*** empty log message ***
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
2da5c037 1@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
aa820537 2@c 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009
f7e42eb4 3@c Free Software Foundation, Inc.
252b5132
RH
4@c This is part of the GAS manual.
5@c For copying conditions, see the file as.texinfo.
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
252b5132
RH
27* i386-Syntax:: AT&T Syntax versus Intel Syntax
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
252b5132 36* i386-16bit:: Writing 16-bit Code
e413e4e9 37* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
38* i386-Bugs:: AT&T Syntax bugs
39* i386-Notes:: Notes
40@end menu
41
42@node i386-Options
43@section Options
44
55b62671
AJ
45@cindex options for i386
46@cindex options for x86-64
47@cindex i386 options
48@cindex x86-64 options
49
50The i386 version of @code{@value{AS}} has a few machine
51dependent options:
52
53@table @code
54@cindex @samp{--32} option, i386
55@cindex @samp{--32} option, x86-64
56@cindex @samp{--64} option, i386
57@cindex @samp{--64} option, x86-64
58@item --32 | --64
59Select the word size, either 32 bits or 64 bits. Selecting 32-bit
60implies Intel i386 architecture, while 64-bit implies AMD x86-64
61architecture.
62
63These options are only available with the ELF object file format, and
64require that the necessary BFD support has been included (on a 32-bit
65platform you have to add --enable-64-bit-bfd to configure enable 64-bit
66usage and use x86-64 as target platform).
12b55ccc
L
67
68@item -n
69By default, x86 GAS replaces multiple nop instructions used for
70alignment within code sections with multi-byte nop instructions such
71as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
72
73@cindex @samp{--divide} option, i386
74@item --divide
75On SVR4-derived platforms, the character @samp{/} is treated as a comment
76character, which means that it cannot be used in expressions. The
77@samp{--divide} option turns @samp{/} into a normal character. This does
78not disable @samp{/} at the beginning of a line starting a comment, or
79affect using @samp{#} for starting a comment.
80
9103f4f4
L
81@cindex @samp{-march=} option, i386
82@cindex @samp{-march=} option, x86-64
6305a203
L
83@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
84This option specifies the target processor. The assembler will
85issue an error message if an attempt is made to assemble an instruction
86which will not execute on the target processor. The following
87processor names are recognized:
9103f4f4
L
88@code{i8086},
89@code{i186},
90@code{i286},
91@code{i386},
92@code{i486},
93@code{i586},
94@code{i686},
95@code{pentium},
96@code{pentiumpro},
97@code{pentiumii},
98@code{pentiumiii},
99@code{pentium4},
100@code{prescott},
101@code{nocona},
ef05d495
L
102@code{core},
103@code{core2},
bd5295b2 104@code{corei7},
8a9036a4 105@code{l1om},
9103f4f4
L
106@code{k6},
107@code{k6_2},
108@code{athlon},
9103f4f4
L
109@code{opteron},
110@code{k8},
1ceab344 111@code{amdfam10},
9103f4f4
L
112@code{generic32} and
113@code{generic64}.
114
6305a203
L
115In addition to the basic instruction set, the assembler can be told to
116accept various extension mnemonics. For example,
117@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
118@var{vmx}. The following extensions are currently supported:
309d3373
JB
119@code{8087},
120@code{287},
121@code{387},
122@code{no87},
6305a203 123@code{mmx},
309d3373 124@code{nommx},
6305a203
L
125@code{sse},
126@code{sse2},
127@code{sse3},
128@code{ssse3},
129@code{sse4.1},
130@code{sse4.2},
131@code{sse4},
309d3373 132@code{nosse},
c0f3af97 133@code{avx},
309d3373 134@code{noavx},
6305a203
L
135@code{vmx},
136@code{smx},
f03fe4c1 137@code{xsave},
c0f3af97 138@code{aes},
594ab6a3 139@code{pclmul},
c0f3af97 140@code{fma},
f1f8f695
L
141@code{movbe},
142@code{ept},
bd5295b2 143@code{clflush},
f88c9eb0 144@code{lwp},
bd5295b2 145@code{syscall},
1b7f3fb0 146@code{rdtscp},
6305a203
L
147@code{3dnow},
148@code{3dnowa},
149@code{sse4a},
150@code{sse5},
151@code{svme},
152@code{abm} and
153@code{padlock}.
309d3373
JB
154Note that rather than extending a basic instruction set, the extension
155mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
156
157When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
158@code{.arch} directive will take precedent.
159
160@cindex @samp{-mtune=} option, i386
161@cindex @samp{-mtune=} option, x86-64
162@item -mtune=@var{CPU}
163This option specifies a processor to optimize for. When used in
164conjunction with the @option{-march} option, only instructions
165of the processor specified by the @option{-march} option will be
166generated.
167
6305a203
L
168Valid @var{CPU} values are identical to the processor list of
169@option{-march=@var{CPU}}.
9103f4f4 170
c0f3af97
L
171@cindex @samp{-msse2avx} option, i386
172@cindex @samp{-msse2avx} option, x86-64
173@item -msse2avx
174This option specifies that the assembler should encode SSE instructions
175with VEX prefix.
176
daf50ae7
L
177@cindex @samp{-msse-check=} option, i386
178@cindex @samp{-msse-check=} option, x86-64
179@item -msse-check=@var{none}
180@item -msse-check=@var{warning}
181@item -msse-check=@var{error}
182These options control if the assembler should check SSE intructions.
183@option{-msse-check=@var{none}} will make the assembler not to check SSE
184instructions, which is the default. @option{-msse-check=@var{warning}}
185will make the assembler issue a warning for any SSE intruction.
186@option{-msse-check=@var{error}} will make the assembler issue an error
187for any SSE intruction.
188
1efbbeb4
L
189@cindex @samp{-mmnemonic=} option, i386
190@cindex @samp{-mmnemonic=} option, x86-64
191@item -mmnemonic=@var{att}
192@item -mmnemonic=@var{intel}
193This option specifies instruction mnemonic for matching instructions.
194The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
195take precedent.
196
197@cindex @samp{-msyntax=} option, i386
198@cindex @samp{-msyntax=} option, x86-64
199@item -msyntax=@var{att}
200@item -msyntax=@var{intel}
201This option specifies instruction syntax when processing instructions.
202The @code{.att_syntax} and @code{.intel_syntax} directives will
203take precedent.
204
205@cindex @samp{-mnaked-reg} option, i386
206@cindex @samp{-mnaked-reg} option, x86-64
207@item -mnaked-reg
208This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 209The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 210
55b62671 211@end table
e413e4e9 212
a6c24e68
NC
213@node i386-Directives
214@section x86 specific Directives
215
216@cindex machine directives, x86
217@cindex x86 machine directives
218@table @code
219
220@cindex @code{lcomm} directive, COFF
221@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
222Reserve @var{length} (an absolute expression) bytes for a local common
223denoted by @var{symbol}. The section and value of @var{symbol} are
224those of the new local common. The addresses are allocated in the bss
704209c0
NC
225section, so that at run-time the bytes start off zeroed. Since
226@var{symbol} is not declared global, it is normally not visible to
227@code{@value{LD}}. The optional third parameter, @var{alignment},
228specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
229
230This directive is only available for COFF based x86 targets.
231
232@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
233@c .largecomm
234
235@end table
236
252b5132
RH
237@node i386-Syntax
238@section AT&T Syntax versus Intel Syntax
239
e413e4e9
AM
240@cindex i386 intel_syntax pseudo op
241@cindex intel_syntax pseudo op, i386
242@cindex i386 att_syntax pseudo op
243@cindex att_syntax pseudo op, i386
252b5132
RH
244@cindex i386 syntax compatibility
245@cindex syntax compatibility, i386
55b62671
AJ
246@cindex x86-64 intel_syntax pseudo op
247@cindex intel_syntax pseudo op, x86-64
248@cindex x86-64 att_syntax pseudo op
249@cindex att_syntax pseudo op, x86-64
250@cindex x86-64 syntax compatibility
251@cindex syntax compatibility, x86-64
e413e4e9
AM
252
253@code{@value{AS}} now supports assembly using Intel assembler syntax.
254@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
255back to the usual AT&T mode for compatibility with the output of
256@code{@value{GCC}}. Either of these directives may have an optional
257argument, @code{prefix}, or @code{noprefix} specifying whether registers
258require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
259different from Intel syntax. We mention these differences because
260almost all 80386 documents use Intel syntax. Notable differences
261between the two syntaxes are:
262
263@cindex immediate operands, i386
264@cindex i386 immediate operands
265@cindex register operands, i386
266@cindex i386 register operands
267@cindex jump/call operands, i386
268@cindex i386 jump/call operands
269@cindex operand delimiters, i386
55b62671
AJ
270
271@cindex immediate operands, x86-64
272@cindex x86-64 immediate operands
273@cindex register operands, x86-64
274@cindex x86-64 register operands
275@cindex jump/call operands, x86-64
276@cindex x86-64 jump/call operands
277@cindex operand delimiters, x86-64
252b5132
RH
278@itemize @bullet
279@item
280AT&T immediate operands are preceded by @samp{$}; Intel immediate
281operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
282AT&T register operands are preceded by @samp{%}; Intel register operands
283are undelimited. AT&T absolute (as opposed to PC relative) jump/call
284operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
285
286@cindex i386 source, destination operands
287@cindex source, destination operands; i386
55b62671
AJ
288@cindex x86-64 source, destination operands
289@cindex source, destination operands; x86-64
252b5132
RH
290@item
291AT&T and Intel syntax use the opposite order for source and destination
292operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
293@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
294previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
295instructions with 2 immediate operands, such as the @samp{enter}
296instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
297
298@cindex mnemonic suffixes, i386
299@cindex sizes operands, i386
300@cindex i386 size suffixes
55b62671
AJ
301@cindex mnemonic suffixes, x86-64
302@cindex sizes operands, x86-64
303@cindex x86-64 size suffixes
252b5132
RH
304@item
305In AT&T syntax the size of memory operands is determined from the last
306character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
307@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
308(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
309this by prefixing memory operands (@emph{not} the instruction mnemonics) with
310@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
311Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
312syntax.
252b5132 313
4b06377f
L
314In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
315instruction with the 64-bit displacement or immediate operand.
316
252b5132
RH
317@cindex return instructions, i386
318@cindex i386 jump, call, return
55b62671
AJ
319@cindex return instructions, x86-64
320@cindex x86-64 jump, call, return
252b5132
RH
321@item
322Immediate form long jumps and calls are
323@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
324Intel syntax is
325@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
326instruction
327is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
328@samp{ret far @var{stack-adjust}}.
329
330@cindex sections, i386
331@cindex i386 sections
55b62671
AJ
332@cindex sections, x86-64
333@cindex x86-64 sections
252b5132
RH
334@item
335The AT&T assembler does not provide support for multiple section
336programs. Unix style systems expect all programs to be single sections.
337@end itemize
338
339@node i386-Mnemonics
340@section Instruction Naming
341
342@cindex i386 instruction naming
343@cindex instruction naming, i386
55b62671
AJ
344@cindex x86-64 instruction naming
345@cindex instruction naming, x86-64
346
252b5132 347Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
348specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
349and @samp{q} specify byte, word, long and quadruple word operands. If
350no suffix is specified by an instruction then @code{@value{AS}} tries to
351fill in the missing suffix based on the destination register operand
352(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
353to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
354@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
355assembler which assumes that a missing mnemonic suffix implies long
356operand size. (This incompatibility does not affect compiler output
357since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
358
359Almost all instructions have the same names in AT&T and Intel format.
360There are a few exceptions. The sign extend and zero extend
361instructions need two sizes to specify them. They need a size to
362sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
363is accomplished by using two instruction mnemonic suffixes in AT&T
364syntax. Base names for sign extend and zero extend are
365@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
366and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
367are tacked on to this base name, the @emph{from} suffix before the
368@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
369``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
370thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
371@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
372@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
373quadruple word).
252b5132 374
b6169b20
L
375@cindex encoding options, i386
376@cindex encoding options, x86-64
377
378Different encoding options can be specified via optional mnemonic
379suffix. @samp{.s} suffix swaps 2 register operands in encoding when
380moving from one register to another.
381
252b5132
RH
382@cindex conversion instructions, i386
383@cindex i386 conversion instructions
55b62671
AJ
384@cindex conversion instructions, x86-64
385@cindex x86-64 conversion instructions
252b5132
RH
386The Intel-syntax conversion instructions
387
388@itemize @bullet
389@item
390@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
391
392@item
393@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
394
395@item
396@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
397
398@item
399@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
400
401@item
402@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
403(x86-64 only),
404
405@item
d5f0cf92 406@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 407@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
408@end itemize
409
410@noindent
55b62671
AJ
411are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
412@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
413instructions.
252b5132
RH
414
415@cindex jump instructions, i386
416@cindex call instructions, i386
55b62671
AJ
417@cindex jump instructions, x86-64
418@cindex call instructions, x86-64
252b5132
RH
419Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
420AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
421convention.
422
1efbbeb4
L
423@section AT&T Mnemonic versus Intel Mnemonic
424
425@cindex i386 mnemonic compatibility
426@cindex mnemonic compatibility, i386
427
428@code{@value{AS}} supports assembly using Intel mnemonic.
429@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
430@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
431syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
432Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
433@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
434@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
435assembler with different mnemonics from those in Intel IA32 specification.
436@code{@value{GCC}} generates those instructions with AT&T mnemonic.
437
252b5132
RH
438@node i386-Regs
439@section Register Naming
440
441@cindex i386 registers
442@cindex registers, i386
55b62671
AJ
443@cindex x86-64 registers
444@cindex registers, x86-64
252b5132
RH
445Register operands are always prefixed with @samp{%}. The 80386 registers
446consist of
447
448@itemize @bullet
449@item
450the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
451@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
452frame pointer), and @samp{%esp} (the stack pointer).
453
454@item
455the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
456@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
457
458@item
459the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
460@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
461are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
462@samp{%cx}, and @samp{%dx})
463
464@item
465the 6 section registers @samp{%cs} (code section), @samp{%ds}
466(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
467and @samp{%gs}.
468
469@item
470the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
471@samp{%cr3}.
472
473@item
474the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
475@samp{%db3}, @samp{%db6}, and @samp{%db7}.
476
477@item
478the 2 test registers @samp{%tr6} and @samp{%tr7}.
479
480@item
481the 8 floating point register stack @samp{%st} or equivalently
482@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
483@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
484These registers are overloaded by 8 MMX registers @samp{%mm0},
485@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
486@samp{%mm6} and @samp{%mm7}.
487
488@item
489the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
490@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
491@end itemize
492
493The AMD x86-64 architecture extends the register set by:
494
495@itemize @bullet
496@item
497enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
498accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
499@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
500pointer)
501
502@item
503the 8 extended registers @samp{%r8}--@samp{%r15}.
504
505@item
506the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
507
508@item
509the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
510
511@item
512the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
513
514@item
515the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
516
517@item
518the 8 debug registers: @samp{%db8}--@samp{%db15}.
519
520@item
521the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
522@end itemize
523
524@node i386-Prefixes
525@section Instruction Prefixes
526
527@cindex i386 instruction prefixes
528@cindex instruction prefixes, i386
529@cindex prefixes, i386
530Instruction prefixes are used to modify the following instruction. They
531are used to repeat string instructions, to provide section overrides, to
532perform bus lock operations, and to change operand and address sizes.
533(Most instructions that normally operate on 32-bit operands will use
53416-bit operands if the instruction has an ``operand size'' prefix.)
535Instruction prefixes are best written on the same line as the instruction
536they act upon. For example, the @samp{scas} (scan string) instruction is
537repeated with:
538
539@smallexample
540 repne scas %es:(%edi),%al
541@end smallexample
542
543You may also place prefixes on the lines immediately preceding the
544instruction, but this circumvents checks that @code{@value{AS}} does
545with prefixes, and will not work with all prefixes.
546
547Here is a list of instruction prefixes:
548
549@cindex section override prefixes, i386
550@itemize @bullet
551@item
552Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
553@samp{fs}, @samp{gs}. These are automatically added by specifying
554using the @var{section}:@var{memory-operand} form for memory references.
555
556@cindex size prefixes, i386
557@item
558Operand/Address size prefixes @samp{data16} and @samp{addr16}
559change 32-bit operands/addresses into 16-bit operands/addresses,
560while @samp{data32} and @samp{addr32} change 16-bit ones (in a
561@code{.code16} section) into 32-bit operands/addresses. These prefixes
562@emph{must} appear on the same line of code as the instruction they
563modify. For example, in a 16-bit @code{.code16} section, you might
564write:
565
566@smallexample
567 addr32 jmpl *(%ebx)
568@end smallexample
569
570@cindex bus lock prefixes, i386
571@cindex inhibiting interrupts, i386
572@item
573The bus lock prefix @samp{lock} inhibits interrupts during execution of
574the instruction it precedes. (This is only valid with certain
575instructions; see a 80386 manual for details).
576
577@cindex coprocessor wait, i386
578@item
579The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
580complete the current instruction. This should never be needed for the
58180386/80387 combination.
582
583@cindex repeat prefixes, i386
584@item
585The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
586to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
587times if the current address size is 16-bits).
55b62671
AJ
588@cindex REX prefixes, i386
589@item
590The @samp{rex} family of prefixes is used by x86-64 to encode
591extensions to i386 instruction set. The @samp{rex} prefix has four
592bits --- an operand size overwrite (@code{64}) used to change operand size
593from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
594register set.
595
596You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
597instruction emits @samp{rex} prefix with all the bits set. By omitting
598the @code{64}, @code{x}, @code{y} or @code{z} you may write other
599prefixes as well. Normally, there is no need to write the prefixes
600explicitly, since gas will automatically generate them based on the
601instruction operands.
252b5132
RH
602@end itemize
603
604@node i386-Memory
605@section Memory References
606
607@cindex i386 memory references
608@cindex memory references, i386
55b62671
AJ
609@cindex x86-64 memory references
610@cindex memory references, x86-64
252b5132
RH
611An Intel syntax indirect memory reference of the form
612
613@smallexample
614@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
615@end smallexample
616
617@noindent
618is translated into the AT&T syntax
619
620@smallexample
621@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
622@end smallexample
623
624@noindent
625where @var{base} and @var{index} are the optional 32-bit base and
626index registers, @var{disp} is the optional displacement, and
627@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
628to calculate the address of the operand. If no @var{scale} is
629specified, @var{scale} is taken to be 1. @var{section} specifies the
630optional section register for the memory operand, and may override the
631default section register (see a 80386 manual for section register
632defaults). Note that section overrides in AT&T syntax @emph{must}
633be preceded by a @samp{%}. If you specify a section override which
634coincides with the default section register, @code{@value{AS}} does @emph{not}
635output any section register override prefixes to assemble the given
636instruction. Thus, section overrides can be specified to emphasize which
637section register is used for a given memory operand.
638
639Here are some examples of Intel and AT&T style memory references:
640
641@table @asis
642@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
643@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
644missing, and the default section is used (@samp{%ss} for addressing with
645@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
646
647@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
648@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
649@samp{foo}. All other fields are missing. The section register here
650defaults to @samp{%ds}.
651
652@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
653This uses the value pointed to by @samp{foo} as a memory operand.
654Note that @var{base} and @var{index} are both missing, but there is only
655@emph{one} @samp{,}. This is a syntactic exception.
656
657@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
658This selects the contents of the variable @samp{foo} with section
659register @var{section} being @samp{%gs}.
660@end table
661
662Absolute (as opposed to PC relative) call and jump operands must be
663prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
664always chooses PC relative addressing for jump/call labels.
665
666Any instruction that has a memory operand, but no register operand,
55b62671
AJ
667@emph{must} specify its size (byte, word, long, or quadruple) with an
668instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
669respectively).
670
671The x86-64 architecture adds an RIP (instruction pointer relative)
672addressing. This addressing mode is specified by using @samp{rip} as a
673base register. Only constant offsets are valid. For example:
674
675@table @asis
676@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
677Points to the address 1234 bytes past the end of the current
678instruction.
679
680@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
681Points to the @code{symbol} in RIP relative way, this is shorter than
682the default absolute addressing.
683@end table
684
685Other addressing modes remain unchanged in x86-64 architecture, except
686registers used are 64-bit instead of 32-bit.
252b5132 687
fddf5b5b 688@node i386-Jumps
252b5132
RH
689@section Handling of Jump Instructions
690
691@cindex jump optimization, i386
692@cindex i386 jump optimization
55b62671
AJ
693@cindex jump optimization, x86-64
694@cindex x86-64 jump optimization
252b5132
RH
695Jump instructions are always optimized to use the smallest possible
696displacements. This is accomplished by using byte (8-bit) displacement
697jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 698is insufficient a long displacement is used. We do not support
252b5132
RH
699word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
700instruction with the @samp{data16} instruction prefix), since the 80386
701insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 702is added. (See also @pxref{i386-Arch})
252b5132
RH
703
704Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
705@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
706displacements, so that if you use these instructions (@code{@value{GCC}} does
707not use them) you may get an error message (and incorrect code). The AT&T
70880386 assembler tries to get around this problem by expanding @samp{jcxz foo}
709to
710
711@smallexample
712 jcxz cx_zero
713 jmp cx_nonzero
714cx_zero: jmp foo
715cx_nonzero:
716@end smallexample
717
718@node i386-Float
719@section Floating Point
720
721@cindex i386 floating point
722@cindex floating point, i386
55b62671
AJ
723@cindex x86-64 floating point
724@cindex floating point, x86-64
252b5132
RH
725All 80387 floating point types except packed BCD are supported.
726(BCD support may be added without much difficulty). These data
727types are 16-, 32-, and 64- bit integers, and single (32-bit),
728double (64-bit), and extended (80-bit) precision floating point.
729Each supported type has an instruction mnemonic suffix and a constructor
730associated with it. Instruction mnemonic suffixes specify the operand's
731data type. Constructors build these data types into memory.
732
733@cindex @code{float} directive, i386
734@cindex @code{single} directive, i386
735@cindex @code{double} directive, i386
736@cindex @code{tfloat} directive, i386
55b62671
AJ
737@cindex @code{float} directive, x86-64
738@cindex @code{single} directive, x86-64
739@cindex @code{double} directive, x86-64
740@cindex @code{tfloat} directive, x86-64
252b5132
RH
741@itemize @bullet
742@item
743Floating point constructors are @samp{.float} or @samp{.single},
744@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
745These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
746and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
747only supports this format via the @samp{fldt} (load 80-bit real to stack
748top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
749
750@cindex @code{word} directive, i386
751@cindex @code{long} directive, i386
752@cindex @code{int} directive, i386
753@cindex @code{quad} directive, i386
55b62671
AJ
754@cindex @code{word} directive, x86-64
755@cindex @code{long} directive, x86-64
756@cindex @code{int} directive, x86-64
757@cindex @code{quad} directive, x86-64
252b5132
RH
758@item
759Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
760@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
761corresponding instruction mnemonic suffixes are @samp{s} (single),
762@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
763the 64-bit @samp{q} format is only present in the @samp{fildq} (load
764quad integer to stack top) and @samp{fistpq} (store quad integer and pop
765stack) instructions.
766@end itemize
767
768Register to register operations should not use instruction mnemonic suffixes.
769@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
770wrote @samp{fst %st, %st(1)}, since all register to register operations
771use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
772which converts @samp{%st} from 80-bit to 64-bit floating point format,
773then stores the result in the 4 byte location @samp{mem})
774
775@node i386-SIMD
776@section Intel's MMX and AMD's 3DNow! SIMD Operations
777
778@cindex MMX, i386
779@cindex 3DNow!, i386
780@cindex SIMD, i386
55b62671
AJ
781@cindex MMX, x86-64
782@cindex 3DNow!, x86-64
783@cindex SIMD, x86-64
252b5132
RH
784
785@code{@value{AS}} supports Intel's MMX instruction set (SIMD
786instructions for integer data), available on Intel's Pentium MMX
787processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 788Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
789instruction set (SIMD instructions for 32-bit floating point data)
790available on AMD's K6-2 processor and possibly others in the future.
791
792Currently, @code{@value{AS}} does not support Intel's floating point
793SIMD, Katmai (KNI).
794
795The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
796@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
79716-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
798floating point values. The MMX registers cannot be used at the same time
799as the floating point stack.
800
801See Intel and AMD documentation, keeping in mind that the operand order in
802instructions is reversed from the Intel syntax.
803
f88c9eb0
SP
804@node i386-LWP
805@section AMD's Lightweight Profiling Instructions
806
807@cindex LWP, i386
808@cindex LWP, x86-64
809
810@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
811instruction set, available on AMD's Family 15h (Orochi) processors.
812
813LWP enables applications to collect and manage performance data, and
814react to performance events. The collection of performance data
815requires no context switches. LWP runs in the context of a thread and
816so several counters can be used independently across multiple threads.
817LWP can be used in both 64-bit and legacy 32-bit modes.
818
819For detailed information on the LWP instruction set, see the
820@cite{AMD Lightweight Profiling Specification} available at
821@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
822
252b5132
RH
823@node i386-16bit
824@section Writing 16-bit Code
825
826@cindex i386 16-bit code
827@cindex 16-bit code, i386
828@cindex real-mode code, i386
eecb386c 829@cindex @code{code16gcc} directive, i386
252b5132
RH
830@cindex @code{code16} directive, i386
831@cindex @code{code32} directive, i386
55b62671
AJ
832@cindex @code{code64} directive, i386
833@cindex @code{code64} directive, x86-64
834While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
835or 64-bit x86-64 code depending on the default configuration,
252b5132 836it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
837mode code segments. To do this, put a @samp{.code16} or
838@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
839be run in 16-bit mode. You can switch @code{@value{AS}} to writing
84032-bit code with the @samp{.code32} directive or 64-bit code with the
841@samp{.code64} directive.
eecb386c
AM
842
843@samp{.code16gcc} provides experimental support for generating 16-bit
844code from gcc, and differs from @samp{.code16} in that @samp{call},
845@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
846@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
847default to 32-bit size. This is so that the stack pointer is
848manipulated in the same way over function calls, allowing access to
849function parameters at the same stack offsets as in 32-bit mode.
850@samp{.code16gcc} also automatically adds address size prefixes where
851necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
852
853The code which @code{@value{AS}} generates in 16-bit mode will not
854necessarily run on a 16-bit pre-80386 processor. To write code that
855runs on such a processor, you must refrain from using @emph{any} 32-bit
856constructs which require @code{@value{AS}} to output address or operand
857size prefixes.
858
859Note that writing 16-bit code instructions by explicitly specifying a
860prefix or an instruction mnemonic suffix within a 32-bit code section
861generates different machine instructions than those generated for a
86216-bit code segment. In a 32-bit code section, the following code
863generates the machine opcode bytes @samp{66 6a 04}, which pushes the
864value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
865
866@smallexample
867 pushw $4
868@end smallexample
869
870The same code in a 16-bit code section would generate the machine
b45619c0 871opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
872is correct since the processor default operand size is assumed to be 16
873bits in a 16-bit code section.
874
875@node i386-Bugs
876@section AT&T Syntax bugs
877
878The UnixWare assembler, and probably other AT&T derived ix86 Unix
879assemblers, generate floating point instructions with reversed source
880and destination registers in certain cases. Unfortunately, gcc and
881possibly many other programs use this reversed syntax, so we're stuck
882with it.
883
884For example
885
886@smallexample
887 fsub %st,%st(3)
888@end smallexample
889@noindent
890results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
891than the expected @samp{%st(3) - %st}. This happens with all the
892non-commutative arithmetic floating point operations with two register
893operands where the source register is @samp{%st} and the destination
894register is @samp{%st(i)}.
895
e413e4e9
AM
896@node i386-Arch
897@section Specifying CPU Architecture
898
899@cindex arch directive, i386
900@cindex i386 arch directive
55b62671
AJ
901@cindex arch directive, x86-64
902@cindex x86-64 arch directive
e413e4e9
AM
903
904@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 905(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
906directive enables a warning when gas detects an instruction that is not
907supported on the CPU specified. The choices for @var{cpu_type} are:
908
909@multitable @columnfractions .20 .20 .20 .20
910@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
911@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 912@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 913@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
8a9036a4 914@item @samp{corei7} @tab @samp{l1om}
1543849b
L
915@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
916@item @samp{amdfam10}
1ceab344 917@item @samp{generic32} @tab @samp{generic64}
9103f4f4 918@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 919@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c0f3af97 920@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.xsave}
f1f8f695 921@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.movbe}
df6d8da1 922@item @samp{.ept} @tab @samp{.clflush}
1ceab344 923@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 924@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
df6d8da1 925@item @samp{.lwp}
1ceab344 926@item @samp{.padlock}
e413e4e9
AM
927@end multitable
928
fddf5b5b
AM
929Apart from the warning, there are only two other effects on
930@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
931@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
932will automatically use a two byte opcode sequence. The larger three
933byte opcode sequence is used on the 486 (and when no architecture is
934specified) because it executes faster on the 486. Note that you can
935explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
936Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
937@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
938conditional jumps will be promoted when necessary to a two instruction
939sequence consisting of a conditional jump of the opposite sense around
940an unconditional jump to the target.
941
5c6af06e
JB
942Following the CPU architecture (but not a sub-architecture, which are those
943starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
944control automatic promotion of conditional jumps. @samp{jumps} is the
945default, and enables jump promotion; All external jumps will be of the long
946variety, and file-local jumps will be promoted as necessary.
947(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
948byte offset jumps, and warns about file-local conditional jumps that
949@code{@value{AS}} promotes.
fddf5b5b
AM
950Unconditional jumps are treated as for @samp{jumps}.
951
952For example
953
954@smallexample
955 .arch i8086,nojumps
956@end smallexample
e413e4e9 957
252b5132
RH
958@node i386-Notes
959@section Notes
960
961@cindex i386 @code{mul}, @code{imul} instructions
962@cindex @code{mul} instruction, i386
963@cindex @code{imul} instruction, i386
55b62671
AJ
964@cindex @code{mul} instruction, x86-64
965@cindex @code{imul} instruction, x86-64
252b5132 966There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 967instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
968multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
969for @samp{imul}) can be output only in the one operand form. Thus,
970@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
971the expanding multiply would clobber the @samp{%edx} register, and this
972would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
97364-bit product in @samp{%edx:%eax}.
974
975We have added a two operand form of @samp{imul} when the first operand
976is an immediate mode expression and the second operand is a register.
977This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
978example, can be done with @samp{imul $69, %eax} rather than @samp{imul
979$69, %eax, %eax}.
980
This page took 0.725299 seconds and 4 git commands to generate.