Revert "Do not consider reference types as dynamic"
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
b90efa5b 1@c Copyright (C) 1991-2015 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
77as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
78
79@cindex @samp{--divide} option, i386
80@item --divide
81On SVR4-derived platforms, the character @samp{/} is treated as a comment
82character, which means that it cannot be used in expressions. The
83@samp{--divide} option turns @samp{/} into a normal character. This does
84not disable @samp{/} at the beginning of a line starting a comment, or
85affect using @samp{#} for starting a comment.
86
9103f4f4
L
87@cindex @samp{-march=} option, i386
88@cindex @samp{-march=} option, x86-64
6305a203
L
89@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90This option specifies the target processor. The assembler will
91issue an error message if an attempt is made to assemble an instruction
92which will not execute on the target processor. The following
34bca508 93processor names are recognized:
9103f4f4
L
94@code{i8086},
95@code{i186},
96@code{i286},
97@code{i386},
98@code{i486},
99@code{i586},
100@code{i686},
101@code{pentium},
102@code{pentiumpro},
103@code{pentiumii},
104@code{pentiumiii},
105@code{pentium4},
106@code{prescott},
107@code{nocona},
ef05d495
L
108@code{core},
109@code{core2},
bd5295b2 110@code{corei7},
8a9036a4 111@code{l1om},
7a9068fe 112@code{k1om},
9103f4f4
L
113@code{k6},
114@code{k6_2},
115@code{athlon},
9103f4f4
L
116@code{opteron},
117@code{k8},
1ceab344 118@code{amdfam10},
68339fdf 119@code{bdver1},
af2f724e 120@code{bdver2},
5e5c50d3 121@code{bdver3},
c7b0bd56 122@code{bdver4},
029f3522 123@code{znver1},
7b458c12
L
124@code{btver1},
125@code{btver2},
9103f4f4
L
126@code{generic32} and
127@code{generic64}.
128
34bca508 129In addition to the basic instruction set, the assembler can be told to
6305a203
L
130accept various extension mnemonics. For example,
131@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
132@var{vmx}. The following extensions are currently supported:
309d3373
JB
133@code{8087},
134@code{287},
135@code{387},
136@code{no87},
6305a203 137@code{mmx},
309d3373 138@code{nommx},
6305a203
L
139@code{sse},
140@code{sse2},
141@code{sse3},
142@code{ssse3},
143@code{sse4.1},
144@code{sse4.2},
145@code{sse4},
309d3373 146@code{nosse},
c0f3af97 147@code{avx},
6c30d220 148@code{avx2},
e2e1fcde
L
149@code{adx},
150@code{rdseed},
151@code{prfchw},
5c111e37 152@code{smap},
7e8b059b 153@code{mpx},
a0046408 154@code{sha},
1dfc6506
L
155@code{prefetchwt1},
156@code{clflushopt},
157@code{se1},
c5e7287a 158@code{clwb},
9d8596f0 159@code{pcommit},
43234a1e
L
160@code{avx512f},
161@code{avx512cd},
162@code{avx512er},
163@code{avx512pf},
1dfc6506
L
164@code{avx512vl},
165@code{avx512bw},
166@code{avx512dq},
2cc1b5aa 167@code{avx512ifma},
14f195c9 168@code{avx512vbmi},
309d3373 169@code{noavx},
6305a203 170@code{vmx},
8729a6f6 171@code{vmfunc},
6305a203 172@code{smx},
f03fe4c1 173@code{xsave},
c7b8aa3a 174@code{xsaveopt},
1dfc6506
L
175@code{xsavec},
176@code{xsaves},
c0f3af97 177@code{aes},
594ab6a3 178@code{pclmul},
c7b8aa3a
L
179@code{fsgsbase},
180@code{rdrnd},
181@code{f16c},
6c30d220 182@code{bmi2},
c0f3af97 183@code{fma},
f1f8f695
L
184@code{movbe},
185@code{ept},
6c30d220 186@code{lzcnt},
42164a71
L
187@code{hle},
188@code{rtm},
6c30d220 189@code{invpcid},
bd5295b2 190@code{clflush},
029f3522 191@code{clzero},
f88c9eb0 192@code{lwp},
5dd85c99
SP
193@code{fma4},
194@code{xop},
60aa667e 195@code{cx16},
bd5295b2 196@code{syscall},
1b7f3fb0 197@code{rdtscp},
6305a203
L
198@code{3dnow},
199@code{3dnowa},
200@code{sse4a},
201@code{sse5},
202@code{svme},
203@code{abm} and
204@code{padlock}.
309d3373
JB
205Note that rather than extending a basic instruction set, the extension
206mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
207
208When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
209@code{.arch} directive will take precedent.
210
211@cindex @samp{-mtune=} option, i386
212@cindex @samp{-mtune=} option, x86-64
213@item -mtune=@var{CPU}
214This option specifies a processor to optimize for. When used in
215conjunction with the @option{-march} option, only instructions
216of the processor specified by the @option{-march} option will be
217generated.
218
6305a203
L
219Valid @var{CPU} values are identical to the processor list of
220@option{-march=@var{CPU}}.
9103f4f4 221
c0f3af97
L
222@cindex @samp{-msse2avx} option, i386
223@cindex @samp{-msse2avx} option, x86-64
224@item -msse2avx
225This option specifies that the assembler should encode SSE instructions
226with VEX prefix.
227
daf50ae7
L
228@cindex @samp{-msse-check=} option, i386
229@cindex @samp{-msse-check=} option, x86-64
230@item -msse-check=@var{none}
1f9bb1ca
AS
231@itemx -msse-check=@var{warning}
232@itemx -msse-check=@var{error}
9aff4b7a 233These options control if the assembler should check SSE instructions.
daf50ae7
L
234@option{-msse-check=@var{none}} will make the assembler not to check SSE
235instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 236will make the assembler issue a warning for any SSE instruction.
daf50ae7 237@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 238for any SSE instruction.
daf50ae7 239
539f890d
L
240@cindex @samp{-mavxscalar=} option, i386
241@cindex @samp{-mavxscalar=} option, x86-64
242@item -mavxscalar=@var{128}
1f9bb1ca 243@itemx -mavxscalar=@var{256}
2aab8acd 244These options control how the assembler should encode scalar AVX
539f890d
L
245instructions. @option{-mavxscalar=@var{128}} will encode scalar
246AVX instructions with 128bit vector length, which is the default.
247@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
248with 256bit vector length.
249
43234a1e
L
250@cindex @samp{-mevexlig=} option, i386
251@cindex @samp{-mevexlig=} option, x86-64
252@item -mevexlig=@var{128}
253@itemx -mevexlig=@var{256}
254@itemx -mevexlig=@var{512}
255These options control how the assembler should encode length-ignored
256(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
257EVEX instructions with 128bit vector length, which is the default.
258@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
259encode LIG EVEX instructions with 256bit and 512bit vector length,
260respectively.
261
262@cindex @samp{-mevexwig=} option, i386
263@cindex @samp{-mevexwig=} option, x86-64
264@item -mevexwig=@var{0}
265@itemx -mevexwig=@var{1}
266These options control how the assembler should encode w-ignored (WIG)
267EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
268EVEX instructions with evex.w = 0, which is the default.
269@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
270evex.w = 1.
271
1efbbeb4
L
272@cindex @samp{-mmnemonic=} option, i386
273@cindex @samp{-mmnemonic=} option, x86-64
274@item -mmnemonic=@var{att}
1f9bb1ca 275@itemx -mmnemonic=@var{intel}
34bca508 276This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
277The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
278take precedent.
279
280@cindex @samp{-msyntax=} option, i386
281@cindex @samp{-msyntax=} option, x86-64
282@item -msyntax=@var{att}
1f9bb1ca 283@itemx -msyntax=@var{intel}
34bca508 284This option specifies instruction syntax when processing instructions.
1efbbeb4
L
285The @code{.att_syntax} and @code{.intel_syntax} directives will
286take precedent.
287
288@cindex @samp{-mnaked-reg} option, i386
289@cindex @samp{-mnaked-reg} option, x86-64
290@item -mnaked-reg
291This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 292The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 293
7e8b059b
L
294@cindex @samp{-madd-bnd-prefix} option, i386
295@cindex @samp{-madd-bnd-prefix} option, x86-64
296@item -madd-bnd-prefix
297This option forces the assembler to add BND prefix to all branches, even
298if such prefix was not explicitly specified in the source code.
299
167ad85b
TG
300@cindex @samp{-mbig-obj} option, x86-64
301@item -mbig-obj
302On x86-64 PE/COFF target this option forces the use of big object file
303format, which allows more than 32768 sections.
304
d022bddd
IT
305@cindex @samp{-momit-lock-prefix=} option, i386
306@cindex @samp{-momit-lock-prefix=} option, x86-64
307@item -momit-lock-prefix=@var{no}
308@itemx -momit-lock-prefix=@var{yes}
309These options control how the assembler should encode lock prefix.
310This option is intended as a workaround for processors, that fail on
311lock prefix. This option can only be safely used with single-core,
312single-thread computers
313@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
314@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
315which is the default.
316
d3d3c6db
IT
317@cindex @samp{-mevexrcig=} option, i386
318@cindex @samp{-mevexrcig=} option, x86-64
319@item -mevexrcig=@var{rne}
320@itemx -mevexrcig=@var{rd}
321@itemx -mevexrcig=@var{ru}
322@itemx -mevexrcig=@var{rz}
323These options control how the assembler should encode SAE-only
324EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
325of EVEX instruction with 00, which is the default.
326@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
327and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
328with 01, 10 and 11 RC bits, respectively.
329
55b62671 330@end table
731caf76 331@c man end
e413e4e9 332
a6c24e68
NC
333@node i386-Directives
334@section x86 specific Directives
335
336@cindex machine directives, x86
337@cindex x86 machine directives
338@table @code
339
340@cindex @code{lcomm} directive, COFF
341@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
342Reserve @var{length} (an absolute expression) bytes for a local common
343denoted by @var{symbol}. The section and value of @var{symbol} are
344those of the new local common. The addresses are allocated in the bss
704209c0
NC
345section, so that at run-time the bytes start off zeroed. Since
346@var{symbol} is not declared global, it is normally not visible to
347@code{@value{LD}}. The optional third parameter, @var{alignment},
348specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
349
350This directive is only available for COFF based x86 targets.
351
352@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
353@c .largecomm
354
355@end table
356
252b5132 357@node i386-Syntax
7c31ae13
NC
358@section i386 Syntactical Considerations
359@menu
360* i386-Variations:: AT&T Syntax versus Intel Syntax
361* i386-Chars:: Special Characters
362@end menu
363
364@node i386-Variations
365@subsection AT&T Syntax versus Intel Syntax
252b5132 366
e413e4e9
AM
367@cindex i386 intel_syntax pseudo op
368@cindex intel_syntax pseudo op, i386
369@cindex i386 att_syntax pseudo op
370@cindex att_syntax pseudo op, i386
252b5132
RH
371@cindex i386 syntax compatibility
372@cindex syntax compatibility, i386
55b62671
AJ
373@cindex x86-64 intel_syntax pseudo op
374@cindex intel_syntax pseudo op, x86-64
375@cindex x86-64 att_syntax pseudo op
376@cindex att_syntax pseudo op, x86-64
377@cindex x86-64 syntax compatibility
378@cindex syntax compatibility, x86-64
e413e4e9
AM
379
380@code{@value{AS}} now supports assembly using Intel assembler syntax.
381@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
382back to the usual AT&T mode for compatibility with the output of
383@code{@value{GCC}}. Either of these directives may have an optional
384argument, @code{prefix}, or @code{noprefix} specifying whether registers
385require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
386different from Intel syntax. We mention these differences because
387almost all 80386 documents use Intel syntax. Notable differences
388between the two syntaxes are:
389
390@cindex immediate operands, i386
391@cindex i386 immediate operands
392@cindex register operands, i386
393@cindex i386 register operands
394@cindex jump/call operands, i386
395@cindex i386 jump/call operands
396@cindex operand delimiters, i386
55b62671
AJ
397
398@cindex immediate operands, x86-64
399@cindex x86-64 immediate operands
400@cindex register operands, x86-64
401@cindex x86-64 register operands
402@cindex jump/call operands, x86-64
403@cindex x86-64 jump/call operands
404@cindex operand delimiters, x86-64
252b5132
RH
405@itemize @bullet
406@item
407AT&T immediate operands are preceded by @samp{$}; Intel immediate
408operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
409AT&T register operands are preceded by @samp{%}; Intel register operands
410are undelimited. AT&T absolute (as opposed to PC relative) jump/call
411operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
412
413@cindex i386 source, destination operands
414@cindex source, destination operands; i386
55b62671
AJ
415@cindex x86-64 source, destination operands
416@cindex source, destination operands; x86-64
252b5132
RH
417@item
418AT&T and Intel syntax use the opposite order for source and destination
419operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
420@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
421previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
422instructions with 2 immediate operands, such as the @samp{enter}
423instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
424
425@cindex mnemonic suffixes, i386
426@cindex sizes operands, i386
427@cindex i386 size suffixes
55b62671
AJ
428@cindex mnemonic suffixes, x86-64
429@cindex sizes operands, x86-64
430@cindex x86-64 size suffixes
252b5132
RH
431@item
432In AT&T syntax the size of memory operands is determined from the last
433character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
434@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
435(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
436this by prefixing memory operands (@emph{not} the instruction mnemonics) with
437@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
438Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
439syntax.
252b5132 440
4b06377f
L
441In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
442instruction with the 64-bit displacement or immediate operand.
443
252b5132
RH
444@cindex return instructions, i386
445@cindex i386 jump, call, return
55b62671
AJ
446@cindex return instructions, x86-64
447@cindex x86-64 jump, call, return
252b5132
RH
448@item
449Immediate form long jumps and calls are
450@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
451Intel syntax is
452@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
453instruction
454is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
455@samp{ret far @var{stack-adjust}}.
456
457@cindex sections, i386
458@cindex i386 sections
55b62671
AJ
459@cindex sections, x86-64
460@cindex x86-64 sections
252b5132
RH
461@item
462The AT&T assembler does not provide support for multiple section
463programs. Unix style systems expect all programs to be single sections.
464@end itemize
465
7c31ae13
NC
466@node i386-Chars
467@subsection Special Characters
468
469@cindex line comment character, i386
470@cindex i386 line comment character
471The presence of a @samp{#} appearing anywhere on a line indicates the
472start of a comment that extends to the end of that line.
473
474If a @samp{#} appears as the first character of a line then the whole
475line is treated as a comment, but in this case the line can also be a
476logical line number directive (@pxref{Comments}) or a preprocessor
477control command (@pxref{Preprocessing}).
478
479If the @option{--divide} command line option has not been specified
480then the @samp{/} character appearing anywhere on a line also
481introduces a line comment.
482
483@cindex line separator, i386
484@cindex statement separator, i386
485@cindex i386 line separator
486The @samp{;} character can be used to separate statements on the same
487line.
488
252b5132
RH
489@node i386-Mnemonics
490@section Instruction Naming
491
492@cindex i386 instruction naming
493@cindex instruction naming, i386
55b62671
AJ
494@cindex x86-64 instruction naming
495@cindex instruction naming, x86-64
496
252b5132 497Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
498specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
499and @samp{q} specify byte, word, long and quadruple word operands. If
500no suffix is specified by an instruction then @code{@value{AS}} tries to
501fill in the missing suffix based on the destination register operand
502(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
503to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
504@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
505assembler which assumes that a missing mnemonic suffix implies long
506operand size. (This incompatibility does not affect compiler output
507since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
508
509Almost all instructions have the same names in AT&T and Intel format.
510There are a few exceptions. The sign extend and zero extend
511instructions need two sizes to specify them. They need a size to
512sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
513is accomplished by using two instruction mnemonic suffixes in AT&T
514syntax. Base names for sign extend and zero extend are
515@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
516and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
517are tacked on to this base name, the @emph{from} suffix before the
518@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
519``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
520thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
521@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
522@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
523quadruple word).
252b5132 524
b6169b20
L
525@cindex encoding options, i386
526@cindex encoding options, x86-64
527
528Different encoding options can be specified via optional mnemonic
529suffix. @samp{.s} suffix swaps 2 register operands in encoding when
a501d77e
L
530moving from one register to another. @samp{.d8} or @samp{.d32} suffix
531prefers 8bit or 32bit displacement in encoding.
b6169b20 532
252b5132
RH
533@cindex conversion instructions, i386
534@cindex i386 conversion instructions
55b62671
AJ
535@cindex conversion instructions, x86-64
536@cindex x86-64 conversion instructions
252b5132
RH
537The Intel-syntax conversion instructions
538
539@itemize @bullet
540@item
541@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
542
543@item
544@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
545
546@item
547@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
548
549@item
550@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
551
552@item
553@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
554(x86-64 only),
555
556@item
d5f0cf92 557@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 558@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
559@end itemize
560
561@noindent
55b62671
AJ
562are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
563@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
564instructions.
252b5132
RH
565
566@cindex jump instructions, i386
567@cindex call instructions, i386
55b62671
AJ
568@cindex jump instructions, x86-64
569@cindex call instructions, x86-64
252b5132
RH
570Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
571AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
572convention.
573
1efbbeb4
L
574@section AT&T Mnemonic versus Intel Mnemonic
575
576@cindex i386 mnemonic compatibility
577@cindex mnemonic compatibility, i386
578
579@code{@value{AS}} supports assembly using Intel mnemonic.
580@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
581@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
582syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
583Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
584@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
585@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
586assembler with different mnemonics from those in Intel IA32 specification.
587@code{@value{GCC}} generates those instructions with AT&T mnemonic.
588
252b5132
RH
589@node i386-Regs
590@section Register Naming
591
592@cindex i386 registers
593@cindex registers, i386
55b62671
AJ
594@cindex x86-64 registers
595@cindex registers, x86-64
252b5132
RH
596Register operands are always prefixed with @samp{%}. The 80386 registers
597consist of
598
599@itemize @bullet
600@item
601the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
602@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
603frame pointer), and @samp{%esp} (the stack pointer).
604
605@item
606the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
607@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
608
609@item
610the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
611@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
612are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
613@samp{%cx}, and @samp{%dx})
614
615@item
616the 6 section registers @samp{%cs} (code section), @samp{%ds}
617(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
618and @samp{%gs}.
619
620@item
621the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
622@samp{%cr3}.
623
624@item
625the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
626@samp{%db3}, @samp{%db6}, and @samp{%db7}.
627
628@item
629the 2 test registers @samp{%tr6} and @samp{%tr7}.
630
631@item
632the 8 floating point register stack @samp{%st} or equivalently
633@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
634@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
635These registers are overloaded by 8 MMX registers @samp{%mm0},
636@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
637@samp{%mm6} and @samp{%mm7}.
638
639@item
640the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
641@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
642@end itemize
643
644The AMD x86-64 architecture extends the register set by:
645
646@itemize @bullet
647@item
648enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
649accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
650@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
651pointer)
652
653@item
654the 8 extended registers @samp{%r8}--@samp{%r15}.
655
656@item
657the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
658
659@item
660the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
661
662@item
663the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
664
665@item
666the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
667
668@item
669the 8 debug registers: @samp{%db8}--@samp{%db15}.
670
671@item
672the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
673@end itemize
674
675@node i386-Prefixes
676@section Instruction Prefixes
677
678@cindex i386 instruction prefixes
679@cindex instruction prefixes, i386
680@cindex prefixes, i386
681Instruction prefixes are used to modify the following instruction. They
682are used to repeat string instructions, to provide section overrides, to
683perform bus lock operations, and to change operand and address sizes.
684(Most instructions that normally operate on 32-bit operands will use
68516-bit operands if the instruction has an ``operand size'' prefix.)
686Instruction prefixes are best written on the same line as the instruction
687they act upon. For example, the @samp{scas} (scan string) instruction is
688repeated with:
689
690@smallexample
691 repne scas %es:(%edi),%al
692@end smallexample
693
694You may also place prefixes on the lines immediately preceding the
695instruction, but this circumvents checks that @code{@value{AS}} does
696with prefixes, and will not work with all prefixes.
697
698Here is a list of instruction prefixes:
699
700@cindex section override prefixes, i386
701@itemize @bullet
702@item
703Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
704@samp{fs}, @samp{gs}. These are automatically added by specifying
705using the @var{section}:@var{memory-operand} form for memory references.
706
707@cindex size prefixes, i386
708@item
709Operand/Address size prefixes @samp{data16} and @samp{addr16}
710change 32-bit operands/addresses into 16-bit operands/addresses,
711while @samp{data32} and @samp{addr32} change 16-bit ones (in a
712@code{.code16} section) into 32-bit operands/addresses. These prefixes
713@emph{must} appear on the same line of code as the instruction they
714modify. For example, in a 16-bit @code{.code16} section, you might
715write:
716
717@smallexample
718 addr32 jmpl *(%ebx)
719@end smallexample
720
721@cindex bus lock prefixes, i386
722@cindex inhibiting interrupts, i386
723@item
724The bus lock prefix @samp{lock} inhibits interrupts during execution of
725the instruction it precedes. (This is only valid with certain
726instructions; see a 80386 manual for details).
727
728@cindex coprocessor wait, i386
729@item
730The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
731complete the current instruction. This should never be needed for the
73280386/80387 combination.
733
734@cindex repeat prefixes, i386
735@item
736The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
737to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
738times if the current address size is 16-bits).
55b62671
AJ
739@cindex REX prefixes, i386
740@item
741The @samp{rex} family of prefixes is used by x86-64 to encode
742extensions to i386 instruction set. The @samp{rex} prefix has four
743bits --- an operand size overwrite (@code{64}) used to change operand size
744from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
745register set.
746
747You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
748instruction emits @samp{rex} prefix with all the bits set. By omitting
749the @code{64}, @code{x}, @code{y} or @code{z} you may write other
750prefixes as well. Normally, there is no need to write the prefixes
751explicitly, since gas will automatically generate them based on the
752instruction operands.
252b5132
RH
753@end itemize
754
755@node i386-Memory
756@section Memory References
757
758@cindex i386 memory references
759@cindex memory references, i386
55b62671
AJ
760@cindex x86-64 memory references
761@cindex memory references, x86-64
252b5132
RH
762An Intel syntax indirect memory reference of the form
763
764@smallexample
765@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
766@end smallexample
767
768@noindent
769is translated into the AT&T syntax
770
771@smallexample
772@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
773@end smallexample
774
775@noindent
776where @var{base} and @var{index} are the optional 32-bit base and
777index registers, @var{disp} is the optional displacement, and
778@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
779to calculate the address of the operand. If no @var{scale} is
780specified, @var{scale} is taken to be 1. @var{section} specifies the
781optional section register for the memory operand, and may override the
782default section register (see a 80386 manual for section register
783defaults). Note that section overrides in AT&T syntax @emph{must}
784be preceded by a @samp{%}. If you specify a section override which
785coincides with the default section register, @code{@value{AS}} does @emph{not}
786output any section register override prefixes to assemble the given
787instruction. Thus, section overrides can be specified to emphasize which
788section register is used for a given memory operand.
789
790Here are some examples of Intel and AT&T style memory references:
791
792@table @asis
793@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
794@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
795missing, and the default section is used (@samp{%ss} for addressing with
796@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
797
798@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
799@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
800@samp{foo}. All other fields are missing. The section register here
801defaults to @samp{%ds}.
802
803@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
804This uses the value pointed to by @samp{foo} as a memory operand.
805Note that @var{base} and @var{index} are both missing, but there is only
806@emph{one} @samp{,}. This is a syntactic exception.
807
808@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
809This selects the contents of the variable @samp{foo} with section
810register @var{section} being @samp{%gs}.
811@end table
812
813Absolute (as opposed to PC relative) call and jump operands must be
814prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
815always chooses PC relative addressing for jump/call labels.
816
817Any instruction that has a memory operand, but no register operand,
55b62671
AJ
818@emph{must} specify its size (byte, word, long, or quadruple) with an
819instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
820respectively).
821
822The x86-64 architecture adds an RIP (instruction pointer relative)
823addressing. This addressing mode is specified by using @samp{rip} as a
824base register. Only constant offsets are valid. For example:
825
826@table @asis
827@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
828Points to the address 1234 bytes past the end of the current
829instruction.
830
831@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
832Points to the @code{symbol} in RIP relative way, this is shorter than
833the default absolute addressing.
834@end table
835
836Other addressing modes remain unchanged in x86-64 architecture, except
837registers used are 64-bit instead of 32-bit.
252b5132 838
fddf5b5b 839@node i386-Jumps
252b5132
RH
840@section Handling of Jump Instructions
841
842@cindex jump optimization, i386
843@cindex i386 jump optimization
55b62671
AJ
844@cindex jump optimization, x86-64
845@cindex x86-64 jump optimization
252b5132
RH
846Jump instructions are always optimized to use the smallest possible
847displacements. This is accomplished by using byte (8-bit) displacement
848jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 849is insufficient a long displacement is used. We do not support
252b5132
RH
850word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
851instruction with the @samp{data16} instruction prefix), since the 80386
852insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 853is added. (See also @pxref{i386-Arch})
252b5132
RH
854
855Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
856@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
857displacements, so that if you use these instructions (@code{@value{GCC}} does
858not use them) you may get an error message (and incorrect code). The AT&T
85980386 assembler tries to get around this problem by expanding @samp{jcxz foo}
860to
861
862@smallexample
863 jcxz cx_zero
864 jmp cx_nonzero
865cx_zero: jmp foo
866cx_nonzero:
867@end smallexample
868
869@node i386-Float
870@section Floating Point
871
872@cindex i386 floating point
873@cindex floating point, i386
55b62671
AJ
874@cindex x86-64 floating point
875@cindex floating point, x86-64
252b5132
RH
876All 80387 floating point types except packed BCD are supported.
877(BCD support may be added without much difficulty). These data
878types are 16-, 32-, and 64- bit integers, and single (32-bit),
879double (64-bit), and extended (80-bit) precision floating point.
880Each supported type has an instruction mnemonic suffix and a constructor
881associated with it. Instruction mnemonic suffixes specify the operand's
882data type. Constructors build these data types into memory.
883
884@cindex @code{float} directive, i386
885@cindex @code{single} directive, i386
886@cindex @code{double} directive, i386
887@cindex @code{tfloat} directive, i386
55b62671
AJ
888@cindex @code{float} directive, x86-64
889@cindex @code{single} directive, x86-64
890@cindex @code{double} directive, x86-64
891@cindex @code{tfloat} directive, x86-64
252b5132
RH
892@itemize @bullet
893@item
894Floating point constructors are @samp{.float} or @samp{.single},
895@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
896These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
897and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
898only supports this format via the @samp{fldt} (load 80-bit real to stack
899top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
900
901@cindex @code{word} directive, i386
902@cindex @code{long} directive, i386
903@cindex @code{int} directive, i386
904@cindex @code{quad} directive, i386
55b62671
AJ
905@cindex @code{word} directive, x86-64
906@cindex @code{long} directive, x86-64
907@cindex @code{int} directive, x86-64
908@cindex @code{quad} directive, x86-64
252b5132
RH
909@item
910Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
911@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
912corresponding instruction mnemonic suffixes are @samp{s} (single),
913@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
914the 64-bit @samp{q} format is only present in the @samp{fildq} (load
915quad integer to stack top) and @samp{fistpq} (store quad integer and pop
916stack) instructions.
917@end itemize
918
919Register to register operations should not use instruction mnemonic suffixes.
920@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
921wrote @samp{fst %st, %st(1)}, since all register to register operations
922use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
923which converts @samp{%st} from 80-bit to 64-bit floating point format,
924then stores the result in the 4 byte location @samp{mem})
925
926@node i386-SIMD
927@section Intel's MMX and AMD's 3DNow! SIMD Operations
928
929@cindex MMX, i386
930@cindex 3DNow!, i386
931@cindex SIMD, i386
55b62671
AJ
932@cindex MMX, x86-64
933@cindex 3DNow!, x86-64
934@cindex SIMD, x86-64
252b5132
RH
935
936@code{@value{AS}} supports Intel's MMX instruction set (SIMD
937instructions for integer data), available on Intel's Pentium MMX
938processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 939Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
940instruction set (SIMD instructions for 32-bit floating point data)
941available on AMD's K6-2 processor and possibly others in the future.
942
943Currently, @code{@value{AS}} does not support Intel's floating point
944SIMD, Katmai (KNI).
945
946The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
947@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
94816-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
949floating point values. The MMX registers cannot be used at the same time
950as the floating point stack.
951
952See Intel and AMD documentation, keeping in mind that the operand order in
953instructions is reversed from the Intel syntax.
954
f88c9eb0
SP
955@node i386-LWP
956@section AMD's Lightweight Profiling Instructions
957
958@cindex LWP, i386
959@cindex LWP, x86-64
960
961@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
962instruction set, available on AMD's Family 15h (Orochi) processors.
963
964LWP enables applications to collect and manage performance data, and
965react to performance events. The collection of performance data
966requires no context switches. LWP runs in the context of a thread and
967so several counters can be used independently across multiple threads.
968LWP can be used in both 64-bit and legacy 32-bit modes.
969
970For detailed information on the LWP instruction set, see the
971@cite{AMD Lightweight Profiling Specification} available at
972@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
973
87973e9f
QN
974@node i386-BMI
975@section Bit Manipulation Instructions
976
977@cindex BMI, i386
978@cindex BMI, x86-64
979
980@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
981
982BMI instructions provide several instructions implementing individual
983bit manipulation operations such as isolation, masking, setting, or
34bca508 984resetting.
87973e9f
QN
985
986@c Need to add a specification citation here when available.
987
2a2a0f38
QN
988@node i386-TBM
989@section AMD's Trailing Bit Manipulation Instructions
990
991@cindex TBM, i386
992@cindex TBM, x86-64
993
994@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
995instruction set, available on AMD's BDVER2 processors (Trinity and
996Viperfish).
997
998TBM instructions provide instructions implementing individual bit
999manipulation operations such as isolating, masking, setting, resetting,
1000complementing, and operations on trailing zeros and ones.
1001
1002@c Need to add a specification citation here when available.
87973e9f 1003
252b5132
RH
1004@node i386-16bit
1005@section Writing 16-bit Code
1006
1007@cindex i386 16-bit code
1008@cindex 16-bit code, i386
1009@cindex real-mode code, i386
eecb386c 1010@cindex @code{code16gcc} directive, i386
252b5132
RH
1011@cindex @code{code16} directive, i386
1012@cindex @code{code32} directive, i386
55b62671
AJ
1013@cindex @code{code64} directive, i386
1014@cindex @code{code64} directive, x86-64
1015While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1016or 64-bit x86-64 code depending on the default configuration,
252b5132 1017it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1018mode code segments. To do this, put a @samp{.code16} or
1019@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1020be run in 16-bit mode. You can switch @code{@value{AS}} to writing
102132-bit code with the @samp{.code32} directive or 64-bit code with the
1022@samp{.code64} directive.
eecb386c
AM
1023
1024@samp{.code16gcc} provides experimental support for generating 16-bit
1025code from gcc, and differs from @samp{.code16} in that @samp{call},
1026@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1027@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1028default to 32-bit size. This is so that the stack pointer is
1029manipulated in the same way over function calls, allowing access to
1030function parameters at the same stack offsets as in 32-bit mode.
1031@samp{.code16gcc} also automatically adds address size prefixes where
1032necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1033
1034The code which @code{@value{AS}} generates in 16-bit mode will not
1035necessarily run on a 16-bit pre-80386 processor. To write code that
1036runs on such a processor, you must refrain from using @emph{any} 32-bit
1037constructs which require @code{@value{AS}} to output address or operand
1038size prefixes.
1039
1040Note that writing 16-bit code instructions by explicitly specifying a
1041prefix or an instruction mnemonic suffix within a 32-bit code section
1042generates different machine instructions than those generated for a
104316-bit code segment. In a 32-bit code section, the following code
1044generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1045value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1046
1047@smallexample
1048 pushw $4
1049@end smallexample
1050
1051The same code in a 16-bit code section would generate the machine
b45619c0 1052opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1053is correct since the processor default operand size is assumed to be 16
1054bits in a 16-bit code section.
1055
e413e4e9
AM
1056@node i386-Arch
1057@section Specifying CPU Architecture
1058
1059@cindex arch directive, i386
1060@cindex i386 arch directive
55b62671
AJ
1061@cindex arch directive, x86-64
1062@cindex x86-64 arch directive
e413e4e9
AM
1063
1064@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1065(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1066directive enables a warning when gas detects an instruction that is not
1067supported on the CPU specified. The choices for @var{cpu_type} are:
1068
1069@multitable @columnfractions .20 .20 .20 .20
1070@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1071@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1072@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1073@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
7a9068fe 1074@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om}
1543849b 1075@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1076@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
029f3522 1077@item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1ceab344 1078@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1079@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1080@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1081@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1082@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1083@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1084@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1085@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1086@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1087@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1088@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1089@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1090@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
14f195c9 1091@item @samp{.avx512vbmi} @tab @samp{.clwb} @tab @samp{.pcommit}
1ceab344 1092@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1093@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1094@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
029f3522 1095@item @samp{.padlock} @tab @samp{.clzero}
e413e4e9
AM
1096@end multitable
1097
fddf5b5b
AM
1098Apart from the warning, there are only two other effects on
1099@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1100@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1101will automatically use a two byte opcode sequence. The larger three
1102byte opcode sequence is used on the 486 (and when no architecture is
1103specified) because it executes faster on the 486. Note that you can
1104explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1105Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1106@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1107conditional jumps will be promoted when necessary to a two instruction
1108sequence consisting of a conditional jump of the opposite sense around
1109an unconditional jump to the target.
1110
5c6af06e
JB
1111Following the CPU architecture (but not a sub-architecture, which are those
1112starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1113control automatic promotion of conditional jumps. @samp{jumps} is the
1114default, and enables jump promotion; All external jumps will be of the long
1115variety, and file-local jumps will be promoted as necessary.
1116(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1117byte offset jumps, and warns about file-local conditional jumps that
1118@code{@value{AS}} promotes.
fddf5b5b
AM
1119Unconditional jumps are treated as for @samp{jumps}.
1120
1121For example
1122
1123@smallexample
1124 .arch i8086,nojumps
1125@end smallexample
e413e4e9 1126
5c9352f3
AM
1127@node i386-Bugs
1128@section AT&T Syntax bugs
1129
1130The UnixWare assembler, and probably other AT&T derived ix86 Unix
1131assemblers, generate floating point instructions with reversed source
1132and destination registers in certain cases. Unfortunately, gcc and
1133possibly many other programs use this reversed syntax, so we're stuck
1134with it.
1135
1136For example
1137
1138@smallexample
1139 fsub %st,%st(3)
1140@end smallexample
1141@noindent
1142results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1143than the expected @samp{%st(3) - %st}. This happens with all the
1144non-commutative arithmetic floating point operations with two register
1145operands where the source register is @samp{%st} and the destination
1146register is @samp{%st(i)}.
1147
252b5132
RH
1148@node i386-Notes
1149@section Notes
1150
1151@cindex i386 @code{mul}, @code{imul} instructions
1152@cindex @code{mul} instruction, i386
1153@cindex @code{imul} instruction, i386
55b62671
AJ
1154@cindex @code{mul} instruction, x86-64
1155@cindex @code{imul} instruction, x86-64
252b5132 1156There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1157instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1158multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1159for @samp{imul}) can be output only in the one operand form. Thus,
1160@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1161the expanding multiply would clobber the @samp{%edx} register, and this
1162would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
116364-bit product in @samp{%edx:%eax}.
1164
1165We have added a two operand form of @samp{imul} when the first operand
1166is an immediate mode expression and the second operand is a register.
1167This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1168example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1169$69, %eax, %eax}.
1170
This page took 0.697563 seconds and 4 git commands to generate.