x86: Replace AddrPrefixOp0 with AddrPrefixOpReg
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
219d1afa 1@c Copyright (C) 1991-2018 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
f9233288
JW
77as leal 0(%esi,1),%esi. This switch disables the optimization if a single
78byte nop (0x90) is explicitly specified as the fill byte for alignment.
b3b91714
AM
79
80@cindex @samp{--divide} option, i386
81@item --divide
82On SVR4-derived platforms, the character @samp{/} is treated as a comment
83character, which means that it cannot be used in expressions. The
84@samp{--divide} option turns @samp{/} into a normal character. This does
85not disable @samp{/} at the beginning of a line starting a comment, or
86affect using @samp{#} for starting a comment.
87
9103f4f4
L
88@cindex @samp{-march=} option, i386
89@cindex @samp{-march=} option, x86-64
6305a203
L
90@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91This option specifies the target processor. The assembler will
92issue an error message if an attempt is made to assemble an instruction
93which will not execute on the target processor. The following
34bca508 94processor names are recognized:
9103f4f4
L
95@code{i8086},
96@code{i186},
97@code{i286},
98@code{i386},
99@code{i486},
100@code{i586},
101@code{i686},
102@code{pentium},
103@code{pentiumpro},
104@code{pentiumii},
105@code{pentiumiii},
106@code{pentium4},
107@code{prescott},
108@code{nocona},
ef05d495
L
109@code{core},
110@code{core2},
bd5295b2 111@code{corei7},
8a9036a4 112@code{l1om},
7a9068fe 113@code{k1om},
81486035 114@code{iamcu},
9103f4f4
L
115@code{k6},
116@code{k6_2},
117@code{athlon},
9103f4f4
L
118@code{opteron},
119@code{k8},
1ceab344 120@code{amdfam10},
68339fdf 121@code{bdver1},
af2f724e 122@code{bdver2},
5e5c50d3 123@code{bdver3},
c7b0bd56 124@code{bdver4},
029f3522 125@code{znver1},
7b458c12
L
126@code{btver1},
127@code{btver2},
9103f4f4
L
128@code{generic32} and
129@code{generic64}.
130
34bca508 131In addition to the basic instruction set, the assembler can be told to
6305a203
L
132accept various extension mnemonics. For example,
133@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
134@var{vmx}. The following extensions are currently supported:
309d3373
JB
135@code{8087},
136@code{287},
137@code{387},
1848e567 138@code{687},
309d3373 139@code{no87},
1848e567
L
140@code{no287},
141@code{no387},
142@code{no687},
6305a203 143@code{mmx},
309d3373 144@code{nommx},
6305a203
L
145@code{sse},
146@code{sse2},
147@code{sse3},
148@code{ssse3},
149@code{sse4.1},
150@code{sse4.2},
151@code{sse4},
309d3373 152@code{nosse},
1848e567
L
153@code{nosse2},
154@code{nosse3},
155@code{nossse3},
156@code{nosse4.1},
157@code{nosse4.2},
158@code{nosse4},
c0f3af97 159@code{avx},
6c30d220 160@code{avx2},
1848e567
L
161@code{noavx},
162@code{noavx2},
e2e1fcde
L
163@code{adx},
164@code{rdseed},
165@code{prfchw},
5c111e37 166@code{smap},
7e8b059b 167@code{mpx},
a0046408 168@code{sha},
8bc52696 169@code{rdpid},
6b40c462 170@code{ptwrite},
603555e5 171@code{cet},
48521003 172@code{gfni},
8dcf1fad 173@code{vaes},
ff1982d5 174@code{vpclmulqdq},
1dfc6506
L
175@code{prefetchwt1},
176@code{clflushopt},
177@code{se1},
c5e7287a 178@code{clwb},
43234a1e
L
179@code{avx512f},
180@code{avx512cd},
181@code{avx512er},
182@code{avx512pf},
1dfc6506
L
183@code{avx512vl},
184@code{avx512bw},
185@code{avx512dq},
2cc1b5aa 186@code{avx512ifma},
14f195c9 187@code{avx512vbmi},
920d2ddc 188@code{avx512_4fmaps},
47acf0bd 189@code{avx512_4vnniw},
620214f7 190@code{avx512_vpopcntdq},
53467f57 191@code{avx512_vbmi2},
8cfcb765 192@code{avx512_vnni},
ee6872be 193@code{avx512_bitalg},
144b71e2
L
194@code{noavx512f},
195@code{noavx512cd},
196@code{noavx512er},
197@code{noavx512pf},
198@code{noavx512vl},
199@code{noavx512bw},
200@code{noavx512dq},
201@code{noavx512ifma},
202@code{noavx512vbmi},
920d2ddc 203@code{noavx512_4fmaps},
47acf0bd 204@code{noavx512_4vnniw},
620214f7 205@code{noavx512_vpopcntdq},
53467f57 206@code{noavx512_vbmi2},
8cfcb765 207@code{noavx512_vnni},
ee6872be 208@code{noavx512_bitalg},
6305a203 209@code{vmx},
8729a6f6 210@code{vmfunc},
6305a203 211@code{smx},
f03fe4c1 212@code{xsave},
c7b8aa3a 213@code{xsaveopt},
1dfc6506
L
214@code{xsavec},
215@code{xsaves},
c0f3af97 216@code{aes},
594ab6a3 217@code{pclmul},
c7b8aa3a
L
218@code{fsgsbase},
219@code{rdrnd},
220@code{f16c},
6c30d220 221@code{bmi2},
c0f3af97 222@code{fma},
f1f8f695
L
223@code{movbe},
224@code{ept},
6c30d220 225@code{lzcnt},
42164a71
L
226@code{hle},
227@code{rtm},
6c30d220 228@code{invpcid},
bd5295b2 229@code{clflush},
9916071f 230@code{mwaitx},
029f3522 231@code{clzero},
3233d7d0 232@code{wbnoinvd},
be3a8dca 233@code{pconfig},
de89d0a3 234@code{waitpkg},
c48935d7 235@code{cldemote},
f88c9eb0 236@code{lwp},
5dd85c99
SP
237@code{fma4},
238@code{xop},
60aa667e 239@code{cx16},
bd5295b2 240@code{syscall},
1b7f3fb0 241@code{rdtscp},
6305a203
L
242@code{3dnow},
243@code{3dnowa},
244@code{sse4a},
245@code{sse5},
246@code{svme},
247@code{abm} and
248@code{padlock}.
309d3373
JB
249Note that rather than extending a basic instruction set, the extension
250mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
251
252When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
253@code{.arch} directive will take precedent.
254
255@cindex @samp{-mtune=} option, i386
256@cindex @samp{-mtune=} option, x86-64
257@item -mtune=@var{CPU}
258This option specifies a processor to optimize for. When used in
259conjunction with the @option{-march} option, only instructions
260of the processor specified by the @option{-march} option will be
261generated.
262
6305a203
L
263Valid @var{CPU} values are identical to the processor list of
264@option{-march=@var{CPU}}.
9103f4f4 265
c0f3af97
L
266@cindex @samp{-msse2avx} option, i386
267@cindex @samp{-msse2avx} option, x86-64
268@item -msse2avx
269This option specifies that the assembler should encode SSE instructions
270with VEX prefix.
271
daf50ae7
L
272@cindex @samp{-msse-check=} option, i386
273@cindex @samp{-msse-check=} option, x86-64
274@item -msse-check=@var{none}
1f9bb1ca
AS
275@itemx -msse-check=@var{warning}
276@itemx -msse-check=@var{error}
9aff4b7a 277These options control if the assembler should check SSE instructions.
daf50ae7
L
278@option{-msse-check=@var{none}} will make the assembler not to check SSE
279instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 280will make the assembler issue a warning for any SSE instruction.
daf50ae7 281@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 282for any SSE instruction.
daf50ae7 283
539f890d
L
284@cindex @samp{-mavxscalar=} option, i386
285@cindex @samp{-mavxscalar=} option, x86-64
286@item -mavxscalar=@var{128}
1f9bb1ca 287@itemx -mavxscalar=@var{256}
2aab8acd 288These options control how the assembler should encode scalar AVX
539f890d
L
289instructions. @option{-mavxscalar=@var{128}} will encode scalar
290AVX instructions with 128bit vector length, which is the default.
291@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
292with 256bit vector length.
293
43234a1e
L
294@cindex @samp{-mevexlig=} option, i386
295@cindex @samp{-mevexlig=} option, x86-64
296@item -mevexlig=@var{128}
297@itemx -mevexlig=@var{256}
298@itemx -mevexlig=@var{512}
299These options control how the assembler should encode length-ignored
300(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
301EVEX instructions with 128bit vector length, which is the default.
302@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
303encode LIG EVEX instructions with 256bit and 512bit vector length,
304respectively.
305
306@cindex @samp{-mevexwig=} option, i386
307@cindex @samp{-mevexwig=} option, x86-64
308@item -mevexwig=@var{0}
309@itemx -mevexwig=@var{1}
310These options control how the assembler should encode w-ignored (WIG)
311EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
312EVEX instructions with evex.w = 0, which is the default.
313@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
314evex.w = 1.
315
1efbbeb4
L
316@cindex @samp{-mmnemonic=} option, i386
317@cindex @samp{-mmnemonic=} option, x86-64
318@item -mmnemonic=@var{att}
1f9bb1ca 319@itemx -mmnemonic=@var{intel}
34bca508 320This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
321The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
322take precedent.
323
324@cindex @samp{-msyntax=} option, i386
325@cindex @samp{-msyntax=} option, x86-64
326@item -msyntax=@var{att}
1f9bb1ca 327@itemx -msyntax=@var{intel}
34bca508 328This option specifies instruction syntax when processing instructions.
1efbbeb4
L
329The @code{.att_syntax} and @code{.intel_syntax} directives will
330take precedent.
331
332@cindex @samp{-mnaked-reg} option, i386
333@cindex @samp{-mnaked-reg} option, x86-64
334@item -mnaked-reg
33eaf5de 335This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 336The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 337
7e8b059b
L
338@cindex @samp{-madd-bnd-prefix} option, i386
339@cindex @samp{-madd-bnd-prefix} option, x86-64
340@item -madd-bnd-prefix
341This option forces the assembler to add BND prefix to all branches, even
342if such prefix was not explicitly specified in the source code.
343
8dcea932
L
344@cindex @samp{-mshared} option, i386
345@cindex @samp{-mshared} option, x86-64
346@item -mno-shared
347On ELF target, the assembler normally optimizes out non-PLT relocations
348against defined non-weak global branch targets with default visibility.
349The @samp{-mshared} option tells the assembler to generate code which
350may go into a shared library where all non-weak global branch targets
351with default visibility can be preempted. The resulting code is
352slightly bigger. This option only affects the handling of branch
353instructions.
354
167ad85b
TG
355@cindex @samp{-mbig-obj} option, x86-64
356@item -mbig-obj
357On x86-64 PE/COFF target this option forces the use of big object file
358format, which allows more than 32768 sections.
359
d022bddd
IT
360@cindex @samp{-momit-lock-prefix=} option, i386
361@cindex @samp{-momit-lock-prefix=} option, x86-64
362@item -momit-lock-prefix=@var{no}
363@itemx -momit-lock-prefix=@var{yes}
364These options control how the assembler should encode lock prefix.
365This option is intended as a workaround for processors, that fail on
366lock prefix. This option can only be safely used with single-core,
367single-thread computers
368@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
369@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
370which is the default.
371
e4e00185
AS
372@cindex @samp{-mfence-as-lock-add=} option, i386
373@cindex @samp{-mfence-as-lock-add=} option, x86-64
374@item -mfence-as-lock-add=@var{no}
375@itemx -mfence-as-lock-add=@var{yes}
376These options control how the assembler should encode lfence, mfence and
377sfence.
378@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
379sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
380@samp{lock addl $0x0, (%esp)} in 32-bit mode.
381@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
382sfence as usual, which is the default.
383
0cb4071e
L
384@cindex @samp{-mrelax-relocations=} option, i386
385@cindex @samp{-mrelax-relocations=} option, x86-64
386@item -mrelax-relocations=@var{no}
387@itemx -mrelax-relocations=@var{yes}
388These options control whether the assembler should generate relax
389relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
390R_X86_64_REX_GOTPCRELX, in 64-bit mode.
391@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
392@option{-mrelax-relocations=@var{no}} will not generate relax
393relocations. The default can be controlled by a configure option
394@option{--enable-x86-relax-relocations}.
395
d3d3c6db
IT
396@cindex @samp{-mevexrcig=} option, i386
397@cindex @samp{-mevexrcig=} option, x86-64
398@item -mevexrcig=@var{rne}
399@itemx -mevexrcig=@var{rd}
400@itemx -mevexrcig=@var{ru}
401@itemx -mevexrcig=@var{rz}
402These options control how the assembler should encode SAE-only
403EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
404of EVEX instruction with 00, which is the default.
405@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
406and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
407with 01, 10 and 11 RC bits, respectively.
408
5db04b09
L
409@cindex @samp{-mamd64} option, x86-64
410@cindex @samp{-mintel64} option, x86-64
411@item -mamd64
412@itemx -mintel64
413This option specifies that the assembler should accept only AMD64 or
414Intel64 ISA in 64-bit mode. The default is to accept both.
415
b6f8c7c4
L
416@cindex @samp{-O0} option, i386
417@cindex @samp{-O0} option, x86-64
418@cindex @samp{-O} option, i386
419@cindex @samp{-O} option, x86-64
420@cindex @samp{-O1} option, i386
421@cindex @samp{-O1} option, x86-64
422@cindex @samp{-O2} option, i386
423@cindex @samp{-O2} option, x86-64
424@cindex @samp{-Os} option, i386
425@cindex @samp{-Os} option, x86-64
426@item -O0 | -O | -O1 | -O2 | -Os
427Optimize instruction encoding with smaller instruction size. @samp{-O}
428and @samp{-O1} encode 64-bit register load instructions with 64-bit
429immediate as 32-bit register load instructions with 31-bit or 32-bits
430immediates and encode 64-bit register clearing instructions with 32-bit
431register clearing instructions. @samp{-O2} includes @samp{-O1}
432optimization plus encodes 256-bit and 512-bit vector register clearing
433instructions with 128-bit vector register clearing instructions.
434@samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
435and 64-bit register tests with immediate as 8-bit register test with
436immediate. @samp{-O0} turns off this optimization.
437
55b62671 438@end table
731caf76 439@c man end
e413e4e9 440
a6c24e68
NC
441@node i386-Directives
442@section x86 specific Directives
443
444@cindex machine directives, x86
445@cindex x86 machine directives
446@table @code
447
448@cindex @code{lcomm} directive, COFF
449@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
450Reserve @var{length} (an absolute expression) bytes for a local common
451denoted by @var{symbol}. The section and value of @var{symbol} are
452those of the new local common. The addresses are allocated in the bss
704209c0
NC
453section, so that at run-time the bytes start off zeroed. Since
454@var{symbol} is not declared global, it is normally not visible to
455@code{@value{LD}}. The optional third parameter, @var{alignment},
456specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
457
458This directive is only available for COFF based x86 targets.
459
102e9361
NC
460@cindex @code{largecomm} directive, ELF
461@item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
462This directive behaves in the same way as the @code{comm} directive
463except that the data is placed into the @var{.lbss} section instead of
464the @var{.bss} section @ref{Comm}.
465
466The directive is intended to be used for data which requires a large
467amount of space, and it is only available for ELF based x86_64
468targets.
469
a6c24e68 470@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
a6c24e68
NC
471
472@end table
473
252b5132 474@node i386-Syntax
7c31ae13
NC
475@section i386 Syntactical Considerations
476@menu
477* i386-Variations:: AT&T Syntax versus Intel Syntax
478* i386-Chars:: Special Characters
479@end menu
480
481@node i386-Variations
482@subsection AT&T Syntax versus Intel Syntax
252b5132 483
e413e4e9
AM
484@cindex i386 intel_syntax pseudo op
485@cindex intel_syntax pseudo op, i386
486@cindex i386 att_syntax pseudo op
487@cindex att_syntax pseudo op, i386
252b5132
RH
488@cindex i386 syntax compatibility
489@cindex syntax compatibility, i386
55b62671
AJ
490@cindex x86-64 intel_syntax pseudo op
491@cindex intel_syntax pseudo op, x86-64
492@cindex x86-64 att_syntax pseudo op
493@cindex att_syntax pseudo op, x86-64
494@cindex x86-64 syntax compatibility
495@cindex syntax compatibility, x86-64
e413e4e9
AM
496
497@code{@value{AS}} now supports assembly using Intel assembler syntax.
498@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
499back to the usual AT&T mode for compatibility with the output of
500@code{@value{GCC}}. Either of these directives may have an optional
501argument, @code{prefix}, or @code{noprefix} specifying whether registers
502require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
503different from Intel syntax. We mention these differences because
504almost all 80386 documents use Intel syntax. Notable differences
505between the two syntaxes are:
506
507@cindex immediate operands, i386
508@cindex i386 immediate operands
509@cindex register operands, i386
510@cindex i386 register operands
511@cindex jump/call operands, i386
512@cindex i386 jump/call operands
513@cindex operand delimiters, i386
55b62671
AJ
514
515@cindex immediate operands, x86-64
516@cindex x86-64 immediate operands
517@cindex register operands, x86-64
518@cindex x86-64 register operands
519@cindex jump/call operands, x86-64
520@cindex x86-64 jump/call operands
521@cindex operand delimiters, x86-64
252b5132
RH
522@itemize @bullet
523@item
524AT&T immediate operands are preceded by @samp{$}; Intel immediate
525operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
526AT&T register operands are preceded by @samp{%}; Intel register operands
527are undelimited. AT&T absolute (as opposed to PC relative) jump/call
528operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
529
530@cindex i386 source, destination operands
531@cindex source, destination operands; i386
55b62671
AJ
532@cindex x86-64 source, destination operands
533@cindex source, destination operands; x86-64
252b5132
RH
534@item
535AT&T and Intel syntax use the opposite order for source and destination
536operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
537@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
538previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
539instructions with 2 immediate operands, such as the @samp{enter}
540instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
541
542@cindex mnemonic suffixes, i386
543@cindex sizes operands, i386
544@cindex i386 size suffixes
55b62671
AJ
545@cindex mnemonic suffixes, x86-64
546@cindex sizes operands, x86-64
547@cindex x86-64 size suffixes
252b5132
RH
548@item
549In AT&T syntax the size of memory operands is determined from the last
550character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
551@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
552(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
553this by prefixing memory operands (@emph{not} the instruction mnemonics) with
554@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
555Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
556syntax.
252b5132 557
4b06377f
L
558In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
559instruction with the 64-bit displacement or immediate operand.
560
252b5132
RH
561@cindex return instructions, i386
562@cindex i386 jump, call, return
55b62671
AJ
563@cindex return instructions, x86-64
564@cindex x86-64 jump, call, return
252b5132
RH
565@item
566Immediate form long jumps and calls are
567@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
568Intel syntax is
569@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
570instruction
571is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
572@samp{ret far @var{stack-adjust}}.
573
574@cindex sections, i386
575@cindex i386 sections
55b62671
AJ
576@cindex sections, x86-64
577@cindex x86-64 sections
252b5132
RH
578@item
579The AT&T assembler does not provide support for multiple section
580programs. Unix style systems expect all programs to be single sections.
581@end itemize
582
7c31ae13
NC
583@node i386-Chars
584@subsection Special Characters
585
586@cindex line comment character, i386
587@cindex i386 line comment character
588The presence of a @samp{#} appearing anywhere on a line indicates the
589start of a comment that extends to the end of that line.
590
591If a @samp{#} appears as the first character of a line then the whole
592line is treated as a comment, but in this case the line can also be a
593logical line number directive (@pxref{Comments}) or a preprocessor
594control command (@pxref{Preprocessing}).
595
596If the @option{--divide} command line option has not been specified
597then the @samp{/} character appearing anywhere on a line also
598introduces a line comment.
599
600@cindex line separator, i386
601@cindex statement separator, i386
602@cindex i386 line separator
603The @samp{;} character can be used to separate statements on the same
604line.
605
252b5132 606@node i386-Mnemonics
d3b47e2b
L
607@section i386-Mnemonics
608@subsection Instruction Naming
252b5132
RH
609
610@cindex i386 instruction naming
611@cindex instruction naming, i386
55b62671
AJ
612@cindex x86-64 instruction naming
613@cindex instruction naming, x86-64
614
252b5132 615Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
616specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
617and @samp{q} specify byte, word, long and quadruple word operands. If
618no suffix is specified by an instruction then @code{@value{AS}} tries to
619fill in the missing suffix based on the destination register operand
620(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
621to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
622@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
623assembler which assumes that a missing mnemonic suffix implies long
624operand size. (This incompatibility does not affect compiler output
625since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
626
627Almost all instructions have the same names in AT&T and Intel format.
628There are a few exceptions. The sign extend and zero extend
629instructions need two sizes to specify them. They need a size to
630sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
631is accomplished by using two instruction mnemonic suffixes in AT&T
632syntax. Base names for sign extend and zero extend are
633@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
634and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
635are tacked on to this base name, the @emph{from} suffix before the
636@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
637``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
638thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
639@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
640@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
641quadruple word).
252b5132 642
b6169b20
L
643@cindex encoding options, i386
644@cindex encoding options, x86-64
645
86fa6981
L
646Different encoding options can be specified via pseudo prefixes:
647
648@itemize @bullet
649@item
650@samp{@{disp8@}} -- prefer 8-bit displacement.
651
652@item
653@samp{@{disp32@}} -- prefer 32-bit displacement.
654
655@item
656@samp{@{load@}} -- prefer load-form instruction.
657
658@item
659@samp{@{store@}} -- prefer store-form instruction.
660
661@item
662@samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
663
664@item
665@samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
666
667@item
668@samp{@{evex@}} -- encode with EVEX prefix.
6b6b6807
L
669
670@item
671@samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
672instructions (x86-64 only). Note that this differs from the @samp{rex}
673prefix which generates REX prefix unconditionally.
b6f8c7c4
L
674
675@item
676@samp{@{nooptimize@}} -- disable instruction size optimization.
86fa6981 677@end itemize
b6169b20 678
252b5132
RH
679@cindex conversion instructions, i386
680@cindex i386 conversion instructions
55b62671
AJ
681@cindex conversion instructions, x86-64
682@cindex x86-64 conversion instructions
252b5132
RH
683The Intel-syntax conversion instructions
684
685@itemize @bullet
686@item
687@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
688
689@item
690@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
691
692@item
693@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
694
695@item
696@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
697
698@item
699@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
700(x86-64 only),
701
702@item
d5f0cf92 703@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 704@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
705@end itemize
706
707@noindent
55b62671
AJ
708are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
709@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
710instructions.
252b5132
RH
711
712@cindex jump instructions, i386
713@cindex call instructions, i386
55b62671
AJ
714@cindex jump instructions, x86-64
715@cindex call instructions, x86-64
252b5132
RH
716Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
717AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
718convention.
719
d3b47e2b 720@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
721
722@cindex i386 mnemonic compatibility
723@cindex mnemonic compatibility, i386
724
725@code{@value{AS}} supports assembly using Intel mnemonic.
726@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
727@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
728syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
729Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
730@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
731@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
732assembler with different mnemonics from those in Intel IA32 specification.
733@code{@value{GCC}} generates those instructions with AT&T mnemonic.
734
252b5132
RH
735@node i386-Regs
736@section Register Naming
737
738@cindex i386 registers
739@cindex registers, i386
55b62671
AJ
740@cindex x86-64 registers
741@cindex registers, x86-64
252b5132
RH
742Register operands are always prefixed with @samp{%}. The 80386 registers
743consist of
744
745@itemize @bullet
746@item
747the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
748@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
749frame pointer), and @samp{%esp} (the stack pointer).
750
751@item
752the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
753@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
754
755@item
756the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
757@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
758are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
759@samp{%cx}, and @samp{%dx})
760
761@item
762the 6 section registers @samp{%cs} (code section), @samp{%ds}
763(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
764and @samp{%gs}.
765
766@item
4bde3cdd
UD
767the 5 processor control registers @samp{%cr0}, @samp{%cr2},
768@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
769
770@item
771the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
772@samp{%db3}, @samp{%db6}, and @samp{%db7}.
773
774@item
775the 2 test registers @samp{%tr6} and @samp{%tr7}.
776
777@item
778the 8 floating point register stack @samp{%st} or equivalently
779@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
780@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
781These registers are overloaded by 8 MMX registers @samp{%mm0},
782@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
783@samp{%mm6} and @samp{%mm7}.
784
785@item
4bde3cdd 786the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
787@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
788@end itemize
789
790The AMD x86-64 architecture extends the register set by:
791
792@itemize @bullet
793@item
794enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
795accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
796@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
797pointer)
798
799@item
800the 8 extended registers @samp{%r8}--@samp{%r15}.
801
802@item
4bde3cdd 803the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
804
805@item
4bde3cdd 806the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
807
808@item
4bde3cdd 809the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
810
811@item
812the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
813
814@item
815the 8 debug registers: @samp{%db8}--@samp{%db15}.
816
817@item
4bde3cdd
UD
818the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
819@end itemize
820
821With the AVX extensions more registers were made available:
822
823@itemize @bullet
824
825@item
826the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
827available in 32-bit mode). The bottom 128 bits are overlaid with the
828@samp{xmm0}--@samp{xmm15} registers.
829
830@end itemize
831
832The AVX2 extensions made in 64-bit mode more registers available:
833
834@itemize @bullet
835
836@item
837the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
838registers @samp{%ymm16}--@samp{%ymm31}.
839
840@end itemize
841
842The AVX512 extensions added the following registers:
843
844@itemize @bullet
845
846@item
847the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
848available in 32-bit mode). The bottom 128 bits are overlaid with the
849@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
850overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
851
852@item
853the 8 mask registers @samp{%k0}--@samp{%k7}.
854
252b5132
RH
855@end itemize
856
857@node i386-Prefixes
858@section Instruction Prefixes
859
860@cindex i386 instruction prefixes
861@cindex instruction prefixes, i386
862@cindex prefixes, i386
863Instruction prefixes are used to modify the following instruction. They
864are used to repeat string instructions, to provide section overrides, to
865perform bus lock operations, and to change operand and address sizes.
866(Most instructions that normally operate on 32-bit operands will use
86716-bit operands if the instruction has an ``operand size'' prefix.)
868Instruction prefixes are best written on the same line as the instruction
869they act upon. For example, the @samp{scas} (scan string) instruction is
870repeated with:
871
872@smallexample
873 repne scas %es:(%edi),%al
874@end smallexample
875
876You may also place prefixes on the lines immediately preceding the
877instruction, but this circumvents checks that @code{@value{AS}} does
878with prefixes, and will not work with all prefixes.
879
880Here is a list of instruction prefixes:
881
882@cindex section override prefixes, i386
883@itemize @bullet
884@item
885Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
886@samp{fs}, @samp{gs}. These are automatically added by specifying
887using the @var{section}:@var{memory-operand} form for memory references.
888
889@cindex size prefixes, i386
890@item
891Operand/Address size prefixes @samp{data16} and @samp{addr16}
892change 32-bit operands/addresses into 16-bit operands/addresses,
893while @samp{data32} and @samp{addr32} change 16-bit ones (in a
894@code{.code16} section) into 32-bit operands/addresses. These prefixes
895@emph{must} appear on the same line of code as the instruction they
896modify. For example, in a 16-bit @code{.code16} section, you might
897write:
898
899@smallexample
900 addr32 jmpl *(%ebx)
901@end smallexample
902
903@cindex bus lock prefixes, i386
904@cindex inhibiting interrupts, i386
905@item
906The bus lock prefix @samp{lock} inhibits interrupts during execution of
907the instruction it precedes. (This is only valid with certain
908instructions; see a 80386 manual for details).
909
910@cindex coprocessor wait, i386
911@item
912The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
913complete the current instruction. This should never be needed for the
91480386/80387 combination.
915
916@cindex repeat prefixes, i386
917@item
918The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
919to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
920times if the current address size is 16-bits).
55b62671
AJ
921@cindex REX prefixes, i386
922@item
923The @samp{rex} family of prefixes is used by x86-64 to encode
924extensions to i386 instruction set. The @samp{rex} prefix has four
925bits --- an operand size overwrite (@code{64}) used to change operand size
926from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
927register set.
928
929You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
930instruction emits @samp{rex} prefix with all the bits set. By omitting
931the @code{64}, @code{x}, @code{y} or @code{z} you may write other
932prefixes as well. Normally, there is no need to write the prefixes
933explicitly, since gas will automatically generate them based on the
934instruction operands.
252b5132
RH
935@end itemize
936
937@node i386-Memory
938@section Memory References
939
940@cindex i386 memory references
941@cindex memory references, i386
55b62671
AJ
942@cindex x86-64 memory references
943@cindex memory references, x86-64
252b5132
RH
944An Intel syntax indirect memory reference of the form
945
946@smallexample
947@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
948@end smallexample
949
950@noindent
951is translated into the AT&T syntax
952
953@smallexample
954@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
955@end smallexample
956
957@noindent
958where @var{base} and @var{index} are the optional 32-bit base and
959index registers, @var{disp} is the optional displacement, and
960@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
961to calculate the address of the operand. If no @var{scale} is
962specified, @var{scale} is taken to be 1. @var{section} specifies the
963optional section register for the memory operand, and may override the
964default section register (see a 80386 manual for section register
965defaults). Note that section overrides in AT&T syntax @emph{must}
966be preceded by a @samp{%}. If you specify a section override which
967coincides with the default section register, @code{@value{AS}} does @emph{not}
968output any section register override prefixes to assemble the given
969instruction. Thus, section overrides can be specified to emphasize which
970section register is used for a given memory operand.
971
972Here are some examples of Intel and AT&T style memory references:
973
974@table @asis
975@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
976@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
977missing, and the default section is used (@samp{%ss} for addressing with
978@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
979
980@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
981@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
982@samp{foo}. All other fields are missing. The section register here
983defaults to @samp{%ds}.
984
985@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
986This uses the value pointed to by @samp{foo} as a memory operand.
987Note that @var{base} and @var{index} are both missing, but there is only
988@emph{one} @samp{,}. This is a syntactic exception.
989
990@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
991This selects the contents of the variable @samp{foo} with section
992register @var{section} being @samp{%gs}.
993@end table
994
995Absolute (as opposed to PC relative) call and jump operands must be
996prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
997always chooses PC relative addressing for jump/call labels.
998
999Any instruction that has a memory operand, but no register operand,
55b62671
AJ
1000@emph{must} specify its size (byte, word, long, or quadruple) with an
1001instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1002respectively).
1003
1004The x86-64 architecture adds an RIP (instruction pointer relative)
1005addressing. This addressing mode is specified by using @samp{rip} as a
1006base register. Only constant offsets are valid. For example:
1007
1008@table @asis
1009@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1010Points to the address 1234 bytes past the end of the current
1011instruction.
1012
1013@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1014Points to the @code{symbol} in RIP relative way, this is shorter than
1015the default absolute addressing.
1016@end table
1017
1018Other addressing modes remain unchanged in x86-64 architecture, except
1019registers used are 64-bit instead of 32-bit.
252b5132 1020
fddf5b5b 1021@node i386-Jumps
252b5132
RH
1022@section Handling of Jump Instructions
1023
1024@cindex jump optimization, i386
1025@cindex i386 jump optimization
55b62671
AJ
1026@cindex jump optimization, x86-64
1027@cindex x86-64 jump optimization
252b5132
RH
1028Jump instructions are always optimized to use the smallest possible
1029displacements. This is accomplished by using byte (8-bit) displacement
1030jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 1031is insufficient a long displacement is used. We do not support
252b5132
RH
1032word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1033instruction with the @samp{data16} instruction prefix), since the 80386
1034insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 1035is added. (See also @pxref{i386-Arch})
252b5132
RH
1036
1037Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1038@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1039displacements, so that if you use these instructions (@code{@value{GCC}} does
1040not use them) you may get an error message (and incorrect code). The AT&T
104180386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1042to
1043
1044@smallexample
1045 jcxz cx_zero
1046 jmp cx_nonzero
1047cx_zero: jmp foo
1048cx_nonzero:
1049@end smallexample
1050
1051@node i386-Float
1052@section Floating Point
1053
1054@cindex i386 floating point
1055@cindex floating point, i386
55b62671
AJ
1056@cindex x86-64 floating point
1057@cindex floating point, x86-64
252b5132
RH
1058All 80387 floating point types except packed BCD are supported.
1059(BCD support may be added without much difficulty). These data
1060types are 16-, 32-, and 64- bit integers, and single (32-bit),
1061double (64-bit), and extended (80-bit) precision floating point.
1062Each supported type has an instruction mnemonic suffix and a constructor
1063associated with it. Instruction mnemonic suffixes specify the operand's
1064data type. Constructors build these data types into memory.
1065
1066@cindex @code{float} directive, i386
1067@cindex @code{single} directive, i386
1068@cindex @code{double} directive, i386
1069@cindex @code{tfloat} directive, i386
55b62671
AJ
1070@cindex @code{float} directive, x86-64
1071@cindex @code{single} directive, x86-64
1072@cindex @code{double} directive, x86-64
1073@cindex @code{tfloat} directive, x86-64
252b5132
RH
1074@itemize @bullet
1075@item
1076Floating point constructors are @samp{.float} or @samp{.single},
1077@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1078These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1079and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1080only supports this format via the @samp{fldt} (load 80-bit real to stack
1081top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1082
1083@cindex @code{word} directive, i386
1084@cindex @code{long} directive, i386
1085@cindex @code{int} directive, i386
1086@cindex @code{quad} directive, i386
55b62671
AJ
1087@cindex @code{word} directive, x86-64
1088@cindex @code{long} directive, x86-64
1089@cindex @code{int} directive, x86-64
1090@cindex @code{quad} directive, x86-64
252b5132
RH
1091@item
1092Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1093@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1094corresponding instruction mnemonic suffixes are @samp{s} (single),
1095@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1096the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1097quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1098stack) instructions.
1099@end itemize
1100
1101Register to register operations should not use instruction mnemonic suffixes.
1102@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1103wrote @samp{fst %st, %st(1)}, since all register to register operations
1104use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1105which converts @samp{%st} from 80-bit to 64-bit floating point format,
1106then stores the result in the 4 byte location @samp{mem})
1107
1108@node i386-SIMD
1109@section Intel's MMX and AMD's 3DNow! SIMD Operations
1110
1111@cindex MMX, i386
1112@cindex 3DNow!, i386
1113@cindex SIMD, i386
55b62671
AJ
1114@cindex MMX, x86-64
1115@cindex 3DNow!, x86-64
1116@cindex SIMD, x86-64
252b5132
RH
1117
1118@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1119instructions for integer data), available on Intel's Pentium MMX
1120processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1121Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1122instruction set (SIMD instructions for 32-bit floating point data)
1123available on AMD's K6-2 processor and possibly others in the future.
1124
1125Currently, @code{@value{AS}} does not support Intel's floating point
1126SIMD, Katmai (KNI).
1127
1128The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1129@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
113016-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1131floating point values. The MMX registers cannot be used at the same time
1132as the floating point stack.
1133
1134See Intel and AMD documentation, keeping in mind that the operand order in
1135instructions is reversed from the Intel syntax.
1136
f88c9eb0
SP
1137@node i386-LWP
1138@section AMD's Lightweight Profiling Instructions
1139
1140@cindex LWP, i386
1141@cindex LWP, x86-64
1142
1143@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1144instruction set, available on AMD's Family 15h (Orochi) processors.
1145
1146LWP enables applications to collect and manage performance data, and
1147react to performance events. The collection of performance data
1148requires no context switches. LWP runs in the context of a thread and
1149so several counters can be used independently across multiple threads.
1150LWP can be used in both 64-bit and legacy 32-bit modes.
1151
1152For detailed information on the LWP instruction set, see the
1153@cite{AMD Lightweight Profiling Specification} available at
1154@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1155
87973e9f
QN
1156@node i386-BMI
1157@section Bit Manipulation Instructions
1158
1159@cindex BMI, i386
1160@cindex BMI, x86-64
1161
1162@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1163
1164BMI instructions provide several instructions implementing individual
1165bit manipulation operations such as isolation, masking, setting, or
34bca508 1166resetting.
87973e9f
QN
1167
1168@c Need to add a specification citation here when available.
1169
2a2a0f38
QN
1170@node i386-TBM
1171@section AMD's Trailing Bit Manipulation Instructions
1172
1173@cindex TBM, i386
1174@cindex TBM, x86-64
1175
1176@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1177instruction set, available on AMD's BDVER2 processors (Trinity and
1178Viperfish).
1179
1180TBM instructions provide instructions implementing individual bit
1181manipulation operations such as isolating, masking, setting, resetting,
1182complementing, and operations on trailing zeros and ones.
1183
1184@c Need to add a specification citation here when available.
87973e9f 1185
252b5132
RH
1186@node i386-16bit
1187@section Writing 16-bit Code
1188
1189@cindex i386 16-bit code
1190@cindex 16-bit code, i386
1191@cindex real-mode code, i386
eecb386c 1192@cindex @code{code16gcc} directive, i386
252b5132
RH
1193@cindex @code{code16} directive, i386
1194@cindex @code{code32} directive, i386
55b62671
AJ
1195@cindex @code{code64} directive, i386
1196@cindex @code{code64} directive, x86-64
1197While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1198or 64-bit x86-64 code depending on the default configuration,
252b5132 1199it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1200mode code segments. To do this, put a @samp{.code16} or
1201@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1202be run in 16-bit mode. You can switch @code{@value{AS}} to writing
120332-bit code with the @samp{.code32} directive or 64-bit code with the
1204@samp{.code64} directive.
eecb386c
AM
1205
1206@samp{.code16gcc} provides experimental support for generating 16-bit
1207code from gcc, and differs from @samp{.code16} in that @samp{call},
1208@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1209@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1210default to 32-bit size. This is so that the stack pointer is
1211manipulated in the same way over function calls, allowing access to
1212function parameters at the same stack offsets as in 32-bit mode.
1213@samp{.code16gcc} also automatically adds address size prefixes where
1214necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1215
1216The code which @code{@value{AS}} generates in 16-bit mode will not
1217necessarily run on a 16-bit pre-80386 processor. To write code that
1218runs on such a processor, you must refrain from using @emph{any} 32-bit
1219constructs which require @code{@value{AS}} to output address or operand
1220size prefixes.
1221
1222Note that writing 16-bit code instructions by explicitly specifying a
1223prefix or an instruction mnemonic suffix within a 32-bit code section
1224generates different machine instructions than those generated for a
122516-bit code segment. In a 32-bit code section, the following code
1226generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1227value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1228
1229@smallexample
1230 pushw $4
1231@end smallexample
1232
1233The same code in a 16-bit code section would generate the machine
b45619c0 1234opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1235is correct since the processor default operand size is assumed to be 16
1236bits in a 16-bit code section.
1237
e413e4e9
AM
1238@node i386-Arch
1239@section Specifying CPU Architecture
1240
1241@cindex arch directive, i386
1242@cindex i386 arch directive
55b62671
AJ
1243@cindex arch directive, x86-64
1244@cindex x86-64 arch directive
e413e4e9
AM
1245
1246@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1247(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1248directive enables a warning when gas detects an instruction that is not
1249supported on the CPU specified. The choices for @var{cpu_type} are:
1250
1251@multitable @columnfractions .20 .20 .20 .20
1252@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1253@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1254@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1255@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
81486035 1256@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1543849b 1257@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1258@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
029f3522 1259@item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1ceab344 1260@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1261@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1262@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1263@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1264@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1265@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1266@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1267@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1268@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1269@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1270@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1271@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1272@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1273@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
8cfcb765 1274@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
ee6872be 1275@item @samp{.avx512_bitalg}
d777820b 1276@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
c48935d7 1277@item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
d777820b 1278@item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1ceab344 1279@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1280@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1281@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
d777820b 1282@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
e413e4e9
AM
1283@end multitable
1284
fddf5b5b
AM
1285Apart from the warning, there are only two other effects on
1286@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1287@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1288will automatically use a two byte opcode sequence. The larger three
1289byte opcode sequence is used on the 486 (and when no architecture is
1290specified) because it executes faster on the 486. Note that you can
1291explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1292Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1293@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1294conditional jumps will be promoted when necessary to a two instruction
1295sequence consisting of a conditional jump of the opposite sense around
1296an unconditional jump to the target.
1297
5c6af06e
JB
1298Following the CPU architecture (but not a sub-architecture, which are those
1299starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1300control automatic promotion of conditional jumps. @samp{jumps} is the
1301default, and enables jump promotion; All external jumps will be of the long
1302variety, and file-local jumps will be promoted as necessary.
1303(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1304byte offset jumps, and warns about file-local conditional jumps that
1305@code{@value{AS}} promotes.
fddf5b5b
AM
1306Unconditional jumps are treated as for @samp{jumps}.
1307
1308For example
1309
1310@smallexample
1311 .arch i8086,nojumps
1312@end smallexample
e413e4e9 1313
5c9352f3
AM
1314@node i386-Bugs
1315@section AT&T Syntax bugs
1316
1317The UnixWare assembler, and probably other AT&T derived ix86 Unix
1318assemblers, generate floating point instructions with reversed source
1319and destination registers in certain cases. Unfortunately, gcc and
1320possibly many other programs use this reversed syntax, so we're stuck
1321with it.
1322
1323For example
1324
1325@smallexample
1326 fsub %st,%st(3)
1327@end smallexample
1328@noindent
1329results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1330than the expected @samp{%st(3) - %st}. This happens with all the
1331non-commutative arithmetic floating point operations with two register
1332operands where the source register is @samp{%st} and the destination
1333register is @samp{%st(i)}.
1334
252b5132
RH
1335@node i386-Notes
1336@section Notes
1337
1338@cindex i386 @code{mul}, @code{imul} instructions
1339@cindex @code{mul} instruction, i386
1340@cindex @code{imul} instruction, i386
55b62671
AJ
1341@cindex @code{mul} instruction, x86-64
1342@cindex @code{imul} instruction, x86-64
252b5132 1343There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1344instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1345multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1346for @samp{imul}) can be output only in the one operand form. Thus,
1347@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1348the expanding multiply would clobber the @samp{%edx} register, and this
1349would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
135064-bit product in @samp{%edx:%eax}.
1351
1352We have added a two operand form of @samp{imul} when the first operand
1353is an immediate mode expression and the second operand is a register.
1354This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1355example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1356$69, %eax, %eax}.
1357
This page took 1.120608 seconds and 4 git commands to generate.