Enable Intel MOVDIRI, MOVDIR64B instructions
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
219d1afa 1@c Copyright (C) 1991-2018 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
f9233288
JW
77as leal 0(%esi,1),%esi. This switch disables the optimization if a single
78byte nop (0x90) is explicitly specified as the fill byte for alignment.
b3b91714
AM
79
80@cindex @samp{--divide} option, i386
81@item --divide
82On SVR4-derived platforms, the character @samp{/} is treated as a comment
83character, which means that it cannot be used in expressions. The
84@samp{--divide} option turns @samp{/} into a normal character. This does
85not disable @samp{/} at the beginning of a line starting a comment, or
86affect using @samp{#} for starting a comment.
87
9103f4f4
L
88@cindex @samp{-march=} option, i386
89@cindex @samp{-march=} option, x86-64
6305a203
L
90@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91This option specifies the target processor. The assembler will
92issue an error message if an attempt is made to assemble an instruction
93which will not execute on the target processor. The following
34bca508 94processor names are recognized:
9103f4f4
L
95@code{i8086},
96@code{i186},
97@code{i286},
98@code{i386},
99@code{i486},
100@code{i586},
101@code{i686},
102@code{pentium},
103@code{pentiumpro},
104@code{pentiumii},
105@code{pentiumiii},
106@code{pentium4},
107@code{prescott},
108@code{nocona},
ef05d495
L
109@code{core},
110@code{core2},
bd5295b2 111@code{corei7},
8a9036a4 112@code{l1om},
7a9068fe 113@code{k1om},
81486035 114@code{iamcu},
9103f4f4
L
115@code{k6},
116@code{k6_2},
117@code{athlon},
9103f4f4
L
118@code{opteron},
119@code{k8},
1ceab344 120@code{amdfam10},
68339fdf 121@code{bdver1},
af2f724e 122@code{bdver2},
5e5c50d3 123@code{bdver3},
c7b0bd56 124@code{bdver4},
029f3522 125@code{znver1},
7b458c12
L
126@code{btver1},
127@code{btver2},
9103f4f4
L
128@code{generic32} and
129@code{generic64}.
130
34bca508 131In addition to the basic instruction set, the assembler can be told to
6305a203
L
132accept various extension mnemonics. For example,
133@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
134@var{vmx}. The following extensions are currently supported:
309d3373
JB
135@code{8087},
136@code{287},
137@code{387},
1848e567 138@code{687},
309d3373 139@code{no87},
1848e567
L
140@code{no287},
141@code{no387},
142@code{no687},
6305a203 143@code{mmx},
309d3373 144@code{nommx},
6305a203
L
145@code{sse},
146@code{sse2},
147@code{sse3},
148@code{ssse3},
149@code{sse4.1},
150@code{sse4.2},
151@code{sse4},
309d3373 152@code{nosse},
1848e567
L
153@code{nosse2},
154@code{nosse3},
155@code{nossse3},
156@code{nosse4.1},
157@code{nosse4.2},
158@code{nosse4},
c0f3af97 159@code{avx},
6c30d220 160@code{avx2},
1848e567
L
161@code{noavx},
162@code{noavx2},
e2e1fcde
L
163@code{adx},
164@code{rdseed},
165@code{prfchw},
5c111e37 166@code{smap},
7e8b059b 167@code{mpx},
a0046408 168@code{sha},
8bc52696 169@code{rdpid},
6b40c462 170@code{ptwrite},
603555e5 171@code{cet},
48521003 172@code{gfni},
8dcf1fad 173@code{vaes},
ff1982d5 174@code{vpclmulqdq},
1dfc6506
L
175@code{prefetchwt1},
176@code{clflushopt},
177@code{se1},
c5e7287a 178@code{clwb},
c0a30a9f
L
179@code{movdiri},
180@code{movdir64b},
43234a1e
L
181@code{avx512f},
182@code{avx512cd},
183@code{avx512er},
184@code{avx512pf},
1dfc6506
L
185@code{avx512vl},
186@code{avx512bw},
187@code{avx512dq},
2cc1b5aa 188@code{avx512ifma},
14f195c9 189@code{avx512vbmi},
920d2ddc 190@code{avx512_4fmaps},
47acf0bd 191@code{avx512_4vnniw},
620214f7 192@code{avx512_vpopcntdq},
53467f57 193@code{avx512_vbmi2},
8cfcb765 194@code{avx512_vnni},
ee6872be 195@code{avx512_bitalg},
144b71e2
L
196@code{noavx512f},
197@code{noavx512cd},
198@code{noavx512er},
199@code{noavx512pf},
200@code{noavx512vl},
201@code{noavx512bw},
202@code{noavx512dq},
203@code{noavx512ifma},
204@code{noavx512vbmi},
920d2ddc 205@code{noavx512_4fmaps},
47acf0bd 206@code{noavx512_4vnniw},
620214f7 207@code{noavx512_vpopcntdq},
53467f57 208@code{noavx512_vbmi2},
8cfcb765 209@code{noavx512_vnni},
ee6872be 210@code{noavx512_bitalg},
6305a203 211@code{vmx},
8729a6f6 212@code{vmfunc},
6305a203 213@code{smx},
f03fe4c1 214@code{xsave},
c7b8aa3a 215@code{xsaveopt},
1dfc6506
L
216@code{xsavec},
217@code{xsaves},
c0f3af97 218@code{aes},
594ab6a3 219@code{pclmul},
c7b8aa3a
L
220@code{fsgsbase},
221@code{rdrnd},
222@code{f16c},
6c30d220 223@code{bmi2},
c0f3af97 224@code{fma},
f1f8f695
L
225@code{movbe},
226@code{ept},
6c30d220 227@code{lzcnt},
42164a71
L
228@code{hle},
229@code{rtm},
6c30d220 230@code{invpcid},
bd5295b2 231@code{clflush},
9916071f 232@code{mwaitx},
029f3522 233@code{clzero},
3233d7d0 234@code{wbnoinvd},
be3a8dca 235@code{pconfig},
de89d0a3 236@code{waitpkg},
c48935d7 237@code{cldemote},
f88c9eb0 238@code{lwp},
5dd85c99
SP
239@code{fma4},
240@code{xop},
60aa667e 241@code{cx16},
bd5295b2 242@code{syscall},
1b7f3fb0 243@code{rdtscp},
6305a203
L
244@code{3dnow},
245@code{3dnowa},
246@code{sse4a},
247@code{sse5},
248@code{svme},
249@code{abm} and
250@code{padlock}.
309d3373
JB
251Note that rather than extending a basic instruction set, the extension
252mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
253
254When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
255@code{.arch} directive will take precedent.
256
257@cindex @samp{-mtune=} option, i386
258@cindex @samp{-mtune=} option, x86-64
259@item -mtune=@var{CPU}
260This option specifies a processor to optimize for. When used in
261conjunction with the @option{-march} option, only instructions
262of the processor specified by the @option{-march} option will be
263generated.
264
6305a203
L
265Valid @var{CPU} values are identical to the processor list of
266@option{-march=@var{CPU}}.
9103f4f4 267
c0f3af97
L
268@cindex @samp{-msse2avx} option, i386
269@cindex @samp{-msse2avx} option, x86-64
270@item -msse2avx
271This option specifies that the assembler should encode SSE instructions
272with VEX prefix.
273
daf50ae7
L
274@cindex @samp{-msse-check=} option, i386
275@cindex @samp{-msse-check=} option, x86-64
276@item -msse-check=@var{none}
1f9bb1ca
AS
277@itemx -msse-check=@var{warning}
278@itemx -msse-check=@var{error}
9aff4b7a 279These options control if the assembler should check SSE instructions.
daf50ae7
L
280@option{-msse-check=@var{none}} will make the assembler not to check SSE
281instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 282will make the assembler issue a warning for any SSE instruction.
daf50ae7 283@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 284for any SSE instruction.
daf50ae7 285
539f890d
L
286@cindex @samp{-mavxscalar=} option, i386
287@cindex @samp{-mavxscalar=} option, x86-64
288@item -mavxscalar=@var{128}
1f9bb1ca 289@itemx -mavxscalar=@var{256}
2aab8acd 290These options control how the assembler should encode scalar AVX
539f890d
L
291instructions. @option{-mavxscalar=@var{128}} will encode scalar
292AVX instructions with 128bit vector length, which is the default.
293@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
294with 256bit vector length.
295
43234a1e
L
296@cindex @samp{-mevexlig=} option, i386
297@cindex @samp{-mevexlig=} option, x86-64
298@item -mevexlig=@var{128}
299@itemx -mevexlig=@var{256}
300@itemx -mevexlig=@var{512}
301These options control how the assembler should encode length-ignored
302(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
303EVEX instructions with 128bit vector length, which is the default.
304@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
305encode LIG EVEX instructions with 256bit and 512bit vector length,
306respectively.
307
308@cindex @samp{-mevexwig=} option, i386
309@cindex @samp{-mevexwig=} option, x86-64
310@item -mevexwig=@var{0}
311@itemx -mevexwig=@var{1}
312These options control how the assembler should encode w-ignored (WIG)
313EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
314EVEX instructions with evex.w = 0, which is the default.
315@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
316evex.w = 1.
317
1efbbeb4
L
318@cindex @samp{-mmnemonic=} option, i386
319@cindex @samp{-mmnemonic=} option, x86-64
320@item -mmnemonic=@var{att}
1f9bb1ca 321@itemx -mmnemonic=@var{intel}
34bca508 322This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
323The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
324take precedent.
325
326@cindex @samp{-msyntax=} option, i386
327@cindex @samp{-msyntax=} option, x86-64
328@item -msyntax=@var{att}
1f9bb1ca 329@itemx -msyntax=@var{intel}
34bca508 330This option specifies instruction syntax when processing instructions.
1efbbeb4
L
331The @code{.att_syntax} and @code{.intel_syntax} directives will
332take precedent.
333
334@cindex @samp{-mnaked-reg} option, i386
335@cindex @samp{-mnaked-reg} option, x86-64
336@item -mnaked-reg
33eaf5de 337This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 338The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 339
7e8b059b
L
340@cindex @samp{-madd-bnd-prefix} option, i386
341@cindex @samp{-madd-bnd-prefix} option, x86-64
342@item -madd-bnd-prefix
343This option forces the assembler to add BND prefix to all branches, even
344if such prefix was not explicitly specified in the source code.
345
8dcea932
L
346@cindex @samp{-mshared} option, i386
347@cindex @samp{-mshared} option, x86-64
348@item -mno-shared
349On ELF target, the assembler normally optimizes out non-PLT relocations
350against defined non-weak global branch targets with default visibility.
351The @samp{-mshared} option tells the assembler to generate code which
352may go into a shared library where all non-weak global branch targets
353with default visibility can be preempted. The resulting code is
354slightly bigger. This option only affects the handling of branch
355instructions.
356
167ad85b
TG
357@cindex @samp{-mbig-obj} option, x86-64
358@item -mbig-obj
359On x86-64 PE/COFF target this option forces the use of big object file
360format, which allows more than 32768 sections.
361
d022bddd
IT
362@cindex @samp{-momit-lock-prefix=} option, i386
363@cindex @samp{-momit-lock-prefix=} option, x86-64
364@item -momit-lock-prefix=@var{no}
365@itemx -momit-lock-prefix=@var{yes}
366These options control how the assembler should encode lock prefix.
367This option is intended as a workaround for processors, that fail on
368lock prefix. This option can only be safely used with single-core,
369single-thread computers
370@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
371@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
372which is the default.
373
e4e00185
AS
374@cindex @samp{-mfence-as-lock-add=} option, i386
375@cindex @samp{-mfence-as-lock-add=} option, x86-64
376@item -mfence-as-lock-add=@var{no}
377@itemx -mfence-as-lock-add=@var{yes}
378These options control how the assembler should encode lfence, mfence and
379sfence.
380@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
381sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
382@samp{lock addl $0x0, (%esp)} in 32-bit mode.
383@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
384sfence as usual, which is the default.
385
0cb4071e
L
386@cindex @samp{-mrelax-relocations=} option, i386
387@cindex @samp{-mrelax-relocations=} option, x86-64
388@item -mrelax-relocations=@var{no}
389@itemx -mrelax-relocations=@var{yes}
390These options control whether the assembler should generate relax
391relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
392R_X86_64_REX_GOTPCRELX, in 64-bit mode.
393@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
394@option{-mrelax-relocations=@var{no}} will not generate relax
395relocations. The default can be controlled by a configure option
396@option{--enable-x86-relax-relocations}.
397
d3d3c6db
IT
398@cindex @samp{-mevexrcig=} option, i386
399@cindex @samp{-mevexrcig=} option, x86-64
400@item -mevexrcig=@var{rne}
401@itemx -mevexrcig=@var{rd}
402@itemx -mevexrcig=@var{ru}
403@itemx -mevexrcig=@var{rz}
404These options control how the assembler should encode SAE-only
405EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
406of EVEX instruction with 00, which is the default.
407@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
408and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
409with 01, 10 and 11 RC bits, respectively.
410
5db04b09
L
411@cindex @samp{-mamd64} option, x86-64
412@cindex @samp{-mintel64} option, x86-64
413@item -mamd64
414@itemx -mintel64
415This option specifies that the assembler should accept only AMD64 or
416Intel64 ISA in 64-bit mode. The default is to accept both.
417
b6f8c7c4
L
418@cindex @samp{-O0} option, i386
419@cindex @samp{-O0} option, x86-64
420@cindex @samp{-O} option, i386
421@cindex @samp{-O} option, x86-64
422@cindex @samp{-O1} option, i386
423@cindex @samp{-O1} option, x86-64
424@cindex @samp{-O2} option, i386
425@cindex @samp{-O2} option, x86-64
426@cindex @samp{-Os} option, i386
427@cindex @samp{-Os} option, x86-64
428@item -O0 | -O | -O1 | -O2 | -Os
429Optimize instruction encoding with smaller instruction size. @samp{-O}
430and @samp{-O1} encode 64-bit register load instructions with 64-bit
431immediate as 32-bit register load instructions with 31-bit or 32-bits
432immediates and encode 64-bit register clearing instructions with 32-bit
433register clearing instructions. @samp{-O2} includes @samp{-O1}
434optimization plus encodes 256-bit and 512-bit vector register clearing
435instructions with 128-bit vector register clearing instructions.
436@samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
437and 64-bit register tests with immediate as 8-bit register test with
438immediate. @samp{-O0} turns off this optimization.
439
55b62671 440@end table
731caf76 441@c man end
e413e4e9 442
a6c24e68
NC
443@node i386-Directives
444@section x86 specific Directives
445
446@cindex machine directives, x86
447@cindex x86 machine directives
448@table @code
449
450@cindex @code{lcomm} directive, COFF
451@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
452Reserve @var{length} (an absolute expression) bytes for a local common
453denoted by @var{symbol}. The section and value of @var{symbol} are
454those of the new local common. The addresses are allocated in the bss
704209c0
NC
455section, so that at run-time the bytes start off zeroed. Since
456@var{symbol} is not declared global, it is normally not visible to
457@code{@value{LD}}. The optional third parameter, @var{alignment},
458specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
459
460This directive is only available for COFF based x86 targets.
461
102e9361
NC
462@cindex @code{largecomm} directive, ELF
463@item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
464This directive behaves in the same way as the @code{comm} directive
465except that the data is placed into the @var{.lbss} section instead of
466the @var{.bss} section @ref{Comm}.
467
468The directive is intended to be used for data which requires a large
469amount of space, and it is only available for ELF based x86_64
470targets.
471
a6c24e68 472@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
a6c24e68
NC
473
474@end table
475
252b5132 476@node i386-Syntax
7c31ae13
NC
477@section i386 Syntactical Considerations
478@menu
479* i386-Variations:: AT&T Syntax versus Intel Syntax
480* i386-Chars:: Special Characters
481@end menu
482
483@node i386-Variations
484@subsection AT&T Syntax versus Intel Syntax
252b5132 485
e413e4e9
AM
486@cindex i386 intel_syntax pseudo op
487@cindex intel_syntax pseudo op, i386
488@cindex i386 att_syntax pseudo op
489@cindex att_syntax pseudo op, i386
252b5132
RH
490@cindex i386 syntax compatibility
491@cindex syntax compatibility, i386
55b62671
AJ
492@cindex x86-64 intel_syntax pseudo op
493@cindex intel_syntax pseudo op, x86-64
494@cindex x86-64 att_syntax pseudo op
495@cindex att_syntax pseudo op, x86-64
496@cindex x86-64 syntax compatibility
497@cindex syntax compatibility, x86-64
e413e4e9
AM
498
499@code{@value{AS}} now supports assembly using Intel assembler syntax.
500@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
501back to the usual AT&T mode for compatibility with the output of
502@code{@value{GCC}}. Either of these directives may have an optional
503argument, @code{prefix}, or @code{noprefix} specifying whether registers
504require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
505different from Intel syntax. We mention these differences because
506almost all 80386 documents use Intel syntax. Notable differences
507between the two syntaxes are:
508
509@cindex immediate operands, i386
510@cindex i386 immediate operands
511@cindex register operands, i386
512@cindex i386 register operands
513@cindex jump/call operands, i386
514@cindex i386 jump/call operands
515@cindex operand delimiters, i386
55b62671
AJ
516
517@cindex immediate operands, x86-64
518@cindex x86-64 immediate operands
519@cindex register operands, x86-64
520@cindex x86-64 register operands
521@cindex jump/call operands, x86-64
522@cindex x86-64 jump/call operands
523@cindex operand delimiters, x86-64
252b5132
RH
524@itemize @bullet
525@item
526AT&T immediate operands are preceded by @samp{$}; Intel immediate
527operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
528AT&T register operands are preceded by @samp{%}; Intel register operands
529are undelimited. AT&T absolute (as opposed to PC relative) jump/call
530operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
531
532@cindex i386 source, destination operands
533@cindex source, destination operands; i386
55b62671
AJ
534@cindex x86-64 source, destination operands
535@cindex source, destination operands; x86-64
252b5132
RH
536@item
537AT&T and Intel syntax use the opposite order for source and destination
538operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
539@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
540previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
541instructions with 2 immediate operands, such as the @samp{enter}
542instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
543
544@cindex mnemonic suffixes, i386
545@cindex sizes operands, i386
546@cindex i386 size suffixes
55b62671
AJ
547@cindex mnemonic suffixes, x86-64
548@cindex sizes operands, x86-64
549@cindex x86-64 size suffixes
252b5132
RH
550@item
551In AT&T syntax the size of memory operands is determined from the last
552character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
553@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
554(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
555this by prefixing memory operands (@emph{not} the instruction mnemonics) with
556@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
557Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
558syntax.
252b5132 559
4b06377f
L
560In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
561instruction with the 64-bit displacement or immediate operand.
562
252b5132
RH
563@cindex return instructions, i386
564@cindex i386 jump, call, return
55b62671
AJ
565@cindex return instructions, x86-64
566@cindex x86-64 jump, call, return
252b5132
RH
567@item
568Immediate form long jumps and calls are
569@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
570Intel syntax is
571@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
572instruction
573is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
574@samp{ret far @var{stack-adjust}}.
575
576@cindex sections, i386
577@cindex i386 sections
55b62671
AJ
578@cindex sections, x86-64
579@cindex x86-64 sections
252b5132
RH
580@item
581The AT&T assembler does not provide support for multiple section
582programs. Unix style systems expect all programs to be single sections.
583@end itemize
584
7c31ae13
NC
585@node i386-Chars
586@subsection Special Characters
587
588@cindex line comment character, i386
589@cindex i386 line comment character
590The presence of a @samp{#} appearing anywhere on a line indicates the
591start of a comment that extends to the end of that line.
592
593If a @samp{#} appears as the first character of a line then the whole
594line is treated as a comment, but in this case the line can also be a
595logical line number directive (@pxref{Comments}) or a preprocessor
596control command (@pxref{Preprocessing}).
597
598If the @option{--divide} command line option has not been specified
599then the @samp{/} character appearing anywhere on a line also
600introduces a line comment.
601
602@cindex line separator, i386
603@cindex statement separator, i386
604@cindex i386 line separator
605The @samp{;} character can be used to separate statements on the same
606line.
607
252b5132 608@node i386-Mnemonics
d3b47e2b
L
609@section i386-Mnemonics
610@subsection Instruction Naming
252b5132
RH
611
612@cindex i386 instruction naming
613@cindex instruction naming, i386
55b62671
AJ
614@cindex x86-64 instruction naming
615@cindex instruction naming, x86-64
616
252b5132 617Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
618specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
619and @samp{q} specify byte, word, long and quadruple word operands. If
620no suffix is specified by an instruction then @code{@value{AS}} tries to
621fill in the missing suffix based on the destination register operand
622(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
623to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
624@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
625assembler which assumes that a missing mnemonic suffix implies long
626operand size. (This incompatibility does not affect compiler output
627since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
628
629Almost all instructions have the same names in AT&T and Intel format.
630There are a few exceptions. The sign extend and zero extend
631instructions need two sizes to specify them. They need a size to
632sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
633is accomplished by using two instruction mnemonic suffixes in AT&T
634syntax. Base names for sign extend and zero extend are
635@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
636and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
637are tacked on to this base name, the @emph{from} suffix before the
638@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
639``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
640thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
641@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
642@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
643quadruple word).
252b5132 644
b6169b20
L
645@cindex encoding options, i386
646@cindex encoding options, x86-64
647
86fa6981
L
648Different encoding options can be specified via pseudo prefixes:
649
650@itemize @bullet
651@item
652@samp{@{disp8@}} -- prefer 8-bit displacement.
653
654@item
655@samp{@{disp32@}} -- prefer 32-bit displacement.
656
657@item
658@samp{@{load@}} -- prefer load-form instruction.
659
660@item
661@samp{@{store@}} -- prefer store-form instruction.
662
663@item
664@samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
665
666@item
667@samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
668
669@item
670@samp{@{evex@}} -- encode with EVEX prefix.
6b6b6807
L
671
672@item
673@samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
674instructions (x86-64 only). Note that this differs from the @samp{rex}
675prefix which generates REX prefix unconditionally.
b6f8c7c4
L
676
677@item
678@samp{@{nooptimize@}} -- disable instruction size optimization.
86fa6981 679@end itemize
b6169b20 680
252b5132
RH
681@cindex conversion instructions, i386
682@cindex i386 conversion instructions
55b62671
AJ
683@cindex conversion instructions, x86-64
684@cindex x86-64 conversion instructions
252b5132
RH
685The Intel-syntax conversion instructions
686
687@itemize @bullet
688@item
689@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
690
691@item
692@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
693
694@item
695@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
696
697@item
698@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
699
700@item
701@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
702(x86-64 only),
703
704@item
d5f0cf92 705@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 706@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
707@end itemize
708
709@noindent
55b62671
AJ
710are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
711@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
712instructions.
252b5132
RH
713
714@cindex jump instructions, i386
715@cindex call instructions, i386
55b62671
AJ
716@cindex jump instructions, x86-64
717@cindex call instructions, x86-64
252b5132
RH
718Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
719AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
720convention.
721
d3b47e2b 722@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
723
724@cindex i386 mnemonic compatibility
725@cindex mnemonic compatibility, i386
726
727@code{@value{AS}} supports assembly using Intel mnemonic.
728@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
729@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
730syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
731Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
732@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
733@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
734assembler with different mnemonics from those in Intel IA32 specification.
735@code{@value{GCC}} generates those instructions with AT&T mnemonic.
736
252b5132
RH
737@node i386-Regs
738@section Register Naming
739
740@cindex i386 registers
741@cindex registers, i386
55b62671
AJ
742@cindex x86-64 registers
743@cindex registers, x86-64
252b5132
RH
744Register operands are always prefixed with @samp{%}. The 80386 registers
745consist of
746
747@itemize @bullet
748@item
749the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
750@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
751frame pointer), and @samp{%esp} (the stack pointer).
752
753@item
754the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
755@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
756
757@item
758the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
759@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
760are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
761@samp{%cx}, and @samp{%dx})
762
763@item
764the 6 section registers @samp{%cs} (code section), @samp{%ds}
765(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
766and @samp{%gs}.
767
768@item
4bde3cdd
UD
769the 5 processor control registers @samp{%cr0}, @samp{%cr2},
770@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
771
772@item
773the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
774@samp{%db3}, @samp{%db6}, and @samp{%db7}.
775
776@item
777the 2 test registers @samp{%tr6} and @samp{%tr7}.
778
779@item
780the 8 floating point register stack @samp{%st} or equivalently
781@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
782@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
783These registers are overloaded by 8 MMX registers @samp{%mm0},
784@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
785@samp{%mm6} and @samp{%mm7}.
786
787@item
4bde3cdd 788the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
789@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
790@end itemize
791
792The AMD x86-64 architecture extends the register set by:
793
794@itemize @bullet
795@item
796enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
797accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
798@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
799pointer)
800
801@item
802the 8 extended registers @samp{%r8}--@samp{%r15}.
803
804@item
4bde3cdd 805the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
806
807@item
4bde3cdd 808the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
809
810@item
4bde3cdd 811the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
812
813@item
814the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
815
816@item
817the 8 debug registers: @samp{%db8}--@samp{%db15}.
818
819@item
4bde3cdd
UD
820the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
821@end itemize
822
823With the AVX extensions more registers were made available:
824
825@itemize @bullet
826
827@item
828the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
829available in 32-bit mode). The bottom 128 bits are overlaid with the
830@samp{xmm0}--@samp{xmm15} registers.
831
832@end itemize
833
834The AVX2 extensions made in 64-bit mode more registers available:
835
836@itemize @bullet
837
838@item
839the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
840registers @samp{%ymm16}--@samp{%ymm31}.
841
842@end itemize
843
844The AVX512 extensions added the following registers:
845
846@itemize @bullet
847
848@item
849the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
850available in 32-bit mode). The bottom 128 bits are overlaid with the
851@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
852overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
853
854@item
855the 8 mask registers @samp{%k0}--@samp{%k7}.
856
252b5132
RH
857@end itemize
858
859@node i386-Prefixes
860@section Instruction Prefixes
861
862@cindex i386 instruction prefixes
863@cindex instruction prefixes, i386
864@cindex prefixes, i386
865Instruction prefixes are used to modify the following instruction. They
866are used to repeat string instructions, to provide section overrides, to
867perform bus lock operations, and to change operand and address sizes.
868(Most instructions that normally operate on 32-bit operands will use
86916-bit operands if the instruction has an ``operand size'' prefix.)
870Instruction prefixes are best written on the same line as the instruction
871they act upon. For example, the @samp{scas} (scan string) instruction is
872repeated with:
873
874@smallexample
875 repne scas %es:(%edi),%al
876@end smallexample
877
878You may also place prefixes on the lines immediately preceding the
879instruction, but this circumvents checks that @code{@value{AS}} does
880with prefixes, and will not work with all prefixes.
881
882Here is a list of instruction prefixes:
883
884@cindex section override prefixes, i386
885@itemize @bullet
886@item
887Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
888@samp{fs}, @samp{gs}. These are automatically added by specifying
889using the @var{section}:@var{memory-operand} form for memory references.
890
891@cindex size prefixes, i386
892@item
893Operand/Address size prefixes @samp{data16} and @samp{addr16}
894change 32-bit operands/addresses into 16-bit operands/addresses,
895while @samp{data32} and @samp{addr32} change 16-bit ones (in a
896@code{.code16} section) into 32-bit operands/addresses. These prefixes
897@emph{must} appear on the same line of code as the instruction they
898modify. For example, in a 16-bit @code{.code16} section, you might
899write:
900
901@smallexample
902 addr32 jmpl *(%ebx)
903@end smallexample
904
905@cindex bus lock prefixes, i386
906@cindex inhibiting interrupts, i386
907@item
908The bus lock prefix @samp{lock} inhibits interrupts during execution of
909the instruction it precedes. (This is only valid with certain
910instructions; see a 80386 manual for details).
911
912@cindex coprocessor wait, i386
913@item
914The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
915complete the current instruction. This should never be needed for the
91680386/80387 combination.
917
918@cindex repeat prefixes, i386
919@item
920The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
921to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
922times if the current address size is 16-bits).
55b62671
AJ
923@cindex REX prefixes, i386
924@item
925The @samp{rex} family of prefixes is used by x86-64 to encode
926extensions to i386 instruction set. The @samp{rex} prefix has four
927bits --- an operand size overwrite (@code{64}) used to change operand size
928from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
929register set.
930
931You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
932instruction emits @samp{rex} prefix with all the bits set. By omitting
933the @code{64}, @code{x}, @code{y} or @code{z} you may write other
934prefixes as well. Normally, there is no need to write the prefixes
935explicitly, since gas will automatically generate them based on the
936instruction operands.
252b5132
RH
937@end itemize
938
939@node i386-Memory
940@section Memory References
941
942@cindex i386 memory references
943@cindex memory references, i386
55b62671
AJ
944@cindex x86-64 memory references
945@cindex memory references, x86-64
252b5132
RH
946An Intel syntax indirect memory reference of the form
947
948@smallexample
949@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
950@end smallexample
951
952@noindent
953is translated into the AT&T syntax
954
955@smallexample
956@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
957@end smallexample
958
959@noindent
960where @var{base} and @var{index} are the optional 32-bit base and
961index registers, @var{disp} is the optional displacement, and
962@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
963to calculate the address of the operand. If no @var{scale} is
964specified, @var{scale} is taken to be 1. @var{section} specifies the
965optional section register for the memory operand, and may override the
966default section register (see a 80386 manual for section register
967defaults). Note that section overrides in AT&T syntax @emph{must}
968be preceded by a @samp{%}. If you specify a section override which
969coincides with the default section register, @code{@value{AS}} does @emph{not}
970output any section register override prefixes to assemble the given
971instruction. Thus, section overrides can be specified to emphasize which
972section register is used for a given memory operand.
973
974Here are some examples of Intel and AT&T style memory references:
975
976@table @asis
977@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
978@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
979missing, and the default section is used (@samp{%ss} for addressing with
980@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
981
982@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
983@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
984@samp{foo}. All other fields are missing. The section register here
985defaults to @samp{%ds}.
986
987@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
988This uses the value pointed to by @samp{foo} as a memory operand.
989Note that @var{base} and @var{index} are both missing, but there is only
990@emph{one} @samp{,}. This is a syntactic exception.
991
992@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
993This selects the contents of the variable @samp{foo} with section
994register @var{section} being @samp{%gs}.
995@end table
996
997Absolute (as opposed to PC relative) call and jump operands must be
998prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
999always chooses PC relative addressing for jump/call labels.
1000
1001Any instruction that has a memory operand, but no register operand,
55b62671
AJ
1002@emph{must} specify its size (byte, word, long, or quadruple) with an
1003instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1004respectively).
1005
1006The x86-64 architecture adds an RIP (instruction pointer relative)
1007addressing. This addressing mode is specified by using @samp{rip} as a
1008base register. Only constant offsets are valid. For example:
1009
1010@table @asis
1011@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1012Points to the address 1234 bytes past the end of the current
1013instruction.
1014
1015@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1016Points to the @code{symbol} in RIP relative way, this is shorter than
1017the default absolute addressing.
1018@end table
1019
1020Other addressing modes remain unchanged in x86-64 architecture, except
1021registers used are 64-bit instead of 32-bit.
252b5132 1022
fddf5b5b 1023@node i386-Jumps
252b5132
RH
1024@section Handling of Jump Instructions
1025
1026@cindex jump optimization, i386
1027@cindex i386 jump optimization
55b62671
AJ
1028@cindex jump optimization, x86-64
1029@cindex x86-64 jump optimization
252b5132
RH
1030Jump instructions are always optimized to use the smallest possible
1031displacements. This is accomplished by using byte (8-bit) displacement
1032jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 1033is insufficient a long displacement is used. We do not support
252b5132
RH
1034word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1035instruction with the @samp{data16} instruction prefix), since the 80386
1036insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 1037is added. (See also @pxref{i386-Arch})
252b5132
RH
1038
1039Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1040@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1041displacements, so that if you use these instructions (@code{@value{GCC}} does
1042not use them) you may get an error message (and incorrect code). The AT&T
104380386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1044to
1045
1046@smallexample
1047 jcxz cx_zero
1048 jmp cx_nonzero
1049cx_zero: jmp foo
1050cx_nonzero:
1051@end smallexample
1052
1053@node i386-Float
1054@section Floating Point
1055
1056@cindex i386 floating point
1057@cindex floating point, i386
55b62671
AJ
1058@cindex x86-64 floating point
1059@cindex floating point, x86-64
252b5132
RH
1060All 80387 floating point types except packed BCD are supported.
1061(BCD support may be added without much difficulty). These data
1062types are 16-, 32-, and 64- bit integers, and single (32-bit),
1063double (64-bit), and extended (80-bit) precision floating point.
1064Each supported type has an instruction mnemonic suffix and a constructor
1065associated with it. Instruction mnemonic suffixes specify the operand's
1066data type. Constructors build these data types into memory.
1067
1068@cindex @code{float} directive, i386
1069@cindex @code{single} directive, i386
1070@cindex @code{double} directive, i386
1071@cindex @code{tfloat} directive, i386
55b62671
AJ
1072@cindex @code{float} directive, x86-64
1073@cindex @code{single} directive, x86-64
1074@cindex @code{double} directive, x86-64
1075@cindex @code{tfloat} directive, x86-64
252b5132
RH
1076@itemize @bullet
1077@item
1078Floating point constructors are @samp{.float} or @samp{.single},
1079@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1080These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1081and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1082only supports this format via the @samp{fldt} (load 80-bit real to stack
1083top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1084
1085@cindex @code{word} directive, i386
1086@cindex @code{long} directive, i386
1087@cindex @code{int} directive, i386
1088@cindex @code{quad} directive, i386
55b62671
AJ
1089@cindex @code{word} directive, x86-64
1090@cindex @code{long} directive, x86-64
1091@cindex @code{int} directive, x86-64
1092@cindex @code{quad} directive, x86-64
252b5132
RH
1093@item
1094Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1095@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1096corresponding instruction mnemonic suffixes are @samp{s} (single),
1097@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1098the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1099quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1100stack) instructions.
1101@end itemize
1102
1103Register to register operations should not use instruction mnemonic suffixes.
1104@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1105wrote @samp{fst %st, %st(1)}, since all register to register operations
1106use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1107which converts @samp{%st} from 80-bit to 64-bit floating point format,
1108then stores the result in the 4 byte location @samp{mem})
1109
1110@node i386-SIMD
1111@section Intel's MMX and AMD's 3DNow! SIMD Operations
1112
1113@cindex MMX, i386
1114@cindex 3DNow!, i386
1115@cindex SIMD, i386
55b62671
AJ
1116@cindex MMX, x86-64
1117@cindex 3DNow!, x86-64
1118@cindex SIMD, x86-64
252b5132
RH
1119
1120@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1121instructions for integer data), available on Intel's Pentium MMX
1122processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1123Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1124instruction set (SIMD instructions for 32-bit floating point data)
1125available on AMD's K6-2 processor and possibly others in the future.
1126
1127Currently, @code{@value{AS}} does not support Intel's floating point
1128SIMD, Katmai (KNI).
1129
1130The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1131@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
113216-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1133floating point values. The MMX registers cannot be used at the same time
1134as the floating point stack.
1135
1136See Intel and AMD documentation, keeping in mind that the operand order in
1137instructions is reversed from the Intel syntax.
1138
f88c9eb0
SP
1139@node i386-LWP
1140@section AMD's Lightweight Profiling Instructions
1141
1142@cindex LWP, i386
1143@cindex LWP, x86-64
1144
1145@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1146instruction set, available on AMD's Family 15h (Orochi) processors.
1147
1148LWP enables applications to collect and manage performance data, and
1149react to performance events. The collection of performance data
1150requires no context switches. LWP runs in the context of a thread and
1151so several counters can be used independently across multiple threads.
1152LWP can be used in both 64-bit and legacy 32-bit modes.
1153
1154For detailed information on the LWP instruction set, see the
1155@cite{AMD Lightweight Profiling Specification} available at
1156@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1157
87973e9f
QN
1158@node i386-BMI
1159@section Bit Manipulation Instructions
1160
1161@cindex BMI, i386
1162@cindex BMI, x86-64
1163
1164@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1165
1166BMI instructions provide several instructions implementing individual
1167bit manipulation operations such as isolation, masking, setting, or
34bca508 1168resetting.
87973e9f
QN
1169
1170@c Need to add a specification citation here when available.
1171
2a2a0f38
QN
1172@node i386-TBM
1173@section AMD's Trailing Bit Manipulation Instructions
1174
1175@cindex TBM, i386
1176@cindex TBM, x86-64
1177
1178@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1179instruction set, available on AMD's BDVER2 processors (Trinity and
1180Viperfish).
1181
1182TBM instructions provide instructions implementing individual bit
1183manipulation operations such as isolating, masking, setting, resetting,
1184complementing, and operations on trailing zeros and ones.
1185
1186@c Need to add a specification citation here when available.
87973e9f 1187
252b5132
RH
1188@node i386-16bit
1189@section Writing 16-bit Code
1190
1191@cindex i386 16-bit code
1192@cindex 16-bit code, i386
1193@cindex real-mode code, i386
eecb386c 1194@cindex @code{code16gcc} directive, i386
252b5132
RH
1195@cindex @code{code16} directive, i386
1196@cindex @code{code32} directive, i386
55b62671
AJ
1197@cindex @code{code64} directive, i386
1198@cindex @code{code64} directive, x86-64
1199While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1200or 64-bit x86-64 code depending on the default configuration,
252b5132 1201it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1202mode code segments. To do this, put a @samp{.code16} or
1203@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1204be run in 16-bit mode. You can switch @code{@value{AS}} to writing
120532-bit code with the @samp{.code32} directive or 64-bit code with the
1206@samp{.code64} directive.
eecb386c
AM
1207
1208@samp{.code16gcc} provides experimental support for generating 16-bit
1209code from gcc, and differs from @samp{.code16} in that @samp{call},
1210@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1211@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1212default to 32-bit size. This is so that the stack pointer is
1213manipulated in the same way over function calls, allowing access to
1214function parameters at the same stack offsets as in 32-bit mode.
1215@samp{.code16gcc} also automatically adds address size prefixes where
1216necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1217
1218The code which @code{@value{AS}} generates in 16-bit mode will not
1219necessarily run on a 16-bit pre-80386 processor. To write code that
1220runs on such a processor, you must refrain from using @emph{any} 32-bit
1221constructs which require @code{@value{AS}} to output address or operand
1222size prefixes.
1223
1224Note that writing 16-bit code instructions by explicitly specifying a
1225prefix or an instruction mnemonic suffix within a 32-bit code section
1226generates different machine instructions than those generated for a
122716-bit code segment. In a 32-bit code section, the following code
1228generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1229value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1230
1231@smallexample
1232 pushw $4
1233@end smallexample
1234
1235The same code in a 16-bit code section would generate the machine
b45619c0 1236opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1237is correct since the processor default operand size is assumed to be 16
1238bits in a 16-bit code section.
1239
e413e4e9
AM
1240@node i386-Arch
1241@section Specifying CPU Architecture
1242
1243@cindex arch directive, i386
1244@cindex i386 arch directive
55b62671
AJ
1245@cindex arch directive, x86-64
1246@cindex x86-64 arch directive
e413e4e9
AM
1247
1248@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1249(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1250directive enables a warning when gas detects an instruction that is not
1251supported on the CPU specified. The choices for @var{cpu_type} are:
1252
1253@multitable @columnfractions .20 .20 .20 .20
1254@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1255@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1256@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1257@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
81486035 1258@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1543849b 1259@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1260@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
029f3522 1261@item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1ceab344 1262@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1263@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1264@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1265@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1266@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1267@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1268@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1269@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1270@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1271@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1272@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1273@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1274@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1275@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
8cfcb765 1276@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
ee6872be 1277@item @samp{.avx512_bitalg}
d777820b 1278@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
c48935d7 1279@item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
d777820b 1280@item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
c0a30a9f 1281@item @samp{.movdiri} @tab @samp{.movdir64b}
1ceab344 1282@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1283@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1284@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
d777820b 1285@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
e413e4e9
AM
1286@end multitable
1287
fddf5b5b
AM
1288Apart from the warning, there are only two other effects on
1289@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1290@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1291will automatically use a two byte opcode sequence. The larger three
1292byte opcode sequence is used on the 486 (and when no architecture is
1293specified) because it executes faster on the 486. Note that you can
1294explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1295Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1296@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1297conditional jumps will be promoted when necessary to a two instruction
1298sequence consisting of a conditional jump of the opposite sense around
1299an unconditional jump to the target.
1300
5c6af06e
JB
1301Following the CPU architecture (but not a sub-architecture, which are those
1302starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1303control automatic promotion of conditional jumps. @samp{jumps} is the
1304default, and enables jump promotion; All external jumps will be of the long
1305variety, and file-local jumps will be promoted as necessary.
1306(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1307byte offset jumps, and warns about file-local conditional jumps that
1308@code{@value{AS}} promotes.
fddf5b5b
AM
1309Unconditional jumps are treated as for @samp{jumps}.
1310
1311For example
1312
1313@smallexample
1314 .arch i8086,nojumps
1315@end smallexample
e413e4e9 1316
5c9352f3
AM
1317@node i386-Bugs
1318@section AT&T Syntax bugs
1319
1320The UnixWare assembler, and probably other AT&T derived ix86 Unix
1321assemblers, generate floating point instructions with reversed source
1322and destination registers in certain cases. Unfortunately, gcc and
1323possibly many other programs use this reversed syntax, so we're stuck
1324with it.
1325
1326For example
1327
1328@smallexample
1329 fsub %st,%st(3)
1330@end smallexample
1331@noindent
1332results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1333than the expected @samp{%st(3) - %st}. This happens with all the
1334non-commutative arithmetic floating point operations with two register
1335operands where the source register is @samp{%st} and the destination
1336register is @samp{%st(i)}.
1337
252b5132
RH
1338@node i386-Notes
1339@section Notes
1340
1341@cindex i386 @code{mul}, @code{imul} instructions
1342@cindex @code{mul} instruction, i386
1343@cindex @code{imul} instruction, i386
55b62671
AJ
1344@cindex @code{mul} instruction, x86-64
1345@cindex @code{imul} instruction, x86-64
252b5132 1346There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1347instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1348multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1349for @samp{imul}) can be output only in the one operand form. Thus,
1350@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1351the expanding multiply would clobber the @samp{%edx} register, and this
1352would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
135364-bit product in @samp{%edx:%eax}.
1354
1355We have added a two operand form of @samp{imul} when the first operand
1356is an immediate mode expression and the second operand is a register.
1357This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1358example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1359$69, %eax, %eax}.
1360
This page took 0.949383 seconds and 4 git commands to generate.