Fix computation of got relocations for .got sections greater than
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
2da5c037 1@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
7c31ae13 2@c 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2011
f7e42eb4 3@c Free Software Foundation, Inc.
252b5132
RH
4@c This is part of the GAS manual.
5@c For copying conditions, see the file as.texinfo.
731caf76
L
6@c man end
7
252b5132
RH
8@ifset GENERIC
9@page
10@node i386-Dependent
11@chapter 80386 Dependent Features
12@end ifset
13@ifclear GENERIC
14@node Machine Dependencies
15@chapter 80386 Dependent Features
16@end ifclear
17
18@cindex i386 support
b6169b20 19@cindex i80386 support
55b62671
AJ
20@cindex x86-64 support
21
22The i386 version @code{@value{AS}} supports both the original Intel 386
23architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
24extending the Intel architecture to 64-bits.
25
252b5132
RH
26@menu
27* i386-Options:: Options
a6c24e68 28* i386-Directives:: X86 specific directives
7c31ae13 29* i386-Syntax:: Syntactical considerations
252b5132
RH
30* i386-Mnemonics:: Instruction Naming
31* i386-Regs:: Register Naming
32* i386-Prefixes:: Instruction Prefixes
33* i386-Memory:: Memory References
fddf5b5b 34* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
35* i386-Float:: Floating Point
36* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 37* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 38* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 39* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 40* i386-16bit:: Writing 16-bit Code
e413e4e9 41* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
42* i386-Bugs:: AT&T Syntax bugs
43* i386-Notes:: Notes
44@end menu
45
46@node i386-Options
47@section Options
48
55b62671
AJ
49@cindex options for i386
50@cindex options for x86-64
51@cindex i386 options
52@cindex x86-64 options
53
54The i386 version of @code{@value{AS}} has a few machine
55dependent options:
56
731caf76
L
57@c man begin OPTIONS
58@table @gcctabopt
55b62671
AJ
59@cindex @samp{--32} option, i386
60@cindex @samp{--32} option, x86-64
570561f7
L
61@cindex @samp{--x32} option, i386
62@cindex @samp{--x32} option, x86-64
55b62671
AJ
63@cindex @samp{--64} option, i386
64@cindex @samp{--64} option, x86-64
570561f7 65@item --32 | --x32 | --64
35cc6a0b 66Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 67implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
68imply AMD x86-64 architecture with 32-bit or 64-bit word-size
69respectively.
55b62671
AJ
70
71These options are only available with the ELF object file format, and
72require that the necessary BFD support has been included (on a 32-bit
73platform you have to add --enable-64-bit-bfd to configure enable 64-bit
74usage and use x86-64 as target platform).
12b55ccc
L
75
76@item -n
77By default, x86 GAS replaces multiple nop instructions used for
78alignment within code sections with multi-byte nop instructions such
79as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
80
81@cindex @samp{--divide} option, i386
82@item --divide
83On SVR4-derived platforms, the character @samp{/} is treated as a comment
84character, which means that it cannot be used in expressions. The
85@samp{--divide} option turns @samp{/} into a normal character. This does
86not disable @samp{/} at the beginning of a line starting a comment, or
87affect using @samp{#} for starting a comment.
88
9103f4f4
L
89@cindex @samp{-march=} option, i386
90@cindex @samp{-march=} option, x86-64
6305a203
L
91@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92This option specifies the target processor. The assembler will
93issue an error message if an attempt is made to assemble an instruction
94which will not execute on the target processor. The following
95processor names are recognized:
9103f4f4
L
96@code{i8086},
97@code{i186},
98@code{i286},
99@code{i386},
100@code{i486},
101@code{i586},
102@code{i686},
103@code{pentium},
104@code{pentiumpro},
105@code{pentiumii},
106@code{pentiumiii},
107@code{pentium4},
108@code{prescott},
109@code{nocona},
ef05d495
L
110@code{core},
111@code{core2},
bd5295b2 112@code{corei7},
8a9036a4 113@code{l1om},
7a9068fe 114@code{k1om},
9103f4f4
L
115@code{k6},
116@code{k6_2},
117@code{athlon},
9103f4f4
L
118@code{opteron},
119@code{k8},
1ceab344 120@code{amdfam10},
68339fdf 121@code{bdver1},
af2f724e 122@code{bdver2},
7b458c12
L
123@code{btver1},
124@code{btver2},
9103f4f4
L
125@code{generic32} and
126@code{generic64}.
127
6305a203
L
128In addition to the basic instruction set, the assembler can be told to
129accept various extension mnemonics. For example,
130@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
131@var{vmx}. The following extensions are currently supported:
309d3373
JB
132@code{8087},
133@code{287},
134@code{387},
135@code{no87},
6305a203 136@code{mmx},
309d3373 137@code{nommx},
6305a203
L
138@code{sse},
139@code{sse2},
140@code{sse3},
141@code{ssse3},
142@code{sse4.1},
143@code{sse4.2},
144@code{sse4},
309d3373 145@code{nosse},
c0f3af97 146@code{avx},
6c30d220 147@code{avx2},
e2e1fcde
L
148@code{adx},
149@code{rdseed},
150@code{prfchw},
309d3373 151@code{noavx},
6305a203 152@code{vmx},
8729a6f6 153@code{vmfunc},
6305a203 154@code{smx},
f03fe4c1 155@code{xsave},
c7b8aa3a 156@code{xsaveopt},
c0f3af97 157@code{aes},
594ab6a3 158@code{pclmul},
c7b8aa3a
L
159@code{fsgsbase},
160@code{rdrnd},
161@code{f16c},
6c30d220 162@code{bmi2},
c0f3af97 163@code{fma},
f1f8f695
L
164@code{movbe},
165@code{ept},
6c30d220 166@code{lzcnt},
42164a71
L
167@code{hle},
168@code{rtm},
6c30d220 169@code{invpcid},
bd5295b2 170@code{clflush},
f88c9eb0 171@code{lwp},
5dd85c99
SP
172@code{fma4},
173@code{xop},
bd5295b2 174@code{syscall},
1b7f3fb0 175@code{rdtscp},
6305a203
L
176@code{3dnow},
177@code{3dnowa},
178@code{sse4a},
179@code{sse5},
180@code{svme},
181@code{abm} and
182@code{padlock}.
309d3373
JB
183Note that rather than extending a basic instruction set, the extension
184mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
185
186When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
187@code{.arch} directive will take precedent.
188
189@cindex @samp{-mtune=} option, i386
190@cindex @samp{-mtune=} option, x86-64
191@item -mtune=@var{CPU}
192This option specifies a processor to optimize for. When used in
193conjunction with the @option{-march} option, only instructions
194of the processor specified by the @option{-march} option will be
195generated.
196
6305a203
L
197Valid @var{CPU} values are identical to the processor list of
198@option{-march=@var{CPU}}.
9103f4f4 199
c0f3af97
L
200@cindex @samp{-msse2avx} option, i386
201@cindex @samp{-msse2avx} option, x86-64
202@item -msse2avx
203This option specifies that the assembler should encode SSE instructions
204with VEX prefix.
205
daf50ae7
L
206@cindex @samp{-msse-check=} option, i386
207@cindex @samp{-msse-check=} option, x86-64
208@item -msse-check=@var{none}
1f9bb1ca
AS
209@itemx -msse-check=@var{warning}
210@itemx -msse-check=@var{error}
daf50ae7
L
211These options control if the assembler should check SSE intructions.
212@option{-msse-check=@var{none}} will make the assembler not to check SSE
213instructions, which is the default. @option{-msse-check=@var{warning}}
214will make the assembler issue a warning for any SSE intruction.
215@option{-msse-check=@var{error}} will make the assembler issue an error
216for any SSE intruction.
217
539f890d
L
218@cindex @samp{-mavxscalar=} option, i386
219@cindex @samp{-mavxscalar=} option, x86-64
220@item -mavxscalar=@var{128}
1f9bb1ca 221@itemx -mavxscalar=@var{256}
2aab8acd 222These options control how the assembler should encode scalar AVX
539f890d
L
223instructions. @option{-mavxscalar=@var{128}} will encode scalar
224AVX instructions with 128bit vector length, which is the default.
225@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
226with 256bit vector length.
227
1efbbeb4
L
228@cindex @samp{-mmnemonic=} option, i386
229@cindex @samp{-mmnemonic=} option, x86-64
230@item -mmnemonic=@var{att}
1f9bb1ca 231@itemx -mmnemonic=@var{intel}
1efbbeb4
L
232This option specifies instruction mnemonic for matching instructions.
233The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
234take precedent.
235
236@cindex @samp{-msyntax=} option, i386
237@cindex @samp{-msyntax=} option, x86-64
238@item -msyntax=@var{att}
1f9bb1ca 239@itemx -msyntax=@var{intel}
1efbbeb4
L
240This option specifies instruction syntax when processing instructions.
241The @code{.att_syntax} and @code{.intel_syntax} directives will
242take precedent.
243
244@cindex @samp{-mnaked-reg} option, i386
245@cindex @samp{-mnaked-reg} option, x86-64
246@item -mnaked-reg
247This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 248The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 249
55b62671 250@end table
731caf76 251@c man end
e413e4e9 252
a6c24e68
NC
253@node i386-Directives
254@section x86 specific Directives
255
256@cindex machine directives, x86
257@cindex x86 machine directives
258@table @code
259
260@cindex @code{lcomm} directive, COFF
261@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
262Reserve @var{length} (an absolute expression) bytes for a local common
263denoted by @var{symbol}. The section and value of @var{symbol} are
264those of the new local common. The addresses are allocated in the bss
704209c0
NC
265section, so that at run-time the bytes start off zeroed. Since
266@var{symbol} is not declared global, it is normally not visible to
267@code{@value{LD}}. The optional third parameter, @var{alignment},
268specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
269
270This directive is only available for COFF based x86 targets.
271
272@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
273@c .largecomm
274
275@end table
276
252b5132 277@node i386-Syntax
7c31ae13
NC
278@section i386 Syntactical Considerations
279@menu
280* i386-Variations:: AT&T Syntax versus Intel Syntax
281* i386-Chars:: Special Characters
282@end menu
283
284@node i386-Variations
285@subsection AT&T Syntax versus Intel Syntax
252b5132 286
e413e4e9
AM
287@cindex i386 intel_syntax pseudo op
288@cindex intel_syntax pseudo op, i386
289@cindex i386 att_syntax pseudo op
290@cindex att_syntax pseudo op, i386
252b5132
RH
291@cindex i386 syntax compatibility
292@cindex syntax compatibility, i386
55b62671
AJ
293@cindex x86-64 intel_syntax pseudo op
294@cindex intel_syntax pseudo op, x86-64
295@cindex x86-64 att_syntax pseudo op
296@cindex att_syntax pseudo op, x86-64
297@cindex x86-64 syntax compatibility
298@cindex syntax compatibility, x86-64
e413e4e9
AM
299
300@code{@value{AS}} now supports assembly using Intel assembler syntax.
301@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
302back to the usual AT&T mode for compatibility with the output of
303@code{@value{GCC}}. Either of these directives may have an optional
304argument, @code{prefix}, or @code{noprefix} specifying whether registers
305require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
306different from Intel syntax. We mention these differences because
307almost all 80386 documents use Intel syntax. Notable differences
308between the two syntaxes are:
309
310@cindex immediate operands, i386
311@cindex i386 immediate operands
312@cindex register operands, i386
313@cindex i386 register operands
314@cindex jump/call operands, i386
315@cindex i386 jump/call operands
316@cindex operand delimiters, i386
55b62671
AJ
317
318@cindex immediate operands, x86-64
319@cindex x86-64 immediate operands
320@cindex register operands, x86-64
321@cindex x86-64 register operands
322@cindex jump/call operands, x86-64
323@cindex x86-64 jump/call operands
324@cindex operand delimiters, x86-64
252b5132
RH
325@itemize @bullet
326@item
327AT&T immediate operands are preceded by @samp{$}; Intel immediate
328operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
329AT&T register operands are preceded by @samp{%}; Intel register operands
330are undelimited. AT&T absolute (as opposed to PC relative) jump/call
331operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
332
333@cindex i386 source, destination operands
334@cindex source, destination operands; i386
55b62671
AJ
335@cindex x86-64 source, destination operands
336@cindex source, destination operands; x86-64
252b5132
RH
337@item
338AT&T and Intel syntax use the opposite order for source and destination
339operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
340@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
341previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
342instructions with 2 immediate operands, such as the @samp{enter}
343instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
344
345@cindex mnemonic suffixes, i386
346@cindex sizes operands, i386
347@cindex i386 size suffixes
55b62671
AJ
348@cindex mnemonic suffixes, x86-64
349@cindex sizes operands, x86-64
350@cindex x86-64 size suffixes
252b5132
RH
351@item
352In AT&T syntax the size of memory operands is determined from the last
353character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
354@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
355(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
356this by prefixing memory operands (@emph{not} the instruction mnemonics) with
357@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
358Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
359syntax.
252b5132 360
4b06377f
L
361In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
362instruction with the 64-bit displacement or immediate operand.
363
252b5132
RH
364@cindex return instructions, i386
365@cindex i386 jump, call, return
55b62671
AJ
366@cindex return instructions, x86-64
367@cindex x86-64 jump, call, return
252b5132
RH
368@item
369Immediate form long jumps and calls are
370@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
371Intel syntax is
372@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
373instruction
374is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
375@samp{ret far @var{stack-adjust}}.
376
377@cindex sections, i386
378@cindex i386 sections
55b62671
AJ
379@cindex sections, x86-64
380@cindex x86-64 sections
252b5132
RH
381@item
382The AT&T assembler does not provide support for multiple section
383programs. Unix style systems expect all programs to be single sections.
384@end itemize
385
7c31ae13
NC
386@node i386-Chars
387@subsection Special Characters
388
389@cindex line comment character, i386
390@cindex i386 line comment character
391The presence of a @samp{#} appearing anywhere on a line indicates the
392start of a comment that extends to the end of that line.
393
394If a @samp{#} appears as the first character of a line then the whole
395line is treated as a comment, but in this case the line can also be a
396logical line number directive (@pxref{Comments}) or a preprocessor
397control command (@pxref{Preprocessing}).
398
399If the @option{--divide} command line option has not been specified
400then the @samp{/} character appearing anywhere on a line also
401introduces a line comment.
402
403@cindex line separator, i386
404@cindex statement separator, i386
405@cindex i386 line separator
406The @samp{;} character can be used to separate statements on the same
407line.
408
252b5132
RH
409@node i386-Mnemonics
410@section Instruction Naming
411
412@cindex i386 instruction naming
413@cindex instruction naming, i386
55b62671
AJ
414@cindex x86-64 instruction naming
415@cindex instruction naming, x86-64
416
252b5132 417Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
418specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
419and @samp{q} specify byte, word, long and quadruple word operands. If
420no suffix is specified by an instruction then @code{@value{AS}} tries to
421fill in the missing suffix based on the destination register operand
422(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
423to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
424@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
425assembler which assumes that a missing mnemonic suffix implies long
426operand size. (This incompatibility does not affect compiler output
427since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
428
429Almost all instructions have the same names in AT&T and Intel format.
430There are a few exceptions. The sign extend and zero extend
431instructions need two sizes to specify them. They need a size to
432sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
433is accomplished by using two instruction mnemonic suffixes in AT&T
434syntax. Base names for sign extend and zero extend are
435@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
436and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
437are tacked on to this base name, the @emph{from} suffix before the
438@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
439``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
440thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
441@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
442@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
443quadruple word).
252b5132 444
b6169b20
L
445@cindex encoding options, i386
446@cindex encoding options, x86-64
447
448Different encoding options can be specified via optional mnemonic
449suffix. @samp{.s} suffix swaps 2 register operands in encoding when
a501d77e
L
450moving from one register to another. @samp{.d8} or @samp{.d32} suffix
451prefers 8bit or 32bit displacement in encoding.
b6169b20 452
252b5132
RH
453@cindex conversion instructions, i386
454@cindex i386 conversion instructions
55b62671
AJ
455@cindex conversion instructions, x86-64
456@cindex x86-64 conversion instructions
252b5132
RH
457The Intel-syntax conversion instructions
458
459@itemize @bullet
460@item
461@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
462
463@item
464@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
465
466@item
467@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
468
469@item
470@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
471
472@item
473@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
474(x86-64 only),
475
476@item
d5f0cf92 477@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 478@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
479@end itemize
480
481@noindent
55b62671
AJ
482are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
483@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
484instructions.
252b5132
RH
485
486@cindex jump instructions, i386
487@cindex call instructions, i386
55b62671
AJ
488@cindex jump instructions, x86-64
489@cindex call instructions, x86-64
252b5132
RH
490Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
491AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
492convention.
493
1efbbeb4
L
494@section AT&T Mnemonic versus Intel Mnemonic
495
496@cindex i386 mnemonic compatibility
497@cindex mnemonic compatibility, i386
498
499@code{@value{AS}} supports assembly using Intel mnemonic.
500@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
501@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
502syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
503Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
504@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
505@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
506assembler with different mnemonics from those in Intel IA32 specification.
507@code{@value{GCC}} generates those instructions with AT&T mnemonic.
508
252b5132
RH
509@node i386-Regs
510@section Register Naming
511
512@cindex i386 registers
513@cindex registers, i386
55b62671
AJ
514@cindex x86-64 registers
515@cindex registers, x86-64
252b5132
RH
516Register operands are always prefixed with @samp{%}. The 80386 registers
517consist of
518
519@itemize @bullet
520@item
521the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
522@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
523frame pointer), and @samp{%esp} (the stack pointer).
524
525@item
526the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
527@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
528
529@item
530the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
531@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
532are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
533@samp{%cx}, and @samp{%dx})
534
535@item
536the 6 section registers @samp{%cs} (code section), @samp{%ds}
537(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
538and @samp{%gs}.
539
540@item
541the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
542@samp{%cr3}.
543
544@item
545the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
546@samp{%db3}, @samp{%db6}, and @samp{%db7}.
547
548@item
549the 2 test registers @samp{%tr6} and @samp{%tr7}.
550
551@item
552the 8 floating point register stack @samp{%st} or equivalently
553@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
554@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
555These registers are overloaded by 8 MMX registers @samp{%mm0},
556@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
557@samp{%mm6} and @samp{%mm7}.
558
559@item
560the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
561@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
562@end itemize
563
564The AMD x86-64 architecture extends the register set by:
565
566@itemize @bullet
567@item
568enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
569accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
570@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
571pointer)
572
573@item
574the 8 extended registers @samp{%r8}--@samp{%r15}.
575
576@item
577the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
578
579@item
580the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
581
582@item
583the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
584
585@item
586the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
587
588@item
589the 8 debug registers: @samp{%db8}--@samp{%db15}.
590
591@item
592the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
593@end itemize
594
595@node i386-Prefixes
596@section Instruction Prefixes
597
598@cindex i386 instruction prefixes
599@cindex instruction prefixes, i386
600@cindex prefixes, i386
601Instruction prefixes are used to modify the following instruction. They
602are used to repeat string instructions, to provide section overrides, to
603perform bus lock operations, and to change operand and address sizes.
604(Most instructions that normally operate on 32-bit operands will use
60516-bit operands if the instruction has an ``operand size'' prefix.)
606Instruction prefixes are best written on the same line as the instruction
607they act upon. For example, the @samp{scas} (scan string) instruction is
608repeated with:
609
610@smallexample
611 repne scas %es:(%edi),%al
612@end smallexample
613
614You may also place prefixes on the lines immediately preceding the
615instruction, but this circumvents checks that @code{@value{AS}} does
616with prefixes, and will not work with all prefixes.
617
618Here is a list of instruction prefixes:
619
620@cindex section override prefixes, i386
621@itemize @bullet
622@item
623Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
624@samp{fs}, @samp{gs}. These are automatically added by specifying
625using the @var{section}:@var{memory-operand} form for memory references.
626
627@cindex size prefixes, i386
628@item
629Operand/Address size prefixes @samp{data16} and @samp{addr16}
630change 32-bit operands/addresses into 16-bit operands/addresses,
631while @samp{data32} and @samp{addr32} change 16-bit ones (in a
632@code{.code16} section) into 32-bit operands/addresses. These prefixes
633@emph{must} appear on the same line of code as the instruction they
634modify. For example, in a 16-bit @code{.code16} section, you might
635write:
636
637@smallexample
638 addr32 jmpl *(%ebx)
639@end smallexample
640
641@cindex bus lock prefixes, i386
642@cindex inhibiting interrupts, i386
643@item
644The bus lock prefix @samp{lock} inhibits interrupts during execution of
645the instruction it precedes. (This is only valid with certain
646instructions; see a 80386 manual for details).
647
648@cindex coprocessor wait, i386
649@item
650The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
651complete the current instruction. This should never be needed for the
65280386/80387 combination.
653
654@cindex repeat prefixes, i386
655@item
656The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
657to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
658times if the current address size is 16-bits).
55b62671
AJ
659@cindex REX prefixes, i386
660@item
661The @samp{rex} family of prefixes is used by x86-64 to encode
662extensions to i386 instruction set. The @samp{rex} prefix has four
663bits --- an operand size overwrite (@code{64}) used to change operand size
664from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
665register set.
666
667You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
668instruction emits @samp{rex} prefix with all the bits set. By omitting
669the @code{64}, @code{x}, @code{y} or @code{z} you may write other
670prefixes as well. Normally, there is no need to write the prefixes
671explicitly, since gas will automatically generate them based on the
672instruction operands.
252b5132
RH
673@end itemize
674
675@node i386-Memory
676@section Memory References
677
678@cindex i386 memory references
679@cindex memory references, i386
55b62671
AJ
680@cindex x86-64 memory references
681@cindex memory references, x86-64
252b5132
RH
682An Intel syntax indirect memory reference of the form
683
684@smallexample
685@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
686@end smallexample
687
688@noindent
689is translated into the AT&T syntax
690
691@smallexample
692@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
693@end smallexample
694
695@noindent
696where @var{base} and @var{index} are the optional 32-bit base and
697index registers, @var{disp} is the optional displacement, and
698@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
699to calculate the address of the operand. If no @var{scale} is
700specified, @var{scale} is taken to be 1. @var{section} specifies the
701optional section register for the memory operand, and may override the
702default section register (see a 80386 manual for section register
703defaults). Note that section overrides in AT&T syntax @emph{must}
704be preceded by a @samp{%}. If you specify a section override which
705coincides with the default section register, @code{@value{AS}} does @emph{not}
706output any section register override prefixes to assemble the given
707instruction. Thus, section overrides can be specified to emphasize which
708section register is used for a given memory operand.
709
710Here are some examples of Intel and AT&T style memory references:
711
712@table @asis
713@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
714@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
715missing, and the default section is used (@samp{%ss} for addressing with
716@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
717
718@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
719@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
720@samp{foo}. All other fields are missing. The section register here
721defaults to @samp{%ds}.
722
723@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
724This uses the value pointed to by @samp{foo} as a memory operand.
725Note that @var{base} and @var{index} are both missing, but there is only
726@emph{one} @samp{,}. This is a syntactic exception.
727
728@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
729This selects the contents of the variable @samp{foo} with section
730register @var{section} being @samp{%gs}.
731@end table
732
733Absolute (as opposed to PC relative) call and jump operands must be
734prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
735always chooses PC relative addressing for jump/call labels.
736
737Any instruction that has a memory operand, but no register operand,
55b62671
AJ
738@emph{must} specify its size (byte, word, long, or quadruple) with an
739instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
740respectively).
741
742The x86-64 architecture adds an RIP (instruction pointer relative)
743addressing. This addressing mode is specified by using @samp{rip} as a
744base register. Only constant offsets are valid. For example:
745
746@table @asis
747@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
748Points to the address 1234 bytes past the end of the current
749instruction.
750
751@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
752Points to the @code{symbol} in RIP relative way, this is shorter than
753the default absolute addressing.
754@end table
755
756Other addressing modes remain unchanged in x86-64 architecture, except
757registers used are 64-bit instead of 32-bit.
252b5132 758
fddf5b5b 759@node i386-Jumps
252b5132
RH
760@section Handling of Jump Instructions
761
762@cindex jump optimization, i386
763@cindex i386 jump optimization
55b62671
AJ
764@cindex jump optimization, x86-64
765@cindex x86-64 jump optimization
252b5132
RH
766Jump instructions are always optimized to use the smallest possible
767displacements. This is accomplished by using byte (8-bit) displacement
768jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 769is insufficient a long displacement is used. We do not support
252b5132
RH
770word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
771instruction with the @samp{data16} instruction prefix), since the 80386
772insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 773is added. (See also @pxref{i386-Arch})
252b5132
RH
774
775Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
776@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
777displacements, so that if you use these instructions (@code{@value{GCC}} does
778not use them) you may get an error message (and incorrect code). The AT&T
77980386 assembler tries to get around this problem by expanding @samp{jcxz foo}
780to
781
782@smallexample
783 jcxz cx_zero
784 jmp cx_nonzero
785cx_zero: jmp foo
786cx_nonzero:
787@end smallexample
788
789@node i386-Float
790@section Floating Point
791
792@cindex i386 floating point
793@cindex floating point, i386
55b62671
AJ
794@cindex x86-64 floating point
795@cindex floating point, x86-64
252b5132
RH
796All 80387 floating point types except packed BCD are supported.
797(BCD support may be added without much difficulty). These data
798types are 16-, 32-, and 64- bit integers, and single (32-bit),
799double (64-bit), and extended (80-bit) precision floating point.
800Each supported type has an instruction mnemonic suffix and a constructor
801associated with it. Instruction mnemonic suffixes specify the operand's
802data type. Constructors build these data types into memory.
803
804@cindex @code{float} directive, i386
805@cindex @code{single} directive, i386
806@cindex @code{double} directive, i386
807@cindex @code{tfloat} directive, i386
55b62671
AJ
808@cindex @code{float} directive, x86-64
809@cindex @code{single} directive, x86-64
810@cindex @code{double} directive, x86-64
811@cindex @code{tfloat} directive, x86-64
252b5132
RH
812@itemize @bullet
813@item
814Floating point constructors are @samp{.float} or @samp{.single},
815@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
816These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
817and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
818only supports this format via the @samp{fldt} (load 80-bit real to stack
819top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
820
821@cindex @code{word} directive, i386
822@cindex @code{long} directive, i386
823@cindex @code{int} directive, i386
824@cindex @code{quad} directive, i386
55b62671
AJ
825@cindex @code{word} directive, x86-64
826@cindex @code{long} directive, x86-64
827@cindex @code{int} directive, x86-64
828@cindex @code{quad} directive, x86-64
252b5132
RH
829@item
830Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
831@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
832corresponding instruction mnemonic suffixes are @samp{s} (single),
833@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
834the 64-bit @samp{q} format is only present in the @samp{fildq} (load
835quad integer to stack top) and @samp{fistpq} (store quad integer and pop
836stack) instructions.
837@end itemize
838
839Register to register operations should not use instruction mnemonic suffixes.
840@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
841wrote @samp{fst %st, %st(1)}, since all register to register operations
842use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
843which converts @samp{%st} from 80-bit to 64-bit floating point format,
844then stores the result in the 4 byte location @samp{mem})
845
846@node i386-SIMD
847@section Intel's MMX and AMD's 3DNow! SIMD Operations
848
849@cindex MMX, i386
850@cindex 3DNow!, i386
851@cindex SIMD, i386
55b62671
AJ
852@cindex MMX, x86-64
853@cindex 3DNow!, x86-64
854@cindex SIMD, x86-64
252b5132
RH
855
856@code{@value{AS}} supports Intel's MMX instruction set (SIMD
857instructions for integer data), available on Intel's Pentium MMX
858processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 859Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
860instruction set (SIMD instructions for 32-bit floating point data)
861available on AMD's K6-2 processor and possibly others in the future.
862
863Currently, @code{@value{AS}} does not support Intel's floating point
864SIMD, Katmai (KNI).
865
866The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
867@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
86816-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
869floating point values. The MMX registers cannot be used at the same time
870as the floating point stack.
871
872See Intel and AMD documentation, keeping in mind that the operand order in
873instructions is reversed from the Intel syntax.
874
f88c9eb0
SP
875@node i386-LWP
876@section AMD's Lightweight Profiling Instructions
877
878@cindex LWP, i386
879@cindex LWP, x86-64
880
881@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
882instruction set, available on AMD's Family 15h (Orochi) processors.
883
884LWP enables applications to collect and manage performance data, and
885react to performance events. The collection of performance data
886requires no context switches. LWP runs in the context of a thread and
887so several counters can be used independently across multiple threads.
888LWP can be used in both 64-bit and legacy 32-bit modes.
889
890For detailed information on the LWP instruction set, see the
891@cite{AMD Lightweight Profiling Specification} available at
892@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
893
87973e9f
QN
894@node i386-BMI
895@section Bit Manipulation Instructions
896
897@cindex BMI, i386
898@cindex BMI, x86-64
899
900@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
901
902BMI instructions provide several instructions implementing individual
903bit manipulation operations such as isolation, masking, setting, or
904resetting.
905
906@c Need to add a specification citation here when available.
907
2a2a0f38
QN
908@node i386-TBM
909@section AMD's Trailing Bit Manipulation Instructions
910
911@cindex TBM, i386
912@cindex TBM, x86-64
913
914@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
915instruction set, available on AMD's BDVER2 processors (Trinity and
916Viperfish).
917
918TBM instructions provide instructions implementing individual bit
919manipulation operations such as isolating, masking, setting, resetting,
920complementing, and operations on trailing zeros and ones.
921
922@c Need to add a specification citation here when available.
87973e9f 923
252b5132
RH
924@node i386-16bit
925@section Writing 16-bit Code
926
927@cindex i386 16-bit code
928@cindex 16-bit code, i386
929@cindex real-mode code, i386
eecb386c 930@cindex @code{code16gcc} directive, i386
252b5132
RH
931@cindex @code{code16} directive, i386
932@cindex @code{code32} directive, i386
55b62671
AJ
933@cindex @code{code64} directive, i386
934@cindex @code{code64} directive, x86-64
935While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
936or 64-bit x86-64 code depending on the default configuration,
252b5132 937it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
938mode code segments. To do this, put a @samp{.code16} or
939@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
940be run in 16-bit mode. You can switch @code{@value{AS}} to writing
94132-bit code with the @samp{.code32} directive or 64-bit code with the
942@samp{.code64} directive.
eecb386c
AM
943
944@samp{.code16gcc} provides experimental support for generating 16-bit
945code from gcc, and differs from @samp{.code16} in that @samp{call},
946@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
947@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
948default to 32-bit size. This is so that the stack pointer is
949manipulated in the same way over function calls, allowing access to
950function parameters at the same stack offsets as in 32-bit mode.
951@samp{.code16gcc} also automatically adds address size prefixes where
952necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
953
954The code which @code{@value{AS}} generates in 16-bit mode will not
955necessarily run on a 16-bit pre-80386 processor. To write code that
956runs on such a processor, you must refrain from using @emph{any} 32-bit
957constructs which require @code{@value{AS}} to output address or operand
958size prefixes.
959
960Note that writing 16-bit code instructions by explicitly specifying a
961prefix or an instruction mnemonic suffix within a 32-bit code section
962generates different machine instructions than those generated for a
96316-bit code segment. In a 32-bit code section, the following code
964generates the machine opcode bytes @samp{66 6a 04}, which pushes the
965value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
966
967@smallexample
968 pushw $4
969@end smallexample
970
971The same code in a 16-bit code section would generate the machine
b45619c0 972opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
973is correct since the processor default operand size is assumed to be 16
974bits in a 16-bit code section.
975
976@node i386-Bugs
977@section AT&T Syntax bugs
978
979The UnixWare assembler, and probably other AT&T derived ix86 Unix
980assemblers, generate floating point instructions with reversed source
981and destination registers in certain cases. Unfortunately, gcc and
982possibly many other programs use this reversed syntax, so we're stuck
983with it.
984
985For example
986
987@smallexample
988 fsub %st,%st(3)
989@end smallexample
990@noindent
991results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
992than the expected @samp{%st(3) - %st}. This happens with all the
993non-commutative arithmetic floating point operations with two register
994operands where the source register is @samp{%st} and the destination
995register is @samp{%st(i)}.
996
e413e4e9
AM
997@node i386-Arch
998@section Specifying CPU Architecture
999
1000@cindex arch directive, i386
1001@cindex i386 arch directive
55b62671
AJ
1002@cindex arch directive, x86-64
1003@cindex x86-64 arch directive
e413e4e9
AM
1004
1005@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1006(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1007directive enables a warning when gas detects an instruction that is not
1008supported on the CPU specified. The choices for @var{cpu_type} are:
1009
1010@multitable @columnfractions .20 .20 .20 .20
1011@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1012@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1013@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1014@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
7a9068fe 1015@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om}
1543849b 1016@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
af2f724e 1017@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2}
7b458c12 1018@item @samp{btver1} @tab @samp{btver2}
1ceab344 1019@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1020@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1021@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1022@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1023@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1024@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1025@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1026@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1027@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1ceab344 1028@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1029@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
f0ae4a24 1030@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop}
1ceab344 1031@item @samp{.padlock}
e413e4e9
AM
1032@end multitable
1033
fddf5b5b
AM
1034Apart from the warning, there are only two other effects on
1035@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1036@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1037will automatically use a two byte opcode sequence. The larger three
1038byte opcode sequence is used on the 486 (and when no architecture is
1039specified) because it executes faster on the 486. Note that you can
1040explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1041Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1042@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1043conditional jumps will be promoted when necessary to a two instruction
1044sequence consisting of a conditional jump of the opposite sense around
1045an unconditional jump to the target.
1046
5c6af06e
JB
1047Following the CPU architecture (but not a sub-architecture, which are those
1048starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1049control automatic promotion of conditional jumps. @samp{jumps} is the
1050default, and enables jump promotion; All external jumps will be of the long
1051variety, and file-local jumps will be promoted as necessary.
1052(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1053byte offset jumps, and warns about file-local conditional jumps that
1054@code{@value{AS}} promotes.
fddf5b5b
AM
1055Unconditional jumps are treated as for @samp{jumps}.
1056
1057For example
1058
1059@smallexample
1060 .arch i8086,nojumps
1061@end smallexample
e413e4e9 1062
252b5132
RH
1063@node i386-Notes
1064@section Notes
1065
1066@cindex i386 @code{mul}, @code{imul} instructions
1067@cindex @code{mul} instruction, i386
1068@cindex @code{imul} instruction, i386
55b62671
AJ
1069@cindex @code{mul} instruction, x86-64
1070@cindex @code{imul} instruction, x86-64
252b5132 1071There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1072instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1073multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1074for @samp{imul}) can be output only in the one operand form. Thus,
1075@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1076the expanding multiply would clobber the @samp{%edx} register, and this
1077would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
107864-bit product in @samp{%edx:%eax}.
1079
1080We have added a two operand form of @samp{imul} when the first operand
1081is an immediate mode expression and the second operand is a register.
1082This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1083example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1084$69, %eax, %eax}.
1085
This page took 0.65602 seconds and 4 git commands to generate.