*** empty log message ***
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
2da5c037
AM
1@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
2@c 2001, 2003, 2004
f7e42eb4 3@c Free Software Foundation, Inc.
252b5132
RH
4@c This is part of the GAS manual.
5@c For copying conditions, see the file as.texinfo.
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
17@cindex i80306 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
26* i386-Syntax:: AT&T Syntax versus Intel Syntax
27* i386-Mnemonics:: Instruction Naming
28* i386-Regs:: Register Naming
29* i386-Prefixes:: Instruction Prefixes
30* i386-Memory:: Memory References
fddf5b5b 31* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
32* i386-Float:: Floating Point
33* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
34* i386-16bit:: Writing 16-bit Code
e413e4e9 35* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
36* i386-Bugs:: AT&T Syntax bugs
37* i386-Notes:: Notes
38@end menu
39
40@node i386-Options
41@section Options
42
55b62671
AJ
43@cindex options for i386
44@cindex options for x86-64
45@cindex i386 options
46@cindex x86-64 options
47
48The i386 version of @code{@value{AS}} has a few machine
49dependent options:
50
51@table @code
52@cindex @samp{--32} option, i386
53@cindex @samp{--32} option, x86-64
54@cindex @samp{--64} option, i386
55@cindex @samp{--64} option, x86-64
56@item --32 | --64
57Select the word size, either 32 bits or 64 bits. Selecting 32-bit
58implies Intel i386 architecture, while 64-bit implies AMD x86-64
59architecture.
60
61These options are only available with the ELF object file format, and
62require that the necessary BFD support has been included (on a 32-bit
63platform you have to add --enable-64-bit-bfd to configure enable 64-bit
64usage and use x86-64 as target platform).
12b55ccc
L
65
66@item -n
67By default, x86 GAS replaces multiple nop instructions used for
68alignment within code sections with multi-byte nop instructions such
69as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
70
71@cindex @samp{--divide} option, i386
72@item --divide
73On SVR4-derived platforms, the character @samp{/} is treated as a comment
74character, which means that it cannot be used in expressions. The
75@samp{--divide} option turns @samp{/} into a normal character. This does
76not disable @samp{/} at the beginning of a line starting a comment, or
77affect using @samp{#} for starting a comment.
78
9103f4f4
L
79@cindex @samp{-march=} option, i386
80@cindex @samp{-march=} option, x86-64
81@item -march=@var{CPU}
82This option specifies an instruction set architecture for generating
83instructions. The following architectures are recognized:
84@code{i8086},
85@code{i186},
86@code{i286},
87@code{i386},
88@code{i486},
89@code{i586},
90@code{i686},
91@code{pentium},
92@code{pentiumpro},
93@code{pentiumii},
94@code{pentiumiii},
95@code{pentium4},
96@code{prescott},
97@code{nocona},
ef05d495
L
98@code{core},
99@code{core2},
9103f4f4
L
100@code{k6},
101@code{k6_2},
102@code{athlon},
103@code{sledgehammer},
104@code{opteron},
105@code{k8},
106@code{generic32} and
107@code{generic64}.
108
109This option only affects instructions generated by the assembler. The
110@code{.arch} directive will take precedent.
111
112@cindex @samp{-mtune=} option, i386
113@cindex @samp{-mtune=} option, x86-64
114@item -mtune=@var{CPU}
115This option specifies a processor to optimize for. When used in
116conjunction with the @option{-march} option, only instructions
117of the processor specified by the @option{-march} option will be
118generated.
119
120Valid @var{CPU} values are identical to @option{-march=@var{CPU}}.
121
55b62671 122@end table
e413e4e9 123
252b5132
RH
124@node i386-Syntax
125@section AT&T Syntax versus Intel Syntax
126
e413e4e9
AM
127@cindex i386 intel_syntax pseudo op
128@cindex intel_syntax pseudo op, i386
129@cindex i386 att_syntax pseudo op
130@cindex att_syntax pseudo op, i386
252b5132
RH
131@cindex i386 syntax compatibility
132@cindex syntax compatibility, i386
55b62671
AJ
133@cindex x86-64 intel_syntax pseudo op
134@cindex intel_syntax pseudo op, x86-64
135@cindex x86-64 att_syntax pseudo op
136@cindex att_syntax pseudo op, x86-64
137@cindex x86-64 syntax compatibility
138@cindex syntax compatibility, x86-64
e413e4e9
AM
139
140@code{@value{AS}} now supports assembly using Intel assembler syntax.
141@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
142back to the usual AT&T mode for compatibility with the output of
143@code{@value{GCC}}. Either of these directives may have an optional
144argument, @code{prefix}, or @code{noprefix} specifying whether registers
145require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
146different from Intel syntax. We mention these differences because
147almost all 80386 documents use Intel syntax. Notable differences
148between the two syntaxes are:
149
150@cindex immediate operands, i386
151@cindex i386 immediate operands
152@cindex register operands, i386
153@cindex i386 register operands
154@cindex jump/call operands, i386
155@cindex i386 jump/call operands
156@cindex operand delimiters, i386
55b62671
AJ
157
158@cindex immediate operands, x86-64
159@cindex x86-64 immediate operands
160@cindex register operands, x86-64
161@cindex x86-64 register operands
162@cindex jump/call operands, x86-64
163@cindex x86-64 jump/call operands
164@cindex operand delimiters, x86-64
252b5132
RH
165@itemize @bullet
166@item
167AT&T immediate operands are preceded by @samp{$}; Intel immediate
168operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
169AT&T register operands are preceded by @samp{%}; Intel register operands
170are undelimited. AT&T absolute (as opposed to PC relative) jump/call
171operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
172
173@cindex i386 source, destination operands
174@cindex source, destination operands; i386
55b62671
AJ
175@cindex x86-64 source, destination operands
176@cindex source, destination operands; x86-64
252b5132
RH
177@item
178AT&T and Intel syntax use the opposite order for source and destination
179operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
180@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
181previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
182instructions with 2 immediate operands, such as the @samp{enter}
183instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
184
185@cindex mnemonic suffixes, i386
186@cindex sizes operands, i386
187@cindex i386 size suffixes
55b62671
AJ
188@cindex mnemonic suffixes, x86-64
189@cindex sizes operands, x86-64
190@cindex x86-64 size suffixes
252b5132
RH
191@item
192In AT&T syntax the size of memory operands is determined from the last
193character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
194@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
195(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
196this by prefixing memory operands (@emph{not} the instruction mnemonics) with
197@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
198Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
199syntax.
252b5132
RH
200
201@cindex return instructions, i386
202@cindex i386 jump, call, return
55b62671
AJ
203@cindex return instructions, x86-64
204@cindex x86-64 jump, call, return
252b5132
RH
205@item
206Immediate form long jumps and calls are
207@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
208Intel syntax is
209@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
210instruction
211is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
212@samp{ret far @var{stack-adjust}}.
213
214@cindex sections, i386
215@cindex i386 sections
55b62671
AJ
216@cindex sections, x86-64
217@cindex x86-64 sections
252b5132
RH
218@item
219The AT&T assembler does not provide support for multiple section
220programs. Unix style systems expect all programs to be single sections.
221@end itemize
222
223@node i386-Mnemonics
224@section Instruction Naming
225
226@cindex i386 instruction naming
227@cindex instruction naming, i386
55b62671
AJ
228@cindex x86-64 instruction naming
229@cindex instruction naming, x86-64
230
252b5132 231Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
232specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
233and @samp{q} specify byte, word, long and quadruple word operands. If
234no suffix is specified by an instruction then @code{@value{AS}} tries to
235fill in the missing suffix based on the destination register operand
236(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
237to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
238@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
239assembler which assumes that a missing mnemonic suffix implies long
240operand size. (This incompatibility does not affect compiler output
241since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
242
243Almost all instructions have the same names in AT&T and Intel format.
244There are a few exceptions. The sign extend and zero extend
245instructions need two sizes to specify them. They need a size to
246sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
247is accomplished by using two instruction mnemonic suffixes in AT&T
248syntax. Base names for sign extend and zero extend are
249@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
250and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
251are tacked on to this base name, the @emph{from} suffix before the
252@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
253``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
254thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
255@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
256@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
257quadruple word).
252b5132
RH
258
259@cindex conversion instructions, i386
260@cindex i386 conversion instructions
55b62671
AJ
261@cindex conversion instructions, x86-64
262@cindex x86-64 conversion instructions
252b5132
RH
263The Intel-syntax conversion instructions
264
265@itemize @bullet
266@item
267@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
268
269@item
270@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
271
272@item
273@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
274
275@item
276@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
277
278@item
279@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
280(x86-64 only),
281
282@item
d5f0cf92 283@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 284@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
285@end itemize
286
287@noindent
55b62671
AJ
288are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
289@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
290instructions.
252b5132
RH
291
292@cindex jump instructions, i386
293@cindex call instructions, i386
55b62671
AJ
294@cindex jump instructions, x86-64
295@cindex call instructions, x86-64
252b5132
RH
296Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
297AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
298convention.
299
300@node i386-Regs
301@section Register Naming
302
303@cindex i386 registers
304@cindex registers, i386
55b62671
AJ
305@cindex x86-64 registers
306@cindex registers, x86-64
252b5132
RH
307Register operands are always prefixed with @samp{%}. The 80386 registers
308consist of
309
310@itemize @bullet
311@item
312the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
313@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
314frame pointer), and @samp{%esp} (the stack pointer).
315
316@item
317the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
318@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
319
320@item
321the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
322@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
323are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
324@samp{%cx}, and @samp{%dx})
325
326@item
327the 6 section registers @samp{%cs} (code section), @samp{%ds}
328(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
329and @samp{%gs}.
330
331@item
332the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
333@samp{%cr3}.
334
335@item
336the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
337@samp{%db3}, @samp{%db6}, and @samp{%db7}.
338
339@item
340the 2 test registers @samp{%tr6} and @samp{%tr7}.
341
342@item
343the 8 floating point register stack @samp{%st} or equivalently
344@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
345@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
346These registers are overloaded by 8 MMX registers @samp{%mm0},
347@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
348@samp{%mm6} and @samp{%mm7}.
349
350@item
351the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
352@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
353@end itemize
354
355The AMD x86-64 architecture extends the register set by:
356
357@itemize @bullet
358@item
359enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
360accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
361@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
362pointer)
363
364@item
365the 8 extended registers @samp{%r8}--@samp{%r15}.
366
367@item
368the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
369
370@item
371the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
372
373@item
374the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
375
376@item
377the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
378
379@item
380the 8 debug registers: @samp{%db8}--@samp{%db15}.
381
382@item
383the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
384@end itemize
385
386@node i386-Prefixes
387@section Instruction Prefixes
388
389@cindex i386 instruction prefixes
390@cindex instruction prefixes, i386
391@cindex prefixes, i386
392Instruction prefixes are used to modify the following instruction. They
393are used to repeat string instructions, to provide section overrides, to
394perform bus lock operations, and to change operand and address sizes.
395(Most instructions that normally operate on 32-bit operands will use
39616-bit operands if the instruction has an ``operand size'' prefix.)
397Instruction prefixes are best written on the same line as the instruction
398they act upon. For example, the @samp{scas} (scan string) instruction is
399repeated with:
400
401@smallexample
402 repne scas %es:(%edi),%al
403@end smallexample
404
405You may also place prefixes on the lines immediately preceding the
406instruction, but this circumvents checks that @code{@value{AS}} does
407with prefixes, and will not work with all prefixes.
408
409Here is a list of instruction prefixes:
410
411@cindex section override prefixes, i386
412@itemize @bullet
413@item
414Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
415@samp{fs}, @samp{gs}. These are automatically added by specifying
416using the @var{section}:@var{memory-operand} form for memory references.
417
418@cindex size prefixes, i386
419@item
420Operand/Address size prefixes @samp{data16} and @samp{addr16}
421change 32-bit operands/addresses into 16-bit operands/addresses,
422while @samp{data32} and @samp{addr32} change 16-bit ones (in a
423@code{.code16} section) into 32-bit operands/addresses. These prefixes
424@emph{must} appear on the same line of code as the instruction they
425modify. For example, in a 16-bit @code{.code16} section, you might
426write:
427
428@smallexample
429 addr32 jmpl *(%ebx)
430@end smallexample
431
432@cindex bus lock prefixes, i386
433@cindex inhibiting interrupts, i386
434@item
435The bus lock prefix @samp{lock} inhibits interrupts during execution of
436the instruction it precedes. (This is only valid with certain
437instructions; see a 80386 manual for details).
438
439@cindex coprocessor wait, i386
440@item
441The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
442complete the current instruction. This should never be needed for the
44380386/80387 combination.
444
445@cindex repeat prefixes, i386
446@item
447The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
448to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
449times if the current address size is 16-bits).
55b62671
AJ
450@cindex REX prefixes, i386
451@item
452The @samp{rex} family of prefixes is used by x86-64 to encode
453extensions to i386 instruction set. The @samp{rex} prefix has four
454bits --- an operand size overwrite (@code{64}) used to change operand size
455from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
456register set.
457
458You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
459instruction emits @samp{rex} prefix with all the bits set. By omitting
460the @code{64}, @code{x}, @code{y} or @code{z} you may write other
461prefixes as well. Normally, there is no need to write the prefixes
462explicitly, since gas will automatically generate them based on the
463instruction operands.
252b5132
RH
464@end itemize
465
466@node i386-Memory
467@section Memory References
468
469@cindex i386 memory references
470@cindex memory references, i386
55b62671
AJ
471@cindex x86-64 memory references
472@cindex memory references, x86-64
252b5132
RH
473An Intel syntax indirect memory reference of the form
474
475@smallexample
476@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
477@end smallexample
478
479@noindent
480is translated into the AT&T syntax
481
482@smallexample
483@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
484@end smallexample
485
486@noindent
487where @var{base} and @var{index} are the optional 32-bit base and
488index registers, @var{disp} is the optional displacement, and
489@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
490to calculate the address of the operand. If no @var{scale} is
491specified, @var{scale} is taken to be 1. @var{section} specifies the
492optional section register for the memory operand, and may override the
493default section register (see a 80386 manual for section register
494defaults). Note that section overrides in AT&T syntax @emph{must}
495be preceded by a @samp{%}. If you specify a section override which
496coincides with the default section register, @code{@value{AS}} does @emph{not}
497output any section register override prefixes to assemble the given
498instruction. Thus, section overrides can be specified to emphasize which
499section register is used for a given memory operand.
500
501Here are some examples of Intel and AT&T style memory references:
502
503@table @asis
504@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
505@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
506missing, and the default section is used (@samp{%ss} for addressing with
507@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
508
509@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
510@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
511@samp{foo}. All other fields are missing. The section register here
512defaults to @samp{%ds}.
513
514@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
515This uses the value pointed to by @samp{foo} as a memory operand.
516Note that @var{base} and @var{index} are both missing, but there is only
517@emph{one} @samp{,}. This is a syntactic exception.
518
519@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
520This selects the contents of the variable @samp{foo} with section
521register @var{section} being @samp{%gs}.
522@end table
523
524Absolute (as opposed to PC relative) call and jump operands must be
525prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
526always chooses PC relative addressing for jump/call labels.
527
528Any instruction that has a memory operand, but no register operand,
55b62671
AJ
529@emph{must} specify its size (byte, word, long, or quadruple) with an
530instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
531respectively).
532
533The x86-64 architecture adds an RIP (instruction pointer relative)
534addressing. This addressing mode is specified by using @samp{rip} as a
535base register. Only constant offsets are valid. For example:
536
537@table @asis
538@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
539Points to the address 1234 bytes past the end of the current
540instruction.
541
542@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
543Points to the @code{symbol} in RIP relative way, this is shorter than
544the default absolute addressing.
545@end table
546
547Other addressing modes remain unchanged in x86-64 architecture, except
548registers used are 64-bit instead of 32-bit.
252b5132 549
fddf5b5b 550@node i386-Jumps
252b5132
RH
551@section Handling of Jump Instructions
552
553@cindex jump optimization, i386
554@cindex i386 jump optimization
55b62671
AJ
555@cindex jump optimization, x86-64
556@cindex x86-64 jump optimization
252b5132
RH
557Jump instructions are always optimized to use the smallest possible
558displacements. This is accomplished by using byte (8-bit) displacement
559jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 560is insufficient a long displacement is used. We do not support
252b5132
RH
561word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
562instruction with the @samp{data16} instruction prefix), since the 80386
563insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 564is added. (See also @pxref{i386-Arch})
252b5132
RH
565
566Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
567@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
568displacements, so that if you use these instructions (@code{@value{GCC}} does
569not use them) you may get an error message (and incorrect code). The AT&T
57080386 assembler tries to get around this problem by expanding @samp{jcxz foo}
571to
572
573@smallexample
574 jcxz cx_zero
575 jmp cx_nonzero
576cx_zero: jmp foo
577cx_nonzero:
578@end smallexample
579
580@node i386-Float
581@section Floating Point
582
583@cindex i386 floating point
584@cindex floating point, i386
55b62671
AJ
585@cindex x86-64 floating point
586@cindex floating point, x86-64
252b5132
RH
587All 80387 floating point types except packed BCD are supported.
588(BCD support may be added without much difficulty). These data
589types are 16-, 32-, and 64- bit integers, and single (32-bit),
590double (64-bit), and extended (80-bit) precision floating point.
591Each supported type has an instruction mnemonic suffix and a constructor
592associated with it. Instruction mnemonic suffixes specify the operand's
593data type. Constructors build these data types into memory.
594
595@cindex @code{float} directive, i386
596@cindex @code{single} directive, i386
597@cindex @code{double} directive, i386
598@cindex @code{tfloat} directive, i386
55b62671
AJ
599@cindex @code{float} directive, x86-64
600@cindex @code{single} directive, x86-64
601@cindex @code{double} directive, x86-64
602@cindex @code{tfloat} directive, x86-64
252b5132
RH
603@itemize @bullet
604@item
605Floating point constructors are @samp{.float} or @samp{.single},
606@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
607These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
608and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
609only supports this format via the @samp{fldt} (load 80-bit real to stack
610top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
611
612@cindex @code{word} directive, i386
613@cindex @code{long} directive, i386
614@cindex @code{int} directive, i386
615@cindex @code{quad} directive, i386
55b62671
AJ
616@cindex @code{word} directive, x86-64
617@cindex @code{long} directive, x86-64
618@cindex @code{int} directive, x86-64
619@cindex @code{quad} directive, x86-64
252b5132
RH
620@item
621Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
622@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
623corresponding instruction mnemonic suffixes are @samp{s} (single),
624@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
625the 64-bit @samp{q} format is only present in the @samp{fildq} (load
626quad integer to stack top) and @samp{fistpq} (store quad integer and pop
627stack) instructions.
628@end itemize
629
630Register to register operations should not use instruction mnemonic suffixes.
631@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
632wrote @samp{fst %st, %st(1)}, since all register to register operations
633use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
634which converts @samp{%st} from 80-bit to 64-bit floating point format,
635then stores the result in the 4 byte location @samp{mem})
636
637@node i386-SIMD
638@section Intel's MMX and AMD's 3DNow! SIMD Operations
639
640@cindex MMX, i386
641@cindex 3DNow!, i386
642@cindex SIMD, i386
55b62671
AJ
643@cindex MMX, x86-64
644@cindex 3DNow!, x86-64
645@cindex SIMD, x86-64
252b5132
RH
646
647@code{@value{AS}} supports Intel's MMX instruction set (SIMD
648instructions for integer data), available on Intel's Pentium MMX
649processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 650Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
651instruction set (SIMD instructions for 32-bit floating point data)
652available on AMD's K6-2 processor and possibly others in the future.
653
654Currently, @code{@value{AS}} does not support Intel's floating point
655SIMD, Katmai (KNI).
656
657The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
658@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
65916-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
660floating point values. The MMX registers cannot be used at the same time
661as the floating point stack.
662
663See Intel and AMD documentation, keeping in mind that the operand order in
664instructions is reversed from the Intel syntax.
665
666@node i386-16bit
667@section Writing 16-bit Code
668
669@cindex i386 16-bit code
670@cindex 16-bit code, i386
671@cindex real-mode code, i386
eecb386c 672@cindex @code{code16gcc} directive, i386
252b5132
RH
673@cindex @code{code16} directive, i386
674@cindex @code{code32} directive, i386
55b62671
AJ
675@cindex @code{code64} directive, i386
676@cindex @code{code64} directive, x86-64
677While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
678or 64-bit x86-64 code depending on the default configuration,
252b5132 679it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
680mode code segments. To do this, put a @samp{.code16} or
681@samp{.code16gcc} directive before the assembly language instructions to
682be run in 16-bit mode. You can switch @code{@value{AS}} back to writing
683normal 32-bit code with the @samp{.code32} directive.
684
685@samp{.code16gcc} provides experimental support for generating 16-bit
686code from gcc, and differs from @samp{.code16} in that @samp{call},
687@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
688@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
689default to 32-bit size. This is so that the stack pointer is
690manipulated in the same way over function calls, allowing access to
691function parameters at the same stack offsets as in 32-bit mode.
692@samp{.code16gcc} also automatically adds address size prefixes where
693necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
694
695The code which @code{@value{AS}} generates in 16-bit mode will not
696necessarily run on a 16-bit pre-80386 processor. To write code that
697runs on such a processor, you must refrain from using @emph{any} 32-bit
698constructs which require @code{@value{AS}} to output address or operand
699size prefixes.
700
701Note that writing 16-bit code instructions by explicitly specifying a
702prefix or an instruction mnemonic suffix within a 32-bit code section
703generates different machine instructions than those generated for a
70416-bit code segment. In a 32-bit code section, the following code
705generates the machine opcode bytes @samp{66 6a 04}, which pushes the
706value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
707
708@smallexample
709 pushw $4
710@end smallexample
711
712The same code in a 16-bit code section would generate the machine
b45619c0 713opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
714is correct since the processor default operand size is assumed to be 16
715bits in a 16-bit code section.
716
717@node i386-Bugs
718@section AT&T Syntax bugs
719
720The UnixWare assembler, and probably other AT&T derived ix86 Unix
721assemblers, generate floating point instructions with reversed source
722and destination registers in certain cases. Unfortunately, gcc and
723possibly many other programs use this reversed syntax, so we're stuck
724with it.
725
726For example
727
728@smallexample
729 fsub %st,%st(3)
730@end smallexample
731@noindent
732results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
733than the expected @samp{%st(3) - %st}. This happens with all the
734non-commutative arithmetic floating point operations with two register
735operands where the source register is @samp{%st} and the destination
736register is @samp{%st(i)}.
737
e413e4e9
AM
738@node i386-Arch
739@section Specifying CPU Architecture
740
741@cindex arch directive, i386
742@cindex i386 arch directive
55b62671
AJ
743@cindex arch directive, x86-64
744@cindex x86-64 arch directive
e413e4e9
AM
745
746@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 747(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
748directive enables a warning when gas detects an instruction that is not
749supported on the CPU specified. The choices for @var{cpu_type} are:
750
751@multitable @columnfractions .20 .20 .20 .20
752@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
753@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 754@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 755@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
7918206c 756@item @samp{amdfam10}
9103f4f4
L
757@item @samp{k6} @tab @samp{athlon} @tab @samp{sledgehammer} @tab @samp{k8}
758@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 759@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
7918206c
MM
760@item @samp{.sse4a} @tab @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.padlock}
761@item @samp{.pacifica} @tab @samp{.svme} @tab @samp{.abm}
e413e4e9
AM
762@end multitable
763
fddf5b5b
AM
764Apart from the warning, there are only two other effects on
765@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
766@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
767will automatically use a two byte opcode sequence. The larger three
768byte opcode sequence is used on the 486 (and when no architecture is
769specified) because it executes faster on the 486. Note that you can
770explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
771Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
772@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
773conditional jumps will be promoted when necessary to a two instruction
774sequence consisting of a conditional jump of the opposite sense around
775an unconditional jump to the target.
776
5c6af06e
JB
777Following the CPU architecture (but not a sub-architecture, which are those
778starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
779control automatic promotion of conditional jumps. @samp{jumps} is the
780default, and enables jump promotion; All external jumps will be of the long
781variety, and file-local jumps will be promoted as necessary.
782(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
783byte offset jumps, and warns about file-local conditional jumps that
784@code{@value{AS}} promotes.
fddf5b5b
AM
785Unconditional jumps are treated as for @samp{jumps}.
786
787For example
788
789@smallexample
790 .arch i8086,nojumps
791@end smallexample
e413e4e9 792
252b5132
RH
793@node i386-Notes
794@section Notes
795
796@cindex i386 @code{mul}, @code{imul} instructions
797@cindex @code{mul} instruction, i386
798@cindex @code{imul} instruction, i386
55b62671
AJ
799@cindex @code{mul} instruction, x86-64
800@cindex @code{imul} instruction, x86-64
252b5132 801There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 802instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
803multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
804for @samp{imul}) can be output only in the one operand form. Thus,
805@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
806the expanding multiply would clobber the @samp{%edx} register, and this
807would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
80864-bit product in @samp{%edx:%eax}.
809
810We have added a two operand form of @samp{imul} when the first operand
811is an immediate mode expression and the second operand is a register.
812This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
813example, can be done with @samp{imul $69, %eax} rather than @samp{imul
814$69, %eax, %eax}.
815
This page took 0.39342 seconds and 4 git commands to generate.