Automatic date update in version.in
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
6f2750fe 1@c Copyright (C) 1991-2016 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
77as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
78
79@cindex @samp{--divide} option, i386
80@item --divide
81On SVR4-derived platforms, the character @samp{/} is treated as a comment
82character, which means that it cannot be used in expressions. The
83@samp{--divide} option turns @samp{/} into a normal character. This does
84not disable @samp{/} at the beginning of a line starting a comment, or
85affect using @samp{#} for starting a comment.
86
9103f4f4
L
87@cindex @samp{-march=} option, i386
88@cindex @samp{-march=} option, x86-64
6305a203
L
89@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90This option specifies the target processor. The assembler will
91issue an error message if an attempt is made to assemble an instruction
92which will not execute on the target processor. The following
34bca508 93processor names are recognized:
9103f4f4
L
94@code{i8086},
95@code{i186},
96@code{i286},
97@code{i386},
98@code{i486},
99@code{i586},
100@code{i686},
101@code{pentium},
102@code{pentiumpro},
103@code{pentiumii},
104@code{pentiumiii},
105@code{pentium4},
106@code{prescott},
107@code{nocona},
ef05d495
L
108@code{core},
109@code{core2},
bd5295b2 110@code{corei7},
8a9036a4 111@code{l1om},
7a9068fe 112@code{k1om},
81486035 113@code{iamcu},
9103f4f4
L
114@code{k6},
115@code{k6_2},
116@code{athlon},
9103f4f4
L
117@code{opteron},
118@code{k8},
1ceab344 119@code{amdfam10},
68339fdf 120@code{bdver1},
af2f724e 121@code{bdver2},
5e5c50d3 122@code{bdver3},
c7b0bd56 123@code{bdver4},
029f3522 124@code{znver1},
7b458c12
L
125@code{btver1},
126@code{btver2},
9103f4f4
L
127@code{generic32} and
128@code{generic64}.
129
34bca508 130In addition to the basic instruction set, the assembler can be told to
6305a203
L
131accept various extension mnemonics. For example,
132@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
133@var{vmx}. The following extensions are currently supported:
309d3373
JB
134@code{8087},
135@code{287},
136@code{387},
137@code{no87},
6305a203 138@code{mmx},
309d3373 139@code{nommx},
6305a203
L
140@code{sse},
141@code{sse2},
142@code{sse3},
143@code{ssse3},
144@code{sse4.1},
145@code{sse4.2},
146@code{sse4},
309d3373 147@code{nosse},
c0f3af97 148@code{avx},
6c30d220 149@code{avx2},
e2e1fcde
L
150@code{adx},
151@code{rdseed},
152@code{prfchw},
5c111e37 153@code{smap},
7e8b059b 154@code{mpx},
a0046408 155@code{sha},
1dfc6506
L
156@code{prefetchwt1},
157@code{clflushopt},
158@code{se1},
c5e7287a 159@code{clwb},
9d8596f0 160@code{pcommit},
43234a1e
L
161@code{avx512f},
162@code{avx512cd},
163@code{avx512er},
164@code{avx512pf},
1dfc6506
L
165@code{avx512vl},
166@code{avx512bw},
167@code{avx512dq},
2cc1b5aa 168@code{avx512ifma},
14f195c9 169@code{avx512vbmi},
309d3373 170@code{noavx},
6305a203 171@code{vmx},
8729a6f6 172@code{vmfunc},
6305a203 173@code{smx},
f03fe4c1 174@code{xsave},
c7b8aa3a 175@code{xsaveopt},
1dfc6506
L
176@code{xsavec},
177@code{xsaves},
c0f3af97 178@code{aes},
594ab6a3 179@code{pclmul},
c7b8aa3a
L
180@code{fsgsbase},
181@code{rdrnd},
182@code{f16c},
6c30d220 183@code{bmi2},
c0f3af97 184@code{fma},
f1f8f695
L
185@code{movbe},
186@code{ept},
6c30d220 187@code{lzcnt},
42164a71
L
188@code{hle},
189@code{rtm},
6c30d220 190@code{invpcid},
bd5295b2 191@code{clflush},
9916071f 192@code{mwaitx},
029f3522 193@code{clzero},
f88c9eb0 194@code{lwp},
5dd85c99
SP
195@code{fma4},
196@code{xop},
60aa667e 197@code{cx16},
bd5295b2 198@code{syscall},
1b7f3fb0 199@code{rdtscp},
6305a203
L
200@code{3dnow},
201@code{3dnowa},
202@code{sse4a},
203@code{sse5},
204@code{svme},
205@code{abm} and
206@code{padlock}.
309d3373
JB
207Note that rather than extending a basic instruction set, the extension
208mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
209
210When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
211@code{.arch} directive will take precedent.
212
213@cindex @samp{-mtune=} option, i386
214@cindex @samp{-mtune=} option, x86-64
215@item -mtune=@var{CPU}
216This option specifies a processor to optimize for. When used in
217conjunction with the @option{-march} option, only instructions
218of the processor specified by the @option{-march} option will be
219generated.
220
6305a203
L
221Valid @var{CPU} values are identical to the processor list of
222@option{-march=@var{CPU}}.
9103f4f4 223
c0f3af97
L
224@cindex @samp{-msse2avx} option, i386
225@cindex @samp{-msse2avx} option, x86-64
226@item -msse2avx
227This option specifies that the assembler should encode SSE instructions
228with VEX prefix.
229
daf50ae7
L
230@cindex @samp{-msse-check=} option, i386
231@cindex @samp{-msse-check=} option, x86-64
232@item -msse-check=@var{none}
1f9bb1ca
AS
233@itemx -msse-check=@var{warning}
234@itemx -msse-check=@var{error}
9aff4b7a 235These options control if the assembler should check SSE instructions.
daf50ae7
L
236@option{-msse-check=@var{none}} will make the assembler not to check SSE
237instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 238will make the assembler issue a warning for any SSE instruction.
daf50ae7 239@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 240for any SSE instruction.
daf50ae7 241
539f890d
L
242@cindex @samp{-mavxscalar=} option, i386
243@cindex @samp{-mavxscalar=} option, x86-64
244@item -mavxscalar=@var{128}
1f9bb1ca 245@itemx -mavxscalar=@var{256}
2aab8acd 246These options control how the assembler should encode scalar AVX
539f890d
L
247instructions. @option{-mavxscalar=@var{128}} will encode scalar
248AVX instructions with 128bit vector length, which is the default.
249@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
250with 256bit vector length.
251
43234a1e
L
252@cindex @samp{-mevexlig=} option, i386
253@cindex @samp{-mevexlig=} option, x86-64
254@item -mevexlig=@var{128}
255@itemx -mevexlig=@var{256}
256@itemx -mevexlig=@var{512}
257These options control how the assembler should encode length-ignored
258(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
259EVEX instructions with 128bit vector length, which is the default.
260@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
261encode LIG EVEX instructions with 256bit and 512bit vector length,
262respectively.
263
264@cindex @samp{-mevexwig=} option, i386
265@cindex @samp{-mevexwig=} option, x86-64
266@item -mevexwig=@var{0}
267@itemx -mevexwig=@var{1}
268These options control how the assembler should encode w-ignored (WIG)
269EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
270EVEX instructions with evex.w = 0, which is the default.
271@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
272evex.w = 1.
273
1efbbeb4
L
274@cindex @samp{-mmnemonic=} option, i386
275@cindex @samp{-mmnemonic=} option, x86-64
276@item -mmnemonic=@var{att}
1f9bb1ca 277@itemx -mmnemonic=@var{intel}
34bca508 278This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
279The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
280take precedent.
281
282@cindex @samp{-msyntax=} option, i386
283@cindex @samp{-msyntax=} option, x86-64
284@item -msyntax=@var{att}
1f9bb1ca 285@itemx -msyntax=@var{intel}
34bca508 286This option specifies instruction syntax when processing instructions.
1efbbeb4
L
287The @code{.att_syntax} and @code{.intel_syntax} directives will
288take precedent.
289
290@cindex @samp{-mnaked-reg} option, i386
291@cindex @samp{-mnaked-reg} option, x86-64
292@item -mnaked-reg
293This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 294The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 295
7e8b059b
L
296@cindex @samp{-madd-bnd-prefix} option, i386
297@cindex @samp{-madd-bnd-prefix} option, x86-64
298@item -madd-bnd-prefix
299This option forces the assembler to add BND prefix to all branches, even
300if such prefix was not explicitly specified in the source code.
301
8dcea932
L
302@cindex @samp{-mshared} option, i386
303@cindex @samp{-mshared} option, x86-64
304@item -mno-shared
305On ELF target, the assembler normally optimizes out non-PLT relocations
306against defined non-weak global branch targets with default visibility.
307The @samp{-mshared} option tells the assembler to generate code which
308may go into a shared library where all non-weak global branch targets
309with default visibility can be preempted. The resulting code is
310slightly bigger. This option only affects the handling of branch
311instructions.
312
167ad85b
TG
313@cindex @samp{-mbig-obj} option, x86-64
314@item -mbig-obj
315On x86-64 PE/COFF target this option forces the use of big object file
316format, which allows more than 32768 sections.
317
d022bddd
IT
318@cindex @samp{-momit-lock-prefix=} option, i386
319@cindex @samp{-momit-lock-prefix=} option, x86-64
320@item -momit-lock-prefix=@var{no}
321@itemx -momit-lock-prefix=@var{yes}
322These options control how the assembler should encode lock prefix.
323This option is intended as a workaround for processors, that fail on
324lock prefix. This option can only be safely used with single-core,
325single-thread computers
326@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
327@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
328which is the default.
329
e4e00185
AS
330@cindex @samp{-mfence-as-lock-add=} option, i386
331@cindex @samp{-mfence-as-lock-add=} option, x86-64
332@item -mfence-as-lock-add=@var{no}
333@itemx -mfence-as-lock-add=@var{yes}
334These options control how the assembler should encode lfence, mfence and
335sfence.
336@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
337sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
338@samp{lock addl $0x0, (%esp)} in 32-bit mode.
339@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
340sfence as usual, which is the default.
341
0cb4071e
L
342@cindex @samp{-mrelax-relocations=} option, i386
343@cindex @samp{-mrelax-relocations=} option, x86-64
344@item -mrelax-relocations=@var{no}
345@itemx -mrelax-relocations=@var{yes}
346These options control whether the assembler should generate relax
347relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
348R_X86_64_REX_GOTPCRELX, in 64-bit mode.
349@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
350@option{-mrelax-relocations=@var{no}} will not generate relax
351relocations. The default can be controlled by a configure option
352@option{--enable-x86-relax-relocations}.
353
d3d3c6db
IT
354@cindex @samp{-mevexrcig=} option, i386
355@cindex @samp{-mevexrcig=} option, x86-64
356@item -mevexrcig=@var{rne}
357@itemx -mevexrcig=@var{rd}
358@itemx -mevexrcig=@var{ru}
359@itemx -mevexrcig=@var{rz}
360These options control how the assembler should encode SAE-only
361EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
362of EVEX instruction with 00, which is the default.
363@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
364and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
365with 01, 10 and 11 RC bits, respectively.
366
5db04b09
L
367@cindex @samp{-mamd64} option, x86-64
368@cindex @samp{-mintel64} option, x86-64
369@item -mamd64
370@itemx -mintel64
371This option specifies that the assembler should accept only AMD64 or
372Intel64 ISA in 64-bit mode. The default is to accept both.
373
55b62671 374@end table
731caf76 375@c man end
e413e4e9 376
a6c24e68
NC
377@node i386-Directives
378@section x86 specific Directives
379
380@cindex machine directives, x86
381@cindex x86 machine directives
382@table @code
383
384@cindex @code{lcomm} directive, COFF
385@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
386Reserve @var{length} (an absolute expression) bytes for a local common
387denoted by @var{symbol}. The section and value of @var{symbol} are
388those of the new local common. The addresses are allocated in the bss
704209c0
NC
389section, so that at run-time the bytes start off zeroed. Since
390@var{symbol} is not declared global, it is normally not visible to
391@code{@value{LD}}. The optional third parameter, @var{alignment},
392specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
393
394This directive is only available for COFF based x86 targets.
395
396@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
397@c .largecomm
398
399@end table
400
252b5132 401@node i386-Syntax
7c31ae13
NC
402@section i386 Syntactical Considerations
403@menu
404* i386-Variations:: AT&T Syntax versus Intel Syntax
405* i386-Chars:: Special Characters
406@end menu
407
408@node i386-Variations
409@subsection AT&T Syntax versus Intel Syntax
252b5132 410
e413e4e9
AM
411@cindex i386 intel_syntax pseudo op
412@cindex intel_syntax pseudo op, i386
413@cindex i386 att_syntax pseudo op
414@cindex att_syntax pseudo op, i386
252b5132
RH
415@cindex i386 syntax compatibility
416@cindex syntax compatibility, i386
55b62671
AJ
417@cindex x86-64 intel_syntax pseudo op
418@cindex intel_syntax pseudo op, x86-64
419@cindex x86-64 att_syntax pseudo op
420@cindex att_syntax pseudo op, x86-64
421@cindex x86-64 syntax compatibility
422@cindex syntax compatibility, x86-64
e413e4e9
AM
423
424@code{@value{AS}} now supports assembly using Intel assembler syntax.
425@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
426back to the usual AT&T mode for compatibility with the output of
427@code{@value{GCC}}. Either of these directives may have an optional
428argument, @code{prefix}, or @code{noprefix} specifying whether registers
429require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
430different from Intel syntax. We mention these differences because
431almost all 80386 documents use Intel syntax. Notable differences
432between the two syntaxes are:
433
434@cindex immediate operands, i386
435@cindex i386 immediate operands
436@cindex register operands, i386
437@cindex i386 register operands
438@cindex jump/call operands, i386
439@cindex i386 jump/call operands
440@cindex operand delimiters, i386
55b62671
AJ
441
442@cindex immediate operands, x86-64
443@cindex x86-64 immediate operands
444@cindex register operands, x86-64
445@cindex x86-64 register operands
446@cindex jump/call operands, x86-64
447@cindex x86-64 jump/call operands
448@cindex operand delimiters, x86-64
252b5132
RH
449@itemize @bullet
450@item
451AT&T immediate operands are preceded by @samp{$}; Intel immediate
452operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
453AT&T register operands are preceded by @samp{%}; Intel register operands
454are undelimited. AT&T absolute (as opposed to PC relative) jump/call
455operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
456
457@cindex i386 source, destination operands
458@cindex source, destination operands; i386
55b62671
AJ
459@cindex x86-64 source, destination operands
460@cindex source, destination operands; x86-64
252b5132
RH
461@item
462AT&T and Intel syntax use the opposite order for source and destination
463operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
464@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
465previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
466instructions with 2 immediate operands, such as the @samp{enter}
467instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
468
469@cindex mnemonic suffixes, i386
470@cindex sizes operands, i386
471@cindex i386 size suffixes
55b62671
AJ
472@cindex mnemonic suffixes, x86-64
473@cindex sizes operands, x86-64
474@cindex x86-64 size suffixes
252b5132
RH
475@item
476In AT&T syntax the size of memory operands is determined from the last
477character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
478@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
479(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
480this by prefixing memory operands (@emph{not} the instruction mnemonics) with
481@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
482Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
483syntax.
252b5132 484
4b06377f
L
485In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
486instruction with the 64-bit displacement or immediate operand.
487
252b5132
RH
488@cindex return instructions, i386
489@cindex i386 jump, call, return
55b62671
AJ
490@cindex return instructions, x86-64
491@cindex x86-64 jump, call, return
252b5132
RH
492@item
493Immediate form long jumps and calls are
494@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
495Intel syntax is
496@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
497instruction
498is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
499@samp{ret far @var{stack-adjust}}.
500
501@cindex sections, i386
502@cindex i386 sections
55b62671
AJ
503@cindex sections, x86-64
504@cindex x86-64 sections
252b5132
RH
505@item
506The AT&T assembler does not provide support for multiple section
507programs. Unix style systems expect all programs to be single sections.
508@end itemize
509
7c31ae13
NC
510@node i386-Chars
511@subsection Special Characters
512
513@cindex line comment character, i386
514@cindex i386 line comment character
515The presence of a @samp{#} appearing anywhere on a line indicates the
516start of a comment that extends to the end of that line.
517
518If a @samp{#} appears as the first character of a line then the whole
519line is treated as a comment, but in this case the line can also be a
520logical line number directive (@pxref{Comments}) or a preprocessor
521control command (@pxref{Preprocessing}).
522
523If the @option{--divide} command line option has not been specified
524then the @samp{/} character appearing anywhere on a line also
525introduces a line comment.
526
527@cindex line separator, i386
528@cindex statement separator, i386
529@cindex i386 line separator
530The @samp{;} character can be used to separate statements on the same
531line.
532
252b5132 533@node i386-Mnemonics
d3b47e2b
L
534@section i386-Mnemonics
535@subsection Instruction Naming
252b5132
RH
536
537@cindex i386 instruction naming
538@cindex instruction naming, i386
55b62671
AJ
539@cindex x86-64 instruction naming
540@cindex instruction naming, x86-64
541
252b5132 542Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
543specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
544and @samp{q} specify byte, word, long and quadruple word operands. If
545no suffix is specified by an instruction then @code{@value{AS}} tries to
546fill in the missing suffix based on the destination register operand
547(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
548to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
549@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
550assembler which assumes that a missing mnemonic suffix implies long
551operand size. (This incompatibility does not affect compiler output
552since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
553
554Almost all instructions have the same names in AT&T and Intel format.
555There are a few exceptions. The sign extend and zero extend
556instructions need two sizes to specify them. They need a size to
557sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
558is accomplished by using two instruction mnemonic suffixes in AT&T
559syntax. Base names for sign extend and zero extend are
560@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
561and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
562are tacked on to this base name, the @emph{from} suffix before the
563@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
564``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
565thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
566@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
567@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
568quadruple word).
252b5132 569
b6169b20
L
570@cindex encoding options, i386
571@cindex encoding options, x86-64
572
573Different encoding options can be specified via optional mnemonic
574suffix. @samp{.s} suffix swaps 2 register operands in encoding when
a501d77e
L
575moving from one register to another. @samp{.d8} or @samp{.d32} suffix
576prefers 8bit or 32bit displacement in encoding.
b6169b20 577
252b5132
RH
578@cindex conversion instructions, i386
579@cindex i386 conversion instructions
55b62671
AJ
580@cindex conversion instructions, x86-64
581@cindex x86-64 conversion instructions
252b5132
RH
582The Intel-syntax conversion instructions
583
584@itemize @bullet
585@item
586@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
587
588@item
589@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
590
591@item
592@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
593
594@item
595@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
596
597@item
598@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
599(x86-64 only),
600
601@item
d5f0cf92 602@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 603@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
604@end itemize
605
606@noindent
55b62671
AJ
607are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
608@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
609instructions.
252b5132
RH
610
611@cindex jump instructions, i386
612@cindex call instructions, i386
55b62671
AJ
613@cindex jump instructions, x86-64
614@cindex call instructions, x86-64
252b5132
RH
615Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
616AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
617convention.
618
d3b47e2b 619@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
620
621@cindex i386 mnemonic compatibility
622@cindex mnemonic compatibility, i386
623
624@code{@value{AS}} supports assembly using Intel mnemonic.
625@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
626@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
627syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
628Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
629@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
630@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
631assembler with different mnemonics from those in Intel IA32 specification.
632@code{@value{GCC}} generates those instructions with AT&T mnemonic.
633
252b5132
RH
634@node i386-Regs
635@section Register Naming
636
637@cindex i386 registers
638@cindex registers, i386
55b62671
AJ
639@cindex x86-64 registers
640@cindex registers, x86-64
252b5132
RH
641Register operands are always prefixed with @samp{%}. The 80386 registers
642consist of
643
644@itemize @bullet
645@item
646the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
647@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
648frame pointer), and @samp{%esp} (the stack pointer).
649
650@item
651the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
652@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
653
654@item
655the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
656@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
657are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
658@samp{%cx}, and @samp{%dx})
659
660@item
661the 6 section registers @samp{%cs} (code section), @samp{%ds}
662(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
663and @samp{%gs}.
664
665@item
666the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
667@samp{%cr3}.
668
669@item
670the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
671@samp{%db3}, @samp{%db6}, and @samp{%db7}.
672
673@item
674the 2 test registers @samp{%tr6} and @samp{%tr7}.
675
676@item
677the 8 floating point register stack @samp{%st} or equivalently
678@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
679@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
680These registers are overloaded by 8 MMX registers @samp{%mm0},
681@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
682@samp{%mm6} and @samp{%mm7}.
683
684@item
685the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
686@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
687@end itemize
688
689The AMD x86-64 architecture extends the register set by:
690
691@itemize @bullet
692@item
693enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
694accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
695@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
696pointer)
697
698@item
699the 8 extended registers @samp{%r8}--@samp{%r15}.
700
701@item
702the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
703
704@item
705the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
706
707@item
708the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
709
710@item
711the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
712
713@item
714the 8 debug registers: @samp{%db8}--@samp{%db15}.
715
716@item
717the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
718@end itemize
719
720@node i386-Prefixes
721@section Instruction Prefixes
722
723@cindex i386 instruction prefixes
724@cindex instruction prefixes, i386
725@cindex prefixes, i386
726Instruction prefixes are used to modify the following instruction. They
727are used to repeat string instructions, to provide section overrides, to
728perform bus lock operations, and to change operand and address sizes.
729(Most instructions that normally operate on 32-bit operands will use
73016-bit operands if the instruction has an ``operand size'' prefix.)
731Instruction prefixes are best written on the same line as the instruction
732they act upon. For example, the @samp{scas} (scan string) instruction is
733repeated with:
734
735@smallexample
736 repne scas %es:(%edi),%al
737@end smallexample
738
739You may also place prefixes on the lines immediately preceding the
740instruction, but this circumvents checks that @code{@value{AS}} does
741with prefixes, and will not work with all prefixes.
742
743Here is a list of instruction prefixes:
744
745@cindex section override prefixes, i386
746@itemize @bullet
747@item
748Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
749@samp{fs}, @samp{gs}. These are automatically added by specifying
750using the @var{section}:@var{memory-operand} form for memory references.
751
752@cindex size prefixes, i386
753@item
754Operand/Address size prefixes @samp{data16} and @samp{addr16}
755change 32-bit operands/addresses into 16-bit operands/addresses,
756while @samp{data32} and @samp{addr32} change 16-bit ones (in a
757@code{.code16} section) into 32-bit operands/addresses. These prefixes
758@emph{must} appear on the same line of code as the instruction they
759modify. For example, in a 16-bit @code{.code16} section, you might
760write:
761
762@smallexample
763 addr32 jmpl *(%ebx)
764@end smallexample
765
766@cindex bus lock prefixes, i386
767@cindex inhibiting interrupts, i386
768@item
769The bus lock prefix @samp{lock} inhibits interrupts during execution of
770the instruction it precedes. (This is only valid with certain
771instructions; see a 80386 manual for details).
772
773@cindex coprocessor wait, i386
774@item
775The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
776complete the current instruction. This should never be needed for the
77780386/80387 combination.
778
779@cindex repeat prefixes, i386
780@item
781The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
782to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
783times if the current address size is 16-bits).
55b62671
AJ
784@cindex REX prefixes, i386
785@item
786The @samp{rex} family of prefixes is used by x86-64 to encode
787extensions to i386 instruction set. The @samp{rex} prefix has four
788bits --- an operand size overwrite (@code{64}) used to change operand size
789from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
790register set.
791
792You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
793instruction emits @samp{rex} prefix with all the bits set. By omitting
794the @code{64}, @code{x}, @code{y} or @code{z} you may write other
795prefixes as well. Normally, there is no need to write the prefixes
796explicitly, since gas will automatically generate them based on the
797instruction operands.
252b5132
RH
798@end itemize
799
800@node i386-Memory
801@section Memory References
802
803@cindex i386 memory references
804@cindex memory references, i386
55b62671
AJ
805@cindex x86-64 memory references
806@cindex memory references, x86-64
252b5132
RH
807An Intel syntax indirect memory reference of the form
808
809@smallexample
810@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
811@end smallexample
812
813@noindent
814is translated into the AT&T syntax
815
816@smallexample
817@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
818@end smallexample
819
820@noindent
821where @var{base} and @var{index} are the optional 32-bit base and
822index registers, @var{disp} is the optional displacement, and
823@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
824to calculate the address of the operand. If no @var{scale} is
825specified, @var{scale} is taken to be 1. @var{section} specifies the
826optional section register for the memory operand, and may override the
827default section register (see a 80386 manual for section register
828defaults). Note that section overrides in AT&T syntax @emph{must}
829be preceded by a @samp{%}. If you specify a section override which
830coincides with the default section register, @code{@value{AS}} does @emph{not}
831output any section register override prefixes to assemble the given
832instruction. Thus, section overrides can be specified to emphasize which
833section register is used for a given memory operand.
834
835Here are some examples of Intel and AT&T style memory references:
836
837@table @asis
838@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
839@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
840missing, and the default section is used (@samp{%ss} for addressing with
841@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
842
843@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
844@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
845@samp{foo}. All other fields are missing. The section register here
846defaults to @samp{%ds}.
847
848@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
849This uses the value pointed to by @samp{foo} as a memory operand.
850Note that @var{base} and @var{index} are both missing, but there is only
851@emph{one} @samp{,}. This is a syntactic exception.
852
853@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
854This selects the contents of the variable @samp{foo} with section
855register @var{section} being @samp{%gs}.
856@end table
857
858Absolute (as opposed to PC relative) call and jump operands must be
859prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
860always chooses PC relative addressing for jump/call labels.
861
862Any instruction that has a memory operand, but no register operand,
55b62671
AJ
863@emph{must} specify its size (byte, word, long, or quadruple) with an
864instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
865respectively).
866
867The x86-64 architecture adds an RIP (instruction pointer relative)
868addressing. This addressing mode is specified by using @samp{rip} as a
869base register. Only constant offsets are valid. For example:
870
871@table @asis
872@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
873Points to the address 1234 bytes past the end of the current
874instruction.
875
876@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
877Points to the @code{symbol} in RIP relative way, this is shorter than
878the default absolute addressing.
879@end table
880
881Other addressing modes remain unchanged in x86-64 architecture, except
882registers used are 64-bit instead of 32-bit.
252b5132 883
fddf5b5b 884@node i386-Jumps
252b5132
RH
885@section Handling of Jump Instructions
886
887@cindex jump optimization, i386
888@cindex i386 jump optimization
55b62671
AJ
889@cindex jump optimization, x86-64
890@cindex x86-64 jump optimization
252b5132
RH
891Jump instructions are always optimized to use the smallest possible
892displacements. This is accomplished by using byte (8-bit) displacement
893jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 894is insufficient a long displacement is used. We do not support
252b5132
RH
895word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
896instruction with the @samp{data16} instruction prefix), since the 80386
897insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 898is added. (See also @pxref{i386-Arch})
252b5132
RH
899
900Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
901@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
902displacements, so that if you use these instructions (@code{@value{GCC}} does
903not use them) you may get an error message (and incorrect code). The AT&T
90480386 assembler tries to get around this problem by expanding @samp{jcxz foo}
905to
906
907@smallexample
908 jcxz cx_zero
909 jmp cx_nonzero
910cx_zero: jmp foo
911cx_nonzero:
912@end smallexample
913
914@node i386-Float
915@section Floating Point
916
917@cindex i386 floating point
918@cindex floating point, i386
55b62671
AJ
919@cindex x86-64 floating point
920@cindex floating point, x86-64
252b5132
RH
921All 80387 floating point types except packed BCD are supported.
922(BCD support may be added without much difficulty). These data
923types are 16-, 32-, and 64- bit integers, and single (32-bit),
924double (64-bit), and extended (80-bit) precision floating point.
925Each supported type has an instruction mnemonic suffix and a constructor
926associated with it. Instruction mnemonic suffixes specify the operand's
927data type. Constructors build these data types into memory.
928
929@cindex @code{float} directive, i386
930@cindex @code{single} directive, i386
931@cindex @code{double} directive, i386
932@cindex @code{tfloat} directive, i386
55b62671
AJ
933@cindex @code{float} directive, x86-64
934@cindex @code{single} directive, x86-64
935@cindex @code{double} directive, x86-64
936@cindex @code{tfloat} directive, x86-64
252b5132
RH
937@itemize @bullet
938@item
939Floating point constructors are @samp{.float} or @samp{.single},
940@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
941These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
942and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
943only supports this format via the @samp{fldt} (load 80-bit real to stack
944top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
945
946@cindex @code{word} directive, i386
947@cindex @code{long} directive, i386
948@cindex @code{int} directive, i386
949@cindex @code{quad} directive, i386
55b62671
AJ
950@cindex @code{word} directive, x86-64
951@cindex @code{long} directive, x86-64
952@cindex @code{int} directive, x86-64
953@cindex @code{quad} directive, x86-64
252b5132
RH
954@item
955Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
956@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
957corresponding instruction mnemonic suffixes are @samp{s} (single),
958@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
959the 64-bit @samp{q} format is only present in the @samp{fildq} (load
960quad integer to stack top) and @samp{fistpq} (store quad integer and pop
961stack) instructions.
962@end itemize
963
964Register to register operations should not use instruction mnemonic suffixes.
965@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
966wrote @samp{fst %st, %st(1)}, since all register to register operations
967use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
968which converts @samp{%st} from 80-bit to 64-bit floating point format,
969then stores the result in the 4 byte location @samp{mem})
970
971@node i386-SIMD
972@section Intel's MMX and AMD's 3DNow! SIMD Operations
973
974@cindex MMX, i386
975@cindex 3DNow!, i386
976@cindex SIMD, i386
55b62671
AJ
977@cindex MMX, x86-64
978@cindex 3DNow!, x86-64
979@cindex SIMD, x86-64
252b5132
RH
980
981@code{@value{AS}} supports Intel's MMX instruction set (SIMD
982instructions for integer data), available on Intel's Pentium MMX
983processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 984Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
985instruction set (SIMD instructions for 32-bit floating point data)
986available on AMD's K6-2 processor and possibly others in the future.
987
988Currently, @code{@value{AS}} does not support Intel's floating point
989SIMD, Katmai (KNI).
990
991The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
992@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
99316-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
994floating point values. The MMX registers cannot be used at the same time
995as the floating point stack.
996
997See Intel and AMD documentation, keeping in mind that the operand order in
998instructions is reversed from the Intel syntax.
999
f88c9eb0
SP
1000@node i386-LWP
1001@section AMD's Lightweight Profiling Instructions
1002
1003@cindex LWP, i386
1004@cindex LWP, x86-64
1005
1006@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1007instruction set, available on AMD's Family 15h (Orochi) processors.
1008
1009LWP enables applications to collect and manage performance data, and
1010react to performance events. The collection of performance data
1011requires no context switches. LWP runs in the context of a thread and
1012so several counters can be used independently across multiple threads.
1013LWP can be used in both 64-bit and legacy 32-bit modes.
1014
1015For detailed information on the LWP instruction set, see the
1016@cite{AMD Lightweight Profiling Specification} available at
1017@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1018
87973e9f
QN
1019@node i386-BMI
1020@section Bit Manipulation Instructions
1021
1022@cindex BMI, i386
1023@cindex BMI, x86-64
1024
1025@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1026
1027BMI instructions provide several instructions implementing individual
1028bit manipulation operations such as isolation, masking, setting, or
34bca508 1029resetting.
87973e9f
QN
1030
1031@c Need to add a specification citation here when available.
1032
2a2a0f38
QN
1033@node i386-TBM
1034@section AMD's Trailing Bit Manipulation Instructions
1035
1036@cindex TBM, i386
1037@cindex TBM, x86-64
1038
1039@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1040instruction set, available on AMD's BDVER2 processors (Trinity and
1041Viperfish).
1042
1043TBM instructions provide instructions implementing individual bit
1044manipulation operations such as isolating, masking, setting, resetting,
1045complementing, and operations on trailing zeros and ones.
1046
1047@c Need to add a specification citation here when available.
87973e9f 1048
252b5132
RH
1049@node i386-16bit
1050@section Writing 16-bit Code
1051
1052@cindex i386 16-bit code
1053@cindex 16-bit code, i386
1054@cindex real-mode code, i386
eecb386c 1055@cindex @code{code16gcc} directive, i386
252b5132
RH
1056@cindex @code{code16} directive, i386
1057@cindex @code{code32} directive, i386
55b62671
AJ
1058@cindex @code{code64} directive, i386
1059@cindex @code{code64} directive, x86-64
1060While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1061or 64-bit x86-64 code depending on the default configuration,
252b5132 1062it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1063mode code segments. To do this, put a @samp{.code16} or
1064@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1065be run in 16-bit mode. You can switch @code{@value{AS}} to writing
106632-bit code with the @samp{.code32} directive or 64-bit code with the
1067@samp{.code64} directive.
eecb386c
AM
1068
1069@samp{.code16gcc} provides experimental support for generating 16-bit
1070code from gcc, and differs from @samp{.code16} in that @samp{call},
1071@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1072@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1073default to 32-bit size. This is so that the stack pointer is
1074manipulated in the same way over function calls, allowing access to
1075function parameters at the same stack offsets as in 32-bit mode.
1076@samp{.code16gcc} also automatically adds address size prefixes where
1077necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1078
1079The code which @code{@value{AS}} generates in 16-bit mode will not
1080necessarily run on a 16-bit pre-80386 processor. To write code that
1081runs on such a processor, you must refrain from using @emph{any} 32-bit
1082constructs which require @code{@value{AS}} to output address or operand
1083size prefixes.
1084
1085Note that writing 16-bit code instructions by explicitly specifying a
1086prefix or an instruction mnemonic suffix within a 32-bit code section
1087generates different machine instructions than those generated for a
108816-bit code segment. In a 32-bit code section, the following code
1089generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1090value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1091
1092@smallexample
1093 pushw $4
1094@end smallexample
1095
1096The same code in a 16-bit code section would generate the machine
b45619c0 1097opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1098is correct since the processor default operand size is assumed to be 16
1099bits in a 16-bit code section.
1100
e413e4e9
AM
1101@node i386-Arch
1102@section Specifying CPU Architecture
1103
1104@cindex arch directive, i386
1105@cindex i386 arch directive
55b62671
AJ
1106@cindex arch directive, x86-64
1107@cindex x86-64 arch directive
e413e4e9
AM
1108
1109@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1110(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1111directive enables a warning when gas detects an instruction that is not
1112supported on the CPU specified. The choices for @var{cpu_type} are:
1113
1114@multitable @columnfractions .20 .20 .20 .20
1115@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1116@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1117@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1118@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
81486035 1119@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1543849b 1120@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1121@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
029f3522 1122@item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1ceab344 1123@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1124@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1125@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1126@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1127@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1128@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1129@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1130@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1131@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1132@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1133@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1134@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1135@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
14f195c9 1136@item @samp{.avx512vbmi} @tab @samp{.clwb} @tab @samp{.pcommit}
1ceab344 1137@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1138@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1139@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
9916071f 1140@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
e413e4e9
AM
1141@end multitable
1142
fddf5b5b
AM
1143Apart from the warning, there are only two other effects on
1144@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1145@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1146will automatically use a two byte opcode sequence. The larger three
1147byte opcode sequence is used on the 486 (and when no architecture is
1148specified) because it executes faster on the 486. Note that you can
1149explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1150Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1151@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1152conditional jumps will be promoted when necessary to a two instruction
1153sequence consisting of a conditional jump of the opposite sense around
1154an unconditional jump to the target.
1155
5c6af06e
JB
1156Following the CPU architecture (but not a sub-architecture, which are those
1157starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1158control automatic promotion of conditional jumps. @samp{jumps} is the
1159default, and enables jump promotion; All external jumps will be of the long
1160variety, and file-local jumps will be promoted as necessary.
1161(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1162byte offset jumps, and warns about file-local conditional jumps that
1163@code{@value{AS}} promotes.
fddf5b5b
AM
1164Unconditional jumps are treated as for @samp{jumps}.
1165
1166For example
1167
1168@smallexample
1169 .arch i8086,nojumps
1170@end smallexample
e413e4e9 1171
5c9352f3
AM
1172@node i386-Bugs
1173@section AT&T Syntax bugs
1174
1175The UnixWare assembler, and probably other AT&T derived ix86 Unix
1176assemblers, generate floating point instructions with reversed source
1177and destination registers in certain cases. Unfortunately, gcc and
1178possibly many other programs use this reversed syntax, so we're stuck
1179with it.
1180
1181For example
1182
1183@smallexample
1184 fsub %st,%st(3)
1185@end smallexample
1186@noindent
1187results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1188than the expected @samp{%st(3) - %st}. This happens with all the
1189non-commutative arithmetic floating point operations with two register
1190operands where the source register is @samp{%st} and the destination
1191register is @samp{%st(i)}.
1192
252b5132
RH
1193@node i386-Notes
1194@section Notes
1195
1196@cindex i386 @code{mul}, @code{imul} instructions
1197@cindex @code{mul} instruction, i386
1198@cindex @code{imul} instruction, i386
55b62671
AJ
1199@cindex @code{mul} instruction, x86-64
1200@cindex @code{imul} instruction, x86-64
252b5132 1201There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1202instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1203multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1204for @samp{imul}) can be output only in the one operand form. Thus,
1205@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1206the expanding multiply would clobber the @samp{%edx} register, and this
1207would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
120864-bit product in @samp{%edx:%eax}.
1209
1210We have added a two operand form of @samp{imul} when the first operand
1211is an immediate mode expression and the second operand is a register.
1212This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1213example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1214$69, %eax, %eax}.
1215
This page took 0.78357 seconds and 4 git commands to generate.