Add --decompress option to readelf to decompress sections before they are dumped.
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
b90efa5b 1@c Copyright (C) 1991-2015 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
77as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
78
79@cindex @samp{--divide} option, i386
80@item --divide
81On SVR4-derived platforms, the character @samp{/} is treated as a comment
82character, which means that it cannot be used in expressions. The
83@samp{--divide} option turns @samp{/} into a normal character. This does
84not disable @samp{/} at the beginning of a line starting a comment, or
85affect using @samp{#} for starting a comment.
86
9103f4f4
L
87@cindex @samp{-march=} option, i386
88@cindex @samp{-march=} option, x86-64
6305a203
L
89@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90This option specifies the target processor. The assembler will
91issue an error message if an attempt is made to assemble an instruction
92which will not execute on the target processor. The following
34bca508 93processor names are recognized:
9103f4f4
L
94@code{i8086},
95@code{i186},
96@code{i286},
97@code{i386},
98@code{i486},
99@code{i586},
100@code{i686},
101@code{pentium},
102@code{pentiumpro},
103@code{pentiumii},
104@code{pentiumiii},
105@code{pentium4},
106@code{prescott},
107@code{nocona},
ef05d495
L
108@code{core},
109@code{core2},
bd5295b2 110@code{corei7},
8a9036a4 111@code{l1om},
7a9068fe 112@code{k1om},
81486035 113@code{iamcu},
9103f4f4
L
114@code{k6},
115@code{k6_2},
116@code{athlon},
9103f4f4
L
117@code{opteron},
118@code{k8},
1ceab344 119@code{amdfam10},
68339fdf 120@code{bdver1},
af2f724e 121@code{bdver2},
5e5c50d3 122@code{bdver3},
c7b0bd56 123@code{bdver4},
029f3522 124@code{znver1},
7b458c12
L
125@code{btver1},
126@code{btver2},
9103f4f4
L
127@code{generic32} and
128@code{generic64}.
129
34bca508 130In addition to the basic instruction set, the assembler can be told to
6305a203
L
131accept various extension mnemonics. For example,
132@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
133@var{vmx}. The following extensions are currently supported:
309d3373
JB
134@code{8087},
135@code{287},
136@code{387},
137@code{no87},
6305a203 138@code{mmx},
309d3373 139@code{nommx},
6305a203
L
140@code{sse},
141@code{sse2},
142@code{sse3},
143@code{ssse3},
144@code{sse4.1},
145@code{sse4.2},
146@code{sse4},
309d3373 147@code{nosse},
c0f3af97 148@code{avx},
6c30d220 149@code{avx2},
e2e1fcde
L
150@code{adx},
151@code{rdseed},
152@code{prfchw},
5c111e37 153@code{smap},
7e8b059b 154@code{mpx},
a0046408 155@code{sha},
1dfc6506
L
156@code{prefetchwt1},
157@code{clflushopt},
158@code{se1},
c5e7287a 159@code{clwb},
9d8596f0 160@code{pcommit},
43234a1e
L
161@code{avx512f},
162@code{avx512cd},
163@code{avx512er},
164@code{avx512pf},
1dfc6506
L
165@code{avx512vl},
166@code{avx512bw},
167@code{avx512dq},
2cc1b5aa 168@code{avx512ifma},
14f195c9 169@code{avx512vbmi},
309d3373 170@code{noavx},
6305a203 171@code{vmx},
8729a6f6 172@code{vmfunc},
6305a203 173@code{smx},
f03fe4c1 174@code{xsave},
c7b8aa3a 175@code{xsaveopt},
1dfc6506
L
176@code{xsavec},
177@code{xsaves},
c0f3af97 178@code{aes},
594ab6a3 179@code{pclmul},
c7b8aa3a
L
180@code{fsgsbase},
181@code{rdrnd},
182@code{f16c},
6c30d220 183@code{bmi2},
c0f3af97 184@code{fma},
f1f8f695
L
185@code{movbe},
186@code{ept},
6c30d220 187@code{lzcnt},
42164a71
L
188@code{hle},
189@code{rtm},
6c30d220 190@code{invpcid},
bd5295b2 191@code{clflush},
029f3522 192@code{clzero},
f88c9eb0 193@code{lwp},
5dd85c99
SP
194@code{fma4},
195@code{xop},
60aa667e 196@code{cx16},
bd5295b2 197@code{syscall},
1b7f3fb0 198@code{rdtscp},
6305a203
L
199@code{3dnow},
200@code{3dnowa},
201@code{sse4a},
202@code{sse5},
203@code{svme},
204@code{abm} and
205@code{padlock}.
309d3373
JB
206Note that rather than extending a basic instruction set, the extension
207mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
208
209When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
210@code{.arch} directive will take precedent.
211
212@cindex @samp{-mtune=} option, i386
213@cindex @samp{-mtune=} option, x86-64
214@item -mtune=@var{CPU}
215This option specifies a processor to optimize for. When used in
216conjunction with the @option{-march} option, only instructions
217of the processor specified by the @option{-march} option will be
218generated.
219
6305a203
L
220Valid @var{CPU} values are identical to the processor list of
221@option{-march=@var{CPU}}.
9103f4f4 222
c0f3af97
L
223@cindex @samp{-msse2avx} option, i386
224@cindex @samp{-msse2avx} option, x86-64
225@item -msse2avx
226This option specifies that the assembler should encode SSE instructions
227with VEX prefix.
228
daf50ae7
L
229@cindex @samp{-msse-check=} option, i386
230@cindex @samp{-msse-check=} option, x86-64
231@item -msse-check=@var{none}
1f9bb1ca
AS
232@itemx -msse-check=@var{warning}
233@itemx -msse-check=@var{error}
9aff4b7a 234These options control if the assembler should check SSE instructions.
daf50ae7
L
235@option{-msse-check=@var{none}} will make the assembler not to check SSE
236instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 237will make the assembler issue a warning for any SSE instruction.
daf50ae7 238@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 239for any SSE instruction.
daf50ae7 240
539f890d
L
241@cindex @samp{-mavxscalar=} option, i386
242@cindex @samp{-mavxscalar=} option, x86-64
243@item -mavxscalar=@var{128}
1f9bb1ca 244@itemx -mavxscalar=@var{256}
2aab8acd 245These options control how the assembler should encode scalar AVX
539f890d
L
246instructions. @option{-mavxscalar=@var{128}} will encode scalar
247AVX instructions with 128bit vector length, which is the default.
248@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
249with 256bit vector length.
250
43234a1e
L
251@cindex @samp{-mevexlig=} option, i386
252@cindex @samp{-mevexlig=} option, x86-64
253@item -mevexlig=@var{128}
254@itemx -mevexlig=@var{256}
255@itemx -mevexlig=@var{512}
256These options control how the assembler should encode length-ignored
257(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
258EVEX instructions with 128bit vector length, which is the default.
259@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
260encode LIG EVEX instructions with 256bit and 512bit vector length,
261respectively.
262
263@cindex @samp{-mevexwig=} option, i386
264@cindex @samp{-mevexwig=} option, x86-64
265@item -mevexwig=@var{0}
266@itemx -mevexwig=@var{1}
267These options control how the assembler should encode w-ignored (WIG)
268EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
269EVEX instructions with evex.w = 0, which is the default.
270@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
271evex.w = 1.
272
1efbbeb4
L
273@cindex @samp{-mmnemonic=} option, i386
274@cindex @samp{-mmnemonic=} option, x86-64
275@item -mmnemonic=@var{att}
1f9bb1ca 276@itemx -mmnemonic=@var{intel}
34bca508 277This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
278The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
279take precedent.
280
281@cindex @samp{-msyntax=} option, i386
282@cindex @samp{-msyntax=} option, x86-64
283@item -msyntax=@var{att}
1f9bb1ca 284@itemx -msyntax=@var{intel}
34bca508 285This option specifies instruction syntax when processing instructions.
1efbbeb4
L
286The @code{.att_syntax} and @code{.intel_syntax} directives will
287take precedent.
288
289@cindex @samp{-mnaked-reg} option, i386
290@cindex @samp{-mnaked-reg} option, x86-64
291@item -mnaked-reg
292This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 293The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 294
7e8b059b
L
295@cindex @samp{-madd-bnd-prefix} option, i386
296@cindex @samp{-madd-bnd-prefix} option, x86-64
297@item -madd-bnd-prefix
298This option forces the assembler to add BND prefix to all branches, even
299if such prefix was not explicitly specified in the source code.
300
8dcea932
L
301@cindex @samp{-mshared} option, i386
302@cindex @samp{-mshared} option, x86-64
303@item -mno-shared
304On ELF target, the assembler normally optimizes out non-PLT relocations
305against defined non-weak global branch targets with default visibility.
306The @samp{-mshared} option tells the assembler to generate code which
307may go into a shared library where all non-weak global branch targets
308with default visibility can be preempted. The resulting code is
309slightly bigger. This option only affects the handling of branch
310instructions.
311
167ad85b
TG
312@cindex @samp{-mbig-obj} option, x86-64
313@item -mbig-obj
314On x86-64 PE/COFF target this option forces the use of big object file
315format, which allows more than 32768 sections.
316
d022bddd
IT
317@cindex @samp{-momit-lock-prefix=} option, i386
318@cindex @samp{-momit-lock-prefix=} option, x86-64
319@item -momit-lock-prefix=@var{no}
320@itemx -momit-lock-prefix=@var{yes}
321These options control how the assembler should encode lock prefix.
322This option is intended as a workaround for processors, that fail on
323lock prefix. This option can only be safely used with single-core,
324single-thread computers
325@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
326@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
327which is the default.
328
d3d3c6db
IT
329@cindex @samp{-mevexrcig=} option, i386
330@cindex @samp{-mevexrcig=} option, x86-64
331@item -mevexrcig=@var{rne}
332@itemx -mevexrcig=@var{rd}
333@itemx -mevexrcig=@var{ru}
334@itemx -mevexrcig=@var{rz}
335These options control how the assembler should encode SAE-only
336EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
337of EVEX instruction with 00, which is the default.
338@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
339and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
340with 01, 10 and 11 RC bits, respectively.
341
55b62671 342@end table
731caf76 343@c man end
e413e4e9 344
a6c24e68
NC
345@node i386-Directives
346@section x86 specific Directives
347
348@cindex machine directives, x86
349@cindex x86 machine directives
350@table @code
351
352@cindex @code{lcomm} directive, COFF
353@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
354Reserve @var{length} (an absolute expression) bytes for a local common
355denoted by @var{symbol}. The section and value of @var{symbol} are
356those of the new local common. The addresses are allocated in the bss
704209c0
NC
357section, so that at run-time the bytes start off zeroed. Since
358@var{symbol} is not declared global, it is normally not visible to
359@code{@value{LD}}. The optional third parameter, @var{alignment},
360specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
361
362This directive is only available for COFF based x86 targets.
363
364@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
365@c .largecomm
366
367@end table
368
252b5132 369@node i386-Syntax
7c31ae13
NC
370@section i386 Syntactical Considerations
371@menu
372* i386-Variations:: AT&T Syntax versus Intel Syntax
373* i386-Chars:: Special Characters
374@end menu
375
376@node i386-Variations
377@subsection AT&T Syntax versus Intel Syntax
252b5132 378
e413e4e9
AM
379@cindex i386 intel_syntax pseudo op
380@cindex intel_syntax pseudo op, i386
381@cindex i386 att_syntax pseudo op
382@cindex att_syntax pseudo op, i386
252b5132
RH
383@cindex i386 syntax compatibility
384@cindex syntax compatibility, i386
55b62671
AJ
385@cindex x86-64 intel_syntax pseudo op
386@cindex intel_syntax pseudo op, x86-64
387@cindex x86-64 att_syntax pseudo op
388@cindex att_syntax pseudo op, x86-64
389@cindex x86-64 syntax compatibility
390@cindex syntax compatibility, x86-64
e413e4e9
AM
391
392@code{@value{AS}} now supports assembly using Intel assembler syntax.
393@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
394back to the usual AT&T mode for compatibility with the output of
395@code{@value{GCC}}. Either of these directives may have an optional
396argument, @code{prefix}, or @code{noprefix} specifying whether registers
397require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
398different from Intel syntax. We mention these differences because
399almost all 80386 documents use Intel syntax. Notable differences
400between the two syntaxes are:
401
402@cindex immediate operands, i386
403@cindex i386 immediate operands
404@cindex register operands, i386
405@cindex i386 register operands
406@cindex jump/call operands, i386
407@cindex i386 jump/call operands
408@cindex operand delimiters, i386
55b62671
AJ
409
410@cindex immediate operands, x86-64
411@cindex x86-64 immediate operands
412@cindex register operands, x86-64
413@cindex x86-64 register operands
414@cindex jump/call operands, x86-64
415@cindex x86-64 jump/call operands
416@cindex operand delimiters, x86-64
252b5132
RH
417@itemize @bullet
418@item
419AT&T immediate operands are preceded by @samp{$}; Intel immediate
420operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
421AT&T register operands are preceded by @samp{%}; Intel register operands
422are undelimited. AT&T absolute (as opposed to PC relative) jump/call
423operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
424
425@cindex i386 source, destination operands
426@cindex source, destination operands; i386
55b62671
AJ
427@cindex x86-64 source, destination operands
428@cindex source, destination operands; x86-64
252b5132
RH
429@item
430AT&T and Intel syntax use the opposite order for source and destination
431operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
432@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
433previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
434instructions with 2 immediate operands, such as the @samp{enter}
435instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
436
437@cindex mnemonic suffixes, i386
438@cindex sizes operands, i386
439@cindex i386 size suffixes
55b62671
AJ
440@cindex mnemonic suffixes, x86-64
441@cindex sizes operands, x86-64
442@cindex x86-64 size suffixes
252b5132
RH
443@item
444In AT&T syntax the size of memory operands is determined from the last
445character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
446@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
447(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
448this by prefixing memory operands (@emph{not} the instruction mnemonics) with
449@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
450Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
451syntax.
252b5132 452
4b06377f
L
453In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
454instruction with the 64-bit displacement or immediate operand.
455
252b5132
RH
456@cindex return instructions, i386
457@cindex i386 jump, call, return
55b62671
AJ
458@cindex return instructions, x86-64
459@cindex x86-64 jump, call, return
252b5132
RH
460@item
461Immediate form long jumps and calls are
462@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
463Intel syntax is
464@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
465instruction
466is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
467@samp{ret far @var{stack-adjust}}.
468
469@cindex sections, i386
470@cindex i386 sections
55b62671
AJ
471@cindex sections, x86-64
472@cindex x86-64 sections
252b5132
RH
473@item
474The AT&T assembler does not provide support for multiple section
475programs. Unix style systems expect all programs to be single sections.
476@end itemize
477
7c31ae13
NC
478@node i386-Chars
479@subsection Special Characters
480
481@cindex line comment character, i386
482@cindex i386 line comment character
483The presence of a @samp{#} appearing anywhere on a line indicates the
484start of a comment that extends to the end of that line.
485
486If a @samp{#} appears as the first character of a line then the whole
487line is treated as a comment, but in this case the line can also be a
488logical line number directive (@pxref{Comments}) or a preprocessor
489control command (@pxref{Preprocessing}).
490
491If the @option{--divide} command line option has not been specified
492then the @samp{/} character appearing anywhere on a line also
493introduces a line comment.
494
495@cindex line separator, i386
496@cindex statement separator, i386
497@cindex i386 line separator
498The @samp{;} character can be used to separate statements on the same
499line.
500
252b5132 501@node i386-Mnemonics
d3b47e2b
L
502@section i386-Mnemonics
503@subsection Instruction Naming
252b5132
RH
504
505@cindex i386 instruction naming
506@cindex instruction naming, i386
55b62671
AJ
507@cindex x86-64 instruction naming
508@cindex instruction naming, x86-64
509
252b5132 510Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
511specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
512and @samp{q} specify byte, word, long and quadruple word operands. If
513no suffix is specified by an instruction then @code{@value{AS}} tries to
514fill in the missing suffix based on the destination register operand
515(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
516to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
517@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
518assembler which assumes that a missing mnemonic suffix implies long
519operand size. (This incompatibility does not affect compiler output
520since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
521
522Almost all instructions have the same names in AT&T and Intel format.
523There are a few exceptions. The sign extend and zero extend
524instructions need two sizes to specify them. They need a size to
525sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
526is accomplished by using two instruction mnemonic suffixes in AT&T
527syntax. Base names for sign extend and zero extend are
528@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
529and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
530are tacked on to this base name, the @emph{from} suffix before the
531@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
532``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
533thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
534@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
535@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
536quadruple word).
252b5132 537
b6169b20
L
538@cindex encoding options, i386
539@cindex encoding options, x86-64
540
541Different encoding options can be specified via optional mnemonic
542suffix. @samp{.s} suffix swaps 2 register operands in encoding when
a501d77e
L
543moving from one register to another. @samp{.d8} or @samp{.d32} suffix
544prefers 8bit or 32bit displacement in encoding.
b6169b20 545
252b5132
RH
546@cindex conversion instructions, i386
547@cindex i386 conversion instructions
55b62671
AJ
548@cindex conversion instructions, x86-64
549@cindex x86-64 conversion instructions
252b5132
RH
550The Intel-syntax conversion instructions
551
552@itemize @bullet
553@item
554@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
555
556@item
557@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
558
559@item
560@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
561
562@item
563@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
564
565@item
566@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
567(x86-64 only),
568
569@item
d5f0cf92 570@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 571@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
572@end itemize
573
574@noindent
55b62671
AJ
575are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
576@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
577instructions.
252b5132
RH
578
579@cindex jump instructions, i386
580@cindex call instructions, i386
55b62671
AJ
581@cindex jump instructions, x86-64
582@cindex call instructions, x86-64
252b5132
RH
583Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
584AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
585convention.
586
d3b47e2b 587@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
588
589@cindex i386 mnemonic compatibility
590@cindex mnemonic compatibility, i386
591
592@code{@value{AS}} supports assembly using Intel mnemonic.
593@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
594@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
595syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
596Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
597@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
598@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
599assembler with different mnemonics from those in Intel IA32 specification.
600@code{@value{GCC}} generates those instructions with AT&T mnemonic.
601
252b5132
RH
602@node i386-Regs
603@section Register Naming
604
605@cindex i386 registers
606@cindex registers, i386
55b62671
AJ
607@cindex x86-64 registers
608@cindex registers, x86-64
252b5132
RH
609Register operands are always prefixed with @samp{%}. The 80386 registers
610consist of
611
612@itemize @bullet
613@item
614the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
615@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
616frame pointer), and @samp{%esp} (the stack pointer).
617
618@item
619the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
620@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
621
622@item
623the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
624@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
625are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
626@samp{%cx}, and @samp{%dx})
627
628@item
629the 6 section registers @samp{%cs} (code section), @samp{%ds}
630(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
631and @samp{%gs}.
632
633@item
634the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
635@samp{%cr3}.
636
637@item
638the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
639@samp{%db3}, @samp{%db6}, and @samp{%db7}.
640
641@item
642the 2 test registers @samp{%tr6} and @samp{%tr7}.
643
644@item
645the 8 floating point register stack @samp{%st} or equivalently
646@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
647@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
648These registers are overloaded by 8 MMX registers @samp{%mm0},
649@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
650@samp{%mm6} and @samp{%mm7}.
651
652@item
653the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
654@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
655@end itemize
656
657The AMD x86-64 architecture extends the register set by:
658
659@itemize @bullet
660@item
661enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
662accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
663@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
664pointer)
665
666@item
667the 8 extended registers @samp{%r8}--@samp{%r15}.
668
669@item
670the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
671
672@item
673the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
674
675@item
676the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
677
678@item
679the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
680
681@item
682the 8 debug registers: @samp{%db8}--@samp{%db15}.
683
684@item
685the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
686@end itemize
687
688@node i386-Prefixes
689@section Instruction Prefixes
690
691@cindex i386 instruction prefixes
692@cindex instruction prefixes, i386
693@cindex prefixes, i386
694Instruction prefixes are used to modify the following instruction. They
695are used to repeat string instructions, to provide section overrides, to
696perform bus lock operations, and to change operand and address sizes.
697(Most instructions that normally operate on 32-bit operands will use
69816-bit operands if the instruction has an ``operand size'' prefix.)
699Instruction prefixes are best written on the same line as the instruction
700they act upon. For example, the @samp{scas} (scan string) instruction is
701repeated with:
702
703@smallexample
704 repne scas %es:(%edi),%al
705@end smallexample
706
707You may also place prefixes on the lines immediately preceding the
708instruction, but this circumvents checks that @code{@value{AS}} does
709with prefixes, and will not work with all prefixes.
710
711Here is a list of instruction prefixes:
712
713@cindex section override prefixes, i386
714@itemize @bullet
715@item
716Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
717@samp{fs}, @samp{gs}. These are automatically added by specifying
718using the @var{section}:@var{memory-operand} form for memory references.
719
720@cindex size prefixes, i386
721@item
722Operand/Address size prefixes @samp{data16} and @samp{addr16}
723change 32-bit operands/addresses into 16-bit operands/addresses,
724while @samp{data32} and @samp{addr32} change 16-bit ones (in a
725@code{.code16} section) into 32-bit operands/addresses. These prefixes
726@emph{must} appear on the same line of code as the instruction they
727modify. For example, in a 16-bit @code{.code16} section, you might
728write:
729
730@smallexample
731 addr32 jmpl *(%ebx)
732@end smallexample
733
734@cindex bus lock prefixes, i386
735@cindex inhibiting interrupts, i386
736@item
737The bus lock prefix @samp{lock} inhibits interrupts during execution of
738the instruction it precedes. (This is only valid with certain
739instructions; see a 80386 manual for details).
740
741@cindex coprocessor wait, i386
742@item
743The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
744complete the current instruction. This should never be needed for the
74580386/80387 combination.
746
747@cindex repeat prefixes, i386
748@item
749The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
750to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
751times if the current address size is 16-bits).
55b62671
AJ
752@cindex REX prefixes, i386
753@item
754The @samp{rex} family of prefixes is used by x86-64 to encode
755extensions to i386 instruction set. The @samp{rex} prefix has four
756bits --- an operand size overwrite (@code{64}) used to change operand size
757from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
758register set.
759
760You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
761instruction emits @samp{rex} prefix with all the bits set. By omitting
762the @code{64}, @code{x}, @code{y} or @code{z} you may write other
763prefixes as well. Normally, there is no need to write the prefixes
764explicitly, since gas will automatically generate them based on the
765instruction operands.
252b5132
RH
766@end itemize
767
768@node i386-Memory
769@section Memory References
770
771@cindex i386 memory references
772@cindex memory references, i386
55b62671
AJ
773@cindex x86-64 memory references
774@cindex memory references, x86-64
252b5132
RH
775An Intel syntax indirect memory reference of the form
776
777@smallexample
778@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
779@end smallexample
780
781@noindent
782is translated into the AT&T syntax
783
784@smallexample
785@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
786@end smallexample
787
788@noindent
789where @var{base} and @var{index} are the optional 32-bit base and
790index registers, @var{disp} is the optional displacement, and
791@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
792to calculate the address of the operand. If no @var{scale} is
793specified, @var{scale} is taken to be 1. @var{section} specifies the
794optional section register for the memory operand, and may override the
795default section register (see a 80386 manual for section register
796defaults). Note that section overrides in AT&T syntax @emph{must}
797be preceded by a @samp{%}. If you specify a section override which
798coincides with the default section register, @code{@value{AS}} does @emph{not}
799output any section register override prefixes to assemble the given
800instruction. Thus, section overrides can be specified to emphasize which
801section register is used for a given memory operand.
802
803Here are some examples of Intel and AT&T style memory references:
804
805@table @asis
806@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
807@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
808missing, and the default section is used (@samp{%ss} for addressing with
809@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
810
811@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
812@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
813@samp{foo}. All other fields are missing. The section register here
814defaults to @samp{%ds}.
815
816@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
817This uses the value pointed to by @samp{foo} as a memory operand.
818Note that @var{base} and @var{index} are both missing, but there is only
819@emph{one} @samp{,}. This is a syntactic exception.
820
821@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
822This selects the contents of the variable @samp{foo} with section
823register @var{section} being @samp{%gs}.
824@end table
825
826Absolute (as opposed to PC relative) call and jump operands must be
827prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
828always chooses PC relative addressing for jump/call labels.
829
830Any instruction that has a memory operand, but no register operand,
55b62671
AJ
831@emph{must} specify its size (byte, word, long, or quadruple) with an
832instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
833respectively).
834
835The x86-64 architecture adds an RIP (instruction pointer relative)
836addressing. This addressing mode is specified by using @samp{rip} as a
837base register. Only constant offsets are valid. For example:
838
839@table @asis
840@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
841Points to the address 1234 bytes past the end of the current
842instruction.
843
844@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
845Points to the @code{symbol} in RIP relative way, this is shorter than
846the default absolute addressing.
847@end table
848
849Other addressing modes remain unchanged in x86-64 architecture, except
850registers used are 64-bit instead of 32-bit.
252b5132 851
fddf5b5b 852@node i386-Jumps
252b5132
RH
853@section Handling of Jump Instructions
854
855@cindex jump optimization, i386
856@cindex i386 jump optimization
55b62671
AJ
857@cindex jump optimization, x86-64
858@cindex x86-64 jump optimization
252b5132
RH
859Jump instructions are always optimized to use the smallest possible
860displacements. This is accomplished by using byte (8-bit) displacement
861jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 862is insufficient a long displacement is used. We do not support
252b5132
RH
863word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
864instruction with the @samp{data16} instruction prefix), since the 80386
865insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 866is added. (See also @pxref{i386-Arch})
252b5132
RH
867
868Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
869@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
870displacements, so that if you use these instructions (@code{@value{GCC}} does
871not use them) you may get an error message (and incorrect code). The AT&T
87280386 assembler tries to get around this problem by expanding @samp{jcxz foo}
873to
874
875@smallexample
876 jcxz cx_zero
877 jmp cx_nonzero
878cx_zero: jmp foo
879cx_nonzero:
880@end smallexample
881
882@node i386-Float
883@section Floating Point
884
885@cindex i386 floating point
886@cindex floating point, i386
55b62671
AJ
887@cindex x86-64 floating point
888@cindex floating point, x86-64
252b5132
RH
889All 80387 floating point types except packed BCD are supported.
890(BCD support may be added without much difficulty). These data
891types are 16-, 32-, and 64- bit integers, and single (32-bit),
892double (64-bit), and extended (80-bit) precision floating point.
893Each supported type has an instruction mnemonic suffix and a constructor
894associated with it. Instruction mnemonic suffixes specify the operand's
895data type. Constructors build these data types into memory.
896
897@cindex @code{float} directive, i386
898@cindex @code{single} directive, i386
899@cindex @code{double} directive, i386
900@cindex @code{tfloat} directive, i386
55b62671
AJ
901@cindex @code{float} directive, x86-64
902@cindex @code{single} directive, x86-64
903@cindex @code{double} directive, x86-64
904@cindex @code{tfloat} directive, x86-64
252b5132
RH
905@itemize @bullet
906@item
907Floating point constructors are @samp{.float} or @samp{.single},
908@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
909These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
910and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
911only supports this format via the @samp{fldt} (load 80-bit real to stack
912top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
913
914@cindex @code{word} directive, i386
915@cindex @code{long} directive, i386
916@cindex @code{int} directive, i386
917@cindex @code{quad} directive, i386
55b62671
AJ
918@cindex @code{word} directive, x86-64
919@cindex @code{long} directive, x86-64
920@cindex @code{int} directive, x86-64
921@cindex @code{quad} directive, x86-64
252b5132
RH
922@item
923Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
924@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
925corresponding instruction mnemonic suffixes are @samp{s} (single),
926@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
927the 64-bit @samp{q} format is only present in the @samp{fildq} (load
928quad integer to stack top) and @samp{fistpq} (store quad integer and pop
929stack) instructions.
930@end itemize
931
932Register to register operations should not use instruction mnemonic suffixes.
933@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
934wrote @samp{fst %st, %st(1)}, since all register to register operations
935use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
936which converts @samp{%st} from 80-bit to 64-bit floating point format,
937then stores the result in the 4 byte location @samp{mem})
938
939@node i386-SIMD
940@section Intel's MMX and AMD's 3DNow! SIMD Operations
941
942@cindex MMX, i386
943@cindex 3DNow!, i386
944@cindex SIMD, i386
55b62671
AJ
945@cindex MMX, x86-64
946@cindex 3DNow!, x86-64
947@cindex SIMD, x86-64
252b5132
RH
948
949@code{@value{AS}} supports Intel's MMX instruction set (SIMD
950instructions for integer data), available on Intel's Pentium MMX
951processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 952Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
953instruction set (SIMD instructions for 32-bit floating point data)
954available on AMD's K6-2 processor and possibly others in the future.
955
956Currently, @code{@value{AS}} does not support Intel's floating point
957SIMD, Katmai (KNI).
958
959The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
960@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
96116-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
962floating point values. The MMX registers cannot be used at the same time
963as the floating point stack.
964
965See Intel and AMD documentation, keeping in mind that the operand order in
966instructions is reversed from the Intel syntax.
967
f88c9eb0
SP
968@node i386-LWP
969@section AMD's Lightweight Profiling Instructions
970
971@cindex LWP, i386
972@cindex LWP, x86-64
973
974@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
975instruction set, available on AMD's Family 15h (Orochi) processors.
976
977LWP enables applications to collect and manage performance data, and
978react to performance events. The collection of performance data
979requires no context switches. LWP runs in the context of a thread and
980so several counters can be used independently across multiple threads.
981LWP can be used in both 64-bit and legacy 32-bit modes.
982
983For detailed information on the LWP instruction set, see the
984@cite{AMD Lightweight Profiling Specification} available at
985@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
986
87973e9f
QN
987@node i386-BMI
988@section Bit Manipulation Instructions
989
990@cindex BMI, i386
991@cindex BMI, x86-64
992
993@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
994
995BMI instructions provide several instructions implementing individual
996bit manipulation operations such as isolation, masking, setting, or
34bca508 997resetting.
87973e9f
QN
998
999@c Need to add a specification citation here when available.
1000
2a2a0f38
QN
1001@node i386-TBM
1002@section AMD's Trailing Bit Manipulation Instructions
1003
1004@cindex TBM, i386
1005@cindex TBM, x86-64
1006
1007@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1008instruction set, available on AMD's BDVER2 processors (Trinity and
1009Viperfish).
1010
1011TBM instructions provide instructions implementing individual bit
1012manipulation operations such as isolating, masking, setting, resetting,
1013complementing, and operations on trailing zeros and ones.
1014
1015@c Need to add a specification citation here when available.
87973e9f 1016
252b5132
RH
1017@node i386-16bit
1018@section Writing 16-bit Code
1019
1020@cindex i386 16-bit code
1021@cindex 16-bit code, i386
1022@cindex real-mode code, i386
eecb386c 1023@cindex @code{code16gcc} directive, i386
252b5132
RH
1024@cindex @code{code16} directive, i386
1025@cindex @code{code32} directive, i386
55b62671
AJ
1026@cindex @code{code64} directive, i386
1027@cindex @code{code64} directive, x86-64
1028While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1029or 64-bit x86-64 code depending on the default configuration,
252b5132 1030it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1031mode code segments. To do this, put a @samp{.code16} or
1032@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1033be run in 16-bit mode. You can switch @code{@value{AS}} to writing
103432-bit code with the @samp{.code32} directive or 64-bit code with the
1035@samp{.code64} directive.
eecb386c
AM
1036
1037@samp{.code16gcc} provides experimental support for generating 16-bit
1038code from gcc, and differs from @samp{.code16} in that @samp{call},
1039@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1040@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1041default to 32-bit size. This is so that the stack pointer is
1042manipulated in the same way over function calls, allowing access to
1043function parameters at the same stack offsets as in 32-bit mode.
1044@samp{.code16gcc} also automatically adds address size prefixes where
1045necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1046
1047The code which @code{@value{AS}} generates in 16-bit mode will not
1048necessarily run on a 16-bit pre-80386 processor. To write code that
1049runs on such a processor, you must refrain from using @emph{any} 32-bit
1050constructs which require @code{@value{AS}} to output address or operand
1051size prefixes.
1052
1053Note that writing 16-bit code instructions by explicitly specifying a
1054prefix or an instruction mnemonic suffix within a 32-bit code section
1055generates different machine instructions than those generated for a
105616-bit code segment. In a 32-bit code section, the following code
1057generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1058value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1059
1060@smallexample
1061 pushw $4
1062@end smallexample
1063
1064The same code in a 16-bit code section would generate the machine
b45619c0 1065opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1066is correct since the processor default operand size is assumed to be 16
1067bits in a 16-bit code section.
1068
e413e4e9
AM
1069@node i386-Arch
1070@section Specifying CPU Architecture
1071
1072@cindex arch directive, i386
1073@cindex i386 arch directive
55b62671
AJ
1074@cindex arch directive, x86-64
1075@cindex x86-64 arch directive
e413e4e9
AM
1076
1077@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1078(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1079directive enables a warning when gas detects an instruction that is not
1080supported on the CPU specified. The choices for @var{cpu_type} are:
1081
1082@multitable @columnfractions .20 .20 .20 .20
1083@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1084@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1085@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1086@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
81486035 1087@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1543849b 1088@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1089@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
029f3522 1090@item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1ceab344 1091@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1092@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1093@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1094@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1095@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1096@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1097@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1098@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1099@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1100@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1101@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1102@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1103@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
14f195c9 1104@item @samp{.avx512vbmi} @tab @samp{.clwb} @tab @samp{.pcommit}
1ceab344 1105@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1106@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1107@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
029f3522 1108@item @samp{.padlock} @tab @samp{.clzero}
e413e4e9
AM
1109@end multitable
1110
fddf5b5b
AM
1111Apart from the warning, there are only two other effects on
1112@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1113@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1114will automatically use a two byte opcode sequence. The larger three
1115byte opcode sequence is used on the 486 (and when no architecture is
1116specified) because it executes faster on the 486. Note that you can
1117explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1118Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1119@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1120conditional jumps will be promoted when necessary to a two instruction
1121sequence consisting of a conditional jump of the opposite sense around
1122an unconditional jump to the target.
1123
5c6af06e
JB
1124Following the CPU architecture (but not a sub-architecture, which are those
1125starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1126control automatic promotion of conditional jumps. @samp{jumps} is the
1127default, and enables jump promotion; All external jumps will be of the long
1128variety, and file-local jumps will be promoted as necessary.
1129(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1130byte offset jumps, and warns about file-local conditional jumps that
1131@code{@value{AS}} promotes.
fddf5b5b
AM
1132Unconditional jumps are treated as for @samp{jumps}.
1133
1134For example
1135
1136@smallexample
1137 .arch i8086,nojumps
1138@end smallexample
e413e4e9 1139
5c9352f3
AM
1140@node i386-Bugs
1141@section AT&T Syntax bugs
1142
1143The UnixWare assembler, and probably other AT&T derived ix86 Unix
1144assemblers, generate floating point instructions with reversed source
1145and destination registers in certain cases. Unfortunately, gcc and
1146possibly many other programs use this reversed syntax, so we're stuck
1147with it.
1148
1149For example
1150
1151@smallexample
1152 fsub %st,%st(3)
1153@end smallexample
1154@noindent
1155results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1156than the expected @samp{%st(3) - %st}. This happens with all the
1157non-commutative arithmetic floating point operations with two register
1158operands where the source register is @samp{%st} and the destination
1159register is @samp{%st(i)}.
1160
252b5132
RH
1161@node i386-Notes
1162@section Notes
1163
1164@cindex i386 @code{mul}, @code{imul} instructions
1165@cindex @code{mul} instruction, i386
1166@cindex @code{imul} instruction, i386
55b62671
AJ
1167@cindex @code{mul} instruction, x86-64
1168@cindex @code{imul} instruction, x86-64
252b5132 1169There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1170instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1171multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1172for @samp{imul}) can be output only in the one operand form. Thus,
1173@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1174the expanding multiply would clobber the @samp{%edx} register, and this
1175would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
117664-bit product in @samp{%edx:%eax}.
1177
1178We have added a two operand form of @samp{imul} when the first operand
1179is an immediate mode expression and the second operand is a register.
1180This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1181example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1182$69, %eax, %eax}.
1183
This page took 0.686676 seconds and 4 git commands to generate.