* amd64-sol2-tdep.c (amd64_sol2_gregset_reg_offset): Correct
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
2da5c037 1@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
7c31ae13 2@c 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2011
f7e42eb4 3@c Free Software Foundation, Inc.
252b5132
RH
4@c This is part of the GAS manual.
5@c For copying conditions, see the file as.texinfo.
731caf76
L
6@c man end
7
252b5132
RH
8@ifset GENERIC
9@page
10@node i386-Dependent
11@chapter 80386 Dependent Features
12@end ifset
13@ifclear GENERIC
14@node Machine Dependencies
15@chapter 80386 Dependent Features
16@end ifclear
17
18@cindex i386 support
b6169b20 19@cindex i80386 support
55b62671
AJ
20@cindex x86-64 support
21
22The i386 version @code{@value{AS}} supports both the original Intel 386
23architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
24extending the Intel architecture to 64-bits.
25
252b5132
RH
26@menu
27* i386-Options:: Options
a6c24e68 28* i386-Directives:: X86 specific directives
7c31ae13 29* i386-Syntax:: Syntactical considerations
252b5132
RH
30* i386-Mnemonics:: Instruction Naming
31* i386-Regs:: Register Naming
32* i386-Prefixes:: Instruction Prefixes
33* i386-Memory:: Memory References
fddf5b5b 34* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
35* i386-Float:: Floating Point
36* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 37* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 38* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 39* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 40* i386-16bit:: Writing 16-bit Code
e413e4e9 41* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
42* i386-Bugs:: AT&T Syntax bugs
43* i386-Notes:: Notes
44@end menu
45
46@node i386-Options
47@section Options
48
55b62671
AJ
49@cindex options for i386
50@cindex options for x86-64
51@cindex i386 options
52@cindex x86-64 options
53
54The i386 version of @code{@value{AS}} has a few machine
55dependent options:
56
731caf76
L
57@c man begin OPTIONS
58@table @gcctabopt
55b62671
AJ
59@cindex @samp{--32} option, i386
60@cindex @samp{--32} option, x86-64
570561f7
L
61@cindex @samp{--x32} option, i386
62@cindex @samp{--x32} option, x86-64
55b62671
AJ
63@cindex @samp{--64} option, i386
64@cindex @samp{--64} option, x86-64
570561f7 65@item --32 | --x32 | --64
35cc6a0b 66Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 67implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
68imply AMD x86-64 architecture with 32-bit or 64-bit word-size
69respectively.
55b62671
AJ
70
71These options are only available with the ELF object file format, and
72require that the necessary BFD support has been included (on a 32-bit
73platform you have to add --enable-64-bit-bfd to configure enable 64-bit
74usage and use x86-64 as target platform).
12b55ccc
L
75
76@item -n
77By default, x86 GAS replaces multiple nop instructions used for
78alignment within code sections with multi-byte nop instructions such
79as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
80
81@cindex @samp{--divide} option, i386
82@item --divide
83On SVR4-derived platforms, the character @samp{/} is treated as a comment
84character, which means that it cannot be used in expressions. The
85@samp{--divide} option turns @samp{/} into a normal character. This does
86not disable @samp{/} at the beginning of a line starting a comment, or
87affect using @samp{#} for starting a comment.
88
9103f4f4
L
89@cindex @samp{-march=} option, i386
90@cindex @samp{-march=} option, x86-64
6305a203
L
91@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92This option specifies the target processor. The assembler will
93issue an error message if an attempt is made to assemble an instruction
94which will not execute on the target processor. The following
95processor names are recognized:
9103f4f4
L
96@code{i8086},
97@code{i186},
98@code{i286},
99@code{i386},
100@code{i486},
101@code{i586},
102@code{i686},
103@code{pentium},
104@code{pentiumpro},
105@code{pentiumii},
106@code{pentiumiii},
107@code{pentium4},
108@code{prescott},
109@code{nocona},
ef05d495
L
110@code{core},
111@code{core2},
bd5295b2 112@code{corei7},
8a9036a4 113@code{l1om},
7a9068fe 114@code{k1om},
9103f4f4
L
115@code{k6},
116@code{k6_2},
117@code{athlon},
9103f4f4
L
118@code{opteron},
119@code{k8},
1ceab344 120@code{amdfam10},
68339fdf 121@code{bdver1},
af2f724e 122@code{bdver2},
9103f4f4
L
123@code{generic32} and
124@code{generic64}.
125
6305a203
L
126In addition to the basic instruction set, the assembler can be told to
127accept various extension mnemonics. For example,
128@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
129@var{vmx}. The following extensions are currently supported:
309d3373
JB
130@code{8087},
131@code{287},
132@code{387},
133@code{no87},
6305a203 134@code{mmx},
309d3373 135@code{nommx},
6305a203
L
136@code{sse},
137@code{sse2},
138@code{sse3},
139@code{ssse3},
140@code{sse4.1},
141@code{sse4.2},
142@code{sse4},
309d3373 143@code{nosse},
c0f3af97 144@code{avx},
6c30d220 145@code{avx2},
309d3373 146@code{noavx},
6305a203 147@code{vmx},
8729a6f6 148@code{vmfunc},
6305a203 149@code{smx},
f03fe4c1 150@code{xsave},
c7b8aa3a 151@code{xsaveopt},
c0f3af97 152@code{aes},
594ab6a3 153@code{pclmul},
c7b8aa3a
L
154@code{fsgsbase},
155@code{rdrnd},
156@code{f16c},
6c30d220 157@code{bmi2},
c0f3af97 158@code{fma},
f1f8f695
L
159@code{movbe},
160@code{ept},
6c30d220
L
161@code{lzcnt},
162@code{invpcid},
bd5295b2 163@code{clflush},
f88c9eb0 164@code{lwp},
5dd85c99
SP
165@code{fma4},
166@code{xop},
bd5295b2 167@code{syscall},
1b7f3fb0 168@code{rdtscp},
6305a203
L
169@code{3dnow},
170@code{3dnowa},
171@code{sse4a},
172@code{sse5},
173@code{svme},
174@code{abm} and
175@code{padlock}.
309d3373
JB
176Note that rather than extending a basic instruction set, the extension
177mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
178
179When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
180@code{.arch} directive will take precedent.
181
182@cindex @samp{-mtune=} option, i386
183@cindex @samp{-mtune=} option, x86-64
184@item -mtune=@var{CPU}
185This option specifies a processor to optimize for. When used in
186conjunction with the @option{-march} option, only instructions
187of the processor specified by the @option{-march} option will be
188generated.
189
6305a203
L
190Valid @var{CPU} values are identical to the processor list of
191@option{-march=@var{CPU}}.
9103f4f4 192
c0f3af97
L
193@cindex @samp{-msse2avx} option, i386
194@cindex @samp{-msse2avx} option, x86-64
195@item -msse2avx
196This option specifies that the assembler should encode SSE instructions
197with VEX prefix.
198
daf50ae7
L
199@cindex @samp{-msse-check=} option, i386
200@cindex @samp{-msse-check=} option, x86-64
201@item -msse-check=@var{none}
1f9bb1ca
AS
202@itemx -msse-check=@var{warning}
203@itemx -msse-check=@var{error}
daf50ae7
L
204These options control if the assembler should check SSE intructions.
205@option{-msse-check=@var{none}} will make the assembler not to check SSE
206instructions, which is the default. @option{-msse-check=@var{warning}}
207will make the assembler issue a warning for any SSE intruction.
208@option{-msse-check=@var{error}} will make the assembler issue an error
209for any SSE intruction.
210
539f890d
L
211@cindex @samp{-mavxscalar=} option, i386
212@cindex @samp{-mavxscalar=} option, x86-64
213@item -mavxscalar=@var{128}
1f9bb1ca 214@itemx -mavxscalar=@var{256}
2aab8acd 215These options control how the assembler should encode scalar AVX
539f890d
L
216instructions. @option{-mavxscalar=@var{128}} will encode scalar
217AVX instructions with 128bit vector length, which is the default.
218@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
219with 256bit vector length.
220
1efbbeb4
L
221@cindex @samp{-mmnemonic=} option, i386
222@cindex @samp{-mmnemonic=} option, x86-64
223@item -mmnemonic=@var{att}
1f9bb1ca 224@itemx -mmnemonic=@var{intel}
1efbbeb4
L
225This option specifies instruction mnemonic for matching instructions.
226The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
227take precedent.
228
229@cindex @samp{-msyntax=} option, i386
230@cindex @samp{-msyntax=} option, x86-64
231@item -msyntax=@var{att}
1f9bb1ca 232@itemx -msyntax=@var{intel}
1efbbeb4
L
233This option specifies instruction syntax when processing instructions.
234The @code{.att_syntax} and @code{.intel_syntax} directives will
235take precedent.
236
237@cindex @samp{-mnaked-reg} option, i386
238@cindex @samp{-mnaked-reg} option, x86-64
239@item -mnaked-reg
240This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 241The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 242
55b62671 243@end table
731caf76 244@c man end
e413e4e9 245
a6c24e68
NC
246@node i386-Directives
247@section x86 specific Directives
248
249@cindex machine directives, x86
250@cindex x86 machine directives
251@table @code
252
253@cindex @code{lcomm} directive, COFF
254@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
255Reserve @var{length} (an absolute expression) bytes for a local common
256denoted by @var{symbol}. The section and value of @var{symbol} are
257those of the new local common. The addresses are allocated in the bss
704209c0
NC
258section, so that at run-time the bytes start off zeroed. Since
259@var{symbol} is not declared global, it is normally not visible to
260@code{@value{LD}}. The optional third parameter, @var{alignment},
261specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
262
263This directive is only available for COFF based x86 targets.
264
265@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
266@c .largecomm
267
268@end table
269
252b5132 270@node i386-Syntax
7c31ae13
NC
271@section i386 Syntactical Considerations
272@menu
273* i386-Variations:: AT&T Syntax versus Intel Syntax
274* i386-Chars:: Special Characters
275@end menu
276
277@node i386-Variations
278@subsection AT&T Syntax versus Intel Syntax
252b5132 279
e413e4e9
AM
280@cindex i386 intel_syntax pseudo op
281@cindex intel_syntax pseudo op, i386
282@cindex i386 att_syntax pseudo op
283@cindex att_syntax pseudo op, i386
252b5132
RH
284@cindex i386 syntax compatibility
285@cindex syntax compatibility, i386
55b62671
AJ
286@cindex x86-64 intel_syntax pseudo op
287@cindex intel_syntax pseudo op, x86-64
288@cindex x86-64 att_syntax pseudo op
289@cindex att_syntax pseudo op, x86-64
290@cindex x86-64 syntax compatibility
291@cindex syntax compatibility, x86-64
e413e4e9
AM
292
293@code{@value{AS}} now supports assembly using Intel assembler syntax.
294@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
295back to the usual AT&T mode for compatibility with the output of
296@code{@value{GCC}}. Either of these directives may have an optional
297argument, @code{prefix}, or @code{noprefix} specifying whether registers
298require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
299different from Intel syntax. We mention these differences because
300almost all 80386 documents use Intel syntax. Notable differences
301between the two syntaxes are:
302
303@cindex immediate operands, i386
304@cindex i386 immediate operands
305@cindex register operands, i386
306@cindex i386 register operands
307@cindex jump/call operands, i386
308@cindex i386 jump/call operands
309@cindex operand delimiters, i386
55b62671
AJ
310
311@cindex immediate operands, x86-64
312@cindex x86-64 immediate operands
313@cindex register operands, x86-64
314@cindex x86-64 register operands
315@cindex jump/call operands, x86-64
316@cindex x86-64 jump/call operands
317@cindex operand delimiters, x86-64
252b5132
RH
318@itemize @bullet
319@item
320AT&T immediate operands are preceded by @samp{$}; Intel immediate
321operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
322AT&T register operands are preceded by @samp{%}; Intel register operands
323are undelimited. AT&T absolute (as opposed to PC relative) jump/call
324operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
325
326@cindex i386 source, destination operands
327@cindex source, destination operands; i386
55b62671
AJ
328@cindex x86-64 source, destination operands
329@cindex source, destination operands; x86-64
252b5132
RH
330@item
331AT&T and Intel syntax use the opposite order for source and destination
332operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
333@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
334previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
335instructions with 2 immediate operands, such as the @samp{enter}
336instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
337
338@cindex mnemonic suffixes, i386
339@cindex sizes operands, i386
340@cindex i386 size suffixes
55b62671
AJ
341@cindex mnemonic suffixes, x86-64
342@cindex sizes operands, x86-64
343@cindex x86-64 size suffixes
252b5132
RH
344@item
345In AT&T syntax the size of memory operands is determined from the last
346character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
347@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
348(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
349this by prefixing memory operands (@emph{not} the instruction mnemonics) with
350@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
351Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
352syntax.
252b5132 353
4b06377f
L
354In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
355instruction with the 64-bit displacement or immediate operand.
356
252b5132
RH
357@cindex return instructions, i386
358@cindex i386 jump, call, return
55b62671
AJ
359@cindex return instructions, x86-64
360@cindex x86-64 jump, call, return
252b5132
RH
361@item
362Immediate form long jumps and calls are
363@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
364Intel syntax is
365@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
366instruction
367is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
368@samp{ret far @var{stack-adjust}}.
369
370@cindex sections, i386
371@cindex i386 sections
55b62671
AJ
372@cindex sections, x86-64
373@cindex x86-64 sections
252b5132
RH
374@item
375The AT&T assembler does not provide support for multiple section
376programs. Unix style systems expect all programs to be single sections.
377@end itemize
378
7c31ae13
NC
379@node i386-Chars
380@subsection Special Characters
381
382@cindex line comment character, i386
383@cindex i386 line comment character
384The presence of a @samp{#} appearing anywhere on a line indicates the
385start of a comment that extends to the end of that line.
386
387If a @samp{#} appears as the first character of a line then the whole
388line is treated as a comment, but in this case the line can also be a
389logical line number directive (@pxref{Comments}) or a preprocessor
390control command (@pxref{Preprocessing}).
391
392If the @option{--divide} command line option has not been specified
393then the @samp{/} character appearing anywhere on a line also
394introduces a line comment.
395
396@cindex line separator, i386
397@cindex statement separator, i386
398@cindex i386 line separator
399The @samp{;} character can be used to separate statements on the same
400line.
401
252b5132
RH
402@node i386-Mnemonics
403@section Instruction Naming
404
405@cindex i386 instruction naming
406@cindex instruction naming, i386
55b62671
AJ
407@cindex x86-64 instruction naming
408@cindex instruction naming, x86-64
409
252b5132 410Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
411specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
412and @samp{q} specify byte, word, long and quadruple word operands. If
413no suffix is specified by an instruction then @code{@value{AS}} tries to
414fill in the missing suffix based on the destination register operand
415(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
416to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
417@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
418assembler which assumes that a missing mnemonic suffix implies long
419operand size. (This incompatibility does not affect compiler output
420since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
421
422Almost all instructions have the same names in AT&T and Intel format.
423There are a few exceptions. The sign extend and zero extend
424instructions need two sizes to specify them. They need a size to
425sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
426is accomplished by using two instruction mnemonic suffixes in AT&T
427syntax. Base names for sign extend and zero extend are
428@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
429and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
430are tacked on to this base name, the @emph{from} suffix before the
431@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
432``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
433thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
434@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
435@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
436quadruple word).
252b5132 437
b6169b20
L
438@cindex encoding options, i386
439@cindex encoding options, x86-64
440
441Different encoding options can be specified via optional mnemonic
442suffix. @samp{.s} suffix swaps 2 register operands in encoding when
a501d77e
L
443moving from one register to another. @samp{.d8} or @samp{.d32} suffix
444prefers 8bit or 32bit displacement in encoding.
b6169b20 445
252b5132
RH
446@cindex conversion instructions, i386
447@cindex i386 conversion instructions
55b62671
AJ
448@cindex conversion instructions, x86-64
449@cindex x86-64 conversion instructions
252b5132
RH
450The Intel-syntax conversion instructions
451
452@itemize @bullet
453@item
454@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
455
456@item
457@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
458
459@item
460@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
461
462@item
463@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
464
465@item
466@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
467(x86-64 only),
468
469@item
d5f0cf92 470@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 471@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
472@end itemize
473
474@noindent
55b62671
AJ
475are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
476@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
477instructions.
252b5132
RH
478
479@cindex jump instructions, i386
480@cindex call instructions, i386
55b62671
AJ
481@cindex jump instructions, x86-64
482@cindex call instructions, x86-64
252b5132
RH
483Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
484AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
485convention.
486
1efbbeb4
L
487@section AT&T Mnemonic versus Intel Mnemonic
488
489@cindex i386 mnemonic compatibility
490@cindex mnemonic compatibility, i386
491
492@code{@value{AS}} supports assembly using Intel mnemonic.
493@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
494@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
495syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
496Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
497@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
498@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
499assembler with different mnemonics from those in Intel IA32 specification.
500@code{@value{GCC}} generates those instructions with AT&T mnemonic.
501
252b5132
RH
502@node i386-Regs
503@section Register Naming
504
505@cindex i386 registers
506@cindex registers, i386
55b62671
AJ
507@cindex x86-64 registers
508@cindex registers, x86-64
252b5132
RH
509Register operands are always prefixed with @samp{%}. The 80386 registers
510consist of
511
512@itemize @bullet
513@item
514the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
515@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
516frame pointer), and @samp{%esp} (the stack pointer).
517
518@item
519the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
520@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
521
522@item
523the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
524@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
525are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
526@samp{%cx}, and @samp{%dx})
527
528@item
529the 6 section registers @samp{%cs} (code section), @samp{%ds}
530(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
531and @samp{%gs}.
532
533@item
534the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
535@samp{%cr3}.
536
537@item
538the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
539@samp{%db3}, @samp{%db6}, and @samp{%db7}.
540
541@item
542the 2 test registers @samp{%tr6} and @samp{%tr7}.
543
544@item
545the 8 floating point register stack @samp{%st} or equivalently
546@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
547@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
548These registers are overloaded by 8 MMX registers @samp{%mm0},
549@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
550@samp{%mm6} and @samp{%mm7}.
551
552@item
553the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
554@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
555@end itemize
556
557The AMD x86-64 architecture extends the register set by:
558
559@itemize @bullet
560@item
561enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
562accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
563@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
564pointer)
565
566@item
567the 8 extended registers @samp{%r8}--@samp{%r15}.
568
569@item
570the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
571
572@item
573the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
574
575@item
576the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
577
578@item
579the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
580
581@item
582the 8 debug registers: @samp{%db8}--@samp{%db15}.
583
584@item
585the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
586@end itemize
587
588@node i386-Prefixes
589@section Instruction Prefixes
590
591@cindex i386 instruction prefixes
592@cindex instruction prefixes, i386
593@cindex prefixes, i386
594Instruction prefixes are used to modify the following instruction. They
595are used to repeat string instructions, to provide section overrides, to
596perform bus lock operations, and to change operand and address sizes.
597(Most instructions that normally operate on 32-bit operands will use
59816-bit operands if the instruction has an ``operand size'' prefix.)
599Instruction prefixes are best written on the same line as the instruction
600they act upon. For example, the @samp{scas} (scan string) instruction is
601repeated with:
602
603@smallexample
604 repne scas %es:(%edi),%al
605@end smallexample
606
607You may also place prefixes on the lines immediately preceding the
608instruction, but this circumvents checks that @code{@value{AS}} does
609with prefixes, and will not work with all prefixes.
610
611Here is a list of instruction prefixes:
612
613@cindex section override prefixes, i386
614@itemize @bullet
615@item
616Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
617@samp{fs}, @samp{gs}. These are automatically added by specifying
618using the @var{section}:@var{memory-operand} form for memory references.
619
620@cindex size prefixes, i386
621@item
622Operand/Address size prefixes @samp{data16} and @samp{addr16}
623change 32-bit operands/addresses into 16-bit operands/addresses,
624while @samp{data32} and @samp{addr32} change 16-bit ones (in a
625@code{.code16} section) into 32-bit operands/addresses. These prefixes
626@emph{must} appear on the same line of code as the instruction they
627modify. For example, in a 16-bit @code{.code16} section, you might
628write:
629
630@smallexample
631 addr32 jmpl *(%ebx)
632@end smallexample
633
634@cindex bus lock prefixes, i386
635@cindex inhibiting interrupts, i386
636@item
637The bus lock prefix @samp{lock} inhibits interrupts during execution of
638the instruction it precedes. (This is only valid with certain
639instructions; see a 80386 manual for details).
640
641@cindex coprocessor wait, i386
642@item
643The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
644complete the current instruction. This should never be needed for the
64580386/80387 combination.
646
647@cindex repeat prefixes, i386
648@item
649The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
650to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
651times if the current address size is 16-bits).
55b62671
AJ
652@cindex REX prefixes, i386
653@item
654The @samp{rex} family of prefixes is used by x86-64 to encode
655extensions to i386 instruction set. The @samp{rex} prefix has four
656bits --- an operand size overwrite (@code{64}) used to change operand size
657from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
658register set.
659
660You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
661instruction emits @samp{rex} prefix with all the bits set. By omitting
662the @code{64}, @code{x}, @code{y} or @code{z} you may write other
663prefixes as well. Normally, there is no need to write the prefixes
664explicitly, since gas will automatically generate them based on the
665instruction operands.
252b5132
RH
666@end itemize
667
668@node i386-Memory
669@section Memory References
670
671@cindex i386 memory references
672@cindex memory references, i386
55b62671
AJ
673@cindex x86-64 memory references
674@cindex memory references, x86-64
252b5132
RH
675An Intel syntax indirect memory reference of the form
676
677@smallexample
678@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
679@end smallexample
680
681@noindent
682is translated into the AT&T syntax
683
684@smallexample
685@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
686@end smallexample
687
688@noindent
689where @var{base} and @var{index} are the optional 32-bit base and
690index registers, @var{disp} is the optional displacement, and
691@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
692to calculate the address of the operand. If no @var{scale} is
693specified, @var{scale} is taken to be 1. @var{section} specifies the
694optional section register for the memory operand, and may override the
695default section register (see a 80386 manual for section register
696defaults). Note that section overrides in AT&T syntax @emph{must}
697be preceded by a @samp{%}. If you specify a section override which
698coincides with the default section register, @code{@value{AS}} does @emph{not}
699output any section register override prefixes to assemble the given
700instruction. Thus, section overrides can be specified to emphasize which
701section register is used for a given memory operand.
702
703Here are some examples of Intel and AT&T style memory references:
704
705@table @asis
706@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
707@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
708missing, and the default section is used (@samp{%ss} for addressing with
709@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
710
711@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
712@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
713@samp{foo}. All other fields are missing. The section register here
714defaults to @samp{%ds}.
715
716@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
717This uses the value pointed to by @samp{foo} as a memory operand.
718Note that @var{base} and @var{index} are both missing, but there is only
719@emph{one} @samp{,}. This is a syntactic exception.
720
721@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
722This selects the contents of the variable @samp{foo} with section
723register @var{section} being @samp{%gs}.
724@end table
725
726Absolute (as opposed to PC relative) call and jump operands must be
727prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
728always chooses PC relative addressing for jump/call labels.
729
730Any instruction that has a memory operand, but no register operand,
55b62671
AJ
731@emph{must} specify its size (byte, word, long, or quadruple) with an
732instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
733respectively).
734
735The x86-64 architecture adds an RIP (instruction pointer relative)
736addressing. This addressing mode is specified by using @samp{rip} as a
737base register. Only constant offsets are valid. For example:
738
739@table @asis
740@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
741Points to the address 1234 bytes past the end of the current
742instruction.
743
744@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
745Points to the @code{symbol} in RIP relative way, this is shorter than
746the default absolute addressing.
747@end table
748
749Other addressing modes remain unchanged in x86-64 architecture, except
750registers used are 64-bit instead of 32-bit.
252b5132 751
fddf5b5b 752@node i386-Jumps
252b5132
RH
753@section Handling of Jump Instructions
754
755@cindex jump optimization, i386
756@cindex i386 jump optimization
55b62671
AJ
757@cindex jump optimization, x86-64
758@cindex x86-64 jump optimization
252b5132
RH
759Jump instructions are always optimized to use the smallest possible
760displacements. This is accomplished by using byte (8-bit) displacement
761jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 762is insufficient a long displacement is used. We do not support
252b5132
RH
763word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
764instruction with the @samp{data16} instruction prefix), since the 80386
765insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 766is added. (See also @pxref{i386-Arch})
252b5132
RH
767
768Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
769@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
770displacements, so that if you use these instructions (@code{@value{GCC}} does
771not use them) you may get an error message (and incorrect code). The AT&T
77280386 assembler tries to get around this problem by expanding @samp{jcxz foo}
773to
774
775@smallexample
776 jcxz cx_zero
777 jmp cx_nonzero
778cx_zero: jmp foo
779cx_nonzero:
780@end smallexample
781
782@node i386-Float
783@section Floating Point
784
785@cindex i386 floating point
786@cindex floating point, i386
55b62671
AJ
787@cindex x86-64 floating point
788@cindex floating point, x86-64
252b5132
RH
789All 80387 floating point types except packed BCD are supported.
790(BCD support may be added without much difficulty). These data
791types are 16-, 32-, and 64- bit integers, and single (32-bit),
792double (64-bit), and extended (80-bit) precision floating point.
793Each supported type has an instruction mnemonic suffix and a constructor
794associated with it. Instruction mnemonic suffixes specify the operand's
795data type. Constructors build these data types into memory.
796
797@cindex @code{float} directive, i386
798@cindex @code{single} directive, i386
799@cindex @code{double} directive, i386
800@cindex @code{tfloat} directive, i386
55b62671
AJ
801@cindex @code{float} directive, x86-64
802@cindex @code{single} directive, x86-64
803@cindex @code{double} directive, x86-64
804@cindex @code{tfloat} directive, x86-64
252b5132
RH
805@itemize @bullet
806@item
807Floating point constructors are @samp{.float} or @samp{.single},
808@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
809These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
810and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
811only supports this format via the @samp{fldt} (load 80-bit real to stack
812top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
813
814@cindex @code{word} directive, i386
815@cindex @code{long} directive, i386
816@cindex @code{int} directive, i386
817@cindex @code{quad} directive, i386
55b62671
AJ
818@cindex @code{word} directive, x86-64
819@cindex @code{long} directive, x86-64
820@cindex @code{int} directive, x86-64
821@cindex @code{quad} directive, x86-64
252b5132
RH
822@item
823Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
824@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
825corresponding instruction mnemonic suffixes are @samp{s} (single),
826@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
827the 64-bit @samp{q} format is only present in the @samp{fildq} (load
828quad integer to stack top) and @samp{fistpq} (store quad integer and pop
829stack) instructions.
830@end itemize
831
832Register to register operations should not use instruction mnemonic suffixes.
833@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
834wrote @samp{fst %st, %st(1)}, since all register to register operations
835use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
836which converts @samp{%st} from 80-bit to 64-bit floating point format,
837then stores the result in the 4 byte location @samp{mem})
838
839@node i386-SIMD
840@section Intel's MMX and AMD's 3DNow! SIMD Operations
841
842@cindex MMX, i386
843@cindex 3DNow!, i386
844@cindex SIMD, i386
55b62671
AJ
845@cindex MMX, x86-64
846@cindex 3DNow!, x86-64
847@cindex SIMD, x86-64
252b5132
RH
848
849@code{@value{AS}} supports Intel's MMX instruction set (SIMD
850instructions for integer data), available on Intel's Pentium MMX
851processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 852Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
853instruction set (SIMD instructions for 32-bit floating point data)
854available on AMD's K6-2 processor and possibly others in the future.
855
856Currently, @code{@value{AS}} does not support Intel's floating point
857SIMD, Katmai (KNI).
858
859The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
860@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
86116-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
862floating point values. The MMX registers cannot be used at the same time
863as the floating point stack.
864
865See Intel and AMD documentation, keeping in mind that the operand order in
866instructions is reversed from the Intel syntax.
867
f88c9eb0
SP
868@node i386-LWP
869@section AMD's Lightweight Profiling Instructions
870
871@cindex LWP, i386
872@cindex LWP, x86-64
873
874@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
875instruction set, available on AMD's Family 15h (Orochi) processors.
876
877LWP enables applications to collect and manage performance data, and
878react to performance events. The collection of performance data
879requires no context switches. LWP runs in the context of a thread and
880so several counters can be used independently across multiple threads.
881LWP can be used in both 64-bit and legacy 32-bit modes.
882
883For detailed information on the LWP instruction set, see the
884@cite{AMD Lightweight Profiling Specification} available at
885@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
886
87973e9f
QN
887@node i386-BMI
888@section Bit Manipulation Instructions
889
890@cindex BMI, i386
891@cindex BMI, x86-64
892
893@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
894
895BMI instructions provide several instructions implementing individual
896bit manipulation operations such as isolation, masking, setting, or
897resetting.
898
899@c Need to add a specification citation here when available.
900
2a2a0f38
QN
901@node i386-TBM
902@section AMD's Trailing Bit Manipulation Instructions
903
904@cindex TBM, i386
905@cindex TBM, x86-64
906
907@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
908instruction set, available on AMD's BDVER2 processors (Trinity and
909Viperfish).
910
911TBM instructions provide instructions implementing individual bit
912manipulation operations such as isolating, masking, setting, resetting,
913complementing, and operations on trailing zeros and ones.
914
915@c Need to add a specification citation here when available.
87973e9f 916
252b5132
RH
917@node i386-16bit
918@section Writing 16-bit Code
919
920@cindex i386 16-bit code
921@cindex 16-bit code, i386
922@cindex real-mode code, i386
eecb386c 923@cindex @code{code16gcc} directive, i386
252b5132
RH
924@cindex @code{code16} directive, i386
925@cindex @code{code32} directive, i386
55b62671
AJ
926@cindex @code{code64} directive, i386
927@cindex @code{code64} directive, x86-64
928While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
929or 64-bit x86-64 code depending on the default configuration,
252b5132 930it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
931mode code segments. To do this, put a @samp{.code16} or
932@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
933be run in 16-bit mode. You can switch @code{@value{AS}} to writing
93432-bit code with the @samp{.code32} directive or 64-bit code with the
935@samp{.code64} directive.
eecb386c
AM
936
937@samp{.code16gcc} provides experimental support for generating 16-bit
938code from gcc, and differs from @samp{.code16} in that @samp{call},
939@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
940@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
941default to 32-bit size. This is so that the stack pointer is
942manipulated in the same way over function calls, allowing access to
943function parameters at the same stack offsets as in 32-bit mode.
944@samp{.code16gcc} also automatically adds address size prefixes where
945necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
946
947The code which @code{@value{AS}} generates in 16-bit mode will not
948necessarily run on a 16-bit pre-80386 processor. To write code that
949runs on such a processor, you must refrain from using @emph{any} 32-bit
950constructs which require @code{@value{AS}} to output address or operand
951size prefixes.
952
953Note that writing 16-bit code instructions by explicitly specifying a
954prefix or an instruction mnemonic suffix within a 32-bit code section
955generates different machine instructions than those generated for a
95616-bit code segment. In a 32-bit code section, the following code
957generates the machine opcode bytes @samp{66 6a 04}, which pushes the
958value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
959
960@smallexample
961 pushw $4
962@end smallexample
963
964The same code in a 16-bit code section would generate the machine
b45619c0 965opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
966is correct since the processor default operand size is assumed to be 16
967bits in a 16-bit code section.
968
969@node i386-Bugs
970@section AT&T Syntax bugs
971
972The UnixWare assembler, and probably other AT&T derived ix86 Unix
973assemblers, generate floating point instructions with reversed source
974and destination registers in certain cases. Unfortunately, gcc and
975possibly many other programs use this reversed syntax, so we're stuck
976with it.
977
978For example
979
980@smallexample
981 fsub %st,%st(3)
982@end smallexample
983@noindent
984results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
985than the expected @samp{%st(3) - %st}. This happens with all the
986non-commutative arithmetic floating point operations with two register
987operands where the source register is @samp{%st} and the destination
988register is @samp{%st(i)}.
989
e413e4e9
AM
990@node i386-Arch
991@section Specifying CPU Architecture
992
993@cindex arch directive, i386
994@cindex i386 arch directive
55b62671
AJ
995@cindex arch directive, x86-64
996@cindex x86-64 arch directive
e413e4e9
AM
997
998@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 999(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1000directive enables a warning when gas detects an instruction that is not
1001supported on the CPU specified. The choices for @var{cpu_type} are:
1002
1003@multitable @columnfractions .20 .20 .20 .20
1004@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1005@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1006@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1007@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
7a9068fe 1008@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om}
1543849b 1009@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
af2f724e 1010@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2}
1ceab344 1011@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1012@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1013@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1014@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1015@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1016@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1017@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
8729a6f6 1018@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc}
1ceab344 1019@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1020@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
f0ae4a24 1021@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop}
1ceab344 1022@item @samp{.padlock}
e413e4e9
AM
1023@end multitable
1024
fddf5b5b
AM
1025Apart from the warning, there are only two other effects on
1026@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1027@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1028will automatically use a two byte opcode sequence. The larger three
1029byte opcode sequence is used on the 486 (and when no architecture is
1030specified) because it executes faster on the 486. Note that you can
1031explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1032Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1033@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1034conditional jumps will be promoted when necessary to a two instruction
1035sequence consisting of a conditional jump of the opposite sense around
1036an unconditional jump to the target.
1037
5c6af06e
JB
1038Following the CPU architecture (but not a sub-architecture, which are those
1039starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1040control automatic promotion of conditional jumps. @samp{jumps} is the
1041default, and enables jump promotion; All external jumps will be of the long
1042variety, and file-local jumps will be promoted as necessary.
1043(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1044byte offset jumps, and warns about file-local conditional jumps that
1045@code{@value{AS}} promotes.
fddf5b5b
AM
1046Unconditional jumps are treated as for @samp{jumps}.
1047
1048For example
1049
1050@smallexample
1051 .arch i8086,nojumps
1052@end smallexample
e413e4e9 1053
252b5132
RH
1054@node i386-Notes
1055@section Notes
1056
1057@cindex i386 @code{mul}, @code{imul} instructions
1058@cindex @code{mul} instruction, i386
1059@cindex @code{imul} instruction, i386
55b62671
AJ
1060@cindex @code{mul} instruction, x86-64
1061@cindex @code{imul} instruction, x86-64
252b5132 1062There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1063instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1064multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1065for @samp{imul}) can be output only in the one operand form. Thus,
1066@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1067the expanding multiply would clobber the @samp{%edx} register, and this
1068would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
106964-bit product in @samp{%edx:%eax}.
1070
1071We have added a two operand form of @samp{imul} when the first operand
1072is an immediate mode expression and the second operand is a register.
1073This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1074example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1075$69, %eax, %eax}.
1076
This page took 0.739897 seconds and 4 git commands to generate.