replace nops by "or at,at,zero". */
6596
6597static void
6598fix_loongson2f_nop (struct mips_cl_insn * ip)
6599{
df58fc94 6600 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
6601 if (strcmp (ip->insn_mo->name, "nop") == 0)
6602 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6603}
6604
6605/* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6606 jr target pc &= 'hffff_ffff_cfff_ffff. */
6607
6608static void
6609fix_loongson2f_jump (struct mips_cl_insn * ip)
6610{
df58fc94 6611 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
6612 if (strcmp (ip->insn_mo->name, "j") == 0
6613 || strcmp (ip->insn_mo->name, "jr") == 0
6614 || strcmp (ip->insn_mo->name, "jalr") == 0)
6615 {
6616 int sreg;
6617 expressionS ep;
6618
6619 if (! mips_opts.at)
6620 return;
6621
df58fc94 6622 sreg = EXTRACT_OPERAND (0, RS, *ip);
c67a084a
NC
6623 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6624 return;
6625
6626 ep.X_op = O_constant;
6627 ep.X_add_number = 0xcfff0000;
6628 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6629 ep.X_add_number = 0xffff;
6630 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6631 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6632 }
6633}
6634
6635static void
6636fix_loongson2f (struct mips_cl_insn * ip)
6637{
6638 if (mips_fix_loongson2f_nop)
6639 fix_loongson2f_nop (ip);
6640
6641 if (mips_fix_loongson2f_jump)
6642 fix_loongson2f_jump (ip);
6643}
6644
a4e06468
RS
6645/* IP is a branch that has a delay slot, and we need to fill it
6646 automatically. Return true if we can do that by swapping IP
e407c74b
NC
6647 with the previous instruction.
6648 ADDRESS_EXPR is an operand of the instruction to be used with
6649 RELOC_TYPE. */
a4e06468
RS
6650
6651static bfd_boolean
e407c74b 6652can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 6653 bfd_reloc_code_real_type *reloc_type)
a4e06468 6654{
2b0c8b40 6655 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
a4e06468 6656 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
9d5de888 6657 unsigned int fpr_read, prev_fpr_write;
a4e06468
RS
6658
6659 /* -O2 and above is required for this optimization. */
6660 if (mips_optimize < 2)
6661 return FALSE;
6662
6663 /* If we have seen .set volatile or .set nomove, don't optimize. */
6664 if (mips_opts.nomove)
6665 return FALSE;
6666
6667 /* We can't swap if the previous instruction's position is fixed. */
6668 if (history[0].fixed_p)
6669 return FALSE;
6670
6671 /* If the previous previous insn was in a .set noreorder, we can't
6672 swap. Actually, the MIPS assembler will swap in this situation.
6673 However, gcc configured -with-gnu-as will generate code like
6674
6675 .set noreorder
6676 lw $4,XXX
6677 .set reorder
6678 INSN
6679 bne $4,$0,foo
6680
6681 in which we can not swap the bne and INSN. If gcc is not configured
6682 -with-gnu-as, it does not output the .set pseudo-ops. */
6683 if (history[1].noreorder_p)
6684 return FALSE;
6685
87333bb7
MR
6686 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6687 This means that the previous instruction was a 4-byte one anyhow. */
a4e06468
RS
6688 if (mips_opts.mips16 && history[0].fixp[0])
6689 return FALSE;
6690
6691 /* If the branch is itself the target of a branch, we can not swap.
6692 We cheat on this; all we check for is whether there is a label on
6693 this instruction. If there are any branches to anything other than
6694 a label, users must use .set noreorder. */
6695 if (seg_info (now_seg)->label_list)
6696 return FALSE;
6697
6698 /* If the previous instruction is in a variant frag other than this
2309ddf2 6699 branch's one, we cannot do the swap. This does not apply to
9301f9c3
MR
6700 MIPS16 code, which uses variant frags for different purposes. */
6701 if (!mips_opts.mips16
a4e06468
RS
6702 && history[0].frag
6703 && history[0].frag->fr_type == rs_machine_dependent)
6704 return FALSE;
6705
bcd530a7
RS
6706 /* We do not swap with instructions that cannot architecturally
6707 be placed in a branch delay slot, such as SYNC or ERET. We
6708 also refrain from swapping with a trap instruction, since it
6709 complicates trap handlers to have the trap instruction be in
6710 a delay slot. */
a4e06468 6711 prev_pinfo = history[0].insn_mo->pinfo;
bcd530a7 6712 if (prev_pinfo & INSN_NO_DELAY_SLOT)
a4e06468
RS
6713 return FALSE;
6714
6715 /* Check for conflicts between the branch and the instructions
6716 before the candidate delay slot. */
6717 if (nops_for_insn (0, history + 1, ip) > 0)
6718 return FALSE;
6719
6720 /* Check for conflicts between the swapped sequence and the
6721 target of the branch. */
6722 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6723 return FALSE;
6724
6725 /* If the branch reads a register that the previous
6726 instruction sets, we can not swap. */
6727 gpr_read = gpr_read_mask (ip);
6728 prev_gpr_write = gpr_write_mask (&history[0]);
6729 if (gpr_read & prev_gpr_write)
6730 return FALSE;
6731
9d5de888
CF
6732 fpr_read = fpr_read_mask (ip);
6733 prev_fpr_write = fpr_write_mask (&history[0]);
6734 if (fpr_read & prev_fpr_write)
6735 return FALSE;
6736
a4e06468
RS
6737 /* If the branch writes a register that the previous
6738 instruction sets, we can not swap. */
6739 gpr_write = gpr_write_mask (ip);
6740 if (gpr_write & prev_gpr_write)
6741 return FALSE;
6742
6743 /* If the branch writes a register that the previous
6744 instruction reads, we can not swap. */
6745 prev_gpr_read = gpr_read_mask (&history[0]);
6746 if (gpr_write & prev_gpr_read)
6747 return FALSE;
6748
6749 /* If one instruction sets a condition code and the
6750 other one uses a condition code, we can not swap. */
6751 pinfo = ip->insn_mo->pinfo;
6752 if ((pinfo & INSN_READ_COND_CODE)
6753 && (prev_pinfo & INSN_WRITE_COND_CODE))
6754 return FALSE;
6755 if ((pinfo & INSN_WRITE_COND_CODE)
6756 && (prev_pinfo & INSN_READ_COND_CODE))
6757 return FALSE;
6758
6759 /* If the previous instruction uses the PC, we can not swap. */
2b0c8b40 6760 prev_pinfo2 = history[0].insn_mo->pinfo2;
26545944 6761 if (prev_pinfo2 & INSN2_READ_PC)
2b0c8b40 6762 return FALSE;
a4e06468 6763
df58fc94
RS
6764 /* If the previous instruction has an incorrect size for a fixed
6765 branch delay slot in microMIPS mode, we cannot swap. */
2309ddf2
MR
6766 pinfo2 = ip->insn_mo->pinfo2;
6767 if (mips_opts.micromips
6768 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6769 && insn_length (history) != 2)
6770 return FALSE;
6771 if (mips_opts.micromips
6772 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6773 && insn_length (history) != 4)
6774 return FALSE;
6775
e407c74b
NC
6776 /* On R5900 short loops need to be fixed by inserting a nop in
6777 the branch delay slots.
6778 A short loop can be terminated too early. */
6779 if (mips_opts.arch == CPU_R5900
6780 /* Check if instruction has a parameter, ignore "j $31". */
6781 && (address_expr != NULL)
6782 /* Parameter must be 16 bit. */
6783 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6784 /* Branch to same segment. */
41065f5e 6785 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
e407c74b 6786 /* Branch to same code fragment. */
41065f5e 6787 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
e407c74b 6788 /* Can only calculate branch offset if value is known. */
41065f5e 6789 && symbol_constant_p (address_expr->X_add_symbol)
e407c74b
NC
6790 /* Check if branch is really conditional. */
6791 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6792 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6793 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6794 {
6795 int distance;
6796 /* Check if loop is shorter than 6 instructions including
6797 branch and delay slot. */
41065f5e 6798 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
e407c74b
NC
6799 if (distance <= 20)
6800 {
6801 int i;
6802 int rv;
6803
6804 rv = FALSE;
6805 /* When the loop includes branches or jumps,
6806 it is not a short loop. */
6807 for (i = 0; i < (distance / 4); i++)
6808 {
6809 if ((history[i].cleared_p)
41065f5e 6810 || delayed_branch_p (&history[i]))
e407c74b
NC
6811 {
6812 rv = TRUE;
6813 break;
6814 }
6815 }
6816 if (rv == FALSE)
6817 {
6818 /* Insert nop after branch to fix short loop. */
6819 return FALSE;
6820 }
6821 }
6822 }
6823
a4e06468
RS
6824 return TRUE;
6825}
6826
e407c74b
NC
6827/* Decide how we should add IP to the instruction stream.
6828 ADDRESS_EXPR is an operand of the instruction to be used with
6829 RELOC_TYPE. */
a4e06468
RS
6830
6831static enum append_method
e407c74b 6832get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 6833 bfd_reloc_code_real_type *reloc_type)
a4e06468 6834{
a4e06468
RS
6835 /* The relaxed version of a macro sequence must be inherently
6836 hazard-free. */
6837 if (mips_relax.sequence == 2)
6838 return APPEND_ADD;
6839
3b821a28 6840 /* We must not dabble with instructions in a ".set noreorder" block. */
a4e06468
RS
6841 if (mips_opts.noreorder)
6842 return APPEND_ADD;
6843
6844 /* Otherwise, it's our responsibility to fill branch delay slots. */
11625dd8 6845 if (delayed_branch_p (ip))
a4e06468 6846 {
e407c74b
NC
6847 if (!branch_likely_p (ip)
6848 && can_swap_branch_p (ip, address_expr, reloc_type))
a4e06468
RS
6849 return APPEND_SWAP;
6850
6851 if (mips_opts.mips16
6852 && ISA_SUPPORTS_MIPS16E
fc76e730 6853 && gpr_read_mask (ip) != 0)
a4e06468
RS
6854 return APPEND_ADD_COMPACT;
6855
7bd374a4
MR
6856 if (mips_opts.micromips
6857 && ((ip->insn_opcode & 0xffe0) == 0x4580
6858 || (!forced_insn_length
6859 && ((ip->insn_opcode & 0xfc00) == 0xcc00
6860 || (ip->insn_opcode & 0xdc00) == 0x8c00))
6861 || (ip->insn_opcode & 0xdfe00000) == 0x94000000
6862 || (ip->insn_opcode & 0xdc1f0000) == 0x94000000))
6863 return APPEND_ADD_COMPACT;
6864
a4e06468
RS
6865 return APPEND_ADD_WITH_NOP;
6866 }
6867
a4e06468
RS
6868 return APPEND_ADD;
6869}
6870
7bd374a4
MR
6871/* IP is an instruction whose opcode we have just changed, END points
6872 to the end of the opcode table processed. Point IP->insn_mo to the
6873 new opcode's definition. */
ceb94aa5
RS
6874
6875static void
7bd374a4 6876find_altered_opcode (struct mips_cl_insn *ip, const struct mips_opcode *end)
ceb94aa5 6877{
7bd374a4 6878 const struct mips_opcode *mo;
ceb94aa5 6879
ceb94aa5 6880 for (mo = ip->insn_mo; mo < end; mo++)
7bd374a4
MR
6881 if (mo->pinfo != INSN_MACRO
6882 && (ip->insn_opcode & mo->mask) == mo->match)
ceb94aa5
RS
6883 {
6884 ip->insn_mo = mo;
6885 return;
6886 }
6887 abort ();
6888}
6889
7bd374a4
MR
6890/* IP is a MIPS16 instruction whose opcode we have just changed.
6891 Point IP->insn_mo to the new opcode's definition. */
6892
6893static void
6894find_altered_mips16_opcode (struct mips_cl_insn *ip)
6895{
6896 find_altered_opcode (ip, &mips16_opcodes[bfd_mips16_num_opcodes]);
6897}
6898
6899/* IP is a microMIPS instruction whose opcode we have just changed.
6900 Point IP->insn_mo to the new opcode's definition. */
6901
6902static void
6903find_altered_micromips_opcode (struct mips_cl_insn *ip)
6904{
6905 find_altered_opcode (ip, &micromips_opcodes[bfd_micromips_num_opcodes]);
6906}
6907
df58fc94
RS
6908/* For microMIPS macros, we need to generate a local number label
6909 as the target of branches. */
6910#define MICROMIPS_LABEL_CHAR '\037'
6911static unsigned long micromips_target_label;
6912static char micromips_target_name[32];
6913
6914static char *
6915micromips_label_name (void)
6916{
6917 char *p = micromips_target_name;
6918 char symbol_name_temporary[24];
6919 unsigned long l;
6920 int i;
6921
6922 if (*p)
6923 return p;
6924
6925 i = 0;
6926 l = micromips_target_label;
6927#ifdef LOCAL_LABEL_PREFIX
6928 *p++ = LOCAL_LABEL_PREFIX;
6929#endif
6930 *p++ = 'L';
6931 *p++ = MICROMIPS_LABEL_CHAR;
6932 do
6933 {
6934 symbol_name_temporary[i++] = l % 10 + '0';
6935 l /= 10;
6936 }
6937 while (l != 0);
6938 while (i > 0)
6939 *p++ = symbol_name_temporary[--i];
6940 *p = '\0';
6941
6942 return micromips_target_name;
6943}
6944
6945static void
6946micromips_label_expr (expressionS *label_expr)
6947{
6948 label_expr->X_op = O_symbol;
6949 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6950 label_expr->X_add_number = 0;
6951}
6952
6953static void
6954micromips_label_inc (void)
6955{
6956 micromips_target_label++;
6957 *micromips_target_name = '\0';
6958}
6959
6960static void
6961micromips_add_label (void)
6962{
6963 symbolS *s;
6964
6965 s = colon (micromips_label_name ());
6966 micromips_label_inc ();
f3ded42a 6967 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
df58fc94
RS
6968}
6969
6970/* If assembling microMIPS code, then return the microMIPS reloc
6971 corresponding to the requested one if any. Otherwise return
6972 the reloc unchanged. */
6973
6974static bfd_reloc_code_real_type
6975micromips_map_reloc (bfd_reloc_code_real_type reloc)
6976{
6977 static const bfd_reloc_code_real_type relocs[][2] =
6978 {
6979 /* Keep sorted incrementally by the left-hand key. */
6980 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6981 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6982 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6983 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6984 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6985 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6986 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6987 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6988 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6989 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6990 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6991 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6992 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6993 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6994 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6995 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6996 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6997 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6998 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6999 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
7000 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
7001 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
7002 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
7003 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
7004 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
7005 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
7006 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
7007 };
7008 bfd_reloc_code_real_type r;
7009 size_t i;
7010
7011 if (!mips_opts.micromips)
7012 return reloc;
7013 for (i = 0; i < ARRAY_SIZE (relocs); i++)
7014 {
7015 r = relocs[i][0];
7016 if (r > reloc)
7017 return reloc;
7018 if (r == reloc)
7019 return relocs[i][1];
7020 }
7021 return reloc;
7022}
7023
b886a2ab
RS
7024/* Try to resolve relocation RELOC against constant OPERAND at assembly time.
7025 Return true on success, storing the resolved value in RESULT. */
7026
7027static bfd_boolean
7028calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
7029 offsetT *result)
7030{
7031 switch (reloc)
7032 {
7033 case BFD_RELOC_MIPS_HIGHEST:
7034 case BFD_RELOC_MICROMIPS_HIGHEST:
7035 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
7036 return TRUE;
7037
7038 case BFD_RELOC_MIPS_HIGHER:
7039 case BFD_RELOC_MICROMIPS_HIGHER:
7040 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
7041 return TRUE;
7042
7043 case BFD_RELOC_HI16_S:
41947d9e 7044 case BFD_RELOC_HI16_S_PCREL:
b886a2ab
RS
7045 case BFD_RELOC_MICROMIPS_HI16_S:
7046 case BFD_RELOC_MIPS16_HI16_S:
7047 *result = ((operand + 0x8000) >> 16) & 0xffff;
7048 return TRUE;
7049
7050 case BFD_RELOC_HI16:
7051 case BFD_RELOC_MICROMIPS_HI16:
7052 case BFD_RELOC_MIPS16_HI16:
7053 *result = (operand >> 16) & 0xffff;
7054 return TRUE;
7055
7056 case BFD_RELOC_LO16:
41947d9e 7057 case BFD_RELOC_LO16_PCREL:
b886a2ab
RS
7058 case BFD_RELOC_MICROMIPS_LO16:
7059 case BFD_RELOC_MIPS16_LO16:
7060 *result = operand & 0xffff;
7061 return TRUE;
7062
7063 case BFD_RELOC_UNUSED:
7064 *result = operand;
7065 return TRUE;
7066
7067 default:
7068 return FALSE;
7069 }
7070}
7071
71400594
RS
7072/* Output an instruction. IP is the instruction information.
7073 ADDRESS_EXPR is an operand of the instruction to be used with
df58fc94
RS
7074 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7075 a macro expansion. */
71400594
RS
7076
7077static void
7078append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
df58fc94 7079 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
71400594 7080{
14fe068b 7081 unsigned long prev_pinfo2, pinfo;
71400594 7082 bfd_boolean relaxed_branch = FALSE;
a4e06468 7083 enum append_method method;
2309ddf2 7084 bfd_boolean relax32;
2b0c8b40 7085 int branch_disp;
71400594 7086
2309ddf2 7087 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
c67a084a
NC
7088 fix_loongson2f (ip);
7089
738f4d98 7090 file_ase_mips16 |= mips_opts.mips16;
df58fc94 7091 file_ase_micromips |= mips_opts.micromips;
738f4d98 7092
df58fc94 7093 prev_pinfo2 = history[0].insn_mo->pinfo2;
71400594 7094 pinfo = ip->insn_mo->pinfo;
df58fc94 7095
7bd374a4
MR
7096 /* Don't raise alarm about `nods' frags as they'll fill in the right
7097 kind of nop in relaxation if required. */
df58fc94
RS
7098 if (mips_opts.micromips
7099 && !expansionp
7bd374a4
MR
7100 && !(history[0].frag
7101 && history[0].frag->fr_type == rs_machine_dependent
7102 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
7103 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
df58fc94
RS
7104 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7105 && micromips_insn_length (ip->insn_mo) != 2)
7106 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7107 && micromips_insn_length (ip->insn_mo) != 4)))
1661c76c 7108 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
df58fc94 7109 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
71400594 7110
15be625d
CM
7111 if (address_expr == NULL)
7112 ip->complete_p = 1;
b886a2ab
RS
7113 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7114 && reloc_type[1] == BFD_RELOC_UNUSED
7115 && reloc_type[2] == BFD_RELOC_UNUSED
15be625d
CM
7116 && address_expr->X_op == O_constant)
7117 {
15be625d
CM
7118 switch (*reloc_type)
7119 {
15be625d 7120 case BFD_RELOC_MIPS_JMP:
df58fc94
RS
7121 {
7122 int shift;
7123
17c6c9d9
MR
7124 /* Shift is 2, unusually, for microMIPS JALX. */
7125 shift = (mips_opts.micromips
7126 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
df58fc94
RS
7127 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7128 as_bad (_("jump to misaligned address (0x%lx)"),
7129 (unsigned long) address_expr->X_add_number);
7130 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7131 & 0x3ffffff);
335574df 7132 ip->complete_p = 1;
df58fc94 7133 }
15be625d
CM
7134 break;
7135
7136 case BFD_RELOC_MIPS16_JMP:
7137 if ((address_expr->X_add_number & 3) != 0)
7138 as_bad (_("jump to misaligned address (0x%lx)"),
7139 (unsigned long) address_expr->X_add_number);
7140 ip->insn_opcode |=
7141 (((address_expr->X_add_number & 0x7c0000) << 3)
7142 | ((address_expr->X_add_number & 0xf800000) >> 7)
7143 | ((address_expr->X_add_number & 0x3fffc) >> 2));
335574df 7144 ip->complete_p = 1;
15be625d
CM
7145 break;
7146
7147 case BFD_RELOC_16_PCREL_S2:
df58fc94
RS
7148 {
7149 int shift;
7150
7151 shift = mips_opts.micromips ? 1 : 2;
7152 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7153 as_bad (_("branch to misaligned address (0x%lx)"),
7154 (unsigned long) address_expr->X_add_number);
7155 if (!mips_relax_branch)
7156 {
7157 if ((address_expr->X_add_number + (1 << (shift + 15)))
7158 & ~((1 << (shift + 16)) - 1))
7159 as_bad (_("branch address range overflow (0x%lx)"),
7160 (unsigned long) address_expr->X_add_number);
7161 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7162 & 0xffff);
7163 }
df58fc94 7164 }
15be625d
CM
7165 break;
7166
7361da2c
AB
7167 case BFD_RELOC_MIPS_21_PCREL_S2:
7168 {
7169 int shift;
7170
7171 shift = 2;
7172 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7173 as_bad (_("branch to misaligned address (0x%lx)"),
7174 (unsigned long) address_expr->X_add_number);
7175 if ((address_expr->X_add_number + (1 << (shift + 20)))
7176 & ~((1 << (shift + 21)) - 1))
7177 as_bad (_("branch address range overflow (0x%lx)"),
7178 (unsigned long) address_expr->X_add_number);
7179 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7180 & 0x1fffff);
7181 }
7182 break;
7183
7184 case BFD_RELOC_MIPS_26_PCREL_S2:
7185 {
7186 int shift;
7187
7188 shift = 2;
7189 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7190 as_bad (_("branch to misaligned address (0x%lx)"),
7191 (unsigned long) address_expr->X_add_number);
7192 if ((address_expr->X_add_number + (1 << (shift + 25)))
7193 & ~((1 << (shift + 26)) - 1))
7194 as_bad (_("branch address range overflow (0x%lx)"),
7195 (unsigned long) address_expr->X_add_number);
7196 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7197 & 0x3ffffff);
7198 }
7199 break;
7200
15be625d 7201 default:
b886a2ab
RS
7202 {
7203 offsetT value;
7204
7205 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7206 &value))
7207 {
7208 ip->insn_opcode |= value & 0xffff;
7209 ip->complete_p = 1;
7210 }
7211 }
7212 break;
7213 }
15be625d
CM
7214 }
7215
71400594
RS
7216 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7217 {
7218 /* There are a lot of optimizations we could do that we don't.
7219 In particular, we do not, in general, reorder instructions.
7220 If you use gcc with optimization, it will reorder
7221 instructions and generally do much more optimization then we
7222 do here; repeating all that work in the assembler would only
7223 benefit hand written assembly code, and does not seem worth
7224 it. */
7225 int nops = (mips_optimize == 0
932d1a1b
RS
7226 ? nops_for_insn (0, history, NULL)
7227 : nops_for_insn_or_target (0, history, ip));
71400594 7228 if (nops > 0)
252b5132
RH
7229 {
7230 fragS *old_frag;
7231 unsigned long old_frag_offset;
7232 int i;
252b5132
RH
7233
7234 old_frag = frag_now;
7235 old_frag_offset = frag_now_fix ();
7236
7237 for (i = 0; i < nops; i++)
14fe068b
RS
7238 add_fixed_insn (NOP_INSN);
7239 insert_into_history (0, nops, NOP_INSN);
252b5132
RH
7240
7241 if (listing)
7242 {
7243 listing_prev_line ();
7244 /* We may be at the start of a variant frag. In case we
7245 are, make sure there is enough space for the frag
7246 after the frags created by listing_prev_line. The
7247 argument to frag_grow here must be at least as large
7248 as the argument to all other calls to frag_grow in
7249 this file. We don't have to worry about being in the
7250 middle of a variant frag, because the variants insert
7251 all needed nop instructions themselves. */
7252 frag_grow (40);
7253 }
7254
462427c4 7255 mips_move_text_labels ();
252b5132
RH
7256
7257#ifndef NO_ECOFF_DEBUGGING
7258 if (ECOFF_DEBUGGING)
7259 ecoff_fix_loc (old_frag, old_frag_offset);
7260#endif
7261 }
71400594
RS
7262 }
7263 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7264 {
932d1a1b
RS
7265 int nops;
7266
7267 /* Work out how many nops in prev_nop_frag are needed by IP,
7268 ignoring hazards generated by the first prev_nop_frag_since
7269 instructions. */
7270 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
9c2799c2 7271 gas_assert (nops <= prev_nop_frag_holds);
252b5132 7272
71400594
RS
7273 /* Enforce NOPS as a minimum. */
7274 if (nops > prev_nop_frag_required)
7275 prev_nop_frag_required = nops;
252b5132 7276
71400594
RS
7277 if (prev_nop_frag_holds == prev_nop_frag_required)
7278 {
7279 /* Settle for the current number of nops. Update the history
7280 accordingly (for the benefit of any future .set reorder code). */
7281 prev_nop_frag = NULL;
7282 insert_into_history (prev_nop_frag_since,
7283 prev_nop_frag_holds, NOP_INSN);
7284 }
7285 else
7286 {
7287 /* Allow this instruction to replace one of the nops that was
7288 tentatively added to prev_nop_frag. */
df58fc94 7289 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
71400594
RS
7290 prev_nop_frag_holds--;
7291 prev_nop_frag_since++;
252b5132
RH
7292 }
7293 }
7294
e407c74b 7295 method = get_append_method (ip, address_expr, reloc_type);
2b0c8b40 7296 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
a4e06468 7297
e410add4
RS
7298 dwarf2_emit_insn (0);
7299 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7300 so "move" the instruction address accordingly.
7301
7302 Also, it doesn't seem appropriate for the assembler to reorder .loc
7303 entries. If this instruction is a branch that we are going to swap
7304 with the previous instruction, the two instructions should be
7305 treated as a unit, and the debug information for both instructions
7306 should refer to the start of the branch sequence. Using the
7307 current position is certainly wrong when swapping a 32-bit branch
7308 and a 16-bit delay slot, since the current position would then be
7309 in the middle of a branch. */
7310 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
58e2ea4d 7311
df58fc94
RS
7312 relax32 = (mips_relax_branch
7313 /* Don't try branch relaxation within .set nomacro, or within
7314 .set noat if we use $at for PIC computations. If it turns
7315 out that the branch was out-of-range, we'll get an error. */
7316 && !mips_opts.warn_about_macros
7317 && (mips_opts.at || mips_pic == NO_PIC)
3bf0dbfb
MR
7318 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7319 as they have no complementing branches. */
7320 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
df58fc94
RS
7321
7322 if (!HAVE_CODE_COMPRESSION
7323 && address_expr
7324 && relax32
0b25d3e6 7325 && *reloc_type == BFD_RELOC_16_PCREL_S2
11625dd8 7326 && delayed_branch_p (ip))
4a6a3df4 7327 {
895921c9 7328 relaxed_branch = TRUE;
1e915849
RS
7329 add_relaxed_insn (ip, (relaxed_branch_length
7330 (NULL, NULL,
11625dd8
RS
7331 uncond_branch_p (ip) ? -1
7332 : branch_likely_p (ip) ? 1
1e915849
RS
7333 : 0)), 4,
7334 RELAX_BRANCH_ENCODE
66b3e8da 7335 (AT,
11625dd8
RS
7336 uncond_branch_p (ip),
7337 branch_likely_p (ip),
1e915849
RS
7338 pinfo & INSN_WRITE_GPR_31,
7339 0),
7340 address_expr->X_add_symbol,
7341 address_expr->X_add_number);
4a6a3df4
AO
7342 *reloc_type = BFD_RELOC_UNUSED;
7343 }
df58fc94
RS
7344 else if (mips_opts.micromips
7345 && address_expr
7346 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7347 || *reloc_type > BFD_RELOC_UNUSED)
40209cad
MR
7348 && (delayed_branch_p (ip) || compact_branch_p (ip))
7349 /* Don't try branch relaxation when users specify
7350 16-bit/32-bit instructions. */
7351 && !forced_insn_length)
df58fc94 7352 {
7bd374a4
MR
7353 bfd_boolean relax16 = (method != APPEND_ADD_COMPACT
7354 && *reloc_type > BFD_RELOC_UNUSED);
df58fc94 7355 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
11625dd8 7356 int uncond = uncond_branch_p (ip) ? -1 : 0;
7bd374a4
MR
7357 int compact = compact_branch_p (ip) || method == APPEND_ADD_COMPACT;
7358 int nods = method == APPEND_ADD_WITH_NOP;
df58fc94 7359 int al = pinfo & INSN_WRITE_GPR_31;
7bd374a4 7360 int length32 = nods ? 8 : 4;
df58fc94
RS
7361
7362 gas_assert (address_expr != NULL);
7363 gas_assert (!mips_relax.sequence);
7364
2b0c8b40 7365 relaxed_branch = TRUE;
7bd374a4
MR
7366 if (nods)
7367 method = APPEND_ADD;
7368 if (relax32)
7369 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7370 add_relaxed_insn (ip, length32, relax16 ? 2 : 4,
8484fb75 7371 RELAX_MICROMIPS_ENCODE (type, AT, mips_opts.insn32,
7bd374a4 7372 uncond, compact, al, nods,
40209cad 7373 relax32, 0, 0),
df58fc94
RS
7374 address_expr->X_add_symbol,
7375 address_expr->X_add_number);
7376 *reloc_type = BFD_RELOC_UNUSED;
7377 }
7378 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
252b5132 7379 {
7fd53920
MR
7380 bfd_boolean require_unextended;
7381 bfd_boolean require_extended;
88a7ef16
MR
7382 symbolS *symbol;
7383 offsetT offset;
7384
7fd53920
MR
7385 if (forced_insn_length != 0)
7386 {
7387 require_unextended = forced_insn_length == 2;
7388 require_extended = forced_insn_length == 4;
7389 }
7390 else
7391 {
7392 require_unextended = (mips_opts.noautoextend
7393 && !mips_opcode_32bit_p (ip->insn_mo));
7394 require_extended = 0;
7395 }
7396
252b5132 7397 /* We need to set up a variant frag. */
df58fc94 7398 gas_assert (address_expr != NULL);
88a7ef16
MR
7399 /* Pass any `O_symbol' expression unchanged as an `expr_section'
7400 symbol created by `make_expr_symbol' may not get a necessary
7401 external relocation produced. */
7402 if (address_expr->X_op == O_symbol)
7403 {
7404 symbol = address_expr->X_add_symbol;
7405 offset = address_expr->X_add_number;
7406 }
7407 else
7408 {
7409 symbol = make_expr_symbol (address_expr);
7410 offset = 0;
7411 }
1e915849
RS
7412 add_relaxed_insn (ip, 4, 0,
7413 RELAX_MIPS16_ENCODE
7414 (*reloc_type - BFD_RELOC_UNUSED,
7fd53920 7415 require_unextended, require_extended,
11625dd8 7416 delayed_branch_p (&history[0]),
1e915849 7417 history[0].mips16_absolute_jump_p),
88a7ef16 7418 symbol, offset);
252b5132 7419 }
5c04167a 7420 else if (mips_opts.mips16 && insn_length (ip) == 2)
9497f5ac 7421 {
11625dd8 7422 if (!delayed_branch_p (ip))
b8ee1a6e
DU
7423 /* Make sure there is enough room to swap this instruction with
7424 a following jump instruction. */
7425 frag_grow (6);
1e915849 7426 add_fixed_insn (ip);
252b5132
RH
7427 }
7428 else
7429 {
7430 if (mips_opts.mips16
7431 && mips_opts.noreorder
11625dd8 7432 && delayed_branch_p (&history[0]))
252b5132
RH
7433 as_warn (_("extended instruction in delay slot"));
7434
4d7206a2
RS
7435 if (mips_relax.sequence)
7436 {
7437 /* If we've reached the end of this frag, turn it into a variant
7438 frag and record the information for the instructions we've
7439 written so far. */
7440 if (frag_room () < 4)
7441 relax_close_frag ();
df58fc94 7442 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
4d7206a2
RS
7443 }
7444
584892a6 7445 if (mips_relax.sequence != 2)
df58fc94
RS
7446 {
7447 if (mips_macro_warning.first_insn_sizes[0] == 0)
7448 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7449 mips_macro_warning.sizes[0] += insn_length (ip);
7450 mips_macro_warning.insns[0]++;
7451 }
584892a6 7452 if (mips_relax.sequence != 1)
df58fc94
RS
7453 {
7454 if (mips_macro_warning.first_insn_sizes[1] == 0)
7455 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7456 mips_macro_warning.sizes[1] += insn_length (ip);
7457 mips_macro_warning.insns[1]++;
7458 }
584892a6 7459
1e915849
RS
7460 if (mips_opts.mips16)
7461 {
7462 ip->fixed_p = 1;
7463 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7464 }
7465 add_fixed_insn (ip);
252b5132
RH
7466 }
7467
9fe77896 7468 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
252b5132 7469 {
df58fc94 7470 bfd_reloc_code_real_type final_type[3];
2309ddf2 7471 reloc_howto_type *howto0;
9fe77896
RS
7472 reloc_howto_type *howto;
7473 int i;
34ce925e 7474
df58fc94
RS
7475 /* Perform any necessary conversion to microMIPS relocations
7476 and find out how many relocations there actually are. */
7477 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7478 final_type[i] = micromips_map_reloc (reloc_type[i]);
7479
9fe77896
RS
7480 /* In a compound relocation, it is the final (outermost)
7481 operator that determines the relocated field. */
2309ddf2 7482 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
e8044f35
RS
7483 if (!howto)
7484 abort ();
2309ddf2
MR
7485
7486 if (i > 1)
7487 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
9fe77896
RS
7488 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7489 bfd_get_reloc_size (howto),
7490 address_expr,
2309ddf2
MR
7491 howto0 && howto0->pc_relative,
7492 final_type[0]);
9fe77896
RS
7493
7494 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
2309ddf2 7495 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
9fe77896
RS
7496 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7497
7498 /* These relocations can have an addend that won't fit in
7499 4 octets for 64bit assembly. */
bad1aba3 7500 if (GPR_SIZE == 64
9fe77896
RS
7501 && ! howto->partial_inplace
7502 && (reloc_type[0] == BFD_RELOC_16
7503 || reloc_type[0] == BFD_RELOC_32
7504 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7505 || reloc_type[0] == BFD_RELOC_GPREL16
7506 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7507 || reloc_type[0] == BFD_RELOC_GPREL32
7508 || reloc_type[0] == BFD_RELOC_64
7509 || reloc_type[0] == BFD_RELOC_CTOR
7510 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7511 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7512 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7513 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7514 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7515 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7516 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7517 || hi16_reloc_p (reloc_type[0])
7518 || lo16_reloc_p (reloc_type[0])))
7519 ip->fixp[0]->fx_no_overflow = 1;
7520
ddaf2c41
MR
7521 /* These relocations can have an addend that won't fit in 2 octets. */
7522 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7523 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7524 ip->fixp[0]->fx_no_overflow = 1;
7525
9fe77896
RS
7526 if (mips_relax.sequence)
7527 {
7528 if (mips_relax.first_fixup == 0)
7529 mips_relax.first_fixup = ip->fixp[0];
7530 }
7531 else if (reloc_needs_lo_p (*reloc_type))
7532 {
7533 struct mips_hi_fixup *hi_fixup;
7534
7535 /* Reuse the last entry if it already has a matching %lo. */
7536 hi_fixup = mips_hi_fixup_list;
7537 if (hi_fixup == 0
7538 || !fixup_has_matching_lo_p (hi_fixup->fixp))
4d7206a2 7539 {
325801bd 7540 hi_fixup = XNEW (struct mips_hi_fixup);
9fe77896
RS
7541 hi_fixup->next = mips_hi_fixup_list;
7542 mips_hi_fixup_list = hi_fixup;
4d7206a2 7543 }
9fe77896
RS
7544 hi_fixup->fixp = ip->fixp[0];
7545 hi_fixup->seg = now_seg;
7546 }
252b5132 7547
9fe77896
RS
7548 /* Add fixups for the second and third relocations, if given.
7549 Note that the ABI allows the second relocation to be
7550 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7551 moment we only use RSS_UNDEF, but we could add support
7552 for the others if it ever becomes necessary. */
7553 for (i = 1; i < 3; i++)
7554 if (reloc_type[i] != BFD_RELOC_UNUSED)
7555 {
7556 ip->fixp[i] = fix_new (ip->frag, ip->where,
7557 ip->fixp[0]->fx_size, NULL, 0,
df58fc94 7558 FALSE, final_type[i]);
f6688943 7559
9fe77896
RS
7560 /* Use fx_tcbit to mark compound relocs. */
7561 ip->fixp[0]->fx_tcbit = 1;
7562 ip->fixp[i]->fx_tcbit = 1;
7563 }
252b5132 7564 }
252b5132
RH
7565
7566 /* Update the register mask information. */
4c260379
RS
7567 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7568 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
252b5132 7569
a4e06468 7570 switch (method)
252b5132 7571 {
a4e06468
RS
7572 case APPEND_ADD:
7573 insert_into_history (0, 1, ip);
7574 break;
7575
7576 case APPEND_ADD_WITH_NOP:
14fe068b
RS
7577 {
7578 struct mips_cl_insn *nop;
7579
7580 insert_into_history (0, 1, ip);
7581 nop = get_delay_slot_nop (ip);
7582 add_fixed_insn (nop);
7583 insert_into_history (0, 1, nop);
7584 if (mips_relax.sequence)
7585 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7586 }
a4e06468
RS
7587 break;
7588
7589 case APPEND_ADD_COMPACT:
7590 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7bd374a4
MR
7591 if (mips_opts.mips16)
7592 {
7593 ip->insn_opcode |= 0x0080;
7594 find_altered_mips16_opcode (ip);
7595 }
7596 /* Convert microMIPS instructions. */
7597 else if (mips_opts.micromips)
7598 {
7599 /* jr16->jrc */
7600 if ((ip->insn_opcode & 0xffe0) == 0x4580)
7601 ip->insn_opcode |= 0x0020;
7602 /* b16->bc */
7603 else if ((ip->insn_opcode & 0xfc00) == 0xcc00)
7604 ip->insn_opcode = 0x40e00000;
7605 /* beqz16->beqzc, bnez16->bnezc */
7606 else if ((ip->insn_opcode & 0xdc00) == 0x8c00)
7607 {
7608 unsigned long regno;
7609
7610 regno = ip->insn_opcode >> MICROMIPSOP_SH_MD;
7611 regno &= MICROMIPSOP_MASK_MD;
7612 regno = micromips_to_32_reg_d_map[regno];
7613 ip->insn_opcode = (((ip->insn_opcode << 9) & 0x00400000)
7614 | (regno << MICROMIPSOP_SH_RS)
7615 | 0x40a00000) ^ 0x00400000;
7616 }
7617 /* beqz->beqzc, bnez->bnezc */
7618 else if ((ip->insn_opcode & 0xdfe00000) == 0x94000000)
7619 ip->insn_opcode = ((ip->insn_opcode & 0x001f0000)
7620 | ((ip->insn_opcode >> 7) & 0x00400000)
7621 | 0x40a00000) ^ 0x00400000;
7622 /* beq $0->beqzc, bne $0->bnezc */
7623 else if ((ip->insn_opcode & 0xdc1f0000) == 0x94000000)
7624 ip->insn_opcode = (((ip->insn_opcode >>
7625 (MICROMIPSOP_SH_RT - MICROMIPSOP_SH_RS))
7626 & (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS))
7627 | ((ip->insn_opcode >> 7) & 0x00400000)
7628 | 0x40a00000) ^ 0x00400000;
7629 else
7630 abort ();
7631 find_altered_micromips_opcode (ip);
7632 }
7633 else
7634 abort ();
a4e06468
RS
7635 install_insn (ip);
7636 insert_into_history (0, 1, ip);
7637 break;
7638
7639 case APPEND_SWAP:
7640 {
7641 struct mips_cl_insn delay = history[0];
99e7978b
MF
7642
7643 if (relaxed_branch || delay.frag != ip->frag)
a4e06468
RS
7644 {
7645 /* Add the delay slot instruction to the end of the
7646 current frag and shrink the fixed part of the
7647 original frag. If the branch occupies the tail of
7648 the latter, move it backwards to cover the gap. */
2b0c8b40 7649 delay.frag->fr_fix -= branch_disp;
a4e06468 7650 if (delay.frag == ip->frag)
2b0c8b40 7651 move_insn (ip, ip->frag, ip->where - branch_disp);
a4e06468
RS
7652 add_fixed_insn (&delay);
7653 }
7654 else
7655 {
5e35670b
MR
7656 /* If this is not a relaxed branch and we are in the
7657 same frag, then just swap the instructions. */
7658 move_insn (ip, delay.frag, delay.where);
7659 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
a4e06468
RS
7660 }
7661 history[0] = *ip;
7662 delay.fixed_p = 1;
7663 insert_into_history (0, 1, &delay);
7664 }
7665 break;
252b5132
RH
7666 }
7667
13408f1e 7668 /* If we have just completed an unconditional branch, clear the history. */
11625dd8
RS
7669 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7670 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
e407c74b
NC
7671 {
7672 unsigned int i;
7673
79850f26 7674 mips_no_prev_insn ();
13408f1e 7675
e407c74b 7676 for (i = 0; i < ARRAY_SIZE (history); i++)
79850f26 7677 history[i].cleared_p = 1;
e407c74b
NC
7678 }
7679
df58fc94
RS
7680 /* We need to emit a label at the end of branch-likely macros. */
7681 if (emit_branch_likely_macro)
7682 {
7683 emit_branch_likely_macro = FALSE;
7684 micromips_add_label ();
7685 }
7686
252b5132
RH
7687 /* We just output an insn, so the next one doesn't have a label. */
7688 mips_clear_insn_labels ();
252b5132
RH
7689}
7690
e407c74b
NC
7691/* Forget that there was any previous instruction or label.
7692 When BRANCH is true, the branch history is also flushed. */
252b5132
RH
7693
7694static void
7d10b47d 7695mips_no_prev_insn (void)
252b5132 7696{
7d10b47d
RS
7697 prev_nop_frag = NULL;
7698 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
252b5132
RH
7699 mips_clear_insn_labels ();
7700}
7701
7d10b47d
RS
7702/* This function must be called before we emit something other than
7703 instructions. It is like mips_no_prev_insn except that it inserts
7704 any NOPS that might be needed by previous instructions. */
252b5132 7705
7d10b47d
RS
7706void
7707mips_emit_delays (void)
252b5132
RH
7708{
7709 if (! mips_opts.noreorder)
7710 {
932d1a1b 7711 int nops = nops_for_insn (0, history, NULL);
252b5132
RH
7712 if (nops > 0)
7713 {
7d10b47d
RS
7714 while (nops-- > 0)
7715 add_fixed_insn (NOP_INSN);
462427c4 7716 mips_move_text_labels ();
7d10b47d
RS
7717 }
7718 }
7719 mips_no_prev_insn ();
7720}
7721
7722/* Start a (possibly nested) noreorder block. */
7723
7724static void
7725start_noreorder (void)
7726{
7727 if (mips_opts.noreorder == 0)
7728 {
7729 unsigned int i;
7730 int nops;
7731
7732 /* None of the instructions before the .set noreorder can be moved. */
7733 for (i = 0; i < ARRAY_SIZE (history); i++)
7734 history[i].fixed_p = 1;
7735
7736 /* Insert any nops that might be needed between the .set noreorder
7737 block and the previous instructions. We will later remove any
7738 nops that turn out not to be needed. */
932d1a1b 7739 nops = nops_for_insn (0, history, NULL);
7d10b47d
RS
7740 if (nops > 0)
7741 {
7742 if (mips_optimize != 0)
252b5132
RH
7743 {
7744 /* Record the frag which holds the nop instructions, so
7745 that we can remove them if we don't need them. */
df58fc94 7746 frag_grow (nops * NOP_INSN_SIZE);
252b5132
RH
7747 prev_nop_frag = frag_now;
7748 prev_nop_frag_holds = nops;
7749 prev_nop_frag_required = 0;
7750 prev_nop_frag_since = 0;
7751 }
7752
7753 for (; nops > 0; --nops)
1e915849 7754 add_fixed_insn (NOP_INSN);
252b5132 7755
7d10b47d
RS
7756 /* Move on to a new frag, so that it is safe to simply
7757 decrease the size of prev_nop_frag. */
7758 frag_wane (frag_now);
7759 frag_new (0);
462427c4 7760 mips_move_text_labels ();
252b5132 7761 }
df58fc94 7762 mips_mark_labels ();
7d10b47d 7763 mips_clear_insn_labels ();
252b5132 7764 }
7d10b47d
RS
7765 mips_opts.noreorder++;
7766 mips_any_noreorder = 1;
7767}
252b5132 7768
7d10b47d 7769/* End a nested noreorder block. */
252b5132 7770
7d10b47d
RS
7771static void
7772end_noreorder (void)
7773{
7774 mips_opts.noreorder--;
7775 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7776 {
7777 /* Commit to inserting prev_nop_frag_required nops and go back to
7778 handling nop insertion the .set reorder way. */
7779 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
df58fc94 7780 * NOP_INSN_SIZE);
7d10b47d
RS
7781 insert_into_history (prev_nop_frag_since,
7782 prev_nop_frag_required, NOP_INSN);
7783 prev_nop_frag = NULL;
7784 }
252b5132
RH
7785}
7786
97d87491
RS
7787/* Sign-extend 32-bit mode constants that have bit 31 set and all
7788 higher bits unset. */
7789
7790static void
7791normalize_constant_expr (expressionS *ex)
7792{
7793 if (ex->X_op == O_constant
7794 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7795 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7796 - 0x80000000);
7797}
7798
7799/* Sign-extend 32-bit mode address offsets that have bit 31 set and
7800 all higher bits unset. */
7801
7802static void
7803normalize_address_expr (expressionS *ex)
7804{
7805 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7806 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7807 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7808 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7809 - 0x80000000);
7810}
7811
7812/* Try to match TOKENS against OPCODE, storing the result in INSN.
7813 Return true if the match was successful.
7814
7815 OPCODE_EXTRA is a value that should be ORed into the opcode
7816 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7817 there are more alternatives after OPCODE and SOFT_MATCH is
7818 as for mips_arg_info. */
7819
7820static bfd_boolean
7821match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7822 struct mips_operand_token *tokens, unsigned int opcode_extra,
60f20e8b 7823 bfd_boolean lax_match, bfd_boolean complete_p)
97d87491
RS
7824{
7825 const char *args;
7826 struct mips_arg_info arg;
7827 const struct mips_operand *operand;
7828 char c;
7829
7830 imm_expr.X_op = O_absent;
97d87491
RS
7831 offset_expr.X_op = O_absent;
7832 offset_reloc[0] = BFD_RELOC_UNUSED;
7833 offset_reloc[1] = BFD_RELOC_UNUSED;
7834 offset_reloc[2] = BFD_RELOC_UNUSED;
7835
7836 create_insn (insn, opcode);
60f20e8b
RS
7837 /* When no opcode suffix is specified, assume ".xyzw". */
7838 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7839 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7840 else
7841 insn->insn_opcode |= opcode_extra;
97d87491
RS
7842 memset (&arg, 0, sizeof (arg));
7843 arg.insn = insn;
7844 arg.token = tokens;
7845 arg.argnum = 1;
7846 arg.last_regno = ILLEGAL_REG;
7847 arg.dest_regno = ILLEGAL_REG;
60f20e8b 7848 arg.lax_match = lax_match;
97d87491
RS
7849 for (args = opcode->args;; ++args)
7850 {
7851 if (arg.token->type == OT_END)
7852 {
7853 /* Handle unary instructions in which only one operand is given.
7854 The source is then the same as the destination. */
7855 if (arg.opnum == 1 && *args == ',')
7856 {
7857 operand = (mips_opts.micromips
7858 ? decode_micromips_operand (args + 1)
7859 : decode_mips_operand (args + 1));
7860 if (operand && mips_optional_operand_p (operand))
7861 {
7862 arg.token = tokens;
7863 arg.argnum = 1;
7864 continue;
7865 }
7866 }
7867
7868 /* Treat elided base registers as $0. */
7869 if (strcmp (args, "(b)") == 0)
7870 args += 3;
7871
7872 if (args[0] == '+')
7873 switch (args[1])
7874 {
7875 case 'K':
7876 case 'N':
7877 /* The register suffix is optional. */
7878 args += 2;
7879 break;
7880 }
7881
7882 /* Fail the match if there were too few operands. */
7883 if (*args)
7884 return FALSE;
7885
7886 /* Successful match. */
60f20e8b
RS
7887 if (!complete_p)
7888 return TRUE;
e3de51ce 7889 clear_insn_error ();
97d87491
RS
7890 if (arg.dest_regno == arg.last_regno
7891 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7892 {
7893 if (arg.opnum == 2)
e3de51ce 7894 set_insn_error
1661c76c 7895 (0, _("source and destination must be different"));
97d87491 7896 else if (arg.last_regno == 31)
e3de51ce 7897 set_insn_error
1661c76c 7898 (0, _("a destination register must be supplied"));
97d87491 7899 }
173d3447
CF
7900 else if (arg.last_regno == 31
7901 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7902 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7903 set_insn_error (0, _("the source register must not be $31"));
97d87491
RS
7904 check_completed_insn (&arg);
7905 return TRUE;
7906 }
7907
7908 /* Fail the match if the line has too many operands. */
7909 if (*args == 0)
7910 return FALSE;
7911
7912 /* Handle characters that need to match exactly. */
7913 if (*args == '(' || *args == ')' || *args == ',')
7914 {
7915 if (match_char (&arg, *args))
7916 continue;
7917 return FALSE;
7918 }
7919 if (*args == '#')
7920 {
7921 ++args;
7922 if (arg.token->type == OT_DOUBLE_CHAR
7923 && arg.token->u.ch == *args)
7924 {
7925 ++arg.token;
7926 continue;
7927 }
7928 return FALSE;
7929 }
7930
7931 /* Handle special macro operands. Work out the properties of
7932 other operands. */
7933 arg.opnum += 1;
97d87491
RS
7934 switch (*args)
7935 {
7361da2c
AB
7936 case '-':
7937 switch (args[1])
7938 {
7939 case 'A':
7940 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7941 break;
7942
7943 case 'B':
7944 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7945 break;
7946 }
7947 break;
7948
97d87491
RS
7949 case '+':
7950 switch (args[1])
7951 {
97d87491
RS
7952 case 'i':
7953 *offset_reloc = BFD_RELOC_MIPS_JMP;
7954 break;
7361da2c
AB
7955
7956 case '\'':
7957 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7958 break;
7959
7960 case '\"':
7961 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7962 break;
97d87491
RS
7963 }
7964 break;
7965
97d87491 7966 case 'I':
1a00e612
RS
7967 if (!match_const_int (&arg, &imm_expr.X_add_number))
7968 return FALSE;
7969 imm_expr.X_op = O_constant;
bad1aba3 7970 if (GPR_SIZE == 32)
97d87491
RS
7971 normalize_constant_expr (&imm_expr);
7972 continue;
7973
7974 case 'A':
7975 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7976 {
7977 /* Assume that the offset has been elided and that what
7978 we saw was a base register. The match will fail later
7979 if that assumption turns out to be wrong. */
7980 offset_expr.X_op = O_constant;
7981 offset_expr.X_add_number = 0;
7982 }
97d87491 7983 else
1a00e612
RS
7984 {
7985 if (!match_expression (&arg, &offset_expr, offset_reloc))
7986 return FALSE;
7987 normalize_address_expr (&offset_expr);
7988 }
97d87491
RS
7989 continue;
7990
7991 case 'F':
7992 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7993 8, TRUE))
1a00e612 7994 return FALSE;
97d87491
RS
7995 continue;
7996
7997 case 'L':
7998 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7999 8, FALSE))
1a00e612 8000 return FALSE;
97d87491
RS
8001 continue;
8002
8003 case 'f':
8004 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8005 4, TRUE))
1a00e612 8006 return FALSE;
97d87491
RS
8007 continue;
8008
8009 case 'l':
8010 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8011 4, FALSE))
1a00e612 8012 return FALSE;
97d87491
RS
8013 continue;
8014
97d87491
RS
8015 case 'p':
8016 *offset_reloc = BFD_RELOC_16_PCREL_S2;
8017 break;
8018
8019 case 'a':
8020 *offset_reloc = BFD_RELOC_MIPS_JMP;
8021 break;
8022
8023 case 'm':
8024 gas_assert (mips_opts.micromips);
8025 c = args[1];
8026 switch (c)
8027 {
8028 case 'D':
8029 case 'E':
8030 if (!forced_insn_length)
8031 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
8032 else if (c == 'D')
8033 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
8034 else
8035 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
8036 break;
8037 }
8038 break;
8039 }
8040
8041 operand = (mips_opts.micromips
8042 ? decode_micromips_operand (args)
8043 : decode_mips_operand (args));
8044 if (!operand)
8045 abort ();
8046
8047 /* Skip prefixes. */
7361da2c 8048 if (*args == '+' || *args == 'm' || *args == '-')
97d87491
RS
8049 args++;
8050
8051 if (mips_optional_operand_p (operand)
8052 && args[1] == ','
8053 && (arg.token[0].type != OT_REG
8054 || arg.token[1].type == OT_END))
8055 {
8056 /* Assume that the register has been elided and is the
8057 same as the first operand. */
8058 arg.token = tokens;
8059 arg.argnum = 1;
8060 }
8061
8062 if (!match_operand (&arg, operand))
8063 return FALSE;
8064 }
8065}
8066
8067/* Like match_insn, but for MIPS16. */
8068
8069static bfd_boolean
8070match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
1a00e612 8071 struct mips_operand_token *tokens)
97d87491
RS
8072{
8073 const char *args;
8074 const struct mips_operand *operand;
8075 const struct mips_operand *ext_operand;
7fd53920 8076 int required_insn_length;
97d87491
RS
8077 struct mips_arg_info arg;
8078 int relax_char;
8079
7fd53920
MR
8080 if (forced_insn_length)
8081 required_insn_length = forced_insn_length;
8082 else if (mips_opts.noautoextend && !mips_opcode_32bit_p (opcode))
8083 required_insn_length = 2;
8084 else
8085 required_insn_length = 0;
8086
97d87491
RS
8087 create_insn (insn, opcode);
8088 imm_expr.X_op = O_absent;
97d87491
RS
8089 offset_expr.X_op = O_absent;
8090 offset_reloc[0] = BFD_RELOC_UNUSED;
8091 offset_reloc[1] = BFD_RELOC_UNUSED;
8092 offset_reloc[2] = BFD_RELOC_UNUSED;
8093 relax_char = 0;
8094
8095 memset (&arg, 0, sizeof (arg));
8096 arg.insn = insn;
8097 arg.token = tokens;
8098 arg.argnum = 1;
8099 arg.last_regno = ILLEGAL_REG;
8100 arg.dest_regno = ILLEGAL_REG;
97d87491
RS
8101 relax_char = 0;
8102 for (args = opcode->args;; ++args)
8103 {
8104 int c;
8105
8106 if (arg.token->type == OT_END)
8107 {
8108 offsetT value;
8109
8110 /* Handle unary instructions in which only one operand is given.
8111 The source is then the same as the destination. */
8112 if (arg.opnum == 1 && *args == ',')
8113 {
8114 operand = decode_mips16_operand (args[1], FALSE);
8115 if (operand && mips_optional_operand_p (operand))
8116 {
8117 arg.token = tokens;
8118 arg.argnum = 1;
8119 continue;
8120 }
8121 }
8122
8123 /* Fail the match if there were too few operands. */
8124 if (*args)
8125 return FALSE;
8126
8127 /* Successful match. Stuff the immediate value in now, if
8128 we can. */
e3de51ce 8129 clear_insn_error ();
97d87491
RS
8130 if (opcode->pinfo == INSN_MACRO)
8131 {
8132 gas_assert (relax_char == 0 || relax_char == 'p');
8133 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
8134 }
8135 else if (relax_char
8136 && offset_expr.X_op == O_constant
8137 && calculate_reloc (*offset_reloc,
8138 offset_expr.X_add_number,
8139 &value))
8140 {
8141 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
7fd53920 8142 required_insn_length, &insn->insn_opcode);
97d87491
RS
8143 offset_expr.X_op = O_absent;
8144 *offset_reloc = BFD_RELOC_UNUSED;
8145 }
8146 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
8147 {
7fd53920 8148 if (required_insn_length == 2)
e3de51ce 8149 set_insn_error (0, _("invalid unextended operand value"));
1da43acc
MR
8150 else
8151 {
8152 forced_insn_length = 4;
8153 insn->insn_opcode |= MIPS16_EXTEND;
8154 }
97d87491
RS
8155 }
8156 else if (relax_char)
8157 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
8158
8159 check_completed_insn (&arg);
8160 return TRUE;
8161 }
8162
8163 /* Fail the match if the line has too many operands. */
8164 if (*args == 0)
8165 return FALSE;
8166
8167 /* Handle characters that need to match exactly. */
8168 if (*args == '(' || *args == ')' || *args == ',')
8169 {
8170 if (match_char (&arg, *args))
8171 continue;
8172 return FALSE;
8173 }
8174
8175 arg.opnum += 1;
8176 c = *args;
8177 switch (c)
8178 {
8179 case 'p':
8180 case 'q':
8181 case 'A':
8182 case 'B':
8183 case 'E':
8184 relax_char = c;
8185 break;
8186
8187 case 'I':
1a00e612
RS
8188 if (!match_const_int (&arg, &imm_expr.X_add_number))
8189 return FALSE;
8190 imm_expr.X_op = O_constant;
bad1aba3 8191 if (GPR_SIZE == 32)
97d87491
RS
8192 normalize_constant_expr (&imm_expr);
8193 continue;
8194
8195 case 'a':
8196 case 'i':
8197 *offset_reloc = BFD_RELOC_MIPS16_JMP;
97d87491
RS
8198 break;
8199 }
8200
7fd53920 8201 operand = decode_mips16_operand (c, mips_opcode_32bit_p (opcode));
97d87491
RS
8202 if (!operand)
8203 abort ();
8204
b2805ed5 8205 if (operand->type != OP_PCREL)
97d87491
RS
8206 {
8207 ext_operand = decode_mips16_operand (c, TRUE);
8208 if (operand != ext_operand)
8209 {
8210 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8211 {
8212 offset_expr.X_op = O_constant;
8213 offset_expr.X_add_number = 0;
8214 relax_char = c;
8215 continue;
8216 }
8217
8218 /* We need the OT_INTEGER check because some MIPS16
8219 immediate variants are listed before the register ones. */
8220 if (arg.token->type != OT_INTEGER
8221 || !match_expression (&arg, &offset_expr, offset_reloc))
8222 return FALSE;
8223
8224 /* '8' is used for SLTI(U) and has traditionally not
8225 been allowed to take relocation operators. */
8226 if (offset_reloc[0] != BFD_RELOC_UNUSED
8227 && (ext_operand->size != 16 || c == '8'))
8228 return FALSE;
8229
8230 relax_char = c;
8231 continue;
8232 }
8233 }
8234
8235 if (mips_optional_operand_p (operand)
8236 && args[1] == ','
8237 && (arg.token[0].type != OT_REG
8238 || arg.token[1].type == OT_END))
8239 {
8240 /* Assume that the register has been elided and is the
8241 same as the first operand. */
8242 arg.token = tokens;
8243 arg.argnum = 1;
8244 }
8245
8246 if (!match_operand (&arg, operand))
8247 return FALSE;
8248 }
8249}
8250
60f20e8b
RS
8251/* Record that the current instruction is invalid for the current ISA. */
8252
8253static void
8254match_invalid_for_isa (void)
8255{
8256 set_insn_error_ss
1661c76c 8257 (0, _("opcode not supported on this processor: %s (%s)"),
60f20e8b
RS
8258 mips_cpu_info_from_arch (mips_opts.arch)->name,
8259 mips_cpu_info_from_isa (mips_opts.isa)->name);
8260}
8261
8262/* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8263 Return true if a definite match or failure was found, storing any match
8264 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8265 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8266 tried and failed to match under normal conditions and now want to try a
8267 more relaxed match. */
8268
8269static bfd_boolean
8270match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8271 const struct mips_opcode *past, struct mips_operand_token *tokens,
8272 int opcode_extra, bfd_boolean lax_match)
8273{
8274 const struct mips_opcode *opcode;
8275 const struct mips_opcode *invalid_delay_slot;
8276 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8277
8278 /* Search for a match, ignoring alternatives that don't satisfy the
8279 current ISA or forced_length. */
8280 invalid_delay_slot = 0;
8281 seen_valid_for_isa = FALSE;
8282 seen_valid_for_size = FALSE;
8283 opcode = first;
8284 do
8285 {
8286 gas_assert (strcmp (opcode->name, first->name) == 0);
8287 if (is_opcode_valid (opcode))
8288 {
8289 seen_valid_for_isa = TRUE;
8290 if (is_size_valid (opcode))
8291 {
8292 bfd_boolean delay_slot_ok;
8293
8294 seen_valid_for_size = TRUE;
8295 delay_slot_ok = is_delay_slot_valid (opcode);
8296 if (match_insn (insn, opcode, tokens, opcode_extra,
8297 lax_match, delay_slot_ok))
8298 {
8299 if (!delay_slot_ok)
8300 {
8301 if (!invalid_delay_slot)
8302 invalid_delay_slot = opcode;
8303 }
8304 else
8305 return TRUE;
8306 }
8307 }
8308 }
8309 ++opcode;
8310 }
8311 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8312
8313 /* If the only matches we found had the wrong length for the delay slot,
8314 pick the first such match. We'll issue an appropriate warning later. */
8315 if (invalid_delay_slot)
8316 {
8317 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8318 lax_match, TRUE))
8319 return TRUE;
8320 abort ();
8321 }
8322
8323 /* Handle the case where we didn't try to match an instruction because
8324 all the alternatives were incompatible with the current ISA. */
8325 if (!seen_valid_for_isa)
8326 {
8327 match_invalid_for_isa ();
8328 return TRUE;
8329 }
8330
8331 /* Handle the case where we didn't try to match an instruction because
8332 all the alternatives were of the wrong size. */
8333 if (!seen_valid_for_size)
8334 {
8335 if (mips_opts.insn32)
1661c76c 8336 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
60f20e8b
RS
8337 else
8338 set_insn_error_i
1661c76c 8339 (0, _("unrecognized %d-bit version of microMIPS opcode"),
60f20e8b
RS
8340 8 * forced_insn_length);
8341 return TRUE;
8342 }
8343
8344 return FALSE;
8345}
8346
8347/* Like match_insns, but for MIPS16. */
8348
8349static bfd_boolean
8350match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8351 struct mips_operand_token *tokens)
8352{
8353 const struct mips_opcode *opcode;
8354 bfd_boolean seen_valid_for_isa;
7fd53920 8355 bfd_boolean seen_valid_for_size;
60f20e8b
RS
8356
8357 /* Search for a match, ignoring alternatives that don't satisfy the
8358 current ISA. There are no separate entries for extended forms so
8359 we deal with forced_length later. */
8360 seen_valid_for_isa = FALSE;
7fd53920 8361 seen_valid_for_size = FALSE;
60f20e8b
RS
8362 opcode = first;
8363 do
8364 {
8365 gas_assert (strcmp (opcode->name, first->name) == 0);
8366 if (is_opcode_valid_16 (opcode))
8367 {
8368 seen_valid_for_isa = TRUE;
7fd53920
MR
8369 if (is_size_valid_16 (opcode))
8370 {
8371 seen_valid_for_size = TRUE;
8372 if (match_mips16_insn (insn, opcode, tokens))
8373 return TRUE;
8374 }
60f20e8b
RS
8375 }
8376 ++opcode;
8377 }
8378 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8379 && strcmp (opcode->name, first->name) == 0);
8380
8381 /* Handle the case where we didn't try to match an instruction because
8382 all the alternatives were incompatible with the current ISA. */
8383 if (!seen_valid_for_isa)
8384 {
8385 match_invalid_for_isa ();
8386 return TRUE;
8387 }
8388
7fd53920
MR
8389 /* Handle the case where we didn't try to match an instruction because
8390 all the alternatives were of the wrong size. */
8391 if (!seen_valid_for_size)
8392 {
8393 if (forced_insn_length == 2)
8394 set_insn_error
8395 (0, _("unrecognized unextended version of MIPS16 opcode"));
8396 else
8397 set_insn_error
8398 (0, _("unrecognized extended version of MIPS16 opcode"));
8399 return TRUE;
8400 }
8401
60f20e8b
RS
8402 return FALSE;
8403}
8404
584892a6
RS
8405/* Set up global variables for the start of a new macro. */
8406
8407static void
8408macro_start (void)
8409{
8410 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
df58fc94
RS
8411 memset (&mips_macro_warning.first_insn_sizes, 0,
8412 sizeof (mips_macro_warning.first_insn_sizes));
8413 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
584892a6 8414 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
11625dd8 8415 && delayed_branch_p (&history[0]));
7bd374a4
MR
8416 if (history[0].frag
8417 && history[0].frag->fr_type == rs_machine_dependent
8418 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
8419 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
8420 mips_macro_warning.delay_slot_length = 0;
8421 else
8422 switch (history[0].insn_mo->pinfo2
8423 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8424 {
8425 case INSN2_BRANCH_DELAY_32BIT:
8426 mips_macro_warning.delay_slot_length = 4;
8427 break;
8428 case INSN2_BRANCH_DELAY_16BIT:
8429 mips_macro_warning.delay_slot_length = 2;
8430 break;
8431 default:
8432 mips_macro_warning.delay_slot_length = 0;
8433 break;
8434 }
df58fc94 8435 mips_macro_warning.first_frag = NULL;
584892a6
RS
8436}
8437
df58fc94
RS
8438/* Given that a macro is longer than one instruction or of the wrong size,
8439 return the appropriate warning for it. Return null if no warning is
8440 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8441 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8442 and RELAX_NOMACRO. */
584892a6
RS
8443
8444static const char *
8445macro_warning (relax_substateT subtype)
8446{
8447 if (subtype & RELAX_DELAY_SLOT)
1661c76c 8448 return _("macro instruction expanded into multiple instructions"
584892a6
RS
8449 " in a branch delay slot");
8450 else if (subtype & RELAX_NOMACRO)
1661c76c 8451 return _("macro instruction expanded into multiple instructions");
df58fc94
RS
8452 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8453 | RELAX_DELAY_SLOT_SIZE_SECOND))
8454 return ((subtype & RELAX_DELAY_SLOT_16BIT)
1661c76c 8455 ? _("macro instruction expanded into a wrong size instruction"
df58fc94 8456 " in a 16-bit branch delay slot")
1661c76c 8457 : _("macro instruction expanded into a wrong size instruction"
df58fc94 8458 " in a 32-bit branch delay slot"));
584892a6
RS
8459 else
8460 return 0;
8461}
8462
8463/* Finish up a macro. Emit warnings as appropriate. */
8464
8465static void
8466macro_end (void)
8467{
df58fc94
RS
8468 /* Relaxation warning flags. */
8469 relax_substateT subtype = 0;
8470
8471 /* Check delay slot size requirements. */
8472 if (mips_macro_warning.delay_slot_length == 2)
8473 subtype |= RELAX_DELAY_SLOT_16BIT;
8474 if (mips_macro_warning.delay_slot_length != 0)
584892a6 8475 {
df58fc94
RS
8476 if (mips_macro_warning.delay_slot_length
8477 != mips_macro_warning.first_insn_sizes[0])
8478 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8479 if (mips_macro_warning.delay_slot_length
8480 != mips_macro_warning.first_insn_sizes[1])
8481 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8482 }
584892a6 8483
df58fc94
RS
8484 /* Check instruction count requirements. */
8485 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8486 {
8487 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
584892a6
RS
8488 subtype |= RELAX_SECOND_LONGER;
8489 if (mips_opts.warn_about_macros)
8490 subtype |= RELAX_NOMACRO;
8491 if (mips_macro_warning.delay_slot_p)
8492 subtype |= RELAX_DELAY_SLOT;
df58fc94 8493 }
584892a6 8494
df58fc94
RS
8495 /* If both alternatives fail to fill a delay slot correctly,
8496 emit the warning now. */
8497 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8498 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8499 {
8500 relax_substateT s;
8501 const char *msg;
8502
8503 s = subtype & (RELAX_DELAY_SLOT_16BIT
8504 | RELAX_DELAY_SLOT_SIZE_FIRST
8505 | RELAX_DELAY_SLOT_SIZE_SECOND);
8506 msg = macro_warning (s);
8507 if (msg != NULL)
8508 as_warn ("%s", msg);
8509 subtype &= ~s;
8510 }
8511
8512 /* If both implementations are longer than 1 instruction, then emit the
8513 warning now. */
8514 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8515 {
8516 relax_substateT s;
8517 const char *msg;
8518
8519 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8520 msg = macro_warning (s);
8521 if (msg != NULL)
8522 as_warn ("%s", msg);
8523 subtype &= ~s;
584892a6 8524 }
df58fc94
RS
8525
8526 /* If any flags still set, then one implementation might need a warning
8527 and the other either will need one of a different kind or none at all.
8528 Pass any remaining flags over to relaxation. */
8529 if (mips_macro_warning.first_frag != NULL)
8530 mips_macro_warning.first_frag->fr_subtype |= subtype;
584892a6
RS
8531}
8532
df58fc94
RS
8533/* Instruction operand formats used in macros that vary between
8534 standard MIPS and microMIPS code. */
8535
833794fc 8536static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
df58fc94
RS
8537static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8538static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8539static const char * const lui_fmt[2] = { "t,u", "s,u" };
8540static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
833794fc 8541static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
df58fc94
RS
8542static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8543static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8544
833794fc 8545#define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
7361da2c
AB
8546#define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8547 : cop12_fmt[mips_opts.micromips])
df58fc94
RS
8548#define JALR_FMT (jalr_fmt[mips_opts.micromips])
8549#define LUI_FMT (lui_fmt[mips_opts.micromips])
8550#define MEM12_FMT (mem12_fmt[mips_opts.micromips])
7361da2c
AB
8551#define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8552 : mem12_fmt[mips_opts.micromips])
833794fc 8553#define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
df58fc94
RS
8554#define SHFT_FMT (shft_fmt[mips_opts.micromips])
8555#define TRAP_FMT (trap_fmt[mips_opts.micromips])
8556
6e1304d8
RS
8557/* Read a macro's relocation codes from *ARGS and store them in *R.
8558 The first argument in *ARGS will be either the code for a single
8559 relocation or -1 followed by the three codes that make up a
8560 composite relocation. */
8561
8562static void
8563macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8564{
8565 int i, next;
8566
8567 next = va_arg (*args, int);
8568 if (next >= 0)
8569 r[0] = (bfd_reloc_code_real_type) next;
8570 else
f2ae14a1
RS
8571 {
8572 for (i = 0; i < 3; i++)
8573 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8574 /* This function is only used for 16-bit relocation fields.
8575 To make the macro code simpler, treat an unrelocated value
8576 in the same way as BFD_RELOC_LO16. */
8577 if (r[0] == BFD_RELOC_UNUSED)
8578 r[0] = BFD_RELOC_LO16;
8579 }
6e1304d8
RS
8580}
8581
252b5132
RH
8582/* Build an instruction created by a macro expansion. This is passed
8583 a pointer to the count of instructions created so far, an
8584 expression, the name of the instruction to build, an operand format
8585 string, and corresponding arguments. */
8586
252b5132 8587static void
67c0d1eb 8588macro_build (expressionS *ep, const char *name, const char *fmt, ...)
252b5132 8589{
df58fc94 8590 const struct mips_opcode *mo = NULL;
f6688943 8591 bfd_reloc_code_real_type r[3];
df58fc94 8592 const struct mips_opcode *amo;
e077a1c8 8593 const struct mips_operand *operand;
df58fc94
RS
8594 struct hash_control *hash;
8595 struct mips_cl_insn insn;
252b5132 8596 va_list args;
e077a1c8 8597 unsigned int uval;
252b5132 8598
252b5132 8599 va_start (args, fmt);
252b5132 8600
252b5132
RH
8601 if (mips_opts.mips16)
8602 {
03ea81db 8603 mips16_macro_build (ep, name, fmt, &args);
252b5132
RH
8604 va_end (args);
8605 return;
8606 }
8607
f6688943
TS
8608 r[0] = BFD_RELOC_UNUSED;
8609 r[1] = BFD_RELOC_UNUSED;
8610 r[2] = BFD_RELOC_UNUSED;
df58fc94
RS
8611 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8612 amo = (struct mips_opcode *) hash_find (hash, name);
8613 gas_assert (amo);
8614 gas_assert (strcmp (name, amo->name) == 0);
1e915849 8615
df58fc94 8616 do
8b082fb1
TS
8617 {
8618 /* Search until we get a match for NAME. It is assumed here that
df58fc94 8619 macros will never generate MDMX, MIPS-3D, or MT instructions.
33eaf5de 8620 We try to match an instruction that fulfills the branch delay
df58fc94
RS
8621 slot instruction length requirement (if any) of the previous
8622 instruction. While doing this we record the first instruction
8623 seen that matches all the other conditions and use it anyway
8624 if the requirement cannot be met; we will issue an appropriate
8625 warning later on. */
8626 if (strcmp (fmt, amo->args) == 0
8627 && amo->pinfo != INSN_MACRO
8628 && is_opcode_valid (amo)
8629 && is_size_valid (amo))
8630 {
8631 if (is_delay_slot_valid (amo))
8632 {
8633 mo = amo;
8634 break;
8635 }
8636 else if (!mo)
8637 mo = amo;
8638 }
8b082fb1 8639
df58fc94
RS
8640 ++amo;
8641 gas_assert (amo->name);
252b5132 8642 }
df58fc94 8643 while (strcmp (name, amo->name) == 0);
252b5132 8644
df58fc94 8645 gas_assert (mo);
1e915849 8646 create_insn (&insn, mo);
e077a1c8 8647 for (; *fmt; ++fmt)
252b5132 8648 {
e077a1c8 8649 switch (*fmt)
252b5132 8650 {
252b5132
RH
8651 case ',':
8652 case '(':
8653 case ')':
252b5132 8654 case 'z':
e077a1c8 8655 break;
252b5132
RH
8656
8657 case 'i':
8658 case 'j':
6e1304d8 8659 macro_read_relocs (&args, r);
9c2799c2 8660 gas_assert (*r == BFD_RELOC_GPREL16
e391c024
RS
8661 || *r == BFD_RELOC_MIPS_HIGHER
8662 || *r == BFD_RELOC_HI16_S
8663 || *r == BFD_RELOC_LO16
8664 || *r == BFD_RELOC_MIPS_GOT_OFST);
e077a1c8 8665 break;
e391c024
RS
8666
8667 case 'o':
8668 macro_read_relocs (&args, r);
e077a1c8 8669 break;
252b5132
RH
8670
8671 case 'u':
6e1304d8 8672 macro_read_relocs (&args, r);
9c2799c2 8673 gas_assert (ep != NULL
90ecf173
MR
8674 && (ep->X_op == O_constant
8675 || (ep->X_op == O_symbol
8676 && (*r == BFD_RELOC_MIPS_HIGHEST
8677 || *r == BFD_RELOC_HI16_S
8678 || *r == BFD_RELOC_HI16
8679 || *r == BFD_RELOC_GPREL16
8680 || *r == BFD_RELOC_MIPS_GOT_HI16
8681 || *r == BFD_RELOC_MIPS_CALL_HI16))));
e077a1c8 8682 break;
252b5132
RH
8683
8684 case 'p':
9c2799c2 8685 gas_assert (ep != NULL);
bad36eac 8686
252b5132
RH
8687 /*
8688 * This allows macro() to pass an immediate expression for
8689 * creating short branches without creating a symbol.
bad36eac
DJ
8690 *
8691 * We don't allow branch relaxation for these branches, as
8692 * they should only appear in ".set nomacro" anyway.
252b5132
RH
8693 */
8694 if (ep->X_op == O_constant)
8695 {
df58fc94
RS
8696 /* For microMIPS we always use relocations for branches.
8697 So we should not resolve immediate values. */
8698 gas_assert (!mips_opts.micromips);
8699
bad36eac
DJ
8700 if ((ep->X_add_number & 3) != 0)
8701 as_bad (_("branch to misaligned address (0x%lx)"),
8702 (unsigned long) ep->X_add_number);
8703 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8704 as_bad (_("branch address range overflow (0x%lx)"),
8705 (unsigned long) ep->X_add_number);
252b5132
RH
8706 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8707 ep = NULL;
8708 }
8709 else
0b25d3e6 8710 *r = BFD_RELOC_16_PCREL_S2;
e077a1c8 8711 break;
252b5132
RH
8712
8713 case 'a':
9c2799c2 8714 gas_assert (ep != NULL);
f6688943 8715 *r = BFD_RELOC_MIPS_JMP;
e077a1c8 8716 break;
d43b4baf 8717
252b5132 8718 default:
e077a1c8
RS
8719 operand = (mips_opts.micromips
8720 ? decode_micromips_operand (fmt)
8721 : decode_mips_operand (fmt));
8722 if (!operand)
8723 abort ();
8724
8725 uval = va_arg (args, int);
8726 if (operand->type == OP_CLO_CLZ_DEST)
8727 uval |= (uval << 5);
8728 insn_insert_operand (&insn, operand, uval);
8729
7361da2c 8730 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
e077a1c8
RS
8731 ++fmt;
8732 break;
252b5132 8733 }
252b5132
RH
8734 }
8735 va_end (args);
9c2799c2 8736 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 8737
df58fc94 8738 append_insn (&insn, ep, r, TRUE);
252b5132
RH
8739}
8740
8741static void
67c0d1eb 8742mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
03ea81db 8743 va_list *args)
252b5132 8744{
1e915849 8745 struct mips_opcode *mo;
252b5132 8746 struct mips_cl_insn insn;
e077a1c8 8747 const struct mips_operand *operand;
f6688943
TS
8748 bfd_reloc_code_real_type r[3]
8749 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 8750
1e915849 8751 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
9c2799c2
NC
8752 gas_assert (mo);
8753 gas_assert (strcmp (name, mo->name) == 0);
252b5132 8754
1e915849 8755 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
252b5132 8756 {
1e915849 8757 ++mo;
9c2799c2
NC
8758 gas_assert (mo->name);
8759 gas_assert (strcmp (name, mo->name) == 0);
252b5132
RH
8760 }
8761
1e915849 8762 create_insn (&insn, mo);
e077a1c8 8763 for (; *fmt; ++fmt)
252b5132
RH
8764 {
8765 int c;
8766
e077a1c8 8767 c = *fmt;
252b5132
RH
8768 switch (c)
8769 {
252b5132
RH
8770 case ',':
8771 case '(':
8772 case ')':
e077a1c8 8773 break;
252b5132 8774
d8722d76 8775 case '.':
252b5132
RH
8776 case 'S':
8777 case 'P':
8778 case 'R':
e077a1c8 8779 break;
252b5132
RH
8780
8781 case '<':
252b5132 8782 case '5':
d8722d76 8783 case 'F':
252b5132
RH
8784 case 'H':
8785 case 'W':
8786 case 'D':
8787 case 'j':
8788 case '8':
8789 case 'V':
8790 case 'C':
8791 case 'U':
8792 case 'k':
8793 case 'K':
8794 case 'p':
8795 case 'q':
8796 {
b886a2ab
RS
8797 offsetT value;
8798
9c2799c2 8799 gas_assert (ep != NULL);
252b5132
RH
8800
8801 if (ep->X_op != O_constant)
874e8986 8802 *r = (int) BFD_RELOC_UNUSED + c;
b886a2ab 8803 else if (calculate_reloc (*r, ep->X_add_number, &value))
252b5132 8804 {
b886a2ab 8805 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
252b5132 8806 ep = NULL;
f6688943 8807 *r = BFD_RELOC_UNUSED;
252b5132
RH
8808 }
8809 }
e077a1c8 8810 break;
252b5132 8811
e077a1c8
RS
8812 default:
8813 operand = decode_mips16_operand (c, FALSE);
8814 if (!operand)
8815 abort ();
252b5132 8816
4a06e5a2 8817 insn_insert_operand (&insn, operand, va_arg (*args, int));
e077a1c8
RS
8818 break;
8819 }
252b5132
RH
8820 }
8821
9c2799c2 8822 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 8823
df58fc94 8824 append_insn (&insn, ep, r, TRUE);
252b5132
RH
8825}
8826
438c16b8
TS
8827/*
8828 * Generate a "jalr" instruction with a relocation hint to the called
8829 * function. This occurs in NewABI PIC code.
8830 */
8831static void
df58fc94 8832macro_build_jalr (expressionS *ep, int cprestore)
438c16b8 8833{
df58fc94
RS
8834 static const bfd_reloc_code_real_type jalr_relocs[2]
8835 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8836 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8837 const char *jalr;
685736be 8838 char *f = NULL;
b34976b6 8839
1180b5a4 8840 if (MIPS_JALR_HINT_P (ep))
f21f8242 8841 {
cc3d92a5 8842 frag_grow (8);
f21f8242
AO
8843 f = frag_more (0);
8844 }
2906b037 8845 if (mips_opts.micromips)
df58fc94 8846 {
833794fc
MR
8847 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8848 ? "jalr" : "jalrs");
e64af278 8849 if (MIPS_JALR_HINT_P (ep)
833794fc 8850 || mips_opts.insn32
e64af278 8851 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
df58fc94
RS
8852 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8853 else
8854 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8855 }
2906b037
MR
8856 else
8857 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
1180b5a4 8858 if (MIPS_JALR_HINT_P (ep))
df58fc94 8859 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
438c16b8
TS
8860}
8861
252b5132
RH
8862/*
8863 * Generate a "lui" instruction.
8864 */
8865static void
67c0d1eb 8866macro_build_lui (expressionS *ep, int regnum)
252b5132 8867{
9c2799c2 8868 gas_assert (! mips_opts.mips16);
252b5132 8869
df58fc94 8870 if (ep->X_op != O_constant)
252b5132 8871 {
9c2799c2 8872 gas_assert (ep->X_op == O_symbol);
bbe506e8
TS
8873 /* _gp_disp is a special case, used from s_cpload.
8874 __gnu_local_gp is used if mips_no_shared. */
9c2799c2 8875 gas_assert (mips_pic == NO_PIC
78e1bb40 8876 || (! HAVE_NEWABI
aa6975fb
ILT
8877 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8878 || (! mips_in_shared
bbe506e8
TS
8879 && strcmp (S_GET_NAME (ep->X_add_symbol),
8880 "__gnu_local_gp") == 0));
252b5132
RH
8881 }
8882
df58fc94 8883 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
252b5132
RH
8884}
8885
885add95
CD
8886/* Generate a sequence of instructions to do a load or store from a constant
8887 offset off of a base register (breg) into/from a target register (treg),
8888 using AT if necessary. */
8889static void
67c0d1eb
RS
8890macro_build_ldst_constoffset (expressionS *ep, const char *op,
8891 int treg, int breg, int dbl)
885add95 8892{
9c2799c2 8893 gas_assert (ep->X_op == O_constant);
885add95 8894
256ab948 8895 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
8896 if (!dbl)
8897 normalize_constant_expr (ep);
256ab948 8898
67c1ffbe 8899 /* Right now, this routine can only handle signed 32-bit constants. */
ecd13cd3 8900 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
885add95
CD
8901 as_warn (_("operand overflow"));
8902
8903 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8904 {
8905 /* Signed 16-bit offset will fit in the op. Easy! */
67c0d1eb 8906 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
885add95
CD
8907 }
8908 else
8909 {
8910 /* 32-bit offset, need multiple instructions and AT, like:
8911 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8912 addu $tempreg,$tempreg,$breg
8913 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8914 to handle the complete offset. */
67c0d1eb
RS
8915 macro_build_lui (ep, AT);
8916 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8917 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
885add95 8918
741fe287 8919 if (!mips_opts.at)
1661c76c 8920 as_bad (_("macro used $at after \".set noat\""));
885add95
CD
8921 }
8922}
8923
252b5132
RH
8924/* set_at()
8925 * Generates code to set the $at register to true (one)
8926 * if reg is less than the immediate expression.
8927 */
8928static void
67c0d1eb 8929set_at (int reg, int unsignedp)
252b5132 8930{
b0e6f033 8931 if (imm_expr.X_add_number >= -0x8000
252b5132 8932 && imm_expr.X_add_number < 0x8000)
67c0d1eb
RS
8933 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8934 AT, reg, BFD_RELOC_LO16);
252b5132
RH
8935 else
8936 {
bad1aba3 8937 load_register (AT, &imm_expr, GPR_SIZE == 64);
67c0d1eb 8938 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
252b5132
RH
8939 }
8940}
8941
252b5132
RH
8942/* Count the leading zeroes by performing a binary chop. This is a
8943 bulky bit of source, but performance is a LOT better for the
8944 majority of values than a simple loop to count the bits:
8945 for (lcnt = 0; (lcnt < 32); lcnt++)
8946 if ((v) & (1 << (31 - lcnt)))
8947 break;
8948 However it is not code size friendly, and the gain will drop a bit
8949 on certain cached systems.
8950*/
8951#define COUNT_TOP_ZEROES(v) \
8952 (((v) & ~0xffff) == 0 \
8953 ? ((v) & ~0xff) == 0 \
8954 ? ((v) & ~0xf) == 0 \
8955 ? ((v) & ~0x3) == 0 \
8956 ? ((v) & ~0x1) == 0 \
8957 ? !(v) \
8958 ? 32 \
8959 : 31 \
8960 : 30 \
8961 : ((v) & ~0x7) == 0 \
8962 ? 29 \
8963 : 28 \
8964 : ((v) & ~0x3f) == 0 \
8965 ? ((v) & ~0x1f) == 0 \
8966 ? 27 \
8967 : 26 \
8968 : ((v) & ~0x7f) == 0 \
8969 ? 25 \
8970 : 24 \
8971 : ((v) & ~0xfff) == 0 \
8972 ? ((v) & ~0x3ff) == 0 \
8973 ? ((v) & ~0x1ff) == 0 \
8974 ? 23 \
8975 : 22 \
8976 : ((v) & ~0x7ff) == 0 \
8977 ? 21 \
8978 : 20 \
8979 : ((v) & ~0x3fff) == 0 \
8980 ? ((v) & ~0x1fff) == 0 \
8981 ? 19 \
8982 : 18 \
8983 : ((v) & ~0x7fff) == 0 \
8984 ? 17 \
8985 : 16 \
8986 : ((v) & ~0xffffff) == 0 \
8987 ? ((v) & ~0xfffff) == 0 \
8988 ? ((v) & ~0x3ffff) == 0 \
8989 ? ((v) & ~0x1ffff) == 0 \
8990 ? 15 \
8991 : 14 \
8992 : ((v) & ~0x7ffff) == 0 \
8993 ? 13 \
8994 : 12 \
8995 : ((v) & ~0x3fffff) == 0 \
8996 ? ((v) & ~0x1fffff) == 0 \
8997 ? 11 \
8998 : 10 \
8999 : ((v) & ~0x7fffff) == 0 \
9000 ? 9 \
9001 : 8 \
9002 : ((v) & ~0xfffffff) == 0 \
9003 ? ((v) & ~0x3ffffff) == 0 \
9004 ? ((v) & ~0x1ffffff) == 0 \
9005 ? 7 \
9006 : 6 \
9007 : ((v) & ~0x7ffffff) == 0 \
9008 ? 5 \
9009 : 4 \
9010 : ((v) & ~0x3fffffff) == 0 \
9011 ? ((v) & ~0x1fffffff) == 0 \
9012 ? 3 \
9013 : 2 \
9014 : ((v) & ~0x7fffffff) == 0 \
9015 ? 1 \
9016 : 0)
9017
9018/* load_register()
67c1ffbe 9019 * This routine generates the least number of instructions necessary to load
252b5132
RH
9020 * an absolute expression value into a register.
9021 */
9022static void
67c0d1eb 9023load_register (int reg, expressionS *ep, int dbl)
252b5132
RH
9024{
9025 int freg;
9026 expressionS hi32, lo32;
9027
9028 if (ep->X_op != O_big)
9029 {
9c2799c2 9030 gas_assert (ep->X_op == O_constant);
256ab948
TS
9031
9032 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
9033 if (!dbl)
9034 normalize_constant_expr (ep);
256ab948
TS
9035
9036 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
252b5132
RH
9037 {
9038 /* We can handle 16 bit signed values with an addiu to
9039 $zero. No need to ever use daddiu here, since $zero and
9040 the result are always correct in 32 bit mode. */
67c0d1eb 9041 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
9042 return;
9043 }
9044 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
9045 {
9046 /* We can handle 16 bit unsigned values with an ori to
9047 $zero. */
67c0d1eb 9048 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
252b5132
RH
9049 return;
9050 }
256ab948 9051 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
252b5132
RH
9052 {
9053 /* 32 bit values require an lui. */
df58fc94 9054 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 9055 if ((ep->X_add_number & 0xffff) != 0)
67c0d1eb 9056 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
252b5132
RH
9057 return;
9058 }
9059 }
9060
9061 /* The value is larger than 32 bits. */
9062
bad1aba3 9063 if (!dbl || GPR_SIZE == 32)
252b5132 9064 {
55e08f71
NC
9065 char value[32];
9066
9067 sprintf_vma (value, ep->X_add_number);
1661c76c 9068 as_bad (_("number (0x%s) larger than 32 bits"), value);
67c0d1eb 9069 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
9070 return;
9071 }
9072
9073 if (ep->X_op != O_big)
9074 {
9075 hi32 = *ep;
9076 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9077 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9078 hi32.X_add_number &= 0xffffffff;
9079 lo32 = *ep;
9080 lo32.X_add_number &= 0xffffffff;
9081 }
9082 else
9083 {
9c2799c2 9084 gas_assert (ep->X_add_number > 2);
252b5132
RH
9085 if (ep->X_add_number == 3)
9086 generic_bignum[3] = 0;
9087 else if (ep->X_add_number > 4)
1661c76c 9088 as_bad (_("number larger than 64 bits"));
252b5132
RH
9089 lo32.X_op = O_constant;
9090 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
9091 hi32.X_op = O_constant;
9092 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
9093 }
9094
9095 if (hi32.X_add_number == 0)
9096 freg = 0;
9097 else
9098 {
9099 int shift, bit;
9100 unsigned long hi, lo;
9101
956cd1d6 9102 if (hi32.X_add_number == (offsetT) 0xffffffff)
beae10d5
KH
9103 {
9104 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
9105 {
67c0d1eb 9106 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
9107 return;
9108 }
9109 if (lo32.X_add_number & 0x80000000)
9110 {
df58fc94 9111 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 9112 if (lo32.X_add_number & 0xffff)
67c0d1eb 9113 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
beae10d5
KH
9114 return;
9115 }
9116 }
252b5132
RH
9117
9118 /* Check for 16bit shifted constant. We know that hi32 is
9119 non-zero, so start the mask on the first bit of the hi32
9120 value. */
9121 shift = 17;
9122 do
beae10d5
KH
9123 {
9124 unsigned long himask, lomask;
9125
9126 if (shift < 32)
9127 {
9128 himask = 0xffff >> (32 - shift);
9129 lomask = (0xffff << shift) & 0xffffffff;
9130 }
9131 else
9132 {
9133 himask = 0xffff << (shift - 32);
9134 lomask = 0;
9135 }
9136 if ((hi32.X_add_number & ~(offsetT) himask) == 0
9137 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
9138 {
9139 expressionS tmp;
9140
9141 tmp.X_op = O_constant;
9142 if (shift < 32)
9143 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
9144 | (lo32.X_add_number >> shift));
9145 else
9146 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
67c0d1eb 9147 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
df58fc94 9148 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 9149 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
9150 return;
9151 }
f9419b05 9152 ++shift;
beae10d5
KH
9153 }
9154 while (shift <= (64 - 16));
252b5132
RH
9155
9156 /* Find the bit number of the lowest one bit, and store the
9157 shifted value in hi/lo. */
9158 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
9159 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
9160 if (lo != 0)
9161 {
9162 bit = 0;
9163 while ((lo & 1) == 0)
9164 {
9165 lo >>= 1;
9166 ++bit;
9167 }
9168 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
9169 hi >>= bit;
9170 }
9171 else
9172 {
9173 bit = 32;
9174 while ((hi & 1) == 0)
9175 {
9176 hi >>= 1;
9177 ++bit;
9178 }
9179 lo = hi;
9180 hi = 0;
9181 }
9182
9183 /* Optimize if the shifted value is a (power of 2) - 1. */
9184 if ((hi == 0 && ((lo + 1) & lo) == 0)
9185 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
beae10d5
KH
9186 {
9187 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
252b5132 9188 if (shift != 0)
beae10d5 9189 {
252b5132
RH
9190 expressionS tmp;
9191
9192 /* This instruction will set the register to be all
9193 ones. */
beae10d5
KH
9194 tmp.X_op = O_constant;
9195 tmp.X_add_number = (offsetT) -1;
67c0d1eb 9196 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
9197 if (bit != 0)
9198 {
9199 bit += shift;
df58fc94 9200 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 9201 reg, reg, (bit >= 32) ? bit - 32 : bit);
beae10d5 9202 }
df58fc94 9203 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
67c0d1eb 9204 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
9205 return;
9206 }
9207 }
252b5132
RH
9208
9209 /* Sign extend hi32 before calling load_register, because we can
9210 generally get better code when we load a sign extended value. */
9211 if ((hi32.X_add_number & 0x80000000) != 0)
beae10d5 9212 hi32.X_add_number |= ~(offsetT) 0xffffffff;
67c0d1eb 9213 load_register (reg, &hi32, 0);
252b5132
RH
9214 freg = reg;
9215 }
9216 if ((lo32.X_add_number & 0xffff0000) == 0)
9217 {
9218 if (freg != 0)
9219 {
df58fc94 9220 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
252b5132
RH
9221 freg = reg;
9222 }
9223 }
9224 else
9225 {
9226 expressionS mid16;
9227
956cd1d6 9228 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
beae10d5 9229 {
df58fc94
RS
9230 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9231 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
beae10d5
KH
9232 return;
9233 }
252b5132
RH
9234
9235 if (freg != 0)
9236 {
df58fc94 9237 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
252b5132
RH
9238 freg = reg;
9239 }
9240 mid16 = lo32;
9241 mid16.X_add_number >>= 16;
67c0d1eb 9242 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
df58fc94 9243 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
252b5132
RH
9244 freg = reg;
9245 }
9246 if ((lo32.X_add_number & 0xffff) != 0)
67c0d1eb 9247 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
252b5132
RH
9248}
9249
269137b2
TS
9250static inline void
9251load_delay_nop (void)
9252{
9253 if (!gpr_interlocks)
9254 macro_build (NULL, "nop", "");
9255}
9256
252b5132
RH
9257/* Load an address into a register. */
9258
9259static void
67c0d1eb 9260load_address (int reg, expressionS *ep, int *used_at)
252b5132 9261{
252b5132
RH
9262 if (ep->X_op != O_constant
9263 && ep->X_op != O_symbol)
9264 {
9265 as_bad (_("expression too complex"));
9266 ep->X_op = O_constant;
9267 }
9268
9269 if (ep->X_op == O_constant)
9270 {
67c0d1eb 9271 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
252b5132
RH
9272 return;
9273 }
9274
9275 if (mips_pic == NO_PIC)
9276 {
9277 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 9278 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
9279 Otherwise we want
9280 lui $reg,<sym> (BFD_RELOC_HI16_S)
9281 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
d6bc6245 9282 If we have an addend, we always use the latter form.
76b3015f 9283
d6bc6245
TS
9284 With 64bit address space and a usable $at we want
9285 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9286 lui $at,<sym> (BFD_RELOC_HI16_S)
9287 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9288 daddiu $at,<sym> (BFD_RELOC_LO16)
9289 dsll32 $reg,0
3a482fd5 9290 daddu $reg,$reg,$at
76b3015f 9291
c03099e6 9292 If $at is already in use, we use a path which is suboptimal
d6bc6245
TS
9293 on superscalar processors.
9294 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9295 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9296 dsll $reg,16
9297 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9298 dsll $reg,16
9299 daddiu $reg,<sym> (BFD_RELOC_LO16)
6caf9ef4
TS
9300
9301 For GP relative symbols in 64bit address space we can use
9302 the same sequence as in 32bit address space. */
aed1a261 9303 if (HAVE_64BIT_SYMBOLS)
d6bc6245 9304 {
6caf9ef4
TS
9305 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9306 && !nopic_need_relax (ep->X_add_symbol, 1))
9307 {
9308 relax_start (ep->X_add_symbol);
9309 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9310 mips_gp_register, BFD_RELOC_GPREL16);
9311 relax_switch ();
9312 }
d6bc6245 9313
741fe287 9314 if (*used_at == 0 && mips_opts.at)
d6bc6245 9315 {
df58fc94
RS
9316 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9317 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
67c0d1eb
RS
9318 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9319 BFD_RELOC_MIPS_HIGHER);
9320 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
df58fc94 9321 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
67c0d1eb 9322 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
d6bc6245
TS
9323 *used_at = 1;
9324 }
9325 else
9326 {
df58fc94 9327 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb
RS
9328 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9329 BFD_RELOC_MIPS_HIGHER);
df58fc94 9330 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 9331 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
df58fc94 9332 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 9333 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
d6bc6245 9334 }
6caf9ef4
TS
9335
9336 if (mips_relax.sequence)
9337 relax_end ();
d6bc6245 9338 }
252b5132
RH
9339 else
9340 {
d6bc6245 9341 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 9342 && !nopic_need_relax (ep->X_add_symbol, 1))
d6bc6245 9343 {
4d7206a2 9344 relax_start (ep->X_add_symbol);
67c0d1eb 9345 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
17a2f251 9346 mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 9347 relax_switch ();
d6bc6245 9348 }
67c0d1eb
RS
9349 macro_build_lui (ep, reg);
9350 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9351 reg, reg, BFD_RELOC_LO16);
4d7206a2
RS
9352 if (mips_relax.sequence)
9353 relax_end ();
d6bc6245 9354 }
252b5132 9355 }
0a44bf69 9356 else if (!mips_big_got)
252b5132
RH
9357 {
9358 expressionS ex;
9359
9360 /* If this is a reference to an external symbol, we want
9361 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9362 Otherwise we want
9363 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9364 nop
9365 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
f5040a92
AO
9366 If there is a constant, it must be added in after.
9367
ed6fb7bd 9368 If we have NewABI, we want
f5040a92
AO
9369 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9370 unless we're referencing a global symbol with a non-zero
9371 offset, in which case cst must be added separately. */
ed6fb7bd
SC
9372 if (HAVE_NEWABI)
9373 {
f5040a92
AO
9374 if (ep->X_add_number)
9375 {
4d7206a2 9376 ex.X_add_number = ep->X_add_number;
f5040a92 9377 ep->X_add_number = 0;
4d7206a2 9378 relax_start (ep->X_add_symbol);
67c0d1eb
RS
9379 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9380 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
9381 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9382 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9383 ex.X_op = O_constant;
67c0d1eb 9384 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9385 reg, reg, BFD_RELOC_LO16);
f5040a92 9386 ep->X_add_number = ex.X_add_number;
4d7206a2 9387 relax_switch ();
f5040a92 9388 }
67c0d1eb 9389 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9390 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2
RS
9391 if (mips_relax.sequence)
9392 relax_end ();
ed6fb7bd
SC
9393 }
9394 else
9395 {
f5040a92
AO
9396 ex.X_add_number = ep->X_add_number;
9397 ep->X_add_number = 0;
67c0d1eb
RS
9398 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9399 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 9400 load_delay_nop ();
4d7206a2
RS
9401 relax_start (ep->X_add_symbol);
9402 relax_switch ();
67c0d1eb 9403 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 9404 BFD_RELOC_LO16);
4d7206a2 9405 relax_end ();
ed6fb7bd 9406
f5040a92
AO
9407 if (ex.X_add_number != 0)
9408 {
9409 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9410 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9411 ex.X_op = O_constant;
67c0d1eb 9412 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9413 reg, reg, BFD_RELOC_LO16);
f5040a92 9414 }
252b5132
RH
9415 }
9416 }
0a44bf69 9417 else if (mips_big_got)
252b5132
RH
9418 {
9419 expressionS ex;
252b5132
RH
9420
9421 /* This is the large GOT case. If this is a reference to an
9422 external symbol, we want
9423 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9424 addu $reg,$reg,$gp
9425 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
f5040a92
AO
9426
9427 Otherwise, for a reference to a local symbol in old ABI, we want
252b5132
RH
9428 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9429 nop
9430 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
684022ea 9431 If there is a constant, it must be added in after.
f5040a92
AO
9432
9433 In the NewABI, for local symbols, with or without offsets, we want:
438c16b8
TS
9434 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9435 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 9436 */
438c16b8
TS
9437 if (HAVE_NEWABI)
9438 {
4d7206a2 9439 ex.X_add_number = ep->X_add_number;
f5040a92 9440 ep->X_add_number = 0;
4d7206a2 9441 relax_start (ep->X_add_symbol);
df58fc94 9442 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
9443 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9444 reg, reg, mips_gp_register);
9445 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9446 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
f5040a92
AO
9447 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9448 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9449 else if (ex.X_add_number)
9450 {
9451 ex.X_op = O_constant;
67c0d1eb
RS
9452 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9453 BFD_RELOC_LO16);
f5040a92
AO
9454 }
9455
9456 ep->X_add_number = ex.X_add_number;
4d7206a2 9457 relax_switch ();
67c0d1eb 9458 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9459 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
67c0d1eb
RS
9460 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9461 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 9462 relax_end ();
438c16b8 9463 }
252b5132 9464 else
438c16b8 9465 {
f5040a92
AO
9466 ex.X_add_number = ep->X_add_number;
9467 ep->X_add_number = 0;
4d7206a2 9468 relax_start (ep->X_add_symbol);
df58fc94 9469 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
9470 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9471 reg, reg, mips_gp_register);
9472 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9473 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4d7206a2
RS
9474 relax_switch ();
9475 if (reg_needs_delay (mips_gp_register))
438c16b8
TS
9476 {
9477 /* We need a nop before loading from $gp. This special
9478 check is required because the lui which starts the main
9479 instruction stream does not refer to $gp, and so will not
9480 insert the nop which may be required. */
67c0d1eb 9481 macro_build (NULL, "nop", "");
438c16b8 9482 }
67c0d1eb 9483 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9484 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 9485 load_delay_nop ();
67c0d1eb 9486 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 9487 BFD_RELOC_LO16);
4d7206a2 9488 relax_end ();
438c16b8 9489
f5040a92
AO
9490 if (ex.X_add_number != 0)
9491 {
9492 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9493 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9494 ex.X_op = O_constant;
67c0d1eb
RS
9495 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9496 BFD_RELOC_LO16);
f5040a92 9497 }
252b5132
RH
9498 }
9499 }
252b5132
RH
9500 else
9501 abort ();
8fc2e39e 9502
741fe287 9503 if (!mips_opts.at && *used_at == 1)
1661c76c 9504 as_bad (_("macro used $at after \".set noat\""));
252b5132
RH
9505}
9506
ea1fb5dc
RS
9507/* Move the contents of register SOURCE into register DEST. */
9508
9509static void
67c0d1eb 9510move_register (int dest, int source)
ea1fb5dc 9511{
df58fc94
RS
9512 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9513 instruction specifically requires a 32-bit one. */
9514 if (mips_opts.micromips
833794fc 9515 && !mips_opts.insn32
df58fc94 9516 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
7951ca42 9517 macro_build (NULL, "move", "mp,mj", dest, source);
df58fc94 9518 else
40fc1451 9519 macro_build (NULL, "or", "d,v,t", dest, source, 0);
ea1fb5dc
RS
9520}
9521
4d7206a2 9522/* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
f6a22291
MR
9523 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9524 The two alternatives are:
4d7206a2 9525
33eaf5de 9526 Global symbol Local symbol
4d7206a2
RS
9527 ------------- ------------
9528 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9529 ... ...
9530 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9531
9532 load_got_offset emits the first instruction and add_got_offset
f6a22291
MR
9533 emits the second for a 16-bit offset or add_got_offset_hilo emits
9534 a sequence to add a 32-bit offset using a scratch register. */
4d7206a2
RS
9535
9536static void
67c0d1eb 9537load_got_offset (int dest, expressionS *local)
4d7206a2
RS
9538{
9539 expressionS global;
9540
9541 global = *local;
9542 global.X_add_number = 0;
9543
9544 relax_start (local->X_add_symbol);
67c0d1eb
RS
9545 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9546 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2 9547 relax_switch ();
67c0d1eb
RS
9548 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9549 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2
RS
9550 relax_end ();
9551}
9552
9553static void
67c0d1eb 9554add_got_offset (int dest, expressionS *local)
4d7206a2
RS
9555{
9556 expressionS global;
9557
9558 global.X_op = O_constant;
9559 global.X_op_symbol = NULL;
9560 global.X_add_symbol = NULL;
9561 global.X_add_number = local->X_add_number;
9562
9563 relax_start (local->X_add_symbol);
67c0d1eb 9564 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4d7206a2
RS
9565 dest, dest, BFD_RELOC_LO16);
9566 relax_switch ();
67c0d1eb 9567 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4d7206a2
RS
9568 relax_end ();
9569}
9570
f6a22291
MR
9571static void
9572add_got_offset_hilo (int dest, expressionS *local, int tmp)
9573{
9574 expressionS global;
9575 int hold_mips_optimize;
9576
9577 global.X_op = O_constant;
9578 global.X_op_symbol = NULL;
9579 global.X_add_symbol = NULL;
9580 global.X_add_number = local->X_add_number;
9581
9582 relax_start (local->X_add_symbol);
9583 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9584 relax_switch ();
9585 /* Set mips_optimize around the lui instruction to avoid
9586 inserting an unnecessary nop after the lw. */
9587 hold_mips_optimize = mips_optimize;
9588 mips_optimize = 2;
9589 macro_build_lui (&global, tmp);
9590 mips_optimize = hold_mips_optimize;
9591 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9592 relax_end ();
9593
9594 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9595}
9596
df58fc94
RS
9597/* Emit a sequence of instructions to emulate a branch likely operation.
9598 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9599 is its complementing branch with the original condition negated.
9600 CALL is set if the original branch specified the link operation.
9601 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9602
9603 Code like this is produced in the noreorder mode:
9604
9605 BRNEG <args>, 1f
9606 nop
9607 b <sym>
9608 delay slot (executed only if branch taken)
9609 1:
9610
9611 or, if CALL is set:
9612
9613 BRNEG <args>, 1f
9614 nop
9615 bal <sym>
9616 delay slot (executed only if branch taken)
9617 1:
9618
9619 In the reorder mode the delay slot would be filled with a nop anyway,
9620 so code produced is simply:
9621
9622 BR <args>, <sym>
9623 nop
9624
9625 This function is used when producing code for the microMIPS ASE that
9626 does not implement branch likely instructions in hardware. */
9627
9628static void
9629macro_build_branch_likely (const char *br, const char *brneg,
9630 int call, expressionS *ep, const char *fmt,
9631 unsigned int sreg, unsigned int treg)
9632{
9633 int noreorder = mips_opts.noreorder;
9634 expressionS expr1;
9635
9636 gas_assert (mips_opts.micromips);
9637 start_noreorder ();
9638 if (noreorder)
9639 {
9640 micromips_label_expr (&expr1);
9641 macro_build (&expr1, brneg, fmt, sreg, treg);
9642 macro_build (NULL, "nop", "");
9643 macro_build (ep, call ? "bal" : "b", "p");
9644
9645 /* Set to true so that append_insn adds a label. */
9646 emit_branch_likely_macro = TRUE;
9647 }
9648 else
9649 {
9650 macro_build (ep, br, fmt, sreg, treg);
9651 macro_build (NULL, "nop", "");
9652 }
9653 end_noreorder ();
9654}
9655
9656/* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9657 the condition code tested. EP specifies the branch target. */
9658
9659static void
9660macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9661{
9662 const int call = 0;
9663 const char *brneg;
9664 const char *br;
9665
9666 switch (type)
9667 {
9668 case M_BC1FL:
9669 br = "bc1f";
9670 brneg = "bc1t";
9671 break;
9672 case M_BC1TL:
9673 br = "bc1t";
9674 brneg = "bc1f";
9675 break;
9676 case M_BC2FL:
9677 br = "bc2f";
9678 brneg = "bc2t";
9679 break;
9680 case M_BC2TL:
9681 br = "bc2t";
9682 brneg = "bc2f";
9683 break;
9684 default:
9685 abort ();
9686 }
9687 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9688}
9689
9690/* Emit a two-argument branch macro specified by TYPE, using SREG as
9691 the register tested. EP specifies the branch target. */
9692
9693static void
9694macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9695{
9696 const char *brneg = NULL;
9697 const char *br;
9698 int call = 0;
9699
9700 switch (type)
9701 {
9702 case M_BGEZ:
9703 br = "bgez";
9704 break;
9705 case M_BGEZL:
9706 br = mips_opts.micromips ? "bgez" : "bgezl";
9707 brneg = "bltz";
9708 break;
9709 case M_BGEZALL:
9710 gas_assert (mips_opts.micromips);
833794fc 9711 br = mips_opts.insn32 ? "bgezal" : "bgezals";
df58fc94
RS
9712 brneg = "bltz";
9713 call = 1;
9714 break;
9715 case M_BGTZ:
9716 br = "bgtz";
9717 break;
9718 case M_BGTZL:
9719 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9720 brneg = "blez";
9721 break;
9722 case M_BLEZ:
9723 br = "blez";
9724 break;
9725 case M_BLEZL:
9726 br = mips_opts.micromips ? "blez" : "blezl";
9727 brneg = "bgtz";
9728 break;
9729 case M_BLTZ:
9730 br = "bltz";
9731 break;
9732 case M_BLTZL:
9733 br = mips_opts.micromips ? "bltz" : "bltzl";
9734 brneg = "bgez";
9735 break;
9736 case M_BLTZALL:
9737 gas_assert (mips_opts.micromips);
833794fc 9738 br = mips_opts.insn32 ? "bltzal" : "bltzals";
df58fc94
RS
9739 brneg = "bgez";
9740 call = 1;
9741 break;
9742 default:
9743 abort ();
9744 }
9745 if (mips_opts.micromips && brneg)
9746 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9747 else
9748 macro_build (ep, br, "s,p", sreg);
9749}
9750
9751/* Emit a three-argument branch macro specified by TYPE, using SREG and
9752 TREG as the registers tested. EP specifies the branch target. */
9753
9754static void
9755macro_build_branch_rsrt (int type, expressionS *ep,
9756 unsigned int sreg, unsigned int treg)
9757{
9758 const char *brneg = NULL;
9759 const int call = 0;
9760 const char *br;
9761
9762 switch (type)
9763 {
9764 case M_BEQ:
9765 case M_BEQ_I:
9766 br = "beq";
9767 break;
9768 case M_BEQL:
9769 case M_BEQL_I:
9770 br = mips_opts.micromips ? "beq" : "beql";
9771 brneg = "bne";
9772 break;
9773 case M_BNE:
9774 case M_BNE_I:
9775 br = "bne";
9776 break;
9777 case M_BNEL:
9778 case M_BNEL_I:
9779 br = mips_opts.micromips ? "bne" : "bnel";
9780 brneg = "beq";
9781 break;
9782 default:
9783 abort ();
9784 }
9785 if (mips_opts.micromips && brneg)
9786 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9787 else
9788 macro_build (ep, br, "s,t,p", sreg, treg);
9789}
9790
f2ae14a1
RS
9791/* Return the high part that should be loaded in order to make the low
9792 part of VALUE accessible using an offset of OFFBITS bits. */
9793
9794static offsetT
9795offset_high_part (offsetT value, unsigned int offbits)
9796{
9797 offsetT bias;
9798 addressT low_mask;
9799
9800 if (offbits == 0)
9801 return value;
9802 bias = 1 << (offbits - 1);
9803 low_mask = bias * 2 - 1;
9804 return (value + bias) & ~low_mask;
9805}
9806
9807/* Return true if the value stored in offset_expr and offset_reloc
9808 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9809 amount that the caller wants to add without inducing overflow
9810 and ALIGN is the known alignment of the value in bytes. */
9811
9812static bfd_boolean
9813small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9814{
9815 if (offbits == 16)
9816 {
9817 /* Accept any relocation operator if overflow isn't a concern. */
9818 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9819 return TRUE;
9820
9821 /* These relocations are guaranteed not to overflow in correct links. */
9822 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9823 || gprel16_reloc_p (*offset_reloc))
9824 return TRUE;
9825 }
9826 if (offset_expr.X_op == O_constant
9827 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9828 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9829 return TRUE;
9830 return FALSE;
9831}
9832
252b5132
RH
9833/*
9834 * Build macros
9835 * This routine implements the seemingly endless macro or synthesized
9836 * instructions and addressing modes in the mips assembly language. Many
9837 * of these macros are simple and are similar to each other. These could
67c1ffbe 9838 * probably be handled by some kind of table or grammar approach instead of
252b5132
RH
9839 * this verbose method. Others are not simple macros but are more like
9840 * optimizing code generation.
9841 * One interesting optimization is when several store macros appear
67c1ffbe 9842 * consecutively that would load AT with the upper half of the same address.
2b0f3761 9843 * The ensuing load upper instructions are omitted. This implies some kind
252b5132
RH
9844 * of global optimization. We currently only optimize within a single macro.
9845 * For many of the load and store macros if the address is specified as a
9846 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9847 * first load register 'at' with zero and use it as the base register. The
9848 * mips assembler simply uses register $zero. Just one tiny optimization
9849 * we're missing.
9850 */
9851static void
833794fc 9852macro (struct mips_cl_insn *ip, char *str)
252b5132 9853{
c0ebe874
RS
9854 const struct mips_operand_array *operands;
9855 unsigned int breg, i;
741fe287 9856 unsigned int tempreg;
252b5132 9857 int mask;
43841e91 9858 int used_at = 0;
df58fc94 9859 expressionS label_expr;
252b5132 9860 expressionS expr1;
df58fc94 9861 expressionS *ep;
252b5132
RH
9862 const char *s;
9863 const char *s2;
9864 const char *fmt;
9865 int likely = 0;
252b5132 9866 int coproc = 0;
7f3c4072 9867 int offbits = 16;
1abe91b1 9868 int call = 0;
df58fc94
RS
9869 int jals = 0;
9870 int dbl = 0;
9871 int imm = 0;
9872 int ust = 0;
9873 int lp = 0;
f2ae14a1 9874 bfd_boolean large_offset;
252b5132 9875 int off;
252b5132 9876 int hold_mips_optimize;
f2ae14a1 9877 unsigned int align;
c0ebe874 9878 unsigned int op[MAX_OPERANDS];
252b5132 9879
9c2799c2 9880 gas_assert (! mips_opts.mips16);
252b5132 9881
c0ebe874
RS
9882 operands = insn_operands (ip);
9883 for (i = 0; i < MAX_OPERANDS; i++)
9884 if (operands->operand[i])
9885 op[i] = insn_extract_operand (ip, operands->operand[i]);
9886 else
9887 op[i] = -1;
9888
252b5132
RH
9889 mask = ip->insn_mo->mask;
9890
df58fc94
RS
9891 label_expr.X_op = O_constant;
9892 label_expr.X_op_symbol = NULL;
9893 label_expr.X_add_symbol = NULL;
9894 label_expr.X_add_number = 0;
9895
252b5132
RH
9896 expr1.X_op = O_constant;
9897 expr1.X_op_symbol = NULL;
9898 expr1.X_add_symbol = NULL;
9899 expr1.X_add_number = 1;
f2ae14a1 9900 align = 1;
252b5132
RH
9901
9902 switch (mask)
9903 {
9904 case M_DABS:
9905 dbl = 1;
1a0670f3 9906 /* Fall through. */
252b5132 9907 case M_ABS:
df58fc94
RS
9908 /* bgez $a0,1f
9909 move v0,$a0
9910 sub v0,$zero,$a0
9911 1:
9912 */
252b5132 9913
7d10b47d 9914 start_noreorder ();
252b5132 9915
df58fc94
RS
9916 if (mips_opts.micromips)
9917 micromips_label_expr (&label_expr);
9918 else
9919 label_expr.X_add_number = 8;
c0ebe874
RS
9920 macro_build (&label_expr, "bgez", "s,p", op[1]);
9921 if (op[0] == op[1])
a605d2b3 9922 macro_build (NULL, "nop", "");
252b5132 9923 else
c0ebe874
RS
9924 move_register (op[0], op[1]);
9925 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
df58fc94
RS
9926 if (mips_opts.micromips)
9927 micromips_add_label ();
252b5132 9928
7d10b47d 9929 end_noreorder ();
8fc2e39e 9930 break;
252b5132
RH
9931
9932 case M_ADD_I:
9933 s = "addi";
9934 s2 = "add";
9935 goto do_addi;
9936 case M_ADDU_I:
9937 s = "addiu";
9938 s2 = "addu";
9939 goto do_addi;
9940 case M_DADD_I:
9941 dbl = 1;
9942 s = "daddi";
9943 s2 = "dadd";
df58fc94
RS
9944 if (!mips_opts.micromips)
9945 goto do_addi;
b0e6f033 9946 if (imm_expr.X_add_number >= -0x200
df58fc94
RS
9947 && imm_expr.X_add_number < 0x200)
9948 {
b0e6f033
RS
9949 macro_build (NULL, s, "t,r,.", op[0], op[1],
9950 (int) imm_expr.X_add_number);
df58fc94
RS
9951 break;
9952 }
9953 goto do_addi_i;
252b5132
RH
9954 case M_DADDU_I:
9955 dbl = 1;
9956 s = "daddiu";
9957 s2 = "daddu";
9958 do_addi:
b0e6f033 9959 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
9960 && imm_expr.X_add_number < 0x8000)
9961 {
c0ebe874 9962 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 9963 break;
252b5132 9964 }
df58fc94 9965 do_addi_i:
8fc2e39e 9966 used_at = 1;
67c0d1eb 9967 load_register (AT, &imm_expr, dbl);
c0ebe874 9968 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
9969 break;
9970
9971 case M_AND_I:
9972 s = "andi";
9973 s2 = "and";
9974 goto do_bit;
9975 case M_OR_I:
9976 s = "ori";
9977 s2 = "or";
9978 goto do_bit;
9979 case M_NOR_I:
9980 s = "";
9981 s2 = "nor";
9982 goto do_bit;
9983 case M_XOR_I:
9984 s = "xori";
9985 s2 = "xor";
9986 do_bit:
b0e6f033 9987 if (imm_expr.X_add_number >= 0
252b5132
RH
9988 && imm_expr.X_add_number < 0x10000)
9989 {
9990 if (mask != M_NOR_I)
c0ebe874 9991 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
9992 else
9993 {
67c0d1eb 9994 macro_build (&imm_expr, "ori", "t,r,i",
c0ebe874
RS
9995 op[0], op[1], BFD_RELOC_LO16);
9996 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
252b5132 9997 }
8fc2e39e 9998 break;
252b5132
RH
9999 }
10000
8fc2e39e 10001 used_at = 1;
bad1aba3 10002 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 10003 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
10004 break;
10005
8b082fb1
TS
10006 case M_BALIGN:
10007 switch (imm_expr.X_add_number)
10008 {
10009 case 0:
10010 macro_build (NULL, "nop", "");
10011 break;
10012 case 2:
c0ebe874 10013 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
8b082fb1 10014 break;
03f66e8a
MR
10015 case 1:
10016 case 3:
c0ebe874 10017 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
90ecf173 10018 (int) imm_expr.X_add_number);
8b082fb1 10019 break;
03f66e8a
MR
10020 default:
10021 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
10022 (unsigned long) imm_expr.X_add_number);
10023 break;
8b082fb1
TS
10024 }
10025 break;
10026
df58fc94
RS
10027 case M_BC1FL:
10028 case M_BC1TL:
10029 case M_BC2FL:
10030 case M_BC2TL:
10031 gas_assert (mips_opts.micromips);
10032 macro_build_branch_ccl (mask, &offset_expr,
10033 EXTRACT_OPERAND (1, BCC, *ip));
10034 break;
10035
252b5132 10036 case M_BEQ_I:
252b5132 10037 case M_BEQL_I:
252b5132 10038 case M_BNE_I:
252b5132 10039 case M_BNEL_I:
b0e6f033 10040 if (imm_expr.X_add_number == 0)
c0ebe874 10041 op[1] = 0;
df58fc94 10042 else
252b5132 10043 {
c0ebe874 10044 op[1] = AT;
df58fc94 10045 used_at = 1;
bad1aba3 10046 load_register (op[1], &imm_expr, GPR_SIZE == 64);
252b5132 10047 }
df58fc94
RS
10048 /* Fall through. */
10049 case M_BEQL:
10050 case M_BNEL:
c0ebe874 10051 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
252b5132
RH
10052 break;
10053
10054 case M_BGEL:
10055 likely = 1;
1a0670f3 10056 /* Fall through. */
252b5132 10057 case M_BGE:
c0ebe874
RS
10058 if (op[1] == 0)
10059 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
10060 else if (op[0] == 0)
10061 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
df58fc94 10062 else
252b5132 10063 {
df58fc94 10064 used_at = 1;
c0ebe874 10065 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10066 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10067 &offset_expr, AT, ZERO);
252b5132 10068 }
df58fc94
RS
10069 break;
10070
10071 case M_BGEZL:
10072 case M_BGEZALL:
10073 case M_BGTZL:
10074 case M_BLEZL:
10075 case M_BLTZL:
10076 case M_BLTZALL:
c0ebe874 10077 macro_build_branch_rs (mask, &offset_expr, op[0]);
252b5132
RH
10078 break;
10079
10080 case M_BGTL_I:
10081 likely = 1;
1a0670f3 10082 /* Fall through. */
252b5132 10083 case M_BGT_I:
90ecf173 10084 /* Check for > max integer. */
b0e6f033 10085 if (imm_expr.X_add_number >= GPR_SMAX)
252b5132
RH
10086 {
10087 do_false:
90ecf173 10088 /* Result is always false. */
252b5132 10089 if (! likely)
a605d2b3 10090 macro_build (NULL, "nop", "");
252b5132 10091 else
df58fc94 10092 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
8fc2e39e 10093 break;
252b5132 10094 }
f9419b05 10095 ++imm_expr.X_add_number;
252b5132
RH
10096 /* FALLTHROUGH */
10097 case M_BGE_I:
10098 case M_BGEL_I:
10099 if (mask == M_BGEL_I)
10100 likely = 1;
b0e6f033 10101 if (imm_expr.X_add_number == 0)
252b5132 10102 {
df58fc94 10103 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
c0ebe874 10104 &offset_expr, op[0]);
8fc2e39e 10105 break;
252b5132 10106 }
b0e6f033 10107 if (imm_expr.X_add_number == 1)
252b5132 10108 {
df58fc94 10109 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
c0ebe874 10110 &offset_expr, op[0]);
8fc2e39e 10111 break;
252b5132 10112 }
b0e6f033 10113 if (imm_expr.X_add_number <= GPR_SMIN)
252b5132
RH
10114 {
10115 do_true:
10116 /* result is always true */
1661c76c 10117 as_warn (_("branch %s is always true"), ip->insn_mo->name);
67c0d1eb 10118 macro_build (&offset_expr, "b", "p");
8fc2e39e 10119 break;
252b5132 10120 }
8fc2e39e 10121 used_at = 1;
c0ebe874 10122 set_at (op[0], 0);
df58fc94
RS
10123 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10124 &offset_expr, AT, ZERO);
252b5132
RH
10125 break;
10126
10127 case M_BGEUL:
10128 likely = 1;
1a0670f3 10129 /* Fall through. */
252b5132 10130 case M_BGEU:
c0ebe874 10131 if (op[1] == 0)
252b5132 10132 goto do_true;
c0ebe874 10133 else if (op[0] == 0)
df58fc94 10134 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874 10135 &offset_expr, ZERO, op[1]);
df58fc94 10136 else
252b5132 10137 {
df58fc94 10138 used_at = 1;
c0ebe874 10139 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10140 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10141 &offset_expr, AT, ZERO);
252b5132 10142 }
252b5132
RH
10143 break;
10144
10145 case M_BGTUL_I:
10146 likely = 1;
1a0670f3 10147 /* Fall through. */
252b5132 10148 case M_BGTU_I:
c0ebe874 10149 if (op[0] == 0
bad1aba3 10150 || (GPR_SIZE == 32
f01dc953 10151 && imm_expr.X_add_number == -1))
252b5132 10152 goto do_false;
f9419b05 10153 ++imm_expr.X_add_number;
252b5132
RH
10154 /* FALLTHROUGH */
10155 case M_BGEU_I:
10156 case M_BGEUL_I:
10157 if (mask == M_BGEUL_I)
10158 likely = 1;
b0e6f033 10159 if (imm_expr.X_add_number == 0)
252b5132 10160 goto do_true;
b0e6f033 10161 else if (imm_expr.X_add_number == 1)
df58fc94 10162 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874 10163 &offset_expr, op[0], ZERO);
df58fc94 10164 else
252b5132 10165 {
df58fc94 10166 used_at = 1;
c0ebe874 10167 set_at (op[0], 1);
df58fc94
RS
10168 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10169 &offset_expr, AT, ZERO);
252b5132 10170 }
252b5132
RH
10171 break;
10172
10173 case M_BGTL:
10174 likely = 1;
1a0670f3 10175 /* Fall through. */
252b5132 10176 case M_BGT:
c0ebe874
RS
10177 if (op[1] == 0)
10178 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
10179 else if (op[0] == 0)
10180 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
df58fc94 10181 else
252b5132 10182 {
df58fc94 10183 used_at = 1;
c0ebe874 10184 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10185 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10186 &offset_expr, AT, ZERO);
252b5132 10187 }
252b5132
RH
10188 break;
10189
10190 case M_BGTUL:
10191 likely = 1;
1a0670f3 10192 /* Fall through. */
252b5132 10193 case M_BGTU:
c0ebe874 10194 if (op[1] == 0)
df58fc94 10195 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874
RS
10196 &offset_expr, op[0], ZERO);
10197 else if (op[0] == 0)
df58fc94
RS
10198 goto do_false;
10199 else
252b5132 10200 {
df58fc94 10201 used_at = 1;
c0ebe874 10202 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10203 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10204 &offset_expr, AT, ZERO);
252b5132 10205 }
252b5132
RH
10206 break;
10207
10208 case M_BLEL:
10209 likely = 1;
1a0670f3 10210 /* Fall through. */
252b5132 10211 case M_BLE:
c0ebe874
RS
10212 if (op[1] == 0)
10213 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10214 else if (op[0] == 0)
10215 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
df58fc94 10216 else
252b5132 10217 {
df58fc94 10218 used_at = 1;
c0ebe874 10219 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10220 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10221 &offset_expr, AT, ZERO);
252b5132 10222 }
252b5132
RH
10223 break;
10224
10225 case M_BLEL_I:
10226 likely = 1;
1a0670f3 10227 /* Fall through. */
252b5132 10228 case M_BLE_I:
b0e6f033 10229 if (imm_expr.X_add_number >= GPR_SMAX)
252b5132 10230 goto do_true;
f9419b05 10231 ++imm_expr.X_add_number;
252b5132
RH
10232 /* FALLTHROUGH */
10233 case M_BLT_I:
10234 case M_BLTL_I:
10235 if (mask == M_BLTL_I)
10236 likely = 1;
b0e6f033 10237 if (imm_expr.X_add_number == 0)
c0ebe874 10238 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
b0e6f033 10239 else if (imm_expr.X_add_number == 1)
c0ebe874 10240 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
df58fc94 10241 else
252b5132 10242 {
df58fc94 10243 used_at = 1;
c0ebe874 10244 set_at (op[0], 0);
df58fc94
RS
10245 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10246 &offset_expr, AT, ZERO);
252b5132 10247 }
252b5132
RH
10248 break;
10249
10250 case M_BLEUL:
10251 likely = 1;
1a0670f3 10252 /* Fall through. */
252b5132 10253 case M_BLEU:
c0ebe874 10254 if (op[1] == 0)
df58fc94 10255 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874
RS
10256 &offset_expr, op[0], ZERO);
10257 else if (op[0] == 0)
df58fc94
RS
10258 goto do_true;
10259 else
252b5132 10260 {
df58fc94 10261 used_at = 1;
c0ebe874 10262 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10263 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10264 &offset_expr, AT, ZERO);
252b5132 10265 }
252b5132
RH
10266 break;
10267
10268 case M_BLEUL_I:
10269 likely = 1;
1a0670f3 10270 /* Fall through. */
252b5132 10271 case M_BLEU_I:
c0ebe874 10272 if (op[0] == 0
bad1aba3 10273 || (GPR_SIZE == 32
f01dc953 10274 && imm_expr.X_add_number == -1))
252b5132 10275 goto do_true;
f9419b05 10276 ++imm_expr.X_add_number;
252b5132
RH
10277 /* FALLTHROUGH */
10278 case M_BLTU_I:
10279 case M_BLTUL_I:
10280 if (mask == M_BLTUL_I)
10281 likely = 1;
b0e6f033 10282 if (imm_expr.X_add_number == 0)
252b5132 10283 goto do_false;
b0e6f033 10284 else if (imm_expr.X_add_number == 1)
df58fc94 10285 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874 10286 &offset_expr, op[0], ZERO);
df58fc94 10287 else
252b5132 10288 {
df58fc94 10289 used_at = 1;
c0ebe874 10290 set_at (op[0], 1);
df58fc94
RS
10291 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10292 &offset_expr, AT, ZERO);
252b5132 10293 }
252b5132
RH
10294 break;
10295
10296 case M_BLTL:
10297 likely = 1;
1a0670f3 10298 /* Fall through. */
252b5132 10299 case M_BLT:
c0ebe874
RS
10300 if (op[1] == 0)
10301 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10302 else if (op[0] == 0)
10303 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
df58fc94 10304 else
252b5132 10305 {
df58fc94 10306 used_at = 1;
c0ebe874 10307 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10308 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10309 &offset_expr, AT, ZERO);
252b5132 10310 }
252b5132
RH
10311 break;
10312
10313 case M_BLTUL:
10314 likely = 1;
1a0670f3 10315 /* Fall through. */
252b5132 10316 case M_BLTU:
c0ebe874 10317 if (op[1] == 0)
252b5132 10318 goto do_false;
c0ebe874 10319 else if (op[0] == 0)
df58fc94 10320 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874 10321 &offset_expr, ZERO, op[1]);
df58fc94 10322 else
252b5132 10323 {
df58fc94 10324 used_at = 1;
c0ebe874 10325 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10326 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10327 &offset_expr, AT, ZERO);
252b5132 10328 }
252b5132
RH
10329 break;
10330
10331 case M_DDIV_3:
10332 dbl = 1;
1a0670f3 10333 /* Fall through. */
252b5132
RH
10334 case M_DIV_3:
10335 s = "mflo";
10336 goto do_div3;
10337 case M_DREM_3:
10338 dbl = 1;
1a0670f3 10339 /* Fall through. */
252b5132
RH
10340 case M_REM_3:
10341 s = "mfhi";
10342 do_div3:
c0ebe874 10343 if (op[2] == 0)
252b5132 10344 {
1661c76c 10345 as_warn (_("divide by zero"));
252b5132 10346 if (mips_trap)
df58fc94 10347 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 10348 else
df58fc94 10349 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 10350 break;
252b5132
RH
10351 }
10352
7d10b47d 10353 start_noreorder ();
252b5132
RH
10354 if (mips_trap)
10355 {
c0ebe874
RS
10356 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10357 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
252b5132
RH
10358 }
10359 else
10360 {
df58fc94
RS
10361 if (mips_opts.micromips)
10362 micromips_label_expr (&label_expr);
10363 else
10364 label_expr.X_add_number = 8;
c0ebe874
RS
10365 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10366 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
df58fc94
RS
10367 macro_build (NULL, "break", BRK_FMT, 7);
10368 if (mips_opts.micromips)
10369 micromips_add_label ();
252b5132
RH
10370 }
10371 expr1.X_add_number = -1;
8fc2e39e 10372 used_at = 1;
f6a22291 10373 load_register (AT, &expr1, dbl);
df58fc94
RS
10374 if (mips_opts.micromips)
10375 micromips_label_expr (&label_expr);
10376 else
10377 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
c0ebe874 10378 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
252b5132
RH
10379 if (dbl)
10380 {
10381 expr1.X_add_number = 1;
f6a22291 10382 load_register (AT, &expr1, dbl);
df58fc94 10383 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
252b5132
RH
10384 }
10385 else
10386 {
10387 expr1.X_add_number = 0x80000000;
df58fc94 10388 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
252b5132
RH
10389 }
10390 if (mips_trap)
10391 {
c0ebe874 10392 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
252b5132
RH
10393 /* We want to close the noreorder block as soon as possible, so
10394 that later insns are available for delay slot filling. */
7d10b47d 10395 end_noreorder ();
252b5132
RH
10396 }
10397 else
10398 {
df58fc94
RS
10399 if (mips_opts.micromips)
10400 micromips_label_expr (&label_expr);
10401 else
10402 label_expr.X_add_number = 8;
c0ebe874 10403 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
a605d2b3 10404 macro_build (NULL, "nop", "");
252b5132
RH
10405
10406 /* We want to close the noreorder block as soon as possible, so
10407 that later insns are available for delay slot filling. */
7d10b47d 10408 end_noreorder ();
252b5132 10409
df58fc94 10410 macro_build (NULL, "break", BRK_FMT, 6);
252b5132 10411 }
df58fc94
RS
10412 if (mips_opts.micromips)
10413 micromips_add_label ();
c0ebe874 10414 macro_build (NULL, s, MFHL_FMT, op[0]);
252b5132
RH
10415 break;
10416
10417 case M_DIV_3I:
10418 s = "div";
10419 s2 = "mflo";
10420 goto do_divi;
10421 case M_DIVU_3I:
10422 s = "divu";
10423 s2 = "mflo";
10424 goto do_divi;
10425 case M_REM_3I:
10426 s = "div";
10427 s2 = "mfhi";
10428 goto do_divi;
10429 case M_REMU_3I:
10430 s = "divu";
10431 s2 = "mfhi";
10432 goto do_divi;
10433 case M_DDIV_3I:
10434 dbl = 1;
10435 s = "ddiv";
10436 s2 = "mflo";
10437 goto do_divi;
10438 case M_DDIVU_3I:
10439 dbl = 1;
10440 s = "ddivu";
10441 s2 = "mflo";
10442 goto do_divi;
10443 case M_DREM_3I:
10444 dbl = 1;
10445 s = "ddiv";
10446 s2 = "mfhi";
10447 goto do_divi;
10448 case M_DREMU_3I:
10449 dbl = 1;
10450 s = "ddivu";
10451 s2 = "mfhi";
10452 do_divi:
b0e6f033 10453 if (imm_expr.X_add_number == 0)
252b5132 10454 {
1661c76c 10455 as_warn (_("divide by zero"));
252b5132 10456 if (mips_trap)
df58fc94 10457 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 10458 else
df58fc94 10459 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 10460 break;
252b5132 10461 }
b0e6f033 10462 if (imm_expr.X_add_number == 1)
252b5132
RH
10463 {
10464 if (strcmp (s2, "mflo") == 0)
c0ebe874 10465 move_register (op[0], op[1]);
252b5132 10466 else
c0ebe874 10467 move_register (op[0], ZERO);
8fc2e39e 10468 break;
252b5132 10469 }
b0e6f033 10470 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
252b5132
RH
10471 {
10472 if (strcmp (s2, "mflo") == 0)
c0ebe874 10473 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
252b5132 10474 else
c0ebe874 10475 move_register (op[0], ZERO);
8fc2e39e 10476 break;
252b5132
RH
10477 }
10478
8fc2e39e 10479 used_at = 1;
67c0d1eb 10480 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
10481 macro_build (NULL, s, "z,s,t", op[1], AT);
10482 macro_build (NULL, s2, MFHL_FMT, op[0]);
252b5132
RH
10483 break;
10484
10485 case M_DIVU_3:
10486 s = "divu";
10487 s2 = "mflo";
10488 goto do_divu3;
10489 case M_REMU_3:
10490 s = "divu";
10491 s2 = "mfhi";
10492 goto do_divu3;
10493 case M_DDIVU_3:
10494 s = "ddivu";
10495 s2 = "mflo";
10496 goto do_divu3;
10497 case M_DREMU_3:
10498 s = "ddivu";
10499 s2 = "mfhi";
10500 do_divu3:
7d10b47d 10501 start_noreorder ();
252b5132
RH
10502 if (mips_trap)
10503 {
c0ebe874
RS
10504 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10505 macro_build (NULL, s, "z,s,t", op[1], op[2]);
252b5132
RH
10506 /* We want to close the noreorder block as soon as possible, so
10507 that later insns are available for delay slot filling. */
7d10b47d 10508 end_noreorder ();
252b5132
RH
10509 }
10510 else
10511 {
df58fc94
RS
10512 if (mips_opts.micromips)
10513 micromips_label_expr (&label_expr);
10514 else
10515 label_expr.X_add_number = 8;
c0ebe874
RS
10516 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10517 macro_build (NULL, s, "z,s,t", op[1], op[2]);
252b5132
RH
10518
10519 /* We want to close the noreorder block as soon as possible, so
10520 that later insns are available for delay slot filling. */
7d10b47d 10521 end_noreorder ();
df58fc94
RS
10522 macro_build (NULL, "break", BRK_FMT, 7);
10523 if (mips_opts.micromips)
10524 micromips_add_label ();
252b5132 10525 }
c0ebe874 10526 macro_build (NULL, s2, MFHL_FMT, op[0]);
8fc2e39e 10527 break;
252b5132 10528
1abe91b1
MR
10529 case M_DLCA_AB:
10530 dbl = 1;
1a0670f3 10531 /* Fall through. */
1abe91b1
MR
10532 case M_LCA_AB:
10533 call = 1;
10534 goto do_la;
252b5132
RH
10535 case M_DLA_AB:
10536 dbl = 1;
1a0670f3 10537 /* Fall through. */
252b5132 10538 case M_LA_AB:
1abe91b1 10539 do_la:
252b5132
RH
10540 /* Load the address of a symbol into a register. If breg is not
10541 zero, we then add a base register to it. */
10542
c0ebe874 10543 breg = op[2];
bad1aba3 10544 if (dbl && GPR_SIZE == 32)
ece794d9
MF
10545 as_warn (_("dla used to load 32-bit register; recommend using la "
10546 "instead"));
3bec30a8 10547
90ecf173 10548 if (!dbl && HAVE_64BIT_OBJECTS)
ece794d9
MF
10549 as_warn (_("la used to load 64-bit address; recommend using dla "
10550 "instead"));
3bec30a8 10551
f2ae14a1 10552 if (small_offset_p (0, align, 16))
0c11417f 10553 {
c0ebe874 10554 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
f2ae14a1 10555 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
8fc2e39e 10556 break;
0c11417f
MR
10557 }
10558
c0ebe874 10559 if (mips_opts.at && (op[0] == breg))
afdbd6d0
CD
10560 {
10561 tempreg = AT;
10562 used_at = 1;
10563 }
10564 else
c0ebe874 10565 tempreg = op[0];
afdbd6d0 10566
252b5132
RH
10567 if (offset_expr.X_op != O_symbol
10568 && offset_expr.X_op != O_constant)
10569 {
1661c76c 10570 as_bad (_("expression too complex"));
252b5132
RH
10571 offset_expr.X_op = O_constant;
10572 }
10573
252b5132 10574 if (offset_expr.X_op == O_constant)
aed1a261 10575 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
252b5132
RH
10576 else if (mips_pic == NO_PIC)
10577 {
d6bc6245 10578 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 10579 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
10580 Otherwise we want
10581 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10582 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10583 If we have a constant, we need two instructions anyhow,
d6bc6245 10584 so we may as well always use the latter form.
76b3015f 10585
6caf9ef4
TS
10586 With 64bit address space and a usable $at we want
10587 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10588 lui $at,<sym> (BFD_RELOC_HI16_S)
10589 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10590 daddiu $at,<sym> (BFD_RELOC_LO16)
10591 dsll32 $tempreg,0
10592 daddu $tempreg,$tempreg,$at
10593
10594 If $at is already in use, we use a path which is suboptimal
10595 on superscalar processors.
10596 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10597 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10598 dsll $tempreg,16
10599 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10600 dsll $tempreg,16
10601 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10602
10603 For GP relative symbols in 64bit address space we can use
10604 the same sequence as in 32bit address space. */
aed1a261 10605 if (HAVE_64BIT_SYMBOLS)
252b5132 10606 {
6caf9ef4
TS
10607 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10608 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10609 {
10610 relax_start (offset_expr.X_add_symbol);
10611 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10612 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10613 relax_switch ();
10614 }
d6bc6245 10615
741fe287 10616 if (used_at == 0 && mips_opts.at)
98d3f06f 10617 {
df58fc94 10618 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10619 tempreg, BFD_RELOC_MIPS_HIGHEST);
df58fc94 10620 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10621 AT, BFD_RELOC_HI16_S);
67c0d1eb 10622 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10623 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
67c0d1eb 10624 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10625 AT, AT, BFD_RELOC_LO16);
df58fc94 10626 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 10627 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
98d3f06f
KH
10628 used_at = 1;
10629 }
10630 else
10631 {
df58fc94 10632 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10633 tempreg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb 10634 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10635 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 10636 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 10637 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10638 tempreg, tempreg, BFD_RELOC_HI16_S);
df58fc94 10639 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 10640 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10641 tempreg, tempreg, BFD_RELOC_LO16);
98d3f06f 10642 }
6caf9ef4
TS
10643
10644 if (mips_relax.sequence)
10645 relax_end ();
98d3f06f
KH
10646 }
10647 else
10648 {
10649 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 10650 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
98d3f06f 10651 {
4d7206a2 10652 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10653 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10654 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 10655 relax_switch ();
98d3f06f 10656 }
6943caf0 10657 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
1661c76c 10658 as_bad (_("offset too large"));
67c0d1eb
RS
10659 macro_build_lui (&offset_expr, tempreg);
10660 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10661 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2
RS
10662 if (mips_relax.sequence)
10663 relax_end ();
98d3f06f 10664 }
252b5132 10665 }
0a44bf69 10666 else if (!mips_big_got && !HAVE_NEWABI)
252b5132 10667 {
9117d219
NC
10668 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10669
252b5132
RH
10670 /* If this is a reference to an external symbol, and there
10671 is no constant, we want
10672 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
1abe91b1 10673 or for lca or if tempreg is PIC_CALL_REG
9117d219 10674 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
252b5132
RH
10675 For a local symbol, we want
10676 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10677 nop
10678 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10679
10680 If we have a small constant, and this is a reference to
10681 an external symbol, we want
10682 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10683 nop
10684 addiu $tempreg,$tempreg,<constant>
10685 For a local symbol, we want the same instruction
10686 sequence, but we output a BFD_RELOC_LO16 reloc on the
10687 addiu instruction.
10688
10689 If we have a large constant, and this is a reference to
10690 an external symbol, we want
10691 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10692 lui $at,<hiconstant>
10693 addiu $at,$at,<loconstant>
10694 addu $tempreg,$tempreg,$at
10695 For a local symbol, we want the same instruction
10696 sequence, but we output a BFD_RELOC_LO16 reloc on the
ed6fb7bd 10697 addiu instruction.
ed6fb7bd
SC
10698 */
10699
4d7206a2 10700 if (offset_expr.X_add_number == 0)
252b5132 10701 {
0a44bf69
RS
10702 if (mips_pic == SVR4_PIC
10703 && breg == 0
10704 && (call || tempreg == PIC_CALL_REG))
4d7206a2
RS
10705 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10706
10707 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10708 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10709 lw_reloc_type, mips_gp_register);
4d7206a2 10710 if (breg != 0)
252b5132
RH
10711 {
10712 /* We're going to put in an addu instruction using
10713 tempreg, so we may as well insert the nop right
10714 now. */
269137b2 10715 load_delay_nop ();
252b5132 10716 }
4d7206a2 10717 relax_switch ();
67c0d1eb
RS
10718 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10719 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 10720 load_delay_nop ();
67c0d1eb
RS
10721 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10722 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2 10723 relax_end ();
252b5132
RH
10724 /* FIXME: If breg == 0, and the next instruction uses
10725 $tempreg, then if this variant case is used an extra
10726 nop will be generated. */
10727 }
4d7206a2
RS
10728 else if (offset_expr.X_add_number >= -0x8000
10729 && offset_expr.X_add_number < 0x8000)
252b5132 10730 {
67c0d1eb 10731 load_got_offset (tempreg, &offset_expr);
269137b2 10732 load_delay_nop ();
67c0d1eb 10733 add_got_offset (tempreg, &offset_expr);
252b5132
RH
10734 }
10735 else
10736 {
4d7206a2
RS
10737 expr1.X_add_number = offset_expr.X_add_number;
10738 offset_expr.X_add_number =
43c0598f 10739 SEXT_16BIT (offset_expr.X_add_number);
67c0d1eb 10740 load_got_offset (tempreg, &offset_expr);
f6a22291 10741 offset_expr.X_add_number = expr1.X_add_number;
252b5132
RH
10742 /* If we are going to add in a base register, and the
10743 target register and the base register are the same,
10744 then we are using AT as a temporary register. Since
10745 we want to load the constant into AT, we add our
10746 current AT (from the global offset table) and the
10747 register into the register now, and pretend we were
10748 not using a base register. */
c0ebe874 10749 if (breg == op[0])
252b5132 10750 {
269137b2 10751 load_delay_nop ();
67c0d1eb 10752 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10753 op[0], AT, breg);
252b5132 10754 breg = 0;
c0ebe874 10755 tempreg = op[0];
252b5132 10756 }
f6a22291 10757 add_got_offset_hilo (tempreg, &offset_expr, AT);
252b5132
RH
10758 used_at = 1;
10759 }
10760 }
0a44bf69 10761 else if (!mips_big_got && HAVE_NEWABI)
f5040a92 10762 {
67c0d1eb 10763 int add_breg_early = 0;
f5040a92
AO
10764
10765 /* If this is a reference to an external, and there is no
10766 constant, or local symbol (*), with or without a
10767 constant, we want
10768 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
1abe91b1 10769 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
10770 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10771
10772 If we have a small constant, and this is a reference to
10773 an external symbol, we want
10774 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10775 addiu $tempreg,$tempreg,<constant>
10776
10777 If we have a large constant, and this is a reference to
10778 an external symbol, we want
10779 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10780 lui $at,<hiconstant>
10781 addiu $at,$at,<loconstant>
10782 addu $tempreg,$tempreg,$at
10783
10784 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10785 local symbols, even though it introduces an additional
10786 instruction. */
10787
f5040a92
AO
10788 if (offset_expr.X_add_number)
10789 {
4d7206a2 10790 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
10791 offset_expr.X_add_number = 0;
10792
4d7206a2 10793 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10794 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10795 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
10796
10797 if (expr1.X_add_number >= -0x8000
10798 && expr1.X_add_number < 0x8000)
10799 {
67c0d1eb
RS
10800 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10801 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 10802 }
ecd13cd3 10803 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 10804 {
c0ebe874
RS
10805 unsigned int dreg;
10806
f5040a92
AO
10807 /* If we are going to add in a base register, and the
10808 target register and the base register are the same,
10809 then we are using AT as a temporary register. Since
10810 we want to load the constant into AT, we add our
10811 current AT (from the global offset table) and the
10812 register into the register now, and pretend we were
10813 not using a base register. */
c0ebe874 10814 if (breg != op[0])
f5040a92
AO
10815 dreg = tempreg;
10816 else
10817 {
9c2799c2 10818 gas_assert (tempreg == AT);
67c0d1eb 10819 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10820 op[0], AT, breg);
10821 dreg = op[0];
67c0d1eb 10822 add_breg_early = 1;
f5040a92
AO
10823 }
10824
f6a22291 10825 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10826 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10827 dreg, dreg, AT);
f5040a92 10828
f5040a92
AO
10829 used_at = 1;
10830 }
10831 else
10832 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10833
4d7206a2 10834 relax_switch ();
f5040a92
AO
10835 offset_expr.X_add_number = expr1.X_add_number;
10836
67c0d1eb
RS
10837 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10838 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10839 if (add_breg_early)
f5040a92 10840 {
67c0d1eb 10841 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10842 op[0], tempreg, breg);
f5040a92 10843 breg = 0;
c0ebe874 10844 tempreg = op[0];
f5040a92 10845 }
4d7206a2 10846 relax_end ();
f5040a92 10847 }
4d7206a2 10848 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
f5040a92 10849 {
4d7206a2 10850 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10851 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10852 BFD_RELOC_MIPS_CALL16, mips_gp_register);
4d7206a2 10853 relax_switch ();
67c0d1eb
RS
10854 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10855 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2 10856 relax_end ();
f5040a92 10857 }
4d7206a2 10858 else
f5040a92 10859 {
67c0d1eb
RS
10860 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10861 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
10862 }
10863 }
0a44bf69 10864 else if (mips_big_got && !HAVE_NEWABI)
252b5132 10865 {
67c0d1eb 10866 int gpdelay;
9117d219
NC
10867 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10868 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
ed6fb7bd 10869 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
252b5132
RH
10870
10871 /* This is the large GOT case. If this is a reference to an
10872 external symbol, and there is no constant, we want
10873 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10874 addu $tempreg,$tempreg,$gp
10875 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 10876 or for lca or if tempreg is PIC_CALL_REG
9117d219
NC
10877 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10878 addu $tempreg,$tempreg,$gp
10879 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
252b5132
RH
10880 For a local symbol, we want
10881 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10882 nop
10883 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10884
10885 If we have a small constant, and this is a reference to
10886 an external symbol, we want
10887 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10888 addu $tempreg,$tempreg,$gp
10889 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10890 nop
10891 addiu $tempreg,$tempreg,<constant>
10892 For a local symbol, we want
10893 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10894 nop
10895 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10896
10897 If we have a large constant, and this is a reference to
10898 an external symbol, we want
10899 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10900 addu $tempreg,$tempreg,$gp
10901 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10902 lui $at,<hiconstant>
10903 addiu $at,$at,<loconstant>
10904 addu $tempreg,$tempreg,$at
10905 For a local symbol, we want
10906 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10907 lui $at,<hiconstant>
10908 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10909 addu $tempreg,$tempreg,$at
f5040a92 10910 */
438c16b8 10911
252b5132
RH
10912 expr1.X_add_number = offset_expr.X_add_number;
10913 offset_expr.X_add_number = 0;
4d7206a2 10914 relax_start (offset_expr.X_add_symbol);
67c0d1eb 10915 gpdelay = reg_needs_delay (mips_gp_register);
1abe91b1
MR
10916 if (expr1.X_add_number == 0 && breg == 0
10917 && (call || tempreg == PIC_CALL_REG))
9117d219
NC
10918 {
10919 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10920 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10921 }
df58fc94 10922 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 10923 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10924 tempreg, tempreg, mips_gp_register);
67c0d1eb 10925 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 10926 tempreg, lw_reloc_type, tempreg);
252b5132
RH
10927 if (expr1.X_add_number == 0)
10928 {
67c0d1eb 10929 if (breg != 0)
252b5132
RH
10930 {
10931 /* We're going to put in an addu instruction using
10932 tempreg, so we may as well insert the nop right
10933 now. */
269137b2 10934 load_delay_nop ();
252b5132 10935 }
252b5132
RH
10936 }
10937 else if (expr1.X_add_number >= -0x8000
10938 && expr1.X_add_number < 0x8000)
10939 {
269137b2 10940 load_delay_nop ();
67c0d1eb 10941 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 10942 tempreg, tempreg, BFD_RELOC_LO16);
252b5132
RH
10943 }
10944 else
10945 {
c0ebe874
RS
10946 unsigned int dreg;
10947
252b5132
RH
10948 /* If we are going to add in a base register, and the
10949 target register and the base register are the same,
10950 then we are using AT as a temporary register. Since
10951 we want to load the constant into AT, we add our
10952 current AT (from the global offset table) and the
10953 register into the register now, and pretend we were
10954 not using a base register. */
c0ebe874 10955 if (breg != op[0])
67c0d1eb 10956 dreg = tempreg;
252b5132
RH
10957 else
10958 {
9c2799c2 10959 gas_assert (tempreg == AT);
269137b2 10960 load_delay_nop ();
67c0d1eb 10961 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10962 op[0], AT, breg);
10963 dreg = op[0];
252b5132
RH
10964 }
10965
f6a22291 10966 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10967 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
252b5132 10968
252b5132
RH
10969 used_at = 1;
10970 }
43c0598f 10971 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
4d7206a2 10972 relax_switch ();
252b5132 10973
67c0d1eb 10974 if (gpdelay)
252b5132
RH
10975 {
10976 /* This is needed because this instruction uses $gp, but
f5040a92 10977 the first instruction on the main stream does not. */
67c0d1eb 10978 macro_build (NULL, "nop", "");
252b5132 10979 }
ed6fb7bd 10980
67c0d1eb
RS
10981 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10982 local_reloc_type, mips_gp_register);
f5040a92 10983 if (expr1.X_add_number >= -0x8000
252b5132
RH
10984 && expr1.X_add_number < 0x8000)
10985 {
269137b2 10986 load_delay_nop ();
67c0d1eb
RS
10987 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10988 tempreg, tempreg, BFD_RELOC_LO16);
252b5132 10989 /* FIXME: If add_number is 0, and there was no base
f5040a92
AO
10990 register, the external symbol case ended with a load,
10991 so if the symbol turns out to not be external, and
10992 the next instruction uses tempreg, an unnecessary nop
10993 will be inserted. */
252b5132
RH
10994 }
10995 else
10996 {
c0ebe874 10997 if (breg == op[0])
252b5132
RH
10998 {
10999 /* We must add in the base register now, as in the
f5040a92 11000 external symbol case. */
9c2799c2 11001 gas_assert (tempreg == AT);
269137b2 11002 load_delay_nop ();
67c0d1eb 11003 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
11004 op[0], AT, breg);
11005 tempreg = op[0];
252b5132 11006 /* We set breg to 0 because we have arranged to add
f5040a92 11007 it in in both cases. */
252b5132
RH
11008 breg = 0;
11009 }
11010
67c0d1eb
RS
11011 macro_build_lui (&expr1, AT);
11012 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 11013 AT, AT, BFD_RELOC_LO16);
67c0d1eb 11014 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11015 tempreg, tempreg, AT);
8fc2e39e 11016 used_at = 1;
252b5132 11017 }
4d7206a2 11018 relax_end ();
252b5132 11019 }
0a44bf69 11020 else if (mips_big_got && HAVE_NEWABI)
f5040a92 11021 {
f5040a92
AO
11022 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11023 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
67c0d1eb 11024 int add_breg_early = 0;
f5040a92
AO
11025
11026 /* This is the large GOT case. If this is a reference to an
11027 external symbol, and there is no constant, we want
11028 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11029 add $tempreg,$tempreg,$gp
11030 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 11031 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
11032 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11033 add $tempreg,$tempreg,$gp
11034 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
11035
11036 If we have a small constant, and this is a reference to
11037 an external symbol, we want
11038 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11039 add $tempreg,$tempreg,$gp
11040 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11041 addi $tempreg,$tempreg,<constant>
11042
11043 If we have a large constant, and this is a reference to
11044 an external symbol, we want
11045 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11046 addu $tempreg,$tempreg,$gp
11047 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11048 lui $at,<hiconstant>
11049 addi $at,$at,<loconstant>
11050 add $tempreg,$tempreg,$at
11051
11052 If we have NewABI, and we know it's a local symbol, we want
11053 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11054 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
11055 otherwise we have to resort to GOT_HI16/GOT_LO16. */
11056
4d7206a2 11057 relax_start (offset_expr.X_add_symbol);
f5040a92 11058
4d7206a2 11059 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
11060 offset_expr.X_add_number = 0;
11061
1abe91b1
MR
11062 if (expr1.X_add_number == 0 && breg == 0
11063 && (call || tempreg == PIC_CALL_REG))
f5040a92
AO
11064 {
11065 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11066 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11067 }
df58fc94 11068 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 11069 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11070 tempreg, tempreg, mips_gp_register);
67c0d1eb
RS
11071 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11072 tempreg, lw_reloc_type, tempreg);
f5040a92
AO
11073
11074 if (expr1.X_add_number == 0)
4d7206a2 11075 ;
f5040a92
AO
11076 else if (expr1.X_add_number >= -0x8000
11077 && expr1.X_add_number < 0x8000)
11078 {
67c0d1eb 11079 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 11080 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 11081 }
ecd13cd3 11082 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 11083 {
c0ebe874
RS
11084 unsigned int dreg;
11085
f5040a92
AO
11086 /* If we are going to add in a base register, and the
11087 target register and the base register are the same,
11088 then we are using AT as a temporary register. Since
11089 we want to load the constant into AT, we add our
11090 current AT (from the global offset table) and the
11091 register into the register now, and pretend we were
11092 not using a base register. */
c0ebe874 11093 if (breg != op[0])
f5040a92
AO
11094 dreg = tempreg;
11095 else
11096 {
9c2799c2 11097 gas_assert (tempreg == AT);
67c0d1eb 11098 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
11099 op[0], AT, breg);
11100 dreg = op[0];
67c0d1eb 11101 add_breg_early = 1;
f5040a92
AO
11102 }
11103
f6a22291 11104 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 11105 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
f5040a92 11106
f5040a92
AO
11107 used_at = 1;
11108 }
11109 else
11110 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11111
4d7206a2 11112 relax_switch ();
f5040a92 11113 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
11114 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11115 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11116 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11117 tempreg, BFD_RELOC_MIPS_GOT_OFST);
11118 if (add_breg_early)
f5040a92 11119 {
67c0d1eb 11120 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 11121 op[0], tempreg, breg);
f5040a92 11122 breg = 0;
c0ebe874 11123 tempreg = op[0];
f5040a92 11124 }
4d7206a2 11125 relax_end ();
f5040a92 11126 }
252b5132
RH
11127 else
11128 abort ();
11129
11130 if (breg != 0)
c0ebe874 11131 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
252b5132
RH
11132 break;
11133
52b6b6b9 11134 case M_MSGSND:
df58fc94 11135 gas_assert (!mips_opts.micromips);
c0ebe874 11136 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
c7af4273 11137 break;
52b6b6b9
JM
11138
11139 case M_MSGLD:
df58fc94 11140 gas_assert (!mips_opts.micromips);
c8276761 11141 macro_build (NULL, "c2", "C", 0x02);
c7af4273 11142 break;
52b6b6b9
JM
11143
11144 case M_MSGLD_T:
df58fc94 11145 gas_assert (!mips_opts.micromips);
c0ebe874 11146 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
c7af4273 11147 break;
52b6b6b9
JM
11148
11149 case M_MSGWAIT:
df58fc94 11150 gas_assert (!mips_opts.micromips);
52b6b6b9 11151 macro_build (NULL, "c2", "C", 3);
c7af4273 11152 break;
52b6b6b9
JM
11153
11154 case M_MSGWAIT_T:
df58fc94 11155 gas_assert (!mips_opts.micromips);
c0ebe874 11156 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
c7af4273 11157 break;
52b6b6b9 11158
252b5132
RH
11159 case M_J_A:
11160 /* The j instruction may not be used in PIC code, since it
11161 requires an absolute address. We convert it to a b
11162 instruction. */
11163 if (mips_pic == NO_PIC)
67c0d1eb 11164 macro_build (&offset_expr, "j", "a");
252b5132 11165 else
67c0d1eb 11166 macro_build (&offset_expr, "b", "p");
8fc2e39e 11167 break;
252b5132
RH
11168
11169 /* The jal instructions must be handled as macros because when
11170 generating PIC code they expand to multi-instruction
11171 sequences. Normally they are simple instructions. */
df58fc94 11172 case M_JALS_1:
c0ebe874
RS
11173 op[1] = op[0];
11174 op[0] = RA;
df58fc94
RS
11175 /* Fall through. */
11176 case M_JALS_2:
11177 gas_assert (mips_opts.micromips);
833794fc
MR
11178 if (mips_opts.insn32)
11179 {
1661c76c 11180 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
833794fc
MR
11181 break;
11182 }
df58fc94
RS
11183 jals = 1;
11184 goto jal;
252b5132 11185 case M_JAL_1:
c0ebe874
RS
11186 op[1] = op[0];
11187 op[0] = RA;
252b5132
RH
11188 /* Fall through. */
11189 case M_JAL_2:
df58fc94 11190 jal:
3e722fb5 11191 if (mips_pic == NO_PIC)
df58fc94
RS
11192 {
11193 s = jals ? "jalrs" : "jalr";
e64af278 11194 if (mips_opts.micromips
833794fc 11195 && !mips_opts.insn32
c0ebe874 11196 && op[0] == RA
e64af278 11197 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
c0ebe874 11198 macro_build (NULL, s, "mj", op[1]);
df58fc94 11199 else
c0ebe874 11200 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
df58fc94 11201 }
0a44bf69 11202 else
252b5132 11203 {
df58fc94
RS
11204 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11205 && mips_cprestore_offset >= 0);
11206
c0ebe874 11207 if (op[1] != PIC_CALL_REG)
252b5132 11208 as_warn (_("MIPS PIC call to register other than $25"));
bdaaa2e1 11209
833794fc
MR
11210 s = ((mips_opts.micromips
11211 && !mips_opts.insn32
11212 && (!mips_opts.noreorder || cprestore))
df58fc94 11213 ? "jalrs" : "jalr");
e64af278 11214 if (mips_opts.micromips
833794fc 11215 && !mips_opts.insn32
c0ebe874 11216 && op[0] == RA
e64af278 11217 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
c0ebe874 11218 macro_build (NULL, s, "mj", op[1]);
df58fc94 11219 else
c0ebe874 11220 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
0a44bf69 11221 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
252b5132 11222 {
6478892d 11223 if (mips_cprestore_offset < 0)
1661c76c 11224 as_warn (_("no .cprestore pseudo-op used in PIC code"));
6478892d
TS
11225 else
11226 {
90ecf173 11227 if (!mips_frame_reg_valid)
7a621144 11228 {
1661c76c 11229 as_warn (_("no .frame pseudo-op used in PIC code"));
7a621144
DJ
11230 /* Quiet this warning. */
11231 mips_frame_reg_valid = 1;
11232 }
90ecf173 11233 if (!mips_cprestore_valid)
7a621144 11234 {
1661c76c 11235 as_warn (_("no .cprestore pseudo-op used in PIC code"));
7a621144
DJ
11236 /* Quiet this warning. */
11237 mips_cprestore_valid = 1;
11238 }
d3fca0b5
MR
11239 if (mips_opts.noreorder)
11240 macro_build (NULL, "nop", "");
6478892d 11241 expr1.X_add_number = mips_cprestore_offset;
134c0c8b 11242 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 11243 mips_gp_register,
256ab948
TS
11244 mips_frame_reg,
11245 HAVE_64BIT_ADDRESSES);
6478892d 11246 }
252b5132
RH
11247 }
11248 }
252b5132 11249
8fc2e39e 11250 break;
252b5132 11251
df58fc94
RS
11252 case M_JALS_A:
11253 gas_assert (mips_opts.micromips);
833794fc
MR
11254 if (mips_opts.insn32)
11255 {
1661c76c 11256 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
833794fc
MR
11257 break;
11258 }
df58fc94
RS
11259 jals = 1;
11260 /* Fall through. */
252b5132
RH
11261 case M_JAL_A:
11262 if (mips_pic == NO_PIC)
df58fc94 11263 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
252b5132
RH
11264 else if (mips_pic == SVR4_PIC)
11265 {
11266 /* If this is a reference to an external symbol, and we are
11267 using a small GOT, we want
11268 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11269 nop
f9419b05 11270 jalr $ra,$25
252b5132
RH
11271 nop
11272 lw $gp,cprestore($sp)
11273 The cprestore value is set using the .cprestore
11274 pseudo-op. If we are using a big GOT, we want
11275 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11276 addu $25,$25,$gp
11277 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11278 nop
f9419b05 11279 jalr $ra,$25
252b5132
RH
11280 nop
11281 lw $gp,cprestore($sp)
11282 If the symbol is not external, we want
11283 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11284 nop
11285 addiu $25,$25,<sym> (BFD_RELOC_LO16)
f9419b05 11286 jalr $ra,$25
252b5132 11287 nop
438c16b8 11288 lw $gp,cprestore($sp)
f5040a92
AO
11289
11290 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11291 sequences above, minus nops, unless the symbol is local,
11292 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11293 GOT_DISP. */
438c16b8 11294 if (HAVE_NEWABI)
252b5132 11295 {
90ecf173 11296 if (!mips_big_got)
f5040a92 11297 {
4d7206a2 11298 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
11299 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11300 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
f5040a92 11301 mips_gp_register);
4d7206a2 11302 relax_switch ();
67c0d1eb
RS
11303 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11304 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
4d7206a2
RS
11305 mips_gp_register);
11306 relax_end ();
f5040a92
AO
11307 }
11308 else
11309 {
4d7206a2 11310 relax_start (offset_expr.X_add_symbol);
df58fc94 11311 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
11312 BFD_RELOC_MIPS_CALL_HI16);
11313 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11314 PIC_CALL_REG, mips_gp_register);
11315 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11316 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11317 PIC_CALL_REG);
4d7206a2 11318 relax_switch ();
67c0d1eb
RS
11319 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11320 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11321 mips_gp_register);
11322 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11323 PIC_CALL_REG, PIC_CALL_REG,
17a2f251 11324 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 11325 relax_end ();
f5040a92 11326 }
684022ea 11327
df58fc94 11328 macro_build_jalr (&offset_expr, 0);
252b5132
RH
11329 }
11330 else
11331 {
4d7206a2 11332 relax_start (offset_expr.X_add_symbol);
90ecf173 11333 if (!mips_big_got)
438c16b8 11334 {
67c0d1eb
RS
11335 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11336 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
17a2f251 11337 mips_gp_register);
269137b2 11338 load_delay_nop ();
4d7206a2 11339 relax_switch ();
438c16b8 11340 }
252b5132 11341 else
252b5132 11342 {
67c0d1eb
RS
11343 int gpdelay;
11344
11345 gpdelay = reg_needs_delay (mips_gp_register);
df58fc94 11346 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
11347 BFD_RELOC_MIPS_CALL_HI16);
11348 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11349 PIC_CALL_REG, mips_gp_register);
11350 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11351 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11352 PIC_CALL_REG);
269137b2 11353 load_delay_nop ();
4d7206a2 11354 relax_switch ();
67c0d1eb
RS
11355 if (gpdelay)
11356 macro_build (NULL, "nop", "");
252b5132 11357 }
67c0d1eb
RS
11358 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11359 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
4d7206a2 11360 mips_gp_register);
269137b2 11361 load_delay_nop ();
67c0d1eb
RS
11362 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11363 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
4d7206a2 11364 relax_end ();
df58fc94 11365 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
438c16b8 11366
6478892d 11367 if (mips_cprestore_offset < 0)
1661c76c 11368 as_warn (_("no .cprestore pseudo-op used in PIC code"));
6478892d
TS
11369 else
11370 {
90ecf173 11371 if (!mips_frame_reg_valid)
7a621144 11372 {
1661c76c 11373 as_warn (_("no .frame pseudo-op used in PIC code"));
7a621144
DJ
11374 /* Quiet this warning. */
11375 mips_frame_reg_valid = 1;
11376 }
90ecf173 11377 if (!mips_cprestore_valid)
7a621144 11378 {
1661c76c 11379 as_warn (_("no .cprestore pseudo-op used in PIC code"));
7a621144
DJ
11380 /* Quiet this warning. */
11381 mips_cprestore_valid = 1;
11382 }
6478892d 11383 if (mips_opts.noreorder)
67c0d1eb 11384 macro_build (NULL, "nop", "");
6478892d 11385 expr1.X_add_number = mips_cprestore_offset;
134c0c8b 11386 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 11387 mips_gp_register,
256ab948
TS
11388 mips_frame_reg,
11389 HAVE_64BIT_ADDRESSES);
6478892d 11390 }
252b5132
RH
11391 }
11392 }
0a44bf69 11393 else if (mips_pic == VXWORKS_PIC)
1661c76c 11394 as_bad (_("non-PIC jump used in PIC library"));
252b5132
RH
11395 else
11396 abort ();
11397
8fc2e39e 11398 break;
252b5132 11399
7f3c4072 11400 case M_LBUE_AB:
7f3c4072
CM
11401 s = "lbue";
11402 fmt = "t,+j(b)";
11403 offbits = 9;
11404 goto ld_st;
11405 case M_LHUE_AB:
7f3c4072
CM
11406 s = "lhue";
11407 fmt = "t,+j(b)";
11408 offbits = 9;
11409 goto ld_st;
11410 case M_LBE_AB:
7f3c4072
CM
11411 s = "lbe";
11412 fmt = "t,+j(b)";
11413 offbits = 9;
11414 goto ld_st;
11415 case M_LHE_AB:
7f3c4072
CM
11416 s = "lhe";
11417 fmt = "t,+j(b)";
11418 offbits = 9;
11419 goto ld_st;
11420 case M_LLE_AB:
7f3c4072
CM
11421 s = "lle";
11422 fmt = "t,+j(b)";
11423 offbits = 9;
11424 goto ld_st;
11425 case M_LWE_AB:
7f3c4072
CM
11426 s = "lwe";
11427 fmt = "t,+j(b)";
11428 offbits = 9;
11429 goto ld_st;
11430 case M_LWLE_AB:
7f3c4072
CM
11431 s = "lwle";
11432 fmt = "t,+j(b)";
11433 offbits = 9;
11434 goto ld_st;
11435 case M_LWRE_AB:
7f3c4072
CM
11436 s = "lwre";
11437 fmt = "t,+j(b)";
11438 offbits = 9;
11439 goto ld_st;
11440 case M_SBE_AB:
7f3c4072
CM
11441 s = "sbe";
11442 fmt = "t,+j(b)";
11443 offbits = 9;
11444 goto ld_st;
11445 case M_SCE_AB:
7f3c4072
CM
11446 s = "sce";
11447 fmt = "t,+j(b)";
11448 offbits = 9;
11449 goto ld_st;
11450 case M_SHE_AB:
7f3c4072
CM
11451 s = "she";
11452 fmt = "t,+j(b)";
11453 offbits = 9;
11454 goto ld_st;
11455 case M_SWE_AB:
7f3c4072
CM
11456 s = "swe";
11457 fmt = "t,+j(b)";
11458 offbits = 9;
11459 goto ld_st;
11460 case M_SWLE_AB:
7f3c4072
CM
11461 s = "swle";
11462 fmt = "t,+j(b)";
11463 offbits = 9;
11464 goto ld_st;
11465 case M_SWRE_AB:
7f3c4072
CM
11466 s = "swre";
11467 fmt = "t,+j(b)";
11468 offbits = 9;
11469 goto ld_st;
dec0624d 11470 case M_ACLR_AB:
dec0624d 11471 s = "aclr";
dec0624d 11472 fmt = "\\,~(b)";
7f3c4072 11473 offbits = 12;
dec0624d
MR
11474 goto ld_st;
11475 case M_ASET_AB:
dec0624d 11476 s = "aset";
dec0624d 11477 fmt = "\\,~(b)";
7f3c4072 11478 offbits = 12;
dec0624d 11479 goto ld_st;
252b5132
RH
11480 case M_LB_AB:
11481 s = "lb";
df58fc94 11482 fmt = "t,o(b)";
252b5132
RH
11483 goto ld;
11484 case M_LBU_AB:
11485 s = "lbu";
df58fc94 11486 fmt = "t,o(b)";
252b5132
RH
11487 goto ld;
11488 case M_LH_AB:
11489 s = "lh";
df58fc94 11490 fmt = "t,o(b)";
252b5132
RH
11491 goto ld;
11492 case M_LHU_AB:
11493 s = "lhu";
df58fc94 11494 fmt = "t,o(b)";
252b5132
RH
11495 goto ld;
11496 case M_LW_AB:
11497 s = "lw";
df58fc94 11498 fmt = "t,o(b)";
252b5132
RH
11499 goto ld;
11500 case M_LWC0_AB:
df58fc94 11501 gas_assert (!mips_opts.micromips);
252b5132 11502 s = "lwc0";
df58fc94 11503 fmt = "E,o(b)";
bdaaa2e1 11504 /* Itbl support may require additional care here. */
252b5132 11505 coproc = 1;
df58fc94 11506 goto ld_st;
252b5132
RH
11507 case M_LWC1_AB:
11508 s = "lwc1";
df58fc94 11509 fmt = "T,o(b)";
bdaaa2e1 11510 /* Itbl support may require additional care here. */
252b5132 11511 coproc = 1;
df58fc94 11512 goto ld_st;
252b5132
RH
11513 case M_LWC2_AB:
11514 s = "lwc2";
df58fc94 11515 fmt = COP12_FMT;
7361da2c
AB
11516 offbits = (mips_opts.micromips ? 12
11517 : ISA_IS_R6 (mips_opts.isa) ? 11
11518 : 16);
bdaaa2e1 11519 /* Itbl support may require additional care here. */
252b5132 11520 coproc = 1;
df58fc94 11521 goto ld_st;
252b5132 11522 case M_LWC3_AB:
df58fc94 11523 gas_assert (!mips_opts.micromips);
252b5132 11524 s = "lwc3";
df58fc94 11525 fmt = "E,o(b)";
bdaaa2e1 11526 /* Itbl support may require additional care here. */
252b5132 11527 coproc = 1;
df58fc94 11528 goto ld_st;
252b5132
RH
11529 case M_LWL_AB:
11530 s = "lwl";
df58fc94 11531 fmt = MEM12_FMT;
7f3c4072 11532 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11533 goto ld_st;
252b5132
RH
11534 case M_LWR_AB:
11535 s = "lwr";
df58fc94 11536 fmt = MEM12_FMT;
7f3c4072 11537 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11538 goto ld_st;
252b5132 11539 case M_LDC1_AB:
252b5132 11540 s = "ldc1";
df58fc94 11541 fmt = "T,o(b)";
bdaaa2e1 11542 /* Itbl support may require additional care here. */
252b5132 11543 coproc = 1;
df58fc94 11544 goto ld_st;
252b5132
RH
11545 case M_LDC2_AB:
11546 s = "ldc2";
df58fc94 11547 fmt = COP12_FMT;
7361da2c
AB
11548 offbits = (mips_opts.micromips ? 12
11549 : ISA_IS_R6 (mips_opts.isa) ? 11
11550 : 16);
bdaaa2e1 11551 /* Itbl support may require additional care here. */
252b5132 11552 coproc = 1;
df58fc94 11553 goto ld_st;
c77c0862 11554 case M_LQC2_AB:
c77c0862 11555 s = "lqc2";
14daeee3 11556 fmt = "+7,o(b)";
c77c0862
RS
11557 /* Itbl support may require additional care here. */
11558 coproc = 1;
11559 goto ld_st;
252b5132
RH
11560 case M_LDC3_AB:
11561 s = "ldc3";
df58fc94 11562 fmt = "E,o(b)";
bdaaa2e1 11563 /* Itbl support may require additional care here. */
252b5132 11564 coproc = 1;
df58fc94 11565 goto ld_st;
252b5132
RH
11566 case M_LDL_AB:
11567 s = "ldl";
df58fc94 11568 fmt = MEM12_FMT;
7f3c4072 11569 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11570 goto ld_st;
252b5132
RH
11571 case M_LDR_AB:
11572 s = "ldr";
df58fc94 11573 fmt = MEM12_FMT;
7f3c4072 11574 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11575 goto ld_st;
252b5132
RH
11576 case M_LL_AB:
11577 s = "ll";
7361da2c
AB
11578 fmt = LL_SC_FMT;
11579 offbits = (mips_opts.micromips ? 12
11580 : ISA_IS_R6 (mips_opts.isa) ? 9
11581 : 16);
252b5132
RH
11582 goto ld;
11583 case M_LLD_AB:
11584 s = "lld";
7361da2c
AB
11585 fmt = LL_SC_FMT;
11586 offbits = (mips_opts.micromips ? 12
11587 : ISA_IS_R6 (mips_opts.isa) ? 9
11588 : 16);
252b5132
RH
11589 goto ld;
11590 case M_LWU_AB:
11591 s = "lwu";
df58fc94 11592 fmt = MEM12_FMT;
7f3c4072 11593 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
11594 goto ld;
11595 case M_LWP_AB:
df58fc94
RS
11596 gas_assert (mips_opts.micromips);
11597 s = "lwp";
11598 fmt = "t,~(b)";
7f3c4072 11599 offbits = 12;
df58fc94
RS
11600 lp = 1;
11601 goto ld;
11602 case M_LDP_AB:
df58fc94
RS
11603 gas_assert (mips_opts.micromips);
11604 s = "ldp";
11605 fmt = "t,~(b)";
7f3c4072 11606 offbits = 12;
df58fc94
RS
11607 lp = 1;
11608 goto ld;
11609 case M_LWM_AB:
df58fc94
RS
11610 gas_assert (mips_opts.micromips);
11611 s = "lwm";
11612 fmt = "n,~(b)";
7f3c4072 11613 offbits = 12;
df58fc94
RS
11614 goto ld_st;
11615 case M_LDM_AB:
df58fc94
RS
11616 gas_assert (mips_opts.micromips);
11617 s = "ldm";
11618 fmt = "n,~(b)";
7f3c4072 11619 offbits = 12;
df58fc94
RS
11620 goto ld_st;
11621
252b5132 11622 ld:
f19ccbda 11623 /* We don't want to use $0 as tempreg. */
c0ebe874 11624 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
df58fc94 11625 goto ld_st;
252b5132 11626 else
c0ebe874 11627 tempreg = op[0] + lp;
df58fc94
RS
11628 goto ld_noat;
11629
252b5132
RH
11630 case M_SB_AB:
11631 s = "sb";
df58fc94
RS
11632 fmt = "t,o(b)";
11633 goto ld_st;
252b5132
RH
11634 case M_SH_AB:
11635 s = "sh";
df58fc94
RS
11636 fmt = "t,o(b)";
11637 goto ld_st;
252b5132
RH
11638 case M_SW_AB:
11639 s = "sw";
df58fc94
RS
11640 fmt = "t,o(b)";
11641 goto ld_st;
252b5132 11642 case M_SWC0_AB:
df58fc94 11643 gas_assert (!mips_opts.micromips);
252b5132 11644 s = "swc0";
df58fc94 11645 fmt = "E,o(b)";
bdaaa2e1 11646 /* Itbl support may require additional care here. */
252b5132 11647 coproc = 1;
df58fc94 11648 goto ld_st;
252b5132
RH
11649 case M_SWC1_AB:
11650 s = "swc1";
df58fc94 11651 fmt = "T,o(b)";
bdaaa2e1 11652 /* Itbl support may require additional care here. */
252b5132 11653 coproc = 1;
df58fc94 11654 goto ld_st;
252b5132
RH
11655 case M_SWC2_AB:
11656 s = "swc2";
df58fc94 11657 fmt = COP12_FMT;
7361da2c
AB
11658 offbits = (mips_opts.micromips ? 12
11659 : ISA_IS_R6 (mips_opts.isa) ? 11
11660 : 16);
bdaaa2e1 11661 /* Itbl support may require additional care here. */
252b5132 11662 coproc = 1;
df58fc94 11663 goto ld_st;
252b5132 11664 case M_SWC3_AB:
df58fc94 11665 gas_assert (!mips_opts.micromips);
252b5132 11666 s = "swc3";
df58fc94 11667 fmt = "E,o(b)";
bdaaa2e1 11668 /* Itbl support may require additional care here. */
252b5132 11669 coproc = 1;
df58fc94 11670 goto ld_st;
252b5132
RH
11671 case M_SWL_AB:
11672 s = "swl";
df58fc94 11673 fmt = MEM12_FMT;
7f3c4072 11674 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11675 goto ld_st;
252b5132
RH
11676 case M_SWR_AB:
11677 s = "swr";
df58fc94 11678 fmt = MEM12_FMT;
7f3c4072 11679 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11680 goto ld_st;
252b5132
RH
11681 case M_SC_AB:
11682 s = "sc";
7361da2c
AB
11683 fmt = LL_SC_FMT;
11684 offbits = (mips_opts.micromips ? 12
11685 : ISA_IS_R6 (mips_opts.isa) ? 9
11686 : 16);
df58fc94 11687 goto ld_st;
252b5132
RH
11688 case M_SCD_AB:
11689 s = "scd";
7361da2c
AB
11690 fmt = LL_SC_FMT;
11691 offbits = (mips_opts.micromips ? 12
11692 : ISA_IS_R6 (mips_opts.isa) ? 9
11693 : 16);
df58fc94 11694 goto ld_st;
d43b4baf
TS
11695 case M_CACHE_AB:
11696 s = "cache";
7361da2c
AB
11697 fmt = (mips_opts.micromips ? "k,~(b)"
11698 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11699 : "k,o(b)");
11700 offbits = (mips_opts.micromips ? 12
11701 : ISA_IS_R6 (mips_opts.isa) ? 9
11702 : 16);
7f3c4072
CM
11703 goto ld_st;
11704 case M_CACHEE_AB:
7f3c4072
CM
11705 s = "cachee";
11706 fmt = "k,+j(b)";
11707 offbits = 9;
df58fc94 11708 goto ld_st;
3eebd5eb
MR
11709 case M_PREF_AB:
11710 s = "pref";
7361da2c
AB
11711 fmt = (mips_opts.micromips ? "k,~(b)"
11712 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11713 : "k,o(b)");
11714 offbits = (mips_opts.micromips ? 12
11715 : ISA_IS_R6 (mips_opts.isa) ? 9
11716 : 16);
7f3c4072
CM
11717 goto ld_st;
11718 case M_PREFE_AB:
7f3c4072
CM
11719 s = "prefe";
11720 fmt = "k,+j(b)";
11721 offbits = 9;
df58fc94 11722 goto ld_st;
252b5132 11723 case M_SDC1_AB:
252b5132 11724 s = "sdc1";
df58fc94 11725 fmt = "T,o(b)";
252b5132 11726 coproc = 1;
bdaaa2e1 11727 /* Itbl support may require additional care here. */
df58fc94 11728 goto ld_st;
252b5132
RH
11729 case M_SDC2_AB:
11730 s = "sdc2";
df58fc94 11731 fmt = COP12_FMT;
7361da2c
AB
11732 offbits = (mips_opts.micromips ? 12
11733 : ISA_IS_R6 (mips_opts.isa) ? 11
11734 : 16);
c77c0862
RS
11735 /* Itbl support may require additional care here. */
11736 coproc = 1;
11737 goto ld_st;
11738 case M_SQC2_AB:
c77c0862 11739 s = "sqc2";
14daeee3 11740 fmt = "+7,o(b)";
bdaaa2e1 11741 /* Itbl support may require additional care here. */
252b5132 11742 coproc = 1;
df58fc94 11743 goto ld_st;
252b5132 11744 case M_SDC3_AB:
df58fc94 11745 gas_assert (!mips_opts.micromips);
252b5132 11746 s = "sdc3";
df58fc94 11747 fmt = "E,o(b)";
bdaaa2e1 11748 /* Itbl support may require additional care here. */
252b5132 11749 coproc = 1;
df58fc94 11750 goto ld_st;
252b5132
RH
11751 case M_SDL_AB:
11752 s = "sdl";
df58fc94 11753 fmt = MEM12_FMT;
7f3c4072 11754 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11755 goto ld_st;
252b5132
RH
11756 case M_SDR_AB:
11757 s = "sdr";
df58fc94 11758 fmt = MEM12_FMT;
7f3c4072 11759 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
11760 goto ld_st;
11761 case M_SWP_AB:
df58fc94
RS
11762 gas_assert (mips_opts.micromips);
11763 s = "swp";
11764 fmt = "t,~(b)";
7f3c4072 11765 offbits = 12;
df58fc94
RS
11766 goto ld_st;
11767 case M_SDP_AB:
df58fc94
RS
11768 gas_assert (mips_opts.micromips);
11769 s = "sdp";
11770 fmt = "t,~(b)";
7f3c4072 11771 offbits = 12;
df58fc94
RS
11772 goto ld_st;
11773 case M_SWM_AB:
df58fc94
RS
11774 gas_assert (mips_opts.micromips);
11775 s = "swm";
11776 fmt = "n,~(b)";
7f3c4072 11777 offbits = 12;
df58fc94
RS
11778 goto ld_st;
11779 case M_SDM_AB:
df58fc94
RS
11780 gas_assert (mips_opts.micromips);
11781 s = "sdm";
11782 fmt = "n,~(b)";
7f3c4072 11783 offbits = 12;
df58fc94
RS
11784
11785 ld_st:
8fc2e39e 11786 tempreg = AT;
df58fc94 11787 ld_noat:
c0ebe874 11788 breg = op[2];
f2ae14a1
RS
11789 if (small_offset_p (0, align, 16))
11790 {
11791 /* The first case exists for M_LD_AB and M_SD_AB, which are
11792 macros for o32 but which should act like normal instructions
11793 otherwise. */
11794 if (offbits == 16)
c0ebe874 11795 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
f2ae14a1
RS
11796 offset_reloc[1], offset_reloc[2], breg);
11797 else if (small_offset_p (0, align, offbits))
11798 {
11799 if (offbits == 0)
c0ebe874 11800 macro_build (NULL, s, fmt, op[0], breg);
f2ae14a1 11801 else
c0ebe874 11802 macro_build (NULL, s, fmt, op[0],
c8276761 11803 (int) offset_expr.X_add_number, breg);
f2ae14a1
RS
11804 }
11805 else
11806 {
11807 if (tempreg == AT)
11808 used_at = 1;
11809 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11810 tempreg, breg, -1, offset_reloc[0],
11811 offset_reloc[1], offset_reloc[2]);
11812 if (offbits == 0)
c0ebe874 11813 macro_build (NULL, s, fmt, op[0], tempreg);
f2ae14a1 11814 else
c0ebe874 11815 macro_build (NULL, s, fmt, op[0], 0, tempreg);
f2ae14a1
RS
11816 }
11817 break;
11818 }
11819
11820 if (tempreg == AT)
11821 used_at = 1;
11822
252b5132
RH
11823 if (offset_expr.X_op != O_constant
11824 && offset_expr.X_op != O_symbol)
11825 {
1661c76c 11826 as_bad (_("expression too complex"));
252b5132
RH
11827 offset_expr.X_op = O_constant;
11828 }
11829
2051e8c4
MR
11830 if (HAVE_32BIT_ADDRESSES
11831 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
11832 {
11833 char value [32];
11834
11835 sprintf_vma (value, offset_expr.X_add_number);
1661c76c 11836 as_bad (_("number (0x%s) larger than 32 bits"), value);
55e08f71 11837 }
2051e8c4 11838
252b5132
RH
11839 /* A constant expression in PIC code can be handled just as it
11840 is in non PIC code. */
aed1a261
RS
11841 if (offset_expr.X_op == O_constant)
11842 {
f2ae14a1
RS
11843 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11844 offbits == 0 ? 16 : offbits);
11845 offset_expr.X_add_number -= expr1.X_add_number;
df58fc94 11846
f2ae14a1
RS
11847 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11848 if (breg != 0)
11849 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11850 tempreg, tempreg, breg);
7f3c4072 11851 if (offbits == 0)
dd6a37e7 11852 {
f2ae14a1 11853 if (offset_expr.X_add_number != 0)
dd6a37e7 11854 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
f2ae14a1 11855 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
c0ebe874 11856 macro_build (NULL, s, fmt, op[0], tempreg);
dd6a37e7 11857 }
7f3c4072 11858 else if (offbits == 16)
c0ebe874 11859 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
df58fc94 11860 else
c0ebe874 11861 macro_build (NULL, s, fmt, op[0],
c8276761 11862 (int) offset_expr.X_add_number, tempreg);
df58fc94 11863 }
7f3c4072 11864 else if (offbits != 16)
df58fc94 11865 {
7f3c4072 11866 /* The offset field is too narrow to be used for a low-part
2b0f3761 11867 relocation, so load the whole address into the auxiliary
f2ae14a1
RS
11868 register. */
11869 load_address (tempreg, &offset_expr, &used_at);
11870 if (breg != 0)
11871 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11872 tempreg, tempreg, breg);
7f3c4072 11873 if (offbits == 0)
c0ebe874 11874 macro_build (NULL, s, fmt, op[0], tempreg);
dd6a37e7 11875 else
c0ebe874 11876 macro_build (NULL, s, fmt, op[0], 0, tempreg);
aed1a261
RS
11877 }
11878 else if (mips_pic == NO_PIC)
252b5132
RH
11879 {
11880 /* If this is a reference to a GP relative symbol, and there
11881 is no base register, we want
c0ebe874 11882 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
252b5132
RH
11883 Otherwise, if there is no base register, we want
11884 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
c0ebe874 11885 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
252b5132
RH
11886 If we have a constant, we need two instructions anyhow,
11887 so we always use the latter form.
11888
11889 If we have a base register, and this is a reference to a
11890 GP relative symbol, we want
11891 addu $tempreg,$breg,$gp
c0ebe874 11892 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
252b5132
RH
11893 Otherwise we want
11894 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11895 addu $tempreg,$tempreg,$breg
c0ebe874 11896 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245 11897 With a constant we always use the latter case.
76b3015f 11898
d6bc6245
TS
11899 With 64bit address space and no base register and $at usable,
11900 we want
11901 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11902 lui $at,<sym> (BFD_RELOC_HI16_S)
11903 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11904 dsll32 $tempreg,0
11905 daddu $tempreg,$at
c0ebe874 11906 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11907 If we have a base register, we want
11908 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11909 lui $at,<sym> (BFD_RELOC_HI16_S)
11910 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11911 daddu $at,$breg
11912 dsll32 $tempreg,0
11913 daddu $tempreg,$at
c0ebe874 11914 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11915
11916 Without $at we can't generate the optimal path for superscalar
11917 processors here since this would require two temporary registers.
11918 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11919 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11920 dsll $tempreg,16
11921 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11922 dsll $tempreg,16
c0ebe874 11923 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11924 If we have a base register, we want
11925 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11926 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11927 dsll $tempreg,16
11928 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11929 dsll $tempreg,16
11930 daddu $tempreg,$tempreg,$breg
c0ebe874 11931 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
6373ee54 11932
6caf9ef4 11933 For GP relative symbols in 64bit address space we can use
aed1a261
RS
11934 the same sequence as in 32bit address space. */
11935 if (HAVE_64BIT_SYMBOLS)
d6bc6245 11936 {
aed1a261 11937 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4
TS
11938 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11939 {
11940 relax_start (offset_expr.X_add_symbol);
11941 if (breg == 0)
11942 {
c0ebe874 11943 macro_build (&offset_expr, s, fmt, op[0],
6caf9ef4
TS
11944 BFD_RELOC_GPREL16, mips_gp_register);
11945 }
11946 else
11947 {
11948 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11949 tempreg, breg, mips_gp_register);
c0ebe874 11950 macro_build (&offset_expr, s, fmt, op[0],
6caf9ef4
TS
11951 BFD_RELOC_GPREL16, tempreg);
11952 }
11953 relax_switch ();
11954 }
d6bc6245 11955
741fe287 11956 if (used_at == 0 && mips_opts.at)
d6bc6245 11957 {
df58fc94 11958 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb 11959 BFD_RELOC_MIPS_HIGHEST);
df58fc94 11960 macro_build (&offset_expr, "lui", LUI_FMT, AT,
67c0d1eb
RS
11961 BFD_RELOC_HI16_S);
11962 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11963 tempreg, BFD_RELOC_MIPS_HIGHER);
d6bc6245 11964 if (breg != 0)
67c0d1eb 11965 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
df58fc94 11966 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 11967 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
c0ebe874 11968 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
67c0d1eb 11969 tempreg);
d6bc6245
TS
11970 used_at = 1;
11971 }
11972 else
11973 {
df58fc94 11974 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb
RS
11975 BFD_RELOC_MIPS_HIGHEST);
11976 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11977 tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 11978 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb
RS
11979 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11980 tempreg, BFD_RELOC_HI16_S);
df58fc94 11981 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
d6bc6245 11982 if (breg != 0)
67c0d1eb 11983 macro_build (NULL, "daddu", "d,v,t",
17a2f251 11984 tempreg, tempreg, breg);
c0ebe874 11985 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11986 BFD_RELOC_LO16, tempreg);
d6bc6245 11987 }
6caf9ef4
TS
11988
11989 if (mips_relax.sequence)
11990 relax_end ();
8fc2e39e 11991 break;
d6bc6245 11992 }
256ab948 11993
252b5132
RH
11994 if (breg == 0)
11995 {
67c0d1eb 11996 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 11997 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 11998 {
4d7206a2 11999 relax_start (offset_expr.X_add_symbol);
c0ebe874 12000 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
67c0d1eb 12001 mips_gp_register);
4d7206a2 12002 relax_switch ();
252b5132 12003 }
67c0d1eb 12004 macro_build_lui (&offset_expr, tempreg);
c0ebe874 12005 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12006 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
12007 if (mips_relax.sequence)
12008 relax_end ();
252b5132
RH
12009 }
12010 else
12011 {
67c0d1eb 12012 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 12013 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 12014 {
4d7206a2 12015 relax_start (offset_expr.X_add_symbol);
67c0d1eb 12016 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12017 tempreg, breg, mips_gp_register);
c0ebe874 12018 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12019 BFD_RELOC_GPREL16, tempreg);
4d7206a2 12020 relax_switch ();
252b5132 12021 }
67c0d1eb
RS
12022 macro_build_lui (&offset_expr, tempreg);
12023 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12024 tempreg, tempreg, breg);
c0ebe874 12025 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12026 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
12027 if (mips_relax.sequence)
12028 relax_end ();
252b5132
RH
12029 }
12030 }
0a44bf69 12031 else if (!mips_big_got)
252b5132 12032 {
ed6fb7bd 12033 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
f9419b05 12034
252b5132
RH
12035 /* If this is a reference to an external symbol, we want
12036 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12037 nop
c0ebe874 12038 <op> op[0],0($tempreg)
252b5132
RH
12039 Otherwise we want
12040 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12041 nop
12042 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
c0ebe874 12043 <op> op[0],0($tempreg)
f5040a92
AO
12044
12045 For NewABI, we want
12046 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
c0ebe874 12047 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 12048
252b5132
RH
12049 If there is a base register, we add it to $tempreg before
12050 the <op>. If there is a constant, we stick it in the
12051 <op> instruction. We don't handle constants larger than
12052 16 bits, because we have no way to load the upper 16 bits
12053 (actually, we could handle them for the subset of cases
12054 in which we are not using $at). */
9c2799c2 12055 gas_assert (offset_expr.X_op == O_symbol);
f5040a92
AO
12056 if (HAVE_NEWABI)
12057 {
67c0d1eb
RS
12058 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12059 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 12060 if (breg != 0)
67c0d1eb 12061 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12062 tempreg, tempreg, breg);
c0ebe874 12063 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12064 BFD_RELOC_MIPS_GOT_OFST, tempreg);
f5040a92
AO
12065 break;
12066 }
252b5132
RH
12067 expr1.X_add_number = offset_expr.X_add_number;
12068 offset_expr.X_add_number = 0;
12069 if (expr1.X_add_number < -0x8000
12070 || expr1.X_add_number >= 0x8000)
12071 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb
RS
12072 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12073 lw_reloc_type, mips_gp_register);
269137b2 12074 load_delay_nop ();
4d7206a2
RS
12075 relax_start (offset_expr.X_add_symbol);
12076 relax_switch ();
67c0d1eb
RS
12077 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12078 tempreg, BFD_RELOC_LO16);
4d7206a2 12079 relax_end ();
252b5132 12080 if (breg != 0)
67c0d1eb 12081 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12082 tempreg, tempreg, breg);
c0ebe874 12083 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
252b5132 12084 }
0a44bf69 12085 else if (mips_big_got && !HAVE_NEWABI)
252b5132 12086 {
67c0d1eb 12087 int gpdelay;
252b5132
RH
12088
12089 /* If this is a reference to an external symbol, we want
12090 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12091 addu $tempreg,$tempreg,$gp
12092 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
c0ebe874 12093 <op> op[0],0($tempreg)
252b5132
RH
12094 Otherwise we want
12095 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12096 nop
12097 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
c0ebe874 12098 <op> op[0],0($tempreg)
252b5132
RH
12099 If there is a base register, we add it to $tempreg before
12100 the <op>. If there is a constant, we stick it in the
12101 <op> instruction. We don't handle constants larger than
12102 16 bits, because we have no way to load the upper 16 bits
12103 (actually, we could handle them for the subset of cases
f5040a92 12104 in which we are not using $at). */
9c2799c2 12105 gas_assert (offset_expr.X_op == O_symbol);
252b5132
RH
12106 expr1.X_add_number = offset_expr.X_add_number;
12107 offset_expr.X_add_number = 0;
12108 if (expr1.X_add_number < -0x8000
12109 || expr1.X_add_number >= 0x8000)
12110 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12111 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 12112 relax_start (offset_expr.X_add_symbol);
df58fc94 12113 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 12114 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
12115 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12116 mips_gp_register);
12117 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12118 BFD_RELOC_MIPS_GOT_LO16, tempreg);
4d7206a2 12119 relax_switch ();
67c0d1eb
RS
12120 if (gpdelay)
12121 macro_build (NULL, "nop", "");
12122 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12123 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 12124 load_delay_nop ();
67c0d1eb
RS
12125 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12126 tempreg, BFD_RELOC_LO16);
4d7206a2
RS
12127 relax_end ();
12128
252b5132 12129 if (breg != 0)
67c0d1eb 12130 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12131 tempreg, tempreg, breg);
c0ebe874 12132 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
252b5132 12133 }
0a44bf69 12134 else if (mips_big_got && HAVE_NEWABI)
f5040a92 12135 {
f5040a92
AO
12136 /* If this is a reference to an external symbol, we want
12137 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12138 add $tempreg,$tempreg,$gp
12139 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
c0ebe874 12140 <op> op[0],<ofst>($tempreg)
f5040a92
AO
12141 Otherwise, for local symbols, we want:
12142 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
c0ebe874 12143 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
9c2799c2 12144 gas_assert (offset_expr.X_op == O_symbol);
4d7206a2 12145 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
12146 offset_expr.X_add_number = 0;
12147 if (expr1.X_add_number < -0x8000
12148 || expr1.X_add_number >= 0x8000)
12149 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4d7206a2 12150 relax_start (offset_expr.X_add_symbol);
df58fc94 12151 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 12152 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
12153 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12154 mips_gp_register);
12155 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12156 BFD_RELOC_MIPS_GOT_LO16, tempreg);
f5040a92 12157 if (breg != 0)
67c0d1eb 12158 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12159 tempreg, tempreg, breg);
c0ebe874 12160 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
684022ea 12161
4d7206a2 12162 relax_switch ();
f5040a92 12163 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
12164 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12165 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 12166 if (breg != 0)
67c0d1eb 12167 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12168 tempreg, tempreg, breg);
c0ebe874 12169 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12170 BFD_RELOC_MIPS_GOT_OFST, tempreg);
4d7206a2 12171 relax_end ();
f5040a92 12172 }
252b5132
RH
12173 else
12174 abort ();
12175
252b5132
RH
12176 break;
12177
833794fc
MR
12178 case M_JRADDIUSP:
12179 gas_assert (mips_opts.micromips);
12180 gas_assert (mips_opts.insn32);
12181 start_noreorder ();
12182 macro_build (NULL, "jr", "s", RA);
c0ebe874 12183 expr1.X_add_number = op[0] << 2;
833794fc
MR
12184 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
12185 end_noreorder ();
12186 break;
12187
12188 case M_JRC:
12189 gas_assert (mips_opts.micromips);
12190 gas_assert (mips_opts.insn32);
c0ebe874 12191 macro_build (NULL, "jr", "s", op[0]);
833794fc
MR
12192 if (mips_opts.noreorder)
12193 macro_build (NULL, "nop", "");
12194 break;
12195
252b5132
RH
12196 case M_LI:
12197 case M_LI_S:
c0ebe874 12198 load_register (op[0], &imm_expr, 0);
8fc2e39e 12199 break;
252b5132
RH
12200
12201 case M_DLI:
c0ebe874 12202 load_register (op[0], &imm_expr, 1);
8fc2e39e 12203 break;
252b5132
RH
12204
12205 case M_LI_SS:
12206 if (imm_expr.X_op == O_constant)
12207 {
8fc2e39e 12208 used_at = 1;
67c0d1eb 12209 load_register (AT, &imm_expr, 0);
c0ebe874 12210 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
252b5132
RH
12211 break;
12212 }
12213 else
12214 {
b0e6f033
RS
12215 gas_assert (imm_expr.X_op == O_absent
12216 && offset_expr.X_op == O_symbol
90ecf173
MR
12217 && strcmp (segment_name (S_GET_SEGMENT
12218 (offset_expr.X_add_symbol)),
12219 ".lit4") == 0
12220 && offset_expr.X_add_number == 0);
c0ebe874 12221 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
17a2f251 12222 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
8fc2e39e 12223 break;
252b5132
RH
12224 }
12225
12226 case M_LI_D:
ca4e0257
RS
12227 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12228 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12229 order 32 bits of the value and the low order 32 bits are either
12230 zero or in OFFSET_EXPR. */
b0e6f033 12231 if (imm_expr.X_op == O_constant)
252b5132 12232 {
bad1aba3 12233 if (GPR_SIZE == 64)
c0ebe874 12234 load_register (op[0], &imm_expr, 1);
252b5132
RH
12235 else
12236 {
12237 int hreg, lreg;
12238
12239 if (target_big_endian)
12240 {
c0ebe874
RS
12241 hreg = op[0];
12242 lreg = op[0] + 1;
252b5132
RH
12243 }
12244 else
12245 {
c0ebe874
RS
12246 hreg = op[0] + 1;
12247 lreg = op[0];
252b5132
RH
12248 }
12249
12250 if (hreg <= 31)
67c0d1eb 12251 load_register (hreg, &imm_expr, 0);
252b5132
RH
12252 if (lreg <= 31)
12253 {
12254 if (offset_expr.X_op == O_absent)
67c0d1eb 12255 move_register (lreg, 0);
252b5132
RH
12256 else
12257 {
9c2799c2 12258 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 12259 load_register (lreg, &offset_expr, 0);
252b5132
RH
12260 }
12261 }
12262 }
8fc2e39e 12263 break;
252b5132 12264 }
b0e6f033 12265 gas_assert (imm_expr.X_op == O_absent);
252b5132
RH
12266
12267 /* We know that sym is in the .rdata section. First we get the
12268 upper 16 bits of the address. */
12269 if (mips_pic == NO_PIC)
12270 {
67c0d1eb 12271 macro_build_lui (&offset_expr, AT);
8fc2e39e 12272 used_at = 1;
252b5132 12273 }
0a44bf69 12274 else
252b5132 12275 {
67c0d1eb
RS
12276 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12277 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8fc2e39e 12278 used_at = 1;
252b5132 12279 }
bdaaa2e1 12280
252b5132 12281 /* Now we load the register(s). */
bad1aba3 12282 if (GPR_SIZE == 64)
8fc2e39e
TS
12283 {
12284 used_at = 1;
c0ebe874
RS
12285 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12286 BFD_RELOC_LO16, AT);
8fc2e39e 12287 }
252b5132
RH
12288 else
12289 {
8fc2e39e 12290 used_at = 1;
c0ebe874
RS
12291 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12292 BFD_RELOC_LO16, AT);
12293 if (op[0] != RA)
252b5132
RH
12294 {
12295 /* FIXME: How in the world do we deal with the possible
12296 overflow here? */
12297 offset_expr.X_add_number += 4;
67c0d1eb 12298 macro_build (&offset_expr, "lw", "t,o(b)",
c0ebe874 12299 op[0] + 1, BFD_RELOC_LO16, AT);
252b5132
RH
12300 }
12301 }
252b5132
RH
12302 break;
12303
12304 case M_LI_DD:
ca4e0257
RS
12305 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12306 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12307 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12308 the value and the low order 32 bits are either zero or in
12309 OFFSET_EXPR. */
b0e6f033 12310 if (imm_expr.X_op == O_constant)
252b5132 12311 {
8fc2e39e 12312 used_at = 1;
bad1aba3 12313 load_register (AT, &imm_expr, FPR_SIZE == 64);
351cdf24
MF
12314 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12315 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
252b5132
RH
12316 else
12317 {
351cdf24
MF
12318 if (ISA_HAS_MXHC1 (mips_opts.isa))
12319 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12320 else if (FPR_SIZE != 32)
12321 as_bad (_("Unable to generate `%s' compliant code "
12322 "without mthc1"),
12323 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12324 else
12325 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
252b5132 12326 if (offset_expr.X_op == O_absent)
c0ebe874 12327 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
252b5132
RH
12328 else
12329 {
9c2799c2 12330 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 12331 load_register (AT, &offset_expr, 0);
c0ebe874 12332 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
252b5132
RH
12333 }
12334 }
12335 break;
12336 }
12337
b0e6f033
RS
12338 gas_assert (imm_expr.X_op == O_absent
12339 && offset_expr.X_op == O_symbol
90ecf173 12340 && offset_expr.X_add_number == 0);
252b5132
RH
12341 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12342 if (strcmp (s, ".lit8") == 0)
134c0c8b
MR
12343 {
12344 op[2] = mips_gp_register;
f2ae14a1
RS
12345 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12346 offset_reloc[1] = BFD_RELOC_UNUSED;
12347 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132
RH
12348 }
12349 else
12350 {
9c2799c2 12351 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
8fc2e39e 12352 used_at = 1;
0a44bf69 12353 if (mips_pic != NO_PIC)
67c0d1eb
RS
12354 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12355 BFD_RELOC_MIPS_GOT16, mips_gp_register);
252b5132
RH
12356 else
12357 {
12358 /* FIXME: This won't work for a 64 bit address. */
67c0d1eb 12359 macro_build_lui (&offset_expr, AT);
252b5132 12360 }
bdaaa2e1 12361
c0ebe874 12362 op[2] = AT;
f2ae14a1
RS
12363 offset_reloc[0] = BFD_RELOC_LO16;
12364 offset_reloc[1] = BFD_RELOC_UNUSED;
12365 offset_reloc[2] = BFD_RELOC_UNUSED;
134c0c8b 12366 }
f2ae14a1
RS
12367 align = 8;
12368 /* Fall through */
c4a68bea 12369
252b5132
RH
12370 case M_L_DAB:
12371 /*
12372 * The MIPS assembler seems to check for X_add_number not
12373 * being double aligned and generating:
12374 * lui at,%hi(foo+1)
12375 * addu at,at,v1
12376 * addiu at,at,%lo(foo+1)
12377 * lwc1 f2,0(at)
12378 * lwc1 f3,4(at)
12379 * But, the resulting address is the same after relocation so why
12380 * generate the extra instruction?
12381 */
bdaaa2e1 12382 /* Itbl support may require additional care here. */
252b5132 12383 coproc = 1;
df58fc94 12384 fmt = "T,o(b)";
0aa27725 12385 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
12386 {
12387 s = "ldc1";
df58fc94 12388 goto ld_st;
252b5132 12389 }
252b5132 12390 s = "lwc1";
252b5132
RH
12391 goto ldd_std;
12392
12393 case M_S_DAB:
df58fc94
RS
12394 gas_assert (!mips_opts.micromips);
12395 /* Itbl support may require additional care here. */
12396 coproc = 1;
12397 fmt = "T,o(b)";
0aa27725 12398 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
12399 {
12400 s = "sdc1";
df58fc94 12401 goto ld_st;
252b5132 12402 }
252b5132 12403 s = "swc1";
252b5132
RH
12404 goto ldd_std;
12405
e407c74b
NC
12406 case M_LQ_AB:
12407 fmt = "t,o(b)";
12408 s = "lq";
12409 goto ld;
12410
12411 case M_SQ_AB:
12412 fmt = "t,o(b)";
12413 s = "sq";
12414 goto ld_st;
12415
252b5132 12416 case M_LD_AB:
df58fc94 12417 fmt = "t,o(b)";
bad1aba3 12418 if (GPR_SIZE == 64)
252b5132
RH
12419 {
12420 s = "ld";
12421 goto ld;
12422 }
252b5132 12423 s = "lw";
252b5132
RH
12424 goto ldd_std;
12425
12426 case M_SD_AB:
df58fc94 12427 fmt = "t,o(b)";
bad1aba3 12428 if (GPR_SIZE == 64)
252b5132
RH
12429 {
12430 s = "sd";
df58fc94 12431 goto ld_st;
252b5132 12432 }
252b5132 12433 s = "sw";
252b5132
RH
12434
12435 ldd_std:
f2ae14a1
RS
12436 /* Even on a big endian machine $fn comes before $fn+1. We have
12437 to adjust when loading from memory. We set coproc if we must
12438 load $fn+1 first. */
12439 /* Itbl support may require additional care here. */
12440 if (!target_big_endian)
12441 coproc = 0;
12442
c0ebe874 12443 breg = op[2];
f2ae14a1
RS
12444 if (small_offset_p (0, align, 16))
12445 {
12446 ep = &offset_expr;
12447 if (!small_offset_p (4, align, 16))
12448 {
12449 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12450 -1, offset_reloc[0], offset_reloc[1],
12451 offset_reloc[2]);
12452 expr1.X_add_number = 0;
12453 ep = &expr1;
12454 breg = AT;
12455 used_at = 1;
12456 offset_reloc[0] = BFD_RELOC_LO16;
12457 offset_reloc[1] = BFD_RELOC_UNUSED;
12458 offset_reloc[2] = BFD_RELOC_UNUSED;
12459 }
c0ebe874 12460 if (strcmp (s, "lw") == 0 && op[0] == breg)
f2ae14a1
RS
12461 {
12462 ep->X_add_number += 4;
c0ebe874 12463 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
f2ae14a1
RS
12464 offset_reloc[1], offset_reloc[2], breg);
12465 ep->X_add_number -= 4;
c0ebe874 12466 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
f2ae14a1
RS
12467 offset_reloc[1], offset_reloc[2], breg);
12468 }
12469 else
12470 {
c0ebe874 12471 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
f2ae14a1
RS
12472 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12473 breg);
12474 ep->X_add_number += 4;
c0ebe874 12475 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
f2ae14a1
RS
12476 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12477 breg);
12478 }
12479 break;
12480 }
12481
252b5132
RH
12482 if (offset_expr.X_op != O_symbol
12483 && offset_expr.X_op != O_constant)
12484 {
1661c76c 12485 as_bad (_("expression too complex"));
252b5132
RH
12486 offset_expr.X_op = O_constant;
12487 }
12488
2051e8c4
MR
12489 if (HAVE_32BIT_ADDRESSES
12490 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
12491 {
12492 char value [32];
12493
12494 sprintf_vma (value, offset_expr.X_add_number);
1661c76c 12495 as_bad (_("number (0x%s) larger than 32 bits"), value);
55e08f71 12496 }
2051e8c4 12497
90ecf173 12498 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
252b5132
RH
12499 {
12500 /* If this is a reference to a GP relative symbol, we want
c0ebe874
RS
12501 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12502 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
252b5132
RH
12503 If we have a base register, we use this
12504 addu $at,$breg,$gp
c0ebe874
RS
12505 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12506 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
252b5132
RH
12507 If this is not a GP relative symbol, we want
12508 lui $at,<sym> (BFD_RELOC_HI16_S)
c0ebe874
RS
12509 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12510 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12511 If there is a base register, we add it to $at after the
12512 lui instruction. If there is a constant, we always use
12513 the last case. */
39a59cf8
MR
12514 if (offset_expr.X_op == O_symbol
12515 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 12516 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 12517 {
4d7206a2 12518 relax_start (offset_expr.X_add_symbol);
252b5132
RH
12519 if (breg == 0)
12520 {
c9914766 12521 tempreg = mips_gp_register;
252b5132
RH
12522 }
12523 else
12524 {
67c0d1eb 12525 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12526 AT, breg, mips_gp_register);
252b5132 12527 tempreg = AT;
252b5132
RH
12528 used_at = 1;
12529 }
12530
beae10d5 12531 /* Itbl support may require additional care here. */
c0ebe874 12532 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12533 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
12534 offset_expr.X_add_number += 4;
12535
12536 /* Set mips_optimize to 2 to avoid inserting an
12537 undesired nop. */
12538 hold_mips_optimize = mips_optimize;
12539 mips_optimize = 2;
beae10d5 12540 /* Itbl support may require additional care here. */
c0ebe874 12541 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12542 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
12543 mips_optimize = hold_mips_optimize;
12544
4d7206a2 12545 relax_switch ();
252b5132 12546
0970e49e 12547 offset_expr.X_add_number -= 4;
252b5132 12548 }
8fc2e39e 12549 used_at = 1;
f2ae14a1
RS
12550 if (offset_high_part (offset_expr.X_add_number, 16)
12551 != offset_high_part (offset_expr.X_add_number + 4, 16))
12552 {
12553 load_address (AT, &offset_expr, &used_at);
12554 offset_expr.X_op = O_constant;
12555 offset_expr.X_add_number = 0;
12556 }
12557 else
12558 macro_build_lui (&offset_expr, AT);
252b5132 12559 if (breg != 0)
67c0d1eb 12560 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12561 /* Itbl support may require additional care here. */
c0ebe874 12562 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12563 BFD_RELOC_LO16, AT);
252b5132
RH
12564 /* FIXME: How do we handle overflow here? */
12565 offset_expr.X_add_number += 4;
beae10d5 12566 /* Itbl support may require additional care here. */
c0ebe874 12567 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12568 BFD_RELOC_LO16, AT);
4d7206a2
RS
12569 if (mips_relax.sequence)
12570 relax_end ();
bdaaa2e1 12571 }
0a44bf69 12572 else if (!mips_big_got)
252b5132 12573 {
252b5132
RH
12574 /* If this is a reference to an external symbol, we want
12575 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12576 nop
c0ebe874
RS
12577 <op> op[0],0($at)
12578 <op> op[0]+1,4($at)
252b5132
RH
12579 Otherwise we want
12580 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12581 nop
c0ebe874
RS
12582 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12583 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12584 If there is a base register we add it to $at before the
12585 lwc1 instructions. If there is a constant we include it
12586 in the lwc1 instructions. */
12587 used_at = 1;
12588 expr1.X_add_number = offset_expr.X_add_number;
252b5132
RH
12589 if (expr1.X_add_number < -0x8000
12590 || expr1.X_add_number >= 0x8000 - 4)
12591 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12592 load_got_offset (AT, &offset_expr);
269137b2 12593 load_delay_nop ();
252b5132 12594 if (breg != 0)
67c0d1eb 12595 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
252b5132
RH
12596
12597 /* Set mips_optimize to 2 to avoid inserting an undesired
12598 nop. */
12599 hold_mips_optimize = mips_optimize;
12600 mips_optimize = 2;
4d7206a2 12601
beae10d5 12602 /* Itbl support may require additional care here. */
4d7206a2 12603 relax_start (offset_expr.X_add_symbol);
c0ebe874 12604 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12605 BFD_RELOC_LO16, AT);
4d7206a2 12606 expr1.X_add_number += 4;
c0ebe874 12607 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12608 BFD_RELOC_LO16, AT);
4d7206a2 12609 relax_switch ();
c0ebe874 12610 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12611 BFD_RELOC_LO16, AT);
4d7206a2 12612 offset_expr.X_add_number += 4;
c0ebe874 12613 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12614 BFD_RELOC_LO16, AT);
4d7206a2 12615 relax_end ();
252b5132 12616
4d7206a2 12617 mips_optimize = hold_mips_optimize;
252b5132 12618 }
0a44bf69 12619 else if (mips_big_got)
252b5132 12620 {
67c0d1eb 12621 int gpdelay;
252b5132
RH
12622
12623 /* If this is a reference to an external symbol, we want
12624 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12625 addu $at,$at,$gp
12626 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12627 nop
c0ebe874
RS
12628 <op> op[0],0($at)
12629 <op> op[0]+1,4($at)
252b5132
RH
12630 Otherwise we want
12631 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12632 nop
c0ebe874
RS
12633 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12634 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12635 If there is a base register we add it to $at before the
12636 lwc1 instructions. If there is a constant we include it
12637 in the lwc1 instructions. */
12638 used_at = 1;
12639 expr1.X_add_number = offset_expr.X_add_number;
12640 offset_expr.X_add_number = 0;
12641 if (expr1.X_add_number < -0x8000
12642 || expr1.X_add_number >= 0x8000 - 4)
12643 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12644 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 12645 relax_start (offset_expr.X_add_symbol);
df58fc94 12646 macro_build (&offset_expr, "lui", LUI_FMT,
67c0d1eb
RS
12647 AT, BFD_RELOC_MIPS_GOT_HI16);
12648 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12649 AT, AT, mips_gp_register);
67c0d1eb 12650 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 12651 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
269137b2 12652 load_delay_nop ();
252b5132 12653 if (breg != 0)
67c0d1eb 12654 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12655 /* Itbl support may require additional care here. */
c0ebe874 12656 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12657 BFD_RELOC_LO16, AT);
252b5132
RH
12658 expr1.X_add_number += 4;
12659
12660 /* Set mips_optimize to 2 to avoid inserting an undesired
12661 nop. */
12662 hold_mips_optimize = mips_optimize;
12663 mips_optimize = 2;
beae10d5 12664 /* Itbl support may require additional care here. */
c0ebe874 12665 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12666 BFD_RELOC_LO16, AT);
252b5132
RH
12667 mips_optimize = hold_mips_optimize;
12668 expr1.X_add_number -= 4;
12669
4d7206a2
RS
12670 relax_switch ();
12671 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
12672 if (gpdelay)
12673 macro_build (NULL, "nop", "");
12674 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12675 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 12676 load_delay_nop ();
252b5132 12677 if (breg != 0)
67c0d1eb 12678 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12679 /* Itbl support may require additional care here. */
c0ebe874 12680 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12681 BFD_RELOC_LO16, AT);
4d7206a2 12682 offset_expr.X_add_number += 4;
252b5132
RH
12683
12684 /* Set mips_optimize to 2 to avoid inserting an undesired
12685 nop. */
12686 hold_mips_optimize = mips_optimize;
12687 mips_optimize = 2;
beae10d5 12688 /* Itbl support may require additional care here. */
c0ebe874 12689 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12690 BFD_RELOC_LO16, AT);
252b5132 12691 mips_optimize = hold_mips_optimize;
4d7206a2 12692 relax_end ();
252b5132 12693 }
252b5132
RH
12694 else
12695 abort ();
12696
252b5132 12697 break;
3739860c 12698
dd6a37e7 12699 case M_SAA_AB:
dd6a37e7 12700 s = "saa";
0db377d0 12701 goto saa_saad;
dd6a37e7 12702 case M_SAAD_AB:
dd6a37e7 12703 s = "saad";
0db377d0
MR
12704 saa_saad:
12705 gas_assert (!mips_opts.micromips);
7f3c4072 12706 offbits = 0;
dd6a37e7
AP
12707 fmt = "t,(b)";
12708 goto ld_st;
12709
252b5132
RH
12710 /* New code added to support COPZ instructions.
12711 This code builds table entries out of the macros in mip_opcodes.
12712 R4000 uses interlocks to handle coproc delays.
12713 Other chips (like the R3000) require nops to be inserted for delays.
12714
f72c8c98 12715 FIXME: Currently, we require that the user handle delays.
252b5132
RH
12716 In order to fill delay slots for non-interlocked chips,
12717 we must have a way to specify delays based on the coprocessor.
12718 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12719 What are the side-effects of the cop instruction?
12720 What cache support might we have and what are its effects?
12721 Both coprocessor & memory require delays. how long???
bdaaa2e1 12722 What registers are read/set/modified?
252b5132
RH
12723
12724 If an itbl is provided to interpret cop instructions,
bdaaa2e1 12725 this knowledge can be encoded in the itbl spec. */
252b5132
RH
12726
12727 case M_COP0:
12728 s = "c0";
12729 goto copz;
12730 case M_COP1:
12731 s = "c1";
12732 goto copz;
12733 case M_COP2:
12734 s = "c2";
12735 goto copz;
12736 case M_COP3:
12737 s = "c3";
12738 copz:
df58fc94 12739 gas_assert (!mips_opts.micromips);
252b5132
RH
12740 /* For now we just do C (same as Cz). The parameter will be
12741 stored in insn_opcode by mips_ip. */
c8276761 12742 macro_build (NULL, s, "C", (int) ip->insn_opcode);
8fc2e39e 12743 break;
252b5132 12744
ea1fb5dc 12745 case M_MOVE:
c0ebe874 12746 move_register (op[0], op[1]);
8fc2e39e 12747 break;
ea1fb5dc 12748
833794fc
MR
12749 case M_MOVEP:
12750 gas_assert (mips_opts.micromips);
12751 gas_assert (mips_opts.insn32);
c0ebe874
RS
12752 move_register (micromips_to_32_reg_h_map1[op[0]],
12753 micromips_to_32_reg_m_map[op[1]]);
12754 move_register (micromips_to_32_reg_h_map2[op[0]],
12755 micromips_to_32_reg_n_map[op[2]]);
833794fc
MR
12756 break;
12757
252b5132
RH
12758 case M_DMUL:
12759 dbl = 1;
1a0670f3 12760 /* Fall through. */
252b5132 12761 case M_MUL:
e407c74b 12762 if (mips_opts.arch == CPU_R5900)
c0ebe874
RS
12763 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12764 op[2]);
e407c74b
NC
12765 else
12766 {
c0ebe874
RS
12767 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12768 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
e407c74b 12769 }
8fc2e39e 12770 break;
252b5132
RH
12771
12772 case M_DMUL_I:
12773 dbl = 1;
1a0670f3 12774 /* Fall through. */
252b5132
RH
12775 case M_MUL_I:
12776 /* The MIPS assembler some times generates shifts and adds. I'm
12777 not trying to be that fancy. GCC should do this for us
12778 anyway. */
8fc2e39e 12779 used_at = 1;
67c0d1eb 12780 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
12781 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12782 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132
RH
12783 break;
12784
12785 case M_DMULO_I:
12786 dbl = 1;
1a0670f3 12787 /* Fall through. */
252b5132
RH
12788 case M_MULO_I:
12789 imm = 1;
12790 goto do_mulo;
12791
12792 case M_DMULO:
12793 dbl = 1;
1a0670f3 12794 /* Fall through. */
252b5132
RH
12795 case M_MULO:
12796 do_mulo:
7d10b47d 12797 start_noreorder ();
8fc2e39e 12798 used_at = 1;
252b5132 12799 if (imm)
67c0d1eb 12800 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
12801 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12802 op[1], imm ? AT : op[2]);
12803 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12804 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
df58fc94 12805 macro_build (NULL, "mfhi", MFHL_FMT, AT);
252b5132 12806 if (mips_trap)
c0ebe874 12807 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
252b5132
RH
12808 else
12809 {
df58fc94
RS
12810 if (mips_opts.micromips)
12811 micromips_label_expr (&label_expr);
12812 else
12813 label_expr.X_add_number = 8;
c0ebe874 12814 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
a605d2b3 12815 macro_build (NULL, "nop", "");
df58fc94
RS
12816 macro_build (NULL, "break", BRK_FMT, 6);
12817 if (mips_opts.micromips)
12818 micromips_add_label ();
252b5132 12819 }
7d10b47d 12820 end_noreorder ();
c0ebe874 12821 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132
RH
12822 break;
12823
12824 case M_DMULOU_I:
12825 dbl = 1;
1a0670f3 12826 /* Fall through. */
252b5132
RH
12827 case M_MULOU_I:
12828 imm = 1;
12829 goto do_mulou;
12830
12831 case M_DMULOU:
12832 dbl = 1;
1a0670f3 12833 /* Fall through. */
252b5132
RH
12834 case M_MULOU:
12835 do_mulou:
7d10b47d 12836 start_noreorder ();
8fc2e39e 12837 used_at = 1;
252b5132 12838 if (imm)
67c0d1eb
RS
12839 load_register (AT, &imm_expr, dbl);
12840 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
c0ebe874 12841 op[1], imm ? AT : op[2]);
df58fc94 12842 macro_build (NULL, "mfhi", MFHL_FMT, AT);
c0ebe874 12843 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132 12844 if (mips_trap)
df58fc94 12845 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
252b5132
RH
12846 else
12847 {
df58fc94
RS
12848 if (mips_opts.micromips)
12849 micromips_label_expr (&label_expr);
12850 else
12851 label_expr.X_add_number = 8;
12852 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
a605d2b3 12853 macro_build (NULL, "nop", "");
df58fc94
RS
12854 macro_build (NULL, "break", BRK_FMT, 6);
12855 if (mips_opts.micromips)
12856 micromips_add_label ();
252b5132 12857 }
7d10b47d 12858 end_noreorder ();
252b5132
RH
12859 break;
12860
771c7ce4 12861 case M_DROL:
fef14a42 12862 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 12863 {
c0ebe874 12864 if (op[0] == op[1])
82dd0097
CD
12865 {
12866 tempreg = AT;
12867 used_at = 1;
12868 }
12869 else
c0ebe874
RS
12870 tempreg = op[0];
12871 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12872 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
8fc2e39e 12873 break;
82dd0097 12874 }
8fc2e39e 12875 used_at = 1;
c0ebe874
RS
12876 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12877 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12878 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12879 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12880 break;
12881
252b5132 12882 case M_ROL:
fef14a42 12883 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12884 {
c0ebe874 12885 if (op[0] == op[1])
82dd0097
CD
12886 {
12887 tempreg = AT;
12888 used_at = 1;
12889 }
12890 else
c0ebe874
RS
12891 tempreg = op[0];
12892 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12893 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
8fc2e39e 12894 break;
82dd0097 12895 }
8fc2e39e 12896 used_at = 1;
c0ebe874
RS
12897 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12898 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12899 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12900 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12901 break;
12902
771c7ce4
TS
12903 case M_DROL_I:
12904 {
12905 unsigned int rot;
e0471c16
TS
12906 const char *l;
12907 const char *rr;
771c7ce4 12908
771c7ce4 12909 rot = imm_expr.X_add_number & 0x3f;
fef14a42 12910 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
60b63b72
RS
12911 {
12912 rot = (64 - rot) & 0x3f;
12913 if (rot >= 32)
c0ebe874 12914 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
60b63b72 12915 else
c0ebe874 12916 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12917 break;
60b63b72 12918 }
483fc7cd 12919 if (rot == 0)
483fc7cd 12920 {
c0ebe874 12921 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12922 break;
483fc7cd 12923 }
82dd0097 12924 l = (rot < 0x20) ? "dsll" : "dsll32";
91d6fa6a 12925 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
82dd0097 12926 rot &= 0x1f;
8fc2e39e 12927 used_at = 1;
c0ebe874
RS
12928 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12929 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12930 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12931 }
12932 break;
12933
252b5132 12934 case M_ROL_I:
771c7ce4
TS
12935 {
12936 unsigned int rot;
12937
771c7ce4 12938 rot = imm_expr.X_add_number & 0x1f;
fef14a42 12939 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
60b63b72 12940 {
c0ebe874
RS
12941 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12942 (32 - rot) & 0x1f);
8fc2e39e 12943 break;
60b63b72 12944 }
483fc7cd 12945 if (rot == 0)
483fc7cd 12946 {
c0ebe874 12947 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12948 break;
483fc7cd 12949 }
8fc2e39e 12950 used_at = 1;
c0ebe874
RS
12951 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12952 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12953 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12954 }
12955 break;
12956
12957 case M_DROR:
fef14a42 12958 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 12959 {
c0ebe874 12960 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
8fc2e39e 12961 break;
82dd0097 12962 }
8fc2e39e 12963 used_at = 1;
c0ebe874
RS
12964 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12965 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12966 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12967 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12968 break;
12969
12970 case M_ROR:
fef14a42 12971 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12972 {
c0ebe874 12973 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
8fc2e39e 12974 break;
82dd0097 12975 }
8fc2e39e 12976 used_at = 1;
c0ebe874
RS
12977 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12978 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12979 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12980 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12981 break;
12982
771c7ce4
TS
12983 case M_DROR_I:
12984 {
12985 unsigned int rot;
e0471c16
TS
12986 const char *l;
12987 const char *rr;
771c7ce4 12988
771c7ce4 12989 rot = imm_expr.X_add_number & 0x3f;
fef14a42 12990 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097
CD
12991 {
12992 if (rot >= 32)
c0ebe874 12993 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
82dd0097 12994 else
c0ebe874 12995 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12996 break;
82dd0097 12997 }
483fc7cd 12998 if (rot == 0)
483fc7cd 12999 {
c0ebe874 13000 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 13001 break;
483fc7cd 13002 }
91d6fa6a 13003 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
82dd0097
CD
13004 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
13005 rot &= 0x1f;
8fc2e39e 13006 used_at = 1;
c0ebe874
RS
13007 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
13008 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13009 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
13010 }
13011 break;
13012
252b5132 13013 case M_ROR_I:
771c7ce4
TS
13014 {
13015 unsigned int rot;
13016
771c7ce4 13017 rot = imm_expr.X_add_number & 0x1f;
fef14a42 13018 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 13019 {
c0ebe874 13020 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 13021 break;
82dd0097 13022 }
483fc7cd 13023 if (rot == 0)
483fc7cd 13024 {
c0ebe874 13025 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 13026 break;
483fc7cd 13027 }
8fc2e39e 13028 used_at = 1;
c0ebe874
RS
13029 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
13030 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13031 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4 13032 }
252b5132
RH
13033 break;
13034
252b5132 13035 case M_SEQ:
c0ebe874
RS
13036 if (op[1] == 0)
13037 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
13038 else if (op[2] == 0)
13039 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
13040 else
13041 {
c0ebe874
RS
13042 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13043 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
252b5132 13044 }
8fc2e39e 13045 break;
252b5132
RH
13046
13047 case M_SEQ_I:
b0e6f033 13048 if (imm_expr.X_add_number == 0)
252b5132 13049 {
c0ebe874 13050 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 13051 break;
252b5132 13052 }
c0ebe874 13053 if (op[1] == 0)
252b5132 13054 {
1661c76c 13055 as_warn (_("instruction %s: result is always false"),
252b5132 13056 ip->insn_mo->name);
c0ebe874 13057 move_register (op[0], 0);
8fc2e39e 13058 break;
252b5132 13059 }
dd3cbb7e
NC
13060 if (CPU_HAS_SEQ (mips_opts.arch)
13061 && -512 <= imm_expr.X_add_number
13062 && imm_expr.X_add_number < 512)
13063 {
c0ebe874 13064 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
750bdd57 13065 (int) imm_expr.X_add_number);
dd3cbb7e
NC
13066 break;
13067 }
b0e6f033 13068 if (imm_expr.X_add_number >= 0
252b5132 13069 && imm_expr.X_add_number < 0x10000)
c0ebe874 13070 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
b0e6f033 13071 else if (imm_expr.X_add_number > -0x8000
252b5132
RH
13072 && imm_expr.X_add_number < 0)
13073 {
13074 imm_expr.X_add_number = -imm_expr.X_add_number;
bad1aba3 13075 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
c0ebe874 13076 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132 13077 }
dd3cbb7e
NC
13078 else if (CPU_HAS_SEQ (mips_opts.arch))
13079 {
13080 used_at = 1;
bad1aba3 13081 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13082 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
dd3cbb7e
NC
13083 break;
13084 }
252b5132
RH
13085 else
13086 {
bad1aba3 13087 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13088 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
252b5132
RH
13089 used_at = 1;
13090 }
c0ebe874 13091 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 13092 break;
252b5132 13093
c0ebe874 13094 case M_SGE: /* X >= Y <==> not (X < Y) */
252b5132
RH
13095 s = "slt";
13096 goto sge;
13097 case M_SGEU:
13098 s = "sltu";
13099 sge:
c0ebe874
RS
13100 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
13101 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 13102 break;
252b5132 13103
c0ebe874 13104 case M_SGE_I: /* X >= I <==> not (X < I) */
252b5132 13105 case M_SGEU_I:
b0e6f033 13106 if (imm_expr.X_add_number >= -0x8000
252b5132 13107 && imm_expr.X_add_number < 0x8000)
c0ebe874
RS
13108 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
13109 op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
13110 else
13111 {
bad1aba3 13112 load_register (AT, &imm_expr, GPR_SIZE == 64);
67c0d1eb 13113 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
c0ebe874 13114 op[0], op[1], AT);
252b5132
RH
13115 used_at = 1;
13116 }
c0ebe874 13117 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 13118 break;
252b5132 13119
c0ebe874 13120 case M_SGT: /* X > Y <==> Y < X */
252b5132
RH
13121 s = "slt";
13122 goto sgt;
13123 case M_SGTU:
13124 s = "sltu";
13125 sgt:
c0ebe874 13126 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
8fc2e39e 13127 break;
252b5132 13128
c0ebe874 13129 case M_SGT_I: /* X > I <==> I < X */
252b5132
RH
13130 s = "slt";
13131 goto sgti;
13132 case M_SGTU_I:
13133 s = "sltu";
13134 sgti:
8fc2e39e 13135 used_at = 1;
bad1aba3 13136 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13137 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
252b5132
RH
13138 break;
13139
c0ebe874 13140 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
252b5132
RH
13141 s = "slt";
13142 goto sle;
13143 case M_SLEU:
13144 s = "sltu";
13145 sle:
c0ebe874
RS
13146 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13147 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 13148 break;
252b5132 13149
c0ebe874 13150 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
252b5132
RH
13151 s = "slt";
13152 goto slei;
13153 case M_SLEU_I:
13154 s = "sltu";
13155 slei:
8fc2e39e 13156 used_at = 1;
bad1aba3 13157 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874
RS
13158 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13159 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
252b5132
RH
13160 break;
13161
13162 case M_SLT_I:
b0e6f033 13163 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
13164 && imm_expr.X_add_number < 0x8000)
13165 {
c0ebe874
RS
13166 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
13167 BFD_RELOC_LO16);
8fc2e39e 13168 break;
252b5132 13169 }
8fc2e39e 13170 used_at = 1;
bad1aba3 13171 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13172 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
252b5132
RH
13173 break;
13174
13175 case M_SLTU_I:
b0e6f033 13176 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
13177 && imm_expr.X_add_number < 0x8000)
13178 {
c0ebe874 13179 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
17a2f251 13180 BFD_RELOC_LO16);
8fc2e39e 13181 break;
252b5132 13182 }
8fc2e39e 13183 used_at = 1;
bad1aba3 13184 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13185 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
252b5132
RH
13186 break;
13187
13188 case M_SNE:
c0ebe874
RS
13189 if (op[1] == 0)
13190 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
13191 else if (op[2] == 0)
13192 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
252b5132
RH
13193 else
13194 {
c0ebe874
RS
13195 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13196 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
252b5132 13197 }
8fc2e39e 13198 break;
252b5132
RH
13199
13200 case M_SNE_I:
b0e6f033 13201 if (imm_expr.X_add_number == 0)
252b5132 13202 {
c0ebe874 13203 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
8fc2e39e 13204 break;
252b5132 13205 }
c0ebe874 13206 if (op[1] == 0)
252b5132 13207 {
1661c76c 13208 as_warn (_("instruction %s: result is always true"),
252b5132 13209 ip->insn_mo->name);
bad1aba3 13210 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
c0ebe874 13211 op[0], 0, BFD_RELOC_LO16);
8fc2e39e 13212 break;
252b5132 13213 }
dd3cbb7e
NC
13214 if (CPU_HAS_SEQ (mips_opts.arch)
13215 && -512 <= imm_expr.X_add_number
13216 && imm_expr.X_add_number < 512)
13217 {
c0ebe874 13218 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
750bdd57 13219 (int) imm_expr.X_add_number);
dd3cbb7e
NC
13220 break;
13221 }
b0e6f033 13222 if (imm_expr.X_add_number >= 0
252b5132
RH
13223 && imm_expr.X_add_number < 0x10000)
13224 {
c0ebe874
RS
13225 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13226 BFD_RELOC_LO16);
252b5132 13227 }
b0e6f033 13228 else if (imm_expr.X_add_number > -0x8000
252b5132
RH
13229 && imm_expr.X_add_number < 0)
13230 {
13231 imm_expr.X_add_number = -imm_expr.X_add_number;
bad1aba3 13232 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
c0ebe874 13233 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132 13234 }
dd3cbb7e
NC
13235 else if (CPU_HAS_SEQ (mips_opts.arch))
13236 {
13237 used_at = 1;
bad1aba3 13238 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13239 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
dd3cbb7e
NC
13240 break;
13241 }
252b5132
RH
13242 else
13243 {
bad1aba3 13244 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13245 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
252b5132
RH
13246 used_at = 1;
13247 }
c0ebe874 13248 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
8fc2e39e 13249 break;
252b5132 13250
df58fc94
RS
13251 case M_SUB_I:
13252 s = "addi";
13253 s2 = "sub";
13254 goto do_subi;
13255 case M_SUBU_I:
13256 s = "addiu";
13257 s2 = "subu";
13258 goto do_subi;
252b5132
RH
13259 case M_DSUB_I:
13260 dbl = 1;
df58fc94
RS
13261 s = "daddi";
13262 s2 = "dsub";
13263 if (!mips_opts.micromips)
13264 goto do_subi;
b0e6f033 13265 if (imm_expr.X_add_number > -0x200
df58fc94 13266 && imm_expr.X_add_number <= 0x200)
252b5132 13267 {
b0e6f033
RS
13268 macro_build (NULL, s, "t,r,.", op[0], op[1],
13269 (int) -imm_expr.X_add_number);
8fc2e39e 13270 break;
252b5132 13271 }
df58fc94 13272 goto do_subi_i;
252b5132
RH
13273 case M_DSUBU_I:
13274 dbl = 1;
df58fc94
RS
13275 s = "daddiu";
13276 s2 = "dsubu";
13277 do_subi:
b0e6f033 13278 if (imm_expr.X_add_number > -0x8000
252b5132
RH
13279 && imm_expr.X_add_number <= 0x8000)
13280 {
13281 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13282 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 13283 break;
252b5132 13284 }
df58fc94 13285 do_subi_i:
8fc2e39e 13286 used_at = 1;
67c0d1eb 13287 load_register (AT, &imm_expr, dbl);
c0ebe874 13288 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
13289 break;
13290
13291 case M_TEQ_I:
13292 s = "teq";
13293 goto trap;
13294 case M_TGE_I:
13295 s = "tge";
13296 goto trap;
13297 case M_TGEU_I:
13298 s = "tgeu";
13299 goto trap;
13300 case M_TLT_I:
13301 s = "tlt";
13302 goto trap;
13303 case M_TLTU_I:
13304 s = "tltu";
13305 goto trap;
13306 case M_TNE_I:
13307 s = "tne";
13308 trap:
8fc2e39e 13309 used_at = 1;
bad1aba3 13310 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13311 macro_build (NULL, s, "s,t", op[0], AT);
252b5132
RH
13312 break;
13313
252b5132 13314 case M_TRUNCWS:
43841e91 13315 case M_TRUNCWD:
df58fc94 13316 gas_assert (!mips_opts.micromips);
0aa27725 13317 gas_assert (mips_opts.isa == ISA_MIPS1);
8fc2e39e 13318 used_at = 1;
252b5132
RH
13319
13320 /*
13321 * Is the double cfc1 instruction a bug in the mips assembler;
13322 * or is there a reason for it?
13323 */
7d10b47d 13324 start_noreorder ();
c0ebe874
RS
13325 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13326 macro_build (NULL, "cfc1", "t,G", op[2], RA);
67c0d1eb 13327 macro_build (NULL, "nop", "");
252b5132 13328 expr1.X_add_number = 3;
c0ebe874 13329 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
252b5132 13330 expr1.X_add_number = 2;
67c0d1eb
RS
13331 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13332 macro_build (NULL, "ctc1", "t,G", AT, RA);
13333 macro_build (NULL, "nop", "");
13334 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
c0ebe874
RS
13335 op[0], op[1]);
13336 macro_build (NULL, "ctc1", "t,G", op[2], RA);
67c0d1eb 13337 macro_build (NULL, "nop", "");
7d10b47d 13338 end_noreorder ();
252b5132
RH
13339 break;
13340
f2ae14a1 13341 case M_ULH_AB:
252b5132 13342 s = "lb";
df58fc94
RS
13343 s2 = "lbu";
13344 off = 1;
13345 goto uld_st;
f2ae14a1 13346 case M_ULHU_AB:
252b5132 13347 s = "lbu";
df58fc94
RS
13348 s2 = "lbu";
13349 off = 1;
13350 goto uld_st;
f2ae14a1 13351 case M_ULW_AB:
df58fc94
RS
13352 s = "lwl";
13353 s2 = "lwr";
7f3c4072 13354 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
13355 off = 3;
13356 goto uld_st;
f2ae14a1 13357 case M_ULD_AB:
252b5132
RH
13358 s = "ldl";
13359 s2 = "ldr";
7f3c4072 13360 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 13361 off = 7;
df58fc94 13362 goto uld_st;
f2ae14a1 13363 case M_USH_AB:
df58fc94
RS
13364 s = "sb";
13365 s2 = "sb";
13366 off = 1;
13367 ust = 1;
13368 goto uld_st;
f2ae14a1 13369 case M_USW_AB:
df58fc94
RS
13370 s = "swl";
13371 s2 = "swr";
7f3c4072 13372 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 13373 off = 3;
df58fc94
RS
13374 ust = 1;
13375 goto uld_st;
f2ae14a1 13376 case M_USD_AB:
df58fc94
RS
13377 s = "sdl";
13378 s2 = "sdr";
7f3c4072 13379 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
13380 off = 7;
13381 ust = 1;
13382
13383 uld_st:
c0ebe874 13384 breg = op[2];
f2ae14a1 13385 large_offset = !small_offset_p (off, align, offbits);
df58fc94
RS
13386 ep = &offset_expr;
13387 expr1.X_add_number = 0;
f2ae14a1 13388 if (large_offset)
df58fc94
RS
13389 {
13390 used_at = 1;
13391 tempreg = AT;
f2ae14a1
RS
13392 if (small_offset_p (0, align, 16))
13393 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13394 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13395 else
13396 {
13397 load_address (tempreg, ep, &used_at);
13398 if (breg != 0)
13399 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13400 tempreg, tempreg, breg);
13401 }
13402 offset_reloc[0] = BFD_RELOC_LO16;
13403 offset_reloc[1] = BFD_RELOC_UNUSED;
13404 offset_reloc[2] = BFD_RELOC_UNUSED;
df58fc94 13405 breg = tempreg;
c0ebe874 13406 tempreg = op[0];
df58fc94
RS
13407 ep = &expr1;
13408 }
c0ebe874 13409 else if (!ust && op[0] == breg)
8fc2e39e
TS
13410 {
13411 used_at = 1;
13412 tempreg = AT;
13413 }
252b5132 13414 else
c0ebe874 13415 tempreg = op[0];
af22f5b2 13416
df58fc94
RS
13417 if (off == 1)
13418 goto ulh_sh;
252b5132 13419
90ecf173 13420 if (!target_big_endian)
df58fc94 13421 ep->X_add_number += off;
f2ae14a1 13422 if (offbits == 12)
c8276761 13423 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
13424 else
13425 macro_build (ep, s, "t,o(b)", tempreg, -1,
13426 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94 13427
90ecf173 13428 if (!target_big_endian)
df58fc94 13429 ep->X_add_number -= off;
252b5132 13430 else
df58fc94 13431 ep->X_add_number += off;
f2ae14a1 13432 if (offbits == 12)
df58fc94 13433 macro_build (NULL, s2, "t,~(b)",
c8276761 13434 tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
13435 else
13436 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13437 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 13438
df58fc94 13439 /* If necessary, move the result in tempreg to the final destination. */
c0ebe874 13440 if (!ust && op[0] != tempreg)
df58fc94
RS
13441 {
13442 /* Protect second load's delay slot. */
13443 load_delay_nop ();
c0ebe874 13444 move_register (op[0], tempreg);
df58fc94 13445 }
8fc2e39e 13446 break;
252b5132 13447
df58fc94 13448 ulh_sh:
d6bc6245 13449 used_at = 1;
df58fc94
RS
13450 if (target_big_endian == ust)
13451 ep->X_add_number += off;
c0ebe874 13452 tempreg = ust || large_offset ? op[0] : AT;
f2ae14a1
RS
13453 macro_build (ep, s, "t,o(b)", tempreg, -1,
13454 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94
RS
13455
13456 /* For halfword transfers we need a temporary register to shuffle
13457 bytes. Unfortunately for M_USH_A we have none available before
13458 the next store as AT holds the base address. We deal with this
13459 case by clobbering TREG and then restoring it as with ULH. */
c0ebe874 13460 tempreg = ust == large_offset ? op[0] : AT;
df58fc94 13461 if (ust)
c0ebe874 13462 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
df58fc94
RS
13463
13464 if (target_big_endian == ust)
13465 ep->X_add_number -= off;
252b5132 13466 else
df58fc94 13467 ep->X_add_number += off;
f2ae14a1
RS
13468 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13469 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 13470
df58fc94 13471 /* For M_USH_A re-retrieve the LSB. */
f2ae14a1 13472 if (ust && large_offset)
df58fc94
RS
13473 {
13474 if (target_big_endian)
13475 ep->X_add_number += off;
13476 else
13477 ep->X_add_number -= off;
f2ae14a1
RS
13478 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13479 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
df58fc94
RS
13480 }
13481 /* For ULH and M_USH_A OR the LSB in. */
f2ae14a1 13482 if (!ust || large_offset)
df58fc94 13483 {
c0ebe874 13484 tempreg = !large_offset ? AT : op[0];
df58fc94 13485 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
c0ebe874 13486 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
df58fc94 13487 }
252b5132
RH
13488 break;
13489
13490 default:
13491 /* FIXME: Check if this is one of the itbl macros, since they
bdaaa2e1 13492 are added dynamically. */
1661c76c 13493 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
252b5132
RH
13494 break;
13495 }
741fe287 13496 if (!mips_opts.at && used_at)
1661c76c 13497 as_bad (_("macro used $at after \".set noat\""));
252b5132
RH
13498}
13499
13500/* Implement macros in mips16 mode. */
13501
13502static void
17a2f251 13503mips16_macro (struct mips_cl_insn *ip)
252b5132 13504{
c0ebe874 13505 const struct mips_operand_array *operands;
252b5132 13506 int mask;
c0ebe874 13507 int tmp;
252b5132
RH
13508 expressionS expr1;
13509 int dbl;
13510 const char *s, *s2, *s3;
c0ebe874
RS
13511 unsigned int op[MAX_OPERANDS];
13512 unsigned int i;
252b5132
RH
13513
13514 mask = ip->insn_mo->mask;
13515
c0ebe874
RS
13516 operands = insn_operands (ip);
13517 for (i = 0; i < MAX_OPERANDS; i++)
13518 if (operands->operand[i])
13519 op[i] = insn_extract_operand (ip, operands->operand[i]);
13520 else
13521 op[i] = -1;
252b5132 13522
252b5132
RH
13523 expr1.X_op = O_constant;
13524 expr1.X_op_symbol = NULL;
13525 expr1.X_add_symbol = NULL;
13526 expr1.X_add_number = 1;
13527
13528 dbl = 0;
13529
13530 switch (mask)
13531 {
13532 default:
b37df7c4 13533 abort ();
252b5132
RH
13534
13535 case M_DDIV_3:
13536 dbl = 1;
1a0670f3 13537 /* Fall through. */
252b5132
RH
13538 case M_DIV_3:
13539 s = "mflo";
13540 goto do_div3;
13541 case M_DREM_3:
13542 dbl = 1;
1a0670f3 13543 /* Fall through. */
252b5132
RH
13544 case M_REM_3:
13545 s = "mfhi";
13546 do_div3:
7d10b47d 13547 start_noreorder ();
d8722d76 13548 macro_build (NULL, dbl ? "ddiv" : "div", ".,x,y", op[1], op[2]);
252b5132 13549 expr1.X_add_number = 2;
c0ebe874 13550 macro_build (&expr1, "bnez", "x,p", op[2]);
67c0d1eb 13551 macro_build (NULL, "break", "6", 7);
bdaaa2e1 13552
252b5132
RH
13553 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13554 since that causes an overflow. We should do that as well,
13555 but I don't see how to do the comparisons without a temporary
13556 register. */
7d10b47d 13557 end_noreorder ();
c0ebe874 13558 macro_build (NULL, s, "x", op[0]);
252b5132
RH
13559 break;
13560
13561 case M_DIVU_3:
13562 s = "divu";
13563 s2 = "mflo";
13564 goto do_divu3;
13565 case M_REMU_3:
13566 s = "divu";
13567 s2 = "mfhi";
13568 goto do_divu3;
13569 case M_DDIVU_3:
13570 s = "ddivu";
13571 s2 = "mflo";
13572 goto do_divu3;
13573 case M_DREMU_3:
13574 s = "ddivu";
13575 s2 = "mfhi";
13576 do_divu3:
7d10b47d 13577 start_noreorder ();
d8722d76 13578 macro_build (NULL, s, ".,x,y", op[1], op[2]);
252b5132 13579 expr1.X_add_number = 2;
c0ebe874 13580 macro_build (&expr1, "bnez", "x,p", op[2]);
67c0d1eb 13581 macro_build (NULL, "break", "6", 7);
7d10b47d 13582 end_noreorder ();
c0ebe874 13583 macro_build (NULL, s2, "x", op[0]);
252b5132
RH
13584 break;
13585
13586 case M_DMUL:
13587 dbl = 1;
1a0670f3 13588 /* Fall through. */
252b5132 13589 case M_MUL:
c0ebe874
RS
13590 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13591 macro_build (NULL, "mflo", "x", op[0]);
8fc2e39e 13592 break;
252b5132
RH
13593
13594 case M_DSUBU_I:
13595 dbl = 1;
13596 goto do_subu;
13597 case M_SUBU_I:
13598 do_subu:
252b5132 13599 imm_expr.X_add_number = -imm_expr.X_add_number;
d8722d76 13600 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,F", op[0], op[1]);
252b5132
RH
13601 break;
13602
13603 case M_SUBU_I_2:
252b5132 13604 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13605 macro_build (&imm_expr, "addiu", "x,k", op[0]);
252b5132
RH
13606 break;
13607
13608 case M_DSUBU_I_2:
252b5132 13609 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13610 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
252b5132
RH
13611 break;
13612
13613 case M_BEQ:
13614 s = "cmp";
13615 s2 = "bteqz";
13616 goto do_branch;
13617 case M_BNE:
13618 s = "cmp";
13619 s2 = "btnez";
13620 goto do_branch;
13621 case M_BLT:
13622 s = "slt";
13623 s2 = "btnez";
13624 goto do_branch;
13625 case M_BLTU:
13626 s = "sltu";
13627 s2 = "btnez";
13628 goto do_branch;
13629 case M_BLE:
13630 s = "slt";
13631 s2 = "bteqz";
13632 goto do_reverse_branch;
13633 case M_BLEU:
13634 s = "sltu";
13635 s2 = "bteqz";
13636 goto do_reverse_branch;
13637 case M_BGE:
13638 s = "slt";
13639 s2 = "bteqz";
13640 goto do_branch;
13641 case M_BGEU:
13642 s = "sltu";
13643 s2 = "bteqz";
13644 goto do_branch;
13645 case M_BGT:
13646 s = "slt";
13647 s2 = "btnez";
13648 goto do_reverse_branch;
13649 case M_BGTU:
13650 s = "sltu";
13651 s2 = "btnez";
13652
13653 do_reverse_branch:
c0ebe874
RS
13654 tmp = op[1];
13655 op[1] = op[0];
13656 op[0] = tmp;
252b5132
RH
13657
13658 do_branch:
c0ebe874 13659 macro_build (NULL, s, "x,y", op[0], op[1]);
67c0d1eb 13660 macro_build (&offset_expr, s2, "p");
252b5132
RH
13661 break;
13662
13663 case M_BEQ_I:
13664 s = "cmpi";
13665 s2 = "bteqz";
13666 s3 = "x,U";
13667 goto do_branch_i;
13668 case M_BNE_I:
13669 s = "cmpi";
13670 s2 = "btnez";
13671 s3 = "x,U";
13672 goto do_branch_i;
13673 case M_BLT_I:
13674 s = "slti";
13675 s2 = "btnez";
13676 s3 = "x,8";
13677 goto do_branch_i;
13678 case M_BLTU_I:
13679 s = "sltiu";
13680 s2 = "btnez";
13681 s3 = "x,8";
13682 goto do_branch_i;
13683 case M_BLE_I:
13684 s = "slti";
13685 s2 = "btnez";
13686 s3 = "x,8";
13687 goto do_addone_branch_i;
13688 case M_BLEU_I:
13689 s = "sltiu";
13690 s2 = "btnez";
13691 s3 = "x,8";
13692 goto do_addone_branch_i;
13693 case M_BGE_I:
13694 s = "slti";
13695 s2 = "bteqz";
13696 s3 = "x,8";
13697 goto do_branch_i;
13698 case M_BGEU_I:
13699 s = "sltiu";
13700 s2 = "bteqz";
13701 s3 = "x,8";
13702 goto do_branch_i;
13703 case M_BGT_I:
13704 s = "slti";
13705 s2 = "bteqz";
13706 s3 = "x,8";
13707 goto do_addone_branch_i;
13708 case M_BGTU_I:
13709 s = "sltiu";
13710 s2 = "bteqz";
13711 s3 = "x,8";
13712
13713 do_addone_branch_i:
252b5132
RH
13714 ++imm_expr.X_add_number;
13715
13716 do_branch_i:
c0ebe874 13717 macro_build (&imm_expr, s, s3, op[0]);
67c0d1eb 13718 macro_build (&offset_expr, s2, "p");
252b5132
RH
13719 break;
13720
13721 case M_ABS:
13722 expr1.X_add_number = 0;
c0ebe874
RS
13723 macro_build (&expr1, "slti", "x,8", op[1]);
13724 if (op[0] != op[1])
13725 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
252b5132 13726 expr1.X_add_number = 2;
67c0d1eb 13727 macro_build (&expr1, "bteqz", "p");
c0ebe874 13728 macro_build (NULL, "neg", "x,w", op[0], op[0]);
0acfaea6 13729 break;
252b5132
RH
13730 }
13731}
13732
14daeee3
RS
13733/* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13734 opcode bits in *OPCODE_EXTRA. */
13735
13736static struct mips_opcode *
13737mips_lookup_insn (struct hash_control *hash, const char *start,
da8bca91 13738 ssize_t length, unsigned int *opcode_extra)
14daeee3
RS
13739{
13740 char *name, *dot, *p;
13741 unsigned int mask, suffix;
da8bca91 13742 ssize_t opend;
14daeee3
RS
13743 struct mips_opcode *insn;
13744
13745 /* Make a copy of the instruction so that we can fiddle with it. */
4ec9d7d5 13746 name = xstrndup (start, length);
14daeee3
RS
13747
13748 /* Look up the instruction as-is. */
13749 insn = (struct mips_opcode *) hash_find (hash, name);
ee5734f0 13750 if (insn)
e1fa0163 13751 goto end;
14daeee3
RS
13752
13753 dot = strchr (name, '.');
13754 if (dot && dot[1])
13755 {
13756 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13757 p = mips_parse_vu0_channels (dot + 1, &mask);
13758 if (*p == 0 && mask != 0)
13759 {
13760 *dot = 0;
13761 insn = (struct mips_opcode *) hash_find (hash, name);
13762 *dot = '.';
13763 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13764 {
13765 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
e1fa0163 13766 goto end;
14daeee3
RS
13767 }
13768 }
13769 }
13770
13771 if (mips_opts.micromips)
13772 {
13773 /* See if there's an instruction size override suffix,
13774 either `16' or `32', at the end of the mnemonic proper,
13775 that defines the operation, i.e. before the first `.'
13776 character if any. Strip it and retry. */
13777 opend = dot != NULL ? dot - name : length;
13778 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13779 suffix = 2;
13780 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13781 suffix = 4;
13782 else
13783 suffix = 0;
13784 if (suffix)
13785 {
13786 memcpy (name + opend - 2, name + opend, length - opend + 1);
13787 insn = (struct mips_opcode *) hash_find (hash, name);
ee5734f0 13788 if (insn)
14daeee3
RS
13789 {
13790 forced_insn_length = suffix;
e1fa0163 13791 goto end;
14daeee3
RS
13792 }
13793 }
13794 }
13795
e1fa0163
NC
13796 insn = NULL;
13797 end:
13798 free (name);
13799 return insn;
14daeee3
RS
13800}
13801
77bd4346 13802/* Assemble an instruction into its binary format. If the instruction
e423441d
RS
13803 is a macro, set imm_expr and offset_expr to the values associated
13804 with "I" and "A" operands respectively. Otherwise store the value
13805 of the relocatable field (if any) in offset_expr. In both cases
13806 set offset_reloc to the relocation operators applied to offset_expr. */
252b5132
RH
13807
13808static void
60f20e8b 13809mips_ip (char *str, struct mips_cl_insn *insn)
252b5132 13810{
60f20e8b 13811 const struct mips_opcode *first, *past;
df58fc94 13812 struct hash_control *hash;
a92713e6 13813 char format;
14daeee3 13814 size_t end;
a92713e6 13815 struct mips_operand_token *tokens;
14daeee3 13816 unsigned int opcode_extra;
252b5132 13817
df58fc94
RS
13818 if (mips_opts.micromips)
13819 {
13820 hash = micromips_op_hash;
13821 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13822 }
13823 else
13824 {
13825 hash = op_hash;
13826 past = &mips_opcodes[NUMOPCODES];
13827 }
13828 forced_insn_length = 0;
14daeee3 13829 opcode_extra = 0;
252b5132 13830
df58fc94 13831 /* We first try to match an instruction up to a space or to the end. */
a40bc9dd
RS
13832 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13833 continue;
bdaaa2e1 13834
60f20e8b
RS
13835 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13836 if (first == NULL)
252b5132 13837 {
1661c76c 13838 set_insn_error (0, _("unrecognized opcode"));
a40bc9dd 13839 return;
252b5132
RH
13840 }
13841
60f20e8b 13842 if (strcmp (first->name, "li.s") == 0)
a92713e6 13843 format = 'f';
60f20e8b 13844 else if (strcmp (first->name, "li.d") == 0)
a92713e6
RS
13845 format = 'd';
13846 else
13847 format = 0;
13848 tokens = mips_parse_arguments (str + end, format);
13849 if (!tokens)
13850 return;
13851
60f20e8b
RS
13852 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13853 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
1661c76c 13854 set_insn_error (0, _("invalid operands"));
df58fc94 13855
e3de51ce 13856 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
13857}
13858
77bd4346
RS
13859/* As for mips_ip, but used when assembling MIPS16 code.
13860 Also set forced_insn_length to the resulting instruction size in
13861 bytes if the user explicitly requested a small or extended instruction. */
252b5132
RH
13862
13863static void
60f20e8b 13864mips16_ip (char *str, struct mips_cl_insn *insn)
252b5132 13865{
1a00e612 13866 char *end, *s, c;
60f20e8b 13867 struct mips_opcode *first;
a92713e6 13868 struct mips_operand_token *tokens;
3fb49709 13869 unsigned int l;
252b5132 13870
3882b010 13871 for (s = str; ISLOWER (*s); ++s)
252b5132 13872 ;
1a00e612
RS
13873 end = s;
13874 c = *end;
3fb49709
MR
13875
13876 l = 0;
1a00e612 13877 switch (c)
252b5132
RH
13878 {
13879 case '\0':
13880 break;
13881
13882 case ' ':
1a00e612 13883 s++;
252b5132
RH
13884 break;
13885
13886 case '.':
3fb49709
MR
13887 s++;
13888 if (*s == 't')
252b5132 13889 {
3fb49709
MR
13890 l = 2;
13891 s++;
252b5132 13892 }
3fb49709 13893 else if (*s == 'e')
252b5132 13894 {
3fb49709
MR
13895 l = 4;
13896 s++;
252b5132 13897 }
3fb49709
MR
13898 if (*s == '\0')
13899 break;
13900 else if (*s++ == ' ')
13901 break;
252b5132
RH
13902 /* Fall through. */
13903 default:
1661c76c 13904 set_insn_error (0, _("unrecognized opcode"));
252b5132
RH
13905 return;
13906 }
3fb49709 13907 forced_insn_length = l;
252b5132 13908
1a00e612 13909 *end = 0;
60f20e8b 13910 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
1a00e612
RS
13911 *end = c;
13912
60f20e8b 13913 if (!first)
252b5132 13914 {
1661c76c 13915 set_insn_error (0, _("unrecognized opcode"));
252b5132
RH
13916 return;
13917 }
13918
a92713e6
RS
13919 tokens = mips_parse_arguments (s, 0);
13920 if (!tokens)
13921 return;
13922
60f20e8b 13923 if (!match_mips16_insns (insn, first, tokens))
1661c76c 13924 set_insn_error (0, _("invalid operands"));
252b5132 13925
e3de51ce 13926 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
13927}
13928
b886a2ab
RS
13929/* Marshal immediate value VAL for an extended MIPS16 instruction.
13930 NBITS is the number of significant bits in VAL. */
13931
13932static unsigned long
13933mips16_immed_extend (offsetT val, unsigned int nbits)
13934{
13935 int extval;
13936 if (nbits == 16)
13937 {
13938 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13939 val &= 0x1f;
13940 }
13941 else if (nbits == 15)
13942 {
13943 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13944 val &= 0xf;
13945 }
13946 else
13947 {
13948 extval = ((val & 0x1f) << 6) | (val & 0x20);
13949 val = 0;
13950 }
13951 return (extval << 16) | val;
13952}
13953
3ccad066
RS
13954/* Like decode_mips16_operand, but require the operand to be defined and
13955 require it to be an integer. */
13956
13957static const struct mips_int_operand *
13958mips16_immed_operand (int type, bfd_boolean extended_p)
13959{
13960 const struct mips_operand *operand;
13961
13962 operand = decode_mips16_operand (type, extended_p);
13963 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13964 abort ();
13965 return (const struct mips_int_operand *) operand;
13966}
13967
13968/* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13969
13970static bfd_boolean
13971mips16_immed_in_range_p (const struct mips_int_operand *operand,
13972 bfd_reloc_code_real_type reloc, offsetT sval)
13973{
13974 int min_val, max_val;
13975
13976 min_val = mips_int_operand_min (operand);
13977 max_val = mips_int_operand_max (operand);
13978 if (reloc != BFD_RELOC_UNUSED)
13979 {
13980 if (min_val < 0)
13981 sval = SEXT_16BIT (sval);
13982 else
13983 sval &= 0xffff;
13984 }
13985
13986 return (sval >= min_val
13987 && sval <= max_val
13988 && (sval & ((1 << operand->shift) - 1)) == 0);
13989}
13990
5c04167a
RS
13991/* Install immediate value VAL into MIPS16 instruction *INSN,
13992 extending it if necessary. The instruction in *INSN may
13993 already be extended.
13994
43c0598f
RS
13995 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13996 if none. In the former case, VAL is a 16-bit number with no
13997 defined signedness.
13998
13999 TYPE is the type of the immediate field. USER_INSN_LENGTH
14000 is the length that the user requested, or 0 if none. */
252b5132
RH
14001
14002static void
3b4dbbbf 14003mips16_immed (const char *file, unsigned int line, int type,
43c0598f 14004 bfd_reloc_code_real_type reloc, offsetT val,
5c04167a 14005 unsigned int user_insn_length, unsigned long *insn)
252b5132 14006{
3ccad066
RS
14007 const struct mips_int_operand *operand;
14008 unsigned int uval, length;
252b5132 14009
3ccad066
RS
14010 operand = mips16_immed_operand (type, FALSE);
14011 if (!mips16_immed_in_range_p (operand, reloc, val))
5c04167a
RS
14012 {
14013 /* We need an extended instruction. */
14014 if (user_insn_length == 2)
14015 as_bad_where (file, line, _("invalid unextended operand value"));
14016 else
14017 *insn |= MIPS16_EXTEND;
14018 }
14019 else if (user_insn_length == 4)
14020 {
14021 /* The operand doesn't force an unextended instruction to be extended.
14022 Warn if the user wanted an extended instruction anyway. */
14023 *insn |= MIPS16_EXTEND;
14024 as_warn_where (file, line,
14025 _("extended operand requested but not required"));
14026 }
252b5132 14027
3ccad066
RS
14028 length = mips16_opcode_length (*insn);
14029 if (length == 4)
252b5132 14030 {
3ccad066
RS
14031 operand = mips16_immed_operand (type, TRUE);
14032 if (!mips16_immed_in_range_p (operand, reloc, val))
14033 as_bad_where (file, line,
14034 _("operand value out of range for instruction"));
252b5132 14035 }
3ccad066 14036 uval = ((unsigned int) val >> operand->shift) - operand->bias;
bdd15286 14037 if (length == 2 || operand->root.lsb != 0)
3ccad066 14038 *insn = mips_insert_operand (&operand->root, *insn, uval);
252b5132 14039 else
3ccad066 14040 *insn |= mips16_immed_extend (uval, operand->root.size);
252b5132
RH
14041}
14042\f
d6f16593 14043struct percent_op_match
ad8d3bb3 14044{
5e0116d5
RS
14045 const char *str;
14046 bfd_reloc_code_real_type reloc;
d6f16593
MR
14047};
14048
14049static const struct percent_op_match mips_percent_op[] =
ad8d3bb3 14050{
5e0116d5 14051 {"%lo", BFD_RELOC_LO16},
5e0116d5
RS
14052 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
14053 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
14054 {"%call16", BFD_RELOC_MIPS_CALL16},
14055 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
14056 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
14057 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
14058 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
14059 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
14060 {"%got", BFD_RELOC_MIPS_GOT16},
14061 {"%gp_rel", BFD_RELOC_GPREL16},
14062 {"%half", BFD_RELOC_16},
14063 {"%highest", BFD_RELOC_MIPS_HIGHEST},
14064 {"%higher", BFD_RELOC_MIPS_HIGHER},
14065 {"%neg", BFD_RELOC_MIPS_SUB},
3f98094e
DJ
14066 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
14067 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
14068 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
14069 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
14070 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
14071 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
14072 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
7361da2c
AB
14073 {"%hi", BFD_RELOC_HI16_S},
14074 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
14075 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
ad8d3bb3
TS
14076};
14077
d6f16593
MR
14078static const struct percent_op_match mips16_percent_op[] =
14079{
14080 {"%lo", BFD_RELOC_MIPS16_LO16},
14081 {"%gprel", BFD_RELOC_MIPS16_GPREL},
738e5348
RS
14082 {"%got", BFD_RELOC_MIPS16_GOT16},
14083 {"%call16", BFD_RELOC_MIPS16_CALL16},
d0f13682
CLT
14084 {"%hi", BFD_RELOC_MIPS16_HI16_S},
14085 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
14086 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
14087 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
14088 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
14089 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
14090 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
14091 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
d6f16593
MR
14092};
14093
252b5132 14094
5e0116d5
RS
14095/* Return true if *STR points to a relocation operator. When returning true,
14096 move *STR over the operator and store its relocation code in *RELOC.
14097 Leave both *STR and *RELOC alone when returning false. */
14098
14099static bfd_boolean
17a2f251 14100parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
252b5132 14101{
d6f16593
MR
14102 const struct percent_op_match *percent_op;
14103 size_t limit, i;
14104
14105 if (mips_opts.mips16)
14106 {
14107 percent_op = mips16_percent_op;
14108 limit = ARRAY_SIZE (mips16_percent_op);
14109 }
14110 else
14111 {
14112 percent_op = mips_percent_op;
14113 limit = ARRAY_SIZE (mips_percent_op);
14114 }
76b3015f 14115
d6f16593 14116 for (i = 0; i < limit; i++)
5e0116d5 14117 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
394f9b3a 14118 {
3f98094e
DJ
14119 int len = strlen (percent_op[i].str);
14120
14121 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
14122 continue;
14123
5e0116d5
RS
14124 *str += strlen (percent_op[i].str);
14125 *reloc = percent_op[i].reloc;
394f9b3a 14126
5e0116d5
RS
14127 /* Check whether the output BFD supports this relocation.
14128 If not, issue an error and fall back on something safe. */
14129 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
394f9b3a 14130 {
20203fb9 14131 as_bad (_("relocation %s isn't supported by the current ABI"),
5e0116d5 14132 percent_op[i].str);
01a3f561 14133 *reloc = BFD_RELOC_UNUSED;
394f9b3a 14134 }
5e0116d5 14135 return TRUE;
394f9b3a 14136 }
5e0116d5 14137 return FALSE;
394f9b3a 14138}
ad8d3bb3 14139
ad8d3bb3 14140
5e0116d5
RS
14141/* Parse string STR as a 16-bit relocatable operand. Store the
14142 expression in *EP and the relocations in the array starting
14143 at RELOC. Return the number of relocation operators used.
ad8d3bb3 14144
01a3f561 14145 On exit, EXPR_END points to the first character after the expression. */
ad8d3bb3 14146
5e0116d5 14147static size_t
17a2f251
TS
14148my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
14149 char *str)
ad8d3bb3 14150{
5e0116d5
RS
14151 bfd_reloc_code_real_type reversed_reloc[3];
14152 size_t reloc_index, i;
09b8f35a
RS
14153 int crux_depth, str_depth;
14154 char *crux;
5e0116d5
RS
14155
14156 /* Search for the start of the main expression, recoding relocations
09b8f35a
RS
14157 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14158 of the main expression and with CRUX_DEPTH containing the number
14159 of open brackets at that point. */
14160 reloc_index = -1;
14161 str_depth = 0;
14162 do
fb1b3232 14163 {
09b8f35a
RS
14164 reloc_index++;
14165 crux = str;
14166 crux_depth = str_depth;
14167
14168 /* Skip over whitespace and brackets, keeping count of the number
14169 of brackets. */
14170 while (*str == ' ' || *str == '\t' || *str == '(')
14171 if (*str++ == '(')
14172 str_depth++;
5e0116d5 14173 }
09b8f35a
RS
14174 while (*str == '%'
14175 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14176 && parse_relocation (&str, &reversed_reloc[reloc_index]));
ad8d3bb3 14177
09b8f35a 14178 my_getExpression (ep, crux);
5e0116d5 14179 str = expr_end;
394f9b3a 14180
5e0116d5 14181 /* Match every open bracket. */
09b8f35a 14182 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
5e0116d5 14183 if (*str++ == ')')
09b8f35a 14184 crux_depth--;
394f9b3a 14185
09b8f35a 14186 if (crux_depth > 0)
20203fb9 14187 as_bad (_("unclosed '('"));
394f9b3a 14188
5e0116d5 14189 expr_end = str;
252b5132 14190
01a3f561 14191 if (reloc_index != 0)
64bdfcaf
RS
14192 {
14193 prev_reloc_op_frag = frag_now;
14194 for (i = 0; i < reloc_index; i++)
14195 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14196 }
fb1b3232 14197
5e0116d5 14198 return reloc_index;
252b5132
RH
14199}
14200
14201static void
17a2f251 14202my_getExpression (expressionS *ep, char *str)
252b5132
RH
14203{
14204 char *save_in;
14205
14206 save_in = input_line_pointer;
14207 input_line_pointer = str;
14208 expression (ep);
14209 expr_end = input_line_pointer;
14210 input_line_pointer = save_in;
252b5132
RH
14211}
14212
6d4af3c2 14213const char *
17a2f251 14214md_atof (int type, char *litP, int *sizeP)
252b5132 14215{
499ac353 14216 return ieee_md_atof (type, litP, sizeP, target_big_endian);
252b5132
RH
14217}
14218
14219void
17a2f251 14220md_number_to_chars (char *buf, valueT val, int n)
252b5132
RH
14221{
14222 if (target_big_endian)
14223 number_to_chars_bigendian (buf, val, n);
14224 else
14225 number_to_chars_littleendian (buf, val, n);
14226}
14227\f
e013f690
TS
14228static int support_64bit_objects(void)
14229{
14230 const char **list, **l;
aa3d8fdf 14231 int yes;
e013f690
TS
14232
14233 list = bfd_target_list ();
14234 for (l = list; *l != NULL; l++)
aeffff67
RS
14235 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14236 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
e013f690 14237 break;
aa3d8fdf 14238 yes = (*l != NULL);
e013f690 14239 free (list);
aa3d8fdf 14240 return yes;
e013f690
TS
14241}
14242
316f5878
RS
14243/* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14244 NEW_VALUE. Warn if another value was already specified. Note:
14245 we have to defer parsing the -march and -mtune arguments in order
14246 to handle 'from-abi' correctly, since the ABI might be specified
14247 in a later argument. */
14248
14249static void
17a2f251 14250mips_set_option_string (const char **string_ptr, const char *new_value)
316f5878
RS
14251{
14252 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
1661c76c 14253 as_warn (_("a different %s was already specified, is now %s"),
316f5878
RS
14254 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14255 new_value);
14256
14257 *string_ptr = new_value;
14258}
14259
252b5132 14260int
17b9d67d 14261md_parse_option (int c, const char *arg)
252b5132 14262{
c6278170
RS
14263 unsigned int i;
14264
14265 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14266 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14267 {
919731af 14268 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
c6278170
RS
14269 c == mips_ases[i].option_on);
14270 return 1;
14271 }
14272
252b5132
RH
14273 switch (c)
14274 {
119d663a
NC
14275 case OPTION_CONSTRUCT_FLOATS:
14276 mips_disable_float_construction = 0;
14277 break;
bdaaa2e1 14278
119d663a
NC
14279 case OPTION_NO_CONSTRUCT_FLOATS:
14280 mips_disable_float_construction = 1;
14281 break;
bdaaa2e1 14282
252b5132
RH
14283 case OPTION_TRAP:
14284 mips_trap = 1;
14285 break;
14286
14287 case OPTION_BREAK:
14288 mips_trap = 0;
14289 break;
14290
14291 case OPTION_EB:
14292 target_big_endian = 1;
14293 break;
14294
14295 case OPTION_EL:
14296 target_big_endian = 0;
14297 break;
14298
14299 case 'O':
4ffff32f
TS
14300 if (arg == NULL)
14301 mips_optimize = 1;
14302 else if (arg[0] == '0')
14303 mips_optimize = 0;
14304 else if (arg[0] == '1')
252b5132
RH
14305 mips_optimize = 1;
14306 else
14307 mips_optimize = 2;
14308 break;
14309
14310 case 'g':
14311 if (arg == NULL)
14312 mips_debug = 2;
14313 else
14314 mips_debug = atoi (arg);
252b5132
RH
14315 break;
14316
14317 case OPTION_MIPS1:
0b35dfee 14318 file_mips_opts.isa = ISA_MIPS1;
252b5132
RH
14319 break;
14320
14321 case OPTION_MIPS2:
0b35dfee 14322 file_mips_opts.isa = ISA_MIPS2;
252b5132
RH
14323 break;
14324
14325 case OPTION_MIPS3:
0b35dfee 14326 file_mips_opts.isa = ISA_MIPS3;
252b5132
RH
14327 break;
14328
14329 case OPTION_MIPS4:
0b35dfee 14330 file_mips_opts.isa = ISA_MIPS4;
e7af610e
NC
14331 break;
14332
84ea6cf2 14333 case OPTION_MIPS5:
0b35dfee 14334 file_mips_opts.isa = ISA_MIPS5;
84ea6cf2
NC
14335 break;
14336
e7af610e 14337 case OPTION_MIPS32:
0b35dfee 14338 file_mips_opts.isa = ISA_MIPS32;
252b5132
RH
14339 break;
14340
af7ee8bf 14341 case OPTION_MIPS32R2:
0b35dfee 14342 file_mips_opts.isa = ISA_MIPS32R2;
af7ee8bf
CD
14343 break;
14344
ae52f483 14345 case OPTION_MIPS32R3:
0ae19f05 14346 file_mips_opts.isa = ISA_MIPS32R3;
ae52f483
AB
14347 break;
14348
14349 case OPTION_MIPS32R5:
0ae19f05 14350 file_mips_opts.isa = ISA_MIPS32R5;
ae52f483
AB
14351 break;
14352
7361da2c
AB
14353 case OPTION_MIPS32R6:
14354 file_mips_opts.isa = ISA_MIPS32R6;
14355 break;
14356
5f74bc13 14357 case OPTION_MIPS64R2:
0b35dfee 14358 file_mips_opts.isa = ISA_MIPS64R2;
5f74bc13
CD
14359 break;
14360
ae52f483 14361 case OPTION_MIPS64R3:
0ae19f05 14362 file_mips_opts.isa = ISA_MIPS64R3;
ae52f483
AB
14363 break;
14364
14365 case OPTION_MIPS64R5:
0ae19f05 14366 file_mips_opts.isa = ISA_MIPS64R5;
ae52f483
AB
14367 break;
14368
7361da2c
AB
14369 case OPTION_MIPS64R6:
14370 file_mips_opts.isa = ISA_MIPS64R6;
14371 break;
14372
84ea6cf2 14373 case OPTION_MIPS64:
0b35dfee 14374 file_mips_opts.isa = ISA_MIPS64;
84ea6cf2
NC
14375 break;
14376
ec68c924 14377 case OPTION_MTUNE:
316f5878
RS
14378 mips_set_option_string (&mips_tune_string, arg);
14379 break;
ec68c924 14380
316f5878
RS
14381 case OPTION_MARCH:
14382 mips_set_option_string (&mips_arch_string, arg);
252b5132
RH
14383 break;
14384
14385 case OPTION_M4650:
316f5878
RS
14386 mips_set_option_string (&mips_arch_string, "4650");
14387 mips_set_option_string (&mips_tune_string, "4650");
252b5132
RH
14388 break;
14389
14390 case OPTION_NO_M4650:
14391 break;
14392
14393 case OPTION_M4010:
316f5878
RS
14394 mips_set_option_string (&mips_arch_string, "4010");
14395 mips_set_option_string (&mips_tune_string, "4010");
252b5132
RH
14396 break;
14397
14398 case OPTION_NO_M4010:
14399 break;
14400
14401 case OPTION_M4100:
316f5878
RS
14402 mips_set_option_string (&mips_arch_string, "4100");
14403 mips_set_option_string (&mips_tune_string, "4100");
252b5132
RH
14404 break;
14405
14406 case OPTION_NO_M4100:
14407 break;
14408
252b5132 14409 case OPTION_M3900:
316f5878
RS
14410 mips_set_option_string (&mips_arch_string, "3900");
14411 mips_set_option_string (&mips_tune_string, "3900");
252b5132 14412 break;
bdaaa2e1 14413
252b5132
RH
14414 case OPTION_NO_M3900:
14415 break;
14416
df58fc94 14417 case OPTION_MICROMIPS:
919731af 14418 if (file_mips_opts.mips16 == 1)
df58fc94
RS
14419 {
14420 as_bad (_("-mmicromips cannot be used with -mips16"));
14421 return 0;
14422 }
919731af 14423 file_mips_opts.micromips = 1;
df58fc94
RS
14424 mips_no_prev_insn ();
14425 break;
14426
14427 case OPTION_NO_MICROMIPS:
919731af 14428 file_mips_opts.micromips = 0;
df58fc94
RS
14429 mips_no_prev_insn ();
14430 break;
14431
252b5132 14432 case OPTION_MIPS16:
919731af 14433 if (file_mips_opts.micromips == 1)
df58fc94
RS
14434 {
14435 as_bad (_("-mips16 cannot be used with -micromips"));
14436 return 0;
14437 }
919731af 14438 file_mips_opts.mips16 = 1;
7d10b47d 14439 mips_no_prev_insn ();
252b5132
RH
14440 break;
14441
14442 case OPTION_NO_MIPS16:
919731af 14443 file_mips_opts.mips16 = 0;
7d10b47d 14444 mips_no_prev_insn ();
252b5132
RH
14445 break;
14446
6a32d874
CM
14447 case OPTION_FIX_24K:
14448 mips_fix_24k = 1;
14449 break;
14450
14451 case OPTION_NO_FIX_24K:
14452 mips_fix_24k = 0;
14453 break;
14454
a8d14a88
CM
14455 case OPTION_FIX_RM7000:
14456 mips_fix_rm7000 = 1;
14457 break;
14458
14459 case OPTION_NO_FIX_RM7000:
14460 mips_fix_rm7000 = 0;
14461 break;
14462
c67a084a
NC
14463 case OPTION_FIX_LOONGSON2F_JUMP:
14464 mips_fix_loongson2f_jump = TRUE;
14465 break;
14466
14467 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14468 mips_fix_loongson2f_jump = FALSE;
14469 break;
14470
14471 case OPTION_FIX_LOONGSON2F_NOP:
14472 mips_fix_loongson2f_nop = TRUE;
14473 break;
14474
14475 case OPTION_NO_FIX_LOONGSON2F_NOP:
14476 mips_fix_loongson2f_nop = FALSE;
14477 break;
14478
d766e8ec
RS
14479 case OPTION_FIX_VR4120:
14480 mips_fix_vr4120 = 1;
60b63b72
RS
14481 break;
14482
d766e8ec
RS
14483 case OPTION_NO_FIX_VR4120:
14484 mips_fix_vr4120 = 0;
60b63b72
RS
14485 break;
14486
7d8e00cf
RS
14487 case OPTION_FIX_VR4130:
14488 mips_fix_vr4130 = 1;
14489 break;
14490
14491 case OPTION_NO_FIX_VR4130:
14492 mips_fix_vr4130 = 0;
14493 break;
14494
d954098f
DD
14495 case OPTION_FIX_CN63XXP1:
14496 mips_fix_cn63xxp1 = TRUE;
14497 break;
14498
14499 case OPTION_NO_FIX_CN63XXP1:
14500 mips_fix_cn63xxp1 = FALSE;
14501 break;
14502
4a6a3df4
AO
14503 case OPTION_RELAX_BRANCH:
14504 mips_relax_branch = 1;
14505 break;
14506
14507 case OPTION_NO_RELAX_BRANCH:
14508 mips_relax_branch = 0;
14509 break;
14510
8b10b0b3
MR
14511 case OPTION_IGNORE_BRANCH_ISA:
14512 mips_ignore_branch_isa = TRUE;
14513 break;
14514
14515 case OPTION_NO_IGNORE_BRANCH_ISA:
14516 mips_ignore_branch_isa = FALSE;
14517 break;
14518
833794fc 14519 case OPTION_INSN32:
919731af 14520 file_mips_opts.insn32 = TRUE;
833794fc
MR
14521 break;
14522
14523 case OPTION_NO_INSN32:
919731af 14524 file_mips_opts.insn32 = FALSE;
833794fc
MR
14525 break;
14526
aa6975fb
ILT
14527 case OPTION_MSHARED:
14528 mips_in_shared = TRUE;
14529 break;
14530
14531 case OPTION_MNO_SHARED:
14532 mips_in_shared = FALSE;
14533 break;
14534
aed1a261 14535 case OPTION_MSYM32:
919731af 14536 file_mips_opts.sym32 = TRUE;
aed1a261
RS
14537 break;
14538
14539 case OPTION_MNO_SYM32:
919731af 14540 file_mips_opts.sym32 = FALSE;
aed1a261
RS
14541 break;
14542
252b5132
RH
14543 /* When generating ELF code, we permit -KPIC and -call_shared to
14544 select SVR4_PIC, and -non_shared to select no PIC. This is
14545 intended to be compatible with Irix 5. */
14546 case OPTION_CALL_SHARED:
252b5132 14547 mips_pic = SVR4_PIC;
143d77c5 14548 mips_abicalls = TRUE;
252b5132
RH
14549 break;
14550
861fb55a 14551 case OPTION_CALL_NONPIC:
861fb55a
DJ
14552 mips_pic = NO_PIC;
14553 mips_abicalls = TRUE;
14554 break;
14555
252b5132 14556 case OPTION_NON_SHARED:
252b5132 14557 mips_pic = NO_PIC;
143d77c5 14558 mips_abicalls = FALSE;
252b5132
RH
14559 break;
14560
44075ae2
TS
14561 /* The -xgot option tells the assembler to use 32 bit offsets
14562 when accessing the got in SVR4_PIC mode. It is for Irix
252b5132
RH
14563 compatibility. */
14564 case OPTION_XGOT:
14565 mips_big_got = 1;
14566 break;
14567
14568 case 'G':
6caf9ef4
TS
14569 g_switch_value = atoi (arg);
14570 g_switch_seen = 1;
252b5132
RH
14571 break;
14572
34ba82a8
TS
14573 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14574 and -mabi=64. */
252b5132 14575 case OPTION_32:
f3ded42a 14576 mips_abi = O32_ABI;
252b5132
RH
14577 break;
14578
e013f690 14579 case OPTION_N32:
316f5878 14580 mips_abi = N32_ABI;
e013f690 14581 break;
252b5132 14582
e013f690 14583 case OPTION_64:
316f5878 14584 mips_abi = N64_ABI;
f43abd2b 14585 if (!support_64bit_objects())
1661c76c 14586 as_fatal (_("no compiled in support for 64 bit object file format"));
252b5132
RH
14587 break;
14588
c97ef257 14589 case OPTION_GP32:
bad1aba3 14590 file_mips_opts.gp = 32;
c97ef257
AH
14591 break;
14592
14593 case OPTION_GP64:
bad1aba3 14594 file_mips_opts.gp = 64;
c97ef257 14595 break;
252b5132 14596
ca4e0257 14597 case OPTION_FP32:
0b35dfee 14598 file_mips_opts.fp = 32;
316f5878
RS
14599 break;
14600
351cdf24
MF
14601 case OPTION_FPXX:
14602 file_mips_opts.fp = 0;
14603 break;
14604
316f5878 14605 case OPTION_FP64:
0b35dfee 14606 file_mips_opts.fp = 64;
ca4e0257
RS
14607 break;
14608
351cdf24
MF
14609 case OPTION_ODD_SPREG:
14610 file_mips_opts.oddspreg = 1;
14611 break;
14612
14613 case OPTION_NO_ODD_SPREG:
14614 file_mips_opts.oddspreg = 0;
14615 break;
14616
037b32b9 14617 case OPTION_SINGLE_FLOAT:
0b35dfee 14618 file_mips_opts.single_float = 1;
037b32b9
AN
14619 break;
14620
14621 case OPTION_DOUBLE_FLOAT:
0b35dfee 14622 file_mips_opts.single_float = 0;
037b32b9
AN
14623 break;
14624
14625 case OPTION_SOFT_FLOAT:
0b35dfee 14626 file_mips_opts.soft_float = 1;
037b32b9
AN
14627 break;
14628
14629 case OPTION_HARD_FLOAT:
0b35dfee 14630 file_mips_opts.soft_float = 0;
037b32b9
AN
14631 break;
14632
252b5132 14633 case OPTION_MABI:
e013f690 14634 if (strcmp (arg, "32") == 0)
316f5878 14635 mips_abi = O32_ABI;
e013f690 14636 else if (strcmp (arg, "o64") == 0)
316f5878 14637 mips_abi = O64_ABI;
e013f690 14638 else if (strcmp (arg, "n32") == 0)
316f5878 14639 mips_abi = N32_ABI;
e013f690
TS
14640 else if (strcmp (arg, "64") == 0)
14641 {
316f5878 14642 mips_abi = N64_ABI;
e013f690 14643 if (! support_64bit_objects())
1661c76c 14644 as_fatal (_("no compiled in support for 64 bit object file "
e013f690
TS
14645 "format"));
14646 }
14647 else if (strcmp (arg, "eabi") == 0)
316f5878 14648 mips_abi = EABI_ABI;
e013f690 14649 else
da0e507f
TS
14650 {
14651 as_fatal (_("invalid abi -mabi=%s"), arg);
14652 return 0;
14653 }
252b5132
RH
14654 break;
14655
6b76fefe 14656 case OPTION_M7000_HILO_FIX:
b34976b6 14657 mips_7000_hilo_fix = TRUE;
6b76fefe
CM
14658 break;
14659
9ee72ff1 14660 case OPTION_MNO_7000_HILO_FIX:
b34976b6 14661 mips_7000_hilo_fix = FALSE;
6b76fefe
CM
14662 break;
14663
ecb4347a 14664 case OPTION_MDEBUG:
b34976b6 14665 mips_flag_mdebug = TRUE;
ecb4347a
DJ
14666 break;
14667
14668 case OPTION_NO_MDEBUG:
b34976b6 14669 mips_flag_mdebug = FALSE;
ecb4347a 14670 break;
dcd410fe
RO
14671
14672 case OPTION_PDR:
14673 mips_flag_pdr = TRUE;
14674 break;
14675
14676 case OPTION_NO_PDR:
14677 mips_flag_pdr = FALSE;
14678 break;
0a44bf69
RS
14679
14680 case OPTION_MVXWORKS_PIC:
14681 mips_pic = VXWORKS_PIC;
14682 break;
ecb4347a 14683
ba92f887
MR
14684 case OPTION_NAN:
14685 if (strcmp (arg, "2008") == 0)
7361da2c 14686 mips_nan2008 = 1;
ba92f887 14687 else if (strcmp (arg, "legacy") == 0)
7361da2c 14688 mips_nan2008 = 0;
ba92f887
MR
14689 else
14690 {
1661c76c 14691 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
ba92f887
MR
14692 return 0;
14693 }
14694 break;
14695
252b5132
RH
14696 default:
14697 return 0;
14698 }
14699
c67a084a
NC
14700 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14701
252b5132
RH
14702 return 1;
14703}
316f5878 14704\f
919731af 14705/* Set up globals to tune for the ISA or processor described by INFO. */
252b5132 14706
316f5878 14707static void
17a2f251 14708mips_set_tune (const struct mips_cpu_info *info)
316f5878
RS
14709{
14710 if (info != 0)
fef14a42 14711 mips_tune = info->cpu;
316f5878 14712}
80cc45a5 14713
34ba82a8 14714
252b5132 14715void
17a2f251 14716mips_after_parse_args (void)
e9670677 14717{
fef14a42
TS
14718 const struct mips_cpu_info *arch_info = 0;
14719 const struct mips_cpu_info *tune_info = 0;
14720
e9670677 14721 /* GP relative stuff not working for PE */
6caf9ef4 14722 if (strncmp (TARGET_OS, "pe", 2) == 0)
e9670677 14723 {
6caf9ef4 14724 if (g_switch_seen && g_switch_value != 0)
1661c76c 14725 as_bad (_("-G not supported in this configuration"));
e9670677
MR
14726 g_switch_value = 0;
14727 }
14728
cac012d6
AO
14729 if (mips_abi == NO_ABI)
14730 mips_abi = MIPS_DEFAULT_ABI;
14731
919731af 14732 /* The following code determines the architecture.
22923709
RS
14733 Similar code was added to GCC 3.3 (see override_options() in
14734 config/mips/mips.c). The GAS and GCC code should be kept in sync
14735 as much as possible. */
e9670677 14736
316f5878 14737 if (mips_arch_string != 0)
fef14a42 14738 arch_info = mips_parse_cpu ("-march", mips_arch_string);
e9670677 14739
0b35dfee 14740 if (file_mips_opts.isa != ISA_UNKNOWN)
e9670677 14741 {
0b35dfee 14742 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
fef14a42 14743 ISA level specified by -mipsN, while arch_info->isa contains
316f5878 14744 the -march selection (if any). */
fef14a42 14745 if (arch_info != 0)
e9670677 14746 {
316f5878
RS
14747 /* -march takes precedence over -mipsN, since it is more descriptive.
14748 There's no harm in specifying both as long as the ISA levels
14749 are the same. */
0b35dfee 14750 if (file_mips_opts.isa != arch_info->isa)
1661c76c
RS
14751 as_bad (_("-%s conflicts with the other architecture options,"
14752 " which imply -%s"),
0b35dfee 14753 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
fef14a42 14754 mips_cpu_info_from_isa (arch_info->isa)->name);
e9670677 14755 }
316f5878 14756 else
0b35dfee 14757 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
e9670677
MR
14758 }
14759
fef14a42 14760 if (arch_info == 0)
95bfe26e
MF
14761 {
14762 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14763 gas_assert (arch_info);
14764 }
e9670677 14765
fef14a42 14766 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
20203fb9 14767 as_bad (_("-march=%s is not compatible with the selected ABI"),
fef14a42
TS
14768 arch_info->name);
14769
919731af 14770 file_mips_opts.arch = arch_info->cpu;
14771 file_mips_opts.isa = arch_info->isa;
14772
14773 /* Set up initial mips_opts state. */
14774 mips_opts = file_mips_opts;
14775
14776 /* The register size inference code is now placed in
14777 file_mips_check_options. */
fef14a42 14778
0b35dfee 14779 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14780 processor. */
fef14a42
TS
14781 if (mips_tune_string != 0)
14782 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
e9670677 14783
fef14a42
TS
14784 if (tune_info == 0)
14785 mips_set_tune (arch_info);
14786 else
14787 mips_set_tune (tune_info);
e9670677 14788
ecb4347a 14789 if (mips_flag_mdebug < 0)
e8044f35 14790 mips_flag_mdebug = 0;
e9670677
MR
14791}
14792\f
14793void
17a2f251 14794mips_init_after_args (void)
252b5132
RH
14795{
14796 /* initialize opcodes */
14797 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
beae10d5 14798 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
252b5132
RH
14799}
14800
14801long
17a2f251 14802md_pcrel_from (fixS *fixP)
252b5132 14803{
a7ebbfdf
TS
14804 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14805 switch (fixP->fx_r_type)
14806 {
df58fc94
RS
14807 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14808 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14809 /* Return the address of the delay slot. */
14810 return addr + 2;
14811
14812 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14813 case BFD_RELOC_MICROMIPS_JMP:
c9775dde 14814 case BFD_RELOC_MIPS16_16_PCREL_S1:
a7ebbfdf 14815 case BFD_RELOC_16_PCREL_S2:
7361da2c
AB
14816 case BFD_RELOC_MIPS_21_PCREL_S2:
14817 case BFD_RELOC_MIPS_26_PCREL_S2:
a7ebbfdf
TS
14818 case BFD_RELOC_MIPS_JMP:
14819 /* Return the address of the delay slot. */
14820 return addr + 4;
df58fc94 14821
51f6035b
MR
14822 case BFD_RELOC_MIPS_18_PCREL_S3:
14823 /* Return the aligned address of the doubleword containing
14824 the instruction. */
14825 return addr & ~7;
14826
a7ebbfdf
TS
14827 default:
14828 return addr;
14829 }
252b5132
RH
14830}
14831
252b5132
RH
14832/* This is called before the symbol table is processed. In order to
14833 work with gcc when using mips-tfile, we must keep all local labels.
14834 However, in other cases, we want to discard them. If we were
14835 called with -g, but we didn't see any debugging information, it may
14836 mean that gcc is smuggling debugging information through to
14837 mips-tfile, in which case we must generate all local labels. */
14838
14839void
17a2f251 14840mips_frob_file_before_adjust (void)
252b5132
RH
14841{
14842#ifndef NO_ECOFF_DEBUGGING
14843 if (ECOFF_DEBUGGING
14844 && mips_debug != 0
14845 && ! ecoff_debugging_seen)
14846 flag_keep_locals = 1;
14847#endif
14848}
14849
3b91255e 14850/* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
55cf6793 14851 the corresponding LO16 reloc. This is called before md_apply_fix and
3b91255e
RS
14852 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14853 relocation operators.
14854
14855 For our purposes, a %lo() expression matches a %got() or %hi()
14856 expression if:
14857
14858 (a) it refers to the same symbol; and
14859 (b) the offset applied in the %lo() expression is no lower than
14860 the offset applied in the %got() or %hi().
14861
14862 (b) allows us to cope with code like:
14863
14864 lui $4,%hi(foo)
14865 lh $4,%lo(foo+2)($4)
14866
14867 ...which is legal on RELA targets, and has a well-defined behaviour
14868 if the user knows that adding 2 to "foo" will not induce a carry to
14869 the high 16 bits.
14870
14871 When several %lo()s match a particular %got() or %hi(), we use the
14872 following rules to distinguish them:
14873
14874 (1) %lo()s with smaller offsets are a better match than %lo()s with
14875 higher offsets.
14876
14877 (2) %lo()s with no matching %got() or %hi() are better than those
14878 that already have a matching %got() or %hi().
14879
14880 (3) later %lo()s are better than earlier %lo()s.
14881
14882 These rules are applied in order.
14883
14884 (1) means, among other things, that %lo()s with identical offsets are
14885 chosen if they exist.
14886
14887 (2) means that we won't associate several high-part relocations with
14888 the same low-part relocation unless there's no alternative. Having
14889 several high parts for the same low part is a GNU extension; this rule
14890 allows careful users to avoid it.
14891
14892 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14893 with the last high-part relocation being at the front of the list.
14894 It therefore makes sense to choose the last matching low-part
14895 relocation, all other things being equal. It's also easier
14896 to code that way. */
252b5132
RH
14897
14898void
17a2f251 14899mips_frob_file (void)
252b5132
RH
14900{
14901 struct mips_hi_fixup *l;
35903be0 14902 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
252b5132
RH
14903
14904 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14905 {
14906 segment_info_type *seginfo;
3b91255e
RS
14907 bfd_boolean matched_lo_p;
14908 fixS **hi_pos, **lo_pos, **pos;
252b5132 14909
9c2799c2 14910 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
252b5132 14911
5919d012 14912 /* If a GOT16 relocation turns out to be against a global symbol,
b886a2ab
RS
14913 there isn't supposed to be a matching LO. Ignore %gots against
14914 constants; we'll report an error for those later. */
738e5348 14915 if (got16_reloc_p (l->fixp->fx_r_type)
b886a2ab 14916 && !(l->fixp->fx_addsy
9e009953 14917 && pic_need_relax (l->fixp->fx_addsy)))
5919d012
RS
14918 continue;
14919
14920 /* Check quickly whether the next fixup happens to be a matching %lo. */
14921 if (fixup_has_matching_lo_p (l->fixp))
252b5132
RH
14922 continue;
14923
252b5132 14924 seginfo = seg_info (l->seg);
252b5132 14925
3b91255e
RS
14926 /* Set HI_POS to the position of this relocation in the chain.
14927 Set LO_POS to the position of the chosen low-part relocation.
14928 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14929 relocation that matches an immediately-preceding high-part
14930 relocation. */
14931 hi_pos = NULL;
14932 lo_pos = NULL;
14933 matched_lo_p = FALSE;
738e5348 14934 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
35903be0 14935
3b91255e
RS
14936 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14937 {
14938 if (*pos == l->fixp)
14939 hi_pos = pos;
14940
35903be0 14941 if ((*pos)->fx_r_type == looking_for_rtype
30cfc97a 14942 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
3b91255e
RS
14943 && (*pos)->fx_offset >= l->fixp->fx_offset
14944 && (lo_pos == NULL
14945 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14946 || (!matched_lo_p
14947 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14948 lo_pos = pos;
14949
14950 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14951 && fixup_has_matching_lo_p (*pos));
14952 }
14953
14954 /* If we found a match, remove the high-part relocation from its
14955 current position and insert it before the low-part relocation.
14956 Make the offsets match so that fixup_has_matching_lo_p()
14957 will return true.
14958
14959 We don't warn about unmatched high-part relocations since some
14960 versions of gcc have been known to emit dead "lui ...%hi(...)"
14961 instructions. */
14962 if (lo_pos != NULL)
14963 {
14964 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14965 if (l->fixp->fx_next != *lo_pos)
252b5132 14966 {
3b91255e
RS
14967 *hi_pos = l->fixp->fx_next;
14968 l->fixp->fx_next = *lo_pos;
14969 *lo_pos = l->fixp;
252b5132 14970 }
252b5132
RH
14971 }
14972 }
14973}
14974
252b5132 14975int
17a2f251 14976mips_force_relocation (fixS *fixp)
252b5132 14977{
ae6063d4 14978 if (generic_force_reloc (fixp))
252b5132
RH
14979 return 1;
14980
df58fc94
RS
14981 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14982 so that the linker relaxation can update targets. */
14983 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14984 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14985 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14986 return 1;
14987
5caa2b07
MR
14988 /* We want to keep BFD_RELOC_16_PCREL_S2 BFD_RELOC_MIPS_21_PCREL_S2
14989 and BFD_RELOC_MIPS_26_PCREL_S2 relocations against MIPS16 and
14990 microMIPS symbols so that we can do cross-mode branch diagnostics
14991 and BAL to JALX conversion by the linker. */
14992 if ((fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
9d862524
MR
14993 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14994 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2)
14995 && fixp->fx_addsy
14996 && ELF_ST_IS_COMPRESSED (S_GET_OTHER (fixp->fx_addsy)))
14997 return 1;
14998
7361da2c 14999 /* We want all PC-relative relocations to be kept for R6 relaxation. */
912815f0 15000 if (ISA_IS_R6 (file_mips_opts.isa)
7361da2c
AB
15001 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
15002 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
15003 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
15004 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
15005 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
15006 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
15007 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
15008 return 1;
15009
3e722fb5 15010 return 0;
252b5132
RH
15011}
15012
b416ba9b
MR
15013/* Implement TC_FORCE_RELOCATION_ABS. */
15014
15015bfd_boolean
15016mips_force_relocation_abs (fixS *fixp)
15017{
15018 if (generic_force_reloc (fixp))
15019 return TRUE;
15020
15021 /* These relocations do not have enough bits in the in-place addend
15022 to hold an arbitrary absolute section's offset. */
15023 if (HAVE_IN_PLACE_ADDENDS && limited_pcrel_reloc_p (fixp->fx_r_type))
15024 return TRUE;
15025
15026 return FALSE;
15027}
15028
b886a2ab
RS
15029/* Read the instruction associated with RELOC from BUF. */
15030
15031static unsigned int
15032read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
15033{
15034 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15035 return read_compressed_insn (buf, 4);
15036 else
15037 return read_insn (buf);
15038}
15039
15040/* Write instruction INSN to BUF, given that it has been relocated
15041 by RELOC. */
15042
15043static void
15044write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
15045 unsigned long insn)
15046{
15047 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15048 write_compressed_insn (buf, insn, 4);
15049 else
15050 write_insn (buf, insn);
15051}
15052
9d862524
MR
15053/* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15054 to a symbol in another ISA mode, which cannot be converted to JALX. */
15055
15056static bfd_boolean
15057fix_bad_cross_mode_jump_p (fixS *fixP)
15058{
15059 unsigned long opcode;
15060 int other;
15061 char *buf;
15062
15063 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15064 return FALSE;
15065
15066 other = S_GET_OTHER (fixP->fx_addsy);
15067 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15068 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15069 switch (fixP->fx_r_type)
15070 {
15071 case BFD_RELOC_MIPS_JMP:
15072 return opcode != 0x1d && opcode != 0x03 && ELF_ST_IS_COMPRESSED (other);
15073 case BFD_RELOC_MICROMIPS_JMP:
15074 return opcode != 0x3c && opcode != 0x3d && !ELF_ST_IS_MICROMIPS (other);
15075 default:
15076 return FALSE;
15077 }
15078}
15079
15080/* Return TRUE if the instruction pointed to by FIXP is an invalid JALX
15081 jump to a symbol in the same ISA mode. */
15082
15083static bfd_boolean
15084fix_bad_same_mode_jalx_p (fixS *fixP)
15085{
15086 unsigned long opcode;
15087 int other;
15088 char *buf;
15089
15090 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15091 return FALSE;
15092
15093 other = S_GET_OTHER (fixP->fx_addsy);
15094 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15095 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15096 switch (fixP->fx_r_type)
15097 {
15098 case BFD_RELOC_MIPS_JMP:
15099 return opcode == 0x1d && !ELF_ST_IS_COMPRESSED (other);
15100 case BFD_RELOC_MIPS16_JMP:
15101 return opcode == 0x07 && ELF_ST_IS_COMPRESSED (other);
15102 case BFD_RELOC_MICROMIPS_JMP:
15103 return opcode == 0x3c && ELF_ST_IS_COMPRESSED (other);
15104 default:
15105 return FALSE;
15106 }
15107}
15108
15109/* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15110 to a symbol whose value plus addend is not aligned according to the
15111 ultimate (after linker relaxation) jump instruction's immediate field
15112 requirement, either to (1 << SHIFT), or, for jumps from microMIPS to
15113 regular MIPS code, to (1 << 2). */
15114
15115static bfd_boolean
15116fix_bad_misaligned_jump_p (fixS *fixP, int shift)
15117{
15118 bfd_boolean micro_to_mips_p;
15119 valueT val;
15120 int other;
15121
15122 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15123 return FALSE;
15124
15125 other = S_GET_OTHER (fixP->fx_addsy);
15126 val = S_GET_VALUE (fixP->fx_addsy) | ELF_ST_IS_COMPRESSED (other);
15127 val += fixP->fx_offset;
15128 micro_to_mips_p = (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15129 && !ELF_ST_IS_MICROMIPS (other));
15130 return ((val & ((1 << (micro_to_mips_p ? 2 : shift)) - 1))
15131 != ELF_ST_IS_COMPRESSED (other));
15132}
15133
15134/* Return TRUE if the instruction pointed to by FIXP is an invalid branch
15135 to a symbol whose annotation indicates another ISA mode. For absolute
a6ebf616
MR
15136 symbols check the ISA bit instead.
15137
15138 We accept BFD_RELOC_16_PCREL_S2 relocations against MIPS16 and microMIPS
15139 symbols or BFD_RELOC_MICROMIPS_16_PCREL_S1 relocations against regular
15140 MIPS symbols and associated with BAL instructions as these instructions
15141 may be be converted to JALX by the linker. */
9d862524
MR
15142
15143static bfd_boolean
15144fix_bad_cross_mode_branch_p (fixS *fixP)
15145{
15146 bfd_boolean absolute_p;
15147 unsigned long opcode;
15148 asection *symsec;
15149 valueT val;
15150 int other;
15151 char *buf;
15152
8b10b0b3
MR
15153 if (mips_ignore_branch_isa)
15154 return FALSE;
15155
9d862524
MR
15156 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15157 return FALSE;
15158
15159 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15160 absolute_p = bfd_is_abs_section (symsec);
15161
15162 val = S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset;
15163 other = S_GET_OTHER (fixP->fx_addsy);
15164
15165 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15166 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 16;
15167 switch (fixP->fx_r_type)
15168 {
15169 case BFD_RELOC_16_PCREL_S2:
a6ebf616
MR
15170 return ((absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other))
15171 && opcode != 0x0411);
15172 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15173 return ((absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other))
15174 && opcode != 0x4060);
9d862524
MR
15175 case BFD_RELOC_MIPS_21_PCREL_S2:
15176 case BFD_RELOC_MIPS_26_PCREL_S2:
15177 return absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other);
15178 case BFD_RELOC_MIPS16_16_PCREL_S1:
15179 return absolute_p ? !(val & 1) : !ELF_ST_IS_MIPS16 (other);
15180 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15181 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
9d862524
MR
15182 return absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other);
15183 default:
15184 abort ();
15185 }
15186}
15187
15188/* Return TRUE if the symbol plus addend associated with a regular MIPS
15189 branch instruction pointed to by FIXP is not aligned according to the
15190 branch instruction's immediate field requirement. We need the addend
15191 to preserve the ISA bit and also the sum must not have bit 2 set. We
15192 must explicitly OR in the ISA bit from symbol annotation as the bit
15193 won't be set in the symbol's value then. */
15194
15195static bfd_boolean
15196fix_bad_misaligned_branch_p (fixS *fixP)
15197{
15198 bfd_boolean absolute_p;
15199 asection *symsec;
15200 valueT isa_bit;
15201 valueT val;
15202 valueT off;
15203 int other;
15204
15205 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15206 return FALSE;
15207
15208 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15209 absolute_p = bfd_is_abs_section (symsec);
15210
15211 val = S_GET_VALUE (fixP->fx_addsy);
15212 other = S_GET_OTHER (fixP->fx_addsy);
15213 off = fixP->fx_offset;
15214
15215 isa_bit = absolute_p ? (val + off) & 1 : ELF_ST_IS_COMPRESSED (other);
15216 val |= ELF_ST_IS_COMPRESSED (other);
15217 val += off;
15218 return (val & 0x3) != isa_bit;
15219}
15220
15221/* Make the necessary checks on a regular MIPS branch pointed to by FIXP
15222 and its calculated value VAL. */
15223
15224static void
15225fix_validate_branch (fixS *fixP, valueT val)
15226{
15227 if (fixP->fx_done && (val & 0x3) != 0)
15228 as_bad_where (fixP->fx_file, fixP->fx_line,
15229 _("branch to misaligned address (0x%lx)"),
15230 (long) (val + md_pcrel_from (fixP)));
15231 else if (fix_bad_cross_mode_branch_p (fixP))
15232 as_bad_where (fixP->fx_file, fixP->fx_line,
15233 _("branch to a symbol in another ISA mode"));
15234 else if (fix_bad_misaligned_branch_p (fixP))
15235 as_bad_where (fixP->fx_file, fixP->fx_line,
15236 _("branch to misaligned address (0x%lx)"),
15237 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15238 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x3) != 0)
15239 as_bad_where (fixP->fx_file, fixP->fx_line,
15240 _("cannot encode misaligned addend "
15241 "in the relocatable field (0x%lx)"),
15242 (long) fixP->fx_offset);
15243}
15244
252b5132
RH
15245/* Apply a fixup to the object file. */
15246
94f592af 15247void
55cf6793 15248md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 15249{
4d68580a 15250 char *buf;
b886a2ab 15251 unsigned long insn;
a7ebbfdf 15252 reloc_howto_type *howto;
252b5132 15253
d56a8dda
RS
15254 if (fixP->fx_pcrel)
15255 switch (fixP->fx_r_type)
15256 {
15257 case BFD_RELOC_16_PCREL_S2:
c9775dde 15258 case BFD_RELOC_MIPS16_16_PCREL_S1:
d56a8dda
RS
15259 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15260 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15261 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15262 case BFD_RELOC_32_PCREL:
7361da2c
AB
15263 case BFD_RELOC_MIPS_21_PCREL_S2:
15264 case BFD_RELOC_MIPS_26_PCREL_S2:
15265 case BFD_RELOC_MIPS_18_PCREL_S3:
15266 case BFD_RELOC_MIPS_19_PCREL_S2:
15267 case BFD_RELOC_HI16_S_PCREL:
15268 case BFD_RELOC_LO16_PCREL:
d56a8dda
RS
15269 break;
15270
15271 case BFD_RELOC_32:
15272 fixP->fx_r_type = BFD_RELOC_32_PCREL;
15273 break;
15274
15275 default:
15276 as_bad_where (fixP->fx_file, fixP->fx_line,
15277 _("PC-relative reference to a different section"));
15278 break;
15279 }
15280
15281 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
15282 that have no MIPS ELF equivalent. */
15283 if (fixP->fx_r_type != BFD_RELOC_8)
15284 {
15285 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
15286 if (!howto)
15287 return;
15288 }
65551fa4 15289
df58fc94
RS
15290 gas_assert (fixP->fx_size == 2
15291 || fixP->fx_size == 4
d56a8dda 15292 || fixP->fx_r_type == BFD_RELOC_8
90ecf173
MR
15293 || fixP->fx_r_type == BFD_RELOC_16
15294 || fixP->fx_r_type == BFD_RELOC_64
15295 || fixP->fx_r_type == BFD_RELOC_CTOR
15296 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
df58fc94 15297 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
90ecf173
MR
15298 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
15299 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
2f0c68f2
CM
15300 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
15301 || fixP->fx_r_type == BFD_RELOC_NONE);
252b5132 15302
4d68580a 15303 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
252b5132 15304
b1dca8ee
RS
15305 /* Don't treat parts of a composite relocation as done. There are two
15306 reasons for this:
15307
15308 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15309 should nevertheless be emitted if the first part is.
15310
15311 (2) In normal usage, composite relocations are never assembly-time
15312 constants. The easiest way of dealing with the pathological
15313 exceptions is to generate a relocation against STN_UNDEF and
15314 leave everything up to the linker. */
3994f87e 15315 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
252b5132
RH
15316 fixP->fx_done = 1;
15317
15318 switch (fixP->fx_r_type)
15319 {
3f98094e
DJ
15320 case BFD_RELOC_MIPS_TLS_GD:
15321 case BFD_RELOC_MIPS_TLS_LDM:
741d6ea8
JM
15322 case BFD_RELOC_MIPS_TLS_DTPREL32:
15323 case BFD_RELOC_MIPS_TLS_DTPREL64:
3f98094e
DJ
15324 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
15325 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
15326 case BFD_RELOC_MIPS_TLS_GOTTPREL:
d0f13682
CLT
15327 case BFD_RELOC_MIPS_TLS_TPREL32:
15328 case BFD_RELOC_MIPS_TLS_TPREL64:
3f98094e
DJ
15329 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
15330 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
df58fc94
RS
15331 case BFD_RELOC_MICROMIPS_TLS_GD:
15332 case BFD_RELOC_MICROMIPS_TLS_LDM:
15333 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
15334 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
15335 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
15336 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
15337 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
d0f13682
CLT
15338 case BFD_RELOC_MIPS16_TLS_GD:
15339 case BFD_RELOC_MIPS16_TLS_LDM:
15340 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
15341 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
15342 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
15343 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
15344 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
4512dafa
MR
15345 if (fixP->fx_addsy)
15346 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15347 else
15348 as_bad_where (fixP->fx_file, fixP->fx_line,
15349 _("TLS relocation against a constant"));
15350 break;
3f98094e 15351
252b5132 15352 case BFD_RELOC_MIPS_JMP:
9d862524
MR
15353 case BFD_RELOC_MIPS16_JMP:
15354 case BFD_RELOC_MICROMIPS_JMP:
15355 {
15356 int shift;
15357
15358 gas_assert (!fixP->fx_done);
15359
15360 /* Shift is 2, unusually, for microMIPS JALX. */
15361 if (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15362 && (read_compressed_insn (buf, 4) >> 26) != 0x3c)
15363 shift = 1;
15364 else
15365 shift = 2;
15366
15367 if (fix_bad_cross_mode_jump_p (fixP))
15368 as_bad_where (fixP->fx_file, fixP->fx_line,
15369 _("jump to a symbol in another ISA mode"));
15370 else if (fix_bad_same_mode_jalx_p (fixP))
15371 as_bad_where (fixP->fx_file, fixP->fx_line,
15372 _("JALX to a symbol in the same ISA mode"));
15373 else if (fix_bad_misaligned_jump_p (fixP, shift))
15374 as_bad_where (fixP->fx_file, fixP->fx_line,
15375 _("jump to misaligned address (0x%lx)"),
15376 (long) (S_GET_VALUE (fixP->fx_addsy)
15377 + fixP->fx_offset));
15378 else if (HAVE_IN_PLACE_ADDENDS
15379 && (fixP->fx_offset & ((1 << shift) - 1)) != 0)
15380 as_bad_where (fixP->fx_file, fixP->fx_line,
15381 _("cannot encode misaligned addend "
15382 "in the relocatable field (0x%lx)"),
15383 (long) fixP->fx_offset);
15384 }
15385 /* Fall through. */
15386
e369bcce
TS
15387 case BFD_RELOC_MIPS_SHIFT5:
15388 case BFD_RELOC_MIPS_SHIFT6:
15389 case BFD_RELOC_MIPS_GOT_DISP:
15390 case BFD_RELOC_MIPS_GOT_PAGE:
15391 case BFD_RELOC_MIPS_GOT_OFST:
15392 case BFD_RELOC_MIPS_SUB:
15393 case BFD_RELOC_MIPS_INSERT_A:
15394 case BFD_RELOC_MIPS_INSERT_B:
15395 case BFD_RELOC_MIPS_DELETE:
15396 case BFD_RELOC_MIPS_HIGHEST:
15397 case BFD_RELOC_MIPS_HIGHER:
15398 case BFD_RELOC_MIPS_SCN_DISP:
15399 case BFD_RELOC_MIPS_REL16:
15400 case BFD_RELOC_MIPS_RELGOT:
15401 case BFD_RELOC_MIPS_JALR:
252b5132
RH
15402 case BFD_RELOC_HI16:
15403 case BFD_RELOC_HI16_S:
b886a2ab 15404 case BFD_RELOC_LO16:
cdf6fd85 15405 case BFD_RELOC_GPREL16:
252b5132
RH
15406 case BFD_RELOC_MIPS_LITERAL:
15407 case BFD_RELOC_MIPS_CALL16:
15408 case BFD_RELOC_MIPS_GOT16:
cdf6fd85 15409 case BFD_RELOC_GPREL32:
252b5132
RH
15410 case BFD_RELOC_MIPS_GOT_HI16:
15411 case BFD_RELOC_MIPS_GOT_LO16:
15412 case BFD_RELOC_MIPS_CALL_HI16:
15413 case BFD_RELOC_MIPS_CALL_LO16:
41947d9e
MR
15414 case BFD_RELOC_HI16_S_PCREL:
15415 case BFD_RELOC_LO16_PCREL:
252b5132 15416 case BFD_RELOC_MIPS16_GPREL:
738e5348
RS
15417 case BFD_RELOC_MIPS16_GOT16:
15418 case BFD_RELOC_MIPS16_CALL16:
d6f16593
MR
15419 case BFD_RELOC_MIPS16_HI16:
15420 case BFD_RELOC_MIPS16_HI16_S:
b886a2ab 15421 case BFD_RELOC_MIPS16_LO16:
df58fc94
RS
15422 case BFD_RELOC_MICROMIPS_GOT_DISP:
15423 case BFD_RELOC_MICROMIPS_GOT_PAGE:
15424 case BFD_RELOC_MICROMIPS_GOT_OFST:
15425 case BFD_RELOC_MICROMIPS_SUB:
15426 case BFD_RELOC_MICROMIPS_HIGHEST:
15427 case BFD_RELOC_MICROMIPS_HIGHER:
15428 case BFD_RELOC_MICROMIPS_SCN_DISP:
15429 case BFD_RELOC_MICROMIPS_JALR:
15430 case BFD_RELOC_MICROMIPS_HI16:
15431 case BFD_RELOC_MICROMIPS_HI16_S:
b886a2ab 15432 case BFD_RELOC_MICROMIPS_LO16:
df58fc94
RS
15433 case BFD_RELOC_MICROMIPS_GPREL16:
15434 case BFD_RELOC_MICROMIPS_LITERAL:
15435 case BFD_RELOC_MICROMIPS_CALL16:
15436 case BFD_RELOC_MICROMIPS_GOT16:
15437 case BFD_RELOC_MICROMIPS_GOT_HI16:
15438 case BFD_RELOC_MICROMIPS_GOT_LO16:
15439 case BFD_RELOC_MICROMIPS_CALL_HI16:
15440 case BFD_RELOC_MICROMIPS_CALL_LO16:
067ec077 15441 case BFD_RELOC_MIPS_EH:
b886a2ab
RS
15442 if (fixP->fx_done)
15443 {
15444 offsetT value;
15445
15446 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
15447 {
15448 insn = read_reloc_insn (buf, fixP->fx_r_type);
15449 if (mips16_reloc_p (fixP->fx_r_type))
15450 insn |= mips16_immed_extend (value, 16);
15451 else
15452 insn |= (value & 0xffff);
15453 write_reloc_insn (buf, fixP->fx_r_type, insn);
15454 }
15455 else
15456 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 15457 _("unsupported constant in relocation"));
b886a2ab 15458 }
252b5132
RH
15459 break;
15460
252b5132
RH
15461 case BFD_RELOC_64:
15462 /* This is handled like BFD_RELOC_32, but we output a sign
15463 extended value if we are only 32 bits. */
3e722fb5 15464 if (fixP->fx_done)
252b5132
RH
15465 {
15466 if (8 <= sizeof (valueT))
4d68580a 15467 md_number_to_chars (buf, *valP, 8);
252b5132
RH
15468 else
15469 {
a7ebbfdf 15470 valueT hiv;
252b5132 15471
a7ebbfdf 15472 if ((*valP & 0x80000000) != 0)
252b5132
RH
15473 hiv = 0xffffffff;
15474 else
15475 hiv = 0;
4d68580a
RS
15476 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15477 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
252b5132
RH
15478 }
15479 }
15480 break;
15481
056350c6 15482 case BFD_RELOC_RVA:
252b5132 15483 case BFD_RELOC_32:
b47468a6 15484 case BFD_RELOC_32_PCREL:
252b5132 15485 case BFD_RELOC_16:
d56a8dda 15486 case BFD_RELOC_8:
252b5132 15487 /* If we are deleting this reloc entry, we must fill in the
54f4ddb3
TS
15488 value now. This can happen if we have a .word which is not
15489 resolved when it appears but is later defined. */
252b5132 15490 if (fixP->fx_done)
4d68580a 15491 md_number_to_chars (buf, *valP, fixP->fx_size);
252b5132
RH
15492 break;
15493
7361da2c 15494 case BFD_RELOC_MIPS_21_PCREL_S2:
9d862524 15495 fix_validate_branch (fixP, *valP);
41947d9e
MR
15496 if (!fixP->fx_done)
15497 break;
15498
15499 if (*valP + 0x400000 <= 0x7fffff)
15500 {
15501 insn = read_insn (buf);
15502 insn |= (*valP >> 2) & 0x1fffff;
15503 write_insn (buf, insn);
15504 }
15505 else
15506 as_bad_where (fixP->fx_file, fixP->fx_line,
15507 _("branch out of range"));
15508 break;
15509
7361da2c 15510 case BFD_RELOC_MIPS_26_PCREL_S2:
9d862524 15511 fix_validate_branch (fixP, *valP);
41947d9e
MR
15512 if (!fixP->fx_done)
15513 break;
7361da2c 15514
41947d9e
MR
15515 if (*valP + 0x8000000 <= 0xfffffff)
15516 {
15517 insn = read_insn (buf);
15518 insn |= (*valP >> 2) & 0x3ffffff;
15519 write_insn (buf, insn);
15520 }
15521 else
15522 as_bad_where (fixP->fx_file, fixP->fx_line,
15523 _("branch out of range"));
7361da2c
AB
15524 break;
15525
15526 case BFD_RELOC_MIPS_18_PCREL_S3:
717ba204 15527 if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
7361da2c 15528 as_bad_where (fixP->fx_file, fixP->fx_line,
0866e94c
MF
15529 _("PC-relative access using misaligned symbol (%lx)"),
15530 (long) S_GET_VALUE (fixP->fx_addsy));
15531 if ((fixP->fx_offset & 0x7) != 0)
15532 as_bad_where (fixP->fx_file, fixP->fx_line,
15533 _("PC-relative access using misaligned offset (%lx)"),
15534 (long) fixP->fx_offset);
41947d9e
MR
15535 if (!fixP->fx_done)
15536 break;
7361da2c 15537
41947d9e
MR
15538 if (*valP + 0x100000 <= 0x1fffff)
15539 {
15540 insn = read_insn (buf);
15541 insn |= (*valP >> 3) & 0x3ffff;
15542 write_insn (buf, insn);
15543 }
15544 else
15545 as_bad_where (fixP->fx_file, fixP->fx_line,
15546 _("PC-relative access out of range"));
7361da2c
AB
15547 break;
15548
15549 case BFD_RELOC_MIPS_19_PCREL_S2:
15550 if ((*valP & 0x3) != 0)
15551 as_bad_where (fixP->fx_file, fixP->fx_line,
15552 _("PC-relative access to misaligned address (%lx)"),
717ba204 15553 (long) *valP);
41947d9e
MR
15554 if (!fixP->fx_done)
15555 break;
7361da2c 15556
41947d9e
MR
15557 if (*valP + 0x100000 <= 0x1fffff)
15558 {
15559 insn = read_insn (buf);
15560 insn |= (*valP >> 2) & 0x7ffff;
15561 write_insn (buf, insn);
15562 }
15563 else
15564 as_bad_where (fixP->fx_file, fixP->fx_line,
15565 _("PC-relative access out of range"));
7361da2c
AB
15566 break;
15567
252b5132 15568 case BFD_RELOC_16_PCREL_S2:
9d862524 15569 fix_validate_branch (fixP, *valP);
cb56d3d3 15570
54f4ddb3
TS
15571 /* We need to save the bits in the instruction since fixup_segment()
15572 might be deleting the relocation entry (i.e., a branch within
15573 the current segment). */
a7ebbfdf 15574 if (! fixP->fx_done)
bb2d6cd7 15575 break;
252b5132 15576
54f4ddb3 15577 /* Update old instruction data. */
4d68580a 15578 insn = read_insn (buf);
252b5132 15579
a7ebbfdf
TS
15580 if (*valP + 0x20000 <= 0x3ffff)
15581 {
15582 insn |= (*valP >> 2) & 0xffff;
4d68580a 15583 write_insn (buf, insn);
a7ebbfdf
TS
15584 }
15585 else if (mips_pic == NO_PIC
15586 && fixP->fx_done
15587 && fixP->fx_frag->fr_address >= text_section->vma
15588 && (fixP->fx_frag->fr_address
587aac4e 15589 < text_section->vma + bfd_get_section_size (text_section))
a7ebbfdf
TS
15590 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15591 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15592 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
252b5132
RH
15593 {
15594 /* The branch offset is too large. If this is an
15595 unconditional branch, and we are not generating PIC code,
15596 we can convert it to an absolute jump instruction. */
a7ebbfdf
TS
15597 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15598 insn = 0x0c000000; /* jal */
252b5132 15599 else
a7ebbfdf
TS
15600 insn = 0x08000000; /* j */
15601 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15602 fixP->fx_done = 0;
15603 fixP->fx_addsy = section_symbol (text_section);
15604 *valP += md_pcrel_from (fixP);
4d68580a 15605 write_insn (buf, insn);
a7ebbfdf
TS
15606 }
15607 else
15608 {
15609 /* If we got here, we have branch-relaxation disabled,
15610 and there's nothing we can do to fix this instruction
15611 without turning it into a longer sequence. */
15612 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 15613 _("branch out of range"));
252b5132 15614 }
252b5132
RH
15615 break;
15616
c9775dde 15617 case BFD_RELOC_MIPS16_16_PCREL_S1:
df58fc94
RS
15618 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15619 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15620 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
96e9ba5f 15621 gas_assert (!fixP->fx_done);
9d862524
MR
15622 if (fix_bad_cross_mode_branch_p (fixP))
15623 as_bad_where (fixP->fx_file, fixP->fx_line,
15624 _("branch to a symbol in another ISA mode"));
15625 else if (fixP->fx_addsy
15626 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
15627 && !bfd_is_abs_section (S_GET_SEGMENT (fixP->fx_addsy))
15628 && (fixP->fx_offset & 0x1) != 0)
15629 as_bad_where (fixP->fx_file, fixP->fx_line,
15630 _("branch to misaligned address (0x%lx)"),
15631 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15632 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x1) != 0)
15633 as_bad_where (fixP->fx_file, fixP->fx_line,
15634 _("cannot encode misaligned addend "
15635 "in the relocatable field (0x%lx)"),
15636 (long) fixP->fx_offset);
df58fc94
RS
15637 break;
15638
252b5132
RH
15639 case BFD_RELOC_VTABLE_INHERIT:
15640 fixP->fx_done = 0;
15641 if (fixP->fx_addsy
15642 && !S_IS_DEFINED (fixP->fx_addsy)
15643 && !S_IS_WEAK (fixP->fx_addsy))
15644 S_SET_WEAK (fixP->fx_addsy);
15645 break;
15646
2f0c68f2 15647 case BFD_RELOC_NONE:
252b5132
RH
15648 case BFD_RELOC_VTABLE_ENTRY:
15649 fixP->fx_done = 0;
15650 break;
15651
15652 default:
b37df7c4 15653 abort ();
252b5132 15654 }
a7ebbfdf
TS
15655
15656 /* Remember value for tc_gen_reloc. */
15657 fixP->fx_addnumber = *valP;
252b5132
RH
15658}
15659
252b5132 15660static symbolS *
17a2f251 15661get_symbol (void)
252b5132
RH
15662{
15663 int c;
15664 char *name;
15665 symbolS *p;
15666
d02603dc 15667 c = get_symbol_name (&name);
252b5132 15668 p = (symbolS *) symbol_find_or_make (name);
d02603dc 15669 (void) restore_line_pointer (c);
252b5132
RH
15670 return p;
15671}
15672
742a56fe
RS
15673/* Align the current frag to a given power of two. If a particular
15674 fill byte should be used, FILL points to an integer that contains
15675 that byte, otherwise FILL is null.
15676
462427c4
RS
15677 This function used to have the comment:
15678
15679 The MIPS assembler also automatically adjusts any preceding label.
15680
15681 The implementation therefore applied the adjustment to a maximum of
15682 one label. However, other label adjustments are applied to batches
15683 of labels, and adjusting just one caused problems when new labels
15684 were added for the sake of debugging or unwind information.
15685 We therefore adjust all preceding labels (given as LABELS) instead. */
252b5132
RH
15686
15687static void
462427c4 15688mips_align (int to, int *fill, struct insn_label_list *labels)
252b5132 15689{
7d10b47d 15690 mips_emit_delays ();
df58fc94 15691 mips_record_compressed_mode ();
742a56fe
RS
15692 if (fill == NULL && subseg_text_p (now_seg))
15693 frag_align_code (to, 0);
15694 else
15695 frag_align (to, fill ? *fill : 0, 0);
252b5132 15696 record_alignment (now_seg, to);
462427c4 15697 mips_move_labels (labels, FALSE);
252b5132
RH
15698}
15699
15700/* Align to a given power of two. .align 0 turns off the automatic
15701 alignment used by the data creating pseudo-ops. */
15702
15703static void
17a2f251 15704s_align (int x ATTRIBUTE_UNUSED)
252b5132 15705{
742a56fe 15706 int temp, fill_value, *fill_ptr;
49954fb4 15707 long max_alignment = 28;
252b5132 15708
54f4ddb3 15709 /* o Note that the assembler pulls down any immediately preceding label
252b5132 15710 to the aligned address.
54f4ddb3 15711 o It's not documented but auto alignment is reinstated by
252b5132 15712 a .align pseudo instruction.
54f4ddb3 15713 o Note also that after auto alignment is turned off the mips assembler
252b5132 15714 issues an error on attempt to assemble an improperly aligned data item.
54f4ddb3 15715 We don't. */
252b5132
RH
15716
15717 temp = get_absolute_expression ();
15718 if (temp > max_alignment)
1661c76c 15719 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
252b5132
RH
15720 else if (temp < 0)
15721 {
1661c76c 15722 as_warn (_("alignment negative, 0 assumed"));
252b5132
RH
15723 temp = 0;
15724 }
15725 if (*input_line_pointer == ',')
15726 {
f9419b05 15727 ++input_line_pointer;
742a56fe
RS
15728 fill_value = get_absolute_expression ();
15729 fill_ptr = &fill_value;
252b5132
RH
15730 }
15731 else
742a56fe 15732 fill_ptr = 0;
252b5132
RH
15733 if (temp)
15734 {
a8dbcb85
TS
15735 segment_info_type *si = seg_info (now_seg);
15736 struct insn_label_list *l = si->label_list;
54f4ddb3 15737 /* Auto alignment should be switched on by next section change. */
252b5132 15738 auto_align = 1;
462427c4 15739 mips_align (temp, fill_ptr, l);
252b5132
RH
15740 }
15741 else
15742 {
15743 auto_align = 0;
15744 }
15745
15746 demand_empty_rest_of_line ();
15747}
15748
252b5132 15749static void
17a2f251 15750s_change_sec (int sec)
252b5132
RH
15751{
15752 segT seg;
15753
252b5132
RH
15754 /* The ELF backend needs to know that we are changing sections, so
15755 that .previous works correctly. We could do something like check
b6ff326e 15756 for an obj_section_change_hook macro, but that might be confusing
252b5132
RH
15757 as it would not be appropriate to use it in the section changing
15758 functions in read.c, since obj-elf.c intercepts those. FIXME:
15759 This should be cleaner, somehow. */
f3ded42a 15760 obj_elf_section_change_hook ();
252b5132 15761
7d10b47d 15762 mips_emit_delays ();
6a32d874 15763
252b5132
RH
15764 switch (sec)
15765 {
15766 case 't':
15767 s_text (0);
15768 break;
15769 case 'd':
15770 s_data (0);
15771 break;
15772 case 'b':
15773 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15774 demand_empty_rest_of_line ();
15775 break;
15776
15777 case 'r':
4d0d148d
TS
15778 seg = subseg_new (RDATA_SECTION_NAME,
15779 (subsegT) get_absolute_expression ());
f3ded42a
RS
15780 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15781 | SEC_READONLY | SEC_RELOC
15782 | SEC_DATA));
15783 if (strncmp (TARGET_OS, "elf", 3) != 0)
15784 record_alignment (seg, 4);
4d0d148d 15785 demand_empty_rest_of_line ();
252b5132
RH
15786 break;
15787
15788 case 's':
4d0d148d 15789 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
f3ded42a
RS
15790 bfd_set_section_flags (stdoutput, seg,
15791 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15792 if (strncmp (TARGET_OS, "elf", 3) != 0)
15793 record_alignment (seg, 4);
4d0d148d
TS
15794 demand_empty_rest_of_line ();
15795 break;
998b3c36
MR
15796
15797 case 'B':
15798 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
f3ded42a
RS
15799 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15800 if (strncmp (TARGET_OS, "elf", 3) != 0)
15801 record_alignment (seg, 4);
998b3c36
MR
15802 demand_empty_rest_of_line ();
15803 break;
252b5132
RH
15804 }
15805
15806 auto_align = 1;
15807}
b34976b6 15808
cca86cc8 15809void
17a2f251 15810s_change_section (int ignore ATTRIBUTE_UNUSED)
cca86cc8 15811{
d02603dc 15812 char *saved_ilp;
cca86cc8 15813 char *section_name;
d02603dc 15814 char c, endc;
684022ea 15815 char next_c = 0;
cca86cc8
SC
15816 int section_type;
15817 int section_flag;
15818 int section_entry_size;
15819 int section_alignment;
b34976b6 15820
d02603dc
NC
15821 saved_ilp = input_line_pointer;
15822 endc = get_symbol_name (&section_name);
15823 c = (endc == '"' ? input_line_pointer[1] : endc);
a816d1ed 15824 if (c)
d02603dc 15825 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
cca86cc8 15826
4cf0dd0d
TS
15827 /* Do we have .section Name<,"flags">? */
15828 if (c != ',' || (c == ',' && next_c == '"'))
cca86cc8 15829 {
d02603dc
NC
15830 /* Just after name is now '\0'. */
15831 (void) restore_line_pointer (endc);
15832 input_line_pointer = saved_ilp;
cca86cc8
SC
15833 obj_elf_section (ignore);
15834 return;
15835 }
d02603dc
NC
15836
15837 section_name = xstrdup (section_name);
15838 c = restore_line_pointer (endc);
15839
cca86cc8
SC
15840 input_line_pointer++;
15841
15842 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15843 if (c == ',')
15844 section_type = get_absolute_expression ();
15845 else
15846 section_type = 0;
d02603dc 15847
cca86cc8
SC
15848 if (*input_line_pointer++ == ',')
15849 section_flag = get_absolute_expression ();
15850 else
15851 section_flag = 0;
d02603dc 15852
cca86cc8
SC
15853 if (*input_line_pointer++ == ',')
15854 section_entry_size = get_absolute_expression ();
15855 else
15856 section_entry_size = 0;
d02603dc 15857
cca86cc8
SC
15858 if (*input_line_pointer++ == ',')
15859 section_alignment = get_absolute_expression ();
15860 else
15861 section_alignment = 0;
d02603dc 15862
87975d2a
AM
15863 /* FIXME: really ignore? */
15864 (void) section_alignment;
cca86cc8 15865
8ab8a5c8
RS
15866 /* When using the generic form of .section (as implemented by obj-elf.c),
15867 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15868 traditionally had to fall back on the more common @progbits instead.
15869
15870 There's nothing really harmful in this, since bfd will correct
15871 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
708587a4 15872 means that, for backwards compatibility, the special_section entries
8ab8a5c8
RS
15873 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15874
15875 Even so, we shouldn't force users of the MIPS .section syntax to
15876 incorrectly label the sections as SHT_PROGBITS. The best compromise
15877 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15878 generic type-checking code. */
15879 if (section_type == SHT_MIPS_DWARF)
15880 section_type = SHT_PROGBITS;
15881
a91e1603 15882 obj_elf_change_section (section_name, section_type, 0, section_flag,
cca86cc8 15883 section_entry_size, 0, 0, 0);
a816d1ed
AO
15884
15885 if (now_seg->name != section_name)
15886 free (section_name);
cca86cc8 15887}
252b5132
RH
15888
15889void
17a2f251 15890mips_enable_auto_align (void)
252b5132
RH
15891{
15892 auto_align = 1;
15893}
15894
15895static void
17a2f251 15896s_cons (int log_size)
252b5132 15897{
a8dbcb85
TS
15898 segment_info_type *si = seg_info (now_seg);
15899 struct insn_label_list *l = si->label_list;
252b5132 15900
7d10b47d 15901 mips_emit_delays ();
252b5132 15902 if (log_size > 0 && auto_align)
462427c4 15903 mips_align (log_size, 0, l);
252b5132 15904 cons (1 << log_size);
a1facbec 15905 mips_clear_insn_labels ();
252b5132
RH
15906}
15907
15908static void
17a2f251 15909s_float_cons (int type)
252b5132 15910{
a8dbcb85
TS
15911 segment_info_type *si = seg_info (now_seg);
15912 struct insn_label_list *l = si->label_list;
252b5132 15913
7d10b47d 15914 mips_emit_delays ();
252b5132
RH
15915
15916 if (auto_align)
49309057
ILT
15917 {
15918 if (type == 'd')
462427c4 15919 mips_align (3, 0, l);
49309057 15920 else
462427c4 15921 mips_align (2, 0, l);
49309057 15922 }
252b5132 15923
252b5132 15924 float_cons (type);
a1facbec 15925 mips_clear_insn_labels ();
252b5132
RH
15926}
15927
15928/* Handle .globl. We need to override it because on Irix 5 you are
15929 permitted to say
15930 .globl foo .text
15931 where foo is an undefined symbol, to mean that foo should be
15932 considered to be the address of a function. */
15933
15934static void
17a2f251 15935s_mips_globl (int x ATTRIBUTE_UNUSED)
252b5132
RH
15936{
15937 char *name;
15938 int c;
15939 symbolS *symbolP;
15940 flagword flag;
15941
8a06b769 15942 do
252b5132 15943 {
d02603dc 15944 c = get_symbol_name (&name);
8a06b769
TS
15945 symbolP = symbol_find_or_make (name);
15946 S_SET_EXTERNAL (symbolP);
15947
252b5132 15948 *input_line_pointer = c;
d02603dc 15949 SKIP_WHITESPACE_AFTER_NAME ();
252b5132 15950
8a06b769
TS
15951 /* On Irix 5, every global symbol that is not explicitly labelled as
15952 being a function is apparently labelled as being an object. */
15953 flag = BSF_OBJECT;
252b5132 15954
8a06b769
TS
15955 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15956 && (*input_line_pointer != ','))
15957 {
15958 char *secname;
15959 asection *sec;
15960
d02603dc 15961 c = get_symbol_name (&secname);
8a06b769
TS
15962 sec = bfd_get_section_by_name (stdoutput, secname);
15963 if (sec == NULL)
15964 as_bad (_("%s: no such section"), secname);
d02603dc 15965 (void) restore_line_pointer (c);
8a06b769
TS
15966
15967 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15968 flag = BSF_FUNCTION;
15969 }
15970
15971 symbol_get_bfdsym (symbolP)->flags |= flag;
15972
15973 c = *input_line_pointer;
15974 if (c == ',')
15975 {
15976 input_line_pointer++;
15977 SKIP_WHITESPACE ();
15978 if (is_end_of_line[(unsigned char) *input_line_pointer])
15979 c = '\n';
15980 }
15981 }
15982 while (c == ',');
252b5132 15983
252b5132
RH
15984 demand_empty_rest_of_line ();
15985}
15986
15987static void
17a2f251 15988s_option (int x ATTRIBUTE_UNUSED)
252b5132
RH
15989{
15990 char *opt;
15991 char c;
15992
d02603dc 15993 c = get_symbol_name (&opt);
252b5132
RH
15994
15995 if (*opt == 'O')
15996 {
15997 /* FIXME: What does this mean? */
15998 }
41a1578e 15999 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
252b5132
RH
16000 {
16001 int i;
16002
16003 i = atoi (opt + 3);
668c5ebc
MR
16004 if (i != 0 && i != 2)
16005 as_bad (_(".option pic%d not supported"), i);
16006 else if (mips_pic == VXWORKS_PIC)
16007 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
16008 else if (i == 0)
252b5132
RH
16009 mips_pic = NO_PIC;
16010 else if (i == 2)
143d77c5 16011 {
8b828383 16012 mips_pic = SVR4_PIC;
143d77c5
EC
16013 mips_abicalls = TRUE;
16014 }
252b5132 16015
4d0d148d 16016 if (mips_pic == SVR4_PIC)
252b5132
RH
16017 {
16018 if (g_switch_seen && g_switch_value != 0)
16019 as_warn (_("-G may not be used with SVR4 PIC code"));
16020 g_switch_value = 0;
16021 bfd_set_gp_size (stdoutput, 0);
16022 }
16023 }
16024 else
1661c76c 16025 as_warn (_("unrecognized option \"%s\""), opt);
252b5132 16026
d02603dc 16027 (void) restore_line_pointer (c);
252b5132
RH
16028 demand_empty_rest_of_line ();
16029}
16030
16031/* This structure is used to hold a stack of .set values. */
16032
e972090a
NC
16033struct mips_option_stack
16034{
252b5132
RH
16035 struct mips_option_stack *next;
16036 struct mips_set_options options;
16037};
16038
16039static struct mips_option_stack *mips_opts_stack;
16040
22522f88
MR
16041/* Return status for .set/.module option handling. */
16042
16043enum code_option_type
16044{
16045 /* Unrecognized option. */
16046 OPTION_TYPE_BAD = -1,
16047
16048 /* Ordinary option. */
16049 OPTION_TYPE_NORMAL,
16050
16051 /* ISA changing option. */
16052 OPTION_TYPE_ISA
16053};
16054
16055/* Handle common .set/.module options. Return status indicating option
16056 type. */
16057
16058static enum code_option_type
919731af 16059parse_code_option (char * name)
252b5132 16060{
22522f88 16061 bfd_boolean isa_set = FALSE;
c6278170 16062 const struct mips_ase *ase;
22522f88 16063
919731af 16064 if (strncmp (name, "at=", 3) == 0)
741fe287
MR
16065 {
16066 char *s = name + 3;
16067
16068 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
1661c76c 16069 as_bad (_("unrecognized register name `%s'"), s);
741fe287 16070 }
252b5132 16071 else if (strcmp (name, "at") == 0)
919731af 16072 mips_opts.at = ATREG;
252b5132 16073 else if (strcmp (name, "noat") == 0)
919731af 16074 mips_opts.at = ZERO;
252b5132 16075 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
919731af 16076 mips_opts.nomove = 0;
252b5132 16077 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
919731af 16078 mips_opts.nomove = 1;
252b5132 16079 else if (strcmp (name, "bopt") == 0)
919731af 16080 mips_opts.nobopt = 0;
252b5132 16081 else if (strcmp (name, "nobopt") == 0)
919731af 16082 mips_opts.nobopt = 1;
ad3fea08 16083 else if (strcmp (name, "gp=32") == 0)
bad1aba3 16084 mips_opts.gp = 32;
ad3fea08 16085 else if (strcmp (name, "gp=64") == 0)
919731af 16086 mips_opts.gp = 64;
ad3fea08 16087 else if (strcmp (name, "fp=32") == 0)
0b35dfee 16088 mips_opts.fp = 32;
351cdf24
MF
16089 else if (strcmp (name, "fp=xx") == 0)
16090 mips_opts.fp = 0;
ad3fea08 16091 else if (strcmp (name, "fp=64") == 0)
919731af 16092 mips_opts.fp = 64;
037b32b9
AN
16093 else if (strcmp (name, "softfloat") == 0)
16094 mips_opts.soft_float = 1;
16095 else if (strcmp (name, "hardfloat") == 0)
16096 mips_opts.soft_float = 0;
16097 else if (strcmp (name, "singlefloat") == 0)
16098 mips_opts.single_float = 1;
16099 else if (strcmp (name, "doublefloat") == 0)
16100 mips_opts.single_float = 0;
351cdf24
MF
16101 else if (strcmp (name, "nooddspreg") == 0)
16102 mips_opts.oddspreg = 0;
16103 else if (strcmp (name, "oddspreg") == 0)
16104 mips_opts.oddspreg = 1;
252b5132
RH
16105 else if (strcmp (name, "mips16") == 0
16106 || strcmp (name, "MIPS-16") == 0)
919731af 16107 mips_opts.mips16 = 1;
252b5132
RH
16108 else if (strcmp (name, "nomips16") == 0
16109 || strcmp (name, "noMIPS-16") == 0)
16110 mips_opts.mips16 = 0;
df58fc94 16111 else if (strcmp (name, "micromips") == 0)
919731af 16112 mips_opts.micromips = 1;
df58fc94
RS
16113 else if (strcmp (name, "nomicromips") == 0)
16114 mips_opts.micromips = 0;
c6278170
RS
16115 else if (name[0] == 'n'
16116 && name[1] == 'o'
16117 && (ase = mips_lookup_ase (name + 2)))
919731af 16118 mips_set_ase (ase, &mips_opts, FALSE);
c6278170 16119 else if ((ase = mips_lookup_ase (name)))
919731af 16120 mips_set_ase (ase, &mips_opts, TRUE);
1a2c1fad 16121 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
252b5132 16122 {
1a2c1fad
CD
16123 /* Permit the user to change the ISA and architecture on the fly.
16124 Needless to say, misuse can cause serious problems. */
919731af 16125 if (strncmp (name, "arch=", 5) == 0)
1a2c1fad
CD
16126 {
16127 const struct mips_cpu_info *p;
16128
919731af 16129 p = mips_parse_cpu ("internal use", name + 5);
1a2c1fad
CD
16130 if (!p)
16131 as_bad (_("unknown architecture %s"), name + 5);
16132 else
16133 {
16134 mips_opts.arch = p->cpu;
16135 mips_opts.isa = p->isa;
22522f88 16136 isa_set = TRUE;
1a2c1fad
CD
16137 }
16138 }
81a21e38
TS
16139 else if (strncmp (name, "mips", 4) == 0)
16140 {
16141 const struct mips_cpu_info *p;
16142
919731af 16143 p = mips_parse_cpu ("internal use", name);
81a21e38
TS
16144 if (!p)
16145 as_bad (_("unknown ISA level %s"), name + 4);
16146 else
16147 {
16148 mips_opts.arch = p->cpu;
16149 mips_opts.isa = p->isa;
22522f88 16150 isa_set = TRUE;
81a21e38
TS
16151 }
16152 }
af7ee8bf 16153 else
81a21e38 16154 as_bad (_("unknown ISA or architecture %s"), name);
252b5132
RH
16155 }
16156 else if (strcmp (name, "autoextend") == 0)
16157 mips_opts.noautoextend = 0;
16158 else if (strcmp (name, "noautoextend") == 0)
16159 mips_opts.noautoextend = 1;
833794fc
MR
16160 else if (strcmp (name, "insn32") == 0)
16161 mips_opts.insn32 = TRUE;
16162 else if (strcmp (name, "noinsn32") == 0)
16163 mips_opts.insn32 = FALSE;
919731af 16164 else if (strcmp (name, "sym32") == 0)
16165 mips_opts.sym32 = TRUE;
16166 else if (strcmp (name, "nosym32") == 0)
16167 mips_opts.sym32 = FALSE;
16168 else
22522f88
MR
16169 return OPTION_TYPE_BAD;
16170
16171 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
919731af 16172}
16173
16174/* Handle the .set pseudo-op. */
16175
16176static void
16177s_mipsset (int x ATTRIBUTE_UNUSED)
16178{
22522f88 16179 enum code_option_type type = OPTION_TYPE_NORMAL;
919731af 16180 char *name = input_line_pointer, ch;
919731af 16181
16182 file_mips_check_options ();
16183
16184 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16185 ++input_line_pointer;
16186 ch = *input_line_pointer;
16187 *input_line_pointer = '\0';
16188
16189 if (strchr (name, ','))
16190 {
16191 /* Generic ".set" directive; use the generic handler. */
16192 *input_line_pointer = ch;
16193 input_line_pointer = name;
16194 s_set (0);
16195 return;
16196 }
16197
16198 if (strcmp (name, "reorder") == 0)
16199 {
16200 if (mips_opts.noreorder)
16201 end_noreorder ();
16202 }
16203 else if (strcmp (name, "noreorder") == 0)
16204 {
16205 if (!mips_opts.noreorder)
16206 start_noreorder ();
16207 }
16208 else if (strcmp (name, "macro") == 0)
16209 mips_opts.warn_about_macros = 0;
16210 else if (strcmp (name, "nomacro") == 0)
16211 {
16212 if (mips_opts.noreorder == 0)
16213 as_bad (_("`noreorder' must be set before `nomacro'"));
16214 mips_opts.warn_about_macros = 1;
16215 }
16216 else if (strcmp (name, "gp=default") == 0)
16217 mips_opts.gp = file_mips_opts.gp;
16218 else if (strcmp (name, "fp=default") == 0)
16219 mips_opts.fp = file_mips_opts.fp;
16220 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
16221 {
16222 mips_opts.isa = file_mips_opts.isa;
16223 mips_opts.arch = file_mips_opts.arch;
16224 mips_opts.gp = file_mips_opts.gp;
16225 mips_opts.fp = file_mips_opts.fp;
16226 }
252b5132
RH
16227 else if (strcmp (name, "push") == 0)
16228 {
16229 struct mips_option_stack *s;
16230
325801bd 16231 s = XNEW (struct mips_option_stack);
252b5132
RH
16232 s->next = mips_opts_stack;
16233 s->options = mips_opts;
16234 mips_opts_stack = s;
16235 }
16236 else if (strcmp (name, "pop") == 0)
16237 {
16238 struct mips_option_stack *s;
16239
16240 s = mips_opts_stack;
16241 if (s == NULL)
16242 as_bad (_(".set pop with no .set push"));
16243 else
16244 {
16245 /* If we're changing the reorder mode we need to handle
16246 delay slots correctly. */
16247 if (s->options.noreorder && ! mips_opts.noreorder)
7d10b47d 16248 start_noreorder ();
252b5132 16249 else if (! s->options.noreorder && mips_opts.noreorder)
7d10b47d 16250 end_noreorder ();
252b5132
RH
16251
16252 mips_opts = s->options;
16253 mips_opts_stack = s->next;
16254 free (s);
16255 }
16256 }
22522f88
MR
16257 else
16258 {
16259 type = parse_code_option (name);
16260 if (type == OPTION_TYPE_BAD)
16261 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
16262 }
919731af 16263
16264 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
16265 registers based on what is supported by the arch/cpu. */
22522f88 16266 if (type == OPTION_TYPE_ISA)
e6559e01 16267 {
919731af 16268 switch (mips_opts.isa)
16269 {
16270 case 0:
16271 break;
16272 case ISA_MIPS1:
351cdf24
MF
16273 /* MIPS I cannot support FPXX. */
16274 mips_opts.fp = 32;
16275 /* fall-through. */
919731af 16276 case ISA_MIPS2:
16277 case ISA_MIPS32:
16278 case ISA_MIPS32R2:
16279 case ISA_MIPS32R3:
16280 case ISA_MIPS32R5:
16281 mips_opts.gp = 32;
351cdf24
MF
16282 if (mips_opts.fp != 0)
16283 mips_opts.fp = 32;
919731af 16284 break;
7361da2c
AB
16285 case ISA_MIPS32R6:
16286 mips_opts.gp = 32;
16287 mips_opts.fp = 64;
16288 break;
919731af 16289 case ISA_MIPS3:
16290 case ISA_MIPS4:
16291 case ISA_MIPS5:
16292 case ISA_MIPS64:
16293 case ISA_MIPS64R2:
16294 case ISA_MIPS64R3:
16295 case ISA_MIPS64R5:
7361da2c 16296 case ISA_MIPS64R6:
919731af 16297 mips_opts.gp = 64;
351cdf24
MF
16298 if (mips_opts.fp != 0)
16299 {
16300 if (mips_opts.arch == CPU_R5900)
16301 mips_opts.fp = 32;
16302 else
16303 mips_opts.fp = 64;
16304 }
919731af 16305 break;
16306 default:
16307 as_bad (_("unknown ISA level %s"), name + 4);
16308 break;
16309 }
e6559e01 16310 }
919731af 16311
16312 mips_check_options (&mips_opts, FALSE);
16313
16314 mips_check_isa_supports_ases ();
16315 *input_line_pointer = ch;
16316 demand_empty_rest_of_line ();
16317}
16318
16319/* Handle the .module pseudo-op. */
16320
16321static void
16322s_module (int ignore ATTRIBUTE_UNUSED)
16323{
16324 char *name = input_line_pointer, ch;
16325
16326 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16327 ++input_line_pointer;
16328 ch = *input_line_pointer;
16329 *input_line_pointer = '\0';
16330
16331 if (!file_mips_opts_checked)
252b5132 16332 {
22522f88 16333 if (parse_code_option (name) == OPTION_TYPE_BAD)
919731af 16334 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
16335
16336 /* Update module level settings from mips_opts. */
16337 file_mips_opts = mips_opts;
252b5132 16338 }
919731af 16339 else
16340 as_bad (_(".module is not permitted after generating code"));
16341
252b5132
RH
16342 *input_line_pointer = ch;
16343 demand_empty_rest_of_line ();
16344}
16345
16346/* Handle the .abicalls pseudo-op. I believe this is equivalent to
16347 .option pic2. It means to generate SVR4 PIC calls. */
16348
16349static void
17a2f251 16350s_abicalls (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16351{
16352 mips_pic = SVR4_PIC;
143d77c5 16353 mips_abicalls = TRUE;
4d0d148d
TS
16354
16355 if (g_switch_seen && g_switch_value != 0)
16356 as_warn (_("-G may not be used with SVR4 PIC code"));
16357 g_switch_value = 0;
16358
252b5132
RH
16359 bfd_set_gp_size (stdoutput, 0);
16360 demand_empty_rest_of_line ();
16361}
16362
16363/* Handle the .cpload pseudo-op. This is used when generating SVR4
16364 PIC code. It sets the $gp register for the function based on the
16365 function address, which is in the register named in the argument.
16366 This uses a relocation against _gp_disp, which is handled specially
16367 by the linker. The result is:
16368 lui $gp,%hi(_gp_disp)
16369 addiu $gp,$gp,%lo(_gp_disp)
16370 addu $gp,$gp,.cpload argument
aa6975fb
ILT
16371 The .cpload argument is normally $25 == $t9.
16372
16373 The -mno-shared option changes this to:
bbe506e8
TS
16374 lui $gp,%hi(__gnu_local_gp)
16375 addiu $gp,$gp,%lo(__gnu_local_gp)
aa6975fb
ILT
16376 and the argument is ignored. This saves an instruction, but the
16377 resulting code is not position independent; it uses an absolute
bbe506e8
TS
16378 address for __gnu_local_gp. Thus code assembled with -mno-shared
16379 can go into an ordinary executable, but not into a shared library. */
252b5132
RH
16380
16381static void
17a2f251 16382s_cpload (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16383{
16384 expressionS ex;
aa6975fb
ILT
16385 int reg;
16386 int in_shared;
252b5132 16387
919731af 16388 file_mips_check_options ();
16389
6478892d
TS
16390 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16391 .cpload is ignored. */
16392 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
16393 {
16394 s_ignore (0);
16395 return;
16396 }
16397
a276b80c
MR
16398 if (mips_opts.mips16)
16399 {
16400 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
16401 ignore_rest_of_line ();
16402 return;
16403 }
16404
d3ecfc59 16405 /* .cpload should be in a .set noreorder section. */
252b5132
RH
16406 if (mips_opts.noreorder == 0)
16407 as_warn (_(".cpload not in noreorder section"));
16408
aa6975fb
ILT
16409 reg = tc_get_register (0);
16410
16411 /* If we need to produce a 64-bit address, we are better off using
16412 the default instruction sequence. */
aed1a261 16413 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
aa6975fb 16414
252b5132 16415 ex.X_op = O_symbol;
bbe506e8
TS
16416 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
16417 "__gnu_local_gp");
252b5132
RH
16418 ex.X_op_symbol = NULL;
16419 ex.X_add_number = 0;
16420
16421 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
49309057 16422 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
252b5132 16423
8a75745d
MR
16424 mips_mark_labels ();
16425 mips_assembling_insn = TRUE;
16426
584892a6 16427 macro_start ();
67c0d1eb
RS
16428 macro_build_lui (&ex, mips_gp_register);
16429 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
17a2f251 16430 mips_gp_register, BFD_RELOC_LO16);
aa6975fb
ILT
16431 if (in_shared)
16432 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
16433 mips_gp_register, reg);
584892a6 16434 macro_end ();
252b5132 16435
8a75745d 16436 mips_assembling_insn = FALSE;
252b5132
RH
16437 demand_empty_rest_of_line ();
16438}
16439
6478892d
TS
16440/* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16441 .cpsetup $reg1, offset|$reg2, label
16442
16443 If offset is given, this results in:
16444 sd $gp, offset($sp)
956cd1d6 16445 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
16446 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16447 daddu $gp, $gp, $reg1
6478892d
TS
16448
16449 If $reg2 is given, this results in:
40fc1451 16450 or $reg2, $gp, $0
956cd1d6 16451 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
16452 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16453 daddu $gp, $gp, $reg1
aa6975fb
ILT
16454 $reg1 is normally $25 == $t9.
16455
16456 The -mno-shared option replaces the last three instructions with
16457 lui $gp,%hi(_gp)
54f4ddb3 16458 addiu $gp,$gp,%lo(_gp) */
aa6975fb 16459
6478892d 16460static void
17a2f251 16461s_cpsetup (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16462{
16463 expressionS ex_off;
16464 expressionS ex_sym;
16465 int reg1;
6478892d 16466
919731af 16467 file_mips_check_options ();
16468
8586fc66 16469 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
6478892d
TS
16470 We also need NewABI support. */
16471 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16472 {
16473 s_ignore (0);
16474 return;
16475 }
16476
a276b80c
MR
16477 if (mips_opts.mips16)
16478 {
16479 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16480 ignore_rest_of_line ();
16481 return;
16482 }
16483
6478892d
TS
16484 reg1 = tc_get_register (0);
16485 SKIP_WHITESPACE ();
16486 if (*input_line_pointer != ',')
16487 {
16488 as_bad (_("missing argument separator ',' for .cpsetup"));
16489 return;
16490 }
16491 else
80245285 16492 ++input_line_pointer;
6478892d
TS
16493 SKIP_WHITESPACE ();
16494 if (*input_line_pointer == '$')
80245285
TS
16495 {
16496 mips_cpreturn_register = tc_get_register (0);
16497 mips_cpreturn_offset = -1;
16498 }
6478892d 16499 else
80245285
TS
16500 {
16501 mips_cpreturn_offset = get_absolute_expression ();
16502 mips_cpreturn_register = -1;
16503 }
6478892d
TS
16504 SKIP_WHITESPACE ();
16505 if (*input_line_pointer != ',')
16506 {
16507 as_bad (_("missing argument separator ',' for .cpsetup"));
16508 return;
16509 }
16510 else
f9419b05 16511 ++input_line_pointer;
6478892d 16512 SKIP_WHITESPACE ();
f21f8242 16513 expression (&ex_sym);
6478892d 16514
8a75745d
MR
16515 mips_mark_labels ();
16516 mips_assembling_insn = TRUE;
16517
584892a6 16518 macro_start ();
6478892d
TS
16519 if (mips_cpreturn_register == -1)
16520 {
16521 ex_off.X_op = O_constant;
16522 ex_off.X_add_symbol = NULL;
16523 ex_off.X_op_symbol = NULL;
16524 ex_off.X_add_number = mips_cpreturn_offset;
16525
67c0d1eb 16526 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
17a2f251 16527 BFD_RELOC_LO16, SP);
6478892d
TS
16528 }
16529 else
40fc1451 16530 move_register (mips_cpreturn_register, mips_gp_register);
6478892d 16531
aed1a261 16532 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
aa6975fb 16533 {
df58fc94 16534 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
aa6975fb
ILT
16535 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16536 BFD_RELOC_HI16_S);
16537
16538 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16539 mips_gp_register, -1, BFD_RELOC_GPREL16,
16540 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16541
16542 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16543 mips_gp_register, reg1);
16544 }
16545 else
16546 {
16547 expressionS ex;
16548
16549 ex.X_op = O_symbol;
4184909a 16550 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
aa6975fb
ILT
16551 ex.X_op_symbol = NULL;
16552 ex.X_add_number = 0;
6e1304d8 16553
aa6975fb
ILT
16554 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16555 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16556
16557 macro_build_lui (&ex, mips_gp_register);
16558 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16559 mips_gp_register, BFD_RELOC_LO16);
16560 }
f21f8242 16561
584892a6 16562 macro_end ();
6478892d 16563
8a75745d 16564 mips_assembling_insn = FALSE;
6478892d
TS
16565 demand_empty_rest_of_line ();
16566}
16567
16568static void
17a2f251 16569s_cplocal (int ignore ATTRIBUTE_UNUSED)
6478892d 16570{
919731af 16571 file_mips_check_options ();
16572
6478892d 16573 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
54f4ddb3 16574 .cplocal is ignored. */
6478892d
TS
16575 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16576 {
16577 s_ignore (0);
16578 return;
16579 }
16580
a276b80c
MR
16581 if (mips_opts.mips16)
16582 {
16583 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16584 ignore_rest_of_line ();
16585 return;
16586 }
16587
6478892d 16588 mips_gp_register = tc_get_register (0);
85b51719 16589 demand_empty_rest_of_line ();
6478892d
TS
16590}
16591
252b5132
RH
16592/* Handle the .cprestore pseudo-op. This stores $gp into a given
16593 offset from $sp. The offset is remembered, and after making a PIC
16594 call $gp is restored from that location. */
16595
16596static void
17a2f251 16597s_cprestore (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16598{
16599 expressionS ex;
252b5132 16600
919731af 16601 file_mips_check_options ();
16602
6478892d 16603 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
c9914766 16604 .cprestore is ignored. */
6478892d 16605 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
16606 {
16607 s_ignore (0);
16608 return;
16609 }
16610
a276b80c
MR
16611 if (mips_opts.mips16)
16612 {
16613 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16614 ignore_rest_of_line ();
16615 return;
16616 }
16617
252b5132 16618 mips_cprestore_offset = get_absolute_expression ();
7a621144 16619 mips_cprestore_valid = 1;
252b5132
RH
16620
16621 ex.X_op = O_constant;
16622 ex.X_add_symbol = NULL;
16623 ex.X_op_symbol = NULL;
16624 ex.X_add_number = mips_cprestore_offset;
16625
8a75745d
MR
16626 mips_mark_labels ();
16627 mips_assembling_insn = TRUE;
16628
584892a6 16629 macro_start ();
67c0d1eb
RS
16630 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16631 SP, HAVE_64BIT_ADDRESSES);
584892a6 16632 macro_end ();
252b5132 16633
8a75745d 16634 mips_assembling_insn = FALSE;
252b5132
RH
16635 demand_empty_rest_of_line ();
16636}
16637
6478892d 16638/* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
67c1ffbe 16639 was given in the preceding .cpsetup, it results in:
6478892d 16640 ld $gp, offset($sp)
76b3015f 16641
6478892d 16642 If a register $reg2 was given there, it results in:
40fc1451 16643 or $gp, $reg2, $0 */
54f4ddb3 16644
6478892d 16645static void
17a2f251 16646s_cpreturn (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16647{
16648 expressionS ex;
6478892d 16649
919731af 16650 file_mips_check_options ();
16651
6478892d
TS
16652 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16653 We also need NewABI support. */
16654 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16655 {
16656 s_ignore (0);
16657 return;
16658 }
16659
a276b80c
MR
16660 if (mips_opts.mips16)
16661 {
16662 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16663 ignore_rest_of_line ();
16664 return;
16665 }
16666
8a75745d
MR
16667 mips_mark_labels ();
16668 mips_assembling_insn = TRUE;
16669
584892a6 16670 macro_start ();
6478892d
TS
16671 if (mips_cpreturn_register == -1)
16672 {
16673 ex.X_op = O_constant;
16674 ex.X_add_symbol = NULL;
16675 ex.X_op_symbol = NULL;
16676 ex.X_add_number = mips_cpreturn_offset;
16677
67c0d1eb 16678 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
6478892d
TS
16679 }
16680 else
40fc1451
SD
16681 move_register (mips_gp_register, mips_cpreturn_register);
16682
584892a6 16683 macro_end ();
6478892d 16684
8a75745d 16685 mips_assembling_insn = FALSE;
6478892d
TS
16686 demand_empty_rest_of_line ();
16687}
16688
d0f13682
CLT
16689/* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16690 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16691 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16692 debug information or MIPS16 TLS. */
741d6ea8
JM
16693
16694static void
d0f13682
CLT
16695s_tls_rel_directive (const size_t bytes, const char *dirstr,
16696 bfd_reloc_code_real_type rtype)
741d6ea8
JM
16697{
16698 expressionS ex;
16699 char *p;
16700
16701 expression (&ex);
16702
16703 if (ex.X_op != O_symbol)
16704 {
1661c76c 16705 as_bad (_("unsupported use of %s"), dirstr);
741d6ea8
JM
16706 ignore_rest_of_line ();
16707 }
16708
16709 p = frag_more (bytes);
16710 md_number_to_chars (p, 0, bytes);
d0f13682 16711 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
741d6ea8 16712 demand_empty_rest_of_line ();
de64cffd 16713 mips_clear_insn_labels ();
741d6ea8
JM
16714}
16715
16716/* Handle .dtprelword. */
16717
16718static void
16719s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16720{
d0f13682 16721 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
741d6ea8
JM
16722}
16723
16724/* Handle .dtpreldword. */
16725
16726static void
16727s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16728{
d0f13682
CLT
16729 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16730}
16731
16732/* Handle .tprelword. */
16733
16734static void
16735s_tprelword (int ignore ATTRIBUTE_UNUSED)
16736{
16737 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16738}
16739
16740/* Handle .tpreldword. */
16741
16742static void
16743s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16744{
16745 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
741d6ea8
JM
16746}
16747
6478892d
TS
16748/* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16749 code. It sets the offset to use in gp_rel relocations. */
16750
16751static void
17a2f251 16752s_gpvalue (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16753{
16754 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16755 We also need NewABI support. */
16756 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16757 {
16758 s_ignore (0);
16759 return;
16760 }
16761
def2e0dd 16762 mips_gprel_offset = get_absolute_expression ();
6478892d
TS
16763
16764 demand_empty_rest_of_line ();
16765}
16766
252b5132
RH
16767/* Handle the .gpword pseudo-op. This is used when generating PIC
16768 code. It generates a 32 bit GP relative reloc. */
16769
16770static void
17a2f251 16771s_gpword (int ignore ATTRIBUTE_UNUSED)
252b5132 16772{
a8dbcb85
TS
16773 segment_info_type *si;
16774 struct insn_label_list *l;
252b5132
RH
16775 expressionS ex;
16776 char *p;
16777
16778 /* When not generating PIC code, this is treated as .word. */
16779 if (mips_pic != SVR4_PIC)
16780 {
16781 s_cons (2);
16782 return;
16783 }
16784
a8dbcb85
TS
16785 si = seg_info (now_seg);
16786 l = si->label_list;
7d10b47d 16787 mips_emit_delays ();
252b5132 16788 if (auto_align)
462427c4 16789 mips_align (2, 0, l);
252b5132
RH
16790
16791 expression (&ex);
a1facbec 16792 mips_clear_insn_labels ();
252b5132
RH
16793
16794 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16795 {
1661c76c 16796 as_bad (_("unsupported use of .gpword"));
252b5132
RH
16797 ignore_rest_of_line ();
16798 }
16799
16800 p = frag_more (4);
17a2f251 16801 md_number_to_chars (p, 0, 4);
b34976b6 16802 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
cdf6fd85 16803 BFD_RELOC_GPREL32);
252b5132
RH
16804
16805 demand_empty_rest_of_line ();
16806}
16807
10181a0d 16808static void
17a2f251 16809s_gpdword (int ignore ATTRIBUTE_UNUSED)
10181a0d 16810{
a8dbcb85
TS
16811 segment_info_type *si;
16812 struct insn_label_list *l;
10181a0d
AO
16813 expressionS ex;
16814 char *p;
16815
16816 /* When not generating PIC code, this is treated as .dword. */
16817 if (mips_pic != SVR4_PIC)
16818 {
16819 s_cons (3);
16820 return;
16821 }
16822
a8dbcb85
TS
16823 si = seg_info (now_seg);
16824 l = si->label_list;
7d10b47d 16825 mips_emit_delays ();
10181a0d 16826 if (auto_align)
462427c4 16827 mips_align (3, 0, l);
10181a0d
AO
16828
16829 expression (&ex);
a1facbec 16830 mips_clear_insn_labels ();
10181a0d
AO
16831
16832 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16833 {
1661c76c 16834 as_bad (_("unsupported use of .gpdword"));
10181a0d
AO
16835 ignore_rest_of_line ();
16836 }
16837
16838 p = frag_more (8);
17a2f251 16839 md_number_to_chars (p, 0, 8);
a105a300 16840 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
6e1304d8 16841 BFD_RELOC_GPREL32)->fx_tcbit = 1;
10181a0d
AO
16842
16843 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
6e1304d8
RS
16844 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16845 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
10181a0d
AO
16846
16847 demand_empty_rest_of_line ();
16848}
16849
a3f278e2
CM
16850/* Handle the .ehword pseudo-op. This is used when generating unwinding
16851 tables. It generates a R_MIPS_EH reloc. */
16852
16853static void
16854s_ehword (int ignore ATTRIBUTE_UNUSED)
16855{
16856 expressionS ex;
16857 char *p;
16858
16859 mips_emit_delays ();
16860
16861 expression (&ex);
16862 mips_clear_insn_labels ();
16863
16864 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16865 {
1661c76c 16866 as_bad (_("unsupported use of .ehword"));
a3f278e2
CM
16867 ignore_rest_of_line ();
16868 }
16869
16870 p = frag_more (4);
16871 md_number_to_chars (p, 0, 4);
16872 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
2f0c68f2 16873 BFD_RELOC_32_PCREL);
a3f278e2
CM
16874
16875 demand_empty_rest_of_line ();
16876}
16877
252b5132
RH
16878/* Handle the .cpadd pseudo-op. This is used when dealing with switch
16879 tables in SVR4 PIC code. */
16880
16881static void
17a2f251 16882s_cpadd (int ignore ATTRIBUTE_UNUSED)
252b5132 16883{
252b5132
RH
16884 int reg;
16885
919731af 16886 file_mips_check_options ();
16887
10181a0d
AO
16888 /* This is ignored when not generating SVR4 PIC code. */
16889 if (mips_pic != SVR4_PIC)
252b5132
RH
16890 {
16891 s_ignore (0);
16892 return;
16893 }
16894
8a75745d
MR
16895 mips_mark_labels ();
16896 mips_assembling_insn = TRUE;
16897
252b5132 16898 /* Add $gp to the register named as an argument. */
584892a6 16899 macro_start ();
252b5132 16900 reg = tc_get_register (0);
67c0d1eb 16901 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
584892a6 16902 macro_end ();
252b5132 16903
8a75745d 16904 mips_assembling_insn = FALSE;
bdaaa2e1 16905 demand_empty_rest_of_line ();
252b5132
RH
16906}
16907
16908/* Handle the .insn pseudo-op. This marks instruction labels in
df58fc94 16909 mips16/micromips mode. This permits the linker to handle them specially,
252b5132
RH
16910 such as generating jalx instructions when needed. We also make
16911 them odd for the duration of the assembly, in order to generate the
16912 right sort of code. We will make them even in the adjust_symtab
16913 routine, while leaving them marked. This is convenient for the
16914 debugger and the disassembler. The linker knows to make them odd
16915 again. */
16916
16917static void
17a2f251 16918s_insn (int ignore ATTRIBUTE_UNUSED)
252b5132 16919{
7bb01e2d
MR
16920 file_mips_check_options ();
16921 file_ase_mips16 |= mips_opts.mips16;
16922 file_ase_micromips |= mips_opts.micromips;
16923
df58fc94 16924 mips_mark_labels ();
252b5132
RH
16925
16926 demand_empty_rest_of_line ();
16927}
16928
ba92f887
MR
16929/* Handle the .nan pseudo-op. */
16930
16931static void
16932s_nan (int ignore ATTRIBUTE_UNUSED)
16933{
16934 static const char str_legacy[] = "legacy";
16935 static const char str_2008[] = "2008";
16936 size_t i;
16937
16938 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16939
16940 if (i == sizeof (str_2008) - 1
16941 && memcmp (input_line_pointer, str_2008, i) == 0)
7361da2c 16942 mips_nan2008 = 1;
ba92f887
MR
16943 else if (i == sizeof (str_legacy) - 1
16944 && memcmp (input_line_pointer, str_legacy, i) == 0)
7361da2c
AB
16945 {
16946 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16947 mips_nan2008 = 0;
16948 else
16949 as_bad (_("`%s' does not support legacy NaN"),
16950 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16951 }
ba92f887 16952 else
1661c76c 16953 as_bad (_("bad .nan directive"));
ba92f887
MR
16954
16955 input_line_pointer += i;
16956 demand_empty_rest_of_line ();
16957}
16958
754e2bb9
RS
16959/* Handle a .stab[snd] directive. Ideally these directives would be
16960 implemented in a transparent way, so that removing them would not
16961 have any effect on the generated instructions. However, s_stab
16962 internally changes the section, so in practice we need to decide
16963 now whether the preceding label marks compressed code. We do not
16964 support changing the compression mode of a label after a .stab*
16965 directive, such as in:
16966
16967 foo:
134c0c8b 16968 .stabs ...
754e2bb9
RS
16969 .set mips16
16970
16971 so the current mode wins. */
252b5132
RH
16972
16973static void
17a2f251 16974s_mips_stab (int type)
252b5132 16975{
754e2bb9 16976 mips_mark_labels ();
252b5132
RH
16977 s_stab (type);
16978}
16979
54f4ddb3 16980/* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
252b5132
RH
16981
16982static void
17a2f251 16983s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16984{
16985 char *name;
16986 int c;
16987 symbolS *symbolP;
16988 expressionS exp;
16989
d02603dc 16990 c = get_symbol_name (&name);
252b5132
RH
16991 symbolP = symbol_find_or_make (name);
16992 S_SET_WEAK (symbolP);
16993 *input_line_pointer = c;
16994
d02603dc 16995 SKIP_WHITESPACE_AFTER_NAME ();
252b5132
RH
16996
16997 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16998 {
16999 if (S_IS_DEFINED (symbolP))
17000 {
20203fb9 17001 as_bad (_("ignoring attempt to redefine symbol %s"),
252b5132
RH
17002 S_GET_NAME (symbolP));
17003 ignore_rest_of_line ();
17004 return;
17005 }
bdaaa2e1 17006
252b5132
RH
17007 if (*input_line_pointer == ',')
17008 {
17009 ++input_line_pointer;
17010 SKIP_WHITESPACE ();
17011 }
bdaaa2e1 17012
252b5132
RH
17013 expression (&exp);
17014 if (exp.X_op != O_symbol)
17015 {
20203fb9 17016 as_bad (_("bad .weakext directive"));
98d3f06f 17017 ignore_rest_of_line ();
252b5132
RH
17018 return;
17019 }
49309057 17020 symbol_set_value_expression (symbolP, &exp);
252b5132
RH
17021 }
17022
17023 demand_empty_rest_of_line ();
17024}
17025
17026/* Parse a register string into a number. Called from the ECOFF code
17027 to parse .frame. The argument is non-zero if this is the frame
17028 register, so that we can record it in mips_frame_reg. */
17029
17030int
17a2f251 17031tc_get_register (int frame)
252b5132 17032{
707bfff6 17033 unsigned int reg;
252b5132
RH
17034
17035 SKIP_WHITESPACE ();
707bfff6
TS
17036 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
17037 reg = 0;
252b5132 17038 if (frame)
7a621144
DJ
17039 {
17040 mips_frame_reg = reg != 0 ? reg : SP;
17041 mips_frame_reg_valid = 1;
17042 mips_cprestore_valid = 0;
17043 }
252b5132
RH
17044 return reg;
17045}
17046
17047valueT
17a2f251 17048md_section_align (asection *seg, valueT addr)
252b5132
RH
17049{
17050 int align = bfd_get_section_alignment (stdoutput, seg);
17051
f3ded42a
RS
17052 /* We don't need to align ELF sections to the full alignment.
17053 However, Irix 5 may prefer that we align them at least to a 16
17054 byte boundary. We don't bother to align the sections if we
17055 are targeted for an embedded system. */
17056 if (strncmp (TARGET_OS, "elf", 3) == 0)
17057 return addr;
17058 if (align > 4)
17059 align = 4;
252b5132 17060
8d3842cd 17061 return ((addr + (1 << align) - 1) & -(1 << align));
252b5132
RH
17062}
17063
17064/* Utility routine, called from above as well. If called while the
17065 input file is still being read, it's only an approximation. (For
17066 example, a symbol may later become defined which appeared to be
17067 undefined earlier.) */
17068
17069static int
17a2f251 17070nopic_need_relax (symbolS *sym, int before_relaxing)
252b5132
RH
17071{
17072 if (sym == 0)
17073 return 0;
17074
4d0d148d 17075 if (g_switch_value > 0)
252b5132
RH
17076 {
17077 const char *symname;
17078 int change;
17079
c9914766 17080 /* Find out whether this symbol can be referenced off the $gp
252b5132
RH
17081 register. It can be if it is smaller than the -G size or if
17082 it is in the .sdata or .sbss section. Certain symbols can
c9914766 17083 not be referenced off the $gp, although it appears as though
252b5132
RH
17084 they can. */
17085 symname = S_GET_NAME (sym);
17086 if (symname != (const char *) NULL
17087 && (strcmp (symname, "eprol") == 0
17088 || strcmp (symname, "etext") == 0
17089 || strcmp (symname, "_gp") == 0
17090 || strcmp (symname, "edata") == 0
17091 || strcmp (symname, "_fbss") == 0
17092 || strcmp (symname, "_fdata") == 0
17093 || strcmp (symname, "_ftext") == 0
17094 || strcmp (symname, "end") == 0
17095 || strcmp (symname, "_gp_disp") == 0))
17096 change = 1;
17097 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
17098 && (0
17099#ifndef NO_ECOFF_DEBUGGING
49309057
ILT
17100 || (symbol_get_obj (sym)->ecoff_extern_size != 0
17101 && (symbol_get_obj (sym)->ecoff_extern_size
17102 <= g_switch_value))
252b5132
RH
17103#endif
17104 /* We must defer this decision until after the whole
17105 file has been read, since there might be a .extern
17106 after the first use of this symbol. */
17107 || (before_relaxing
17108#ifndef NO_ECOFF_DEBUGGING
49309057 17109 && symbol_get_obj (sym)->ecoff_extern_size == 0
252b5132
RH
17110#endif
17111 && S_GET_VALUE (sym) == 0)
17112 || (S_GET_VALUE (sym) != 0
17113 && S_GET_VALUE (sym) <= g_switch_value)))
17114 change = 0;
17115 else
17116 {
17117 const char *segname;
17118
17119 segname = segment_name (S_GET_SEGMENT (sym));
9c2799c2 17120 gas_assert (strcmp (segname, ".lit8") != 0
252b5132
RH
17121 && strcmp (segname, ".lit4") != 0);
17122 change = (strcmp (segname, ".sdata") != 0
fba2b7f9
GK
17123 && strcmp (segname, ".sbss") != 0
17124 && strncmp (segname, ".sdata.", 7) != 0
d4dc2f22
TS
17125 && strncmp (segname, ".sbss.", 6) != 0
17126 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
fba2b7f9 17127 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
252b5132
RH
17128 }
17129 return change;
17130 }
17131 else
c9914766 17132 /* We are not optimizing for the $gp register. */
252b5132
RH
17133 return 1;
17134}
17135
5919d012
RS
17136
17137/* Return true if the given symbol should be considered local for SVR4 PIC. */
17138
17139static bfd_boolean
9e009953 17140pic_need_relax (symbolS *sym)
5919d012
RS
17141{
17142 asection *symsec;
5919d012
RS
17143
17144 /* Handle the case of a symbol equated to another symbol. */
17145 while (symbol_equated_reloc_p (sym))
17146 {
17147 symbolS *n;
17148
5f0fe04b 17149 /* It's possible to get a loop here in a badly written program. */
5919d012
RS
17150 n = symbol_get_value_expression (sym)->X_add_symbol;
17151 if (n == sym)
17152 break;
17153 sym = n;
17154 }
17155
df1f3cda
DD
17156 if (symbol_section_p (sym))
17157 return TRUE;
17158
5919d012
RS
17159 symsec = S_GET_SEGMENT (sym);
17160
5919d012 17161 /* This must duplicate the test in adjust_reloc_syms. */
45dfa85a
AM
17162 return (!bfd_is_und_section (symsec)
17163 && !bfd_is_abs_section (symsec)
5f0fe04b 17164 && !bfd_is_com_section (symsec)
5919d012 17165 /* A global or weak symbol is treated as external. */
f3ded42a 17166 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
5919d012
RS
17167}
17168
17169
252b5132
RH
17170/* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17171 extended opcode. SEC is the section the frag is in. */
17172
17173static int
17a2f251 17174mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
252b5132
RH
17175{
17176 int type;
3ccad066 17177 const struct mips_int_operand *operand;
252b5132 17178 offsetT val;
252b5132 17179 segT symsec;
98aa84af 17180 fragS *sym_frag;
252b5132
RH
17181
17182 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17183 return 0;
17184 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17185 return 1;
17186
88a7ef16 17187 symsec = S_GET_SEGMENT (fragp->fr_symbol);
252b5132 17188 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
3ccad066 17189 operand = mips16_immed_operand (type, FALSE);
88a7ef16
MR
17190 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
17191 || (operand->root.type == OP_PCREL
17192 ? sec != symsec
17193 : !bfd_is_abs_section (symsec)))
17194 return 1;
252b5132 17195
98aa84af 17196 sym_frag = symbol_get_frag (fragp->fr_symbol);
88a7ef16 17197 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
252b5132 17198
3ccad066 17199 if (operand->root.type == OP_PCREL)
252b5132 17200 {
3ccad066 17201 const struct mips_pcrel_operand *pcrel_op;
252b5132 17202 addressT addr;
3ccad066 17203 offsetT maxtiny;
252b5132 17204
88a7ef16
MR
17205 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
17206 return 1;
252b5132 17207
88a7ef16 17208 pcrel_op = (const struct mips_pcrel_operand *) operand;
252b5132 17209
88a7ef16
MR
17210 /* If the relax_marker of the symbol fragment differs from the
17211 relax_marker of this fragment, we have not yet adjusted the
17212 symbol fragment fr_address. We want to add in STRETCH in
17213 order to get a better estimate of the address. This
17214 particularly matters because of the shift bits. */
252b5132 17215 if (stretch != 0
98aa84af 17216 && sym_frag->relax_marker != fragp->relax_marker)
252b5132
RH
17217 {
17218 fragS *f;
17219
17220 /* Adjust stretch for any alignment frag. Note that if have
17221 been expanding the earlier code, the symbol may be
17222 defined in what appears to be an earlier frag. FIXME:
17223 This doesn't handle the fr_subtype field, which specifies
17224 a maximum number of bytes to skip when doing an
17225 alignment. */
98aa84af 17226 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
252b5132
RH
17227 {
17228 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17229 {
17230 if (stretch < 0)
17231 stretch = - ((- stretch)
17232 & ~ ((1 << (int) f->fr_offset) - 1));
17233 else
17234 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
17235 if (stretch == 0)
17236 break;
17237 }
17238 }
17239 if (f != NULL)
17240 val += stretch;
17241 }
17242
17243 addr = fragp->fr_address + fragp->fr_fix;
17244
17245 /* The base address rules are complicated. The base address of
17246 a branch is the following instruction. The base address of a
17247 PC relative load or add is the instruction itself, but if it
17248 is in a delay slot (in which case it can not be extended) use
17249 the address of the instruction whose delay slot it is in. */
3ccad066 17250 if (pcrel_op->include_isa_bit)
252b5132
RH
17251 {
17252 addr += 2;
17253
17254 /* If we are currently assuming that this frag should be
17255 extended, then, the current address is two bytes
bdaaa2e1 17256 higher. */
252b5132
RH
17257 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17258 addr += 2;
17259
17260 /* Ignore the low bit in the target, since it will be set
17261 for a text label. */
3ccad066 17262 val &= -2;
252b5132
RH
17263 }
17264 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17265 addr -= 4;
17266 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17267 addr -= 2;
17268
3ccad066 17269 val -= addr & -(1 << pcrel_op->align_log2);
252b5132
RH
17270
17271 /* If any of the shifted bits are set, we must use an extended
17272 opcode. If the address depends on the size of this
17273 instruction, this can lead to a loop, so we arrange to always
88a7ef16
MR
17274 use an extended opcode. */
17275 if ((val & ((1 << operand->shift) - 1)) != 0)
252b5132
RH
17276 {
17277 fragp->fr_subtype =
17278 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17279 return 1;
17280 }
17281
17282 /* If we are about to mark a frag as extended because the value
3ccad066
RS
17283 is precisely the next value above maxtiny, then there is a
17284 chance of an infinite loop as in the following code:
252b5132
RH
17285 la $4,foo
17286 .skip 1020
17287 .align 2
17288 foo:
17289 In this case when the la is extended, foo is 0x3fc bytes
17290 away, so the la can be shrunk, but then foo is 0x400 away, so
17291 the la must be extended. To avoid this loop, we mark the
17292 frag as extended if it was small, and is about to become
3ccad066
RS
17293 extended with the next value above maxtiny. */
17294 maxtiny = mips_int_operand_max (operand);
17295 if (val == maxtiny + (1 << operand->shift)
88a7ef16 17296 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
252b5132
RH
17297 {
17298 fragp->fr_subtype =
17299 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17300 return 1;
17301 }
17302 }
252b5132 17303
3ccad066 17304 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
252b5132
RH
17305}
17306
4a6a3df4
AO
17307/* Compute the length of a branch sequence, and adjust the
17308 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17309 worst-case length is computed, with UPDATE being used to indicate
17310 whether an unconditional (-1), branch-likely (+1) or regular (0)
17311 branch is to be computed. */
17312static int
17a2f251 17313relaxed_branch_length (fragS *fragp, asection *sec, int update)
4a6a3df4 17314{
b34976b6 17315 bfd_boolean toofar;
4a6a3df4
AO
17316 int length;
17317
17318 if (fragp
17319 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 17320 && !S_IS_WEAK (fragp->fr_symbol)
4a6a3df4
AO
17321 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17322 {
17323 addressT addr;
17324 offsetT val;
17325
17326 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17327
17328 addr = fragp->fr_address + fragp->fr_fix + 4;
17329
17330 val -= addr;
17331
17332 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
17333 }
4a6a3df4 17334 else
c1f61bd2
MR
17335 /* If the symbol is not defined or it's in a different segment,
17336 we emit the long sequence. */
b34976b6 17337 toofar = TRUE;
4a6a3df4
AO
17338
17339 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17340 fragp->fr_subtype
66b3e8da
MR
17341 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
17342 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
4a6a3df4
AO
17343 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
17344 RELAX_BRANCH_LINK (fragp->fr_subtype),
17345 toofar);
17346
17347 length = 4;
17348 if (toofar)
17349 {
17350 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
17351 length += 8;
17352
17353 if (mips_pic != NO_PIC)
17354 {
17355 /* Additional space for PIC loading of target address. */
17356 length += 8;
17357 if (mips_opts.isa == ISA_MIPS1)
17358 /* Additional space for $at-stabilizing nop. */
17359 length += 4;
17360 }
17361
17362 /* If branch is conditional. */
17363 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
17364 length += 8;
17365 }
b34976b6 17366
4a6a3df4
AO
17367 return length;
17368}
17369
7bd374a4
MR
17370/* Get a FRAG's branch instruction delay slot size, either from the
17371 short-delay-slot bit of a branch-and-link instruction if AL is TRUE,
17372 or SHORT_INSN_SIZE otherwise. */
17373
17374static int
17375frag_branch_delay_slot_size (fragS *fragp, bfd_boolean al, int short_insn_size)
17376{
17377 char *buf = fragp->fr_literal + fragp->fr_fix;
17378
17379 if (al)
17380 return (read_compressed_insn (buf, 4) & 0x02000000) ? 2 : 4;
17381 else
17382 return short_insn_size;
17383}
17384
df58fc94
RS
17385/* Compute the length of a branch sequence, and adjust the
17386 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
17387 worst-case length is computed, with UPDATE being used to indicate
17388 whether an unconditional (-1), or regular (0) branch is to be
17389 computed. */
17390
17391static int
17392relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
17393{
7bd374a4
MR
17394 bfd_boolean insn32 = TRUE;
17395 bfd_boolean nods = TRUE;
17396 bfd_boolean al = TRUE;
17397 int short_insn_size;
df58fc94
RS
17398 bfd_boolean toofar;
17399 int length;
17400
7bd374a4
MR
17401 if (fragp)
17402 {
17403 insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
17404 nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
17405 al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17406 }
17407 short_insn_size = insn32 ? 4 : 2;
17408
df58fc94
RS
17409 if (fragp
17410 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 17411 && !S_IS_WEAK (fragp->fr_symbol)
df58fc94
RS
17412 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17413 {
17414 addressT addr;
17415 offsetT val;
17416
17417 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17418 /* Ignore the low bit in the target, since it will be set
17419 for a text label. */
17420 if ((val & 1) != 0)
17421 --val;
17422
17423 addr = fragp->fr_address + fragp->fr_fix + 4;
17424
17425 val -= addr;
17426
17427 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
17428 }
df58fc94 17429 else
c1f61bd2
MR
17430 /* If the symbol is not defined or it's in a different segment,
17431 we emit the long sequence. */
df58fc94
RS
17432 toofar = TRUE;
17433
17434 if (fragp && update
17435 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17436 fragp->fr_subtype = (toofar
17437 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
17438 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
17439
17440 length = 4;
17441 if (toofar)
17442 {
17443 bfd_boolean compact_known = fragp != NULL;
17444 bfd_boolean compact = FALSE;
17445 bfd_boolean uncond;
17446
df58fc94 17447 if (fragp)
8484fb75
MR
17448 {
17449 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17450 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
8484fb75 17451 }
df58fc94
RS
17452 else
17453 uncond = update < 0;
17454
17455 /* If label is out of range, we turn branch <br>:
17456
17457 <br> label # 4 bytes
17458 0:
17459
17460 into:
17461
17462 j label # 4 bytes
8484fb75
MR
17463 nop # 2/4 bytes if
17464 # compact && (!PIC || insn32)
df58fc94
RS
17465 0:
17466 */
8484fb75
MR
17467 if ((mips_pic == NO_PIC || insn32) && (!compact_known || compact))
17468 length += short_insn_size;
df58fc94
RS
17469
17470 /* If assembling PIC code, we further turn:
17471
17472 j label # 4 bytes
17473
17474 into:
17475
17476 lw/ld at, %got(label)(gp) # 4 bytes
17477 d/addiu at, %lo(label) # 4 bytes
8484fb75 17478 jr/c at # 2/4 bytes
df58fc94
RS
17479 */
17480 if (mips_pic != NO_PIC)
8484fb75 17481 length += 4 + short_insn_size;
df58fc94 17482
7bd374a4
MR
17483 /* Add an extra nop if the jump has no compact form and we need
17484 to fill the delay slot. */
17485 if ((mips_pic == NO_PIC || al) && nods)
17486 length += (fragp
17487 ? frag_branch_delay_slot_size (fragp, al, short_insn_size)
17488 : short_insn_size);
17489
df58fc94
RS
17490 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17491
17492 <brneg> 0f # 4 bytes
8484fb75 17493 nop # 2/4 bytes if !compact
df58fc94
RS
17494 */
17495 if (!uncond)
8484fb75 17496 length += (compact_known && compact) ? 4 : 4 + short_insn_size;
df58fc94 17497 }
7bd374a4
MR
17498 else if (nods)
17499 {
17500 /* Add an extra nop to fill the delay slot. */
17501 gas_assert (fragp);
17502 length += frag_branch_delay_slot_size (fragp, al, short_insn_size);
17503 }
df58fc94
RS
17504
17505 return length;
17506}
17507
17508/* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17509 bit accordingly. */
17510
17511static int
17512relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17513{
17514 bfd_boolean toofar;
17515
df58fc94
RS
17516 if (fragp
17517 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 17518 && !S_IS_WEAK (fragp->fr_symbol)
df58fc94
RS
17519 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17520 {
17521 addressT addr;
17522 offsetT val;
17523 int type;
17524
17525 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17526 /* Ignore the low bit in the target, since it will be set
17527 for a text label. */
17528 if ((val & 1) != 0)
17529 --val;
17530
17531 /* Assume this is a 2-byte branch. */
17532 addr = fragp->fr_address + fragp->fr_fix + 2;
17533
17534 /* We try to avoid the infinite loop by not adding 2 more bytes for
17535 long branches. */
17536
17537 val -= addr;
17538
17539 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17540 if (type == 'D')
17541 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17542 else if (type == 'E')
17543 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17544 else
17545 abort ();
17546 }
17547 else
17548 /* If the symbol is not defined or it's in a different segment,
17549 we emit a normal 32-bit branch. */
17550 toofar = TRUE;
17551
17552 if (fragp && update
17553 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17554 fragp->fr_subtype
17555 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17556 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17557
17558 if (toofar)
17559 return 4;
17560
17561 return 2;
17562}
17563
252b5132
RH
17564/* Estimate the size of a frag before relaxing. Unless this is the
17565 mips16, we are not really relaxing here, and the final size is
17566 encoded in the subtype information. For the mips16, we have to
17567 decide whether we are using an extended opcode or not. */
17568
252b5132 17569int
17a2f251 17570md_estimate_size_before_relax (fragS *fragp, asection *segtype)
252b5132 17571{
5919d012 17572 int change;
252b5132 17573
4a6a3df4
AO
17574 if (RELAX_BRANCH_P (fragp->fr_subtype))
17575 {
17576
b34976b6
AM
17577 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17578
4a6a3df4
AO
17579 return fragp->fr_var;
17580 }
17581
252b5132 17582 if (RELAX_MIPS16_P (fragp->fr_subtype))
177b4a6a
AO
17583 /* We don't want to modify the EXTENDED bit here; it might get us
17584 into infinite loops. We change it only in mips_relax_frag(). */
17585 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
252b5132 17586
df58fc94
RS
17587 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17588 {
17589 int length = 4;
17590
17591 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17592 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17593 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17594 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17595 fragp->fr_var = length;
17596
17597 return length;
17598 }
17599
252b5132 17600 if (mips_pic == NO_PIC)
5919d012 17601 change = nopic_need_relax (fragp->fr_symbol, 0);
252b5132 17602 else if (mips_pic == SVR4_PIC)
9e009953 17603 change = pic_need_relax (fragp->fr_symbol);
0a44bf69
RS
17604 else if (mips_pic == VXWORKS_PIC)
17605 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17606 change = 0;
252b5132
RH
17607 else
17608 abort ();
17609
17610 if (change)
17611 {
4d7206a2 17612 fragp->fr_subtype |= RELAX_USE_SECOND;
4d7206a2 17613 return -RELAX_FIRST (fragp->fr_subtype);
252b5132 17614 }
4d7206a2
RS
17615 else
17616 return -RELAX_SECOND (fragp->fr_subtype);
252b5132
RH
17617}
17618
17619/* This is called to see whether a reloc against a defined symbol
de7e6852 17620 should be converted into a reloc against a section. */
252b5132
RH
17621
17622int
17a2f251 17623mips_fix_adjustable (fixS *fixp)
252b5132 17624{
252b5132
RH
17625 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17626 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17627 return 0;
a161fe53 17628
252b5132
RH
17629 if (fixp->fx_addsy == NULL)
17630 return 1;
a161fe53 17631
2f0c68f2
CM
17632 /* Allow relocs used for EH tables. */
17633 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17634 return 1;
17635
de7e6852
RS
17636 /* If symbol SYM is in a mergeable section, relocations of the form
17637 SYM + 0 can usually be made section-relative. The mergeable data
17638 is then identified by the section offset rather than by the symbol.
17639
17640 However, if we're generating REL LO16 relocations, the offset is split
33eaf5de 17641 between the LO16 and partnering high part relocation. The linker will
de7e6852
RS
17642 need to recalculate the complete offset in order to correctly identify
17643 the merge data.
17644
33eaf5de 17645 The linker has traditionally not looked for the partnering high part
de7e6852
RS
17646 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17647 placed anywhere. Rather than break backwards compatibility by changing
17648 this, it seems better not to force the issue, and instead keep the
17649 original symbol. This will work with either linker behavior. */
738e5348 17650 if ((lo16_reloc_p (fixp->fx_r_type)
704803a9 17651 || reloc_needs_lo_p (fixp->fx_r_type))
de7e6852
RS
17652 && HAVE_IN_PLACE_ADDENDS
17653 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17654 return 0;
17655
97f50151
MR
17656 /* There is no place to store an in-place offset for JALR relocations. */
17657 if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
17658 return 0;
17659
17660 /* Likewise an in-range offset of limited PC-relative relocations may
2de39019 17661 overflow the in-place relocatable field if recalculated against the
7361da2c
AB
17662 start address of the symbol's containing section.
17663
17664 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17665 section relative to allow linker relaxations to be performed later on. */
97f50151 17666 if (limited_pcrel_reloc_p (fixp->fx_r_type)
912815f0 17667 && (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
1180b5a4
RS
17668 return 0;
17669
b314ec0e
RS
17670 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17671 to a floating-point stub. The same is true for non-R_MIPS16_26
17672 relocations against MIPS16 functions; in this case, the stub becomes
17673 the function's canonical address.
17674
17675 Floating-point stubs are stored in unique .mips16.call.* or
17676 .mips16.fn.* sections. If a stub T for function F is in section S,
17677 the first relocation in section S must be against F; this is how the
17678 linker determines the target function. All relocations that might
17679 resolve to T must also be against F. We therefore have the following
17680 restrictions, which are given in an intentionally-redundant way:
17681
17682 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17683 symbols.
17684
17685 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17686 if that stub might be used.
17687
17688 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17689 symbols.
17690
17691 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17692 that stub might be used.
17693
17694 There is a further restriction:
17695
df58fc94 17696 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
0e9c5a5c 17697 R_MICROMIPS_26_S1) or branch relocations (R_MIPS_PC26_S2,
c9775dde
MR
17698 R_MIPS_PC21_S2, R_MIPS_PC16, R_MIPS16_PC16_S1,
17699 R_MICROMIPS_PC16_S1, R_MICROMIPS_PC10_S1 or R_MICROMIPS_PC7_S1)
17700 against MIPS16 or microMIPS symbols because we need to keep the
17701 MIPS16 or microMIPS symbol for the purpose of mode mismatch
a6ebf616
MR
17702 detection and JAL or BAL to JALX instruction conversion in the
17703 linker.
b314ec0e 17704
df58fc94 17705 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
507dcb32 17706 against a MIPS16 symbol. We deal with (5) by additionally leaving
0e9c5a5c 17707 alone any jump and branch relocations against a microMIPS symbol.
b314ec0e
RS
17708
17709 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17710 relocation against some symbol R, no relocation against R may be
17711 reduced. (Note that this deals with (2) as well as (1) because
17712 relocations against global symbols will never be reduced on ELF
17713 targets.) This approach is a little simpler than trying to detect
17714 stub sections, and gives the "all or nothing" per-symbol consistency
17715 that we have for MIPS16 symbols. */
f3ded42a 17716 if (fixp->fx_subsy == NULL
30c09090 17717 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
44d3da23 17718 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
0e9c5a5c
MR
17719 && (jmp_reloc_p (fixp->fx_r_type)
17720 || b_reloc_p (fixp->fx_r_type)))
44d3da23 17721 || *symbol_get_tc (fixp->fx_addsy)))
252b5132 17722 return 0;
a161fe53 17723
252b5132
RH
17724 return 1;
17725}
17726
17727/* Translate internal representation of relocation info to BFD target
17728 format. */
17729
17730arelent **
17a2f251 17731tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
17732{
17733 static arelent *retval[4];
17734 arelent *reloc;
17735 bfd_reloc_code_real_type code;
17736
4b0cff4e 17737 memset (retval, 0, sizeof(retval));
325801bd
TS
17738 reloc = retval[0] = XCNEW (arelent);
17739 reloc->sym_ptr_ptr = XNEW (asymbol *);
49309057 17740 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
17741 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17742
bad36eac
DJ
17743 if (fixp->fx_pcrel)
17744 {
df58fc94 17745 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
c9775dde 17746 || fixp->fx_r_type == BFD_RELOC_MIPS16_16_PCREL_S1
df58fc94
RS
17747 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17748 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
b47468a6 17749 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
7361da2c
AB
17750 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17751 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17752 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17753 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17754 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17755 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17756 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
bad36eac
DJ
17757
17758 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17759 Relocations want only the symbol offset. */
51f6035b
MR
17760 switch (fixp->fx_r_type)
17761 {
17762 case BFD_RELOC_MIPS_18_PCREL_S3:
17763 reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
17764 break;
17765 default:
17766 reloc->addend = fixp->fx_addnumber + reloc->address;
17767 break;
17768 }
bad36eac 17769 }
17c6c9d9
MR
17770 else if (HAVE_IN_PLACE_ADDENDS
17771 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
17772 && (read_compressed_insn (fixp->fx_frag->fr_literal
17773 + fixp->fx_where, 4) >> 26) == 0x3c)
17774 {
17775 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
17776 addend accordingly. */
17777 reloc->addend = fixp->fx_addnumber >> 1;
17778 }
bad36eac
DJ
17779 else
17780 reloc->addend = fixp->fx_addnumber;
252b5132 17781
438c16b8
TS
17782 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17783 entry to be used in the relocation's section offset. */
17784 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
252b5132
RH
17785 {
17786 reloc->address = reloc->addend;
17787 reloc->addend = 0;
17788 }
17789
252b5132 17790 code = fixp->fx_r_type;
252b5132 17791
bad36eac 17792 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
252b5132
RH
17793 if (reloc->howto == NULL)
17794 {
17795 as_bad_where (fixp->fx_file, fixp->fx_line,
1661c76c
RS
17796 _("cannot represent %s relocation in this object file"
17797 " format"),
252b5132
RH
17798 bfd_get_reloc_code_name (code));
17799 retval[0] = NULL;
17800 }
17801
17802 return retval;
17803}
17804
17805/* Relax a machine dependent frag. This returns the amount by which
17806 the current size of the frag should change. */
17807
17808int
17a2f251 17809mips_relax_frag (asection *sec, fragS *fragp, long stretch)
252b5132 17810{
4a6a3df4
AO
17811 if (RELAX_BRANCH_P (fragp->fr_subtype))
17812 {
17813 offsetT old_var = fragp->fr_var;
b34976b6
AM
17814
17815 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
4a6a3df4
AO
17816
17817 return fragp->fr_var - old_var;
17818 }
17819
df58fc94
RS
17820 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17821 {
17822 offsetT old_var = fragp->fr_var;
17823 offsetT new_var = 4;
17824
17825 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17826 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17827 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17828 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17829 fragp->fr_var = new_var;
17830
17831 return new_var - old_var;
17832 }
17833
252b5132
RH
17834 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17835 return 0;
17836
88a7ef16 17837 if (mips16_extended_frag (fragp, sec, stretch))
252b5132
RH
17838 {
17839 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17840 return 0;
17841 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17842 return 2;
17843 }
17844 else
17845 {
17846 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17847 return 0;
17848 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17849 return -2;
17850 }
17851
17852 return 0;
17853}
17854
17855/* Convert a machine dependent frag. */
17856
17857void
17a2f251 17858md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
252b5132 17859{
4a6a3df4
AO
17860 if (RELAX_BRANCH_P (fragp->fr_subtype))
17861 {
4d68580a 17862 char *buf;
4a6a3df4
AO
17863 unsigned long insn;
17864 expressionS exp;
17865 fixS *fixp;
b34976b6 17866
4d68580a
RS
17867 buf = fragp->fr_literal + fragp->fr_fix;
17868 insn = read_insn (buf);
b34976b6 17869
4a6a3df4
AO
17870 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17871 {
17872 /* We generate a fixup instead of applying it right now
17873 because, if there are linker relaxations, we're going to
17874 need the relocations. */
17875 exp.X_op = O_symbol;
17876 exp.X_add_symbol = fragp->fr_symbol;
17877 exp.X_add_number = fragp->fr_offset;
17878
4d68580a
RS
17879 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17880 BFD_RELOC_16_PCREL_S2);
4a6a3df4
AO
17881 fixp->fx_file = fragp->fr_file;
17882 fixp->fx_line = fragp->fr_line;
b34976b6 17883
4d68580a 17884 buf = write_insn (buf, insn);
4a6a3df4
AO
17885 }
17886 else
17887 {
17888 int i;
17889
17890 as_warn_where (fragp->fr_file, fragp->fr_line,
1661c76c 17891 _("relaxed out-of-range branch into a jump"));
4a6a3df4
AO
17892
17893 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17894 goto uncond;
17895
17896 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17897 {
17898 /* Reverse the branch. */
17899 switch ((insn >> 28) & 0xf)
17900 {
17901 case 4:
56d438b1
CF
17902 if ((insn & 0xff000000) == 0x47000000
17903 || (insn & 0xff600000) == 0x45600000)
17904 {
17905 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17906 reversed by tweaking bit 23. */
17907 insn ^= 0x00800000;
17908 }
17909 else
17910 {
17911 /* bc[0-3][tf]l? instructions can have the condition
17912 reversed by tweaking a single TF bit, and their
17913 opcodes all have 0x4???????. */
17914 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17915 insn ^= 0x00010000;
17916 }
4a6a3df4
AO
17917 break;
17918
17919 case 0:
17920 /* bltz 0x04000000 bgez 0x04010000
54f4ddb3 17921 bltzal 0x04100000 bgezal 0x04110000 */
9c2799c2 17922 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
4a6a3df4
AO
17923 insn ^= 0x00010000;
17924 break;
b34976b6 17925
4a6a3df4
AO
17926 case 1:
17927 /* beq 0x10000000 bne 0x14000000
54f4ddb3 17928 blez 0x18000000 bgtz 0x1c000000 */
4a6a3df4
AO
17929 insn ^= 0x04000000;
17930 break;
17931
17932 default:
17933 abort ();
17934 }
17935 }
17936
17937 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17938 {
17939 /* Clear the and-link bit. */
9c2799c2 17940 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
4a6a3df4 17941
54f4ddb3
TS
17942 /* bltzal 0x04100000 bgezal 0x04110000
17943 bltzall 0x04120000 bgezall 0x04130000 */
4a6a3df4
AO
17944 insn &= ~0x00100000;
17945 }
17946
17947 /* Branch over the branch (if the branch was likely) or the
17948 full jump (not likely case). Compute the offset from the
17949 current instruction to branch to. */
17950 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17951 i = 16;
17952 else
17953 {
17954 /* How many bytes in instructions we've already emitted? */
4d68580a 17955 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
17956 /* How many bytes in instructions from here to the end? */
17957 i = fragp->fr_var - i;
17958 }
17959 /* Convert to instruction count. */
17960 i >>= 2;
17961 /* Branch counts from the next instruction. */
b34976b6 17962 i--;
4a6a3df4
AO
17963 insn |= i;
17964 /* Branch over the jump. */
4d68580a 17965 buf = write_insn (buf, insn);
4a6a3df4 17966
54f4ddb3 17967 /* nop */
4d68580a 17968 buf = write_insn (buf, 0);
4a6a3df4
AO
17969
17970 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17971 {
17972 /* beql $0, $0, 2f */
17973 insn = 0x50000000;
17974 /* Compute the PC offset from the current instruction to
17975 the end of the variable frag. */
17976 /* How many bytes in instructions we've already emitted? */
4d68580a 17977 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
17978 /* How many bytes in instructions from here to the end? */
17979 i = fragp->fr_var - i;
17980 /* Convert to instruction count. */
17981 i >>= 2;
17982 /* Don't decrement i, because we want to branch over the
17983 delay slot. */
4a6a3df4 17984 insn |= i;
4a6a3df4 17985
4d68580a
RS
17986 buf = write_insn (buf, insn);
17987 buf = write_insn (buf, 0);
4a6a3df4
AO
17988 }
17989
17990 uncond:
17991 if (mips_pic == NO_PIC)
17992 {
17993 /* j or jal. */
17994 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17995 ? 0x0c000000 : 0x08000000);
17996 exp.X_op = O_symbol;
17997 exp.X_add_symbol = fragp->fr_symbol;
17998 exp.X_add_number = fragp->fr_offset;
17999
4d68580a
RS
18000 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18001 FALSE, BFD_RELOC_MIPS_JMP);
4a6a3df4
AO
18002 fixp->fx_file = fragp->fr_file;
18003 fixp->fx_line = fragp->fr_line;
18004
4d68580a 18005 buf = write_insn (buf, insn);
4a6a3df4
AO
18006 }
18007 else
18008 {
66b3e8da
MR
18009 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
18010
4a6a3df4 18011 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
66b3e8da
MR
18012 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
18013 insn |= at << OP_SH_RT;
4a6a3df4
AO
18014 exp.X_op = O_symbol;
18015 exp.X_add_symbol = fragp->fr_symbol;
18016 exp.X_add_number = fragp->fr_offset;
18017
18018 if (fragp->fr_offset)
18019 {
18020 exp.X_add_symbol = make_expr_symbol (&exp);
18021 exp.X_add_number = 0;
18022 }
18023
4d68580a
RS
18024 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18025 FALSE, BFD_RELOC_MIPS_GOT16);
4a6a3df4
AO
18026 fixp->fx_file = fragp->fr_file;
18027 fixp->fx_line = fragp->fr_line;
18028
4d68580a 18029 buf = write_insn (buf, insn);
b34976b6 18030
4a6a3df4 18031 if (mips_opts.isa == ISA_MIPS1)
4d68580a
RS
18032 /* nop */
18033 buf = write_insn (buf, 0);
4a6a3df4
AO
18034
18035 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
66b3e8da
MR
18036 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
18037 insn |= at << OP_SH_RS | at << OP_SH_RT;
4a6a3df4 18038
4d68580a
RS
18039 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18040 FALSE, BFD_RELOC_LO16);
4a6a3df4
AO
18041 fixp->fx_file = fragp->fr_file;
18042 fixp->fx_line = fragp->fr_line;
b34976b6 18043
4d68580a 18044 buf = write_insn (buf, insn);
4a6a3df4
AO
18045
18046 /* j(al)r $at. */
18047 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
66b3e8da 18048 insn = 0x0000f809;
4a6a3df4 18049 else
66b3e8da
MR
18050 insn = 0x00000008;
18051 insn |= at << OP_SH_RS;
4a6a3df4 18052
4d68580a 18053 buf = write_insn (buf, insn);
4a6a3df4
AO
18054 }
18055 }
18056
4a6a3df4 18057 fragp->fr_fix += fragp->fr_var;
4d68580a 18058 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
4a6a3df4
AO
18059 return;
18060 }
18061
df58fc94
RS
18062 /* Relax microMIPS branches. */
18063 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18064 {
4d68580a 18065 char *buf = fragp->fr_literal + fragp->fr_fix;
df58fc94 18066 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
8484fb75 18067 bfd_boolean insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
7bd374a4 18068 bfd_boolean nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
df58fc94
RS
18069 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
18070 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
2309ddf2 18071 bfd_boolean short_ds;
df58fc94
RS
18072 unsigned long insn;
18073 expressionS exp;
18074 fixS *fixp;
18075
18076 exp.X_op = O_symbol;
18077 exp.X_add_symbol = fragp->fr_symbol;
18078 exp.X_add_number = fragp->fr_offset;
18079
18080 fragp->fr_fix += fragp->fr_var;
18081
18082 /* Handle 16-bit branches that fit or are forced to fit. */
18083 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18084 {
18085 /* We generate a fixup instead of applying it right now,
18086 because if there is linker relaxation, we're going to
18087 need the relocations. */
18088 if (type == 'D')
4d68580a 18089 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
df58fc94
RS
18090 BFD_RELOC_MICROMIPS_10_PCREL_S1);
18091 else if (type == 'E')
4d68580a 18092 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
df58fc94
RS
18093 BFD_RELOC_MICROMIPS_7_PCREL_S1);
18094 else
18095 abort ();
18096
18097 fixp->fx_file = fragp->fr_file;
18098 fixp->fx_line = fragp->fr_line;
18099
18100 /* These relocations can have an addend that won't fit in
18101 2 octets. */
18102 fixp->fx_no_overflow = 1;
18103
18104 return;
18105 }
18106
2309ddf2 18107 /* Handle 32-bit branches that fit or are forced to fit. */
df58fc94
RS
18108 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18109 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18110 {
18111 /* We generate a fixup instead of applying it right now,
18112 because if there is linker relaxation, we're going to
18113 need the relocations. */
4d68580a
RS
18114 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
18115 BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
18116 fixp->fx_file = fragp->fr_file;
18117 fixp->fx_line = fragp->fr_line;
18118
18119 if (type == 0)
7bd374a4
MR
18120 {
18121 insn = read_compressed_insn (buf, 4);
18122 buf += 4;
18123
18124 if (nods)
18125 {
18126 /* Check the short-delay-slot bit. */
18127 if (!al || (insn & 0x02000000) != 0)
18128 buf = write_compressed_insn (buf, 0x0c00, 2);
18129 else
18130 buf = write_compressed_insn (buf, 0x00000000, 4);
18131 }
18132
18133 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18134 return;
18135 }
df58fc94
RS
18136 }
18137
18138 /* Relax 16-bit branches to 32-bit branches. */
18139 if (type != 0)
18140 {
4d68580a 18141 insn = read_compressed_insn (buf, 2);
df58fc94
RS
18142
18143 if ((insn & 0xfc00) == 0xcc00) /* b16 */
18144 insn = 0x94000000; /* beq */
18145 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
18146 {
18147 unsigned long regno;
18148
18149 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
18150 regno = micromips_to_32_reg_d_map [regno];
18151 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
18152 insn |= regno << MICROMIPSOP_SH_RS;
18153 }
18154 else
18155 abort ();
18156
18157 /* Nothing else to do, just write it out. */
18158 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18159 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18160 {
4d68580a 18161 buf = write_compressed_insn (buf, insn, 4);
7bd374a4
MR
18162 if (nods)
18163 buf = write_compressed_insn (buf, 0x0c00, 2);
4d68580a 18164 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
18165 return;
18166 }
18167 }
18168 else
4d68580a 18169 insn = read_compressed_insn (buf, 4);
df58fc94
RS
18170
18171 /* Relax 32-bit branches to a sequence of instructions. */
18172 as_warn_where (fragp->fr_file, fragp->fr_line,
1661c76c 18173 _("relaxed out-of-range branch into a jump"));
df58fc94 18174
2309ddf2 18175 /* Set the short-delay-slot bit. */
7bd374a4 18176 short_ds = !al || (insn & 0x02000000) != 0;
df58fc94
RS
18177
18178 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
18179 {
18180 symbolS *l;
18181
18182 /* Reverse the branch. */
18183 if ((insn & 0xfc000000) == 0x94000000 /* beq */
18184 || (insn & 0xfc000000) == 0xb4000000) /* bne */
18185 insn ^= 0x20000000;
18186 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
18187 || (insn & 0xffe00000) == 0x40400000 /* bgez */
18188 || (insn & 0xffe00000) == 0x40800000 /* blez */
18189 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
18190 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
18191 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
18192 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
18193 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
18194 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
18195 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
18196 insn ^= 0x00400000;
18197 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
18198 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
18199 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
18200 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
18201 insn ^= 0x00200000;
56d438b1
CF
18202 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
18203 BNZ.df */
18204 || (insn & 0xff600000) == 0x81600000) /* BZ.V
18205 BNZ.V */
18206 insn ^= 0x00800000;
df58fc94
RS
18207 else
18208 abort ();
18209
18210 if (al)
18211 {
18212 /* Clear the and-link and short-delay-slot bits. */
18213 gas_assert ((insn & 0xfda00000) == 0x40200000);
18214
18215 /* bltzal 0x40200000 bgezal 0x40600000 */
18216 /* bltzals 0x42200000 bgezals 0x42600000 */
18217 insn &= ~0x02200000;
18218 }
18219
18220 /* Make a label at the end for use with the branch. */
18221 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
18222 micromips_label_inc ();
f3ded42a 18223 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
df58fc94
RS
18224
18225 /* Refer to it. */
4d68580a
RS
18226 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
18227 BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
18228 fixp->fx_file = fragp->fr_file;
18229 fixp->fx_line = fragp->fr_line;
18230
18231 /* Branch over the jump. */
4d68580a 18232 buf = write_compressed_insn (buf, insn, 4);
8484fb75 18233
df58fc94 18234 if (!compact)
8484fb75
MR
18235 {
18236 /* nop */
18237 if (insn32)
18238 buf = write_compressed_insn (buf, 0x00000000, 4);
18239 else
18240 buf = write_compressed_insn (buf, 0x0c00, 2);
18241 }
df58fc94
RS
18242 }
18243
18244 if (mips_pic == NO_PIC)
18245 {
7bd374a4
MR
18246 unsigned long jal = (short_ds || nods
18247 ? 0x74000000 : 0xf4000000); /* jal/s */
2309ddf2 18248
df58fc94
RS
18249 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18250 insn = al ? jal : 0xd4000000;
18251
4d68580a
RS
18252 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18253 BFD_RELOC_MICROMIPS_JMP);
df58fc94
RS
18254 fixp->fx_file = fragp->fr_file;
18255 fixp->fx_line = fragp->fr_line;
18256
4d68580a 18257 buf = write_compressed_insn (buf, insn, 4);
8484fb75 18258
7bd374a4 18259 if (compact || nods)
8484fb75
MR
18260 {
18261 /* nop */
18262 if (insn32)
18263 buf = write_compressed_insn (buf, 0x00000000, 4);
18264 else
18265 buf = write_compressed_insn (buf, 0x0c00, 2);
18266 }
df58fc94
RS
18267 }
18268 else
18269 {
18270 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
18271
18272 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18273 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
18274 insn |= at << MICROMIPSOP_SH_RT;
18275
18276 if (exp.X_add_number)
18277 {
18278 exp.X_add_symbol = make_expr_symbol (&exp);
18279 exp.X_add_number = 0;
18280 }
18281
4d68580a
RS
18282 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18283 BFD_RELOC_MICROMIPS_GOT16);
df58fc94
RS
18284 fixp->fx_file = fragp->fr_file;
18285 fixp->fx_line = fragp->fr_line;
18286
4d68580a 18287 buf = write_compressed_insn (buf, insn, 4);
df58fc94
RS
18288
18289 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18290 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
18291 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
18292
4d68580a
RS
18293 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18294 BFD_RELOC_MICROMIPS_LO16);
df58fc94
RS
18295 fixp->fx_file = fragp->fr_file;
18296 fixp->fx_line = fragp->fr_line;
18297
4d68580a 18298 buf = write_compressed_insn (buf, insn, 4);
df58fc94 18299
8484fb75
MR
18300 if (insn32)
18301 {
18302 /* jr/jalr $at */
18303 insn = 0x00000f3c | (al ? RA : ZERO) << MICROMIPSOP_SH_RT;
18304 insn |= at << MICROMIPSOP_SH_RS;
18305
18306 buf = write_compressed_insn (buf, insn, 4);
df58fc94 18307
7bd374a4 18308 if (compact || nods)
8484fb75
MR
18309 /* nop */
18310 buf = write_compressed_insn (buf, 0x00000000, 4);
18311 }
18312 else
18313 {
18314 /* jr/jrc/jalr/jalrs $at */
18315 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
7bd374a4 18316 unsigned long jr = compact || nods ? 0x45a0 : 0x4580; /* jr/c */
8484fb75
MR
18317
18318 insn = al ? jalr : jr;
18319 insn |= at << MICROMIPSOP_SH_MJ;
18320
18321 buf = write_compressed_insn (buf, insn, 2);
7bd374a4
MR
18322 if (al && nods)
18323 {
18324 /* nop */
18325 if (short_ds)
18326 buf = write_compressed_insn (buf, 0x0c00, 2);
18327 else
18328 buf = write_compressed_insn (buf, 0x00000000, 4);
18329 }
8484fb75 18330 }
df58fc94
RS
18331 }
18332
4d68580a 18333 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
18334 return;
18335 }
18336
252b5132
RH
18337 if (RELAX_MIPS16_P (fragp->fr_subtype))
18338 {
18339 int type;
3ccad066 18340 const struct mips_int_operand *operand;
252b5132 18341 offsetT val;
5c04167a
RS
18342 char *buf;
18343 unsigned int user_length, length;
9d862524 18344 bfd_boolean need_reloc;
252b5132 18345 unsigned long insn;
5c04167a 18346 bfd_boolean ext;
88a7ef16 18347 segT symsec;
252b5132
RH
18348
18349 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
3ccad066 18350 operand = mips16_immed_operand (type, FALSE);
252b5132 18351
5c04167a 18352 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
88a7ef16 18353 val = resolve_symbol_value (fragp->fr_symbol) + fragp->fr_offset;
9d862524
MR
18354
18355 symsec = S_GET_SEGMENT (fragp->fr_symbol);
18356 need_reloc = (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
18357 || (operand->root.type == OP_PCREL
18358 ? asec != symsec
18359 : !bfd_is_abs_section (symsec)));
18360
3ccad066 18361 if (operand->root.type == OP_PCREL)
252b5132 18362 {
3ccad066 18363 const struct mips_pcrel_operand *pcrel_op;
252b5132
RH
18364 addressT addr;
18365
3ccad066 18366 pcrel_op = (const struct mips_pcrel_operand *) operand;
252b5132
RH
18367 addr = fragp->fr_address + fragp->fr_fix;
18368
18369 /* The rules for the base address of a PC relative reloc are
18370 complicated; see mips16_extended_frag. */
3ccad066 18371 if (pcrel_op->include_isa_bit)
252b5132 18372 {
9d862524
MR
18373 if (!need_reloc)
18374 {
18375 if (!ELF_ST_IS_MIPS16 (S_GET_OTHER (fragp->fr_symbol)))
18376 as_bad_where (fragp->fr_file, fragp->fr_line,
18377 _("branch to a symbol in another ISA mode"));
18378 else if ((fragp->fr_offset & 0x1) != 0)
18379 as_bad_where (fragp->fr_file, fragp->fr_line,
18380 _("branch to misaligned address (0x%lx)"),
18381 (long) val);
18382 }
252b5132
RH
18383 addr += 2;
18384 if (ext)
18385 addr += 2;
18386 /* Ignore the low bit in the target, since it will be
18387 set for a text label. */
3ccad066 18388 val &= -2;
252b5132
RH
18389 }
18390 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
18391 addr -= 4;
18392 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
18393 addr -= 2;
18394
3ccad066 18395 addr &= -(1 << pcrel_op->align_log2);
252b5132
RH
18396 val -= addr;
18397
18398 /* Make sure the section winds up with the alignment we have
18399 assumed. */
3ccad066
RS
18400 if (operand->shift > 0)
18401 record_alignment (asec, operand->shift);
252b5132
RH
18402 }
18403
18404 if (ext
18405 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
18406 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
18407 as_warn_where (fragp->fr_file, fragp->fr_line,
18408 _("extended instruction in delay slot"));
18409
5c04167a 18410 buf = fragp->fr_literal + fragp->fr_fix;
252b5132 18411
4d68580a 18412 insn = read_compressed_insn (buf, 2);
5c04167a
RS
18413 if (ext)
18414 insn |= MIPS16_EXTEND;
252b5132 18415
5c04167a
RS
18416 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
18417 user_length = 4;
18418 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
18419 user_length = 2;
18420 else
18421 user_length = 0;
18422
9d862524 18423 if (need_reloc)
c9775dde
MR
18424 {
18425 bfd_reloc_code_real_type reloc = BFD_RELOC_NONE;
18426 expressionS exp;
18427 fixS *fixp;
18428
18429 switch (type)
18430 {
18431 case 'p':
18432 case 'q':
18433 reloc = BFD_RELOC_MIPS16_16_PCREL_S1;
18434 break;
18435 default:
18436 as_bad_where (fragp->fr_file, fragp->fr_line,
18437 _("unsupported relocation"));
18438 break;
18439 }
eefc3365
MR
18440 if (reloc == BFD_RELOC_NONE)
18441 ;
18442 else if (ext)
c9775dde 18443 {
c9775dde
MR
18444 exp.X_op = O_symbol;
18445 exp.X_add_symbol = fragp->fr_symbol;
18446 exp.X_add_number = fragp->fr_offset;
18447
18448 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp,
18449 TRUE, reloc);
18450
18451 fixp->fx_file = fragp->fr_file;
18452 fixp->fx_line = fragp->fr_line;
18453
18454 /* These relocations can have an addend that won't fit
18455 in 2 octets. */
18456 fixp->fx_no_overflow = 1;
18457 }
eefc3365
MR
18458 else
18459 as_bad_where (fragp->fr_file, fragp->fr_line,
18460 _("invalid unextended operand value"));
c9775dde 18461 }
88a7ef16
MR
18462 else
18463 mips16_immed (fragp->fr_file, fragp->fr_line, type,
18464 BFD_RELOC_UNUSED, val, user_length, &insn);
252b5132 18465
5c04167a
RS
18466 length = (ext ? 4 : 2);
18467 gas_assert (mips16_opcode_length (insn) == length);
18468 write_compressed_insn (buf, insn, length);
18469 fragp->fr_fix += length;
252b5132
RH
18470 }
18471 else
18472 {
df58fc94
RS
18473 relax_substateT subtype = fragp->fr_subtype;
18474 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
18475 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
4d7206a2
RS
18476 int first, second;
18477 fixS *fixp;
252b5132 18478
df58fc94
RS
18479 first = RELAX_FIRST (subtype);
18480 second = RELAX_SECOND (subtype);
4d7206a2 18481 fixp = (fixS *) fragp->fr_opcode;
252b5132 18482
df58fc94
RS
18483 /* If the delay slot chosen does not match the size of the instruction,
18484 then emit a warning. */
18485 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
18486 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
18487 {
18488 relax_substateT s;
18489 const char *msg;
18490
18491 s = subtype & (RELAX_DELAY_SLOT_16BIT
18492 | RELAX_DELAY_SLOT_SIZE_FIRST
18493 | RELAX_DELAY_SLOT_SIZE_SECOND);
18494 msg = macro_warning (s);
18495 if (msg != NULL)
db9b2be4 18496 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94
RS
18497 subtype &= ~s;
18498 }
18499
584892a6 18500 /* Possibly emit a warning if we've chosen the longer option. */
df58fc94 18501 if (use_second == second_longer)
584892a6 18502 {
df58fc94
RS
18503 relax_substateT s;
18504 const char *msg;
18505
18506 s = (subtype
18507 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
18508 msg = macro_warning (s);
18509 if (msg != NULL)
db9b2be4 18510 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94 18511 subtype &= ~s;
584892a6
RS
18512 }
18513
4d7206a2
RS
18514 /* Go through all the fixups for the first sequence. Disable them
18515 (by marking them as done) if we're going to use the second
18516 sequence instead. */
18517 while (fixp
18518 && fixp->fx_frag == fragp
18519 && fixp->fx_where < fragp->fr_fix - second)
18520 {
df58fc94 18521 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
18522 fixp->fx_done = 1;
18523 fixp = fixp->fx_next;
18524 }
252b5132 18525
4d7206a2
RS
18526 /* Go through the fixups for the second sequence. Disable them if
18527 we're going to use the first sequence, otherwise adjust their
18528 addresses to account for the relaxation. */
18529 while (fixp && fixp->fx_frag == fragp)
18530 {
df58fc94 18531 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
18532 fixp->fx_where -= first;
18533 else
18534 fixp->fx_done = 1;
18535 fixp = fixp->fx_next;
18536 }
18537
18538 /* Now modify the frag contents. */
df58fc94 18539 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
18540 {
18541 char *start;
18542
18543 start = fragp->fr_literal + fragp->fr_fix - first - second;
18544 memmove (start, start + first, second);
18545 fragp->fr_fix -= first;
18546 }
18547 else
18548 fragp->fr_fix -= second;
252b5132
RH
18549 }
18550}
18551
252b5132
RH
18552/* This function is called after the relocs have been generated.
18553 We've been storing mips16 text labels as odd. Here we convert them
18554 back to even for the convenience of the debugger. */
18555
18556void
17a2f251 18557mips_frob_file_after_relocs (void)
252b5132
RH
18558{
18559 asymbol **syms;
18560 unsigned int count, i;
18561
252b5132
RH
18562 syms = bfd_get_outsymbols (stdoutput);
18563 count = bfd_get_symcount (stdoutput);
18564 for (i = 0; i < count; i++, syms++)
df58fc94
RS
18565 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
18566 && ((*syms)->value & 1) != 0)
18567 {
18568 (*syms)->value &= ~1;
18569 /* If the symbol has an odd size, it was probably computed
18570 incorrectly, so adjust that as well. */
18571 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
18572 ++elf_symbol (*syms)->internal_elf_sym.st_size;
18573 }
252b5132
RH
18574}
18575
a1facbec
MR
18576/* This function is called whenever a label is defined, including fake
18577 labels instantiated off the dot special symbol. It is used when
18578 handling branch delays; if a branch has a label, we assume we cannot
18579 move it. This also bumps the value of the symbol by 1 in compressed
18580 code. */
252b5132 18581
e1b47bd5 18582static void
a1facbec 18583mips_record_label (symbolS *sym)
252b5132 18584{
a8dbcb85 18585 segment_info_type *si = seg_info (now_seg);
252b5132
RH
18586 struct insn_label_list *l;
18587
18588 if (free_insn_labels == NULL)
325801bd 18589 l = XNEW (struct insn_label_list);
252b5132
RH
18590 else
18591 {
18592 l = free_insn_labels;
18593 free_insn_labels = l->next;
18594 }
18595
18596 l->label = sym;
a8dbcb85
TS
18597 l->next = si->label_list;
18598 si->label_list = l;
a1facbec 18599}
07a53e5c 18600
a1facbec
MR
18601/* This function is called as tc_frob_label() whenever a label is defined
18602 and adds a DWARF-2 record we only want for true labels. */
18603
18604void
18605mips_define_label (symbolS *sym)
18606{
18607 mips_record_label (sym);
07a53e5c 18608 dwarf2_emit_label (sym);
252b5132 18609}
e1b47bd5
RS
18610
18611/* This function is called by tc_new_dot_label whenever a new dot symbol
18612 is defined. */
18613
18614void
18615mips_add_dot_label (symbolS *sym)
18616{
18617 mips_record_label (sym);
18618 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
18619 mips_compressed_mark_label (sym);
18620}
252b5132 18621\f
351cdf24
MF
18622/* Converting ASE flags from internal to .MIPS.abiflags values. */
18623static unsigned int
18624mips_convert_ase_flags (int ase)
18625{
18626 unsigned int ext_ases = 0;
18627
18628 if (ase & ASE_DSP)
18629 ext_ases |= AFL_ASE_DSP;
18630 if (ase & ASE_DSPR2)
18631 ext_ases |= AFL_ASE_DSPR2;
8f4f9071
MF
18632 if (ase & ASE_DSPR3)
18633 ext_ases |= AFL_ASE_DSPR3;
351cdf24
MF
18634 if (ase & ASE_EVA)
18635 ext_ases |= AFL_ASE_EVA;
18636 if (ase & ASE_MCU)
18637 ext_ases |= AFL_ASE_MCU;
18638 if (ase & ASE_MDMX)
18639 ext_ases |= AFL_ASE_MDMX;
18640 if (ase & ASE_MIPS3D)
18641 ext_ases |= AFL_ASE_MIPS3D;
18642 if (ase & ASE_MT)
18643 ext_ases |= AFL_ASE_MT;
18644 if (ase & ASE_SMARTMIPS)
18645 ext_ases |= AFL_ASE_SMARTMIPS;
18646 if (ase & ASE_VIRT)
18647 ext_ases |= AFL_ASE_VIRT;
18648 if (ase & ASE_MSA)
18649 ext_ases |= AFL_ASE_MSA;
18650 if (ase & ASE_XPA)
18651 ext_ases |= AFL_ASE_XPA;
18652
18653 return ext_ases;
18654}
252b5132
RH
18655/* Some special processing for a MIPS ELF file. */
18656
18657void
17a2f251 18658mips_elf_final_processing (void)
252b5132 18659{
351cdf24
MF
18660 int fpabi;
18661 Elf_Internal_ABIFlags_v0 flags;
18662
18663 flags.version = 0;
18664 flags.isa_rev = 0;
18665 switch (file_mips_opts.isa)
18666 {
18667 case INSN_ISA1:
18668 flags.isa_level = 1;
18669 break;
18670 case INSN_ISA2:
18671 flags.isa_level = 2;
18672 break;
18673 case INSN_ISA3:
18674 flags.isa_level = 3;
18675 break;
18676 case INSN_ISA4:
18677 flags.isa_level = 4;
18678 break;
18679 case INSN_ISA5:
18680 flags.isa_level = 5;
18681 break;
18682 case INSN_ISA32:
18683 flags.isa_level = 32;
18684 flags.isa_rev = 1;
18685 break;
18686 case INSN_ISA32R2:
18687 flags.isa_level = 32;
18688 flags.isa_rev = 2;
18689 break;
18690 case INSN_ISA32R3:
18691 flags.isa_level = 32;
18692 flags.isa_rev = 3;
18693 break;
18694 case INSN_ISA32R5:
18695 flags.isa_level = 32;
18696 flags.isa_rev = 5;
18697 break;
09c14161
MF
18698 case INSN_ISA32R6:
18699 flags.isa_level = 32;
18700 flags.isa_rev = 6;
18701 break;
351cdf24
MF
18702 case INSN_ISA64:
18703 flags.isa_level = 64;
18704 flags.isa_rev = 1;
18705 break;
18706 case INSN_ISA64R2:
18707 flags.isa_level = 64;
18708 flags.isa_rev = 2;
18709 break;
18710 case INSN_ISA64R3:
18711 flags.isa_level = 64;
18712 flags.isa_rev = 3;
18713 break;
18714 case INSN_ISA64R5:
18715 flags.isa_level = 64;
18716 flags.isa_rev = 5;
18717 break;
09c14161
MF
18718 case INSN_ISA64R6:
18719 flags.isa_level = 64;
18720 flags.isa_rev = 6;
18721 break;
351cdf24
MF
18722 }
18723
18724 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18725 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18726 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18727 : (file_mips_opts.fp == 64) ? AFL_REG_64
18728 : AFL_REG_32;
18729 flags.cpr2_size = AFL_REG_NONE;
18730 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18731 Tag_GNU_MIPS_ABI_FP);
18732 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18733 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18734 if (file_ase_mips16)
18735 flags.ases |= AFL_ASE_MIPS16;
18736 if (file_ase_micromips)
18737 flags.ases |= AFL_ASE_MICROMIPS;
18738 flags.flags1 = 0;
18739 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18740 || file_mips_opts.fp == 64)
18741 && file_mips_opts.oddspreg)
18742 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18743 flags.flags2 = 0;
18744
18745 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18746 ((Elf_External_ABIFlags_v0 *)
18747 mips_flags_frag));
18748
252b5132 18749 /* Write out the register information. */
316f5878 18750 if (mips_abi != N64_ABI)
252b5132
RH
18751 {
18752 Elf32_RegInfo s;
18753
18754 s.ri_gprmask = mips_gprmask;
18755 s.ri_cprmask[0] = mips_cprmask[0];
18756 s.ri_cprmask[1] = mips_cprmask[1];
18757 s.ri_cprmask[2] = mips_cprmask[2];
18758 s.ri_cprmask[3] = mips_cprmask[3];
18759 /* The gp_value field is set by the MIPS ELF backend. */
18760
18761 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18762 ((Elf32_External_RegInfo *)
18763 mips_regmask_frag));
18764 }
18765 else
18766 {
18767 Elf64_Internal_RegInfo s;
18768
18769 s.ri_gprmask = mips_gprmask;
18770 s.ri_pad = 0;
18771 s.ri_cprmask[0] = mips_cprmask[0];
18772 s.ri_cprmask[1] = mips_cprmask[1];
18773 s.ri_cprmask[2] = mips_cprmask[2];
18774 s.ri_cprmask[3] = mips_cprmask[3];
18775 /* The gp_value field is set by the MIPS ELF backend. */
18776
18777 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18778 ((Elf64_External_RegInfo *)
18779 mips_regmask_frag));
18780 }
18781
18782 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18783 sort of BFD interface for this. */
18784 if (mips_any_noreorder)
18785 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18786 if (mips_pic != NO_PIC)
143d77c5 18787 {
8b828383 18788 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
143d77c5
EC
18789 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18790 }
18791 if (mips_abicalls)
18792 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
252b5132 18793
b015e599
AP
18794 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18795 defined at present; this might need to change in future. */
a4672219
TS
18796 if (file_ase_mips16)
18797 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
df58fc94
RS
18798 if (file_ase_micromips)
18799 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
919731af 18800 if (file_mips_opts.ase & ASE_MDMX)
deec1734 18801 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
1f25f5d3 18802
bdaaa2e1 18803 /* Set the MIPS ELF ABI flags. */
316f5878 18804 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
252b5132 18805 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
316f5878 18806 else if (mips_abi == O64_ABI)
252b5132 18807 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
316f5878 18808 else if (mips_abi == EABI_ABI)
252b5132 18809 {
bad1aba3 18810 if (file_mips_opts.gp == 64)
252b5132
RH
18811 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18812 else
18813 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18814 }
316f5878 18815 else if (mips_abi == N32_ABI)
be00bddd
TS
18816 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18817
c9914766 18818 /* Nothing to do for N64_ABI. */
252b5132
RH
18819
18820 if (mips_32bitmode)
18821 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
ad3fea08 18822
7361da2c 18823 if (mips_nan2008 == 1)
ba92f887
MR
18824 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18825
ad3fea08 18826 /* 32 bit code with 64 bit FP registers. */
351cdf24
MF
18827 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18828 Tag_GNU_MIPS_ABI_FP);
18829 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
f1c38003 18830 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
252b5132 18831}
252b5132 18832\f
beae10d5 18833typedef struct proc {
9b2f1d35
EC
18834 symbolS *func_sym;
18835 symbolS *func_end_sym;
beae10d5
KH
18836 unsigned long reg_mask;
18837 unsigned long reg_offset;
18838 unsigned long fpreg_mask;
18839 unsigned long fpreg_offset;
18840 unsigned long frame_offset;
18841 unsigned long frame_reg;
18842 unsigned long pc_reg;
18843} procS;
252b5132
RH
18844
18845static procS cur_proc;
18846static procS *cur_proc_ptr;
18847static int numprocs;
18848
df58fc94
RS
18849/* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18850 as "2", and a normal nop as "0". */
18851
18852#define NOP_OPCODE_MIPS 0
18853#define NOP_OPCODE_MIPS16 1
18854#define NOP_OPCODE_MICROMIPS 2
742a56fe
RS
18855
18856char
18857mips_nop_opcode (void)
18858{
df58fc94
RS
18859 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18860 return NOP_OPCODE_MICROMIPS;
18861 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18862 return NOP_OPCODE_MIPS16;
18863 else
18864 return NOP_OPCODE_MIPS;
742a56fe
RS
18865}
18866
df58fc94
RS
18867/* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18868 32-bit microMIPS NOPs here (if applicable). */
a19d8eb0 18869
0a9ef439 18870void
17a2f251 18871mips_handle_align (fragS *fragp)
a19d8eb0 18872{
df58fc94 18873 char nop_opcode;
742a56fe 18874 char *p;
c67a084a
NC
18875 int bytes, size, excess;
18876 valueT opcode;
742a56fe 18877
0a9ef439
RH
18878 if (fragp->fr_type != rs_align_code)
18879 return;
18880
742a56fe 18881 p = fragp->fr_literal + fragp->fr_fix;
df58fc94
RS
18882 nop_opcode = *p;
18883 switch (nop_opcode)
a19d8eb0 18884 {
df58fc94
RS
18885 case NOP_OPCODE_MICROMIPS:
18886 opcode = micromips_nop32_insn.insn_opcode;
18887 size = 4;
18888 break;
18889 case NOP_OPCODE_MIPS16:
c67a084a
NC
18890 opcode = mips16_nop_insn.insn_opcode;
18891 size = 2;
df58fc94
RS
18892 break;
18893 case NOP_OPCODE_MIPS:
18894 default:
c67a084a
NC
18895 opcode = nop_insn.insn_opcode;
18896 size = 4;
df58fc94 18897 break;
c67a084a 18898 }
a19d8eb0 18899
c67a084a
NC
18900 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18901 excess = bytes % size;
df58fc94
RS
18902
18903 /* Handle the leading part if we're not inserting a whole number of
18904 instructions, and make it the end of the fixed part of the frag.
18905 Try to fit in a short microMIPS NOP if applicable and possible,
18906 and use zeroes otherwise. */
18907 gas_assert (excess < 4);
18908 fragp->fr_fix += excess;
18909 switch (excess)
c67a084a 18910 {
df58fc94
RS
18911 case 3:
18912 *p++ = '\0';
18913 /* Fall through. */
18914 case 2:
833794fc 18915 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
df58fc94 18916 {
4d68580a 18917 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
df58fc94
RS
18918 break;
18919 }
18920 *p++ = '\0';
18921 /* Fall through. */
18922 case 1:
18923 *p++ = '\0';
18924 /* Fall through. */
18925 case 0:
18926 break;
a19d8eb0 18927 }
c67a084a
NC
18928
18929 md_number_to_chars (p, opcode, size);
18930 fragp->fr_var = size;
a19d8eb0
CP
18931}
18932
252b5132 18933static long
17a2f251 18934get_number (void)
252b5132
RH
18935{
18936 int negative = 0;
18937 long val = 0;
18938
18939 if (*input_line_pointer == '-')
18940 {
18941 ++input_line_pointer;
18942 negative = 1;
18943 }
3882b010 18944 if (!ISDIGIT (*input_line_pointer))
956cd1d6 18945 as_bad (_("expected simple number"));
252b5132
RH
18946 if (input_line_pointer[0] == '0')
18947 {
18948 if (input_line_pointer[1] == 'x')
18949 {
18950 input_line_pointer += 2;
3882b010 18951 while (ISXDIGIT (*input_line_pointer))
252b5132
RH
18952 {
18953 val <<= 4;
18954 val |= hex_value (*input_line_pointer++);
18955 }
18956 return negative ? -val : val;
18957 }
18958 else
18959 {
18960 ++input_line_pointer;
3882b010 18961 while (ISDIGIT (*input_line_pointer))
252b5132
RH
18962 {
18963 val <<= 3;
18964 val |= *input_line_pointer++ - '0';
18965 }
18966 return negative ? -val : val;
18967 }
18968 }
3882b010 18969 if (!ISDIGIT (*input_line_pointer))
252b5132
RH
18970 {
18971 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18972 *input_line_pointer, *input_line_pointer);
956cd1d6 18973 as_warn (_("invalid number"));
252b5132
RH
18974 return -1;
18975 }
3882b010 18976 while (ISDIGIT (*input_line_pointer))
252b5132
RH
18977 {
18978 val *= 10;
18979 val += *input_line_pointer++ - '0';
18980 }
18981 return negative ? -val : val;
18982}
18983
18984/* The .file directive; just like the usual .file directive, but there
c5dd6aab
DJ
18985 is an initial number which is the ECOFF file index. In the non-ECOFF
18986 case .file implies DWARF-2. */
18987
18988static void
17a2f251 18989s_mips_file (int x ATTRIBUTE_UNUSED)
c5dd6aab 18990{
ecb4347a
DJ
18991 static int first_file_directive = 0;
18992
c5dd6aab
DJ
18993 if (ECOFF_DEBUGGING)
18994 {
18995 get_number ();
18996 s_app_file (0);
18997 }
18998 else
ecb4347a
DJ
18999 {
19000 char *filename;
19001
19002 filename = dwarf2_directive_file (0);
19003
19004 /* Versions of GCC up to 3.1 start files with a ".file"
19005 directive even for stabs output. Make sure that this
19006 ".file" is handled. Note that you need a version of GCC
19007 after 3.1 in order to support DWARF-2 on MIPS. */
19008 if (filename != NULL && ! first_file_directive)
19009 {
19010 (void) new_logical_line (filename, -1);
c04f5787 19011 s_app_file_string (filename, 0);
ecb4347a
DJ
19012 }
19013 first_file_directive = 1;
19014 }
c5dd6aab
DJ
19015}
19016
19017/* The .loc directive, implying DWARF-2. */
252b5132
RH
19018
19019static void
17a2f251 19020s_mips_loc (int x ATTRIBUTE_UNUSED)
252b5132 19021{
c5dd6aab
DJ
19022 if (!ECOFF_DEBUGGING)
19023 dwarf2_directive_loc (0);
252b5132
RH
19024}
19025
252b5132
RH
19026/* The .end directive. */
19027
19028static void
17a2f251 19029s_mips_end (int x ATTRIBUTE_UNUSED)
252b5132
RH
19030{
19031 symbolS *p;
252b5132 19032
7a621144
DJ
19033 /* Following functions need their own .frame and .cprestore directives. */
19034 mips_frame_reg_valid = 0;
19035 mips_cprestore_valid = 0;
19036
252b5132
RH
19037 if (!is_end_of_line[(unsigned char) *input_line_pointer])
19038 {
19039 p = get_symbol ();
19040 demand_empty_rest_of_line ();
19041 }
19042 else
19043 p = NULL;
19044
14949570 19045 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
252b5132
RH
19046 as_warn (_(".end not in text section"));
19047
19048 if (!cur_proc_ptr)
19049 {
1661c76c 19050 as_warn (_(".end directive without a preceding .ent directive"));
252b5132
RH
19051 demand_empty_rest_of_line ();
19052 return;
19053 }
19054
19055 if (p != NULL)
19056 {
9c2799c2 19057 gas_assert (S_GET_NAME (p));
9b2f1d35 19058 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
1661c76c 19059 as_warn (_(".end symbol does not match .ent symbol"));
ecb4347a
DJ
19060
19061 if (debug_type == DEBUG_STABS)
19062 stabs_generate_asm_endfunc (S_GET_NAME (p),
19063 S_GET_NAME (p));
252b5132
RH
19064 }
19065 else
19066 as_warn (_(".end directive missing or unknown symbol"));
19067
9b2f1d35
EC
19068 /* Create an expression to calculate the size of the function. */
19069 if (p && cur_proc_ptr)
19070 {
19071 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
325801bd 19072 expressionS *exp = XNEW (expressionS);
9b2f1d35
EC
19073
19074 obj->size = exp;
19075 exp->X_op = O_subtract;
19076 exp->X_add_symbol = symbol_temp_new_now ();
19077 exp->X_op_symbol = p;
19078 exp->X_add_number = 0;
19079
19080 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
19081 }
19082
5ff6a06c
MR
19083#ifdef md_flush_pending_output
19084 md_flush_pending_output ();
19085#endif
19086
ecb4347a 19087 /* Generate a .pdr section. */
f3ded42a 19088 if (!ECOFF_DEBUGGING && mips_flag_pdr)
ecb4347a
DJ
19089 {
19090 segT saved_seg = now_seg;
19091 subsegT saved_subseg = now_subseg;
ecb4347a
DJ
19092 expressionS exp;
19093 char *fragp;
252b5132 19094
9c2799c2 19095 gas_assert (pdr_seg);
ecb4347a 19096 subseg_set (pdr_seg, 0);
252b5132 19097
ecb4347a
DJ
19098 /* Write the symbol. */
19099 exp.X_op = O_symbol;
19100 exp.X_add_symbol = p;
19101 exp.X_add_number = 0;
19102 emit_expr (&exp, 4);
252b5132 19103
ecb4347a 19104 fragp = frag_more (7 * 4);
252b5132 19105
17a2f251
TS
19106 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
19107 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
19108 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
19109 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
19110 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
19111 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
19112 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
252b5132 19113
ecb4347a
DJ
19114 subseg_set (saved_seg, saved_subseg);
19115 }
252b5132
RH
19116
19117 cur_proc_ptr = NULL;
19118}
19119
19120/* The .aent and .ent directives. */
19121
19122static void
17a2f251 19123s_mips_ent (int aent)
252b5132 19124{
252b5132 19125 symbolS *symbolP;
252b5132
RH
19126
19127 symbolP = get_symbol ();
19128 if (*input_line_pointer == ',')
f9419b05 19129 ++input_line_pointer;
252b5132 19130 SKIP_WHITESPACE ();
3882b010 19131 if (ISDIGIT (*input_line_pointer)
d9a62219 19132 || *input_line_pointer == '-')
874e8986 19133 get_number ();
252b5132 19134
14949570 19135 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
1661c76c 19136 as_warn (_(".ent or .aent not in text section"));
252b5132
RH
19137
19138 if (!aent && cur_proc_ptr)
9a41af64 19139 as_warn (_("missing .end"));
252b5132
RH
19140
19141 if (!aent)
19142 {
7a621144
DJ
19143 /* This function needs its own .frame and .cprestore directives. */
19144 mips_frame_reg_valid = 0;
19145 mips_cprestore_valid = 0;
19146
252b5132
RH
19147 cur_proc_ptr = &cur_proc;
19148 memset (cur_proc_ptr, '\0', sizeof (procS));
19149
9b2f1d35 19150 cur_proc_ptr->func_sym = symbolP;
252b5132 19151
f9419b05 19152 ++numprocs;
ecb4347a
DJ
19153
19154 if (debug_type == DEBUG_STABS)
19155 stabs_generate_asm_func (S_GET_NAME (symbolP),
19156 S_GET_NAME (symbolP));
252b5132
RH
19157 }
19158
7c0fc524
MR
19159 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
19160
252b5132
RH
19161 demand_empty_rest_of_line ();
19162}
19163
19164/* The .frame directive. If the mdebug section is present (IRIX 5 native)
bdaaa2e1 19165 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
252b5132 19166 s_mips_frame is used so that we can set the PDR information correctly.
bdaaa2e1 19167 We can't use the ecoff routines because they make reference to the ecoff
252b5132
RH
19168 symbol table (in the mdebug section). */
19169
19170static void
17a2f251 19171s_mips_frame (int ignore ATTRIBUTE_UNUSED)
252b5132 19172{
f3ded42a
RS
19173 if (ECOFF_DEBUGGING)
19174 s_ignore (ignore);
19175 else
ecb4347a
DJ
19176 {
19177 long val;
252b5132 19178
ecb4347a
DJ
19179 if (cur_proc_ptr == (procS *) NULL)
19180 {
19181 as_warn (_(".frame outside of .ent"));
19182 demand_empty_rest_of_line ();
19183 return;
19184 }
252b5132 19185
ecb4347a
DJ
19186 cur_proc_ptr->frame_reg = tc_get_register (1);
19187
19188 SKIP_WHITESPACE ();
19189 if (*input_line_pointer++ != ','
19190 || get_absolute_expression_and_terminator (&val) != ',')
19191 {
1661c76c 19192 as_warn (_("bad .frame directive"));
ecb4347a
DJ
19193 --input_line_pointer;
19194 demand_empty_rest_of_line ();
19195 return;
19196 }
252b5132 19197
ecb4347a
DJ
19198 cur_proc_ptr->frame_offset = val;
19199 cur_proc_ptr->pc_reg = tc_get_register (0);
252b5132 19200
252b5132 19201 demand_empty_rest_of_line ();
252b5132 19202 }
252b5132
RH
19203}
19204
bdaaa2e1
KH
19205/* The .fmask and .mask directives. If the mdebug section is present
19206 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
252b5132 19207 embedded targets, s_mips_mask is used so that we can set the PDR
bdaaa2e1 19208 information correctly. We can't use the ecoff routines because they
252b5132
RH
19209 make reference to the ecoff symbol table (in the mdebug section). */
19210
19211static void
17a2f251 19212s_mips_mask (int reg_type)
252b5132 19213{
f3ded42a
RS
19214 if (ECOFF_DEBUGGING)
19215 s_ignore (reg_type);
19216 else
252b5132 19217 {
ecb4347a 19218 long mask, off;
252b5132 19219
ecb4347a
DJ
19220 if (cur_proc_ptr == (procS *) NULL)
19221 {
19222 as_warn (_(".mask/.fmask outside of .ent"));
19223 demand_empty_rest_of_line ();
19224 return;
19225 }
252b5132 19226
ecb4347a
DJ
19227 if (get_absolute_expression_and_terminator (&mask) != ',')
19228 {
1661c76c 19229 as_warn (_("bad .mask/.fmask directive"));
ecb4347a
DJ
19230 --input_line_pointer;
19231 demand_empty_rest_of_line ();
19232 return;
19233 }
252b5132 19234
ecb4347a
DJ
19235 off = get_absolute_expression ();
19236
19237 if (reg_type == 'F')
19238 {
19239 cur_proc_ptr->fpreg_mask = mask;
19240 cur_proc_ptr->fpreg_offset = off;
19241 }
19242 else
19243 {
19244 cur_proc_ptr->reg_mask = mask;
19245 cur_proc_ptr->reg_offset = off;
19246 }
19247
19248 demand_empty_rest_of_line ();
252b5132 19249 }
252b5132
RH
19250}
19251
316f5878
RS
19252/* A table describing all the processors gas knows about. Names are
19253 matched in the order listed.
e7af610e 19254
316f5878
RS
19255 To ease comparison, please keep this table in the same order as
19256 gcc's mips_cpu_info_table[]. */
e972090a
NC
19257static const struct mips_cpu_info mips_cpu_info_table[] =
19258{
316f5878 19259 /* Entries for generic ISAs */
d16afab6
RS
19260 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
19261 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
19262 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
19263 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
19264 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
19265 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
19266 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
ae52f483
AB
19267 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
19268 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
7361da2c 19269 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
d16afab6
RS
19270 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
19271 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
ae52f483
AB
19272 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
19273 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
7361da2c 19274 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
316f5878
RS
19275
19276 /* MIPS I */
d16afab6
RS
19277 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
19278 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
19279 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
316f5878
RS
19280
19281 /* MIPS II */
d16afab6 19282 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
316f5878
RS
19283
19284 /* MIPS III */
d16afab6
RS
19285 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
19286 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
19287 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
19288 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
19289 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
19290 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
19291 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
19292 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
19293 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
19294 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
19295 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
19296 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
19297 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
b15591bb 19298 /* ST Microelectronics Loongson 2E and 2F cores */
d16afab6
RS
19299 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
19300 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
316f5878
RS
19301
19302 /* MIPS IV */
d16afab6
RS
19303 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
19304 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
19305 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
19306 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
19307 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
19308 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
19309 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
19310 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
19311 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
19312 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
19313 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
19314 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
19315 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
19316 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
19317 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
316f5878
RS
19318
19319 /* MIPS 32 */
d16afab6
RS
19320 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19321 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19322 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19323 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
ad3fea08
TS
19324
19325 /* MIPS 32 Release 2 */
d16afab6
RS
19326 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19327 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19328 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19329 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
19330 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19331 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19332 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19333 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19334 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19335 ISA_MIPS32R2, CPU_MIPS32R2 },
19336 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19337 ISA_MIPS32R2, CPU_MIPS32R2 },
19338 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19339 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19340 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19341 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 19342 /* Deprecated forms of the above. */
d16afab6
RS
19343 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19344 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 19345 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
d16afab6
RS
19346 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19347 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19348 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19349 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 19350 /* Deprecated forms of the above. */
d16afab6
RS
19351 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19352 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 19353 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
d16afab6
RS
19354 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19355 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19356 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19357 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 19358 /* Deprecated forms of the above. */
d16afab6
RS
19359 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19360 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
711eefe4 19361 /* 34Kn is a 34kc without DSP. */
d16afab6 19362 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 19363 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
d16afab6
RS
19364 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19365 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19366 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19367 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19368 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 19369 /* Deprecated forms of the above. */
d16afab6
RS
19370 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19371 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
30f8113a 19372 /* 1004K cores are multiprocessor versions of the 34K. */
d16afab6
RS
19373 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19374 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19375 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19376 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
77403ce9
RS
19377 /* interaptiv is the new name for 1004kf */
19378 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
c6e5c03a
RS
19379 /* M5100 family */
19380 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19381 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
bbaa46c0 19382 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
134c0c8b 19383 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
32b26a03 19384
316f5878 19385 /* MIPS 64 */
d16afab6
RS
19386 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19387 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19388 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19389 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
ad3fea08 19390
c7a23324 19391 /* Broadcom SB-1 CPU core */
d16afab6 19392 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
1e85aad8 19393 /* Broadcom SB-1A CPU core */
d16afab6 19394 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
3739860c 19395
4ba154f5 19396 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
e7af610e 19397
ed163775
MR
19398 /* MIPS 64 Release 2 */
19399
967344c6 19400 /* Cavium Networks Octeon CPU core */
d16afab6
RS
19401 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
19402 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
19403 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
2c629856 19404 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
967344c6 19405
52b6b6b9 19406 /* RMI Xlr */
d16afab6 19407 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
52b6b6b9 19408
55a36193
MK
19409 /* Broadcom XLP.
19410 XLP is mostly like XLR, with the prominent exception that it is
19411 MIPS64R2 rather than MIPS64. */
d16afab6 19412 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
55a36193 19413
a4968f42 19414 /* MIPS 64 Release 6 */
7ef0d297 19415 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
a4968f42 19416 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
7ef0d297 19417
316f5878 19418 /* End marker */
d16afab6 19419 { NULL, 0, 0, 0, 0 }
316f5878 19420};
e7af610e 19421
84ea6cf2 19422
316f5878
RS
19423/* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
19424 with a final "000" replaced by "k". Ignore case.
e7af610e 19425
316f5878 19426 Note: this function is shared between GCC and GAS. */
c6c98b38 19427
b34976b6 19428static bfd_boolean
17a2f251 19429mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
19430{
19431 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
19432 given++, canonical++;
19433
19434 return ((*given == 0 && *canonical == 0)
19435 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
19436}
19437
19438
19439/* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
19440 CPU name. We've traditionally allowed a lot of variation here.
19441
19442 Note: this function is shared between GCC and GAS. */
19443
b34976b6 19444static bfd_boolean
17a2f251 19445mips_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
19446{
19447 /* First see if the name matches exactly, or with a final "000"
19448 turned into "k". */
19449 if (mips_strict_matching_cpu_name_p (canonical, given))
b34976b6 19450 return TRUE;
316f5878
RS
19451
19452 /* If not, try comparing based on numerical designation alone.
19453 See if GIVEN is an unadorned number, or 'r' followed by a number. */
19454 if (TOLOWER (*given) == 'r')
19455 given++;
19456 if (!ISDIGIT (*given))
b34976b6 19457 return FALSE;
316f5878
RS
19458
19459 /* Skip over some well-known prefixes in the canonical name,
19460 hoping to find a number there too. */
19461 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
19462 canonical += 2;
19463 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
19464 canonical += 2;
19465 else if (TOLOWER (canonical[0]) == 'r')
19466 canonical += 1;
19467
19468 return mips_strict_matching_cpu_name_p (canonical, given);
19469}
19470
19471
19472/* Parse an option that takes the name of a processor as its argument.
19473 OPTION is the name of the option and CPU_STRING is the argument.
19474 Return the corresponding processor enumeration if the CPU_STRING is
19475 recognized, otherwise report an error and return null.
19476
19477 A similar function exists in GCC. */
e7af610e
NC
19478
19479static const struct mips_cpu_info *
17a2f251 19480mips_parse_cpu (const char *option, const char *cpu_string)
e7af610e 19481{
316f5878 19482 const struct mips_cpu_info *p;
e7af610e 19483
316f5878
RS
19484 /* 'from-abi' selects the most compatible architecture for the given
19485 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
19486 EABIs, we have to decide whether we're using the 32-bit or 64-bit
19487 version. Look first at the -mgp options, if given, otherwise base
19488 the choice on MIPS_DEFAULT_64BIT.
e7af610e 19489
316f5878
RS
19490 Treat NO_ABI like the EABIs. One reason to do this is that the
19491 plain 'mips' and 'mips64' configs have 'from-abi' as their default
19492 architecture. This code picks MIPS I for 'mips' and MIPS III for
19493 'mips64', just as we did in the days before 'from-abi'. */
19494 if (strcasecmp (cpu_string, "from-abi") == 0)
19495 {
19496 if (ABI_NEEDS_32BIT_REGS (mips_abi))
19497 return mips_cpu_info_from_isa (ISA_MIPS1);
19498
19499 if (ABI_NEEDS_64BIT_REGS (mips_abi))
19500 return mips_cpu_info_from_isa (ISA_MIPS3);
19501
bad1aba3 19502 if (file_mips_opts.gp >= 0)
19503 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
0b35dfee 19504 ? ISA_MIPS1 : ISA_MIPS3);
316f5878
RS
19505
19506 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
19507 ? ISA_MIPS3
19508 : ISA_MIPS1);
19509 }
19510
19511 /* 'default' has traditionally been a no-op. Probably not very useful. */
19512 if (strcasecmp (cpu_string, "default") == 0)
19513 return 0;
19514
19515 for (p = mips_cpu_info_table; p->name != 0; p++)
19516 if (mips_matching_cpu_name_p (p->name, cpu_string))
19517 return p;
19518
1661c76c 19519 as_bad (_("bad value (%s) for %s"), cpu_string, option);
316f5878 19520 return 0;
e7af610e
NC
19521}
19522
316f5878
RS
19523/* Return the canonical processor information for ISA (a member of the
19524 ISA_MIPS* enumeration). */
19525
e7af610e 19526static const struct mips_cpu_info *
17a2f251 19527mips_cpu_info_from_isa (int isa)
e7af610e
NC
19528{
19529 int i;
19530
19531 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
ad3fea08 19532 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
316f5878 19533 && isa == mips_cpu_info_table[i].isa)
e7af610e
NC
19534 return (&mips_cpu_info_table[i]);
19535
e972090a 19536 return NULL;
e7af610e 19537}
fef14a42
TS
19538
19539static const struct mips_cpu_info *
17a2f251 19540mips_cpu_info_from_arch (int arch)
fef14a42
TS
19541{
19542 int i;
19543
19544 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19545 if (arch == mips_cpu_info_table[i].cpu)
19546 return (&mips_cpu_info_table[i]);
19547
19548 return NULL;
19549}
316f5878
RS
19550\f
19551static void
17a2f251 19552show (FILE *stream, const char *string, int *col_p, int *first_p)
316f5878
RS
19553{
19554 if (*first_p)
19555 {
19556 fprintf (stream, "%24s", "");
19557 *col_p = 24;
19558 }
19559 else
19560 {
19561 fprintf (stream, ", ");
19562 *col_p += 2;
19563 }
e7af610e 19564
316f5878
RS
19565 if (*col_p + strlen (string) > 72)
19566 {
19567 fprintf (stream, "\n%24s", "");
19568 *col_p = 24;
19569 }
19570
19571 fprintf (stream, "%s", string);
19572 *col_p += strlen (string);
19573
19574 *first_p = 0;
19575}
19576
19577void
17a2f251 19578md_show_usage (FILE *stream)
e7af610e 19579{
316f5878
RS
19580 int column, first;
19581 size_t i;
19582
19583 fprintf (stream, _("\
19584MIPS options:\n\
316f5878
RS
19585-EB generate big endian output\n\
19586-EL generate little endian output\n\
19587-g, -g2 do not remove unneeded NOPs or swap branches\n\
19588-G NUM allow referencing objects up to NUM bytes\n\
19589 implicitly with the gp register [default 8]\n"));
19590 fprintf (stream, _("\
19591-mips1 generate MIPS ISA I instructions\n\
19592-mips2 generate MIPS ISA II instructions\n\
19593-mips3 generate MIPS ISA III instructions\n\
19594-mips4 generate MIPS ISA IV instructions\n\
19595-mips5 generate MIPS ISA V instructions\n\
19596-mips32 generate MIPS32 ISA instructions\n\
af7ee8bf 19597-mips32r2 generate MIPS32 release 2 ISA instructions\n\
ae52f483
AB
19598-mips32r3 generate MIPS32 release 3 ISA instructions\n\
19599-mips32r5 generate MIPS32 release 5 ISA instructions\n\
7361da2c 19600-mips32r6 generate MIPS32 release 6 ISA instructions\n\
316f5878 19601-mips64 generate MIPS64 ISA instructions\n\
5f74bc13 19602-mips64r2 generate MIPS64 release 2 ISA instructions\n\
ae52f483
AB
19603-mips64r3 generate MIPS64 release 3 ISA instructions\n\
19604-mips64r5 generate MIPS64 release 5 ISA instructions\n\
7361da2c 19605-mips64r6 generate MIPS64 release 6 ISA instructions\n\
316f5878
RS
19606-march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
19607
19608 first = 1;
e7af610e
NC
19609
19610 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
316f5878
RS
19611 show (stream, mips_cpu_info_table[i].name, &column, &first);
19612 show (stream, "from-abi", &column, &first);
19613 fputc ('\n', stream);
e7af610e 19614
316f5878
RS
19615 fprintf (stream, _("\
19616-mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
19617-no-mCPU don't generate code specific to CPU.\n\
19618 For -mCPU and -no-mCPU, CPU must be one of:\n"));
19619
19620 first = 1;
19621
19622 show (stream, "3900", &column, &first);
19623 show (stream, "4010", &column, &first);
19624 show (stream, "4100", &column, &first);
19625 show (stream, "4650", &column, &first);
19626 fputc ('\n', stream);
19627
19628 fprintf (stream, _("\
19629-mips16 generate mips16 instructions\n\
19630-no-mips16 do not generate mips16 instructions\n"));
19631 fprintf (stream, _("\
df58fc94
RS
19632-mmicromips generate microMIPS instructions\n\
19633-mno-micromips do not generate microMIPS instructions\n"));
19634 fprintf (stream, _("\
e16bfa71 19635-msmartmips generate smartmips instructions\n\
3739860c 19636-mno-smartmips do not generate smartmips instructions\n"));
e16bfa71 19637 fprintf (stream, _("\
74cd071d
CF
19638-mdsp generate DSP instructions\n\
19639-mno-dsp do not generate DSP instructions\n"));
19640 fprintf (stream, _("\
8b082fb1
TS
19641-mdspr2 generate DSP R2 instructions\n\
19642-mno-dspr2 do not generate DSP R2 instructions\n"));
19643 fprintf (stream, _("\
8f4f9071
MF
19644-mdspr3 generate DSP R3 instructions\n\
19645-mno-dspr3 do not generate DSP R3 instructions\n"));
19646 fprintf (stream, _("\
ef2e4d86
CF
19647-mmt generate MT instructions\n\
19648-mno-mt do not generate MT instructions\n"));
19649 fprintf (stream, _("\
dec0624d
MR
19650-mmcu generate MCU instructions\n\
19651-mno-mcu do not generate MCU instructions\n"));
19652 fprintf (stream, _("\
56d438b1
CF
19653-mmsa generate MSA instructions\n\
19654-mno-msa do not generate MSA instructions\n"));
19655 fprintf (stream, _("\
7d64c587
AB
19656-mxpa generate eXtended Physical Address (XPA) instructions\n\
19657-mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
19658 fprintf (stream, _("\
b015e599
AP
19659-mvirt generate Virtualization instructions\n\
19660-mno-virt do not generate Virtualization instructions\n"));
19661 fprintf (stream, _("\
833794fc
MR
19662-minsn32 only generate 32-bit microMIPS instructions\n\
19663-mno-insn32 generate all microMIPS instructions\n"));
19664 fprintf (stream, _("\
c67a084a
NC
19665-mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
19666-mfix-loongson2f-nop work around Loongson2F NOP errata\n\
d766e8ec 19667-mfix-vr4120 work around certain VR4120 errata\n\
7d8e00cf 19668-mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
6a32d874 19669-mfix-24k insert a nop after ERET and DERET instructions\n\
d954098f 19670-mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
316f5878
RS
19671-mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
19672-mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
aed1a261 19673-msym32 assume all symbols have 32-bit values\n\
316f5878
RS
19674-O0 remove unneeded NOPs, do not swap branches\n\
19675-O remove unneeded NOPs and swap branches\n\
316f5878
RS
19676--trap, --no-break trap exception on div by 0 and mult overflow\n\
19677--break, --no-trap break exception on div by 0 and mult overflow\n"));
037b32b9
AN
19678 fprintf (stream, _("\
19679-mhard-float allow floating-point instructions\n\
19680-msoft-float do not allow floating-point instructions\n\
19681-msingle-float only allow 32-bit floating-point operations\n\
19682-mdouble-float allow 32-bit and 64-bit floating-point operations\n\
3bf0dbfb 19683--[no-]construct-floats [dis]allow floating point values to be constructed\n\
ba92f887 19684--[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
8b10b0b3
MR
19685-mignore-branch-isa accept invalid branches requiring an ISA mode switch\n\
19686-mno-ignore-branch-isa reject invalid branches requiring an ISA mode switch\n\
ba92f887
MR
19687-mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
19688
19689 first = 1;
19690
19691 show (stream, "legacy", &column, &first);
19692 show (stream, "2008", &column, &first);
19693
19694 fputc ('\n', stream);
19695
316f5878
RS
19696 fprintf (stream, _("\
19697-KPIC, -call_shared generate SVR4 position independent code\n\
861fb55a 19698-call_nonpic generate non-PIC code that can operate with DSOs\n\
0c000745 19699-mvxworks-pic generate VxWorks position independent code\n\
861fb55a 19700-non_shared do not generate code that can operate with DSOs\n\
316f5878 19701-xgot assume a 32 bit GOT\n\
dcd410fe 19702-mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
bbe506e8 19703-mshared, -mno-shared disable/enable .cpload optimization for\n\
d821e36b 19704 position dependent (non shared) code\n\
316f5878
RS
19705-mabi=ABI create ABI conformant object file for:\n"));
19706
19707 first = 1;
19708
19709 show (stream, "32", &column, &first);
19710 show (stream, "o64", &column, &first);
19711 show (stream, "n32", &column, &first);
19712 show (stream, "64", &column, &first);
19713 show (stream, "eabi", &column, &first);
19714
19715 fputc ('\n', stream);
19716
19717 fprintf (stream, _("\
19718-32 create o32 ABI object file (default)\n\
19719-n32 create n32 ABI object file\n\
19720-64 create 64 ABI object file\n"));
e7af610e 19721}
14e777e0 19722
1575952e 19723#ifdef TE_IRIX
14e777e0 19724enum dwarf2_format
413a266c 19725mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
14e777e0 19726{
369943fe 19727 if (HAVE_64BIT_SYMBOLS)
1575952e 19728 return dwarf2_format_64bit_irix;
14e777e0
KB
19729 else
19730 return dwarf2_format_32bit;
19731}
1575952e 19732#endif
73369e65
EC
19733
19734int
19735mips_dwarf2_addr_size (void)
19736{
6b6b3450 19737 if (HAVE_64BIT_OBJECTS)
73369e65 19738 return 8;
73369e65
EC
19739 else
19740 return 4;
19741}
5862107c
EC
19742
19743/* Standard calling conventions leave the CFA at SP on entry. */
19744void
19745mips_cfi_frame_initial_instructions (void)
19746{
19747 cfi_add_CFA_def_cfa_register (SP);
19748}
19749
707bfff6
TS
19750int
19751tc_mips_regname_to_dw2regnum (char *regname)
19752{
19753 unsigned int regnum = -1;
19754 unsigned int reg;
19755
19756 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19757 regnum = reg;
19758
19759 return regnum;
19760}
263b2574 19761
19762/* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19763 Given a symbolic attribute NAME, return the proper integer value.
19764 Returns -1 if the attribute is not known. */
19765
19766int
19767mips_convert_symbolic_attribute (const char *name)
19768{
19769 static const struct
19770 {
19771 const char * name;
19772 const int tag;
19773 }
19774 attribute_table[] =
19775 {
19776#define T(tag) {#tag, tag}
19777 T (Tag_GNU_MIPS_ABI_FP),
19778 T (Tag_GNU_MIPS_ABI_MSA),
19779#undef T
19780 };
19781 unsigned int i;
19782
19783 if (name == NULL)
19784 return -1;
19785
19786 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19787 if (streq (name, attribute_table[i].name))
19788 return attribute_table[i].tag;
19789
19790 return -1;
19791}
fd5c94ab
RS
19792
19793void
19794md_mips_end (void)
19795{
351cdf24
MF
19796 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19797
fd5c94ab
RS
19798 mips_emit_delays ();
19799 if (cur_proc_ptr)
19800 as_warn (_("missing .end at end of assembly"));
919731af 19801
19802 /* Just in case no code was emitted, do the consistency check. */
19803 file_mips_check_options ();
351cdf24
MF
19804
19805 /* Set a floating-point ABI if the user did not. */
19806 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19807 {
19808 /* Perform consistency checks on the floating-point ABI. */
19809 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19810 Tag_GNU_MIPS_ABI_FP);
19811 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19812 check_fpabi (fpabi);
19813 }
19814 else
19815 {
19816 /* Soft-float gets precedence over single-float, the two options should
19817 not be used together so this should not matter. */
19818 if (file_mips_opts.soft_float == 1)
19819 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19820 /* Single-float gets precedence over all double_float cases. */
19821 else if (file_mips_opts.single_float == 1)
19822 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19823 else
19824 {
19825 switch (file_mips_opts.fp)
19826 {
19827 case 32:
19828 if (file_mips_opts.gp == 32)
19829 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19830 break;
19831 case 0:
19832 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19833 break;
19834 case 64:
19835 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19836 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19837 else if (file_mips_opts.gp == 32)
19838 fpabi = Val_GNU_MIPS_ABI_FP_64;
19839 else
19840 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19841 break;
19842 }
19843 }
19844
19845 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19846 Tag_GNU_MIPS_ABI_FP, fpabi);
19847 }
fd5c94ab 19848}
2f0c68f2
CM
19849
19850/* Returns the relocation type required for a particular CFI encoding. */
19851
19852bfd_reloc_code_real_type
19853mips_cfi_reloc_for_encoding (int encoding)
19854{
19855 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
19856 return BFD_RELOC_32_PCREL;
19857 else return BFD_RELOC_NONE;
19858}
This page took 3.319816 seconds and 4 git commands to generate.