* NEWS: Mention new commands set/show multiple-symbols.
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
2da5c037
AM
1@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
2@c 2001, 2003, 2004
f7e42eb4 3@c Free Software Foundation, Inc.
252b5132
RH
4@c This is part of the GAS manual.
5@c For copying conditions, see the file as.texinfo.
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
17@cindex i80306 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
26* i386-Syntax:: AT&T Syntax versus Intel Syntax
27* i386-Mnemonics:: Instruction Naming
28* i386-Regs:: Register Naming
29* i386-Prefixes:: Instruction Prefixes
30* i386-Memory:: Memory References
fddf5b5b 31* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
32* i386-Float:: Floating Point
33* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
34* i386-16bit:: Writing 16-bit Code
e413e4e9 35* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
36* i386-Bugs:: AT&T Syntax bugs
37* i386-Notes:: Notes
38@end menu
39
40@node i386-Options
41@section Options
42
55b62671
AJ
43@cindex options for i386
44@cindex options for x86-64
45@cindex i386 options
46@cindex x86-64 options
47
48The i386 version of @code{@value{AS}} has a few machine
49dependent options:
50
51@table @code
52@cindex @samp{--32} option, i386
53@cindex @samp{--32} option, x86-64
54@cindex @samp{--64} option, i386
55@cindex @samp{--64} option, x86-64
56@item --32 | --64
57Select the word size, either 32 bits or 64 bits. Selecting 32-bit
58implies Intel i386 architecture, while 64-bit implies AMD x86-64
59architecture.
60
61These options are only available with the ELF object file format, and
62require that the necessary BFD support has been included (on a 32-bit
63platform you have to add --enable-64-bit-bfd to configure enable 64-bit
64usage and use x86-64 as target platform).
12b55ccc
L
65
66@item -n
67By default, x86 GAS replaces multiple nop instructions used for
68alignment within code sections with multi-byte nop instructions such
69as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
70
71@cindex @samp{--divide} option, i386
72@item --divide
73On SVR4-derived platforms, the character @samp{/} is treated as a comment
74character, which means that it cannot be used in expressions. The
75@samp{--divide} option turns @samp{/} into a normal character. This does
76not disable @samp{/} at the beginning of a line starting a comment, or
77affect using @samp{#} for starting a comment.
78
9103f4f4
L
79@cindex @samp{-march=} option, i386
80@cindex @samp{-march=} option, x86-64
6305a203
L
81@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
82This option specifies the target processor. The assembler will
83issue an error message if an attempt is made to assemble an instruction
84which will not execute on the target processor. The following
85processor names are recognized:
9103f4f4
L
86@code{i8086},
87@code{i186},
88@code{i286},
89@code{i386},
90@code{i486},
91@code{i586},
92@code{i686},
93@code{pentium},
94@code{pentiumpro},
95@code{pentiumii},
96@code{pentiumiii},
97@code{pentium4},
98@code{prescott},
99@code{nocona},
ef05d495
L
100@code{core},
101@code{core2},
9103f4f4
L
102@code{k6},
103@code{k6_2},
104@code{athlon},
9103f4f4
L
105@code{opteron},
106@code{k8},
1ceab344 107@code{amdfam10},
9103f4f4
L
108@code{generic32} and
109@code{generic64}.
110
6305a203
L
111In addition to the basic instruction set, the assembler can be told to
112accept various extension mnemonics. For example,
113@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
114@var{vmx}. The following extensions are currently supported:
115@code{mmx},
116@code{sse},
117@code{sse2},
118@code{sse3},
119@code{ssse3},
120@code{sse4.1},
121@code{sse4.2},
122@code{sse4},
c0f3af97 123@code{avx},
6305a203
L
124@code{vmx},
125@code{smx},
f03fe4c1 126@code{xsave},
c0f3af97
L
127@code{aes},
128@code{clmul},
129@code{fma},
6305a203
L
130@code{3dnow},
131@code{3dnowa},
132@code{sse4a},
133@code{sse5},
134@code{svme},
135@code{abm} and
136@code{padlock}.
137
138When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
139@code{.arch} directive will take precedent.
140
141@cindex @samp{-mtune=} option, i386
142@cindex @samp{-mtune=} option, x86-64
143@item -mtune=@var{CPU}
144This option specifies a processor to optimize for. When used in
145conjunction with the @option{-march} option, only instructions
146of the processor specified by the @option{-march} option will be
147generated.
148
6305a203
L
149Valid @var{CPU} values are identical to the processor list of
150@option{-march=@var{CPU}}.
9103f4f4 151
c0f3af97
L
152@cindex @samp{-msse2avx} option, i386
153@cindex @samp{-msse2avx} option, x86-64
154@item -msse2avx
155This option specifies that the assembler should encode SSE instructions
156with VEX prefix.
157
1efbbeb4
L
158@cindex @samp{-mmnemonic=} option, i386
159@cindex @samp{-mmnemonic=} option, x86-64
160@item -mmnemonic=@var{att}
161@item -mmnemonic=@var{intel}
162This option specifies instruction mnemonic for matching instructions.
163The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
164take precedent.
165
166@cindex @samp{-msyntax=} option, i386
167@cindex @samp{-msyntax=} option, x86-64
168@item -msyntax=@var{att}
169@item -msyntax=@var{intel}
170This option specifies instruction syntax when processing instructions.
171The @code{.att_syntax} and @code{.intel_syntax} directives will
172take precedent.
173
174@cindex @samp{-mnaked-reg} option, i386
175@cindex @samp{-mnaked-reg} option, x86-64
176@item -mnaked-reg
177This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 178The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 179
55b62671 180@end table
e413e4e9 181
252b5132
RH
182@node i386-Syntax
183@section AT&T Syntax versus Intel Syntax
184
e413e4e9
AM
185@cindex i386 intel_syntax pseudo op
186@cindex intel_syntax pseudo op, i386
187@cindex i386 att_syntax pseudo op
188@cindex att_syntax pseudo op, i386
252b5132
RH
189@cindex i386 syntax compatibility
190@cindex syntax compatibility, i386
55b62671
AJ
191@cindex x86-64 intel_syntax pseudo op
192@cindex intel_syntax pseudo op, x86-64
193@cindex x86-64 att_syntax pseudo op
194@cindex att_syntax pseudo op, x86-64
195@cindex x86-64 syntax compatibility
196@cindex syntax compatibility, x86-64
e413e4e9
AM
197
198@code{@value{AS}} now supports assembly using Intel assembler syntax.
199@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
200back to the usual AT&T mode for compatibility with the output of
201@code{@value{GCC}}. Either of these directives may have an optional
202argument, @code{prefix}, or @code{noprefix} specifying whether registers
203require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
204different from Intel syntax. We mention these differences because
205almost all 80386 documents use Intel syntax. Notable differences
206between the two syntaxes are:
207
208@cindex immediate operands, i386
209@cindex i386 immediate operands
210@cindex register operands, i386
211@cindex i386 register operands
212@cindex jump/call operands, i386
213@cindex i386 jump/call operands
214@cindex operand delimiters, i386
55b62671
AJ
215
216@cindex immediate operands, x86-64
217@cindex x86-64 immediate operands
218@cindex register operands, x86-64
219@cindex x86-64 register operands
220@cindex jump/call operands, x86-64
221@cindex x86-64 jump/call operands
222@cindex operand delimiters, x86-64
252b5132
RH
223@itemize @bullet
224@item
225AT&T immediate operands are preceded by @samp{$}; Intel immediate
226operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
227AT&T register operands are preceded by @samp{%}; Intel register operands
228are undelimited. AT&T absolute (as opposed to PC relative) jump/call
229operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
230
231@cindex i386 source, destination operands
232@cindex source, destination operands; i386
55b62671
AJ
233@cindex x86-64 source, destination operands
234@cindex source, destination operands; x86-64
252b5132
RH
235@item
236AT&T and Intel syntax use the opposite order for source and destination
237operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
238@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
239previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
240instructions with 2 immediate operands, such as the @samp{enter}
241instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
242
243@cindex mnemonic suffixes, i386
244@cindex sizes operands, i386
245@cindex i386 size suffixes
55b62671
AJ
246@cindex mnemonic suffixes, x86-64
247@cindex sizes operands, x86-64
248@cindex x86-64 size suffixes
252b5132
RH
249@item
250In AT&T syntax the size of memory operands is determined from the last
251character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
252@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
253(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
254this by prefixing memory operands (@emph{not} the instruction mnemonics) with
255@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
256Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
257syntax.
252b5132
RH
258
259@cindex return instructions, i386
260@cindex i386 jump, call, return
55b62671
AJ
261@cindex return instructions, x86-64
262@cindex x86-64 jump, call, return
252b5132
RH
263@item
264Immediate form long jumps and calls are
265@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
266Intel syntax is
267@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
268instruction
269is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
270@samp{ret far @var{stack-adjust}}.
271
272@cindex sections, i386
273@cindex i386 sections
55b62671
AJ
274@cindex sections, x86-64
275@cindex x86-64 sections
252b5132
RH
276@item
277The AT&T assembler does not provide support for multiple section
278programs. Unix style systems expect all programs to be single sections.
279@end itemize
280
281@node i386-Mnemonics
282@section Instruction Naming
283
284@cindex i386 instruction naming
285@cindex instruction naming, i386
55b62671
AJ
286@cindex x86-64 instruction naming
287@cindex instruction naming, x86-64
288
252b5132 289Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
290specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
291and @samp{q} specify byte, word, long and quadruple word operands. If
292no suffix is specified by an instruction then @code{@value{AS}} tries to
293fill in the missing suffix based on the destination register operand
294(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
295to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
296@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
297assembler which assumes that a missing mnemonic suffix implies long
298operand size. (This incompatibility does not affect compiler output
299since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
300
301Almost all instructions have the same names in AT&T and Intel format.
302There are a few exceptions. The sign extend and zero extend
303instructions need two sizes to specify them. They need a size to
304sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
305is accomplished by using two instruction mnemonic suffixes in AT&T
306syntax. Base names for sign extend and zero extend are
307@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
308and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
309are tacked on to this base name, the @emph{from} suffix before the
310@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
311``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
312thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
313@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
314@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
315quadruple word).
252b5132
RH
316
317@cindex conversion instructions, i386
318@cindex i386 conversion instructions
55b62671
AJ
319@cindex conversion instructions, x86-64
320@cindex x86-64 conversion instructions
252b5132
RH
321The Intel-syntax conversion instructions
322
323@itemize @bullet
324@item
325@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
326
327@item
328@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
329
330@item
331@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
332
333@item
334@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
335
336@item
337@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
338(x86-64 only),
339
340@item
d5f0cf92 341@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 342@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
343@end itemize
344
345@noindent
55b62671
AJ
346are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
347@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
348instructions.
252b5132
RH
349
350@cindex jump instructions, i386
351@cindex call instructions, i386
55b62671
AJ
352@cindex jump instructions, x86-64
353@cindex call instructions, x86-64
252b5132
RH
354Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
355AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
356convention.
357
1efbbeb4
L
358@section AT&T Mnemonic versus Intel Mnemonic
359
360@cindex i386 mnemonic compatibility
361@cindex mnemonic compatibility, i386
362
363@code{@value{AS}} supports assembly using Intel mnemonic.
364@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
365@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
366syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
367Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
368@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
369@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
370assembler with different mnemonics from those in Intel IA32 specification.
371@code{@value{GCC}} generates those instructions with AT&T mnemonic.
372
252b5132
RH
373@node i386-Regs
374@section Register Naming
375
376@cindex i386 registers
377@cindex registers, i386
55b62671
AJ
378@cindex x86-64 registers
379@cindex registers, x86-64
252b5132
RH
380Register operands are always prefixed with @samp{%}. The 80386 registers
381consist of
382
383@itemize @bullet
384@item
385the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
386@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
387frame pointer), and @samp{%esp} (the stack pointer).
388
389@item
390the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
391@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
392
393@item
394the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
395@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
396are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
397@samp{%cx}, and @samp{%dx})
398
399@item
400the 6 section registers @samp{%cs} (code section), @samp{%ds}
401(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
402and @samp{%gs}.
403
404@item
405the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
406@samp{%cr3}.
407
408@item
409the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
410@samp{%db3}, @samp{%db6}, and @samp{%db7}.
411
412@item
413the 2 test registers @samp{%tr6} and @samp{%tr7}.
414
415@item
416the 8 floating point register stack @samp{%st} or equivalently
417@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
418@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
419These registers are overloaded by 8 MMX registers @samp{%mm0},
420@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
421@samp{%mm6} and @samp{%mm7}.
422
423@item
424the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
425@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
426@end itemize
427
428The AMD x86-64 architecture extends the register set by:
429
430@itemize @bullet
431@item
432enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
433accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
434@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
435pointer)
436
437@item
438the 8 extended registers @samp{%r8}--@samp{%r15}.
439
440@item
441the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
442
443@item
444the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
445
446@item
447the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
448
449@item
450the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
451
452@item
453the 8 debug registers: @samp{%db8}--@samp{%db15}.
454
455@item
456the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
457@end itemize
458
459@node i386-Prefixes
460@section Instruction Prefixes
461
462@cindex i386 instruction prefixes
463@cindex instruction prefixes, i386
464@cindex prefixes, i386
465Instruction prefixes are used to modify the following instruction. They
466are used to repeat string instructions, to provide section overrides, to
467perform bus lock operations, and to change operand and address sizes.
468(Most instructions that normally operate on 32-bit operands will use
46916-bit operands if the instruction has an ``operand size'' prefix.)
470Instruction prefixes are best written on the same line as the instruction
471they act upon. For example, the @samp{scas} (scan string) instruction is
472repeated with:
473
474@smallexample
475 repne scas %es:(%edi),%al
476@end smallexample
477
478You may also place prefixes on the lines immediately preceding the
479instruction, but this circumvents checks that @code{@value{AS}} does
480with prefixes, and will not work with all prefixes.
481
482Here is a list of instruction prefixes:
483
484@cindex section override prefixes, i386
485@itemize @bullet
486@item
487Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
488@samp{fs}, @samp{gs}. These are automatically added by specifying
489using the @var{section}:@var{memory-operand} form for memory references.
490
491@cindex size prefixes, i386
492@item
493Operand/Address size prefixes @samp{data16} and @samp{addr16}
494change 32-bit operands/addresses into 16-bit operands/addresses,
495while @samp{data32} and @samp{addr32} change 16-bit ones (in a
496@code{.code16} section) into 32-bit operands/addresses. These prefixes
497@emph{must} appear on the same line of code as the instruction they
498modify. For example, in a 16-bit @code{.code16} section, you might
499write:
500
501@smallexample
502 addr32 jmpl *(%ebx)
503@end smallexample
504
505@cindex bus lock prefixes, i386
506@cindex inhibiting interrupts, i386
507@item
508The bus lock prefix @samp{lock} inhibits interrupts during execution of
509the instruction it precedes. (This is only valid with certain
510instructions; see a 80386 manual for details).
511
512@cindex coprocessor wait, i386
513@item
514The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
515complete the current instruction. This should never be needed for the
51680386/80387 combination.
517
518@cindex repeat prefixes, i386
519@item
520The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
521to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
522times if the current address size is 16-bits).
55b62671
AJ
523@cindex REX prefixes, i386
524@item
525The @samp{rex} family of prefixes is used by x86-64 to encode
526extensions to i386 instruction set. The @samp{rex} prefix has four
527bits --- an operand size overwrite (@code{64}) used to change operand size
528from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
529register set.
530
531You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
532instruction emits @samp{rex} prefix with all the bits set. By omitting
533the @code{64}, @code{x}, @code{y} or @code{z} you may write other
534prefixes as well. Normally, there is no need to write the prefixes
535explicitly, since gas will automatically generate them based on the
536instruction operands.
252b5132
RH
537@end itemize
538
539@node i386-Memory
540@section Memory References
541
542@cindex i386 memory references
543@cindex memory references, i386
55b62671
AJ
544@cindex x86-64 memory references
545@cindex memory references, x86-64
252b5132
RH
546An Intel syntax indirect memory reference of the form
547
548@smallexample
549@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
550@end smallexample
551
552@noindent
553is translated into the AT&T syntax
554
555@smallexample
556@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
557@end smallexample
558
559@noindent
560where @var{base} and @var{index} are the optional 32-bit base and
561index registers, @var{disp} is the optional displacement, and
562@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
563to calculate the address of the operand. If no @var{scale} is
564specified, @var{scale} is taken to be 1. @var{section} specifies the
565optional section register for the memory operand, and may override the
566default section register (see a 80386 manual for section register
567defaults). Note that section overrides in AT&T syntax @emph{must}
568be preceded by a @samp{%}. If you specify a section override which
569coincides with the default section register, @code{@value{AS}} does @emph{not}
570output any section register override prefixes to assemble the given
571instruction. Thus, section overrides can be specified to emphasize which
572section register is used for a given memory operand.
573
574Here are some examples of Intel and AT&T style memory references:
575
576@table @asis
577@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
578@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
579missing, and the default section is used (@samp{%ss} for addressing with
580@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
581
582@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
583@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
584@samp{foo}. All other fields are missing. The section register here
585defaults to @samp{%ds}.
586
587@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
588This uses the value pointed to by @samp{foo} as a memory operand.
589Note that @var{base} and @var{index} are both missing, but there is only
590@emph{one} @samp{,}. This is a syntactic exception.
591
592@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
593This selects the contents of the variable @samp{foo} with section
594register @var{section} being @samp{%gs}.
595@end table
596
597Absolute (as opposed to PC relative) call and jump operands must be
598prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
599always chooses PC relative addressing for jump/call labels.
600
601Any instruction that has a memory operand, but no register operand,
55b62671
AJ
602@emph{must} specify its size (byte, word, long, or quadruple) with an
603instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
604respectively).
605
606The x86-64 architecture adds an RIP (instruction pointer relative)
607addressing. This addressing mode is specified by using @samp{rip} as a
608base register. Only constant offsets are valid. For example:
609
610@table @asis
611@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
612Points to the address 1234 bytes past the end of the current
613instruction.
614
615@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
616Points to the @code{symbol} in RIP relative way, this is shorter than
617the default absolute addressing.
618@end table
619
620Other addressing modes remain unchanged in x86-64 architecture, except
621registers used are 64-bit instead of 32-bit.
252b5132 622
fddf5b5b 623@node i386-Jumps
252b5132
RH
624@section Handling of Jump Instructions
625
626@cindex jump optimization, i386
627@cindex i386 jump optimization
55b62671
AJ
628@cindex jump optimization, x86-64
629@cindex x86-64 jump optimization
252b5132
RH
630Jump instructions are always optimized to use the smallest possible
631displacements. This is accomplished by using byte (8-bit) displacement
632jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 633is insufficient a long displacement is used. We do not support
252b5132
RH
634word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
635instruction with the @samp{data16} instruction prefix), since the 80386
636insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 637is added. (See also @pxref{i386-Arch})
252b5132
RH
638
639Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
640@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
641displacements, so that if you use these instructions (@code{@value{GCC}} does
642not use them) you may get an error message (and incorrect code). The AT&T
64380386 assembler tries to get around this problem by expanding @samp{jcxz foo}
644to
645
646@smallexample
647 jcxz cx_zero
648 jmp cx_nonzero
649cx_zero: jmp foo
650cx_nonzero:
651@end smallexample
652
653@node i386-Float
654@section Floating Point
655
656@cindex i386 floating point
657@cindex floating point, i386
55b62671
AJ
658@cindex x86-64 floating point
659@cindex floating point, x86-64
252b5132
RH
660All 80387 floating point types except packed BCD are supported.
661(BCD support may be added without much difficulty). These data
662types are 16-, 32-, and 64- bit integers, and single (32-bit),
663double (64-bit), and extended (80-bit) precision floating point.
664Each supported type has an instruction mnemonic suffix and a constructor
665associated with it. Instruction mnemonic suffixes specify the operand's
666data type. Constructors build these data types into memory.
667
668@cindex @code{float} directive, i386
669@cindex @code{single} directive, i386
670@cindex @code{double} directive, i386
671@cindex @code{tfloat} directive, i386
55b62671
AJ
672@cindex @code{float} directive, x86-64
673@cindex @code{single} directive, x86-64
674@cindex @code{double} directive, x86-64
675@cindex @code{tfloat} directive, x86-64
252b5132
RH
676@itemize @bullet
677@item
678Floating point constructors are @samp{.float} or @samp{.single},
679@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
680These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
681and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
682only supports this format via the @samp{fldt} (load 80-bit real to stack
683top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
684
685@cindex @code{word} directive, i386
686@cindex @code{long} directive, i386
687@cindex @code{int} directive, i386
688@cindex @code{quad} directive, i386
55b62671
AJ
689@cindex @code{word} directive, x86-64
690@cindex @code{long} directive, x86-64
691@cindex @code{int} directive, x86-64
692@cindex @code{quad} directive, x86-64
252b5132
RH
693@item
694Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
695@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
696corresponding instruction mnemonic suffixes are @samp{s} (single),
697@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
698the 64-bit @samp{q} format is only present in the @samp{fildq} (load
699quad integer to stack top) and @samp{fistpq} (store quad integer and pop
700stack) instructions.
701@end itemize
702
703Register to register operations should not use instruction mnemonic suffixes.
704@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
705wrote @samp{fst %st, %st(1)}, since all register to register operations
706use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
707which converts @samp{%st} from 80-bit to 64-bit floating point format,
708then stores the result in the 4 byte location @samp{mem})
709
710@node i386-SIMD
711@section Intel's MMX and AMD's 3DNow! SIMD Operations
712
713@cindex MMX, i386
714@cindex 3DNow!, i386
715@cindex SIMD, i386
55b62671
AJ
716@cindex MMX, x86-64
717@cindex 3DNow!, x86-64
718@cindex SIMD, x86-64
252b5132
RH
719
720@code{@value{AS}} supports Intel's MMX instruction set (SIMD
721instructions for integer data), available on Intel's Pentium MMX
722processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 723Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
724instruction set (SIMD instructions for 32-bit floating point data)
725available on AMD's K6-2 processor and possibly others in the future.
726
727Currently, @code{@value{AS}} does not support Intel's floating point
728SIMD, Katmai (KNI).
729
730The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
731@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
73216-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
733floating point values. The MMX registers cannot be used at the same time
734as the floating point stack.
735
736See Intel and AMD documentation, keeping in mind that the operand order in
737instructions is reversed from the Intel syntax.
738
739@node i386-16bit
740@section Writing 16-bit Code
741
742@cindex i386 16-bit code
743@cindex 16-bit code, i386
744@cindex real-mode code, i386
eecb386c 745@cindex @code{code16gcc} directive, i386
252b5132
RH
746@cindex @code{code16} directive, i386
747@cindex @code{code32} directive, i386
55b62671
AJ
748@cindex @code{code64} directive, i386
749@cindex @code{code64} directive, x86-64
750While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
751or 64-bit x86-64 code depending on the default configuration,
252b5132 752it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
753mode code segments. To do this, put a @samp{.code16} or
754@samp{.code16gcc} directive before the assembly language instructions to
755be run in 16-bit mode. You can switch @code{@value{AS}} back to writing
756normal 32-bit code with the @samp{.code32} directive.
757
758@samp{.code16gcc} provides experimental support for generating 16-bit
759code from gcc, and differs from @samp{.code16} in that @samp{call},
760@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
761@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
762default to 32-bit size. This is so that the stack pointer is
763manipulated in the same way over function calls, allowing access to
764function parameters at the same stack offsets as in 32-bit mode.
765@samp{.code16gcc} also automatically adds address size prefixes where
766necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
767
768The code which @code{@value{AS}} generates in 16-bit mode will not
769necessarily run on a 16-bit pre-80386 processor. To write code that
770runs on such a processor, you must refrain from using @emph{any} 32-bit
771constructs which require @code{@value{AS}} to output address or operand
772size prefixes.
773
774Note that writing 16-bit code instructions by explicitly specifying a
775prefix or an instruction mnemonic suffix within a 32-bit code section
776generates different machine instructions than those generated for a
77716-bit code segment. In a 32-bit code section, the following code
778generates the machine opcode bytes @samp{66 6a 04}, which pushes the
779value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
780
781@smallexample
782 pushw $4
783@end smallexample
784
785The same code in a 16-bit code section would generate the machine
b45619c0 786opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
787is correct since the processor default operand size is assumed to be 16
788bits in a 16-bit code section.
789
790@node i386-Bugs
791@section AT&T Syntax bugs
792
793The UnixWare assembler, and probably other AT&T derived ix86 Unix
794assemblers, generate floating point instructions with reversed source
795and destination registers in certain cases. Unfortunately, gcc and
796possibly many other programs use this reversed syntax, so we're stuck
797with it.
798
799For example
800
801@smallexample
802 fsub %st,%st(3)
803@end smallexample
804@noindent
805results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
806than the expected @samp{%st(3) - %st}. This happens with all the
807non-commutative arithmetic floating point operations with two register
808operands where the source register is @samp{%st} and the destination
809register is @samp{%st(i)}.
810
e413e4e9
AM
811@node i386-Arch
812@section Specifying CPU Architecture
813
814@cindex arch directive, i386
815@cindex i386 arch directive
55b62671
AJ
816@cindex arch directive, x86-64
817@cindex x86-64 arch directive
e413e4e9
AM
818
819@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 820(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
821directive enables a warning when gas detects an instruction that is not
822supported on the CPU specified. The choices for @var{cpu_type} are:
823
824@multitable @columnfractions .20 .20 .20 .20
825@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
826@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 827@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 828@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1ceab344 829@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
7918206c 830@item @samp{amdfam10}
1ceab344 831@item @samp{generic32} @tab @samp{generic64}
9103f4f4 832@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 833@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c0f3af97
L
834@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.xsave}
835@item @samp{.aes} @tab @samp{.clmul} @tab @samp{.fma}
1ceab344
L
836@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
837@item @samp{.svme} @tab @samp{.abm}
838@item @samp{.padlock}
e413e4e9
AM
839@end multitable
840
fddf5b5b
AM
841Apart from the warning, there are only two other effects on
842@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
843@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
844will automatically use a two byte opcode sequence. The larger three
845byte opcode sequence is used on the 486 (and when no architecture is
846specified) because it executes faster on the 486. Note that you can
847explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
848Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
849@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
850conditional jumps will be promoted when necessary to a two instruction
851sequence consisting of a conditional jump of the opposite sense around
852an unconditional jump to the target.
853
5c6af06e
JB
854Following the CPU architecture (but not a sub-architecture, which are those
855starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
856control automatic promotion of conditional jumps. @samp{jumps} is the
857default, and enables jump promotion; All external jumps will be of the long
858variety, and file-local jumps will be promoted as necessary.
859(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
860byte offset jumps, and warns about file-local conditional jumps that
861@code{@value{AS}} promotes.
fddf5b5b
AM
862Unconditional jumps are treated as for @samp{jumps}.
863
864For example
865
866@smallexample
867 .arch i8086,nojumps
868@end smallexample
e413e4e9 869
252b5132
RH
870@node i386-Notes
871@section Notes
872
873@cindex i386 @code{mul}, @code{imul} instructions
874@cindex @code{mul} instruction, i386
875@cindex @code{imul} instruction, i386
55b62671
AJ
876@cindex @code{mul} instruction, x86-64
877@cindex @code{imul} instruction, x86-64
252b5132 878There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 879instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
880multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
881for @samp{imul}) can be output only in the one operand form. Thus,
882@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
883the expanding multiply would clobber the @samp{%edx} register, and this
884would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
88564-bit product in @samp{%edx:%eax}.
886
887We have added a two operand form of @samp{imul} when the first operand
888is an immediate mode expression and the second operand is a register.
889This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
890example, can be done with @samp{imul $69, %eax} rather than @samp{imul
891$69, %eax, %eax}.
892
This page took 0.438372 seconds and 4 git commands to generate.