* dwarf_reader.cc (Sized_dwarf_line_info::read_header_prolog,
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
2da5c037
AM
1@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
2@c 2001, 2003, 2004
f7e42eb4 3@c Free Software Foundation, Inc.
252b5132
RH
4@c This is part of the GAS manual.
5@c For copying conditions, see the file as.texinfo.
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
17@cindex i80306 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
26* i386-Syntax:: AT&T Syntax versus Intel Syntax
27* i386-Mnemonics:: Instruction Naming
28* i386-Regs:: Register Naming
29* i386-Prefixes:: Instruction Prefixes
30* i386-Memory:: Memory References
fddf5b5b 31* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
32* i386-Float:: Floating Point
33* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
34* i386-16bit:: Writing 16-bit Code
e413e4e9 35* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
36* i386-Bugs:: AT&T Syntax bugs
37* i386-Notes:: Notes
38@end menu
39
40@node i386-Options
41@section Options
42
55b62671
AJ
43@cindex options for i386
44@cindex options for x86-64
45@cindex i386 options
46@cindex x86-64 options
47
48The i386 version of @code{@value{AS}} has a few machine
49dependent options:
50
51@table @code
52@cindex @samp{--32} option, i386
53@cindex @samp{--32} option, x86-64
54@cindex @samp{--64} option, i386
55@cindex @samp{--64} option, x86-64
56@item --32 | --64
57Select the word size, either 32 bits or 64 bits. Selecting 32-bit
58implies Intel i386 architecture, while 64-bit implies AMD x86-64
59architecture.
60
61These options are only available with the ELF object file format, and
62require that the necessary BFD support has been included (on a 32-bit
63platform you have to add --enable-64-bit-bfd to configure enable 64-bit
64usage and use x86-64 as target platform).
12b55ccc
L
65
66@item -n
67By default, x86 GAS replaces multiple nop instructions used for
68alignment within code sections with multi-byte nop instructions such
69as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
70
71@cindex @samp{--divide} option, i386
72@item --divide
73On SVR4-derived platforms, the character @samp{/} is treated as a comment
74character, which means that it cannot be used in expressions. The
75@samp{--divide} option turns @samp{/} into a normal character. This does
76not disable @samp{/} at the beginning of a line starting a comment, or
77affect using @samp{#} for starting a comment.
78
9103f4f4
L
79@cindex @samp{-march=} option, i386
80@cindex @samp{-march=} option, x86-64
6305a203
L
81@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
82This option specifies the target processor. The assembler will
83issue an error message if an attempt is made to assemble an instruction
84which will not execute on the target processor. The following
85processor names are recognized:
9103f4f4
L
86@code{i8086},
87@code{i186},
88@code{i286},
89@code{i386},
90@code{i486},
91@code{i586},
92@code{i686},
93@code{pentium},
94@code{pentiumpro},
95@code{pentiumii},
96@code{pentiumiii},
97@code{pentium4},
98@code{prescott},
99@code{nocona},
ef05d495
L
100@code{core},
101@code{core2},
9103f4f4
L
102@code{k6},
103@code{k6_2},
104@code{athlon},
9103f4f4
L
105@code{opteron},
106@code{k8},
1ceab344 107@code{amdfam10},
9103f4f4
L
108@code{generic32} and
109@code{generic64}.
110
6305a203
L
111In addition to the basic instruction set, the assembler can be told to
112accept various extension mnemonics. For example,
113@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
114@var{vmx}. The following extensions are currently supported:
115@code{mmx},
116@code{sse},
117@code{sse2},
118@code{sse3},
119@code{ssse3},
120@code{sse4.1},
121@code{sse4.2},
122@code{sse4},
123@code{vmx},
124@code{smx},
f03fe4c1 125@code{xsave},
6305a203
L
126@code{3dnow},
127@code{3dnowa},
128@code{sse4a},
129@code{sse5},
130@code{svme},
131@code{abm} and
132@code{padlock}.
133
134When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
135@code{.arch} directive will take precedent.
136
137@cindex @samp{-mtune=} option, i386
138@cindex @samp{-mtune=} option, x86-64
139@item -mtune=@var{CPU}
140This option specifies a processor to optimize for. When used in
141conjunction with the @option{-march} option, only instructions
142of the processor specified by the @option{-march} option will be
143generated.
144
6305a203
L
145Valid @var{CPU} values are identical to the processor list of
146@option{-march=@var{CPU}}.
9103f4f4 147
1efbbeb4
L
148@cindex @samp{-mmnemonic=} option, i386
149@cindex @samp{-mmnemonic=} option, x86-64
150@item -mmnemonic=@var{att}
151@item -mmnemonic=@var{intel}
152This option specifies instruction mnemonic for matching instructions.
153The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
154take precedent.
155
156@cindex @samp{-msyntax=} option, i386
157@cindex @samp{-msyntax=} option, x86-64
158@item -msyntax=@var{att}
159@item -msyntax=@var{intel}
160This option specifies instruction syntax when processing instructions.
161The @code{.att_syntax} and @code{.intel_syntax} directives will
162take precedent.
163
164@cindex @samp{-mnaked-reg} option, i386
165@cindex @samp{-mnaked-reg} option, x86-64
166@item -mnaked-reg
167This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 168The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 169
55b62671 170@end table
e413e4e9 171
252b5132
RH
172@node i386-Syntax
173@section AT&T Syntax versus Intel Syntax
174
e413e4e9
AM
175@cindex i386 intel_syntax pseudo op
176@cindex intel_syntax pseudo op, i386
177@cindex i386 att_syntax pseudo op
178@cindex att_syntax pseudo op, i386
252b5132
RH
179@cindex i386 syntax compatibility
180@cindex syntax compatibility, i386
55b62671
AJ
181@cindex x86-64 intel_syntax pseudo op
182@cindex intel_syntax pseudo op, x86-64
183@cindex x86-64 att_syntax pseudo op
184@cindex att_syntax pseudo op, x86-64
185@cindex x86-64 syntax compatibility
186@cindex syntax compatibility, x86-64
e413e4e9
AM
187
188@code{@value{AS}} now supports assembly using Intel assembler syntax.
189@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
190back to the usual AT&T mode for compatibility with the output of
191@code{@value{GCC}}. Either of these directives may have an optional
192argument, @code{prefix}, or @code{noprefix} specifying whether registers
193require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
194different from Intel syntax. We mention these differences because
195almost all 80386 documents use Intel syntax. Notable differences
196between the two syntaxes are:
197
198@cindex immediate operands, i386
199@cindex i386 immediate operands
200@cindex register operands, i386
201@cindex i386 register operands
202@cindex jump/call operands, i386
203@cindex i386 jump/call operands
204@cindex operand delimiters, i386
55b62671
AJ
205
206@cindex immediate operands, x86-64
207@cindex x86-64 immediate operands
208@cindex register operands, x86-64
209@cindex x86-64 register operands
210@cindex jump/call operands, x86-64
211@cindex x86-64 jump/call operands
212@cindex operand delimiters, x86-64
252b5132
RH
213@itemize @bullet
214@item
215AT&T immediate operands are preceded by @samp{$}; Intel immediate
216operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
217AT&T register operands are preceded by @samp{%}; Intel register operands
218are undelimited. AT&T absolute (as opposed to PC relative) jump/call
219operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
220
221@cindex i386 source, destination operands
222@cindex source, destination operands; i386
55b62671
AJ
223@cindex x86-64 source, destination operands
224@cindex source, destination operands; x86-64
252b5132
RH
225@item
226AT&T and Intel syntax use the opposite order for source and destination
227operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
228@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
229previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
230instructions with 2 immediate operands, such as the @samp{enter}
231instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
232
233@cindex mnemonic suffixes, i386
234@cindex sizes operands, i386
235@cindex i386 size suffixes
55b62671
AJ
236@cindex mnemonic suffixes, x86-64
237@cindex sizes operands, x86-64
238@cindex x86-64 size suffixes
252b5132
RH
239@item
240In AT&T syntax the size of memory operands is determined from the last
241character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
242@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
243(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
244this by prefixing memory operands (@emph{not} the instruction mnemonics) with
245@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
246Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
247syntax.
252b5132
RH
248
249@cindex return instructions, i386
250@cindex i386 jump, call, return
55b62671
AJ
251@cindex return instructions, x86-64
252@cindex x86-64 jump, call, return
252b5132
RH
253@item
254Immediate form long jumps and calls are
255@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
256Intel syntax is
257@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
258instruction
259is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
260@samp{ret far @var{stack-adjust}}.
261
262@cindex sections, i386
263@cindex i386 sections
55b62671
AJ
264@cindex sections, x86-64
265@cindex x86-64 sections
252b5132
RH
266@item
267The AT&T assembler does not provide support for multiple section
268programs. Unix style systems expect all programs to be single sections.
269@end itemize
270
271@node i386-Mnemonics
272@section Instruction Naming
273
274@cindex i386 instruction naming
275@cindex instruction naming, i386
55b62671
AJ
276@cindex x86-64 instruction naming
277@cindex instruction naming, x86-64
278
252b5132 279Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
280specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
281and @samp{q} specify byte, word, long and quadruple word operands. If
282no suffix is specified by an instruction then @code{@value{AS}} tries to
283fill in the missing suffix based on the destination register operand
284(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
285to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
286@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
287assembler which assumes that a missing mnemonic suffix implies long
288operand size. (This incompatibility does not affect compiler output
289since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
290
291Almost all instructions have the same names in AT&T and Intel format.
292There are a few exceptions. The sign extend and zero extend
293instructions need two sizes to specify them. They need a size to
294sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
295is accomplished by using two instruction mnemonic suffixes in AT&T
296syntax. Base names for sign extend and zero extend are
297@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
298and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
299are tacked on to this base name, the @emph{from} suffix before the
300@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
301``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
302thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
303@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
304@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
305quadruple word).
252b5132
RH
306
307@cindex conversion instructions, i386
308@cindex i386 conversion instructions
55b62671
AJ
309@cindex conversion instructions, x86-64
310@cindex x86-64 conversion instructions
252b5132
RH
311The Intel-syntax conversion instructions
312
313@itemize @bullet
314@item
315@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
316
317@item
318@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
319
320@item
321@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
322
323@item
324@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
325
326@item
327@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
328(x86-64 only),
329
330@item
d5f0cf92 331@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 332@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
333@end itemize
334
335@noindent
55b62671
AJ
336are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
337@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
338instructions.
252b5132
RH
339
340@cindex jump instructions, i386
341@cindex call instructions, i386
55b62671
AJ
342@cindex jump instructions, x86-64
343@cindex call instructions, x86-64
252b5132
RH
344Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
345AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
346convention.
347
1efbbeb4
L
348@section AT&T Mnemonic versus Intel Mnemonic
349
350@cindex i386 mnemonic compatibility
351@cindex mnemonic compatibility, i386
352
353@code{@value{AS}} supports assembly using Intel mnemonic.
354@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
355@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
356syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
357Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
358@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
359@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
360assembler with different mnemonics from those in Intel IA32 specification.
361@code{@value{GCC}} generates those instructions with AT&T mnemonic.
362
252b5132
RH
363@node i386-Regs
364@section Register Naming
365
366@cindex i386 registers
367@cindex registers, i386
55b62671
AJ
368@cindex x86-64 registers
369@cindex registers, x86-64
252b5132
RH
370Register operands are always prefixed with @samp{%}. The 80386 registers
371consist of
372
373@itemize @bullet
374@item
375the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
376@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
377frame pointer), and @samp{%esp} (the stack pointer).
378
379@item
380the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
381@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
382
383@item
384the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
385@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
386are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
387@samp{%cx}, and @samp{%dx})
388
389@item
390the 6 section registers @samp{%cs} (code section), @samp{%ds}
391(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
392and @samp{%gs}.
393
394@item
395the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
396@samp{%cr3}.
397
398@item
399the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
400@samp{%db3}, @samp{%db6}, and @samp{%db7}.
401
402@item
403the 2 test registers @samp{%tr6} and @samp{%tr7}.
404
405@item
406the 8 floating point register stack @samp{%st} or equivalently
407@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
408@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
409These registers are overloaded by 8 MMX registers @samp{%mm0},
410@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
411@samp{%mm6} and @samp{%mm7}.
412
413@item
414the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
415@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
416@end itemize
417
418The AMD x86-64 architecture extends the register set by:
419
420@itemize @bullet
421@item
422enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
423accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
424@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
425pointer)
426
427@item
428the 8 extended registers @samp{%r8}--@samp{%r15}.
429
430@item
431the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
432
433@item
434the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
435
436@item
437the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
438
439@item
440the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
441
442@item
443the 8 debug registers: @samp{%db8}--@samp{%db15}.
444
445@item
446the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
447@end itemize
448
449@node i386-Prefixes
450@section Instruction Prefixes
451
452@cindex i386 instruction prefixes
453@cindex instruction prefixes, i386
454@cindex prefixes, i386
455Instruction prefixes are used to modify the following instruction. They
456are used to repeat string instructions, to provide section overrides, to
457perform bus lock operations, and to change operand and address sizes.
458(Most instructions that normally operate on 32-bit operands will use
45916-bit operands if the instruction has an ``operand size'' prefix.)
460Instruction prefixes are best written on the same line as the instruction
461they act upon. For example, the @samp{scas} (scan string) instruction is
462repeated with:
463
464@smallexample
465 repne scas %es:(%edi),%al
466@end smallexample
467
468You may also place prefixes on the lines immediately preceding the
469instruction, but this circumvents checks that @code{@value{AS}} does
470with prefixes, and will not work with all prefixes.
471
472Here is a list of instruction prefixes:
473
474@cindex section override prefixes, i386
475@itemize @bullet
476@item
477Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
478@samp{fs}, @samp{gs}. These are automatically added by specifying
479using the @var{section}:@var{memory-operand} form for memory references.
480
481@cindex size prefixes, i386
482@item
483Operand/Address size prefixes @samp{data16} and @samp{addr16}
484change 32-bit operands/addresses into 16-bit operands/addresses,
485while @samp{data32} and @samp{addr32} change 16-bit ones (in a
486@code{.code16} section) into 32-bit operands/addresses. These prefixes
487@emph{must} appear on the same line of code as the instruction they
488modify. For example, in a 16-bit @code{.code16} section, you might
489write:
490
491@smallexample
492 addr32 jmpl *(%ebx)
493@end smallexample
494
495@cindex bus lock prefixes, i386
496@cindex inhibiting interrupts, i386
497@item
498The bus lock prefix @samp{lock} inhibits interrupts during execution of
499the instruction it precedes. (This is only valid with certain
500instructions; see a 80386 manual for details).
501
502@cindex coprocessor wait, i386
503@item
504The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
505complete the current instruction. This should never be needed for the
50680386/80387 combination.
507
508@cindex repeat prefixes, i386
509@item
510The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
511to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
512times if the current address size is 16-bits).
55b62671
AJ
513@cindex REX prefixes, i386
514@item
515The @samp{rex} family of prefixes is used by x86-64 to encode
516extensions to i386 instruction set. The @samp{rex} prefix has four
517bits --- an operand size overwrite (@code{64}) used to change operand size
518from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
519register set.
520
521You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
522instruction emits @samp{rex} prefix with all the bits set. By omitting
523the @code{64}, @code{x}, @code{y} or @code{z} you may write other
524prefixes as well. Normally, there is no need to write the prefixes
525explicitly, since gas will automatically generate them based on the
526instruction operands.
252b5132
RH
527@end itemize
528
529@node i386-Memory
530@section Memory References
531
532@cindex i386 memory references
533@cindex memory references, i386
55b62671
AJ
534@cindex x86-64 memory references
535@cindex memory references, x86-64
252b5132
RH
536An Intel syntax indirect memory reference of the form
537
538@smallexample
539@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
540@end smallexample
541
542@noindent
543is translated into the AT&T syntax
544
545@smallexample
546@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
547@end smallexample
548
549@noindent
550where @var{base} and @var{index} are the optional 32-bit base and
551index registers, @var{disp} is the optional displacement, and
552@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
553to calculate the address of the operand. If no @var{scale} is
554specified, @var{scale} is taken to be 1. @var{section} specifies the
555optional section register for the memory operand, and may override the
556default section register (see a 80386 manual for section register
557defaults). Note that section overrides in AT&T syntax @emph{must}
558be preceded by a @samp{%}. If you specify a section override which
559coincides with the default section register, @code{@value{AS}} does @emph{not}
560output any section register override prefixes to assemble the given
561instruction. Thus, section overrides can be specified to emphasize which
562section register is used for a given memory operand.
563
564Here are some examples of Intel and AT&T style memory references:
565
566@table @asis
567@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
568@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
569missing, and the default section is used (@samp{%ss} for addressing with
570@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
571
572@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
573@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
574@samp{foo}. All other fields are missing. The section register here
575defaults to @samp{%ds}.
576
577@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
578This uses the value pointed to by @samp{foo} as a memory operand.
579Note that @var{base} and @var{index} are both missing, but there is only
580@emph{one} @samp{,}. This is a syntactic exception.
581
582@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
583This selects the contents of the variable @samp{foo} with section
584register @var{section} being @samp{%gs}.
585@end table
586
587Absolute (as opposed to PC relative) call and jump operands must be
588prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
589always chooses PC relative addressing for jump/call labels.
590
591Any instruction that has a memory operand, but no register operand,
55b62671
AJ
592@emph{must} specify its size (byte, word, long, or quadruple) with an
593instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
594respectively).
595
596The x86-64 architecture adds an RIP (instruction pointer relative)
597addressing. This addressing mode is specified by using @samp{rip} as a
598base register. Only constant offsets are valid. For example:
599
600@table @asis
601@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
602Points to the address 1234 bytes past the end of the current
603instruction.
604
605@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
606Points to the @code{symbol} in RIP relative way, this is shorter than
607the default absolute addressing.
608@end table
609
610Other addressing modes remain unchanged in x86-64 architecture, except
611registers used are 64-bit instead of 32-bit.
252b5132 612
fddf5b5b 613@node i386-Jumps
252b5132
RH
614@section Handling of Jump Instructions
615
616@cindex jump optimization, i386
617@cindex i386 jump optimization
55b62671
AJ
618@cindex jump optimization, x86-64
619@cindex x86-64 jump optimization
252b5132
RH
620Jump instructions are always optimized to use the smallest possible
621displacements. This is accomplished by using byte (8-bit) displacement
622jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 623is insufficient a long displacement is used. We do not support
252b5132
RH
624word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
625instruction with the @samp{data16} instruction prefix), since the 80386
626insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 627is added. (See also @pxref{i386-Arch})
252b5132
RH
628
629Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
630@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
631displacements, so that if you use these instructions (@code{@value{GCC}} does
632not use them) you may get an error message (and incorrect code). The AT&T
63380386 assembler tries to get around this problem by expanding @samp{jcxz foo}
634to
635
636@smallexample
637 jcxz cx_zero
638 jmp cx_nonzero
639cx_zero: jmp foo
640cx_nonzero:
641@end smallexample
642
643@node i386-Float
644@section Floating Point
645
646@cindex i386 floating point
647@cindex floating point, i386
55b62671
AJ
648@cindex x86-64 floating point
649@cindex floating point, x86-64
252b5132
RH
650All 80387 floating point types except packed BCD are supported.
651(BCD support may be added without much difficulty). These data
652types are 16-, 32-, and 64- bit integers, and single (32-bit),
653double (64-bit), and extended (80-bit) precision floating point.
654Each supported type has an instruction mnemonic suffix and a constructor
655associated with it. Instruction mnemonic suffixes specify the operand's
656data type. Constructors build these data types into memory.
657
658@cindex @code{float} directive, i386
659@cindex @code{single} directive, i386
660@cindex @code{double} directive, i386
661@cindex @code{tfloat} directive, i386
55b62671
AJ
662@cindex @code{float} directive, x86-64
663@cindex @code{single} directive, x86-64
664@cindex @code{double} directive, x86-64
665@cindex @code{tfloat} directive, x86-64
252b5132
RH
666@itemize @bullet
667@item
668Floating point constructors are @samp{.float} or @samp{.single},
669@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
670These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
671and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
672only supports this format via the @samp{fldt} (load 80-bit real to stack
673top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
674
675@cindex @code{word} directive, i386
676@cindex @code{long} directive, i386
677@cindex @code{int} directive, i386
678@cindex @code{quad} directive, i386
55b62671
AJ
679@cindex @code{word} directive, x86-64
680@cindex @code{long} directive, x86-64
681@cindex @code{int} directive, x86-64
682@cindex @code{quad} directive, x86-64
252b5132
RH
683@item
684Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
685@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
686corresponding instruction mnemonic suffixes are @samp{s} (single),
687@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
688the 64-bit @samp{q} format is only present in the @samp{fildq} (load
689quad integer to stack top) and @samp{fistpq} (store quad integer and pop
690stack) instructions.
691@end itemize
692
693Register to register operations should not use instruction mnemonic suffixes.
694@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
695wrote @samp{fst %st, %st(1)}, since all register to register operations
696use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
697which converts @samp{%st} from 80-bit to 64-bit floating point format,
698then stores the result in the 4 byte location @samp{mem})
699
700@node i386-SIMD
701@section Intel's MMX and AMD's 3DNow! SIMD Operations
702
703@cindex MMX, i386
704@cindex 3DNow!, i386
705@cindex SIMD, i386
55b62671
AJ
706@cindex MMX, x86-64
707@cindex 3DNow!, x86-64
708@cindex SIMD, x86-64
252b5132
RH
709
710@code{@value{AS}} supports Intel's MMX instruction set (SIMD
711instructions for integer data), available on Intel's Pentium MMX
712processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 713Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
714instruction set (SIMD instructions for 32-bit floating point data)
715available on AMD's K6-2 processor and possibly others in the future.
716
717Currently, @code{@value{AS}} does not support Intel's floating point
718SIMD, Katmai (KNI).
719
720The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
721@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
72216-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
723floating point values. The MMX registers cannot be used at the same time
724as the floating point stack.
725
726See Intel and AMD documentation, keeping in mind that the operand order in
727instructions is reversed from the Intel syntax.
728
729@node i386-16bit
730@section Writing 16-bit Code
731
732@cindex i386 16-bit code
733@cindex 16-bit code, i386
734@cindex real-mode code, i386
eecb386c 735@cindex @code{code16gcc} directive, i386
252b5132
RH
736@cindex @code{code16} directive, i386
737@cindex @code{code32} directive, i386
55b62671
AJ
738@cindex @code{code64} directive, i386
739@cindex @code{code64} directive, x86-64
740While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
741or 64-bit x86-64 code depending on the default configuration,
252b5132 742it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
743mode code segments. To do this, put a @samp{.code16} or
744@samp{.code16gcc} directive before the assembly language instructions to
745be run in 16-bit mode. You can switch @code{@value{AS}} back to writing
746normal 32-bit code with the @samp{.code32} directive.
747
748@samp{.code16gcc} provides experimental support for generating 16-bit
749code from gcc, and differs from @samp{.code16} in that @samp{call},
750@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
751@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
752default to 32-bit size. This is so that the stack pointer is
753manipulated in the same way over function calls, allowing access to
754function parameters at the same stack offsets as in 32-bit mode.
755@samp{.code16gcc} also automatically adds address size prefixes where
756necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
757
758The code which @code{@value{AS}} generates in 16-bit mode will not
759necessarily run on a 16-bit pre-80386 processor. To write code that
760runs on such a processor, you must refrain from using @emph{any} 32-bit
761constructs which require @code{@value{AS}} to output address or operand
762size prefixes.
763
764Note that writing 16-bit code instructions by explicitly specifying a
765prefix or an instruction mnemonic suffix within a 32-bit code section
766generates different machine instructions than those generated for a
76716-bit code segment. In a 32-bit code section, the following code
768generates the machine opcode bytes @samp{66 6a 04}, which pushes the
769value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
770
771@smallexample
772 pushw $4
773@end smallexample
774
775The same code in a 16-bit code section would generate the machine
b45619c0 776opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
777is correct since the processor default operand size is assumed to be 16
778bits in a 16-bit code section.
779
780@node i386-Bugs
781@section AT&T Syntax bugs
782
783The UnixWare assembler, and probably other AT&T derived ix86 Unix
784assemblers, generate floating point instructions with reversed source
785and destination registers in certain cases. Unfortunately, gcc and
786possibly many other programs use this reversed syntax, so we're stuck
787with it.
788
789For example
790
791@smallexample
792 fsub %st,%st(3)
793@end smallexample
794@noindent
795results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
796than the expected @samp{%st(3) - %st}. This happens with all the
797non-commutative arithmetic floating point operations with two register
798operands where the source register is @samp{%st} and the destination
799register is @samp{%st(i)}.
800
e413e4e9
AM
801@node i386-Arch
802@section Specifying CPU Architecture
803
804@cindex arch directive, i386
805@cindex i386 arch directive
55b62671
AJ
806@cindex arch directive, x86-64
807@cindex x86-64 arch directive
e413e4e9
AM
808
809@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 810(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
811directive enables a warning when gas detects an instruction that is not
812supported on the CPU specified. The choices for @var{cpu_type} are:
813
814@multitable @columnfractions .20 .20 .20 .20
815@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
816@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 817@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 818@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1ceab344 819@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
7918206c 820@item @samp{amdfam10}
1ceab344 821@item @samp{generic32} @tab @samp{generic64}
9103f4f4 822@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 823@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1ceab344
L
824@item @samp{.vmx} @tab @samp{.smx} @tab @samp{.xsave}
825@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
826@item @samp{.svme} @tab @samp{.abm}
827@item @samp{.padlock}
e413e4e9
AM
828@end multitable
829
fddf5b5b
AM
830Apart from the warning, there are only two other effects on
831@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
832@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
833will automatically use a two byte opcode sequence. The larger three
834byte opcode sequence is used on the 486 (and when no architecture is
835specified) because it executes faster on the 486. Note that you can
836explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
837Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
838@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
839conditional jumps will be promoted when necessary to a two instruction
840sequence consisting of a conditional jump of the opposite sense around
841an unconditional jump to the target.
842
5c6af06e
JB
843Following the CPU architecture (but not a sub-architecture, which are those
844starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
845control automatic promotion of conditional jumps. @samp{jumps} is the
846default, and enables jump promotion; All external jumps will be of the long
847variety, and file-local jumps will be promoted as necessary.
848(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
849byte offset jumps, and warns about file-local conditional jumps that
850@code{@value{AS}} promotes.
fddf5b5b
AM
851Unconditional jumps are treated as for @samp{jumps}.
852
853For example
854
855@smallexample
856 .arch i8086,nojumps
857@end smallexample
e413e4e9 858
252b5132
RH
859@node i386-Notes
860@section Notes
861
862@cindex i386 @code{mul}, @code{imul} instructions
863@cindex @code{mul} instruction, i386
864@cindex @code{imul} instruction, i386
55b62671
AJ
865@cindex @code{mul} instruction, x86-64
866@cindex @code{imul} instruction, x86-64
252b5132 867There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 868instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
869multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
870for @samp{imul}) can be output only in the one operand form. Thus,
871@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
872the expanding multiply would clobber the @samp{%edx} register, and this
873would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
87464-bit product in @samp{%edx:%eax}.
875
876We have added a two operand form of @samp{imul} when the first operand
877is an immediate mode expression and the second operand is a register.
878This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
879example, can be done with @samp{imul $69, %eax} rather than @samp{imul
880$69, %eax, %eax}.
881
This page took 0.5123 seconds and 4 git commands to generate.