gdb
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
2da5c037 1@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
aa820537 2@c 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009
f7e42eb4 3@c Free Software Foundation, Inc.
252b5132
RH
4@c This is part of the GAS manual.
5@c For copying conditions, see the file as.texinfo.
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
252b5132
RH
27* i386-Syntax:: AT&T Syntax versus Intel Syntax
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
252b5132 36* i386-16bit:: Writing 16-bit Code
e413e4e9 37* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
38* i386-Bugs:: AT&T Syntax bugs
39* i386-Notes:: Notes
40@end menu
41
42@node i386-Options
43@section Options
44
55b62671
AJ
45@cindex options for i386
46@cindex options for x86-64
47@cindex i386 options
48@cindex x86-64 options
49
50The i386 version of @code{@value{AS}} has a few machine
51dependent options:
52
53@table @code
54@cindex @samp{--32} option, i386
55@cindex @samp{--32} option, x86-64
56@cindex @samp{--64} option, i386
57@cindex @samp{--64} option, x86-64
58@item --32 | --64
59Select the word size, either 32 bits or 64 bits. Selecting 32-bit
60implies Intel i386 architecture, while 64-bit implies AMD x86-64
61architecture.
62
63These options are only available with the ELF object file format, and
64require that the necessary BFD support has been included (on a 32-bit
65platform you have to add --enable-64-bit-bfd to configure enable 64-bit
66usage and use x86-64 as target platform).
12b55ccc
L
67
68@item -n
69By default, x86 GAS replaces multiple nop instructions used for
70alignment within code sections with multi-byte nop instructions such
71as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
72
73@cindex @samp{--divide} option, i386
74@item --divide
75On SVR4-derived platforms, the character @samp{/} is treated as a comment
76character, which means that it cannot be used in expressions. The
77@samp{--divide} option turns @samp{/} into a normal character. This does
78not disable @samp{/} at the beginning of a line starting a comment, or
79affect using @samp{#} for starting a comment.
80
9103f4f4
L
81@cindex @samp{-march=} option, i386
82@cindex @samp{-march=} option, x86-64
6305a203
L
83@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
84This option specifies the target processor. The assembler will
85issue an error message if an attempt is made to assemble an instruction
86which will not execute on the target processor. The following
87processor names are recognized:
9103f4f4
L
88@code{i8086},
89@code{i186},
90@code{i286},
91@code{i386},
92@code{i486},
93@code{i586},
94@code{i686},
95@code{pentium},
96@code{pentiumpro},
97@code{pentiumii},
98@code{pentiumiii},
99@code{pentium4},
100@code{prescott},
101@code{nocona},
ef05d495
L
102@code{core},
103@code{core2},
bd5295b2 104@code{corei7},
8a9036a4 105@code{l1om},
9103f4f4
L
106@code{k6},
107@code{k6_2},
108@code{athlon},
9103f4f4
L
109@code{opteron},
110@code{k8},
1ceab344 111@code{amdfam10},
68339fdf 112@code{bdver1},
9103f4f4
L
113@code{generic32} and
114@code{generic64}.
115
6305a203
L
116In addition to the basic instruction set, the assembler can be told to
117accept various extension mnemonics. For example,
118@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
119@var{vmx}. The following extensions are currently supported:
309d3373
JB
120@code{8087},
121@code{287},
122@code{387},
123@code{no87},
6305a203 124@code{mmx},
309d3373 125@code{nommx},
6305a203
L
126@code{sse},
127@code{sse2},
128@code{sse3},
129@code{ssse3},
130@code{sse4.1},
131@code{sse4.2},
132@code{sse4},
309d3373 133@code{nosse},
c0f3af97 134@code{avx},
309d3373 135@code{noavx},
6305a203
L
136@code{vmx},
137@code{smx},
f03fe4c1 138@code{xsave},
c7b8aa3a 139@code{xsaveopt},
c0f3af97 140@code{aes},
594ab6a3 141@code{pclmul},
c7b8aa3a
L
142@code{fsgsbase},
143@code{rdrnd},
144@code{f16c},
c0f3af97 145@code{fma},
f1f8f695
L
146@code{movbe},
147@code{ept},
bd5295b2 148@code{clflush},
f88c9eb0 149@code{lwp},
5dd85c99
SP
150@code{fma4},
151@code{xop},
bd5295b2 152@code{syscall},
1b7f3fb0 153@code{rdtscp},
6305a203
L
154@code{3dnow},
155@code{3dnowa},
156@code{sse4a},
157@code{sse5},
158@code{svme},
159@code{abm} and
160@code{padlock}.
309d3373
JB
161Note that rather than extending a basic instruction set, the extension
162mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
163
164When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
165@code{.arch} directive will take precedent.
166
167@cindex @samp{-mtune=} option, i386
168@cindex @samp{-mtune=} option, x86-64
169@item -mtune=@var{CPU}
170This option specifies a processor to optimize for. When used in
171conjunction with the @option{-march} option, only instructions
172of the processor specified by the @option{-march} option will be
173generated.
174
6305a203
L
175Valid @var{CPU} values are identical to the processor list of
176@option{-march=@var{CPU}}.
9103f4f4 177
c0f3af97
L
178@cindex @samp{-msse2avx} option, i386
179@cindex @samp{-msse2avx} option, x86-64
180@item -msse2avx
181This option specifies that the assembler should encode SSE instructions
182with VEX prefix.
183
daf50ae7
L
184@cindex @samp{-msse-check=} option, i386
185@cindex @samp{-msse-check=} option, x86-64
186@item -msse-check=@var{none}
1f9bb1ca
AS
187@itemx -msse-check=@var{warning}
188@itemx -msse-check=@var{error}
daf50ae7
L
189These options control if the assembler should check SSE intructions.
190@option{-msse-check=@var{none}} will make the assembler not to check SSE
191instructions, which is the default. @option{-msse-check=@var{warning}}
192will make the assembler issue a warning for any SSE intruction.
193@option{-msse-check=@var{error}} will make the assembler issue an error
194for any SSE intruction.
195
539f890d
L
196@cindex @samp{-mavxscalar=} option, i386
197@cindex @samp{-mavxscalar=} option, x86-64
198@item -mavxscalar=@var{128}
1f9bb1ca 199@itemx -mavxscalar=@var{256}
539f890d
L
200This options control how the assembler should encode scalar AVX
201instructions. @option{-mavxscalar=@var{128}} will encode scalar
202AVX instructions with 128bit vector length, which is the default.
203@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
204with 256bit vector length.
205
1efbbeb4
L
206@cindex @samp{-mmnemonic=} option, i386
207@cindex @samp{-mmnemonic=} option, x86-64
208@item -mmnemonic=@var{att}
1f9bb1ca 209@itemx -mmnemonic=@var{intel}
1efbbeb4
L
210This option specifies instruction mnemonic for matching instructions.
211The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
212take precedent.
213
214@cindex @samp{-msyntax=} option, i386
215@cindex @samp{-msyntax=} option, x86-64
216@item -msyntax=@var{att}
1f9bb1ca 217@itemx -msyntax=@var{intel}
1efbbeb4
L
218This option specifies instruction syntax when processing instructions.
219The @code{.att_syntax} and @code{.intel_syntax} directives will
220take precedent.
221
222@cindex @samp{-mnaked-reg} option, i386
223@cindex @samp{-mnaked-reg} option, x86-64
224@item -mnaked-reg
225This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 226The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 227
55b62671 228@end table
e413e4e9 229
a6c24e68
NC
230@node i386-Directives
231@section x86 specific Directives
232
233@cindex machine directives, x86
234@cindex x86 machine directives
235@table @code
236
237@cindex @code{lcomm} directive, COFF
238@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
239Reserve @var{length} (an absolute expression) bytes for a local common
240denoted by @var{symbol}. The section and value of @var{symbol} are
241those of the new local common. The addresses are allocated in the bss
704209c0
NC
242section, so that at run-time the bytes start off zeroed. Since
243@var{symbol} is not declared global, it is normally not visible to
244@code{@value{LD}}. The optional third parameter, @var{alignment},
245specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
246
247This directive is only available for COFF based x86 targets.
248
249@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
250@c .largecomm
251
252@end table
253
252b5132
RH
254@node i386-Syntax
255@section AT&T Syntax versus Intel Syntax
256
e413e4e9
AM
257@cindex i386 intel_syntax pseudo op
258@cindex intel_syntax pseudo op, i386
259@cindex i386 att_syntax pseudo op
260@cindex att_syntax pseudo op, i386
252b5132
RH
261@cindex i386 syntax compatibility
262@cindex syntax compatibility, i386
55b62671
AJ
263@cindex x86-64 intel_syntax pseudo op
264@cindex intel_syntax pseudo op, x86-64
265@cindex x86-64 att_syntax pseudo op
266@cindex att_syntax pseudo op, x86-64
267@cindex x86-64 syntax compatibility
268@cindex syntax compatibility, x86-64
e413e4e9
AM
269
270@code{@value{AS}} now supports assembly using Intel assembler syntax.
271@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
272back to the usual AT&T mode for compatibility with the output of
273@code{@value{GCC}}. Either of these directives may have an optional
274argument, @code{prefix}, or @code{noprefix} specifying whether registers
275require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
276different from Intel syntax. We mention these differences because
277almost all 80386 documents use Intel syntax. Notable differences
278between the two syntaxes are:
279
280@cindex immediate operands, i386
281@cindex i386 immediate operands
282@cindex register operands, i386
283@cindex i386 register operands
284@cindex jump/call operands, i386
285@cindex i386 jump/call operands
286@cindex operand delimiters, i386
55b62671
AJ
287
288@cindex immediate operands, x86-64
289@cindex x86-64 immediate operands
290@cindex register operands, x86-64
291@cindex x86-64 register operands
292@cindex jump/call operands, x86-64
293@cindex x86-64 jump/call operands
294@cindex operand delimiters, x86-64
252b5132
RH
295@itemize @bullet
296@item
297AT&T immediate operands are preceded by @samp{$}; Intel immediate
298operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
299AT&T register operands are preceded by @samp{%}; Intel register operands
300are undelimited. AT&T absolute (as opposed to PC relative) jump/call
301operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
302
303@cindex i386 source, destination operands
304@cindex source, destination operands; i386
55b62671
AJ
305@cindex x86-64 source, destination operands
306@cindex source, destination operands; x86-64
252b5132
RH
307@item
308AT&T and Intel syntax use the opposite order for source and destination
309operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
310@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
311previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
312instructions with 2 immediate operands, such as the @samp{enter}
313instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
314
315@cindex mnemonic suffixes, i386
316@cindex sizes operands, i386
317@cindex i386 size suffixes
55b62671
AJ
318@cindex mnemonic suffixes, x86-64
319@cindex sizes operands, x86-64
320@cindex x86-64 size suffixes
252b5132
RH
321@item
322In AT&T syntax the size of memory operands is determined from the last
323character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
324@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
325(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
326this by prefixing memory operands (@emph{not} the instruction mnemonics) with
327@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
328Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
329syntax.
252b5132 330
4b06377f
L
331In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
332instruction with the 64-bit displacement or immediate operand.
333
252b5132
RH
334@cindex return instructions, i386
335@cindex i386 jump, call, return
55b62671
AJ
336@cindex return instructions, x86-64
337@cindex x86-64 jump, call, return
252b5132
RH
338@item
339Immediate form long jumps and calls are
340@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
341Intel syntax is
342@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
343instruction
344is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
345@samp{ret far @var{stack-adjust}}.
346
347@cindex sections, i386
348@cindex i386 sections
55b62671
AJ
349@cindex sections, x86-64
350@cindex x86-64 sections
252b5132
RH
351@item
352The AT&T assembler does not provide support for multiple section
353programs. Unix style systems expect all programs to be single sections.
354@end itemize
355
356@node i386-Mnemonics
357@section Instruction Naming
358
359@cindex i386 instruction naming
360@cindex instruction naming, i386
55b62671
AJ
361@cindex x86-64 instruction naming
362@cindex instruction naming, x86-64
363
252b5132 364Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
365specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
366and @samp{q} specify byte, word, long and quadruple word operands. If
367no suffix is specified by an instruction then @code{@value{AS}} tries to
368fill in the missing suffix based on the destination register operand
369(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
370to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
371@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
372assembler which assumes that a missing mnemonic suffix implies long
373operand size. (This incompatibility does not affect compiler output
374since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
375
376Almost all instructions have the same names in AT&T and Intel format.
377There are a few exceptions. The sign extend and zero extend
378instructions need two sizes to specify them. They need a size to
379sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
380is accomplished by using two instruction mnemonic suffixes in AT&T
381syntax. Base names for sign extend and zero extend are
382@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
383and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
384are tacked on to this base name, the @emph{from} suffix before the
385@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
386``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
387thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
388@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
389@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
390quadruple word).
252b5132 391
b6169b20
L
392@cindex encoding options, i386
393@cindex encoding options, x86-64
394
395Different encoding options can be specified via optional mnemonic
396suffix. @samp{.s} suffix swaps 2 register operands in encoding when
f8a5c266
L
397moving from one register to another. @samp{.d32} suffix forces 32bit
398displacement in encoding.
b6169b20 399
252b5132
RH
400@cindex conversion instructions, i386
401@cindex i386 conversion instructions
55b62671
AJ
402@cindex conversion instructions, x86-64
403@cindex x86-64 conversion instructions
252b5132
RH
404The Intel-syntax conversion instructions
405
406@itemize @bullet
407@item
408@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
409
410@item
411@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
412
413@item
414@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
415
416@item
417@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
418
419@item
420@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
421(x86-64 only),
422
423@item
d5f0cf92 424@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 425@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
426@end itemize
427
428@noindent
55b62671
AJ
429are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
430@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
431instructions.
252b5132
RH
432
433@cindex jump instructions, i386
434@cindex call instructions, i386
55b62671
AJ
435@cindex jump instructions, x86-64
436@cindex call instructions, x86-64
252b5132
RH
437Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
438AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
439convention.
440
1efbbeb4
L
441@section AT&T Mnemonic versus Intel Mnemonic
442
443@cindex i386 mnemonic compatibility
444@cindex mnemonic compatibility, i386
445
446@code{@value{AS}} supports assembly using Intel mnemonic.
447@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
448@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
449syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
450Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
451@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
452@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
453assembler with different mnemonics from those in Intel IA32 specification.
454@code{@value{GCC}} generates those instructions with AT&T mnemonic.
455
252b5132
RH
456@node i386-Regs
457@section Register Naming
458
459@cindex i386 registers
460@cindex registers, i386
55b62671
AJ
461@cindex x86-64 registers
462@cindex registers, x86-64
252b5132
RH
463Register operands are always prefixed with @samp{%}. The 80386 registers
464consist of
465
466@itemize @bullet
467@item
468the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
469@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
470frame pointer), and @samp{%esp} (the stack pointer).
471
472@item
473the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
474@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
475
476@item
477the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
478@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
479are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
480@samp{%cx}, and @samp{%dx})
481
482@item
483the 6 section registers @samp{%cs} (code section), @samp{%ds}
484(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
485and @samp{%gs}.
486
487@item
488the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
489@samp{%cr3}.
490
491@item
492the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
493@samp{%db3}, @samp{%db6}, and @samp{%db7}.
494
495@item
496the 2 test registers @samp{%tr6} and @samp{%tr7}.
497
498@item
499the 8 floating point register stack @samp{%st} or equivalently
500@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
501@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
502These registers are overloaded by 8 MMX registers @samp{%mm0},
503@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
504@samp{%mm6} and @samp{%mm7}.
505
506@item
507the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
508@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
509@end itemize
510
511The AMD x86-64 architecture extends the register set by:
512
513@itemize @bullet
514@item
515enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
516accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
517@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
518pointer)
519
520@item
521the 8 extended registers @samp{%r8}--@samp{%r15}.
522
523@item
524the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
525
526@item
527the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
528
529@item
530the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
531
532@item
533the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
534
535@item
536the 8 debug registers: @samp{%db8}--@samp{%db15}.
537
538@item
539the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
540@end itemize
541
542@node i386-Prefixes
543@section Instruction Prefixes
544
545@cindex i386 instruction prefixes
546@cindex instruction prefixes, i386
547@cindex prefixes, i386
548Instruction prefixes are used to modify the following instruction. They
549are used to repeat string instructions, to provide section overrides, to
550perform bus lock operations, and to change operand and address sizes.
551(Most instructions that normally operate on 32-bit operands will use
55216-bit operands if the instruction has an ``operand size'' prefix.)
553Instruction prefixes are best written on the same line as the instruction
554they act upon. For example, the @samp{scas} (scan string) instruction is
555repeated with:
556
557@smallexample
558 repne scas %es:(%edi),%al
559@end smallexample
560
561You may also place prefixes on the lines immediately preceding the
562instruction, but this circumvents checks that @code{@value{AS}} does
563with prefixes, and will not work with all prefixes.
564
565Here is a list of instruction prefixes:
566
567@cindex section override prefixes, i386
568@itemize @bullet
569@item
570Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
571@samp{fs}, @samp{gs}. These are automatically added by specifying
572using the @var{section}:@var{memory-operand} form for memory references.
573
574@cindex size prefixes, i386
575@item
576Operand/Address size prefixes @samp{data16} and @samp{addr16}
577change 32-bit operands/addresses into 16-bit operands/addresses,
578while @samp{data32} and @samp{addr32} change 16-bit ones (in a
579@code{.code16} section) into 32-bit operands/addresses. These prefixes
580@emph{must} appear on the same line of code as the instruction they
581modify. For example, in a 16-bit @code{.code16} section, you might
582write:
583
584@smallexample
585 addr32 jmpl *(%ebx)
586@end smallexample
587
588@cindex bus lock prefixes, i386
589@cindex inhibiting interrupts, i386
590@item
591The bus lock prefix @samp{lock} inhibits interrupts during execution of
592the instruction it precedes. (This is only valid with certain
593instructions; see a 80386 manual for details).
594
595@cindex coprocessor wait, i386
596@item
597The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
598complete the current instruction. This should never be needed for the
59980386/80387 combination.
600
601@cindex repeat prefixes, i386
602@item
603The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
604to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
605times if the current address size is 16-bits).
55b62671
AJ
606@cindex REX prefixes, i386
607@item
608The @samp{rex} family of prefixes is used by x86-64 to encode
609extensions to i386 instruction set. The @samp{rex} prefix has four
610bits --- an operand size overwrite (@code{64}) used to change operand size
611from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
612register set.
613
614You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
615instruction emits @samp{rex} prefix with all the bits set. By omitting
616the @code{64}, @code{x}, @code{y} or @code{z} you may write other
617prefixes as well. Normally, there is no need to write the prefixes
618explicitly, since gas will automatically generate them based on the
619instruction operands.
252b5132
RH
620@end itemize
621
622@node i386-Memory
623@section Memory References
624
625@cindex i386 memory references
626@cindex memory references, i386
55b62671
AJ
627@cindex x86-64 memory references
628@cindex memory references, x86-64
252b5132
RH
629An Intel syntax indirect memory reference of the form
630
631@smallexample
632@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
633@end smallexample
634
635@noindent
636is translated into the AT&T syntax
637
638@smallexample
639@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
640@end smallexample
641
642@noindent
643where @var{base} and @var{index} are the optional 32-bit base and
644index registers, @var{disp} is the optional displacement, and
645@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
646to calculate the address of the operand. If no @var{scale} is
647specified, @var{scale} is taken to be 1. @var{section} specifies the
648optional section register for the memory operand, and may override the
649default section register (see a 80386 manual for section register
650defaults). Note that section overrides in AT&T syntax @emph{must}
651be preceded by a @samp{%}. If you specify a section override which
652coincides with the default section register, @code{@value{AS}} does @emph{not}
653output any section register override prefixes to assemble the given
654instruction. Thus, section overrides can be specified to emphasize which
655section register is used for a given memory operand.
656
657Here are some examples of Intel and AT&T style memory references:
658
659@table @asis
660@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
661@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
662missing, and the default section is used (@samp{%ss} for addressing with
663@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
664
665@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
666@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
667@samp{foo}. All other fields are missing. The section register here
668defaults to @samp{%ds}.
669
670@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
671This uses the value pointed to by @samp{foo} as a memory operand.
672Note that @var{base} and @var{index} are both missing, but there is only
673@emph{one} @samp{,}. This is a syntactic exception.
674
675@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
676This selects the contents of the variable @samp{foo} with section
677register @var{section} being @samp{%gs}.
678@end table
679
680Absolute (as opposed to PC relative) call and jump operands must be
681prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
682always chooses PC relative addressing for jump/call labels.
683
684Any instruction that has a memory operand, but no register operand,
55b62671
AJ
685@emph{must} specify its size (byte, word, long, or quadruple) with an
686instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
687respectively).
688
689The x86-64 architecture adds an RIP (instruction pointer relative)
690addressing. This addressing mode is specified by using @samp{rip} as a
691base register. Only constant offsets are valid. For example:
692
693@table @asis
694@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
695Points to the address 1234 bytes past the end of the current
696instruction.
697
698@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
699Points to the @code{symbol} in RIP relative way, this is shorter than
700the default absolute addressing.
701@end table
702
703Other addressing modes remain unchanged in x86-64 architecture, except
704registers used are 64-bit instead of 32-bit.
252b5132 705
fddf5b5b 706@node i386-Jumps
252b5132
RH
707@section Handling of Jump Instructions
708
709@cindex jump optimization, i386
710@cindex i386 jump optimization
55b62671
AJ
711@cindex jump optimization, x86-64
712@cindex x86-64 jump optimization
252b5132
RH
713Jump instructions are always optimized to use the smallest possible
714displacements. This is accomplished by using byte (8-bit) displacement
715jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 716is insufficient a long displacement is used. We do not support
252b5132
RH
717word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
718instruction with the @samp{data16} instruction prefix), since the 80386
719insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 720is added. (See also @pxref{i386-Arch})
252b5132
RH
721
722Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
723@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
724displacements, so that if you use these instructions (@code{@value{GCC}} does
725not use them) you may get an error message (and incorrect code). The AT&T
72680386 assembler tries to get around this problem by expanding @samp{jcxz foo}
727to
728
729@smallexample
730 jcxz cx_zero
731 jmp cx_nonzero
732cx_zero: jmp foo
733cx_nonzero:
734@end smallexample
735
736@node i386-Float
737@section Floating Point
738
739@cindex i386 floating point
740@cindex floating point, i386
55b62671
AJ
741@cindex x86-64 floating point
742@cindex floating point, x86-64
252b5132
RH
743All 80387 floating point types except packed BCD are supported.
744(BCD support may be added without much difficulty). These data
745types are 16-, 32-, and 64- bit integers, and single (32-bit),
746double (64-bit), and extended (80-bit) precision floating point.
747Each supported type has an instruction mnemonic suffix and a constructor
748associated with it. Instruction mnemonic suffixes specify the operand's
749data type. Constructors build these data types into memory.
750
751@cindex @code{float} directive, i386
752@cindex @code{single} directive, i386
753@cindex @code{double} directive, i386
754@cindex @code{tfloat} directive, i386
55b62671
AJ
755@cindex @code{float} directive, x86-64
756@cindex @code{single} directive, x86-64
757@cindex @code{double} directive, x86-64
758@cindex @code{tfloat} directive, x86-64
252b5132
RH
759@itemize @bullet
760@item
761Floating point constructors are @samp{.float} or @samp{.single},
762@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
763These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
764and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
765only supports this format via the @samp{fldt} (load 80-bit real to stack
766top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
767
768@cindex @code{word} directive, i386
769@cindex @code{long} directive, i386
770@cindex @code{int} directive, i386
771@cindex @code{quad} directive, i386
55b62671
AJ
772@cindex @code{word} directive, x86-64
773@cindex @code{long} directive, x86-64
774@cindex @code{int} directive, x86-64
775@cindex @code{quad} directive, x86-64
252b5132
RH
776@item
777Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
778@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
779corresponding instruction mnemonic suffixes are @samp{s} (single),
780@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
781the 64-bit @samp{q} format is only present in the @samp{fildq} (load
782quad integer to stack top) and @samp{fistpq} (store quad integer and pop
783stack) instructions.
784@end itemize
785
786Register to register operations should not use instruction mnemonic suffixes.
787@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
788wrote @samp{fst %st, %st(1)}, since all register to register operations
789use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
790which converts @samp{%st} from 80-bit to 64-bit floating point format,
791then stores the result in the 4 byte location @samp{mem})
792
793@node i386-SIMD
794@section Intel's MMX and AMD's 3DNow! SIMD Operations
795
796@cindex MMX, i386
797@cindex 3DNow!, i386
798@cindex SIMD, i386
55b62671
AJ
799@cindex MMX, x86-64
800@cindex 3DNow!, x86-64
801@cindex SIMD, x86-64
252b5132
RH
802
803@code{@value{AS}} supports Intel's MMX instruction set (SIMD
804instructions for integer data), available on Intel's Pentium MMX
805processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 806Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
807instruction set (SIMD instructions for 32-bit floating point data)
808available on AMD's K6-2 processor and possibly others in the future.
809
810Currently, @code{@value{AS}} does not support Intel's floating point
811SIMD, Katmai (KNI).
812
813The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
814@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
81516-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
816floating point values. The MMX registers cannot be used at the same time
817as the floating point stack.
818
819See Intel and AMD documentation, keeping in mind that the operand order in
820instructions is reversed from the Intel syntax.
821
f88c9eb0
SP
822@node i386-LWP
823@section AMD's Lightweight Profiling Instructions
824
825@cindex LWP, i386
826@cindex LWP, x86-64
827
828@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
829instruction set, available on AMD's Family 15h (Orochi) processors.
830
831LWP enables applications to collect and manage performance data, and
832react to performance events. The collection of performance data
833requires no context switches. LWP runs in the context of a thread and
834so several counters can be used independently across multiple threads.
835LWP can be used in both 64-bit and legacy 32-bit modes.
836
837For detailed information on the LWP instruction set, see the
838@cite{AMD Lightweight Profiling Specification} available at
839@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
840
252b5132
RH
841@node i386-16bit
842@section Writing 16-bit Code
843
844@cindex i386 16-bit code
845@cindex 16-bit code, i386
846@cindex real-mode code, i386
eecb386c 847@cindex @code{code16gcc} directive, i386
252b5132
RH
848@cindex @code{code16} directive, i386
849@cindex @code{code32} directive, i386
55b62671
AJ
850@cindex @code{code64} directive, i386
851@cindex @code{code64} directive, x86-64
852While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
853or 64-bit x86-64 code depending on the default configuration,
252b5132 854it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
855mode code segments. To do this, put a @samp{.code16} or
856@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
857be run in 16-bit mode. You can switch @code{@value{AS}} to writing
85832-bit code with the @samp{.code32} directive or 64-bit code with the
859@samp{.code64} directive.
eecb386c
AM
860
861@samp{.code16gcc} provides experimental support for generating 16-bit
862code from gcc, and differs from @samp{.code16} in that @samp{call},
863@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
864@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
865default to 32-bit size. This is so that the stack pointer is
866manipulated in the same way over function calls, allowing access to
867function parameters at the same stack offsets as in 32-bit mode.
868@samp{.code16gcc} also automatically adds address size prefixes where
869necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
870
871The code which @code{@value{AS}} generates in 16-bit mode will not
872necessarily run on a 16-bit pre-80386 processor. To write code that
873runs on such a processor, you must refrain from using @emph{any} 32-bit
874constructs which require @code{@value{AS}} to output address or operand
875size prefixes.
876
877Note that writing 16-bit code instructions by explicitly specifying a
878prefix or an instruction mnemonic suffix within a 32-bit code section
879generates different machine instructions than those generated for a
88016-bit code segment. In a 32-bit code section, the following code
881generates the machine opcode bytes @samp{66 6a 04}, which pushes the
882value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
883
884@smallexample
885 pushw $4
886@end smallexample
887
888The same code in a 16-bit code section would generate the machine
b45619c0 889opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
890is correct since the processor default operand size is assumed to be 16
891bits in a 16-bit code section.
892
893@node i386-Bugs
894@section AT&T Syntax bugs
895
896The UnixWare assembler, and probably other AT&T derived ix86 Unix
897assemblers, generate floating point instructions with reversed source
898and destination registers in certain cases. Unfortunately, gcc and
899possibly many other programs use this reversed syntax, so we're stuck
900with it.
901
902For example
903
904@smallexample
905 fsub %st,%st(3)
906@end smallexample
907@noindent
908results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
909than the expected @samp{%st(3) - %st}. This happens with all the
910non-commutative arithmetic floating point operations with two register
911operands where the source register is @samp{%st} and the destination
912register is @samp{%st(i)}.
913
e413e4e9
AM
914@node i386-Arch
915@section Specifying CPU Architecture
916
917@cindex arch directive, i386
918@cindex i386 arch directive
55b62671
AJ
919@cindex arch directive, x86-64
920@cindex x86-64 arch directive
e413e4e9
AM
921
922@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 923(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
924directive enables a warning when gas detects an instruction that is not
925supported on the CPU specified. The choices for @var{cpu_type} are:
926
927@multitable @columnfractions .20 .20 .20 .20
928@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
929@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 930@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 931@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
8a9036a4 932@item @samp{corei7} @tab @samp{l1om}
1543849b 933@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
68339fdf 934@item @samp{amdfam10} @tab @samp{bdver1}
1ceab344 935@item @samp{generic32} @tab @samp{generic64}
9103f4f4 936@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 937@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
938@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
939@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
940@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
941@item @samp{.rdrnd} @tab @samp{.f16c}
1ceab344 942@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 943@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
f0ae4a24 944@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop}
1ceab344 945@item @samp{.padlock}
e413e4e9
AM
946@end multitable
947
fddf5b5b
AM
948Apart from the warning, there are only two other effects on
949@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
950@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
951will automatically use a two byte opcode sequence. The larger three
952byte opcode sequence is used on the 486 (and when no architecture is
953specified) because it executes faster on the 486. Note that you can
954explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
955Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
956@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
957conditional jumps will be promoted when necessary to a two instruction
958sequence consisting of a conditional jump of the opposite sense around
959an unconditional jump to the target.
960
5c6af06e
JB
961Following the CPU architecture (but not a sub-architecture, which are those
962starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
963control automatic promotion of conditional jumps. @samp{jumps} is the
964default, and enables jump promotion; All external jumps will be of the long
965variety, and file-local jumps will be promoted as necessary.
966(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
967byte offset jumps, and warns about file-local conditional jumps that
968@code{@value{AS}} promotes.
fddf5b5b
AM
969Unconditional jumps are treated as for @samp{jumps}.
970
971For example
972
973@smallexample
974 .arch i8086,nojumps
975@end smallexample
e413e4e9 976
252b5132
RH
977@node i386-Notes
978@section Notes
979
980@cindex i386 @code{mul}, @code{imul} instructions
981@cindex @code{mul} instruction, i386
982@cindex @code{imul} instruction, i386
55b62671
AJ
983@cindex @code{mul} instruction, x86-64
984@cindex @code{imul} instruction, x86-64
252b5132 985There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 986instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
987multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
988for @samp{imul}) can be output only in the one operand form. Thus,
989@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
990the expanding multiply would clobber the @samp{%edx} register, and this
991would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
99264-bit product in @samp{%edx:%eax}.
993
994We have added a two operand form of @samp{imul} when the first operand
995is an immediate mode expression and the second operand is a register.
996This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
997example, can be done with @samp{imul $69, %eax} rather than @samp{imul
998$69, %eax, %eax}.
999
This page took 0.559171 seconds and 4 git commands to generate.