x86-64: Properly encode and decode movsxd
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
b3adc24a 1@c Copyright (C) 1991-2020 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
bc31405e 40* i386-ISA:: AMD64 ISA vs. Intel64 ISA
252b5132
RH
41* i386-Bugs:: AT&T Syntax bugs
42* i386-Notes:: Notes
43@end menu
44
45@node i386-Options
46@section Options
47
55b62671
AJ
48@cindex options for i386
49@cindex options for x86-64
50@cindex i386 options
34bca508 51@cindex x86-64 options
55b62671
AJ
52
53The i386 version of @code{@value{AS}} has a few machine
54dependent options:
55
731caf76
L
56@c man begin OPTIONS
57@table @gcctabopt
55b62671
AJ
58@cindex @samp{--32} option, i386
59@cindex @samp{--32} option, x86-64
570561f7
L
60@cindex @samp{--x32} option, i386
61@cindex @samp{--x32} option, x86-64
55b62671
AJ
62@cindex @samp{--64} option, i386
63@cindex @samp{--64} option, x86-64
570561f7 64@item --32 | --x32 | --64
35cc6a0b 65Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 66implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
67imply AMD x86-64 architecture with 32-bit or 64-bit word-size
68respectively.
55b62671
AJ
69
70These options are only available with the ELF object file format, and
71require that the necessary BFD support has been included (on a 32-bit
72platform you have to add --enable-64-bit-bfd to configure enable 64-bit
73usage and use x86-64 as target platform).
12b55ccc
L
74
75@item -n
76By default, x86 GAS replaces multiple nop instructions used for
77alignment within code sections with multi-byte nop instructions such
f9233288
JW
78as leal 0(%esi,1),%esi. This switch disables the optimization if a single
79byte nop (0x90) is explicitly specified as the fill byte for alignment.
b3b91714
AM
80
81@cindex @samp{--divide} option, i386
82@item --divide
83On SVR4-derived platforms, the character @samp{/} is treated as a comment
84character, which means that it cannot be used in expressions. The
85@samp{--divide} option turns @samp{/} into a normal character. This does
86not disable @samp{/} at the beginning of a line starting a comment, or
87affect using @samp{#} for starting a comment.
88
9103f4f4
L
89@cindex @samp{-march=} option, i386
90@cindex @samp{-march=} option, x86-64
6305a203
L
91@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92This option specifies the target processor. The assembler will
93issue an error message if an attempt is made to assemble an instruction
94which will not execute on the target processor. The following
34bca508 95processor names are recognized:
9103f4f4
L
96@code{i8086},
97@code{i186},
98@code{i286},
99@code{i386},
100@code{i486},
101@code{i586},
102@code{i686},
103@code{pentium},
104@code{pentiumpro},
105@code{pentiumii},
106@code{pentiumiii},
107@code{pentium4},
108@code{prescott},
109@code{nocona},
ef05d495
L
110@code{core},
111@code{core2},
bd5295b2 112@code{corei7},
8a9036a4 113@code{l1om},
7a9068fe 114@code{k1om},
81486035 115@code{iamcu},
9103f4f4
L
116@code{k6},
117@code{k6_2},
118@code{athlon},
9103f4f4
L
119@code{opteron},
120@code{k8},
1ceab344 121@code{amdfam10},
68339fdf 122@code{bdver1},
af2f724e 123@code{bdver2},
5e5c50d3 124@code{bdver3},
c7b0bd56 125@code{bdver4},
029f3522 126@code{znver1},
a9660a6f 127@code{znver2},
7b458c12
L
128@code{btver1},
129@code{btver2},
9103f4f4
L
130@code{generic32} and
131@code{generic64}.
132
34bca508 133In addition to the basic instruction set, the assembler can be told to
6305a203
L
134accept various extension mnemonics. For example,
135@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
136@var{vmx}. The following extensions are currently supported:
309d3373
JB
137@code{8087},
138@code{287},
139@code{387},
1848e567 140@code{687},
309d3373 141@code{no87},
1848e567
L
142@code{no287},
143@code{no387},
144@code{no687},
d871f3f4
L
145@code{cmov},
146@code{nocmov},
147@code{fxsr},
148@code{nofxsr},
6305a203 149@code{mmx},
309d3373 150@code{nommx},
6305a203
L
151@code{sse},
152@code{sse2},
153@code{sse3},
154@code{ssse3},
155@code{sse4.1},
156@code{sse4.2},
157@code{sse4},
309d3373 158@code{nosse},
1848e567
L
159@code{nosse2},
160@code{nosse3},
161@code{nossse3},
162@code{nosse4.1},
163@code{nosse4.2},
164@code{nosse4},
c0f3af97 165@code{avx},
6c30d220 166@code{avx2},
1848e567
L
167@code{noavx},
168@code{noavx2},
e2e1fcde
L
169@code{adx},
170@code{rdseed},
171@code{prfchw},
5c111e37 172@code{smap},
7e8b059b 173@code{mpx},
a0046408 174@code{sha},
8bc52696 175@code{rdpid},
6b40c462 176@code{ptwrite},
603555e5 177@code{cet},
48521003 178@code{gfni},
8dcf1fad 179@code{vaes},
ff1982d5 180@code{vpclmulqdq},
1dfc6506
L
181@code{prefetchwt1},
182@code{clflushopt},
183@code{se1},
c5e7287a 184@code{clwb},
c0a30a9f
L
185@code{movdiri},
186@code{movdir64b},
5d79adc4 187@code{enqcmd},
43234a1e
L
188@code{avx512f},
189@code{avx512cd},
190@code{avx512er},
191@code{avx512pf},
1dfc6506
L
192@code{avx512vl},
193@code{avx512bw},
194@code{avx512dq},
2cc1b5aa 195@code{avx512ifma},
14f195c9 196@code{avx512vbmi},
920d2ddc 197@code{avx512_4fmaps},
47acf0bd 198@code{avx512_4vnniw},
620214f7 199@code{avx512_vpopcntdq},
53467f57 200@code{avx512_vbmi2},
8cfcb765 201@code{avx512_vnni},
ee6872be 202@code{avx512_bitalg},
d6aab7a1 203@code{avx512_bf16},
144b71e2
L
204@code{noavx512f},
205@code{noavx512cd},
206@code{noavx512er},
207@code{noavx512pf},
208@code{noavx512vl},
209@code{noavx512bw},
210@code{noavx512dq},
211@code{noavx512ifma},
212@code{noavx512vbmi},
920d2ddc 213@code{noavx512_4fmaps},
47acf0bd 214@code{noavx512_4vnniw},
620214f7 215@code{noavx512_vpopcntdq},
53467f57 216@code{noavx512_vbmi2},
8cfcb765 217@code{noavx512_vnni},
ee6872be 218@code{noavx512_bitalg},
9186c494 219@code{noavx512_vp2intersect},
d6aab7a1 220@code{noavx512_bf16},
dd455cf5 221@code{noenqcmd},
6305a203 222@code{vmx},
8729a6f6 223@code{vmfunc},
6305a203 224@code{smx},
f03fe4c1 225@code{xsave},
c7b8aa3a 226@code{xsaveopt},
1dfc6506
L
227@code{xsavec},
228@code{xsaves},
c0f3af97 229@code{aes},
594ab6a3 230@code{pclmul},
c7b8aa3a
L
231@code{fsgsbase},
232@code{rdrnd},
233@code{f16c},
6c30d220 234@code{bmi2},
c0f3af97 235@code{fma},
f1f8f695
L
236@code{movbe},
237@code{ept},
6c30d220 238@code{lzcnt},
42164a71
L
239@code{hle},
240@code{rtm},
6c30d220 241@code{invpcid},
bd5295b2 242@code{clflush},
9916071f 243@code{mwaitx},
029f3522 244@code{clzero},
3233d7d0 245@code{wbnoinvd},
be3a8dca 246@code{pconfig},
de89d0a3 247@code{waitpkg},
c48935d7 248@code{cldemote},
142861df
JB
249@code{rdpru},
250@code{mcommit},
f88c9eb0 251@code{lwp},
5dd85c99
SP
252@code{fma4},
253@code{xop},
60aa667e 254@code{cx16},
bd5295b2 255@code{syscall},
1b7f3fb0 256@code{rdtscp},
6305a203
L
257@code{3dnow},
258@code{3dnowa},
259@code{sse4a},
260@code{sse5},
261@code{svme},
262@code{abm} and
263@code{padlock}.
309d3373
JB
264Note that rather than extending a basic instruction set, the extension
265mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
266
267When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
268@code{.arch} directive will take precedent.
269
270@cindex @samp{-mtune=} option, i386
271@cindex @samp{-mtune=} option, x86-64
272@item -mtune=@var{CPU}
273This option specifies a processor to optimize for. When used in
274conjunction with the @option{-march} option, only instructions
275of the processor specified by the @option{-march} option will be
276generated.
277
6305a203
L
278Valid @var{CPU} values are identical to the processor list of
279@option{-march=@var{CPU}}.
9103f4f4 280
c0f3af97
L
281@cindex @samp{-msse2avx} option, i386
282@cindex @samp{-msse2avx} option, x86-64
283@item -msse2avx
284This option specifies that the assembler should encode SSE instructions
285with VEX prefix.
286
daf50ae7
L
287@cindex @samp{-msse-check=} option, i386
288@cindex @samp{-msse-check=} option, x86-64
289@item -msse-check=@var{none}
1f9bb1ca
AS
290@itemx -msse-check=@var{warning}
291@itemx -msse-check=@var{error}
9aff4b7a 292These options control if the assembler should check SSE instructions.
daf50ae7
L
293@option{-msse-check=@var{none}} will make the assembler not to check SSE
294instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 295will make the assembler issue a warning for any SSE instruction.
daf50ae7 296@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 297for any SSE instruction.
daf50ae7 298
539f890d
L
299@cindex @samp{-mavxscalar=} option, i386
300@cindex @samp{-mavxscalar=} option, x86-64
301@item -mavxscalar=@var{128}
1f9bb1ca 302@itemx -mavxscalar=@var{256}
2aab8acd 303These options control how the assembler should encode scalar AVX
539f890d
L
304instructions. @option{-mavxscalar=@var{128}} will encode scalar
305AVX instructions with 128bit vector length, which is the default.
306@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
307with 256bit vector length.
308
4970191f
JB
309WARNING: Don't use this for production code - due to CPU errata the
310resulting code may not work on certain models.
311
03751133
L
312@cindex @samp{-mvexwig=} option, i386
313@cindex @samp{-mvexwig=} option, x86-64
314@item -mvexwig=@var{0}
315@itemx -mvexwig=@var{1}
316These options control how the assembler should encode VEX.W-ignored (WIG)
317VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
318instructions with vex.w = 0, which is the default.
319@option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
320vex.w = 1.
321
4970191f
JB
322WARNING: Don't use this for production code - due to CPU errata the
323resulting code may not work on certain models.
324
43234a1e
L
325@cindex @samp{-mevexlig=} option, i386
326@cindex @samp{-mevexlig=} option, x86-64
327@item -mevexlig=@var{128}
328@itemx -mevexlig=@var{256}
329@itemx -mevexlig=@var{512}
330These options control how the assembler should encode length-ignored
331(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
332EVEX instructions with 128bit vector length, which is the default.
333@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
334encode LIG EVEX instructions with 256bit and 512bit vector length,
335respectively.
336
337@cindex @samp{-mevexwig=} option, i386
338@cindex @samp{-mevexwig=} option, x86-64
339@item -mevexwig=@var{0}
340@itemx -mevexwig=@var{1}
341These options control how the assembler should encode w-ignored (WIG)
342EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
343EVEX instructions with evex.w = 0, which is the default.
344@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
345evex.w = 1.
346
1efbbeb4
L
347@cindex @samp{-mmnemonic=} option, i386
348@cindex @samp{-mmnemonic=} option, x86-64
349@item -mmnemonic=@var{att}
1f9bb1ca 350@itemx -mmnemonic=@var{intel}
34bca508 351This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
352The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
353take precedent.
354
355@cindex @samp{-msyntax=} option, i386
356@cindex @samp{-msyntax=} option, x86-64
357@item -msyntax=@var{att}
1f9bb1ca 358@itemx -msyntax=@var{intel}
34bca508 359This option specifies instruction syntax when processing instructions.
1efbbeb4
L
360The @code{.att_syntax} and @code{.intel_syntax} directives will
361take precedent.
362
363@cindex @samp{-mnaked-reg} option, i386
364@cindex @samp{-mnaked-reg} option, x86-64
365@item -mnaked-reg
33eaf5de 366This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 367The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 368
7e8b059b
L
369@cindex @samp{-madd-bnd-prefix} option, i386
370@cindex @samp{-madd-bnd-prefix} option, x86-64
371@item -madd-bnd-prefix
372This option forces the assembler to add BND prefix to all branches, even
373if such prefix was not explicitly specified in the source code.
374
8dcea932
L
375@cindex @samp{-mshared} option, i386
376@cindex @samp{-mshared} option, x86-64
377@item -mno-shared
378On ELF target, the assembler normally optimizes out non-PLT relocations
379against defined non-weak global branch targets with default visibility.
380The @samp{-mshared} option tells the assembler to generate code which
381may go into a shared library where all non-weak global branch targets
382with default visibility can be preempted. The resulting code is
383slightly bigger. This option only affects the handling of branch
384instructions.
385
167ad85b
TG
386@cindex @samp{-mbig-obj} option, x86-64
387@item -mbig-obj
388On x86-64 PE/COFF target this option forces the use of big object file
389format, which allows more than 32768 sections.
390
d022bddd
IT
391@cindex @samp{-momit-lock-prefix=} option, i386
392@cindex @samp{-momit-lock-prefix=} option, x86-64
393@item -momit-lock-prefix=@var{no}
394@itemx -momit-lock-prefix=@var{yes}
395These options control how the assembler should encode lock prefix.
396This option is intended as a workaround for processors, that fail on
397lock prefix. This option can only be safely used with single-core,
398single-thread computers
399@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
400@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
401which is the default.
402
e4e00185
AS
403@cindex @samp{-mfence-as-lock-add=} option, i386
404@cindex @samp{-mfence-as-lock-add=} option, x86-64
405@item -mfence-as-lock-add=@var{no}
406@itemx -mfence-as-lock-add=@var{yes}
407These options control how the assembler should encode lfence, mfence and
408sfence.
409@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
410sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
411@samp{lock addl $0x0, (%esp)} in 32-bit mode.
412@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
413sfence as usual, which is the default.
414
0cb4071e
L
415@cindex @samp{-mrelax-relocations=} option, i386
416@cindex @samp{-mrelax-relocations=} option, x86-64
417@item -mrelax-relocations=@var{no}
418@itemx -mrelax-relocations=@var{yes}
419These options control whether the assembler should generate relax
420relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
421R_X86_64_REX_GOTPCRELX, in 64-bit mode.
422@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
423@option{-mrelax-relocations=@var{no}} will not generate relax
424relocations. The default can be controlled by a configure option
425@option{--enable-x86-relax-relocations}.
426
e379e5f3
L
427@cindex @samp{-malign-branch-boundary=} option, i386
428@cindex @samp{-malign-branch-boundary=} option, x86-64
429@item -malign-branch-boundary=@var{NUM}
430This option controls how the assembler should align branches with segment
431prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
432no less than 16. Branches will be aligned within @var{NUM} byte
433boundary. @option{-malign-branch-boundary=0}, which is the default,
434doesn't align branches.
435
436@cindex @samp{-malign-branch=} option, i386
437@cindex @samp{-malign-branch=} option, x86-64
438@item -malign-branch=@var{TYPE}[+@var{TYPE}...]
439This option specifies types of branches to align. @var{TYPE} is
440combination of @samp{jcc}, which aligns conditional jumps,
441@samp{fused}, which aligns fused conditional jumps, @samp{jmp},
442which aligns unconditional jumps, @samp{call} which aligns calls,
443@samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
444jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
445
446@cindex @samp{-malign-branch-prefix-size=} option, i386
447@cindex @samp{-malign-branch-prefix-size=} option, x86-64
448@item -malign-branch-prefix-size=@var{NUM}
449This option specifies the maximum number of prefixes on an instruction
450to align branches. @var{NUM} should be between 0 and 5. The default
451@var{NUM} is 5.
452
76cf450b
L
453@cindex @samp{-mbranches-within-32B-boundaries} option, i386
454@cindex @samp{-mbranches-within-32B-boundaries} option, x86-64
455@item -mbranches-within-32B-boundaries
456This option aligns conditional jumps, fused conditional jumps and
457unconditional jumps within 32 byte boundary with up to 5 segment prefixes
458on an instruction. It is equivalent to
459@option{-malign-branch-boundary=32}
460@option{-malign-branch=jcc+fused+jmp}
461@option{-malign-branch-prefix-size=5}.
462The default doesn't align branches.
463
b4a3a7b4
L
464@cindex @samp{-mx86-used-note=} option, i386
465@cindex @samp{-mx86-used-note=} option, x86-64
466@item -mx86-used-note=@var{no}
467@itemx -mx86-used-note=@var{yes}
468These options control whether the assembler should generate
469GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
470GNU property notes. The default can be controlled by the
471@option{--enable-x86-used-note} configure option.
472
d3d3c6db
IT
473@cindex @samp{-mevexrcig=} option, i386
474@cindex @samp{-mevexrcig=} option, x86-64
475@item -mevexrcig=@var{rne}
476@itemx -mevexrcig=@var{rd}
477@itemx -mevexrcig=@var{ru}
478@itemx -mevexrcig=@var{rz}
479These options control how the assembler should encode SAE-only
480EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
481of EVEX instruction with 00, which is the default.
482@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
483and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
484with 01, 10 and 11 RC bits, respectively.
485
5db04b09
L
486@cindex @samp{-mamd64} option, x86-64
487@cindex @samp{-mintel64} option, x86-64
488@item -mamd64
489@itemx -mintel64
490This option specifies that the assembler should accept only AMD64 or
491Intel64 ISA in 64-bit mode. The default is to accept both.
492
b6f8c7c4
L
493@cindex @samp{-O0} option, i386
494@cindex @samp{-O0} option, x86-64
495@cindex @samp{-O} option, i386
496@cindex @samp{-O} option, x86-64
497@cindex @samp{-O1} option, i386
498@cindex @samp{-O1} option, x86-64
499@cindex @samp{-O2} option, i386
500@cindex @samp{-O2} option, x86-64
501@cindex @samp{-Os} option, i386
502@cindex @samp{-Os} option, x86-64
503@item -O0 | -O | -O1 | -O2 | -Os
504Optimize instruction encoding with smaller instruction size. @samp{-O}
505and @samp{-O1} encode 64-bit register load instructions with 64-bit
506immediate as 32-bit register load instructions with 31-bit or 32-bits
99112332 507immediates, encode 64-bit register clearing instructions with 32-bit
a0a1771e
JB
508register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
509register clearing instructions with 128-bit VEX vector register
510clearing instructions, encode 128-bit/256-bit EVEX vector
97ed31ae 511register load/store instructions with VEX vector register load/store
a0a1771e
JB
512instructions, and encode 128-bit/256-bit EVEX packed integer logical
513instructions with 128-bit/256-bit VEX packed integer logical.
514
515@samp{-O2} includes @samp{-O1} optimization plus encodes
516256-bit/512-bit EVEX vector register clearing instructions with 128-bit
79dec6b7
JB
517EVEX vector register clearing instructions. In 64-bit mode VEX encoded
518instructions with commutative source operands will also have their
519source operands swapped if this allows using the 2-byte VEX prefix form
5641ec01
JB
520instead of the 3-byte one. Certain forms of AND as well as OR with the
521same (register) operand specified twice will also be changed to TEST.
a0a1771e 522
b6f8c7c4
L
523@samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
524and 64-bit register tests with immediate as 8-bit register test with
525immediate. @samp{-O0} turns off this optimization.
526
55b62671 527@end table
731caf76 528@c man end
e413e4e9 529
a6c24e68
NC
530@node i386-Directives
531@section x86 specific Directives
532
533@cindex machine directives, x86
534@cindex x86 machine directives
535@table @code
536
537@cindex @code{lcomm} directive, COFF
538@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
539Reserve @var{length} (an absolute expression) bytes for a local common
540denoted by @var{symbol}. The section and value of @var{symbol} are
541those of the new local common. The addresses are allocated in the bss
704209c0
NC
542section, so that at run-time the bytes start off zeroed. Since
543@var{symbol} is not declared global, it is normally not visible to
544@code{@value{LD}}. The optional third parameter, @var{alignment},
545specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
546
547This directive is only available for COFF based x86 targets.
548
102e9361
NC
549@cindex @code{largecomm} directive, ELF
550@item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
551This directive behaves in the same way as the @code{comm} directive
552except that the data is placed into the @var{.lbss} section instead of
553the @var{.bss} section @ref{Comm}.
554
555The directive is intended to be used for data which requires a large
556amount of space, and it is only available for ELF based x86_64
557targets.
558
f2f51cd5
NC
559@cindex @code{value} directive
560@item .value @var{expression} [, @var{expression}]
561This directive behaves in the same way as the @code{.short} directive,
562taking a series of comma separated expressions and storing them as
563two-byte wide values into the current section.
564
a6c24e68 565@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
a6c24e68
NC
566
567@end table
568
252b5132 569@node i386-Syntax
7c31ae13
NC
570@section i386 Syntactical Considerations
571@menu
572* i386-Variations:: AT&T Syntax versus Intel Syntax
573* i386-Chars:: Special Characters
574@end menu
575
576@node i386-Variations
577@subsection AT&T Syntax versus Intel Syntax
252b5132 578
e413e4e9
AM
579@cindex i386 intel_syntax pseudo op
580@cindex intel_syntax pseudo op, i386
581@cindex i386 att_syntax pseudo op
582@cindex att_syntax pseudo op, i386
252b5132
RH
583@cindex i386 syntax compatibility
584@cindex syntax compatibility, i386
55b62671
AJ
585@cindex x86-64 intel_syntax pseudo op
586@cindex intel_syntax pseudo op, x86-64
587@cindex x86-64 att_syntax pseudo op
588@cindex att_syntax pseudo op, x86-64
589@cindex x86-64 syntax compatibility
590@cindex syntax compatibility, x86-64
e413e4e9
AM
591
592@code{@value{AS}} now supports assembly using Intel assembler syntax.
593@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
594back to the usual AT&T mode for compatibility with the output of
595@code{@value{GCC}}. Either of these directives may have an optional
596argument, @code{prefix}, or @code{noprefix} specifying whether registers
597require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
598different from Intel syntax. We mention these differences because
599almost all 80386 documents use Intel syntax. Notable differences
600between the two syntaxes are:
601
602@cindex immediate operands, i386
603@cindex i386 immediate operands
604@cindex register operands, i386
605@cindex i386 register operands
606@cindex jump/call operands, i386
607@cindex i386 jump/call operands
608@cindex operand delimiters, i386
55b62671
AJ
609
610@cindex immediate operands, x86-64
611@cindex x86-64 immediate operands
612@cindex register operands, x86-64
613@cindex x86-64 register operands
614@cindex jump/call operands, x86-64
615@cindex x86-64 jump/call operands
616@cindex operand delimiters, x86-64
252b5132
RH
617@itemize @bullet
618@item
619AT&T immediate operands are preceded by @samp{$}; Intel immediate
620operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
621AT&T register operands are preceded by @samp{%}; Intel register operands
622are undelimited. AT&T absolute (as opposed to PC relative) jump/call
623operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
624
625@cindex i386 source, destination operands
626@cindex source, destination operands; i386
55b62671
AJ
627@cindex x86-64 source, destination operands
628@cindex source, destination operands; x86-64
252b5132
RH
629@item
630AT&T and Intel syntax use the opposite order for source and destination
631operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
632@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
633previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
634instructions with 2 immediate operands, such as the @samp{enter}
635instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
636
637@cindex mnemonic suffixes, i386
638@cindex sizes operands, i386
639@cindex i386 size suffixes
55b62671
AJ
640@cindex mnemonic suffixes, x86-64
641@cindex sizes operands, x86-64
642@cindex x86-64 size suffixes
252b5132
RH
643@item
644In AT&T syntax the size of memory operands is determined from the last
645character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671 646@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
aa108c0c
LC
647(32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
648of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
649(256-bit vector) and zmm (512-bit vector) memory references, only when there's
650no other way to disambiguate an instruction. Intel syntax accomplishes this by
651prefixing memory operands (@emph{not} the instruction mnemonics) with
652@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
653@samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
654syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
655syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
656@samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
252b5132 657
4b06377f
L
658In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
659instruction with the 64-bit displacement or immediate operand.
660
252b5132
RH
661@cindex return instructions, i386
662@cindex i386 jump, call, return
55b62671
AJ
663@cindex return instructions, x86-64
664@cindex x86-64 jump, call, return
252b5132
RH
665@item
666Immediate form long jumps and calls are
667@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
668Intel syntax is
669@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
670instruction
671is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
672@samp{ret far @var{stack-adjust}}.
673
674@cindex sections, i386
675@cindex i386 sections
55b62671
AJ
676@cindex sections, x86-64
677@cindex x86-64 sections
252b5132
RH
678@item
679The AT&T assembler does not provide support for multiple section
680programs. Unix style systems expect all programs to be single sections.
681@end itemize
682
7c31ae13
NC
683@node i386-Chars
684@subsection Special Characters
685
686@cindex line comment character, i386
687@cindex i386 line comment character
688The presence of a @samp{#} appearing anywhere on a line indicates the
689start of a comment that extends to the end of that line.
690
691If a @samp{#} appears as the first character of a line then the whole
692line is treated as a comment, but in this case the line can also be a
693logical line number directive (@pxref{Comments}) or a preprocessor
694control command (@pxref{Preprocessing}).
695
a05a5b64 696If the @option{--divide} command-line option has not been specified
7c31ae13
NC
697then the @samp{/} character appearing anywhere on a line also
698introduces a line comment.
699
700@cindex line separator, i386
701@cindex statement separator, i386
702@cindex i386 line separator
703The @samp{;} character can be used to separate statements on the same
704line.
705
252b5132 706@node i386-Mnemonics
d3b47e2b
L
707@section i386-Mnemonics
708@subsection Instruction Naming
252b5132
RH
709
710@cindex i386 instruction naming
711@cindex instruction naming, i386
55b62671
AJ
712@cindex x86-64 instruction naming
713@cindex instruction naming, x86-64
714
252b5132 715Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
716specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
717and @samp{q} specify byte, word, long and quadruple word operands. If
718no suffix is specified by an instruction then @code{@value{AS}} tries to
719fill in the missing suffix based on the destination register operand
720(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
721to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
722@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
723assembler which assumes that a missing mnemonic suffix implies long
724operand size. (This incompatibility does not affect compiler output
725since compilers always explicitly specify the mnemonic suffix.)
252b5132 726
c006a730
JB
727When there is no sizing suffix and no (suitable) register operands to
728deduce the size of memory operands, with a few exceptions and where long
729operand size is possible in the first place, operand size will default
730to long in 32- and 64-bit modes. Similarly it will default to short in
73116-bit mode. Noteworthy exceptions are
732
733@itemize @bullet
734@item
735Instructions with an implicit on-stack operand as well as branches,
736which default to quad in 64-bit mode.
737
738@item
739Sign- and zero-extending moves, which default to byte size source
740operands.
741
742@item
743Floating point insns with integer operands, which default to short (for
744perhaps historical reasons).
745
746@item
747CRC32 with a 64-bit destination, which defaults to a quad source
748operand.
749
750@end itemize
751
252b5132
RH
752Almost all instructions have the same names in AT&T and Intel format.
753There are a few exceptions. The sign extend and zero extend
754instructions need two sizes to specify them. They need a size to
755sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
756is accomplished by using two instruction mnemonic suffixes in AT&T
757syntax. Base names for sign extend and zero extend are
758@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
759and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
760are tacked on to this base name, the @emph{from} suffix before the
761@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
762``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
763thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
764@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
765@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
766quadruple word).
252b5132 767
b6169b20
L
768@cindex encoding options, i386
769@cindex encoding options, x86-64
770
86fa6981
L
771Different encoding options can be specified via pseudo prefixes:
772
773@itemize @bullet
774@item
775@samp{@{disp8@}} -- prefer 8-bit displacement.
776
777@item
778@samp{@{disp32@}} -- prefer 32-bit displacement.
779
780@item
781@samp{@{load@}} -- prefer load-form instruction.
782
783@item
784@samp{@{store@}} -- prefer store-form instruction.
785
786@item
42e04b36 787@samp{@{vex@}} -- encode with VEX prefix.
86fa6981
L
788
789@item
42e04b36 790@samp{@{vex3@}} -- encode with 3-byte VEX prefix.
86fa6981
L
791
792@item
793@samp{@{evex@}} -- encode with EVEX prefix.
6b6b6807
L
794
795@item
796@samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
797instructions (x86-64 only). Note that this differs from the @samp{rex}
798prefix which generates REX prefix unconditionally.
b6f8c7c4
L
799
800@item
801@samp{@{nooptimize@}} -- disable instruction size optimization.
86fa6981 802@end itemize
b6169b20 803
252b5132
RH
804@cindex conversion instructions, i386
805@cindex i386 conversion instructions
55b62671
AJ
806@cindex conversion instructions, x86-64
807@cindex x86-64 conversion instructions
252b5132
RH
808The Intel-syntax conversion instructions
809
810@itemize @bullet
811@item
812@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
813
814@item
815@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
816
817@item
818@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
819
820@item
821@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
822
823@item
824@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
825(x86-64 only),
826
827@item
d5f0cf92 828@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 829@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
830@end itemize
831
832@noindent
55b62671
AJ
833are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
834@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
835instructions.
252b5132
RH
836
837@cindex jump instructions, i386
838@cindex call instructions, i386
55b62671
AJ
839@cindex jump instructions, x86-64
840@cindex call instructions, x86-64
252b5132
RH
841Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
842AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
843convention.
844
d3b47e2b 845@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
846
847@cindex i386 mnemonic compatibility
848@cindex mnemonic compatibility, i386
849
850@code{@value{AS}} supports assembly using Intel mnemonic.
851@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
852@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
853syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
854Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
855@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
856@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
857assembler with different mnemonics from those in Intel IA32 specification.
858@code{@value{GCC}} generates those instructions with AT&T mnemonic.
859
bc31405e
L
860@itemize @bullet
861@item @samp{movslq} with AT&T mnemonic only accepts 64-bit destination
862register. @samp{movsxd} should be used to encode 16-bit or 32-bit
863destination register with both AT&T and Intel mnemonics.
864@end itemize
865
252b5132
RH
866@node i386-Regs
867@section Register Naming
868
869@cindex i386 registers
870@cindex registers, i386
55b62671
AJ
871@cindex x86-64 registers
872@cindex registers, x86-64
252b5132
RH
873Register operands are always prefixed with @samp{%}. The 80386 registers
874consist of
875
876@itemize @bullet
877@item
878the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
879@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
880frame pointer), and @samp{%esp} (the stack pointer).
881
882@item
883the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
884@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
885
886@item
887the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
888@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
889are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
890@samp{%cx}, and @samp{%dx})
891
892@item
893the 6 section registers @samp{%cs} (code section), @samp{%ds}
894(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
895and @samp{%gs}.
896
897@item
4bde3cdd
UD
898the 5 processor control registers @samp{%cr0}, @samp{%cr2},
899@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
900
901@item
902the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
903@samp{%db3}, @samp{%db6}, and @samp{%db7}.
904
905@item
906the 2 test registers @samp{%tr6} and @samp{%tr7}.
907
908@item
909the 8 floating point register stack @samp{%st} or equivalently
910@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
911@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
912These registers are overloaded by 8 MMX registers @samp{%mm0},
913@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
914@samp{%mm6} and @samp{%mm7}.
915
916@item
4bde3cdd 917the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
918@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
919@end itemize
920
921The AMD x86-64 architecture extends the register set by:
922
923@itemize @bullet
924@item
925enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
926accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
927@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
928pointer)
929
930@item
931the 8 extended registers @samp{%r8}--@samp{%r15}.
932
933@item
4bde3cdd 934the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
935
936@item
4bde3cdd 937the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
938
939@item
4bde3cdd 940the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
941
942@item
943the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
944
945@item
946the 8 debug registers: @samp{%db8}--@samp{%db15}.
947
948@item
4bde3cdd
UD
949the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
950@end itemize
951
952With the AVX extensions more registers were made available:
953
954@itemize @bullet
955
956@item
957the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
958available in 32-bit mode). The bottom 128 bits are overlaid with the
959@samp{xmm0}--@samp{xmm15} registers.
960
961@end itemize
962
963The AVX2 extensions made in 64-bit mode more registers available:
964
965@itemize @bullet
966
967@item
968the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
969registers @samp{%ymm16}--@samp{%ymm31}.
970
971@end itemize
972
973The AVX512 extensions added the following registers:
974
975@itemize @bullet
976
977@item
978the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
979available in 32-bit mode). The bottom 128 bits are overlaid with the
980@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
981overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
982
983@item
984the 8 mask registers @samp{%k0}--@samp{%k7}.
985
252b5132
RH
986@end itemize
987
988@node i386-Prefixes
989@section Instruction Prefixes
990
991@cindex i386 instruction prefixes
992@cindex instruction prefixes, i386
993@cindex prefixes, i386
994Instruction prefixes are used to modify the following instruction. They
995are used to repeat string instructions, to provide section overrides, to
996perform bus lock operations, and to change operand and address sizes.
997(Most instructions that normally operate on 32-bit operands will use
99816-bit operands if the instruction has an ``operand size'' prefix.)
999Instruction prefixes are best written on the same line as the instruction
1000they act upon. For example, the @samp{scas} (scan string) instruction is
1001repeated with:
1002
1003@smallexample
1004 repne scas %es:(%edi),%al
1005@end smallexample
1006
1007You may also place prefixes on the lines immediately preceding the
1008instruction, but this circumvents checks that @code{@value{AS}} does
1009with prefixes, and will not work with all prefixes.
1010
1011Here is a list of instruction prefixes:
1012
1013@cindex section override prefixes, i386
1014@itemize @bullet
1015@item
1016Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
1017@samp{fs}, @samp{gs}. These are automatically added by specifying
1018using the @var{section}:@var{memory-operand} form for memory references.
1019
1020@cindex size prefixes, i386
1021@item
1022Operand/Address size prefixes @samp{data16} and @samp{addr16}
1023change 32-bit operands/addresses into 16-bit operands/addresses,
1024while @samp{data32} and @samp{addr32} change 16-bit ones (in a
1025@code{.code16} section) into 32-bit operands/addresses. These prefixes
1026@emph{must} appear on the same line of code as the instruction they
1027modify. For example, in a 16-bit @code{.code16} section, you might
1028write:
1029
1030@smallexample
1031 addr32 jmpl *(%ebx)
1032@end smallexample
1033
1034@cindex bus lock prefixes, i386
1035@cindex inhibiting interrupts, i386
1036@item
1037The bus lock prefix @samp{lock} inhibits interrupts during execution of
1038the instruction it precedes. (This is only valid with certain
1039instructions; see a 80386 manual for details).
1040
1041@cindex coprocessor wait, i386
1042@item
1043The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1044complete the current instruction. This should never be needed for the
104580386/80387 combination.
1046
1047@cindex repeat prefixes, i386
1048@item
1049The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1050to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1051times if the current address size is 16-bits).
55b62671
AJ
1052@cindex REX prefixes, i386
1053@item
1054The @samp{rex} family of prefixes is used by x86-64 to encode
1055extensions to i386 instruction set. The @samp{rex} prefix has four
1056bits --- an operand size overwrite (@code{64}) used to change operand size
1057from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1058register set.
1059
1060You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1061instruction emits @samp{rex} prefix with all the bits set. By omitting
1062the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1063prefixes as well. Normally, there is no need to write the prefixes
1064explicitly, since gas will automatically generate them based on the
1065instruction operands.
252b5132
RH
1066@end itemize
1067
1068@node i386-Memory
1069@section Memory References
1070
1071@cindex i386 memory references
1072@cindex memory references, i386
55b62671
AJ
1073@cindex x86-64 memory references
1074@cindex memory references, x86-64
252b5132
RH
1075An Intel syntax indirect memory reference of the form
1076
1077@smallexample
1078@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1079@end smallexample
1080
1081@noindent
1082is translated into the AT&T syntax
1083
1084@smallexample
1085@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1086@end smallexample
1087
1088@noindent
1089where @var{base} and @var{index} are the optional 32-bit base and
1090index registers, @var{disp} is the optional displacement, and
1091@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1092to calculate the address of the operand. If no @var{scale} is
1093specified, @var{scale} is taken to be 1. @var{section} specifies the
1094optional section register for the memory operand, and may override the
1095default section register (see a 80386 manual for section register
1096defaults). Note that section overrides in AT&T syntax @emph{must}
1097be preceded by a @samp{%}. If you specify a section override which
1098coincides with the default section register, @code{@value{AS}} does @emph{not}
1099output any section register override prefixes to assemble the given
1100instruction. Thus, section overrides can be specified to emphasize which
1101section register is used for a given memory operand.
1102
1103Here are some examples of Intel and AT&T style memory references:
1104
1105@table @asis
1106@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1107@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1108missing, and the default section is used (@samp{%ss} for addressing with
1109@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1110
1111@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1112@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1113@samp{foo}. All other fields are missing. The section register here
1114defaults to @samp{%ds}.
1115
1116@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1117This uses the value pointed to by @samp{foo} as a memory operand.
1118Note that @var{base} and @var{index} are both missing, but there is only
1119@emph{one} @samp{,}. This is a syntactic exception.
1120
1121@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1122This selects the contents of the variable @samp{foo} with section
1123register @var{section} being @samp{%gs}.
1124@end table
1125
1126Absolute (as opposed to PC relative) call and jump operands must be
1127prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1128always chooses PC relative addressing for jump/call labels.
1129
1130Any instruction that has a memory operand, but no register operand,
55b62671
AJ
1131@emph{must} specify its size (byte, word, long, or quadruple) with an
1132instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1133respectively).
1134
1135The x86-64 architecture adds an RIP (instruction pointer relative)
1136addressing. This addressing mode is specified by using @samp{rip} as a
1137base register. Only constant offsets are valid. For example:
1138
1139@table @asis
1140@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1141Points to the address 1234 bytes past the end of the current
1142instruction.
1143
1144@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1145Points to the @code{symbol} in RIP relative way, this is shorter than
1146the default absolute addressing.
1147@end table
1148
1149Other addressing modes remain unchanged in x86-64 architecture, except
1150registers used are 64-bit instead of 32-bit.
252b5132 1151
fddf5b5b 1152@node i386-Jumps
252b5132
RH
1153@section Handling of Jump Instructions
1154
1155@cindex jump optimization, i386
1156@cindex i386 jump optimization
55b62671
AJ
1157@cindex jump optimization, x86-64
1158@cindex x86-64 jump optimization
252b5132
RH
1159Jump instructions are always optimized to use the smallest possible
1160displacements. This is accomplished by using byte (8-bit) displacement
1161jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 1162is insufficient a long displacement is used. We do not support
252b5132
RH
1163word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1164instruction with the @samp{data16} instruction prefix), since the 80386
1165insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 1166is added. (See also @pxref{i386-Arch})
252b5132
RH
1167
1168Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1169@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1170displacements, so that if you use these instructions (@code{@value{GCC}} does
1171not use them) you may get an error message (and incorrect code). The AT&T
117280386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1173to
1174
1175@smallexample
1176 jcxz cx_zero
1177 jmp cx_nonzero
1178cx_zero: jmp foo
1179cx_nonzero:
1180@end smallexample
1181
1182@node i386-Float
1183@section Floating Point
1184
1185@cindex i386 floating point
1186@cindex floating point, i386
55b62671
AJ
1187@cindex x86-64 floating point
1188@cindex floating point, x86-64
252b5132
RH
1189All 80387 floating point types except packed BCD are supported.
1190(BCD support may be added without much difficulty). These data
1191types are 16-, 32-, and 64- bit integers, and single (32-bit),
1192double (64-bit), and extended (80-bit) precision floating point.
1193Each supported type has an instruction mnemonic suffix and a constructor
1194associated with it. Instruction mnemonic suffixes specify the operand's
1195data type. Constructors build these data types into memory.
1196
1197@cindex @code{float} directive, i386
1198@cindex @code{single} directive, i386
1199@cindex @code{double} directive, i386
1200@cindex @code{tfloat} directive, i386
55b62671
AJ
1201@cindex @code{float} directive, x86-64
1202@cindex @code{single} directive, x86-64
1203@cindex @code{double} directive, x86-64
1204@cindex @code{tfloat} directive, x86-64
252b5132
RH
1205@itemize @bullet
1206@item
1207Floating point constructors are @samp{.float} or @samp{.single},
1208@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1209These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1210and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1211only supports this format via the @samp{fldt} (load 80-bit real to stack
1212top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1213
1214@cindex @code{word} directive, i386
1215@cindex @code{long} directive, i386
1216@cindex @code{int} directive, i386
1217@cindex @code{quad} directive, i386
55b62671
AJ
1218@cindex @code{word} directive, x86-64
1219@cindex @code{long} directive, x86-64
1220@cindex @code{int} directive, x86-64
1221@cindex @code{quad} directive, x86-64
252b5132
RH
1222@item
1223Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1224@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1225corresponding instruction mnemonic suffixes are @samp{s} (single),
1226@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1227the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1228quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1229stack) instructions.
1230@end itemize
1231
1232Register to register operations should not use instruction mnemonic suffixes.
1233@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1234wrote @samp{fst %st, %st(1)}, since all register to register operations
1235use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1236which converts @samp{%st} from 80-bit to 64-bit floating point format,
1237then stores the result in the 4 byte location @samp{mem})
1238
1239@node i386-SIMD
1240@section Intel's MMX and AMD's 3DNow! SIMD Operations
1241
1242@cindex MMX, i386
1243@cindex 3DNow!, i386
1244@cindex SIMD, i386
55b62671
AJ
1245@cindex MMX, x86-64
1246@cindex 3DNow!, x86-64
1247@cindex SIMD, x86-64
252b5132
RH
1248
1249@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1250instructions for integer data), available on Intel's Pentium MMX
1251processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1252Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1253instruction set (SIMD instructions for 32-bit floating point data)
1254available on AMD's K6-2 processor and possibly others in the future.
1255
1256Currently, @code{@value{AS}} does not support Intel's floating point
1257SIMD, Katmai (KNI).
1258
1259The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1260@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
126116-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1262floating point values. The MMX registers cannot be used at the same time
1263as the floating point stack.
1264
1265See Intel and AMD documentation, keeping in mind that the operand order in
1266instructions is reversed from the Intel syntax.
1267
f88c9eb0
SP
1268@node i386-LWP
1269@section AMD's Lightweight Profiling Instructions
1270
1271@cindex LWP, i386
1272@cindex LWP, x86-64
1273
1274@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1275instruction set, available on AMD's Family 15h (Orochi) processors.
1276
1277LWP enables applications to collect and manage performance data, and
1278react to performance events. The collection of performance data
1279requires no context switches. LWP runs in the context of a thread and
1280so several counters can be used independently across multiple threads.
1281LWP can be used in both 64-bit and legacy 32-bit modes.
1282
1283For detailed information on the LWP instruction set, see the
1284@cite{AMD Lightweight Profiling Specification} available at
1285@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1286
87973e9f
QN
1287@node i386-BMI
1288@section Bit Manipulation Instructions
1289
1290@cindex BMI, i386
1291@cindex BMI, x86-64
1292
1293@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1294
1295BMI instructions provide several instructions implementing individual
1296bit manipulation operations such as isolation, masking, setting, or
34bca508 1297resetting.
87973e9f
QN
1298
1299@c Need to add a specification citation here when available.
1300
2a2a0f38
QN
1301@node i386-TBM
1302@section AMD's Trailing Bit Manipulation Instructions
1303
1304@cindex TBM, i386
1305@cindex TBM, x86-64
1306
1307@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1308instruction set, available on AMD's BDVER2 processors (Trinity and
1309Viperfish).
1310
1311TBM instructions provide instructions implementing individual bit
1312manipulation operations such as isolating, masking, setting, resetting,
1313complementing, and operations on trailing zeros and ones.
1314
1315@c Need to add a specification citation here when available.
87973e9f 1316
252b5132
RH
1317@node i386-16bit
1318@section Writing 16-bit Code
1319
1320@cindex i386 16-bit code
1321@cindex 16-bit code, i386
1322@cindex real-mode code, i386
eecb386c 1323@cindex @code{code16gcc} directive, i386
252b5132
RH
1324@cindex @code{code16} directive, i386
1325@cindex @code{code32} directive, i386
55b62671
AJ
1326@cindex @code{code64} directive, i386
1327@cindex @code{code64} directive, x86-64
1328While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1329or 64-bit x86-64 code depending on the default configuration,
252b5132 1330it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1331mode code segments. To do this, put a @samp{.code16} or
1332@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1333be run in 16-bit mode. You can switch @code{@value{AS}} to writing
133432-bit code with the @samp{.code32} directive or 64-bit code with the
1335@samp{.code64} directive.
eecb386c
AM
1336
1337@samp{.code16gcc} provides experimental support for generating 16-bit
1338code from gcc, and differs from @samp{.code16} in that @samp{call},
1339@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1340@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1341default to 32-bit size. This is so that the stack pointer is
1342manipulated in the same way over function calls, allowing access to
1343function parameters at the same stack offsets as in 32-bit mode.
1344@samp{.code16gcc} also automatically adds address size prefixes where
1345necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1346
1347The code which @code{@value{AS}} generates in 16-bit mode will not
1348necessarily run on a 16-bit pre-80386 processor. To write code that
1349runs on such a processor, you must refrain from using @emph{any} 32-bit
1350constructs which require @code{@value{AS}} to output address or operand
1351size prefixes.
1352
1353Note that writing 16-bit code instructions by explicitly specifying a
1354prefix or an instruction mnemonic suffix within a 32-bit code section
1355generates different machine instructions than those generated for a
135616-bit code segment. In a 32-bit code section, the following code
1357generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1358value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1359
1360@smallexample
1361 pushw $4
1362@end smallexample
1363
1364The same code in a 16-bit code section would generate the machine
b45619c0 1365opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1366is correct since the processor default operand size is assumed to be 16
1367bits in a 16-bit code section.
1368
e413e4e9
AM
1369@node i386-Arch
1370@section Specifying CPU Architecture
1371
1372@cindex arch directive, i386
1373@cindex i386 arch directive
55b62671
AJ
1374@cindex arch directive, x86-64
1375@cindex x86-64 arch directive
e413e4e9
AM
1376
1377@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1378(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1379directive enables a warning when gas detects an instruction that is not
1380supported on the CPU specified. The choices for @var{cpu_type} are:
1381
1382@multitable @columnfractions .20 .20 .20 .20
1383@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1384@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1385@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1386@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
d871f3f4 1387@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1543849b 1388@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1389@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
a9660a6f 1390@item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
d871f3f4
L
1391@item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1392@item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1393@item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1394@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1395@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1396@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1397@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1398@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1399@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1400@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1401@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1402@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1403@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1404@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1405@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
8cfcb765 1406@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
9186c494 1407@item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
d777820b 1408@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
c48935d7 1409@item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
d777820b 1410@item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
5d79adc4 1411@item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd}
1ceab344 1412@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1413@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1414@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
142861df
JB
1415@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
1416@item @samp{.mcommit}
e413e4e9
AM
1417@end multitable
1418
fddf5b5b
AM
1419Apart from the warning, there are only two other effects on
1420@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1421@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1422will automatically use a two byte opcode sequence. The larger three
1423byte opcode sequence is used on the 486 (and when no architecture is
1424specified) because it executes faster on the 486. Note that you can
1425explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1426Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1427@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1428conditional jumps will be promoted when necessary to a two instruction
1429sequence consisting of a conditional jump of the opposite sense around
1430an unconditional jump to the target.
1431
5c6af06e
JB
1432Following the CPU architecture (but not a sub-architecture, which are those
1433starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1434control automatic promotion of conditional jumps. @samp{jumps} is the
1435default, and enables jump promotion; All external jumps will be of the long
1436variety, and file-local jumps will be promoted as necessary.
1437(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1438byte offset jumps, and warns about file-local conditional jumps that
1439@code{@value{AS}} promotes.
fddf5b5b
AM
1440Unconditional jumps are treated as for @samp{jumps}.
1441
1442For example
1443
1444@smallexample
1445 .arch i8086,nojumps
1446@end smallexample
e413e4e9 1447
bc31405e
L
1448@node i386-ISA
1449@section AMD64 ISA vs. Intel64 ISA
1450
1451There are some discrepancies between AMD64 and Intel64 ISAs.
1452
1453@itemize @bullet
1454@item For @samp{movsxd} with 16-bit destination register, AMD64
1455supports 32-bit source operand and Intel64 supports 16-bit source
1456operand.
1457@end itemize
1458
5c9352f3
AM
1459@node i386-Bugs
1460@section AT&T Syntax bugs
1461
1462The UnixWare assembler, and probably other AT&T derived ix86 Unix
1463assemblers, generate floating point instructions with reversed source
1464and destination registers in certain cases. Unfortunately, gcc and
1465possibly many other programs use this reversed syntax, so we're stuck
1466with it.
1467
1468For example
1469
1470@smallexample
1471 fsub %st,%st(3)
1472@end smallexample
1473@noindent
1474results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1475than the expected @samp{%st(3) - %st}. This happens with all the
1476non-commutative arithmetic floating point operations with two register
1477operands where the source register is @samp{%st} and the destination
1478register is @samp{%st(i)}.
1479
252b5132
RH
1480@node i386-Notes
1481@section Notes
1482
1483@cindex i386 @code{mul}, @code{imul} instructions
1484@cindex @code{mul} instruction, i386
1485@cindex @code{imul} instruction, i386
55b62671
AJ
1486@cindex @code{mul} instruction, x86-64
1487@cindex @code{imul} instruction, x86-64
252b5132 1488There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1489instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1490multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1491for @samp{imul}) can be output only in the one operand form. Thus,
1492@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1493the expanding multiply would clobber the @samp{%edx} register, and this
1494would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
149564-bit product in @samp{%edx:%eax}.
1496
1497We have added a two operand form of @samp{imul} when the first operand
1498is an immediate mode expression and the second operand is a register.
1499This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1500example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1501$69, %eax, %eax}.
1502
This page took 1.185791 seconds and 4 git commands to generate.