Update comment in remote_can_async_p
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
2571583a 1@c Copyright (C) 1991-2017 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
77as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
78
79@cindex @samp{--divide} option, i386
80@item --divide
81On SVR4-derived platforms, the character @samp{/} is treated as a comment
82character, which means that it cannot be used in expressions. The
83@samp{--divide} option turns @samp{/} into a normal character. This does
84not disable @samp{/} at the beginning of a line starting a comment, or
85affect using @samp{#} for starting a comment.
86
9103f4f4
L
87@cindex @samp{-march=} option, i386
88@cindex @samp{-march=} option, x86-64
6305a203
L
89@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90This option specifies the target processor. The assembler will
91issue an error message if an attempt is made to assemble an instruction
92which will not execute on the target processor. The following
34bca508 93processor names are recognized:
9103f4f4
L
94@code{i8086},
95@code{i186},
96@code{i286},
97@code{i386},
98@code{i486},
99@code{i586},
100@code{i686},
101@code{pentium},
102@code{pentiumpro},
103@code{pentiumii},
104@code{pentiumiii},
105@code{pentium4},
106@code{prescott},
107@code{nocona},
ef05d495
L
108@code{core},
109@code{core2},
bd5295b2 110@code{corei7},
8a9036a4 111@code{l1om},
7a9068fe 112@code{k1om},
81486035 113@code{iamcu},
9103f4f4
L
114@code{k6},
115@code{k6_2},
116@code{athlon},
9103f4f4
L
117@code{opteron},
118@code{k8},
1ceab344 119@code{amdfam10},
68339fdf 120@code{bdver1},
af2f724e 121@code{bdver2},
5e5c50d3 122@code{bdver3},
c7b0bd56 123@code{bdver4},
029f3522 124@code{znver1},
7b458c12
L
125@code{btver1},
126@code{btver2},
9103f4f4
L
127@code{generic32} and
128@code{generic64}.
129
34bca508 130In addition to the basic instruction set, the assembler can be told to
6305a203
L
131accept various extension mnemonics. For example,
132@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
133@var{vmx}. The following extensions are currently supported:
309d3373
JB
134@code{8087},
135@code{287},
136@code{387},
1848e567 137@code{687},
309d3373 138@code{no87},
1848e567
L
139@code{no287},
140@code{no387},
141@code{no687},
6305a203 142@code{mmx},
309d3373 143@code{nommx},
6305a203
L
144@code{sse},
145@code{sse2},
146@code{sse3},
147@code{ssse3},
148@code{sse4.1},
149@code{sse4.2},
150@code{sse4},
309d3373 151@code{nosse},
1848e567
L
152@code{nosse2},
153@code{nosse3},
154@code{nossse3},
155@code{nosse4.1},
156@code{nosse4.2},
157@code{nosse4},
c0f3af97 158@code{avx},
6c30d220 159@code{avx2},
1848e567
L
160@code{noavx},
161@code{noavx2},
e2e1fcde
L
162@code{adx},
163@code{rdseed},
164@code{prfchw},
5c111e37 165@code{smap},
7e8b059b 166@code{mpx},
a0046408 167@code{sha},
8bc52696 168@code{rdpid},
6b40c462 169@code{ptwrite},
1dfc6506
L
170@code{prefetchwt1},
171@code{clflushopt},
172@code{se1},
c5e7287a 173@code{clwb},
43234a1e
L
174@code{avx512f},
175@code{avx512cd},
176@code{avx512er},
177@code{avx512pf},
1dfc6506
L
178@code{avx512vl},
179@code{avx512bw},
180@code{avx512dq},
2cc1b5aa 181@code{avx512ifma},
14f195c9 182@code{avx512vbmi},
920d2ddc 183@code{avx512_4fmaps},
47acf0bd 184@code{avx512_4vnniw},
144b71e2
L
185@code{noavx512f},
186@code{noavx512cd},
187@code{noavx512er},
188@code{noavx512pf},
189@code{noavx512vl},
190@code{noavx512bw},
191@code{noavx512dq},
192@code{noavx512ifma},
193@code{noavx512vbmi},
920d2ddc 194@code{noavx512_4fmaps},
47acf0bd 195@code{noavx512_4vnniw},
6305a203 196@code{vmx},
8729a6f6 197@code{vmfunc},
6305a203 198@code{smx},
f03fe4c1 199@code{xsave},
c7b8aa3a 200@code{xsaveopt},
1dfc6506
L
201@code{xsavec},
202@code{xsaves},
c0f3af97 203@code{aes},
594ab6a3 204@code{pclmul},
c7b8aa3a
L
205@code{fsgsbase},
206@code{rdrnd},
207@code{f16c},
6c30d220 208@code{bmi2},
c0f3af97 209@code{fma},
f1f8f695
L
210@code{movbe},
211@code{ept},
6c30d220 212@code{lzcnt},
42164a71
L
213@code{hle},
214@code{rtm},
6c30d220 215@code{invpcid},
bd5295b2 216@code{clflush},
9916071f 217@code{mwaitx},
029f3522 218@code{clzero},
f88c9eb0 219@code{lwp},
5dd85c99
SP
220@code{fma4},
221@code{xop},
60aa667e 222@code{cx16},
bd5295b2 223@code{syscall},
1b7f3fb0 224@code{rdtscp},
6305a203
L
225@code{3dnow},
226@code{3dnowa},
227@code{sse4a},
228@code{sse5},
229@code{svme},
230@code{abm} and
231@code{padlock}.
309d3373
JB
232Note that rather than extending a basic instruction set, the extension
233mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
234
235When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
236@code{.arch} directive will take precedent.
237
238@cindex @samp{-mtune=} option, i386
239@cindex @samp{-mtune=} option, x86-64
240@item -mtune=@var{CPU}
241This option specifies a processor to optimize for. When used in
242conjunction with the @option{-march} option, only instructions
243of the processor specified by the @option{-march} option will be
244generated.
245
6305a203
L
246Valid @var{CPU} values are identical to the processor list of
247@option{-march=@var{CPU}}.
9103f4f4 248
c0f3af97
L
249@cindex @samp{-msse2avx} option, i386
250@cindex @samp{-msse2avx} option, x86-64
251@item -msse2avx
252This option specifies that the assembler should encode SSE instructions
253with VEX prefix.
254
daf50ae7
L
255@cindex @samp{-msse-check=} option, i386
256@cindex @samp{-msse-check=} option, x86-64
257@item -msse-check=@var{none}
1f9bb1ca
AS
258@itemx -msse-check=@var{warning}
259@itemx -msse-check=@var{error}
9aff4b7a 260These options control if the assembler should check SSE instructions.
daf50ae7
L
261@option{-msse-check=@var{none}} will make the assembler not to check SSE
262instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 263will make the assembler issue a warning for any SSE instruction.
daf50ae7 264@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 265for any SSE instruction.
daf50ae7 266
539f890d
L
267@cindex @samp{-mavxscalar=} option, i386
268@cindex @samp{-mavxscalar=} option, x86-64
269@item -mavxscalar=@var{128}
1f9bb1ca 270@itemx -mavxscalar=@var{256}
2aab8acd 271These options control how the assembler should encode scalar AVX
539f890d
L
272instructions. @option{-mavxscalar=@var{128}} will encode scalar
273AVX instructions with 128bit vector length, which is the default.
274@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
275with 256bit vector length.
276
43234a1e
L
277@cindex @samp{-mevexlig=} option, i386
278@cindex @samp{-mevexlig=} option, x86-64
279@item -mevexlig=@var{128}
280@itemx -mevexlig=@var{256}
281@itemx -mevexlig=@var{512}
282These options control how the assembler should encode length-ignored
283(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
284EVEX instructions with 128bit vector length, which is the default.
285@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
286encode LIG EVEX instructions with 256bit and 512bit vector length,
287respectively.
288
289@cindex @samp{-mevexwig=} option, i386
290@cindex @samp{-mevexwig=} option, x86-64
291@item -mevexwig=@var{0}
292@itemx -mevexwig=@var{1}
293These options control how the assembler should encode w-ignored (WIG)
294EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
295EVEX instructions with evex.w = 0, which is the default.
296@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
297evex.w = 1.
298
1efbbeb4
L
299@cindex @samp{-mmnemonic=} option, i386
300@cindex @samp{-mmnemonic=} option, x86-64
301@item -mmnemonic=@var{att}
1f9bb1ca 302@itemx -mmnemonic=@var{intel}
34bca508 303This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
304The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
305take precedent.
306
307@cindex @samp{-msyntax=} option, i386
308@cindex @samp{-msyntax=} option, x86-64
309@item -msyntax=@var{att}
1f9bb1ca 310@itemx -msyntax=@var{intel}
34bca508 311This option specifies instruction syntax when processing instructions.
1efbbeb4
L
312The @code{.att_syntax} and @code{.intel_syntax} directives will
313take precedent.
314
315@cindex @samp{-mnaked-reg} option, i386
316@cindex @samp{-mnaked-reg} option, x86-64
317@item -mnaked-reg
318This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 319The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 320
7e8b059b
L
321@cindex @samp{-madd-bnd-prefix} option, i386
322@cindex @samp{-madd-bnd-prefix} option, x86-64
323@item -madd-bnd-prefix
324This option forces the assembler to add BND prefix to all branches, even
325if such prefix was not explicitly specified in the source code.
326
8dcea932
L
327@cindex @samp{-mshared} option, i386
328@cindex @samp{-mshared} option, x86-64
329@item -mno-shared
330On ELF target, the assembler normally optimizes out non-PLT relocations
331against defined non-weak global branch targets with default visibility.
332The @samp{-mshared} option tells the assembler to generate code which
333may go into a shared library where all non-weak global branch targets
334with default visibility can be preempted. The resulting code is
335slightly bigger. This option only affects the handling of branch
336instructions.
337
167ad85b
TG
338@cindex @samp{-mbig-obj} option, x86-64
339@item -mbig-obj
340On x86-64 PE/COFF target this option forces the use of big object file
341format, which allows more than 32768 sections.
342
d022bddd
IT
343@cindex @samp{-momit-lock-prefix=} option, i386
344@cindex @samp{-momit-lock-prefix=} option, x86-64
345@item -momit-lock-prefix=@var{no}
346@itemx -momit-lock-prefix=@var{yes}
347These options control how the assembler should encode lock prefix.
348This option is intended as a workaround for processors, that fail on
349lock prefix. This option can only be safely used with single-core,
350single-thread computers
351@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
352@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
353which is the default.
354
e4e00185
AS
355@cindex @samp{-mfence-as-lock-add=} option, i386
356@cindex @samp{-mfence-as-lock-add=} option, x86-64
357@item -mfence-as-lock-add=@var{no}
358@itemx -mfence-as-lock-add=@var{yes}
359These options control how the assembler should encode lfence, mfence and
360sfence.
361@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
362sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
363@samp{lock addl $0x0, (%esp)} in 32-bit mode.
364@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
365sfence as usual, which is the default.
366
0cb4071e
L
367@cindex @samp{-mrelax-relocations=} option, i386
368@cindex @samp{-mrelax-relocations=} option, x86-64
369@item -mrelax-relocations=@var{no}
370@itemx -mrelax-relocations=@var{yes}
371These options control whether the assembler should generate relax
372relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
373R_X86_64_REX_GOTPCRELX, in 64-bit mode.
374@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
375@option{-mrelax-relocations=@var{no}} will not generate relax
376relocations. The default can be controlled by a configure option
377@option{--enable-x86-relax-relocations}.
378
d3d3c6db
IT
379@cindex @samp{-mevexrcig=} option, i386
380@cindex @samp{-mevexrcig=} option, x86-64
381@item -mevexrcig=@var{rne}
382@itemx -mevexrcig=@var{rd}
383@itemx -mevexrcig=@var{ru}
384@itemx -mevexrcig=@var{rz}
385These options control how the assembler should encode SAE-only
386EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
387of EVEX instruction with 00, which is the default.
388@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
389and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
390with 01, 10 and 11 RC bits, respectively.
391
5db04b09
L
392@cindex @samp{-mamd64} option, x86-64
393@cindex @samp{-mintel64} option, x86-64
394@item -mamd64
395@itemx -mintel64
396This option specifies that the assembler should accept only AMD64 or
397Intel64 ISA in 64-bit mode. The default is to accept both.
398
55b62671 399@end table
731caf76 400@c man end
e413e4e9 401
a6c24e68
NC
402@node i386-Directives
403@section x86 specific Directives
404
405@cindex machine directives, x86
406@cindex x86 machine directives
407@table @code
408
409@cindex @code{lcomm} directive, COFF
410@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
411Reserve @var{length} (an absolute expression) bytes for a local common
412denoted by @var{symbol}. The section and value of @var{symbol} are
413those of the new local common. The addresses are allocated in the bss
704209c0
NC
414section, so that at run-time the bytes start off zeroed. Since
415@var{symbol} is not declared global, it is normally not visible to
416@code{@value{LD}}. The optional third parameter, @var{alignment},
417specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
418
419This directive is only available for COFF based x86 targets.
420
421@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
422@c .largecomm
423
424@end table
425
252b5132 426@node i386-Syntax
7c31ae13
NC
427@section i386 Syntactical Considerations
428@menu
429* i386-Variations:: AT&T Syntax versus Intel Syntax
430* i386-Chars:: Special Characters
431@end menu
432
433@node i386-Variations
434@subsection AT&T Syntax versus Intel Syntax
252b5132 435
e413e4e9
AM
436@cindex i386 intel_syntax pseudo op
437@cindex intel_syntax pseudo op, i386
438@cindex i386 att_syntax pseudo op
439@cindex att_syntax pseudo op, i386
252b5132
RH
440@cindex i386 syntax compatibility
441@cindex syntax compatibility, i386
55b62671
AJ
442@cindex x86-64 intel_syntax pseudo op
443@cindex intel_syntax pseudo op, x86-64
444@cindex x86-64 att_syntax pseudo op
445@cindex att_syntax pseudo op, x86-64
446@cindex x86-64 syntax compatibility
447@cindex syntax compatibility, x86-64
e413e4e9
AM
448
449@code{@value{AS}} now supports assembly using Intel assembler syntax.
450@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
451back to the usual AT&T mode for compatibility with the output of
452@code{@value{GCC}}. Either of these directives may have an optional
453argument, @code{prefix}, or @code{noprefix} specifying whether registers
454require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
455different from Intel syntax. We mention these differences because
456almost all 80386 documents use Intel syntax. Notable differences
457between the two syntaxes are:
458
459@cindex immediate operands, i386
460@cindex i386 immediate operands
461@cindex register operands, i386
462@cindex i386 register operands
463@cindex jump/call operands, i386
464@cindex i386 jump/call operands
465@cindex operand delimiters, i386
55b62671
AJ
466
467@cindex immediate operands, x86-64
468@cindex x86-64 immediate operands
469@cindex register operands, x86-64
470@cindex x86-64 register operands
471@cindex jump/call operands, x86-64
472@cindex x86-64 jump/call operands
473@cindex operand delimiters, x86-64
252b5132
RH
474@itemize @bullet
475@item
476AT&T immediate operands are preceded by @samp{$}; Intel immediate
477operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
478AT&T register operands are preceded by @samp{%}; Intel register operands
479are undelimited. AT&T absolute (as opposed to PC relative) jump/call
480operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
481
482@cindex i386 source, destination operands
483@cindex source, destination operands; i386
55b62671
AJ
484@cindex x86-64 source, destination operands
485@cindex source, destination operands; x86-64
252b5132
RH
486@item
487AT&T and Intel syntax use the opposite order for source and destination
488operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
489@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
490previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
491instructions with 2 immediate operands, such as the @samp{enter}
492instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
493
494@cindex mnemonic suffixes, i386
495@cindex sizes operands, i386
496@cindex i386 size suffixes
55b62671
AJ
497@cindex mnemonic suffixes, x86-64
498@cindex sizes operands, x86-64
499@cindex x86-64 size suffixes
252b5132
RH
500@item
501In AT&T syntax the size of memory operands is determined from the last
502character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
503@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
504(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
505this by prefixing memory operands (@emph{not} the instruction mnemonics) with
506@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
507Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
508syntax.
252b5132 509
4b06377f
L
510In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
511instruction with the 64-bit displacement or immediate operand.
512
252b5132
RH
513@cindex return instructions, i386
514@cindex i386 jump, call, return
55b62671
AJ
515@cindex return instructions, x86-64
516@cindex x86-64 jump, call, return
252b5132
RH
517@item
518Immediate form long jumps and calls are
519@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
520Intel syntax is
521@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
522instruction
523is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
524@samp{ret far @var{stack-adjust}}.
525
526@cindex sections, i386
527@cindex i386 sections
55b62671
AJ
528@cindex sections, x86-64
529@cindex x86-64 sections
252b5132
RH
530@item
531The AT&T assembler does not provide support for multiple section
532programs. Unix style systems expect all programs to be single sections.
533@end itemize
534
7c31ae13
NC
535@node i386-Chars
536@subsection Special Characters
537
538@cindex line comment character, i386
539@cindex i386 line comment character
540The presence of a @samp{#} appearing anywhere on a line indicates the
541start of a comment that extends to the end of that line.
542
543If a @samp{#} appears as the first character of a line then the whole
544line is treated as a comment, but in this case the line can also be a
545logical line number directive (@pxref{Comments}) or a preprocessor
546control command (@pxref{Preprocessing}).
547
548If the @option{--divide} command line option has not been specified
549then the @samp{/} character appearing anywhere on a line also
550introduces a line comment.
551
552@cindex line separator, i386
553@cindex statement separator, i386
554@cindex i386 line separator
555The @samp{;} character can be used to separate statements on the same
556line.
557
252b5132 558@node i386-Mnemonics
d3b47e2b
L
559@section i386-Mnemonics
560@subsection Instruction Naming
252b5132
RH
561
562@cindex i386 instruction naming
563@cindex instruction naming, i386
55b62671
AJ
564@cindex x86-64 instruction naming
565@cindex instruction naming, x86-64
566
252b5132 567Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
568specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
569and @samp{q} specify byte, word, long and quadruple word operands. If
570no suffix is specified by an instruction then @code{@value{AS}} tries to
571fill in the missing suffix based on the destination register operand
572(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
573to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
574@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
575assembler which assumes that a missing mnemonic suffix implies long
576operand size. (This incompatibility does not affect compiler output
577since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
578
579Almost all instructions have the same names in AT&T and Intel format.
580There are a few exceptions. The sign extend and zero extend
581instructions need two sizes to specify them. They need a size to
582sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
583is accomplished by using two instruction mnemonic suffixes in AT&T
584syntax. Base names for sign extend and zero extend are
585@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
586and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
587are tacked on to this base name, the @emph{from} suffix before the
588@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
589``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
590thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
591@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
592@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
593quadruple word).
252b5132 594
b6169b20
L
595@cindex encoding options, i386
596@cindex encoding options, x86-64
597
598Different encoding options can be specified via optional mnemonic
599suffix. @samp{.s} suffix swaps 2 register operands in encoding when
a501d77e
L
600moving from one register to another. @samp{.d8} or @samp{.d32} suffix
601prefers 8bit or 32bit displacement in encoding.
b6169b20 602
252b5132
RH
603@cindex conversion instructions, i386
604@cindex i386 conversion instructions
55b62671
AJ
605@cindex conversion instructions, x86-64
606@cindex x86-64 conversion instructions
252b5132
RH
607The Intel-syntax conversion instructions
608
609@itemize @bullet
610@item
611@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
612
613@item
614@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
615
616@item
617@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
618
619@item
620@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
621
622@item
623@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
624(x86-64 only),
625
626@item
d5f0cf92 627@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 628@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
629@end itemize
630
631@noindent
55b62671
AJ
632are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
633@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
634instructions.
252b5132
RH
635
636@cindex jump instructions, i386
637@cindex call instructions, i386
55b62671
AJ
638@cindex jump instructions, x86-64
639@cindex call instructions, x86-64
252b5132
RH
640Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
641AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
642convention.
643
d3b47e2b 644@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
645
646@cindex i386 mnemonic compatibility
647@cindex mnemonic compatibility, i386
648
649@code{@value{AS}} supports assembly using Intel mnemonic.
650@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
651@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
652syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
653Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
654@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
655@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
656assembler with different mnemonics from those in Intel IA32 specification.
657@code{@value{GCC}} generates those instructions with AT&T mnemonic.
658
252b5132
RH
659@node i386-Regs
660@section Register Naming
661
662@cindex i386 registers
663@cindex registers, i386
55b62671
AJ
664@cindex x86-64 registers
665@cindex registers, x86-64
252b5132
RH
666Register operands are always prefixed with @samp{%}. The 80386 registers
667consist of
668
669@itemize @bullet
670@item
671the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
672@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
673frame pointer), and @samp{%esp} (the stack pointer).
674
675@item
676the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
677@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
678
679@item
680the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
681@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
682are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
683@samp{%cx}, and @samp{%dx})
684
685@item
686the 6 section registers @samp{%cs} (code section), @samp{%ds}
687(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
688and @samp{%gs}.
689
690@item
4bde3cdd
UD
691the 5 processor control registers @samp{%cr0}, @samp{%cr2},
692@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
693
694@item
695the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
696@samp{%db3}, @samp{%db6}, and @samp{%db7}.
697
698@item
699the 2 test registers @samp{%tr6} and @samp{%tr7}.
700
701@item
702the 8 floating point register stack @samp{%st} or equivalently
703@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
704@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
705These registers are overloaded by 8 MMX registers @samp{%mm0},
706@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
707@samp{%mm6} and @samp{%mm7}.
708
709@item
4bde3cdd 710the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
711@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
712@end itemize
713
714The AMD x86-64 architecture extends the register set by:
715
716@itemize @bullet
717@item
718enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
719accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
720@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
721pointer)
722
723@item
724the 8 extended registers @samp{%r8}--@samp{%r15}.
725
726@item
4bde3cdd 727the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
728
729@item
4bde3cdd 730the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
731
732@item
4bde3cdd 733the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
734
735@item
736the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
737
738@item
739the 8 debug registers: @samp{%db8}--@samp{%db15}.
740
741@item
4bde3cdd
UD
742the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
743@end itemize
744
745With the AVX extensions more registers were made available:
746
747@itemize @bullet
748
749@item
750the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
751available in 32-bit mode). The bottom 128 bits are overlaid with the
752@samp{xmm0}--@samp{xmm15} registers.
753
754@end itemize
755
756The AVX2 extensions made in 64-bit mode more registers available:
757
758@itemize @bullet
759
760@item
761the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
762registers @samp{%ymm16}--@samp{%ymm31}.
763
764@end itemize
765
766The AVX512 extensions added the following registers:
767
768@itemize @bullet
769
770@item
771the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
772available in 32-bit mode). The bottom 128 bits are overlaid with the
773@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
774overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
775
776@item
777the 8 mask registers @samp{%k0}--@samp{%k7}.
778
252b5132
RH
779@end itemize
780
781@node i386-Prefixes
782@section Instruction Prefixes
783
784@cindex i386 instruction prefixes
785@cindex instruction prefixes, i386
786@cindex prefixes, i386
787Instruction prefixes are used to modify the following instruction. They
788are used to repeat string instructions, to provide section overrides, to
789perform bus lock operations, and to change operand and address sizes.
790(Most instructions that normally operate on 32-bit operands will use
79116-bit operands if the instruction has an ``operand size'' prefix.)
792Instruction prefixes are best written on the same line as the instruction
793they act upon. For example, the @samp{scas} (scan string) instruction is
794repeated with:
795
796@smallexample
797 repne scas %es:(%edi),%al
798@end smallexample
799
800You may also place prefixes on the lines immediately preceding the
801instruction, but this circumvents checks that @code{@value{AS}} does
802with prefixes, and will not work with all prefixes.
803
804Here is a list of instruction prefixes:
805
806@cindex section override prefixes, i386
807@itemize @bullet
808@item
809Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
810@samp{fs}, @samp{gs}. These are automatically added by specifying
811using the @var{section}:@var{memory-operand} form for memory references.
812
813@cindex size prefixes, i386
814@item
815Operand/Address size prefixes @samp{data16} and @samp{addr16}
816change 32-bit operands/addresses into 16-bit operands/addresses,
817while @samp{data32} and @samp{addr32} change 16-bit ones (in a
818@code{.code16} section) into 32-bit operands/addresses. These prefixes
819@emph{must} appear on the same line of code as the instruction they
820modify. For example, in a 16-bit @code{.code16} section, you might
821write:
822
823@smallexample
824 addr32 jmpl *(%ebx)
825@end smallexample
826
827@cindex bus lock prefixes, i386
828@cindex inhibiting interrupts, i386
829@item
830The bus lock prefix @samp{lock} inhibits interrupts during execution of
831the instruction it precedes. (This is only valid with certain
832instructions; see a 80386 manual for details).
833
834@cindex coprocessor wait, i386
835@item
836The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
837complete the current instruction. This should never be needed for the
83880386/80387 combination.
839
840@cindex repeat prefixes, i386
841@item
842The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
843to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
844times if the current address size is 16-bits).
55b62671
AJ
845@cindex REX prefixes, i386
846@item
847The @samp{rex} family of prefixes is used by x86-64 to encode
848extensions to i386 instruction set. The @samp{rex} prefix has four
849bits --- an operand size overwrite (@code{64}) used to change operand size
850from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
851register set.
852
853You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
854instruction emits @samp{rex} prefix with all the bits set. By omitting
855the @code{64}, @code{x}, @code{y} or @code{z} you may write other
856prefixes as well. Normally, there is no need to write the prefixes
857explicitly, since gas will automatically generate them based on the
858instruction operands.
252b5132
RH
859@end itemize
860
861@node i386-Memory
862@section Memory References
863
864@cindex i386 memory references
865@cindex memory references, i386
55b62671
AJ
866@cindex x86-64 memory references
867@cindex memory references, x86-64
252b5132
RH
868An Intel syntax indirect memory reference of the form
869
870@smallexample
871@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
872@end smallexample
873
874@noindent
875is translated into the AT&T syntax
876
877@smallexample
878@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
879@end smallexample
880
881@noindent
882where @var{base} and @var{index} are the optional 32-bit base and
883index registers, @var{disp} is the optional displacement, and
884@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
885to calculate the address of the operand. If no @var{scale} is
886specified, @var{scale} is taken to be 1. @var{section} specifies the
887optional section register for the memory operand, and may override the
888default section register (see a 80386 manual for section register
889defaults). Note that section overrides in AT&T syntax @emph{must}
890be preceded by a @samp{%}. If you specify a section override which
891coincides with the default section register, @code{@value{AS}} does @emph{not}
892output any section register override prefixes to assemble the given
893instruction. Thus, section overrides can be specified to emphasize which
894section register is used for a given memory operand.
895
896Here are some examples of Intel and AT&T style memory references:
897
898@table @asis
899@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
900@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
901missing, and the default section is used (@samp{%ss} for addressing with
902@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
903
904@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
905@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
906@samp{foo}. All other fields are missing. The section register here
907defaults to @samp{%ds}.
908
909@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
910This uses the value pointed to by @samp{foo} as a memory operand.
911Note that @var{base} and @var{index} are both missing, but there is only
912@emph{one} @samp{,}. This is a syntactic exception.
913
914@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
915This selects the contents of the variable @samp{foo} with section
916register @var{section} being @samp{%gs}.
917@end table
918
919Absolute (as opposed to PC relative) call and jump operands must be
920prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
921always chooses PC relative addressing for jump/call labels.
922
923Any instruction that has a memory operand, but no register operand,
55b62671
AJ
924@emph{must} specify its size (byte, word, long, or quadruple) with an
925instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
926respectively).
927
928The x86-64 architecture adds an RIP (instruction pointer relative)
929addressing. This addressing mode is specified by using @samp{rip} as a
930base register. Only constant offsets are valid. For example:
931
932@table @asis
933@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
934Points to the address 1234 bytes past the end of the current
935instruction.
936
937@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
938Points to the @code{symbol} in RIP relative way, this is shorter than
939the default absolute addressing.
940@end table
941
942Other addressing modes remain unchanged in x86-64 architecture, except
943registers used are 64-bit instead of 32-bit.
252b5132 944
fddf5b5b 945@node i386-Jumps
252b5132
RH
946@section Handling of Jump Instructions
947
948@cindex jump optimization, i386
949@cindex i386 jump optimization
55b62671
AJ
950@cindex jump optimization, x86-64
951@cindex x86-64 jump optimization
252b5132
RH
952Jump instructions are always optimized to use the smallest possible
953displacements. This is accomplished by using byte (8-bit) displacement
954jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 955is insufficient a long displacement is used. We do not support
252b5132
RH
956word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
957instruction with the @samp{data16} instruction prefix), since the 80386
958insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 959is added. (See also @pxref{i386-Arch})
252b5132
RH
960
961Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
962@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
963displacements, so that if you use these instructions (@code{@value{GCC}} does
964not use them) you may get an error message (and incorrect code). The AT&T
96580386 assembler tries to get around this problem by expanding @samp{jcxz foo}
966to
967
968@smallexample
969 jcxz cx_zero
970 jmp cx_nonzero
971cx_zero: jmp foo
972cx_nonzero:
973@end smallexample
974
975@node i386-Float
976@section Floating Point
977
978@cindex i386 floating point
979@cindex floating point, i386
55b62671
AJ
980@cindex x86-64 floating point
981@cindex floating point, x86-64
252b5132
RH
982All 80387 floating point types except packed BCD are supported.
983(BCD support may be added without much difficulty). These data
984types are 16-, 32-, and 64- bit integers, and single (32-bit),
985double (64-bit), and extended (80-bit) precision floating point.
986Each supported type has an instruction mnemonic suffix and a constructor
987associated with it. Instruction mnemonic suffixes specify the operand's
988data type. Constructors build these data types into memory.
989
990@cindex @code{float} directive, i386
991@cindex @code{single} directive, i386
992@cindex @code{double} directive, i386
993@cindex @code{tfloat} directive, i386
55b62671
AJ
994@cindex @code{float} directive, x86-64
995@cindex @code{single} directive, x86-64
996@cindex @code{double} directive, x86-64
997@cindex @code{tfloat} directive, x86-64
252b5132
RH
998@itemize @bullet
999@item
1000Floating point constructors are @samp{.float} or @samp{.single},
1001@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1002These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1003and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1004only supports this format via the @samp{fldt} (load 80-bit real to stack
1005top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1006
1007@cindex @code{word} directive, i386
1008@cindex @code{long} directive, i386
1009@cindex @code{int} directive, i386
1010@cindex @code{quad} directive, i386
55b62671
AJ
1011@cindex @code{word} directive, x86-64
1012@cindex @code{long} directive, x86-64
1013@cindex @code{int} directive, x86-64
1014@cindex @code{quad} directive, x86-64
252b5132
RH
1015@item
1016Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1017@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1018corresponding instruction mnemonic suffixes are @samp{s} (single),
1019@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1020the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1021quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1022stack) instructions.
1023@end itemize
1024
1025Register to register operations should not use instruction mnemonic suffixes.
1026@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1027wrote @samp{fst %st, %st(1)}, since all register to register operations
1028use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1029which converts @samp{%st} from 80-bit to 64-bit floating point format,
1030then stores the result in the 4 byte location @samp{mem})
1031
1032@node i386-SIMD
1033@section Intel's MMX and AMD's 3DNow! SIMD Operations
1034
1035@cindex MMX, i386
1036@cindex 3DNow!, i386
1037@cindex SIMD, i386
55b62671
AJ
1038@cindex MMX, x86-64
1039@cindex 3DNow!, x86-64
1040@cindex SIMD, x86-64
252b5132
RH
1041
1042@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1043instructions for integer data), available on Intel's Pentium MMX
1044processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1045Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1046instruction set (SIMD instructions for 32-bit floating point data)
1047available on AMD's K6-2 processor and possibly others in the future.
1048
1049Currently, @code{@value{AS}} does not support Intel's floating point
1050SIMD, Katmai (KNI).
1051
1052The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1053@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
105416-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1055floating point values. The MMX registers cannot be used at the same time
1056as the floating point stack.
1057
1058See Intel and AMD documentation, keeping in mind that the operand order in
1059instructions is reversed from the Intel syntax.
1060
f88c9eb0
SP
1061@node i386-LWP
1062@section AMD's Lightweight Profiling Instructions
1063
1064@cindex LWP, i386
1065@cindex LWP, x86-64
1066
1067@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1068instruction set, available on AMD's Family 15h (Orochi) processors.
1069
1070LWP enables applications to collect and manage performance data, and
1071react to performance events. The collection of performance data
1072requires no context switches. LWP runs in the context of a thread and
1073so several counters can be used independently across multiple threads.
1074LWP can be used in both 64-bit and legacy 32-bit modes.
1075
1076For detailed information on the LWP instruction set, see the
1077@cite{AMD Lightweight Profiling Specification} available at
1078@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1079
87973e9f
QN
1080@node i386-BMI
1081@section Bit Manipulation Instructions
1082
1083@cindex BMI, i386
1084@cindex BMI, x86-64
1085
1086@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1087
1088BMI instructions provide several instructions implementing individual
1089bit manipulation operations such as isolation, masking, setting, or
34bca508 1090resetting.
87973e9f
QN
1091
1092@c Need to add a specification citation here when available.
1093
2a2a0f38
QN
1094@node i386-TBM
1095@section AMD's Trailing Bit Manipulation Instructions
1096
1097@cindex TBM, i386
1098@cindex TBM, x86-64
1099
1100@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1101instruction set, available on AMD's BDVER2 processors (Trinity and
1102Viperfish).
1103
1104TBM instructions provide instructions implementing individual bit
1105manipulation operations such as isolating, masking, setting, resetting,
1106complementing, and operations on trailing zeros and ones.
1107
1108@c Need to add a specification citation here when available.
87973e9f 1109
252b5132
RH
1110@node i386-16bit
1111@section Writing 16-bit Code
1112
1113@cindex i386 16-bit code
1114@cindex 16-bit code, i386
1115@cindex real-mode code, i386
eecb386c 1116@cindex @code{code16gcc} directive, i386
252b5132
RH
1117@cindex @code{code16} directive, i386
1118@cindex @code{code32} directive, i386
55b62671
AJ
1119@cindex @code{code64} directive, i386
1120@cindex @code{code64} directive, x86-64
1121While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1122or 64-bit x86-64 code depending on the default configuration,
252b5132 1123it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1124mode code segments. To do this, put a @samp{.code16} or
1125@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1126be run in 16-bit mode. You can switch @code{@value{AS}} to writing
112732-bit code with the @samp{.code32} directive or 64-bit code with the
1128@samp{.code64} directive.
eecb386c
AM
1129
1130@samp{.code16gcc} provides experimental support for generating 16-bit
1131code from gcc, and differs from @samp{.code16} in that @samp{call},
1132@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1133@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1134default to 32-bit size. This is so that the stack pointer is
1135manipulated in the same way over function calls, allowing access to
1136function parameters at the same stack offsets as in 32-bit mode.
1137@samp{.code16gcc} also automatically adds address size prefixes where
1138necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1139
1140The code which @code{@value{AS}} generates in 16-bit mode will not
1141necessarily run on a 16-bit pre-80386 processor. To write code that
1142runs on such a processor, you must refrain from using @emph{any} 32-bit
1143constructs which require @code{@value{AS}} to output address or operand
1144size prefixes.
1145
1146Note that writing 16-bit code instructions by explicitly specifying a
1147prefix or an instruction mnemonic suffix within a 32-bit code section
1148generates different machine instructions than those generated for a
114916-bit code segment. In a 32-bit code section, the following code
1150generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1151value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1152
1153@smallexample
1154 pushw $4
1155@end smallexample
1156
1157The same code in a 16-bit code section would generate the machine
b45619c0 1158opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1159is correct since the processor default operand size is assumed to be 16
1160bits in a 16-bit code section.
1161
e413e4e9
AM
1162@node i386-Arch
1163@section Specifying CPU Architecture
1164
1165@cindex arch directive, i386
1166@cindex i386 arch directive
55b62671
AJ
1167@cindex arch directive, x86-64
1168@cindex x86-64 arch directive
e413e4e9
AM
1169
1170@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1171(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1172directive enables a warning when gas detects an instruction that is not
1173supported on the CPU specified. The choices for @var{cpu_type} are:
1174
1175@multitable @columnfractions .20 .20 .20 .20
1176@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1177@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1178@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1179@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
81486035 1180@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1543849b 1181@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1182@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
029f3522 1183@item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1ceab344 1184@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1185@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1186@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1187@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1188@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1189@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1190@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1191@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1192@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1193@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1194@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1195@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1196@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd
IT
1197@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1198@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite}
1ceab344 1199@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1200@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1201@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
920d2ddc 1202@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
e413e4e9
AM
1203@end multitable
1204
fddf5b5b
AM
1205Apart from the warning, there are only two other effects on
1206@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1207@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1208will automatically use a two byte opcode sequence. The larger three
1209byte opcode sequence is used on the 486 (and when no architecture is
1210specified) because it executes faster on the 486. Note that you can
1211explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1212Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1213@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1214conditional jumps will be promoted when necessary to a two instruction
1215sequence consisting of a conditional jump of the opposite sense around
1216an unconditional jump to the target.
1217
5c6af06e
JB
1218Following the CPU architecture (but not a sub-architecture, which are those
1219starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1220control automatic promotion of conditional jumps. @samp{jumps} is the
1221default, and enables jump promotion; All external jumps will be of the long
1222variety, and file-local jumps will be promoted as necessary.
1223(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1224byte offset jumps, and warns about file-local conditional jumps that
1225@code{@value{AS}} promotes.
fddf5b5b
AM
1226Unconditional jumps are treated as for @samp{jumps}.
1227
1228For example
1229
1230@smallexample
1231 .arch i8086,nojumps
1232@end smallexample
e413e4e9 1233
5c9352f3
AM
1234@node i386-Bugs
1235@section AT&T Syntax bugs
1236
1237The UnixWare assembler, and probably other AT&T derived ix86 Unix
1238assemblers, generate floating point instructions with reversed source
1239and destination registers in certain cases. Unfortunately, gcc and
1240possibly many other programs use this reversed syntax, so we're stuck
1241with it.
1242
1243For example
1244
1245@smallexample
1246 fsub %st,%st(3)
1247@end smallexample
1248@noindent
1249results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1250than the expected @samp{%st(3) - %st}. This happens with all the
1251non-commutative arithmetic floating point operations with two register
1252operands where the source register is @samp{%st} and the destination
1253register is @samp{%st(i)}.
1254
252b5132
RH
1255@node i386-Notes
1256@section Notes
1257
1258@cindex i386 @code{mul}, @code{imul} instructions
1259@cindex @code{mul} instruction, i386
1260@cindex @code{imul} instruction, i386
55b62671
AJ
1261@cindex @code{mul} instruction, x86-64
1262@cindex @code{imul} instruction, x86-64
252b5132 1263There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1264instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1265multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1266for @samp{imul}) can be output only in the one operand form. Thus,
1267@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1268the expanding multiply would clobber the @samp{%edx} register, and this
1269would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
127064-bit product in @samp{%edx:%eax}.
1271
1272We have added a two operand form of @samp{imul} when the first operand
1273is an immediate mode expression and the second operand is a register.
1274This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1275example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1276$69, %eax, %eax}.
1277
This page took 1.165246 seconds and 4 git commands to generate.