x86: Properly add X86_ISA_1_NEEDED property
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
219d1afa 1@c Copyright (C) 1991-2018 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
f9233288
JW
77as leal 0(%esi,1),%esi. This switch disables the optimization if a single
78byte nop (0x90) is explicitly specified as the fill byte for alignment.
b3b91714
AM
79
80@cindex @samp{--divide} option, i386
81@item --divide
82On SVR4-derived platforms, the character @samp{/} is treated as a comment
83character, which means that it cannot be used in expressions. The
84@samp{--divide} option turns @samp{/} into a normal character. This does
85not disable @samp{/} at the beginning of a line starting a comment, or
86affect using @samp{#} for starting a comment.
87
9103f4f4
L
88@cindex @samp{-march=} option, i386
89@cindex @samp{-march=} option, x86-64
6305a203
L
90@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91This option specifies the target processor. The assembler will
92issue an error message if an attempt is made to assemble an instruction
93which will not execute on the target processor. The following
34bca508 94processor names are recognized:
9103f4f4
L
95@code{i8086},
96@code{i186},
97@code{i286},
98@code{i386},
99@code{i486},
100@code{i586},
101@code{i686},
102@code{pentium},
103@code{pentiumpro},
104@code{pentiumii},
105@code{pentiumiii},
106@code{pentium4},
107@code{prescott},
108@code{nocona},
ef05d495
L
109@code{core},
110@code{core2},
bd5295b2 111@code{corei7},
8a9036a4 112@code{l1om},
7a9068fe 113@code{k1om},
81486035 114@code{iamcu},
9103f4f4
L
115@code{k6},
116@code{k6_2},
117@code{athlon},
9103f4f4
L
118@code{opteron},
119@code{k8},
1ceab344 120@code{amdfam10},
68339fdf 121@code{bdver1},
af2f724e 122@code{bdver2},
5e5c50d3 123@code{bdver3},
c7b0bd56 124@code{bdver4},
029f3522 125@code{znver1},
a9660a6f 126@code{znver2},
7b458c12
L
127@code{btver1},
128@code{btver2},
9103f4f4
L
129@code{generic32} and
130@code{generic64}.
131
34bca508 132In addition to the basic instruction set, the assembler can be told to
6305a203
L
133accept various extension mnemonics. For example,
134@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
135@var{vmx}. The following extensions are currently supported:
309d3373
JB
136@code{8087},
137@code{287},
138@code{387},
1848e567 139@code{687},
309d3373 140@code{no87},
1848e567
L
141@code{no287},
142@code{no387},
143@code{no687},
6305a203 144@code{mmx},
309d3373 145@code{nommx},
6305a203
L
146@code{sse},
147@code{sse2},
148@code{sse3},
149@code{ssse3},
150@code{sse4.1},
151@code{sse4.2},
152@code{sse4},
309d3373 153@code{nosse},
1848e567
L
154@code{nosse2},
155@code{nosse3},
156@code{nossse3},
157@code{nosse4.1},
158@code{nosse4.2},
159@code{nosse4},
c0f3af97 160@code{avx},
6c30d220 161@code{avx2},
1848e567
L
162@code{noavx},
163@code{noavx2},
e2e1fcde
L
164@code{adx},
165@code{rdseed},
166@code{prfchw},
5c111e37 167@code{smap},
7e8b059b 168@code{mpx},
a0046408 169@code{sha},
8bc52696 170@code{rdpid},
6b40c462 171@code{ptwrite},
603555e5 172@code{cet},
48521003 173@code{gfni},
8dcf1fad 174@code{vaes},
ff1982d5 175@code{vpclmulqdq},
1dfc6506
L
176@code{prefetchwt1},
177@code{clflushopt},
178@code{se1},
c5e7287a 179@code{clwb},
c0a30a9f
L
180@code{movdiri},
181@code{movdir64b},
43234a1e
L
182@code{avx512f},
183@code{avx512cd},
184@code{avx512er},
185@code{avx512pf},
1dfc6506
L
186@code{avx512vl},
187@code{avx512bw},
188@code{avx512dq},
2cc1b5aa 189@code{avx512ifma},
14f195c9 190@code{avx512vbmi},
920d2ddc 191@code{avx512_4fmaps},
47acf0bd 192@code{avx512_4vnniw},
620214f7 193@code{avx512_vpopcntdq},
53467f57 194@code{avx512_vbmi2},
8cfcb765 195@code{avx512_vnni},
ee6872be 196@code{avx512_bitalg},
144b71e2
L
197@code{noavx512f},
198@code{noavx512cd},
199@code{noavx512er},
200@code{noavx512pf},
201@code{noavx512vl},
202@code{noavx512bw},
203@code{noavx512dq},
204@code{noavx512ifma},
205@code{noavx512vbmi},
920d2ddc 206@code{noavx512_4fmaps},
47acf0bd 207@code{noavx512_4vnniw},
620214f7 208@code{noavx512_vpopcntdq},
53467f57 209@code{noavx512_vbmi2},
8cfcb765 210@code{noavx512_vnni},
ee6872be 211@code{noavx512_bitalg},
6305a203 212@code{vmx},
8729a6f6 213@code{vmfunc},
6305a203 214@code{smx},
f03fe4c1 215@code{xsave},
c7b8aa3a 216@code{xsaveopt},
1dfc6506
L
217@code{xsavec},
218@code{xsaves},
c0f3af97 219@code{aes},
594ab6a3 220@code{pclmul},
c7b8aa3a
L
221@code{fsgsbase},
222@code{rdrnd},
223@code{f16c},
6c30d220 224@code{bmi2},
c0f3af97 225@code{fma},
f1f8f695
L
226@code{movbe},
227@code{ept},
6c30d220 228@code{lzcnt},
42164a71
L
229@code{hle},
230@code{rtm},
6c30d220 231@code{invpcid},
bd5295b2 232@code{clflush},
9916071f 233@code{mwaitx},
029f3522 234@code{clzero},
3233d7d0 235@code{wbnoinvd},
be3a8dca 236@code{pconfig},
de89d0a3 237@code{waitpkg},
c48935d7 238@code{cldemote},
f88c9eb0 239@code{lwp},
5dd85c99
SP
240@code{fma4},
241@code{xop},
60aa667e 242@code{cx16},
bd5295b2 243@code{syscall},
1b7f3fb0 244@code{rdtscp},
6305a203
L
245@code{3dnow},
246@code{3dnowa},
247@code{sse4a},
248@code{sse5},
249@code{svme},
250@code{abm} and
251@code{padlock}.
309d3373
JB
252Note that rather than extending a basic instruction set, the extension
253mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
254
255When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
256@code{.arch} directive will take precedent.
257
258@cindex @samp{-mtune=} option, i386
259@cindex @samp{-mtune=} option, x86-64
260@item -mtune=@var{CPU}
261This option specifies a processor to optimize for. When used in
262conjunction with the @option{-march} option, only instructions
263of the processor specified by the @option{-march} option will be
264generated.
265
6305a203
L
266Valid @var{CPU} values are identical to the processor list of
267@option{-march=@var{CPU}}.
9103f4f4 268
c0f3af97
L
269@cindex @samp{-msse2avx} option, i386
270@cindex @samp{-msse2avx} option, x86-64
271@item -msse2avx
272This option specifies that the assembler should encode SSE instructions
273with VEX prefix.
274
daf50ae7
L
275@cindex @samp{-msse-check=} option, i386
276@cindex @samp{-msse-check=} option, x86-64
277@item -msse-check=@var{none}
1f9bb1ca
AS
278@itemx -msse-check=@var{warning}
279@itemx -msse-check=@var{error}
9aff4b7a 280These options control if the assembler should check SSE instructions.
daf50ae7
L
281@option{-msse-check=@var{none}} will make the assembler not to check SSE
282instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 283will make the assembler issue a warning for any SSE instruction.
daf50ae7 284@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 285for any SSE instruction.
daf50ae7 286
539f890d
L
287@cindex @samp{-mavxscalar=} option, i386
288@cindex @samp{-mavxscalar=} option, x86-64
289@item -mavxscalar=@var{128}
1f9bb1ca 290@itemx -mavxscalar=@var{256}
2aab8acd 291These options control how the assembler should encode scalar AVX
539f890d
L
292instructions. @option{-mavxscalar=@var{128}} will encode scalar
293AVX instructions with 128bit vector length, which is the default.
294@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
295with 256bit vector length.
296
43234a1e
L
297@cindex @samp{-mevexlig=} option, i386
298@cindex @samp{-mevexlig=} option, x86-64
299@item -mevexlig=@var{128}
300@itemx -mevexlig=@var{256}
301@itemx -mevexlig=@var{512}
302These options control how the assembler should encode length-ignored
303(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
304EVEX instructions with 128bit vector length, which is the default.
305@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
306encode LIG EVEX instructions with 256bit and 512bit vector length,
307respectively.
308
309@cindex @samp{-mevexwig=} option, i386
310@cindex @samp{-mevexwig=} option, x86-64
311@item -mevexwig=@var{0}
312@itemx -mevexwig=@var{1}
313These options control how the assembler should encode w-ignored (WIG)
314EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
315EVEX instructions with evex.w = 0, which is the default.
316@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
317evex.w = 1.
318
1efbbeb4
L
319@cindex @samp{-mmnemonic=} option, i386
320@cindex @samp{-mmnemonic=} option, x86-64
321@item -mmnemonic=@var{att}
1f9bb1ca 322@itemx -mmnemonic=@var{intel}
34bca508 323This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
324The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
325take precedent.
326
327@cindex @samp{-msyntax=} option, i386
328@cindex @samp{-msyntax=} option, x86-64
329@item -msyntax=@var{att}
1f9bb1ca 330@itemx -msyntax=@var{intel}
34bca508 331This option specifies instruction syntax when processing instructions.
1efbbeb4
L
332The @code{.att_syntax} and @code{.intel_syntax} directives will
333take precedent.
334
335@cindex @samp{-mnaked-reg} option, i386
336@cindex @samp{-mnaked-reg} option, x86-64
337@item -mnaked-reg
33eaf5de 338This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 339The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 340
7e8b059b
L
341@cindex @samp{-madd-bnd-prefix} option, i386
342@cindex @samp{-madd-bnd-prefix} option, x86-64
343@item -madd-bnd-prefix
344This option forces the assembler to add BND prefix to all branches, even
345if such prefix was not explicitly specified in the source code.
346
8dcea932
L
347@cindex @samp{-mshared} option, i386
348@cindex @samp{-mshared} option, x86-64
349@item -mno-shared
350On ELF target, the assembler normally optimizes out non-PLT relocations
351against defined non-weak global branch targets with default visibility.
352The @samp{-mshared} option tells the assembler to generate code which
353may go into a shared library where all non-weak global branch targets
354with default visibility can be preempted. The resulting code is
355slightly bigger. This option only affects the handling of branch
356instructions.
357
167ad85b
TG
358@cindex @samp{-mbig-obj} option, x86-64
359@item -mbig-obj
360On x86-64 PE/COFF target this option forces the use of big object file
361format, which allows more than 32768 sections.
362
d022bddd
IT
363@cindex @samp{-momit-lock-prefix=} option, i386
364@cindex @samp{-momit-lock-prefix=} option, x86-64
365@item -momit-lock-prefix=@var{no}
366@itemx -momit-lock-prefix=@var{yes}
367These options control how the assembler should encode lock prefix.
368This option is intended as a workaround for processors, that fail on
369lock prefix. This option can only be safely used with single-core,
370single-thread computers
371@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
372@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
373which is the default.
374
e4e00185
AS
375@cindex @samp{-mfence-as-lock-add=} option, i386
376@cindex @samp{-mfence-as-lock-add=} option, x86-64
377@item -mfence-as-lock-add=@var{no}
378@itemx -mfence-as-lock-add=@var{yes}
379These options control how the assembler should encode lfence, mfence and
380sfence.
381@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
382sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
383@samp{lock addl $0x0, (%esp)} in 32-bit mode.
384@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
385sfence as usual, which is the default.
386
0cb4071e
L
387@cindex @samp{-mrelax-relocations=} option, i386
388@cindex @samp{-mrelax-relocations=} option, x86-64
389@item -mrelax-relocations=@var{no}
390@itemx -mrelax-relocations=@var{yes}
391These options control whether the assembler should generate relax
392relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
393R_X86_64_REX_GOTPCRELX, in 64-bit mode.
394@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
395@option{-mrelax-relocations=@var{no}} will not generate relax
396relocations. The default can be controlled by a configure option
397@option{--enable-x86-relax-relocations}.
398
d3d3c6db
IT
399@cindex @samp{-mevexrcig=} option, i386
400@cindex @samp{-mevexrcig=} option, x86-64
401@item -mevexrcig=@var{rne}
402@itemx -mevexrcig=@var{rd}
403@itemx -mevexrcig=@var{ru}
404@itemx -mevexrcig=@var{rz}
405These options control how the assembler should encode SAE-only
406EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
407of EVEX instruction with 00, which is the default.
408@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
409and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
410with 01, 10 and 11 RC bits, respectively.
411
5db04b09
L
412@cindex @samp{-mamd64} option, x86-64
413@cindex @samp{-mintel64} option, x86-64
414@item -mamd64
415@itemx -mintel64
416This option specifies that the assembler should accept only AMD64 or
417Intel64 ISA in 64-bit mode. The default is to accept both.
418
b6f8c7c4
L
419@cindex @samp{-O0} option, i386
420@cindex @samp{-O0} option, x86-64
421@cindex @samp{-O} option, i386
422@cindex @samp{-O} option, x86-64
423@cindex @samp{-O1} option, i386
424@cindex @samp{-O1} option, x86-64
425@cindex @samp{-O2} option, i386
426@cindex @samp{-O2} option, x86-64
427@cindex @samp{-Os} option, i386
428@cindex @samp{-Os} option, x86-64
429@item -O0 | -O | -O1 | -O2 | -Os
430Optimize instruction encoding with smaller instruction size. @samp{-O}
431and @samp{-O1} encode 64-bit register load instructions with 64-bit
432immediate as 32-bit register load instructions with 31-bit or 32-bits
433immediates and encode 64-bit register clearing instructions with 32-bit
434register clearing instructions. @samp{-O2} includes @samp{-O1}
435optimization plus encodes 256-bit and 512-bit vector register clearing
436instructions with 128-bit vector register clearing instructions.
437@samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
438and 64-bit register tests with immediate as 8-bit register test with
439immediate. @samp{-O0} turns off this optimization.
440
55b62671 441@end table
731caf76 442@c man end
e413e4e9 443
a6c24e68
NC
444@node i386-Directives
445@section x86 specific Directives
446
447@cindex machine directives, x86
448@cindex x86 machine directives
449@table @code
450
451@cindex @code{lcomm} directive, COFF
452@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
453Reserve @var{length} (an absolute expression) bytes for a local common
454denoted by @var{symbol}. The section and value of @var{symbol} are
455those of the new local common. The addresses are allocated in the bss
704209c0
NC
456section, so that at run-time the bytes start off zeroed. Since
457@var{symbol} is not declared global, it is normally not visible to
458@code{@value{LD}}. The optional third parameter, @var{alignment},
459specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
460
461This directive is only available for COFF based x86 targets.
462
102e9361
NC
463@cindex @code{largecomm} directive, ELF
464@item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
465This directive behaves in the same way as the @code{comm} directive
466except that the data is placed into the @var{.lbss} section instead of
467the @var{.bss} section @ref{Comm}.
468
469The directive is intended to be used for data which requires a large
470amount of space, and it is only available for ELF based x86_64
471targets.
472
a6c24e68 473@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
a6c24e68
NC
474
475@end table
476
252b5132 477@node i386-Syntax
7c31ae13
NC
478@section i386 Syntactical Considerations
479@menu
480* i386-Variations:: AT&T Syntax versus Intel Syntax
481* i386-Chars:: Special Characters
482@end menu
483
484@node i386-Variations
485@subsection AT&T Syntax versus Intel Syntax
252b5132 486
e413e4e9
AM
487@cindex i386 intel_syntax pseudo op
488@cindex intel_syntax pseudo op, i386
489@cindex i386 att_syntax pseudo op
490@cindex att_syntax pseudo op, i386
252b5132
RH
491@cindex i386 syntax compatibility
492@cindex syntax compatibility, i386
55b62671
AJ
493@cindex x86-64 intel_syntax pseudo op
494@cindex intel_syntax pseudo op, x86-64
495@cindex x86-64 att_syntax pseudo op
496@cindex att_syntax pseudo op, x86-64
497@cindex x86-64 syntax compatibility
498@cindex syntax compatibility, x86-64
e413e4e9
AM
499
500@code{@value{AS}} now supports assembly using Intel assembler syntax.
501@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
502back to the usual AT&T mode for compatibility with the output of
503@code{@value{GCC}}. Either of these directives may have an optional
504argument, @code{prefix}, or @code{noprefix} specifying whether registers
505require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
506different from Intel syntax. We mention these differences because
507almost all 80386 documents use Intel syntax. Notable differences
508between the two syntaxes are:
509
510@cindex immediate operands, i386
511@cindex i386 immediate operands
512@cindex register operands, i386
513@cindex i386 register operands
514@cindex jump/call operands, i386
515@cindex i386 jump/call operands
516@cindex operand delimiters, i386
55b62671
AJ
517
518@cindex immediate operands, x86-64
519@cindex x86-64 immediate operands
520@cindex register operands, x86-64
521@cindex x86-64 register operands
522@cindex jump/call operands, x86-64
523@cindex x86-64 jump/call operands
524@cindex operand delimiters, x86-64
252b5132
RH
525@itemize @bullet
526@item
527AT&T immediate operands are preceded by @samp{$}; Intel immediate
528operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
529AT&T register operands are preceded by @samp{%}; Intel register operands
530are undelimited. AT&T absolute (as opposed to PC relative) jump/call
531operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
532
533@cindex i386 source, destination operands
534@cindex source, destination operands; i386
55b62671
AJ
535@cindex x86-64 source, destination operands
536@cindex source, destination operands; x86-64
252b5132
RH
537@item
538AT&T and Intel syntax use the opposite order for source and destination
539operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
540@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
541previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
542instructions with 2 immediate operands, such as the @samp{enter}
543instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
544
545@cindex mnemonic suffixes, i386
546@cindex sizes operands, i386
547@cindex i386 size suffixes
55b62671
AJ
548@cindex mnemonic suffixes, x86-64
549@cindex sizes operands, x86-64
550@cindex x86-64 size suffixes
252b5132
RH
551@item
552In AT&T syntax the size of memory operands is determined from the last
553character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
554@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
555(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
556this by prefixing memory operands (@emph{not} the instruction mnemonics) with
557@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
558Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
559syntax.
252b5132 560
4b06377f
L
561In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
562instruction with the 64-bit displacement or immediate operand.
563
252b5132
RH
564@cindex return instructions, i386
565@cindex i386 jump, call, return
55b62671
AJ
566@cindex return instructions, x86-64
567@cindex x86-64 jump, call, return
252b5132
RH
568@item
569Immediate form long jumps and calls are
570@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
571Intel syntax is
572@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
573instruction
574is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
575@samp{ret far @var{stack-adjust}}.
576
577@cindex sections, i386
578@cindex i386 sections
55b62671
AJ
579@cindex sections, x86-64
580@cindex x86-64 sections
252b5132
RH
581@item
582The AT&T assembler does not provide support for multiple section
583programs. Unix style systems expect all programs to be single sections.
584@end itemize
585
7c31ae13
NC
586@node i386-Chars
587@subsection Special Characters
588
589@cindex line comment character, i386
590@cindex i386 line comment character
591The presence of a @samp{#} appearing anywhere on a line indicates the
592start of a comment that extends to the end of that line.
593
594If a @samp{#} appears as the first character of a line then the whole
595line is treated as a comment, but in this case the line can also be a
596logical line number directive (@pxref{Comments}) or a preprocessor
597control command (@pxref{Preprocessing}).
598
a05a5b64 599If the @option{--divide} command-line option has not been specified
7c31ae13
NC
600then the @samp{/} character appearing anywhere on a line also
601introduces a line comment.
602
603@cindex line separator, i386
604@cindex statement separator, i386
605@cindex i386 line separator
606The @samp{;} character can be used to separate statements on the same
607line.
608
252b5132 609@node i386-Mnemonics
d3b47e2b
L
610@section i386-Mnemonics
611@subsection Instruction Naming
252b5132
RH
612
613@cindex i386 instruction naming
614@cindex instruction naming, i386
55b62671
AJ
615@cindex x86-64 instruction naming
616@cindex instruction naming, x86-64
617
252b5132 618Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
619specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
620and @samp{q} specify byte, word, long and quadruple word operands. If
621no suffix is specified by an instruction then @code{@value{AS}} tries to
622fill in the missing suffix based on the destination register operand
623(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
624to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
625@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
626assembler which assumes that a missing mnemonic suffix implies long
627operand size. (This incompatibility does not affect compiler output
628since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
629
630Almost all instructions have the same names in AT&T and Intel format.
631There are a few exceptions. The sign extend and zero extend
632instructions need two sizes to specify them. They need a size to
633sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
634is accomplished by using two instruction mnemonic suffixes in AT&T
635syntax. Base names for sign extend and zero extend are
636@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
637and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
638are tacked on to this base name, the @emph{from} suffix before the
639@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
640``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
641thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
642@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
643@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
644quadruple word).
252b5132 645
b6169b20
L
646@cindex encoding options, i386
647@cindex encoding options, x86-64
648
86fa6981
L
649Different encoding options can be specified via pseudo prefixes:
650
651@itemize @bullet
652@item
653@samp{@{disp8@}} -- prefer 8-bit displacement.
654
655@item
656@samp{@{disp32@}} -- prefer 32-bit displacement.
657
658@item
659@samp{@{load@}} -- prefer load-form instruction.
660
661@item
662@samp{@{store@}} -- prefer store-form instruction.
663
664@item
665@samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
666
667@item
668@samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
669
670@item
671@samp{@{evex@}} -- encode with EVEX prefix.
6b6b6807
L
672
673@item
674@samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
675instructions (x86-64 only). Note that this differs from the @samp{rex}
676prefix which generates REX prefix unconditionally.
b6f8c7c4
L
677
678@item
679@samp{@{nooptimize@}} -- disable instruction size optimization.
86fa6981 680@end itemize
b6169b20 681
252b5132
RH
682@cindex conversion instructions, i386
683@cindex i386 conversion instructions
55b62671
AJ
684@cindex conversion instructions, x86-64
685@cindex x86-64 conversion instructions
252b5132
RH
686The Intel-syntax conversion instructions
687
688@itemize @bullet
689@item
690@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
691
692@item
693@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
694
695@item
696@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
697
698@item
699@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
700
701@item
702@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
703(x86-64 only),
704
705@item
d5f0cf92 706@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 707@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
708@end itemize
709
710@noindent
55b62671
AJ
711are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
712@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
713instructions.
252b5132
RH
714
715@cindex jump instructions, i386
716@cindex call instructions, i386
55b62671
AJ
717@cindex jump instructions, x86-64
718@cindex call instructions, x86-64
252b5132
RH
719Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
720AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
721convention.
722
d3b47e2b 723@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
724
725@cindex i386 mnemonic compatibility
726@cindex mnemonic compatibility, i386
727
728@code{@value{AS}} supports assembly using Intel mnemonic.
729@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
730@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
731syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
732Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
733@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
734@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
735assembler with different mnemonics from those in Intel IA32 specification.
736@code{@value{GCC}} generates those instructions with AT&T mnemonic.
737
252b5132
RH
738@node i386-Regs
739@section Register Naming
740
741@cindex i386 registers
742@cindex registers, i386
55b62671
AJ
743@cindex x86-64 registers
744@cindex registers, x86-64
252b5132
RH
745Register operands are always prefixed with @samp{%}. The 80386 registers
746consist of
747
748@itemize @bullet
749@item
750the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
751@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
752frame pointer), and @samp{%esp} (the stack pointer).
753
754@item
755the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
756@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
757
758@item
759the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
760@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
761are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
762@samp{%cx}, and @samp{%dx})
763
764@item
765the 6 section registers @samp{%cs} (code section), @samp{%ds}
766(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
767and @samp{%gs}.
768
769@item
4bde3cdd
UD
770the 5 processor control registers @samp{%cr0}, @samp{%cr2},
771@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
772
773@item
774the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
775@samp{%db3}, @samp{%db6}, and @samp{%db7}.
776
777@item
778the 2 test registers @samp{%tr6} and @samp{%tr7}.
779
780@item
781the 8 floating point register stack @samp{%st} or equivalently
782@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
783@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
784These registers are overloaded by 8 MMX registers @samp{%mm0},
785@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
786@samp{%mm6} and @samp{%mm7}.
787
788@item
4bde3cdd 789the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
790@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
791@end itemize
792
793The AMD x86-64 architecture extends the register set by:
794
795@itemize @bullet
796@item
797enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
798accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
799@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
800pointer)
801
802@item
803the 8 extended registers @samp{%r8}--@samp{%r15}.
804
805@item
4bde3cdd 806the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
807
808@item
4bde3cdd 809the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
810
811@item
4bde3cdd 812the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
813
814@item
815the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
816
817@item
818the 8 debug registers: @samp{%db8}--@samp{%db15}.
819
820@item
4bde3cdd
UD
821the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
822@end itemize
823
824With the AVX extensions more registers were made available:
825
826@itemize @bullet
827
828@item
829the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
830available in 32-bit mode). The bottom 128 bits are overlaid with the
831@samp{xmm0}--@samp{xmm15} registers.
832
833@end itemize
834
835The AVX2 extensions made in 64-bit mode more registers available:
836
837@itemize @bullet
838
839@item
840the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
841registers @samp{%ymm16}--@samp{%ymm31}.
842
843@end itemize
844
845The AVX512 extensions added the following registers:
846
847@itemize @bullet
848
849@item
850the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
851available in 32-bit mode). The bottom 128 bits are overlaid with the
852@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
853overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
854
855@item
856the 8 mask registers @samp{%k0}--@samp{%k7}.
857
252b5132
RH
858@end itemize
859
860@node i386-Prefixes
861@section Instruction Prefixes
862
863@cindex i386 instruction prefixes
864@cindex instruction prefixes, i386
865@cindex prefixes, i386
866Instruction prefixes are used to modify the following instruction. They
867are used to repeat string instructions, to provide section overrides, to
868perform bus lock operations, and to change operand and address sizes.
869(Most instructions that normally operate on 32-bit operands will use
87016-bit operands if the instruction has an ``operand size'' prefix.)
871Instruction prefixes are best written on the same line as the instruction
872they act upon. For example, the @samp{scas} (scan string) instruction is
873repeated with:
874
875@smallexample
876 repne scas %es:(%edi),%al
877@end smallexample
878
879You may also place prefixes on the lines immediately preceding the
880instruction, but this circumvents checks that @code{@value{AS}} does
881with prefixes, and will not work with all prefixes.
882
883Here is a list of instruction prefixes:
884
885@cindex section override prefixes, i386
886@itemize @bullet
887@item
888Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
889@samp{fs}, @samp{gs}. These are automatically added by specifying
890using the @var{section}:@var{memory-operand} form for memory references.
891
892@cindex size prefixes, i386
893@item
894Operand/Address size prefixes @samp{data16} and @samp{addr16}
895change 32-bit operands/addresses into 16-bit operands/addresses,
896while @samp{data32} and @samp{addr32} change 16-bit ones (in a
897@code{.code16} section) into 32-bit operands/addresses. These prefixes
898@emph{must} appear on the same line of code as the instruction they
899modify. For example, in a 16-bit @code{.code16} section, you might
900write:
901
902@smallexample
903 addr32 jmpl *(%ebx)
904@end smallexample
905
906@cindex bus lock prefixes, i386
907@cindex inhibiting interrupts, i386
908@item
909The bus lock prefix @samp{lock} inhibits interrupts during execution of
910the instruction it precedes. (This is only valid with certain
911instructions; see a 80386 manual for details).
912
913@cindex coprocessor wait, i386
914@item
915The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
916complete the current instruction. This should never be needed for the
91780386/80387 combination.
918
919@cindex repeat prefixes, i386
920@item
921The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
922to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
923times if the current address size is 16-bits).
55b62671
AJ
924@cindex REX prefixes, i386
925@item
926The @samp{rex} family of prefixes is used by x86-64 to encode
927extensions to i386 instruction set. The @samp{rex} prefix has four
928bits --- an operand size overwrite (@code{64}) used to change operand size
929from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
930register set.
931
932You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
933instruction emits @samp{rex} prefix with all the bits set. By omitting
934the @code{64}, @code{x}, @code{y} or @code{z} you may write other
935prefixes as well. Normally, there is no need to write the prefixes
936explicitly, since gas will automatically generate them based on the
937instruction operands.
252b5132
RH
938@end itemize
939
940@node i386-Memory
941@section Memory References
942
943@cindex i386 memory references
944@cindex memory references, i386
55b62671
AJ
945@cindex x86-64 memory references
946@cindex memory references, x86-64
252b5132
RH
947An Intel syntax indirect memory reference of the form
948
949@smallexample
950@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
951@end smallexample
952
953@noindent
954is translated into the AT&T syntax
955
956@smallexample
957@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
958@end smallexample
959
960@noindent
961where @var{base} and @var{index} are the optional 32-bit base and
962index registers, @var{disp} is the optional displacement, and
963@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
964to calculate the address of the operand. If no @var{scale} is
965specified, @var{scale} is taken to be 1. @var{section} specifies the
966optional section register for the memory operand, and may override the
967default section register (see a 80386 manual for section register
968defaults). Note that section overrides in AT&T syntax @emph{must}
969be preceded by a @samp{%}. If you specify a section override which
970coincides with the default section register, @code{@value{AS}} does @emph{not}
971output any section register override prefixes to assemble the given
972instruction. Thus, section overrides can be specified to emphasize which
973section register is used for a given memory operand.
974
975Here are some examples of Intel and AT&T style memory references:
976
977@table @asis
978@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
979@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
980missing, and the default section is used (@samp{%ss} for addressing with
981@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
982
983@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
984@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
985@samp{foo}. All other fields are missing. The section register here
986defaults to @samp{%ds}.
987
988@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
989This uses the value pointed to by @samp{foo} as a memory operand.
990Note that @var{base} and @var{index} are both missing, but there is only
991@emph{one} @samp{,}. This is a syntactic exception.
992
993@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
994This selects the contents of the variable @samp{foo} with section
995register @var{section} being @samp{%gs}.
996@end table
997
998Absolute (as opposed to PC relative) call and jump operands must be
999prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1000always chooses PC relative addressing for jump/call labels.
1001
1002Any instruction that has a memory operand, but no register operand,
55b62671
AJ
1003@emph{must} specify its size (byte, word, long, or quadruple) with an
1004instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1005respectively).
1006
1007The x86-64 architecture adds an RIP (instruction pointer relative)
1008addressing. This addressing mode is specified by using @samp{rip} as a
1009base register. Only constant offsets are valid. For example:
1010
1011@table @asis
1012@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1013Points to the address 1234 bytes past the end of the current
1014instruction.
1015
1016@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1017Points to the @code{symbol} in RIP relative way, this is shorter than
1018the default absolute addressing.
1019@end table
1020
1021Other addressing modes remain unchanged in x86-64 architecture, except
1022registers used are 64-bit instead of 32-bit.
252b5132 1023
fddf5b5b 1024@node i386-Jumps
252b5132
RH
1025@section Handling of Jump Instructions
1026
1027@cindex jump optimization, i386
1028@cindex i386 jump optimization
55b62671
AJ
1029@cindex jump optimization, x86-64
1030@cindex x86-64 jump optimization
252b5132
RH
1031Jump instructions are always optimized to use the smallest possible
1032displacements. This is accomplished by using byte (8-bit) displacement
1033jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 1034is insufficient a long displacement is used. We do not support
252b5132
RH
1035word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1036instruction with the @samp{data16} instruction prefix), since the 80386
1037insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 1038is added. (See also @pxref{i386-Arch})
252b5132
RH
1039
1040Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1041@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1042displacements, so that if you use these instructions (@code{@value{GCC}} does
1043not use them) you may get an error message (and incorrect code). The AT&T
104480386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1045to
1046
1047@smallexample
1048 jcxz cx_zero
1049 jmp cx_nonzero
1050cx_zero: jmp foo
1051cx_nonzero:
1052@end smallexample
1053
1054@node i386-Float
1055@section Floating Point
1056
1057@cindex i386 floating point
1058@cindex floating point, i386
55b62671
AJ
1059@cindex x86-64 floating point
1060@cindex floating point, x86-64
252b5132
RH
1061All 80387 floating point types except packed BCD are supported.
1062(BCD support may be added without much difficulty). These data
1063types are 16-, 32-, and 64- bit integers, and single (32-bit),
1064double (64-bit), and extended (80-bit) precision floating point.
1065Each supported type has an instruction mnemonic suffix and a constructor
1066associated with it. Instruction mnemonic suffixes specify the operand's
1067data type. Constructors build these data types into memory.
1068
1069@cindex @code{float} directive, i386
1070@cindex @code{single} directive, i386
1071@cindex @code{double} directive, i386
1072@cindex @code{tfloat} directive, i386
55b62671
AJ
1073@cindex @code{float} directive, x86-64
1074@cindex @code{single} directive, x86-64
1075@cindex @code{double} directive, x86-64
1076@cindex @code{tfloat} directive, x86-64
252b5132
RH
1077@itemize @bullet
1078@item
1079Floating point constructors are @samp{.float} or @samp{.single},
1080@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1081These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1082and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1083only supports this format via the @samp{fldt} (load 80-bit real to stack
1084top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1085
1086@cindex @code{word} directive, i386
1087@cindex @code{long} directive, i386
1088@cindex @code{int} directive, i386
1089@cindex @code{quad} directive, i386
55b62671
AJ
1090@cindex @code{word} directive, x86-64
1091@cindex @code{long} directive, x86-64
1092@cindex @code{int} directive, x86-64
1093@cindex @code{quad} directive, x86-64
252b5132
RH
1094@item
1095Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1096@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1097corresponding instruction mnemonic suffixes are @samp{s} (single),
1098@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1099the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1100quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1101stack) instructions.
1102@end itemize
1103
1104Register to register operations should not use instruction mnemonic suffixes.
1105@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1106wrote @samp{fst %st, %st(1)}, since all register to register operations
1107use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1108which converts @samp{%st} from 80-bit to 64-bit floating point format,
1109then stores the result in the 4 byte location @samp{mem})
1110
1111@node i386-SIMD
1112@section Intel's MMX and AMD's 3DNow! SIMD Operations
1113
1114@cindex MMX, i386
1115@cindex 3DNow!, i386
1116@cindex SIMD, i386
55b62671
AJ
1117@cindex MMX, x86-64
1118@cindex 3DNow!, x86-64
1119@cindex SIMD, x86-64
252b5132
RH
1120
1121@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1122instructions for integer data), available on Intel's Pentium MMX
1123processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1124Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1125instruction set (SIMD instructions for 32-bit floating point data)
1126available on AMD's K6-2 processor and possibly others in the future.
1127
1128Currently, @code{@value{AS}} does not support Intel's floating point
1129SIMD, Katmai (KNI).
1130
1131The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1132@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
113316-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1134floating point values. The MMX registers cannot be used at the same time
1135as the floating point stack.
1136
1137See Intel and AMD documentation, keeping in mind that the operand order in
1138instructions is reversed from the Intel syntax.
1139
f88c9eb0
SP
1140@node i386-LWP
1141@section AMD's Lightweight Profiling Instructions
1142
1143@cindex LWP, i386
1144@cindex LWP, x86-64
1145
1146@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1147instruction set, available on AMD's Family 15h (Orochi) processors.
1148
1149LWP enables applications to collect and manage performance data, and
1150react to performance events. The collection of performance data
1151requires no context switches. LWP runs in the context of a thread and
1152so several counters can be used independently across multiple threads.
1153LWP can be used in both 64-bit and legacy 32-bit modes.
1154
1155For detailed information on the LWP instruction set, see the
1156@cite{AMD Lightweight Profiling Specification} available at
1157@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1158
87973e9f
QN
1159@node i386-BMI
1160@section Bit Manipulation Instructions
1161
1162@cindex BMI, i386
1163@cindex BMI, x86-64
1164
1165@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1166
1167BMI instructions provide several instructions implementing individual
1168bit manipulation operations such as isolation, masking, setting, or
34bca508 1169resetting.
87973e9f
QN
1170
1171@c Need to add a specification citation here when available.
1172
2a2a0f38
QN
1173@node i386-TBM
1174@section AMD's Trailing Bit Manipulation Instructions
1175
1176@cindex TBM, i386
1177@cindex TBM, x86-64
1178
1179@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1180instruction set, available on AMD's BDVER2 processors (Trinity and
1181Viperfish).
1182
1183TBM instructions provide instructions implementing individual bit
1184manipulation operations such as isolating, masking, setting, resetting,
1185complementing, and operations on trailing zeros and ones.
1186
1187@c Need to add a specification citation here when available.
87973e9f 1188
252b5132
RH
1189@node i386-16bit
1190@section Writing 16-bit Code
1191
1192@cindex i386 16-bit code
1193@cindex 16-bit code, i386
1194@cindex real-mode code, i386
eecb386c 1195@cindex @code{code16gcc} directive, i386
252b5132
RH
1196@cindex @code{code16} directive, i386
1197@cindex @code{code32} directive, i386
55b62671
AJ
1198@cindex @code{code64} directive, i386
1199@cindex @code{code64} directive, x86-64
1200While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1201or 64-bit x86-64 code depending on the default configuration,
252b5132 1202it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1203mode code segments. To do this, put a @samp{.code16} or
1204@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1205be run in 16-bit mode. You can switch @code{@value{AS}} to writing
120632-bit code with the @samp{.code32} directive or 64-bit code with the
1207@samp{.code64} directive.
eecb386c
AM
1208
1209@samp{.code16gcc} provides experimental support for generating 16-bit
1210code from gcc, and differs from @samp{.code16} in that @samp{call},
1211@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1212@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1213default to 32-bit size. This is so that the stack pointer is
1214manipulated in the same way over function calls, allowing access to
1215function parameters at the same stack offsets as in 32-bit mode.
1216@samp{.code16gcc} also automatically adds address size prefixes where
1217necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1218
1219The code which @code{@value{AS}} generates in 16-bit mode will not
1220necessarily run on a 16-bit pre-80386 processor. To write code that
1221runs on such a processor, you must refrain from using @emph{any} 32-bit
1222constructs which require @code{@value{AS}} to output address or operand
1223size prefixes.
1224
1225Note that writing 16-bit code instructions by explicitly specifying a
1226prefix or an instruction mnemonic suffix within a 32-bit code section
1227generates different machine instructions than those generated for a
122816-bit code segment. In a 32-bit code section, the following code
1229generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1230value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1231
1232@smallexample
1233 pushw $4
1234@end smallexample
1235
1236The same code in a 16-bit code section would generate the machine
b45619c0 1237opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1238is correct since the processor default operand size is assumed to be 16
1239bits in a 16-bit code section.
1240
e413e4e9
AM
1241@node i386-Arch
1242@section Specifying CPU Architecture
1243
1244@cindex arch directive, i386
1245@cindex i386 arch directive
55b62671
AJ
1246@cindex arch directive, x86-64
1247@cindex x86-64 arch directive
e413e4e9
AM
1248
1249@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1250(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1251directive enables a warning when gas detects an instruction that is not
1252supported on the CPU specified. The choices for @var{cpu_type} are:
1253
1254@multitable @columnfractions .20 .20 .20 .20
1255@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1256@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1257@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1258@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
81486035 1259@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1543849b 1260@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1261@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
a9660a6f
AP
1262@item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
1263@item @samp{btver2} @samp{generic32} @tab @samp{generic64}
9103f4f4 1264@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1265@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1266@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1267@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1268@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1269@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1270@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1271@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1272@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1273@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1274@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1275@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1276@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
8cfcb765 1277@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
ee6872be 1278@item @samp{.avx512_bitalg}
d777820b 1279@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
c48935d7 1280@item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
d777820b 1281@item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
c0a30a9f 1282@item @samp{.movdiri} @tab @samp{.movdir64b}
1ceab344 1283@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1284@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1285@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
d777820b 1286@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
e413e4e9
AM
1287@end multitable
1288
fddf5b5b
AM
1289Apart from the warning, there are only two other effects on
1290@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1291@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1292will automatically use a two byte opcode sequence. The larger three
1293byte opcode sequence is used on the 486 (and when no architecture is
1294specified) because it executes faster on the 486. Note that you can
1295explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1296Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1297@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1298conditional jumps will be promoted when necessary to a two instruction
1299sequence consisting of a conditional jump of the opposite sense around
1300an unconditional jump to the target.
1301
5c6af06e
JB
1302Following the CPU architecture (but not a sub-architecture, which are those
1303starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1304control automatic promotion of conditional jumps. @samp{jumps} is the
1305default, and enables jump promotion; All external jumps will be of the long
1306variety, and file-local jumps will be promoted as necessary.
1307(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1308byte offset jumps, and warns about file-local conditional jumps that
1309@code{@value{AS}} promotes.
fddf5b5b
AM
1310Unconditional jumps are treated as for @samp{jumps}.
1311
1312For example
1313
1314@smallexample
1315 .arch i8086,nojumps
1316@end smallexample
e413e4e9 1317
5c9352f3
AM
1318@node i386-Bugs
1319@section AT&T Syntax bugs
1320
1321The UnixWare assembler, and probably other AT&T derived ix86 Unix
1322assemblers, generate floating point instructions with reversed source
1323and destination registers in certain cases. Unfortunately, gcc and
1324possibly many other programs use this reversed syntax, so we're stuck
1325with it.
1326
1327For example
1328
1329@smallexample
1330 fsub %st,%st(3)
1331@end smallexample
1332@noindent
1333results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1334than the expected @samp{%st(3) - %st}. This happens with all the
1335non-commutative arithmetic floating point operations with two register
1336operands where the source register is @samp{%st} and the destination
1337register is @samp{%st(i)}.
1338
252b5132
RH
1339@node i386-Notes
1340@section Notes
1341
1342@cindex i386 @code{mul}, @code{imul} instructions
1343@cindex @code{mul} instruction, i386
1344@cindex @code{imul} instruction, i386
55b62671
AJ
1345@cindex @code{mul} instruction, x86-64
1346@cindex @code{imul} instruction, x86-64
252b5132 1347There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1348instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1349multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1350for @samp{imul}) can be output only in the one operand form. Thus,
1351@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1352the expanding multiply would clobber the @samp{%edx} register, and this
1353would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
135464-bit product in @samp{%edx:%eax}.
1355
1356We have added a two operand form of @samp{imul} when the first operand
1357is an immediate mode expression and the second operand is a register.
1358This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1359example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1360$69, %eax, %eax}.
1361
This page took 0.862474 seconds and 4 git commands to generate.