Remove use of alloca.
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
CommitLineData
252b5132 1/* tc-mips.c -- assemble code for a MIPS chip.
6f2750fe 2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
252b5132
RH
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
ec2655a6 12 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
252b5132
RH
24
25#include "as.h"
26#include "config.h"
27#include "subsegs.h"
3882b010 28#include "safe-ctype.h"
252b5132 29
252b5132
RH
30#include "opcode/mips.h"
31#include "itbl-ops.h"
c5dd6aab 32#include "dwarf2dbg.h"
5862107c 33#include "dw2gencfi.h"
252b5132 34
42429eac
RS
35/* Check assumptions made in this file. */
36typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
252b5132
RH
39#ifdef DEBUG
40#define DBG(x) printf x
41#else
42#define DBG(x)
43#endif
44
263b2574 45#define streq(a, b) (strcmp (a, b) == 0)
46
9e12b7a2
RS
47#define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
252b5132 50/* Clean up namespace so we can include obj-elf.h too. */
17a2f251
TS
51static int mips_output_flavor (void);
52static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
252b5132
RH
53#undef OBJ_PROCESS_STAB
54#undef OUTPUT_FLAVOR
55#undef S_GET_ALIGN
56#undef S_GET_SIZE
57#undef S_SET_ALIGN
58#undef S_SET_SIZE
252b5132
RH
59#undef obj_frob_file
60#undef obj_frob_file_after_relocs
61#undef obj_frob_symbol
62#undef obj_pop_insert
63#undef obj_sec_sym_ok_for_reloc
64#undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66#include "obj-elf.h"
67/* Fix any of them that we actually care about. */
68#undef OUTPUT_FLAVOR
69#define OUTPUT_FLAVOR mips_output_flavor()
252b5132 70
252b5132 71#include "elf/mips.h"
252b5132
RH
72
73#ifndef ECOFF_DEBUGGING
74#define NO_ECOFF_DEBUGGING
75#define ECOFF_DEBUGGING 0
76#endif
77
ecb4347a
DJ
78int mips_flag_mdebug = -1;
79
dcd410fe
RO
80/* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83#ifdef TE_IRIX
84int mips_flag_pdr = FALSE;
85#else
86int mips_flag_pdr = TRUE;
87#endif
88
252b5132
RH
89#include "ecoff.h"
90
252b5132 91static char *mips_regmask_frag;
351cdf24 92static char *mips_flags_frag;
252b5132 93
85b51719 94#define ZERO 0
741fe287 95#define ATREG 1
df58fc94
RS
96#define S0 16
97#define S7 23
252b5132
RH
98#define TREG 24
99#define PIC_CALL_REG 25
100#define KT0 26
101#define KT1 27
102#define GP 28
103#define SP 29
104#define FP 30
105#define RA 31
106
107#define ILLEGAL_REG (32)
108
741fe287
MR
109#define AT mips_opts.at
110
252b5132
RH
111extern int target_big_endian;
112
252b5132 113/* The name of the readonly data section. */
e8044f35 114#define RDATA_SECTION_NAME ".rodata"
252b5132 115
a4e06468
RS
116/* Ways in which an instruction can be "appended" to the output. */
117enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129};
130
47e39b9d
RS
131/* Information about an instruction, including its format, operands
132 and fixups. */
133struct mips_cl_insn
134{
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
47e39b9d 138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
5c04167a
RS
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
47e39b9d
RS
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
a38419a5
RS
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
47e39b9d 155
708587a4 156 /* True if this instruction occurred in a .set noreorder block. */
47e39b9d
RS
157 unsigned int noreorder_p : 1;
158
2fa15973
RS
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
15be625d
CM
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
e407c74b
NC
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
47e39b9d
RS
168};
169
a325df1d
TS
170/* The ABI to use. */
171enum mips_abi_level
172{
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179};
180
181/* MIPS ABI we are using for this output file. */
316f5878 182static enum mips_abi_level mips_abi = NO_ABI;
a325df1d 183
143d77c5
EC
184/* Whether or not we have code that can call pic code. */
185int mips_abicalls = FALSE;
186
aa6975fb
ILT
187/* Whether or not we have code which can be put into a shared
188 library. */
189static bfd_boolean mips_in_shared = TRUE;
190
252b5132
RH
191/* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
e972090a
NC
195struct mips_set_options
196{
252b5132
RH
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
846ef2d0
RS
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
252b5132
RH
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
df58fc94
RS
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
252b5132
RH
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
741fe287
MR
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
252b5132
RH
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
833794fc
MR
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
a325df1d
TS
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
bad1aba3 245 int gp;
0b35dfee 246 int fp;
fef14a42
TS
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
aed1a261
RS
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
037b32b9
AN
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
351cdf24
MF
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
252b5132
RH
265};
266
919731af 267/* Specifies whether module level options have been checked yet. */
268static bfd_boolean file_mips_opts_checked = FALSE;
269
7361da2c
AB
270/* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274static int mips_nan2008 = -1;
a325df1d 275
0b35dfee 276/* This is the struct we use to hold the module level set of options.
bad1aba3 277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
0b35dfee 278 fp fields to -1 to indicate that they have not been initialized. */
037b32b9 279
0b35dfee 280static struct mips_set_options file_mips_opts =
281{
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
bad1aba3 285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
351cdf24 286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
0b35dfee 287};
252b5132 288
0b35dfee 289/* This is similar to file_mips_opts, but for the current set of options. */
ba92f887 290
e972090a
NC
291static struct mips_set_options mips_opts =
292{
846ef2d0 293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
b015e599 294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
833794fc 295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
bad1aba3 296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
351cdf24 297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
e7af610e 298};
252b5132 299
846ef2d0
RS
300/* Which bits of file_ase were explicitly set or cleared by ASE options. */
301static unsigned int file_ase_explicit;
302
252b5132
RH
303/* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306unsigned long mips_gprmask;
307unsigned long mips_cprmask[4];
308
738f4d98 309/* True if any MIPS16 code was produced. */
a4672219
TS
310static int file_ase_mips16;
311
3994f87e
TS
312#define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
ae52f483
AB
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
3994f87e 316 || mips_opts.isa == ISA_MIPS64 \
ae52f483
AB
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
3994f87e 320
df58fc94
RS
321/* True if any microMIPS code was produced. */
322static int file_ase_micromips;
323
b12dd2e4
CF
324/* True if we want to create R_MIPS_JALR for jalr $25. */
325#ifdef TE_IRIX
1180b5a4 326#define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
b12dd2e4 327#else
1180b5a4
RS
328/* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331#define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
b12dd2e4
CF
334#endif
335
ec68c924 336/* The argument of the -march= flag. The architecture we are assembling. */
316f5878 337static const char *mips_arch_string;
ec68c924
EC
338
339/* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341static int mips_tune = CPU_UNKNOWN;
316f5878 342static const char *mips_tune_string;
ec68c924 343
316f5878 344/* True when generating 32-bit code for a 64-bit processor. */
252b5132
RH
345static int mips_32bitmode = 0;
346
316f5878
RS
347/* True if the given ABI requires 32-bit registers. */
348#define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350/* Likewise 64-bit registers. */
707bfff6
TS
351#define ABI_NEEDS_64BIT_REGS(ABI) \
352 ((ABI) == N32_ABI \
353 || (ABI) == N64_ABI \
316f5878
RS
354 || (ABI) == O64_ABI)
355
7361da2c
AB
356#define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
ad3fea08 360/* Return true if ISA supports 64 bit wide gp registers. */
707bfff6
TS
361#define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
ae52f483
AB
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
7361da2c
AB
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
9ce8a5dd 370
ad3fea08
TS
371/* Return true if ISA supports 64 bit wide float registers. */
372#define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
ae52f483
AB
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
7361da2c 379 || (ISA) == ISA_MIPS32R6 \
ad3fea08 380 || (ISA) == ISA_MIPS64 \
ae52f483
AB
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
7361da2c
AB
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
ad3fea08 385
af7ee8bf
CD
386/* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
707bfff6 388#define ISA_HAS_DROR(ISA) \
df58fc94 389 ((ISA) == ISA_MIPS64R2 \
ae52f483
AB
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
7361da2c 392 || (ISA) == ISA_MIPS64R6 \
df58fc94
RS
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
af7ee8bf
CD
396
397/* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
707bfff6
TS
399#define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
ae52f483
AB
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
7361da2c 403 || (ISA) == ISA_MIPS32R6 \
707bfff6 404 || (ISA) == ISA_MIPS64R2 \
ae52f483
AB
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
7361da2c 407 || (ISA) == ISA_MIPS64R6 \
846ef2d0 408 || (mips_opts.ase & ASE_SMARTMIPS) \
df58fc94
RS
409 || mips_opts.micromips \
410 )
707bfff6 411
7455baf8 412/* Return true if ISA supports single-precision floats in odd registers. */
351cdf24
MF
413#define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
7361da2c 418 || (ISA) == ISA_MIPS32R6 \
351cdf24
MF
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
7361da2c 423 || (ISA) == ISA_MIPS64R6 \
351cdf24
MF
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
af7ee8bf 426
ad3fea08
TS
427/* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429#define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
ae52f483
AB
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
7361da2c
AB
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439/* Return true if ISA supports legacy NAN. */
440#define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
ae52f483
AB
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
ad3fea08 454
bad1aba3 455#define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
ca4e0257 459
bad1aba3 460#define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
ca4e0257 464
316f5878 465#define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
e013f690 466
316f5878 467#define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
e013f690 468
3b91255e
RS
469/* True if relocations are stored in-place. */
470#define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
aed1a261
RS
472/* The ABI-derived address size. */
473#define HAVE_64BIT_ADDRESSES \
bad1aba3 474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
aed1a261 475#define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
e013f690 476
aed1a261
RS
477/* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479#define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481#define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
ca4e0257 482
b7c7d6c1
TS
483/* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
f899b4b8 486#define ADDRESS_ADD_INSN \
b7c7d6c1 487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
f899b4b8
TS
488
489#define ADDRESS_ADDI_INSN \
b7c7d6c1 490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
f899b4b8
TS
491
492#define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495#define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
a4672219 498/* Return true if the given CPU supports the MIPS16 ASE. */
3396de36
TS
499#define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
a4672219 502
2309ddf2 503/* Return true if the given CPU supports the microMIPS ASE. */
df58fc94
RS
504#define CPU_HAS_MICROMIPS(cpu) 0
505
60b63b72
RS
506/* True if CPU has a dror instruction. */
507#define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509/* True if CPU has a ror instruction. */
510#define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
dd6a37e7 512/* True if CPU is in the Octeon family */
2c629856
N
513#define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
dd6a37e7 515
dd3cbb7e 516/* True if CPU has seq/sne and seqi/snei instructions. */
dd6a37e7 517#define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
dd3cbb7e 518
0aa27725
RS
519/* True, if CPU has support for ldc1 and sdc1. */
520#define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
c8978940
CD
523/* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535#define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
ae52f483
AB
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
7361da2c 540 || mips_opts.isa == ISA_MIPS32R6 \
c8978940
CD
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
ae52f483
AB
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
7361da2c 545 || mips_opts.isa == ISA_MIPS64R6 \
c8978940 546 || mips_opts.arch == CPU_R4010 \
e407c74b 547 || mips_opts.arch == CPU_R5900 \
c8978940
CD
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
3aa3176b
TS
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
c8978940 552 || mips_opts.arch == CPU_RM7000 \
c8978940 553 || mips_opts.arch == CPU_VR5500 \
df58fc94 554 || mips_opts.micromips \
c8978940 555 )
252b5132
RH
556
557/* Whether the processor uses hardware interlocks to protect reads
81912461
ILT
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
67dc82bc 560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
df58fc94
RS
561 level I and microMIPS mode instructions are always interlocked. */
562#define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
e407c74b 565 || mips_opts.arch == CPU_R5900 \
df58fc94
RS
566 || mips_opts.micromips \
567 )
252b5132 568
81912461
ILT
569/* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
43885403
MF
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
81912461 574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
df58fc94
RS
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
bdaaa2e1 577/* Itbl support may require additional care here. */
81912461
ILT
578#define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
df58fc94 583 || mips_opts.micromips \
81912461
ILT
584 )
585
586/* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
df58fc94
RS
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592#define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
252b5132 596
6b76fefe
CM
597/* Is this a mfhi or mflo instruction? */
598#define MF_HILO_INSN(PINFO) \
b19e8a9b
AN
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
df58fc94
RS
601/* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604#define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
42429eac 607/* The minimum and maximum signed values that can be stored in a GPR. */
bad1aba3 608#define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
42429eac
RS
609#define GPR_SMIN (-GPR_SMAX - 1)
610
252b5132
RH
611/* MIPS PIC level. */
612
a161fe53 613enum mips_pic_level mips_pic;
252b5132 614
c9914766 615/* 1 if we should generate 32 bit offsets from the $gp register in
252b5132 616 SVR4_PIC mode. Currently has no meaning in other modes. */
c9914766 617static int mips_big_got = 0;
252b5132
RH
618
619/* 1 if trap instructions should used for overflow rather than break
620 instructions. */
c9914766 621static int mips_trap = 0;
252b5132 622
119d663a 623/* 1 if double width floating point constants should not be constructed
b6ff326e 624 by assembling two single width halves into two single width floating
119d663a
NC
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
d547a75e 627 in the status register, and the setting of this bit cannot be determined
119d663a
NC
628 automatically at assemble time. */
629static int mips_disable_float_construction;
630
252b5132
RH
631/* Non-zero if any .set noreorder directives were used. */
632
633static int mips_any_noreorder;
634
6b76fefe
CM
635/* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637static int mips_7000_hilo_fix;
638
02ffd3e4 639/* The size of objects in the small data section. */
156c2f8b 640static unsigned int g_switch_value = 8;
252b5132
RH
641/* Whether the -G option was used. */
642static int g_switch_seen = 0;
643
644#define N_RMASK 0xc4
645#define N_VFP 0xd4
646
647/* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
fba2b7f9
GK
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
252b5132
RH
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
17a2f251 659static int nopic_need_relax (symbolS *, int);
252b5132
RH
660
661/* handle of the OPCODE hash table */
662static struct hash_control *op_hash = NULL;
663
664/* The opcode hash table we use for the mips16. */
665static struct hash_control *mips16_op_hash = NULL;
666
df58fc94
RS
667/* The opcode hash table we use for the microMIPS ASE. */
668static struct hash_control *micromips_op_hash = NULL;
669
252b5132
RH
670/* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672const char comment_chars[] = "#";
673
674/* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677/* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
bdaaa2e1 679 #NO_APP at the beginning of its output. */
252b5132
RH
680/* Also note that C style comments are always supported. */
681const char line_comment_chars[] = "#";
682
bdaaa2e1 683/* This array holds machine specific line separator characters. */
63a0b638 684const char line_separator_chars[] = ";";
252b5132
RH
685
686/* Chars that can be used to separate mant from exp in floating point nums */
687const char EXP_CHARS[] = "eE";
688
689/* Chars that mean this number is a floating point constant */
690/* As in 0f12.456 */
691/* or 0d1.2345e12 */
692const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694/* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
e3de51ce
RS
699/* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705};
706
707/* Information about an error that was found while assembling the current
708 instruction. */
709struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732};
733
734/* The error that should be reported for the current instruction. */
735static struct mips_insn_error insn_error;
252b5132
RH
736
737static int auto_align = 1;
738
739/* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743static offsetT mips_cprestore_offset = -1;
744
67c1ffbe 745/* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
6478892d 746 more optimizations, it can use a register value instead of a memory-saved
956cd1d6 747 offset and even an other register than $gp as global pointer. */
6478892d
TS
748static offsetT mips_cpreturn_offset = -1;
749static int mips_cpreturn_register = -1;
750static int mips_gp_register = GP;
def2e0dd 751static int mips_gprel_offset = 0;
6478892d 752
7a621144
DJ
753/* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755static int mips_cprestore_valid = 0;
756
252b5132
RH
757/* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759static int mips_frame_reg = SP;
760
7a621144
DJ
761/* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763static int mips_frame_reg_valid = 0;
764
252b5132
RH
765/* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768/* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772static int mips_optimize = 2;
773
774/* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776static int mips_debug = 0;
777
7d8e00cf
RS
778/* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779#define MAX_VR4130_NOPS 4
780
781/* The maximum number of NOPs needed to fill delay slots. */
782#define MAX_DELAY_NOPS 2
783
784/* The maximum number of NOPs needed for any purpose. */
785#define MAX_NOPS 4
71400594
RS
786
787/* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792static struct mips_cl_insn history[1 + MAX_NOPS];
252b5132 793
fc76e730 794/* Arrays of operands for each instruction. */
14daeee3 795#define MAX_OPERANDS 6
fc76e730
RS
796struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798};
799static struct mips_operand_array *mips_operands;
800static struct mips_operand_array *mips16_operands;
801static struct mips_operand_array *micromips_operands;
802
1e915849 803/* Nop instructions used by emit_nop. */
df58fc94
RS
804static struct mips_cl_insn nop_insn;
805static struct mips_cl_insn mips16_nop_insn;
806static struct mips_cl_insn micromips_nop16_insn;
807static struct mips_cl_insn micromips_nop32_insn;
1e915849
RS
808
809/* The appropriate nop for the current mode. */
833794fc
MR
810#define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
df58fc94
RS
817
818/* The size of NOP_INSN in bytes. */
833794fc
MR
819#define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
252b5132 822
252b5132
RH
823/* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827static fragS *prev_nop_frag;
828
829/* The number of nop instructions we created in prev_nop_frag. */
830static int prev_nop_frag_holds;
831
832/* The number of nop instructions that we know we need in
bdaaa2e1 833 prev_nop_frag. */
252b5132
RH
834static int prev_nop_frag_required;
835
836/* The number of instructions we've seen since prev_nop_frag. */
837static int prev_nop_frag_since;
838
e8044f35
RS
839/* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
252b5132
RH
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
bdaaa2e1 848 corresponding LO relocation. */
252b5132 849
e972090a
NC
850struct mips_hi_fixup
851{
252b5132
RH
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858};
859
860/* The list of unmatched HI relocs. */
861
862static struct mips_hi_fixup *mips_hi_fixup_list;
863
64bdfcaf
RS
864/* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867static fragS *prev_reloc_op_frag;
868
252b5132
RH
869/* Map mips16 register numbers to normal MIPS register numbers. */
870
e972090a
NC
871static const unsigned int mips16_to_32_reg_map[] =
872{
252b5132
RH
873 16, 17, 2, 3, 4, 5, 6, 7
874};
60b63b72 875
df58fc94
RS
876/* Map microMIPS register numbers to normal MIPS register numbers. */
877
df58fc94 878#define micromips_to_32_reg_d_map mips16_to_32_reg_map
df58fc94
RS
879
880/* The microMIPS registers with type h. */
e76ff5ab 881static const unsigned int micromips_to_32_reg_h_map1[] =
df58fc94
RS
882{
883 5, 5, 6, 4, 4, 4, 4, 4
884};
e76ff5ab 885static const unsigned int micromips_to_32_reg_h_map2[] =
df58fc94
RS
886{
887 6, 7, 7, 21, 22, 5, 6, 7
888};
889
df58fc94
RS
890/* The microMIPS registers with type m. */
891static const unsigned int micromips_to_32_reg_m_map[] =
892{
893 0, 17, 2, 3, 16, 18, 19, 20
894};
895
896#define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
71400594
RS
898/* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
c67a084a
NC
900enum fix_vr4120_class
901{
71400594
RS
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909};
910
c67a084a
NC
911/* ...likewise -mfix-loongson2f-jump. */
912static bfd_boolean mips_fix_loongson2f_jump;
913
914/* ...likewise -mfix-loongson2f-nop. */
915static bfd_boolean mips_fix_loongson2f_nop;
916
917/* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918static bfd_boolean mips_fix_loongson2f;
919
71400594
RS
920/* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925/* True if -mfix-vr4120 is in force. */
d766e8ec 926static int mips_fix_vr4120;
4a6a3df4 927
7d8e00cf
RS
928/* ...likewise -mfix-vr4130. */
929static int mips_fix_vr4130;
930
6a32d874
CM
931/* ...likewise -mfix-24k. */
932static int mips_fix_24k;
933
a8d14a88
CM
934/* ...likewise -mfix-rm7000 */
935static int mips_fix_rm7000;
936
d954098f
DD
937/* ...likewise -mfix-cn63xxp1 */
938static bfd_boolean mips_fix_cn63xxp1;
939
4a6a3df4
AO
940/* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945static int mips_relax_branch;
252b5132 946\f
4d7206a2
RS
947/* The expansion of many macros depends on the type of symbol that
948 they refer to. For example, when generating position-dependent code,
949 a macro that refers to a symbol may have two different expansions,
950 one which uses GP-relative addresses and one which uses absolute
951 addresses. When generating SVR4-style PIC, a macro may have
952 different expansions for local and global symbols.
953
954 We handle these situations by generating both sequences and putting
955 them in variant frags. In position-dependent code, the first sequence
956 will be the GP-relative one and the second sequence will be the
957 absolute one. In SVR4 PIC, the first sequence will be for global
958 symbols and the second will be for local symbols.
959
584892a6
RS
960 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
961 SECOND are the lengths of the two sequences in bytes. These fields
962 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
963 the subtype has the following flags:
4d7206a2 964
584892a6
RS
965 RELAX_USE_SECOND
966 Set if it has been decided that we should use the second
967 sequence instead of the first.
968
969 RELAX_SECOND_LONGER
970 Set in the first variant frag if the macro's second implementation
971 is longer than its first. This refers to the macro as a whole,
972 not an individual relaxation.
973
974 RELAX_NOMACRO
975 Set in the first variant frag if the macro appeared in a .set nomacro
976 block and if one alternative requires a warning but the other does not.
977
978 RELAX_DELAY_SLOT
979 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
980 delay slot.
4d7206a2 981
df58fc94
RS
982 RELAX_DELAY_SLOT_16BIT
983 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
984 16-bit instruction.
985
986 RELAX_DELAY_SLOT_SIZE_FIRST
987 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
988 the macro is of the wrong size for the branch delay slot.
989
990 RELAX_DELAY_SLOT_SIZE_SECOND
991 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
992 the macro is of the wrong size for the branch delay slot.
993
4d7206a2
RS
994 The frag's "opcode" points to the first fixup for relaxable code.
995
996 Relaxable macros are generated using a sequence such as:
997
998 relax_start (SYMBOL);
999 ... generate first expansion ...
1000 relax_switch ();
1001 ... generate second expansion ...
1002 relax_end ();
1003
1004 The code and fixups for the unwanted alternative are discarded
1005 by md_convert_frag. */
584892a6 1006#define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
4d7206a2 1007
584892a6
RS
1008#define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1009#define RELAX_SECOND(X) ((X) & 0xff)
1010#define RELAX_USE_SECOND 0x10000
1011#define RELAX_SECOND_LONGER 0x20000
1012#define RELAX_NOMACRO 0x40000
1013#define RELAX_DELAY_SLOT 0x80000
df58fc94
RS
1014#define RELAX_DELAY_SLOT_16BIT 0x100000
1015#define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1016#define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
252b5132 1017
4a6a3df4
AO
1018/* Branch without likely bit. If label is out of range, we turn:
1019
1020 beq reg1, reg2, label
1021 delay slot
1022
1023 into
1024
1025 bne reg1, reg2, 0f
1026 nop
1027 j label
1028 0: delay slot
1029
1030 with the following opcode replacements:
1031
1032 beq <-> bne
1033 blez <-> bgtz
1034 bltz <-> bgez
1035 bc1f <-> bc1t
1036
1037 bltzal <-> bgezal (with jal label instead of j label)
1038
1039 Even though keeping the delay slot instruction in the delay slot of
1040 the branch would be more efficient, it would be very tricky to do
1041 correctly, because we'd have to introduce a variable frag *after*
1042 the delay slot instruction, and expand that instead. Let's do it
1043 the easy way for now, even if the branch-not-taken case now costs
1044 one additional instruction. Out-of-range branches are not supposed
1045 to be common, anyway.
1046
1047 Branch likely. If label is out of range, we turn:
1048
1049 beql reg1, reg2, label
1050 delay slot (annulled if branch not taken)
1051
1052 into
1053
1054 beql reg1, reg2, 1f
1055 nop
1056 beql $0, $0, 2f
1057 nop
1058 1: j[al] label
1059 delay slot (executed only if branch taken)
1060 2:
1061
1062 It would be possible to generate a shorter sequence by losing the
1063 likely bit, generating something like:
b34976b6 1064
4a6a3df4
AO
1065 bne reg1, reg2, 0f
1066 nop
1067 j[al] label
1068 delay slot (executed only if branch taken)
1069 0:
1070
1071 beql -> bne
1072 bnel -> beq
1073 blezl -> bgtz
1074 bgtzl -> blez
1075 bltzl -> bgez
1076 bgezl -> bltz
1077 bc1fl -> bc1t
1078 bc1tl -> bc1f
1079
1080 bltzall -> bgezal (with jal label instead of j label)
1081 bgezall -> bltzal (ditto)
1082
1083
1084 but it's not clear that it would actually improve performance. */
66b3e8da
MR
1085#define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1086 ((relax_substateT) \
1087 (0xc0000000 \
1088 | ((at) & 0x1f) \
1089 | ((toofar) ? 0x20 : 0) \
1090 | ((link) ? 0x40 : 0) \
1091 | ((likely) ? 0x80 : 0) \
1092 | ((uncond) ? 0x100 : 0)))
4a6a3df4 1093#define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
66b3e8da
MR
1094#define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1095#define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1096#define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1097#define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1098#define RELAX_BRANCH_AT(i) ((i) & 0x1f)
4a6a3df4 1099
252b5132
RH
1100/* For mips16 code, we use an entirely different form of relaxation.
1101 mips16 supports two versions of most instructions which take
1102 immediate values: a small one which takes some small value, and a
1103 larger one which takes a 16 bit value. Since branches also follow
1104 this pattern, relaxing these values is required.
1105
1106 We can assemble both mips16 and normal MIPS code in a single
1107 object. Therefore, we need to support this type of relaxation at
1108 the same time that we support the relaxation described above. We
1109 use the high bit of the subtype field to distinguish these cases.
1110
1111 The information we store for this type of relaxation is the
1112 argument code found in the opcode file for this relocation, whether
1113 the user explicitly requested a small or extended form, and whether
1114 the relocation is in a jump or jal delay slot. That tells us the
1115 size of the value, and how it should be stored. We also store
1116 whether the fragment is considered to be extended or not. We also
1117 store whether this is known to be a branch to a different section,
1118 whether we have tried to relax this frag yet, and whether we have
1119 ever extended a PC relative fragment because of a shift count. */
1120#define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1121 (0x80000000 \
1122 | ((type) & 0xff) \
1123 | ((small) ? 0x100 : 0) \
1124 | ((ext) ? 0x200 : 0) \
1125 | ((dslot) ? 0x400 : 0) \
1126 | ((jal_dslot) ? 0x800 : 0))
4a6a3df4 1127#define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
252b5132
RH
1128#define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1129#define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1130#define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1131#define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1132#define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1133#define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1134#define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1135#define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1136#define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1137#define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1138#define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
885add95 1139
df58fc94
RS
1140/* For microMIPS code, we use relaxation similar to one we use for
1141 MIPS16 code. Some instructions that take immediate values support
1142 two encodings: a small one which takes some small value, and a
1143 larger one which takes a 16 bit value. As some branches also follow
1144 this pattern, relaxing these values is required.
1145
1146 We can assemble both microMIPS and normal MIPS code in a single
1147 object. Therefore, we need to support this type of relaxation at
1148 the same time that we support the relaxation described above. We
1149 use one of the high bits of the subtype field to distinguish these
1150 cases.
1151
1152 The information we store for this type of relaxation is the argument
1153 code found in the opcode file for this relocation, the register
40209cad
MR
1154 selected as the assembler temporary, whether the branch is
1155 unconditional, whether it is compact, whether it stores the link
1156 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1157 branches to a sequence of instructions is enabled, and whether the
1158 displacement of a branch is too large to fit as an immediate argument
1159 of a 16-bit and a 32-bit branch, respectively. */
1160#define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1161 relax32, toofar16, toofar32) \
1162 (0x40000000 \
1163 | ((type) & 0xff) \
1164 | (((at) & 0x1f) << 8) \
1165 | ((uncond) ? 0x2000 : 0) \
1166 | ((compact) ? 0x4000 : 0) \
1167 | ((link) ? 0x8000 : 0) \
1168 | ((relax32) ? 0x10000 : 0) \
1169 | ((toofar16) ? 0x20000 : 0) \
1170 | ((toofar32) ? 0x40000 : 0))
df58fc94
RS
1171#define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1172#define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1173#define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
40209cad
MR
1174#define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1175#define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1176#define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1177#define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1178
1179#define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1180#define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1181#define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1182#define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1183#define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1184#define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
df58fc94 1185
43c0598f
RS
1186/* Sign-extend 16-bit value X. */
1187#define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1188
885add95
CD
1189/* Is the given value a sign-extended 32-bit value? */
1190#define IS_SEXT_32BIT_NUM(x) \
1191 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1192 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1193
1194/* Is the given value a sign-extended 16-bit value? */
1195#define IS_SEXT_16BIT_NUM(x) \
1196 (((x) &~ (offsetT) 0x7fff) == 0 \
1197 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1198
df58fc94
RS
1199/* Is the given value a sign-extended 12-bit value? */
1200#define IS_SEXT_12BIT_NUM(x) \
1201 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1202
7f3c4072
CM
1203/* Is the given value a sign-extended 9-bit value? */
1204#define IS_SEXT_9BIT_NUM(x) \
1205 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1206
2051e8c4
MR
1207/* Is the given value a zero-extended 32-bit value? Or a negated one? */
1208#define IS_ZEXT_32BIT_NUM(x) \
1209 (((x) &~ (offsetT) 0xffffffff) == 0 \
1210 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1211
bf12938e
RS
1212/* Extract bits MASK << SHIFT from STRUCT and shift them right
1213 SHIFT places. */
1214#define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1215 (((STRUCT) >> (SHIFT)) & (MASK))
1216
bf12938e 1217/* Extract the operand given by FIELD from mips_cl_insn INSN. */
df58fc94
RS
1218#define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1219 (!(MICROMIPS) \
1220 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1221 : EXTRACT_BITS ((INSN).insn_opcode, \
1222 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
bf12938e
RS
1223#define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1224 EXTRACT_BITS ((INSN).insn_opcode, \
1225 MIPS16OP_MASK_##FIELD, \
1226 MIPS16OP_SH_##FIELD)
5c04167a
RS
1227
1228/* The MIPS16 EXTEND opcode, shifted left 16 places. */
1229#define MIPS16_EXTEND (0xf000U << 16)
4d7206a2 1230\f
df58fc94
RS
1231/* Whether or not we are emitting a branch-likely macro. */
1232static bfd_boolean emit_branch_likely_macro = FALSE;
1233
4d7206a2
RS
1234/* Global variables used when generating relaxable macros. See the
1235 comment above RELAX_ENCODE for more details about how relaxation
1236 is used. */
1237static struct {
1238 /* 0 if we're not emitting a relaxable macro.
1239 1 if we're emitting the first of the two relaxation alternatives.
1240 2 if we're emitting the second alternative. */
1241 int sequence;
1242
1243 /* The first relaxable fixup in the current frag. (In other words,
1244 the first fixup that refers to relaxable code.) */
1245 fixS *first_fixup;
1246
1247 /* sizes[0] says how many bytes of the first alternative are stored in
1248 the current frag. Likewise sizes[1] for the second alternative. */
1249 unsigned int sizes[2];
1250
1251 /* The symbol on which the choice of sequence depends. */
1252 symbolS *symbol;
1253} mips_relax;
252b5132 1254\f
584892a6
RS
1255/* Global variables used to decide whether a macro needs a warning. */
1256static struct {
1257 /* True if the macro is in a branch delay slot. */
1258 bfd_boolean delay_slot_p;
1259
df58fc94
RS
1260 /* Set to the length in bytes required if the macro is in a delay slot
1261 that requires a specific length of instruction, otherwise zero. */
1262 unsigned int delay_slot_length;
1263
584892a6
RS
1264 /* For relaxable macros, sizes[0] is the length of the first alternative
1265 in bytes and sizes[1] is the length of the second alternative.
1266 For non-relaxable macros, both elements give the length of the
1267 macro in bytes. */
1268 unsigned int sizes[2];
1269
df58fc94
RS
1270 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1271 instruction of the first alternative in bytes and first_insn_sizes[1]
1272 is the length of the first instruction of the second alternative.
1273 For non-relaxable macros, both elements give the length of the first
1274 instruction in bytes.
1275
1276 Set to zero if we haven't yet seen the first instruction. */
1277 unsigned int first_insn_sizes[2];
1278
1279 /* For relaxable macros, insns[0] is the number of instructions for the
1280 first alternative and insns[1] is the number of instructions for the
1281 second alternative.
1282
1283 For non-relaxable macros, both elements give the number of
1284 instructions for the macro. */
1285 unsigned int insns[2];
1286
584892a6
RS
1287 /* The first variant frag for this macro. */
1288 fragS *first_frag;
1289} mips_macro_warning;
1290\f
252b5132
RH
1291/* Prototypes for static functions. */
1292
252b5132
RH
1293enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1294
b34976b6 1295static void append_insn
df58fc94
RS
1296 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1297 bfd_boolean expansionp);
7d10b47d 1298static void mips_no_prev_insn (void);
c67a084a 1299static void macro_build (expressionS *, const char *, const char *, ...);
b34976b6 1300static void mips16_macro_build
03ea81db 1301 (expressionS *, const char *, const char *, va_list *);
67c0d1eb 1302static void load_register (int, expressionS *, int);
584892a6
RS
1303static void macro_start (void);
1304static void macro_end (void);
833794fc 1305static void macro (struct mips_cl_insn *ip, char *str);
17a2f251 1306static void mips16_macro (struct mips_cl_insn * ip);
17a2f251
TS
1307static void mips_ip (char *str, struct mips_cl_insn * ip);
1308static void mips16_ip (char *str, struct mips_cl_insn * ip);
b34976b6 1309static void mips16_immed
3b4dbbbf 1310 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
43c0598f 1311 unsigned int, unsigned long *);
5e0116d5 1312static size_t my_getSmallExpression
17a2f251
TS
1313 (expressionS *, bfd_reloc_code_real_type *, char *);
1314static void my_getExpression (expressionS *, char *);
1315static void s_align (int);
1316static void s_change_sec (int);
1317static void s_change_section (int);
1318static void s_cons (int);
1319static void s_float_cons (int);
1320static void s_mips_globl (int);
1321static void s_option (int);
1322static void s_mipsset (int);
1323static void s_abicalls (int);
1324static void s_cpload (int);
1325static void s_cpsetup (int);
1326static void s_cplocal (int);
1327static void s_cprestore (int);
1328static void s_cpreturn (int);
741d6ea8
JM
1329static void s_dtprelword (int);
1330static void s_dtpreldword (int);
d0f13682
CLT
1331static void s_tprelword (int);
1332static void s_tpreldword (int);
17a2f251
TS
1333static void s_gpvalue (int);
1334static void s_gpword (int);
1335static void s_gpdword (int);
a3f278e2 1336static void s_ehword (int);
17a2f251
TS
1337static void s_cpadd (int);
1338static void s_insn (int);
ba92f887 1339static void s_nan (int);
919731af 1340static void s_module (int);
17a2f251
TS
1341static void s_mips_ent (int);
1342static void s_mips_end (int);
1343static void s_mips_frame (int);
1344static void s_mips_mask (int reg_type);
1345static void s_mips_stab (int);
1346static void s_mips_weakext (int);
1347static void s_mips_file (int);
1348static void s_mips_loc (int);
1349static bfd_boolean pic_need_relax (symbolS *, asection *);
4a6a3df4 1350static int relaxed_branch_length (fragS *, asection *, int);
df58fc94
RS
1351static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1352static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
919731af 1353static void file_mips_check_options (void);
e7af610e
NC
1354
1355/* Table and functions used to map between CPU/ISA names, and
1356 ISA levels, and CPU numbers. */
1357
e972090a
NC
1358struct mips_cpu_info
1359{
e7af610e 1360 const char *name; /* CPU or ISA name. */
d16afab6
RS
1361 int flags; /* MIPS_CPU_* flags. */
1362 int ase; /* Set of ASEs implemented by the CPU. */
e7af610e
NC
1363 int isa; /* ISA level. */
1364 int cpu; /* CPU number (default CPU if ISA). */
1365};
1366
ad3fea08 1367#define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
ad3fea08 1368
17a2f251
TS
1369static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1370static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1371static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
252b5132 1372\f
c31f3936
RS
1373/* Command-line options. */
1374const char *md_shortopts = "O::g::G:";
1375
1376enum options
1377 {
1378 OPTION_MARCH = OPTION_MD_BASE,
1379 OPTION_MTUNE,
1380 OPTION_MIPS1,
1381 OPTION_MIPS2,
1382 OPTION_MIPS3,
1383 OPTION_MIPS4,
1384 OPTION_MIPS5,
1385 OPTION_MIPS32,
1386 OPTION_MIPS64,
1387 OPTION_MIPS32R2,
ae52f483
AB
1388 OPTION_MIPS32R3,
1389 OPTION_MIPS32R5,
7361da2c 1390 OPTION_MIPS32R6,
c31f3936 1391 OPTION_MIPS64R2,
ae52f483
AB
1392 OPTION_MIPS64R3,
1393 OPTION_MIPS64R5,
7361da2c 1394 OPTION_MIPS64R6,
c31f3936
RS
1395 OPTION_MIPS16,
1396 OPTION_NO_MIPS16,
1397 OPTION_MIPS3D,
1398 OPTION_NO_MIPS3D,
1399 OPTION_MDMX,
1400 OPTION_NO_MDMX,
1401 OPTION_DSP,
1402 OPTION_NO_DSP,
1403 OPTION_MT,
1404 OPTION_NO_MT,
1405 OPTION_VIRT,
1406 OPTION_NO_VIRT,
56d438b1
CF
1407 OPTION_MSA,
1408 OPTION_NO_MSA,
c31f3936
RS
1409 OPTION_SMARTMIPS,
1410 OPTION_NO_SMARTMIPS,
1411 OPTION_DSPR2,
1412 OPTION_NO_DSPR2,
1413 OPTION_EVA,
1414 OPTION_NO_EVA,
7d64c587
AB
1415 OPTION_XPA,
1416 OPTION_NO_XPA,
c31f3936
RS
1417 OPTION_MICROMIPS,
1418 OPTION_NO_MICROMIPS,
1419 OPTION_MCU,
1420 OPTION_NO_MCU,
1421 OPTION_COMPAT_ARCH_BASE,
1422 OPTION_M4650,
1423 OPTION_NO_M4650,
1424 OPTION_M4010,
1425 OPTION_NO_M4010,
1426 OPTION_M4100,
1427 OPTION_NO_M4100,
1428 OPTION_M3900,
1429 OPTION_NO_M3900,
1430 OPTION_M7000_HILO_FIX,
1431 OPTION_MNO_7000_HILO_FIX,
1432 OPTION_FIX_24K,
1433 OPTION_NO_FIX_24K,
a8d14a88
CM
1434 OPTION_FIX_RM7000,
1435 OPTION_NO_FIX_RM7000,
c31f3936
RS
1436 OPTION_FIX_LOONGSON2F_JUMP,
1437 OPTION_NO_FIX_LOONGSON2F_JUMP,
1438 OPTION_FIX_LOONGSON2F_NOP,
1439 OPTION_NO_FIX_LOONGSON2F_NOP,
1440 OPTION_FIX_VR4120,
1441 OPTION_NO_FIX_VR4120,
1442 OPTION_FIX_VR4130,
1443 OPTION_NO_FIX_VR4130,
1444 OPTION_FIX_CN63XXP1,
1445 OPTION_NO_FIX_CN63XXP1,
1446 OPTION_TRAP,
1447 OPTION_BREAK,
1448 OPTION_EB,
1449 OPTION_EL,
1450 OPTION_FP32,
1451 OPTION_GP32,
1452 OPTION_CONSTRUCT_FLOATS,
1453 OPTION_NO_CONSTRUCT_FLOATS,
1454 OPTION_FP64,
351cdf24 1455 OPTION_FPXX,
c31f3936
RS
1456 OPTION_GP64,
1457 OPTION_RELAX_BRANCH,
1458 OPTION_NO_RELAX_BRANCH,
833794fc
MR
1459 OPTION_INSN32,
1460 OPTION_NO_INSN32,
c31f3936
RS
1461 OPTION_MSHARED,
1462 OPTION_MNO_SHARED,
1463 OPTION_MSYM32,
1464 OPTION_MNO_SYM32,
1465 OPTION_SOFT_FLOAT,
1466 OPTION_HARD_FLOAT,
1467 OPTION_SINGLE_FLOAT,
1468 OPTION_DOUBLE_FLOAT,
1469 OPTION_32,
c31f3936
RS
1470 OPTION_CALL_SHARED,
1471 OPTION_CALL_NONPIC,
1472 OPTION_NON_SHARED,
1473 OPTION_XGOT,
1474 OPTION_MABI,
1475 OPTION_N32,
1476 OPTION_64,
1477 OPTION_MDEBUG,
1478 OPTION_NO_MDEBUG,
1479 OPTION_PDR,
1480 OPTION_NO_PDR,
1481 OPTION_MVXWORKS_PIC,
ba92f887 1482 OPTION_NAN,
351cdf24
MF
1483 OPTION_ODD_SPREG,
1484 OPTION_NO_ODD_SPREG,
c31f3936
RS
1485 OPTION_END_OF_ENUM
1486 };
1487
1488struct option md_longopts[] =
1489{
1490 /* Options which specify architecture. */
1491 {"march", required_argument, NULL, OPTION_MARCH},
1492 {"mtune", required_argument, NULL, OPTION_MTUNE},
1493 {"mips0", no_argument, NULL, OPTION_MIPS1},
1494 {"mips1", no_argument, NULL, OPTION_MIPS1},
1495 {"mips2", no_argument, NULL, OPTION_MIPS2},
1496 {"mips3", no_argument, NULL, OPTION_MIPS3},
1497 {"mips4", no_argument, NULL, OPTION_MIPS4},
1498 {"mips5", no_argument, NULL, OPTION_MIPS5},
1499 {"mips32", no_argument, NULL, OPTION_MIPS32},
1500 {"mips64", no_argument, NULL, OPTION_MIPS64},
1501 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
ae52f483
AB
1502 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1503 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
7361da2c 1504 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
c31f3936 1505 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
ae52f483
AB
1506 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1507 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
7361da2c 1508 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
c31f3936
RS
1509
1510 /* Options which specify Application Specific Extensions (ASEs). */
1511 {"mips16", no_argument, NULL, OPTION_MIPS16},
1512 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1513 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1514 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1515 {"mdmx", no_argument, NULL, OPTION_MDMX},
1516 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1517 {"mdsp", no_argument, NULL, OPTION_DSP},
1518 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1519 {"mmt", no_argument, NULL, OPTION_MT},
1520 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1521 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1522 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1523 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1524 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1525 {"meva", no_argument, NULL, OPTION_EVA},
1526 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1527 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1528 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1529 {"mmcu", no_argument, NULL, OPTION_MCU},
1530 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1531 {"mvirt", no_argument, NULL, OPTION_VIRT},
1532 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
56d438b1
CF
1533 {"mmsa", no_argument, NULL, OPTION_MSA},
1534 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
7d64c587
AB
1535 {"mxpa", no_argument, NULL, OPTION_XPA},
1536 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
c31f3936
RS
1537
1538 /* Old-style architecture options. Don't add more of these. */
1539 {"m4650", no_argument, NULL, OPTION_M4650},
1540 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1541 {"m4010", no_argument, NULL, OPTION_M4010},
1542 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1543 {"m4100", no_argument, NULL, OPTION_M4100},
1544 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1545 {"m3900", no_argument, NULL, OPTION_M3900},
1546 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1547
1548 /* Options which enable bug fixes. */
1549 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1550 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1551 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1552 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1553 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1554 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1555 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1556 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1557 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1558 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1559 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1560 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1561 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
a8d14a88
CM
1562 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1563 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
c31f3936
RS
1564 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1565 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1566
1567 /* Miscellaneous options. */
1568 {"trap", no_argument, NULL, OPTION_TRAP},
1569 {"no-break", no_argument, NULL, OPTION_TRAP},
1570 {"break", no_argument, NULL, OPTION_BREAK},
1571 {"no-trap", no_argument, NULL, OPTION_BREAK},
1572 {"EB", no_argument, NULL, OPTION_EB},
1573 {"EL", no_argument, NULL, OPTION_EL},
1574 {"mfp32", no_argument, NULL, OPTION_FP32},
1575 {"mgp32", no_argument, NULL, OPTION_GP32},
1576 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1577 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1578 {"mfp64", no_argument, NULL, OPTION_FP64},
351cdf24 1579 {"mfpxx", no_argument, NULL, OPTION_FPXX},
c31f3936
RS
1580 {"mgp64", no_argument, NULL, OPTION_GP64},
1581 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1582 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
833794fc
MR
1583 {"minsn32", no_argument, NULL, OPTION_INSN32},
1584 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
c31f3936
RS
1585 {"mshared", no_argument, NULL, OPTION_MSHARED},
1586 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1587 {"msym32", no_argument, NULL, OPTION_MSYM32},
1588 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1589 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1590 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1591 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1592 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
351cdf24
MF
1593 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1594 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
c31f3936
RS
1595
1596 /* Strictly speaking this next option is ELF specific,
1597 but we allow it for other ports as well in order to
1598 make testing easier. */
1599 {"32", no_argument, NULL, OPTION_32},
1600
1601 /* ELF-specific options. */
c31f3936
RS
1602 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1603 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1604 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1605 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1606 {"xgot", no_argument, NULL, OPTION_XGOT},
1607 {"mabi", required_argument, NULL, OPTION_MABI},
1608 {"n32", no_argument, NULL, OPTION_N32},
1609 {"64", no_argument, NULL, OPTION_64},
1610 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1611 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1612 {"mpdr", no_argument, NULL, OPTION_PDR},
1613 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1614 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
ba92f887 1615 {"mnan", required_argument, NULL, OPTION_NAN},
c31f3936
RS
1616
1617 {NULL, no_argument, NULL, 0}
1618};
1619size_t md_longopts_size = sizeof (md_longopts);
1620\f
c6278170
RS
1621/* Information about either an Application Specific Extension or an
1622 optional architecture feature that, for simplicity, we treat in the
1623 same way as an ASE. */
1624struct mips_ase
1625{
1626 /* The name of the ASE, used in both the command-line and .set options. */
1627 const char *name;
1628
1629 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1630 and 64-bit architectures, the flags here refer to the subset that
1631 is available on both. */
1632 unsigned int flags;
1633
1634 /* The ASE_* flag used for instructions that are available on 64-bit
1635 architectures but that are not included in FLAGS. */
1636 unsigned int flags64;
1637
1638 /* The command-line options that turn the ASE on and off. */
1639 int option_on;
1640 int option_off;
1641
1642 /* The minimum required architecture revisions for MIPS32, MIPS64,
1643 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1644 int mips32_rev;
1645 int mips64_rev;
1646 int micromips32_rev;
1647 int micromips64_rev;
7361da2c
AB
1648
1649 /* The architecture where the ASE was removed or -1 if the extension has not
1650 been removed. */
1651 int rem_rev;
c6278170
RS
1652};
1653
1654/* A table of all supported ASEs. */
1655static const struct mips_ase mips_ases[] = {
1656 { "dsp", ASE_DSP, ASE_DSP64,
1657 OPTION_DSP, OPTION_NO_DSP,
7361da2c
AB
1658 2, 2, 2, 2,
1659 -1 },
c6278170
RS
1660
1661 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1662 OPTION_DSPR2, OPTION_NO_DSPR2,
7361da2c
AB
1663 2, 2, 2, 2,
1664 -1 },
c6278170
RS
1665
1666 { "eva", ASE_EVA, 0,
1667 OPTION_EVA, OPTION_NO_EVA,
7361da2c
AB
1668 2, 2, 2, 2,
1669 -1 },
c6278170
RS
1670
1671 { "mcu", ASE_MCU, 0,
1672 OPTION_MCU, OPTION_NO_MCU,
7361da2c
AB
1673 2, 2, 2, 2,
1674 -1 },
c6278170
RS
1675
1676 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1677 { "mdmx", ASE_MDMX, 0,
1678 OPTION_MDMX, OPTION_NO_MDMX,
7361da2c
AB
1679 -1, 1, -1, -1,
1680 6 },
c6278170
RS
1681
1682 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1683 { "mips3d", ASE_MIPS3D, 0,
1684 OPTION_MIPS3D, OPTION_NO_MIPS3D,
7361da2c
AB
1685 2, 1, -1, -1,
1686 6 },
c6278170
RS
1687
1688 { "mt", ASE_MT, 0,
1689 OPTION_MT, OPTION_NO_MT,
7361da2c
AB
1690 2, 2, -1, -1,
1691 -1 },
c6278170
RS
1692
1693 { "smartmips", ASE_SMARTMIPS, 0,
1694 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
7361da2c
AB
1695 1, -1, -1, -1,
1696 6 },
c6278170
RS
1697
1698 { "virt", ASE_VIRT, ASE_VIRT64,
1699 OPTION_VIRT, OPTION_NO_VIRT,
7361da2c
AB
1700 2, 2, 2, 2,
1701 -1 },
56d438b1
CF
1702
1703 { "msa", ASE_MSA, ASE_MSA64,
1704 OPTION_MSA, OPTION_NO_MSA,
7361da2c
AB
1705 2, 2, 2, 2,
1706 -1 },
7d64c587
AB
1707
1708 { "xpa", ASE_XPA, 0,
1709 OPTION_XPA, OPTION_NO_XPA,
7361da2c
AB
1710 2, 2, -1, -1,
1711 -1 },
c6278170
RS
1712};
1713
1714/* The set of ASEs that require -mfp64. */
82bda27b 1715#define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
c6278170
RS
1716
1717/* Groups of ASE_* flags that represent different revisions of an ASE. */
1718static const unsigned int mips_ase_groups[] = {
1719 ASE_DSP | ASE_DSPR2
1720};
1721\f
252b5132
RH
1722/* Pseudo-op table.
1723
1724 The following pseudo-ops from the Kane and Heinrich MIPS book
1725 should be defined here, but are currently unsupported: .alias,
1726 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1727
1728 The following pseudo-ops from the Kane and Heinrich MIPS book are
1729 specific to the type of debugging information being generated, and
1730 should be defined by the object format: .aent, .begin, .bend,
1731 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1732 .vreg.
1733
1734 The following pseudo-ops from the Kane and Heinrich MIPS book are
1735 not MIPS CPU specific, but are also not specific to the object file
1736 format. This file is probably the best place to define them, but
d84bcf09 1737 they are not currently supported: .asm0, .endr, .lab, .struct. */
252b5132 1738
e972090a
NC
1739static const pseudo_typeS mips_pseudo_table[] =
1740{
beae10d5 1741 /* MIPS specific pseudo-ops. */
252b5132
RH
1742 {"option", s_option, 0},
1743 {"set", s_mipsset, 0},
1744 {"rdata", s_change_sec, 'r'},
1745 {"sdata", s_change_sec, 's'},
1746 {"livereg", s_ignore, 0},
1747 {"abicalls", s_abicalls, 0},
1748 {"cpload", s_cpload, 0},
6478892d
TS
1749 {"cpsetup", s_cpsetup, 0},
1750 {"cplocal", s_cplocal, 0},
252b5132 1751 {"cprestore", s_cprestore, 0},
6478892d 1752 {"cpreturn", s_cpreturn, 0},
741d6ea8
JM
1753 {"dtprelword", s_dtprelword, 0},
1754 {"dtpreldword", s_dtpreldword, 0},
d0f13682
CLT
1755 {"tprelword", s_tprelword, 0},
1756 {"tpreldword", s_tpreldword, 0},
6478892d 1757 {"gpvalue", s_gpvalue, 0},
252b5132 1758 {"gpword", s_gpword, 0},
10181a0d 1759 {"gpdword", s_gpdword, 0},
a3f278e2 1760 {"ehword", s_ehword, 0},
252b5132
RH
1761 {"cpadd", s_cpadd, 0},
1762 {"insn", s_insn, 0},
ba92f887 1763 {"nan", s_nan, 0},
919731af 1764 {"module", s_module, 0},
252b5132 1765
beae10d5 1766 /* Relatively generic pseudo-ops that happen to be used on MIPS
252b5132 1767 chips. */
38a57ae7 1768 {"asciiz", stringer, 8 + 1},
252b5132
RH
1769 {"bss", s_change_sec, 'b'},
1770 {"err", s_err, 0},
1771 {"half", s_cons, 1},
1772 {"dword", s_cons, 3},
1773 {"weakext", s_mips_weakext, 0},
7c752c2a
TS
1774 {"origin", s_org, 0},
1775 {"repeat", s_rept, 0},
252b5132 1776
998b3c36
MR
1777 /* For MIPS this is non-standard, but we define it for consistency. */
1778 {"sbss", s_change_sec, 'B'},
1779
beae10d5 1780 /* These pseudo-ops are defined in read.c, but must be overridden
252b5132
RH
1781 here for one reason or another. */
1782 {"align", s_align, 0},
1783 {"byte", s_cons, 0},
1784 {"data", s_change_sec, 'd'},
1785 {"double", s_float_cons, 'd'},
1786 {"float", s_float_cons, 'f'},
1787 {"globl", s_mips_globl, 0},
1788 {"global", s_mips_globl, 0},
1789 {"hword", s_cons, 1},
1790 {"int", s_cons, 2},
1791 {"long", s_cons, 2},
1792 {"octa", s_cons, 4},
1793 {"quad", s_cons, 3},
cca86cc8 1794 {"section", s_change_section, 0},
252b5132
RH
1795 {"short", s_cons, 1},
1796 {"single", s_float_cons, 'f'},
754e2bb9 1797 {"stabd", s_mips_stab, 'd'},
252b5132 1798 {"stabn", s_mips_stab, 'n'},
754e2bb9 1799 {"stabs", s_mips_stab, 's'},
252b5132
RH
1800 {"text", s_change_sec, 't'},
1801 {"word", s_cons, 2},
add56521 1802
add56521 1803 { "extern", ecoff_directive_extern, 0},
add56521 1804
43841e91 1805 { NULL, NULL, 0 },
252b5132
RH
1806};
1807
e972090a
NC
1808static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1809{
beae10d5
KH
1810 /* These pseudo-ops should be defined by the object file format.
1811 However, a.out doesn't support them, so we have versions here. */
252b5132
RH
1812 {"aent", s_mips_ent, 1},
1813 {"bgnb", s_ignore, 0},
1814 {"end", s_mips_end, 0},
1815 {"endb", s_ignore, 0},
1816 {"ent", s_mips_ent, 0},
c5dd6aab 1817 {"file", s_mips_file, 0},
252b5132
RH
1818 {"fmask", s_mips_mask, 'F'},
1819 {"frame", s_mips_frame, 0},
c5dd6aab 1820 {"loc", s_mips_loc, 0},
252b5132
RH
1821 {"mask", s_mips_mask, 'R'},
1822 {"verstamp", s_ignore, 0},
43841e91 1823 { NULL, NULL, 0 },
252b5132
RH
1824};
1825
3ae8dd8d
MR
1826/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1827 purpose of the `.dc.a' internal pseudo-op. */
1828
1829int
1830mips_address_bytes (void)
1831{
919731af 1832 file_mips_check_options ();
3ae8dd8d
MR
1833 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1834}
1835
17a2f251 1836extern void pop_insert (const pseudo_typeS *);
252b5132
RH
1837
1838void
17a2f251 1839mips_pop_insert (void)
252b5132
RH
1840{
1841 pop_insert (mips_pseudo_table);
1842 if (! ECOFF_DEBUGGING)
1843 pop_insert (mips_nonecoff_pseudo_table);
1844}
1845\f
1846/* Symbols labelling the current insn. */
1847
e972090a
NC
1848struct insn_label_list
1849{
252b5132
RH
1850 struct insn_label_list *next;
1851 symbolS *label;
1852};
1853
252b5132 1854static struct insn_label_list *free_insn_labels;
742a56fe 1855#define label_list tc_segment_info_data.labels
252b5132 1856
17a2f251 1857static void mips_clear_insn_labels (void);
df58fc94
RS
1858static void mips_mark_labels (void);
1859static void mips_compressed_mark_labels (void);
252b5132
RH
1860
1861static inline void
17a2f251 1862mips_clear_insn_labels (void)
252b5132 1863{
ed9e98c2 1864 struct insn_label_list **pl;
a8dbcb85 1865 segment_info_type *si;
252b5132 1866
a8dbcb85
TS
1867 if (now_seg)
1868 {
1869 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1870 ;
3739860c 1871
a8dbcb85
TS
1872 si = seg_info (now_seg);
1873 *pl = si->label_list;
1874 si->label_list = NULL;
1875 }
252b5132 1876}
a8dbcb85 1877
df58fc94
RS
1878/* Mark instruction labels in MIPS16/microMIPS mode. */
1879
1880static inline void
1881mips_mark_labels (void)
1882{
1883 if (HAVE_CODE_COMPRESSION)
1884 mips_compressed_mark_labels ();
1885}
252b5132
RH
1886\f
1887static char *expr_end;
1888
e423441d 1889/* An expression in a macro instruction. This is set by mips_ip and
b0e6f033 1890 mips16_ip and when populated is always an O_constant. */
252b5132
RH
1891
1892static expressionS imm_expr;
252b5132 1893
77bd4346
RS
1894/* The relocatable field in an instruction and the relocs associated
1895 with it. These variables are used for instructions like LUI and
1896 JAL as well as true offsets. They are also used for address
1897 operands in macros. */
252b5132 1898
77bd4346 1899static expressionS offset_expr;
f6688943
TS
1900static bfd_reloc_code_real_type offset_reloc[3]
1901 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 1902
df58fc94
RS
1903/* This is set to the resulting size of the instruction to be produced
1904 by mips16_ip if an explicit extension is used or by mips_ip if an
1905 explicit size is supplied. */
252b5132 1906
df58fc94 1907static unsigned int forced_insn_length;
252b5132 1908
e1b47bd5
RS
1909/* True if we are assembling an instruction. All dot symbols defined during
1910 this time should be treated as code labels. */
1911
1912static bfd_boolean mips_assembling_insn;
1913
ecb4347a
DJ
1914/* The pdr segment for per procedure frame/regmask info. Not used for
1915 ECOFF debugging. */
252b5132
RH
1916
1917static segT pdr_seg;
252b5132 1918
e013f690
TS
1919/* The default target format to use. */
1920
aeffff67
RS
1921#if defined (TE_FreeBSD)
1922#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1923#elif defined (TE_TMIPS)
1924#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1925#else
1926#define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1927#endif
1928
e013f690 1929const char *
17a2f251 1930mips_target_format (void)
e013f690
TS
1931{
1932 switch (OUTPUT_FLAVOR)
1933 {
e013f690 1934 case bfd_target_elf_flavour:
0a44bf69
RS
1935#ifdef TE_VXWORKS
1936 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1937 return (target_big_endian
1938 ? "elf32-bigmips-vxworks"
1939 : "elf32-littlemips-vxworks");
1940#endif
e013f690 1941 return (target_big_endian
cfe86eaa 1942 ? (HAVE_64BIT_OBJECTS
aeffff67 1943 ? ELF_TARGET ("elf64-", "big")
cfe86eaa 1944 : (HAVE_NEWABI
aeffff67
RS
1945 ? ELF_TARGET ("elf32-n", "big")
1946 : ELF_TARGET ("elf32-", "big")))
cfe86eaa 1947 : (HAVE_64BIT_OBJECTS
aeffff67 1948 ? ELF_TARGET ("elf64-", "little")
cfe86eaa 1949 : (HAVE_NEWABI
aeffff67
RS
1950 ? ELF_TARGET ("elf32-n", "little")
1951 : ELF_TARGET ("elf32-", "little"))));
e013f690
TS
1952 default:
1953 abort ();
1954 return NULL;
1955 }
1956}
1957
c6278170
RS
1958/* Return the ISA revision that is currently in use, or 0 if we are
1959 generating code for MIPS V or below. */
1960
1961static int
1962mips_isa_rev (void)
1963{
1964 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1965 return 2;
1966
ae52f483
AB
1967 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1968 return 3;
1969
1970 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1971 return 5;
1972
7361da2c
AB
1973 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
1974 return 6;
1975
c6278170
RS
1976 /* microMIPS implies revision 2 or above. */
1977 if (mips_opts.micromips)
1978 return 2;
1979
1980 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1981 return 1;
1982
1983 return 0;
1984}
1985
1986/* Return the mask of all ASEs that are revisions of those in FLAGS. */
1987
1988static unsigned int
1989mips_ase_mask (unsigned int flags)
1990{
1991 unsigned int i;
1992
1993 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
1994 if (flags & mips_ase_groups[i])
1995 flags |= mips_ase_groups[i];
1996 return flags;
1997}
1998
1999/* Check whether the current ISA supports ASE. Issue a warning if
2000 appropriate. */
2001
2002static void
2003mips_check_isa_supports_ase (const struct mips_ase *ase)
2004{
2005 const char *base;
2006 int min_rev, size;
2007 static unsigned int warned_isa;
2008 static unsigned int warned_fp32;
2009
2010 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2011 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2012 else
2013 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2014 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2015 && (warned_isa & ase->flags) != ase->flags)
2016 {
2017 warned_isa |= ase->flags;
2018 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2019 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2020 if (min_rev < 0)
1661c76c 2021 as_warn (_("the %d-bit %s architecture does not support the"
c6278170
RS
2022 " `%s' extension"), size, base, ase->name);
2023 else
1661c76c 2024 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
c6278170
RS
2025 ase->name, base, size, min_rev);
2026 }
7361da2c
AB
2027 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2028 && (warned_isa & ase->flags) != ase->flags)
2029 {
2030 warned_isa |= ase->flags;
2031 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2032 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2033 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2034 ase->name, base, size, ase->rem_rev);
2035 }
2036
c6278170 2037 if ((ase->flags & FP64_ASES)
0b35dfee 2038 && mips_opts.fp != 64
c6278170
RS
2039 && (warned_fp32 & ase->flags) != ase->flags)
2040 {
2041 warned_fp32 |= ase->flags;
1661c76c 2042 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
c6278170
RS
2043 }
2044}
2045
2046/* Check all enabled ASEs to see whether they are supported by the
2047 chosen architecture. */
2048
2049static void
2050mips_check_isa_supports_ases (void)
2051{
2052 unsigned int i, mask;
2053
2054 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2055 {
2056 mask = mips_ase_mask (mips_ases[i].flags);
2057 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2058 mips_check_isa_supports_ase (&mips_ases[i]);
2059 }
2060}
2061
2062/* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2063 that were affected. */
2064
2065static unsigned int
919731af 2066mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2067 bfd_boolean enabled_p)
c6278170
RS
2068{
2069 unsigned int mask;
2070
2071 mask = mips_ase_mask (ase->flags);
919731af 2072 opts->ase &= ~mask;
c6278170 2073 if (enabled_p)
919731af 2074 opts->ase |= ase->flags;
c6278170
RS
2075 return mask;
2076}
2077
2078/* Return the ASE called NAME, or null if none. */
2079
2080static const struct mips_ase *
2081mips_lookup_ase (const char *name)
2082{
2083 unsigned int i;
2084
2085 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2086 if (strcmp (name, mips_ases[i].name) == 0)
2087 return &mips_ases[i];
2088 return NULL;
2089}
2090
df58fc94 2091/* Return the length of a microMIPS instruction in bytes. If bits of
100b4f2e
MR
2092 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2093 otherwise it is a 32-bit instruction. */
df58fc94
RS
2094
2095static inline unsigned int
2096micromips_insn_length (const struct mips_opcode *mo)
2097{
2098 return (mo->mask >> 16) == 0 ? 2 : 4;
2099}
2100
5c04167a
RS
2101/* Return the length of MIPS16 instruction OPCODE. */
2102
2103static inline unsigned int
2104mips16_opcode_length (unsigned long opcode)
2105{
2106 return (opcode >> 16) == 0 ? 2 : 4;
2107}
2108
1e915849
RS
2109/* Return the length of instruction INSN. */
2110
2111static inline unsigned int
2112insn_length (const struct mips_cl_insn *insn)
2113{
df58fc94
RS
2114 if (mips_opts.micromips)
2115 return micromips_insn_length (insn->insn_mo);
2116 else if (mips_opts.mips16)
5c04167a 2117 return mips16_opcode_length (insn->insn_opcode);
df58fc94 2118 else
1e915849 2119 return 4;
1e915849
RS
2120}
2121
2122/* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2123
2124static void
2125create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2126{
2127 size_t i;
2128
2129 insn->insn_mo = mo;
1e915849
RS
2130 insn->insn_opcode = mo->match;
2131 insn->frag = NULL;
2132 insn->where = 0;
2133 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2134 insn->fixp[i] = NULL;
2135 insn->fixed_p = (mips_opts.noreorder > 0);
2136 insn->noreorder_p = (mips_opts.noreorder > 0);
2137 insn->mips16_absolute_jump_p = 0;
15be625d 2138 insn->complete_p = 0;
e407c74b 2139 insn->cleared_p = 0;
1e915849
RS
2140}
2141
fc76e730
RS
2142/* Get a list of all the operands in INSN. */
2143
2144static const struct mips_operand_array *
2145insn_operands (const struct mips_cl_insn *insn)
2146{
2147 if (insn->insn_mo >= &mips_opcodes[0]
2148 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2149 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2150
2151 if (insn->insn_mo >= &mips16_opcodes[0]
2152 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2153 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2154
2155 if (insn->insn_mo >= &micromips_opcodes[0]
2156 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2157 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2158
2159 abort ();
2160}
2161
2162/* Get a description of operand OPNO of INSN. */
2163
2164static const struct mips_operand *
2165insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2166{
2167 const struct mips_operand_array *operands;
2168
2169 operands = insn_operands (insn);
2170 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2171 abort ();
2172 return operands->operand[opno];
2173}
2174
e077a1c8
RS
2175/* Install UVAL as the value of OPERAND in INSN. */
2176
2177static inline void
2178insn_insert_operand (struct mips_cl_insn *insn,
2179 const struct mips_operand *operand, unsigned int uval)
2180{
2181 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2182}
2183
fc76e730
RS
2184/* Extract the value of OPERAND from INSN. */
2185
2186static inline unsigned
2187insn_extract_operand (const struct mips_cl_insn *insn,
2188 const struct mips_operand *operand)
2189{
2190 return mips_extract_operand (operand, insn->insn_opcode);
2191}
2192
df58fc94 2193/* Record the current MIPS16/microMIPS mode in now_seg. */
742a56fe
RS
2194
2195static void
df58fc94 2196mips_record_compressed_mode (void)
742a56fe
RS
2197{
2198 segment_info_type *si;
2199
2200 si = seg_info (now_seg);
2201 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2202 si->tc_segment_info_data.mips16 = mips_opts.mips16;
df58fc94
RS
2203 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2204 si->tc_segment_info_data.micromips = mips_opts.micromips;
742a56fe
RS
2205}
2206
4d68580a
RS
2207/* Read a standard MIPS instruction from BUF. */
2208
2209static unsigned long
2210read_insn (char *buf)
2211{
2212 if (target_big_endian)
2213 return bfd_getb32 ((bfd_byte *) buf);
2214 else
2215 return bfd_getl32 ((bfd_byte *) buf);
2216}
2217
2218/* Write standard MIPS instruction INSN to BUF. Return a pointer to
2219 the next byte. */
2220
2221static char *
2222write_insn (char *buf, unsigned int insn)
2223{
2224 md_number_to_chars (buf, insn, 4);
2225 return buf + 4;
2226}
2227
2228/* Read a microMIPS or MIPS16 opcode from BUF, given that it
2229 has length LENGTH. */
2230
2231static unsigned long
2232read_compressed_insn (char *buf, unsigned int length)
2233{
2234 unsigned long insn;
2235 unsigned int i;
2236
2237 insn = 0;
2238 for (i = 0; i < length; i += 2)
2239 {
2240 insn <<= 16;
2241 if (target_big_endian)
2242 insn |= bfd_getb16 ((char *) buf);
2243 else
2244 insn |= bfd_getl16 ((char *) buf);
2245 buf += 2;
2246 }
2247 return insn;
2248}
2249
5c04167a
RS
2250/* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2251 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2252
2253static char *
2254write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2255{
2256 unsigned int i;
2257
2258 for (i = 0; i < length; i += 2)
2259 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2260 return buf + length;
2261}
2262
1e915849
RS
2263/* Install INSN at the location specified by its "frag" and "where" fields. */
2264
2265static void
2266install_insn (const struct mips_cl_insn *insn)
2267{
2268 char *f = insn->frag->fr_literal + insn->where;
5c04167a
RS
2269 if (HAVE_CODE_COMPRESSION)
2270 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
1e915849 2271 else
4d68580a 2272 write_insn (f, insn->insn_opcode);
df58fc94 2273 mips_record_compressed_mode ();
1e915849
RS
2274}
2275
2276/* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2277 and install the opcode in the new location. */
2278
2279static void
2280move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2281{
2282 size_t i;
2283
2284 insn->frag = frag;
2285 insn->where = where;
2286 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2287 if (insn->fixp[i] != NULL)
2288 {
2289 insn->fixp[i]->fx_frag = frag;
2290 insn->fixp[i]->fx_where = where;
2291 }
2292 install_insn (insn);
2293}
2294
2295/* Add INSN to the end of the output. */
2296
2297static void
2298add_fixed_insn (struct mips_cl_insn *insn)
2299{
2300 char *f = frag_more (insn_length (insn));
2301 move_insn (insn, frag_now, f - frag_now->fr_literal);
2302}
2303
2304/* Start a variant frag and move INSN to the start of the variant part,
2305 marking it as fixed. The other arguments are as for frag_var. */
2306
2307static void
2308add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2309 relax_substateT subtype, symbolS *symbol, offsetT offset)
2310{
2311 frag_grow (max_chars);
2312 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2313 insn->fixed_p = 1;
2314 frag_var (rs_machine_dependent, max_chars, var,
2315 subtype, symbol, offset, NULL);
2316}
2317
2318/* Insert N copies of INSN into the history buffer, starting at
2319 position FIRST. Neither FIRST nor N need to be clipped. */
2320
2321static void
2322insert_into_history (unsigned int first, unsigned int n,
2323 const struct mips_cl_insn *insn)
2324{
2325 if (mips_relax.sequence != 2)
2326 {
2327 unsigned int i;
2328
2329 for (i = ARRAY_SIZE (history); i-- > first;)
2330 if (i >= first + n)
2331 history[i] = history[i - n];
2332 else
2333 history[i] = *insn;
2334 }
2335}
2336
e3de51ce
RS
2337/* Clear the error in insn_error. */
2338
2339static void
2340clear_insn_error (void)
2341{
2342 memset (&insn_error, 0, sizeof (insn_error));
2343}
2344
2345/* Possibly record error message MSG for the current instruction.
2346 If the error is about a particular argument, ARGNUM is the 1-based
2347 number of that argument, otherwise it is 0. FORMAT is the format
2348 of MSG. Return true if MSG was used, false if the current message
2349 was kept. */
2350
2351static bfd_boolean
2352set_insn_error_format (int argnum, enum mips_insn_error_format format,
2353 const char *msg)
2354{
2355 if (argnum == 0)
2356 {
2357 /* Give priority to errors against specific arguments, and to
2358 the first whole-instruction message. */
2359 if (insn_error.msg)
2360 return FALSE;
2361 }
2362 else
2363 {
2364 /* Keep insn_error if it is against a later argument. */
2365 if (argnum < insn_error.min_argnum)
2366 return FALSE;
2367
2368 /* If both errors are against the same argument but are different,
2369 give up on reporting a specific error for this argument.
2370 See the comment about mips_insn_error for details. */
2371 if (argnum == insn_error.min_argnum
2372 && insn_error.msg
2373 && strcmp (insn_error.msg, msg) != 0)
2374 {
2375 insn_error.msg = 0;
2376 insn_error.min_argnum += 1;
2377 return FALSE;
2378 }
2379 }
2380 insn_error.min_argnum = argnum;
2381 insn_error.format = format;
2382 insn_error.msg = msg;
2383 return TRUE;
2384}
2385
2386/* Record an instruction error with no % format fields. ARGNUM and MSG are
2387 as for set_insn_error_format. */
2388
2389static void
2390set_insn_error (int argnum, const char *msg)
2391{
2392 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2393}
2394
2395/* Record an instruction error with one %d field I. ARGNUM and MSG are
2396 as for set_insn_error_format. */
2397
2398static void
2399set_insn_error_i (int argnum, const char *msg, int i)
2400{
2401 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2402 insn_error.u.i = i;
2403}
2404
2405/* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2406 are as for set_insn_error_format. */
2407
2408static void
2409set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2410{
2411 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2412 {
2413 insn_error.u.ss[0] = s1;
2414 insn_error.u.ss[1] = s2;
2415 }
2416}
2417
2418/* Report the error in insn_error, which is against assembly code STR. */
2419
2420static void
2421report_insn_error (const char *str)
2422{
e1fa0163 2423 const char *msg = concat (insn_error.msg, " `%s'", NULL);
e3de51ce 2424
e3de51ce
RS
2425 switch (insn_error.format)
2426 {
2427 case ERR_FMT_PLAIN:
2428 as_bad (msg, str);
2429 break;
2430
2431 case ERR_FMT_I:
2432 as_bad (msg, insn_error.u.i, str);
2433 break;
2434
2435 case ERR_FMT_SS:
2436 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2437 break;
2438 }
e1fa0163
NC
2439
2440 free ((char *) msg);
e3de51ce
RS
2441}
2442
71400594
RS
2443/* Initialize vr4120_conflicts. There is a bit of duplication here:
2444 the idea is to make it obvious at a glance that each errata is
2445 included. */
2446
2447static void
2448init_vr4120_conflicts (void)
2449{
2450#define CONFLICT(FIRST, SECOND) \
2451 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2452
2453 /* Errata 21 - [D]DIV[U] after [D]MACC */
2454 CONFLICT (MACC, DIV);
2455 CONFLICT (DMACC, DIV);
2456
2457 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2458 CONFLICT (DMULT, DMULT);
2459 CONFLICT (DMULT, DMACC);
2460 CONFLICT (DMACC, DMULT);
2461 CONFLICT (DMACC, DMACC);
2462
2463 /* Errata 24 - MT{LO,HI} after [D]MACC */
2464 CONFLICT (MACC, MTHILO);
2465 CONFLICT (DMACC, MTHILO);
2466
2467 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2468 instruction is executed immediately after a MACC or DMACC
2469 instruction, the result of [either instruction] is incorrect." */
2470 CONFLICT (MACC, MULT);
2471 CONFLICT (MACC, DMULT);
2472 CONFLICT (DMACC, MULT);
2473 CONFLICT (DMACC, DMULT);
2474
2475 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2476 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2477 DDIV or DDIVU instruction, the result of the MACC or
2478 DMACC instruction is incorrect.". */
2479 CONFLICT (DMULT, MACC);
2480 CONFLICT (DMULT, DMACC);
2481 CONFLICT (DIV, MACC);
2482 CONFLICT (DIV, DMACC);
2483
2484#undef CONFLICT
2485}
2486
707bfff6
TS
2487struct regname {
2488 const char *name;
2489 unsigned int num;
2490};
2491
14daeee3 2492#define RNUM_MASK 0x00000ff
56d438b1 2493#define RTYPE_MASK 0x0ffff00
14daeee3
RS
2494#define RTYPE_NUM 0x0000100
2495#define RTYPE_FPU 0x0000200
2496#define RTYPE_FCC 0x0000400
2497#define RTYPE_VEC 0x0000800
2498#define RTYPE_GP 0x0001000
2499#define RTYPE_CP0 0x0002000
2500#define RTYPE_PC 0x0004000
2501#define RTYPE_ACC 0x0008000
2502#define RTYPE_CCC 0x0010000
2503#define RTYPE_VI 0x0020000
2504#define RTYPE_VF 0x0040000
2505#define RTYPE_R5900_I 0x0080000
2506#define RTYPE_R5900_Q 0x0100000
2507#define RTYPE_R5900_R 0x0200000
2508#define RTYPE_R5900_ACC 0x0400000
56d438b1 2509#define RTYPE_MSA 0x0800000
14daeee3 2510#define RWARN 0x8000000
707bfff6
TS
2511
2512#define GENERIC_REGISTER_NUMBERS \
2513 {"$0", RTYPE_NUM | 0}, \
2514 {"$1", RTYPE_NUM | 1}, \
2515 {"$2", RTYPE_NUM | 2}, \
2516 {"$3", RTYPE_NUM | 3}, \
2517 {"$4", RTYPE_NUM | 4}, \
2518 {"$5", RTYPE_NUM | 5}, \
2519 {"$6", RTYPE_NUM | 6}, \
2520 {"$7", RTYPE_NUM | 7}, \
2521 {"$8", RTYPE_NUM | 8}, \
2522 {"$9", RTYPE_NUM | 9}, \
2523 {"$10", RTYPE_NUM | 10}, \
2524 {"$11", RTYPE_NUM | 11}, \
2525 {"$12", RTYPE_NUM | 12}, \
2526 {"$13", RTYPE_NUM | 13}, \
2527 {"$14", RTYPE_NUM | 14}, \
2528 {"$15", RTYPE_NUM | 15}, \
2529 {"$16", RTYPE_NUM | 16}, \
2530 {"$17", RTYPE_NUM | 17}, \
2531 {"$18", RTYPE_NUM | 18}, \
2532 {"$19", RTYPE_NUM | 19}, \
2533 {"$20", RTYPE_NUM | 20}, \
2534 {"$21", RTYPE_NUM | 21}, \
2535 {"$22", RTYPE_NUM | 22}, \
2536 {"$23", RTYPE_NUM | 23}, \
2537 {"$24", RTYPE_NUM | 24}, \
2538 {"$25", RTYPE_NUM | 25}, \
2539 {"$26", RTYPE_NUM | 26}, \
2540 {"$27", RTYPE_NUM | 27}, \
2541 {"$28", RTYPE_NUM | 28}, \
2542 {"$29", RTYPE_NUM | 29}, \
2543 {"$30", RTYPE_NUM | 30}, \
3739860c 2544 {"$31", RTYPE_NUM | 31}
707bfff6
TS
2545
2546#define FPU_REGISTER_NAMES \
2547 {"$f0", RTYPE_FPU | 0}, \
2548 {"$f1", RTYPE_FPU | 1}, \
2549 {"$f2", RTYPE_FPU | 2}, \
2550 {"$f3", RTYPE_FPU | 3}, \
2551 {"$f4", RTYPE_FPU | 4}, \
2552 {"$f5", RTYPE_FPU | 5}, \
2553 {"$f6", RTYPE_FPU | 6}, \
2554 {"$f7", RTYPE_FPU | 7}, \
2555 {"$f8", RTYPE_FPU | 8}, \
2556 {"$f9", RTYPE_FPU | 9}, \
2557 {"$f10", RTYPE_FPU | 10}, \
2558 {"$f11", RTYPE_FPU | 11}, \
2559 {"$f12", RTYPE_FPU | 12}, \
2560 {"$f13", RTYPE_FPU | 13}, \
2561 {"$f14", RTYPE_FPU | 14}, \
2562 {"$f15", RTYPE_FPU | 15}, \
2563 {"$f16", RTYPE_FPU | 16}, \
2564 {"$f17", RTYPE_FPU | 17}, \
2565 {"$f18", RTYPE_FPU | 18}, \
2566 {"$f19", RTYPE_FPU | 19}, \
2567 {"$f20", RTYPE_FPU | 20}, \
2568 {"$f21", RTYPE_FPU | 21}, \
2569 {"$f22", RTYPE_FPU | 22}, \
2570 {"$f23", RTYPE_FPU | 23}, \
2571 {"$f24", RTYPE_FPU | 24}, \
2572 {"$f25", RTYPE_FPU | 25}, \
2573 {"$f26", RTYPE_FPU | 26}, \
2574 {"$f27", RTYPE_FPU | 27}, \
2575 {"$f28", RTYPE_FPU | 28}, \
2576 {"$f29", RTYPE_FPU | 29}, \
2577 {"$f30", RTYPE_FPU | 30}, \
2578 {"$f31", RTYPE_FPU | 31}
2579
2580#define FPU_CONDITION_CODE_NAMES \
2581 {"$fcc0", RTYPE_FCC | 0}, \
2582 {"$fcc1", RTYPE_FCC | 1}, \
2583 {"$fcc2", RTYPE_FCC | 2}, \
2584 {"$fcc3", RTYPE_FCC | 3}, \
2585 {"$fcc4", RTYPE_FCC | 4}, \
2586 {"$fcc5", RTYPE_FCC | 5}, \
2587 {"$fcc6", RTYPE_FCC | 6}, \
2588 {"$fcc7", RTYPE_FCC | 7}
2589
2590#define COPROC_CONDITION_CODE_NAMES \
2591 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2592 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2593 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2594 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2595 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2596 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2597 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2598 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2599
2600#define N32N64_SYMBOLIC_REGISTER_NAMES \
2601 {"$a4", RTYPE_GP | 8}, \
2602 {"$a5", RTYPE_GP | 9}, \
2603 {"$a6", RTYPE_GP | 10}, \
2604 {"$a7", RTYPE_GP | 11}, \
2605 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2606 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2607 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2608 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2609 {"$t0", RTYPE_GP | 12}, \
2610 {"$t1", RTYPE_GP | 13}, \
2611 {"$t2", RTYPE_GP | 14}, \
2612 {"$t3", RTYPE_GP | 15}
2613
2614#define O32_SYMBOLIC_REGISTER_NAMES \
2615 {"$t0", RTYPE_GP | 8}, \
2616 {"$t1", RTYPE_GP | 9}, \
2617 {"$t2", RTYPE_GP | 10}, \
2618 {"$t3", RTYPE_GP | 11}, \
2619 {"$t4", RTYPE_GP | 12}, \
2620 {"$t5", RTYPE_GP | 13}, \
2621 {"$t6", RTYPE_GP | 14}, \
2622 {"$t7", RTYPE_GP | 15}, \
2623 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2624 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2625 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
3739860c 2626 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
707bfff6
TS
2627
2628/* Remaining symbolic register names */
2629#define SYMBOLIC_REGISTER_NAMES \
2630 {"$zero", RTYPE_GP | 0}, \
2631 {"$at", RTYPE_GP | 1}, \
2632 {"$AT", RTYPE_GP | 1}, \
2633 {"$v0", RTYPE_GP | 2}, \
2634 {"$v1", RTYPE_GP | 3}, \
2635 {"$a0", RTYPE_GP | 4}, \
2636 {"$a1", RTYPE_GP | 5}, \
2637 {"$a2", RTYPE_GP | 6}, \
2638 {"$a3", RTYPE_GP | 7}, \
2639 {"$s0", RTYPE_GP | 16}, \
2640 {"$s1", RTYPE_GP | 17}, \
2641 {"$s2", RTYPE_GP | 18}, \
2642 {"$s3", RTYPE_GP | 19}, \
2643 {"$s4", RTYPE_GP | 20}, \
2644 {"$s5", RTYPE_GP | 21}, \
2645 {"$s6", RTYPE_GP | 22}, \
2646 {"$s7", RTYPE_GP | 23}, \
2647 {"$t8", RTYPE_GP | 24}, \
2648 {"$t9", RTYPE_GP | 25}, \
2649 {"$k0", RTYPE_GP | 26}, \
2650 {"$kt0", RTYPE_GP | 26}, \
2651 {"$k1", RTYPE_GP | 27}, \
2652 {"$kt1", RTYPE_GP | 27}, \
2653 {"$gp", RTYPE_GP | 28}, \
2654 {"$sp", RTYPE_GP | 29}, \
2655 {"$s8", RTYPE_GP | 30}, \
2656 {"$fp", RTYPE_GP | 30}, \
2657 {"$ra", RTYPE_GP | 31}
2658
2659#define MIPS16_SPECIAL_REGISTER_NAMES \
2660 {"$pc", RTYPE_PC | 0}
2661
2662#define MDMX_VECTOR_REGISTER_NAMES \
2663 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2664 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2665 {"$v2", RTYPE_VEC | 2}, \
2666 {"$v3", RTYPE_VEC | 3}, \
2667 {"$v4", RTYPE_VEC | 4}, \
2668 {"$v5", RTYPE_VEC | 5}, \
2669 {"$v6", RTYPE_VEC | 6}, \
2670 {"$v7", RTYPE_VEC | 7}, \
2671 {"$v8", RTYPE_VEC | 8}, \
2672 {"$v9", RTYPE_VEC | 9}, \
2673 {"$v10", RTYPE_VEC | 10}, \
2674 {"$v11", RTYPE_VEC | 11}, \
2675 {"$v12", RTYPE_VEC | 12}, \
2676 {"$v13", RTYPE_VEC | 13}, \
2677 {"$v14", RTYPE_VEC | 14}, \
2678 {"$v15", RTYPE_VEC | 15}, \
2679 {"$v16", RTYPE_VEC | 16}, \
2680 {"$v17", RTYPE_VEC | 17}, \
2681 {"$v18", RTYPE_VEC | 18}, \
2682 {"$v19", RTYPE_VEC | 19}, \
2683 {"$v20", RTYPE_VEC | 20}, \
2684 {"$v21", RTYPE_VEC | 21}, \
2685 {"$v22", RTYPE_VEC | 22}, \
2686 {"$v23", RTYPE_VEC | 23}, \
2687 {"$v24", RTYPE_VEC | 24}, \
2688 {"$v25", RTYPE_VEC | 25}, \
2689 {"$v26", RTYPE_VEC | 26}, \
2690 {"$v27", RTYPE_VEC | 27}, \
2691 {"$v28", RTYPE_VEC | 28}, \
2692 {"$v29", RTYPE_VEC | 29}, \
2693 {"$v30", RTYPE_VEC | 30}, \
2694 {"$v31", RTYPE_VEC | 31}
2695
14daeee3
RS
2696#define R5900_I_NAMES \
2697 {"$I", RTYPE_R5900_I | 0}
2698
2699#define R5900_Q_NAMES \
2700 {"$Q", RTYPE_R5900_Q | 0}
2701
2702#define R5900_R_NAMES \
2703 {"$R", RTYPE_R5900_R | 0}
2704
2705#define R5900_ACC_NAMES \
2706 {"$ACC", RTYPE_R5900_ACC | 0 }
2707
707bfff6
TS
2708#define MIPS_DSP_ACCUMULATOR_NAMES \
2709 {"$ac0", RTYPE_ACC | 0}, \
2710 {"$ac1", RTYPE_ACC | 1}, \
2711 {"$ac2", RTYPE_ACC | 2}, \
2712 {"$ac3", RTYPE_ACC | 3}
2713
2714static const struct regname reg_names[] = {
2715 GENERIC_REGISTER_NUMBERS,
2716 FPU_REGISTER_NAMES,
2717 FPU_CONDITION_CODE_NAMES,
2718 COPROC_CONDITION_CODE_NAMES,
2719
2720 /* The $txx registers depends on the abi,
2721 these will be added later into the symbol table from
3739860c 2722 one of the tables below once mips_abi is set after
707bfff6
TS
2723 parsing of arguments from the command line. */
2724 SYMBOLIC_REGISTER_NAMES,
2725
2726 MIPS16_SPECIAL_REGISTER_NAMES,
2727 MDMX_VECTOR_REGISTER_NAMES,
14daeee3
RS
2728 R5900_I_NAMES,
2729 R5900_Q_NAMES,
2730 R5900_R_NAMES,
2731 R5900_ACC_NAMES,
707bfff6
TS
2732 MIPS_DSP_ACCUMULATOR_NAMES,
2733 {0, 0}
2734};
2735
2736static const struct regname reg_names_o32[] = {
2737 O32_SYMBOLIC_REGISTER_NAMES,
2738 {0, 0}
2739};
2740
2741static const struct regname reg_names_n32n64[] = {
2742 N32N64_SYMBOLIC_REGISTER_NAMES,
2743 {0, 0}
2744};
2745
a92713e6
RS
2746/* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2747 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2748 of these register symbols, return the associated vector register,
2749 otherwise return SYMVAL itself. */
df58fc94 2750
a92713e6
RS
2751static unsigned int
2752mips_prefer_vec_regno (unsigned int symval)
707bfff6 2753{
a92713e6
RS
2754 if ((symval & -2) == (RTYPE_GP | 2))
2755 return RTYPE_VEC | (symval & 1);
2756 return symval;
2757}
2758
14daeee3
RS
2759/* Return true if string [S, E) is a valid register name, storing its
2760 symbol value in *SYMVAL_PTR if so. */
a92713e6
RS
2761
2762static bfd_boolean
14daeee3 2763mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
a92713e6 2764{
707bfff6 2765 char save_c;
14daeee3 2766 symbolS *symbol;
707bfff6
TS
2767
2768 /* Terminate name. */
2769 save_c = *e;
2770 *e = '\0';
2771
a92713e6
RS
2772 /* Look up the name. */
2773 symbol = symbol_find (s);
2774 *e = save_c;
2775
2776 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2777 return FALSE;
2778
14daeee3
RS
2779 *symval_ptr = S_GET_VALUE (symbol);
2780 return TRUE;
2781}
2782
2783/* Return true if the string at *SPTR is a valid register name. Allow it
2784 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2785 is nonnull.
2786
2787 When returning true, move *SPTR past the register, store the
2788 register's symbol value in *SYMVAL_PTR and the channel mask in
2789 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2790 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2791 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2792
2793static bfd_boolean
2794mips_parse_register (char **sptr, unsigned int *symval_ptr,
2795 unsigned int *channels_ptr)
2796{
2797 char *s, *e, *m;
2798 const char *q;
2799 unsigned int channels, symval, bit;
2800
2801 /* Find end of name. */
2802 s = e = *sptr;
2803 if (is_name_beginner (*e))
2804 ++e;
2805 while (is_part_of_name (*e))
2806 ++e;
2807
2808 channels = 0;
2809 if (!mips_parse_register_1 (s, e, &symval))
2810 {
2811 if (!channels_ptr)
2812 return FALSE;
2813
2814 /* Eat characters from the end of the string that are valid
2815 channel suffixes. The preceding register must be $ACC or
2816 end with a digit, so there is no ambiguity. */
2817 bit = 1;
2818 m = e;
2819 for (q = "wzyx"; *q; q++, bit <<= 1)
2820 if (m > s && m[-1] == *q)
2821 {
2822 --m;
2823 channels |= bit;
2824 }
2825
2826 if (channels == 0
2827 || !mips_parse_register_1 (s, m, &symval)
2828 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2829 return FALSE;
2830 }
2831
a92713e6 2832 *sptr = e;
14daeee3
RS
2833 *symval_ptr = symval;
2834 if (channels_ptr)
2835 *channels_ptr = channels;
a92713e6
RS
2836 return TRUE;
2837}
2838
2839/* Check if SPTR points at a valid register specifier according to TYPES.
2840 If so, then return 1, advance S to consume the specifier and store
2841 the register's number in REGNOP, otherwise return 0. */
2842
2843static int
2844reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2845{
2846 unsigned int regno;
2847
14daeee3 2848 if (mips_parse_register (s, &regno, NULL))
707bfff6 2849 {
a92713e6
RS
2850 if (types & RTYPE_VEC)
2851 regno = mips_prefer_vec_regno (regno);
2852 if (regno & types)
2853 regno &= RNUM_MASK;
2854 else
2855 regno = ~0;
707bfff6 2856 }
a92713e6 2857 else
707bfff6 2858 {
a92713e6 2859 if (types & RWARN)
1661c76c 2860 as_warn (_("unrecognized register name `%s'"), *s);
a92713e6 2861 regno = ~0;
707bfff6 2862 }
707bfff6 2863 if (regnop)
a92713e6
RS
2864 *regnop = regno;
2865 return regno <= RNUM_MASK;
707bfff6
TS
2866}
2867
14daeee3
RS
2868/* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2869 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2870
2871static char *
2872mips_parse_vu0_channels (char *s, unsigned int *channels)
2873{
2874 unsigned int i;
2875
2876 *channels = 0;
2877 for (i = 0; i < 4; i++)
2878 if (*s == "xyzw"[i])
2879 {
2880 *channels |= 1 << (3 - i);
2881 ++s;
2882 }
2883 return s;
2884}
2885
a92713e6
RS
2886/* Token types for parsed operand lists. */
2887enum mips_operand_token_type {
2888 /* A plain register, e.g. $f2. */
2889 OT_REG,
df58fc94 2890
14daeee3
RS
2891 /* A 4-bit XYZW channel mask. */
2892 OT_CHANNELS,
2893
56d438b1
CF
2894 /* A constant vector index, e.g. [1]. */
2895 OT_INTEGER_INDEX,
2896
2897 /* A register vector index, e.g. [$2]. */
2898 OT_REG_INDEX,
df58fc94 2899
a92713e6
RS
2900 /* A continuous range of registers, e.g. $s0-$s4. */
2901 OT_REG_RANGE,
2902
2903 /* A (possibly relocated) expression. */
2904 OT_INTEGER,
2905
2906 /* A floating-point value. */
2907 OT_FLOAT,
2908
2909 /* A single character. This can be '(', ')' or ',', but '(' only appears
2910 before OT_REGs. */
2911 OT_CHAR,
2912
14daeee3
RS
2913 /* A doubled character, either "--" or "++". */
2914 OT_DOUBLE_CHAR,
2915
a92713e6
RS
2916 /* The end of the operand list. */
2917 OT_END
2918};
2919
2920/* A parsed operand token. */
2921struct mips_operand_token
2922{
2923 /* The type of token. */
2924 enum mips_operand_token_type type;
2925 union
2926 {
56d438b1 2927 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
a92713e6
RS
2928 unsigned int regno;
2929
14daeee3
RS
2930 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2931 unsigned int channels;
2932
56d438b1
CF
2933 /* The integer value of an OT_INTEGER_INDEX. */
2934 addressT index;
a92713e6
RS
2935
2936 /* The two register symbol values involved in an OT_REG_RANGE. */
2937 struct {
2938 unsigned int regno1;
2939 unsigned int regno2;
2940 } reg_range;
2941
2942 /* The value of an OT_INTEGER. The value is represented as an
2943 expression and the relocation operators that were applied to
2944 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2945 relocation operators were used. */
2946 struct {
2947 expressionS value;
2948 bfd_reloc_code_real_type relocs[3];
2949 } integer;
2950
2951 /* The binary data for an OT_FLOAT constant, and the number of bytes
2952 in the constant. */
2953 struct {
2954 unsigned char data[8];
2955 int length;
2956 } flt;
2957
14daeee3 2958 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
a92713e6
RS
2959 char ch;
2960 } u;
2961};
2962
2963/* An obstack used to construct lists of mips_operand_tokens. */
2964static struct obstack mips_operand_tokens;
2965
2966/* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2967
2968static void
2969mips_add_token (struct mips_operand_token *token,
2970 enum mips_operand_token_type type)
2971{
2972 token->type = type;
2973 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2974}
2975
2976/* Check whether S is '(' followed by a register name. Add OT_CHAR
2977 and OT_REG tokens for them if so, and return a pointer to the first
2978 unconsumed character. Return null otherwise. */
2979
2980static char *
2981mips_parse_base_start (char *s)
2982{
2983 struct mips_operand_token token;
14daeee3
RS
2984 unsigned int regno, channels;
2985 bfd_boolean decrement_p;
df58fc94 2986
a92713e6
RS
2987 if (*s != '(')
2988 return 0;
2989
2990 ++s;
2991 SKIP_SPACE_TABS (s);
14daeee3
RS
2992
2993 /* Only match "--" as part of a base expression. In other contexts "--X"
2994 is a double negative. */
2995 decrement_p = (s[0] == '-' && s[1] == '-');
2996 if (decrement_p)
2997 {
2998 s += 2;
2999 SKIP_SPACE_TABS (s);
3000 }
3001
3002 /* Allow a channel specifier because that leads to better error messages
3003 than treating something like "$vf0x++" as an expression. */
3004 if (!mips_parse_register (&s, &regno, &channels))
a92713e6
RS
3005 return 0;
3006
3007 token.u.ch = '(';
3008 mips_add_token (&token, OT_CHAR);
3009
14daeee3
RS
3010 if (decrement_p)
3011 {
3012 token.u.ch = '-';
3013 mips_add_token (&token, OT_DOUBLE_CHAR);
3014 }
3015
a92713e6
RS
3016 token.u.regno = regno;
3017 mips_add_token (&token, OT_REG);
3018
14daeee3
RS
3019 if (channels)
3020 {
3021 token.u.channels = channels;
3022 mips_add_token (&token, OT_CHANNELS);
3023 }
3024
3025 /* For consistency, only match "++" as part of base expressions too. */
3026 SKIP_SPACE_TABS (s);
3027 if (s[0] == '+' && s[1] == '+')
3028 {
3029 s += 2;
3030 token.u.ch = '+';
3031 mips_add_token (&token, OT_DOUBLE_CHAR);
3032 }
3033
a92713e6
RS
3034 return s;
3035}
3036
3037/* Parse one or more tokens from S. Return a pointer to the first
3038 unconsumed character on success. Return null if an error was found
3039 and store the error text in insn_error. FLOAT_FORMAT is as for
3040 mips_parse_arguments. */
3041
3042static char *
3043mips_parse_argument_token (char *s, char float_format)
3044{
3045 char *end, *save_in, *err;
14daeee3 3046 unsigned int regno1, regno2, channels;
a92713e6
RS
3047 struct mips_operand_token token;
3048
3049 /* First look for "($reg", since we want to treat that as an
3050 OT_CHAR and OT_REG rather than an expression. */
3051 end = mips_parse_base_start (s);
3052 if (end)
3053 return end;
3054
3055 /* Handle other characters that end up as OT_CHARs. */
3056 if (*s == ')' || *s == ',')
3057 {
3058 token.u.ch = *s;
3059 mips_add_token (&token, OT_CHAR);
3060 ++s;
3061 return s;
3062 }
3063
3064 /* Handle tokens that start with a register. */
14daeee3 3065 if (mips_parse_register (&s, &regno1, &channels))
df58fc94 3066 {
14daeee3
RS
3067 if (channels)
3068 {
3069 /* A register and a VU0 channel suffix. */
3070 token.u.regno = regno1;
3071 mips_add_token (&token, OT_REG);
3072
3073 token.u.channels = channels;
3074 mips_add_token (&token, OT_CHANNELS);
3075 return s;
3076 }
3077
a92713e6
RS
3078 SKIP_SPACE_TABS (s);
3079 if (*s == '-')
df58fc94 3080 {
a92713e6
RS
3081 /* A register range. */
3082 ++s;
3083 SKIP_SPACE_TABS (s);
14daeee3 3084 if (!mips_parse_register (&s, &regno2, NULL))
a92713e6 3085 {
1661c76c 3086 set_insn_error (0, _("invalid register range"));
a92713e6
RS
3087 return 0;
3088 }
df58fc94 3089
a92713e6
RS
3090 token.u.reg_range.regno1 = regno1;
3091 token.u.reg_range.regno2 = regno2;
3092 mips_add_token (&token, OT_REG_RANGE);
3093 return s;
3094 }
a92713e6 3095
56d438b1
CF
3096 /* Add the register itself. */
3097 token.u.regno = regno1;
3098 mips_add_token (&token, OT_REG);
3099
3100 /* Check for a vector index. */
3101 if (*s == '[')
3102 {
a92713e6
RS
3103 ++s;
3104 SKIP_SPACE_TABS (s);
56d438b1
CF
3105 if (mips_parse_register (&s, &token.u.regno, NULL))
3106 mips_add_token (&token, OT_REG_INDEX);
3107 else
a92713e6 3108 {
56d438b1
CF
3109 expressionS element;
3110
3111 my_getExpression (&element, s);
3112 if (element.X_op != O_constant)
3113 {
3114 set_insn_error (0, _("vector element must be constant"));
3115 return 0;
3116 }
3117 s = expr_end;
3118 token.u.index = element.X_add_number;
3119 mips_add_token (&token, OT_INTEGER_INDEX);
a92713e6 3120 }
a92713e6
RS
3121 SKIP_SPACE_TABS (s);
3122 if (*s != ']')
3123 {
1661c76c 3124 set_insn_error (0, _("missing `]'"));
a92713e6
RS
3125 return 0;
3126 }
3127 ++s;
df58fc94 3128 }
a92713e6 3129 return s;
df58fc94
RS
3130 }
3131
a92713e6
RS
3132 if (float_format)
3133 {
3134 /* First try to treat expressions as floats. */
3135 save_in = input_line_pointer;
3136 input_line_pointer = s;
3137 err = md_atof (float_format, (char *) token.u.flt.data,
3138 &token.u.flt.length);
3139 end = input_line_pointer;
3140 input_line_pointer = save_in;
3141 if (err && *err)
3142 {
e3de51ce 3143 set_insn_error (0, err);
a92713e6
RS
3144 return 0;
3145 }
3146 if (s != end)
3147 {
3148 mips_add_token (&token, OT_FLOAT);
3149 return end;
3150 }
3151 }
3152
3153 /* Treat everything else as an integer expression. */
3154 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3155 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3156 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3157 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3158 s = expr_end;
3159 mips_add_token (&token, OT_INTEGER);
3160 return s;
3161}
3162
3163/* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3164 if expressions should be treated as 32-bit floating-point constants,
3165 'd' if they should be treated as 64-bit floating-point constants,
3166 or 0 if they should be treated as integer expressions (the usual case).
3167
3168 Return a list of tokens on success, otherwise return 0. The caller
3169 must obstack_free the list after use. */
3170
3171static struct mips_operand_token *
3172mips_parse_arguments (char *s, char float_format)
3173{
3174 struct mips_operand_token token;
3175
3176 SKIP_SPACE_TABS (s);
3177 while (*s)
3178 {
3179 s = mips_parse_argument_token (s, float_format);
3180 if (!s)
3181 {
3182 obstack_free (&mips_operand_tokens,
3183 obstack_finish (&mips_operand_tokens));
3184 return 0;
3185 }
3186 SKIP_SPACE_TABS (s);
3187 }
3188 mips_add_token (&token, OT_END);
3189 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
df58fc94
RS
3190}
3191
d301a56b
RS
3192/* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3193 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
037b32b9
AN
3194
3195static bfd_boolean
f79e2745 3196is_opcode_valid (const struct mips_opcode *mo)
037b32b9
AN
3197{
3198 int isa = mips_opts.isa;
846ef2d0 3199 int ase = mips_opts.ase;
037b32b9 3200 int fp_s, fp_d;
c6278170 3201 unsigned int i;
037b32b9 3202
c6278170
RS
3203 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
3204 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3205 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3206 ase |= mips_ases[i].flags64;
037b32b9 3207
d301a56b 3208 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
037b32b9
AN
3209 return FALSE;
3210
3211 /* Check whether the instruction or macro requires single-precision or
3212 double-precision floating-point support. Note that this information is
3213 stored differently in the opcode table for insns and macros. */
3214 if (mo->pinfo == INSN_MACRO)
3215 {
3216 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3217 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3218 }
3219 else
3220 {
3221 fp_s = mo->pinfo & FP_S;
3222 fp_d = mo->pinfo & FP_D;
3223 }
3224
3225 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3226 return FALSE;
3227
3228 if (fp_s && mips_opts.soft_float)
3229 return FALSE;
3230
3231 return TRUE;
3232}
3233
3234/* Return TRUE if the MIPS16 opcode MO is valid on the currently
3235 selected ISA and architecture. */
3236
3237static bfd_boolean
3238is_opcode_valid_16 (const struct mips_opcode *mo)
3239{
d301a56b 3240 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
037b32b9
AN
3241}
3242
df58fc94
RS
3243/* Return TRUE if the size of the microMIPS opcode MO matches one
3244 explicitly requested. Always TRUE in the standard MIPS mode. */
3245
3246static bfd_boolean
3247is_size_valid (const struct mips_opcode *mo)
3248{
3249 if (!mips_opts.micromips)
3250 return TRUE;
3251
833794fc
MR
3252 if (mips_opts.insn32)
3253 {
3254 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3255 return FALSE;
3256 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3257 return FALSE;
3258 }
df58fc94
RS
3259 if (!forced_insn_length)
3260 return TRUE;
3261 if (mo->pinfo == INSN_MACRO)
3262 return FALSE;
3263 return forced_insn_length == micromips_insn_length (mo);
3264}
3265
3266/* Return TRUE if the microMIPS opcode MO is valid for the delay slot
e64af278
MR
3267 of the preceding instruction. Always TRUE in the standard MIPS mode.
3268
3269 We don't accept macros in 16-bit delay slots to avoid a case where
3270 a macro expansion fails because it relies on a preceding 32-bit real
3271 instruction to have matched and does not handle the operands correctly.
3272 The only macros that may expand to 16-bit instructions are JAL that
3273 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3274 and BGT (that likewise cannot be placed in a delay slot) that decay to
3275 a NOP. In all these cases the macros precede any corresponding real
3276 instruction definitions in the opcode table, so they will match in the
3277 second pass where the size of the delay slot is ignored and therefore
3278 produce correct code. */
df58fc94
RS
3279
3280static bfd_boolean
3281is_delay_slot_valid (const struct mips_opcode *mo)
3282{
3283 if (!mips_opts.micromips)
3284 return TRUE;
3285
3286 if (mo->pinfo == INSN_MACRO)
c06dec14 3287 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
df58fc94
RS
3288 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3289 && micromips_insn_length (mo) != 4)
3290 return FALSE;
3291 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3292 && micromips_insn_length (mo) != 2)
3293 return FALSE;
3294
3295 return TRUE;
3296}
3297
fc76e730
RS
3298/* For consistency checking, verify that all bits of OPCODE are specified
3299 either by the match/mask part of the instruction definition, or by the
3300 operand list. Also build up a list of operands in OPERANDS.
3301
3302 INSN_BITS says which bits of the instruction are significant.
3303 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3304 provides the mips_operand description of each operand. DECODE_OPERAND
3305 is null for MIPS16 instructions. */
ab902481
RS
3306
3307static int
3308validate_mips_insn (const struct mips_opcode *opcode,
3309 unsigned long insn_bits,
fc76e730
RS
3310 const struct mips_operand *(*decode_operand) (const char *),
3311 struct mips_operand_array *operands)
ab902481
RS
3312{
3313 const char *s;
fc76e730 3314 unsigned long used_bits, doubled, undefined, opno, mask;
ab902481
RS
3315 const struct mips_operand *operand;
3316
fc76e730
RS
3317 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3318 if ((mask & opcode->match) != opcode->match)
ab902481
RS
3319 {
3320 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3321 opcode->name, opcode->args);
3322 return 0;
3323 }
3324 used_bits = 0;
fc76e730 3325 opno = 0;
14daeee3
RS
3326 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3327 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
ab902481
RS
3328 for (s = opcode->args; *s; ++s)
3329 switch (*s)
3330 {
3331 case ',':
3332 case '(':
3333 case ')':
3334 break;
3335
14daeee3
RS
3336 case '#':
3337 s++;
3338 break;
3339
ab902481 3340 default:
fc76e730
RS
3341 if (!decode_operand)
3342 operand = decode_mips16_operand (*s, FALSE);
3343 else
3344 operand = decode_operand (s);
3345 if (!operand && opcode->pinfo != INSN_MACRO)
ab902481
RS
3346 {
3347 as_bad (_("internal: unknown operand type: %s %s"),
3348 opcode->name, opcode->args);
3349 return 0;
3350 }
fc76e730
RS
3351 gas_assert (opno < MAX_OPERANDS);
3352 operands->operand[opno] = operand;
14daeee3 3353 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
fc76e730 3354 {
14daeee3 3355 used_bits = mips_insert_operand (operand, used_bits, -1);
fc76e730
RS
3356 if (operand->type == OP_MDMX_IMM_REG)
3357 /* Bit 5 is the format selector (OB vs QH). The opcode table
3358 has separate entries for each format. */
3359 used_bits &= ~(1 << (operand->lsb + 5));
3360 if (operand->type == OP_ENTRY_EXIT_LIST)
3361 used_bits &= ~(mask & 0x700);
3362 }
ab902481 3363 /* Skip prefix characters. */
7361da2c 3364 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
ab902481 3365 ++s;
fc76e730 3366 opno += 1;
ab902481
RS
3367 break;
3368 }
fc76e730 3369 doubled = used_bits & mask & insn_bits;
ab902481
RS
3370 if (doubled)
3371 {
3372 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3373 " %s %s"), doubled, opcode->name, opcode->args);
3374 return 0;
3375 }
fc76e730 3376 used_bits |= mask;
ab902481 3377 undefined = ~used_bits & insn_bits;
fc76e730 3378 if (opcode->pinfo != INSN_MACRO && undefined)
ab902481
RS
3379 {
3380 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3381 undefined, opcode->name, opcode->args);
3382 return 0;
3383 }
3384 used_bits &= ~insn_bits;
3385 if (used_bits)
3386 {
3387 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3388 used_bits, opcode->name, opcode->args);
3389 return 0;
3390 }
3391 return 1;
3392}
3393
fc76e730
RS
3394/* The MIPS16 version of validate_mips_insn. */
3395
3396static int
3397validate_mips16_insn (const struct mips_opcode *opcode,
3398 struct mips_operand_array *operands)
3399{
3400 if (opcode->args[0] == 'a' || opcode->args[0] == 'i')
3401 {
3402 /* In this case OPCODE defines the first 16 bits in a 32-bit jump
3403 instruction. Use TMP to describe the full instruction. */
3404 struct mips_opcode tmp;
3405
3406 tmp = *opcode;
3407 tmp.match <<= 16;
3408 tmp.mask <<= 16;
3409 return validate_mips_insn (&tmp, 0xffffffff, 0, operands);
3410 }
3411 return validate_mips_insn (opcode, 0xffff, 0, operands);
3412}
3413
ab902481
RS
3414/* The microMIPS version of validate_mips_insn. */
3415
3416static int
fc76e730
RS
3417validate_micromips_insn (const struct mips_opcode *opc,
3418 struct mips_operand_array *operands)
ab902481
RS
3419{
3420 unsigned long insn_bits;
3421 unsigned long major;
3422 unsigned int length;
3423
fc76e730
RS
3424 if (opc->pinfo == INSN_MACRO)
3425 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3426 operands);
3427
ab902481
RS
3428 length = micromips_insn_length (opc);
3429 if (length != 2 && length != 4)
3430 {
1661c76c 3431 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
ab902481
RS
3432 "%s %s"), length, opc->name, opc->args);
3433 return 0;
3434 }
3435 major = opc->match >> (10 + 8 * (length - 2));
3436 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3437 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3438 {
1661c76c 3439 as_bad (_("internal error: bad microMIPS opcode "
ab902481
RS
3440 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3441 return 0;
3442 }
3443
3444 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3445 insn_bits = 1 << 4 * length;
3446 insn_bits <<= 4 * length;
3447 insn_bits -= 1;
fc76e730
RS
3448 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3449 operands);
ab902481
RS
3450}
3451
707bfff6
TS
3452/* This function is called once, at assembler startup time. It should set up
3453 all the tables, etc. that the MD part of the assembler will need. */
156c2f8b 3454
252b5132 3455void
17a2f251 3456md_begin (void)
252b5132 3457{
3994f87e 3458 const char *retval = NULL;
156c2f8b 3459 int i = 0;
252b5132 3460 int broken = 0;
1f25f5d3 3461
0a44bf69
RS
3462 if (mips_pic != NO_PIC)
3463 {
3464 if (g_switch_seen && g_switch_value != 0)
3465 as_bad (_("-G may not be used in position-independent code"));
3466 g_switch_value = 0;
3467 }
00acd688
CM
3468 else if (mips_abicalls)
3469 {
3470 if (g_switch_seen && g_switch_value != 0)
3471 as_bad (_("-G may not be used with abicalls"));
3472 g_switch_value = 0;
3473 }
0a44bf69 3474
0b35dfee 3475 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
1661c76c 3476 as_warn (_("could not set architecture and machine"));
252b5132 3477
252b5132
RH
3478 op_hash = hash_new ();
3479
fc76e730 3480 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
252b5132
RH
3481 for (i = 0; i < NUMOPCODES;)
3482 {
3483 const char *name = mips_opcodes[i].name;
3484
17a2f251 3485 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
252b5132
RH
3486 if (retval != NULL)
3487 {
3488 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3489 mips_opcodes[i].name, retval);
3490 /* Probably a memory allocation problem? Give up now. */
1661c76c 3491 as_fatal (_("broken assembler, no assembly attempted"));
252b5132
RH
3492 }
3493 do
3494 {
fc76e730
RS
3495 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3496 decode_mips_operand, &mips_operands[i]))
3497 broken = 1;
3498 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
252b5132 3499 {
fc76e730
RS
3500 create_insn (&nop_insn, mips_opcodes + i);
3501 if (mips_fix_loongson2f_nop)
3502 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3503 nop_insn.fixed_p = 1;
252b5132
RH
3504 }
3505 ++i;
3506 }
3507 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3508 }
3509
3510 mips16_op_hash = hash_new ();
fc76e730
RS
3511 mips16_operands = XCNEWVEC (struct mips_operand_array,
3512 bfd_mips16_num_opcodes);
252b5132
RH
3513
3514 i = 0;
3515 while (i < bfd_mips16_num_opcodes)
3516 {
3517 const char *name = mips16_opcodes[i].name;
3518
17a2f251 3519 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
252b5132
RH
3520 if (retval != NULL)
3521 as_fatal (_("internal: can't hash `%s': %s"),
3522 mips16_opcodes[i].name, retval);
3523 do
3524 {
fc76e730
RS
3525 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3526 broken = 1;
1e915849
RS
3527 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3528 {
3529 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3530 mips16_nop_insn.fixed_p = 1;
3531 }
252b5132
RH
3532 ++i;
3533 }
3534 while (i < bfd_mips16_num_opcodes
3535 && strcmp (mips16_opcodes[i].name, name) == 0);
3536 }
3537
df58fc94 3538 micromips_op_hash = hash_new ();
fc76e730
RS
3539 micromips_operands = XCNEWVEC (struct mips_operand_array,
3540 bfd_micromips_num_opcodes);
df58fc94
RS
3541
3542 i = 0;
3543 while (i < bfd_micromips_num_opcodes)
3544 {
3545 const char *name = micromips_opcodes[i].name;
3546
3547 retval = hash_insert (micromips_op_hash, name,
3548 (void *) &micromips_opcodes[i]);
3549 if (retval != NULL)
3550 as_fatal (_("internal: can't hash `%s': %s"),
3551 micromips_opcodes[i].name, retval);
3552 do
fc76e730
RS
3553 {
3554 struct mips_cl_insn *micromips_nop_insn;
3555
3556 if (!validate_micromips_insn (&micromips_opcodes[i],
3557 &micromips_operands[i]))
3558 broken = 1;
3559
3560 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3561 {
3562 if (micromips_insn_length (micromips_opcodes + i) == 2)
3563 micromips_nop_insn = &micromips_nop16_insn;
3564 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3565 micromips_nop_insn = &micromips_nop32_insn;
3566 else
3567 continue;
3568
3569 if (micromips_nop_insn->insn_mo == NULL
3570 && strcmp (name, "nop") == 0)
3571 {
3572 create_insn (micromips_nop_insn, micromips_opcodes + i);
3573 micromips_nop_insn->fixed_p = 1;
3574 }
3575 }
3576 }
df58fc94
RS
3577 while (++i < bfd_micromips_num_opcodes
3578 && strcmp (micromips_opcodes[i].name, name) == 0);
3579 }
3580
252b5132 3581 if (broken)
1661c76c 3582 as_fatal (_("broken assembler, no assembly attempted"));
252b5132
RH
3583
3584 /* We add all the general register names to the symbol table. This
3585 helps us detect invalid uses of them. */
3739860c 3586 for (i = 0; reg_names[i].name; i++)
707bfff6 3587 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
8fc4ee9b 3588 reg_names[i].num, /* & RNUM_MASK, */
707bfff6
TS
3589 &zero_address_frag));
3590 if (HAVE_NEWABI)
3739860c 3591 for (i = 0; reg_names_n32n64[i].name; i++)
707bfff6 3592 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
8fc4ee9b 3593 reg_names_n32n64[i].num, /* & RNUM_MASK, */
252b5132 3594 &zero_address_frag));
707bfff6 3595 else
3739860c 3596 for (i = 0; reg_names_o32[i].name; i++)
707bfff6 3597 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
8fc4ee9b 3598 reg_names_o32[i].num, /* & RNUM_MASK, */
6047c971 3599 &zero_address_frag));
6047c971 3600
14daeee3
RS
3601 for (i = 0; i < 32; i++)
3602 {
3603 char regname[7];
3604
3605 /* R5900 VU0 floating-point register. */
3606 regname[sizeof (rename) - 1] = 0;
3607 snprintf (regname, sizeof (regname) - 1, "$vf%d", i);
3608 symbol_table_insert (symbol_new (regname, reg_section,
3609 RTYPE_VF | i, &zero_address_frag));
3610
3611 /* R5900 VU0 integer register. */
3612 snprintf (regname, sizeof (regname) - 1, "$vi%d", i);
3613 symbol_table_insert (symbol_new (regname, reg_section,
3614 RTYPE_VI | i, &zero_address_frag));
3615
56d438b1
CF
3616 /* MSA register. */
3617 snprintf (regname, sizeof (regname) - 1, "$w%d", i);
3618 symbol_table_insert (symbol_new (regname, reg_section,
3619 RTYPE_MSA | i, &zero_address_frag));
14daeee3
RS
3620 }
3621
a92713e6
RS
3622 obstack_init (&mips_operand_tokens);
3623
7d10b47d 3624 mips_no_prev_insn ();
252b5132
RH
3625
3626 mips_gprmask = 0;
3627 mips_cprmask[0] = 0;
3628 mips_cprmask[1] = 0;
3629 mips_cprmask[2] = 0;
3630 mips_cprmask[3] = 0;
3631
3632 /* set the default alignment for the text section (2**2) */
3633 record_alignment (text_section, 2);
3634
4d0d148d 3635 bfd_set_gp_size (stdoutput, g_switch_value);
252b5132 3636
f3ded42a
RS
3637 /* On a native system other than VxWorks, sections must be aligned
3638 to 16 byte boundaries. When configured for an embedded ELF
3639 target, we don't bother. */
3640 if (strncmp (TARGET_OS, "elf", 3) != 0
3641 && strncmp (TARGET_OS, "vxworks", 7) != 0)
252b5132 3642 {
f3ded42a
RS
3643 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3644 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3645 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3646 }
252b5132 3647
f3ded42a
RS
3648 /* Create a .reginfo section for register masks and a .mdebug
3649 section for debugging information. */
3650 {
3651 segT seg;
3652 subsegT subseg;
3653 flagword flags;
3654 segT sec;
3655
3656 seg = now_seg;
3657 subseg = now_subseg;
3658
3659 /* The ABI says this section should be loaded so that the
3660 running program can access it. However, we don't load it
3661 if we are configured for an embedded target */
3662 flags = SEC_READONLY | SEC_DATA;
3663 if (strncmp (TARGET_OS, "elf", 3) != 0)
3664 flags |= SEC_ALLOC | SEC_LOAD;
3665
3666 if (mips_abi != N64_ABI)
252b5132 3667 {
f3ded42a 3668 sec = subseg_new (".reginfo", (subsegT) 0);
bdaaa2e1 3669
f3ded42a
RS
3670 bfd_set_section_flags (stdoutput, sec, flags);
3671 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
252b5132 3672
f3ded42a
RS
3673 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3674 }
3675 else
3676 {
3677 /* The 64-bit ABI uses a .MIPS.options section rather than
3678 .reginfo section. */
3679 sec = subseg_new (".MIPS.options", (subsegT) 0);
3680 bfd_set_section_flags (stdoutput, sec, flags);
3681 bfd_set_section_alignment (stdoutput, sec, 3);
252b5132 3682
f3ded42a
RS
3683 /* Set up the option header. */
3684 {
3685 Elf_Internal_Options opthdr;
3686 char *f;
3687
3688 opthdr.kind = ODK_REGINFO;
3689 opthdr.size = (sizeof (Elf_External_Options)
3690 + sizeof (Elf64_External_RegInfo));
3691 opthdr.section = 0;
3692 opthdr.info = 0;
3693 f = frag_more (sizeof (Elf_External_Options));
3694 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3695 (Elf_External_Options *) f);
3696
3697 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3698 }
3699 }
252b5132 3700
351cdf24
MF
3701 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3702 bfd_set_section_flags (stdoutput, sec,
3703 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3704 bfd_set_section_alignment (stdoutput, sec, 3);
3705 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3706
f3ded42a
RS
3707 if (ECOFF_DEBUGGING)
3708 {
3709 sec = subseg_new (".mdebug", (subsegT) 0);
3710 (void) bfd_set_section_flags (stdoutput, sec,
3711 SEC_HAS_CONTENTS | SEC_READONLY);
3712 (void) bfd_set_section_alignment (stdoutput, sec, 2);
252b5132 3713 }
f3ded42a
RS
3714 else if (mips_flag_pdr)
3715 {
3716 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3717 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3718 SEC_READONLY | SEC_RELOC
3719 | SEC_DEBUGGING);
3720 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3721 }
3722
3723 subseg_set (seg, subseg);
3724 }
252b5132 3725
71400594
RS
3726 if (mips_fix_vr4120)
3727 init_vr4120_conflicts ();
252b5132
RH
3728}
3729
351cdf24
MF
3730static inline void
3731fpabi_incompatible_with (int fpabi, const char *what)
3732{
3733 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3734 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3735}
3736
3737static inline void
3738fpabi_requires (int fpabi, const char *what)
3739{
3740 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3741 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3742}
3743
3744/* Check -mabi and register sizes against the specified FP ABI. */
3745static void
3746check_fpabi (int fpabi)
3747{
351cdf24
MF
3748 switch (fpabi)
3749 {
3750 case Val_GNU_MIPS_ABI_FP_DOUBLE:
ea79f94a
MF
3751 if (file_mips_opts.soft_float)
3752 fpabi_incompatible_with (fpabi, "softfloat");
3753 else if (file_mips_opts.single_float)
3754 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3755 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3756 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3757 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3758 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
351cdf24
MF
3759 break;
3760
3761 case Val_GNU_MIPS_ABI_FP_XX:
3762 if (mips_abi != O32_ABI)
3763 fpabi_requires (fpabi, "-mabi=32");
ea79f94a
MF
3764 else if (file_mips_opts.soft_float)
3765 fpabi_incompatible_with (fpabi, "softfloat");
3766 else if (file_mips_opts.single_float)
3767 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3768 else if (file_mips_opts.fp != 0)
3769 fpabi_requires (fpabi, "fp=xx");
351cdf24
MF
3770 break;
3771
3772 case Val_GNU_MIPS_ABI_FP_64A:
3773 case Val_GNU_MIPS_ABI_FP_64:
3774 if (mips_abi != O32_ABI)
3775 fpabi_requires (fpabi, "-mabi=32");
ea79f94a
MF
3776 else if (file_mips_opts.soft_float)
3777 fpabi_incompatible_with (fpabi, "softfloat");
3778 else if (file_mips_opts.single_float)
3779 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3780 else if (file_mips_opts.fp != 64)
3781 fpabi_requires (fpabi, "fp=64");
3782 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3783 fpabi_incompatible_with (fpabi, "nooddspreg");
3784 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3785 fpabi_requires (fpabi, "nooddspreg");
351cdf24
MF
3786 break;
3787
3788 case Val_GNU_MIPS_ABI_FP_SINGLE:
3789 if (file_mips_opts.soft_float)
3790 fpabi_incompatible_with (fpabi, "softfloat");
3791 else if (!file_mips_opts.single_float)
3792 fpabi_requires (fpabi, "singlefloat");
3793 break;
3794
3795 case Val_GNU_MIPS_ABI_FP_SOFT:
3796 if (!file_mips_opts.soft_float)
3797 fpabi_requires (fpabi, "softfloat");
3798 break;
3799
3800 case Val_GNU_MIPS_ABI_FP_OLD_64:
3801 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3802 Tag_GNU_MIPS_ABI_FP, fpabi);
3803 break;
3804
3350cc01
CM
3805 case Val_GNU_MIPS_ABI_FP_NAN2008:
3806 /* Silently ignore compatibility value. */
3807 break;
3808
351cdf24
MF
3809 default:
3810 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3811 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3812 break;
3813 }
351cdf24
MF
3814}
3815
919731af 3816/* Perform consistency checks on the current options. */
3817
3818static void
3819mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3820{
3821 /* Check the size of integer registers agrees with the ABI and ISA. */
3822 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3823 as_bad (_("`gp=64' used with a 32-bit processor"));
3824 else if (abi_checks
3825 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3826 as_bad (_("`gp=32' used with a 64-bit ABI"));
3827 else if (abi_checks
3828 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3829 as_bad (_("`gp=64' used with a 32-bit ABI"));
3830
3831 /* Check the size of the float registers agrees with the ABI and ISA. */
3832 switch (opts->fp)
3833 {
351cdf24
MF
3834 case 0:
3835 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3836 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3837 else if (opts->single_float == 1)
3838 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3839 break;
919731af 3840 case 64:
3841 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3842 as_bad (_("`fp=64' used with a 32-bit fpu"));
3843 else if (abi_checks
3844 && ABI_NEEDS_32BIT_REGS (mips_abi)
3845 && !ISA_HAS_MXHC1 (opts->isa))
3846 as_warn (_("`fp=64' used with a 32-bit ABI"));
3847 break;
3848 case 32:
3849 if (abi_checks
3850 && ABI_NEEDS_64BIT_REGS (mips_abi))
3851 as_warn (_("`fp=32' used with a 64-bit ABI"));
7361da2c
AB
3852 if (ISA_IS_R6 (mips_opts.isa) && opts->single_float == 0)
3853 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
919731af 3854 break;
3855 default:
3856 as_bad (_("Unknown size of floating point registers"));
3857 break;
3858 }
3859
351cdf24
MF
3860 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3861 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3862
919731af 3863 if (opts->micromips == 1 && opts->mips16 == 1)
3864 as_bad (_("`mips16' cannot be used with `micromips'"));
7361da2c
AB
3865 else if (ISA_IS_R6 (mips_opts.isa)
3866 && (opts->micromips == 1
3867 || opts->mips16 == 1))
3868 as_fatal (_("`%s' can not be used with `%s'"),
3869 opts->micromips ? "micromips" : "mips16",
3870 mips_cpu_info_from_isa (mips_opts.isa)->name);
3871
3872 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3873 as_fatal (_("branch relaxation is not supported in `%s'"),
3874 mips_cpu_info_from_isa (opts->isa)->name);
919731af 3875}
3876
3877/* Perform consistency checks on the module level options exactly once.
3878 This is a deferred check that happens:
3879 at the first .set directive
3880 or, at the first pseudo op that generates code (inc .dc.a)
3881 or, at the first instruction
3882 or, at the end. */
3883
3884static void
3885file_mips_check_options (void)
3886{
3887 const struct mips_cpu_info *arch_info = 0;
3888
3889 if (file_mips_opts_checked)
3890 return;
3891
3892 /* The following code determines the register size.
3893 Similar code was added to GCC 3.3 (see override_options() in
3894 config/mips/mips.c). The GAS and GCC code should be kept in sync
3895 as much as possible. */
3896
3897 if (file_mips_opts.gp < 0)
3898 {
3899 /* Infer the integer register size from the ABI and processor.
3900 Restrict ourselves to 32-bit registers if that's all the
3901 processor has, or if the ABI cannot handle 64-bit registers. */
3902 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3903 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3904 ? 32 : 64;
3905 }
3906
3907 if (file_mips_opts.fp < 0)
3908 {
3909 /* No user specified float register size.
3910 ??? GAS treats single-float processors as though they had 64-bit
3911 float registers (although it complains when double-precision
3912 instructions are used). As things stand, saying they have 32-bit
3913 registers would lead to spurious "register must be even" messages.
3914 So here we assume float registers are never smaller than the
3915 integer ones. */
3916 if (file_mips_opts.gp == 64)
3917 /* 64-bit integer registers implies 64-bit float registers. */
3918 file_mips_opts.fp = 64;
3919 else if ((file_mips_opts.ase & FP64_ASES)
3920 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3921 /* Handle ASEs that require 64-bit float registers, if possible. */
3922 file_mips_opts.fp = 64;
7361da2c
AB
3923 else if (ISA_IS_R6 (mips_opts.isa))
3924 /* R6 implies 64-bit float registers. */
3925 file_mips_opts.fp = 64;
919731af 3926 else
3927 /* 32-bit float registers. */
3928 file_mips_opts.fp = 32;
3929 }
3930
3931 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3932
351cdf24
MF
3933 /* Disable operations on odd-numbered floating-point registers by default
3934 when using the FPXX ABI. */
3935 if (file_mips_opts.oddspreg < 0)
3936 {
3937 if (file_mips_opts.fp == 0)
3938 file_mips_opts.oddspreg = 0;
3939 else
3940 file_mips_opts.oddspreg = 1;
3941 }
3942
919731af 3943 /* End of GCC-shared inference code. */
3944
3945 /* This flag is set when we have a 64-bit capable CPU but use only
3946 32-bit wide registers. Note that EABI does not use it. */
3947 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3948 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3949 || mips_abi == O32_ABI))
3950 mips_32bitmode = 1;
3951
3952 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3953 as_bad (_("trap exception not supported at ISA 1"));
3954
3955 /* If the selected architecture includes support for ASEs, enable
3956 generation of code for them. */
3957 if (file_mips_opts.mips16 == -1)
3958 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
3959 if (file_mips_opts.micromips == -1)
3960 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
3961 ? 1 : 0;
3962
7361da2c
AB
3963 if (mips_nan2008 == -1)
3964 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
3965 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
3966 as_fatal (_("`%s' does not support legacy NaN"),
3967 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
3968
919731af 3969 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
3970 being selected implicitly. */
3971 if (file_mips_opts.fp != 64)
3972 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
3973
3974 /* If the user didn't explicitly select or deselect a particular ASE,
3975 use the default setting for the CPU. */
3976 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
3977
3978 /* Set up the current options. These may change throughout assembly. */
3979 mips_opts = file_mips_opts;
3980
3981 mips_check_isa_supports_ases ();
3982 mips_check_options (&file_mips_opts, TRUE);
3983 file_mips_opts_checked = TRUE;
3984
3985 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3986 as_warn (_("could not set architecture and machine"));
3987}
3988
252b5132 3989void
17a2f251 3990md_assemble (char *str)
252b5132
RH
3991{
3992 struct mips_cl_insn insn;
f6688943
TS
3993 bfd_reloc_code_real_type unused_reloc[3]
3994 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 3995
919731af 3996 file_mips_check_options ();
3997
252b5132 3998 imm_expr.X_op = O_absent;
252b5132 3999 offset_expr.X_op = O_absent;
f6688943
TS
4000 offset_reloc[0] = BFD_RELOC_UNUSED;
4001 offset_reloc[1] = BFD_RELOC_UNUSED;
4002 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132 4003
e1b47bd5
RS
4004 mips_mark_labels ();
4005 mips_assembling_insn = TRUE;
e3de51ce 4006 clear_insn_error ();
e1b47bd5 4007
252b5132
RH
4008 if (mips_opts.mips16)
4009 mips16_ip (str, &insn);
4010 else
4011 {
4012 mips_ip (str, &insn);
beae10d5
KH
4013 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4014 str, insn.insn_opcode));
252b5132
RH
4015 }
4016
e3de51ce
RS
4017 if (insn_error.msg)
4018 report_insn_error (str);
e1b47bd5 4019 else if (insn.insn_mo->pinfo == INSN_MACRO)
252b5132 4020 {
584892a6 4021 macro_start ();
252b5132
RH
4022 if (mips_opts.mips16)
4023 mips16_macro (&insn);
4024 else
833794fc 4025 macro (&insn, str);
584892a6 4026 macro_end ();
252b5132
RH
4027 }
4028 else
4029 {
77bd4346 4030 if (offset_expr.X_op != O_absent)
df58fc94 4031 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
252b5132 4032 else
df58fc94 4033 append_insn (&insn, NULL, unused_reloc, FALSE);
252b5132 4034 }
e1b47bd5
RS
4035
4036 mips_assembling_insn = FALSE;
252b5132
RH
4037}
4038
738e5348
RS
4039/* Convenience functions for abstracting away the differences between
4040 MIPS16 and non-MIPS16 relocations. */
4041
4042static inline bfd_boolean
4043mips16_reloc_p (bfd_reloc_code_real_type reloc)
4044{
4045 switch (reloc)
4046 {
4047 case BFD_RELOC_MIPS16_JMP:
4048 case BFD_RELOC_MIPS16_GPREL:
4049 case BFD_RELOC_MIPS16_GOT16:
4050 case BFD_RELOC_MIPS16_CALL16:
4051 case BFD_RELOC_MIPS16_HI16_S:
4052 case BFD_RELOC_MIPS16_HI16:
4053 case BFD_RELOC_MIPS16_LO16:
4054 return TRUE;
4055
4056 default:
4057 return FALSE;
4058 }
4059}
4060
df58fc94
RS
4061static inline bfd_boolean
4062micromips_reloc_p (bfd_reloc_code_real_type reloc)
4063{
4064 switch (reloc)
4065 {
4066 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4067 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4068 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4069 case BFD_RELOC_MICROMIPS_GPREL16:
4070 case BFD_RELOC_MICROMIPS_JMP:
4071 case BFD_RELOC_MICROMIPS_HI16:
4072 case BFD_RELOC_MICROMIPS_HI16_S:
4073 case BFD_RELOC_MICROMIPS_LO16:
4074 case BFD_RELOC_MICROMIPS_LITERAL:
4075 case BFD_RELOC_MICROMIPS_GOT16:
4076 case BFD_RELOC_MICROMIPS_CALL16:
4077 case BFD_RELOC_MICROMIPS_GOT_HI16:
4078 case BFD_RELOC_MICROMIPS_GOT_LO16:
4079 case BFD_RELOC_MICROMIPS_CALL_HI16:
4080 case BFD_RELOC_MICROMIPS_CALL_LO16:
4081 case BFD_RELOC_MICROMIPS_SUB:
4082 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4083 case BFD_RELOC_MICROMIPS_GOT_OFST:
4084 case BFD_RELOC_MICROMIPS_GOT_DISP:
4085 case BFD_RELOC_MICROMIPS_HIGHEST:
4086 case BFD_RELOC_MICROMIPS_HIGHER:
4087 case BFD_RELOC_MICROMIPS_SCN_DISP:
4088 case BFD_RELOC_MICROMIPS_JALR:
4089 return TRUE;
4090
4091 default:
4092 return FALSE;
4093 }
4094}
4095
2309ddf2
MR
4096static inline bfd_boolean
4097jmp_reloc_p (bfd_reloc_code_real_type reloc)
4098{
4099 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4100}
4101
738e5348
RS
4102static inline bfd_boolean
4103got16_reloc_p (bfd_reloc_code_real_type reloc)
4104{
2309ddf2 4105 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
df58fc94 4106 || reloc == BFD_RELOC_MICROMIPS_GOT16);
738e5348
RS
4107}
4108
4109static inline bfd_boolean
4110hi16_reloc_p (bfd_reloc_code_real_type reloc)
4111{
2309ddf2 4112 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
df58fc94 4113 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
738e5348
RS
4114}
4115
4116static inline bfd_boolean
4117lo16_reloc_p (bfd_reloc_code_real_type reloc)
4118{
2309ddf2 4119 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
df58fc94
RS
4120 || reloc == BFD_RELOC_MICROMIPS_LO16);
4121}
4122
df58fc94
RS
4123static inline bfd_boolean
4124jalr_reloc_p (bfd_reloc_code_real_type reloc)
4125{
2309ddf2 4126 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
738e5348
RS
4127}
4128
f2ae14a1
RS
4129static inline bfd_boolean
4130gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4131{
4132 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4133 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4134}
4135
2de39019
CM
4136/* Return true if RELOC is a PC-relative relocation that does not have
4137 full address range. */
4138
4139static inline bfd_boolean
4140limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4141{
4142 switch (reloc)
4143 {
4144 case BFD_RELOC_16_PCREL_S2:
4145 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4146 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4147 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
7361da2c
AB
4148 case BFD_RELOC_MIPS_21_PCREL_S2:
4149 case BFD_RELOC_MIPS_26_PCREL_S2:
4150 case BFD_RELOC_MIPS_18_PCREL_S3:
4151 case BFD_RELOC_MIPS_19_PCREL_S2:
2de39019
CM
4152 return TRUE;
4153
b47468a6 4154 case BFD_RELOC_32_PCREL:
7361da2c
AB
4155 case BFD_RELOC_HI16_S_PCREL:
4156 case BFD_RELOC_LO16_PCREL:
b47468a6
CM
4157 return HAVE_64BIT_ADDRESSES;
4158
2de39019
CM
4159 default:
4160 return FALSE;
4161 }
4162}
b47468a6 4163
5919d012 4164/* Return true if the given relocation might need a matching %lo().
0a44bf69
RS
4165 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4166 need a matching %lo() when applied to local symbols. */
5919d012
RS
4167
4168static inline bfd_boolean
17a2f251 4169reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
5919d012 4170{
3b91255e 4171 return (HAVE_IN_PLACE_ADDENDS
738e5348 4172 && (hi16_reloc_p (reloc)
0a44bf69
RS
4173 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4174 all GOT16 relocations evaluate to "G". */
738e5348
RS
4175 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4176}
4177
4178/* Return the type of %lo() reloc needed by RELOC, given that
4179 reloc_needs_lo_p. */
4180
4181static inline bfd_reloc_code_real_type
4182matching_lo_reloc (bfd_reloc_code_real_type reloc)
4183{
df58fc94
RS
4184 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4185 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4186 : BFD_RELOC_LO16));
5919d012
RS
4187}
4188
4189/* Return true if the given fixup is followed by a matching R_MIPS_LO16
4190 relocation. */
4191
4192static inline bfd_boolean
17a2f251 4193fixup_has_matching_lo_p (fixS *fixp)
5919d012
RS
4194{
4195 return (fixp->fx_next != NULL
738e5348 4196 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
5919d012
RS
4197 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4198 && fixp->fx_offset == fixp->fx_next->fx_offset);
4199}
4200
462427c4
RS
4201/* Move all labels in LABELS to the current insertion point. TEXT_P
4202 says whether the labels refer to text or data. */
404a8071
RS
4203
4204static void
462427c4 4205mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
404a8071
RS
4206{
4207 struct insn_label_list *l;
4208 valueT val;
4209
462427c4 4210 for (l = labels; l != NULL; l = l->next)
404a8071 4211 {
9c2799c2 4212 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
404a8071
RS
4213 symbol_set_frag (l->label, frag_now);
4214 val = (valueT) frag_now_fix ();
df58fc94 4215 /* MIPS16/microMIPS text labels are stored as odd. */
462427c4 4216 if (text_p && HAVE_CODE_COMPRESSION)
404a8071
RS
4217 ++val;
4218 S_SET_VALUE (l->label, val);
4219 }
4220}
4221
462427c4
RS
4222/* Move all labels in insn_labels to the current insertion point
4223 and treat them as text labels. */
4224
4225static void
4226mips_move_text_labels (void)
4227{
4228 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4229}
4230
5f0fe04b
TS
4231static bfd_boolean
4232s_is_linkonce (symbolS *sym, segT from_seg)
4233{
4234 bfd_boolean linkonce = FALSE;
4235 segT symseg = S_GET_SEGMENT (sym);
4236
4237 if (symseg != from_seg && !S_IS_LOCAL (sym))
4238 {
4239 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4240 linkonce = TRUE;
5f0fe04b
TS
4241 /* The GNU toolchain uses an extension for ELF: a section
4242 beginning with the magic string .gnu.linkonce is a
4243 linkonce section. */
4244 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4245 sizeof ".gnu.linkonce" - 1) == 0)
4246 linkonce = TRUE;
5f0fe04b
TS
4247 }
4248 return linkonce;
4249}
4250
e1b47bd5 4251/* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
df58fc94
RS
4252 linker to handle them specially, such as generating jalx instructions
4253 when needed. We also make them odd for the duration of the assembly,
4254 in order to generate the right sort of code. We will make them even
252b5132
RH
4255 in the adjust_symtab routine, while leaving them marked. This is
4256 convenient for the debugger and the disassembler. The linker knows
4257 to make them odd again. */
4258
4259static void
e1b47bd5 4260mips_compressed_mark_label (symbolS *label)
252b5132 4261{
df58fc94 4262 gas_assert (HAVE_CODE_COMPRESSION);
a8dbcb85 4263
f3ded42a
RS
4264 if (mips_opts.mips16)
4265 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4266 else
4267 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
e1b47bd5
RS
4268 if ((S_GET_VALUE (label) & 1) == 0
4269 /* Don't adjust the address if the label is global or weak, or
4270 in a link-once section, since we'll be emitting symbol reloc
4271 references to it which will be patched up by the linker, and
4272 the final value of the symbol may or may not be MIPS16/microMIPS. */
4273 && !S_IS_WEAK (label)
4274 && !S_IS_EXTERNAL (label)
4275 && !s_is_linkonce (label, now_seg))
4276 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4277}
4278
4279/* Mark preceding MIPS16 or microMIPS instruction labels. */
4280
4281static void
4282mips_compressed_mark_labels (void)
4283{
4284 struct insn_label_list *l;
4285
4286 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4287 mips_compressed_mark_label (l->label);
252b5132
RH
4288}
4289
4d7206a2
RS
4290/* End the current frag. Make it a variant frag and record the
4291 relaxation info. */
4292
4293static void
4294relax_close_frag (void)
4295{
584892a6 4296 mips_macro_warning.first_frag = frag_now;
4d7206a2 4297 frag_var (rs_machine_dependent, 0, 0,
584892a6 4298 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4d7206a2
RS
4299 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4300
4301 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4302 mips_relax.first_fixup = 0;
4303}
4304
4305/* Start a new relaxation sequence whose expansion depends on SYMBOL.
4306 See the comment above RELAX_ENCODE for more details. */
4307
4308static void
4309relax_start (symbolS *symbol)
4310{
9c2799c2 4311 gas_assert (mips_relax.sequence == 0);
4d7206a2
RS
4312 mips_relax.sequence = 1;
4313 mips_relax.symbol = symbol;
4314}
4315
4316/* Start generating the second version of a relaxable sequence.
4317 See the comment above RELAX_ENCODE for more details. */
252b5132
RH
4318
4319static void
4d7206a2
RS
4320relax_switch (void)
4321{
9c2799c2 4322 gas_assert (mips_relax.sequence == 1);
4d7206a2
RS
4323 mips_relax.sequence = 2;
4324}
4325
4326/* End the current relaxable sequence. */
4327
4328static void
4329relax_end (void)
4330{
9c2799c2 4331 gas_assert (mips_relax.sequence == 2);
4d7206a2
RS
4332 relax_close_frag ();
4333 mips_relax.sequence = 0;
4334}
4335
11625dd8
RS
4336/* Return true if IP is a delayed branch or jump. */
4337
4338static inline bfd_boolean
4339delayed_branch_p (const struct mips_cl_insn *ip)
4340{
4341 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4342 | INSN_COND_BRANCH_DELAY
4343 | INSN_COND_BRANCH_LIKELY)) != 0;
4344}
4345
4346/* Return true if IP is a compact branch or jump. */
4347
4348static inline bfd_boolean
4349compact_branch_p (const struct mips_cl_insn *ip)
4350{
26545944
RS
4351 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4352 | INSN2_COND_BRANCH)) != 0;
11625dd8
RS
4353}
4354
4355/* Return true if IP is an unconditional branch or jump. */
4356
4357static inline bfd_boolean
4358uncond_branch_p (const struct mips_cl_insn *ip)
4359{
4360 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
26545944 4361 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
11625dd8
RS
4362}
4363
4364/* Return true if IP is a branch-likely instruction. */
4365
4366static inline bfd_boolean
4367branch_likely_p (const struct mips_cl_insn *ip)
4368{
4369 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4370}
4371
14fe068b
RS
4372/* Return the type of nop that should be used to fill the delay slot
4373 of delayed branch IP. */
4374
4375static struct mips_cl_insn *
4376get_delay_slot_nop (const struct mips_cl_insn *ip)
4377{
4378 if (mips_opts.micromips
4379 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4380 return &micromips_nop32_insn;
4381 return NOP_INSN;
4382}
4383
fc76e730
RS
4384/* Return a mask that has bit N set if OPCODE reads the register(s)
4385 in operand N. */
df58fc94
RS
4386
4387static unsigned int
fc76e730 4388insn_read_mask (const struct mips_opcode *opcode)
df58fc94 4389{
fc76e730
RS
4390 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4391}
df58fc94 4392
fc76e730
RS
4393/* Return a mask that has bit N set if OPCODE writes to the register(s)
4394 in operand N. */
4395
4396static unsigned int
4397insn_write_mask (const struct mips_opcode *opcode)
4398{
4399 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4400}
4401
4402/* Return a mask of the registers specified by operand OPERAND of INSN.
4403 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4404 is set. */
4405
4406static unsigned int
4407operand_reg_mask (const struct mips_cl_insn *insn,
4408 const struct mips_operand *operand,
4409 unsigned int type_mask)
4410{
4411 unsigned int uval, vsel;
4412
4413 switch (operand->type)
df58fc94 4414 {
fc76e730
RS
4415 case OP_INT:
4416 case OP_MAPPED_INT:
4417 case OP_MSB:
4418 case OP_PCREL:
4419 case OP_PERF_REG:
4420 case OP_ADDIUSP_INT:
4421 case OP_ENTRY_EXIT_LIST:
4422 case OP_REPEAT_DEST_REG:
4423 case OP_REPEAT_PREV_REG:
4424 case OP_PC:
14daeee3
RS
4425 case OP_VU0_SUFFIX:
4426 case OP_VU0_MATCH_SUFFIX:
56d438b1 4427 case OP_IMM_INDEX:
fc76e730
RS
4428 abort ();
4429
4430 case OP_REG:
0f35dbc4 4431 case OP_OPTIONAL_REG:
fc76e730
RS
4432 {
4433 const struct mips_reg_operand *reg_op;
4434
4435 reg_op = (const struct mips_reg_operand *) operand;
4436 if (!(type_mask & (1 << reg_op->reg_type)))
4437 return 0;
4438 uval = insn_extract_operand (insn, operand);
4439 return 1 << mips_decode_reg_operand (reg_op, uval);
4440 }
4441
4442 case OP_REG_PAIR:
4443 {
4444 const struct mips_reg_pair_operand *pair_op;
4445
4446 pair_op = (const struct mips_reg_pair_operand *) operand;
4447 if (!(type_mask & (1 << pair_op->reg_type)))
4448 return 0;
4449 uval = insn_extract_operand (insn, operand);
4450 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4451 }
4452
4453 case OP_CLO_CLZ_DEST:
4454 if (!(type_mask & (1 << OP_REG_GP)))
4455 return 0;
4456 uval = insn_extract_operand (insn, operand);
4457 return (1 << (uval & 31)) | (1 << (uval >> 5));
4458
7361da2c
AB
4459 case OP_SAME_RS_RT:
4460 if (!(type_mask & (1 << OP_REG_GP)))
4461 return 0;
4462 uval = insn_extract_operand (insn, operand);
4463 gas_assert ((uval & 31) == (uval >> 5));
4464 return 1 << (uval & 31);
4465
4466 case OP_CHECK_PREV:
4467 case OP_NON_ZERO_REG:
4468 if (!(type_mask & (1 << OP_REG_GP)))
4469 return 0;
4470 uval = insn_extract_operand (insn, operand);
4471 return 1 << (uval & 31);
4472
fc76e730
RS
4473 case OP_LWM_SWM_LIST:
4474 abort ();
4475
4476 case OP_SAVE_RESTORE_LIST:
4477 abort ();
4478
4479 case OP_MDMX_IMM_REG:
4480 if (!(type_mask & (1 << OP_REG_VEC)))
4481 return 0;
4482 uval = insn_extract_operand (insn, operand);
4483 vsel = uval >> 5;
4484 if ((vsel & 0x18) == 0x18)
4485 return 0;
4486 return 1 << (uval & 31);
56d438b1
CF
4487
4488 case OP_REG_INDEX:
4489 if (!(type_mask & (1 << OP_REG_GP)))
4490 return 0;
4491 return 1 << insn_extract_operand (insn, operand);
df58fc94 4492 }
fc76e730
RS
4493 abort ();
4494}
4495
4496/* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4497 where bit N of OPNO_MASK is set if operand N should be included.
4498 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4499 is set. */
4500
4501static unsigned int
4502insn_reg_mask (const struct mips_cl_insn *insn,
4503 unsigned int type_mask, unsigned int opno_mask)
4504{
4505 unsigned int opno, reg_mask;
4506
4507 opno = 0;
4508 reg_mask = 0;
4509 while (opno_mask != 0)
4510 {
4511 if (opno_mask & 1)
4512 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4513 opno_mask >>= 1;
4514 opno += 1;
4515 }
4516 return reg_mask;
df58fc94
RS
4517}
4518
4c260379
RS
4519/* Return the mask of core registers that IP reads. */
4520
4521static unsigned int
4522gpr_read_mask (const struct mips_cl_insn *ip)
4523{
4524 unsigned long pinfo, pinfo2;
4525 unsigned int mask;
4526
fc76e730 4527 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4c260379
RS
4528 pinfo = ip->insn_mo->pinfo;
4529 pinfo2 = ip->insn_mo->pinfo2;
fc76e730 4530 if (pinfo & INSN_UDI)
4c260379 4531 {
fc76e730
RS
4532 /* UDI instructions have traditionally been assumed to read RS
4533 and RT. */
4534 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4535 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4c260379 4536 }
fc76e730
RS
4537 if (pinfo & INSN_READ_GPR_24)
4538 mask |= 1 << 24;
4539 if (pinfo2 & INSN2_READ_GPR_16)
4540 mask |= 1 << 16;
4541 if (pinfo2 & INSN2_READ_SP)
4542 mask |= 1 << SP;
26545944 4543 if (pinfo2 & INSN2_READ_GPR_31)
fc76e730 4544 mask |= 1 << 31;
fe35f09f
RS
4545 /* Don't include register 0. */
4546 return mask & ~1;
4c260379
RS
4547}
4548
4549/* Return the mask of core registers that IP writes. */
4550
4551static unsigned int
4552gpr_write_mask (const struct mips_cl_insn *ip)
4553{
4554 unsigned long pinfo, pinfo2;
4555 unsigned int mask;
4556
fc76e730 4557 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4c260379
RS
4558 pinfo = ip->insn_mo->pinfo;
4559 pinfo2 = ip->insn_mo->pinfo2;
fc76e730
RS
4560 if (pinfo & INSN_WRITE_GPR_24)
4561 mask |= 1 << 24;
4562 if (pinfo & INSN_WRITE_GPR_31)
4563 mask |= 1 << 31;
4564 if (pinfo & INSN_UDI)
4565 /* UDI instructions have traditionally been assumed to write to RD. */
4566 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4567 if (pinfo2 & INSN2_WRITE_SP)
4568 mask |= 1 << SP;
fe35f09f
RS
4569 /* Don't include register 0. */
4570 return mask & ~1;
4c260379
RS
4571}
4572
4573/* Return the mask of floating-point registers that IP reads. */
4574
4575static unsigned int
4576fpr_read_mask (const struct mips_cl_insn *ip)
4577{
fc76e730 4578 unsigned long pinfo;
4c260379
RS
4579 unsigned int mask;
4580
9d5de888
CF
4581 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4582 | (1 << OP_REG_MSA)),
fc76e730 4583 insn_read_mask (ip->insn_mo));
4c260379 4584 pinfo = ip->insn_mo->pinfo;
4c260379
RS
4585 /* Conservatively treat all operands to an FP_D instruction are doubles.
4586 (This is overly pessimistic for things like cvt.d.s.) */
bad1aba3 4587 if (FPR_SIZE != 64 && (pinfo & FP_D))
4c260379
RS
4588 mask |= mask << 1;
4589 return mask;
4590}
4591
4592/* Return the mask of floating-point registers that IP writes. */
4593
4594static unsigned int
4595fpr_write_mask (const struct mips_cl_insn *ip)
4596{
fc76e730 4597 unsigned long pinfo;
4c260379
RS
4598 unsigned int mask;
4599
9d5de888
CF
4600 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4601 | (1 << OP_REG_MSA)),
fc76e730 4602 insn_write_mask (ip->insn_mo));
4c260379 4603 pinfo = ip->insn_mo->pinfo;
4c260379
RS
4604 /* Conservatively treat all operands to an FP_D instruction are doubles.
4605 (This is overly pessimistic for things like cvt.s.d.) */
bad1aba3 4606 if (FPR_SIZE != 64 && (pinfo & FP_D))
4c260379
RS
4607 mask |= mask << 1;
4608 return mask;
4609}
4610
a1d78564
RS
4611/* Operand OPNUM of INSN is an odd-numbered floating-point register.
4612 Check whether that is allowed. */
4613
4614static bfd_boolean
4615mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4616{
4617 const char *s = insn->name;
351cdf24
MF
4618 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4619 || FPR_SIZE == 64)
4620 && mips_opts.oddspreg;
a1d78564
RS
4621
4622 if (insn->pinfo == INSN_MACRO)
4623 /* Let a macro pass, we'll catch it later when it is expanded. */
4624 return TRUE;
4625
351cdf24
MF
4626 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4627 otherwise it depends on oddspreg. */
4628 if ((insn->pinfo & FP_S)
4629 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
43885403 4630 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
351cdf24 4631 return FPR_SIZE == 32 || oddspreg;
a1d78564 4632
351cdf24
MF
4633 /* Allow odd registers for single-precision ops and double-precision if the
4634 floating-point registers are 64-bit wide. */
4635 switch (insn->pinfo & (FP_S | FP_D))
4636 {
4637 case FP_S:
4638 case 0:
4639 return oddspreg;
4640 case FP_D:
4641 return FPR_SIZE == 64;
4642 default:
4643 break;
a1d78564
RS
4644 }
4645
351cdf24
MF
4646 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4647 s = strchr (insn->name, '.');
4648 if (s != NULL && opnum == 2)
4649 s = strchr (s + 1, '.');
4650 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4651 return oddspreg;
a1d78564 4652
351cdf24 4653 return FPR_SIZE == 64;
a1d78564
RS
4654}
4655
a1d78564
RS
4656/* Information about an instruction argument that we're trying to match. */
4657struct mips_arg_info
4658{
4659 /* The instruction so far. */
4660 struct mips_cl_insn *insn;
4661
a92713e6
RS
4662 /* The first unconsumed operand token. */
4663 struct mips_operand_token *token;
4664
a1d78564
RS
4665 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4666 int opnum;
4667
4668 /* The 1-based argument number, for error reporting. This does not
4669 count elided optional registers, etc.. */
4670 int argnum;
4671
4672 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4673 unsigned int last_regno;
4674
4675 /* If the first operand was an OP_REG, this is the register that it
4676 specified, otherwise it is ILLEGAL_REG. */
4677 unsigned int dest_regno;
4678
4679 /* The value of the last OP_INT operand. Only used for OP_MSB,
4680 where it gives the lsb position. */
4681 unsigned int last_op_int;
4682
60f20e8b
RS
4683 /* If true, match routines should assume that no later instruction
4684 alternative matches and should therefore be as accomodating as
4685 possible. Match routines should not report errors if something
4686 is only invalid for !LAX_MATCH. */
4687 bfd_boolean lax_match;
a1d78564 4688
a1d78564
RS
4689 /* True if a reference to the current AT register was seen. */
4690 bfd_boolean seen_at;
4691};
4692
1a00e612
RS
4693/* Record that the argument is out of range. */
4694
4695static void
4696match_out_of_range (struct mips_arg_info *arg)
4697{
4698 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4699}
4700
4701/* Record that the argument isn't constant but needs to be. */
4702
4703static void
4704match_not_constant (struct mips_arg_info *arg)
4705{
4706 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4707 arg->argnum);
4708}
4709
a92713e6
RS
4710/* Try to match an OT_CHAR token for character CH. Consume the token
4711 and return true on success, otherwise return false. */
a1d78564 4712
a92713e6
RS
4713static bfd_boolean
4714match_char (struct mips_arg_info *arg, char ch)
a1d78564 4715{
a92713e6
RS
4716 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4717 {
4718 ++arg->token;
4719 if (ch == ',')
4720 arg->argnum += 1;
4721 return TRUE;
4722 }
4723 return FALSE;
4724}
a1d78564 4725
a92713e6
RS
4726/* Try to get an expression from the next tokens in ARG. Consume the
4727 tokens and return true on success, storing the expression value in
4728 VALUE and relocation types in R. */
4729
4730static bfd_boolean
4731match_expression (struct mips_arg_info *arg, expressionS *value,
4732 bfd_reloc_code_real_type *r)
4733{
d436c1c2
RS
4734 /* If the next token is a '(' that was parsed as being part of a base
4735 expression, assume we have an elided offset. The later match will fail
4736 if this turns out to be wrong. */
4737 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
a1d78564 4738 {
d436c1c2
RS
4739 value->X_op = O_constant;
4740 value->X_add_number = 0;
4741 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
a92713e6
RS
4742 return TRUE;
4743 }
4744
d436c1c2
RS
4745 /* Reject register-based expressions such as "0+$2" and "(($2))".
4746 For plain registers the default error seems more appropriate. */
4747 if (arg->token->type == OT_INTEGER
4748 && arg->token->u.integer.value.X_op == O_register)
a92713e6 4749 {
d436c1c2
RS
4750 set_insn_error (arg->argnum, _("register value used as expression"));
4751 return FALSE;
a1d78564 4752 }
d436c1c2
RS
4753
4754 if (arg->token->type == OT_INTEGER)
a92713e6 4755 {
d436c1c2
RS
4756 *value = arg->token->u.integer.value;
4757 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4758 ++arg->token;
4759 return TRUE;
a92713e6 4760 }
a92713e6 4761
d436c1c2
RS
4762 set_insn_error_i
4763 (arg->argnum, _("operand %d must be an immediate expression"),
4764 arg->argnum);
4765 return FALSE;
a92713e6
RS
4766}
4767
4768/* Try to get a constant expression from the next tokens in ARG. Consume
4769 the tokens and return return true on success, storing the constant value
4770 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4771 error. */
4772
4773static bfd_boolean
1a00e612 4774match_const_int (struct mips_arg_info *arg, offsetT *value)
a92713e6
RS
4775{
4776 expressionS ex;
4777 bfd_reloc_code_real_type r[3];
a1d78564 4778
a92713e6
RS
4779 if (!match_expression (arg, &ex, r))
4780 return FALSE;
4781
4782 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
a1d78564
RS
4783 *value = ex.X_add_number;
4784 else
4785 {
1a00e612
RS
4786 match_not_constant (arg);
4787 return FALSE;
a1d78564 4788 }
a92713e6 4789 return TRUE;
a1d78564
RS
4790}
4791
4792/* Return the RTYPE_* flags for a register operand of type TYPE that
4793 appears in instruction OPCODE. */
4794
4795static unsigned int
4796convert_reg_type (const struct mips_opcode *opcode,
4797 enum mips_reg_operand_type type)
4798{
4799 switch (type)
4800 {
4801 case OP_REG_GP:
4802 return RTYPE_NUM | RTYPE_GP;
4803
4804 case OP_REG_FP:
4805 /* Allow vector register names for MDMX if the instruction is a 64-bit
4806 FPR load, store or move (including moves to and from GPRs). */
4807 if ((mips_opts.ase & ASE_MDMX)
4808 && (opcode->pinfo & FP_D)
43885403 4809 && (opcode->pinfo & (INSN_COPROC_MOVE
a1d78564 4810 | INSN_COPROC_MEMORY_DELAY
43885403 4811 | INSN_LOAD_COPROC
67dc82bc 4812 | INSN_LOAD_MEMORY
a1d78564
RS
4813 | INSN_STORE_MEMORY)))
4814 return RTYPE_FPU | RTYPE_VEC;
4815 return RTYPE_FPU;
4816
4817 case OP_REG_CCC:
4818 if (opcode->pinfo & (FP_D | FP_S))
4819 return RTYPE_CCC | RTYPE_FCC;
4820 return RTYPE_CCC;
4821
4822 case OP_REG_VEC:
4823 if (opcode->membership & INSN_5400)
4824 return RTYPE_FPU;
4825 return RTYPE_FPU | RTYPE_VEC;
4826
4827 case OP_REG_ACC:
4828 return RTYPE_ACC;
4829
4830 case OP_REG_COPRO:
4831 if (opcode->name[strlen (opcode->name) - 1] == '0')
4832 return RTYPE_NUM | RTYPE_CP0;
4833 return RTYPE_NUM;
4834
4835 case OP_REG_HW:
4836 return RTYPE_NUM;
14daeee3
RS
4837
4838 case OP_REG_VI:
4839 return RTYPE_NUM | RTYPE_VI;
4840
4841 case OP_REG_VF:
4842 return RTYPE_NUM | RTYPE_VF;
4843
4844 case OP_REG_R5900_I:
4845 return RTYPE_R5900_I;
4846
4847 case OP_REG_R5900_Q:
4848 return RTYPE_R5900_Q;
4849
4850 case OP_REG_R5900_R:
4851 return RTYPE_R5900_R;
4852
4853 case OP_REG_R5900_ACC:
4854 return RTYPE_R5900_ACC;
56d438b1
CF
4855
4856 case OP_REG_MSA:
4857 return RTYPE_MSA;
4858
4859 case OP_REG_MSA_CTRL:
4860 return RTYPE_NUM;
a1d78564
RS
4861 }
4862 abort ();
4863}
4864
4865/* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4866
4867static void
4868check_regno (struct mips_arg_info *arg,
4869 enum mips_reg_operand_type type, unsigned int regno)
4870{
4871 if (AT && type == OP_REG_GP && regno == AT)
4872 arg->seen_at = TRUE;
4873
4874 if (type == OP_REG_FP
4875 && (regno & 1) != 0
a1d78564 4876 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
351cdf24
MF
4877 {
4878 /* This was a warning prior to introducing O32 FPXX and FP64 support
4879 so maintain a warning for FP32 but raise an error for the new
4880 cases. */
4881 if (FPR_SIZE == 32)
4882 as_warn (_("float register should be even, was %d"), regno);
4883 else
4884 as_bad (_("float register should be even, was %d"), regno);
4885 }
a1d78564
RS
4886
4887 if (type == OP_REG_CCC)
4888 {
4889 const char *name;
4890 size_t length;
4891
4892 name = arg->insn->insn_mo->name;
4893 length = strlen (name);
4894 if ((regno & 1) != 0
4895 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4896 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
1661c76c 4897 as_warn (_("condition code register should be even for %s, was %d"),
a1d78564
RS
4898 name, regno);
4899
4900 if ((regno & 3) != 0
4901 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
1661c76c 4902 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
a1d78564
RS
4903 name, regno);
4904 }
4905}
4906
a92713e6
RS
4907/* ARG is a register with symbol value SYMVAL. Try to interpret it as
4908 a register of type TYPE. Return true on success, storing the register
4909 number in *REGNO and warning about any dubious uses. */
4910
4911static bfd_boolean
4912match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4913 unsigned int symval, unsigned int *regno)
4914{
4915 if (type == OP_REG_VEC)
4916 symval = mips_prefer_vec_regno (symval);
4917 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4918 return FALSE;
4919
4920 *regno = symval & RNUM_MASK;
4921 check_regno (arg, type, *regno);
4922 return TRUE;
4923}
4924
4925/* Try to interpret the next token in ARG as a register of type TYPE.
4926 Consume the token and return true on success, storing the register
4927 number in *REGNO. Return false on failure. */
4928
4929static bfd_boolean
4930match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4931 unsigned int *regno)
4932{
4933 if (arg->token->type == OT_REG
4934 && match_regno (arg, type, arg->token->u.regno, regno))
4935 {
4936 ++arg->token;
4937 return TRUE;
4938 }
4939 return FALSE;
4940}
4941
4942/* Try to interpret the next token in ARG as a range of registers of type TYPE.
4943 Consume the token and return true on success, storing the register numbers
4944 in *REGNO1 and *REGNO2. Return false on failure. */
4945
4946static bfd_boolean
4947match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4948 unsigned int *regno1, unsigned int *regno2)
4949{
4950 if (match_reg (arg, type, regno1))
4951 {
4952 *regno2 = *regno1;
4953 return TRUE;
4954 }
4955 if (arg->token->type == OT_REG_RANGE
4956 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4957 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4958 && *regno1 <= *regno2)
4959 {
4960 ++arg->token;
4961 return TRUE;
4962 }
4963 return FALSE;
4964}
4965
a1d78564
RS
4966/* OP_INT matcher. */
4967
a92713e6 4968static bfd_boolean
a1d78564 4969match_int_operand (struct mips_arg_info *arg,
a92713e6 4970 const struct mips_operand *operand_base)
a1d78564
RS
4971{
4972 const struct mips_int_operand *operand;
3ccad066 4973 unsigned int uval;
a1d78564
RS
4974 int min_val, max_val, factor;
4975 offsetT sval;
a1d78564
RS
4976
4977 operand = (const struct mips_int_operand *) operand_base;
4978 factor = 1 << operand->shift;
3ccad066
RS
4979 min_val = mips_int_operand_min (operand);
4980 max_val = mips_int_operand_max (operand);
a1d78564 4981
d436c1c2
RS
4982 if (operand_base->lsb == 0
4983 && operand_base->size == 16
4984 && operand->shift == 0
4985 && operand->bias == 0
4986 && (operand->max_val == 32767 || operand->max_val == 65535))
a1d78564
RS
4987 {
4988 /* The operand can be relocated. */
a92713e6
RS
4989 if (!match_expression (arg, &offset_expr, offset_reloc))
4990 return FALSE;
4991
4992 if (offset_reloc[0] != BFD_RELOC_UNUSED)
a1d78564
RS
4993 /* Relocation operators were used. Accept the arguent and
4994 leave the relocation value in offset_expr and offset_relocs
4995 for the caller to process. */
a92713e6
RS
4996 return TRUE;
4997
4998 if (offset_expr.X_op != O_constant)
a1d78564 4999 {
60f20e8b
RS
5000 /* Accept non-constant operands if no later alternative matches,
5001 leaving it for the caller to process. */
5002 if (!arg->lax_match)
5003 return FALSE;
a92713e6
RS
5004 offset_reloc[0] = BFD_RELOC_LO16;
5005 return TRUE;
a1d78564 5006 }
a92713e6 5007
a1d78564
RS
5008 /* Clear the global state; we're going to install the operand
5009 ourselves. */
a92713e6 5010 sval = offset_expr.X_add_number;
a1d78564 5011 offset_expr.X_op = O_absent;
60f20e8b
RS
5012
5013 /* For compatibility with older assemblers, we accept
5014 0x8000-0xffff as signed 16-bit numbers when only
5015 signed numbers are allowed. */
5016 if (sval > max_val)
5017 {
5018 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5019 if (!arg->lax_match && sval <= max_val)
5020 return FALSE;
5021 }
a1d78564
RS
5022 }
5023 else
5024 {
1a00e612 5025 if (!match_const_int (arg, &sval))
a92713e6 5026 return FALSE;
a1d78564
RS
5027 }
5028
5029 arg->last_op_int = sval;
5030
1a00e612 5031 if (sval < min_val || sval > max_val || sval % factor)
a1d78564 5032 {
1a00e612
RS
5033 match_out_of_range (arg);
5034 return FALSE;
a1d78564
RS
5035 }
5036
5037 uval = (unsigned int) sval >> operand->shift;
5038 uval -= operand->bias;
5039
5040 /* Handle -mfix-cn63xxp1. */
5041 if (arg->opnum == 1
5042 && mips_fix_cn63xxp1
5043 && !mips_opts.micromips
5044 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5045 switch (uval)
5046 {
5047 case 5:
5048 case 25:
5049 case 26:
5050 case 27:
5051 case 28:
5052 case 29:
5053 case 30:
5054 case 31:
5055 /* These are ok. */
5056 break;
5057
5058 default:
5059 /* The rest must be changed to 28. */
5060 uval = 28;
5061 break;
5062 }
5063
5064 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5065 return TRUE;
a1d78564
RS
5066}
5067
5068/* OP_MAPPED_INT matcher. */
5069
a92713e6 5070static bfd_boolean
a1d78564 5071match_mapped_int_operand (struct mips_arg_info *arg,
a92713e6 5072 const struct mips_operand *operand_base)
a1d78564
RS
5073{
5074 const struct mips_mapped_int_operand *operand;
5075 unsigned int uval, num_vals;
5076 offsetT sval;
5077
5078 operand = (const struct mips_mapped_int_operand *) operand_base;
1a00e612 5079 if (!match_const_int (arg, &sval))
a92713e6 5080 return FALSE;
a1d78564
RS
5081
5082 num_vals = 1 << operand_base->size;
5083 for (uval = 0; uval < num_vals; uval++)
5084 if (operand->int_map[uval] == sval)
5085 break;
5086 if (uval == num_vals)
1a00e612
RS
5087 {
5088 match_out_of_range (arg);
5089 return FALSE;
5090 }
a1d78564
RS
5091
5092 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5093 return TRUE;
a1d78564
RS
5094}
5095
5096/* OP_MSB matcher. */
5097
a92713e6 5098static bfd_boolean
a1d78564 5099match_msb_operand (struct mips_arg_info *arg,
a92713e6 5100 const struct mips_operand *operand_base)
a1d78564
RS
5101{
5102 const struct mips_msb_operand *operand;
5103 int min_val, max_val, max_high;
5104 offsetT size, sval, high;
5105
5106 operand = (const struct mips_msb_operand *) operand_base;
5107 min_val = operand->bias;
5108 max_val = min_val + (1 << operand_base->size) - 1;
5109 max_high = operand->opsize;
5110
1a00e612 5111 if (!match_const_int (arg, &size))
a92713e6 5112 return FALSE;
a1d78564
RS
5113
5114 high = size + arg->last_op_int;
5115 sval = operand->add_lsb ? high : size;
5116
5117 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5118 {
1a00e612
RS
5119 match_out_of_range (arg);
5120 return FALSE;
a1d78564
RS
5121 }
5122 insn_insert_operand (arg->insn, operand_base, sval - min_val);
a92713e6 5123 return TRUE;
a1d78564
RS
5124}
5125
5126/* OP_REG matcher. */
5127
a92713e6 5128static bfd_boolean
a1d78564 5129match_reg_operand (struct mips_arg_info *arg,
a92713e6 5130 const struct mips_operand *operand_base)
a1d78564
RS
5131{
5132 const struct mips_reg_operand *operand;
a92713e6 5133 unsigned int regno, uval, num_vals;
a1d78564
RS
5134
5135 operand = (const struct mips_reg_operand *) operand_base;
a92713e6
RS
5136 if (!match_reg (arg, operand->reg_type, &regno))
5137 return FALSE;
a1d78564
RS
5138
5139 if (operand->reg_map)
5140 {
5141 num_vals = 1 << operand->root.size;
5142 for (uval = 0; uval < num_vals; uval++)
5143 if (operand->reg_map[uval] == regno)
5144 break;
5145 if (num_vals == uval)
a92713e6 5146 return FALSE;
a1d78564
RS
5147 }
5148 else
5149 uval = regno;
5150
a1d78564
RS
5151 arg->last_regno = regno;
5152 if (arg->opnum == 1)
5153 arg->dest_regno = regno;
5154 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5155 return TRUE;
a1d78564
RS
5156}
5157
5158/* OP_REG_PAIR matcher. */
5159
a92713e6 5160static bfd_boolean
a1d78564 5161match_reg_pair_operand (struct mips_arg_info *arg,
a92713e6 5162 const struct mips_operand *operand_base)
a1d78564
RS
5163{
5164 const struct mips_reg_pair_operand *operand;
a92713e6 5165 unsigned int regno1, regno2, uval, num_vals;
a1d78564
RS
5166
5167 operand = (const struct mips_reg_pair_operand *) operand_base;
a92713e6
RS
5168 if (!match_reg (arg, operand->reg_type, &regno1)
5169 || !match_char (arg, ',')
5170 || !match_reg (arg, operand->reg_type, &regno2))
5171 return FALSE;
a1d78564
RS
5172
5173 num_vals = 1 << operand_base->size;
5174 for (uval = 0; uval < num_vals; uval++)
5175 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5176 break;
5177 if (uval == num_vals)
a92713e6 5178 return FALSE;
a1d78564 5179
a1d78564 5180 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5181 return TRUE;
a1d78564
RS
5182}
5183
5184/* OP_PCREL matcher. The caller chooses the relocation type. */
5185
a92713e6
RS
5186static bfd_boolean
5187match_pcrel_operand (struct mips_arg_info *arg)
a1d78564 5188{
a92713e6
RS
5189 bfd_reloc_code_real_type r[3];
5190
5191 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
a1d78564
RS
5192}
5193
5194/* OP_PERF_REG matcher. */
5195
a92713e6 5196static bfd_boolean
a1d78564 5197match_perf_reg_operand (struct mips_arg_info *arg,
a92713e6 5198 const struct mips_operand *operand)
a1d78564
RS
5199{
5200 offsetT sval;
5201
1a00e612 5202 if (!match_const_int (arg, &sval))
a92713e6 5203 return FALSE;
a1d78564
RS
5204
5205 if (sval != 0
5206 && (sval != 1
5207 || (mips_opts.arch == CPU_R5900
5208 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5209 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5210 {
1a00e612
RS
5211 set_insn_error (arg->argnum, _("invalid performance register"));
5212 return FALSE;
a1d78564
RS
5213 }
5214
5215 insn_insert_operand (arg->insn, operand, sval);
a92713e6 5216 return TRUE;
a1d78564
RS
5217}
5218
5219/* OP_ADDIUSP matcher. */
5220
a92713e6 5221static bfd_boolean
a1d78564 5222match_addiusp_operand (struct mips_arg_info *arg,
a92713e6 5223 const struct mips_operand *operand)
a1d78564
RS
5224{
5225 offsetT sval;
5226 unsigned int uval;
5227
1a00e612 5228 if (!match_const_int (arg, &sval))
a92713e6 5229 return FALSE;
a1d78564
RS
5230
5231 if (sval % 4)
1a00e612
RS
5232 {
5233 match_out_of_range (arg);
5234 return FALSE;
5235 }
a1d78564
RS
5236
5237 sval /= 4;
5238 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
1a00e612
RS
5239 {
5240 match_out_of_range (arg);
5241 return FALSE;
5242 }
a1d78564
RS
5243
5244 uval = (unsigned int) sval;
5245 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5246 insn_insert_operand (arg->insn, operand, uval);
a92713e6 5247 return TRUE;
a1d78564
RS
5248}
5249
5250/* OP_CLO_CLZ_DEST matcher. */
5251
a92713e6 5252static bfd_boolean
a1d78564 5253match_clo_clz_dest_operand (struct mips_arg_info *arg,
a92713e6 5254 const struct mips_operand *operand)
a1d78564
RS
5255{
5256 unsigned int regno;
5257
a92713e6
RS
5258 if (!match_reg (arg, OP_REG_GP, &regno))
5259 return FALSE;
a1d78564 5260
a1d78564 5261 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
a92713e6 5262 return TRUE;
a1d78564
RS
5263}
5264
7361da2c
AB
5265/* OP_CHECK_PREV matcher. */
5266
5267static bfd_boolean
5268match_check_prev_operand (struct mips_arg_info *arg,
5269 const struct mips_operand *operand_base)
5270{
5271 const struct mips_check_prev_operand *operand;
5272 unsigned int regno;
5273
5274 operand = (const struct mips_check_prev_operand *) operand_base;
5275
5276 if (!match_reg (arg, OP_REG_GP, &regno))
5277 return FALSE;
5278
5279 if (!operand->zero_ok && regno == 0)
5280 return FALSE;
5281
5282 if ((operand->less_than_ok && regno < arg->last_regno)
5283 || (operand->greater_than_ok && regno > arg->last_regno)
5284 || (operand->equal_ok && regno == arg->last_regno))
5285 {
5286 arg->last_regno = regno;
5287 insn_insert_operand (arg->insn, operand_base, regno);
5288 return TRUE;
5289 }
5290
5291 return FALSE;
5292}
5293
5294/* OP_SAME_RS_RT matcher. */
5295
5296static bfd_boolean
5297match_same_rs_rt_operand (struct mips_arg_info *arg,
5298 const struct mips_operand *operand)
5299{
5300 unsigned int regno;
5301
5302 if (!match_reg (arg, OP_REG_GP, &regno))
5303 return FALSE;
5304
5305 if (regno == 0)
5306 {
5307 set_insn_error (arg->argnum, _("the source register must not be $0"));
5308 return FALSE;
5309 }
5310
5311 arg->last_regno = regno;
5312
5313 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5314 return TRUE;
5315}
5316
a1d78564
RS
5317/* OP_LWM_SWM_LIST matcher. */
5318
a92713e6 5319static bfd_boolean
a1d78564 5320match_lwm_swm_list_operand (struct mips_arg_info *arg,
a92713e6 5321 const struct mips_operand *operand)
a1d78564 5322{
a92713e6
RS
5323 unsigned int reglist, sregs, ra, regno1, regno2;
5324 struct mips_arg_info reset;
a1d78564 5325
a92713e6
RS
5326 reglist = 0;
5327 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5328 return FALSE;
5329 do
5330 {
5331 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5332 {
5333 reglist |= 1 << FP;
5334 regno2 = S7;
5335 }
5336 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5337 reset = *arg;
5338 }
5339 while (match_char (arg, ',')
5340 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5341 *arg = reset;
a1d78564
RS
5342
5343 if (operand->size == 2)
5344 {
5345 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5346
5347 s0, ra
5348 s0, s1, ra, s2, s3
5349 s0-s2, ra
5350
5351 and any permutations of these. */
5352 if ((reglist & 0xfff1ffff) != 0x80010000)
a92713e6 5353 return FALSE;
a1d78564
RS
5354
5355 sregs = (reglist >> 17) & 7;
5356 ra = 0;
5357 }
5358 else
5359 {
5360 /* The list must include at least one of ra and s0-sN,
5361 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5362 which are $23 and $30 respectively.) E.g.:
5363
5364 ra
5365 s0
5366 ra, s0, s1, s2
5367 s0-s8
5368 s0-s5, ra
5369
5370 and any permutations of these. */
5371 if ((reglist & 0x3f00ffff) != 0)
a92713e6 5372 return FALSE;
a1d78564
RS
5373
5374 ra = (reglist >> 27) & 0x10;
5375 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5376 }
5377 sregs += 1;
5378 if ((sregs & -sregs) != sregs)
a92713e6 5379 return FALSE;
a1d78564
RS
5380
5381 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
a92713e6 5382 return TRUE;
a1d78564
RS
5383}
5384
364215c8
RS
5385/* OP_ENTRY_EXIT_LIST matcher. */
5386
a92713e6 5387static unsigned int
364215c8 5388match_entry_exit_operand (struct mips_arg_info *arg,
a92713e6 5389 const struct mips_operand *operand)
364215c8
RS
5390{
5391 unsigned int mask;
5392 bfd_boolean is_exit;
5393
5394 /* The format is the same for both ENTRY and EXIT, but the constraints
5395 are different. */
5396 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5397 mask = (is_exit ? 7 << 3 : 0);
a92713e6 5398 do
364215c8
RS
5399 {
5400 unsigned int regno1, regno2;
5401 bfd_boolean is_freg;
5402
a92713e6 5403 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
364215c8 5404 is_freg = FALSE;
a92713e6 5405 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
364215c8
RS
5406 is_freg = TRUE;
5407 else
a92713e6 5408 return FALSE;
364215c8
RS
5409
5410 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5411 {
5412 mask &= ~(7 << 3);
5413 mask |= (5 + regno2) << 3;
5414 }
5415 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5416 mask |= (regno2 - 3) << 3;
5417 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5418 mask |= (regno2 - 15) << 1;
5419 else if (regno1 == RA && regno2 == RA)
5420 mask |= 1;
5421 else
a92713e6 5422 return FALSE;
364215c8 5423 }
a92713e6
RS
5424 while (match_char (arg, ','));
5425
364215c8 5426 insn_insert_operand (arg->insn, operand, mask);
a92713e6 5427 return TRUE;
364215c8
RS
5428}
5429
5430/* OP_SAVE_RESTORE_LIST matcher. */
5431
a92713e6
RS
5432static bfd_boolean
5433match_save_restore_list_operand (struct mips_arg_info *arg)
364215c8
RS
5434{
5435 unsigned int opcode, args, statics, sregs;
5436 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
364215c8 5437 offsetT frame_size;
364215c8 5438
364215c8
RS
5439 opcode = arg->insn->insn_opcode;
5440 frame_size = 0;
5441 num_frame_sizes = 0;
5442 args = 0;
5443 statics = 0;
5444 sregs = 0;
a92713e6 5445 do
364215c8
RS
5446 {
5447 unsigned int regno1, regno2;
5448
a92713e6 5449 if (arg->token->type == OT_INTEGER)
364215c8
RS
5450 {
5451 /* Handle the frame size. */
1a00e612 5452 if (!match_const_int (arg, &frame_size))
a92713e6 5453 return FALSE;
364215c8 5454 num_frame_sizes += 1;
364215c8
RS
5455 }
5456 else
5457 {
a92713e6
RS
5458 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5459 return FALSE;
364215c8
RS
5460
5461 while (regno1 <= regno2)
5462 {
5463 if (regno1 >= 4 && regno1 <= 7)
5464 {
5465 if (num_frame_sizes == 0)
5466 /* args $a0-$a3 */
5467 args |= 1 << (regno1 - 4);
5468 else
5469 /* statics $a0-$a3 */
5470 statics |= 1 << (regno1 - 4);
5471 }
5472 else if (regno1 >= 16 && regno1 <= 23)
5473 /* $s0-$s7 */
5474 sregs |= 1 << (regno1 - 16);
5475 else if (regno1 == 30)
5476 /* $s8 */
5477 sregs |= 1 << 8;
5478 else if (regno1 == 31)
5479 /* Add $ra to insn. */
5480 opcode |= 0x40;
5481 else
a92713e6 5482 return FALSE;
364215c8
RS
5483 regno1 += 1;
5484 if (regno1 == 24)
5485 regno1 = 30;
5486 }
5487 }
364215c8 5488 }
a92713e6 5489 while (match_char (arg, ','));
364215c8
RS
5490
5491 /* Encode args/statics combination. */
5492 if (args & statics)
a92713e6 5493 return FALSE;
364215c8
RS
5494 else if (args == 0xf)
5495 /* All $a0-$a3 are args. */
5496 opcode |= MIPS16_ALL_ARGS << 16;
5497 else if (statics == 0xf)
5498 /* All $a0-$a3 are statics. */
5499 opcode |= MIPS16_ALL_STATICS << 16;
5500 else
5501 {
5502 /* Count arg registers. */
5503 num_args = 0;
5504 while (args & 0x1)
5505 {
5506 args >>= 1;
5507 num_args += 1;
5508 }
5509 if (args != 0)
a92713e6 5510 return FALSE;
364215c8
RS
5511
5512 /* Count static registers. */
5513 num_statics = 0;
5514 while (statics & 0x8)
5515 {
5516 statics = (statics << 1) & 0xf;
5517 num_statics += 1;
5518 }
5519 if (statics != 0)
a92713e6 5520 return FALSE;
364215c8
RS
5521
5522 /* Encode args/statics. */
5523 opcode |= ((num_args << 2) | num_statics) << 16;
5524 }
5525
5526 /* Encode $s0/$s1. */
5527 if (sregs & (1 << 0)) /* $s0 */
5528 opcode |= 0x20;
5529 if (sregs & (1 << 1)) /* $s1 */
5530 opcode |= 0x10;
5531 sregs >>= 2;
5532
5533 /* Encode $s2-$s8. */
5534 num_sregs = 0;
5535 while (sregs & 1)
5536 {
5537 sregs >>= 1;
5538 num_sregs += 1;
5539 }
5540 if (sregs != 0)
a92713e6 5541 return FALSE;
364215c8
RS
5542 opcode |= num_sregs << 24;
5543
5544 /* Encode frame size. */
5545 if (num_frame_sizes == 0)
1a00e612
RS
5546 {
5547 set_insn_error (arg->argnum, _("missing frame size"));
5548 return FALSE;
5549 }
5550 if (num_frame_sizes > 1)
5551 {
5552 set_insn_error (arg->argnum, _("frame size specified twice"));
5553 return FALSE;
5554 }
5555 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5556 {
5557 set_insn_error (arg->argnum, _("invalid frame size"));
5558 return FALSE;
5559 }
5560 if (frame_size != 128 || (opcode >> 16) != 0)
364215c8
RS
5561 {
5562 frame_size /= 8;
5563 opcode |= (((frame_size & 0xf0) << 16)
5564 | (frame_size & 0x0f));
5565 }
5566
364215c8
RS
5567 /* Finally build the instruction. */
5568 if ((opcode >> 16) != 0 || frame_size == 0)
5569 opcode |= MIPS16_EXTEND;
5570 arg->insn->insn_opcode = opcode;
a92713e6 5571 return TRUE;
364215c8
RS
5572}
5573
a1d78564
RS
5574/* OP_MDMX_IMM_REG matcher. */
5575
a92713e6 5576static bfd_boolean
a1d78564 5577match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
a92713e6 5578 const struct mips_operand *operand)
a1d78564 5579{
a92713e6 5580 unsigned int regno, uval;
a1d78564
RS
5581 bfd_boolean is_qh;
5582 const struct mips_opcode *opcode;
5583
5584 /* The mips_opcode records whether this is an octobyte or quadhalf
5585 instruction. Start out with that bit in place. */
5586 opcode = arg->insn->insn_mo;
5587 uval = mips_extract_operand (operand, opcode->match);
5588 is_qh = (uval != 0);
5589
56d438b1 5590 if (arg->token->type == OT_REG)
a1d78564
RS
5591 {
5592 if ((opcode->membership & INSN_5400)
5593 && strcmp (opcode->name, "rzu.ob") == 0)
5594 {
1a00e612
RS
5595 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5596 arg->argnum);
5597 return FALSE;
a1d78564
RS
5598 }
5599
56d438b1
CF
5600 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5601 return FALSE;
5602 ++arg->token;
5603
a1d78564
RS
5604 /* Check whether this is a vector register or a broadcast of
5605 a single element. */
56d438b1 5606 if (arg->token->type == OT_INTEGER_INDEX)
a1d78564 5607 {
56d438b1 5608 if (arg->token->u.index > (is_qh ? 3 : 7))
a1d78564 5609 {
1a00e612
RS
5610 set_insn_error (arg->argnum, _("invalid element selector"));
5611 return FALSE;
a1d78564 5612 }
56d438b1
CF
5613 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5614 ++arg->token;
a1d78564
RS
5615 }
5616 else
5617 {
5618 /* A full vector. */
5619 if ((opcode->membership & INSN_5400)
5620 && (strcmp (opcode->name, "sll.ob") == 0
5621 || strcmp (opcode->name, "srl.ob") == 0))
5622 {
1a00e612
RS
5623 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5624 arg->argnum);
5625 return FALSE;
a1d78564
RS
5626 }
5627
5628 if (is_qh)
5629 uval |= MDMX_FMTSEL_VEC_QH << 5;
5630 else
5631 uval |= MDMX_FMTSEL_VEC_OB << 5;
5632 }
a1d78564
RS
5633 uval |= regno;
5634 }
5635 else
5636 {
5637 offsetT sval;
5638
1a00e612 5639 if (!match_const_int (arg, &sval))
a92713e6 5640 return FALSE;
a1d78564
RS
5641 if (sval < 0 || sval > 31)
5642 {
1a00e612
RS
5643 match_out_of_range (arg);
5644 return FALSE;
a1d78564
RS
5645 }
5646 uval |= (sval & 31);
5647 if (is_qh)
5648 uval |= MDMX_FMTSEL_IMM_QH << 5;
5649 else
5650 uval |= MDMX_FMTSEL_IMM_OB << 5;
5651 }
5652 insn_insert_operand (arg->insn, operand, uval);
a92713e6 5653 return TRUE;
a1d78564
RS
5654}
5655
56d438b1
CF
5656/* OP_IMM_INDEX matcher. */
5657
5658static bfd_boolean
5659match_imm_index_operand (struct mips_arg_info *arg,
5660 const struct mips_operand *operand)
5661{
5662 unsigned int max_val;
5663
5664 if (arg->token->type != OT_INTEGER_INDEX)
5665 return FALSE;
5666
5667 max_val = (1 << operand->size) - 1;
5668 if (arg->token->u.index > max_val)
5669 {
5670 match_out_of_range (arg);
5671 return FALSE;
5672 }
5673 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5674 ++arg->token;
5675 return TRUE;
5676}
5677
5678/* OP_REG_INDEX matcher. */
5679
5680static bfd_boolean
5681match_reg_index_operand (struct mips_arg_info *arg,
5682 const struct mips_operand *operand)
5683{
5684 unsigned int regno;
5685
5686 if (arg->token->type != OT_REG_INDEX)
5687 return FALSE;
5688
5689 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5690 return FALSE;
5691
5692 insn_insert_operand (arg->insn, operand, regno);
5693 ++arg->token;
5694 return TRUE;
5695}
5696
a1d78564
RS
5697/* OP_PC matcher. */
5698
a92713e6
RS
5699static bfd_boolean
5700match_pc_operand (struct mips_arg_info *arg)
a1d78564 5701{
a92713e6
RS
5702 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5703 {
5704 ++arg->token;
5705 return TRUE;
5706 }
5707 return FALSE;
a1d78564
RS
5708}
5709
7361da2c
AB
5710/* OP_NON_ZERO_REG matcher. */
5711
5712static bfd_boolean
5713match_non_zero_reg_operand (struct mips_arg_info *arg,
5714 const struct mips_operand *operand)
5715{
5716 unsigned int regno;
5717
5718 if (!match_reg (arg, OP_REG_GP, &regno))
5719 return FALSE;
5720
5721 if (regno == 0)
5722 return FALSE;
5723
5724 arg->last_regno = regno;
5725 insn_insert_operand (arg->insn, operand, regno);
5726 return TRUE;
5727}
5728
a1d78564
RS
5729/* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5730 register that we need to match. */
5731
a92713e6
RS
5732static bfd_boolean
5733match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
a1d78564
RS
5734{
5735 unsigned int regno;
5736
a92713e6 5737 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
a1d78564
RS
5738}
5739
89565f1b
RS
5740/* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5741 the length of the value in bytes (4 for float, 8 for double) and
5742 USING_GPRS says whether the destination is a GPR rather than an FPR.
5743
5744 Return the constant in IMM and OFFSET as follows:
5745
5746 - If the constant should be loaded via memory, set IMM to O_absent and
5747 OFFSET to the memory address.
5748
5749 - Otherwise, if the constant should be loaded into two 32-bit registers,
5750 set IMM to the O_constant to load into the high register and OFFSET
5751 to the corresponding value for the low register.
5752
5753 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5754
5755 These constants only appear as the last operand in an instruction,
5756 and every instruction that accepts them in any variant accepts them
5757 in all variants. This means we don't have to worry about backing out
5758 any changes if the instruction does not match. We just match
5759 unconditionally and report an error if the constant is invalid. */
5760
a92713e6
RS
5761static bfd_boolean
5762match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5763 expressionS *offset, int length, bfd_boolean using_gprs)
89565f1b 5764{
a92713e6 5765 char *p;
89565f1b
RS
5766 segT seg, new_seg;
5767 subsegT subseg;
5768 const char *newname;
a92713e6 5769 unsigned char *data;
89565f1b
RS
5770
5771 /* Where the constant is placed is based on how the MIPS assembler
5772 does things:
5773
5774 length == 4 && using_gprs -- immediate value only
5775 length == 8 && using_gprs -- .rdata or immediate value
5776 length == 4 && !using_gprs -- .lit4 or immediate value
5777 length == 8 && !using_gprs -- .lit8 or immediate value
5778
5779 The .lit4 and .lit8 sections are only used if permitted by the
5780 -G argument. */
a92713e6 5781 if (arg->token->type != OT_FLOAT)
1a00e612
RS
5782 {
5783 set_insn_error (arg->argnum, _("floating-point expression required"));
5784 return FALSE;
5785 }
a92713e6
RS
5786
5787 gas_assert (arg->token->u.flt.length == length);
5788 data = arg->token->u.flt.data;
5789 ++arg->token;
89565f1b
RS
5790
5791 /* Handle 32-bit constants for which an immediate value is best. */
5792 if (length == 4
5793 && (using_gprs
5794 || g_switch_value < 4
5795 || (data[0] == 0 && data[1] == 0)
5796 || (data[2] == 0 && data[3] == 0)))
5797 {
5798 imm->X_op = O_constant;
5799 if (!target_big_endian)
5800 imm->X_add_number = bfd_getl32 (data);
5801 else
5802 imm->X_add_number = bfd_getb32 (data);
5803 offset->X_op = O_absent;
a92713e6 5804 return TRUE;
89565f1b
RS
5805 }
5806
5807 /* Handle 64-bit constants for which an immediate value is best. */
5808 if (length == 8
5809 && !mips_disable_float_construction
351cdf24
MF
5810 /* Constants can only be constructed in GPRs and copied to FPRs if the
5811 GPRs are at least as wide as the FPRs or MTHC1 is available.
5812 Unlike most tests for 32-bit floating-point registers this check
5813 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5814 permit 64-bit moves without MXHC1.
5815 Force the constant into memory otherwise. */
5816 && (using_gprs
5817 || GPR_SIZE == 64
5818 || ISA_HAS_MXHC1 (mips_opts.isa)
5819 || FPR_SIZE == 32)
89565f1b
RS
5820 && ((data[0] == 0 && data[1] == 0)
5821 || (data[2] == 0 && data[3] == 0))
5822 && ((data[4] == 0 && data[5] == 0)
5823 || (data[6] == 0 && data[7] == 0)))
5824 {
5825 /* The value is simple enough to load with a couple of instructions.
5826 If using 32-bit registers, set IMM to the high order 32 bits and
5827 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5828 64 bit constant. */
351cdf24 5829 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
89565f1b
RS
5830 {
5831 imm->X_op = O_constant;
5832 offset->X_op = O_constant;
5833 if (!target_big_endian)
5834 {
5835 imm->X_add_number = bfd_getl32 (data + 4);
5836 offset->X_add_number = bfd_getl32 (data);
5837 }
5838 else
5839 {
5840 imm->X_add_number = bfd_getb32 (data);
5841 offset->X_add_number = bfd_getb32 (data + 4);
5842 }
5843 if (offset->X_add_number == 0)
5844 offset->X_op = O_absent;
5845 }
5846 else
5847 {
5848 imm->X_op = O_constant;
5849 if (!target_big_endian)
5850 imm->X_add_number = bfd_getl64 (data);
5851 else
5852 imm->X_add_number = bfd_getb64 (data);
5853 offset->X_op = O_absent;
5854 }
a92713e6 5855 return TRUE;
89565f1b
RS
5856 }
5857
5858 /* Switch to the right section. */
5859 seg = now_seg;
5860 subseg = now_subseg;
5861 if (length == 4)
5862 {
5863 gas_assert (!using_gprs && g_switch_value >= 4);
5864 newname = ".lit4";
5865 }
5866 else
5867 {
5868 if (using_gprs || g_switch_value < 8)
5869 newname = RDATA_SECTION_NAME;
5870 else
5871 newname = ".lit8";
5872 }
5873
5874 new_seg = subseg_new (newname, (subsegT) 0);
5875 bfd_set_section_flags (stdoutput, new_seg,
5876 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5877 frag_align (length == 4 ? 2 : 3, 0, 0);
5878 if (strncmp (TARGET_OS, "elf", 3) != 0)
5879 record_alignment (new_seg, 4);
5880 else
5881 record_alignment (new_seg, length == 4 ? 2 : 3);
5882 if (seg == now_seg)
1661c76c 5883 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
89565f1b
RS
5884
5885 /* Set the argument to the current address in the section. */
5886 imm->X_op = O_absent;
5887 offset->X_op = O_symbol;
5888 offset->X_add_symbol = symbol_temp_new_now ();
5889 offset->X_add_number = 0;
5890
5891 /* Put the floating point number into the section. */
5892 p = frag_more (length);
5893 memcpy (p, data, length);
5894
5895 /* Switch back to the original section. */
5896 subseg_set (seg, subseg);
a92713e6 5897 return TRUE;
89565f1b
RS
5898}
5899
14daeee3
RS
5900/* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5901 them. */
5902
5903static bfd_boolean
5904match_vu0_suffix_operand (struct mips_arg_info *arg,
5905 const struct mips_operand *operand,
5906 bfd_boolean match_p)
5907{
5908 unsigned int uval;
5909
5910 /* The operand can be an XYZW mask or a single 2-bit channel index
5911 (with X being 0). */
5912 gas_assert (operand->size == 2 || operand->size == 4);
5913
ee5734f0 5914 /* The suffix can be omitted when it is already part of the opcode. */
14daeee3 5915 if (arg->token->type != OT_CHANNELS)
ee5734f0 5916 return match_p;
14daeee3
RS
5917
5918 uval = arg->token->u.channels;
5919 if (operand->size == 2)
5920 {
5921 /* Check that a single bit is set and convert it into a 2-bit index. */
5922 if ((uval & -uval) != uval)
5923 return FALSE;
5924 uval = 4 - ffs (uval);
5925 }
5926
5927 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5928 return FALSE;
5929
5930 ++arg->token;
5931 if (!match_p)
5932 insn_insert_operand (arg->insn, operand, uval);
5933 return TRUE;
5934}
5935
a1d78564
RS
5936/* S is the text seen for ARG. Match it against OPERAND. Return the end
5937 of the argument text if the match is successful, otherwise return null. */
5938
a92713e6 5939static bfd_boolean
a1d78564 5940match_operand (struct mips_arg_info *arg,
a92713e6 5941 const struct mips_operand *operand)
a1d78564
RS
5942{
5943 switch (operand->type)
5944 {
5945 case OP_INT:
a92713e6 5946 return match_int_operand (arg, operand);
a1d78564
RS
5947
5948 case OP_MAPPED_INT:
a92713e6 5949 return match_mapped_int_operand (arg, operand);
a1d78564
RS
5950
5951 case OP_MSB:
a92713e6 5952 return match_msb_operand (arg, operand);
a1d78564
RS
5953
5954 case OP_REG:
0f35dbc4 5955 case OP_OPTIONAL_REG:
a92713e6 5956 return match_reg_operand (arg, operand);
a1d78564
RS
5957
5958 case OP_REG_PAIR:
a92713e6 5959 return match_reg_pair_operand (arg, operand);
a1d78564
RS
5960
5961 case OP_PCREL:
a92713e6 5962 return match_pcrel_operand (arg);
a1d78564
RS
5963
5964 case OP_PERF_REG:
a92713e6 5965 return match_perf_reg_operand (arg, operand);
a1d78564
RS
5966
5967 case OP_ADDIUSP_INT:
a92713e6 5968 return match_addiusp_operand (arg, operand);
a1d78564
RS
5969
5970 case OP_CLO_CLZ_DEST:
a92713e6 5971 return match_clo_clz_dest_operand (arg, operand);
a1d78564
RS
5972
5973 case OP_LWM_SWM_LIST:
a92713e6 5974 return match_lwm_swm_list_operand (arg, operand);
a1d78564
RS
5975
5976 case OP_ENTRY_EXIT_LIST:
a92713e6 5977 return match_entry_exit_operand (arg, operand);
364215c8 5978
a1d78564 5979 case OP_SAVE_RESTORE_LIST:
a92713e6 5980 return match_save_restore_list_operand (arg);
a1d78564
RS
5981
5982 case OP_MDMX_IMM_REG:
a92713e6 5983 return match_mdmx_imm_reg_operand (arg, operand);
a1d78564
RS
5984
5985 case OP_REPEAT_DEST_REG:
a92713e6 5986 return match_tied_reg_operand (arg, arg->dest_regno);
a1d78564
RS
5987
5988 case OP_REPEAT_PREV_REG:
a92713e6 5989 return match_tied_reg_operand (arg, arg->last_regno);
a1d78564
RS
5990
5991 case OP_PC:
a92713e6 5992 return match_pc_operand (arg);
14daeee3
RS
5993
5994 case OP_VU0_SUFFIX:
5995 return match_vu0_suffix_operand (arg, operand, FALSE);
5996
5997 case OP_VU0_MATCH_SUFFIX:
5998 return match_vu0_suffix_operand (arg, operand, TRUE);
56d438b1
CF
5999
6000 case OP_IMM_INDEX:
6001 return match_imm_index_operand (arg, operand);
6002
6003 case OP_REG_INDEX:
6004 return match_reg_index_operand (arg, operand);
7361da2c
AB
6005
6006 case OP_SAME_RS_RT:
6007 return match_same_rs_rt_operand (arg, operand);
6008
6009 case OP_CHECK_PREV:
6010 return match_check_prev_operand (arg, operand);
6011
6012 case OP_NON_ZERO_REG:
6013 return match_non_zero_reg_operand (arg, operand);
a1d78564
RS
6014 }
6015 abort ();
6016}
6017
6018/* ARG is the state after successfully matching an instruction.
6019 Issue any queued-up warnings. */
6020
6021static void
6022check_completed_insn (struct mips_arg_info *arg)
6023{
6024 if (arg->seen_at)
6025 {
6026 if (AT == ATREG)
1661c76c 6027 as_warn (_("used $at without \".set noat\""));
a1d78564 6028 else
1661c76c 6029 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
a1d78564
RS
6030 }
6031}
a1d78564 6032
85fcb30f
RS
6033/* Return true if modifying general-purpose register REG needs a delay. */
6034
6035static bfd_boolean
6036reg_needs_delay (unsigned int reg)
6037{
6038 unsigned long prev_pinfo;
6039
6040 prev_pinfo = history[0].insn_mo->pinfo;
6041 if (!mips_opts.noreorder
67dc82bc 6042 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
43885403 6043 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
85fcb30f
RS
6044 && (gpr_write_mask (&history[0]) & (1 << reg)))
6045 return TRUE;
6046
6047 return FALSE;
6048}
6049
71400594
RS
6050/* Classify an instruction according to the FIX_VR4120_* enumeration.
6051 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6052 by VR4120 errata. */
4d7206a2 6053
71400594
RS
6054static unsigned int
6055classify_vr4120_insn (const char *name)
252b5132 6056{
71400594
RS
6057 if (strncmp (name, "macc", 4) == 0)
6058 return FIX_VR4120_MACC;
6059 if (strncmp (name, "dmacc", 5) == 0)
6060 return FIX_VR4120_DMACC;
6061 if (strncmp (name, "mult", 4) == 0)
6062 return FIX_VR4120_MULT;
6063 if (strncmp (name, "dmult", 5) == 0)
6064 return FIX_VR4120_DMULT;
6065 if (strstr (name, "div"))
6066 return FIX_VR4120_DIV;
6067 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6068 return FIX_VR4120_MTHILO;
6069 return NUM_FIX_VR4120_CLASSES;
6070}
252b5132 6071
a8d14a88
CM
6072#define INSN_ERET 0x42000018
6073#define INSN_DERET 0x4200001f
6074#define INSN_DMULT 0x1c
6075#define INSN_DMULTU 0x1d
ff239038 6076
71400594
RS
6077/* Return the number of instructions that must separate INSN1 and INSN2,
6078 where INSN1 is the earlier instruction. Return the worst-case value
6079 for any INSN2 if INSN2 is null. */
252b5132 6080
71400594
RS
6081static unsigned int
6082insns_between (const struct mips_cl_insn *insn1,
6083 const struct mips_cl_insn *insn2)
6084{
6085 unsigned long pinfo1, pinfo2;
4c260379 6086 unsigned int mask;
71400594 6087
85fcb30f
RS
6088 /* If INFO2 is null, pessimistically assume that all flags are set for
6089 the second instruction. */
71400594
RS
6090 pinfo1 = insn1->insn_mo->pinfo;
6091 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
252b5132 6092
71400594
RS
6093 /* For most targets, write-after-read dependencies on the HI and LO
6094 registers must be separated by at least two instructions. */
6095 if (!hilo_interlocks)
252b5132 6096 {
71400594
RS
6097 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6098 return 2;
6099 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6100 return 2;
6101 }
6102
6103 /* If we're working around r7000 errata, there must be two instructions
6104 between an mfhi or mflo and any instruction that uses the result. */
6105 if (mips_7000_hilo_fix
df58fc94 6106 && !mips_opts.micromips
71400594 6107 && MF_HILO_INSN (pinfo1)
85fcb30f 6108 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
71400594
RS
6109 return 2;
6110
ff239038
CM
6111 /* If we're working around 24K errata, one instruction is required
6112 if an ERET or DERET is followed by a branch instruction. */
df58fc94 6113 if (mips_fix_24k && !mips_opts.micromips)
ff239038
CM
6114 {
6115 if (insn1->insn_opcode == INSN_ERET
6116 || insn1->insn_opcode == INSN_DERET)
6117 {
6118 if (insn2 == NULL
6119 || insn2->insn_opcode == INSN_ERET
6120 || insn2->insn_opcode == INSN_DERET
11625dd8 6121 || delayed_branch_p (insn2))
ff239038
CM
6122 return 1;
6123 }
6124 }
6125
a8d14a88
CM
6126 /* If we're working around PMC RM7000 errata, there must be three
6127 nops between a dmult and a load instruction. */
6128 if (mips_fix_rm7000 && !mips_opts.micromips)
6129 {
6130 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6131 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6132 {
6133 if (pinfo2 & INSN_LOAD_MEMORY)
6134 return 3;
6135 }
6136 }
6137
71400594
RS
6138 /* If working around VR4120 errata, check for combinations that need
6139 a single intervening instruction. */
df58fc94 6140 if (mips_fix_vr4120 && !mips_opts.micromips)
71400594
RS
6141 {
6142 unsigned int class1, class2;
252b5132 6143
71400594
RS
6144 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6145 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
252b5132 6146 {
71400594
RS
6147 if (insn2 == NULL)
6148 return 1;
6149 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6150 if (vr4120_conflicts[class1] & (1 << class2))
6151 return 1;
252b5132 6152 }
71400594
RS
6153 }
6154
df58fc94 6155 if (!HAVE_CODE_COMPRESSION)
71400594
RS
6156 {
6157 /* Check for GPR or coprocessor load delays. All such delays
6158 are on the RT register. */
6159 /* Itbl support may require additional care here. */
67dc82bc 6160 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
43885403 6161 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
252b5132 6162 {
85fcb30f 6163 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
71400594
RS
6164 return 1;
6165 }
6166
6167 /* Check for generic coprocessor hazards.
6168
6169 This case is not handled very well. There is no special
6170 knowledge of CP0 handling, and the coprocessors other than
6171 the floating point unit are not distinguished at all. */
6172 /* Itbl support may require additional care here. FIXME!
6173 Need to modify this to include knowledge about
6174 user specified delays! */
43885403 6175 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
71400594
RS
6176 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6177 {
6178 /* Handle cases where INSN1 writes to a known general coprocessor
6179 register. There must be a one instruction delay before INSN2
6180 if INSN2 reads that register, otherwise no delay is needed. */
4c260379
RS
6181 mask = fpr_write_mask (insn1);
6182 if (mask != 0)
252b5132 6183 {
4c260379 6184 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
71400594 6185 return 1;
252b5132
RH
6186 }
6187 else
6188 {
71400594
RS
6189 /* Read-after-write dependencies on the control registers
6190 require a two-instruction gap. */
6191 if ((pinfo1 & INSN_WRITE_COND_CODE)
6192 && (pinfo2 & INSN_READ_COND_CODE))
6193 return 2;
6194
6195 /* We don't know exactly what INSN1 does. If INSN2 is
6196 also a coprocessor instruction, assume there must be
6197 a one instruction gap. */
6198 if (pinfo2 & INSN_COP)
6199 return 1;
252b5132
RH
6200 }
6201 }
6b76fefe 6202
71400594
RS
6203 /* Check for read-after-write dependencies on the coprocessor
6204 control registers in cases where INSN1 does not need a general
6205 coprocessor delay. This means that INSN1 is a floating point
6206 comparison instruction. */
6207 /* Itbl support may require additional care here. */
6208 else if (!cop_interlocks
6209 && (pinfo1 & INSN_WRITE_COND_CODE)
6210 && (pinfo2 & INSN_READ_COND_CODE))
6211 return 1;
6212 }
6b76fefe 6213
7361da2c
AB
6214 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6215 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6216 and pause. */
6217 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6218 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6219 || (insn2 && delayed_branch_p (insn2))))
6220 return 1;
6221
71400594
RS
6222 return 0;
6223}
6b76fefe 6224
7d8e00cf
RS
6225/* Return the number of nops that would be needed to work around the
6226 VR4130 mflo/mfhi errata if instruction INSN immediately followed
932d1a1b
RS
6227 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6228 that are contained within the first IGNORE instructions of HIST. */
7d8e00cf
RS
6229
6230static int
932d1a1b 6231nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
7d8e00cf
RS
6232 const struct mips_cl_insn *insn)
6233{
4c260379
RS
6234 int i, j;
6235 unsigned int mask;
7d8e00cf
RS
6236
6237 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6238 are not affected by the errata. */
6239 if (insn != 0
6240 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6241 || strcmp (insn->insn_mo->name, "mtlo") == 0
6242 || strcmp (insn->insn_mo->name, "mthi") == 0))
6243 return 0;
6244
6245 /* Search for the first MFLO or MFHI. */
6246 for (i = 0; i < MAX_VR4130_NOPS; i++)
91d6fa6a 6247 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
7d8e00cf
RS
6248 {
6249 /* Extract the destination register. */
4c260379 6250 mask = gpr_write_mask (&hist[i]);
7d8e00cf
RS
6251
6252 /* No nops are needed if INSN reads that register. */
4c260379 6253 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
7d8e00cf
RS
6254 return 0;
6255
6256 /* ...or if any of the intervening instructions do. */
6257 for (j = 0; j < i; j++)
4c260379 6258 if (gpr_read_mask (&hist[j]) & mask)
7d8e00cf
RS
6259 return 0;
6260
932d1a1b
RS
6261 if (i >= ignore)
6262 return MAX_VR4130_NOPS - i;
7d8e00cf
RS
6263 }
6264 return 0;
6265}
6266
15be625d
CM
6267#define BASE_REG_EQ(INSN1, INSN2) \
6268 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6269 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6270
6271/* Return the minimum alignment for this store instruction. */
6272
6273static int
6274fix_24k_align_to (const struct mips_opcode *mo)
6275{
6276 if (strcmp (mo->name, "sh") == 0)
6277 return 2;
6278
6279 if (strcmp (mo->name, "swc1") == 0
6280 || strcmp (mo->name, "swc2") == 0
6281 || strcmp (mo->name, "sw") == 0
6282 || strcmp (mo->name, "sc") == 0
6283 || strcmp (mo->name, "s.s") == 0)
6284 return 4;
6285
6286 if (strcmp (mo->name, "sdc1") == 0
6287 || strcmp (mo->name, "sdc2") == 0
6288 || strcmp (mo->name, "s.d") == 0)
6289 return 8;
6290
6291 /* sb, swl, swr */
6292 return 1;
6293}
6294
6295struct fix_24k_store_info
6296 {
6297 /* Immediate offset, if any, for this store instruction. */
6298 short off;
6299 /* Alignment required by this store instruction. */
6300 int align_to;
6301 /* True for register offsets. */
6302 int register_offset;
6303 };
6304
6305/* Comparison function used by qsort. */
6306
6307static int
6308fix_24k_sort (const void *a, const void *b)
6309{
6310 const struct fix_24k_store_info *pos1 = a;
6311 const struct fix_24k_store_info *pos2 = b;
6312
6313 return (pos1->off - pos2->off);
6314}
6315
6316/* INSN is a store instruction. Try to record the store information
6317 in STINFO. Return false if the information isn't known. */
6318
6319static bfd_boolean
6320fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
ab9794cf 6321 const struct mips_cl_insn *insn)
15be625d
CM
6322{
6323 /* The instruction must have a known offset. */
6324 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6325 return FALSE;
6326
6327 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6328 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6329 return TRUE;
6330}
6331
932d1a1b
RS
6332/* Return the number of nops that would be needed to work around the 24k
6333 "lost data on stores during refill" errata if instruction INSN
6334 immediately followed the 2 instructions described by HIST.
6335 Ignore hazards that are contained within the first IGNORE
6336 instructions of HIST.
6337
6338 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6339 for the data cache refills and store data. The following describes
6340 the scenario where the store data could be lost.
6341
6342 * A data cache miss, due to either a load or a store, causing fill
6343 data to be supplied by the memory subsystem
6344 * The first three doublewords of fill data are returned and written
6345 into the cache
6346 * A sequence of four stores occurs in consecutive cycles around the
6347 final doubleword of the fill:
6348 * Store A
6349 * Store B
6350 * Store C
6351 * Zero, One or more instructions
6352 * Store D
6353
6354 The four stores A-D must be to different doublewords of the line that
6355 is being filled. The fourth instruction in the sequence above permits
6356 the fill of the final doubleword to be transferred from the FSB into
6357 the cache. In the sequence above, the stores may be either integer
6358 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6359 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6360 different doublewords on the line. If the floating point unit is
6361 running in 1:2 mode, it is not possible to create the sequence above
6362 using only floating point store instructions.
15be625d
CM
6363
6364 In this case, the cache line being filled is incorrectly marked
6365 invalid, thereby losing the data from any store to the line that
6366 occurs between the original miss and the completion of the five
6367 cycle sequence shown above.
6368
932d1a1b 6369 The workarounds are:
15be625d 6370
932d1a1b
RS
6371 * Run the data cache in write-through mode.
6372 * Insert a non-store instruction between
6373 Store A and Store B or Store B and Store C. */
3739860c 6374
15be625d 6375static int
932d1a1b 6376nops_for_24k (int ignore, const struct mips_cl_insn *hist,
15be625d
CM
6377 const struct mips_cl_insn *insn)
6378{
6379 struct fix_24k_store_info pos[3];
6380 int align, i, base_offset;
6381
932d1a1b
RS
6382 if (ignore >= 2)
6383 return 0;
6384
ab9794cf
RS
6385 /* If the previous instruction wasn't a store, there's nothing to
6386 worry about. */
15be625d
CM
6387 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6388 return 0;
6389
ab9794cf
RS
6390 /* If the instructions after the previous one are unknown, we have
6391 to assume the worst. */
6392 if (!insn)
15be625d
CM
6393 return 1;
6394
ab9794cf
RS
6395 /* Check whether we are dealing with three consecutive stores. */
6396 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6397 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
15be625d
CM
6398 return 0;
6399
6400 /* If we don't know the relationship between the store addresses,
6401 assume the worst. */
ab9794cf 6402 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
15be625d
CM
6403 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6404 return 1;
6405
6406 if (!fix_24k_record_store_info (&pos[0], insn)
6407 || !fix_24k_record_store_info (&pos[1], &hist[0])
6408 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6409 return 1;
6410
6411 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6412
6413 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6414 X bytes and such that the base register + X is known to be aligned
6415 to align bytes. */
6416
6417 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6418 align = 8;
6419 else
6420 {
6421 align = pos[0].align_to;
6422 base_offset = pos[0].off;
6423 for (i = 1; i < 3; i++)
6424 if (align < pos[i].align_to)
6425 {
6426 align = pos[i].align_to;
6427 base_offset = pos[i].off;
6428 }
6429 for (i = 0; i < 3; i++)
6430 pos[i].off -= base_offset;
6431 }
6432
6433 pos[0].off &= ~align + 1;
6434 pos[1].off &= ~align + 1;
6435 pos[2].off &= ~align + 1;
6436
6437 /* If any two stores write to the same chunk, they also write to the
6438 same doubleword. The offsets are still sorted at this point. */
6439 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6440 return 0;
6441
6442 /* A range of at least 9 bytes is needed for the stores to be in
6443 non-overlapping doublewords. */
6444 if (pos[2].off - pos[0].off <= 8)
6445 return 0;
6446
6447 if (pos[2].off - pos[1].off >= 24
6448 || pos[1].off - pos[0].off >= 24
6449 || pos[2].off - pos[0].off >= 32)
6450 return 0;
6451
6452 return 1;
6453}
6454
71400594 6455/* Return the number of nops that would be needed if instruction INSN
91d6fa6a 6456 immediately followed the MAX_NOPS instructions given by HIST,
932d1a1b
RS
6457 where HIST[0] is the most recent instruction. Ignore hazards
6458 between INSN and the first IGNORE instructions in HIST.
6459
6460 If INSN is null, return the worse-case number of nops for any
6461 instruction. */
bdaaa2e1 6462
71400594 6463static int
932d1a1b 6464nops_for_insn (int ignore, const struct mips_cl_insn *hist,
71400594
RS
6465 const struct mips_cl_insn *insn)
6466{
6467 int i, nops, tmp_nops;
bdaaa2e1 6468
71400594 6469 nops = 0;
932d1a1b 6470 for (i = ignore; i < MAX_DELAY_NOPS; i++)
65b02341 6471 {
91d6fa6a 6472 tmp_nops = insns_between (hist + i, insn) - i;
65b02341
RS
6473 if (tmp_nops > nops)
6474 nops = tmp_nops;
6475 }
7d8e00cf 6476
df58fc94 6477 if (mips_fix_vr4130 && !mips_opts.micromips)
7d8e00cf 6478 {
932d1a1b 6479 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
7d8e00cf
RS
6480 if (tmp_nops > nops)
6481 nops = tmp_nops;
6482 }
6483
df58fc94 6484 if (mips_fix_24k && !mips_opts.micromips)
15be625d 6485 {
932d1a1b 6486 tmp_nops = nops_for_24k (ignore, hist, insn);
15be625d
CM
6487 if (tmp_nops > nops)
6488 nops = tmp_nops;
6489 }
6490
71400594
RS
6491 return nops;
6492}
252b5132 6493
71400594 6494/* The variable arguments provide NUM_INSNS extra instructions that
91d6fa6a 6495 might be added to HIST. Return the largest number of nops that
932d1a1b
RS
6496 would be needed after the extended sequence, ignoring hazards
6497 in the first IGNORE instructions. */
252b5132 6498
71400594 6499static int
932d1a1b
RS
6500nops_for_sequence (int num_insns, int ignore,
6501 const struct mips_cl_insn *hist, ...)
71400594
RS
6502{
6503 va_list args;
6504 struct mips_cl_insn buffer[MAX_NOPS];
6505 struct mips_cl_insn *cursor;
6506 int nops;
6507
91d6fa6a 6508 va_start (args, hist);
71400594 6509 cursor = buffer + num_insns;
91d6fa6a 6510 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
71400594
RS
6511 while (cursor > buffer)
6512 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6513
932d1a1b 6514 nops = nops_for_insn (ignore, buffer, NULL);
71400594
RS
6515 va_end (args);
6516 return nops;
6517}
252b5132 6518
71400594
RS
6519/* Like nops_for_insn, but if INSN is a branch, take into account the
6520 worst-case delay for the branch target. */
252b5132 6521
71400594 6522static int
932d1a1b 6523nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
71400594
RS
6524 const struct mips_cl_insn *insn)
6525{
6526 int nops, tmp_nops;
60b63b72 6527
932d1a1b 6528 nops = nops_for_insn (ignore, hist, insn);
11625dd8 6529 if (delayed_branch_p (insn))
71400594 6530 {
932d1a1b 6531 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
14fe068b 6532 hist, insn, get_delay_slot_nop (insn));
71400594
RS
6533 if (tmp_nops > nops)
6534 nops = tmp_nops;
6535 }
11625dd8 6536 else if (compact_branch_p (insn))
71400594 6537 {
932d1a1b 6538 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
71400594
RS
6539 if (tmp_nops > nops)
6540 nops = tmp_nops;
6541 }
6542 return nops;
6543}
6544
c67a084a
NC
6545/* Fix NOP issue: Replace nops by "or at,at,zero". */
6546
6547static void
6548fix_loongson2f_nop (struct mips_cl_insn * ip)
6549{
df58fc94 6550 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
6551 if (strcmp (ip->insn_mo->name, "nop") == 0)
6552 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6553}
6554
6555/* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6556 jr target pc &= 'hffff_ffff_cfff_ffff. */
6557
6558static void
6559fix_loongson2f_jump (struct mips_cl_insn * ip)
6560{
df58fc94 6561 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
6562 if (strcmp (ip->insn_mo->name, "j") == 0
6563 || strcmp (ip->insn_mo->name, "jr") == 0
6564 || strcmp (ip->insn_mo->name, "jalr") == 0)
6565 {
6566 int sreg;
6567 expressionS ep;
6568
6569 if (! mips_opts.at)
6570 return;
6571
df58fc94 6572 sreg = EXTRACT_OPERAND (0, RS, *ip);
c67a084a
NC
6573 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6574 return;
6575
6576 ep.X_op = O_constant;
6577 ep.X_add_number = 0xcfff0000;
6578 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6579 ep.X_add_number = 0xffff;
6580 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6581 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6582 }
6583}
6584
6585static void
6586fix_loongson2f (struct mips_cl_insn * ip)
6587{
6588 if (mips_fix_loongson2f_nop)
6589 fix_loongson2f_nop (ip);
6590
6591 if (mips_fix_loongson2f_jump)
6592 fix_loongson2f_jump (ip);
6593}
6594
a4e06468
RS
6595/* IP is a branch that has a delay slot, and we need to fill it
6596 automatically. Return true if we can do that by swapping IP
e407c74b
NC
6597 with the previous instruction.
6598 ADDRESS_EXPR is an operand of the instruction to be used with
6599 RELOC_TYPE. */
a4e06468
RS
6600
6601static bfd_boolean
e407c74b 6602can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 6603 bfd_reloc_code_real_type *reloc_type)
a4e06468 6604{
2b0c8b40 6605 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
a4e06468 6606 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
9d5de888 6607 unsigned int fpr_read, prev_fpr_write;
a4e06468
RS
6608
6609 /* -O2 and above is required for this optimization. */
6610 if (mips_optimize < 2)
6611 return FALSE;
6612
6613 /* If we have seen .set volatile or .set nomove, don't optimize. */
6614 if (mips_opts.nomove)
6615 return FALSE;
6616
6617 /* We can't swap if the previous instruction's position is fixed. */
6618 if (history[0].fixed_p)
6619 return FALSE;
6620
6621 /* If the previous previous insn was in a .set noreorder, we can't
6622 swap. Actually, the MIPS assembler will swap in this situation.
6623 However, gcc configured -with-gnu-as will generate code like
6624
6625 .set noreorder
6626 lw $4,XXX
6627 .set reorder
6628 INSN
6629 bne $4,$0,foo
6630
6631 in which we can not swap the bne and INSN. If gcc is not configured
6632 -with-gnu-as, it does not output the .set pseudo-ops. */
6633 if (history[1].noreorder_p)
6634 return FALSE;
6635
87333bb7
MR
6636 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6637 This means that the previous instruction was a 4-byte one anyhow. */
a4e06468
RS
6638 if (mips_opts.mips16 && history[0].fixp[0])
6639 return FALSE;
6640
6641 /* If the branch is itself the target of a branch, we can not swap.
6642 We cheat on this; all we check for is whether there is a label on
6643 this instruction. If there are any branches to anything other than
6644 a label, users must use .set noreorder. */
6645 if (seg_info (now_seg)->label_list)
6646 return FALSE;
6647
6648 /* If the previous instruction is in a variant frag other than this
2309ddf2 6649 branch's one, we cannot do the swap. This does not apply to
9301f9c3
MR
6650 MIPS16 code, which uses variant frags for different purposes. */
6651 if (!mips_opts.mips16
a4e06468
RS
6652 && history[0].frag
6653 && history[0].frag->fr_type == rs_machine_dependent)
6654 return FALSE;
6655
bcd530a7
RS
6656 /* We do not swap with instructions that cannot architecturally
6657 be placed in a branch delay slot, such as SYNC or ERET. We
6658 also refrain from swapping with a trap instruction, since it
6659 complicates trap handlers to have the trap instruction be in
6660 a delay slot. */
a4e06468 6661 prev_pinfo = history[0].insn_mo->pinfo;
bcd530a7 6662 if (prev_pinfo & INSN_NO_DELAY_SLOT)
a4e06468
RS
6663 return FALSE;
6664
6665 /* Check for conflicts between the branch and the instructions
6666 before the candidate delay slot. */
6667 if (nops_for_insn (0, history + 1, ip) > 0)
6668 return FALSE;
6669
6670 /* Check for conflicts between the swapped sequence and the
6671 target of the branch. */
6672 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6673 return FALSE;
6674
6675 /* If the branch reads a register that the previous
6676 instruction sets, we can not swap. */
6677 gpr_read = gpr_read_mask (ip);
6678 prev_gpr_write = gpr_write_mask (&history[0]);
6679 if (gpr_read & prev_gpr_write)
6680 return FALSE;
6681
9d5de888
CF
6682 fpr_read = fpr_read_mask (ip);
6683 prev_fpr_write = fpr_write_mask (&history[0]);
6684 if (fpr_read & prev_fpr_write)
6685 return FALSE;
6686
a4e06468
RS
6687 /* If the branch writes a register that the previous
6688 instruction sets, we can not swap. */
6689 gpr_write = gpr_write_mask (ip);
6690 if (gpr_write & prev_gpr_write)
6691 return FALSE;
6692
6693 /* If the branch writes a register that the previous
6694 instruction reads, we can not swap. */
6695 prev_gpr_read = gpr_read_mask (&history[0]);
6696 if (gpr_write & prev_gpr_read)
6697 return FALSE;
6698
6699 /* If one instruction sets a condition code and the
6700 other one uses a condition code, we can not swap. */
6701 pinfo = ip->insn_mo->pinfo;
6702 if ((pinfo & INSN_READ_COND_CODE)
6703 && (prev_pinfo & INSN_WRITE_COND_CODE))
6704 return FALSE;
6705 if ((pinfo & INSN_WRITE_COND_CODE)
6706 && (prev_pinfo & INSN_READ_COND_CODE))
6707 return FALSE;
6708
6709 /* If the previous instruction uses the PC, we can not swap. */
2b0c8b40 6710 prev_pinfo2 = history[0].insn_mo->pinfo2;
26545944 6711 if (prev_pinfo2 & INSN2_READ_PC)
2b0c8b40 6712 return FALSE;
a4e06468 6713
df58fc94
RS
6714 /* If the previous instruction has an incorrect size for a fixed
6715 branch delay slot in microMIPS mode, we cannot swap. */
2309ddf2
MR
6716 pinfo2 = ip->insn_mo->pinfo2;
6717 if (mips_opts.micromips
6718 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6719 && insn_length (history) != 2)
6720 return FALSE;
6721 if (mips_opts.micromips
6722 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6723 && insn_length (history) != 4)
6724 return FALSE;
6725
e407c74b
NC
6726 /* On R5900 short loops need to be fixed by inserting a nop in
6727 the branch delay slots.
6728 A short loop can be terminated too early. */
6729 if (mips_opts.arch == CPU_R5900
6730 /* Check if instruction has a parameter, ignore "j $31". */
6731 && (address_expr != NULL)
6732 /* Parameter must be 16 bit. */
6733 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6734 /* Branch to same segment. */
6735 && (S_GET_SEGMENT(address_expr->X_add_symbol) == now_seg)
6736 /* Branch to same code fragment. */
6737 && (symbol_get_frag(address_expr->X_add_symbol) == frag_now)
6738 /* Can only calculate branch offset if value is known. */
6739 && symbol_constant_p(address_expr->X_add_symbol)
6740 /* Check if branch is really conditional. */
6741 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6742 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6743 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6744 {
6745 int distance;
6746 /* Check if loop is shorter than 6 instructions including
6747 branch and delay slot. */
6748 distance = frag_now_fix() - S_GET_VALUE(address_expr->X_add_symbol);
6749 if (distance <= 20)
6750 {
6751 int i;
6752 int rv;
6753
6754 rv = FALSE;
6755 /* When the loop includes branches or jumps,
6756 it is not a short loop. */
6757 for (i = 0; i < (distance / 4); i++)
6758 {
6759 if ((history[i].cleared_p)
6760 || delayed_branch_p(&history[i]))
6761 {
6762 rv = TRUE;
6763 break;
6764 }
6765 }
6766 if (rv == FALSE)
6767 {
6768 /* Insert nop after branch to fix short loop. */
6769 return FALSE;
6770 }
6771 }
6772 }
6773
a4e06468
RS
6774 return TRUE;
6775}
6776
e407c74b
NC
6777/* Decide how we should add IP to the instruction stream.
6778 ADDRESS_EXPR is an operand of the instruction to be used with
6779 RELOC_TYPE. */
a4e06468
RS
6780
6781static enum append_method
e407c74b 6782get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 6783 bfd_reloc_code_real_type *reloc_type)
a4e06468 6784{
a4e06468
RS
6785 /* The relaxed version of a macro sequence must be inherently
6786 hazard-free. */
6787 if (mips_relax.sequence == 2)
6788 return APPEND_ADD;
6789
6790 /* We must not dabble with instructions in a ".set norerorder" block. */
6791 if (mips_opts.noreorder)
6792 return APPEND_ADD;
6793
6794 /* Otherwise, it's our responsibility to fill branch delay slots. */
11625dd8 6795 if (delayed_branch_p (ip))
a4e06468 6796 {
e407c74b
NC
6797 if (!branch_likely_p (ip)
6798 && can_swap_branch_p (ip, address_expr, reloc_type))
a4e06468
RS
6799 return APPEND_SWAP;
6800
6801 if (mips_opts.mips16
6802 && ISA_SUPPORTS_MIPS16E
fc76e730 6803 && gpr_read_mask (ip) != 0)
a4e06468
RS
6804 return APPEND_ADD_COMPACT;
6805
6806 return APPEND_ADD_WITH_NOP;
6807 }
6808
a4e06468
RS
6809 return APPEND_ADD;
6810}
6811
ceb94aa5
RS
6812/* IP is a MIPS16 instruction whose opcode we have just changed.
6813 Point IP->insn_mo to the new opcode's definition. */
6814
6815static void
6816find_altered_mips16_opcode (struct mips_cl_insn *ip)
6817{
6818 const struct mips_opcode *mo, *end;
6819
6820 end = &mips16_opcodes[bfd_mips16_num_opcodes];
6821 for (mo = ip->insn_mo; mo < end; mo++)
6822 if ((ip->insn_opcode & mo->mask) == mo->match)
6823 {
6824 ip->insn_mo = mo;
6825 return;
6826 }
6827 abort ();
6828}
6829
df58fc94
RS
6830/* For microMIPS macros, we need to generate a local number label
6831 as the target of branches. */
6832#define MICROMIPS_LABEL_CHAR '\037'
6833static unsigned long micromips_target_label;
6834static char micromips_target_name[32];
6835
6836static char *
6837micromips_label_name (void)
6838{
6839 char *p = micromips_target_name;
6840 char symbol_name_temporary[24];
6841 unsigned long l;
6842 int i;
6843
6844 if (*p)
6845 return p;
6846
6847 i = 0;
6848 l = micromips_target_label;
6849#ifdef LOCAL_LABEL_PREFIX
6850 *p++ = LOCAL_LABEL_PREFIX;
6851#endif
6852 *p++ = 'L';
6853 *p++ = MICROMIPS_LABEL_CHAR;
6854 do
6855 {
6856 symbol_name_temporary[i++] = l % 10 + '0';
6857 l /= 10;
6858 }
6859 while (l != 0);
6860 while (i > 0)
6861 *p++ = symbol_name_temporary[--i];
6862 *p = '\0';
6863
6864 return micromips_target_name;
6865}
6866
6867static void
6868micromips_label_expr (expressionS *label_expr)
6869{
6870 label_expr->X_op = O_symbol;
6871 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6872 label_expr->X_add_number = 0;
6873}
6874
6875static void
6876micromips_label_inc (void)
6877{
6878 micromips_target_label++;
6879 *micromips_target_name = '\0';
6880}
6881
6882static void
6883micromips_add_label (void)
6884{
6885 symbolS *s;
6886
6887 s = colon (micromips_label_name ());
6888 micromips_label_inc ();
f3ded42a 6889 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
df58fc94
RS
6890}
6891
6892/* If assembling microMIPS code, then return the microMIPS reloc
6893 corresponding to the requested one if any. Otherwise return
6894 the reloc unchanged. */
6895
6896static bfd_reloc_code_real_type
6897micromips_map_reloc (bfd_reloc_code_real_type reloc)
6898{
6899 static const bfd_reloc_code_real_type relocs[][2] =
6900 {
6901 /* Keep sorted incrementally by the left-hand key. */
6902 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6903 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6904 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6905 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6906 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6907 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6908 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6909 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6910 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6911 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6912 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6913 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6914 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6915 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6916 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6917 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6918 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6919 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6920 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6921 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6922 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6923 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6924 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6925 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6926 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6927 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6928 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6929 };
6930 bfd_reloc_code_real_type r;
6931 size_t i;
6932
6933 if (!mips_opts.micromips)
6934 return reloc;
6935 for (i = 0; i < ARRAY_SIZE (relocs); i++)
6936 {
6937 r = relocs[i][0];
6938 if (r > reloc)
6939 return reloc;
6940 if (r == reloc)
6941 return relocs[i][1];
6942 }
6943 return reloc;
6944}
6945
b886a2ab
RS
6946/* Try to resolve relocation RELOC against constant OPERAND at assembly time.
6947 Return true on success, storing the resolved value in RESULT. */
6948
6949static bfd_boolean
6950calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
6951 offsetT *result)
6952{
6953 switch (reloc)
6954 {
6955 case BFD_RELOC_MIPS_HIGHEST:
6956 case BFD_RELOC_MICROMIPS_HIGHEST:
6957 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
6958 return TRUE;
6959
6960 case BFD_RELOC_MIPS_HIGHER:
6961 case BFD_RELOC_MICROMIPS_HIGHER:
6962 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
6963 return TRUE;
6964
6965 case BFD_RELOC_HI16_S:
6966 case BFD_RELOC_MICROMIPS_HI16_S:
6967 case BFD_RELOC_MIPS16_HI16_S:
6968 *result = ((operand + 0x8000) >> 16) & 0xffff;
6969 return TRUE;
6970
6971 case BFD_RELOC_HI16:
6972 case BFD_RELOC_MICROMIPS_HI16:
6973 case BFD_RELOC_MIPS16_HI16:
6974 *result = (operand >> 16) & 0xffff;
6975 return TRUE;
6976
6977 case BFD_RELOC_LO16:
6978 case BFD_RELOC_MICROMIPS_LO16:
6979 case BFD_RELOC_MIPS16_LO16:
6980 *result = operand & 0xffff;
6981 return TRUE;
6982
6983 case BFD_RELOC_UNUSED:
6984 *result = operand;
6985 return TRUE;
6986
6987 default:
6988 return FALSE;
6989 }
6990}
6991
71400594
RS
6992/* Output an instruction. IP is the instruction information.
6993 ADDRESS_EXPR is an operand of the instruction to be used with
df58fc94
RS
6994 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
6995 a macro expansion. */
71400594
RS
6996
6997static void
6998append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
df58fc94 6999 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
71400594 7000{
14fe068b 7001 unsigned long prev_pinfo2, pinfo;
71400594 7002 bfd_boolean relaxed_branch = FALSE;
a4e06468 7003 enum append_method method;
2309ddf2 7004 bfd_boolean relax32;
2b0c8b40 7005 int branch_disp;
71400594 7006
2309ddf2 7007 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
c67a084a
NC
7008 fix_loongson2f (ip);
7009
738f4d98 7010 file_ase_mips16 |= mips_opts.mips16;
df58fc94 7011 file_ase_micromips |= mips_opts.micromips;
738f4d98 7012
df58fc94 7013 prev_pinfo2 = history[0].insn_mo->pinfo2;
71400594 7014 pinfo = ip->insn_mo->pinfo;
df58fc94
RS
7015
7016 if (mips_opts.micromips
7017 && !expansionp
7018 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7019 && micromips_insn_length (ip->insn_mo) != 2)
7020 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7021 && micromips_insn_length (ip->insn_mo) != 4)))
1661c76c 7022 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
df58fc94 7023 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
71400594 7024
15be625d
CM
7025 if (address_expr == NULL)
7026 ip->complete_p = 1;
b886a2ab
RS
7027 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7028 && reloc_type[1] == BFD_RELOC_UNUSED
7029 && reloc_type[2] == BFD_RELOC_UNUSED
15be625d
CM
7030 && address_expr->X_op == O_constant)
7031 {
15be625d
CM
7032 switch (*reloc_type)
7033 {
15be625d 7034 case BFD_RELOC_MIPS_JMP:
df58fc94
RS
7035 {
7036 int shift;
7037
7038 shift = mips_opts.micromips ? 1 : 2;
7039 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7040 as_bad (_("jump to misaligned address (0x%lx)"),
7041 (unsigned long) address_expr->X_add_number);
7042 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7043 & 0x3ffffff);
335574df 7044 ip->complete_p = 1;
df58fc94 7045 }
15be625d
CM
7046 break;
7047
7048 case BFD_RELOC_MIPS16_JMP:
7049 if ((address_expr->X_add_number & 3) != 0)
7050 as_bad (_("jump to misaligned address (0x%lx)"),
7051 (unsigned long) address_expr->X_add_number);
7052 ip->insn_opcode |=
7053 (((address_expr->X_add_number & 0x7c0000) << 3)
7054 | ((address_expr->X_add_number & 0xf800000) >> 7)
7055 | ((address_expr->X_add_number & 0x3fffc) >> 2));
335574df 7056 ip->complete_p = 1;
15be625d
CM
7057 break;
7058
7059 case BFD_RELOC_16_PCREL_S2:
df58fc94
RS
7060 {
7061 int shift;
7062
7063 shift = mips_opts.micromips ? 1 : 2;
7064 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7065 as_bad (_("branch to misaligned address (0x%lx)"),
7066 (unsigned long) address_expr->X_add_number);
7067 if (!mips_relax_branch)
7068 {
7069 if ((address_expr->X_add_number + (1 << (shift + 15)))
7070 & ~((1 << (shift + 16)) - 1))
7071 as_bad (_("branch address range overflow (0x%lx)"),
7072 (unsigned long) address_expr->X_add_number);
7073 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7074 & 0xffff);
7075 }
df58fc94 7076 }
15be625d
CM
7077 break;
7078
7361da2c
AB
7079 case BFD_RELOC_MIPS_21_PCREL_S2:
7080 {
7081 int shift;
7082
7083 shift = 2;
7084 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7085 as_bad (_("branch to misaligned address (0x%lx)"),
7086 (unsigned long) address_expr->X_add_number);
7087 if ((address_expr->X_add_number + (1 << (shift + 20)))
7088 & ~((1 << (shift + 21)) - 1))
7089 as_bad (_("branch address range overflow (0x%lx)"),
7090 (unsigned long) address_expr->X_add_number);
7091 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7092 & 0x1fffff);
7093 }
7094 break;
7095
7096 case BFD_RELOC_MIPS_26_PCREL_S2:
7097 {
7098 int shift;
7099
7100 shift = 2;
7101 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7102 as_bad (_("branch to misaligned address (0x%lx)"),
7103 (unsigned long) address_expr->X_add_number);
7104 if ((address_expr->X_add_number + (1 << (shift + 25)))
7105 & ~((1 << (shift + 26)) - 1))
7106 as_bad (_("branch address range overflow (0x%lx)"),
7107 (unsigned long) address_expr->X_add_number);
7108 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7109 & 0x3ffffff);
7110 }
7111 break;
7112
15be625d 7113 default:
b886a2ab
RS
7114 {
7115 offsetT value;
7116
7117 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7118 &value))
7119 {
7120 ip->insn_opcode |= value & 0xffff;
7121 ip->complete_p = 1;
7122 }
7123 }
7124 break;
7125 }
15be625d
CM
7126 }
7127
71400594
RS
7128 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7129 {
7130 /* There are a lot of optimizations we could do that we don't.
7131 In particular, we do not, in general, reorder instructions.
7132 If you use gcc with optimization, it will reorder
7133 instructions and generally do much more optimization then we
7134 do here; repeating all that work in the assembler would only
7135 benefit hand written assembly code, and does not seem worth
7136 it. */
7137 int nops = (mips_optimize == 0
932d1a1b
RS
7138 ? nops_for_insn (0, history, NULL)
7139 : nops_for_insn_or_target (0, history, ip));
71400594 7140 if (nops > 0)
252b5132
RH
7141 {
7142 fragS *old_frag;
7143 unsigned long old_frag_offset;
7144 int i;
252b5132
RH
7145
7146 old_frag = frag_now;
7147 old_frag_offset = frag_now_fix ();
7148
7149 for (i = 0; i < nops; i++)
14fe068b
RS
7150 add_fixed_insn (NOP_INSN);
7151 insert_into_history (0, nops, NOP_INSN);
252b5132
RH
7152
7153 if (listing)
7154 {
7155 listing_prev_line ();
7156 /* We may be at the start of a variant frag. In case we
7157 are, make sure there is enough space for the frag
7158 after the frags created by listing_prev_line. The
7159 argument to frag_grow here must be at least as large
7160 as the argument to all other calls to frag_grow in
7161 this file. We don't have to worry about being in the
7162 middle of a variant frag, because the variants insert
7163 all needed nop instructions themselves. */
7164 frag_grow (40);
7165 }
7166
462427c4 7167 mips_move_text_labels ();
252b5132
RH
7168
7169#ifndef NO_ECOFF_DEBUGGING
7170 if (ECOFF_DEBUGGING)
7171 ecoff_fix_loc (old_frag, old_frag_offset);
7172#endif
7173 }
71400594
RS
7174 }
7175 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7176 {
932d1a1b
RS
7177 int nops;
7178
7179 /* Work out how many nops in prev_nop_frag are needed by IP,
7180 ignoring hazards generated by the first prev_nop_frag_since
7181 instructions. */
7182 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
9c2799c2 7183 gas_assert (nops <= prev_nop_frag_holds);
252b5132 7184
71400594
RS
7185 /* Enforce NOPS as a minimum. */
7186 if (nops > prev_nop_frag_required)
7187 prev_nop_frag_required = nops;
252b5132 7188
71400594
RS
7189 if (prev_nop_frag_holds == prev_nop_frag_required)
7190 {
7191 /* Settle for the current number of nops. Update the history
7192 accordingly (for the benefit of any future .set reorder code). */
7193 prev_nop_frag = NULL;
7194 insert_into_history (prev_nop_frag_since,
7195 prev_nop_frag_holds, NOP_INSN);
7196 }
7197 else
7198 {
7199 /* Allow this instruction to replace one of the nops that was
7200 tentatively added to prev_nop_frag. */
df58fc94 7201 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
71400594
RS
7202 prev_nop_frag_holds--;
7203 prev_nop_frag_since++;
252b5132
RH
7204 }
7205 }
7206
e407c74b 7207 method = get_append_method (ip, address_expr, reloc_type);
2b0c8b40 7208 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
a4e06468 7209
e410add4
RS
7210 dwarf2_emit_insn (0);
7211 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7212 so "move" the instruction address accordingly.
7213
7214 Also, it doesn't seem appropriate for the assembler to reorder .loc
7215 entries. If this instruction is a branch that we are going to swap
7216 with the previous instruction, the two instructions should be
7217 treated as a unit, and the debug information for both instructions
7218 should refer to the start of the branch sequence. Using the
7219 current position is certainly wrong when swapping a 32-bit branch
7220 and a 16-bit delay slot, since the current position would then be
7221 in the middle of a branch. */
7222 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
58e2ea4d 7223
df58fc94
RS
7224 relax32 = (mips_relax_branch
7225 /* Don't try branch relaxation within .set nomacro, or within
7226 .set noat if we use $at for PIC computations. If it turns
7227 out that the branch was out-of-range, we'll get an error. */
7228 && !mips_opts.warn_about_macros
7229 && (mips_opts.at || mips_pic == NO_PIC)
3bf0dbfb
MR
7230 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7231 as they have no complementing branches. */
7232 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
df58fc94
RS
7233
7234 if (!HAVE_CODE_COMPRESSION
7235 && address_expr
7236 && relax32
0b25d3e6 7237 && *reloc_type == BFD_RELOC_16_PCREL_S2
11625dd8 7238 && delayed_branch_p (ip))
4a6a3df4 7239 {
895921c9 7240 relaxed_branch = TRUE;
1e915849
RS
7241 add_relaxed_insn (ip, (relaxed_branch_length
7242 (NULL, NULL,
11625dd8
RS
7243 uncond_branch_p (ip) ? -1
7244 : branch_likely_p (ip) ? 1
1e915849
RS
7245 : 0)), 4,
7246 RELAX_BRANCH_ENCODE
66b3e8da 7247 (AT,
11625dd8
RS
7248 uncond_branch_p (ip),
7249 branch_likely_p (ip),
1e915849
RS
7250 pinfo & INSN_WRITE_GPR_31,
7251 0),
7252 address_expr->X_add_symbol,
7253 address_expr->X_add_number);
4a6a3df4
AO
7254 *reloc_type = BFD_RELOC_UNUSED;
7255 }
df58fc94
RS
7256 else if (mips_opts.micromips
7257 && address_expr
7258 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7259 || *reloc_type > BFD_RELOC_UNUSED)
40209cad
MR
7260 && (delayed_branch_p (ip) || compact_branch_p (ip))
7261 /* Don't try branch relaxation when users specify
7262 16-bit/32-bit instructions. */
7263 && !forced_insn_length)
df58fc94
RS
7264 {
7265 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
7266 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
11625dd8
RS
7267 int uncond = uncond_branch_p (ip) ? -1 : 0;
7268 int compact = compact_branch_p (ip);
df58fc94
RS
7269 int al = pinfo & INSN_WRITE_GPR_31;
7270 int length32;
7271
7272 gas_assert (address_expr != NULL);
7273 gas_assert (!mips_relax.sequence);
7274
2b0c8b40 7275 relaxed_branch = TRUE;
df58fc94
RS
7276 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7277 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
40209cad
MR
7278 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
7279 relax32, 0, 0),
df58fc94
RS
7280 address_expr->X_add_symbol,
7281 address_expr->X_add_number);
7282 *reloc_type = BFD_RELOC_UNUSED;
7283 }
7284 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
252b5132
RH
7285 {
7286 /* We need to set up a variant frag. */
df58fc94 7287 gas_assert (address_expr != NULL);
1e915849
RS
7288 add_relaxed_insn (ip, 4, 0,
7289 RELAX_MIPS16_ENCODE
7290 (*reloc_type - BFD_RELOC_UNUSED,
df58fc94 7291 forced_insn_length == 2, forced_insn_length == 4,
11625dd8 7292 delayed_branch_p (&history[0]),
1e915849
RS
7293 history[0].mips16_absolute_jump_p),
7294 make_expr_symbol (address_expr), 0);
252b5132 7295 }
5c04167a 7296 else if (mips_opts.mips16 && insn_length (ip) == 2)
9497f5ac 7297 {
11625dd8 7298 if (!delayed_branch_p (ip))
b8ee1a6e
DU
7299 /* Make sure there is enough room to swap this instruction with
7300 a following jump instruction. */
7301 frag_grow (6);
1e915849 7302 add_fixed_insn (ip);
252b5132
RH
7303 }
7304 else
7305 {
7306 if (mips_opts.mips16
7307 && mips_opts.noreorder
11625dd8 7308 && delayed_branch_p (&history[0]))
252b5132
RH
7309 as_warn (_("extended instruction in delay slot"));
7310
4d7206a2
RS
7311 if (mips_relax.sequence)
7312 {
7313 /* If we've reached the end of this frag, turn it into a variant
7314 frag and record the information for the instructions we've
7315 written so far. */
7316 if (frag_room () < 4)
7317 relax_close_frag ();
df58fc94 7318 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
4d7206a2
RS
7319 }
7320
584892a6 7321 if (mips_relax.sequence != 2)
df58fc94
RS
7322 {
7323 if (mips_macro_warning.first_insn_sizes[0] == 0)
7324 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7325 mips_macro_warning.sizes[0] += insn_length (ip);
7326 mips_macro_warning.insns[0]++;
7327 }
584892a6 7328 if (mips_relax.sequence != 1)
df58fc94
RS
7329 {
7330 if (mips_macro_warning.first_insn_sizes[1] == 0)
7331 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7332 mips_macro_warning.sizes[1] += insn_length (ip);
7333 mips_macro_warning.insns[1]++;
7334 }
584892a6 7335
1e915849
RS
7336 if (mips_opts.mips16)
7337 {
7338 ip->fixed_p = 1;
7339 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7340 }
7341 add_fixed_insn (ip);
252b5132
RH
7342 }
7343
9fe77896 7344 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
252b5132 7345 {
df58fc94 7346 bfd_reloc_code_real_type final_type[3];
2309ddf2 7347 reloc_howto_type *howto0;
9fe77896
RS
7348 reloc_howto_type *howto;
7349 int i;
34ce925e 7350
df58fc94
RS
7351 /* Perform any necessary conversion to microMIPS relocations
7352 and find out how many relocations there actually are. */
7353 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7354 final_type[i] = micromips_map_reloc (reloc_type[i]);
7355
9fe77896
RS
7356 /* In a compound relocation, it is the final (outermost)
7357 operator that determines the relocated field. */
2309ddf2 7358 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
e8044f35
RS
7359 if (!howto)
7360 abort ();
2309ddf2
MR
7361
7362 if (i > 1)
7363 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
9fe77896
RS
7364 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7365 bfd_get_reloc_size (howto),
7366 address_expr,
2309ddf2
MR
7367 howto0 && howto0->pc_relative,
7368 final_type[0]);
9fe77896
RS
7369
7370 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
2309ddf2 7371 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
9fe77896
RS
7372 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7373
7374 /* These relocations can have an addend that won't fit in
7375 4 octets for 64bit assembly. */
bad1aba3 7376 if (GPR_SIZE == 64
9fe77896
RS
7377 && ! howto->partial_inplace
7378 && (reloc_type[0] == BFD_RELOC_16
7379 || reloc_type[0] == BFD_RELOC_32
7380 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7381 || reloc_type[0] == BFD_RELOC_GPREL16
7382 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7383 || reloc_type[0] == BFD_RELOC_GPREL32
7384 || reloc_type[0] == BFD_RELOC_64
7385 || reloc_type[0] == BFD_RELOC_CTOR
7386 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7387 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7388 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7389 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7390 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7391 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7392 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7393 || hi16_reloc_p (reloc_type[0])
7394 || lo16_reloc_p (reloc_type[0])))
7395 ip->fixp[0]->fx_no_overflow = 1;
7396
ddaf2c41
MR
7397 /* These relocations can have an addend that won't fit in 2 octets. */
7398 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7399 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7400 ip->fixp[0]->fx_no_overflow = 1;
7401
9fe77896
RS
7402 if (mips_relax.sequence)
7403 {
7404 if (mips_relax.first_fixup == 0)
7405 mips_relax.first_fixup = ip->fixp[0];
7406 }
7407 else if (reloc_needs_lo_p (*reloc_type))
7408 {
7409 struct mips_hi_fixup *hi_fixup;
7410
7411 /* Reuse the last entry if it already has a matching %lo. */
7412 hi_fixup = mips_hi_fixup_list;
7413 if (hi_fixup == 0
7414 || !fixup_has_matching_lo_p (hi_fixup->fixp))
4d7206a2 7415 {
9fe77896
RS
7416 hi_fixup = ((struct mips_hi_fixup *)
7417 xmalloc (sizeof (struct mips_hi_fixup)));
7418 hi_fixup->next = mips_hi_fixup_list;
7419 mips_hi_fixup_list = hi_fixup;
4d7206a2 7420 }
9fe77896
RS
7421 hi_fixup->fixp = ip->fixp[0];
7422 hi_fixup->seg = now_seg;
7423 }
252b5132 7424
9fe77896
RS
7425 /* Add fixups for the second and third relocations, if given.
7426 Note that the ABI allows the second relocation to be
7427 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7428 moment we only use RSS_UNDEF, but we could add support
7429 for the others if it ever becomes necessary. */
7430 for (i = 1; i < 3; i++)
7431 if (reloc_type[i] != BFD_RELOC_UNUSED)
7432 {
7433 ip->fixp[i] = fix_new (ip->frag, ip->where,
7434 ip->fixp[0]->fx_size, NULL, 0,
df58fc94 7435 FALSE, final_type[i]);
f6688943 7436
9fe77896
RS
7437 /* Use fx_tcbit to mark compound relocs. */
7438 ip->fixp[0]->fx_tcbit = 1;
7439 ip->fixp[i]->fx_tcbit = 1;
7440 }
252b5132 7441 }
1e915849 7442 install_insn (ip);
252b5132
RH
7443
7444 /* Update the register mask information. */
4c260379
RS
7445 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7446 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
252b5132 7447
a4e06468 7448 switch (method)
252b5132 7449 {
a4e06468
RS
7450 case APPEND_ADD:
7451 insert_into_history (0, 1, ip);
7452 break;
7453
7454 case APPEND_ADD_WITH_NOP:
14fe068b
RS
7455 {
7456 struct mips_cl_insn *nop;
7457
7458 insert_into_history (0, 1, ip);
7459 nop = get_delay_slot_nop (ip);
7460 add_fixed_insn (nop);
7461 insert_into_history (0, 1, nop);
7462 if (mips_relax.sequence)
7463 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7464 }
a4e06468
RS
7465 break;
7466
7467 case APPEND_ADD_COMPACT:
7468 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7469 gas_assert (mips_opts.mips16);
7470 ip->insn_opcode |= 0x0080;
7471 find_altered_mips16_opcode (ip);
7472 install_insn (ip);
7473 insert_into_history (0, 1, ip);
7474 break;
7475
7476 case APPEND_SWAP:
7477 {
7478 struct mips_cl_insn delay = history[0];
7479 if (mips_opts.mips16)
7480 {
7481 know (delay.frag == ip->frag);
7482 move_insn (ip, delay.frag, delay.where);
7483 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7484 }
464ab0e5 7485 else if (relaxed_branch || delay.frag != ip->frag)
a4e06468
RS
7486 {
7487 /* Add the delay slot instruction to the end of the
7488 current frag and shrink the fixed part of the
7489 original frag. If the branch occupies the tail of
7490 the latter, move it backwards to cover the gap. */
2b0c8b40 7491 delay.frag->fr_fix -= branch_disp;
a4e06468 7492 if (delay.frag == ip->frag)
2b0c8b40 7493 move_insn (ip, ip->frag, ip->where - branch_disp);
a4e06468
RS
7494 add_fixed_insn (&delay);
7495 }
7496 else
7497 {
2b0c8b40
MR
7498 move_insn (&delay, ip->frag,
7499 ip->where - branch_disp + insn_length (ip));
a4e06468
RS
7500 move_insn (ip, history[0].frag, history[0].where);
7501 }
7502 history[0] = *ip;
7503 delay.fixed_p = 1;
7504 insert_into_history (0, 1, &delay);
7505 }
7506 break;
252b5132
RH
7507 }
7508
13408f1e 7509 /* If we have just completed an unconditional branch, clear the history. */
11625dd8
RS
7510 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7511 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
e407c74b
NC
7512 {
7513 unsigned int i;
7514
79850f26 7515 mips_no_prev_insn ();
13408f1e 7516
e407c74b 7517 for (i = 0; i < ARRAY_SIZE (history); i++)
79850f26 7518 history[i].cleared_p = 1;
e407c74b
NC
7519 }
7520
df58fc94
RS
7521 /* We need to emit a label at the end of branch-likely macros. */
7522 if (emit_branch_likely_macro)
7523 {
7524 emit_branch_likely_macro = FALSE;
7525 micromips_add_label ();
7526 }
7527
252b5132
RH
7528 /* We just output an insn, so the next one doesn't have a label. */
7529 mips_clear_insn_labels ();
252b5132
RH
7530}
7531
e407c74b
NC
7532/* Forget that there was any previous instruction or label.
7533 When BRANCH is true, the branch history is also flushed. */
252b5132
RH
7534
7535static void
7d10b47d 7536mips_no_prev_insn (void)
252b5132 7537{
7d10b47d
RS
7538 prev_nop_frag = NULL;
7539 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
252b5132
RH
7540 mips_clear_insn_labels ();
7541}
7542
7d10b47d
RS
7543/* This function must be called before we emit something other than
7544 instructions. It is like mips_no_prev_insn except that it inserts
7545 any NOPS that might be needed by previous instructions. */
252b5132 7546
7d10b47d
RS
7547void
7548mips_emit_delays (void)
252b5132
RH
7549{
7550 if (! mips_opts.noreorder)
7551 {
932d1a1b 7552 int nops = nops_for_insn (0, history, NULL);
252b5132
RH
7553 if (nops > 0)
7554 {
7d10b47d
RS
7555 while (nops-- > 0)
7556 add_fixed_insn (NOP_INSN);
462427c4 7557 mips_move_text_labels ();
7d10b47d
RS
7558 }
7559 }
7560 mips_no_prev_insn ();
7561}
7562
7563/* Start a (possibly nested) noreorder block. */
7564
7565static void
7566start_noreorder (void)
7567{
7568 if (mips_opts.noreorder == 0)
7569 {
7570 unsigned int i;
7571 int nops;
7572
7573 /* None of the instructions before the .set noreorder can be moved. */
7574 for (i = 0; i < ARRAY_SIZE (history); i++)
7575 history[i].fixed_p = 1;
7576
7577 /* Insert any nops that might be needed between the .set noreorder
7578 block and the previous instructions. We will later remove any
7579 nops that turn out not to be needed. */
932d1a1b 7580 nops = nops_for_insn (0, history, NULL);
7d10b47d
RS
7581 if (nops > 0)
7582 {
7583 if (mips_optimize != 0)
252b5132
RH
7584 {
7585 /* Record the frag which holds the nop instructions, so
7586 that we can remove them if we don't need them. */
df58fc94 7587 frag_grow (nops * NOP_INSN_SIZE);
252b5132
RH
7588 prev_nop_frag = frag_now;
7589 prev_nop_frag_holds = nops;
7590 prev_nop_frag_required = 0;
7591 prev_nop_frag_since = 0;
7592 }
7593
7594 for (; nops > 0; --nops)
1e915849 7595 add_fixed_insn (NOP_INSN);
252b5132 7596
7d10b47d
RS
7597 /* Move on to a new frag, so that it is safe to simply
7598 decrease the size of prev_nop_frag. */
7599 frag_wane (frag_now);
7600 frag_new (0);
462427c4 7601 mips_move_text_labels ();
252b5132 7602 }
df58fc94 7603 mips_mark_labels ();
7d10b47d 7604 mips_clear_insn_labels ();
252b5132 7605 }
7d10b47d
RS
7606 mips_opts.noreorder++;
7607 mips_any_noreorder = 1;
7608}
252b5132 7609
7d10b47d 7610/* End a nested noreorder block. */
252b5132 7611
7d10b47d
RS
7612static void
7613end_noreorder (void)
7614{
7615 mips_opts.noreorder--;
7616 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7617 {
7618 /* Commit to inserting prev_nop_frag_required nops and go back to
7619 handling nop insertion the .set reorder way. */
7620 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
df58fc94 7621 * NOP_INSN_SIZE);
7d10b47d
RS
7622 insert_into_history (prev_nop_frag_since,
7623 prev_nop_frag_required, NOP_INSN);
7624 prev_nop_frag = NULL;
7625 }
252b5132
RH
7626}
7627
97d87491
RS
7628/* Sign-extend 32-bit mode constants that have bit 31 set and all
7629 higher bits unset. */
7630
7631static void
7632normalize_constant_expr (expressionS *ex)
7633{
7634 if (ex->X_op == O_constant
7635 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7636 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7637 - 0x80000000);
7638}
7639
7640/* Sign-extend 32-bit mode address offsets that have bit 31 set and
7641 all higher bits unset. */
7642
7643static void
7644normalize_address_expr (expressionS *ex)
7645{
7646 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7647 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7648 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7649 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7650 - 0x80000000);
7651}
7652
7653/* Try to match TOKENS against OPCODE, storing the result in INSN.
7654 Return true if the match was successful.
7655
7656 OPCODE_EXTRA is a value that should be ORed into the opcode
7657 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7658 there are more alternatives after OPCODE and SOFT_MATCH is
7659 as for mips_arg_info. */
7660
7661static bfd_boolean
7662match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7663 struct mips_operand_token *tokens, unsigned int opcode_extra,
60f20e8b 7664 bfd_boolean lax_match, bfd_boolean complete_p)
97d87491
RS
7665{
7666 const char *args;
7667 struct mips_arg_info arg;
7668 const struct mips_operand *operand;
7669 char c;
7670
7671 imm_expr.X_op = O_absent;
97d87491
RS
7672 offset_expr.X_op = O_absent;
7673 offset_reloc[0] = BFD_RELOC_UNUSED;
7674 offset_reloc[1] = BFD_RELOC_UNUSED;
7675 offset_reloc[2] = BFD_RELOC_UNUSED;
7676
7677 create_insn (insn, opcode);
60f20e8b
RS
7678 /* When no opcode suffix is specified, assume ".xyzw". */
7679 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7680 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7681 else
7682 insn->insn_opcode |= opcode_extra;
97d87491
RS
7683 memset (&arg, 0, sizeof (arg));
7684 arg.insn = insn;
7685 arg.token = tokens;
7686 arg.argnum = 1;
7687 arg.last_regno = ILLEGAL_REG;
7688 arg.dest_regno = ILLEGAL_REG;
60f20e8b 7689 arg.lax_match = lax_match;
97d87491
RS
7690 for (args = opcode->args;; ++args)
7691 {
7692 if (arg.token->type == OT_END)
7693 {
7694 /* Handle unary instructions in which only one operand is given.
7695 The source is then the same as the destination. */
7696 if (arg.opnum == 1 && *args == ',')
7697 {
7698 operand = (mips_opts.micromips
7699 ? decode_micromips_operand (args + 1)
7700 : decode_mips_operand (args + 1));
7701 if (operand && mips_optional_operand_p (operand))
7702 {
7703 arg.token = tokens;
7704 arg.argnum = 1;
7705 continue;
7706 }
7707 }
7708
7709 /* Treat elided base registers as $0. */
7710 if (strcmp (args, "(b)") == 0)
7711 args += 3;
7712
7713 if (args[0] == '+')
7714 switch (args[1])
7715 {
7716 case 'K':
7717 case 'N':
7718 /* The register suffix is optional. */
7719 args += 2;
7720 break;
7721 }
7722
7723 /* Fail the match if there were too few operands. */
7724 if (*args)
7725 return FALSE;
7726
7727 /* Successful match. */
60f20e8b
RS
7728 if (!complete_p)
7729 return TRUE;
e3de51ce 7730 clear_insn_error ();
97d87491
RS
7731 if (arg.dest_regno == arg.last_regno
7732 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7733 {
7734 if (arg.opnum == 2)
e3de51ce 7735 set_insn_error
1661c76c 7736 (0, _("source and destination must be different"));
97d87491 7737 else if (arg.last_regno == 31)
e3de51ce 7738 set_insn_error
1661c76c 7739 (0, _("a destination register must be supplied"));
97d87491 7740 }
173d3447
CF
7741 else if (arg.last_regno == 31
7742 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7743 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7744 set_insn_error (0, _("the source register must not be $31"));
97d87491
RS
7745 check_completed_insn (&arg);
7746 return TRUE;
7747 }
7748
7749 /* Fail the match if the line has too many operands. */
7750 if (*args == 0)
7751 return FALSE;
7752
7753 /* Handle characters that need to match exactly. */
7754 if (*args == '(' || *args == ')' || *args == ',')
7755 {
7756 if (match_char (&arg, *args))
7757 continue;
7758 return FALSE;
7759 }
7760 if (*args == '#')
7761 {
7762 ++args;
7763 if (arg.token->type == OT_DOUBLE_CHAR
7764 && arg.token->u.ch == *args)
7765 {
7766 ++arg.token;
7767 continue;
7768 }
7769 return FALSE;
7770 }
7771
7772 /* Handle special macro operands. Work out the properties of
7773 other operands. */
7774 arg.opnum += 1;
97d87491
RS
7775 switch (*args)
7776 {
7361da2c
AB
7777 case '-':
7778 switch (args[1])
7779 {
7780 case 'A':
7781 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7782 break;
7783
7784 case 'B':
7785 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7786 break;
7787 }
7788 break;
7789
97d87491
RS
7790 case '+':
7791 switch (args[1])
7792 {
97d87491
RS
7793 case 'i':
7794 *offset_reloc = BFD_RELOC_MIPS_JMP;
7795 break;
7361da2c
AB
7796
7797 case '\'':
7798 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7799 break;
7800
7801 case '\"':
7802 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7803 break;
97d87491
RS
7804 }
7805 break;
7806
97d87491 7807 case 'I':
1a00e612
RS
7808 if (!match_const_int (&arg, &imm_expr.X_add_number))
7809 return FALSE;
7810 imm_expr.X_op = O_constant;
bad1aba3 7811 if (GPR_SIZE == 32)
97d87491
RS
7812 normalize_constant_expr (&imm_expr);
7813 continue;
7814
7815 case 'A':
7816 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7817 {
7818 /* Assume that the offset has been elided and that what
7819 we saw was a base register. The match will fail later
7820 if that assumption turns out to be wrong. */
7821 offset_expr.X_op = O_constant;
7822 offset_expr.X_add_number = 0;
7823 }
97d87491 7824 else
1a00e612
RS
7825 {
7826 if (!match_expression (&arg, &offset_expr, offset_reloc))
7827 return FALSE;
7828 normalize_address_expr (&offset_expr);
7829 }
97d87491
RS
7830 continue;
7831
7832 case 'F':
7833 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7834 8, TRUE))
1a00e612 7835 return FALSE;
97d87491
RS
7836 continue;
7837
7838 case 'L':
7839 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7840 8, FALSE))
1a00e612 7841 return FALSE;
97d87491
RS
7842 continue;
7843
7844 case 'f':
7845 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7846 4, TRUE))
1a00e612 7847 return FALSE;
97d87491
RS
7848 continue;
7849
7850 case 'l':
7851 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7852 4, FALSE))
1a00e612 7853 return FALSE;
97d87491
RS
7854 continue;
7855
97d87491
RS
7856 case 'p':
7857 *offset_reloc = BFD_RELOC_16_PCREL_S2;
7858 break;
7859
7860 case 'a':
7861 *offset_reloc = BFD_RELOC_MIPS_JMP;
7862 break;
7863
7864 case 'm':
7865 gas_assert (mips_opts.micromips);
7866 c = args[1];
7867 switch (c)
7868 {
7869 case 'D':
7870 case 'E':
7871 if (!forced_insn_length)
7872 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
7873 else if (c == 'D')
7874 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
7875 else
7876 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
7877 break;
7878 }
7879 break;
7880 }
7881
7882 operand = (mips_opts.micromips
7883 ? decode_micromips_operand (args)
7884 : decode_mips_operand (args));
7885 if (!operand)
7886 abort ();
7887
7888 /* Skip prefixes. */
7361da2c 7889 if (*args == '+' || *args == 'm' || *args == '-')
97d87491
RS
7890 args++;
7891
7892 if (mips_optional_operand_p (operand)
7893 && args[1] == ','
7894 && (arg.token[0].type != OT_REG
7895 || arg.token[1].type == OT_END))
7896 {
7897 /* Assume that the register has been elided and is the
7898 same as the first operand. */
7899 arg.token = tokens;
7900 arg.argnum = 1;
7901 }
7902
7903 if (!match_operand (&arg, operand))
7904 return FALSE;
7905 }
7906}
7907
7908/* Like match_insn, but for MIPS16. */
7909
7910static bfd_boolean
7911match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
1a00e612 7912 struct mips_operand_token *tokens)
97d87491
RS
7913{
7914 const char *args;
7915 const struct mips_operand *operand;
7916 const struct mips_operand *ext_operand;
7917 struct mips_arg_info arg;
7918 int relax_char;
7919
7920 create_insn (insn, opcode);
7921 imm_expr.X_op = O_absent;
97d87491
RS
7922 offset_expr.X_op = O_absent;
7923 offset_reloc[0] = BFD_RELOC_UNUSED;
7924 offset_reloc[1] = BFD_RELOC_UNUSED;
7925 offset_reloc[2] = BFD_RELOC_UNUSED;
7926 relax_char = 0;
7927
7928 memset (&arg, 0, sizeof (arg));
7929 arg.insn = insn;
7930 arg.token = tokens;
7931 arg.argnum = 1;
7932 arg.last_regno = ILLEGAL_REG;
7933 arg.dest_regno = ILLEGAL_REG;
97d87491
RS
7934 relax_char = 0;
7935 for (args = opcode->args;; ++args)
7936 {
7937 int c;
7938
7939 if (arg.token->type == OT_END)
7940 {
7941 offsetT value;
7942
7943 /* Handle unary instructions in which only one operand is given.
7944 The source is then the same as the destination. */
7945 if (arg.opnum == 1 && *args == ',')
7946 {
7947 operand = decode_mips16_operand (args[1], FALSE);
7948 if (operand && mips_optional_operand_p (operand))
7949 {
7950 arg.token = tokens;
7951 arg.argnum = 1;
7952 continue;
7953 }
7954 }
7955
7956 /* Fail the match if there were too few operands. */
7957 if (*args)
7958 return FALSE;
7959
7960 /* Successful match. Stuff the immediate value in now, if
7961 we can. */
e3de51ce 7962 clear_insn_error ();
97d87491
RS
7963 if (opcode->pinfo == INSN_MACRO)
7964 {
7965 gas_assert (relax_char == 0 || relax_char == 'p');
7966 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
7967 }
7968 else if (relax_char
7969 && offset_expr.X_op == O_constant
7970 && calculate_reloc (*offset_reloc,
7971 offset_expr.X_add_number,
7972 &value))
7973 {
7974 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
7975 forced_insn_length, &insn->insn_opcode);
7976 offset_expr.X_op = O_absent;
7977 *offset_reloc = BFD_RELOC_UNUSED;
7978 }
7979 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
7980 {
7981 if (forced_insn_length == 2)
e3de51ce 7982 set_insn_error (0, _("invalid unextended operand value"));
97d87491
RS
7983 forced_insn_length = 4;
7984 insn->insn_opcode |= MIPS16_EXTEND;
7985 }
7986 else if (relax_char)
7987 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
7988
7989 check_completed_insn (&arg);
7990 return TRUE;
7991 }
7992
7993 /* Fail the match if the line has too many operands. */
7994 if (*args == 0)
7995 return FALSE;
7996
7997 /* Handle characters that need to match exactly. */
7998 if (*args == '(' || *args == ')' || *args == ',')
7999 {
8000 if (match_char (&arg, *args))
8001 continue;
8002 return FALSE;
8003 }
8004
8005 arg.opnum += 1;
8006 c = *args;
8007 switch (c)
8008 {
8009 case 'p':
8010 case 'q':
8011 case 'A':
8012 case 'B':
8013 case 'E':
8014 relax_char = c;
8015 break;
8016
8017 case 'I':
1a00e612
RS
8018 if (!match_const_int (&arg, &imm_expr.X_add_number))
8019 return FALSE;
8020 imm_expr.X_op = O_constant;
bad1aba3 8021 if (GPR_SIZE == 32)
97d87491
RS
8022 normalize_constant_expr (&imm_expr);
8023 continue;
8024
8025 case 'a':
8026 case 'i':
8027 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8028 insn->insn_opcode <<= 16;
8029 break;
8030 }
8031
8032 operand = decode_mips16_operand (c, FALSE);
8033 if (!operand)
8034 abort ();
8035
8036 /* '6' is a special case. It is used for BREAK and SDBBP,
8037 whose operands are only meaningful to the software that decodes
8038 them. This means that there is no architectural reason why
8039 they cannot be prefixed by EXTEND, but in practice,
8040 exception handlers will only look at the instruction
8041 itself. We therefore allow '6' to be extended when
8042 disassembling but not when assembling. */
8043 if (operand->type != OP_PCREL && c != '6')
8044 {
8045 ext_operand = decode_mips16_operand (c, TRUE);
8046 if (operand != ext_operand)
8047 {
8048 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8049 {
8050 offset_expr.X_op = O_constant;
8051 offset_expr.X_add_number = 0;
8052 relax_char = c;
8053 continue;
8054 }
8055
8056 /* We need the OT_INTEGER check because some MIPS16
8057 immediate variants are listed before the register ones. */
8058 if (arg.token->type != OT_INTEGER
8059 || !match_expression (&arg, &offset_expr, offset_reloc))
8060 return FALSE;
8061
8062 /* '8' is used for SLTI(U) and has traditionally not
8063 been allowed to take relocation operators. */
8064 if (offset_reloc[0] != BFD_RELOC_UNUSED
8065 && (ext_operand->size != 16 || c == '8'))
8066 return FALSE;
8067
8068 relax_char = c;
8069 continue;
8070 }
8071 }
8072
8073 if (mips_optional_operand_p (operand)
8074 && args[1] == ','
8075 && (arg.token[0].type != OT_REG
8076 || arg.token[1].type == OT_END))
8077 {
8078 /* Assume that the register has been elided and is the
8079 same as the first operand. */
8080 arg.token = tokens;
8081 arg.argnum = 1;
8082 }
8083
8084 if (!match_operand (&arg, operand))
8085 return FALSE;
8086 }
8087}
8088
60f20e8b
RS
8089/* Record that the current instruction is invalid for the current ISA. */
8090
8091static void
8092match_invalid_for_isa (void)
8093{
8094 set_insn_error_ss
1661c76c 8095 (0, _("opcode not supported on this processor: %s (%s)"),
60f20e8b
RS
8096 mips_cpu_info_from_arch (mips_opts.arch)->name,
8097 mips_cpu_info_from_isa (mips_opts.isa)->name);
8098}
8099
8100/* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8101 Return true if a definite match or failure was found, storing any match
8102 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8103 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8104 tried and failed to match under normal conditions and now want to try a
8105 more relaxed match. */
8106
8107static bfd_boolean
8108match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8109 const struct mips_opcode *past, struct mips_operand_token *tokens,
8110 int opcode_extra, bfd_boolean lax_match)
8111{
8112 const struct mips_opcode *opcode;
8113 const struct mips_opcode *invalid_delay_slot;
8114 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8115
8116 /* Search for a match, ignoring alternatives that don't satisfy the
8117 current ISA or forced_length. */
8118 invalid_delay_slot = 0;
8119 seen_valid_for_isa = FALSE;
8120 seen_valid_for_size = FALSE;
8121 opcode = first;
8122 do
8123 {
8124 gas_assert (strcmp (opcode->name, first->name) == 0);
8125 if (is_opcode_valid (opcode))
8126 {
8127 seen_valid_for_isa = TRUE;
8128 if (is_size_valid (opcode))
8129 {
8130 bfd_boolean delay_slot_ok;
8131
8132 seen_valid_for_size = TRUE;
8133 delay_slot_ok = is_delay_slot_valid (opcode);
8134 if (match_insn (insn, opcode, tokens, opcode_extra,
8135 lax_match, delay_slot_ok))
8136 {
8137 if (!delay_slot_ok)
8138 {
8139 if (!invalid_delay_slot)
8140 invalid_delay_slot = opcode;
8141 }
8142 else
8143 return TRUE;
8144 }
8145 }
8146 }
8147 ++opcode;
8148 }
8149 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8150
8151 /* If the only matches we found had the wrong length for the delay slot,
8152 pick the first such match. We'll issue an appropriate warning later. */
8153 if (invalid_delay_slot)
8154 {
8155 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8156 lax_match, TRUE))
8157 return TRUE;
8158 abort ();
8159 }
8160
8161 /* Handle the case where we didn't try to match an instruction because
8162 all the alternatives were incompatible with the current ISA. */
8163 if (!seen_valid_for_isa)
8164 {
8165 match_invalid_for_isa ();
8166 return TRUE;
8167 }
8168
8169 /* Handle the case where we didn't try to match an instruction because
8170 all the alternatives were of the wrong size. */
8171 if (!seen_valid_for_size)
8172 {
8173 if (mips_opts.insn32)
1661c76c 8174 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
60f20e8b
RS
8175 else
8176 set_insn_error_i
1661c76c 8177 (0, _("unrecognized %d-bit version of microMIPS opcode"),
60f20e8b
RS
8178 8 * forced_insn_length);
8179 return TRUE;
8180 }
8181
8182 return FALSE;
8183}
8184
8185/* Like match_insns, but for MIPS16. */
8186
8187static bfd_boolean
8188match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8189 struct mips_operand_token *tokens)
8190{
8191 const struct mips_opcode *opcode;
8192 bfd_boolean seen_valid_for_isa;
8193
8194 /* Search for a match, ignoring alternatives that don't satisfy the
8195 current ISA. There are no separate entries for extended forms so
8196 we deal with forced_length later. */
8197 seen_valid_for_isa = FALSE;
8198 opcode = first;
8199 do
8200 {
8201 gas_assert (strcmp (opcode->name, first->name) == 0);
8202 if (is_opcode_valid_16 (opcode))
8203 {
8204 seen_valid_for_isa = TRUE;
8205 if (match_mips16_insn (insn, opcode, tokens))
8206 return TRUE;
8207 }
8208 ++opcode;
8209 }
8210 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8211 && strcmp (opcode->name, first->name) == 0);
8212
8213 /* Handle the case where we didn't try to match an instruction because
8214 all the alternatives were incompatible with the current ISA. */
8215 if (!seen_valid_for_isa)
8216 {
8217 match_invalid_for_isa ();
8218 return TRUE;
8219 }
8220
8221 return FALSE;
8222}
8223
584892a6
RS
8224/* Set up global variables for the start of a new macro. */
8225
8226static void
8227macro_start (void)
8228{
8229 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
df58fc94
RS
8230 memset (&mips_macro_warning.first_insn_sizes, 0,
8231 sizeof (mips_macro_warning.first_insn_sizes));
8232 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
584892a6 8233 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
11625dd8 8234 && delayed_branch_p (&history[0]));
df58fc94
RS
8235 switch (history[0].insn_mo->pinfo2
8236 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8237 {
8238 case INSN2_BRANCH_DELAY_32BIT:
8239 mips_macro_warning.delay_slot_length = 4;
8240 break;
8241 case INSN2_BRANCH_DELAY_16BIT:
8242 mips_macro_warning.delay_slot_length = 2;
8243 break;
8244 default:
8245 mips_macro_warning.delay_slot_length = 0;
8246 break;
8247 }
8248 mips_macro_warning.first_frag = NULL;
584892a6
RS
8249}
8250
df58fc94
RS
8251/* Given that a macro is longer than one instruction or of the wrong size,
8252 return the appropriate warning for it. Return null if no warning is
8253 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8254 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8255 and RELAX_NOMACRO. */
584892a6
RS
8256
8257static const char *
8258macro_warning (relax_substateT subtype)
8259{
8260 if (subtype & RELAX_DELAY_SLOT)
1661c76c 8261 return _("macro instruction expanded into multiple instructions"
584892a6
RS
8262 " in a branch delay slot");
8263 else if (subtype & RELAX_NOMACRO)
1661c76c 8264 return _("macro instruction expanded into multiple instructions");
df58fc94
RS
8265 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8266 | RELAX_DELAY_SLOT_SIZE_SECOND))
8267 return ((subtype & RELAX_DELAY_SLOT_16BIT)
1661c76c 8268 ? _("macro instruction expanded into a wrong size instruction"
df58fc94 8269 " in a 16-bit branch delay slot")
1661c76c 8270 : _("macro instruction expanded into a wrong size instruction"
df58fc94 8271 " in a 32-bit branch delay slot"));
584892a6
RS
8272 else
8273 return 0;
8274}
8275
8276/* Finish up a macro. Emit warnings as appropriate. */
8277
8278static void
8279macro_end (void)
8280{
df58fc94
RS
8281 /* Relaxation warning flags. */
8282 relax_substateT subtype = 0;
8283
8284 /* Check delay slot size requirements. */
8285 if (mips_macro_warning.delay_slot_length == 2)
8286 subtype |= RELAX_DELAY_SLOT_16BIT;
8287 if (mips_macro_warning.delay_slot_length != 0)
584892a6 8288 {
df58fc94
RS
8289 if (mips_macro_warning.delay_slot_length
8290 != mips_macro_warning.first_insn_sizes[0])
8291 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8292 if (mips_macro_warning.delay_slot_length
8293 != mips_macro_warning.first_insn_sizes[1])
8294 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8295 }
584892a6 8296
df58fc94
RS
8297 /* Check instruction count requirements. */
8298 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8299 {
8300 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
584892a6
RS
8301 subtype |= RELAX_SECOND_LONGER;
8302 if (mips_opts.warn_about_macros)
8303 subtype |= RELAX_NOMACRO;
8304 if (mips_macro_warning.delay_slot_p)
8305 subtype |= RELAX_DELAY_SLOT;
df58fc94 8306 }
584892a6 8307
df58fc94
RS
8308 /* If both alternatives fail to fill a delay slot correctly,
8309 emit the warning now. */
8310 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8311 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8312 {
8313 relax_substateT s;
8314 const char *msg;
8315
8316 s = subtype & (RELAX_DELAY_SLOT_16BIT
8317 | RELAX_DELAY_SLOT_SIZE_FIRST
8318 | RELAX_DELAY_SLOT_SIZE_SECOND);
8319 msg = macro_warning (s);
8320 if (msg != NULL)
8321 as_warn ("%s", msg);
8322 subtype &= ~s;
8323 }
8324
8325 /* If both implementations are longer than 1 instruction, then emit the
8326 warning now. */
8327 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8328 {
8329 relax_substateT s;
8330 const char *msg;
8331
8332 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8333 msg = macro_warning (s);
8334 if (msg != NULL)
8335 as_warn ("%s", msg);
8336 subtype &= ~s;
584892a6 8337 }
df58fc94
RS
8338
8339 /* If any flags still set, then one implementation might need a warning
8340 and the other either will need one of a different kind or none at all.
8341 Pass any remaining flags over to relaxation. */
8342 if (mips_macro_warning.first_frag != NULL)
8343 mips_macro_warning.first_frag->fr_subtype |= subtype;
584892a6
RS
8344}
8345
df58fc94
RS
8346/* Instruction operand formats used in macros that vary between
8347 standard MIPS and microMIPS code. */
8348
833794fc 8349static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
df58fc94
RS
8350static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8351static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8352static const char * const lui_fmt[2] = { "t,u", "s,u" };
8353static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
833794fc 8354static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
df58fc94
RS
8355static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8356static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8357
833794fc 8358#define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
7361da2c
AB
8359#define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8360 : cop12_fmt[mips_opts.micromips])
df58fc94
RS
8361#define JALR_FMT (jalr_fmt[mips_opts.micromips])
8362#define LUI_FMT (lui_fmt[mips_opts.micromips])
8363#define MEM12_FMT (mem12_fmt[mips_opts.micromips])
7361da2c
AB
8364#define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8365 : mem12_fmt[mips_opts.micromips])
833794fc 8366#define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
df58fc94
RS
8367#define SHFT_FMT (shft_fmt[mips_opts.micromips])
8368#define TRAP_FMT (trap_fmt[mips_opts.micromips])
8369
6e1304d8
RS
8370/* Read a macro's relocation codes from *ARGS and store them in *R.
8371 The first argument in *ARGS will be either the code for a single
8372 relocation or -1 followed by the three codes that make up a
8373 composite relocation. */
8374
8375static void
8376macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8377{
8378 int i, next;
8379
8380 next = va_arg (*args, int);
8381 if (next >= 0)
8382 r[0] = (bfd_reloc_code_real_type) next;
8383 else
f2ae14a1
RS
8384 {
8385 for (i = 0; i < 3; i++)
8386 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8387 /* This function is only used for 16-bit relocation fields.
8388 To make the macro code simpler, treat an unrelocated value
8389 in the same way as BFD_RELOC_LO16. */
8390 if (r[0] == BFD_RELOC_UNUSED)
8391 r[0] = BFD_RELOC_LO16;
8392 }
6e1304d8
RS
8393}
8394
252b5132
RH
8395/* Build an instruction created by a macro expansion. This is passed
8396 a pointer to the count of instructions created so far, an
8397 expression, the name of the instruction to build, an operand format
8398 string, and corresponding arguments. */
8399
252b5132 8400static void
67c0d1eb 8401macro_build (expressionS *ep, const char *name, const char *fmt, ...)
252b5132 8402{
df58fc94 8403 const struct mips_opcode *mo = NULL;
f6688943 8404 bfd_reloc_code_real_type r[3];
df58fc94 8405 const struct mips_opcode *amo;
e077a1c8 8406 const struct mips_operand *operand;
df58fc94
RS
8407 struct hash_control *hash;
8408 struct mips_cl_insn insn;
252b5132 8409 va_list args;
e077a1c8 8410 unsigned int uval;
252b5132 8411
252b5132 8412 va_start (args, fmt);
252b5132 8413
252b5132
RH
8414 if (mips_opts.mips16)
8415 {
03ea81db 8416 mips16_macro_build (ep, name, fmt, &args);
252b5132
RH
8417 va_end (args);
8418 return;
8419 }
8420
f6688943
TS
8421 r[0] = BFD_RELOC_UNUSED;
8422 r[1] = BFD_RELOC_UNUSED;
8423 r[2] = BFD_RELOC_UNUSED;
df58fc94
RS
8424 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8425 amo = (struct mips_opcode *) hash_find (hash, name);
8426 gas_assert (amo);
8427 gas_assert (strcmp (name, amo->name) == 0);
1e915849 8428
df58fc94 8429 do
8b082fb1
TS
8430 {
8431 /* Search until we get a match for NAME. It is assumed here that
df58fc94
RS
8432 macros will never generate MDMX, MIPS-3D, or MT instructions.
8433 We try to match an instruction that fulfils the branch delay
8434 slot instruction length requirement (if any) of the previous
8435 instruction. While doing this we record the first instruction
8436 seen that matches all the other conditions and use it anyway
8437 if the requirement cannot be met; we will issue an appropriate
8438 warning later on. */
8439 if (strcmp (fmt, amo->args) == 0
8440 && amo->pinfo != INSN_MACRO
8441 && is_opcode_valid (amo)
8442 && is_size_valid (amo))
8443 {
8444 if (is_delay_slot_valid (amo))
8445 {
8446 mo = amo;
8447 break;
8448 }
8449 else if (!mo)
8450 mo = amo;
8451 }
8b082fb1 8452
df58fc94
RS
8453 ++amo;
8454 gas_assert (amo->name);
252b5132 8455 }
df58fc94 8456 while (strcmp (name, amo->name) == 0);
252b5132 8457
df58fc94 8458 gas_assert (mo);
1e915849 8459 create_insn (&insn, mo);
e077a1c8 8460 for (; *fmt; ++fmt)
252b5132 8461 {
e077a1c8 8462 switch (*fmt)
252b5132 8463 {
252b5132
RH
8464 case ',':
8465 case '(':
8466 case ')':
252b5132 8467 case 'z':
e077a1c8 8468 break;
252b5132
RH
8469
8470 case 'i':
8471 case 'j':
6e1304d8 8472 macro_read_relocs (&args, r);
9c2799c2 8473 gas_assert (*r == BFD_RELOC_GPREL16
e391c024
RS
8474 || *r == BFD_RELOC_MIPS_HIGHER
8475 || *r == BFD_RELOC_HI16_S
8476 || *r == BFD_RELOC_LO16
8477 || *r == BFD_RELOC_MIPS_GOT_OFST);
e077a1c8 8478 break;
e391c024
RS
8479
8480 case 'o':
8481 macro_read_relocs (&args, r);
e077a1c8 8482 break;
252b5132
RH
8483
8484 case 'u':
6e1304d8 8485 macro_read_relocs (&args, r);
9c2799c2 8486 gas_assert (ep != NULL
90ecf173
MR
8487 && (ep->X_op == O_constant
8488 || (ep->X_op == O_symbol
8489 && (*r == BFD_RELOC_MIPS_HIGHEST
8490 || *r == BFD_RELOC_HI16_S
8491 || *r == BFD_RELOC_HI16
8492 || *r == BFD_RELOC_GPREL16
8493 || *r == BFD_RELOC_MIPS_GOT_HI16
8494 || *r == BFD_RELOC_MIPS_CALL_HI16))));
e077a1c8 8495 break;
252b5132
RH
8496
8497 case 'p':
9c2799c2 8498 gas_assert (ep != NULL);
bad36eac 8499
252b5132
RH
8500 /*
8501 * This allows macro() to pass an immediate expression for
8502 * creating short branches without creating a symbol.
bad36eac
DJ
8503 *
8504 * We don't allow branch relaxation for these branches, as
8505 * they should only appear in ".set nomacro" anyway.
252b5132
RH
8506 */
8507 if (ep->X_op == O_constant)
8508 {
df58fc94
RS
8509 /* For microMIPS we always use relocations for branches.
8510 So we should not resolve immediate values. */
8511 gas_assert (!mips_opts.micromips);
8512
bad36eac
DJ
8513 if ((ep->X_add_number & 3) != 0)
8514 as_bad (_("branch to misaligned address (0x%lx)"),
8515 (unsigned long) ep->X_add_number);
8516 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8517 as_bad (_("branch address range overflow (0x%lx)"),
8518 (unsigned long) ep->X_add_number);
252b5132
RH
8519 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8520 ep = NULL;
8521 }
8522 else
0b25d3e6 8523 *r = BFD_RELOC_16_PCREL_S2;
e077a1c8 8524 break;
252b5132
RH
8525
8526 case 'a':
9c2799c2 8527 gas_assert (ep != NULL);
f6688943 8528 *r = BFD_RELOC_MIPS_JMP;
e077a1c8 8529 break;
d43b4baf 8530
252b5132 8531 default:
e077a1c8
RS
8532 operand = (mips_opts.micromips
8533 ? decode_micromips_operand (fmt)
8534 : decode_mips_operand (fmt));
8535 if (!operand)
8536 abort ();
8537
8538 uval = va_arg (args, int);
8539 if (operand->type == OP_CLO_CLZ_DEST)
8540 uval |= (uval << 5);
8541 insn_insert_operand (&insn, operand, uval);
8542
7361da2c 8543 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
e077a1c8
RS
8544 ++fmt;
8545 break;
252b5132 8546 }
252b5132
RH
8547 }
8548 va_end (args);
9c2799c2 8549 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 8550
df58fc94 8551 append_insn (&insn, ep, r, TRUE);
252b5132
RH
8552}
8553
8554static void
67c0d1eb 8555mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
03ea81db 8556 va_list *args)
252b5132 8557{
1e915849 8558 struct mips_opcode *mo;
252b5132 8559 struct mips_cl_insn insn;
e077a1c8 8560 const struct mips_operand *operand;
f6688943
TS
8561 bfd_reloc_code_real_type r[3]
8562 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 8563
1e915849 8564 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
9c2799c2
NC
8565 gas_assert (mo);
8566 gas_assert (strcmp (name, mo->name) == 0);
252b5132 8567
1e915849 8568 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
252b5132 8569 {
1e915849 8570 ++mo;
9c2799c2
NC
8571 gas_assert (mo->name);
8572 gas_assert (strcmp (name, mo->name) == 0);
252b5132
RH
8573 }
8574
1e915849 8575 create_insn (&insn, mo);
e077a1c8 8576 for (; *fmt; ++fmt)
252b5132
RH
8577 {
8578 int c;
8579
e077a1c8 8580 c = *fmt;
252b5132
RH
8581 switch (c)
8582 {
252b5132
RH
8583 case ',':
8584 case '(':
8585 case ')':
e077a1c8 8586 break;
252b5132
RH
8587
8588 case '0':
8589 case 'S':
8590 case 'P':
8591 case 'R':
e077a1c8 8592 break;
252b5132
RH
8593
8594 case '<':
8595 case '>':
8596 case '4':
8597 case '5':
8598 case 'H':
8599 case 'W':
8600 case 'D':
8601 case 'j':
8602 case '8':
8603 case 'V':
8604 case 'C':
8605 case 'U':
8606 case 'k':
8607 case 'K':
8608 case 'p':
8609 case 'q':
8610 {
b886a2ab
RS
8611 offsetT value;
8612
9c2799c2 8613 gas_assert (ep != NULL);
252b5132
RH
8614
8615 if (ep->X_op != O_constant)
874e8986 8616 *r = (int) BFD_RELOC_UNUSED + c;
b886a2ab 8617 else if (calculate_reloc (*r, ep->X_add_number, &value))
252b5132 8618 {
b886a2ab 8619 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
252b5132 8620 ep = NULL;
f6688943 8621 *r = BFD_RELOC_UNUSED;
252b5132
RH
8622 }
8623 }
e077a1c8 8624 break;
252b5132 8625
e077a1c8
RS
8626 default:
8627 operand = decode_mips16_operand (c, FALSE);
8628 if (!operand)
8629 abort ();
252b5132 8630
4a06e5a2 8631 insn_insert_operand (&insn, operand, va_arg (*args, int));
e077a1c8
RS
8632 break;
8633 }
252b5132
RH
8634 }
8635
9c2799c2 8636 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 8637
df58fc94 8638 append_insn (&insn, ep, r, TRUE);
252b5132
RH
8639}
8640
438c16b8
TS
8641/*
8642 * Generate a "jalr" instruction with a relocation hint to the called
8643 * function. This occurs in NewABI PIC code.
8644 */
8645static void
df58fc94 8646macro_build_jalr (expressionS *ep, int cprestore)
438c16b8 8647{
df58fc94
RS
8648 static const bfd_reloc_code_real_type jalr_relocs[2]
8649 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8650 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8651 const char *jalr;
685736be 8652 char *f = NULL;
b34976b6 8653
1180b5a4 8654 if (MIPS_JALR_HINT_P (ep))
f21f8242 8655 {
cc3d92a5 8656 frag_grow (8);
f21f8242
AO
8657 f = frag_more (0);
8658 }
2906b037 8659 if (mips_opts.micromips)
df58fc94 8660 {
833794fc
MR
8661 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8662 ? "jalr" : "jalrs");
e64af278 8663 if (MIPS_JALR_HINT_P (ep)
833794fc 8664 || mips_opts.insn32
e64af278 8665 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
df58fc94
RS
8666 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8667 else
8668 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8669 }
2906b037
MR
8670 else
8671 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
1180b5a4 8672 if (MIPS_JALR_HINT_P (ep))
df58fc94 8673 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
438c16b8
TS
8674}
8675
252b5132
RH
8676/*
8677 * Generate a "lui" instruction.
8678 */
8679static void
67c0d1eb 8680macro_build_lui (expressionS *ep, int regnum)
252b5132 8681{
9c2799c2 8682 gas_assert (! mips_opts.mips16);
252b5132 8683
df58fc94 8684 if (ep->X_op != O_constant)
252b5132 8685 {
9c2799c2 8686 gas_assert (ep->X_op == O_symbol);
bbe506e8
TS
8687 /* _gp_disp is a special case, used from s_cpload.
8688 __gnu_local_gp is used if mips_no_shared. */
9c2799c2 8689 gas_assert (mips_pic == NO_PIC
78e1bb40 8690 || (! HAVE_NEWABI
aa6975fb
ILT
8691 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8692 || (! mips_in_shared
bbe506e8
TS
8693 && strcmp (S_GET_NAME (ep->X_add_symbol),
8694 "__gnu_local_gp") == 0));
252b5132
RH
8695 }
8696
df58fc94 8697 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
252b5132
RH
8698}
8699
885add95
CD
8700/* Generate a sequence of instructions to do a load or store from a constant
8701 offset off of a base register (breg) into/from a target register (treg),
8702 using AT if necessary. */
8703static void
67c0d1eb
RS
8704macro_build_ldst_constoffset (expressionS *ep, const char *op,
8705 int treg, int breg, int dbl)
885add95 8706{
9c2799c2 8707 gas_assert (ep->X_op == O_constant);
885add95 8708
256ab948 8709 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
8710 if (!dbl)
8711 normalize_constant_expr (ep);
256ab948 8712
67c1ffbe 8713 /* Right now, this routine can only handle signed 32-bit constants. */
ecd13cd3 8714 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
885add95
CD
8715 as_warn (_("operand overflow"));
8716
8717 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8718 {
8719 /* Signed 16-bit offset will fit in the op. Easy! */
67c0d1eb 8720 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
885add95
CD
8721 }
8722 else
8723 {
8724 /* 32-bit offset, need multiple instructions and AT, like:
8725 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8726 addu $tempreg,$tempreg,$breg
8727 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8728 to handle the complete offset. */
67c0d1eb
RS
8729 macro_build_lui (ep, AT);
8730 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8731 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
885add95 8732
741fe287 8733 if (!mips_opts.at)
1661c76c 8734 as_bad (_("macro used $at after \".set noat\""));
885add95
CD
8735 }
8736}
8737
252b5132
RH
8738/* set_at()
8739 * Generates code to set the $at register to true (one)
8740 * if reg is less than the immediate expression.
8741 */
8742static void
67c0d1eb 8743set_at (int reg, int unsignedp)
252b5132 8744{
b0e6f033 8745 if (imm_expr.X_add_number >= -0x8000
252b5132 8746 && imm_expr.X_add_number < 0x8000)
67c0d1eb
RS
8747 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8748 AT, reg, BFD_RELOC_LO16);
252b5132
RH
8749 else
8750 {
bad1aba3 8751 load_register (AT, &imm_expr, GPR_SIZE == 64);
67c0d1eb 8752 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
252b5132
RH
8753 }
8754}
8755
252b5132
RH
8756/* Count the leading zeroes by performing a binary chop. This is a
8757 bulky bit of source, but performance is a LOT better for the
8758 majority of values than a simple loop to count the bits:
8759 for (lcnt = 0; (lcnt < 32); lcnt++)
8760 if ((v) & (1 << (31 - lcnt)))
8761 break;
8762 However it is not code size friendly, and the gain will drop a bit
8763 on certain cached systems.
8764*/
8765#define COUNT_TOP_ZEROES(v) \
8766 (((v) & ~0xffff) == 0 \
8767 ? ((v) & ~0xff) == 0 \
8768 ? ((v) & ~0xf) == 0 \
8769 ? ((v) & ~0x3) == 0 \
8770 ? ((v) & ~0x1) == 0 \
8771 ? !(v) \
8772 ? 32 \
8773 : 31 \
8774 : 30 \
8775 : ((v) & ~0x7) == 0 \
8776 ? 29 \
8777 : 28 \
8778 : ((v) & ~0x3f) == 0 \
8779 ? ((v) & ~0x1f) == 0 \
8780 ? 27 \
8781 : 26 \
8782 : ((v) & ~0x7f) == 0 \
8783 ? 25 \
8784 : 24 \
8785 : ((v) & ~0xfff) == 0 \
8786 ? ((v) & ~0x3ff) == 0 \
8787 ? ((v) & ~0x1ff) == 0 \
8788 ? 23 \
8789 : 22 \
8790 : ((v) & ~0x7ff) == 0 \
8791 ? 21 \
8792 : 20 \
8793 : ((v) & ~0x3fff) == 0 \
8794 ? ((v) & ~0x1fff) == 0 \
8795 ? 19 \
8796 : 18 \
8797 : ((v) & ~0x7fff) == 0 \
8798 ? 17 \
8799 : 16 \
8800 : ((v) & ~0xffffff) == 0 \
8801 ? ((v) & ~0xfffff) == 0 \
8802 ? ((v) & ~0x3ffff) == 0 \
8803 ? ((v) & ~0x1ffff) == 0 \
8804 ? 15 \
8805 : 14 \
8806 : ((v) & ~0x7ffff) == 0 \
8807 ? 13 \
8808 : 12 \
8809 : ((v) & ~0x3fffff) == 0 \
8810 ? ((v) & ~0x1fffff) == 0 \
8811 ? 11 \
8812 : 10 \
8813 : ((v) & ~0x7fffff) == 0 \
8814 ? 9 \
8815 : 8 \
8816 : ((v) & ~0xfffffff) == 0 \
8817 ? ((v) & ~0x3ffffff) == 0 \
8818 ? ((v) & ~0x1ffffff) == 0 \
8819 ? 7 \
8820 : 6 \
8821 : ((v) & ~0x7ffffff) == 0 \
8822 ? 5 \
8823 : 4 \
8824 : ((v) & ~0x3fffffff) == 0 \
8825 ? ((v) & ~0x1fffffff) == 0 \
8826 ? 3 \
8827 : 2 \
8828 : ((v) & ~0x7fffffff) == 0 \
8829 ? 1 \
8830 : 0)
8831
8832/* load_register()
67c1ffbe 8833 * This routine generates the least number of instructions necessary to load
252b5132
RH
8834 * an absolute expression value into a register.
8835 */
8836static void
67c0d1eb 8837load_register (int reg, expressionS *ep, int dbl)
252b5132
RH
8838{
8839 int freg;
8840 expressionS hi32, lo32;
8841
8842 if (ep->X_op != O_big)
8843 {
9c2799c2 8844 gas_assert (ep->X_op == O_constant);
256ab948
TS
8845
8846 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
8847 if (!dbl)
8848 normalize_constant_expr (ep);
256ab948
TS
8849
8850 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
252b5132
RH
8851 {
8852 /* We can handle 16 bit signed values with an addiu to
8853 $zero. No need to ever use daddiu here, since $zero and
8854 the result are always correct in 32 bit mode. */
67c0d1eb 8855 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
8856 return;
8857 }
8858 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
8859 {
8860 /* We can handle 16 bit unsigned values with an ori to
8861 $zero. */
67c0d1eb 8862 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
252b5132
RH
8863 return;
8864 }
256ab948 8865 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
252b5132
RH
8866 {
8867 /* 32 bit values require an lui. */
df58fc94 8868 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 8869 if ((ep->X_add_number & 0xffff) != 0)
67c0d1eb 8870 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
252b5132
RH
8871 return;
8872 }
8873 }
8874
8875 /* The value is larger than 32 bits. */
8876
bad1aba3 8877 if (!dbl || GPR_SIZE == 32)
252b5132 8878 {
55e08f71
NC
8879 char value[32];
8880
8881 sprintf_vma (value, ep->X_add_number);
1661c76c 8882 as_bad (_("number (0x%s) larger than 32 bits"), value);
67c0d1eb 8883 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
8884 return;
8885 }
8886
8887 if (ep->X_op != O_big)
8888 {
8889 hi32 = *ep;
8890 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8891 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8892 hi32.X_add_number &= 0xffffffff;
8893 lo32 = *ep;
8894 lo32.X_add_number &= 0xffffffff;
8895 }
8896 else
8897 {
9c2799c2 8898 gas_assert (ep->X_add_number > 2);
252b5132
RH
8899 if (ep->X_add_number == 3)
8900 generic_bignum[3] = 0;
8901 else if (ep->X_add_number > 4)
1661c76c 8902 as_bad (_("number larger than 64 bits"));
252b5132
RH
8903 lo32.X_op = O_constant;
8904 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
8905 hi32.X_op = O_constant;
8906 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
8907 }
8908
8909 if (hi32.X_add_number == 0)
8910 freg = 0;
8911 else
8912 {
8913 int shift, bit;
8914 unsigned long hi, lo;
8915
956cd1d6 8916 if (hi32.X_add_number == (offsetT) 0xffffffff)
beae10d5
KH
8917 {
8918 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
8919 {
67c0d1eb 8920 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
8921 return;
8922 }
8923 if (lo32.X_add_number & 0x80000000)
8924 {
df58fc94 8925 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 8926 if (lo32.X_add_number & 0xffff)
67c0d1eb 8927 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
beae10d5
KH
8928 return;
8929 }
8930 }
252b5132
RH
8931
8932 /* Check for 16bit shifted constant. We know that hi32 is
8933 non-zero, so start the mask on the first bit of the hi32
8934 value. */
8935 shift = 17;
8936 do
beae10d5
KH
8937 {
8938 unsigned long himask, lomask;
8939
8940 if (shift < 32)
8941 {
8942 himask = 0xffff >> (32 - shift);
8943 lomask = (0xffff << shift) & 0xffffffff;
8944 }
8945 else
8946 {
8947 himask = 0xffff << (shift - 32);
8948 lomask = 0;
8949 }
8950 if ((hi32.X_add_number & ~(offsetT) himask) == 0
8951 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
8952 {
8953 expressionS tmp;
8954
8955 tmp.X_op = O_constant;
8956 if (shift < 32)
8957 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
8958 | (lo32.X_add_number >> shift));
8959 else
8960 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
67c0d1eb 8961 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
df58fc94 8962 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 8963 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
8964 return;
8965 }
f9419b05 8966 ++shift;
beae10d5
KH
8967 }
8968 while (shift <= (64 - 16));
252b5132
RH
8969
8970 /* Find the bit number of the lowest one bit, and store the
8971 shifted value in hi/lo. */
8972 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
8973 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
8974 if (lo != 0)
8975 {
8976 bit = 0;
8977 while ((lo & 1) == 0)
8978 {
8979 lo >>= 1;
8980 ++bit;
8981 }
8982 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
8983 hi >>= bit;
8984 }
8985 else
8986 {
8987 bit = 32;
8988 while ((hi & 1) == 0)
8989 {
8990 hi >>= 1;
8991 ++bit;
8992 }
8993 lo = hi;
8994 hi = 0;
8995 }
8996
8997 /* Optimize if the shifted value is a (power of 2) - 1. */
8998 if ((hi == 0 && ((lo + 1) & lo) == 0)
8999 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
beae10d5
KH
9000 {
9001 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
252b5132 9002 if (shift != 0)
beae10d5 9003 {
252b5132
RH
9004 expressionS tmp;
9005
9006 /* This instruction will set the register to be all
9007 ones. */
beae10d5
KH
9008 tmp.X_op = O_constant;
9009 tmp.X_add_number = (offsetT) -1;
67c0d1eb 9010 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
9011 if (bit != 0)
9012 {
9013 bit += shift;
df58fc94 9014 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 9015 reg, reg, (bit >= 32) ? bit - 32 : bit);
beae10d5 9016 }
df58fc94 9017 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
67c0d1eb 9018 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
9019 return;
9020 }
9021 }
252b5132
RH
9022
9023 /* Sign extend hi32 before calling load_register, because we can
9024 generally get better code when we load a sign extended value. */
9025 if ((hi32.X_add_number & 0x80000000) != 0)
beae10d5 9026 hi32.X_add_number |= ~(offsetT) 0xffffffff;
67c0d1eb 9027 load_register (reg, &hi32, 0);
252b5132
RH
9028 freg = reg;
9029 }
9030 if ((lo32.X_add_number & 0xffff0000) == 0)
9031 {
9032 if (freg != 0)
9033 {
df58fc94 9034 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
252b5132
RH
9035 freg = reg;
9036 }
9037 }
9038 else
9039 {
9040 expressionS mid16;
9041
956cd1d6 9042 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
beae10d5 9043 {
df58fc94
RS
9044 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9045 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
beae10d5
KH
9046 return;
9047 }
252b5132
RH
9048
9049 if (freg != 0)
9050 {
df58fc94 9051 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
252b5132
RH
9052 freg = reg;
9053 }
9054 mid16 = lo32;
9055 mid16.X_add_number >>= 16;
67c0d1eb 9056 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
df58fc94 9057 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
252b5132
RH
9058 freg = reg;
9059 }
9060 if ((lo32.X_add_number & 0xffff) != 0)
67c0d1eb 9061 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
252b5132
RH
9062}
9063
269137b2
TS
9064static inline void
9065load_delay_nop (void)
9066{
9067 if (!gpr_interlocks)
9068 macro_build (NULL, "nop", "");
9069}
9070
252b5132
RH
9071/* Load an address into a register. */
9072
9073static void
67c0d1eb 9074load_address (int reg, expressionS *ep, int *used_at)
252b5132 9075{
252b5132
RH
9076 if (ep->X_op != O_constant
9077 && ep->X_op != O_symbol)
9078 {
9079 as_bad (_("expression too complex"));
9080 ep->X_op = O_constant;
9081 }
9082
9083 if (ep->X_op == O_constant)
9084 {
67c0d1eb 9085 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
252b5132
RH
9086 return;
9087 }
9088
9089 if (mips_pic == NO_PIC)
9090 {
9091 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 9092 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
9093 Otherwise we want
9094 lui $reg,<sym> (BFD_RELOC_HI16_S)
9095 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
d6bc6245 9096 If we have an addend, we always use the latter form.
76b3015f 9097
d6bc6245
TS
9098 With 64bit address space and a usable $at we want
9099 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9100 lui $at,<sym> (BFD_RELOC_HI16_S)
9101 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9102 daddiu $at,<sym> (BFD_RELOC_LO16)
9103 dsll32 $reg,0
3a482fd5 9104 daddu $reg,$reg,$at
76b3015f 9105
c03099e6 9106 If $at is already in use, we use a path which is suboptimal
d6bc6245
TS
9107 on superscalar processors.
9108 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9109 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9110 dsll $reg,16
9111 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9112 dsll $reg,16
9113 daddiu $reg,<sym> (BFD_RELOC_LO16)
6caf9ef4
TS
9114
9115 For GP relative symbols in 64bit address space we can use
9116 the same sequence as in 32bit address space. */
aed1a261 9117 if (HAVE_64BIT_SYMBOLS)
d6bc6245 9118 {
6caf9ef4
TS
9119 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9120 && !nopic_need_relax (ep->X_add_symbol, 1))
9121 {
9122 relax_start (ep->X_add_symbol);
9123 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9124 mips_gp_register, BFD_RELOC_GPREL16);
9125 relax_switch ();
9126 }
d6bc6245 9127
741fe287 9128 if (*used_at == 0 && mips_opts.at)
d6bc6245 9129 {
df58fc94
RS
9130 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9131 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
67c0d1eb
RS
9132 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9133 BFD_RELOC_MIPS_HIGHER);
9134 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
df58fc94 9135 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
67c0d1eb 9136 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
d6bc6245
TS
9137 *used_at = 1;
9138 }
9139 else
9140 {
df58fc94 9141 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb
RS
9142 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9143 BFD_RELOC_MIPS_HIGHER);
df58fc94 9144 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 9145 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
df58fc94 9146 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 9147 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
d6bc6245 9148 }
6caf9ef4
TS
9149
9150 if (mips_relax.sequence)
9151 relax_end ();
d6bc6245 9152 }
252b5132
RH
9153 else
9154 {
d6bc6245 9155 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 9156 && !nopic_need_relax (ep->X_add_symbol, 1))
d6bc6245 9157 {
4d7206a2 9158 relax_start (ep->X_add_symbol);
67c0d1eb 9159 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
17a2f251 9160 mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 9161 relax_switch ();
d6bc6245 9162 }
67c0d1eb
RS
9163 macro_build_lui (ep, reg);
9164 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9165 reg, reg, BFD_RELOC_LO16);
4d7206a2
RS
9166 if (mips_relax.sequence)
9167 relax_end ();
d6bc6245 9168 }
252b5132 9169 }
0a44bf69 9170 else if (!mips_big_got)
252b5132
RH
9171 {
9172 expressionS ex;
9173
9174 /* If this is a reference to an external symbol, we want
9175 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9176 Otherwise we want
9177 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9178 nop
9179 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
f5040a92
AO
9180 If there is a constant, it must be added in after.
9181
ed6fb7bd 9182 If we have NewABI, we want
f5040a92
AO
9183 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9184 unless we're referencing a global symbol with a non-zero
9185 offset, in which case cst must be added separately. */
ed6fb7bd
SC
9186 if (HAVE_NEWABI)
9187 {
f5040a92
AO
9188 if (ep->X_add_number)
9189 {
4d7206a2 9190 ex.X_add_number = ep->X_add_number;
f5040a92 9191 ep->X_add_number = 0;
4d7206a2 9192 relax_start (ep->X_add_symbol);
67c0d1eb
RS
9193 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9194 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
9195 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9196 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9197 ex.X_op = O_constant;
67c0d1eb 9198 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9199 reg, reg, BFD_RELOC_LO16);
f5040a92 9200 ep->X_add_number = ex.X_add_number;
4d7206a2 9201 relax_switch ();
f5040a92 9202 }
67c0d1eb 9203 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9204 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2
RS
9205 if (mips_relax.sequence)
9206 relax_end ();
ed6fb7bd
SC
9207 }
9208 else
9209 {
f5040a92
AO
9210 ex.X_add_number = ep->X_add_number;
9211 ep->X_add_number = 0;
67c0d1eb
RS
9212 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9213 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 9214 load_delay_nop ();
4d7206a2
RS
9215 relax_start (ep->X_add_symbol);
9216 relax_switch ();
67c0d1eb 9217 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 9218 BFD_RELOC_LO16);
4d7206a2 9219 relax_end ();
ed6fb7bd 9220
f5040a92
AO
9221 if (ex.X_add_number != 0)
9222 {
9223 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9224 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9225 ex.X_op = O_constant;
67c0d1eb 9226 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9227 reg, reg, BFD_RELOC_LO16);
f5040a92 9228 }
252b5132
RH
9229 }
9230 }
0a44bf69 9231 else if (mips_big_got)
252b5132
RH
9232 {
9233 expressionS ex;
252b5132
RH
9234
9235 /* This is the large GOT case. If this is a reference to an
9236 external symbol, we want
9237 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9238 addu $reg,$reg,$gp
9239 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
f5040a92
AO
9240
9241 Otherwise, for a reference to a local symbol in old ABI, we want
252b5132
RH
9242 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9243 nop
9244 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
684022ea 9245 If there is a constant, it must be added in after.
f5040a92
AO
9246
9247 In the NewABI, for local symbols, with or without offsets, we want:
438c16b8
TS
9248 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9249 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 9250 */
438c16b8
TS
9251 if (HAVE_NEWABI)
9252 {
4d7206a2 9253 ex.X_add_number = ep->X_add_number;
f5040a92 9254 ep->X_add_number = 0;
4d7206a2 9255 relax_start (ep->X_add_symbol);
df58fc94 9256 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
9257 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9258 reg, reg, mips_gp_register);
9259 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9260 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
f5040a92
AO
9261 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9262 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9263 else if (ex.X_add_number)
9264 {
9265 ex.X_op = O_constant;
67c0d1eb
RS
9266 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9267 BFD_RELOC_LO16);
f5040a92
AO
9268 }
9269
9270 ep->X_add_number = ex.X_add_number;
4d7206a2 9271 relax_switch ();
67c0d1eb 9272 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9273 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
67c0d1eb
RS
9274 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9275 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 9276 relax_end ();
438c16b8 9277 }
252b5132 9278 else
438c16b8 9279 {
f5040a92
AO
9280 ex.X_add_number = ep->X_add_number;
9281 ep->X_add_number = 0;
4d7206a2 9282 relax_start (ep->X_add_symbol);
df58fc94 9283 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
9284 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9285 reg, reg, mips_gp_register);
9286 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9287 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4d7206a2
RS
9288 relax_switch ();
9289 if (reg_needs_delay (mips_gp_register))
438c16b8
TS
9290 {
9291 /* We need a nop before loading from $gp. This special
9292 check is required because the lui which starts the main
9293 instruction stream does not refer to $gp, and so will not
9294 insert the nop which may be required. */
67c0d1eb 9295 macro_build (NULL, "nop", "");
438c16b8 9296 }
67c0d1eb 9297 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9298 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 9299 load_delay_nop ();
67c0d1eb 9300 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 9301 BFD_RELOC_LO16);
4d7206a2 9302 relax_end ();
438c16b8 9303
f5040a92
AO
9304 if (ex.X_add_number != 0)
9305 {
9306 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9307 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9308 ex.X_op = O_constant;
67c0d1eb
RS
9309 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9310 BFD_RELOC_LO16);
f5040a92 9311 }
252b5132
RH
9312 }
9313 }
252b5132
RH
9314 else
9315 abort ();
8fc2e39e 9316
741fe287 9317 if (!mips_opts.at && *used_at == 1)
1661c76c 9318 as_bad (_("macro used $at after \".set noat\""));
252b5132
RH
9319}
9320
ea1fb5dc
RS
9321/* Move the contents of register SOURCE into register DEST. */
9322
9323static void
67c0d1eb 9324move_register (int dest, int source)
ea1fb5dc 9325{
df58fc94
RS
9326 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9327 instruction specifically requires a 32-bit one. */
9328 if (mips_opts.micromips
833794fc 9329 && !mips_opts.insn32
df58fc94 9330 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
7951ca42 9331 macro_build (NULL, "move", "mp,mj", dest, source);
df58fc94 9332 else
40fc1451 9333 macro_build (NULL, "or", "d,v,t", dest, source, 0);
ea1fb5dc
RS
9334}
9335
4d7206a2 9336/* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
f6a22291
MR
9337 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9338 The two alternatives are:
4d7206a2
RS
9339
9340 Global symbol Local sybmol
9341 ------------- ------------
9342 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9343 ... ...
9344 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9345
9346 load_got_offset emits the first instruction and add_got_offset
f6a22291
MR
9347 emits the second for a 16-bit offset or add_got_offset_hilo emits
9348 a sequence to add a 32-bit offset using a scratch register. */
4d7206a2
RS
9349
9350static void
67c0d1eb 9351load_got_offset (int dest, expressionS *local)
4d7206a2
RS
9352{
9353 expressionS global;
9354
9355 global = *local;
9356 global.X_add_number = 0;
9357
9358 relax_start (local->X_add_symbol);
67c0d1eb
RS
9359 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9360 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2 9361 relax_switch ();
67c0d1eb
RS
9362 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9363 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2
RS
9364 relax_end ();
9365}
9366
9367static void
67c0d1eb 9368add_got_offset (int dest, expressionS *local)
4d7206a2
RS
9369{
9370 expressionS global;
9371
9372 global.X_op = O_constant;
9373 global.X_op_symbol = NULL;
9374 global.X_add_symbol = NULL;
9375 global.X_add_number = local->X_add_number;
9376
9377 relax_start (local->X_add_symbol);
67c0d1eb 9378 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4d7206a2
RS
9379 dest, dest, BFD_RELOC_LO16);
9380 relax_switch ();
67c0d1eb 9381 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4d7206a2
RS
9382 relax_end ();
9383}
9384
f6a22291
MR
9385static void
9386add_got_offset_hilo (int dest, expressionS *local, int tmp)
9387{
9388 expressionS global;
9389 int hold_mips_optimize;
9390
9391 global.X_op = O_constant;
9392 global.X_op_symbol = NULL;
9393 global.X_add_symbol = NULL;
9394 global.X_add_number = local->X_add_number;
9395
9396 relax_start (local->X_add_symbol);
9397 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9398 relax_switch ();
9399 /* Set mips_optimize around the lui instruction to avoid
9400 inserting an unnecessary nop after the lw. */
9401 hold_mips_optimize = mips_optimize;
9402 mips_optimize = 2;
9403 macro_build_lui (&global, tmp);
9404 mips_optimize = hold_mips_optimize;
9405 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9406 relax_end ();
9407
9408 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9409}
9410
df58fc94
RS
9411/* Emit a sequence of instructions to emulate a branch likely operation.
9412 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9413 is its complementing branch with the original condition negated.
9414 CALL is set if the original branch specified the link operation.
9415 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9416
9417 Code like this is produced in the noreorder mode:
9418
9419 BRNEG <args>, 1f
9420 nop
9421 b <sym>
9422 delay slot (executed only if branch taken)
9423 1:
9424
9425 or, if CALL is set:
9426
9427 BRNEG <args>, 1f
9428 nop
9429 bal <sym>
9430 delay slot (executed only if branch taken)
9431 1:
9432
9433 In the reorder mode the delay slot would be filled with a nop anyway,
9434 so code produced is simply:
9435
9436 BR <args>, <sym>
9437 nop
9438
9439 This function is used when producing code for the microMIPS ASE that
9440 does not implement branch likely instructions in hardware. */
9441
9442static void
9443macro_build_branch_likely (const char *br, const char *brneg,
9444 int call, expressionS *ep, const char *fmt,
9445 unsigned int sreg, unsigned int treg)
9446{
9447 int noreorder = mips_opts.noreorder;
9448 expressionS expr1;
9449
9450 gas_assert (mips_opts.micromips);
9451 start_noreorder ();
9452 if (noreorder)
9453 {
9454 micromips_label_expr (&expr1);
9455 macro_build (&expr1, brneg, fmt, sreg, treg);
9456 macro_build (NULL, "nop", "");
9457 macro_build (ep, call ? "bal" : "b", "p");
9458
9459 /* Set to true so that append_insn adds a label. */
9460 emit_branch_likely_macro = TRUE;
9461 }
9462 else
9463 {
9464 macro_build (ep, br, fmt, sreg, treg);
9465 macro_build (NULL, "nop", "");
9466 }
9467 end_noreorder ();
9468}
9469
9470/* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9471 the condition code tested. EP specifies the branch target. */
9472
9473static void
9474macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9475{
9476 const int call = 0;
9477 const char *brneg;
9478 const char *br;
9479
9480 switch (type)
9481 {
9482 case M_BC1FL:
9483 br = "bc1f";
9484 brneg = "bc1t";
9485 break;
9486 case M_BC1TL:
9487 br = "bc1t";
9488 brneg = "bc1f";
9489 break;
9490 case M_BC2FL:
9491 br = "bc2f";
9492 brneg = "bc2t";
9493 break;
9494 case M_BC2TL:
9495 br = "bc2t";
9496 brneg = "bc2f";
9497 break;
9498 default:
9499 abort ();
9500 }
9501 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9502}
9503
9504/* Emit a two-argument branch macro specified by TYPE, using SREG as
9505 the register tested. EP specifies the branch target. */
9506
9507static void
9508macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9509{
9510 const char *brneg = NULL;
9511 const char *br;
9512 int call = 0;
9513
9514 switch (type)
9515 {
9516 case M_BGEZ:
9517 br = "bgez";
9518 break;
9519 case M_BGEZL:
9520 br = mips_opts.micromips ? "bgez" : "bgezl";
9521 brneg = "bltz";
9522 break;
9523 case M_BGEZALL:
9524 gas_assert (mips_opts.micromips);
833794fc 9525 br = mips_opts.insn32 ? "bgezal" : "bgezals";
df58fc94
RS
9526 brneg = "bltz";
9527 call = 1;
9528 break;
9529 case M_BGTZ:
9530 br = "bgtz";
9531 break;
9532 case M_BGTZL:
9533 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9534 brneg = "blez";
9535 break;
9536 case M_BLEZ:
9537 br = "blez";
9538 break;
9539 case M_BLEZL:
9540 br = mips_opts.micromips ? "blez" : "blezl";
9541 brneg = "bgtz";
9542 break;
9543 case M_BLTZ:
9544 br = "bltz";
9545 break;
9546 case M_BLTZL:
9547 br = mips_opts.micromips ? "bltz" : "bltzl";
9548 brneg = "bgez";
9549 break;
9550 case M_BLTZALL:
9551 gas_assert (mips_opts.micromips);
833794fc 9552 br = mips_opts.insn32 ? "bltzal" : "bltzals";
df58fc94
RS
9553 brneg = "bgez";
9554 call = 1;
9555 break;
9556 default:
9557 abort ();
9558 }
9559 if (mips_opts.micromips && brneg)
9560 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9561 else
9562 macro_build (ep, br, "s,p", sreg);
9563}
9564
9565/* Emit a three-argument branch macro specified by TYPE, using SREG and
9566 TREG as the registers tested. EP specifies the branch target. */
9567
9568static void
9569macro_build_branch_rsrt (int type, expressionS *ep,
9570 unsigned int sreg, unsigned int treg)
9571{
9572 const char *brneg = NULL;
9573 const int call = 0;
9574 const char *br;
9575
9576 switch (type)
9577 {
9578 case M_BEQ:
9579 case M_BEQ_I:
9580 br = "beq";
9581 break;
9582 case M_BEQL:
9583 case M_BEQL_I:
9584 br = mips_opts.micromips ? "beq" : "beql";
9585 brneg = "bne";
9586 break;
9587 case M_BNE:
9588 case M_BNE_I:
9589 br = "bne";
9590 break;
9591 case M_BNEL:
9592 case M_BNEL_I:
9593 br = mips_opts.micromips ? "bne" : "bnel";
9594 brneg = "beq";
9595 break;
9596 default:
9597 abort ();
9598 }
9599 if (mips_opts.micromips && brneg)
9600 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9601 else
9602 macro_build (ep, br, "s,t,p", sreg, treg);
9603}
9604
f2ae14a1
RS
9605/* Return the high part that should be loaded in order to make the low
9606 part of VALUE accessible using an offset of OFFBITS bits. */
9607
9608static offsetT
9609offset_high_part (offsetT value, unsigned int offbits)
9610{
9611 offsetT bias;
9612 addressT low_mask;
9613
9614 if (offbits == 0)
9615 return value;
9616 bias = 1 << (offbits - 1);
9617 low_mask = bias * 2 - 1;
9618 return (value + bias) & ~low_mask;
9619}
9620
9621/* Return true if the value stored in offset_expr and offset_reloc
9622 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9623 amount that the caller wants to add without inducing overflow
9624 and ALIGN is the known alignment of the value in bytes. */
9625
9626static bfd_boolean
9627small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9628{
9629 if (offbits == 16)
9630 {
9631 /* Accept any relocation operator if overflow isn't a concern. */
9632 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9633 return TRUE;
9634
9635 /* These relocations are guaranteed not to overflow in correct links. */
9636 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9637 || gprel16_reloc_p (*offset_reloc))
9638 return TRUE;
9639 }
9640 if (offset_expr.X_op == O_constant
9641 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9642 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9643 return TRUE;
9644 return FALSE;
9645}
9646
252b5132
RH
9647/*
9648 * Build macros
9649 * This routine implements the seemingly endless macro or synthesized
9650 * instructions and addressing modes in the mips assembly language. Many
9651 * of these macros are simple and are similar to each other. These could
67c1ffbe 9652 * probably be handled by some kind of table or grammar approach instead of
252b5132
RH
9653 * this verbose method. Others are not simple macros but are more like
9654 * optimizing code generation.
9655 * One interesting optimization is when several store macros appear
67c1ffbe 9656 * consecutively that would load AT with the upper half of the same address.
252b5132
RH
9657 * The ensuing load upper instructions are ommited. This implies some kind
9658 * of global optimization. We currently only optimize within a single macro.
9659 * For many of the load and store macros if the address is specified as a
9660 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9661 * first load register 'at' with zero and use it as the base register. The
9662 * mips assembler simply uses register $zero. Just one tiny optimization
9663 * we're missing.
9664 */
9665static void
833794fc 9666macro (struct mips_cl_insn *ip, char *str)
252b5132 9667{
c0ebe874
RS
9668 const struct mips_operand_array *operands;
9669 unsigned int breg, i;
741fe287 9670 unsigned int tempreg;
252b5132 9671 int mask;
43841e91 9672 int used_at = 0;
df58fc94 9673 expressionS label_expr;
252b5132 9674 expressionS expr1;
df58fc94 9675 expressionS *ep;
252b5132
RH
9676 const char *s;
9677 const char *s2;
9678 const char *fmt;
9679 int likely = 0;
252b5132 9680 int coproc = 0;
7f3c4072 9681 int offbits = 16;
1abe91b1 9682 int call = 0;
df58fc94
RS
9683 int jals = 0;
9684 int dbl = 0;
9685 int imm = 0;
9686 int ust = 0;
9687 int lp = 0;
f2ae14a1 9688 bfd_boolean large_offset;
252b5132 9689 int off;
252b5132 9690 int hold_mips_optimize;
f2ae14a1 9691 unsigned int align;
c0ebe874 9692 unsigned int op[MAX_OPERANDS];
252b5132 9693
9c2799c2 9694 gas_assert (! mips_opts.mips16);
252b5132 9695
c0ebe874
RS
9696 operands = insn_operands (ip);
9697 for (i = 0; i < MAX_OPERANDS; i++)
9698 if (operands->operand[i])
9699 op[i] = insn_extract_operand (ip, operands->operand[i]);
9700 else
9701 op[i] = -1;
9702
252b5132
RH
9703 mask = ip->insn_mo->mask;
9704
df58fc94
RS
9705 label_expr.X_op = O_constant;
9706 label_expr.X_op_symbol = NULL;
9707 label_expr.X_add_symbol = NULL;
9708 label_expr.X_add_number = 0;
9709
252b5132
RH
9710 expr1.X_op = O_constant;
9711 expr1.X_op_symbol = NULL;
9712 expr1.X_add_symbol = NULL;
9713 expr1.X_add_number = 1;
f2ae14a1 9714 align = 1;
252b5132
RH
9715
9716 switch (mask)
9717 {
9718 case M_DABS:
9719 dbl = 1;
9720 case M_ABS:
df58fc94
RS
9721 /* bgez $a0,1f
9722 move v0,$a0
9723 sub v0,$zero,$a0
9724 1:
9725 */
252b5132 9726
7d10b47d 9727 start_noreorder ();
252b5132 9728
df58fc94
RS
9729 if (mips_opts.micromips)
9730 micromips_label_expr (&label_expr);
9731 else
9732 label_expr.X_add_number = 8;
c0ebe874
RS
9733 macro_build (&label_expr, "bgez", "s,p", op[1]);
9734 if (op[0] == op[1])
a605d2b3 9735 macro_build (NULL, "nop", "");
252b5132 9736 else
c0ebe874
RS
9737 move_register (op[0], op[1]);
9738 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
df58fc94
RS
9739 if (mips_opts.micromips)
9740 micromips_add_label ();
252b5132 9741
7d10b47d 9742 end_noreorder ();
8fc2e39e 9743 break;
252b5132
RH
9744
9745 case M_ADD_I:
9746 s = "addi";
9747 s2 = "add";
9748 goto do_addi;
9749 case M_ADDU_I:
9750 s = "addiu";
9751 s2 = "addu";
9752 goto do_addi;
9753 case M_DADD_I:
9754 dbl = 1;
9755 s = "daddi";
9756 s2 = "dadd";
df58fc94
RS
9757 if (!mips_opts.micromips)
9758 goto do_addi;
b0e6f033 9759 if (imm_expr.X_add_number >= -0x200
df58fc94
RS
9760 && imm_expr.X_add_number < 0x200)
9761 {
b0e6f033
RS
9762 macro_build (NULL, s, "t,r,.", op[0], op[1],
9763 (int) imm_expr.X_add_number);
df58fc94
RS
9764 break;
9765 }
9766 goto do_addi_i;
252b5132
RH
9767 case M_DADDU_I:
9768 dbl = 1;
9769 s = "daddiu";
9770 s2 = "daddu";
9771 do_addi:
b0e6f033 9772 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
9773 && imm_expr.X_add_number < 0x8000)
9774 {
c0ebe874 9775 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 9776 break;
252b5132 9777 }
df58fc94 9778 do_addi_i:
8fc2e39e 9779 used_at = 1;
67c0d1eb 9780 load_register (AT, &imm_expr, dbl);
c0ebe874 9781 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
9782 break;
9783
9784 case M_AND_I:
9785 s = "andi";
9786 s2 = "and";
9787 goto do_bit;
9788 case M_OR_I:
9789 s = "ori";
9790 s2 = "or";
9791 goto do_bit;
9792 case M_NOR_I:
9793 s = "";
9794 s2 = "nor";
9795 goto do_bit;
9796 case M_XOR_I:
9797 s = "xori";
9798 s2 = "xor";
9799 do_bit:
b0e6f033 9800 if (imm_expr.X_add_number >= 0
252b5132
RH
9801 && imm_expr.X_add_number < 0x10000)
9802 {
9803 if (mask != M_NOR_I)
c0ebe874 9804 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
9805 else
9806 {
67c0d1eb 9807 macro_build (&imm_expr, "ori", "t,r,i",
c0ebe874
RS
9808 op[0], op[1], BFD_RELOC_LO16);
9809 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
252b5132 9810 }
8fc2e39e 9811 break;
252b5132
RH
9812 }
9813
8fc2e39e 9814 used_at = 1;
bad1aba3 9815 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 9816 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
9817 break;
9818
8b082fb1
TS
9819 case M_BALIGN:
9820 switch (imm_expr.X_add_number)
9821 {
9822 case 0:
9823 macro_build (NULL, "nop", "");
9824 break;
9825 case 2:
c0ebe874 9826 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
8b082fb1 9827 break;
03f66e8a
MR
9828 case 1:
9829 case 3:
c0ebe874 9830 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
90ecf173 9831 (int) imm_expr.X_add_number);
8b082fb1 9832 break;
03f66e8a
MR
9833 default:
9834 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
9835 (unsigned long) imm_expr.X_add_number);
9836 break;
8b082fb1
TS
9837 }
9838 break;
9839
df58fc94
RS
9840 case M_BC1FL:
9841 case M_BC1TL:
9842 case M_BC2FL:
9843 case M_BC2TL:
9844 gas_assert (mips_opts.micromips);
9845 macro_build_branch_ccl (mask, &offset_expr,
9846 EXTRACT_OPERAND (1, BCC, *ip));
9847 break;
9848
252b5132 9849 case M_BEQ_I:
252b5132 9850 case M_BEQL_I:
252b5132 9851 case M_BNE_I:
252b5132 9852 case M_BNEL_I:
b0e6f033 9853 if (imm_expr.X_add_number == 0)
c0ebe874 9854 op[1] = 0;
df58fc94 9855 else
252b5132 9856 {
c0ebe874 9857 op[1] = AT;
df58fc94 9858 used_at = 1;
bad1aba3 9859 load_register (op[1], &imm_expr, GPR_SIZE == 64);
252b5132 9860 }
df58fc94
RS
9861 /* Fall through. */
9862 case M_BEQL:
9863 case M_BNEL:
c0ebe874 9864 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
252b5132
RH
9865 break;
9866
9867 case M_BGEL:
9868 likely = 1;
9869 case M_BGE:
c0ebe874
RS
9870 if (op[1] == 0)
9871 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
9872 else if (op[0] == 0)
9873 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
df58fc94 9874 else
252b5132 9875 {
df58fc94 9876 used_at = 1;
c0ebe874 9877 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
9878 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9879 &offset_expr, AT, ZERO);
252b5132 9880 }
df58fc94
RS
9881 break;
9882
9883 case M_BGEZL:
9884 case M_BGEZALL:
9885 case M_BGTZL:
9886 case M_BLEZL:
9887 case M_BLTZL:
9888 case M_BLTZALL:
c0ebe874 9889 macro_build_branch_rs (mask, &offset_expr, op[0]);
252b5132
RH
9890 break;
9891
9892 case M_BGTL_I:
9893 likely = 1;
9894 case M_BGT_I:
90ecf173 9895 /* Check for > max integer. */
b0e6f033 9896 if (imm_expr.X_add_number >= GPR_SMAX)
252b5132
RH
9897 {
9898 do_false:
90ecf173 9899 /* Result is always false. */
252b5132 9900 if (! likely)
a605d2b3 9901 macro_build (NULL, "nop", "");
252b5132 9902 else
df58fc94 9903 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
8fc2e39e 9904 break;
252b5132 9905 }
f9419b05 9906 ++imm_expr.X_add_number;
252b5132
RH
9907 /* FALLTHROUGH */
9908 case M_BGE_I:
9909 case M_BGEL_I:
9910 if (mask == M_BGEL_I)
9911 likely = 1;
b0e6f033 9912 if (imm_expr.X_add_number == 0)
252b5132 9913 {
df58fc94 9914 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
c0ebe874 9915 &offset_expr, op[0]);
8fc2e39e 9916 break;
252b5132 9917 }
b0e6f033 9918 if (imm_expr.X_add_number == 1)
252b5132 9919 {
df58fc94 9920 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
c0ebe874 9921 &offset_expr, op[0]);
8fc2e39e 9922 break;
252b5132 9923 }
b0e6f033 9924 if (imm_expr.X_add_number <= GPR_SMIN)
252b5132
RH
9925 {
9926 do_true:
9927 /* result is always true */
1661c76c 9928 as_warn (_("branch %s is always true"), ip->insn_mo->name);
67c0d1eb 9929 macro_build (&offset_expr, "b", "p");
8fc2e39e 9930 break;
252b5132 9931 }
8fc2e39e 9932 used_at = 1;
c0ebe874 9933 set_at (op[0], 0);
df58fc94
RS
9934 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9935 &offset_expr, AT, ZERO);
252b5132
RH
9936 break;
9937
9938 case M_BGEUL:
9939 likely = 1;
9940 case M_BGEU:
c0ebe874 9941 if (op[1] == 0)
252b5132 9942 goto do_true;
c0ebe874 9943 else if (op[0] == 0)
df58fc94 9944 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874 9945 &offset_expr, ZERO, op[1]);
df58fc94 9946 else
252b5132 9947 {
df58fc94 9948 used_at = 1;
c0ebe874 9949 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
9950 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9951 &offset_expr, AT, ZERO);
252b5132 9952 }
252b5132
RH
9953 break;
9954
9955 case M_BGTUL_I:
9956 likely = 1;
9957 case M_BGTU_I:
c0ebe874 9958 if (op[0] == 0
bad1aba3 9959 || (GPR_SIZE == 32
f01dc953 9960 && imm_expr.X_add_number == -1))
252b5132 9961 goto do_false;
f9419b05 9962 ++imm_expr.X_add_number;
252b5132
RH
9963 /* FALLTHROUGH */
9964 case M_BGEU_I:
9965 case M_BGEUL_I:
9966 if (mask == M_BGEUL_I)
9967 likely = 1;
b0e6f033 9968 if (imm_expr.X_add_number == 0)
252b5132 9969 goto do_true;
b0e6f033 9970 else if (imm_expr.X_add_number == 1)
df58fc94 9971 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874 9972 &offset_expr, op[0], ZERO);
df58fc94 9973 else
252b5132 9974 {
df58fc94 9975 used_at = 1;
c0ebe874 9976 set_at (op[0], 1);
df58fc94
RS
9977 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9978 &offset_expr, AT, ZERO);
252b5132 9979 }
252b5132
RH
9980 break;
9981
9982 case M_BGTL:
9983 likely = 1;
9984 case M_BGT:
c0ebe874
RS
9985 if (op[1] == 0)
9986 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
9987 else if (op[0] == 0)
9988 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
df58fc94 9989 else
252b5132 9990 {
df58fc94 9991 used_at = 1;
c0ebe874 9992 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
9993 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9994 &offset_expr, AT, ZERO);
252b5132 9995 }
252b5132
RH
9996 break;
9997
9998 case M_BGTUL:
9999 likely = 1;
10000 case M_BGTU:
c0ebe874 10001 if (op[1] == 0)
df58fc94 10002 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874
RS
10003 &offset_expr, op[0], ZERO);
10004 else if (op[0] == 0)
df58fc94
RS
10005 goto do_false;
10006 else
252b5132 10007 {
df58fc94 10008 used_at = 1;
c0ebe874 10009 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10010 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10011 &offset_expr, AT, ZERO);
252b5132 10012 }
252b5132
RH
10013 break;
10014
10015 case M_BLEL:
10016 likely = 1;
10017 case M_BLE:
c0ebe874
RS
10018 if (op[1] == 0)
10019 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10020 else if (op[0] == 0)
10021 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
df58fc94 10022 else
252b5132 10023 {
df58fc94 10024 used_at = 1;
c0ebe874 10025 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10026 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10027 &offset_expr, AT, ZERO);
252b5132 10028 }
252b5132
RH
10029 break;
10030
10031 case M_BLEL_I:
10032 likely = 1;
10033 case M_BLE_I:
b0e6f033 10034 if (imm_expr.X_add_number >= GPR_SMAX)
252b5132 10035 goto do_true;
f9419b05 10036 ++imm_expr.X_add_number;
252b5132
RH
10037 /* FALLTHROUGH */
10038 case M_BLT_I:
10039 case M_BLTL_I:
10040 if (mask == M_BLTL_I)
10041 likely = 1;
b0e6f033 10042 if (imm_expr.X_add_number == 0)
c0ebe874 10043 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
b0e6f033 10044 else if (imm_expr.X_add_number == 1)
c0ebe874 10045 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
df58fc94 10046 else
252b5132 10047 {
df58fc94 10048 used_at = 1;
c0ebe874 10049 set_at (op[0], 0);
df58fc94
RS
10050 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10051 &offset_expr, AT, ZERO);
252b5132 10052 }
252b5132
RH
10053 break;
10054
10055 case M_BLEUL:
10056 likely = 1;
10057 case M_BLEU:
c0ebe874 10058 if (op[1] == 0)
df58fc94 10059 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874
RS
10060 &offset_expr, op[0], ZERO);
10061 else if (op[0] == 0)
df58fc94
RS
10062 goto do_true;
10063 else
252b5132 10064 {
df58fc94 10065 used_at = 1;
c0ebe874 10066 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10067 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10068 &offset_expr, AT, ZERO);
252b5132 10069 }
252b5132
RH
10070 break;
10071
10072 case M_BLEUL_I:
10073 likely = 1;
10074 case M_BLEU_I:
c0ebe874 10075 if (op[0] == 0
bad1aba3 10076 || (GPR_SIZE == 32
f01dc953 10077 && imm_expr.X_add_number == -1))
252b5132 10078 goto do_true;
f9419b05 10079 ++imm_expr.X_add_number;
252b5132
RH
10080 /* FALLTHROUGH */
10081 case M_BLTU_I:
10082 case M_BLTUL_I:
10083 if (mask == M_BLTUL_I)
10084 likely = 1;
b0e6f033 10085 if (imm_expr.X_add_number == 0)
252b5132 10086 goto do_false;
b0e6f033 10087 else if (imm_expr.X_add_number == 1)
df58fc94 10088 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874 10089 &offset_expr, op[0], ZERO);
df58fc94 10090 else
252b5132 10091 {
df58fc94 10092 used_at = 1;
c0ebe874 10093 set_at (op[0], 1);
df58fc94
RS
10094 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10095 &offset_expr, AT, ZERO);
252b5132 10096 }
252b5132
RH
10097 break;
10098
10099 case M_BLTL:
10100 likely = 1;
10101 case M_BLT:
c0ebe874
RS
10102 if (op[1] == 0)
10103 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10104 else if (op[0] == 0)
10105 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
df58fc94 10106 else
252b5132 10107 {
df58fc94 10108 used_at = 1;
c0ebe874 10109 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10110 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10111 &offset_expr, AT, ZERO);
252b5132 10112 }
252b5132
RH
10113 break;
10114
10115 case M_BLTUL:
10116 likely = 1;
10117 case M_BLTU:
c0ebe874 10118 if (op[1] == 0)
252b5132 10119 goto do_false;
c0ebe874 10120 else if (op[0] == 0)
df58fc94 10121 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874 10122 &offset_expr, ZERO, op[1]);
df58fc94 10123 else
252b5132 10124 {
df58fc94 10125 used_at = 1;
c0ebe874 10126 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10127 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10128 &offset_expr, AT, ZERO);
252b5132 10129 }
252b5132
RH
10130 break;
10131
10132 case M_DDIV_3:
10133 dbl = 1;
10134 case M_DIV_3:
10135 s = "mflo";
10136 goto do_div3;
10137 case M_DREM_3:
10138 dbl = 1;
10139 case M_REM_3:
10140 s = "mfhi";
10141 do_div3:
c0ebe874 10142 if (op[2] == 0)
252b5132 10143 {
1661c76c 10144 as_warn (_("divide by zero"));
252b5132 10145 if (mips_trap)
df58fc94 10146 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 10147 else
df58fc94 10148 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 10149 break;
252b5132
RH
10150 }
10151
7d10b47d 10152 start_noreorder ();
252b5132
RH
10153 if (mips_trap)
10154 {
c0ebe874
RS
10155 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10156 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
252b5132
RH
10157 }
10158 else
10159 {
df58fc94
RS
10160 if (mips_opts.micromips)
10161 micromips_label_expr (&label_expr);
10162 else
10163 label_expr.X_add_number = 8;
c0ebe874
RS
10164 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10165 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
df58fc94
RS
10166 macro_build (NULL, "break", BRK_FMT, 7);
10167 if (mips_opts.micromips)
10168 micromips_add_label ();
252b5132
RH
10169 }
10170 expr1.X_add_number = -1;
8fc2e39e 10171 used_at = 1;
f6a22291 10172 load_register (AT, &expr1, dbl);
df58fc94
RS
10173 if (mips_opts.micromips)
10174 micromips_label_expr (&label_expr);
10175 else
10176 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
c0ebe874 10177 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
252b5132
RH
10178 if (dbl)
10179 {
10180 expr1.X_add_number = 1;
f6a22291 10181 load_register (AT, &expr1, dbl);
df58fc94 10182 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
252b5132
RH
10183 }
10184 else
10185 {
10186 expr1.X_add_number = 0x80000000;
df58fc94 10187 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
252b5132
RH
10188 }
10189 if (mips_trap)
10190 {
c0ebe874 10191 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
252b5132
RH
10192 /* We want to close the noreorder block as soon as possible, so
10193 that later insns are available for delay slot filling. */
7d10b47d 10194 end_noreorder ();
252b5132
RH
10195 }
10196 else
10197 {
df58fc94
RS
10198 if (mips_opts.micromips)
10199 micromips_label_expr (&label_expr);
10200 else
10201 label_expr.X_add_number = 8;
c0ebe874 10202 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
a605d2b3 10203 macro_build (NULL, "nop", "");
252b5132
RH
10204
10205 /* We want to close the noreorder block as soon as possible, so
10206 that later insns are available for delay slot filling. */
7d10b47d 10207 end_noreorder ();
252b5132 10208
df58fc94 10209 macro_build (NULL, "break", BRK_FMT, 6);
252b5132 10210 }
df58fc94
RS
10211 if (mips_opts.micromips)
10212 micromips_add_label ();
c0ebe874 10213 macro_build (NULL, s, MFHL_FMT, op[0]);
252b5132
RH
10214 break;
10215
10216 case M_DIV_3I:
10217 s = "div";
10218 s2 = "mflo";
10219 goto do_divi;
10220 case M_DIVU_3I:
10221 s = "divu";
10222 s2 = "mflo";
10223 goto do_divi;
10224 case M_REM_3I:
10225 s = "div";
10226 s2 = "mfhi";
10227 goto do_divi;
10228 case M_REMU_3I:
10229 s = "divu";
10230 s2 = "mfhi";
10231 goto do_divi;
10232 case M_DDIV_3I:
10233 dbl = 1;
10234 s = "ddiv";
10235 s2 = "mflo";
10236 goto do_divi;
10237 case M_DDIVU_3I:
10238 dbl = 1;
10239 s = "ddivu";
10240 s2 = "mflo";
10241 goto do_divi;
10242 case M_DREM_3I:
10243 dbl = 1;
10244 s = "ddiv";
10245 s2 = "mfhi";
10246 goto do_divi;
10247 case M_DREMU_3I:
10248 dbl = 1;
10249 s = "ddivu";
10250 s2 = "mfhi";
10251 do_divi:
b0e6f033 10252 if (imm_expr.X_add_number == 0)
252b5132 10253 {
1661c76c 10254 as_warn (_("divide by zero"));
252b5132 10255 if (mips_trap)
df58fc94 10256 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 10257 else
df58fc94 10258 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 10259 break;
252b5132 10260 }
b0e6f033 10261 if (imm_expr.X_add_number == 1)
252b5132
RH
10262 {
10263 if (strcmp (s2, "mflo") == 0)
c0ebe874 10264 move_register (op[0], op[1]);
252b5132 10265 else
c0ebe874 10266 move_register (op[0], ZERO);
8fc2e39e 10267 break;
252b5132 10268 }
b0e6f033 10269 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
252b5132
RH
10270 {
10271 if (strcmp (s2, "mflo") == 0)
c0ebe874 10272 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
252b5132 10273 else
c0ebe874 10274 move_register (op[0], ZERO);
8fc2e39e 10275 break;
252b5132
RH
10276 }
10277
8fc2e39e 10278 used_at = 1;
67c0d1eb 10279 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
10280 macro_build (NULL, s, "z,s,t", op[1], AT);
10281 macro_build (NULL, s2, MFHL_FMT, op[0]);
252b5132
RH
10282 break;
10283
10284 case M_DIVU_3:
10285 s = "divu";
10286 s2 = "mflo";
10287 goto do_divu3;
10288 case M_REMU_3:
10289 s = "divu";
10290 s2 = "mfhi";
10291 goto do_divu3;
10292 case M_DDIVU_3:
10293 s = "ddivu";
10294 s2 = "mflo";
10295 goto do_divu3;
10296 case M_DREMU_3:
10297 s = "ddivu";
10298 s2 = "mfhi";
10299 do_divu3:
7d10b47d 10300 start_noreorder ();
252b5132
RH
10301 if (mips_trap)
10302 {
c0ebe874
RS
10303 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10304 macro_build (NULL, s, "z,s,t", op[1], op[2]);
252b5132
RH
10305 /* We want to close the noreorder block as soon as possible, so
10306 that later insns are available for delay slot filling. */
7d10b47d 10307 end_noreorder ();
252b5132
RH
10308 }
10309 else
10310 {
df58fc94
RS
10311 if (mips_opts.micromips)
10312 micromips_label_expr (&label_expr);
10313 else
10314 label_expr.X_add_number = 8;
c0ebe874
RS
10315 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10316 macro_build (NULL, s, "z,s,t", op[1], op[2]);
252b5132
RH
10317
10318 /* We want to close the noreorder block as soon as possible, so
10319 that later insns are available for delay slot filling. */
7d10b47d 10320 end_noreorder ();
df58fc94
RS
10321 macro_build (NULL, "break", BRK_FMT, 7);
10322 if (mips_opts.micromips)
10323 micromips_add_label ();
252b5132 10324 }
c0ebe874 10325 macro_build (NULL, s2, MFHL_FMT, op[0]);
8fc2e39e 10326 break;
252b5132 10327
1abe91b1
MR
10328 case M_DLCA_AB:
10329 dbl = 1;
10330 case M_LCA_AB:
10331 call = 1;
10332 goto do_la;
252b5132
RH
10333 case M_DLA_AB:
10334 dbl = 1;
10335 case M_LA_AB:
1abe91b1 10336 do_la:
252b5132
RH
10337 /* Load the address of a symbol into a register. If breg is not
10338 zero, we then add a base register to it. */
10339
c0ebe874 10340 breg = op[2];
bad1aba3 10341 if (dbl && GPR_SIZE == 32)
ece794d9
MF
10342 as_warn (_("dla used to load 32-bit register; recommend using la "
10343 "instead"));
3bec30a8 10344
90ecf173 10345 if (!dbl && HAVE_64BIT_OBJECTS)
ece794d9
MF
10346 as_warn (_("la used to load 64-bit address; recommend using dla "
10347 "instead"));
3bec30a8 10348
f2ae14a1 10349 if (small_offset_p (0, align, 16))
0c11417f 10350 {
c0ebe874 10351 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
f2ae14a1 10352 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
8fc2e39e 10353 break;
0c11417f
MR
10354 }
10355
c0ebe874 10356 if (mips_opts.at && (op[0] == breg))
afdbd6d0
CD
10357 {
10358 tempreg = AT;
10359 used_at = 1;
10360 }
10361 else
c0ebe874 10362 tempreg = op[0];
afdbd6d0 10363
252b5132
RH
10364 if (offset_expr.X_op != O_symbol
10365 && offset_expr.X_op != O_constant)
10366 {
1661c76c 10367 as_bad (_("expression too complex"));
252b5132
RH
10368 offset_expr.X_op = O_constant;
10369 }
10370
252b5132 10371 if (offset_expr.X_op == O_constant)
aed1a261 10372 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
252b5132
RH
10373 else if (mips_pic == NO_PIC)
10374 {
d6bc6245 10375 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 10376 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
10377 Otherwise we want
10378 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10379 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10380 If we have a constant, we need two instructions anyhow,
d6bc6245 10381 so we may as well always use the latter form.
76b3015f 10382
6caf9ef4
TS
10383 With 64bit address space and a usable $at we want
10384 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10385 lui $at,<sym> (BFD_RELOC_HI16_S)
10386 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10387 daddiu $at,<sym> (BFD_RELOC_LO16)
10388 dsll32 $tempreg,0
10389 daddu $tempreg,$tempreg,$at
10390
10391 If $at is already in use, we use a path which is suboptimal
10392 on superscalar processors.
10393 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10394 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10395 dsll $tempreg,16
10396 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10397 dsll $tempreg,16
10398 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10399
10400 For GP relative symbols in 64bit address space we can use
10401 the same sequence as in 32bit address space. */
aed1a261 10402 if (HAVE_64BIT_SYMBOLS)
252b5132 10403 {
6caf9ef4
TS
10404 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10405 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10406 {
10407 relax_start (offset_expr.X_add_symbol);
10408 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10409 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10410 relax_switch ();
10411 }
d6bc6245 10412
741fe287 10413 if (used_at == 0 && mips_opts.at)
98d3f06f 10414 {
df58fc94 10415 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10416 tempreg, BFD_RELOC_MIPS_HIGHEST);
df58fc94 10417 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10418 AT, BFD_RELOC_HI16_S);
67c0d1eb 10419 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10420 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
67c0d1eb 10421 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10422 AT, AT, BFD_RELOC_LO16);
df58fc94 10423 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 10424 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
98d3f06f
KH
10425 used_at = 1;
10426 }
10427 else
10428 {
df58fc94 10429 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10430 tempreg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb 10431 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10432 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 10433 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 10434 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10435 tempreg, tempreg, BFD_RELOC_HI16_S);
df58fc94 10436 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 10437 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10438 tempreg, tempreg, BFD_RELOC_LO16);
98d3f06f 10439 }
6caf9ef4
TS
10440
10441 if (mips_relax.sequence)
10442 relax_end ();
98d3f06f
KH
10443 }
10444 else
10445 {
10446 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 10447 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
98d3f06f 10448 {
4d7206a2 10449 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10450 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10451 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 10452 relax_switch ();
98d3f06f 10453 }
6943caf0 10454 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
1661c76c 10455 as_bad (_("offset too large"));
67c0d1eb
RS
10456 macro_build_lui (&offset_expr, tempreg);
10457 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10458 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2
RS
10459 if (mips_relax.sequence)
10460 relax_end ();
98d3f06f 10461 }
252b5132 10462 }
0a44bf69 10463 else if (!mips_big_got && !HAVE_NEWABI)
252b5132 10464 {
9117d219
NC
10465 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10466
252b5132
RH
10467 /* If this is a reference to an external symbol, and there
10468 is no constant, we want
10469 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
1abe91b1 10470 or for lca or if tempreg is PIC_CALL_REG
9117d219 10471 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
252b5132
RH
10472 For a local symbol, we want
10473 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10474 nop
10475 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10476
10477 If we have a small constant, and this is a reference to
10478 an external symbol, we want
10479 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10480 nop
10481 addiu $tempreg,$tempreg,<constant>
10482 For a local symbol, we want the same instruction
10483 sequence, but we output a BFD_RELOC_LO16 reloc on the
10484 addiu instruction.
10485
10486 If we have a large constant, and this is a reference to
10487 an external symbol, we want
10488 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10489 lui $at,<hiconstant>
10490 addiu $at,$at,<loconstant>
10491 addu $tempreg,$tempreg,$at
10492 For a local symbol, we want the same instruction
10493 sequence, but we output a BFD_RELOC_LO16 reloc on the
ed6fb7bd 10494 addiu instruction.
ed6fb7bd
SC
10495 */
10496
4d7206a2 10497 if (offset_expr.X_add_number == 0)
252b5132 10498 {
0a44bf69
RS
10499 if (mips_pic == SVR4_PIC
10500 && breg == 0
10501 && (call || tempreg == PIC_CALL_REG))
4d7206a2
RS
10502 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10503
10504 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10505 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10506 lw_reloc_type, mips_gp_register);
4d7206a2 10507 if (breg != 0)
252b5132
RH
10508 {
10509 /* We're going to put in an addu instruction using
10510 tempreg, so we may as well insert the nop right
10511 now. */
269137b2 10512 load_delay_nop ();
252b5132 10513 }
4d7206a2 10514 relax_switch ();
67c0d1eb
RS
10515 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10516 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 10517 load_delay_nop ();
67c0d1eb
RS
10518 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10519 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2 10520 relax_end ();
252b5132
RH
10521 /* FIXME: If breg == 0, and the next instruction uses
10522 $tempreg, then if this variant case is used an extra
10523 nop will be generated. */
10524 }
4d7206a2
RS
10525 else if (offset_expr.X_add_number >= -0x8000
10526 && offset_expr.X_add_number < 0x8000)
252b5132 10527 {
67c0d1eb 10528 load_got_offset (tempreg, &offset_expr);
269137b2 10529 load_delay_nop ();
67c0d1eb 10530 add_got_offset (tempreg, &offset_expr);
252b5132
RH
10531 }
10532 else
10533 {
4d7206a2
RS
10534 expr1.X_add_number = offset_expr.X_add_number;
10535 offset_expr.X_add_number =
43c0598f 10536 SEXT_16BIT (offset_expr.X_add_number);
67c0d1eb 10537 load_got_offset (tempreg, &offset_expr);
f6a22291 10538 offset_expr.X_add_number = expr1.X_add_number;
252b5132
RH
10539 /* If we are going to add in a base register, and the
10540 target register and the base register are the same,
10541 then we are using AT as a temporary register. Since
10542 we want to load the constant into AT, we add our
10543 current AT (from the global offset table) and the
10544 register into the register now, and pretend we were
10545 not using a base register. */
c0ebe874 10546 if (breg == op[0])
252b5132 10547 {
269137b2 10548 load_delay_nop ();
67c0d1eb 10549 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10550 op[0], AT, breg);
252b5132 10551 breg = 0;
c0ebe874 10552 tempreg = op[0];
252b5132 10553 }
f6a22291 10554 add_got_offset_hilo (tempreg, &offset_expr, AT);
252b5132
RH
10555 used_at = 1;
10556 }
10557 }
0a44bf69 10558 else if (!mips_big_got && HAVE_NEWABI)
f5040a92 10559 {
67c0d1eb 10560 int add_breg_early = 0;
f5040a92
AO
10561
10562 /* If this is a reference to an external, and there is no
10563 constant, or local symbol (*), with or without a
10564 constant, we want
10565 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
1abe91b1 10566 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
10567 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10568
10569 If we have a small constant, and this is a reference to
10570 an external symbol, we want
10571 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10572 addiu $tempreg,$tempreg,<constant>
10573
10574 If we have a large constant, and this is a reference to
10575 an external symbol, we want
10576 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10577 lui $at,<hiconstant>
10578 addiu $at,$at,<loconstant>
10579 addu $tempreg,$tempreg,$at
10580
10581 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10582 local symbols, even though it introduces an additional
10583 instruction. */
10584
f5040a92
AO
10585 if (offset_expr.X_add_number)
10586 {
4d7206a2 10587 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
10588 offset_expr.X_add_number = 0;
10589
4d7206a2 10590 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10591 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10592 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
10593
10594 if (expr1.X_add_number >= -0x8000
10595 && expr1.X_add_number < 0x8000)
10596 {
67c0d1eb
RS
10597 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10598 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 10599 }
ecd13cd3 10600 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 10601 {
c0ebe874
RS
10602 unsigned int dreg;
10603
f5040a92
AO
10604 /* If we are going to add in a base register, and the
10605 target register and the base register are the same,
10606 then we are using AT as a temporary register. Since
10607 we want to load the constant into AT, we add our
10608 current AT (from the global offset table) and the
10609 register into the register now, and pretend we were
10610 not using a base register. */
c0ebe874 10611 if (breg != op[0])
f5040a92
AO
10612 dreg = tempreg;
10613 else
10614 {
9c2799c2 10615 gas_assert (tempreg == AT);
67c0d1eb 10616 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10617 op[0], AT, breg);
10618 dreg = op[0];
67c0d1eb 10619 add_breg_early = 1;
f5040a92
AO
10620 }
10621
f6a22291 10622 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10623 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10624 dreg, dreg, AT);
f5040a92 10625
f5040a92
AO
10626 used_at = 1;
10627 }
10628 else
10629 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10630
4d7206a2 10631 relax_switch ();
f5040a92
AO
10632 offset_expr.X_add_number = expr1.X_add_number;
10633
67c0d1eb
RS
10634 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10635 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10636 if (add_breg_early)
f5040a92 10637 {
67c0d1eb 10638 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10639 op[0], tempreg, breg);
f5040a92 10640 breg = 0;
c0ebe874 10641 tempreg = op[0];
f5040a92 10642 }
4d7206a2 10643 relax_end ();
f5040a92 10644 }
4d7206a2 10645 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
f5040a92 10646 {
4d7206a2 10647 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10648 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10649 BFD_RELOC_MIPS_CALL16, mips_gp_register);
4d7206a2 10650 relax_switch ();
67c0d1eb
RS
10651 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10652 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2 10653 relax_end ();
f5040a92 10654 }
4d7206a2 10655 else
f5040a92 10656 {
67c0d1eb
RS
10657 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10658 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
10659 }
10660 }
0a44bf69 10661 else if (mips_big_got && !HAVE_NEWABI)
252b5132 10662 {
67c0d1eb 10663 int gpdelay;
9117d219
NC
10664 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10665 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
ed6fb7bd 10666 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
252b5132
RH
10667
10668 /* This is the large GOT case. If this is a reference to an
10669 external symbol, and there is no constant, we want
10670 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10671 addu $tempreg,$tempreg,$gp
10672 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 10673 or for lca or if tempreg is PIC_CALL_REG
9117d219
NC
10674 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10675 addu $tempreg,$tempreg,$gp
10676 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
252b5132
RH
10677 For a local symbol, we want
10678 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10679 nop
10680 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10681
10682 If we have a small constant, and this is a reference to
10683 an external symbol, we want
10684 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10685 addu $tempreg,$tempreg,$gp
10686 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10687 nop
10688 addiu $tempreg,$tempreg,<constant>
10689 For a local symbol, we want
10690 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10691 nop
10692 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10693
10694 If we have a large constant, and this is a reference to
10695 an external symbol, we want
10696 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10697 addu $tempreg,$tempreg,$gp
10698 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10699 lui $at,<hiconstant>
10700 addiu $at,$at,<loconstant>
10701 addu $tempreg,$tempreg,$at
10702 For a local symbol, we want
10703 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10704 lui $at,<hiconstant>
10705 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10706 addu $tempreg,$tempreg,$at
f5040a92 10707 */
438c16b8 10708
252b5132
RH
10709 expr1.X_add_number = offset_expr.X_add_number;
10710 offset_expr.X_add_number = 0;
4d7206a2 10711 relax_start (offset_expr.X_add_symbol);
67c0d1eb 10712 gpdelay = reg_needs_delay (mips_gp_register);
1abe91b1
MR
10713 if (expr1.X_add_number == 0 && breg == 0
10714 && (call || tempreg == PIC_CALL_REG))
9117d219
NC
10715 {
10716 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10717 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10718 }
df58fc94 10719 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 10720 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10721 tempreg, tempreg, mips_gp_register);
67c0d1eb 10722 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 10723 tempreg, lw_reloc_type, tempreg);
252b5132
RH
10724 if (expr1.X_add_number == 0)
10725 {
67c0d1eb 10726 if (breg != 0)
252b5132
RH
10727 {
10728 /* We're going to put in an addu instruction using
10729 tempreg, so we may as well insert the nop right
10730 now. */
269137b2 10731 load_delay_nop ();
252b5132 10732 }
252b5132
RH
10733 }
10734 else if (expr1.X_add_number >= -0x8000
10735 && expr1.X_add_number < 0x8000)
10736 {
269137b2 10737 load_delay_nop ();
67c0d1eb 10738 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 10739 tempreg, tempreg, BFD_RELOC_LO16);
252b5132
RH
10740 }
10741 else
10742 {
c0ebe874
RS
10743 unsigned int dreg;
10744
252b5132
RH
10745 /* If we are going to add in a base register, and the
10746 target register and the base register are the same,
10747 then we are using AT as a temporary register. Since
10748 we want to load the constant into AT, we add our
10749 current AT (from the global offset table) and the
10750 register into the register now, and pretend we were
10751 not using a base register. */
c0ebe874 10752 if (breg != op[0])
67c0d1eb 10753 dreg = tempreg;
252b5132
RH
10754 else
10755 {
9c2799c2 10756 gas_assert (tempreg == AT);
269137b2 10757 load_delay_nop ();
67c0d1eb 10758 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10759 op[0], AT, breg);
10760 dreg = op[0];
252b5132
RH
10761 }
10762
f6a22291 10763 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10764 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
252b5132 10765
252b5132
RH
10766 used_at = 1;
10767 }
43c0598f 10768 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
4d7206a2 10769 relax_switch ();
252b5132 10770
67c0d1eb 10771 if (gpdelay)
252b5132
RH
10772 {
10773 /* This is needed because this instruction uses $gp, but
f5040a92 10774 the first instruction on the main stream does not. */
67c0d1eb 10775 macro_build (NULL, "nop", "");
252b5132 10776 }
ed6fb7bd 10777
67c0d1eb
RS
10778 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10779 local_reloc_type, mips_gp_register);
f5040a92 10780 if (expr1.X_add_number >= -0x8000
252b5132
RH
10781 && expr1.X_add_number < 0x8000)
10782 {
269137b2 10783 load_delay_nop ();
67c0d1eb
RS
10784 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10785 tempreg, tempreg, BFD_RELOC_LO16);
252b5132 10786 /* FIXME: If add_number is 0, and there was no base
f5040a92
AO
10787 register, the external symbol case ended with a load,
10788 so if the symbol turns out to not be external, and
10789 the next instruction uses tempreg, an unnecessary nop
10790 will be inserted. */
252b5132
RH
10791 }
10792 else
10793 {
c0ebe874 10794 if (breg == op[0])
252b5132
RH
10795 {
10796 /* We must add in the base register now, as in the
f5040a92 10797 external symbol case. */
9c2799c2 10798 gas_assert (tempreg == AT);
269137b2 10799 load_delay_nop ();
67c0d1eb 10800 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10801 op[0], AT, breg);
10802 tempreg = op[0];
252b5132 10803 /* We set breg to 0 because we have arranged to add
f5040a92 10804 it in in both cases. */
252b5132
RH
10805 breg = 0;
10806 }
10807
67c0d1eb
RS
10808 macro_build_lui (&expr1, AT);
10809 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 10810 AT, AT, BFD_RELOC_LO16);
67c0d1eb 10811 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10812 tempreg, tempreg, AT);
8fc2e39e 10813 used_at = 1;
252b5132 10814 }
4d7206a2 10815 relax_end ();
252b5132 10816 }
0a44bf69 10817 else if (mips_big_got && HAVE_NEWABI)
f5040a92 10818 {
f5040a92
AO
10819 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10820 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
67c0d1eb 10821 int add_breg_early = 0;
f5040a92
AO
10822
10823 /* This is the large GOT case. If this is a reference to an
10824 external symbol, and there is no constant, we want
10825 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10826 add $tempreg,$tempreg,$gp
10827 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 10828 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
10829 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10830 add $tempreg,$tempreg,$gp
10831 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10832
10833 If we have a small constant, and this is a reference to
10834 an external symbol, we want
10835 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10836 add $tempreg,$tempreg,$gp
10837 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10838 addi $tempreg,$tempreg,<constant>
10839
10840 If we have a large constant, and this is a reference to
10841 an external symbol, we want
10842 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10843 addu $tempreg,$tempreg,$gp
10844 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10845 lui $at,<hiconstant>
10846 addi $at,$at,<loconstant>
10847 add $tempreg,$tempreg,$at
10848
10849 If we have NewABI, and we know it's a local symbol, we want
10850 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10851 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
10852 otherwise we have to resort to GOT_HI16/GOT_LO16. */
10853
4d7206a2 10854 relax_start (offset_expr.X_add_symbol);
f5040a92 10855
4d7206a2 10856 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
10857 offset_expr.X_add_number = 0;
10858
1abe91b1
MR
10859 if (expr1.X_add_number == 0 && breg == 0
10860 && (call || tempreg == PIC_CALL_REG))
f5040a92
AO
10861 {
10862 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10863 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10864 }
df58fc94 10865 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 10866 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10867 tempreg, tempreg, mips_gp_register);
67c0d1eb
RS
10868 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10869 tempreg, lw_reloc_type, tempreg);
f5040a92
AO
10870
10871 if (expr1.X_add_number == 0)
4d7206a2 10872 ;
f5040a92
AO
10873 else if (expr1.X_add_number >= -0x8000
10874 && expr1.X_add_number < 0x8000)
10875 {
67c0d1eb 10876 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 10877 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 10878 }
ecd13cd3 10879 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 10880 {
c0ebe874
RS
10881 unsigned int dreg;
10882
f5040a92
AO
10883 /* If we are going to add in a base register, and the
10884 target register and the base register are the same,
10885 then we are using AT as a temporary register. Since
10886 we want to load the constant into AT, we add our
10887 current AT (from the global offset table) and the
10888 register into the register now, and pretend we were
10889 not using a base register. */
c0ebe874 10890 if (breg != op[0])
f5040a92
AO
10891 dreg = tempreg;
10892 else
10893 {
9c2799c2 10894 gas_assert (tempreg == AT);
67c0d1eb 10895 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10896 op[0], AT, breg);
10897 dreg = op[0];
67c0d1eb 10898 add_breg_early = 1;
f5040a92
AO
10899 }
10900
f6a22291 10901 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10902 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
f5040a92 10903
f5040a92
AO
10904 used_at = 1;
10905 }
10906 else
10907 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10908
4d7206a2 10909 relax_switch ();
f5040a92 10910 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
10911 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10912 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
10913 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
10914 tempreg, BFD_RELOC_MIPS_GOT_OFST);
10915 if (add_breg_early)
f5040a92 10916 {
67c0d1eb 10917 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10918 op[0], tempreg, breg);
f5040a92 10919 breg = 0;
c0ebe874 10920 tempreg = op[0];
f5040a92 10921 }
4d7206a2 10922 relax_end ();
f5040a92 10923 }
252b5132
RH
10924 else
10925 abort ();
10926
10927 if (breg != 0)
c0ebe874 10928 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
252b5132
RH
10929 break;
10930
52b6b6b9 10931 case M_MSGSND:
df58fc94 10932 gas_assert (!mips_opts.micromips);
c0ebe874 10933 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
c7af4273 10934 break;
52b6b6b9
JM
10935
10936 case M_MSGLD:
df58fc94 10937 gas_assert (!mips_opts.micromips);
c8276761 10938 macro_build (NULL, "c2", "C", 0x02);
c7af4273 10939 break;
52b6b6b9
JM
10940
10941 case M_MSGLD_T:
df58fc94 10942 gas_assert (!mips_opts.micromips);
c0ebe874 10943 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
c7af4273 10944 break;
52b6b6b9
JM
10945
10946 case M_MSGWAIT:
df58fc94 10947 gas_assert (!mips_opts.micromips);
52b6b6b9 10948 macro_build (NULL, "c2", "C", 3);
c7af4273 10949 break;
52b6b6b9
JM
10950
10951 case M_MSGWAIT_T:
df58fc94 10952 gas_assert (!mips_opts.micromips);
c0ebe874 10953 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
c7af4273 10954 break;
52b6b6b9 10955
252b5132
RH
10956 case M_J_A:
10957 /* The j instruction may not be used in PIC code, since it
10958 requires an absolute address. We convert it to a b
10959 instruction. */
10960 if (mips_pic == NO_PIC)
67c0d1eb 10961 macro_build (&offset_expr, "j", "a");
252b5132 10962 else
67c0d1eb 10963 macro_build (&offset_expr, "b", "p");
8fc2e39e 10964 break;
252b5132
RH
10965
10966 /* The jal instructions must be handled as macros because when
10967 generating PIC code they expand to multi-instruction
10968 sequences. Normally they are simple instructions. */
df58fc94 10969 case M_JALS_1:
c0ebe874
RS
10970 op[1] = op[0];
10971 op[0] = RA;
df58fc94
RS
10972 /* Fall through. */
10973 case M_JALS_2:
10974 gas_assert (mips_opts.micromips);
833794fc
MR
10975 if (mips_opts.insn32)
10976 {
1661c76c 10977 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
833794fc
MR
10978 break;
10979 }
df58fc94
RS
10980 jals = 1;
10981 goto jal;
252b5132 10982 case M_JAL_1:
c0ebe874
RS
10983 op[1] = op[0];
10984 op[0] = RA;
252b5132
RH
10985 /* Fall through. */
10986 case M_JAL_2:
df58fc94 10987 jal:
3e722fb5 10988 if (mips_pic == NO_PIC)
df58fc94
RS
10989 {
10990 s = jals ? "jalrs" : "jalr";
e64af278 10991 if (mips_opts.micromips
833794fc 10992 && !mips_opts.insn32
c0ebe874 10993 && op[0] == RA
e64af278 10994 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
c0ebe874 10995 macro_build (NULL, s, "mj", op[1]);
df58fc94 10996 else
c0ebe874 10997 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
df58fc94 10998 }
0a44bf69 10999 else
252b5132 11000 {
df58fc94
RS
11001 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11002 && mips_cprestore_offset >= 0);
11003
c0ebe874 11004 if (op[1] != PIC_CALL_REG)
252b5132 11005 as_warn (_("MIPS PIC call to register other than $25"));
bdaaa2e1 11006
833794fc
MR
11007 s = ((mips_opts.micromips
11008 && !mips_opts.insn32
11009 && (!mips_opts.noreorder || cprestore))
df58fc94 11010 ? "jalrs" : "jalr");
e64af278 11011 if (mips_opts.micromips
833794fc 11012 && !mips_opts.insn32
c0ebe874 11013 && op[0] == RA
e64af278 11014 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
c0ebe874 11015 macro_build (NULL, s, "mj", op[1]);
df58fc94 11016 else
c0ebe874 11017 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
0a44bf69 11018 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
252b5132 11019 {
6478892d 11020 if (mips_cprestore_offset < 0)
1661c76c 11021 as_warn (_("no .cprestore pseudo-op used in PIC code"));
6478892d
TS
11022 else
11023 {
90ecf173 11024 if (!mips_frame_reg_valid)
7a621144 11025 {
1661c76c 11026 as_warn (_("no .frame pseudo-op used in PIC code"));
7a621144
DJ
11027 /* Quiet this warning. */
11028 mips_frame_reg_valid = 1;
11029 }
90ecf173 11030 if (!mips_cprestore_valid)
7a621144 11031 {
1661c76c 11032 as_warn (_("no .cprestore pseudo-op used in PIC code"));
7a621144
DJ
11033 /* Quiet this warning. */
11034 mips_cprestore_valid = 1;
11035 }
d3fca0b5
MR
11036 if (mips_opts.noreorder)
11037 macro_build (NULL, "nop", "");
6478892d 11038 expr1.X_add_number = mips_cprestore_offset;
67c0d1eb 11039 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 11040 mips_gp_register,
256ab948
TS
11041 mips_frame_reg,
11042 HAVE_64BIT_ADDRESSES);
6478892d 11043 }
252b5132
RH
11044 }
11045 }
252b5132 11046
8fc2e39e 11047 break;
252b5132 11048
df58fc94
RS
11049 case M_JALS_A:
11050 gas_assert (mips_opts.micromips);
833794fc
MR
11051 if (mips_opts.insn32)
11052 {
1661c76c 11053 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
833794fc
MR
11054 break;
11055 }
df58fc94
RS
11056 jals = 1;
11057 /* Fall through. */
252b5132
RH
11058 case M_JAL_A:
11059 if (mips_pic == NO_PIC)
df58fc94 11060 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
252b5132
RH
11061 else if (mips_pic == SVR4_PIC)
11062 {
11063 /* If this is a reference to an external symbol, and we are
11064 using a small GOT, we want
11065 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11066 nop
f9419b05 11067 jalr $ra,$25
252b5132
RH
11068 nop
11069 lw $gp,cprestore($sp)
11070 The cprestore value is set using the .cprestore
11071 pseudo-op. If we are using a big GOT, we want
11072 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11073 addu $25,$25,$gp
11074 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11075 nop
f9419b05 11076 jalr $ra,$25
252b5132
RH
11077 nop
11078 lw $gp,cprestore($sp)
11079 If the symbol is not external, we want
11080 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11081 nop
11082 addiu $25,$25,<sym> (BFD_RELOC_LO16)
f9419b05 11083 jalr $ra,$25
252b5132 11084 nop
438c16b8 11085 lw $gp,cprestore($sp)
f5040a92
AO
11086
11087 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11088 sequences above, minus nops, unless the symbol is local,
11089 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11090 GOT_DISP. */
438c16b8 11091 if (HAVE_NEWABI)
252b5132 11092 {
90ecf173 11093 if (!mips_big_got)
f5040a92 11094 {
4d7206a2 11095 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
11096 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11097 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
f5040a92 11098 mips_gp_register);
4d7206a2 11099 relax_switch ();
67c0d1eb
RS
11100 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11101 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
4d7206a2
RS
11102 mips_gp_register);
11103 relax_end ();
f5040a92
AO
11104 }
11105 else
11106 {
4d7206a2 11107 relax_start (offset_expr.X_add_symbol);
df58fc94 11108 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
11109 BFD_RELOC_MIPS_CALL_HI16);
11110 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11111 PIC_CALL_REG, mips_gp_register);
11112 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11113 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11114 PIC_CALL_REG);
4d7206a2 11115 relax_switch ();
67c0d1eb
RS
11116 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11117 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11118 mips_gp_register);
11119 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11120 PIC_CALL_REG, PIC_CALL_REG,
17a2f251 11121 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 11122 relax_end ();
f5040a92 11123 }
684022ea 11124
df58fc94 11125 macro_build_jalr (&offset_expr, 0);
252b5132
RH
11126 }
11127 else
11128 {
4d7206a2 11129 relax_start (offset_expr.X_add_symbol);
90ecf173 11130 if (!mips_big_got)
438c16b8 11131 {
67c0d1eb
RS
11132 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11133 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
17a2f251 11134 mips_gp_register);
269137b2 11135 load_delay_nop ();
4d7206a2 11136 relax_switch ();
438c16b8 11137 }
252b5132 11138 else
252b5132 11139 {
67c0d1eb
RS
11140 int gpdelay;
11141
11142 gpdelay = reg_needs_delay (mips_gp_register);
df58fc94 11143 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
11144 BFD_RELOC_MIPS_CALL_HI16);
11145 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11146 PIC_CALL_REG, mips_gp_register);
11147 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11148 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11149 PIC_CALL_REG);
269137b2 11150 load_delay_nop ();
4d7206a2 11151 relax_switch ();
67c0d1eb
RS
11152 if (gpdelay)
11153 macro_build (NULL, "nop", "");
252b5132 11154 }
67c0d1eb
RS
11155 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11156 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
4d7206a2 11157 mips_gp_register);
269137b2 11158 load_delay_nop ();
67c0d1eb
RS
11159 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11160 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
4d7206a2 11161 relax_end ();
df58fc94 11162 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
438c16b8 11163
6478892d 11164 if (mips_cprestore_offset < 0)
1661c76c 11165 as_warn (_("no .cprestore pseudo-op used in PIC code"));
6478892d
TS
11166 else
11167 {
90ecf173 11168 if (!mips_frame_reg_valid)
7a621144 11169 {
1661c76c 11170 as_warn (_("no .frame pseudo-op used in PIC code"));
7a621144
DJ
11171 /* Quiet this warning. */
11172 mips_frame_reg_valid = 1;
11173 }
90ecf173 11174 if (!mips_cprestore_valid)
7a621144 11175 {
1661c76c 11176 as_warn (_("no .cprestore pseudo-op used in PIC code"));
7a621144
DJ
11177 /* Quiet this warning. */
11178 mips_cprestore_valid = 1;
11179 }
6478892d 11180 if (mips_opts.noreorder)
67c0d1eb 11181 macro_build (NULL, "nop", "");
6478892d 11182 expr1.X_add_number = mips_cprestore_offset;
67c0d1eb 11183 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 11184 mips_gp_register,
256ab948
TS
11185 mips_frame_reg,
11186 HAVE_64BIT_ADDRESSES);
6478892d 11187 }
252b5132
RH
11188 }
11189 }
0a44bf69 11190 else if (mips_pic == VXWORKS_PIC)
1661c76c 11191 as_bad (_("non-PIC jump used in PIC library"));
252b5132
RH
11192 else
11193 abort ();
11194
8fc2e39e 11195 break;
252b5132 11196
7f3c4072 11197 case M_LBUE_AB:
7f3c4072
CM
11198 s = "lbue";
11199 fmt = "t,+j(b)";
11200 offbits = 9;
11201 goto ld_st;
11202 case M_LHUE_AB:
7f3c4072
CM
11203 s = "lhue";
11204 fmt = "t,+j(b)";
11205 offbits = 9;
11206 goto ld_st;
11207 case M_LBE_AB:
7f3c4072
CM
11208 s = "lbe";
11209 fmt = "t,+j(b)";
11210 offbits = 9;
11211 goto ld_st;
11212 case M_LHE_AB:
7f3c4072
CM
11213 s = "lhe";
11214 fmt = "t,+j(b)";
11215 offbits = 9;
11216 goto ld_st;
11217 case M_LLE_AB:
7f3c4072
CM
11218 s = "lle";
11219 fmt = "t,+j(b)";
11220 offbits = 9;
11221 goto ld_st;
11222 case M_LWE_AB:
7f3c4072
CM
11223 s = "lwe";
11224 fmt = "t,+j(b)";
11225 offbits = 9;
11226 goto ld_st;
11227 case M_LWLE_AB:
7f3c4072
CM
11228 s = "lwle";
11229 fmt = "t,+j(b)";
11230 offbits = 9;
11231 goto ld_st;
11232 case M_LWRE_AB:
7f3c4072
CM
11233 s = "lwre";
11234 fmt = "t,+j(b)";
11235 offbits = 9;
11236 goto ld_st;
11237 case M_SBE_AB:
7f3c4072
CM
11238 s = "sbe";
11239 fmt = "t,+j(b)";
11240 offbits = 9;
11241 goto ld_st;
11242 case M_SCE_AB:
7f3c4072
CM
11243 s = "sce";
11244 fmt = "t,+j(b)";
11245 offbits = 9;
11246 goto ld_st;
11247 case M_SHE_AB:
7f3c4072
CM
11248 s = "she";
11249 fmt = "t,+j(b)";
11250 offbits = 9;
11251 goto ld_st;
11252 case M_SWE_AB:
7f3c4072
CM
11253 s = "swe";
11254 fmt = "t,+j(b)";
11255 offbits = 9;
11256 goto ld_st;
11257 case M_SWLE_AB:
7f3c4072
CM
11258 s = "swle";
11259 fmt = "t,+j(b)";
11260 offbits = 9;
11261 goto ld_st;
11262 case M_SWRE_AB:
7f3c4072
CM
11263 s = "swre";
11264 fmt = "t,+j(b)";
11265 offbits = 9;
11266 goto ld_st;
dec0624d 11267 case M_ACLR_AB:
dec0624d 11268 s = "aclr";
dec0624d 11269 fmt = "\\,~(b)";
7f3c4072 11270 offbits = 12;
dec0624d
MR
11271 goto ld_st;
11272 case M_ASET_AB:
dec0624d 11273 s = "aset";
dec0624d 11274 fmt = "\\,~(b)";
7f3c4072 11275 offbits = 12;
dec0624d 11276 goto ld_st;
252b5132
RH
11277 case M_LB_AB:
11278 s = "lb";
df58fc94 11279 fmt = "t,o(b)";
252b5132
RH
11280 goto ld;
11281 case M_LBU_AB:
11282 s = "lbu";
df58fc94 11283 fmt = "t,o(b)";
252b5132
RH
11284 goto ld;
11285 case M_LH_AB:
11286 s = "lh";
df58fc94 11287 fmt = "t,o(b)";
252b5132
RH
11288 goto ld;
11289 case M_LHU_AB:
11290 s = "lhu";
df58fc94 11291 fmt = "t,o(b)";
252b5132
RH
11292 goto ld;
11293 case M_LW_AB:
11294 s = "lw";
df58fc94 11295 fmt = "t,o(b)";
252b5132
RH
11296 goto ld;
11297 case M_LWC0_AB:
df58fc94 11298 gas_assert (!mips_opts.micromips);
252b5132 11299 s = "lwc0";
df58fc94 11300 fmt = "E,o(b)";
bdaaa2e1 11301 /* Itbl support may require additional care here. */
252b5132 11302 coproc = 1;
df58fc94 11303 goto ld_st;
252b5132
RH
11304 case M_LWC1_AB:
11305 s = "lwc1";
df58fc94 11306 fmt = "T,o(b)";
bdaaa2e1 11307 /* Itbl support may require additional care here. */
252b5132 11308 coproc = 1;
df58fc94 11309 goto ld_st;
252b5132
RH
11310 case M_LWC2_AB:
11311 s = "lwc2";
df58fc94 11312 fmt = COP12_FMT;
7361da2c
AB
11313 offbits = (mips_opts.micromips ? 12
11314 : ISA_IS_R6 (mips_opts.isa) ? 11
11315 : 16);
bdaaa2e1 11316 /* Itbl support may require additional care here. */
252b5132 11317 coproc = 1;
df58fc94 11318 goto ld_st;
252b5132 11319 case M_LWC3_AB:
df58fc94 11320 gas_assert (!mips_opts.micromips);
252b5132 11321 s = "lwc3";
df58fc94 11322 fmt = "E,o(b)";
bdaaa2e1 11323 /* Itbl support may require additional care here. */
252b5132 11324 coproc = 1;
df58fc94 11325 goto ld_st;
252b5132
RH
11326 case M_LWL_AB:
11327 s = "lwl";
df58fc94 11328 fmt = MEM12_FMT;
7f3c4072 11329 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11330 goto ld_st;
252b5132
RH
11331 case M_LWR_AB:
11332 s = "lwr";
df58fc94 11333 fmt = MEM12_FMT;
7f3c4072 11334 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11335 goto ld_st;
252b5132 11336 case M_LDC1_AB:
252b5132 11337 s = "ldc1";
df58fc94 11338 fmt = "T,o(b)";
bdaaa2e1 11339 /* Itbl support may require additional care here. */
252b5132 11340 coproc = 1;
df58fc94 11341 goto ld_st;
252b5132
RH
11342 case M_LDC2_AB:
11343 s = "ldc2";
df58fc94 11344 fmt = COP12_FMT;
7361da2c
AB
11345 offbits = (mips_opts.micromips ? 12
11346 : ISA_IS_R6 (mips_opts.isa) ? 11
11347 : 16);
bdaaa2e1 11348 /* Itbl support may require additional care here. */
252b5132 11349 coproc = 1;
df58fc94 11350 goto ld_st;
c77c0862 11351 case M_LQC2_AB:
c77c0862 11352 s = "lqc2";
14daeee3 11353 fmt = "+7,o(b)";
c77c0862
RS
11354 /* Itbl support may require additional care here. */
11355 coproc = 1;
11356 goto ld_st;
252b5132
RH
11357 case M_LDC3_AB:
11358 s = "ldc3";
df58fc94 11359 fmt = "E,o(b)";
bdaaa2e1 11360 /* Itbl support may require additional care here. */
252b5132 11361 coproc = 1;
df58fc94 11362 goto ld_st;
252b5132
RH
11363 case M_LDL_AB:
11364 s = "ldl";
df58fc94 11365 fmt = MEM12_FMT;
7f3c4072 11366 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11367 goto ld_st;
252b5132
RH
11368 case M_LDR_AB:
11369 s = "ldr";
df58fc94 11370 fmt = MEM12_FMT;
7f3c4072 11371 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11372 goto ld_st;
252b5132
RH
11373 case M_LL_AB:
11374 s = "ll";
7361da2c
AB
11375 fmt = LL_SC_FMT;
11376 offbits = (mips_opts.micromips ? 12
11377 : ISA_IS_R6 (mips_opts.isa) ? 9
11378 : 16);
252b5132
RH
11379 goto ld;
11380 case M_LLD_AB:
11381 s = "lld";
7361da2c
AB
11382 fmt = LL_SC_FMT;
11383 offbits = (mips_opts.micromips ? 12
11384 : ISA_IS_R6 (mips_opts.isa) ? 9
11385 : 16);
252b5132
RH
11386 goto ld;
11387 case M_LWU_AB:
11388 s = "lwu";
df58fc94 11389 fmt = MEM12_FMT;
7f3c4072 11390 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
11391 goto ld;
11392 case M_LWP_AB:
df58fc94
RS
11393 gas_assert (mips_opts.micromips);
11394 s = "lwp";
11395 fmt = "t,~(b)";
7f3c4072 11396 offbits = 12;
df58fc94
RS
11397 lp = 1;
11398 goto ld;
11399 case M_LDP_AB:
df58fc94
RS
11400 gas_assert (mips_opts.micromips);
11401 s = "ldp";
11402 fmt = "t,~(b)";
7f3c4072 11403 offbits = 12;
df58fc94
RS
11404 lp = 1;
11405 goto ld;
11406 case M_LWM_AB:
df58fc94
RS
11407 gas_assert (mips_opts.micromips);
11408 s = "lwm";
11409 fmt = "n,~(b)";
7f3c4072 11410 offbits = 12;
df58fc94
RS
11411 goto ld_st;
11412 case M_LDM_AB:
df58fc94
RS
11413 gas_assert (mips_opts.micromips);
11414 s = "ldm";
11415 fmt = "n,~(b)";
7f3c4072 11416 offbits = 12;
df58fc94
RS
11417 goto ld_st;
11418
252b5132 11419 ld:
f19ccbda 11420 /* We don't want to use $0 as tempreg. */
c0ebe874 11421 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
df58fc94 11422 goto ld_st;
252b5132 11423 else
c0ebe874 11424 tempreg = op[0] + lp;
df58fc94
RS
11425 goto ld_noat;
11426
252b5132
RH
11427 case M_SB_AB:
11428 s = "sb";
df58fc94
RS
11429 fmt = "t,o(b)";
11430 goto ld_st;
252b5132
RH
11431 case M_SH_AB:
11432 s = "sh";
df58fc94
RS
11433 fmt = "t,o(b)";
11434 goto ld_st;
252b5132
RH
11435 case M_SW_AB:
11436 s = "sw";
df58fc94
RS
11437 fmt = "t,o(b)";
11438 goto ld_st;
252b5132 11439 case M_SWC0_AB:
df58fc94 11440 gas_assert (!mips_opts.micromips);
252b5132 11441 s = "swc0";
df58fc94 11442 fmt = "E,o(b)";
bdaaa2e1 11443 /* Itbl support may require additional care here. */
252b5132 11444 coproc = 1;
df58fc94 11445 goto ld_st;
252b5132
RH
11446 case M_SWC1_AB:
11447 s = "swc1";
df58fc94 11448 fmt = "T,o(b)";
bdaaa2e1 11449 /* Itbl support may require additional care here. */
252b5132 11450 coproc = 1;
df58fc94 11451 goto ld_st;
252b5132
RH
11452 case M_SWC2_AB:
11453 s = "swc2";
df58fc94 11454 fmt = COP12_FMT;
7361da2c
AB
11455 offbits = (mips_opts.micromips ? 12
11456 : ISA_IS_R6 (mips_opts.isa) ? 11
11457 : 16);
bdaaa2e1 11458 /* Itbl support may require additional care here. */
252b5132 11459 coproc = 1;
df58fc94 11460 goto ld_st;
252b5132 11461 case M_SWC3_AB:
df58fc94 11462 gas_assert (!mips_opts.micromips);
252b5132 11463 s = "swc3";
df58fc94 11464 fmt = "E,o(b)";
bdaaa2e1 11465 /* Itbl support may require additional care here. */
252b5132 11466 coproc = 1;
df58fc94 11467 goto ld_st;
252b5132
RH
11468 case M_SWL_AB:
11469 s = "swl";
df58fc94 11470 fmt = MEM12_FMT;
7f3c4072 11471 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11472 goto ld_st;
252b5132
RH
11473 case M_SWR_AB:
11474 s = "swr";
df58fc94 11475 fmt = MEM12_FMT;
7f3c4072 11476 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11477 goto ld_st;
252b5132
RH
11478 case M_SC_AB:
11479 s = "sc";
7361da2c
AB
11480 fmt = LL_SC_FMT;
11481 offbits = (mips_opts.micromips ? 12
11482 : ISA_IS_R6 (mips_opts.isa) ? 9
11483 : 16);
df58fc94 11484 goto ld_st;
252b5132
RH
11485 case M_SCD_AB:
11486 s = "scd";
7361da2c
AB
11487 fmt = LL_SC_FMT;
11488 offbits = (mips_opts.micromips ? 12
11489 : ISA_IS_R6 (mips_opts.isa) ? 9
11490 : 16);
df58fc94 11491 goto ld_st;
d43b4baf
TS
11492 case M_CACHE_AB:
11493 s = "cache";
7361da2c
AB
11494 fmt = (mips_opts.micromips ? "k,~(b)"
11495 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11496 : "k,o(b)");
11497 offbits = (mips_opts.micromips ? 12
11498 : ISA_IS_R6 (mips_opts.isa) ? 9
11499 : 16);
7f3c4072
CM
11500 goto ld_st;
11501 case M_CACHEE_AB:
7f3c4072
CM
11502 s = "cachee";
11503 fmt = "k,+j(b)";
11504 offbits = 9;
df58fc94 11505 goto ld_st;
3eebd5eb
MR
11506 case M_PREF_AB:
11507 s = "pref";
7361da2c
AB
11508 fmt = (mips_opts.micromips ? "k,~(b)"
11509 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11510 : "k,o(b)");
11511 offbits = (mips_opts.micromips ? 12
11512 : ISA_IS_R6 (mips_opts.isa) ? 9
11513 : 16);
7f3c4072
CM
11514 goto ld_st;
11515 case M_PREFE_AB:
7f3c4072
CM
11516 s = "prefe";
11517 fmt = "k,+j(b)";
11518 offbits = 9;
df58fc94 11519 goto ld_st;
252b5132 11520 case M_SDC1_AB:
252b5132 11521 s = "sdc1";
df58fc94 11522 fmt = "T,o(b)";
252b5132 11523 coproc = 1;
bdaaa2e1 11524 /* Itbl support may require additional care here. */
df58fc94 11525 goto ld_st;
252b5132
RH
11526 case M_SDC2_AB:
11527 s = "sdc2";
df58fc94 11528 fmt = COP12_FMT;
7361da2c
AB
11529 offbits = (mips_opts.micromips ? 12
11530 : ISA_IS_R6 (mips_opts.isa) ? 11
11531 : 16);
c77c0862
RS
11532 /* Itbl support may require additional care here. */
11533 coproc = 1;
11534 goto ld_st;
11535 case M_SQC2_AB:
c77c0862 11536 s = "sqc2";
14daeee3 11537 fmt = "+7,o(b)";
bdaaa2e1 11538 /* Itbl support may require additional care here. */
252b5132 11539 coproc = 1;
df58fc94 11540 goto ld_st;
252b5132 11541 case M_SDC3_AB:
df58fc94 11542 gas_assert (!mips_opts.micromips);
252b5132 11543 s = "sdc3";
df58fc94 11544 fmt = "E,o(b)";
bdaaa2e1 11545 /* Itbl support may require additional care here. */
252b5132 11546 coproc = 1;
df58fc94 11547 goto ld_st;
252b5132
RH
11548 case M_SDL_AB:
11549 s = "sdl";
df58fc94 11550 fmt = MEM12_FMT;
7f3c4072 11551 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11552 goto ld_st;
252b5132
RH
11553 case M_SDR_AB:
11554 s = "sdr";
df58fc94 11555 fmt = MEM12_FMT;
7f3c4072 11556 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
11557 goto ld_st;
11558 case M_SWP_AB:
df58fc94
RS
11559 gas_assert (mips_opts.micromips);
11560 s = "swp";
11561 fmt = "t,~(b)";
7f3c4072 11562 offbits = 12;
df58fc94
RS
11563 goto ld_st;
11564 case M_SDP_AB:
df58fc94
RS
11565 gas_assert (mips_opts.micromips);
11566 s = "sdp";
11567 fmt = "t,~(b)";
7f3c4072 11568 offbits = 12;
df58fc94
RS
11569 goto ld_st;
11570 case M_SWM_AB:
df58fc94
RS
11571 gas_assert (mips_opts.micromips);
11572 s = "swm";
11573 fmt = "n,~(b)";
7f3c4072 11574 offbits = 12;
df58fc94
RS
11575 goto ld_st;
11576 case M_SDM_AB:
df58fc94
RS
11577 gas_assert (mips_opts.micromips);
11578 s = "sdm";
11579 fmt = "n,~(b)";
7f3c4072 11580 offbits = 12;
df58fc94
RS
11581
11582 ld_st:
8fc2e39e 11583 tempreg = AT;
df58fc94 11584 ld_noat:
c0ebe874 11585 breg = op[2];
f2ae14a1
RS
11586 if (small_offset_p (0, align, 16))
11587 {
11588 /* The first case exists for M_LD_AB and M_SD_AB, which are
11589 macros for o32 but which should act like normal instructions
11590 otherwise. */
11591 if (offbits == 16)
c0ebe874 11592 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
f2ae14a1
RS
11593 offset_reloc[1], offset_reloc[2], breg);
11594 else if (small_offset_p (0, align, offbits))
11595 {
11596 if (offbits == 0)
c0ebe874 11597 macro_build (NULL, s, fmt, op[0], breg);
f2ae14a1 11598 else
c0ebe874 11599 macro_build (NULL, s, fmt, op[0],
c8276761 11600 (int) offset_expr.X_add_number, breg);
f2ae14a1
RS
11601 }
11602 else
11603 {
11604 if (tempreg == AT)
11605 used_at = 1;
11606 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11607 tempreg, breg, -1, offset_reloc[0],
11608 offset_reloc[1], offset_reloc[2]);
11609 if (offbits == 0)
c0ebe874 11610 macro_build (NULL, s, fmt, op[0], tempreg);
f2ae14a1 11611 else
c0ebe874 11612 macro_build (NULL, s, fmt, op[0], 0, tempreg);
f2ae14a1
RS
11613 }
11614 break;
11615 }
11616
11617 if (tempreg == AT)
11618 used_at = 1;
11619
252b5132
RH
11620 if (offset_expr.X_op != O_constant
11621 && offset_expr.X_op != O_symbol)
11622 {
1661c76c 11623 as_bad (_("expression too complex"));
252b5132
RH
11624 offset_expr.X_op = O_constant;
11625 }
11626
2051e8c4
MR
11627 if (HAVE_32BIT_ADDRESSES
11628 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
11629 {
11630 char value [32];
11631
11632 sprintf_vma (value, offset_expr.X_add_number);
1661c76c 11633 as_bad (_("number (0x%s) larger than 32 bits"), value);
55e08f71 11634 }
2051e8c4 11635
252b5132
RH
11636 /* A constant expression in PIC code can be handled just as it
11637 is in non PIC code. */
aed1a261
RS
11638 if (offset_expr.X_op == O_constant)
11639 {
f2ae14a1
RS
11640 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11641 offbits == 0 ? 16 : offbits);
11642 offset_expr.X_add_number -= expr1.X_add_number;
df58fc94 11643
f2ae14a1
RS
11644 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11645 if (breg != 0)
11646 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11647 tempreg, tempreg, breg);
7f3c4072 11648 if (offbits == 0)
dd6a37e7 11649 {
f2ae14a1 11650 if (offset_expr.X_add_number != 0)
dd6a37e7 11651 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
f2ae14a1 11652 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
c0ebe874 11653 macro_build (NULL, s, fmt, op[0], tempreg);
dd6a37e7 11654 }
7f3c4072 11655 else if (offbits == 16)
c0ebe874 11656 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
df58fc94 11657 else
c0ebe874 11658 macro_build (NULL, s, fmt, op[0],
c8276761 11659 (int) offset_expr.X_add_number, tempreg);
df58fc94 11660 }
7f3c4072 11661 else if (offbits != 16)
df58fc94 11662 {
7f3c4072
CM
11663 /* The offset field is too narrow to be used for a low-part
11664 relocation, so load the whole address into the auxillary
f2ae14a1
RS
11665 register. */
11666 load_address (tempreg, &offset_expr, &used_at);
11667 if (breg != 0)
11668 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11669 tempreg, tempreg, breg);
7f3c4072 11670 if (offbits == 0)
c0ebe874 11671 macro_build (NULL, s, fmt, op[0], tempreg);
dd6a37e7 11672 else
c0ebe874 11673 macro_build (NULL, s, fmt, op[0], 0, tempreg);
aed1a261
RS
11674 }
11675 else if (mips_pic == NO_PIC)
252b5132
RH
11676 {
11677 /* If this is a reference to a GP relative symbol, and there
11678 is no base register, we want
c0ebe874 11679 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
252b5132
RH
11680 Otherwise, if there is no base register, we want
11681 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
c0ebe874 11682 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
252b5132
RH
11683 If we have a constant, we need two instructions anyhow,
11684 so we always use the latter form.
11685
11686 If we have a base register, and this is a reference to a
11687 GP relative symbol, we want
11688 addu $tempreg,$breg,$gp
c0ebe874 11689 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
252b5132
RH
11690 Otherwise we want
11691 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11692 addu $tempreg,$tempreg,$breg
c0ebe874 11693 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245 11694 With a constant we always use the latter case.
76b3015f 11695
d6bc6245
TS
11696 With 64bit address space and no base register and $at usable,
11697 we want
11698 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11699 lui $at,<sym> (BFD_RELOC_HI16_S)
11700 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11701 dsll32 $tempreg,0
11702 daddu $tempreg,$at
c0ebe874 11703 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11704 If we have a base register, we want
11705 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11706 lui $at,<sym> (BFD_RELOC_HI16_S)
11707 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11708 daddu $at,$breg
11709 dsll32 $tempreg,0
11710 daddu $tempreg,$at
c0ebe874 11711 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11712
11713 Without $at we can't generate the optimal path for superscalar
11714 processors here since this would require two temporary registers.
11715 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11716 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11717 dsll $tempreg,16
11718 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11719 dsll $tempreg,16
c0ebe874 11720 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11721 If we have a base register, we want
11722 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11723 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11724 dsll $tempreg,16
11725 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11726 dsll $tempreg,16
11727 daddu $tempreg,$tempreg,$breg
c0ebe874 11728 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
6373ee54 11729
6caf9ef4 11730 For GP relative symbols in 64bit address space we can use
aed1a261
RS
11731 the same sequence as in 32bit address space. */
11732 if (HAVE_64BIT_SYMBOLS)
d6bc6245 11733 {
aed1a261 11734 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4
TS
11735 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11736 {
11737 relax_start (offset_expr.X_add_symbol);
11738 if (breg == 0)
11739 {
c0ebe874 11740 macro_build (&offset_expr, s, fmt, op[0],
6caf9ef4
TS
11741 BFD_RELOC_GPREL16, mips_gp_register);
11742 }
11743 else
11744 {
11745 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11746 tempreg, breg, mips_gp_register);
c0ebe874 11747 macro_build (&offset_expr, s, fmt, op[0],
6caf9ef4
TS
11748 BFD_RELOC_GPREL16, tempreg);
11749 }
11750 relax_switch ();
11751 }
d6bc6245 11752
741fe287 11753 if (used_at == 0 && mips_opts.at)
d6bc6245 11754 {
df58fc94 11755 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb 11756 BFD_RELOC_MIPS_HIGHEST);
df58fc94 11757 macro_build (&offset_expr, "lui", LUI_FMT, AT,
67c0d1eb
RS
11758 BFD_RELOC_HI16_S);
11759 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11760 tempreg, BFD_RELOC_MIPS_HIGHER);
d6bc6245 11761 if (breg != 0)
67c0d1eb 11762 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
df58fc94 11763 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 11764 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
c0ebe874 11765 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
67c0d1eb 11766 tempreg);
d6bc6245
TS
11767 used_at = 1;
11768 }
11769 else
11770 {
df58fc94 11771 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb
RS
11772 BFD_RELOC_MIPS_HIGHEST);
11773 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11774 tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 11775 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb
RS
11776 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11777 tempreg, BFD_RELOC_HI16_S);
df58fc94 11778 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
d6bc6245 11779 if (breg != 0)
67c0d1eb 11780 macro_build (NULL, "daddu", "d,v,t",
17a2f251 11781 tempreg, tempreg, breg);
c0ebe874 11782 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11783 BFD_RELOC_LO16, tempreg);
d6bc6245 11784 }
6caf9ef4
TS
11785
11786 if (mips_relax.sequence)
11787 relax_end ();
8fc2e39e 11788 break;
d6bc6245 11789 }
256ab948 11790
252b5132
RH
11791 if (breg == 0)
11792 {
67c0d1eb 11793 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 11794 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 11795 {
4d7206a2 11796 relax_start (offset_expr.X_add_symbol);
c0ebe874 11797 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
67c0d1eb 11798 mips_gp_register);
4d7206a2 11799 relax_switch ();
252b5132 11800 }
67c0d1eb 11801 macro_build_lui (&offset_expr, tempreg);
c0ebe874 11802 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11803 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
11804 if (mips_relax.sequence)
11805 relax_end ();
252b5132
RH
11806 }
11807 else
11808 {
67c0d1eb 11809 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 11810 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 11811 {
4d7206a2 11812 relax_start (offset_expr.X_add_symbol);
67c0d1eb 11813 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11814 tempreg, breg, mips_gp_register);
c0ebe874 11815 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11816 BFD_RELOC_GPREL16, tempreg);
4d7206a2 11817 relax_switch ();
252b5132 11818 }
67c0d1eb
RS
11819 macro_build_lui (&offset_expr, tempreg);
11820 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11821 tempreg, tempreg, breg);
c0ebe874 11822 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11823 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
11824 if (mips_relax.sequence)
11825 relax_end ();
252b5132
RH
11826 }
11827 }
0a44bf69 11828 else if (!mips_big_got)
252b5132 11829 {
ed6fb7bd 11830 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
f9419b05 11831
252b5132
RH
11832 /* If this is a reference to an external symbol, we want
11833 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11834 nop
c0ebe874 11835 <op> op[0],0($tempreg)
252b5132
RH
11836 Otherwise we want
11837 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11838 nop
11839 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
c0ebe874 11840 <op> op[0],0($tempreg)
f5040a92
AO
11841
11842 For NewABI, we want
11843 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
c0ebe874 11844 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 11845
252b5132
RH
11846 If there is a base register, we add it to $tempreg before
11847 the <op>. If there is a constant, we stick it in the
11848 <op> instruction. We don't handle constants larger than
11849 16 bits, because we have no way to load the upper 16 bits
11850 (actually, we could handle them for the subset of cases
11851 in which we are not using $at). */
9c2799c2 11852 gas_assert (offset_expr.X_op == O_symbol);
f5040a92
AO
11853 if (HAVE_NEWABI)
11854 {
67c0d1eb
RS
11855 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11856 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 11857 if (breg != 0)
67c0d1eb 11858 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11859 tempreg, tempreg, breg);
c0ebe874 11860 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11861 BFD_RELOC_MIPS_GOT_OFST, tempreg);
f5040a92
AO
11862 break;
11863 }
252b5132
RH
11864 expr1.X_add_number = offset_expr.X_add_number;
11865 offset_expr.X_add_number = 0;
11866 if (expr1.X_add_number < -0x8000
11867 || expr1.X_add_number >= 0x8000)
11868 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb
RS
11869 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11870 lw_reloc_type, mips_gp_register);
269137b2 11871 load_delay_nop ();
4d7206a2
RS
11872 relax_start (offset_expr.X_add_symbol);
11873 relax_switch ();
67c0d1eb
RS
11874 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11875 tempreg, BFD_RELOC_LO16);
4d7206a2 11876 relax_end ();
252b5132 11877 if (breg != 0)
67c0d1eb 11878 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11879 tempreg, tempreg, breg);
c0ebe874 11880 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
252b5132 11881 }
0a44bf69 11882 else if (mips_big_got && !HAVE_NEWABI)
252b5132 11883 {
67c0d1eb 11884 int gpdelay;
252b5132
RH
11885
11886 /* If this is a reference to an external symbol, we want
11887 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11888 addu $tempreg,$tempreg,$gp
11889 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
c0ebe874 11890 <op> op[0],0($tempreg)
252b5132
RH
11891 Otherwise we want
11892 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11893 nop
11894 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
c0ebe874 11895 <op> op[0],0($tempreg)
252b5132
RH
11896 If there is a base register, we add it to $tempreg before
11897 the <op>. If there is a constant, we stick it in the
11898 <op> instruction. We don't handle constants larger than
11899 16 bits, because we have no way to load the upper 16 bits
11900 (actually, we could handle them for the subset of cases
f5040a92 11901 in which we are not using $at). */
9c2799c2 11902 gas_assert (offset_expr.X_op == O_symbol);
252b5132
RH
11903 expr1.X_add_number = offset_expr.X_add_number;
11904 offset_expr.X_add_number = 0;
11905 if (expr1.X_add_number < -0x8000
11906 || expr1.X_add_number >= 0x8000)
11907 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 11908 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 11909 relax_start (offset_expr.X_add_symbol);
df58fc94 11910 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 11911 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
11912 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11913 mips_gp_register);
11914 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11915 BFD_RELOC_MIPS_GOT_LO16, tempreg);
4d7206a2 11916 relax_switch ();
67c0d1eb
RS
11917 if (gpdelay)
11918 macro_build (NULL, "nop", "");
11919 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11920 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 11921 load_delay_nop ();
67c0d1eb
RS
11922 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11923 tempreg, BFD_RELOC_LO16);
4d7206a2
RS
11924 relax_end ();
11925
252b5132 11926 if (breg != 0)
67c0d1eb 11927 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11928 tempreg, tempreg, breg);
c0ebe874 11929 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
252b5132 11930 }
0a44bf69 11931 else if (mips_big_got && HAVE_NEWABI)
f5040a92 11932 {
f5040a92
AO
11933 /* If this is a reference to an external symbol, we want
11934 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11935 add $tempreg,$tempreg,$gp
11936 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
c0ebe874 11937 <op> op[0],<ofst>($tempreg)
f5040a92
AO
11938 Otherwise, for local symbols, we want:
11939 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
c0ebe874 11940 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
9c2799c2 11941 gas_assert (offset_expr.X_op == O_symbol);
4d7206a2 11942 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
11943 offset_expr.X_add_number = 0;
11944 if (expr1.X_add_number < -0x8000
11945 || expr1.X_add_number >= 0x8000)
11946 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4d7206a2 11947 relax_start (offset_expr.X_add_symbol);
df58fc94 11948 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 11949 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
11950 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11951 mips_gp_register);
11952 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11953 BFD_RELOC_MIPS_GOT_LO16, tempreg);
f5040a92 11954 if (breg != 0)
67c0d1eb 11955 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11956 tempreg, tempreg, breg);
c0ebe874 11957 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
684022ea 11958
4d7206a2 11959 relax_switch ();
f5040a92 11960 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
11961 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11962 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 11963 if (breg != 0)
67c0d1eb 11964 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11965 tempreg, tempreg, breg);
c0ebe874 11966 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11967 BFD_RELOC_MIPS_GOT_OFST, tempreg);
4d7206a2 11968 relax_end ();
f5040a92 11969 }
252b5132
RH
11970 else
11971 abort ();
11972
252b5132
RH
11973 break;
11974
833794fc
MR
11975 case M_JRADDIUSP:
11976 gas_assert (mips_opts.micromips);
11977 gas_assert (mips_opts.insn32);
11978 start_noreorder ();
11979 macro_build (NULL, "jr", "s", RA);
c0ebe874 11980 expr1.X_add_number = op[0] << 2;
833794fc
MR
11981 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
11982 end_noreorder ();
11983 break;
11984
11985 case M_JRC:
11986 gas_assert (mips_opts.micromips);
11987 gas_assert (mips_opts.insn32);
c0ebe874 11988 macro_build (NULL, "jr", "s", op[0]);
833794fc
MR
11989 if (mips_opts.noreorder)
11990 macro_build (NULL, "nop", "");
11991 break;
11992
252b5132
RH
11993 case M_LI:
11994 case M_LI_S:
c0ebe874 11995 load_register (op[0], &imm_expr, 0);
8fc2e39e 11996 break;
252b5132
RH
11997
11998 case M_DLI:
c0ebe874 11999 load_register (op[0], &imm_expr, 1);
8fc2e39e 12000 break;
252b5132
RH
12001
12002 case M_LI_SS:
12003 if (imm_expr.X_op == O_constant)
12004 {
8fc2e39e 12005 used_at = 1;
67c0d1eb 12006 load_register (AT, &imm_expr, 0);
c0ebe874 12007 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
252b5132
RH
12008 break;
12009 }
12010 else
12011 {
b0e6f033
RS
12012 gas_assert (imm_expr.X_op == O_absent
12013 && offset_expr.X_op == O_symbol
90ecf173
MR
12014 && strcmp (segment_name (S_GET_SEGMENT
12015 (offset_expr.X_add_symbol)),
12016 ".lit4") == 0
12017 && offset_expr.X_add_number == 0);
c0ebe874 12018 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
17a2f251 12019 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
8fc2e39e 12020 break;
252b5132
RH
12021 }
12022
12023 case M_LI_D:
ca4e0257
RS
12024 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12025 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12026 order 32 bits of the value and the low order 32 bits are either
12027 zero or in OFFSET_EXPR. */
b0e6f033 12028 if (imm_expr.X_op == O_constant)
252b5132 12029 {
bad1aba3 12030 if (GPR_SIZE == 64)
c0ebe874 12031 load_register (op[0], &imm_expr, 1);
252b5132
RH
12032 else
12033 {
12034 int hreg, lreg;
12035
12036 if (target_big_endian)
12037 {
c0ebe874
RS
12038 hreg = op[0];
12039 lreg = op[0] + 1;
252b5132
RH
12040 }
12041 else
12042 {
c0ebe874
RS
12043 hreg = op[0] + 1;
12044 lreg = op[0];
252b5132
RH
12045 }
12046
12047 if (hreg <= 31)
67c0d1eb 12048 load_register (hreg, &imm_expr, 0);
252b5132
RH
12049 if (lreg <= 31)
12050 {
12051 if (offset_expr.X_op == O_absent)
67c0d1eb 12052 move_register (lreg, 0);
252b5132
RH
12053 else
12054 {
9c2799c2 12055 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 12056 load_register (lreg, &offset_expr, 0);
252b5132
RH
12057 }
12058 }
12059 }
8fc2e39e 12060 break;
252b5132 12061 }
b0e6f033 12062 gas_assert (imm_expr.X_op == O_absent);
252b5132
RH
12063
12064 /* We know that sym is in the .rdata section. First we get the
12065 upper 16 bits of the address. */
12066 if (mips_pic == NO_PIC)
12067 {
67c0d1eb 12068 macro_build_lui (&offset_expr, AT);
8fc2e39e 12069 used_at = 1;
252b5132 12070 }
0a44bf69 12071 else
252b5132 12072 {
67c0d1eb
RS
12073 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12074 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8fc2e39e 12075 used_at = 1;
252b5132 12076 }
bdaaa2e1 12077
252b5132 12078 /* Now we load the register(s). */
bad1aba3 12079 if (GPR_SIZE == 64)
8fc2e39e
TS
12080 {
12081 used_at = 1;
c0ebe874
RS
12082 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12083 BFD_RELOC_LO16, AT);
8fc2e39e 12084 }
252b5132
RH
12085 else
12086 {
8fc2e39e 12087 used_at = 1;
c0ebe874
RS
12088 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12089 BFD_RELOC_LO16, AT);
12090 if (op[0] != RA)
252b5132
RH
12091 {
12092 /* FIXME: How in the world do we deal with the possible
12093 overflow here? */
12094 offset_expr.X_add_number += 4;
67c0d1eb 12095 macro_build (&offset_expr, "lw", "t,o(b)",
c0ebe874 12096 op[0] + 1, BFD_RELOC_LO16, AT);
252b5132
RH
12097 }
12098 }
252b5132
RH
12099 break;
12100
12101 case M_LI_DD:
ca4e0257
RS
12102 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12103 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12104 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12105 the value and the low order 32 bits are either zero or in
12106 OFFSET_EXPR. */
b0e6f033 12107 if (imm_expr.X_op == O_constant)
252b5132 12108 {
8fc2e39e 12109 used_at = 1;
bad1aba3 12110 load_register (AT, &imm_expr, FPR_SIZE == 64);
351cdf24
MF
12111 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12112 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
252b5132
RH
12113 else
12114 {
351cdf24
MF
12115 if (ISA_HAS_MXHC1 (mips_opts.isa))
12116 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12117 else if (FPR_SIZE != 32)
12118 as_bad (_("Unable to generate `%s' compliant code "
12119 "without mthc1"),
12120 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12121 else
12122 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
252b5132 12123 if (offset_expr.X_op == O_absent)
c0ebe874 12124 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
252b5132
RH
12125 else
12126 {
9c2799c2 12127 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 12128 load_register (AT, &offset_expr, 0);
c0ebe874 12129 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
252b5132
RH
12130 }
12131 }
12132 break;
12133 }
12134
b0e6f033
RS
12135 gas_assert (imm_expr.X_op == O_absent
12136 && offset_expr.X_op == O_symbol
90ecf173 12137 && offset_expr.X_add_number == 0);
252b5132
RH
12138 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12139 if (strcmp (s, ".lit8") == 0)
f2ae14a1 12140 {
c0ebe874 12141 op[2] = mips_gp_register;
f2ae14a1
RS
12142 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12143 offset_reloc[1] = BFD_RELOC_UNUSED;
12144 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132
RH
12145 }
12146 else
12147 {
9c2799c2 12148 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
8fc2e39e 12149 used_at = 1;
0a44bf69 12150 if (mips_pic != NO_PIC)
67c0d1eb
RS
12151 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12152 BFD_RELOC_MIPS_GOT16, mips_gp_register);
252b5132
RH
12153 else
12154 {
12155 /* FIXME: This won't work for a 64 bit address. */
67c0d1eb 12156 macro_build_lui (&offset_expr, AT);
252b5132 12157 }
bdaaa2e1 12158
c0ebe874 12159 op[2] = AT;
f2ae14a1
RS
12160 offset_reloc[0] = BFD_RELOC_LO16;
12161 offset_reloc[1] = BFD_RELOC_UNUSED;
12162 offset_reloc[2] = BFD_RELOC_UNUSED;
12163 }
12164 align = 8;
12165 /* Fall through */
c4a68bea 12166
252b5132
RH
12167 case M_L_DAB:
12168 /*
12169 * The MIPS assembler seems to check for X_add_number not
12170 * being double aligned and generating:
12171 * lui at,%hi(foo+1)
12172 * addu at,at,v1
12173 * addiu at,at,%lo(foo+1)
12174 * lwc1 f2,0(at)
12175 * lwc1 f3,4(at)
12176 * But, the resulting address is the same after relocation so why
12177 * generate the extra instruction?
12178 */
bdaaa2e1 12179 /* Itbl support may require additional care here. */
252b5132 12180 coproc = 1;
df58fc94 12181 fmt = "T,o(b)";
0aa27725 12182 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
12183 {
12184 s = "ldc1";
df58fc94 12185 goto ld_st;
252b5132 12186 }
252b5132 12187 s = "lwc1";
252b5132
RH
12188 goto ldd_std;
12189
12190 case M_S_DAB:
df58fc94
RS
12191 gas_assert (!mips_opts.micromips);
12192 /* Itbl support may require additional care here. */
12193 coproc = 1;
12194 fmt = "T,o(b)";
0aa27725 12195 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
12196 {
12197 s = "sdc1";
df58fc94 12198 goto ld_st;
252b5132 12199 }
252b5132 12200 s = "swc1";
252b5132
RH
12201 goto ldd_std;
12202
e407c74b
NC
12203 case M_LQ_AB:
12204 fmt = "t,o(b)";
12205 s = "lq";
12206 goto ld;
12207
12208 case M_SQ_AB:
12209 fmt = "t,o(b)";
12210 s = "sq";
12211 goto ld_st;
12212
252b5132 12213 case M_LD_AB:
df58fc94 12214 fmt = "t,o(b)";
bad1aba3 12215 if (GPR_SIZE == 64)
252b5132
RH
12216 {
12217 s = "ld";
12218 goto ld;
12219 }
252b5132 12220 s = "lw";
252b5132
RH
12221 goto ldd_std;
12222
12223 case M_SD_AB:
df58fc94 12224 fmt = "t,o(b)";
bad1aba3 12225 if (GPR_SIZE == 64)
252b5132
RH
12226 {
12227 s = "sd";
df58fc94 12228 goto ld_st;
252b5132 12229 }
252b5132 12230 s = "sw";
252b5132
RH
12231
12232 ldd_std:
f2ae14a1
RS
12233 /* Even on a big endian machine $fn comes before $fn+1. We have
12234 to adjust when loading from memory. We set coproc if we must
12235 load $fn+1 first. */
12236 /* Itbl support may require additional care here. */
12237 if (!target_big_endian)
12238 coproc = 0;
12239
c0ebe874 12240 breg = op[2];
f2ae14a1
RS
12241 if (small_offset_p (0, align, 16))
12242 {
12243 ep = &offset_expr;
12244 if (!small_offset_p (4, align, 16))
12245 {
12246 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12247 -1, offset_reloc[0], offset_reloc[1],
12248 offset_reloc[2]);
12249 expr1.X_add_number = 0;
12250 ep = &expr1;
12251 breg = AT;
12252 used_at = 1;
12253 offset_reloc[0] = BFD_RELOC_LO16;
12254 offset_reloc[1] = BFD_RELOC_UNUSED;
12255 offset_reloc[2] = BFD_RELOC_UNUSED;
12256 }
c0ebe874 12257 if (strcmp (s, "lw") == 0 && op[0] == breg)
f2ae14a1
RS
12258 {
12259 ep->X_add_number += 4;
c0ebe874 12260 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
f2ae14a1
RS
12261 offset_reloc[1], offset_reloc[2], breg);
12262 ep->X_add_number -= 4;
c0ebe874 12263 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
f2ae14a1
RS
12264 offset_reloc[1], offset_reloc[2], breg);
12265 }
12266 else
12267 {
c0ebe874 12268 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
f2ae14a1
RS
12269 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12270 breg);
12271 ep->X_add_number += 4;
c0ebe874 12272 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
f2ae14a1
RS
12273 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12274 breg);
12275 }
12276 break;
12277 }
12278
252b5132
RH
12279 if (offset_expr.X_op != O_symbol
12280 && offset_expr.X_op != O_constant)
12281 {
1661c76c 12282 as_bad (_("expression too complex"));
252b5132
RH
12283 offset_expr.X_op = O_constant;
12284 }
12285
2051e8c4
MR
12286 if (HAVE_32BIT_ADDRESSES
12287 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
12288 {
12289 char value [32];
12290
12291 sprintf_vma (value, offset_expr.X_add_number);
1661c76c 12292 as_bad (_("number (0x%s) larger than 32 bits"), value);
55e08f71 12293 }
2051e8c4 12294
90ecf173 12295 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
252b5132
RH
12296 {
12297 /* If this is a reference to a GP relative symbol, we want
c0ebe874
RS
12298 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12299 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
252b5132
RH
12300 If we have a base register, we use this
12301 addu $at,$breg,$gp
c0ebe874
RS
12302 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12303 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
252b5132
RH
12304 If this is not a GP relative symbol, we want
12305 lui $at,<sym> (BFD_RELOC_HI16_S)
c0ebe874
RS
12306 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12307 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12308 If there is a base register, we add it to $at after the
12309 lui instruction. If there is a constant, we always use
12310 the last case. */
39a59cf8
MR
12311 if (offset_expr.X_op == O_symbol
12312 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 12313 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 12314 {
4d7206a2 12315 relax_start (offset_expr.X_add_symbol);
252b5132
RH
12316 if (breg == 0)
12317 {
c9914766 12318 tempreg = mips_gp_register;
252b5132
RH
12319 }
12320 else
12321 {
67c0d1eb 12322 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12323 AT, breg, mips_gp_register);
252b5132 12324 tempreg = AT;
252b5132
RH
12325 used_at = 1;
12326 }
12327
beae10d5 12328 /* Itbl support may require additional care here. */
c0ebe874 12329 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12330 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
12331 offset_expr.X_add_number += 4;
12332
12333 /* Set mips_optimize to 2 to avoid inserting an
12334 undesired nop. */
12335 hold_mips_optimize = mips_optimize;
12336 mips_optimize = 2;
beae10d5 12337 /* Itbl support may require additional care here. */
c0ebe874 12338 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12339 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
12340 mips_optimize = hold_mips_optimize;
12341
4d7206a2 12342 relax_switch ();
252b5132 12343
0970e49e 12344 offset_expr.X_add_number -= 4;
252b5132 12345 }
8fc2e39e 12346 used_at = 1;
f2ae14a1
RS
12347 if (offset_high_part (offset_expr.X_add_number, 16)
12348 != offset_high_part (offset_expr.X_add_number + 4, 16))
12349 {
12350 load_address (AT, &offset_expr, &used_at);
12351 offset_expr.X_op = O_constant;
12352 offset_expr.X_add_number = 0;
12353 }
12354 else
12355 macro_build_lui (&offset_expr, AT);
252b5132 12356 if (breg != 0)
67c0d1eb 12357 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12358 /* Itbl support may require additional care here. */
c0ebe874 12359 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12360 BFD_RELOC_LO16, AT);
252b5132
RH
12361 /* FIXME: How do we handle overflow here? */
12362 offset_expr.X_add_number += 4;
beae10d5 12363 /* Itbl support may require additional care here. */
c0ebe874 12364 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12365 BFD_RELOC_LO16, AT);
4d7206a2
RS
12366 if (mips_relax.sequence)
12367 relax_end ();
bdaaa2e1 12368 }
0a44bf69 12369 else if (!mips_big_got)
252b5132 12370 {
252b5132
RH
12371 /* If this is a reference to an external symbol, we want
12372 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12373 nop
c0ebe874
RS
12374 <op> op[0],0($at)
12375 <op> op[0]+1,4($at)
252b5132
RH
12376 Otherwise we want
12377 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12378 nop
c0ebe874
RS
12379 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12380 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12381 If there is a base register we add it to $at before the
12382 lwc1 instructions. If there is a constant we include it
12383 in the lwc1 instructions. */
12384 used_at = 1;
12385 expr1.X_add_number = offset_expr.X_add_number;
252b5132
RH
12386 if (expr1.X_add_number < -0x8000
12387 || expr1.X_add_number >= 0x8000 - 4)
12388 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12389 load_got_offset (AT, &offset_expr);
269137b2 12390 load_delay_nop ();
252b5132 12391 if (breg != 0)
67c0d1eb 12392 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
252b5132
RH
12393
12394 /* Set mips_optimize to 2 to avoid inserting an undesired
12395 nop. */
12396 hold_mips_optimize = mips_optimize;
12397 mips_optimize = 2;
4d7206a2 12398
beae10d5 12399 /* Itbl support may require additional care here. */
4d7206a2 12400 relax_start (offset_expr.X_add_symbol);
c0ebe874 12401 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12402 BFD_RELOC_LO16, AT);
4d7206a2 12403 expr1.X_add_number += 4;
c0ebe874 12404 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12405 BFD_RELOC_LO16, AT);
4d7206a2 12406 relax_switch ();
c0ebe874 12407 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12408 BFD_RELOC_LO16, AT);
4d7206a2 12409 offset_expr.X_add_number += 4;
c0ebe874 12410 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12411 BFD_RELOC_LO16, AT);
4d7206a2 12412 relax_end ();
252b5132 12413
4d7206a2 12414 mips_optimize = hold_mips_optimize;
252b5132 12415 }
0a44bf69 12416 else if (mips_big_got)
252b5132 12417 {
67c0d1eb 12418 int gpdelay;
252b5132
RH
12419
12420 /* If this is a reference to an external symbol, we want
12421 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12422 addu $at,$at,$gp
12423 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12424 nop
c0ebe874
RS
12425 <op> op[0],0($at)
12426 <op> op[0]+1,4($at)
252b5132
RH
12427 Otherwise we want
12428 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12429 nop
c0ebe874
RS
12430 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12431 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12432 If there is a base register we add it to $at before the
12433 lwc1 instructions. If there is a constant we include it
12434 in the lwc1 instructions. */
12435 used_at = 1;
12436 expr1.X_add_number = offset_expr.X_add_number;
12437 offset_expr.X_add_number = 0;
12438 if (expr1.X_add_number < -0x8000
12439 || expr1.X_add_number >= 0x8000 - 4)
12440 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12441 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 12442 relax_start (offset_expr.X_add_symbol);
df58fc94 12443 macro_build (&offset_expr, "lui", LUI_FMT,
67c0d1eb
RS
12444 AT, BFD_RELOC_MIPS_GOT_HI16);
12445 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12446 AT, AT, mips_gp_register);
67c0d1eb 12447 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 12448 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
269137b2 12449 load_delay_nop ();
252b5132 12450 if (breg != 0)
67c0d1eb 12451 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12452 /* Itbl support may require additional care here. */
c0ebe874 12453 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12454 BFD_RELOC_LO16, AT);
252b5132
RH
12455 expr1.X_add_number += 4;
12456
12457 /* Set mips_optimize to 2 to avoid inserting an undesired
12458 nop. */
12459 hold_mips_optimize = mips_optimize;
12460 mips_optimize = 2;
beae10d5 12461 /* Itbl support may require additional care here. */
c0ebe874 12462 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12463 BFD_RELOC_LO16, AT);
252b5132
RH
12464 mips_optimize = hold_mips_optimize;
12465 expr1.X_add_number -= 4;
12466
4d7206a2
RS
12467 relax_switch ();
12468 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
12469 if (gpdelay)
12470 macro_build (NULL, "nop", "");
12471 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12472 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 12473 load_delay_nop ();
252b5132 12474 if (breg != 0)
67c0d1eb 12475 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12476 /* Itbl support may require additional care here. */
c0ebe874 12477 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12478 BFD_RELOC_LO16, AT);
4d7206a2 12479 offset_expr.X_add_number += 4;
252b5132
RH
12480
12481 /* Set mips_optimize to 2 to avoid inserting an undesired
12482 nop. */
12483 hold_mips_optimize = mips_optimize;
12484 mips_optimize = 2;
beae10d5 12485 /* Itbl support may require additional care here. */
c0ebe874 12486 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12487 BFD_RELOC_LO16, AT);
252b5132 12488 mips_optimize = hold_mips_optimize;
4d7206a2 12489 relax_end ();
252b5132 12490 }
252b5132
RH
12491 else
12492 abort ();
12493
252b5132 12494 break;
3739860c 12495
dd6a37e7 12496 case M_SAA_AB:
dd6a37e7 12497 s = "saa";
0db377d0 12498 goto saa_saad;
dd6a37e7 12499 case M_SAAD_AB:
dd6a37e7 12500 s = "saad";
0db377d0
MR
12501 saa_saad:
12502 gas_assert (!mips_opts.micromips);
7f3c4072 12503 offbits = 0;
dd6a37e7
AP
12504 fmt = "t,(b)";
12505 goto ld_st;
12506
252b5132
RH
12507 /* New code added to support COPZ instructions.
12508 This code builds table entries out of the macros in mip_opcodes.
12509 R4000 uses interlocks to handle coproc delays.
12510 Other chips (like the R3000) require nops to be inserted for delays.
12511
f72c8c98 12512 FIXME: Currently, we require that the user handle delays.
252b5132
RH
12513 In order to fill delay slots for non-interlocked chips,
12514 we must have a way to specify delays based on the coprocessor.
12515 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12516 What are the side-effects of the cop instruction?
12517 What cache support might we have and what are its effects?
12518 Both coprocessor & memory require delays. how long???
bdaaa2e1 12519 What registers are read/set/modified?
252b5132
RH
12520
12521 If an itbl is provided to interpret cop instructions,
bdaaa2e1 12522 this knowledge can be encoded in the itbl spec. */
252b5132
RH
12523
12524 case M_COP0:
12525 s = "c0";
12526 goto copz;
12527 case M_COP1:
12528 s = "c1";
12529 goto copz;
12530 case M_COP2:
12531 s = "c2";
12532 goto copz;
12533 case M_COP3:
12534 s = "c3";
12535 copz:
df58fc94 12536 gas_assert (!mips_opts.micromips);
252b5132
RH
12537 /* For now we just do C (same as Cz). The parameter will be
12538 stored in insn_opcode by mips_ip. */
c8276761 12539 macro_build (NULL, s, "C", (int) ip->insn_opcode);
8fc2e39e 12540 break;
252b5132 12541
ea1fb5dc 12542 case M_MOVE:
c0ebe874 12543 move_register (op[0], op[1]);
8fc2e39e 12544 break;
ea1fb5dc 12545
833794fc
MR
12546 case M_MOVEP:
12547 gas_assert (mips_opts.micromips);
12548 gas_assert (mips_opts.insn32);
c0ebe874
RS
12549 move_register (micromips_to_32_reg_h_map1[op[0]],
12550 micromips_to_32_reg_m_map[op[1]]);
12551 move_register (micromips_to_32_reg_h_map2[op[0]],
12552 micromips_to_32_reg_n_map[op[2]]);
833794fc
MR
12553 break;
12554
252b5132
RH
12555 case M_DMUL:
12556 dbl = 1;
12557 case M_MUL:
e407c74b 12558 if (mips_opts.arch == CPU_R5900)
c0ebe874
RS
12559 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12560 op[2]);
e407c74b
NC
12561 else
12562 {
c0ebe874
RS
12563 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12564 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
e407c74b 12565 }
8fc2e39e 12566 break;
252b5132
RH
12567
12568 case M_DMUL_I:
12569 dbl = 1;
12570 case M_MUL_I:
12571 /* The MIPS assembler some times generates shifts and adds. I'm
12572 not trying to be that fancy. GCC should do this for us
12573 anyway. */
8fc2e39e 12574 used_at = 1;
67c0d1eb 12575 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
12576 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12577 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132
RH
12578 break;
12579
12580 case M_DMULO_I:
12581 dbl = 1;
12582 case M_MULO_I:
12583 imm = 1;
12584 goto do_mulo;
12585
12586 case M_DMULO:
12587 dbl = 1;
12588 case M_MULO:
12589 do_mulo:
7d10b47d 12590 start_noreorder ();
8fc2e39e 12591 used_at = 1;
252b5132 12592 if (imm)
67c0d1eb 12593 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
12594 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12595 op[1], imm ? AT : op[2]);
12596 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12597 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
df58fc94 12598 macro_build (NULL, "mfhi", MFHL_FMT, AT);
252b5132 12599 if (mips_trap)
c0ebe874 12600 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
252b5132
RH
12601 else
12602 {
df58fc94
RS
12603 if (mips_opts.micromips)
12604 micromips_label_expr (&label_expr);
12605 else
12606 label_expr.X_add_number = 8;
c0ebe874 12607 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
a605d2b3 12608 macro_build (NULL, "nop", "");
df58fc94
RS
12609 macro_build (NULL, "break", BRK_FMT, 6);
12610 if (mips_opts.micromips)
12611 micromips_add_label ();
252b5132 12612 }
7d10b47d 12613 end_noreorder ();
c0ebe874 12614 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132
RH
12615 break;
12616
12617 case M_DMULOU_I:
12618 dbl = 1;
12619 case M_MULOU_I:
12620 imm = 1;
12621 goto do_mulou;
12622
12623 case M_DMULOU:
12624 dbl = 1;
12625 case M_MULOU:
12626 do_mulou:
7d10b47d 12627 start_noreorder ();
8fc2e39e 12628 used_at = 1;
252b5132 12629 if (imm)
67c0d1eb
RS
12630 load_register (AT, &imm_expr, dbl);
12631 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
c0ebe874 12632 op[1], imm ? AT : op[2]);
df58fc94 12633 macro_build (NULL, "mfhi", MFHL_FMT, AT);
c0ebe874 12634 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132 12635 if (mips_trap)
df58fc94 12636 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
252b5132
RH
12637 else
12638 {
df58fc94
RS
12639 if (mips_opts.micromips)
12640 micromips_label_expr (&label_expr);
12641 else
12642 label_expr.X_add_number = 8;
12643 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
a605d2b3 12644 macro_build (NULL, "nop", "");
df58fc94
RS
12645 macro_build (NULL, "break", BRK_FMT, 6);
12646 if (mips_opts.micromips)
12647 micromips_add_label ();
252b5132 12648 }
7d10b47d 12649 end_noreorder ();
252b5132
RH
12650 break;
12651
771c7ce4 12652 case M_DROL:
fef14a42 12653 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 12654 {
c0ebe874 12655 if (op[0] == op[1])
82dd0097
CD
12656 {
12657 tempreg = AT;
12658 used_at = 1;
12659 }
12660 else
c0ebe874
RS
12661 tempreg = op[0];
12662 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12663 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
8fc2e39e 12664 break;
82dd0097 12665 }
8fc2e39e 12666 used_at = 1;
c0ebe874
RS
12667 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12668 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12669 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12670 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12671 break;
12672
252b5132 12673 case M_ROL:
fef14a42 12674 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12675 {
c0ebe874 12676 if (op[0] == op[1])
82dd0097
CD
12677 {
12678 tempreg = AT;
12679 used_at = 1;
12680 }
12681 else
c0ebe874
RS
12682 tempreg = op[0];
12683 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12684 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
8fc2e39e 12685 break;
82dd0097 12686 }
8fc2e39e 12687 used_at = 1;
c0ebe874
RS
12688 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12689 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12690 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12691 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12692 break;
12693
771c7ce4
TS
12694 case M_DROL_I:
12695 {
12696 unsigned int rot;
e0471c16
TS
12697 const char *l;
12698 const char *rr;
771c7ce4 12699
771c7ce4 12700 rot = imm_expr.X_add_number & 0x3f;
fef14a42 12701 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
60b63b72
RS
12702 {
12703 rot = (64 - rot) & 0x3f;
12704 if (rot >= 32)
c0ebe874 12705 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
60b63b72 12706 else
c0ebe874 12707 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12708 break;
60b63b72 12709 }
483fc7cd 12710 if (rot == 0)
483fc7cd 12711 {
c0ebe874 12712 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12713 break;
483fc7cd 12714 }
82dd0097 12715 l = (rot < 0x20) ? "dsll" : "dsll32";
91d6fa6a 12716 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
82dd0097 12717 rot &= 0x1f;
8fc2e39e 12718 used_at = 1;
c0ebe874
RS
12719 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12720 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12721 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12722 }
12723 break;
12724
252b5132 12725 case M_ROL_I:
771c7ce4
TS
12726 {
12727 unsigned int rot;
12728
771c7ce4 12729 rot = imm_expr.X_add_number & 0x1f;
fef14a42 12730 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
60b63b72 12731 {
c0ebe874
RS
12732 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12733 (32 - rot) & 0x1f);
8fc2e39e 12734 break;
60b63b72 12735 }
483fc7cd 12736 if (rot == 0)
483fc7cd 12737 {
c0ebe874 12738 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12739 break;
483fc7cd 12740 }
8fc2e39e 12741 used_at = 1;
c0ebe874
RS
12742 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12743 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12744 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12745 }
12746 break;
12747
12748 case M_DROR:
fef14a42 12749 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 12750 {
c0ebe874 12751 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
8fc2e39e 12752 break;
82dd0097 12753 }
8fc2e39e 12754 used_at = 1;
c0ebe874
RS
12755 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12756 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12757 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12758 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12759 break;
12760
12761 case M_ROR:
fef14a42 12762 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12763 {
c0ebe874 12764 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
8fc2e39e 12765 break;
82dd0097 12766 }
8fc2e39e 12767 used_at = 1;
c0ebe874
RS
12768 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12769 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12770 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12771 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12772 break;
12773
771c7ce4
TS
12774 case M_DROR_I:
12775 {
12776 unsigned int rot;
e0471c16
TS
12777 const char *l;
12778 const char *rr;
771c7ce4 12779
771c7ce4 12780 rot = imm_expr.X_add_number & 0x3f;
fef14a42 12781 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097
CD
12782 {
12783 if (rot >= 32)
c0ebe874 12784 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
82dd0097 12785 else
c0ebe874 12786 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12787 break;
82dd0097 12788 }
483fc7cd 12789 if (rot == 0)
483fc7cd 12790 {
c0ebe874 12791 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12792 break;
483fc7cd 12793 }
91d6fa6a 12794 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
82dd0097
CD
12795 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12796 rot &= 0x1f;
8fc2e39e 12797 used_at = 1;
c0ebe874
RS
12798 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12799 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12800 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12801 }
12802 break;
12803
252b5132 12804 case M_ROR_I:
771c7ce4
TS
12805 {
12806 unsigned int rot;
12807
771c7ce4 12808 rot = imm_expr.X_add_number & 0x1f;
fef14a42 12809 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12810 {
c0ebe874 12811 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12812 break;
82dd0097 12813 }
483fc7cd 12814 if (rot == 0)
483fc7cd 12815 {
c0ebe874 12816 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12817 break;
483fc7cd 12818 }
8fc2e39e 12819 used_at = 1;
c0ebe874
RS
12820 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
12821 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12822 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4 12823 }
252b5132
RH
12824 break;
12825
252b5132 12826 case M_SEQ:
c0ebe874
RS
12827 if (op[1] == 0)
12828 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
12829 else if (op[2] == 0)
12830 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
12831 else
12832 {
c0ebe874
RS
12833 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12834 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
252b5132 12835 }
8fc2e39e 12836 break;
252b5132
RH
12837
12838 case M_SEQ_I:
b0e6f033 12839 if (imm_expr.X_add_number == 0)
252b5132 12840 {
c0ebe874 12841 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 12842 break;
252b5132 12843 }
c0ebe874 12844 if (op[1] == 0)
252b5132 12845 {
1661c76c 12846 as_warn (_("instruction %s: result is always false"),
252b5132 12847 ip->insn_mo->name);
c0ebe874 12848 move_register (op[0], 0);
8fc2e39e 12849 break;
252b5132 12850 }
dd3cbb7e
NC
12851 if (CPU_HAS_SEQ (mips_opts.arch)
12852 && -512 <= imm_expr.X_add_number
12853 && imm_expr.X_add_number < 512)
12854 {
c0ebe874 12855 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
750bdd57 12856 (int) imm_expr.X_add_number);
dd3cbb7e
NC
12857 break;
12858 }
b0e6f033 12859 if (imm_expr.X_add_number >= 0
252b5132 12860 && imm_expr.X_add_number < 0x10000)
c0ebe874 12861 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
b0e6f033 12862 else if (imm_expr.X_add_number > -0x8000
252b5132
RH
12863 && imm_expr.X_add_number < 0)
12864 {
12865 imm_expr.X_add_number = -imm_expr.X_add_number;
bad1aba3 12866 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
c0ebe874 12867 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132 12868 }
dd3cbb7e
NC
12869 else if (CPU_HAS_SEQ (mips_opts.arch))
12870 {
12871 used_at = 1;
bad1aba3 12872 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12873 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
dd3cbb7e
NC
12874 break;
12875 }
252b5132
RH
12876 else
12877 {
bad1aba3 12878 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12879 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
252b5132
RH
12880 used_at = 1;
12881 }
c0ebe874 12882 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 12883 break;
252b5132 12884
c0ebe874 12885 case M_SGE: /* X >= Y <==> not (X < Y) */
252b5132
RH
12886 s = "slt";
12887 goto sge;
12888 case M_SGEU:
12889 s = "sltu";
12890 sge:
c0ebe874
RS
12891 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
12892 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 12893 break;
252b5132 12894
c0ebe874 12895 case M_SGE_I: /* X >= I <==> not (X < I) */
252b5132 12896 case M_SGEU_I:
b0e6f033 12897 if (imm_expr.X_add_number >= -0x8000
252b5132 12898 && imm_expr.X_add_number < 0x8000)
c0ebe874
RS
12899 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
12900 op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
12901 else
12902 {
bad1aba3 12903 load_register (AT, &imm_expr, GPR_SIZE == 64);
67c0d1eb 12904 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
c0ebe874 12905 op[0], op[1], AT);
252b5132
RH
12906 used_at = 1;
12907 }
c0ebe874 12908 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 12909 break;
252b5132 12910
c0ebe874 12911 case M_SGT: /* X > Y <==> Y < X */
252b5132
RH
12912 s = "slt";
12913 goto sgt;
12914 case M_SGTU:
12915 s = "sltu";
12916 sgt:
c0ebe874 12917 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
8fc2e39e 12918 break;
252b5132 12919
c0ebe874 12920 case M_SGT_I: /* X > I <==> I < X */
252b5132
RH
12921 s = "slt";
12922 goto sgti;
12923 case M_SGTU_I:
12924 s = "sltu";
12925 sgti:
8fc2e39e 12926 used_at = 1;
bad1aba3 12927 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12928 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
252b5132
RH
12929 break;
12930
c0ebe874 12931 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
252b5132
RH
12932 s = "slt";
12933 goto sle;
12934 case M_SLEU:
12935 s = "sltu";
12936 sle:
c0ebe874
RS
12937 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12938 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 12939 break;
252b5132 12940
c0ebe874 12941 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
252b5132
RH
12942 s = "slt";
12943 goto slei;
12944 case M_SLEU_I:
12945 s = "sltu";
12946 slei:
8fc2e39e 12947 used_at = 1;
bad1aba3 12948 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874
RS
12949 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12950 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
252b5132
RH
12951 break;
12952
12953 case M_SLT_I:
b0e6f033 12954 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
12955 && imm_expr.X_add_number < 0x8000)
12956 {
c0ebe874
RS
12957 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
12958 BFD_RELOC_LO16);
8fc2e39e 12959 break;
252b5132 12960 }
8fc2e39e 12961 used_at = 1;
bad1aba3 12962 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12963 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
252b5132
RH
12964 break;
12965
12966 case M_SLTU_I:
b0e6f033 12967 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
12968 && imm_expr.X_add_number < 0x8000)
12969 {
c0ebe874 12970 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
17a2f251 12971 BFD_RELOC_LO16);
8fc2e39e 12972 break;
252b5132 12973 }
8fc2e39e 12974 used_at = 1;
bad1aba3 12975 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12976 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
252b5132
RH
12977 break;
12978
12979 case M_SNE:
c0ebe874
RS
12980 if (op[1] == 0)
12981 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
12982 else if (op[2] == 0)
12983 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
252b5132
RH
12984 else
12985 {
c0ebe874
RS
12986 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12987 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
252b5132 12988 }
8fc2e39e 12989 break;
252b5132
RH
12990
12991 case M_SNE_I:
b0e6f033 12992 if (imm_expr.X_add_number == 0)
252b5132 12993 {
c0ebe874 12994 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
8fc2e39e 12995 break;
252b5132 12996 }
c0ebe874 12997 if (op[1] == 0)
252b5132 12998 {
1661c76c 12999 as_warn (_("instruction %s: result is always true"),
252b5132 13000 ip->insn_mo->name);
bad1aba3 13001 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
c0ebe874 13002 op[0], 0, BFD_RELOC_LO16);
8fc2e39e 13003 break;
252b5132 13004 }
dd3cbb7e
NC
13005 if (CPU_HAS_SEQ (mips_opts.arch)
13006 && -512 <= imm_expr.X_add_number
13007 && imm_expr.X_add_number < 512)
13008 {
c0ebe874 13009 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
750bdd57 13010 (int) imm_expr.X_add_number);
dd3cbb7e
NC
13011 break;
13012 }
b0e6f033 13013 if (imm_expr.X_add_number >= 0
252b5132
RH
13014 && imm_expr.X_add_number < 0x10000)
13015 {
c0ebe874
RS
13016 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13017 BFD_RELOC_LO16);
252b5132 13018 }
b0e6f033 13019 else if (imm_expr.X_add_number > -0x8000
252b5132
RH
13020 && imm_expr.X_add_number < 0)
13021 {
13022 imm_expr.X_add_number = -imm_expr.X_add_number;
bad1aba3 13023 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
c0ebe874 13024 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132 13025 }
dd3cbb7e
NC
13026 else if (CPU_HAS_SEQ (mips_opts.arch))
13027 {
13028 used_at = 1;
bad1aba3 13029 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13030 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
dd3cbb7e
NC
13031 break;
13032 }
252b5132
RH
13033 else
13034 {
bad1aba3 13035 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13036 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
252b5132
RH
13037 used_at = 1;
13038 }
c0ebe874 13039 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
8fc2e39e 13040 break;
252b5132 13041
df58fc94
RS
13042 case M_SUB_I:
13043 s = "addi";
13044 s2 = "sub";
13045 goto do_subi;
13046 case M_SUBU_I:
13047 s = "addiu";
13048 s2 = "subu";
13049 goto do_subi;
252b5132
RH
13050 case M_DSUB_I:
13051 dbl = 1;
df58fc94
RS
13052 s = "daddi";
13053 s2 = "dsub";
13054 if (!mips_opts.micromips)
13055 goto do_subi;
b0e6f033 13056 if (imm_expr.X_add_number > -0x200
df58fc94 13057 && imm_expr.X_add_number <= 0x200)
252b5132 13058 {
b0e6f033
RS
13059 macro_build (NULL, s, "t,r,.", op[0], op[1],
13060 (int) -imm_expr.X_add_number);
8fc2e39e 13061 break;
252b5132 13062 }
df58fc94 13063 goto do_subi_i;
252b5132
RH
13064 case M_DSUBU_I:
13065 dbl = 1;
df58fc94
RS
13066 s = "daddiu";
13067 s2 = "dsubu";
13068 do_subi:
b0e6f033 13069 if (imm_expr.X_add_number > -0x8000
252b5132
RH
13070 && imm_expr.X_add_number <= 0x8000)
13071 {
13072 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13073 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 13074 break;
252b5132 13075 }
df58fc94 13076 do_subi_i:
8fc2e39e 13077 used_at = 1;
67c0d1eb 13078 load_register (AT, &imm_expr, dbl);
c0ebe874 13079 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
13080 break;
13081
13082 case M_TEQ_I:
13083 s = "teq";
13084 goto trap;
13085 case M_TGE_I:
13086 s = "tge";
13087 goto trap;
13088 case M_TGEU_I:
13089 s = "tgeu";
13090 goto trap;
13091 case M_TLT_I:
13092 s = "tlt";
13093 goto trap;
13094 case M_TLTU_I:
13095 s = "tltu";
13096 goto trap;
13097 case M_TNE_I:
13098 s = "tne";
13099 trap:
8fc2e39e 13100 used_at = 1;
bad1aba3 13101 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13102 macro_build (NULL, s, "s,t", op[0], AT);
252b5132
RH
13103 break;
13104
252b5132 13105 case M_TRUNCWS:
43841e91 13106 case M_TRUNCWD:
df58fc94 13107 gas_assert (!mips_opts.micromips);
0aa27725 13108 gas_assert (mips_opts.isa == ISA_MIPS1);
8fc2e39e 13109 used_at = 1;
252b5132
RH
13110
13111 /*
13112 * Is the double cfc1 instruction a bug in the mips assembler;
13113 * or is there a reason for it?
13114 */
7d10b47d 13115 start_noreorder ();
c0ebe874
RS
13116 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13117 macro_build (NULL, "cfc1", "t,G", op[2], RA);
67c0d1eb 13118 macro_build (NULL, "nop", "");
252b5132 13119 expr1.X_add_number = 3;
c0ebe874 13120 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
252b5132 13121 expr1.X_add_number = 2;
67c0d1eb
RS
13122 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13123 macro_build (NULL, "ctc1", "t,G", AT, RA);
13124 macro_build (NULL, "nop", "");
13125 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
c0ebe874
RS
13126 op[0], op[1]);
13127 macro_build (NULL, "ctc1", "t,G", op[2], RA);
67c0d1eb 13128 macro_build (NULL, "nop", "");
7d10b47d 13129 end_noreorder ();
252b5132
RH
13130 break;
13131
f2ae14a1 13132 case M_ULH_AB:
252b5132 13133 s = "lb";
df58fc94
RS
13134 s2 = "lbu";
13135 off = 1;
13136 goto uld_st;
f2ae14a1 13137 case M_ULHU_AB:
252b5132 13138 s = "lbu";
df58fc94
RS
13139 s2 = "lbu";
13140 off = 1;
13141 goto uld_st;
f2ae14a1 13142 case M_ULW_AB:
df58fc94
RS
13143 s = "lwl";
13144 s2 = "lwr";
7f3c4072 13145 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
13146 off = 3;
13147 goto uld_st;
f2ae14a1 13148 case M_ULD_AB:
252b5132
RH
13149 s = "ldl";
13150 s2 = "ldr";
7f3c4072 13151 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 13152 off = 7;
df58fc94 13153 goto uld_st;
f2ae14a1 13154 case M_USH_AB:
df58fc94
RS
13155 s = "sb";
13156 s2 = "sb";
13157 off = 1;
13158 ust = 1;
13159 goto uld_st;
f2ae14a1 13160 case M_USW_AB:
df58fc94
RS
13161 s = "swl";
13162 s2 = "swr";
7f3c4072 13163 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 13164 off = 3;
df58fc94
RS
13165 ust = 1;
13166 goto uld_st;
f2ae14a1 13167 case M_USD_AB:
df58fc94
RS
13168 s = "sdl";
13169 s2 = "sdr";
7f3c4072 13170 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
13171 off = 7;
13172 ust = 1;
13173
13174 uld_st:
c0ebe874 13175 breg = op[2];
f2ae14a1 13176 large_offset = !small_offset_p (off, align, offbits);
df58fc94
RS
13177 ep = &offset_expr;
13178 expr1.X_add_number = 0;
f2ae14a1 13179 if (large_offset)
df58fc94
RS
13180 {
13181 used_at = 1;
13182 tempreg = AT;
f2ae14a1
RS
13183 if (small_offset_p (0, align, 16))
13184 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13185 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13186 else
13187 {
13188 load_address (tempreg, ep, &used_at);
13189 if (breg != 0)
13190 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13191 tempreg, tempreg, breg);
13192 }
13193 offset_reloc[0] = BFD_RELOC_LO16;
13194 offset_reloc[1] = BFD_RELOC_UNUSED;
13195 offset_reloc[2] = BFD_RELOC_UNUSED;
df58fc94 13196 breg = tempreg;
c0ebe874 13197 tempreg = op[0];
df58fc94
RS
13198 ep = &expr1;
13199 }
c0ebe874 13200 else if (!ust && op[0] == breg)
8fc2e39e
TS
13201 {
13202 used_at = 1;
13203 tempreg = AT;
13204 }
252b5132 13205 else
c0ebe874 13206 tempreg = op[0];
af22f5b2 13207
df58fc94
RS
13208 if (off == 1)
13209 goto ulh_sh;
252b5132 13210
90ecf173 13211 if (!target_big_endian)
df58fc94 13212 ep->X_add_number += off;
f2ae14a1 13213 if (offbits == 12)
c8276761 13214 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
13215 else
13216 macro_build (ep, s, "t,o(b)", tempreg, -1,
13217 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94 13218
90ecf173 13219 if (!target_big_endian)
df58fc94 13220 ep->X_add_number -= off;
252b5132 13221 else
df58fc94 13222 ep->X_add_number += off;
f2ae14a1 13223 if (offbits == 12)
df58fc94 13224 macro_build (NULL, s2, "t,~(b)",
c8276761 13225 tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
13226 else
13227 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13228 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 13229
df58fc94 13230 /* If necessary, move the result in tempreg to the final destination. */
c0ebe874 13231 if (!ust && op[0] != tempreg)
df58fc94
RS
13232 {
13233 /* Protect second load's delay slot. */
13234 load_delay_nop ();
c0ebe874 13235 move_register (op[0], tempreg);
df58fc94 13236 }
8fc2e39e 13237 break;
252b5132 13238
df58fc94 13239 ulh_sh:
d6bc6245 13240 used_at = 1;
df58fc94
RS
13241 if (target_big_endian == ust)
13242 ep->X_add_number += off;
c0ebe874 13243 tempreg = ust || large_offset ? op[0] : AT;
f2ae14a1
RS
13244 macro_build (ep, s, "t,o(b)", tempreg, -1,
13245 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94
RS
13246
13247 /* For halfword transfers we need a temporary register to shuffle
13248 bytes. Unfortunately for M_USH_A we have none available before
13249 the next store as AT holds the base address. We deal with this
13250 case by clobbering TREG and then restoring it as with ULH. */
c0ebe874 13251 tempreg = ust == large_offset ? op[0] : AT;
df58fc94 13252 if (ust)
c0ebe874 13253 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
df58fc94
RS
13254
13255 if (target_big_endian == ust)
13256 ep->X_add_number -= off;
252b5132 13257 else
df58fc94 13258 ep->X_add_number += off;
f2ae14a1
RS
13259 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13260 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 13261
df58fc94 13262 /* For M_USH_A re-retrieve the LSB. */
f2ae14a1 13263 if (ust && large_offset)
df58fc94
RS
13264 {
13265 if (target_big_endian)
13266 ep->X_add_number += off;
13267 else
13268 ep->X_add_number -= off;
f2ae14a1
RS
13269 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13270 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
df58fc94
RS
13271 }
13272 /* For ULH and M_USH_A OR the LSB in. */
f2ae14a1 13273 if (!ust || large_offset)
df58fc94 13274 {
c0ebe874 13275 tempreg = !large_offset ? AT : op[0];
df58fc94 13276 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
c0ebe874 13277 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
df58fc94 13278 }
252b5132
RH
13279 break;
13280
13281 default:
13282 /* FIXME: Check if this is one of the itbl macros, since they
bdaaa2e1 13283 are added dynamically. */
1661c76c 13284 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
252b5132
RH
13285 break;
13286 }
741fe287 13287 if (!mips_opts.at && used_at)
1661c76c 13288 as_bad (_("macro used $at after \".set noat\""));
252b5132
RH
13289}
13290
13291/* Implement macros in mips16 mode. */
13292
13293static void
17a2f251 13294mips16_macro (struct mips_cl_insn *ip)
252b5132 13295{
c0ebe874 13296 const struct mips_operand_array *operands;
252b5132 13297 int mask;
c0ebe874 13298 int tmp;
252b5132
RH
13299 expressionS expr1;
13300 int dbl;
13301 const char *s, *s2, *s3;
c0ebe874
RS
13302 unsigned int op[MAX_OPERANDS];
13303 unsigned int i;
252b5132
RH
13304
13305 mask = ip->insn_mo->mask;
13306
c0ebe874
RS
13307 operands = insn_operands (ip);
13308 for (i = 0; i < MAX_OPERANDS; i++)
13309 if (operands->operand[i])
13310 op[i] = insn_extract_operand (ip, operands->operand[i]);
13311 else
13312 op[i] = -1;
252b5132 13313
252b5132
RH
13314 expr1.X_op = O_constant;
13315 expr1.X_op_symbol = NULL;
13316 expr1.X_add_symbol = NULL;
13317 expr1.X_add_number = 1;
13318
13319 dbl = 0;
13320
13321 switch (mask)
13322 {
13323 default:
b37df7c4 13324 abort ();
252b5132
RH
13325
13326 case M_DDIV_3:
13327 dbl = 1;
13328 case M_DIV_3:
13329 s = "mflo";
13330 goto do_div3;
13331 case M_DREM_3:
13332 dbl = 1;
13333 case M_REM_3:
13334 s = "mfhi";
13335 do_div3:
7d10b47d 13336 start_noreorder ();
c0ebe874 13337 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
252b5132 13338 expr1.X_add_number = 2;
c0ebe874 13339 macro_build (&expr1, "bnez", "x,p", op[2]);
67c0d1eb 13340 macro_build (NULL, "break", "6", 7);
bdaaa2e1 13341
252b5132
RH
13342 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13343 since that causes an overflow. We should do that as well,
13344 but I don't see how to do the comparisons without a temporary
13345 register. */
7d10b47d 13346 end_noreorder ();
c0ebe874 13347 macro_build (NULL, s, "x", op[0]);
252b5132
RH
13348 break;
13349
13350 case M_DIVU_3:
13351 s = "divu";
13352 s2 = "mflo";
13353 goto do_divu3;
13354 case M_REMU_3:
13355 s = "divu";
13356 s2 = "mfhi";
13357 goto do_divu3;
13358 case M_DDIVU_3:
13359 s = "ddivu";
13360 s2 = "mflo";
13361 goto do_divu3;
13362 case M_DREMU_3:
13363 s = "ddivu";
13364 s2 = "mfhi";
13365 do_divu3:
7d10b47d 13366 start_noreorder ();
c0ebe874 13367 macro_build (NULL, s, "0,x,y", op[1], op[2]);
252b5132 13368 expr1.X_add_number = 2;
c0ebe874 13369 macro_build (&expr1, "bnez", "x,p", op[2]);
67c0d1eb 13370 macro_build (NULL, "break", "6", 7);
7d10b47d 13371 end_noreorder ();
c0ebe874 13372 macro_build (NULL, s2, "x", op[0]);
252b5132
RH
13373 break;
13374
13375 case M_DMUL:
13376 dbl = 1;
13377 case M_MUL:
c0ebe874
RS
13378 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13379 macro_build (NULL, "mflo", "x", op[0]);
8fc2e39e 13380 break;
252b5132
RH
13381
13382 case M_DSUBU_I:
13383 dbl = 1;
13384 goto do_subu;
13385 case M_SUBU_I:
13386 do_subu:
252b5132 13387 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13388 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
252b5132
RH
13389 break;
13390
13391 case M_SUBU_I_2:
252b5132 13392 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13393 macro_build (&imm_expr, "addiu", "x,k", op[0]);
252b5132
RH
13394 break;
13395
13396 case M_DSUBU_I_2:
252b5132 13397 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13398 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
252b5132
RH
13399 break;
13400
13401 case M_BEQ:
13402 s = "cmp";
13403 s2 = "bteqz";
13404 goto do_branch;
13405 case M_BNE:
13406 s = "cmp";
13407 s2 = "btnez";
13408 goto do_branch;
13409 case M_BLT:
13410 s = "slt";
13411 s2 = "btnez";
13412 goto do_branch;
13413 case M_BLTU:
13414 s = "sltu";
13415 s2 = "btnez";
13416 goto do_branch;
13417 case M_BLE:
13418 s = "slt";
13419 s2 = "bteqz";
13420 goto do_reverse_branch;
13421 case M_BLEU:
13422 s = "sltu";
13423 s2 = "bteqz";
13424 goto do_reverse_branch;
13425 case M_BGE:
13426 s = "slt";
13427 s2 = "bteqz";
13428 goto do_branch;
13429 case M_BGEU:
13430 s = "sltu";
13431 s2 = "bteqz";
13432 goto do_branch;
13433 case M_BGT:
13434 s = "slt";
13435 s2 = "btnez";
13436 goto do_reverse_branch;
13437 case M_BGTU:
13438 s = "sltu";
13439 s2 = "btnez";
13440
13441 do_reverse_branch:
c0ebe874
RS
13442 tmp = op[1];
13443 op[1] = op[0];
13444 op[0] = tmp;
252b5132
RH
13445
13446 do_branch:
c0ebe874 13447 macro_build (NULL, s, "x,y", op[0], op[1]);
67c0d1eb 13448 macro_build (&offset_expr, s2, "p");
252b5132
RH
13449 break;
13450
13451 case M_BEQ_I:
13452 s = "cmpi";
13453 s2 = "bteqz";
13454 s3 = "x,U";
13455 goto do_branch_i;
13456 case M_BNE_I:
13457 s = "cmpi";
13458 s2 = "btnez";
13459 s3 = "x,U";
13460 goto do_branch_i;
13461 case M_BLT_I:
13462 s = "slti";
13463 s2 = "btnez";
13464 s3 = "x,8";
13465 goto do_branch_i;
13466 case M_BLTU_I:
13467 s = "sltiu";
13468 s2 = "btnez";
13469 s3 = "x,8";
13470 goto do_branch_i;
13471 case M_BLE_I:
13472 s = "slti";
13473 s2 = "btnez";
13474 s3 = "x,8";
13475 goto do_addone_branch_i;
13476 case M_BLEU_I:
13477 s = "sltiu";
13478 s2 = "btnez";
13479 s3 = "x,8";
13480 goto do_addone_branch_i;
13481 case M_BGE_I:
13482 s = "slti";
13483 s2 = "bteqz";
13484 s3 = "x,8";
13485 goto do_branch_i;
13486 case M_BGEU_I:
13487 s = "sltiu";
13488 s2 = "bteqz";
13489 s3 = "x,8";
13490 goto do_branch_i;
13491 case M_BGT_I:
13492 s = "slti";
13493 s2 = "bteqz";
13494 s3 = "x,8";
13495 goto do_addone_branch_i;
13496 case M_BGTU_I:
13497 s = "sltiu";
13498 s2 = "bteqz";
13499 s3 = "x,8";
13500
13501 do_addone_branch_i:
252b5132
RH
13502 ++imm_expr.X_add_number;
13503
13504 do_branch_i:
c0ebe874 13505 macro_build (&imm_expr, s, s3, op[0]);
67c0d1eb 13506 macro_build (&offset_expr, s2, "p");
252b5132
RH
13507 break;
13508
13509 case M_ABS:
13510 expr1.X_add_number = 0;
c0ebe874
RS
13511 macro_build (&expr1, "slti", "x,8", op[1]);
13512 if (op[0] != op[1])
13513 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
252b5132 13514 expr1.X_add_number = 2;
67c0d1eb 13515 macro_build (&expr1, "bteqz", "p");
c0ebe874 13516 macro_build (NULL, "neg", "x,w", op[0], op[0]);
0acfaea6 13517 break;
252b5132
RH
13518 }
13519}
13520
14daeee3
RS
13521/* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13522 opcode bits in *OPCODE_EXTRA. */
13523
13524static struct mips_opcode *
13525mips_lookup_insn (struct hash_control *hash, const char *start,
da8bca91 13526 ssize_t length, unsigned int *opcode_extra)
14daeee3
RS
13527{
13528 char *name, *dot, *p;
13529 unsigned int mask, suffix;
da8bca91 13530 ssize_t opend;
14daeee3
RS
13531 struct mips_opcode *insn;
13532
13533 /* Make a copy of the instruction so that we can fiddle with it. */
e1fa0163 13534 name = xmalloc (length + 1);
14daeee3
RS
13535 memcpy (name, start, length);
13536 name[length] = '\0';
13537
13538 /* Look up the instruction as-is. */
13539 insn = (struct mips_opcode *) hash_find (hash, name);
ee5734f0 13540 if (insn)
e1fa0163 13541 goto end;
14daeee3
RS
13542
13543 dot = strchr (name, '.');
13544 if (dot && dot[1])
13545 {
13546 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13547 p = mips_parse_vu0_channels (dot + 1, &mask);
13548 if (*p == 0 && mask != 0)
13549 {
13550 *dot = 0;
13551 insn = (struct mips_opcode *) hash_find (hash, name);
13552 *dot = '.';
13553 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13554 {
13555 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
e1fa0163 13556 goto end;
14daeee3
RS
13557 }
13558 }
13559 }
13560
13561 if (mips_opts.micromips)
13562 {
13563 /* See if there's an instruction size override suffix,
13564 either `16' or `32', at the end of the mnemonic proper,
13565 that defines the operation, i.e. before the first `.'
13566 character if any. Strip it and retry. */
13567 opend = dot != NULL ? dot - name : length;
13568 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13569 suffix = 2;
13570 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13571 suffix = 4;
13572 else
13573 suffix = 0;
13574 if (suffix)
13575 {
13576 memcpy (name + opend - 2, name + opend, length - opend + 1);
13577 insn = (struct mips_opcode *) hash_find (hash, name);
ee5734f0 13578 if (insn)
14daeee3
RS
13579 {
13580 forced_insn_length = suffix;
e1fa0163 13581 goto end;
14daeee3
RS
13582 }
13583 }
13584 }
13585
e1fa0163
NC
13586 insn = NULL;
13587 end:
13588 free (name);
13589 return insn;
14daeee3
RS
13590}
13591
77bd4346 13592/* Assemble an instruction into its binary format. If the instruction
e423441d
RS
13593 is a macro, set imm_expr and offset_expr to the values associated
13594 with "I" and "A" operands respectively. Otherwise store the value
13595 of the relocatable field (if any) in offset_expr. In both cases
13596 set offset_reloc to the relocation operators applied to offset_expr. */
252b5132
RH
13597
13598static void
60f20e8b 13599mips_ip (char *str, struct mips_cl_insn *insn)
252b5132 13600{
60f20e8b 13601 const struct mips_opcode *first, *past;
df58fc94 13602 struct hash_control *hash;
a92713e6 13603 char format;
14daeee3 13604 size_t end;
a92713e6 13605 struct mips_operand_token *tokens;
14daeee3 13606 unsigned int opcode_extra;
252b5132 13607
df58fc94
RS
13608 if (mips_opts.micromips)
13609 {
13610 hash = micromips_op_hash;
13611 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13612 }
13613 else
13614 {
13615 hash = op_hash;
13616 past = &mips_opcodes[NUMOPCODES];
13617 }
13618 forced_insn_length = 0;
14daeee3 13619 opcode_extra = 0;
252b5132 13620
df58fc94 13621 /* We first try to match an instruction up to a space or to the end. */
a40bc9dd
RS
13622 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13623 continue;
bdaaa2e1 13624
60f20e8b
RS
13625 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13626 if (first == NULL)
252b5132 13627 {
1661c76c 13628 set_insn_error (0, _("unrecognized opcode"));
a40bc9dd 13629 return;
252b5132
RH
13630 }
13631
60f20e8b 13632 if (strcmp (first->name, "li.s") == 0)
a92713e6 13633 format = 'f';
60f20e8b 13634 else if (strcmp (first->name, "li.d") == 0)
a92713e6
RS
13635 format = 'd';
13636 else
13637 format = 0;
13638 tokens = mips_parse_arguments (str + end, format);
13639 if (!tokens)
13640 return;
13641
60f20e8b
RS
13642 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13643 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
1661c76c 13644 set_insn_error (0, _("invalid operands"));
df58fc94 13645
e3de51ce 13646 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
13647}
13648
77bd4346
RS
13649/* As for mips_ip, but used when assembling MIPS16 code.
13650 Also set forced_insn_length to the resulting instruction size in
13651 bytes if the user explicitly requested a small or extended instruction. */
252b5132
RH
13652
13653static void
60f20e8b 13654mips16_ip (char *str, struct mips_cl_insn *insn)
252b5132 13655{
1a00e612 13656 char *end, *s, c;
60f20e8b 13657 struct mips_opcode *first;
a92713e6 13658 struct mips_operand_token *tokens;
252b5132 13659
df58fc94 13660 forced_insn_length = 0;
252b5132 13661
3882b010 13662 for (s = str; ISLOWER (*s); ++s)
252b5132 13663 ;
1a00e612
RS
13664 end = s;
13665 c = *end;
13666 switch (c)
252b5132
RH
13667 {
13668 case '\0':
13669 break;
13670
13671 case ' ':
1a00e612 13672 s++;
252b5132
RH
13673 break;
13674
13675 case '.':
13676 if (s[1] == 't' && s[2] == ' ')
13677 {
df58fc94 13678 forced_insn_length = 2;
252b5132
RH
13679 s += 3;
13680 break;
13681 }
13682 else if (s[1] == 'e' && s[2] == ' ')
13683 {
df58fc94 13684 forced_insn_length = 4;
252b5132
RH
13685 s += 3;
13686 break;
13687 }
13688 /* Fall through. */
13689 default:
1661c76c 13690 set_insn_error (0, _("unrecognized opcode"));
252b5132
RH
13691 return;
13692 }
13693
df58fc94
RS
13694 if (mips_opts.noautoextend && !forced_insn_length)
13695 forced_insn_length = 2;
252b5132 13696
1a00e612 13697 *end = 0;
60f20e8b 13698 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
1a00e612
RS
13699 *end = c;
13700
60f20e8b 13701 if (!first)
252b5132 13702 {
1661c76c 13703 set_insn_error (0, _("unrecognized opcode"));
252b5132
RH
13704 return;
13705 }
13706
a92713e6
RS
13707 tokens = mips_parse_arguments (s, 0);
13708 if (!tokens)
13709 return;
13710
60f20e8b 13711 if (!match_mips16_insns (insn, first, tokens))
1661c76c 13712 set_insn_error (0, _("invalid operands"));
252b5132 13713
e3de51ce 13714 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
13715}
13716
b886a2ab
RS
13717/* Marshal immediate value VAL for an extended MIPS16 instruction.
13718 NBITS is the number of significant bits in VAL. */
13719
13720static unsigned long
13721mips16_immed_extend (offsetT val, unsigned int nbits)
13722{
13723 int extval;
13724 if (nbits == 16)
13725 {
13726 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13727 val &= 0x1f;
13728 }
13729 else if (nbits == 15)
13730 {
13731 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13732 val &= 0xf;
13733 }
13734 else
13735 {
13736 extval = ((val & 0x1f) << 6) | (val & 0x20);
13737 val = 0;
13738 }
13739 return (extval << 16) | val;
13740}
13741
3ccad066
RS
13742/* Like decode_mips16_operand, but require the operand to be defined and
13743 require it to be an integer. */
13744
13745static const struct mips_int_operand *
13746mips16_immed_operand (int type, bfd_boolean extended_p)
13747{
13748 const struct mips_operand *operand;
13749
13750 operand = decode_mips16_operand (type, extended_p);
13751 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13752 abort ();
13753 return (const struct mips_int_operand *) operand;
13754}
13755
13756/* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13757
13758static bfd_boolean
13759mips16_immed_in_range_p (const struct mips_int_operand *operand,
13760 bfd_reloc_code_real_type reloc, offsetT sval)
13761{
13762 int min_val, max_val;
13763
13764 min_val = mips_int_operand_min (operand);
13765 max_val = mips_int_operand_max (operand);
13766 if (reloc != BFD_RELOC_UNUSED)
13767 {
13768 if (min_val < 0)
13769 sval = SEXT_16BIT (sval);
13770 else
13771 sval &= 0xffff;
13772 }
13773
13774 return (sval >= min_val
13775 && sval <= max_val
13776 && (sval & ((1 << operand->shift) - 1)) == 0);
13777}
13778
5c04167a
RS
13779/* Install immediate value VAL into MIPS16 instruction *INSN,
13780 extending it if necessary. The instruction in *INSN may
13781 already be extended.
13782
43c0598f
RS
13783 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13784 if none. In the former case, VAL is a 16-bit number with no
13785 defined signedness.
13786
13787 TYPE is the type of the immediate field. USER_INSN_LENGTH
13788 is the length that the user requested, or 0 if none. */
252b5132
RH
13789
13790static void
3b4dbbbf 13791mips16_immed (const char *file, unsigned int line, int type,
43c0598f 13792 bfd_reloc_code_real_type reloc, offsetT val,
5c04167a 13793 unsigned int user_insn_length, unsigned long *insn)
252b5132 13794{
3ccad066
RS
13795 const struct mips_int_operand *operand;
13796 unsigned int uval, length;
252b5132 13797
3ccad066
RS
13798 operand = mips16_immed_operand (type, FALSE);
13799 if (!mips16_immed_in_range_p (operand, reloc, val))
5c04167a
RS
13800 {
13801 /* We need an extended instruction. */
13802 if (user_insn_length == 2)
13803 as_bad_where (file, line, _("invalid unextended operand value"));
13804 else
13805 *insn |= MIPS16_EXTEND;
13806 }
13807 else if (user_insn_length == 4)
13808 {
13809 /* The operand doesn't force an unextended instruction to be extended.
13810 Warn if the user wanted an extended instruction anyway. */
13811 *insn |= MIPS16_EXTEND;
13812 as_warn_where (file, line,
13813 _("extended operand requested but not required"));
13814 }
252b5132 13815
3ccad066
RS
13816 length = mips16_opcode_length (*insn);
13817 if (length == 4)
252b5132 13818 {
3ccad066
RS
13819 operand = mips16_immed_operand (type, TRUE);
13820 if (!mips16_immed_in_range_p (operand, reloc, val))
13821 as_bad_where (file, line,
13822 _("operand value out of range for instruction"));
252b5132 13823 }
3ccad066
RS
13824 uval = ((unsigned int) val >> operand->shift) - operand->bias;
13825 if (length == 2)
13826 *insn = mips_insert_operand (&operand->root, *insn, uval);
252b5132 13827 else
3ccad066 13828 *insn |= mips16_immed_extend (uval, operand->root.size);
252b5132
RH
13829}
13830\f
d6f16593 13831struct percent_op_match
ad8d3bb3 13832{
5e0116d5
RS
13833 const char *str;
13834 bfd_reloc_code_real_type reloc;
d6f16593
MR
13835};
13836
13837static const struct percent_op_match mips_percent_op[] =
ad8d3bb3 13838{
5e0116d5 13839 {"%lo", BFD_RELOC_LO16},
5e0116d5
RS
13840 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
13841 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
13842 {"%call16", BFD_RELOC_MIPS_CALL16},
13843 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
13844 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
13845 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
13846 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
13847 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
13848 {"%got", BFD_RELOC_MIPS_GOT16},
13849 {"%gp_rel", BFD_RELOC_GPREL16},
13850 {"%half", BFD_RELOC_16},
13851 {"%highest", BFD_RELOC_MIPS_HIGHEST},
13852 {"%higher", BFD_RELOC_MIPS_HIGHER},
13853 {"%neg", BFD_RELOC_MIPS_SUB},
3f98094e
DJ
13854 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
13855 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
13856 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
13857 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
13858 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
13859 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
13860 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
7361da2c
AB
13861 {"%hi", BFD_RELOC_HI16_S},
13862 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
13863 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
ad8d3bb3
TS
13864};
13865
d6f16593
MR
13866static const struct percent_op_match mips16_percent_op[] =
13867{
13868 {"%lo", BFD_RELOC_MIPS16_LO16},
13869 {"%gprel", BFD_RELOC_MIPS16_GPREL},
738e5348
RS
13870 {"%got", BFD_RELOC_MIPS16_GOT16},
13871 {"%call16", BFD_RELOC_MIPS16_CALL16},
d0f13682
CLT
13872 {"%hi", BFD_RELOC_MIPS16_HI16_S},
13873 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
13874 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
13875 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
13876 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
13877 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
13878 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
13879 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
d6f16593
MR
13880};
13881
252b5132 13882
5e0116d5
RS
13883/* Return true if *STR points to a relocation operator. When returning true,
13884 move *STR over the operator and store its relocation code in *RELOC.
13885 Leave both *STR and *RELOC alone when returning false. */
13886
13887static bfd_boolean
17a2f251 13888parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
252b5132 13889{
d6f16593
MR
13890 const struct percent_op_match *percent_op;
13891 size_t limit, i;
13892
13893 if (mips_opts.mips16)
13894 {
13895 percent_op = mips16_percent_op;
13896 limit = ARRAY_SIZE (mips16_percent_op);
13897 }
13898 else
13899 {
13900 percent_op = mips_percent_op;
13901 limit = ARRAY_SIZE (mips_percent_op);
13902 }
76b3015f 13903
d6f16593 13904 for (i = 0; i < limit; i++)
5e0116d5 13905 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
394f9b3a 13906 {
3f98094e
DJ
13907 int len = strlen (percent_op[i].str);
13908
13909 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
13910 continue;
13911
5e0116d5
RS
13912 *str += strlen (percent_op[i].str);
13913 *reloc = percent_op[i].reloc;
394f9b3a 13914
5e0116d5
RS
13915 /* Check whether the output BFD supports this relocation.
13916 If not, issue an error and fall back on something safe. */
13917 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
394f9b3a 13918 {
20203fb9 13919 as_bad (_("relocation %s isn't supported by the current ABI"),
5e0116d5 13920 percent_op[i].str);
01a3f561 13921 *reloc = BFD_RELOC_UNUSED;
394f9b3a 13922 }
5e0116d5 13923 return TRUE;
394f9b3a 13924 }
5e0116d5 13925 return FALSE;
394f9b3a 13926}
ad8d3bb3 13927
ad8d3bb3 13928
5e0116d5
RS
13929/* Parse string STR as a 16-bit relocatable operand. Store the
13930 expression in *EP and the relocations in the array starting
13931 at RELOC. Return the number of relocation operators used.
ad8d3bb3 13932
01a3f561 13933 On exit, EXPR_END points to the first character after the expression. */
ad8d3bb3 13934
5e0116d5 13935static size_t
17a2f251
TS
13936my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
13937 char *str)
ad8d3bb3 13938{
5e0116d5
RS
13939 bfd_reloc_code_real_type reversed_reloc[3];
13940 size_t reloc_index, i;
09b8f35a
RS
13941 int crux_depth, str_depth;
13942 char *crux;
5e0116d5
RS
13943
13944 /* Search for the start of the main expression, recoding relocations
09b8f35a
RS
13945 in REVERSED_RELOC. End the loop with CRUX pointing to the start
13946 of the main expression and with CRUX_DEPTH containing the number
13947 of open brackets at that point. */
13948 reloc_index = -1;
13949 str_depth = 0;
13950 do
fb1b3232 13951 {
09b8f35a
RS
13952 reloc_index++;
13953 crux = str;
13954 crux_depth = str_depth;
13955
13956 /* Skip over whitespace and brackets, keeping count of the number
13957 of brackets. */
13958 while (*str == ' ' || *str == '\t' || *str == '(')
13959 if (*str++ == '(')
13960 str_depth++;
5e0116d5 13961 }
09b8f35a
RS
13962 while (*str == '%'
13963 && reloc_index < (HAVE_NEWABI ? 3 : 1)
13964 && parse_relocation (&str, &reversed_reloc[reloc_index]));
ad8d3bb3 13965
09b8f35a 13966 my_getExpression (ep, crux);
5e0116d5 13967 str = expr_end;
394f9b3a 13968
5e0116d5 13969 /* Match every open bracket. */
09b8f35a 13970 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
5e0116d5 13971 if (*str++ == ')')
09b8f35a 13972 crux_depth--;
394f9b3a 13973
09b8f35a 13974 if (crux_depth > 0)
20203fb9 13975 as_bad (_("unclosed '('"));
394f9b3a 13976
5e0116d5 13977 expr_end = str;
252b5132 13978
01a3f561 13979 if (reloc_index != 0)
64bdfcaf
RS
13980 {
13981 prev_reloc_op_frag = frag_now;
13982 for (i = 0; i < reloc_index; i++)
13983 reloc[i] = reversed_reloc[reloc_index - 1 - i];
13984 }
fb1b3232 13985
5e0116d5 13986 return reloc_index;
252b5132
RH
13987}
13988
13989static void
17a2f251 13990my_getExpression (expressionS *ep, char *str)
252b5132
RH
13991{
13992 char *save_in;
13993
13994 save_in = input_line_pointer;
13995 input_line_pointer = str;
13996 expression (ep);
13997 expr_end = input_line_pointer;
13998 input_line_pointer = save_in;
252b5132
RH
13999}
14000
252b5132 14001char *
17a2f251 14002md_atof (int type, char *litP, int *sizeP)
252b5132 14003{
499ac353 14004 return ieee_md_atof (type, litP, sizeP, target_big_endian);
252b5132
RH
14005}
14006
14007void
17a2f251 14008md_number_to_chars (char *buf, valueT val, int n)
252b5132
RH
14009{
14010 if (target_big_endian)
14011 number_to_chars_bigendian (buf, val, n);
14012 else
14013 number_to_chars_littleendian (buf, val, n);
14014}
14015\f
e013f690
TS
14016static int support_64bit_objects(void)
14017{
14018 const char **list, **l;
aa3d8fdf 14019 int yes;
e013f690
TS
14020
14021 list = bfd_target_list ();
14022 for (l = list; *l != NULL; l++)
aeffff67
RS
14023 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14024 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
e013f690 14025 break;
aa3d8fdf 14026 yes = (*l != NULL);
e013f690 14027 free (list);
aa3d8fdf 14028 return yes;
e013f690
TS
14029}
14030
316f5878
RS
14031/* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14032 NEW_VALUE. Warn if another value was already specified. Note:
14033 we have to defer parsing the -march and -mtune arguments in order
14034 to handle 'from-abi' correctly, since the ABI might be specified
14035 in a later argument. */
14036
14037static void
17a2f251 14038mips_set_option_string (const char **string_ptr, const char *new_value)
316f5878
RS
14039{
14040 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
1661c76c 14041 as_warn (_("a different %s was already specified, is now %s"),
316f5878
RS
14042 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14043 new_value);
14044
14045 *string_ptr = new_value;
14046}
14047
252b5132 14048int
17a2f251 14049md_parse_option (int c, char *arg)
252b5132 14050{
c6278170
RS
14051 unsigned int i;
14052
14053 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14054 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14055 {
919731af 14056 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
c6278170
RS
14057 c == mips_ases[i].option_on);
14058 return 1;
14059 }
14060
252b5132
RH
14061 switch (c)
14062 {
119d663a
NC
14063 case OPTION_CONSTRUCT_FLOATS:
14064 mips_disable_float_construction = 0;
14065 break;
bdaaa2e1 14066
119d663a
NC
14067 case OPTION_NO_CONSTRUCT_FLOATS:
14068 mips_disable_float_construction = 1;
14069 break;
bdaaa2e1 14070
252b5132
RH
14071 case OPTION_TRAP:
14072 mips_trap = 1;
14073 break;
14074
14075 case OPTION_BREAK:
14076 mips_trap = 0;
14077 break;
14078
14079 case OPTION_EB:
14080 target_big_endian = 1;
14081 break;
14082
14083 case OPTION_EL:
14084 target_big_endian = 0;
14085 break;
14086
14087 case 'O':
4ffff32f
TS
14088 if (arg == NULL)
14089 mips_optimize = 1;
14090 else if (arg[0] == '0')
14091 mips_optimize = 0;
14092 else if (arg[0] == '1')
252b5132
RH
14093 mips_optimize = 1;
14094 else
14095 mips_optimize = 2;
14096 break;
14097
14098 case 'g':
14099 if (arg == NULL)
14100 mips_debug = 2;
14101 else
14102 mips_debug = atoi (arg);
252b5132
RH
14103 break;
14104
14105 case OPTION_MIPS1:
0b35dfee 14106 file_mips_opts.isa = ISA_MIPS1;
252b5132
RH
14107 break;
14108
14109 case OPTION_MIPS2:
0b35dfee 14110 file_mips_opts.isa = ISA_MIPS2;
252b5132
RH
14111 break;
14112
14113 case OPTION_MIPS3:
0b35dfee 14114 file_mips_opts.isa = ISA_MIPS3;
252b5132
RH
14115 break;
14116
14117 case OPTION_MIPS4:
0b35dfee 14118 file_mips_opts.isa = ISA_MIPS4;
e7af610e
NC
14119 break;
14120
84ea6cf2 14121 case OPTION_MIPS5:
0b35dfee 14122 file_mips_opts.isa = ISA_MIPS5;
84ea6cf2
NC
14123 break;
14124
e7af610e 14125 case OPTION_MIPS32:
0b35dfee 14126 file_mips_opts.isa = ISA_MIPS32;
252b5132
RH
14127 break;
14128
af7ee8bf 14129 case OPTION_MIPS32R2:
0b35dfee 14130 file_mips_opts.isa = ISA_MIPS32R2;
af7ee8bf
CD
14131 break;
14132
ae52f483 14133 case OPTION_MIPS32R3:
0ae19f05 14134 file_mips_opts.isa = ISA_MIPS32R3;
ae52f483
AB
14135 break;
14136
14137 case OPTION_MIPS32R5:
0ae19f05 14138 file_mips_opts.isa = ISA_MIPS32R5;
ae52f483
AB
14139 break;
14140
7361da2c
AB
14141 case OPTION_MIPS32R6:
14142 file_mips_opts.isa = ISA_MIPS32R6;
14143 break;
14144
5f74bc13 14145 case OPTION_MIPS64R2:
0b35dfee 14146 file_mips_opts.isa = ISA_MIPS64R2;
5f74bc13
CD
14147 break;
14148
ae52f483 14149 case OPTION_MIPS64R3:
0ae19f05 14150 file_mips_opts.isa = ISA_MIPS64R3;
ae52f483
AB
14151 break;
14152
14153 case OPTION_MIPS64R5:
0ae19f05 14154 file_mips_opts.isa = ISA_MIPS64R5;
ae52f483
AB
14155 break;
14156
7361da2c
AB
14157 case OPTION_MIPS64R6:
14158 file_mips_opts.isa = ISA_MIPS64R6;
14159 break;
14160
84ea6cf2 14161 case OPTION_MIPS64:
0b35dfee 14162 file_mips_opts.isa = ISA_MIPS64;
84ea6cf2
NC
14163 break;
14164
ec68c924 14165 case OPTION_MTUNE:
316f5878
RS
14166 mips_set_option_string (&mips_tune_string, arg);
14167 break;
ec68c924 14168
316f5878
RS
14169 case OPTION_MARCH:
14170 mips_set_option_string (&mips_arch_string, arg);
252b5132
RH
14171 break;
14172
14173 case OPTION_M4650:
316f5878
RS
14174 mips_set_option_string (&mips_arch_string, "4650");
14175 mips_set_option_string (&mips_tune_string, "4650");
252b5132
RH
14176 break;
14177
14178 case OPTION_NO_M4650:
14179 break;
14180
14181 case OPTION_M4010:
316f5878
RS
14182 mips_set_option_string (&mips_arch_string, "4010");
14183 mips_set_option_string (&mips_tune_string, "4010");
252b5132
RH
14184 break;
14185
14186 case OPTION_NO_M4010:
14187 break;
14188
14189 case OPTION_M4100:
316f5878
RS
14190 mips_set_option_string (&mips_arch_string, "4100");
14191 mips_set_option_string (&mips_tune_string, "4100");
252b5132
RH
14192 break;
14193
14194 case OPTION_NO_M4100:
14195 break;
14196
252b5132 14197 case OPTION_M3900:
316f5878
RS
14198 mips_set_option_string (&mips_arch_string, "3900");
14199 mips_set_option_string (&mips_tune_string, "3900");
252b5132 14200 break;
bdaaa2e1 14201
252b5132
RH
14202 case OPTION_NO_M3900:
14203 break;
14204
df58fc94 14205 case OPTION_MICROMIPS:
919731af 14206 if (file_mips_opts.mips16 == 1)
df58fc94
RS
14207 {
14208 as_bad (_("-mmicromips cannot be used with -mips16"));
14209 return 0;
14210 }
919731af 14211 file_mips_opts.micromips = 1;
df58fc94
RS
14212 mips_no_prev_insn ();
14213 break;
14214
14215 case OPTION_NO_MICROMIPS:
919731af 14216 file_mips_opts.micromips = 0;
df58fc94
RS
14217 mips_no_prev_insn ();
14218 break;
14219
252b5132 14220 case OPTION_MIPS16:
919731af 14221 if (file_mips_opts.micromips == 1)
df58fc94
RS
14222 {
14223 as_bad (_("-mips16 cannot be used with -micromips"));
14224 return 0;
14225 }
919731af 14226 file_mips_opts.mips16 = 1;
7d10b47d 14227 mips_no_prev_insn ();
252b5132
RH
14228 break;
14229
14230 case OPTION_NO_MIPS16:
919731af 14231 file_mips_opts.mips16 = 0;
7d10b47d 14232 mips_no_prev_insn ();
252b5132
RH
14233 break;
14234
6a32d874
CM
14235 case OPTION_FIX_24K:
14236 mips_fix_24k = 1;
14237 break;
14238
14239 case OPTION_NO_FIX_24K:
14240 mips_fix_24k = 0;
14241 break;
14242
a8d14a88
CM
14243 case OPTION_FIX_RM7000:
14244 mips_fix_rm7000 = 1;
14245 break;
14246
14247 case OPTION_NO_FIX_RM7000:
14248 mips_fix_rm7000 = 0;
14249 break;
14250
c67a084a
NC
14251 case OPTION_FIX_LOONGSON2F_JUMP:
14252 mips_fix_loongson2f_jump = TRUE;
14253 break;
14254
14255 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14256 mips_fix_loongson2f_jump = FALSE;
14257 break;
14258
14259 case OPTION_FIX_LOONGSON2F_NOP:
14260 mips_fix_loongson2f_nop = TRUE;
14261 break;
14262
14263 case OPTION_NO_FIX_LOONGSON2F_NOP:
14264 mips_fix_loongson2f_nop = FALSE;
14265 break;
14266
d766e8ec
RS
14267 case OPTION_FIX_VR4120:
14268 mips_fix_vr4120 = 1;
60b63b72
RS
14269 break;
14270
d766e8ec
RS
14271 case OPTION_NO_FIX_VR4120:
14272 mips_fix_vr4120 = 0;
60b63b72
RS
14273 break;
14274
7d8e00cf
RS
14275 case OPTION_FIX_VR4130:
14276 mips_fix_vr4130 = 1;
14277 break;
14278
14279 case OPTION_NO_FIX_VR4130:
14280 mips_fix_vr4130 = 0;
14281 break;
14282
d954098f
DD
14283 case OPTION_FIX_CN63XXP1:
14284 mips_fix_cn63xxp1 = TRUE;
14285 break;
14286
14287 case OPTION_NO_FIX_CN63XXP1:
14288 mips_fix_cn63xxp1 = FALSE;
14289 break;
14290
4a6a3df4
AO
14291 case OPTION_RELAX_BRANCH:
14292 mips_relax_branch = 1;
14293 break;
14294
14295 case OPTION_NO_RELAX_BRANCH:
14296 mips_relax_branch = 0;
14297 break;
14298
833794fc 14299 case OPTION_INSN32:
919731af 14300 file_mips_opts.insn32 = TRUE;
833794fc
MR
14301 break;
14302
14303 case OPTION_NO_INSN32:
919731af 14304 file_mips_opts.insn32 = FALSE;
833794fc
MR
14305 break;
14306
aa6975fb
ILT
14307 case OPTION_MSHARED:
14308 mips_in_shared = TRUE;
14309 break;
14310
14311 case OPTION_MNO_SHARED:
14312 mips_in_shared = FALSE;
14313 break;
14314
aed1a261 14315 case OPTION_MSYM32:
919731af 14316 file_mips_opts.sym32 = TRUE;
aed1a261
RS
14317 break;
14318
14319 case OPTION_MNO_SYM32:
919731af 14320 file_mips_opts.sym32 = FALSE;
aed1a261
RS
14321 break;
14322
252b5132
RH
14323 /* When generating ELF code, we permit -KPIC and -call_shared to
14324 select SVR4_PIC, and -non_shared to select no PIC. This is
14325 intended to be compatible with Irix 5. */
14326 case OPTION_CALL_SHARED:
252b5132 14327 mips_pic = SVR4_PIC;
143d77c5 14328 mips_abicalls = TRUE;
252b5132
RH
14329 break;
14330
861fb55a 14331 case OPTION_CALL_NONPIC:
861fb55a
DJ
14332 mips_pic = NO_PIC;
14333 mips_abicalls = TRUE;
14334 break;
14335
252b5132 14336 case OPTION_NON_SHARED:
252b5132 14337 mips_pic = NO_PIC;
143d77c5 14338 mips_abicalls = FALSE;
252b5132
RH
14339 break;
14340
44075ae2
TS
14341 /* The -xgot option tells the assembler to use 32 bit offsets
14342 when accessing the got in SVR4_PIC mode. It is for Irix
252b5132
RH
14343 compatibility. */
14344 case OPTION_XGOT:
14345 mips_big_got = 1;
14346 break;
14347
14348 case 'G':
6caf9ef4
TS
14349 g_switch_value = atoi (arg);
14350 g_switch_seen = 1;
252b5132
RH
14351 break;
14352
34ba82a8
TS
14353 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14354 and -mabi=64. */
252b5132 14355 case OPTION_32:
f3ded42a 14356 mips_abi = O32_ABI;
252b5132
RH
14357 break;
14358
e013f690 14359 case OPTION_N32:
316f5878 14360 mips_abi = N32_ABI;
e013f690 14361 break;
252b5132 14362
e013f690 14363 case OPTION_64:
316f5878 14364 mips_abi = N64_ABI;
f43abd2b 14365 if (!support_64bit_objects())
1661c76c 14366 as_fatal (_("no compiled in support for 64 bit object file format"));
252b5132
RH
14367 break;
14368
c97ef257 14369 case OPTION_GP32:
bad1aba3 14370 file_mips_opts.gp = 32;
c97ef257
AH
14371 break;
14372
14373 case OPTION_GP64:
bad1aba3 14374 file_mips_opts.gp = 64;
c97ef257 14375 break;
252b5132 14376
ca4e0257 14377 case OPTION_FP32:
0b35dfee 14378 file_mips_opts.fp = 32;
316f5878
RS
14379 break;
14380
351cdf24
MF
14381 case OPTION_FPXX:
14382 file_mips_opts.fp = 0;
14383 break;
14384
316f5878 14385 case OPTION_FP64:
0b35dfee 14386 file_mips_opts.fp = 64;
ca4e0257
RS
14387 break;
14388
351cdf24
MF
14389 case OPTION_ODD_SPREG:
14390 file_mips_opts.oddspreg = 1;
14391 break;
14392
14393 case OPTION_NO_ODD_SPREG:
14394 file_mips_opts.oddspreg = 0;
14395 break;
14396
037b32b9 14397 case OPTION_SINGLE_FLOAT:
0b35dfee 14398 file_mips_opts.single_float = 1;
037b32b9
AN
14399 break;
14400
14401 case OPTION_DOUBLE_FLOAT:
0b35dfee 14402 file_mips_opts.single_float = 0;
037b32b9
AN
14403 break;
14404
14405 case OPTION_SOFT_FLOAT:
0b35dfee 14406 file_mips_opts.soft_float = 1;
037b32b9
AN
14407 break;
14408
14409 case OPTION_HARD_FLOAT:
0b35dfee 14410 file_mips_opts.soft_float = 0;
037b32b9
AN
14411 break;
14412
252b5132 14413 case OPTION_MABI:
e013f690 14414 if (strcmp (arg, "32") == 0)
316f5878 14415 mips_abi = O32_ABI;
e013f690 14416 else if (strcmp (arg, "o64") == 0)
316f5878 14417 mips_abi = O64_ABI;
e013f690 14418 else if (strcmp (arg, "n32") == 0)
316f5878 14419 mips_abi = N32_ABI;
e013f690
TS
14420 else if (strcmp (arg, "64") == 0)
14421 {
316f5878 14422 mips_abi = N64_ABI;
e013f690 14423 if (! support_64bit_objects())
1661c76c 14424 as_fatal (_("no compiled in support for 64 bit object file "
e013f690
TS
14425 "format"));
14426 }
14427 else if (strcmp (arg, "eabi") == 0)
316f5878 14428 mips_abi = EABI_ABI;
e013f690 14429 else
da0e507f
TS
14430 {
14431 as_fatal (_("invalid abi -mabi=%s"), arg);
14432 return 0;
14433 }
252b5132
RH
14434 break;
14435
6b76fefe 14436 case OPTION_M7000_HILO_FIX:
b34976b6 14437 mips_7000_hilo_fix = TRUE;
6b76fefe
CM
14438 break;
14439
9ee72ff1 14440 case OPTION_MNO_7000_HILO_FIX:
b34976b6 14441 mips_7000_hilo_fix = FALSE;
6b76fefe
CM
14442 break;
14443
ecb4347a 14444 case OPTION_MDEBUG:
b34976b6 14445 mips_flag_mdebug = TRUE;
ecb4347a
DJ
14446 break;
14447
14448 case OPTION_NO_MDEBUG:
b34976b6 14449 mips_flag_mdebug = FALSE;
ecb4347a 14450 break;
dcd410fe
RO
14451
14452 case OPTION_PDR:
14453 mips_flag_pdr = TRUE;
14454 break;
14455
14456 case OPTION_NO_PDR:
14457 mips_flag_pdr = FALSE;
14458 break;
0a44bf69
RS
14459
14460 case OPTION_MVXWORKS_PIC:
14461 mips_pic = VXWORKS_PIC;
14462 break;
ecb4347a 14463
ba92f887
MR
14464 case OPTION_NAN:
14465 if (strcmp (arg, "2008") == 0)
7361da2c 14466 mips_nan2008 = 1;
ba92f887 14467 else if (strcmp (arg, "legacy") == 0)
7361da2c 14468 mips_nan2008 = 0;
ba92f887
MR
14469 else
14470 {
1661c76c 14471 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
ba92f887
MR
14472 return 0;
14473 }
14474 break;
14475
252b5132
RH
14476 default:
14477 return 0;
14478 }
14479
c67a084a
NC
14480 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14481
252b5132
RH
14482 return 1;
14483}
316f5878 14484\f
919731af 14485/* Set up globals to tune for the ISA or processor described by INFO. */
252b5132 14486
316f5878 14487static void
17a2f251 14488mips_set_tune (const struct mips_cpu_info *info)
316f5878
RS
14489{
14490 if (info != 0)
fef14a42 14491 mips_tune = info->cpu;
316f5878 14492}
80cc45a5 14493
34ba82a8 14494
252b5132 14495void
17a2f251 14496mips_after_parse_args (void)
e9670677 14497{
fef14a42
TS
14498 const struct mips_cpu_info *arch_info = 0;
14499 const struct mips_cpu_info *tune_info = 0;
14500
e9670677 14501 /* GP relative stuff not working for PE */
6caf9ef4 14502 if (strncmp (TARGET_OS, "pe", 2) == 0)
e9670677 14503 {
6caf9ef4 14504 if (g_switch_seen && g_switch_value != 0)
1661c76c 14505 as_bad (_("-G not supported in this configuration"));
e9670677
MR
14506 g_switch_value = 0;
14507 }
14508
cac012d6
AO
14509 if (mips_abi == NO_ABI)
14510 mips_abi = MIPS_DEFAULT_ABI;
14511
919731af 14512 /* The following code determines the architecture.
22923709
RS
14513 Similar code was added to GCC 3.3 (see override_options() in
14514 config/mips/mips.c). The GAS and GCC code should be kept in sync
14515 as much as possible. */
e9670677 14516
316f5878 14517 if (mips_arch_string != 0)
fef14a42 14518 arch_info = mips_parse_cpu ("-march", mips_arch_string);
e9670677 14519
0b35dfee 14520 if (file_mips_opts.isa != ISA_UNKNOWN)
e9670677 14521 {
0b35dfee 14522 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
fef14a42 14523 ISA level specified by -mipsN, while arch_info->isa contains
316f5878 14524 the -march selection (if any). */
fef14a42 14525 if (arch_info != 0)
e9670677 14526 {
316f5878
RS
14527 /* -march takes precedence over -mipsN, since it is more descriptive.
14528 There's no harm in specifying both as long as the ISA levels
14529 are the same. */
0b35dfee 14530 if (file_mips_opts.isa != arch_info->isa)
1661c76c
RS
14531 as_bad (_("-%s conflicts with the other architecture options,"
14532 " which imply -%s"),
0b35dfee 14533 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
fef14a42 14534 mips_cpu_info_from_isa (arch_info->isa)->name);
e9670677 14535 }
316f5878 14536 else
0b35dfee 14537 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
e9670677
MR
14538 }
14539
fef14a42 14540 if (arch_info == 0)
95bfe26e
MF
14541 {
14542 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14543 gas_assert (arch_info);
14544 }
e9670677 14545
fef14a42 14546 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
20203fb9 14547 as_bad (_("-march=%s is not compatible with the selected ABI"),
fef14a42
TS
14548 arch_info->name);
14549
919731af 14550 file_mips_opts.arch = arch_info->cpu;
14551 file_mips_opts.isa = arch_info->isa;
14552
14553 /* Set up initial mips_opts state. */
14554 mips_opts = file_mips_opts;
14555
14556 /* The register size inference code is now placed in
14557 file_mips_check_options. */
fef14a42 14558
0b35dfee 14559 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14560 processor. */
fef14a42
TS
14561 if (mips_tune_string != 0)
14562 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
e9670677 14563
fef14a42
TS
14564 if (tune_info == 0)
14565 mips_set_tune (arch_info);
14566 else
14567 mips_set_tune (tune_info);
e9670677 14568
ecb4347a 14569 if (mips_flag_mdebug < 0)
e8044f35 14570 mips_flag_mdebug = 0;
e9670677
MR
14571}
14572\f
14573void
17a2f251 14574mips_init_after_args (void)
252b5132
RH
14575{
14576 /* initialize opcodes */
14577 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
beae10d5 14578 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
252b5132
RH
14579}
14580
14581long
17a2f251 14582md_pcrel_from (fixS *fixP)
252b5132 14583{
a7ebbfdf
TS
14584 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14585 switch (fixP->fx_r_type)
14586 {
df58fc94
RS
14587 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14588 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14589 /* Return the address of the delay slot. */
14590 return addr + 2;
14591
14592 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14593 case BFD_RELOC_MICROMIPS_JMP:
a7ebbfdf 14594 case BFD_RELOC_16_PCREL_S2:
7361da2c
AB
14595 case BFD_RELOC_MIPS_21_PCREL_S2:
14596 case BFD_RELOC_MIPS_26_PCREL_S2:
a7ebbfdf
TS
14597 case BFD_RELOC_MIPS_JMP:
14598 /* Return the address of the delay slot. */
14599 return addr + 4;
df58fc94 14600
a7ebbfdf
TS
14601 default:
14602 return addr;
14603 }
252b5132
RH
14604}
14605
252b5132
RH
14606/* This is called before the symbol table is processed. In order to
14607 work with gcc when using mips-tfile, we must keep all local labels.
14608 However, in other cases, we want to discard them. If we were
14609 called with -g, but we didn't see any debugging information, it may
14610 mean that gcc is smuggling debugging information through to
14611 mips-tfile, in which case we must generate all local labels. */
14612
14613void
17a2f251 14614mips_frob_file_before_adjust (void)
252b5132
RH
14615{
14616#ifndef NO_ECOFF_DEBUGGING
14617 if (ECOFF_DEBUGGING
14618 && mips_debug != 0
14619 && ! ecoff_debugging_seen)
14620 flag_keep_locals = 1;
14621#endif
14622}
14623
3b91255e 14624/* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
55cf6793 14625 the corresponding LO16 reloc. This is called before md_apply_fix and
3b91255e
RS
14626 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14627 relocation operators.
14628
14629 For our purposes, a %lo() expression matches a %got() or %hi()
14630 expression if:
14631
14632 (a) it refers to the same symbol; and
14633 (b) the offset applied in the %lo() expression is no lower than
14634 the offset applied in the %got() or %hi().
14635
14636 (b) allows us to cope with code like:
14637
14638 lui $4,%hi(foo)
14639 lh $4,%lo(foo+2)($4)
14640
14641 ...which is legal on RELA targets, and has a well-defined behaviour
14642 if the user knows that adding 2 to "foo" will not induce a carry to
14643 the high 16 bits.
14644
14645 When several %lo()s match a particular %got() or %hi(), we use the
14646 following rules to distinguish them:
14647
14648 (1) %lo()s with smaller offsets are a better match than %lo()s with
14649 higher offsets.
14650
14651 (2) %lo()s with no matching %got() or %hi() are better than those
14652 that already have a matching %got() or %hi().
14653
14654 (3) later %lo()s are better than earlier %lo()s.
14655
14656 These rules are applied in order.
14657
14658 (1) means, among other things, that %lo()s with identical offsets are
14659 chosen if they exist.
14660
14661 (2) means that we won't associate several high-part relocations with
14662 the same low-part relocation unless there's no alternative. Having
14663 several high parts for the same low part is a GNU extension; this rule
14664 allows careful users to avoid it.
14665
14666 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14667 with the last high-part relocation being at the front of the list.
14668 It therefore makes sense to choose the last matching low-part
14669 relocation, all other things being equal. It's also easier
14670 to code that way. */
252b5132
RH
14671
14672void
17a2f251 14673mips_frob_file (void)
252b5132
RH
14674{
14675 struct mips_hi_fixup *l;
35903be0 14676 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
252b5132
RH
14677
14678 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14679 {
14680 segment_info_type *seginfo;
3b91255e
RS
14681 bfd_boolean matched_lo_p;
14682 fixS **hi_pos, **lo_pos, **pos;
252b5132 14683
9c2799c2 14684 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
252b5132 14685
5919d012 14686 /* If a GOT16 relocation turns out to be against a global symbol,
b886a2ab
RS
14687 there isn't supposed to be a matching LO. Ignore %gots against
14688 constants; we'll report an error for those later. */
738e5348 14689 if (got16_reloc_p (l->fixp->fx_r_type)
b886a2ab
RS
14690 && !(l->fixp->fx_addsy
14691 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
5919d012
RS
14692 continue;
14693
14694 /* Check quickly whether the next fixup happens to be a matching %lo. */
14695 if (fixup_has_matching_lo_p (l->fixp))
252b5132
RH
14696 continue;
14697
252b5132 14698 seginfo = seg_info (l->seg);
252b5132 14699
3b91255e
RS
14700 /* Set HI_POS to the position of this relocation in the chain.
14701 Set LO_POS to the position of the chosen low-part relocation.
14702 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14703 relocation that matches an immediately-preceding high-part
14704 relocation. */
14705 hi_pos = NULL;
14706 lo_pos = NULL;
14707 matched_lo_p = FALSE;
738e5348 14708 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
35903be0 14709
3b91255e
RS
14710 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14711 {
14712 if (*pos == l->fixp)
14713 hi_pos = pos;
14714
35903be0 14715 if ((*pos)->fx_r_type == looking_for_rtype
30cfc97a 14716 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
3b91255e
RS
14717 && (*pos)->fx_offset >= l->fixp->fx_offset
14718 && (lo_pos == NULL
14719 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14720 || (!matched_lo_p
14721 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14722 lo_pos = pos;
14723
14724 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14725 && fixup_has_matching_lo_p (*pos));
14726 }
14727
14728 /* If we found a match, remove the high-part relocation from its
14729 current position and insert it before the low-part relocation.
14730 Make the offsets match so that fixup_has_matching_lo_p()
14731 will return true.
14732
14733 We don't warn about unmatched high-part relocations since some
14734 versions of gcc have been known to emit dead "lui ...%hi(...)"
14735 instructions. */
14736 if (lo_pos != NULL)
14737 {
14738 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14739 if (l->fixp->fx_next != *lo_pos)
252b5132 14740 {
3b91255e
RS
14741 *hi_pos = l->fixp->fx_next;
14742 l->fixp->fx_next = *lo_pos;
14743 *lo_pos = l->fixp;
252b5132 14744 }
252b5132
RH
14745 }
14746 }
14747}
14748
252b5132 14749int
17a2f251 14750mips_force_relocation (fixS *fixp)
252b5132 14751{
ae6063d4 14752 if (generic_force_reloc (fixp))
252b5132
RH
14753 return 1;
14754
df58fc94
RS
14755 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14756 so that the linker relaxation can update targets. */
14757 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14758 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14759 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14760 return 1;
14761
7361da2c
AB
14762 /* We want all PC-relative relocations to be kept for R6 relaxation. */
14763 if (ISA_IS_R6 (mips_opts.isa)
14764 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14765 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14766 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
14767 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
14768 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
14769 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
14770 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
14771 return 1;
14772
3e722fb5 14773 return 0;
252b5132
RH
14774}
14775
b886a2ab
RS
14776/* Read the instruction associated with RELOC from BUF. */
14777
14778static unsigned int
14779read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
14780{
14781 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14782 return read_compressed_insn (buf, 4);
14783 else
14784 return read_insn (buf);
14785}
14786
14787/* Write instruction INSN to BUF, given that it has been relocated
14788 by RELOC. */
14789
14790static void
14791write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
14792 unsigned long insn)
14793{
14794 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14795 write_compressed_insn (buf, insn, 4);
14796 else
14797 write_insn (buf, insn);
14798}
14799
252b5132
RH
14800/* Apply a fixup to the object file. */
14801
94f592af 14802void
55cf6793 14803md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 14804{
4d68580a 14805 char *buf;
b886a2ab 14806 unsigned long insn;
a7ebbfdf 14807 reloc_howto_type *howto;
252b5132 14808
d56a8dda
RS
14809 if (fixP->fx_pcrel)
14810 switch (fixP->fx_r_type)
14811 {
14812 case BFD_RELOC_16_PCREL_S2:
14813 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14814 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14815 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14816 case BFD_RELOC_32_PCREL:
7361da2c
AB
14817 case BFD_RELOC_MIPS_21_PCREL_S2:
14818 case BFD_RELOC_MIPS_26_PCREL_S2:
14819 case BFD_RELOC_MIPS_18_PCREL_S3:
14820 case BFD_RELOC_MIPS_19_PCREL_S2:
14821 case BFD_RELOC_HI16_S_PCREL:
14822 case BFD_RELOC_LO16_PCREL:
d56a8dda
RS
14823 break;
14824
14825 case BFD_RELOC_32:
14826 fixP->fx_r_type = BFD_RELOC_32_PCREL;
14827 break;
14828
14829 default:
14830 as_bad_where (fixP->fx_file, fixP->fx_line,
14831 _("PC-relative reference to a different section"));
14832 break;
14833 }
14834
14835 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
14836 that have no MIPS ELF equivalent. */
14837 if (fixP->fx_r_type != BFD_RELOC_8)
14838 {
14839 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
14840 if (!howto)
14841 return;
14842 }
65551fa4 14843
df58fc94
RS
14844 gas_assert (fixP->fx_size == 2
14845 || fixP->fx_size == 4
d56a8dda 14846 || fixP->fx_r_type == BFD_RELOC_8
90ecf173
MR
14847 || fixP->fx_r_type == BFD_RELOC_16
14848 || fixP->fx_r_type == BFD_RELOC_64
14849 || fixP->fx_r_type == BFD_RELOC_CTOR
14850 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
df58fc94 14851 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
90ecf173
MR
14852 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14853 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
2f0c68f2
CM
14854 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
14855 || fixP->fx_r_type == BFD_RELOC_NONE);
252b5132 14856
4d68580a 14857 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
252b5132 14858
b1dca8ee
RS
14859 /* Don't treat parts of a composite relocation as done. There are two
14860 reasons for this:
14861
14862 (1) The second and third parts will be against 0 (RSS_UNDEF) but
14863 should nevertheless be emitted if the first part is.
14864
14865 (2) In normal usage, composite relocations are never assembly-time
14866 constants. The easiest way of dealing with the pathological
14867 exceptions is to generate a relocation against STN_UNDEF and
14868 leave everything up to the linker. */
3994f87e 14869 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
252b5132
RH
14870 fixP->fx_done = 1;
14871
14872 switch (fixP->fx_r_type)
14873 {
3f98094e
DJ
14874 case BFD_RELOC_MIPS_TLS_GD:
14875 case BFD_RELOC_MIPS_TLS_LDM:
741d6ea8
JM
14876 case BFD_RELOC_MIPS_TLS_DTPREL32:
14877 case BFD_RELOC_MIPS_TLS_DTPREL64:
3f98094e
DJ
14878 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
14879 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
14880 case BFD_RELOC_MIPS_TLS_GOTTPREL:
d0f13682
CLT
14881 case BFD_RELOC_MIPS_TLS_TPREL32:
14882 case BFD_RELOC_MIPS_TLS_TPREL64:
3f98094e
DJ
14883 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
14884 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
df58fc94
RS
14885 case BFD_RELOC_MICROMIPS_TLS_GD:
14886 case BFD_RELOC_MICROMIPS_TLS_LDM:
14887 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
14888 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
14889 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
14890 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
14891 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
d0f13682
CLT
14892 case BFD_RELOC_MIPS16_TLS_GD:
14893 case BFD_RELOC_MIPS16_TLS_LDM:
14894 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
14895 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
14896 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
14897 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
14898 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
b886a2ab
RS
14899 if (!fixP->fx_addsy)
14900 {
14901 as_bad_where (fixP->fx_file, fixP->fx_line,
14902 _("TLS relocation against a constant"));
14903 break;
14904 }
3f98094e
DJ
14905 S_SET_THREAD_LOCAL (fixP->fx_addsy);
14906 /* fall through */
14907
252b5132 14908 case BFD_RELOC_MIPS_JMP:
e369bcce
TS
14909 case BFD_RELOC_MIPS_SHIFT5:
14910 case BFD_RELOC_MIPS_SHIFT6:
14911 case BFD_RELOC_MIPS_GOT_DISP:
14912 case BFD_RELOC_MIPS_GOT_PAGE:
14913 case BFD_RELOC_MIPS_GOT_OFST:
14914 case BFD_RELOC_MIPS_SUB:
14915 case BFD_RELOC_MIPS_INSERT_A:
14916 case BFD_RELOC_MIPS_INSERT_B:
14917 case BFD_RELOC_MIPS_DELETE:
14918 case BFD_RELOC_MIPS_HIGHEST:
14919 case BFD_RELOC_MIPS_HIGHER:
14920 case BFD_RELOC_MIPS_SCN_DISP:
14921 case BFD_RELOC_MIPS_REL16:
14922 case BFD_RELOC_MIPS_RELGOT:
14923 case BFD_RELOC_MIPS_JALR:
252b5132
RH
14924 case BFD_RELOC_HI16:
14925 case BFD_RELOC_HI16_S:
b886a2ab 14926 case BFD_RELOC_LO16:
cdf6fd85 14927 case BFD_RELOC_GPREL16:
252b5132
RH
14928 case BFD_RELOC_MIPS_LITERAL:
14929 case BFD_RELOC_MIPS_CALL16:
14930 case BFD_RELOC_MIPS_GOT16:
cdf6fd85 14931 case BFD_RELOC_GPREL32:
252b5132
RH
14932 case BFD_RELOC_MIPS_GOT_HI16:
14933 case BFD_RELOC_MIPS_GOT_LO16:
14934 case BFD_RELOC_MIPS_CALL_HI16:
14935 case BFD_RELOC_MIPS_CALL_LO16:
14936 case BFD_RELOC_MIPS16_GPREL:
738e5348
RS
14937 case BFD_RELOC_MIPS16_GOT16:
14938 case BFD_RELOC_MIPS16_CALL16:
d6f16593
MR
14939 case BFD_RELOC_MIPS16_HI16:
14940 case BFD_RELOC_MIPS16_HI16_S:
b886a2ab 14941 case BFD_RELOC_MIPS16_LO16:
252b5132 14942 case BFD_RELOC_MIPS16_JMP:
df58fc94
RS
14943 case BFD_RELOC_MICROMIPS_JMP:
14944 case BFD_RELOC_MICROMIPS_GOT_DISP:
14945 case BFD_RELOC_MICROMIPS_GOT_PAGE:
14946 case BFD_RELOC_MICROMIPS_GOT_OFST:
14947 case BFD_RELOC_MICROMIPS_SUB:
14948 case BFD_RELOC_MICROMIPS_HIGHEST:
14949 case BFD_RELOC_MICROMIPS_HIGHER:
14950 case BFD_RELOC_MICROMIPS_SCN_DISP:
14951 case BFD_RELOC_MICROMIPS_JALR:
14952 case BFD_RELOC_MICROMIPS_HI16:
14953 case BFD_RELOC_MICROMIPS_HI16_S:
b886a2ab 14954 case BFD_RELOC_MICROMIPS_LO16:
df58fc94
RS
14955 case BFD_RELOC_MICROMIPS_GPREL16:
14956 case BFD_RELOC_MICROMIPS_LITERAL:
14957 case BFD_RELOC_MICROMIPS_CALL16:
14958 case BFD_RELOC_MICROMIPS_GOT16:
14959 case BFD_RELOC_MICROMIPS_GOT_HI16:
14960 case BFD_RELOC_MICROMIPS_GOT_LO16:
14961 case BFD_RELOC_MICROMIPS_CALL_HI16:
14962 case BFD_RELOC_MICROMIPS_CALL_LO16:
067ec077 14963 case BFD_RELOC_MIPS_EH:
b886a2ab
RS
14964 if (fixP->fx_done)
14965 {
14966 offsetT value;
14967
14968 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
14969 {
14970 insn = read_reloc_insn (buf, fixP->fx_r_type);
14971 if (mips16_reloc_p (fixP->fx_r_type))
14972 insn |= mips16_immed_extend (value, 16);
14973 else
14974 insn |= (value & 0xffff);
14975 write_reloc_insn (buf, fixP->fx_r_type, insn);
14976 }
14977 else
14978 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 14979 _("unsupported constant in relocation"));
b886a2ab 14980 }
252b5132
RH
14981 break;
14982
252b5132
RH
14983 case BFD_RELOC_64:
14984 /* This is handled like BFD_RELOC_32, but we output a sign
14985 extended value if we are only 32 bits. */
3e722fb5 14986 if (fixP->fx_done)
252b5132
RH
14987 {
14988 if (8 <= sizeof (valueT))
4d68580a 14989 md_number_to_chars (buf, *valP, 8);
252b5132
RH
14990 else
14991 {
a7ebbfdf 14992 valueT hiv;
252b5132 14993
a7ebbfdf 14994 if ((*valP & 0x80000000) != 0)
252b5132
RH
14995 hiv = 0xffffffff;
14996 else
14997 hiv = 0;
4d68580a
RS
14998 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
14999 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
252b5132
RH
15000 }
15001 }
15002 break;
15003
056350c6 15004 case BFD_RELOC_RVA:
252b5132 15005 case BFD_RELOC_32:
b47468a6 15006 case BFD_RELOC_32_PCREL:
252b5132 15007 case BFD_RELOC_16:
d56a8dda 15008 case BFD_RELOC_8:
252b5132 15009 /* If we are deleting this reloc entry, we must fill in the
54f4ddb3
TS
15010 value now. This can happen if we have a .word which is not
15011 resolved when it appears but is later defined. */
252b5132 15012 if (fixP->fx_done)
4d68580a 15013 md_number_to_chars (buf, *valP, fixP->fx_size);
252b5132
RH
15014 break;
15015
7361da2c
AB
15016 case BFD_RELOC_MIPS_21_PCREL_S2:
15017 case BFD_RELOC_MIPS_26_PCREL_S2:
15018 if ((*valP & 0x3) != 0)
15019 as_bad_where (fixP->fx_file, fixP->fx_line,
15020 _("branch to misaligned address (%lx)"), (long) *valP);
15021
15022 gas_assert (!fixP->fx_done);
15023 break;
15024
15025 case BFD_RELOC_MIPS_18_PCREL_S3:
0866e94c 15026 if ((S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
7361da2c 15027 as_bad_where (fixP->fx_file, fixP->fx_line,
0866e94c
MF
15028 _("PC-relative access using misaligned symbol (%lx)"),
15029 (long) S_GET_VALUE (fixP->fx_addsy));
15030 if ((fixP->fx_offset & 0x7) != 0)
15031 as_bad_where (fixP->fx_file, fixP->fx_line,
15032 _("PC-relative access using misaligned offset (%lx)"),
15033 (long) fixP->fx_offset);
7361da2c
AB
15034
15035 gas_assert (!fixP->fx_done);
15036 break;
15037
15038 case BFD_RELOC_MIPS_19_PCREL_S2:
15039 if ((*valP & 0x3) != 0)
15040 as_bad_where (fixP->fx_file, fixP->fx_line,
15041 _("PC-relative access to misaligned address (%lx)"),
0866e94c 15042 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
7361da2c
AB
15043
15044 gas_assert (!fixP->fx_done);
15045 break;
15046
15047 case BFD_RELOC_HI16_S_PCREL:
15048 case BFD_RELOC_LO16_PCREL:
15049 gas_assert (!fixP->fx_done);
15050 break;
15051
252b5132 15052 case BFD_RELOC_16_PCREL_S2:
a7ebbfdf 15053 if ((*valP & 0x3) != 0)
cb56d3d3 15054 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 15055 _("branch to misaligned address (%lx)"), (long) *valP);
cb56d3d3 15056
54f4ddb3
TS
15057 /* We need to save the bits in the instruction since fixup_segment()
15058 might be deleting the relocation entry (i.e., a branch within
15059 the current segment). */
a7ebbfdf 15060 if (! fixP->fx_done)
bb2d6cd7 15061 break;
252b5132 15062
54f4ddb3 15063 /* Update old instruction data. */
4d68580a 15064 insn = read_insn (buf);
252b5132 15065
a7ebbfdf
TS
15066 if (*valP + 0x20000 <= 0x3ffff)
15067 {
15068 insn |= (*valP >> 2) & 0xffff;
4d68580a 15069 write_insn (buf, insn);
a7ebbfdf
TS
15070 }
15071 else if (mips_pic == NO_PIC
15072 && fixP->fx_done
15073 && fixP->fx_frag->fr_address >= text_section->vma
15074 && (fixP->fx_frag->fr_address
587aac4e 15075 < text_section->vma + bfd_get_section_size (text_section))
a7ebbfdf
TS
15076 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15077 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15078 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
252b5132
RH
15079 {
15080 /* The branch offset is too large. If this is an
15081 unconditional branch, and we are not generating PIC code,
15082 we can convert it to an absolute jump instruction. */
a7ebbfdf
TS
15083 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15084 insn = 0x0c000000; /* jal */
252b5132 15085 else
a7ebbfdf
TS
15086 insn = 0x08000000; /* j */
15087 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15088 fixP->fx_done = 0;
15089 fixP->fx_addsy = section_symbol (text_section);
15090 *valP += md_pcrel_from (fixP);
4d68580a 15091 write_insn (buf, insn);
a7ebbfdf
TS
15092 }
15093 else
15094 {
15095 /* If we got here, we have branch-relaxation disabled,
15096 and there's nothing we can do to fix this instruction
15097 without turning it into a longer sequence. */
15098 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 15099 _("branch out of range"));
252b5132 15100 }
252b5132
RH
15101 break;
15102
df58fc94
RS
15103 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15104 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15105 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15106 /* We adjust the offset back to even. */
15107 if ((*valP & 0x1) != 0)
15108 --(*valP);
15109
15110 if (! fixP->fx_done)
15111 break;
15112
15113 /* Should never visit here, because we keep the relocation. */
15114 abort ();
15115 break;
15116
252b5132
RH
15117 case BFD_RELOC_VTABLE_INHERIT:
15118 fixP->fx_done = 0;
15119 if (fixP->fx_addsy
15120 && !S_IS_DEFINED (fixP->fx_addsy)
15121 && !S_IS_WEAK (fixP->fx_addsy))
15122 S_SET_WEAK (fixP->fx_addsy);
15123 break;
15124
2f0c68f2 15125 case BFD_RELOC_NONE:
252b5132
RH
15126 case BFD_RELOC_VTABLE_ENTRY:
15127 fixP->fx_done = 0;
15128 break;
15129
15130 default:
b37df7c4 15131 abort ();
252b5132 15132 }
a7ebbfdf
TS
15133
15134 /* Remember value for tc_gen_reloc. */
15135 fixP->fx_addnumber = *valP;
252b5132
RH
15136}
15137
252b5132 15138static symbolS *
17a2f251 15139get_symbol (void)
252b5132
RH
15140{
15141 int c;
15142 char *name;
15143 symbolS *p;
15144
d02603dc 15145 c = get_symbol_name (&name);
252b5132 15146 p = (symbolS *) symbol_find_or_make (name);
d02603dc 15147 (void) restore_line_pointer (c);
252b5132
RH
15148 return p;
15149}
15150
742a56fe
RS
15151/* Align the current frag to a given power of two. If a particular
15152 fill byte should be used, FILL points to an integer that contains
15153 that byte, otherwise FILL is null.
15154
462427c4
RS
15155 This function used to have the comment:
15156
15157 The MIPS assembler also automatically adjusts any preceding label.
15158
15159 The implementation therefore applied the adjustment to a maximum of
15160 one label. However, other label adjustments are applied to batches
15161 of labels, and adjusting just one caused problems when new labels
15162 were added for the sake of debugging or unwind information.
15163 We therefore adjust all preceding labels (given as LABELS) instead. */
252b5132
RH
15164
15165static void
462427c4 15166mips_align (int to, int *fill, struct insn_label_list *labels)
252b5132 15167{
7d10b47d 15168 mips_emit_delays ();
df58fc94 15169 mips_record_compressed_mode ();
742a56fe
RS
15170 if (fill == NULL && subseg_text_p (now_seg))
15171 frag_align_code (to, 0);
15172 else
15173 frag_align (to, fill ? *fill : 0, 0);
252b5132 15174 record_alignment (now_seg, to);
462427c4 15175 mips_move_labels (labels, FALSE);
252b5132
RH
15176}
15177
15178/* Align to a given power of two. .align 0 turns off the automatic
15179 alignment used by the data creating pseudo-ops. */
15180
15181static void
17a2f251 15182s_align (int x ATTRIBUTE_UNUSED)
252b5132 15183{
742a56fe 15184 int temp, fill_value, *fill_ptr;
49954fb4 15185 long max_alignment = 28;
252b5132 15186
54f4ddb3 15187 /* o Note that the assembler pulls down any immediately preceding label
252b5132 15188 to the aligned address.
54f4ddb3 15189 o It's not documented but auto alignment is reinstated by
252b5132 15190 a .align pseudo instruction.
54f4ddb3 15191 o Note also that after auto alignment is turned off the mips assembler
252b5132 15192 issues an error on attempt to assemble an improperly aligned data item.
54f4ddb3 15193 We don't. */
252b5132
RH
15194
15195 temp = get_absolute_expression ();
15196 if (temp > max_alignment)
1661c76c 15197 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
252b5132
RH
15198 else if (temp < 0)
15199 {
1661c76c 15200 as_warn (_("alignment negative, 0 assumed"));
252b5132
RH
15201 temp = 0;
15202 }
15203 if (*input_line_pointer == ',')
15204 {
f9419b05 15205 ++input_line_pointer;
742a56fe
RS
15206 fill_value = get_absolute_expression ();
15207 fill_ptr = &fill_value;
252b5132
RH
15208 }
15209 else
742a56fe 15210 fill_ptr = 0;
252b5132
RH
15211 if (temp)
15212 {
a8dbcb85
TS
15213 segment_info_type *si = seg_info (now_seg);
15214 struct insn_label_list *l = si->label_list;
54f4ddb3 15215 /* Auto alignment should be switched on by next section change. */
252b5132 15216 auto_align = 1;
462427c4 15217 mips_align (temp, fill_ptr, l);
252b5132
RH
15218 }
15219 else
15220 {
15221 auto_align = 0;
15222 }
15223
15224 demand_empty_rest_of_line ();
15225}
15226
252b5132 15227static void
17a2f251 15228s_change_sec (int sec)
252b5132
RH
15229{
15230 segT seg;
15231
252b5132
RH
15232 /* The ELF backend needs to know that we are changing sections, so
15233 that .previous works correctly. We could do something like check
b6ff326e 15234 for an obj_section_change_hook macro, but that might be confusing
252b5132
RH
15235 as it would not be appropriate to use it in the section changing
15236 functions in read.c, since obj-elf.c intercepts those. FIXME:
15237 This should be cleaner, somehow. */
f3ded42a 15238 obj_elf_section_change_hook ();
252b5132 15239
7d10b47d 15240 mips_emit_delays ();
6a32d874 15241
252b5132
RH
15242 switch (sec)
15243 {
15244 case 't':
15245 s_text (0);
15246 break;
15247 case 'd':
15248 s_data (0);
15249 break;
15250 case 'b':
15251 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15252 demand_empty_rest_of_line ();
15253 break;
15254
15255 case 'r':
4d0d148d
TS
15256 seg = subseg_new (RDATA_SECTION_NAME,
15257 (subsegT) get_absolute_expression ());
f3ded42a
RS
15258 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15259 | SEC_READONLY | SEC_RELOC
15260 | SEC_DATA));
15261 if (strncmp (TARGET_OS, "elf", 3) != 0)
15262 record_alignment (seg, 4);
4d0d148d 15263 demand_empty_rest_of_line ();
252b5132
RH
15264 break;
15265
15266 case 's':
4d0d148d 15267 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
f3ded42a
RS
15268 bfd_set_section_flags (stdoutput, seg,
15269 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15270 if (strncmp (TARGET_OS, "elf", 3) != 0)
15271 record_alignment (seg, 4);
4d0d148d
TS
15272 demand_empty_rest_of_line ();
15273 break;
998b3c36
MR
15274
15275 case 'B':
15276 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
f3ded42a
RS
15277 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15278 if (strncmp (TARGET_OS, "elf", 3) != 0)
15279 record_alignment (seg, 4);
998b3c36
MR
15280 demand_empty_rest_of_line ();
15281 break;
252b5132
RH
15282 }
15283
15284 auto_align = 1;
15285}
b34976b6 15286
cca86cc8 15287void
17a2f251 15288s_change_section (int ignore ATTRIBUTE_UNUSED)
cca86cc8 15289{
d02603dc 15290 char *saved_ilp;
cca86cc8 15291 char *section_name;
d02603dc 15292 char c, endc;
684022ea 15293 char next_c = 0;
cca86cc8
SC
15294 int section_type;
15295 int section_flag;
15296 int section_entry_size;
15297 int section_alignment;
b34976b6 15298
d02603dc
NC
15299 saved_ilp = input_line_pointer;
15300 endc = get_symbol_name (&section_name);
15301 c = (endc == '"' ? input_line_pointer[1] : endc);
a816d1ed 15302 if (c)
d02603dc 15303 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
cca86cc8 15304
4cf0dd0d
TS
15305 /* Do we have .section Name<,"flags">? */
15306 if (c != ',' || (c == ',' && next_c == '"'))
cca86cc8 15307 {
d02603dc
NC
15308 /* Just after name is now '\0'. */
15309 (void) restore_line_pointer (endc);
15310 input_line_pointer = saved_ilp;
cca86cc8
SC
15311 obj_elf_section (ignore);
15312 return;
15313 }
d02603dc
NC
15314
15315 section_name = xstrdup (section_name);
15316 c = restore_line_pointer (endc);
15317
cca86cc8
SC
15318 input_line_pointer++;
15319
15320 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15321 if (c == ',')
15322 section_type = get_absolute_expression ();
15323 else
15324 section_type = 0;
d02603dc 15325
cca86cc8
SC
15326 if (*input_line_pointer++ == ',')
15327 section_flag = get_absolute_expression ();
15328 else
15329 section_flag = 0;
d02603dc 15330
cca86cc8
SC
15331 if (*input_line_pointer++ == ',')
15332 section_entry_size = get_absolute_expression ();
15333 else
15334 section_entry_size = 0;
d02603dc 15335
cca86cc8
SC
15336 if (*input_line_pointer++ == ',')
15337 section_alignment = get_absolute_expression ();
15338 else
15339 section_alignment = 0;
d02603dc 15340
87975d2a
AM
15341 /* FIXME: really ignore? */
15342 (void) section_alignment;
cca86cc8 15343
8ab8a5c8
RS
15344 /* When using the generic form of .section (as implemented by obj-elf.c),
15345 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15346 traditionally had to fall back on the more common @progbits instead.
15347
15348 There's nothing really harmful in this, since bfd will correct
15349 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
708587a4 15350 means that, for backwards compatibility, the special_section entries
8ab8a5c8
RS
15351 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15352
15353 Even so, we shouldn't force users of the MIPS .section syntax to
15354 incorrectly label the sections as SHT_PROGBITS. The best compromise
15355 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15356 generic type-checking code. */
15357 if (section_type == SHT_MIPS_DWARF)
15358 section_type = SHT_PROGBITS;
15359
cca86cc8
SC
15360 obj_elf_change_section (section_name, section_type, section_flag,
15361 section_entry_size, 0, 0, 0);
a816d1ed
AO
15362
15363 if (now_seg->name != section_name)
15364 free (section_name);
cca86cc8 15365}
252b5132
RH
15366
15367void
17a2f251 15368mips_enable_auto_align (void)
252b5132
RH
15369{
15370 auto_align = 1;
15371}
15372
15373static void
17a2f251 15374s_cons (int log_size)
252b5132 15375{
a8dbcb85
TS
15376 segment_info_type *si = seg_info (now_seg);
15377 struct insn_label_list *l = si->label_list;
252b5132 15378
7d10b47d 15379 mips_emit_delays ();
252b5132 15380 if (log_size > 0 && auto_align)
462427c4 15381 mips_align (log_size, 0, l);
252b5132 15382 cons (1 << log_size);
a1facbec 15383 mips_clear_insn_labels ();
252b5132
RH
15384}
15385
15386static void
17a2f251 15387s_float_cons (int type)
252b5132 15388{
a8dbcb85
TS
15389 segment_info_type *si = seg_info (now_seg);
15390 struct insn_label_list *l = si->label_list;
252b5132 15391
7d10b47d 15392 mips_emit_delays ();
252b5132
RH
15393
15394 if (auto_align)
49309057
ILT
15395 {
15396 if (type == 'd')
462427c4 15397 mips_align (3, 0, l);
49309057 15398 else
462427c4 15399 mips_align (2, 0, l);
49309057 15400 }
252b5132 15401
252b5132 15402 float_cons (type);
a1facbec 15403 mips_clear_insn_labels ();
252b5132
RH
15404}
15405
15406/* Handle .globl. We need to override it because on Irix 5 you are
15407 permitted to say
15408 .globl foo .text
15409 where foo is an undefined symbol, to mean that foo should be
15410 considered to be the address of a function. */
15411
15412static void
17a2f251 15413s_mips_globl (int x ATTRIBUTE_UNUSED)
252b5132
RH
15414{
15415 char *name;
15416 int c;
15417 symbolS *symbolP;
15418 flagword flag;
15419
8a06b769 15420 do
252b5132 15421 {
d02603dc 15422 c = get_symbol_name (&name);
8a06b769
TS
15423 symbolP = symbol_find_or_make (name);
15424 S_SET_EXTERNAL (symbolP);
15425
252b5132 15426 *input_line_pointer = c;
d02603dc 15427 SKIP_WHITESPACE_AFTER_NAME ();
252b5132 15428
8a06b769
TS
15429 /* On Irix 5, every global symbol that is not explicitly labelled as
15430 being a function is apparently labelled as being an object. */
15431 flag = BSF_OBJECT;
252b5132 15432
8a06b769
TS
15433 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15434 && (*input_line_pointer != ','))
15435 {
15436 char *secname;
15437 asection *sec;
15438
d02603dc 15439 c = get_symbol_name (&secname);
8a06b769
TS
15440 sec = bfd_get_section_by_name (stdoutput, secname);
15441 if (sec == NULL)
15442 as_bad (_("%s: no such section"), secname);
d02603dc 15443 (void) restore_line_pointer (c);
8a06b769
TS
15444
15445 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15446 flag = BSF_FUNCTION;
15447 }
15448
15449 symbol_get_bfdsym (symbolP)->flags |= flag;
15450
15451 c = *input_line_pointer;
15452 if (c == ',')
15453 {
15454 input_line_pointer++;
15455 SKIP_WHITESPACE ();
15456 if (is_end_of_line[(unsigned char) *input_line_pointer])
15457 c = '\n';
15458 }
15459 }
15460 while (c == ',');
252b5132 15461
252b5132
RH
15462 demand_empty_rest_of_line ();
15463}
15464
15465static void
17a2f251 15466s_option (int x ATTRIBUTE_UNUSED)
252b5132
RH
15467{
15468 char *opt;
15469 char c;
15470
d02603dc 15471 c = get_symbol_name (&opt);
252b5132
RH
15472
15473 if (*opt == 'O')
15474 {
15475 /* FIXME: What does this mean? */
15476 }
15477 else if (strncmp (opt, "pic", 3) == 0)
15478 {
15479 int i;
15480
15481 i = atoi (opt + 3);
15482 if (i == 0)
15483 mips_pic = NO_PIC;
15484 else if (i == 2)
143d77c5 15485 {
8b828383 15486 mips_pic = SVR4_PIC;
143d77c5
EC
15487 mips_abicalls = TRUE;
15488 }
252b5132
RH
15489 else
15490 as_bad (_(".option pic%d not supported"), i);
15491
4d0d148d 15492 if (mips_pic == SVR4_PIC)
252b5132
RH
15493 {
15494 if (g_switch_seen && g_switch_value != 0)
15495 as_warn (_("-G may not be used with SVR4 PIC code"));
15496 g_switch_value = 0;
15497 bfd_set_gp_size (stdoutput, 0);
15498 }
15499 }
15500 else
1661c76c 15501 as_warn (_("unrecognized option \"%s\""), opt);
252b5132 15502
d02603dc 15503 (void) restore_line_pointer (c);
252b5132
RH
15504 demand_empty_rest_of_line ();
15505}
15506
15507/* This structure is used to hold a stack of .set values. */
15508
e972090a
NC
15509struct mips_option_stack
15510{
252b5132
RH
15511 struct mips_option_stack *next;
15512 struct mips_set_options options;
15513};
15514
15515static struct mips_option_stack *mips_opts_stack;
15516
919731af 15517static bfd_boolean
15518parse_code_option (char * name)
252b5132 15519{
c6278170 15520 const struct mips_ase *ase;
919731af 15521 if (strncmp (name, "at=", 3) == 0)
741fe287
MR
15522 {
15523 char *s = name + 3;
15524
15525 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
1661c76c 15526 as_bad (_("unrecognized register name `%s'"), s);
741fe287 15527 }
252b5132 15528 else if (strcmp (name, "at") == 0)
919731af 15529 mips_opts.at = ATREG;
252b5132 15530 else if (strcmp (name, "noat") == 0)
919731af 15531 mips_opts.at = ZERO;
252b5132 15532 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
919731af 15533 mips_opts.nomove = 0;
252b5132 15534 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
919731af 15535 mips_opts.nomove = 1;
252b5132 15536 else if (strcmp (name, "bopt") == 0)
919731af 15537 mips_opts.nobopt = 0;
252b5132 15538 else if (strcmp (name, "nobopt") == 0)
919731af 15539 mips_opts.nobopt = 1;
ad3fea08 15540 else if (strcmp (name, "gp=32") == 0)
bad1aba3 15541 mips_opts.gp = 32;
ad3fea08 15542 else if (strcmp (name, "gp=64") == 0)
919731af 15543 mips_opts.gp = 64;
ad3fea08 15544 else if (strcmp (name, "fp=32") == 0)
0b35dfee 15545 mips_opts.fp = 32;
351cdf24
MF
15546 else if (strcmp (name, "fp=xx") == 0)
15547 mips_opts.fp = 0;
ad3fea08 15548 else if (strcmp (name, "fp=64") == 0)
919731af 15549 mips_opts.fp = 64;
037b32b9
AN
15550 else if (strcmp (name, "softfloat") == 0)
15551 mips_opts.soft_float = 1;
15552 else if (strcmp (name, "hardfloat") == 0)
15553 mips_opts.soft_float = 0;
15554 else if (strcmp (name, "singlefloat") == 0)
15555 mips_opts.single_float = 1;
15556 else if (strcmp (name, "doublefloat") == 0)
15557 mips_opts.single_float = 0;
351cdf24
MF
15558 else if (strcmp (name, "nooddspreg") == 0)
15559 mips_opts.oddspreg = 0;
15560 else if (strcmp (name, "oddspreg") == 0)
15561 mips_opts.oddspreg = 1;
252b5132
RH
15562 else if (strcmp (name, "mips16") == 0
15563 || strcmp (name, "MIPS-16") == 0)
919731af 15564 mips_opts.mips16 = 1;
252b5132
RH
15565 else if (strcmp (name, "nomips16") == 0
15566 || strcmp (name, "noMIPS-16") == 0)
15567 mips_opts.mips16 = 0;
df58fc94 15568 else if (strcmp (name, "micromips") == 0)
919731af 15569 mips_opts.micromips = 1;
df58fc94
RS
15570 else if (strcmp (name, "nomicromips") == 0)
15571 mips_opts.micromips = 0;
c6278170
RS
15572 else if (name[0] == 'n'
15573 && name[1] == 'o'
15574 && (ase = mips_lookup_ase (name + 2)))
919731af 15575 mips_set_ase (ase, &mips_opts, FALSE);
c6278170 15576 else if ((ase = mips_lookup_ase (name)))
919731af 15577 mips_set_ase (ase, &mips_opts, TRUE);
1a2c1fad 15578 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
252b5132 15579 {
1a2c1fad
CD
15580 /* Permit the user to change the ISA and architecture on the fly.
15581 Needless to say, misuse can cause serious problems. */
919731af 15582 if (strncmp (name, "arch=", 5) == 0)
1a2c1fad
CD
15583 {
15584 const struct mips_cpu_info *p;
15585
919731af 15586 p = mips_parse_cpu ("internal use", name + 5);
1a2c1fad
CD
15587 if (!p)
15588 as_bad (_("unknown architecture %s"), name + 5);
15589 else
15590 {
15591 mips_opts.arch = p->cpu;
15592 mips_opts.isa = p->isa;
15593 }
15594 }
81a21e38
TS
15595 else if (strncmp (name, "mips", 4) == 0)
15596 {
15597 const struct mips_cpu_info *p;
15598
919731af 15599 p = mips_parse_cpu ("internal use", name);
81a21e38
TS
15600 if (!p)
15601 as_bad (_("unknown ISA level %s"), name + 4);
15602 else
15603 {
15604 mips_opts.arch = p->cpu;
15605 mips_opts.isa = p->isa;
15606 }
15607 }
af7ee8bf 15608 else
81a21e38 15609 as_bad (_("unknown ISA or architecture %s"), name);
252b5132
RH
15610 }
15611 else if (strcmp (name, "autoextend") == 0)
15612 mips_opts.noautoextend = 0;
15613 else if (strcmp (name, "noautoextend") == 0)
15614 mips_opts.noautoextend = 1;
833794fc
MR
15615 else if (strcmp (name, "insn32") == 0)
15616 mips_opts.insn32 = TRUE;
15617 else if (strcmp (name, "noinsn32") == 0)
15618 mips_opts.insn32 = FALSE;
919731af 15619 else if (strcmp (name, "sym32") == 0)
15620 mips_opts.sym32 = TRUE;
15621 else if (strcmp (name, "nosym32") == 0)
15622 mips_opts.sym32 = FALSE;
15623 else
15624 return FALSE;
15625 return TRUE;
15626}
15627
15628/* Handle the .set pseudo-op. */
15629
15630static void
15631s_mipsset (int x ATTRIBUTE_UNUSED)
15632{
15633 char *name = input_line_pointer, ch;
15634 int prev_isa = mips_opts.isa;
15635
15636 file_mips_check_options ();
15637
15638 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15639 ++input_line_pointer;
15640 ch = *input_line_pointer;
15641 *input_line_pointer = '\0';
15642
15643 if (strchr (name, ','))
15644 {
15645 /* Generic ".set" directive; use the generic handler. */
15646 *input_line_pointer = ch;
15647 input_line_pointer = name;
15648 s_set (0);
15649 return;
15650 }
15651
15652 if (strcmp (name, "reorder") == 0)
15653 {
15654 if (mips_opts.noreorder)
15655 end_noreorder ();
15656 }
15657 else if (strcmp (name, "noreorder") == 0)
15658 {
15659 if (!mips_opts.noreorder)
15660 start_noreorder ();
15661 }
15662 else if (strcmp (name, "macro") == 0)
15663 mips_opts.warn_about_macros = 0;
15664 else if (strcmp (name, "nomacro") == 0)
15665 {
15666 if (mips_opts.noreorder == 0)
15667 as_bad (_("`noreorder' must be set before `nomacro'"));
15668 mips_opts.warn_about_macros = 1;
15669 }
15670 else if (strcmp (name, "gp=default") == 0)
15671 mips_opts.gp = file_mips_opts.gp;
15672 else if (strcmp (name, "fp=default") == 0)
15673 mips_opts.fp = file_mips_opts.fp;
15674 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
15675 {
15676 mips_opts.isa = file_mips_opts.isa;
15677 mips_opts.arch = file_mips_opts.arch;
15678 mips_opts.gp = file_mips_opts.gp;
15679 mips_opts.fp = file_mips_opts.fp;
15680 }
252b5132
RH
15681 else if (strcmp (name, "push") == 0)
15682 {
15683 struct mips_option_stack *s;
15684
15685 s = (struct mips_option_stack *) xmalloc (sizeof *s);
15686 s->next = mips_opts_stack;
15687 s->options = mips_opts;
15688 mips_opts_stack = s;
15689 }
15690 else if (strcmp (name, "pop") == 0)
15691 {
15692 struct mips_option_stack *s;
15693
15694 s = mips_opts_stack;
15695 if (s == NULL)
15696 as_bad (_(".set pop with no .set push"));
15697 else
15698 {
15699 /* If we're changing the reorder mode we need to handle
15700 delay slots correctly. */
15701 if (s->options.noreorder && ! mips_opts.noreorder)
7d10b47d 15702 start_noreorder ();
252b5132 15703 else if (! s->options.noreorder && mips_opts.noreorder)
7d10b47d 15704 end_noreorder ();
252b5132
RH
15705
15706 mips_opts = s->options;
15707 mips_opts_stack = s->next;
15708 free (s);
15709 }
15710 }
919731af 15711 else if (!parse_code_option (name))
15712 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
15713
15714 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
15715 registers based on what is supported by the arch/cpu. */
15716 if (mips_opts.isa != prev_isa)
e6559e01 15717 {
919731af 15718 switch (mips_opts.isa)
15719 {
15720 case 0:
15721 break;
15722 case ISA_MIPS1:
351cdf24
MF
15723 /* MIPS I cannot support FPXX. */
15724 mips_opts.fp = 32;
15725 /* fall-through. */
919731af 15726 case ISA_MIPS2:
15727 case ISA_MIPS32:
15728 case ISA_MIPS32R2:
15729 case ISA_MIPS32R3:
15730 case ISA_MIPS32R5:
15731 mips_opts.gp = 32;
351cdf24
MF
15732 if (mips_opts.fp != 0)
15733 mips_opts.fp = 32;
919731af 15734 break;
7361da2c
AB
15735 case ISA_MIPS32R6:
15736 mips_opts.gp = 32;
15737 mips_opts.fp = 64;
15738 break;
919731af 15739 case ISA_MIPS3:
15740 case ISA_MIPS4:
15741 case ISA_MIPS5:
15742 case ISA_MIPS64:
15743 case ISA_MIPS64R2:
15744 case ISA_MIPS64R3:
15745 case ISA_MIPS64R5:
7361da2c 15746 case ISA_MIPS64R6:
919731af 15747 mips_opts.gp = 64;
351cdf24
MF
15748 if (mips_opts.fp != 0)
15749 {
15750 if (mips_opts.arch == CPU_R5900)
15751 mips_opts.fp = 32;
15752 else
15753 mips_opts.fp = 64;
15754 }
919731af 15755 break;
15756 default:
15757 as_bad (_("unknown ISA level %s"), name + 4);
15758 break;
15759 }
e6559e01 15760 }
919731af 15761
15762 mips_check_options (&mips_opts, FALSE);
15763
15764 mips_check_isa_supports_ases ();
15765 *input_line_pointer = ch;
15766 demand_empty_rest_of_line ();
15767}
15768
15769/* Handle the .module pseudo-op. */
15770
15771static void
15772s_module (int ignore ATTRIBUTE_UNUSED)
15773{
15774 char *name = input_line_pointer, ch;
15775
15776 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15777 ++input_line_pointer;
15778 ch = *input_line_pointer;
15779 *input_line_pointer = '\0';
15780
15781 if (!file_mips_opts_checked)
252b5132 15782 {
919731af 15783 if (!parse_code_option (name))
15784 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
15785
15786 /* Update module level settings from mips_opts. */
15787 file_mips_opts = mips_opts;
252b5132 15788 }
919731af 15789 else
15790 as_bad (_(".module is not permitted after generating code"));
15791
252b5132
RH
15792 *input_line_pointer = ch;
15793 demand_empty_rest_of_line ();
15794}
15795
15796/* Handle the .abicalls pseudo-op. I believe this is equivalent to
15797 .option pic2. It means to generate SVR4 PIC calls. */
15798
15799static void
17a2f251 15800s_abicalls (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
15801{
15802 mips_pic = SVR4_PIC;
143d77c5 15803 mips_abicalls = TRUE;
4d0d148d
TS
15804
15805 if (g_switch_seen && g_switch_value != 0)
15806 as_warn (_("-G may not be used with SVR4 PIC code"));
15807 g_switch_value = 0;
15808
252b5132
RH
15809 bfd_set_gp_size (stdoutput, 0);
15810 demand_empty_rest_of_line ();
15811}
15812
15813/* Handle the .cpload pseudo-op. This is used when generating SVR4
15814 PIC code. It sets the $gp register for the function based on the
15815 function address, which is in the register named in the argument.
15816 This uses a relocation against _gp_disp, which is handled specially
15817 by the linker. The result is:
15818 lui $gp,%hi(_gp_disp)
15819 addiu $gp,$gp,%lo(_gp_disp)
15820 addu $gp,$gp,.cpload argument
aa6975fb
ILT
15821 The .cpload argument is normally $25 == $t9.
15822
15823 The -mno-shared option changes this to:
bbe506e8
TS
15824 lui $gp,%hi(__gnu_local_gp)
15825 addiu $gp,$gp,%lo(__gnu_local_gp)
aa6975fb
ILT
15826 and the argument is ignored. This saves an instruction, but the
15827 resulting code is not position independent; it uses an absolute
bbe506e8
TS
15828 address for __gnu_local_gp. Thus code assembled with -mno-shared
15829 can go into an ordinary executable, but not into a shared library. */
252b5132
RH
15830
15831static void
17a2f251 15832s_cpload (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
15833{
15834 expressionS ex;
aa6975fb
ILT
15835 int reg;
15836 int in_shared;
252b5132 15837
919731af 15838 file_mips_check_options ();
15839
6478892d
TS
15840 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
15841 .cpload is ignored. */
15842 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
15843 {
15844 s_ignore (0);
15845 return;
15846 }
15847
a276b80c
MR
15848 if (mips_opts.mips16)
15849 {
15850 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
15851 ignore_rest_of_line ();
15852 return;
15853 }
15854
d3ecfc59 15855 /* .cpload should be in a .set noreorder section. */
252b5132
RH
15856 if (mips_opts.noreorder == 0)
15857 as_warn (_(".cpload not in noreorder section"));
15858
aa6975fb
ILT
15859 reg = tc_get_register (0);
15860
15861 /* If we need to produce a 64-bit address, we are better off using
15862 the default instruction sequence. */
aed1a261 15863 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
aa6975fb 15864
252b5132 15865 ex.X_op = O_symbol;
bbe506e8
TS
15866 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
15867 "__gnu_local_gp");
252b5132
RH
15868 ex.X_op_symbol = NULL;
15869 ex.X_add_number = 0;
15870
15871 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
49309057 15872 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
252b5132 15873
8a75745d
MR
15874 mips_mark_labels ();
15875 mips_assembling_insn = TRUE;
15876
584892a6 15877 macro_start ();
67c0d1eb
RS
15878 macro_build_lui (&ex, mips_gp_register);
15879 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
17a2f251 15880 mips_gp_register, BFD_RELOC_LO16);
aa6975fb
ILT
15881 if (in_shared)
15882 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
15883 mips_gp_register, reg);
584892a6 15884 macro_end ();
252b5132 15885
8a75745d 15886 mips_assembling_insn = FALSE;
252b5132
RH
15887 demand_empty_rest_of_line ();
15888}
15889
6478892d
TS
15890/* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
15891 .cpsetup $reg1, offset|$reg2, label
15892
15893 If offset is given, this results in:
15894 sd $gp, offset($sp)
956cd1d6 15895 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
15896 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15897 daddu $gp, $gp, $reg1
6478892d
TS
15898
15899 If $reg2 is given, this results in:
40fc1451 15900 or $reg2, $gp, $0
956cd1d6 15901 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
15902 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15903 daddu $gp, $gp, $reg1
aa6975fb
ILT
15904 $reg1 is normally $25 == $t9.
15905
15906 The -mno-shared option replaces the last three instructions with
15907 lui $gp,%hi(_gp)
54f4ddb3 15908 addiu $gp,$gp,%lo(_gp) */
aa6975fb 15909
6478892d 15910static void
17a2f251 15911s_cpsetup (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
15912{
15913 expressionS ex_off;
15914 expressionS ex_sym;
15915 int reg1;
6478892d 15916
919731af 15917 file_mips_check_options ();
15918
8586fc66 15919 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
6478892d
TS
15920 We also need NewABI support. */
15921 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15922 {
15923 s_ignore (0);
15924 return;
15925 }
15926
a276b80c
MR
15927 if (mips_opts.mips16)
15928 {
15929 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
15930 ignore_rest_of_line ();
15931 return;
15932 }
15933
6478892d
TS
15934 reg1 = tc_get_register (0);
15935 SKIP_WHITESPACE ();
15936 if (*input_line_pointer != ',')
15937 {
15938 as_bad (_("missing argument separator ',' for .cpsetup"));
15939 return;
15940 }
15941 else
80245285 15942 ++input_line_pointer;
6478892d
TS
15943 SKIP_WHITESPACE ();
15944 if (*input_line_pointer == '$')
80245285
TS
15945 {
15946 mips_cpreturn_register = tc_get_register (0);
15947 mips_cpreturn_offset = -1;
15948 }
6478892d 15949 else
80245285
TS
15950 {
15951 mips_cpreturn_offset = get_absolute_expression ();
15952 mips_cpreturn_register = -1;
15953 }
6478892d
TS
15954 SKIP_WHITESPACE ();
15955 if (*input_line_pointer != ',')
15956 {
15957 as_bad (_("missing argument separator ',' for .cpsetup"));
15958 return;
15959 }
15960 else
f9419b05 15961 ++input_line_pointer;
6478892d 15962 SKIP_WHITESPACE ();
f21f8242 15963 expression (&ex_sym);
6478892d 15964
8a75745d
MR
15965 mips_mark_labels ();
15966 mips_assembling_insn = TRUE;
15967
584892a6 15968 macro_start ();
6478892d
TS
15969 if (mips_cpreturn_register == -1)
15970 {
15971 ex_off.X_op = O_constant;
15972 ex_off.X_add_symbol = NULL;
15973 ex_off.X_op_symbol = NULL;
15974 ex_off.X_add_number = mips_cpreturn_offset;
15975
67c0d1eb 15976 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
17a2f251 15977 BFD_RELOC_LO16, SP);
6478892d
TS
15978 }
15979 else
40fc1451 15980 move_register (mips_cpreturn_register, mips_gp_register);
6478892d 15981
aed1a261 15982 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
aa6975fb 15983 {
df58fc94 15984 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
aa6975fb
ILT
15985 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
15986 BFD_RELOC_HI16_S);
15987
15988 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
15989 mips_gp_register, -1, BFD_RELOC_GPREL16,
15990 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
15991
15992 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
15993 mips_gp_register, reg1);
15994 }
15995 else
15996 {
15997 expressionS ex;
15998
15999 ex.X_op = O_symbol;
4184909a 16000 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
aa6975fb
ILT
16001 ex.X_op_symbol = NULL;
16002 ex.X_add_number = 0;
6e1304d8 16003
aa6975fb
ILT
16004 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16005 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16006
16007 macro_build_lui (&ex, mips_gp_register);
16008 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16009 mips_gp_register, BFD_RELOC_LO16);
16010 }
f21f8242 16011
584892a6 16012 macro_end ();
6478892d 16013
8a75745d 16014 mips_assembling_insn = FALSE;
6478892d
TS
16015 demand_empty_rest_of_line ();
16016}
16017
16018static void
17a2f251 16019s_cplocal (int ignore ATTRIBUTE_UNUSED)
6478892d 16020{
919731af 16021 file_mips_check_options ();
16022
6478892d 16023 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
54f4ddb3 16024 .cplocal is ignored. */
6478892d
TS
16025 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16026 {
16027 s_ignore (0);
16028 return;
16029 }
16030
a276b80c
MR
16031 if (mips_opts.mips16)
16032 {
16033 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16034 ignore_rest_of_line ();
16035 return;
16036 }
16037
6478892d 16038 mips_gp_register = tc_get_register (0);
85b51719 16039 demand_empty_rest_of_line ();
6478892d
TS
16040}
16041
252b5132
RH
16042/* Handle the .cprestore pseudo-op. This stores $gp into a given
16043 offset from $sp. The offset is remembered, and after making a PIC
16044 call $gp is restored from that location. */
16045
16046static void
17a2f251 16047s_cprestore (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16048{
16049 expressionS ex;
252b5132 16050
919731af 16051 file_mips_check_options ();
16052
6478892d 16053 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
c9914766 16054 .cprestore is ignored. */
6478892d 16055 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
16056 {
16057 s_ignore (0);
16058 return;
16059 }
16060
a276b80c
MR
16061 if (mips_opts.mips16)
16062 {
16063 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16064 ignore_rest_of_line ();
16065 return;
16066 }
16067
252b5132 16068 mips_cprestore_offset = get_absolute_expression ();
7a621144 16069 mips_cprestore_valid = 1;
252b5132
RH
16070
16071 ex.X_op = O_constant;
16072 ex.X_add_symbol = NULL;
16073 ex.X_op_symbol = NULL;
16074 ex.X_add_number = mips_cprestore_offset;
16075
8a75745d
MR
16076 mips_mark_labels ();
16077 mips_assembling_insn = TRUE;
16078
584892a6 16079 macro_start ();
67c0d1eb
RS
16080 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16081 SP, HAVE_64BIT_ADDRESSES);
584892a6 16082 macro_end ();
252b5132 16083
8a75745d 16084 mips_assembling_insn = FALSE;
252b5132
RH
16085 demand_empty_rest_of_line ();
16086}
16087
6478892d 16088/* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
67c1ffbe 16089 was given in the preceding .cpsetup, it results in:
6478892d 16090 ld $gp, offset($sp)
76b3015f 16091
6478892d 16092 If a register $reg2 was given there, it results in:
40fc1451 16093 or $gp, $reg2, $0 */
54f4ddb3 16094
6478892d 16095static void
17a2f251 16096s_cpreturn (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16097{
16098 expressionS ex;
6478892d 16099
919731af 16100 file_mips_check_options ();
16101
6478892d
TS
16102 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16103 We also need NewABI support. */
16104 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16105 {
16106 s_ignore (0);
16107 return;
16108 }
16109
a276b80c
MR
16110 if (mips_opts.mips16)
16111 {
16112 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16113 ignore_rest_of_line ();
16114 return;
16115 }
16116
8a75745d
MR
16117 mips_mark_labels ();
16118 mips_assembling_insn = TRUE;
16119
584892a6 16120 macro_start ();
6478892d
TS
16121 if (mips_cpreturn_register == -1)
16122 {
16123 ex.X_op = O_constant;
16124 ex.X_add_symbol = NULL;
16125 ex.X_op_symbol = NULL;
16126 ex.X_add_number = mips_cpreturn_offset;
16127
67c0d1eb 16128 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
6478892d
TS
16129 }
16130 else
40fc1451
SD
16131 move_register (mips_gp_register, mips_cpreturn_register);
16132
584892a6 16133 macro_end ();
6478892d 16134
8a75745d 16135 mips_assembling_insn = FALSE;
6478892d
TS
16136 demand_empty_rest_of_line ();
16137}
16138
d0f13682
CLT
16139/* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16140 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16141 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16142 debug information or MIPS16 TLS. */
741d6ea8
JM
16143
16144static void
d0f13682
CLT
16145s_tls_rel_directive (const size_t bytes, const char *dirstr,
16146 bfd_reloc_code_real_type rtype)
741d6ea8
JM
16147{
16148 expressionS ex;
16149 char *p;
16150
16151 expression (&ex);
16152
16153 if (ex.X_op != O_symbol)
16154 {
1661c76c 16155 as_bad (_("unsupported use of %s"), dirstr);
741d6ea8
JM
16156 ignore_rest_of_line ();
16157 }
16158
16159 p = frag_more (bytes);
16160 md_number_to_chars (p, 0, bytes);
d0f13682 16161 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
741d6ea8 16162 demand_empty_rest_of_line ();
de64cffd 16163 mips_clear_insn_labels ();
741d6ea8
JM
16164}
16165
16166/* Handle .dtprelword. */
16167
16168static void
16169s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16170{
d0f13682 16171 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
741d6ea8
JM
16172}
16173
16174/* Handle .dtpreldword. */
16175
16176static void
16177s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16178{
d0f13682
CLT
16179 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16180}
16181
16182/* Handle .tprelword. */
16183
16184static void
16185s_tprelword (int ignore ATTRIBUTE_UNUSED)
16186{
16187 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16188}
16189
16190/* Handle .tpreldword. */
16191
16192static void
16193s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16194{
16195 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
741d6ea8
JM
16196}
16197
6478892d
TS
16198/* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16199 code. It sets the offset to use in gp_rel relocations. */
16200
16201static void
17a2f251 16202s_gpvalue (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16203{
16204 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16205 We also need NewABI support. */
16206 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16207 {
16208 s_ignore (0);
16209 return;
16210 }
16211
def2e0dd 16212 mips_gprel_offset = get_absolute_expression ();
6478892d
TS
16213
16214 demand_empty_rest_of_line ();
16215}
16216
252b5132
RH
16217/* Handle the .gpword pseudo-op. This is used when generating PIC
16218 code. It generates a 32 bit GP relative reloc. */
16219
16220static void
17a2f251 16221s_gpword (int ignore ATTRIBUTE_UNUSED)
252b5132 16222{
a8dbcb85
TS
16223 segment_info_type *si;
16224 struct insn_label_list *l;
252b5132
RH
16225 expressionS ex;
16226 char *p;
16227
16228 /* When not generating PIC code, this is treated as .word. */
16229 if (mips_pic != SVR4_PIC)
16230 {
16231 s_cons (2);
16232 return;
16233 }
16234
a8dbcb85
TS
16235 si = seg_info (now_seg);
16236 l = si->label_list;
7d10b47d 16237 mips_emit_delays ();
252b5132 16238 if (auto_align)
462427c4 16239 mips_align (2, 0, l);
252b5132
RH
16240
16241 expression (&ex);
a1facbec 16242 mips_clear_insn_labels ();
252b5132
RH
16243
16244 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16245 {
1661c76c 16246 as_bad (_("unsupported use of .gpword"));
252b5132
RH
16247 ignore_rest_of_line ();
16248 }
16249
16250 p = frag_more (4);
17a2f251 16251 md_number_to_chars (p, 0, 4);
b34976b6 16252 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
cdf6fd85 16253 BFD_RELOC_GPREL32);
252b5132
RH
16254
16255 demand_empty_rest_of_line ();
16256}
16257
10181a0d 16258static void
17a2f251 16259s_gpdword (int ignore ATTRIBUTE_UNUSED)
10181a0d 16260{
a8dbcb85
TS
16261 segment_info_type *si;
16262 struct insn_label_list *l;
10181a0d
AO
16263 expressionS ex;
16264 char *p;
16265
16266 /* When not generating PIC code, this is treated as .dword. */
16267 if (mips_pic != SVR4_PIC)
16268 {
16269 s_cons (3);
16270 return;
16271 }
16272
a8dbcb85
TS
16273 si = seg_info (now_seg);
16274 l = si->label_list;
7d10b47d 16275 mips_emit_delays ();
10181a0d 16276 if (auto_align)
462427c4 16277 mips_align (3, 0, l);
10181a0d
AO
16278
16279 expression (&ex);
a1facbec 16280 mips_clear_insn_labels ();
10181a0d
AO
16281
16282 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16283 {
1661c76c 16284 as_bad (_("unsupported use of .gpdword"));
10181a0d
AO
16285 ignore_rest_of_line ();
16286 }
16287
16288 p = frag_more (8);
17a2f251 16289 md_number_to_chars (p, 0, 8);
a105a300 16290 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
6e1304d8 16291 BFD_RELOC_GPREL32)->fx_tcbit = 1;
10181a0d
AO
16292
16293 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
6e1304d8
RS
16294 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16295 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
10181a0d
AO
16296
16297 demand_empty_rest_of_line ();
16298}
16299
a3f278e2
CM
16300/* Handle the .ehword pseudo-op. This is used when generating unwinding
16301 tables. It generates a R_MIPS_EH reloc. */
16302
16303static void
16304s_ehword (int ignore ATTRIBUTE_UNUSED)
16305{
16306 expressionS ex;
16307 char *p;
16308
16309 mips_emit_delays ();
16310
16311 expression (&ex);
16312 mips_clear_insn_labels ();
16313
16314 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16315 {
1661c76c 16316 as_bad (_("unsupported use of .ehword"));
a3f278e2
CM
16317 ignore_rest_of_line ();
16318 }
16319
16320 p = frag_more (4);
16321 md_number_to_chars (p, 0, 4);
16322 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
2f0c68f2 16323 BFD_RELOC_32_PCREL);
a3f278e2
CM
16324
16325 demand_empty_rest_of_line ();
16326}
16327
252b5132
RH
16328/* Handle the .cpadd pseudo-op. This is used when dealing with switch
16329 tables in SVR4 PIC code. */
16330
16331static void
17a2f251 16332s_cpadd (int ignore ATTRIBUTE_UNUSED)
252b5132 16333{
252b5132
RH
16334 int reg;
16335
919731af 16336 file_mips_check_options ();
16337
10181a0d
AO
16338 /* This is ignored when not generating SVR4 PIC code. */
16339 if (mips_pic != SVR4_PIC)
252b5132
RH
16340 {
16341 s_ignore (0);
16342 return;
16343 }
16344
8a75745d
MR
16345 mips_mark_labels ();
16346 mips_assembling_insn = TRUE;
16347
252b5132 16348 /* Add $gp to the register named as an argument. */
584892a6 16349 macro_start ();
252b5132 16350 reg = tc_get_register (0);
67c0d1eb 16351 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
584892a6 16352 macro_end ();
252b5132 16353
8a75745d 16354 mips_assembling_insn = FALSE;
bdaaa2e1 16355 demand_empty_rest_of_line ();
252b5132
RH
16356}
16357
16358/* Handle the .insn pseudo-op. This marks instruction labels in
df58fc94 16359 mips16/micromips mode. This permits the linker to handle them specially,
252b5132
RH
16360 such as generating jalx instructions when needed. We also make
16361 them odd for the duration of the assembly, in order to generate the
16362 right sort of code. We will make them even in the adjust_symtab
16363 routine, while leaving them marked. This is convenient for the
16364 debugger and the disassembler. The linker knows to make them odd
16365 again. */
16366
16367static void
17a2f251 16368s_insn (int ignore ATTRIBUTE_UNUSED)
252b5132 16369{
7bb01e2d
MR
16370 file_mips_check_options ();
16371 file_ase_mips16 |= mips_opts.mips16;
16372 file_ase_micromips |= mips_opts.micromips;
16373
df58fc94 16374 mips_mark_labels ();
252b5132
RH
16375
16376 demand_empty_rest_of_line ();
16377}
16378
ba92f887
MR
16379/* Handle the .nan pseudo-op. */
16380
16381static void
16382s_nan (int ignore ATTRIBUTE_UNUSED)
16383{
16384 static const char str_legacy[] = "legacy";
16385 static const char str_2008[] = "2008";
16386 size_t i;
16387
16388 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16389
16390 if (i == sizeof (str_2008) - 1
16391 && memcmp (input_line_pointer, str_2008, i) == 0)
7361da2c 16392 mips_nan2008 = 1;
ba92f887
MR
16393 else if (i == sizeof (str_legacy) - 1
16394 && memcmp (input_line_pointer, str_legacy, i) == 0)
7361da2c
AB
16395 {
16396 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16397 mips_nan2008 = 0;
16398 else
16399 as_bad (_("`%s' does not support legacy NaN"),
16400 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16401 }
ba92f887 16402 else
1661c76c 16403 as_bad (_("bad .nan directive"));
ba92f887
MR
16404
16405 input_line_pointer += i;
16406 demand_empty_rest_of_line ();
16407}
16408
754e2bb9
RS
16409/* Handle a .stab[snd] directive. Ideally these directives would be
16410 implemented in a transparent way, so that removing them would not
16411 have any effect on the generated instructions. However, s_stab
16412 internally changes the section, so in practice we need to decide
16413 now whether the preceding label marks compressed code. We do not
16414 support changing the compression mode of a label after a .stab*
16415 directive, such as in:
16416
16417 foo:
16418 .stabs ...
16419 .set mips16
16420
16421 so the current mode wins. */
252b5132
RH
16422
16423static void
17a2f251 16424s_mips_stab (int type)
252b5132 16425{
754e2bb9 16426 mips_mark_labels ();
252b5132
RH
16427 s_stab (type);
16428}
16429
54f4ddb3 16430/* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
252b5132
RH
16431
16432static void
17a2f251 16433s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16434{
16435 char *name;
16436 int c;
16437 symbolS *symbolP;
16438 expressionS exp;
16439
d02603dc 16440 c = get_symbol_name (&name);
252b5132
RH
16441 symbolP = symbol_find_or_make (name);
16442 S_SET_WEAK (symbolP);
16443 *input_line_pointer = c;
16444
d02603dc 16445 SKIP_WHITESPACE_AFTER_NAME ();
252b5132
RH
16446
16447 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16448 {
16449 if (S_IS_DEFINED (symbolP))
16450 {
20203fb9 16451 as_bad (_("ignoring attempt to redefine symbol %s"),
252b5132
RH
16452 S_GET_NAME (symbolP));
16453 ignore_rest_of_line ();
16454 return;
16455 }
bdaaa2e1 16456
252b5132
RH
16457 if (*input_line_pointer == ',')
16458 {
16459 ++input_line_pointer;
16460 SKIP_WHITESPACE ();
16461 }
bdaaa2e1 16462
252b5132
RH
16463 expression (&exp);
16464 if (exp.X_op != O_symbol)
16465 {
20203fb9 16466 as_bad (_("bad .weakext directive"));
98d3f06f 16467 ignore_rest_of_line ();
252b5132
RH
16468 return;
16469 }
49309057 16470 symbol_set_value_expression (symbolP, &exp);
252b5132
RH
16471 }
16472
16473 demand_empty_rest_of_line ();
16474}
16475
16476/* Parse a register string into a number. Called from the ECOFF code
16477 to parse .frame. The argument is non-zero if this is the frame
16478 register, so that we can record it in mips_frame_reg. */
16479
16480int
17a2f251 16481tc_get_register (int frame)
252b5132 16482{
707bfff6 16483 unsigned int reg;
252b5132
RH
16484
16485 SKIP_WHITESPACE ();
707bfff6
TS
16486 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
16487 reg = 0;
252b5132 16488 if (frame)
7a621144
DJ
16489 {
16490 mips_frame_reg = reg != 0 ? reg : SP;
16491 mips_frame_reg_valid = 1;
16492 mips_cprestore_valid = 0;
16493 }
252b5132
RH
16494 return reg;
16495}
16496
16497valueT
17a2f251 16498md_section_align (asection *seg, valueT addr)
252b5132
RH
16499{
16500 int align = bfd_get_section_alignment (stdoutput, seg);
16501
f3ded42a
RS
16502 /* We don't need to align ELF sections to the full alignment.
16503 However, Irix 5 may prefer that we align them at least to a 16
16504 byte boundary. We don't bother to align the sections if we
16505 are targeted for an embedded system. */
16506 if (strncmp (TARGET_OS, "elf", 3) == 0)
16507 return addr;
16508 if (align > 4)
16509 align = 4;
252b5132 16510
8d3842cd 16511 return ((addr + (1 << align) - 1) & -(1 << align));
252b5132
RH
16512}
16513
16514/* Utility routine, called from above as well. If called while the
16515 input file is still being read, it's only an approximation. (For
16516 example, a symbol may later become defined which appeared to be
16517 undefined earlier.) */
16518
16519static int
17a2f251 16520nopic_need_relax (symbolS *sym, int before_relaxing)
252b5132
RH
16521{
16522 if (sym == 0)
16523 return 0;
16524
4d0d148d 16525 if (g_switch_value > 0)
252b5132
RH
16526 {
16527 const char *symname;
16528 int change;
16529
c9914766 16530 /* Find out whether this symbol can be referenced off the $gp
252b5132
RH
16531 register. It can be if it is smaller than the -G size or if
16532 it is in the .sdata or .sbss section. Certain symbols can
c9914766 16533 not be referenced off the $gp, although it appears as though
252b5132
RH
16534 they can. */
16535 symname = S_GET_NAME (sym);
16536 if (symname != (const char *) NULL
16537 && (strcmp (symname, "eprol") == 0
16538 || strcmp (symname, "etext") == 0
16539 || strcmp (symname, "_gp") == 0
16540 || strcmp (symname, "edata") == 0
16541 || strcmp (symname, "_fbss") == 0
16542 || strcmp (symname, "_fdata") == 0
16543 || strcmp (symname, "_ftext") == 0
16544 || strcmp (symname, "end") == 0
16545 || strcmp (symname, "_gp_disp") == 0))
16546 change = 1;
16547 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
16548 && (0
16549#ifndef NO_ECOFF_DEBUGGING
49309057
ILT
16550 || (symbol_get_obj (sym)->ecoff_extern_size != 0
16551 && (symbol_get_obj (sym)->ecoff_extern_size
16552 <= g_switch_value))
252b5132
RH
16553#endif
16554 /* We must defer this decision until after the whole
16555 file has been read, since there might be a .extern
16556 after the first use of this symbol. */
16557 || (before_relaxing
16558#ifndef NO_ECOFF_DEBUGGING
49309057 16559 && symbol_get_obj (sym)->ecoff_extern_size == 0
252b5132
RH
16560#endif
16561 && S_GET_VALUE (sym) == 0)
16562 || (S_GET_VALUE (sym) != 0
16563 && S_GET_VALUE (sym) <= g_switch_value)))
16564 change = 0;
16565 else
16566 {
16567 const char *segname;
16568
16569 segname = segment_name (S_GET_SEGMENT (sym));
9c2799c2 16570 gas_assert (strcmp (segname, ".lit8") != 0
252b5132
RH
16571 && strcmp (segname, ".lit4") != 0);
16572 change = (strcmp (segname, ".sdata") != 0
fba2b7f9
GK
16573 && strcmp (segname, ".sbss") != 0
16574 && strncmp (segname, ".sdata.", 7) != 0
d4dc2f22
TS
16575 && strncmp (segname, ".sbss.", 6) != 0
16576 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
fba2b7f9 16577 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
252b5132
RH
16578 }
16579 return change;
16580 }
16581 else
c9914766 16582 /* We are not optimizing for the $gp register. */
252b5132
RH
16583 return 1;
16584}
16585
5919d012
RS
16586
16587/* Return true if the given symbol should be considered local for SVR4 PIC. */
16588
16589static bfd_boolean
17a2f251 16590pic_need_relax (symbolS *sym, asection *segtype)
5919d012
RS
16591{
16592 asection *symsec;
5919d012
RS
16593
16594 /* Handle the case of a symbol equated to another symbol. */
16595 while (symbol_equated_reloc_p (sym))
16596 {
16597 symbolS *n;
16598
5f0fe04b 16599 /* It's possible to get a loop here in a badly written program. */
5919d012
RS
16600 n = symbol_get_value_expression (sym)->X_add_symbol;
16601 if (n == sym)
16602 break;
16603 sym = n;
16604 }
16605
df1f3cda
DD
16606 if (symbol_section_p (sym))
16607 return TRUE;
16608
5919d012
RS
16609 symsec = S_GET_SEGMENT (sym);
16610
5919d012 16611 /* This must duplicate the test in adjust_reloc_syms. */
45dfa85a
AM
16612 return (!bfd_is_und_section (symsec)
16613 && !bfd_is_abs_section (symsec)
5f0fe04b
TS
16614 && !bfd_is_com_section (symsec)
16615 && !s_is_linkonce (sym, segtype)
5919d012 16616 /* A global or weak symbol is treated as external. */
f3ded42a 16617 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
5919d012
RS
16618}
16619
16620
252b5132
RH
16621/* Given a mips16 variant frag FRAGP, return non-zero if it needs an
16622 extended opcode. SEC is the section the frag is in. */
16623
16624static int
17a2f251 16625mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
252b5132
RH
16626{
16627 int type;
3ccad066 16628 const struct mips_int_operand *operand;
252b5132 16629 offsetT val;
252b5132 16630 segT symsec;
98aa84af 16631 fragS *sym_frag;
252b5132
RH
16632
16633 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
16634 return 0;
16635 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
16636 return 1;
16637
16638 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
3ccad066 16639 operand = mips16_immed_operand (type, FALSE);
252b5132 16640
98aa84af 16641 sym_frag = symbol_get_frag (fragp->fr_symbol);
ac62c346 16642 val = S_GET_VALUE (fragp->fr_symbol);
98aa84af 16643 symsec = S_GET_SEGMENT (fragp->fr_symbol);
252b5132 16644
3ccad066 16645 if (operand->root.type == OP_PCREL)
252b5132 16646 {
3ccad066 16647 const struct mips_pcrel_operand *pcrel_op;
252b5132 16648 addressT addr;
3ccad066 16649 offsetT maxtiny;
252b5132
RH
16650
16651 /* We won't have the section when we are called from
16652 mips_relax_frag. However, we will always have been called
16653 from md_estimate_size_before_relax first. If this is a
16654 branch to a different section, we mark it as such. If SEC is
16655 NULL, and the frag is not marked, then it must be a branch to
16656 the same section. */
3ccad066 16657 pcrel_op = (const struct mips_pcrel_operand *) operand;
252b5132
RH
16658 if (sec == NULL)
16659 {
16660 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
16661 return 1;
16662 }
16663 else
16664 {
98aa84af 16665 /* Must have been called from md_estimate_size_before_relax. */
252b5132
RH
16666 if (symsec != sec)
16667 {
16668 fragp->fr_subtype =
16669 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16670
16671 /* FIXME: We should support this, and let the linker
16672 catch branches and loads that are out of range. */
16673 as_bad_where (fragp->fr_file, fragp->fr_line,
16674 _("unsupported PC relative reference to different section"));
16675
16676 return 1;
16677 }
98aa84af
AM
16678 if (fragp != sym_frag && sym_frag->fr_address == 0)
16679 /* Assume non-extended on the first relaxation pass.
16680 The address we have calculated will be bogus if this is
16681 a forward branch to another frag, as the forward frag
16682 will have fr_address == 0. */
16683 return 0;
252b5132
RH
16684 }
16685
16686 /* In this case, we know for sure that the symbol fragment is in
98aa84af
AM
16687 the same section. If the relax_marker of the symbol fragment
16688 differs from the relax_marker of this fragment, we have not
16689 yet adjusted the symbol fragment fr_address. We want to add
252b5132
RH
16690 in STRETCH in order to get a better estimate of the address.
16691 This particularly matters because of the shift bits. */
16692 if (stretch != 0
98aa84af 16693 && sym_frag->relax_marker != fragp->relax_marker)
252b5132
RH
16694 {
16695 fragS *f;
16696
16697 /* Adjust stretch for any alignment frag. Note that if have
16698 been expanding the earlier code, the symbol may be
16699 defined in what appears to be an earlier frag. FIXME:
16700 This doesn't handle the fr_subtype field, which specifies
16701 a maximum number of bytes to skip when doing an
16702 alignment. */
98aa84af 16703 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
252b5132
RH
16704 {
16705 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
16706 {
16707 if (stretch < 0)
16708 stretch = - ((- stretch)
16709 & ~ ((1 << (int) f->fr_offset) - 1));
16710 else
16711 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
16712 if (stretch == 0)
16713 break;
16714 }
16715 }
16716 if (f != NULL)
16717 val += stretch;
16718 }
16719
16720 addr = fragp->fr_address + fragp->fr_fix;
16721
16722 /* The base address rules are complicated. The base address of
16723 a branch is the following instruction. The base address of a
16724 PC relative load or add is the instruction itself, but if it
16725 is in a delay slot (in which case it can not be extended) use
16726 the address of the instruction whose delay slot it is in. */
3ccad066 16727 if (pcrel_op->include_isa_bit)
252b5132
RH
16728 {
16729 addr += 2;
16730
16731 /* If we are currently assuming that this frag should be
16732 extended, then, the current address is two bytes
bdaaa2e1 16733 higher. */
252b5132
RH
16734 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16735 addr += 2;
16736
16737 /* Ignore the low bit in the target, since it will be set
16738 for a text label. */
3ccad066 16739 val &= -2;
252b5132
RH
16740 }
16741 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
16742 addr -= 4;
16743 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
16744 addr -= 2;
16745
3ccad066 16746 val -= addr & -(1 << pcrel_op->align_log2);
252b5132
RH
16747
16748 /* If any of the shifted bits are set, we must use an extended
16749 opcode. If the address depends on the size of this
16750 instruction, this can lead to a loop, so we arrange to always
16751 use an extended opcode. We only check this when we are in
16752 the main relaxation loop, when SEC is NULL. */
3ccad066 16753 if ((val & ((1 << operand->shift) - 1)) != 0 && sec == NULL)
252b5132
RH
16754 {
16755 fragp->fr_subtype =
16756 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16757 return 1;
16758 }
16759
16760 /* If we are about to mark a frag as extended because the value
3ccad066
RS
16761 is precisely the next value above maxtiny, then there is a
16762 chance of an infinite loop as in the following code:
252b5132
RH
16763 la $4,foo
16764 .skip 1020
16765 .align 2
16766 foo:
16767 In this case when the la is extended, foo is 0x3fc bytes
16768 away, so the la can be shrunk, but then foo is 0x400 away, so
16769 the la must be extended. To avoid this loop, we mark the
16770 frag as extended if it was small, and is about to become
3ccad066
RS
16771 extended with the next value above maxtiny. */
16772 maxtiny = mips_int_operand_max (operand);
16773 if (val == maxtiny + (1 << operand->shift)
252b5132
RH
16774 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
16775 && sec == NULL)
16776 {
16777 fragp->fr_subtype =
16778 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16779 return 1;
16780 }
16781 }
16782 else if (symsec != absolute_section && sec != NULL)
16783 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
16784
3ccad066 16785 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
252b5132
RH
16786}
16787
4a6a3df4
AO
16788/* Compute the length of a branch sequence, and adjust the
16789 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
16790 worst-case length is computed, with UPDATE being used to indicate
16791 whether an unconditional (-1), branch-likely (+1) or regular (0)
16792 branch is to be computed. */
16793static int
17a2f251 16794relaxed_branch_length (fragS *fragp, asection *sec, int update)
4a6a3df4 16795{
b34976b6 16796 bfd_boolean toofar;
4a6a3df4
AO
16797 int length;
16798
16799 if (fragp
16800 && S_IS_DEFINED (fragp->fr_symbol)
16801 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16802 {
16803 addressT addr;
16804 offsetT val;
16805
16806 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16807
16808 addr = fragp->fr_address + fragp->fr_fix + 4;
16809
16810 val -= addr;
16811
16812 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
16813 }
16814 else if (fragp)
16815 /* If the symbol is not defined or it's in a different segment,
16816 assume the user knows what's going on and emit a short
16817 branch. */
b34976b6 16818 toofar = FALSE;
4a6a3df4 16819 else
b34976b6 16820 toofar = TRUE;
4a6a3df4
AO
16821
16822 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
16823 fragp->fr_subtype
66b3e8da
MR
16824 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
16825 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
4a6a3df4
AO
16826 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
16827 RELAX_BRANCH_LINK (fragp->fr_subtype),
16828 toofar);
16829
16830 length = 4;
16831 if (toofar)
16832 {
16833 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
16834 length += 8;
16835
16836 if (mips_pic != NO_PIC)
16837 {
16838 /* Additional space for PIC loading of target address. */
16839 length += 8;
16840 if (mips_opts.isa == ISA_MIPS1)
16841 /* Additional space for $at-stabilizing nop. */
16842 length += 4;
16843 }
16844
16845 /* If branch is conditional. */
16846 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
16847 length += 8;
16848 }
b34976b6 16849
4a6a3df4
AO
16850 return length;
16851}
16852
df58fc94
RS
16853/* Compute the length of a branch sequence, and adjust the
16854 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
16855 worst-case length is computed, with UPDATE being used to indicate
16856 whether an unconditional (-1), or regular (0) branch is to be
16857 computed. */
16858
16859static int
16860relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
16861{
16862 bfd_boolean toofar;
16863 int length;
16864
16865 if (fragp
16866 && S_IS_DEFINED (fragp->fr_symbol)
16867 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16868 {
16869 addressT addr;
16870 offsetT val;
16871
16872 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16873 /* Ignore the low bit in the target, since it will be set
16874 for a text label. */
16875 if ((val & 1) != 0)
16876 --val;
16877
16878 addr = fragp->fr_address + fragp->fr_fix + 4;
16879
16880 val -= addr;
16881
16882 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
16883 }
16884 else if (fragp)
16885 /* If the symbol is not defined or it's in a different segment,
16886 assume the user knows what's going on and emit a short
16887 branch. */
16888 toofar = FALSE;
16889 else
16890 toofar = TRUE;
16891
16892 if (fragp && update
16893 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16894 fragp->fr_subtype = (toofar
16895 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
16896 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
16897
16898 length = 4;
16899 if (toofar)
16900 {
16901 bfd_boolean compact_known = fragp != NULL;
16902 bfd_boolean compact = FALSE;
16903 bfd_boolean uncond;
16904
16905 if (compact_known)
16906 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
16907 if (fragp)
16908 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
16909 else
16910 uncond = update < 0;
16911
16912 /* If label is out of range, we turn branch <br>:
16913
16914 <br> label # 4 bytes
16915 0:
16916
16917 into:
16918
16919 j label # 4 bytes
16920 nop # 2 bytes if compact && !PIC
16921 0:
16922 */
16923 if (mips_pic == NO_PIC && (!compact_known || compact))
16924 length += 2;
16925
16926 /* If assembling PIC code, we further turn:
16927
16928 j label # 4 bytes
16929
16930 into:
16931
16932 lw/ld at, %got(label)(gp) # 4 bytes
16933 d/addiu at, %lo(label) # 4 bytes
16934 jr/c at # 2 bytes
16935 */
16936 if (mips_pic != NO_PIC)
16937 length += 6;
16938
16939 /* If branch <br> is conditional, we prepend negated branch <brneg>:
16940
16941 <brneg> 0f # 4 bytes
16942 nop # 2 bytes if !compact
16943 */
16944 if (!uncond)
16945 length += (compact_known && compact) ? 4 : 6;
16946 }
16947
16948 return length;
16949}
16950
16951/* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
16952 bit accordingly. */
16953
16954static int
16955relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
16956{
16957 bfd_boolean toofar;
16958
df58fc94
RS
16959 if (fragp
16960 && S_IS_DEFINED (fragp->fr_symbol)
16961 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16962 {
16963 addressT addr;
16964 offsetT val;
16965 int type;
16966
16967 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16968 /* Ignore the low bit in the target, since it will be set
16969 for a text label. */
16970 if ((val & 1) != 0)
16971 --val;
16972
16973 /* Assume this is a 2-byte branch. */
16974 addr = fragp->fr_address + fragp->fr_fix + 2;
16975
16976 /* We try to avoid the infinite loop by not adding 2 more bytes for
16977 long branches. */
16978
16979 val -= addr;
16980
16981 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
16982 if (type == 'D')
16983 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
16984 else if (type == 'E')
16985 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
16986 else
16987 abort ();
16988 }
16989 else
16990 /* If the symbol is not defined or it's in a different segment,
16991 we emit a normal 32-bit branch. */
16992 toofar = TRUE;
16993
16994 if (fragp && update
16995 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
16996 fragp->fr_subtype
16997 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
16998 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
16999
17000 if (toofar)
17001 return 4;
17002
17003 return 2;
17004}
17005
252b5132
RH
17006/* Estimate the size of a frag before relaxing. Unless this is the
17007 mips16, we are not really relaxing here, and the final size is
17008 encoded in the subtype information. For the mips16, we have to
17009 decide whether we are using an extended opcode or not. */
17010
252b5132 17011int
17a2f251 17012md_estimate_size_before_relax (fragS *fragp, asection *segtype)
252b5132 17013{
5919d012 17014 int change;
252b5132 17015
4a6a3df4
AO
17016 if (RELAX_BRANCH_P (fragp->fr_subtype))
17017 {
17018
b34976b6
AM
17019 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17020
4a6a3df4
AO
17021 return fragp->fr_var;
17022 }
17023
252b5132 17024 if (RELAX_MIPS16_P (fragp->fr_subtype))
177b4a6a
AO
17025 /* We don't want to modify the EXTENDED bit here; it might get us
17026 into infinite loops. We change it only in mips_relax_frag(). */
17027 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
252b5132 17028
df58fc94
RS
17029 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17030 {
17031 int length = 4;
17032
17033 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17034 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17035 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17036 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17037 fragp->fr_var = length;
17038
17039 return length;
17040 }
17041
252b5132 17042 if (mips_pic == NO_PIC)
5919d012 17043 change = nopic_need_relax (fragp->fr_symbol, 0);
252b5132 17044 else if (mips_pic == SVR4_PIC)
5919d012 17045 change = pic_need_relax (fragp->fr_symbol, segtype);
0a44bf69
RS
17046 else if (mips_pic == VXWORKS_PIC)
17047 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17048 change = 0;
252b5132
RH
17049 else
17050 abort ();
17051
17052 if (change)
17053 {
4d7206a2 17054 fragp->fr_subtype |= RELAX_USE_SECOND;
4d7206a2 17055 return -RELAX_FIRST (fragp->fr_subtype);
252b5132 17056 }
4d7206a2
RS
17057 else
17058 return -RELAX_SECOND (fragp->fr_subtype);
252b5132
RH
17059}
17060
17061/* This is called to see whether a reloc against a defined symbol
de7e6852 17062 should be converted into a reloc against a section. */
252b5132
RH
17063
17064int
17a2f251 17065mips_fix_adjustable (fixS *fixp)
252b5132 17066{
252b5132
RH
17067 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17068 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17069 return 0;
a161fe53 17070
252b5132
RH
17071 if (fixp->fx_addsy == NULL)
17072 return 1;
a161fe53 17073
2f0c68f2
CM
17074 /* Allow relocs used for EH tables. */
17075 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17076 return 1;
17077
de7e6852
RS
17078 /* If symbol SYM is in a mergeable section, relocations of the form
17079 SYM + 0 can usually be made section-relative. The mergeable data
17080 is then identified by the section offset rather than by the symbol.
17081
17082 However, if we're generating REL LO16 relocations, the offset is split
17083 between the LO16 and parterning high part relocation. The linker will
17084 need to recalculate the complete offset in order to correctly identify
17085 the merge data.
17086
17087 The linker has traditionally not looked for the parterning high part
17088 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17089 placed anywhere. Rather than break backwards compatibility by changing
17090 this, it seems better not to force the issue, and instead keep the
17091 original symbol. This will work with either linker behavior. */
738e5348 17092 if ((lo16_reloc_p (fixp->fx_r_type)
704803a9 17093 || reloc_needs_lo_p (fixp->fx_r_type))
de7e6852
RS
17094 && HAVE_IN_PLACE_ADDENDS
17095 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17096 return 0;
17097
ce70d90a 17098 /* There is no place to store an in-place offset for JALR relocations.
2de39019
CM
17099 Likewise an in-range offset of limited PC-relative relocations may
17100 overflow the in-place relocatable field if recalculated against the
7361da2c
AB
17101 start address of the symbol's containing section.
17102
17103 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17104 section relative to allow linker relaxations to be performed later on. */
17105 if ((HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (mips_opts.isa))
2de39019
CM
17106 && (limited_pcrel_reloc_p (fixp->fx_r_type)
17107 || jalr_reloc_p (fixp->fx_r_type)))
1180b5a4
RS
17108 return 0;
17109
b314ec0e
RS
17110 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17111 to a floating-point stub. The same is true for non-R_MIPS16_26
17112 relocations against MIPS16 functions; in this case, the stub becomes
17113 the function's canonical address.
17114
17115 Floating-point stubs are stored in unique .mips16.call.* or
17116 .mips16.fn.* sections. If a stub T for function F is in section S,
17117 the first relocation in section S must be against F; this is how the
17118 linker determines the target function. All relocations that might
17119 resolve to T must also be against F. We therefore have the following
17120 restrictions, which are given in an intentionally-redundant way:
17121
17122 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17123 symbols.
17124
17125 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17126 if that stub might be used.
17127
17128 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17129 symbols.
17130
17131 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17132 that stub might be used.
17133
17134 There is a further restriction:
17135
df58fc94
RS
17136 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17137 R_MICROMIPS_26_S1) against MIPS16 or microMIPS symbols on
17138 targets with in-place addends; the relocation field cannot
b314ec0e
RS
17139 encode the low bit.
17140
df58fc94
RS
17141 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17142 against a MIPS16 symbol. We deal with (5) by by not reducing any
17143 such relocations on REL targets.
b314ec0e
RS
17144
17145 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17146 relocation against some symbol R, no relocation against R may be
17147 reduced. (Note that this deals with (2) as well as (1) because
17148 relocations against global symbols will never be reduced on ELF
17149 targets.) This approach is a little simpler than trying to detect
17150 stub sections, and gives the "all or nothing" per-symbol consistency
17151 that we have for MIPS16 symbols. */
f3ded42a 17152 if (fixp->fx_subsy == NULL
30c09090 17153 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
df58fc94
RS
17154 || *symbol_get_tc (fixp->fx_addsy)
17155 || (HAVE_IN_PLACE_ADDENDS
17156 && ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17157 && jmp_reloc_p (fixp->fx_r_type))))
252b5132 17158 return 0;
a161fe53 17159
252b5132
RH
17160 return 1;
17161}
17162
17163/* Translate internal representation of relocation info to BFD target
17164 format. */
17165
17166arelent **
17a2f251 17167tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
17168{
17169 static arelent *retval[4];
17170 arelent *reloc;
17171 bfd_reloc_code_real_type code;
17172
4b0cff4e
TS
17173 memset (retval, 0, sizeof(retval));
17174 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
49309057
ILT
17175 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
17176 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
17177 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17178
bad36eac
DJ
17179 if (fixp->fx_pcrel)
17180 {
df58fc94
RS
17181 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17182 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17183 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
b47468a6 17184 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
7361da2c
AB
17185 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17186 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17187 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17188 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17189 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17190 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17191 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
bad36eac
DJ
17192
17193 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17194 Relocations want only the symbol offset. */
17195 reloc->addend = fixp->fx_addnumber + reloc->address;
bad36eac
DJ
17196 }
17197 else
17198 reloc->addend = fixp->fx_addnumber;
252b5132 17199
438c16b8
TS
17200 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17201 entry to be used in the relocation's section offset. */
17202 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
252b5132
RH
17203 {
17204 reloc->address = reloc->addend;
17205 reloc->addend = 0;
17206 }
17207
252b5132 17208 code = fixp->fx_r_type;
252b5132 17209
bad36eac 17210 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
252b5132
RH
17211 if (reloc->howto == NULL)
17212 {
17213 as_bad_where (fixp->fx_file, fixp->fx_line,
1661c76c
RS
17214 _("cannot represent %s relocation in this object file"
17215 " format"),
252b5132
RH
17216 bfd_get_reloc_code_name (code));
17217 retval[0] = NULL;
17218 }
17219
17220 return retval;
17221}
17222
17223/* Relax a machine dependent frag. This returns the amount by which
17224 the current size of the frag should change. */
17225
17226int
17a2f251 17227mips_relax_frag (asection *sec, fragS *fragp, long stretch)
252b5132 17228{
4a6a3df4
AO
17229 if (RELAX_BRANCH_P (fragp->fr_subtype))
17230 {
17231 offsetT old_var = fragp->fr_var;
b34976b6
AM
17232
17233 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
4a6a3df4
AO
17234
17235 return fragp->fr_var - old_var;
17236 }
17237
df58fc94
RS
17238 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17239 {
17240 offsetT old_var = fragp->fr_var;
17241 offsetT new_var = 4;
17242
17243 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17244 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17245 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17246 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17247 fragp->fr_var = new_var;
17248
17249 return new_var - old_var;
17250 }
17251
252b5132
RH
17252 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17253 return 0;
17254
c4e7957c 17255 if (mips16_extended_frag (fragp, NULL, stretch))
252b5132
RH
17256 {
17257 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17258 return 0;
17259 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17260 return 2;
17261 }
17262 else
17263 {
17264 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17265 return 0;
17266 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17267 return -2;
17268 }
17269
17270 return 0;
17271}
17272
17273/* Convert a machine dependent frag. */
17274
17275void
17a2f251 17276md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
252b5132 17277{
4a6a3df4
AO
17278 if (RELAX_BRANCH_P (fragp->fr_subtype))
17279 {
4d68580a 17280 char *buf;
4a6a3df4
AO
17281 unsigned long insn;
17282 expressionS exp;
17283 fixS *fixp;
b34976b6 17284
4d68580a
RS
17285 buf = fragp->fr_literal + fragp->fr_fix;
17286 insn = read_insn (buf);
b34976b6 17287
4a6a3df4
AO
17288 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17289 {
17290 /* We generate a fixup instead of applying it right now
17291 because, if there are linker relaxations, we're going to
17292 need the relocations. */
17293 exp.X_op = O_symbol;
17294 exp.X_add_symbol = fragp->fr_symbol;
17295 exp.X_add_number = fragp->fr_offset;
17296
4d68580a
RS
17297 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17298 BFD_RELOC_16_PCREL_S2);
4a6a3df4
AO
17299 fixp->fx_file = fragp->fr_file;
17300 fixp->fx_line = fragp->fr_line;
b34976b6 17301
4d68580a 17302 buf = write_insn (buf, insn);
4a6a3df4
AO
17303 }
17304 else
17305 {
17306 int i;
17307
17308 as_warn_where (fragp->fr_file, fragp->fr_line,
1661c76c 17309 _("relaxed out-of-range branch into a jump"));
4a6a3df4
AO
17310
17311 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17312 goto uncond;
17313
17314 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17315 {
17316 /* Reverse the branch. */
17317 switch ((insn >> 28) & 0xf)
17318 {
17319 case 4:
56d438b1
CF
17320 if ((insn & 0xff000000) == 0x47000000
17321 || (insn & 0xff600000) == 0x45600000)
17322 {
17323 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17324 reversed by tweaking bit 23. */
17325 insn ^= 0x00800000;
17326 }
17327 else
17328 {
17329 /* bc[0-3][tf]l? instructions can have the condition
17330 reversed by tweaking a single TF bit, and their
17331 opcodes all have 0x4???????. */
17332 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17333 insn ^= 0x00010000;
17334 }
4a6a3df4
AO
17335 break;
17336
17337 case 0:
17338 /* bltz 0x04000000 bgez 0x04010000
54f4ddb3 17339 bltzal 0x04100000 bgezal 0x04110000 */
9c2799c2 17340 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
4a6a3df4
AO
17341 insn ^= 0x00010000;
17342 break;
b34976b6 17343
4a6a3df4
AO
17344 case 1:
17345 /* beq 0x10000000 bne 0x14000000
54f4ddb3 17346 blez 0x18000000 bgtz 0x1c000000 */
4a6a3df4
AO
17347 insn ^= 0x04000000;
17348 break;
17349
17350 default:
17351 abort ();
17352 }
17353 }
17354
17355 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17356 {
17357 /* Clear the and-link bit. */
9c2799c2 17358 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
4a6a3df4 17359
54f4ddb3
TS
17360 /* bltzal 0x04100000 bgezal 0x04110000
17361 bltzall 0x04120000 bgezall 0x04130000 */
4a6a3df4
AO
17362 insn &= ~0x00100000;
17363 }
17364
17365 /* Branch over the branch (if the branch was likely) or the
17366 full jump (not likely case). Compute the offset from the
17367 current instruction to branch to. */
17368 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17369 i = 16;
17370 else
17371 {
17372 /* How many bytes in instructions we've already emitted? */
4d68580a 17373 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
17374 /* How many bytes in instructions from here to the end? */
17375 i = fragp->fr_var - i;
17376 }
17377 /* Convert to instruction count. */
17378 i >>= 2;
17379 /* Branch counts from the next instruction. */
b34976b6 17380 i--;
4a6a3df4
AO
17381 insn |= i;
17382 /* Branch over the jump. */
4d68580a 17383 buf = write_insn (buf, insn);
4a6a3df4 17384
54f4ddb3 17385 /* nop */
4d68580a 17386 buf = write_insn (buf, 0);
4a6a3df4
AO
17387
17388 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17389 {
17390 /* beql $0, $0, 2f */
17391 insn = 0x50000000;
17392 /* Compute the PC offset from the current instruction to
17393 the end of the variable frag. */
17394 /* How many bytes in instructions we've already emitted? */
4d68580a 17395 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
17396 /* How many bytes in instructions from here to the end? */
17397 i = fragp->fr_var - i;
17398 /* Convert to instruction count. */
17399 i >>= 2;
17400 /* Don't decrement i, because we want to branch over the
17401 delay slot. */
4a6a3df4 17402 insn |= i;
4a6a3df4 17403
4d68580a
RS
17404 buf = write_insn (buf, insn);
17405 buf = write_insn (buf, 0);
4a6a3df4
AO
17406 }
17407
17408 uncond:
17409 if (mips_pic == NO_PIC)
17410 {
17411 /* j or jal. */
17412 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17413 ? 0x0c000000 : 0x08000000);
17414 exp.X_op = O_symbol;
17415 exp.X_add_symbol = fragp->fr_symbol;
17416 exp.X_add_number = fragp->fr_offset;
17417
4d68580a
RS
17418 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17419 FALSE, BFD_RELOC_MIPS_JMP);
4a6a3df4
AO
17420 fixp->fx_file = fragp->fr_file;
17421 fixp->fx_line = fragp->fr_line;
17422
4d68580a 17423 buf = write_insn (buf, insn);
4a6a3df4
AO
17424 }
17425 else
17426 {
66b3e8da
MR
17427 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
17428
4a6a3df4 17429 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
66b3e8da
MR
17430 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
17431 insn |= at << OP_SH_RT;
4a6a3df4
AO
17432 exp.X_op = O_symbol;
17433 exp.X_add_symbol = fragp->fr_symbol;
17434 exp.X_add_number = fragp->fr_offset;
17435
17436 if (fragp->fr_offset)
17437 {
17438 exp.X_add_symbol = make_expr_symbol (&exp);
17439 exp.X_add_number = 0;
17440 }
17441
4d68580a
RS
17442 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17443 FALSE, BFD_RELOC_MIPS_GOT16);
4a6a3df4
AO
17444 fixp->fx_file = fragp->fr_file;
17445 fixp->fx_line = fragp->fr_line;
17446
4d68580a 17447 buf = write_insn (buf, insn);
b34976b6 17448
4a6a3df4 17449 if (mips_opts.isa == ISA_MIPS1)
4d68580a
RS
17450 /* nop */
17451 buf = write_insn (buf, 0);
4a6a3df4
AO
17452
17453 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
66b3e8da
MR
17454 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
17455 insn |= at << OP_SH_RS | at << OP_SH_RT;
4a6a3df4 17456
4d68580a
RS
17457 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17458 FALSE, BFD_RELOC_LO16);
4a6a3df4
AO
17459 fixp->fx_file = fragp->fr_file;
17460 fixp->fx_line = fragp->fr_line;
b34976b6 17461
4d68580a 17462 buf = write_insn (buf, insn);
4a6a3df4
AO
17463
17464 /* j(al)r $at. */
17465 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
66b3e8da 17466 insn = 0x0000f809;
4a6a3df4 17467 else
66b3e8da
MR
17468 insn = 0x00000008;
17469 insn |= at << OP_SH_RS;
4a6a3df4 17470
4d68580a 17471 buf = write_insn (buf, insn);
4a6a3df4
AO
17472 }
17473 }
17474
4a6a3df4 17475 fragp->fr_fix += fragp->fr_var;
4d68580a 17476 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
4a6a3df4
AO
17477 return;
17478 }
17479
df58fc94
RS
17480 /* Relax microMIPS branches. */
17481 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17482 {
4d68580a 17483 char *buf = fragp->fr_literal + fragp->fr_fix;
df58fc94
RS
17484 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17485 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17486 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
2309ddf2 17487 bfd_boolean short_ds;
df58fc94
RS
17488 unsigned long insn;
17489 expressionS exp;
17490 fixS *fixp;
17491
17492 exp.X_op = O_symbol;
17493 exp.X_add_symbol = fragp->fr_symbol;
17494 exp.X_add_number = fragp->fr_offset;
17495
17496 fragp->fr_fix += fragp->fr_var;
17497
17498 /* Handle 16-bit branches that fit or are forced to fit. */
17499 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17500 {
17501 /* We generate a fixup instead of applying it right now,
17502 because if there is linker relaxation, we're going to
17503 need the relocations. */
17504 if (type == 'D')
4d68580a 17505 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
df58fc94
RS
17506 BFD_RELOC_MICROMIPS_10_PCREL_S1);
17507 else if (type == 'E')
4d68580a 17508 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
df58fc94
RS
17509 BFD_RELOC_MICROMIPS_7_PCREL_S1);
17510 else
17511 abort ();
17512
17513 fixp->fx_file = fragp->fr_file;
17514 fixp->fx_line = fragp->fr_line;
17515
17516 /* These relocations can have an addend that won't fit in
17517 2 octets. */
17518 fixp->fx_no_overflow = 1;
17519
17520 return;
17521 }
17522
2309ddf2 17523 /* Handle 32-bit branches that fit or are forced to fit. */
df58fc94
RS
17524 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17525 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17526 {
17527 /* We generate a fixup instead of applying it right now,
17528 because if there is linker relaxation, we're going to
17529 need the relocations. */
4d68580a
RS
17530 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17531 BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
17532 fixp->fx_file = fragp->fr_file;
17533 fixp->fx_line = fragp->fr_line;
17534
17535 if (type == 0)
17536 return;
17537 }
17538
17539 /* Relax 16-bit branches to 32-bit branches. */
17540 if (type != 0)
17541 {
4d68580a 17542 insn = read_compressed_insn (buf, 2);
df58fc94
RS
17543
17544 if ((insn & 0xfc00) == 0xcc00) /* b16 */
17545 insn = 0x94000000; /* beq */
17546 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
17547 {
17548 unsigned long regno;
17549
17550 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
17551 regno = micromips_to_32_reg_d_map [regno];
17552 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
17553 insn |= regno << MICROMIPSOP_SH_RS;
17554 }
17555 else
17556 abort ();
17557
17558 /* Nothing else to do, just write it out. */
17559 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17560 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17561 {
4d68580a
RS
17562 buf = write_compressed_insn (buf, insn, 4);
17563 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
17564 return;
17565 }
17566 }
17567 else
4d68580a 17568 insn = read_compressed_insn (buf, 4);
df58fc94
RS
17569
17570 /* Relax 32-bit branches to a sequence of instructions. */
17571 as_warn_where (fragp->fr_file, fragp->fr_line,
1661c76c 17572 _("relaxed out-of-range branch into a jump"));
df58fc94 17573
2309ddf2
MR
17574 /* Set the short-delay-slot bit. */
17575 short_ds = al && (insn & 0x02000000) != 0;
df58fc94
RS
17576
17577 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
17578 {
17579 symbolS *l;
17580
17581 /* Reverse the branch. */
17582 if ((insn & 0xfc000000) == 0x94000000 /* beq */
17583 || (insn & 0xfc000000) == 0xb4000000) /* bne */
17584 insn ^= 0x20000000;
17585 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
17586 || (insn & 0xffe00000) == 0x40400000 /* bgez */
17587 || (insn & 0xffe00000) == 0x40800000 /* blez */
17588 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
17589 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
17590 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
17591 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
17592 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
17593 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
17594 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
17595 insn ^= 0x00400000;
17596 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
17597 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
17598 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
17599 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
17600 insn ^= 0x00200000;
56d438b1
CF
17601 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
17602 BNZ.df */
17603 || (insn & 0xff600000) == 0x81600000) /* BZ.V
17604 BNZ.V */
17605 insn ^= 0x00800000;
df58fc94
RS
17606 else
17607 abort ();
17608
17609 if (al)
17610 {
17611 /* Clear the and-link and short-delay-slot bits. */
17612 gas_assert ((insn & 0xfda00000) == 0x40200000);
17613
17614 /* bltzal 0x40200000 bgezal 0x40600000 */
17615 /* bltzals 0x42200000 bgezals 0x42600000 */
17616 insn &= ~0x02200000;
17617 }
17618
17619 /* Make a label at the end for use with the branch. */
17620 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
17621 micromips_label_inc ();
f3ded42a 17622 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
df58fc94
RS
17623
17624 /* Refer to it. */
4d68580a
RS
17625 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
17626 BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
17627 fixp->fx_file = fragp->fr_file;
17628 fixp->fx_line = fragp->fr_line;
17629
17630 /* Branch over the jump. */
4d68580a 17631 buf = write_compressed_insn (buf, insn, 4);
df58fc94 17632 if (!compact)
4d68580a
RS
17633 /* nop */
17634 buf = write_compressed_insn (buf, 0x0c00, 2);
df58fc94
RS
17635 }
17636
17637 if (mips_pic == NO_PIC)
17638 {
2309ddf2
MR
17639 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
17640
df58fc94
RS
17641 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
17642 insn = al ? jal : 0xd4000000;
17643
4d68580a
RS
17644 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17645 BFD_RELOC_MICROMIPS_JMP);
df58fc94
RS
17646 fixp->fx_file = fragp->fr_file;
17647 fixp->fx_line = fragp->fr_line;
17648
4d68580a 17649 buf = write_compressed_insn (buf, insn, 4);
df58fc94 17650 if (compact)
4d68580a
RS
17651 /* nop */
17652 buf = write_compressed_insn (buf, 0x0c00, 2);
df58fc94
RS
17653 }
17654 else
17655 {
17656 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
2309ddf2
MR
17657 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
17658 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
df58fc94
RS
17659
17660 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
17661 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
17662 insn |= at << MICROMIPSOP_SH_RT;
17663
17664 if (exp.X_add_number)
17665 {
17666 exp.X_add_symbol = make_expr_symbol (&exp);
17667 exp.X_add_number = 0;
17668 }
17669
4d68580a
RS
17670 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17671 BFD_RELOC_MICROMIPS_GOT16);
df58fc94
RS
17672 fixp->fx_file = fragp->fr_file;
17673 fixp->fx_line = fragp->fr_line;
17674
4d68580a 17675 buf = write_compressed_insn (buf, insn, 4);
df58fc94
RS
17676
17677 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
17678 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
17679 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
17680
4d68580a
RS
17681 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17682 BFD_RELOC_MICROMIPS_LO16);
df58fc94
RS
17683 fixp->fx_file = fragp->fr_file;
17684 fixp->fx_line = fragp->fr_line;
17685
4d68580a 17686 buf = write_compressed_insn (buf, insn, 4);
df58fc94
RS
17687
17688 /* jr/jrc/jalr/jalrs $at */
17689 insn = al ? jalr : jr;
17690 insn |= at << MICROMIPSOP_SH_MJ;
17691
4d68580a 17692 buf = write_compressed_insn (buf, insn, 2);
df58fc94
RS
17693 }
17694
4d68580a 17695 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
17696 return;
17697 }
17698
252b5132
RH
17699 if (RELAX_MIPS16_P (fragp->fr_subtype))
17700 {
17701 int type;
3ccad066 17702 const struct mips_int_operand *operand;
252b5132 17703 offsetT val;
5c04167a
RS
17704 char *buf;
17705 unsigned int user_length, length;
252b5132 17706 unsigned long insn;
5c04167a 17707 bfd_boolean ext;
252b5132
RH
17708
17709 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
3ccad066 17710 operand = mips16_immed_operand (type, FALSE);
252b5132 17711
5c04167a 17712 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
5f5f22c0 17713 val = resolve_symbol_value (fragp->fr_symbol);
3ccad066 17714 if (operand->root.type == OP_PCREL)
252b5132 17715 {
3ccad066 17716 const struct mips_pcrel_operand *pcrel_op;
252b5132
RH
17717 addressT addr;
17718
3ccad066 17719 pcrel_op = (const struct mips_pcrel_operand *) operand;
252b5132
RH
17720 addr = fragp->fr_address + fragp->fr_fix;
17721
17722 /* The rules for the base address of a PC relative reloc are
17723 complicated; see mips16_extended_frag. */
3ccad066 17724 if (pcrel_op->include_isa_bit)
252b5132
RH
17725 {
17726 addr += 2;
17727 if (ext)
17728 addr += 2;
17729 /* Ignore the low bit in the target, since it will be
17730 set for a text label. */
3ccad066 17731 val &= -2;
252b5132
RH
17732 }
17733 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17734 addr -= 4;
17735 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17736 addr -= 2;
17737
3ccad066 17738 addr &= -(1 << pcrel_op->align_log2);
252b5132
RH
17739 val -= addr;
17740
17741 /* Make sure the section winds up with the alignment we have
17742 assumed. */
3ccad066
RS
17743 if (operand->shift > 0)
17744 record_alignment (asec, operand->shift);
252b5132
RH
17745 }
17746
17747 if (ext
17748 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
17749 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
17750 as_warn_where (fragp->fr_file, fragp->fr_line,
17751 _("extended instruction in delay slot"));
17752
5c04167a 17753 buf = fragp->fr_literal + fragp->fr_fix;
252b5132 17754
4d68580a 17755 insn = read_compressed_insn (buf, 2);
5c04167a
RS
17756 if (ext)
17757 insn |= MIPS16_EXTEND;
252b5132 17758
5c04167a
RS
17759 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17760 user_length = 4;
17761 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17762 user_length = 2;
17763 else
17764 user_length = 0;
17765
43c0598f 17766 mips16_immed (fragp->fr_file, fragp->fr_line, type,
c150d1d2 17767 BFD_RELOC_UNUSED, val, user_length, &insn);
252b5132 17768
5c04167a
RS
17769 length = (ext ? 4 : 2);
17770 gas_assert (mips16_opcode_length (insn) == length);
17771 write_compressed_insn (buf, insn, length);
17772 fragp->fr_fix += length;
252b5132
RH
17773 }
17774 else
17775 {
df58fc94
RS
17776 relax_substateT subtype = fragp->fr_subtype;
17777 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
17778 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
4d7206a2
RS
17779 int first, second;
17780 fixS *fixp;
252b5132 17781
df58fc94
RS
17782 first = RELAX_FIRST (subtype);
17783 second = RELAX_SECOND (subtype);
4d7206a2 17784 fixp = (fixS *) fragp->fr_opcode;
252b5132 17785
df58fc94
RS
17786 /* If the delay slot chosen does not match the size of the instruction,
17787 then emit a warning. */
17788 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
17789 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
17790 {
17791 relax_substateT s;
17792 const char *msg;
17793
17794 s = subtype & (RELAX_DELAY_SLOT_16BIT
17795 | RELAX_DELAY_SLOT_SIZE_FIRST
17796 | RELAX_DELAY_SLOT_SIZE_SECOND);
17797 msg = macro_warning (s);
17798 if (msg != NULL)
db9b2be4 17799 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94
RS
17800 subtype &= ~s;
17801 }
17802
584892a6 17803 /* Possibly emit a warning if we've chosen the longer option. */
df58fc94 17804 if (use_second == second_longer)
584892a6 17805 {
df58fc94
RS
17806 relax_substateT s;
17807 const char *msg;
17808
17809 s = (subtype
17810 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
17811 msg = macro_warning (s);
17812 if (msg != NULL)
db9b2be4 17813 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94 17814 subtype &= ~s;
584892a6
RS
17815 }
17816
4d7206a2
RS
17817 /* Go through all the fixups for the first sequence. Disable them
17818 (by marking them as done) if we're going to use the second
17819 sequence instead. */
17820 while (fixp
17821 && fixp->fx_frag == fragp
17822 && fixp->fx_where < fragp->fr_fix - second)
17823 {
df58fc94 17824 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
17825 fixp->fx_done = 1;
17826 fixp = fixp->fx_next;
17827 }
252b5132 17828
4d7206a2
RS
17829 /* Go through the fixups for the second sequence. Disable them if
17830 we're going to use the first sequence, otherwise adjust their
17831 addresses to account for the relaxation. */
17832 while (fixp && fixp->fx_frag == fragp)
17833 {
df58fc94 17834 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
17835 fixp->fx_where -= first;
17836 else
17837 fixp->fx_done = 1;
17838 fixp = fixp->fx_next;
17839 }
17840
17841 /* Now modify the frag contents. */
df58fc94 17842 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
17843 {
17844 char *start;
17845
17846 start = fragp->fr_literal + fragp->fr_fix - first - second;
17847 memmove (start, start + first, second);
17848 fragp->fr_fix -= first;
17849 }
17850 else
17851 fragp->fr_fix -= second;
252b5132
RH
17852 }
17853}
17854
252b5132
RH
17855/* This function is called after the relocs have been generated.
17856 We've been storing mips16 text labels as odd. Here we convert them
17857 back to even for the convenience of the debugger. */
17858
17859void
17a2f251 17860mips_frob_file_after_relocs (void)
252b5132
RH
17861{
17862 asymbol **syms;
17863 unsigned int count, i;
17864
252b5132
RH
17865 syms = bfd_get_outsymbols (stdoutput);
17866 count = bfd_get_symcount (stdoutput);
17867 for (i = 0; i < count; i++, syms++)
df58fc94
RS
17868 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
17869 && ((*syms)->value & 1) != 0)
17870 {
17871 (*syms)->value &= ~1;
17872 /* If the symbol has an odd size, it was probably computed
17873 incorrectly, so adjust that as well. */
17874 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
17875 ++elf_symbol (*syms)->internal_elf_sym.st_size;
17876 }
252b5132
RH
17877}
17878
a1facbec
MR
17879/* This function is called whenever a label is defined, including fake
17880 labels instantiated off the dot special symbol. It is used when
17881 handling branch delays; if a branch has a label, we assume we cannot
17882 move it. This also bumps the value of the symbol by 1 in compressed
17883 code. */
252b5132 17884
e1b47bd5 17885static void
a1facbec 17886mips_record_label (symbolS *sym)
252b5132 17887{
a8dbcb85 17888 segment_info_type *si = seg_info (now_seg);
252b5132
RH
17889 struct insn_label_list *l;
17890
17891 if (free_insn_labels == NULL)
17892 l = (struct insn_label_list *) xmalloc (sizeof *l);
17893 else
17894 {
17895 l = free_insn_labels;
17896 free_insn_labels = l->next;
17897 }
17898
17899 l->label = sym;
a8dbcb85
TS
17900 l->next = si->label_list;
17901 si->label_list = l;
a1facbec 17902}
07a53e5c 17903
a1facbec
MR
17904/* This function is called as tc_frob_label() whenever a label is defined
17905 and adds a DWARF-2 record we only want for true labels. */
17906
17907void
17908mips_define_label (symbolS *sym)
17909{
17910 mips_record_label (sym);
07a53e5c 17911 dwarf2_emit_label (sym);
252b5132 17912}
e1b47bd5
RS
17913
17914/* This function is called by tc_new_dot_label whenever a new dot symbol
17915 is defined. */
17916
17917void
17918mips_add_dot_label (symbolS *sym)
17919{
17920 mips_record_label (sym);
17921 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
17922 mips_compressed_mark_label (sym);
17923}
252b5132 17924\f
351cdf24
MF
17925/* Converting ASE flags from internal to .MIPS.abiflags values. */
17926static unsigned int
17927mips_convert_ase_flags (int ase)
17928{
17929 unsigned int ext_ases = 0;
17930
17931 if (ase & ASE_DSP)
17932 ext_ases |= AFL_ASE_DSP;
17933 if (ase & ASE_DSPR2)
17934 ext_ases |= AFL_ASE_DSPR2;
17935 if (ase & ASE_EVA)
17936 ext_ases |= AFL_ASE_EVA;
17937 if (ase & ASE_MCU)
17938 ext_ases |= AFL_ASE_MCU;
17939 if (ase & ASE_MDMX)
17940 ext_ases |= AFL_ASE_MDMX;
17941 if (ase & ASE_MIPS3D)
17942 ext_ases |= AFL_ASE_MIPS3D;
17943 if (ase & ASE_MT)
17944 ext_ases |= AFL_ASE_MT;
17945 if (ase & ASE_SMARTMIPS)
17946 ext_ases |= AFL_ASE_SMARTMIPS;
17947 if (ase & ASE_VIRT)
17948 ext_ases |= AFL_ASE_VIRT;
17949 if (ase & ASE_MSA)
17950 ext_ases |= AFL_ASE_MSA;
17951 if (ase & ASE_XPA)
17952 ext_ases |= AFL_ASE_XPA;
17953
17954 return ext_ases;
17955}
252b5132
RH
17956/* Some special processing for a MIPS ELF file. */
17957
17958void
17a2f251 17959mips_elf_final_processing (void)
252b5132 17960{
351cdf24
MF
17961 int fpabi;
17962 Elf_Internal_ABIFlags_v0 flags;
17963
17964 flags.version = 0;
17965 flags.isa_rev = 0;
17966 switch (file_mips_opts.isa)
17967 {
17968 case INSN_ISA1:
17969 flags.isa_level = 1;
17970 break;
17971 case INSN_ISA2:
17972 flags.isa_level = 2;
17973 break;
17974 case INSN_ISA3:
17975 flags.isa_level = 3;
17976 break;
17977 case INSN_ISA4:
17978 flags.isa_level = 4;
17979 break;
17980 case INSN_ISA5:
17981 flags.isa_level = 5;
17982 break;
17983 case INSN_ISA32:
17984 flags.isa_level = 32;
17985 flags.isa_rev = 1;
17986 break;
17987 case INSN_ISA32R2:
17988 flags.isa_level = 32;
17989 flags.isa_rev = 2;
17990 break;
17991 case INSN_ISA32R3:
17992 flags.isa_level = 32;
17993 flags.isa_rev = 3;
17994 break;
17995 case INSN_ISA32R5:
17996 flags.isa_level = 32;
17997 flags.isa_rev = 5;
17998 break;
09c14161
MF
17999 case INSN_ISA32R6:
18000 flags.isa_level = 32;
18001 flags.isa_rev = 6;
18002 break;
351cdf24
MF
18003 case INSN_ISA64:
18004 flags.isa_level = 64;
18005 flags.isa_rev = 1;
18006 break;
18007 case INSN_ISA64R2:
18008 flags.isa_level = 64;
18009 flags.isa_rev = 2;
18010 break;
18011 case INSN_ISA64R3:
18012 flags.isa_level = 64;
18013 flags.isa_rev = 3;
18014 break;
18015 case INSN_ISA64R5:
18016 flags.isa_level = 64;
18017 flags.isa_rev = 5;
18018 break;
09c14161
MF
18019 case INSN_ISA64R6:
18020 flags.isa_level = 64;
18021 flags.isa_rev = 6;
18022 break;
351cdf24
MF
18023 }
18024
18025 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18026 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18027 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18028 : (file_mips_opts.fp == 64) ? AFL_REG_64
18029 : AFL_REG_32;
18030 flags.cpr2_size = AFL_REG_NONE;
18031 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18032 Tag_GNU_MIPS_ABI_FP);
18033 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18034 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18035 if (file_ase_mips16)
18036 flags.ases |= AFL_ASE_MIPS16;
18037 if (file_ase_micromips)
18038 flags.ases |= AFL_ASE_MICROMIPS;
18039 flags.flags1 = 0;
18040 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18041 || file_mips_opts.fp == 64)
18042 && file_mips_opts.oddspreg)
18043 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18044 flags.flags2 = 0;
18045
18046 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18047 ((Elf_External_ABIFlags_v0 *)
18048 mips_flags_frag));
18049
252b5132 18050 /* Write out the register information. */
316f5878 18051 if (mips_abi != N64_ABI)
252b5132
RH
18052 {
18053 Elf32_RegInfo s;
18054
18055 s.ri_gprmask = mips_gprmask;
18056 s.ri_cprmask[0] = mips_cprmask[0];
18057 s.ri_cprmask[1] = mips_cprmask[1];
18058 s.ri_cprmask[2] = mips_cprmask[2];
18059 s.ri_cprmask[3] = mips_cprmask[3];
18060 /* The gp_value field is set by the MIPS ELF backend. */
18061
18062 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18063 ((Elf32_External_RegInfo *)
18064 mips_regmask_frag));
18065 }
18066 else
18067 {
18068 Elf64_Internal_RegInfo s;
18069
18070 s.ri_gprmask = mips_gprmask;
18071 s.ri_pad = 0;
18072 s.ri_cprmask[0] = mips_cprmask[0];
18073 s.ri_cprmask[1] = mips_cprmask[1];
18074 s.ri_cprmask[2] = mips_cprmask[2];
18075 s.ri_cprmask[3] = mips_cprmask[3];
18076 /* The gp_value field is set by the MIPS ELF backend. */
18077
18078 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18079 ((Elf64_External_RegInfo *)
18080 mips_regmask_frag));
18081 }
18082
18083 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18084 sort of BFD interface for this. */
18085 if (mips_any_noreorder)
18086 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18087 if (mips_pic != NO_PIC)
143d77c5 18088 {
8b828383 18089 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
143d77c5
EC
18090 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18091 }
18092 if (mips_abicalls)
18093 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
252b5132 18094
b015e599
AP
18095 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18096 defined at present; this might need to change in future. */
a4672219
TS
18097 if (file_ase_mips16)
18098 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
df58fc94
RS
18099 if (file_ase_micromips)
18100 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
919731af 18101 if (file_mips_opts.ase & ASE_MDMX)
deec1734 18102 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
1f25f5d3 18103
bdaaa2e1 18104 /* Set the MIPS ELF ABI flags. */
316f5878 18105 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
252b5132 18106 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
316f5878 18107 else if (mips_abi == O64_ABI)
252b5132 18108 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
316f5878 18109 else if (mips_abi == EABI_ABI)
252b5132 18110 {
bad1aba3 18111 if (file_mips_opts.gp == 64)
252b5132
RH
18112 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18113 else
18114 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18115 }
316f5878 18116 else if (mips_abi == N32_ABI)
be00bddd
TS
18117 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18118
c9914766 18119 /* Nothing to do for N64_ABI. */
252b5132
RH
18120
18121 if (mips_32bitmode)
18122 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
ad3fea08 18123
7361da2c 18124 if (mips_nan2008 == 1)
ba92f887
MR
18125 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18126
ad3fea08 18127 /* 32 bit code with 64 bit FP registers. */
351cdf24
MF
18128 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18129 Tag_GNU_MIPS_ABI_FP);
18130 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
f1c38003 18131 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
252b5132 18132}
252b5132 18133\f
beae10d5 18134typedef struct proc {
9b2f1d35
EC
18135 symbolS *func_sym;
18136 symbolS *func_end_sym;
beae10d5
KH
18137 unsigned long reg_mask;
18138 unsigned long reg_offset;
18139 unsigned long fpreg_mask;
18140 unsigned long fpreg_offset;
18141 unsigned long frame_offset;
18142 unsigned long frame_reg;
18143 unsigned long pc_reg;
18144} procS;
252b5132
RH
18145
18146static procS cur_proc;
18147static procS *cur_proc_ptr;
18148static int numprocs;
18149
df58fc94
RS
18150/* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18151 as "2", and a normal nop as "0". */
18152
18153#define NOP_OPCODE_MIPS 0
18154#define NOP_OPCODE_MIPS16 1
18155#define NOP_OPCODE_MICROMIPS 2
742a56fe
RS
18156
18157char
18158mips_nop_opcode (void)
18159{
df58fc94
RS
18160 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18161 return NOP_OPCODE_MICROMIPS;
18162 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18163 return NOP_OPCODE_MIPS16;
18164 else
18165 return NOP_OPCODE_MIPS;
742a56fe
RS
18166}
18167
df58fc94
RS
18168/* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18169 32-bit microMIPS NOPs here (if applicable). */
a19d8eb0 18170
0a9ef439 18171void
17a2f251 18172mips_handle_align (fragS *fragp)
a19d8eb0 18173{
df58fc94 18174 char nop_opcode;
742a56fe 18175 char *p;
c67a084a
NC
18176 int bytes, size, excess;
18177 valueT opcode;
742a56fe 18178
0a9ef439
RH
18179 if (fragp->fr_type != rs_align_code)
18180 return;
18181
742a56fe 18182 p = fragp->fr_literal + fragp->fr_fix;
df58fc94
RS
18183 nop_opcode = *p;
18184 switch (nop_opcode)
a19d8eb0 18185 {
df58fc94
RS
18186 case NOP_OPCODE_MICROMIPS:
18187 opcode = micromips_nop32_insn.insn_opcode;
18188 size = 4;
18189 break;
18190 case NOP_OPCODE_MIPS16:
c67a084a
NC
18191 opcode = mips16_nop_insn.insn_opcode;
18192 size = 2;
df58fc94
RS
18193 break;
18194 case NOP_OPCODE_MIPS:
18195 default:
c67a084a
NC
18196 opcode = nop_insn.insn_opcode;
18197 size = 4;
df58fc94 18198 break;
c67a084a 18199 }
a19d8eb0 18200
c67a084a
NC
18201 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18202 excess = bytes % size;
df58fc94
RS
18203
18204 /* Handle the leading part if we're not inserting a whole number of
18205 instructions, and make it the end of the fixed part of the frag.
18206 Try to fit in a short microMIPS NOP if applicable and possible,
18207 and use zeroes otherwise. */
18208 gas_assert (excess < 4);
18209 fragp->fr_fix += excess;
18210 switch (excess)
c67a084a 18211 {
df58fc94
RS
18212 case 3:
18213 *p++ = '\0';
18214 /* Fall through. */
18215 case 2:
833794fc 18216 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
df58fc94 18217 {
4d68580a 18218 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
df58fc94
RS
18219 break;
18220 }
18221 *p++ = '\0';
18222 /* Fall through. */
18223 case 1:
18224 *p++ = '\0';
18225 /* Fall through. */
18226 case 0:
18227 break;
a19d8eb0 18228 }
c67a084a
NC
18229
18230 md_number_to_chars (p, opcode, size);
18231 fragp->fr_var = size;
a19d8eb0
CP
18232}
18233
252b5132 18234static long
17a2f251 18235get_number (void)
252b5132
RH
18236{
18237 int negative = 0;
18238 long val = 0;
18239
18240 if (*input_line_pointer == '-')
18241 {
18242 ++input_line_pointer;
18243 negative = 1;
18244 }
3882b010 18245 if (!ISDIGIT (*input_line_pointer))
956cd1d6 18246 as_bad (_("expected simple number"));
252b5132
RH
18247 if (input_line_pointer[0] == '0')
18248 {
18249 if (input_line_pointer[1] == 'x')
18250 {
18251 input_line_pointer += 2;
3882b010 18252 while (ISXDIGIT (*input_line_pointer))
252b5132
RH
18253 {
18254 val <<= 4;
18255 val |= hex_value (*input_line_pointer++);
18256 }
18257 return negative ? -val : val;
18258 }
18259 else
18260 {
18261 ++input_line_pointer;
3882b010 18262 while (ISDIGIT (*input_line_pointer))
252b5132
RH
18263 {
18264 val <<= 3;
18265 val |= *input_line_pointer++ - '0';
18266 }
18267 return negative ? -val : val;
18268 }
18269 }
3882b010 18270 if (!ISDIGIT (*input_line_pointer))
252b5132
RH
18271 {
18272 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18273 *input_line_pointer, *input_line_pointer);
956cd1d6 18274 as_warn (_("invalid number"));
252b5132
RH
18275 return -1;
18276 }
3882b010 18277 while (ISDIGIT (*input_line_pointer))
252b5132
RH
18278 {
18279 val *= 10;
18280 val += *input_line_pointer++ - '0';
18281 }
18282 return negative ? -val : val;
18283}
18284
18285/* The .file directive; just like the usual .file directive, but there
c5dd6aab
DJ
18286 is an initial number which is the ECOFF file index. In the non-ECOFF
18287 case .file implies DWARF-2. */
18288
18289static void
17a2f251 18290s_mips_file (int x ATTRIBUTE_UNUSED)
c5dd6aab 18291{
ecb4347a
DJ
18292 static int first_file_directive = 0;
18293
c5dd6aab
DJ
18294 if (ECOFF_DEBUGGING)
18295 {
18296 get_number ();
18297 s_app_file (0);
18298 }
18299 else
ecb4347a
DJ
18300 {
18301 char *filename;
18302
18303 filename = dwarf2_directive_file (0);
18304
18305 /* Versions of GCC up to 3.1 start files with a ".file"
18306 directive even for stabs output. Make sure that this
18307 ".file" is handled. Note that you need a version of GCC
18308 after 3.1 in order to support DWARF-2 on MIPS. */
18309 if (filename != NULL && ! first_file_directive)
18310 {
18311 (void) new_logical_line (filename, -1);
c04f5787 18312 s_app_file_string (filename, 0);
ecb4347a
DJ
18313 }
18314 first_file_directive = 1;
18315 }
c5dd6aab
DJ
18316}
18317
18318/* The .loc directive, implying DWARF-2. */
252b5132
RH
18319
18320static void
17a2f251 18321s_mips_loc (int x ATTRIBUTE_UNUSED)
252b5132 18322{
c5dd6aab
DJ
18323 if (!ECOFF_DEBUGGING)
18324 dwarf2_directive_loc (0);
252b5132
RH
18325}
18326
252b5132
RH
18327/* The .end directive. */
18328
18329static void
17a2f251 18330s_mips_end (int x ATTRIBUTE_UNUSED)
252b5132
RH
18331{
18332 symbolS *p;
252b5132 18333
7a621144
DJ
18334 /* Following functions need their own .frame and .cprestore directives. */
18335 mips_frame_reg_valid = 0;
18336 mips_cprestore_valid = 0;
18337
252b5132
RH
18338 if (!is_end_of_line[(unsigned char) *input_line_pointer])
18339 {
18340 p = get_symbol ();
18341 demand_empty_rest_of_line ();
18342 }
18343 else
18344 p = NULL;
18345
14949570 18346 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
252b5132
RH
18347 as_warn (_(".end not in text section"));
18348
18349 if (!cur_proc_ptr)
18350 {
1661c76c 18351 as_warn (_(".end directive without a preceding .ent directive"));
252b5132
RH
18352 demand_empty_rest_of_line ();
18353 return;
18354 }
18355
18356 if (p != NULL)
18357 {
9c2799c2 18358 gas_assert (S_GET_NAME (p));
9b2f1d35 18359 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
1661c76c 18360 as_warn (_(".end symbol does not match .ent symbol"));
ecb4347a
DJ
18361
18362 if (debug_type == DEBUG_STABS)
18363 stabs_generate_asm_endfunc (S_GET_NAME (p),
18364 S_GET_NAME (p));
252b5132
RH
18365 }
18366 else
18367 as_warn (_(".end directive missing or unknown symbol"));
18368
9b2f1d35
EC
18369 /* Create an expression to calculate the size of the function. */
18370 if (p && cur_proc_ptr)
18371 {
18372 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
18373 expressionS *exp = xmalloc (sizeof (expressionS));
18374
18375 obj->size = exp;
18376 exp->X_op = O_subtract;
18377 exp->X_add_symbol = symbol_temp_new_now ();
18378 exp->X_op_symbol = p;
18379 exp->X_add_number = 0;
18380
18381 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
18382 }
18383
ecb4347a 18384 /* Generate a .pdr section. */
f3ded42a 18385 if (!ECOFF_DEBUGGING && mips_flag_pdr)
ecb4347a
DJ
18386 {
18387 segT saved_seg = now_seg;
18388 subsegT saved_subseg = now_subseg;
ecb4347a
DJ
18389 expressionS exp;
18390 char *fragp;
252b5132 18391
252b5132 18392#ifdef md_flush_pending_output
ecb4347a 18393 md_flush_pending_output ();
252b5132
RH
18394#endif
18395
9c2799c2 18396 gas_assert (pdr_seg);
ecb4347a 18397 subseg_set (pdr_seg, 0);
252b5132 18398
ecb4347a
DJ
18399 /* Write the symbol. */
18400 exp.X_op = O_symbol;
18401 exp.X_add_symbol = p;
18402 exp.X_add_number = 0;
18403 emit_expr (&exp, 4);
252b5132 18404
ecb4347a 18405 fragp = frag_more (7 * 4);
252b5132 18406
17a2f251
TS
18407 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
18408 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
18409 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
18410 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
18411 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
18412 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
18413 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
252b5132 18414
ecb4347a
DJ
18415 subseg_set (saved_seg, saved_subseg);
18416 }
252b5132
RH
18417
18418 cur_proc_ptr = NULL;
18419}
18420
18421/* The .aent and .ent directives. */
18422
18423static void
17a2f251 18424s_mips_ent (int aent)
252b5132 18425{
252b5132 18426 symbolS *symbolP;
252b5132
RH
18427
18428 symbolP = get_symbol ();
18429 if (*input_line_pointer == ',')
f9419b05 18430 ++input_line_pointer;
252b5132 18431 SKIP_WHITESPACE ();
3882b010 18432 if (ISDIGIT (*input_line_pointer)
d9a62219 18433 || *input_line_pointer == '-')
874e8986 18434 get_number ();
252b5132 18435
14949570 18436 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
1661c76c 18437 as_warn (_(".ent or .aent not in text section"));
252b5132
RH
18438
18439 if (!aent && cur_proc_ptr)
9a41af64 18440 as_warn (_("missing .end"));
252b5132
RH
18441
18442 if (!aent)
18443 {
7a621144
DJ
18444 /* This function needs its own .frame and .cprestore directives. */
18445 mips_frame_reg_valid = 0;
18446 mips_cprestore_valid = 0;
18447
252b5132
RH
18448 cur_proc_ptr = &cur_proc;
18449 memset (cur_proc_ptr, '\0', sizeof (procS));
18450
9b2f1d35 18451 cur_proc_ptr->func_sym = symbolP;
252b5132 18452
f9419b05 18453 ++numprocs;
ecb4347a
DJ
18454
18455 if (debug_type == DEBUG_STABS)
18456 stabs_generate_asm_func (S_GET_NAME (symbolP),
18457 S_GET_NAME (symbolP));
252b5132
RH
18458 }
18459
7c0fc524
MR
18460 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
18461
252b5132
RH
18462 demand_empty_rest_of_line ();
18463}
18464
18465/* The .frame directive. If the mdebug section is present (IRIX 5 native)
bdaaa2e1 18466 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
252b5132 18467 s_mips_frame is used so that we can set the PDR information correctly.
bdaaa2e1 18468 We can't use the ecoff routines because they make reference to the ecoff
252b5132
RH
18469 symbol table (in the mdebug section). */
18470
18471static void
17a2f251 18472s_mips_frame (int ignore ATTRIBUTE_UNUSED)
252b5132 18473{
f3ded42a
RS
18474 if (ECOFF_DEBUGGING)
18475 s_ignore (ignore);
18476 else
ecb4347a
DJ
18477 {
18478 long val;
252b5132 18479
ecb4347a
DJ
18480 if (cur_proc_ptr == (procS *) NULL)
18481 {
18482 as_warn (_(".frame outside of .ent"));
18483 demand_empty_rest_of_line ();
18484 return;
18485 }
252b5132 18486
ecb4347a
DJ
18487 cur_proc_ptr->frame_reg = tc_get_register (1);
18488
18489 SKIP_WHITESPACE ();
18490 if (*input_line_pointer++ != ','
18491 || get_absolute_expression_and_terminator (&val) != ',')
18492 {
1661c76c 18493 as_warn (_("bad .frame directive"));
ecb4347a
DJ
18494 --input_line_pointer;
18495 demand_empty_rest_of_line ();
18496 return;
18497 }
252b5132 18498
ecb4347a
DJ
18499 cur_proc_ptr->frame_offset = val;
18500 cur_proc_ptr->pc_reg = tc_get_register (0);
252b5132 18501
252b5132 18502 demand_empty_rest_of_line ();
252b5132 18503 }
252b5132
RH
18504}
18505
bdaaa2e1
KH
18506/* The .fmask and .mask directives. If the mdebug section is present
18507 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
252b5132 18508 embedded targets, s_mips_mask is used so that we can set the PDR
bdaaa2e1 18509 information correctly. We can't use the ecoff routines because they
252b5132
RH
18510 make reference to the ecoff symbol table (in the mdebug section). */
18511
18512static void
17a2f251 18513s_mips_mask (int reg_type)
252b5132 18514{
f3ded42a
RS
18515 if (ECOFF_DEBUGGING)
18516 s_ignore (reg_type);
18517 else
252b5132 18518 {
ecb4347a 18519 long mask, off;
252b5132 18520
ecb4347a
DJ
18521 if (cur_proc_ptr == (procS *) NULL)
18522 {
18523 as_warn (_(".mask/.fmask outside of .ent"));
18524 demand_empty_rest_of_line ();
18525 return;
18526 }
252b5132 18527
ecb4347a
DJ
18528 if (get_absolute_expression_and_terminator (&mask) != ',')
18529 {
1661c76c 18530 as_warn (_("bad .mask/.fmask directive"));
ecb4347a
DJ
18531 --input_line_pointer;
18532 demand_empty_rest_of_line ();
18533 return;
18534 }
252b5132 18535
ecb4347a
DJ
18536 off = get_absolute_expression ();
18537
18538 if (reg_type == 'F')
18539 {
18540 cur_proc_ptr->fpreg_mask = mask;
18541 cur_proc_ptr->fpreg_offset = off;
18542 }
18543 else
18544 {
18545 cur_proc_ptr->reg_mask = mask;
18546 cur_proc_ptr->reg_offset = off;
18547 }
18548
18549 demand_empty_rest_of_line ();
252b5132 18550 }
252b5132
RH
18551}
18552
316f5878
RS
18553/* A table describing all the processors gas knows about. Names are
18554 matched in the order listed.
e7af610e 18555
316f5878
RS
18556 To ease comparison, please keep this table in the same order as
18557 gcc's mips_cpu_info_table[]. */
e972090a
NC
18558static const struct mips_cpu_info mips_cpu_info_table[] =
18559{
316f5878 18560 /* Entries for generic ISAs */
d16afab6
RS
18561 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
18562 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
18563 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
18564 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
18565 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
18566 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
18567 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
ae52f483
AB
18568 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
18569 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
7361da2c 18570 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
d16afab6
RS
18571 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
18572 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
ae52f483
AB
18573 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
18574 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
7361da2c 18575 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
316f5878
RS
18576
18577 /* MIPS I */
d16afab6
RS
18578 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
18579 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
18580 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
316f5878
RS
18581
18582 /* MIPS II */
d16afab6 18583 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
316f5878
RS
18584
18585 /* MIPS III */
d16afab6
RS
18586 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
18587 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
18588 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
18589 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
18590 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
18591 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
18592 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
18593 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
18594 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
18595 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
18596 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
18597 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
18598 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
b15591bb 18599 /* ST Microelectronics Loongson 2E and 2F cores */
d16afab6
RS
18600 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
18601 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
316f5878
RS
18602
18603 /* MIPS IV */
d16afab6
RS
18604 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
18605 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
18606 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
18607 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
18608 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
18609 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
18610 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
18611 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
18612 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
18613 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
18614 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
18615 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
18616 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
18617 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
18618 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
316f5878
RS
18619
18620 /* MIPS 32 */
d16afab6
RS
18621 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18622 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18623 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18624 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
ad3fea08
TS
18625
18626 /* MIPS 32 Release 2 */
d16afab6
RS
18627 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18628 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18629 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18630 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
18631 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18632 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18633 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18634 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18635 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18636 ISA_MIPS32R2, CPU_MIPS32R2 },
18637 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18638 ISA_MIPS32R2, CPU_MIPS32R2 },
18639 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18640 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18641 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18642 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 18643 /* Deprecated forms of the above. */
d16afab6
RS
18644 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18645 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 18646 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
d16afab6
RS
18647 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18648 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18649 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18650 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 18651 /* Deprecated forms of the above. */
d16afab6
RS
18652 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18653 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 18654 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
d16afab6
RS
18655 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18656 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18657 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18658 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 18659 /* Deprecated forms of the above. */
d16afab6
RS
18660 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18661 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
711eefe4 18662 /* 34Kn is a 34kc without DSP. */
d16afab6 18663 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 18664 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
d16afab6
RS
18665 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18666 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18667 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18668 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18669 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 18670 /* Deprecated forms of the above. */
d16afab6
RS
18671 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18672 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
30f8113a 18673 /* 1004K cores are multiprocessor versions of the 34K. */
d16afab6
RS
18674 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18675 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18676 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18677 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
77403ce9
RS
18678 /* interaptiv is the new name for 1004kf */
18679 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
c6e5c03a
RS
18680 /* M5100 family */
18681 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18682 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
bbaa46c0 18683 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
ae52f483 18684 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
32b26a03 18685
316f5878 18686 /* MIPS 64 */
d16afab6
RS
18687 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18688 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18689 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18690 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
ad3fea08 18691
c7a23324 18692 /* Broadcom SB-1 CPU core */
d16afab6 18693 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
1e85aad8 18694 /* Broadcom SB-1A CPU core */
d16afab6 18695 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
3739860c 18696
4ba154f5 18697 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
e7af610e 18698
ed163775
MR
18699 /* MIPS 64 Release 2 */
18700
967344c6 18701 /* Cavium Networks Octeon CPU core */
d16afab6
RS
18702 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
18703 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
18704 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
2c629856 18705 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
967344c6 18706
52b6b6b9 18707 /* RMI Xlr */
d16afab6 18708 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
52b6b6b9 18709
55a36193
MK
18710 /* Broadcom XLP.
18711 XLP is mostly like XLR, with the prominent exception that it is
18712 MIPS64R2 rather than MIPS64. */
d16afab6 18713 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
55a36193 18714
7ef0d297
AB
18715 /* i6400. */
18716 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
18717
316f5878 18718 /* End marker */
d16afab6 18719 { NULL, 0, 0, 0, 0 }
316f5878 18720};
e7af610e 18721
84ea6cf2 18722
316f5878
RS
18723/* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
18724 with a final "000" replaced by "k". Ignore case.
e7af610e 18725
316f5878 18726 Note: this function is shared between GCC and GAS. */
c6c98b38 18727
b34976b6 18728static bfd_boolean
17a2f251 18729mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
18730{
18731 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
18732 given++, canonical++;
18733
18734 return ((*given == 0 && *canonical == 0)
18735 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
18736}
18737
18738
18739/* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
18740 CPU name. We've traditionally allowed a lot of variation here.
18741
18742 Note: this function is shared between GCC and GAS. */
18743
b34976b6 18744static bfd_boolean
17a2f251 18745mips_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
18746{
18747 /* First see if the name matches exactly, or with a final "000"
18748 turned into "k". */
18749 if (mips_strict_matching_cpu_name_p (canonical, given))
b34976b6 18750 return TRUE;
316f5878
RS
18751
18752 /* If not, try comparing based on numerical designation alone.
18753 See if GIVEN is an unadorned number, or 'r' followed by a number. */
18754 if (TOLOWER (*given) == 'r')
18755 given++;
18756 if (!ISDIGIT (*given))
b34976b6 18757 return FALSE;
316f5878
RS
18758
18759 /* Skip over some well-known prefixes in the canonical name,
18760 hoping to find a number there too. */
18761 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
18762 canonical += 2;
18763 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
18764 canonical += 2;
18765 else if (TOLOWER (canonical[0]) == 'r')
18766 canonical += 1;
18767
18768 return mips_strict_matching_cpu_name_p (canonical, given);
18769}
18770
18771
18772/* Parse an option that takes the name of a processor as its argument.
18773 OPTION is the name of the option and CPU_STRING is the argument.
18774 Return the corresponding processor enumeration if the CPU_STRING is
18775 recognized, otherwise report an error and return null.
18776
18777 A similar function exists in GCC. */
e7af610e
NC
18778
18779static const struct mips_cpu_info *
17a2f251 18780mips_parse_cpu (const char *option, const char *cpu_string)
e7af610e 18781{
316f5878 18782 const struct mips_cpu_info *p;
e7af610e 18783
316f5878
RS
18784 /* 'from-abi' selects the most compatible architecture for the given
18785 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
18786 EABIs, we have to decide whether we're using the 32-bit or 64-bit
18787 version. Look first at the -mgp options, if given, otherwise base
18788 the choice on MIPS_DEFAULT_64BIT.
e7af610e 18789
316f5878
RS
18790 Treat NO_ABI like the EABIs. One reason to do this is that the
18791 plain 'mips' and 'mips64' configs have 'from-abi' as their default
18792 architecture. This code picks MIPS I for 'mips' and MIPS III for
18793 'mips64', just as we did in the days before 'from-abi'. */
18794 if (strcasecmp (cpu_string, "from-abi") == 0)
18795 {
18796 if (ABI_NEEDS_32BIT_REGS (mips_abi))
18797 return mips_cpu_info_from_isa (ISA_MIPS1);
18798
18799 if (ABI_NEEDS_64BIT_REGS (mips_abi))
18800 return mips_cpu_info_from_isa (ISA_MIPS3);
18801
bad1aba3 18802 if (file_mips_opts.gp >= 0)
18803 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
0b35dfee 18804 ? ISA_MIPS1 : ISA_MIPS3);
316f5878
RS
18805
18806 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
18807 ? ISA_MIPS3
18808 : ISA_MIPS1);
18809 }
18810
18811 /* 'default' has traditionally been a no-op. Probably not very useful. */
18812 if (strcasecmp (cpu_string, "default") == 0)
18813 return 0;
18814
18815 for (p = mips_cpu_info_table; p->name != 0; p++)
18816 if (mips_matching_cpu_name_p (p->name, cpu_string))
18817 return p;
18818
1661c76c 18819 as_bad (_("bad value (%s) for %s"), cpu_string, option);
316f5878 18820 return 0;
e7af610e
NC
18821}
18822
316f5878
RS
18823/* Return the canonical processor information for ISA (a member of the
18824 ISA_MIPS* enumeration). */
18825
e7af610e 18826static const struct mips_cpu_info *
17a2f251 18827mips_cpu_info_from_isa (int isa)
e7af610e
NC
18828{
18829 int i;
18830
18831 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
ad3fea08 18832 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
316f5878 18833 && isa == mips_cpu_info_table[i].isa)
e7af610e
NC
18834 return (&mips_cpu_info_table[i]);
18835
e972090a 18836 return NULL;
e7af610e 18837}
fef14a42
TS
18838
18839static const struct mips_cpu_info *
17a2f251 18840mips_cpu_info_from_arch (int arch)
fef14a42
TS
18841{
18842 int i;
18843
18844 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18845 if (arch == mips_cpu_info_table[i].cpu)
18846 return (&mips_cpu_info_table[i]);
18847
18848 return NULL;
18849}
316f5878
RS
18850\f
18851static void
17a2f251 18852show (FILE *stream, const char *string, int *col_p, int *first_p)
316f5878
RS
18853{
18854 if (*first_p)
18855 {
18856 fprintf (stream, "%24s", "");
18857 *col_p = 24;
18858 }
18859 else
18860 {
18861 fprintf (stream, ", ");
18862 *col_p += 2;
18863 }
e7af610e 18864
316f5878
RS
18865 if (*col_p + strlen (string) > 72)
18866 {
18867 fprintf (stream, "\n%24s", "");
18868 *col_p = 24;
18869 }
18870
18871 fprintf (stream, "%s", string);
18872 *col_p += strlen (string);
18873
18874 *first_p = 0;
18875}
18876
18877void
17a2f251 18878md_show_usage (FILE *stream)
e7af610e 18879{
316f5878
RS
18880 int column, first;
18881 size_t i;
18882
18883 fprintf (stream, _("\
18884MIPS options:\n\
316f5878
RS
18885-EB generate big endian output\n\
18886-EL generate little endian output\n\
18887-g, -g2 do not remove unneeded NOPs or swap branches\n\
18888-G NUM allow referencing objects up to NUM bytes\n\
18889 implicitly with the gp register [default 8]\n"));
18890 fprintf (stream, _("\
18891-mips1 generate MIPS ISA I instructions\n\
18892-mips2 generate MIPS ISA II instructions\n\
18893-mips3 generate MIPS ISA III instructions\n\
18894-mips4 generate MIPS ISA IV instructions\n\
18895-mips5 generate MIPS ISA V instructions\n\
18896-mips32 generate MIPS32 ISA instructions\n\
af7ee8bf 18897-mips32r2 generate MIPS32 release 2 ISA instructions\n\
ae52f483
AB
18898-mips32r3 generate MIPS32 release 3 ISA instructions\n\
18899-mips32r5 generate MIPS32 release 5 ISA instructions\n\
7361da2c 18900-mips32r6 generate MIPS32 release 6 ISA instructions\n\
316f5878 18901-mips64 generate MIPS64 ISA instructions\n\
5f74bc13 18902-mips64r2 generate MIPS64 release 2 ISA instructions\n\
ae52f483
AB
18903-mips64r3 generate MIPS64 release 3 ISA instructions\n\
18904-mips64r5 generate MIPS64 release 5 ISA instructions\n\
7361da2c 18905-mips64r6 generate MIPS64 release 6 ISA instructions\n\
316f5878
RS
18906-march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
18907
18908 first = 1;
e7af610e
NC
18909
18910 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
316f5878
RS
18911 show (stream, mips_cpu_info_table[i].name, &column, &first);
18912 show (stream, "from-abi", &column, &first);
18913 fputc ('\n', stream);
e7af610e 18914
316f5878
RS
18915 fprintf (stream, _("\
18916-mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
18917-no-mCPU don't generate code specific to CPU.\n\
18918 For -mCPU and -no-mCPU, CPU must be one of:\n"));
18919
18920 first = 1;
18921
18922 show (stream, "3900", &column, &first);
18923 show (stream, "4010", &column, &first);
18924 show (stream, "4100", &column, &first);
18925 show (stream, "4650", &column, &first);
18926 fputc ('\n', stream);
18927
18928 fprintf (stream, _("\
18929-mips16 generate mips16 instructions\n\
18930-no-mips16 do not generate mips16 instructions\n"));
18931 fprintf (stream, _("\
df58fc94
RS
18932-mmicromips generate microMIPS instructions\n\
18933-mno-micromips do not generate microMIPS instructions\n"));
18934 fprintf (stream, _("\
e16bfa71 18935-msmartmips generate smartmips instructions\n\
3739860c 18936-mno-smartmips do not generate smartmips instructions\n"));
e16bfa71 18937 fprintf (stream, _("\
74cd071d
CF
18938-mdsp generate DSP instructions\n\
18939-mno-dsp do not generate DSP instructions\n"));
18940 fprintf (stream, _("\
8b082fb1
TS
18941-mdspr2 generate DSP R2 instructions\n\
18942-mno-dspr2 do not generate DSP R2 instructions\n"));
18943 fprintf (stream, _("\
ef2e4d86
CF
18944-mmt generate MT instructions\n\
18945-mno-mt do not generate MT instructions\n"));
18946 fprintf (stream, _("\
dec0624d
MR
18947-mmcu generate MCU instructions\n\
18948-mno-mcu do not generate MCU instructions\n"));
18949 fprintf (stream, _("\
56d438b1
CF
18950-mmsa generate MSA instructions\n\
18951-mno-msa do not generate MSA instructions\n"));
18952 fprintf (stream, _("\
7d64c587
AB
18953-mxpa generate eXtended Physical Address (XPA) instructions\n\
18954-mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
18955 fprintf (stream, _("\
b015e599
AP
18956-mvirt generate Virtualization instructions\n\
18957-mno-virt do not generate Virtualization instructions\n"));
18958 fprintf (stream, _("\
833794fc
MR
18959-minsn32 only generate 32-bit microMIPS instructions\n\
18960-mno-insn32 generate all microMIPS instructions\n"));
18961 fprintf (stream, _("\
c67a084a
NC
18962-mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
18963-mfix-loongson2f-nop work around Loongson2F NOP errata\n\
d766e8ec 18964-mfix-vr4120 work around certain VR4120 errata\n\
7d8e00cf 18965-mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
6a32d874 18966-mfix-24k insert a nop after ERET and DERET instructions\n\
d954098f 18967-mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
316f5878
RS
18968-mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
18969-mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
aed1a261 18970-msym32 assume all symbols have 32-bit values\n\
316f5878
RS
18971-O0 remove unneeded NOPs, do not swap branches\n\
18972-O remove unneeded NOPs and swap branches\n\
316f5878
RS
18973--trap, --no-break trap exception on div by 0 and mult overflow\n\
18974--break, --no-trap break exception on div by 0 and mult overflow\n"));
037b32b9
AN
18975 fprintf (stream, _("\
18976-mhard-float allow floating-point instructions\n\
18977-msoft-float do not allow floating-point instructions\n\
18978-msingle-float only allow 32-bit floating-point operations\n\
18979-mdouble-float allow 32-bit and 64-bit floating-point operations\n\
3bf0dbfb 18980--[no-]construct-floats [dis]allow floating point values to be constructed\n\
ba92f887
MR
18981--[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
18982-mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
18983
18984 first = 1;
18985
18986 show (stream, "legacy", &column, &first);
18987 show (stream, "2008", &column, &first);
18988
18989 fputc ('\n', stream);
18990
316f5878
RS
18991 fprintf (stream, _("\
18992-KPIC, -call_shared generate SVR4 position independent code\n\
861fb55a 18993-call_nonpic generate non-PIC code that can operate with DSOs\n\
0c000745 18994-mvxworks-pic generate VxWorks position independent code\n\
861fb55a 18995-non_shared do not generate code that can operate with DSOs\n\
316f5878 18996-xgot assume a 32 bit GOT\n\
dcd410fe 18997-mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
bbe506e8 18998-mshared, -mno-shared disable/enable .cpload optimization for\n\
d821e36b 18999 position dependent (non shared) code\n\
316f5878
RS
19000-mabi=ABI create ABI conformant object file for:\n"));
19001
19002 first = 1;
19003
19004 show (stream, "32", &column, &first);
19005 show (stream, "o64", &column, &first);
19006 show (stream, "n32", &column, &first);
19007 show (stream, "64", &column, &first);
19008 show (stream, "eabi", &column, &first);
19009
19010 fputc ('\n', stream);
19011
19012 fprintf (stream, _("\
19013-32 create o32 ABI object file (default)\n\
19014-n32 create n32 ABI object file\n\
19015-64 create 64 ABI object file\n"));
e7af610e 19016}
14e777e0 19017
1575952e 19018#ifdef TE_IRIX
14e777e0 19019enum dwarf2_format
413a266c 19020mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
14e777e0 19021{
369943fe 19022 if (HAVE_64BIT_SYMBOLS)
1575952e 19023 return dwarf2_format_64bit_irix;
14e777e0
KB
19024 else
19025 return dwarf2_format_32bit;
19026}
1575952e 19027#endif
73369e65
EC
19028
19029int
19030mips_dwarf2_addr_size (void)
19031{
6b6b3450 19032 if (HAVE_64BIT_OBJECTS)
73369e65 19033 return 8;
73369e65
EC
19034 else
19035 return 4;
19036}
5862107c
EC
19037
19038/* Standard calling conventions leave the CFA at SP on entry. */
19039void
19040mips_cfi_frame_initial_instructions (void)
19041{
19042 cfi_add_CFA_def_cfa_register (SP);
19043}
19044
707bfff6
TS
19045int
19046tc_mips_regname_to_dw2regnum (char *regname)
19047{
19048 unsigned int regnum = -1;
19049 unsigned int reg;
19050
19051 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19052 regnum = reg;
19053
19054 return regnum;
19055}
263b2574 19056
19057/* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19058 Given a symbolic attribute NAME, return the proper integer value.
19059 Returns -1 if the attribute is not known. */
19060
19061int
19062mips_convert_symbolic_attribute (const char *name)
19063{
19064 static const struct
19065 {
19066 const char * name;
19067 const int tag;
19068 }
19069 attribute_table[] =
19070 {
19071#define T(tag) {#tag, tag}
19072 T (Tag_GNU_MIPS_ABI_FP),
19073 T (Tag_GNU_MIPS_ABI_MSA),
19074#undef T
19075 };
19076 unsigned int i;
19077
19078 if (name == NULL)
19079 return -1;
19080
19081 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19082 if (streq (name, attribute_table[i].name))
19083 return attribute_table[i].tag;
19084
19085 return -1;
19086}
fd5c94ab
RS
19087
19088void
19089md_mips_end (void)
19090{
351cdf24
MF
19091 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19092
fd5c94ab
RS
19093 mips_emit_delays ();
19094 if (cur_proc_ptr)
19095 as_warn (_("missing .end at end of assembly"));
919731af 19096
19097 /* Just in case no code was emitted, do the consistency check. */
19098 file_mips_check_options ();
351cdf24
MF
19099
19100 /* Set a floating-point ABI if the user did not. */
19101 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19102 {
19103 /* Perform consistency checks on the floating-point ABI. */
19104 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19105 Tag_GNU_MIPS_ABI_FP);
19106 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19107 check_fpabi (fpabi);
19108 }
19109 else
19110 {
19111 /* Soft-float gets precedence over single-float, the two options should
19112 not be used together so this should not matter. */
19113 if (file_mips_opts.soft_float == 1)
19114 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19115 /* Single-float gets precedence over all double_float cases. */
19116 else if (file_mips_opts.single_float == 1)
19117 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19118 else
19119 {
19120 switch (file_mips_opts.fp)
19121 {
19122 case 32:
19123 if (file_mips_opts.gp == 32)
19124 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19125 break;
19126 case 0:
19127 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19128 break;
19129 case 64:
19130 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19131 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19132 else if (file_mips_opts.gp == 32)
19133 fpabi = Val_GNU_MIPS_ABI_FP_64;
19134 else
19135 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19136 break;
19137 }
19138 }
19139
19140 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19141 Tag_GNU_MIPS_ABI_FP, fpabi);
19142 }
fd5c94ab 19143}
2f0c68f2
CM
19144
19145/* Returns the relocation type required for a particular CFI encoding. */
19146
19147bfd_reloc_code_real_type
19148mips_cfi_reloc_for_encoding (int encoding)
19149{
19150 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
19151 return BFD_RELOC_32_PCREL;
19152 else return BFD_RELOC_NONE;
19153}
This page took 2.865605 seconds and 4 git commands to generate.