2009-10-16 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
2da5c037 1@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
aa820537 2@c 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009
f7e42eb4 3@c Free Software Foundation, Inc.
252b5132
RH
4@c This is part of the GAS manual.
5@c For copying conditions, see the file as.texinfo.
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
252b5132
RH
27* i386-Syntax:: AT&T Syntax versus Intel Syntax
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35* i386-16bit:: Writing 16-bit Code
e413e4e9 36* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
37* i386-Bugs:: AT&T Syntax bugs
38* i386-Notes:: Notes
39@end menu
40
41@node i386-Options
42@section Options
43
55b62671
AJ
44@cindex options for i386
45@cindex options for x86-64
46@cindex i386 options
47@cindex x86-64 options
48
49The i386 version of @code{@value{AS}} has a few machine
50dependent options:
51
52@table @code
53@cindex @samp{--32} option, i386
54@cindex @samp{--32} option, x86-64
55@cindex @samp{--64} option, i386
56@cindex @samp{--64} option, x86-64
57@item --32 | --64
58Select the word size, either 32 bits or 64 bits. Selecting 32-bit
59implies Intel i386 architecture, while 64-bit implies AMD x86-64
60architecture.
61
62These options are only available with the ELF object file format, and
63require that the necessary BFD support has been included (on a 32-bit
64platform you have to add --enable-64-bit-bfd to configure enable 64-bit
65usage and use x86-64 as target platform).
12b55ccc
L
66
67@item -n
68By default, x86 GAS replaces multiple nop instructions used for
69alignment within code sections with multi-byte nop instructions such
70as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
71
72@cindex @samp{--divide} option, i386
73@item --divide
74On SVR4-derived platforms, the character @samp{/} is treated as a comment
75character, which means that it cannot be used in expressions. The
76@samp{--divide} option turns @samp{/} into a normal character. This does
77not disable @samp{/} at the beginning of a line starting a comment, or
78affect using @samp{#} for starting a comment.
79
9103f4f4
L
80@cindex @samp{-march=} option, i386
81@cindex @samp{-march=} option, x86-64
6305a203
L
82@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
83This option specifies the target processor. The assembler will
84issue an error message if an attempt is made to assemble an instruction
85which will not execute on the target processor. The following
86processor names are recognized:
9103f4f4
L
87@code{i8086},
88@code{i186},
89@code{i286},
90@code{i386},
91@code{i486},
92@code{i586},
93@code{i686},
94@code{pentium},
95@code{pentiumpro},
96@code{pentiumii},
97@code{pentiumiii},
98@code{pentium4},
99@code{prescott},
100@code{nocona},
ef05d495
L
101@code{core},
102@code{core2},
bd5295b2 103@code{corei7},
8a9036a4 104@code{l1om},
9103f4f4
L
105@code{k6},
106@code{k6_2},
107@code{athlon},
9103f4f4
L
108@code{opteron},
109@code{k8},
1ceab344 110@code{amdfam10},
9103f4f4
L
111@code{generic32} and
112@code{generic64}.
113
6305a203
L
114In addition to the basic instruction set, the assembler can be told to
115accept various extension mnemonics. For example,
116@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
117@var{vmx}. The following extensions are currently supported:
309d3373
JB
118@code{8087},
119@code{287},
120@code{387},
121@code{no87},
6305a203 122@code{mmx},
309d3373 123@code{nommx},
6305a203
L
124@code{sse},
125@code{sse2},
126@code{sse3},
127@code{ssse3},
128@code{sse4.1},
129@code{sse4.2},
130@code{sse4},
309d3373 131@code{nosse},
c0f3af97 132@code{avx},
309d3373 133@code{noavx},
6305a203
L
134@code{vmx},
135@code{smx},
f03fe4c1 136@code{xsave},
c0f3af97 137@code{aes},
594ab6a3 138@code{pclmul},
c0f3af97 139@code{fma},
f1f8f695
L
140@code{movbe},
141@code{ept},
bd5295b2
L
142@code{clflush},
143@code{syscall},
1b7f3fb0 144@code{rdtscp},
6305a203
L
145@code{3dnow},
146@code{3dnowa},
147@code{sse4a},
148@code{sse5},
149@code{svme},
150@code{abm} and
151@code{padlock}.
309d3373
JB
152Note that rather than extending a basic instruction set, the extension
153mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
154
155When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
156@code{.arch} directive will take precedent.
157
158@cindex @samp{-mtune=} option, i386
159@cindex @samp{-mtune=} option, x86-64
160@item -mtune=@var{CPU}
161This option specifies a processor to optimize for. When used in
162conjunction with the @option{-march} option, only instructions
163of the processor specified by the @option{-march} option will be
164generated.
165
6305a203
L
166Valid @var{CPU} values are identical to the processor list of
167@option{-march=@var{CPU}}.
9103f4f4 168
c0f3af97
L
169@cindex @samp{-msse2avx} option, i386
170@cindex @samp{-msse2avx} option, x86-64
171@item -msse2avx
172This option specifies that the assembler should encode SSE instructions
173with VEX prefix.
174
daf50ae7
L
175@cindex @samp{-msse-check=} option, i386
176@cindex @samp{-msse-check=} option, x86-64
177@item -msse-check=@var{none}
178@item -msse-check=@var{warning}
179@item -msse-check=@var{error}
180These options control if the assembler should check SSE intructions.
181@option{-msse-check=@var{none}} will make the assembler not to check SSE
182instructions, which is the default. @option{-msse-check=@var{warning}}
183will make the assembler issue a warning for any SSE intruction.
184@option{-msse-check=@var{error}} will make the assembler issue an error
185for any SSE intruction.
186
1efbbeb4
L
187@cindex @samp{-mmnemonic=} option, i386
188@cindex @samp{-mmnemonic=} option, x86-64
189@item -mmnemonic=@var{att}
190@item -mmnemonic=@var{intel}
191This option specifies instruction mnemonic for matching instructions.
192The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
193take precedent.
194
195@cindex @samp{-msyntax=} option, i386
196@cindex @samp{-msyntax=} option, x86-64
197@item -msyntax=@var{att}
198@item -msyntax=@var{intel}
199This option specifies instruction syntax when processing instructions.
200The @code{.att_syntax} and @code{.intel_syntax} directives will
201take precedent.
202
203@cindex @samp{-mnaked-reg} option, i386
204@cindex @samp{-mnaked-reg} option, x86-64
205@item -mnaked-reg
206This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 207The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 208
55b62671 209@end table
e413e4e9 210
a6c24e68
NC
211@node i386-Directives
212@section x86 specific Directives
213
214@cindex machine directives, x86
215@cindex x86 machine directives
216@table @code
217
218@cindex @code{lcomm} directive, COFF
219@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
220Reserve @var{length} (an absolute expression) bytes for a local common
221denoted by @var{symbol}. The section and value of @var{symbol} are
222those of the new local common. The addresses are allocated in the bss
704209c0
NC
223section, so that at run-time the bytes start off zeroed. Since
224@var{symbol} is not declared global, it is normally not visible to
225@code{@value{LD}}. The optional third parameter, @var{alignment},
226specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
227
228This directive is only available for COFF based x86 targets.
229
230@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
231@c .largecomm
232
233@end table
234
252b5132
RH
235@node i386-Syntax
236@section AT&T Syntax versus Intel Syntax
237
e413e4e9
AM
238@cindex i386 intel_syntax pseudo op
239@cindex intel_syntax pseudo op, i386
240@cindex i386 att_syntax pseudo op
241@cindex att_syntax pseudo op, i386
252b5132
RH
242@cindex i386 syntax compatibility
243@cindex syntax compatibility, i386
55b62671
AJ
244@cindex x86-64 intel_syntax pseudo op
245@cindex intel_syntax pseudo op, x86-64
246@cindex x86-64 att_syntax pseudo op
247@cindex att_syntax pseudo op, x86-64
248@cindex x86-64 syntax compatibility
249@cindex syntax compatibility, x86-64
e413e4e9
AM
250
251@code{@value{AS}} now supports assembly using Intel assembler syntax.
252@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
253back to the usual AT&T mode for compatibility with the output of
254@code{@value{GCC}}. Either of these directives may have an optional
255argument, @code{prefix}, or @code{noprefix} specifying whether registers
256require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
257different from Intel syntax. We mention these differences because
258almost all 80386 documents use Intel syntax. Notable differences
259between the two syntaxes are:
260
261@cindex immediate operands, i386
262@cindex i386 immediate operands
263@cindex register operands, i386
264@cindex i386 register operands
265@cindex jump/call operands, i386
266@cindex i386 jump/call operands
267@cindex operand delimiters, i386
55b62671
AJ
268
269@cindex immediate operands, x86-64
270@cindex x86-64 immediate operands
271@cindex register operands, x86-64
272@cindex x86-64 register operands
273@cindex jump/call operands, x86-64
274@cindex x86-64 jump/call operands
275@cindex operand delimiters, x86-64
252b5132
RH
276@itemize @bullet
277@item
278AT&T immediate operands are preceded by @samp{$}; Intel immediate
279operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
280AT&T register operands are preceded by @samp{%}; Intel register operands
281are undelimited. AT&T absolute (as opposed to PC relative) jump/call
282operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
283
284@cindex i386 source, destination operands
285@cindex source, destination operands; i386
55b62671
AJ
286@cindex x86-64 source, destination operands
287@cindex source, destination operands; x86-64
252b5132
RH
288@item
289AT&T and Intel syntax use the opposite order for source and destination
290operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
291@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
292previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
293instructions with 2 immediate operands, such as the @samp{enter}
294instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
295
296@cindex mnemonic suffixes, i386
297@cindex sizes operands, i386
298@cindex i386 size suffixes
55b62671
AJ
299@cindex mnemonic suffixes, x86-64
300@cindex sizes operands, x86-64
301@cindex x86-64 size suffixes
252b5132
RH
302@item
303In AT&T syntax the size of memory operands is determined from the last
304character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
305@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
306(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
307this by prefixing memory operands (@emph{not} the instruction mnemonics) with
308@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
309Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
310syntax.
252b5132
RH
311
312@cindex return instructions, i386
313@cindex i386 jump, call, return
55b62671
AJ
314@cindex return instructions, x86-64
315@cindex x86-64 jump, call, return
252b5132
RH
316@item
317Immediate form long jumps and calls are
318@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
319Intel syntax is
320@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
321instruction
322is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
323@samp{ret far @var{stack-adjust}}.
324
325@cindex sections, i386
326@cindex i386 sections
55b62671
AJ
327@cindex sections, x86-64
328@cindex x86-64 sections
252b5132
RH
329@item
330The AT&T assembler does not provide support for multiple section
331programs. Unix style systems expect all programs to be single sections.
332@end itemize
333
334@node i386-Mnemonics
335@section Instruction Naming
336
337@cindex i386 instruction naming
338@cindex instruction naming, i386
55b62671
AJ
339@cindex x86-64 instruction naming
340@cindex instruction naming, x86-64
341
252b5132 342Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
343specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
344and @samp{q} specify byte, word, long and quadruple word operands. If
345no suffix is specified by an instruction then @code{@value{AS}} tries to
346fill in the missing suffix based on the destination register operand
347(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
348to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
349@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
350assembler which assumes that a missing mnemonic suffix implies long
351operand size. (This incompatibility does not affect compiler output
352since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
353
354Almost all instructions have the same names in AT&T and Intel format.
355There are a few exceptions. The sign extend and zero extend
356instructions need two sizes to specify them. They need a size to
357sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
358is accomplished by using two instruction mnemonic suffixes in AT&T
359syntax. Base names for sign extend and zero extend are
360@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
361and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
362are tacked on to this base name, the @emph{from} suffix before the
363@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
364``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
365thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
366@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
367@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
368quadruple word).
252b5132 369
b6169b20
L
370@cindex encoding options, i386
371@cindex encoding options, x86-64
372
373Different encoding options can be specified via optional mnemonic
374suffix. @samp{.s} suffix swaps 2 register operands in encoding when
375moving from one register to another.
376
252b5132
RH
377@cindex conversion instructions, i386
378@cindex i386 conversion instructions
55b62671
AJ
379@cindex conversion instructions, x86-64
380@cindex x86-64 conversion instructions
252b5132
RH
381The Intel-syntax conversion instructions
382
383@itemize @bullet
384@item
385@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
386
387@item
388@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
389
390@item
391@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
392
393@item
394@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
395
396@item
397@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
398(x86-64 only),
399
400@item
d5f0cf92 401@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 402@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
403@end itemize
404
405@noindent
55b62671
AJ
406are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
407@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
408instructions.
252b5132
RH
409
410@cindex jump instructions, i386
411@cindex call instructions, i386
55b62671
AJ
412@cindex jump instructions, x86-64
413@cindex call instructions, x86-64
252b5132
RH
414Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
415AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
416convention.
417
1efbbeb4
L
418@section AT&T Mnemonic versus Intel Mnemonic
419
420@cindex i386 mnemonic compatibility
421@cindex mnemonic compatibility, i386
422
423@code{@value{AS}} supports assembly using Intel mnemonic.
424@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
425@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
426syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
427Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
428@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
429@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
430assembler with different mnemonics from those in Intel IA32 specification.
431@code{@value{GCC}} generates those instructions with AT&T mnemonic.
432
252b5132
RH
433@node i386-Regs
434@section Register Naming
435
436@cindex i386 registers
437@cindex registers, i386
55b62671
AJ
438@cindex x86-64 registers
439@cindex registers, x86-64
252b5132
RH
440Register operands are always prefixed with @samp{%}. The 80386 registers
441consist of
442
443@itemize @bullet
444@item
445the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
446@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
447frame pointer), and @samp{%esp} (the stack pointer).
448
449@item
450the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
451@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
452
453@item
454the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
455@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
456are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
457@samp{%cx}, and @samp{%dx})
458
459@item
460the 6 section registers @samp{%cs} (code section), @samp{%ds}
461(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
462and @samp{%gs}.
463
464@item
465the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
466@samp{%cr3}.
467
468@item
469the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
470@samp{%db3}, @samp{%db6}, and @samp{%db7}.
471
472@item
473the 2 test registers @samp{%tr6} and @samp{%tr7}.
474
475@item
476the 8 floating point register stack @samp{%st} or equivalently
477@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
478@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
479These registers are overloaded by 8 MMX registers @samp{%mm0},
480@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
481@samp{%mm6} and @samp{%mm7}.
482
483@item
484the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
485@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
486@end itemize
487
488The AMD x86-64 architecture extends the register set by:
489
490@itemize @bullet
491@item
492enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
493accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
494@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
495pointer)
496
497@item
498the 8 extended registers @samp{%r8}--@samp{%r15}.
499
500@item
501the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
502
503@item
504the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
505
506@item
507the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
508
509@item
510the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
511
512@item
513the 8 debug registers: @samp{%db8}--@samp{%db15}.
514
515@item
516the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
517@end itemize
518
519@node i386-Prefixes
520@section Instruction Prefixes
521
522@cindex i386 instruction prefixes
523@cindex instruction prefixes, i386
524@cindex prefixes, i386
525Instruction prefixes are used to modify the following instruction. They
526are used to repeat string instructions, to provide section overrides, to
527perform bus lock operations, and to change operand and address sizes.
528(Most instructions that normally operate on 32-bit operands will use
52916-bit operands if the instruction has an ``operand size'' prefix.)
530Instruction prefixes are best written on the same line as the instruction
531they act upon. For example, the @samp{scas} (scan string) instruction is
532repeated with:
533
534@smallexample
535 repne scas %es:(%edi),%al
536@end smallexample
537
538You may also place prefixes on the lines immediately preceding the
539instruction, but this circumvents checks that @code{@value{AS}} does
540with prefixes, and will not work with all prefixes.
541
542Here is a list of instruction prefixes:
543
544@cindex section override prefixes, i386
545@itemize @bullet
546@item
547Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
548@samp{fs}, @samp{gs}. These are automatically added by specifying
549using the @var{section}:@var{memory-operand} form for memory references.
550
551@cindex size prefixes, i386
552@item
553Operand/Address size prefixes @samp{data16} and @samp{addr16}
554change 32-bit operands/addresses into 16-bit operands/addresses,
555while @samp{data32} and @samp{addr32} change 16-bit ones (in a
556@code{.code16} section) into 32-bit operands/addresses. These prefixes
557@emph{must} appear on the same line of code as the instruction they
558modify. For example, in a 16-bit @code{.code16} section, you might
559write:
560
561@smallexample
562 addr32 jmpl *(%ebx)
563@end smallexample
564
565@cindex bus lock prefixes, i386
566@cindex inhibiting interrupts, i386
567@item
568The bus lock prefix @samp{lock} inhibits interrupts during execution of
569the instruction it precedes. (This is only valid with certain
570instructions; see a 80386 manual for details).
571
572@cindex coprocessor wait, i386
573@item
574The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
575complete the current instruction. This should never be needed for the
57680386/80387 combination.
577
578@cindex repeat prefixes, i386
579@item
580The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
581to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
582times if the current address size is 16-bits).
55b62671
AJ
583@cindex REX prefixes, i386
584@item
585The @samp{rex} family of prefixes is used by x86-64 to encode
586extensions to i386 instruction set. The @samp{rex} prefix has four
587bits --- an operand size overwrite (@code{64}) used to change operand size
588from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
589register set.
590
591You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
592instruction emits @samp{rex} prefix with all the bits set. By omitting
593the @code{64}, @code{x}, @code{y} or @code{z} you may write other
594prefixes as well. Normally, there is no need to write the prefixes
595explicitly, since gas will automatically generate them based on the
596instruction operands.
252b5132
RH
597@end itemize
598
599@node i386-Memory
600@section Memory References
601
602@cindex i386 memory references
603@cindex memory references, i386
55b62671
AJ
604@cindex x86-64 memory references
605@cindex memory references, x86-64
252b5132
RH
606An Intel syntax indirect memory reference of the form
607
608@smallexample
609@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
610@end smallexample
611
612@noindent
613is translated into the AT&T syntax
614
615@smallexample
616@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
617@end smallexample
618
619@noindent
620where @var{base} and @var{index} are the optional 32-bit base and
621index registers, @var{disp} is the optional displacement, and
622@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
623to calculate the address of the operand. If no @var{scale} is
624specified, @var{scale} is taken to be 1. @var{section} specifies the
625optional section register for the memory operand, and may override the
626default section register (see a 80386 manual for section register
627defaults). Note that section overrides in AT&T syntax @emph{must}
628be preceded by a @samp{%}. If you specify a section override which
629coincides with the default section register, @code{@value{AS}} does @emph{not}
630output any section register override prefixes to assemble the given
631instruction. Thus, section overrides can be specified to emphasize which
632section register is used for a given memory operand.
633
634Here are some examples of Intel and AT&T style memory references:
635
636@table @asis
637@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
638@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
639missing, and the default section is used (@samp{%ss} for addressing with
640@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
641
642@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
643@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
644@samp{foo}. All other fields are missing. The section register here
645defaults to @samp{%ds}.
646
647@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
648This uses the value pointed to by @samp{foo} as a memory operand.
649Note that @var{base} and @var{index} are both missing, but there is only
650@emph{one} @samp{,}. This is a syntactic exception.
651
652@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
653This selects the contents of the variable @samp{foo} with section
654register @var{section} being @samp{%gs}.
655@end table
656
657Absolute (as opposed to PC relative) call and jump operands must be
658prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
659always chooses PC relative addressing for jump/call labels.
660
661Any instruction that has a memory operand, but no register operand,
55b62671
AJ
662@emph{must} specify its size (byte, word, long, or quadruple) with an
663instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
664respectively).
665
666The x86-64 architecture adds an RIP (instruction pointer relative)
667addressing. This addressing mode is specified by using @samp{rip} as a
668base register. Only constant offsets are valid. For example:
669
670@table @asis
671@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
672Points to the address 1234 bytes past the end of the current
673instruction.
674
675@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
676Points to the @code{symbol} in RIP relative way, this is shorter than
677the default absolute addressing.
678@end table
679
680Other addressing modes remain unchanged in x86-64 architecture, except
681registers used are 64-bit instead of 32-bit.
252b5132 682
fddf5b5b 683@node i386-Jumps
252b5132
RH
684@section Handling of Jump Instructions
685
686@cindex jump optimization, i386
687@cindex i386 jump optimization
55b62671
AJ
688@cindex jump optimization, x86-64
689@cindex x86-64 jump optimization
252b5132
RH
690Jump instructions are always optimized to use the smallest possible
691displacements. This is accomplished by using byte (8-bit) displacement
692jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 693is insufficient a long displacement is used. We do not support
252b5132
RH
694word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
695instruction with the @samp{data16} instruction prefix), since the 80386
696insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 697is added. (See also @pxref{i386-Arch})
252b5132
RH
698
699Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
700@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
701displacements, so that if you use these instructions (@code{@value{GCC}} does
702not use them) you may get an error message (and incorrect code). The AT&T
70380386 assembler tries to get around this problem by expanding @samp{jcxz foo}
704to
705
706@smallexample
707 jcxz cx_zero
708 jmp cx_nonzero
709cx_zero: jmp foo
710cx_nonzero:
711@end smallexample
712
713@node i386-Float
714@section Floating Point
715
716@cindex i386 floating point
717@cindex floating point, i386
55b62671
AJ
718@cindex x86-64 floating point
719@cindex floating point, x86-64
252b5132
RH
720All 80387 floating point types except packed BCD are supported.
721(BCD support may be added without much difficulty). These data
722types are 16-, 32-, and 64- bit integers, and single (32-bit),
723double (64-bit), and extended (80-bit) precision floating point.
724Each supported type has an instruction mnemonic suffix and a constructor
725associated with it. Instruction mnemonic suffixes specify the operand's
726data type. Constructors build these data types into memory.
727
728@cindex @code{float} directive, i386
729@cindex @code{single} directive, i386
730@cindex @code{double} directive, i386
731@cindex @code{tfloat} directive, i386
55b62671
AJ
732@cindex @code{float} directive, x86-64
733@cindex @code{single} directive, x86-64
734@cindex @code{double} directive, x86-64
735@cindex @code{tfloat} directive, x86-64
252b5132
RH
736@itemize @bullet
737@item
738Floating point constructors are @samp{.float} or @samp{.single},
739@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
740These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
741and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
742only supports this format via the @samp{fldt} (load 80-bit real to stack
743top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
744
745@cindex @code{word} directive, i386
746@cindex @code{long} directive, i386
747@cindex @code{int} directive, i386
748@cindex @code{quad} directive, i386
55b62671
AJ
749@cindex @code{word} directive, x86-64
750@cindex @code{long} directive, x86-64
751@cindex @code{int} directive, x86-64
752@cindex @code{quad} directive, x86-64
252b5132
RH
753@item
754Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
755@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
756corresponding instruction mnemonic suffixes are @samp{s} (single),
757@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
758the 64-bit @samp{q} format is only present in the @samp{fildq} (load
759quad integer to stack top) and @samp{fistpq} (store quad integer and pop
760stack) instructions.
761@end itemize
762
763Register to register operations should not use instruction mnemonic suffixes.
764@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
765wrote @samp{fst %st, %st(1)}, since all register to register operations
766use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
767which converts @samp{%st} from 80-bit to 64-bit floating point format,
768then stores the result in the 4 byte location @samp{mem})
769
770@node i386-SIMD
771@section Intel's MMX and AMD's 3DNow! SIMD Operations
772
773@cindex MMX, i386
774@cindex 3DNow!, i386
775@cindex SIMD, i386
55b62671
AJ
776@cindex MMX, x86-64
777@cindex 3DNow!, x86-64
778@cindex SIMD, x86-64
252b5132
RH
779
780@code{@value{AS}} supports Intel's MMX instruction set (SIMD
781instructions for integer data), available on Intel's Pentium MMX
782processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 783Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
784instruction set (SIMD instructions for 32-bit floating point data)
785available on AMD's K6-2 processor and possibly others in the future.
786
787Currently, @code{@value{AS}} does not support Intel's floating point
788SIMD, Katmai (KNI).
789
790The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
791@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
79216-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
793floating point values. The MMX registers cannot be used at the same time
794as the floating point stack.
795
796See Intel and AMD documentation, keeping in mind that the operand order in
797instructions is reversed from the Intel syntax.
798
799@node i386-16bit
800@section Writing 16-bit Code
801
802@cindex i386 16-bit code
803@cindex 16-bit code, i386
804@cindex real-mode code, i386
eecb386c 805@cindex @code{code16gcc} directive, i386
252b5132
RH
806@cindex @code{code16} directive, i386
807@cindex @code{code32} directive, i386
55b62671
AJ
808@cindex @code{code64} directive, i386
809@cindex @code{code64} directive, x86-64
810While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
811or 64-bit x86-64 code depending on the default configuration,
252b5132 812it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
813mode code segments. To do this, put a @samp{.code16} or
814@samp{.code16gcc} directive before the assembly language instructions to
815be run in 16-bit mode. You can switch @code{@value{AS}} back to writing
816normal 32-bit code with the @samp{.code32} directive.
817
818@samp{.code16gcc} provides experimental support for generating 16-bit
819code from gcc, and differs from @samp{.code16} in that @samp{call},
820@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
821@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
822default to 32-bit size. This is so that the stack pointer is
823manipulated in the same way over function calls, allowing access to
824function parameters at the same stack offsets as in 32-bit mode.
825@samp{.code16gcc} also automatically adds address size prefixes where
826necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
827
828The code which @code{@value{AS}} generates in 16-bit mode will not
829necessarily run on a 16-bit pre-80386 processor. To write code that
830runs on such a processor, you must refrain from using @emph{any} 32-bit
831constructs which require @code{@value{AS}} to output address or operand
832size prefixes.
833
834Note that writing 16-bit code instructions by explicitly specifying a
835prefix or an instruction mnemonic suffix within a 32-bit code section
836generates different machine instructions than those generated for a
83716-bit code segment. In a 32-bit code section, the following code
838generates the machine opcode bytes @samp{66 6a 04}, which pushes the
839value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
840
841@smallexample
842 pushw $4
843@end smallexample
844
845The same code in a 16-bit code section would generate the machine
b45619c0 846opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
847is correct since the processor default operand size is assumed to be 16
848bits in a 16-bit code section.
849
850@node i386-Bugs
851@section AT&T Syntax bugs
852
853The UnixWare assembler, and probably other AT&T derived ix86 Unix
854assemblers, generate floating point instructions with reversed source
855and destination registers in certain cases. Unfortunately, gcc and
856possibly many other programs use this reversed syntax, so we're stuck
857with it.
858
859For example
860
861@smallexample
862 fsub %st,%st(3)
863@end smallexample
864@noindent
865results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
866than the expected @samp{%st(3) - %st}. This happens with all the
867non-commutative arithmetic floating point operations with two register
868operands where the source register is @samp{%st} and the destination
869register is @samp{%st(i)}.
870
e413e4e9
AM
871@node i386-Arch
872@section Specifying CPU Architecture
873
874@cindex arch directive, i386
875@cindex i386 arch directive
55b62671
AJ
876@cindex arch directive, x86-64
877@cindex x86-64 arch directive
e413e4e9
AM
878
879@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 880(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
881directive enables a warning when gas detects an instruction that is not
882supported on the CPU specified. The choices for @var{cpu_type} are:
883
884@multitable @columnfractions .20 .20 .20 .20
885@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
886@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 887@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 888@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
8a9036a4 889@item @samp{corei7} @tab @samp{l1om}
1543849b
L
890@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
891@item @samp{amdfam10}
1ceab344 892@item @samp{generic32} @tab @samp{generic64}
9103f4f4 893@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 894@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c0f3af97 895@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.xsave}
f1f8f695 896@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.movbe}
f72d7f29 897@item @samp{.ept} @tab @samp{.clflush}
1ceab344 898@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 899@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1ceab344 900@item @samp{.padlock}
e413e4e9
AM
901@end multitable
902
fddf5b5b
AM
903Apart from the warning, there are only two other effects on
904@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
905@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
906will automatically use a two byte opcode sequence. The larger three
907byte opcode sequence is used on the 486 (and when no architecture is
908specified) because it executes faster on the 486. Note that you can
909explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
910Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
911@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
912conditional jumps will be promoted when necessary to a two instruction
913sequence consisting of a conditional jump of the opposite sense around
914an unconditional jump to the target.
915
5c6af06e
JB
916Following the CPU architecture (but not a sub-architecture, which are those
917starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
918control automatic promotion of conditional jumps. @samp{jumps} is the
919default, and enables jump promotion; All external jumps will be of the long
920variety, and file-local jumps will be promoted as necessary.
921(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
922byte offset jumps, and warns about file-local conditional jumps that
923@code{@value{AS}} promotes.
fddf5b5b
AM
924Unconditional jumps are treated as for @samp{jumps}.
925
926For example
927
928@smallexample
929 .arch i8086,nojumps
930@end smallexample
e413e4e9 931
252b5132
RH
932@node i386-Notes
933@section Notes
934
935@cindex i386 @code{mul}, @code{imul} instructions
936@cindex @code{mul} instruction, i386
937@cindex @code{imul} instruction, i386
55b62671
AJ
938@cindex @code{mul} instruction, x86-64
939@cindex @code{imul} instruction, x86-64
252b5132 940There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 941instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
942multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
943for @samp{imul}) can be output only in the one operand form. Thus,
944@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
945the expanding multiply would clobber the @samp{%edx} register, and this
946would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
94764-bit product in @samp{%edx:%eax}.
948
949We have added a two operand form of @samp{imul} when the first operand
950is an immediate mode expression and the second operand is a register.
951This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
952example, can be done with @samp{imul $69, %eax} rather than @samp{imul
953$69, %eax, %eax}.
954
This page took 0.697503 seconds and 4 git commands to generate.