[GAS][AARCH64]Fix a typo for IP1 register alias.
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
2571583a 1@c Copyright (C) 1991-2017 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
77as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
78
79@cindex @samp{--divide} option, i386
80@item --divide
81On SVR4-derived platforms, the character @samp{/} is treated as a comment
82character, which means that it cannot be used in expressions. The
83@samp{--divide} option turns @samp{/} into a normal character. This does
84not disable @samp{/} at the beginning of a line starting a comment, or
85affect using @samp{#} for starting a comment.
86
9103f4f4
L
87@cindex @samp{-march=} option, i386
88@cindex @samp{-march=} option, x86-64
6305a203
L
89@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90This option specifies the target processor. The assembler will
91issue an error message if an attempt is made to assemble an instruction
92which will not execute on the target processor. The following
34bca508 93processor names are recognized:
9103f4f4
L
94@code{i8086},
95@code{i186},
96@code{i286},
97@code{i386},
98@code{i486},
99@code{i586},
100@code{i686},
101@code{pentium},
102@code{pentiumpro},
103@code{pentiumii},
104@code{pentiumiii},
105@code{pentium4},
106@code{prescott},
107@code{nocona},
ef05d495
L
108@code{core},
109@code{core2},
bd5295b2 110@code{corei7},
8a9036a4 111@code{l1om},
7a9068fe 112@code{k1om},
81486035 113@code{iamcu},
9103f4f4
L
114@code{k6},
115@code{k6_2},
116@code{athlon},
9103f4f4
L
117@code{opteron},
118@code{k8},
1ceab344 119@code{amdfam10},
68339fdf 120@code{bdver1},
af2f724e 121@code{bdver2},
5e5c50d3 122@code{bdver3},
c7b0bd56 123@code{bdver4},
029f3522 124@code{znver1},
7b458c12
L
125@code{btver1},
126@code{btver2},
9103f4f4
L
127@code{generic32} and
128@code{generic64}.
129
34bca508 130In addition to the basic instruction set, the assembler can be told to
6305a203
L
131accept various extension mnemonics. For example,
132@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
133@var{vmx}. The following extensions are currently supported:
309d3373
JB
134@code{8087},
135@code{287},
136@code{387},
1848e567 137@code{687},
309d3373 138@code{no87},
1848e567
L
139@code{no287},
140@code{no387},
141@code{no687},
6305a203 142@code{mmx},
309d3373 143@code{nommx},
6305a203
L
144@code{sse},
145@code{sse2},
146@code{sse3},
147@code{ssse3},
148@code{sse4.1},
149@code{sse4.2},
150@code{sse4},
309d3373 151@code{nosse},
1848e567
L
152@code{nosse2},
153@code{nosse3},
154@code{nossse3},
155@code{nosse4.1},
156@code{nosse4.2},
157@code{nosse4},
c0f3af97 158@code{avx},
6c30d220 159@code{avx2},
1848e567
L
160@code{noavx},
161@code{noavx2},
e2e1fcde
L
162@code{adx},
163@code{rdseed},
164@code{prfchw},
5c111e37 165@code{smap},
7e8b059b 166@code{mpx},
a0046408 167@code{sha},
8bc52696 168@code{rdpid},
6b40c462 169@code{ptwrite},
603555e5 170@code{cet},
48521003 171@code{gfni},
8dcf1fad 172@code{vaes},
ff1982d5 173@code{vpclmulqdq},
1dfc6506
L
174@code{prefetchwt1},
175@code{clflushopt},
176@code{se1},
c5e7287a 177@code{clwb},
43234a1e
L
178@code{avx512f},
179@code{avx512cd},
180@code{avx512er},
181@code{avx512pf},
1dfc6506
L
182@code{avx512vl},
183@code{avx512bw},
184@code{avx512dq},
2cc1b5aa 185@code{avx512ifma},
14f195c9 186@code{avx512vbmi},
920d2ddc 187@code{avx512_4fmaps},
47acf0bd 188@code{avx512_4vnniw},
620214f7 189@code{avx512_vpopcntdq},
53467f57 190@code{avx512_vbmi2},
8cfcb765 191@code{avx512_vnni},
ee6872be 192@code{avx512_bitalg},
144b71e2
L
193@code{noavx512f},
194@code{noavx512cd},
195@code{noavx512er},
196@code{noavx512pf},
197@code{noavx512vl},
198@code{noavx512bw},
199@code{noavx512dq},
200@code{noavx512ifma},
201@code{noavx512vbmi},
920d2ddc 202@code{noavx512_4fmaps},
47acf0bd 203@code{noavx512_4vnniw},
620214f7 204@code{noavx512_vpopcntdq},
53467f57 205@code{noavx512_vbmi2},
8cfcb765 206@code{noavx512_vnni},
ee6872be 207@code{noavx512_bitalg},
6305a203 208@code{vmx},
8729a6f6 209@code{vmfunc},
6305a203 210@code{smx},
f03fe4c1 211@code{xsave},
c7b8aa3a 212@code{xsaveopt},
1dfc6506
L
213@code{xsavec},
214@code{xsaves},
c0f3af97 215@code{aes},
594ab6a3 216@code{pclmul},
c7b8aa3a
L
217@code{fsgsbase},
218@code{rdrnd},
219@code{f16c},
6c30d220 220@code{bmi2},
c0f3af97 221@code{fma},
f1f8f695
L
222@code{movbe},
223@code{ept},
6c30d220 224@code{lzcnt},
42164a71
L
225@code{hle},
226@code{rtm},
6c30d220 227@code{invpcid},
bd5295b2 228@code{clflush},
9916071f 229@code{mwaitx},
029f3522 230@code{clzero},
f88c9eb0 231@code{lwp},
5dd85c99
SP
232@code{fma4},
233@code{xop},
60aa667e 234@code{cx16},
bd5295b2 235@code{syscall},
1b7f3fb0 236@code{rdtscp},
6305a203
L
237@code{3dnow},
238@code{3dnowa},
239@code{sse4a},
240@code{sse5},
241@code{svme},
242@code{abm} and
243@code{padlock}.
309d3373
JB
244Note that rather than extending a basic instruction set, the extension
245mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
246
247When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
248@code{.arch} directive will take precedent.
249
250@cindex @samp{-mtune=} option, i386
251@cindex @samp{-mtune=} option, x86-64
252@item -mtune=@var{CPU}
253This option specifies a processor to optimize for. When used in
254conjunction with the @option{-march} option, only instructions
255of the processor specified by the @option{-march} option will be
256generated.
257
6305a203
L
258Valid @var{CPU} values are identical to the processor list of
259@option{-march=@var{CPU}}.
9103f4f4 260
c0f3af97
L
261@cindex @samp{-msse2avx} option, i386
262@cindex @samp{-msse2avx} option, x86-64
263@item -msse2avx
264This option specifies that the assembler should encode SSE instructions
265with VEX prefix.
266
daf50ae7
L
267@cindex @samp{-msse-check=} option, i386
268@cindex @samp{-msse-check=} option, x86-64
269@item -msse-check=@var{none}
1f9bb1ca
AS
270@itemx -msse-check=@var{warning}
271@itemx -msse-check=@var{error}
9aff4b7a 272These options control if the assembler should check SSE instructions.
daf50ae7
L
273@option{-msse-check=@var{none}} will make the assembler not to check SSE
274instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 275will make the assembler issue a warning for any SSE instruction.
daf50ae7 276@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 277for any SSE instruction.
daf50ae7 278
539f890d
L
279@cindex @samp{-mavxscalar=} option, i386
280@cindex @samp{-mavxscalar=} option, x86-64
281@item -mavxscalar=@var{128}
1f9bb1ca 282@itemx -mavxscalar=@var{256}
2aab8acd 283These options control how the assembler should encode scalar AVX
539f890d
L
284instructions. @option{-mavxscalar=@var{128}} will encode scalar
285AVX instructions with 128bit vector length, which is the default.
286@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
287with 256bit vector length.
288
43234a1e
L
289@cindex @samp{-mevexlig=} option, i386
290@cindex @samp{-mevexlig=} option, x86-64
291@item -mevexlig=@var{128}
292@itemx -mevexlig=@var{256}
293@itemx -mevexlig=@var{512}
294These options control how the assembler should encode length-ignored
295(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
296EVEX instructions with 128bit vector length, which is the default.
297@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
298encode LIG EVEX instructions with 256bit and 512bit vector length,
299respectively.
300
301@cindex @samp{-mevexwig=} option, i386
302@cindex @samp{-mevexwig=} option, x86-64
303@item -mevexwig=@var{0}
304@itemx -mevexwig=@var{1}
305These options control how the assembler should encode w-ignored (WIG)
306EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
307EVEX instructions with evex.w = 0, which is the default.
308@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
309evex.w = 1.
310
1efbbeb4
L
311@cindex @samp{-mmnemonic=} option, i386
312@cindex @samp{-mmnemonic=} option, x86-64
313@item -mmnemonic=@var{att}
1f9bb1ca 314@itemx -mmnemonic=@var{intel}
34bca508 315This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
316The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
317take precedent.
318
319@cindex @samp{-msyntax=} option, i386
320@cindex @samp{-msyntax=} option, x86-64
321@item -msyntax=@var{att}
1f9bb1ca 322@itemx -msyntax=@var{intel}
34bca508 323This option specifies instruction syntax when processing instructions.
1efbbeb4
L
324The @code{.att_syntax} and @code{.intel_syntax} directives will
325take precedent.
326
327@cindex @samp{-mnaked-reg} option, i386
328@cindex @samp{-mnaked-reg} option, x86-64
329@item -mnaked-reg
33eaf5de 330This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 331The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 332
7e8b059b
L
333@cindex @samp{-madd-bnd-prefix} option, i386
334@cindex @samp{-madd-bnd-prefix} option, x86-64
335@item -madd-bnd-prefix
336This option forces the assembler to add BND prefix to all branches, even
337if such prefix was not explicitly specified in the source code.
338
8dcea932
L
339@cindex @samp{-mshared} option, i386
340@cindex @samp{-mshared} option, x86-64
341@item -mno-shared
342On ELF target, the assembler normally optimizes out non-PLT relocations
343against defined non-weak global branch targets with default visibility.
344The @samp{-mshared} option tells the assembler to generate code which
345may go into a shared library where all non-weak global branch targets
346with default visibility can be preempted. The resulting code is
347slightly bigger. This option only affects the handling of branch
348instructions.
349
167ad85b
TG
350@cindex @samp{-mbig-obj} option, x86-64
351@item -mbig-obj
352On x86-64 PE/COFF target this option forces the use of big object file
353format, which allows more than 32768 sections.
354
d022bddd
IT
355@cindex @samp{-momit-lock-prefix=} option, i386
356@cindex @samp{-momit-lock-prefix=} option, x86-64
357@item -momit-lock-prefix=@var{no}
358@itemx -momit-lock-prefix=@var{yes}
359These options control how the assembler should encode lock prefix.
360This option is intended as a workaround for processors, that fail on
361lock prefix. This option can only be safely used with single-core,
362single-thread computers
363@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
364@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
365which is the default.
366
e4e00185
AS
367@cindex @samp{-mfence-as-lock-add=} option, i386
368@cindex @samp{-mfence-as-lock-add=} option, x86-64
369@item -mfence-as-lock-add=@var{no}
370@itemx -mfence-as-lock-add=@var{yes}
371These options control how the assembler should encode lfence, mfence and
372sfence.
373@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
374sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
375@samp{lock addl $0x0, (%esp)} in 32-bit mode.
376@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
377sfence as usual, which is the default.
378
0cb4071e
L
379@cindex @samp{-mrelax-relocations=} option, i386
380@cindex @samp{-mrelax-relocations=} option, x86-64
381@item -mrelax-relocations=@var{no}
382@itemx -mrelax-relocations=@var{yes}
383These options control whether the assembler should generate relax
384relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
385R_X86_64_REX_GOTPCRELX, in 64-bit mode.
386@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
387@option{-mrelax-relocations=@var{no}} will not generate relax
388relocations. The default can be controlled by a configure option
389@option{--enable-x86-relax-relocations}.
390
d3d3c6db
IT
391@cindex @samp{-mevexrcig=} option, i386
392@cindex @samp{-mevexrcig=} option, x86-64
393@item -mevexrcig=@var{rne}
394@itemx -mevexrcig=@var{rd}
395@itemx -mevexrcig=@var{ru}
396@itemx -mevexrcig=@var{rz}
397These options control how the assembler should encode SAE-only
398EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
399of EVEX instruction with 00, which is the default.
400@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
401and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
402with 01, 10 and 11 RC bits, respectively.
403
5db04b09
L
404@cindex @samp{-mamd64} option, x86-64
405@cindex @samp{-mintel64} option, x86-64
406@item -mamd64
407@itemx -mintel64
408This option specifies that the assembler should accept only AMD64 or
409Intel64 ISA in 64-bit mode. The default is to accept both.
410
55b62671 411@end table
731caf76 412@c man end
e413e4e9 413
a6c24e68
NC
414@node i386-Directives
415@section x86 specific Directives
416
417@cindex machine directives, x86
418@cindex x86 machine directives
419@table @code
420
421@cindex @code{lcomm} directive, COFF
422@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
423Reserve @var{length} (an absolute expression) bytes for a local common
424denoted by @var{symbol}. The section and value of @var{symbol} are
425those of the new local common. The addresses are allocated in the bss
704209c0
NC
426section, so that at run-time the bytes start off zeroed. Since
427@var{symbol} is not declared global, it is normally not visible to
428@code{@value{LD}}. The optional third parameter, @var{alignment},
429specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
430
431This directive is only available for COFF based x86 targets.
432
433@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
434@c .largecomm
435
436@end table
437
252b5132 438@node i386-Syntax
7c31ae13
NC
439@section i386 Syntactical Considerations
440@menu
441* i386-Variations:: AT&T Syntax versus Intel Syntax
442* i386-Chars:: Special Characters
443@end menu
444
445@node i386-Variations
446@subsection AT&T Syntax versus Intel Syntax
252b5132 447
e413e4e9
AM
448@cindex i386 intel_syntax pseudo op
449@cindex intel_syntax pseudo op, i386
450@cindex i386 att_syntax pseudo op
451@cindex att_syntax pseudo op, i386
252b5132
RH
452@cindex i386 syntax compatibility
453@cindex syntax compatibility, i386
55b62671
AJ
454@cindex x86-64 intel_syntax pseudo op
455@cindex intel_syntax pseudo op, x86-64
456@cindex x86-64 att_syntax pseudo op
457@cindex att_syntax pseudo op, x86-64
458@cindex x86-64 syntax compatibility
459@cindex syntax compatibility, x86-64
e413e4e9
AM
460
461@code{@value{AS}} now supports assembly using Intel assembler syntax.
462@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
463back to the usual AT&T mode for compatibility with the output of
464@code{@value{GCC}}. Either of these directives may have an optional
465argument, @code{prefix}, or @code{noprefix} specifying whether registers
466require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
467different from Intel syntax. We mention these differences because
468almost all 80386 documents use Intel syntax. Notable differences
469between the two syntaxes are:
470
471@cindex immediate operands, i386
472@cindex i386 immediate operands
473@cindex register operands, i386
474@cindex i386 register operands
475@cindex jump/call operands, i386
476@cindex i386 jump/call operands
477@cindex operand delimiters, i386
55b62671
AJ
478
479@cindex immediate operands, x86-64
480@cindex x86-64 immediate operands
481@cindex register operands, x86-64
482@cindex x86-64 register operands
483@cindex jump/call operands, x86-64
484@cindex x86-64 jump/call operands
485@cindex operand delimiters, x86-64
252b5132
RH
486@itemize @bullet
487@item
488AT&T immediate operands are preceded by @samp{$}; Intel immediate
489operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
490AT&T register operands are preceded by @samp{%}; Intel register operands
491are undelimited. AT&T absolute (as opposed to PC relative) jump/call
492operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
493
494@cindex i386 source, destination operands
495@cindex source, destination operands; i386
55b62671
AJ
496@cindex x86-64 source, destination operands
497@cindex source, destination operands; x86-64
252b5132
RH
498@item
499AT&T and Intel syntax use the opposite order for source and destination
500operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
501@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
502previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
503instructions with 2 immediate operands, such as the @samp{enter}
504instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
505
506@cindex mnemonic suffixes, i386
507@cindex sizes operands, i386
508@cindex i386 size suffixes
55b62671
AJ
509@cindex mnemonic suffixes, x86-64
510@cindex sizes operands, x86-64
511@cindex x86-64 size suffixes
252b5132
RH
512@item
513In AT&T syntax the size of memory operands is determined from the last
514character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
515@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
516(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
517this by prefixing memory operands (@emph{not} the instruction mnemonics) with
518@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
519Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
520syntax.
252b5132 521
4b06377f
L
522In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
523instruction with the 64-bit displacement or immediate operand.
524
252b5132
RH
525@cindex return instructions, i386
526@cindex i386 jump, call, return
55b62671
AJ
527@cindex return instructions, x86-64
528@cindex x86-64 jump, call, return
252b5132
RH
529@item
530Immediate form long jumps and calls are
531@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
532Intel syntax is
533@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
534instruction
535is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
536@samp{ret far @var{stack-adjust}}.
537
538@cindex sections, i386
539@cindex i386 sections
55b62671
AJ
540@cindex sections, x86-64
541@cindex x86-64 sections
252b5132
RH
542@item
543The AT&T assembler does not provide support for multiple section
544programs. Unix style systems expect all programs to be single sections.
545@end itemize
546
7c31ae13
NC
547@node i386-Chars
548@subsection Special Characters
549
550@cindex line comment character, i386
551@cindex i386 line comment character
552The presence of a @samp{#} appearing anywhere on a line indicates the
553start of a comment that extends to the end of that line.
554
555If a @samp{#} appears as the first character of a line then the whole
556line is treated as a comment, but in this case the line can also be a
557logical line number directive (@pxref{Comments}) or a preprocessor
558control command (@pxref{Preprocessing}).
559
560If the @option{--divide} command line option has not been specified
561then the @samp{/} character appearing anywhere on a line also
562introduces a line comment.
563
564@cindex line separator, i386
565@cindex statement separator, i386
566@cindex i386 line separator
567The @samp{;} character can be used to separate statements on the same
568line.
569
252b5132 570@node i386-Mnemonics
d3b47e2b
L
571@section i386-Mnemonics
572@subsection Instruction Naming
252b5132
RH
573
574@cindex i386 instruction naming
575@cindex instruction naming, i386
55b62671
AJ
576@cindex x86-64 instruction naming
577@cindex instruction naming, x86-64
578
252b5132 579Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
580specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
581and @samp{q} specify byte, word, long and quadruple word operands. If
582no suffix is specified by an instruction then @code{@value{AS}} tries to
583fill in the missing suffix based on the destination register operand
584(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
585to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
586@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
587assembler which assumes that a missing mnemonic suffix implies long
588operand size. (This incompatibility does not affect compiler output
589since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
590
591Almost all instructions have the same names in AT&T and Intel format.
592There are a few exceptions. The sign extend and zero extend
593instructions need two sizes to specify them. They need a size to
594sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
595is accomplished by using two instruction mnemonic suffixes in AT&T
596syntax. Base names for sign extend and zero extend are
597@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
598and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
599are tacked on to this base name, the @emph{from} suffix before the
600@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
601``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
602thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
603@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
604@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
605quadruple word).
252b5132 606
b6169b20
L
607@cindex encoding options, i386
608@cindex encoding options, x86-64
609
86fa6981
L
610Different encoding options can be specified via pseudo prefixes:
611
612@itemize @bullet
613@item
614@samp{@{disp8@}} -- prefer 8-bit displacement.
615
616@item
617@samp{@{disp32@}} -- prefer 32-bit displacement.
618
619@item
620@samp{@{load@}} -- prefer load-form instruction.
621
622@item
623@samp{@{store@}} -- prefer store-form instruction.
624
625@item
626@samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
627
628@item
629@samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
630
631@item
632@samp{@{evex@}} -- encode with EVEX prefix.
633@end itemize
b6169b20 634
252b5132
RH
635@cindex conversion instructions, i386
636@cindex i386 conversion instructions
55b62671
AJ
637@cindex conversion instructions, x86-64
638@cindex x86-64 conversion instructions
252b5132
RH
639The Intel-syntax conversion instructions
640
641@itemize @bullet
642@item
643@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
644
645@item
646@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
647
648@item
649@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
650
651@item
652@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
653
654@item
655@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
656(x86-64 only),
657
658@item
d5f0cf92 659@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 660@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
661@end itemize
662
663@noindent
55b62671
AJ
664are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
665@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
666instructions.
252b5132
RH
667
668@cindex jump instructions, i386
669@cindex call instructions, i386
55b62671
AJ
670@cindex jump instructions, x86-64
671@cindex call instructions, x86-64
252b5132
RH
672Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
673AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
674convention.
675
d3b47e2b 676@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
677
678@cindex i386 mnemonic compatibility
679@cindex mnemonic compatibility, i386
680
681@code{@value{AS}} supports assembly using Intel mnemonic.
682@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
683@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
684syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
685Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
686@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
687@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
688assembler with different mnemonics from those in Intel IA32 specification.
689@code{@value{GCC}} generates those instructions with AT&T mnemonic.
690
252b5132
RH
691@node i386-Regs
692@section Register Naming
693
694@cindex i386 registers
695@cindex registers, i386
55b62671
AJ
696@cindex x86-64 registers
697@cindex registers, x86-64
252b5132
RH
698Register operands are always prefixed with @samp{%}. The 80386 registers
699consist of
700
701@itemize @bullet
702@item
703the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
704@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
705frame pointer), and @samp{%esp} (the stack pointer).
706
707@item
708the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
709@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
710
711@item
712the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
713@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
714are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
715@samp{%cx}, and @samp{%dx})
716
717@item
718the 6 section registers @samp{%cs} (code section), @samp{%ds}
719(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
720and @samp{%gs}.
721
722@item
4bde3cdd
UD
723the 5 processor control registers @samp{%cr0}, @samp{%cr2},
724@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
725
726@item
727the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
728@samp{%db3}, @samp{%db6}, and @samp{%db7}.
729
730@item
731the 2 test registers @samp{%tr6} and @samp{%tr7}.
732
733@item
734the 8 floating point register stack @samp{%st} or equivalently
735@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
736@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
737These registers are overloaded by 8 MMX registers @samp{%mm0},
738@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
739@samp{%mm6} and @samp{%mm7}.
740
741@item
4bde3cdd 742the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
743@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
744@end itemize
745
746The AMD x86-64 architecture extends the register set by:
747
748@itemize @bullet
749@item
750enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
751accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
752@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
753pointer)
754
755@item
756the 8 extended registers @samp{%r8}--@samp{%r15}.
757
758@item
4bde3cdd 759the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
760
761@item
4bde3cdd 762the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
763
764@item
4bde3cdd 765the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
766
767@item
768the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
769
770@item
771the 8 debug registers: @samp{%db8}--@samp{%db15}.
772
773@item
4bde3cdd
UD
774the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
775@end itemize
776
777With the AVX extensions more registers were made available:
778
779@itemize @bullet
780
781@item
782the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
783available in 32-bit mode). The bottom 128 bits are overlaid with the
784@samp{xmm0}--@samp{xmm15} registers.
785
786@end itemize
787
788The AVX2 extensions made in 64-bit mode more registers available:
789
790@itemize @bullet
791
792@item
793the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
794registers @samp{%ymm16}--@samp{%ymm31}.
795
796@end itemize
797
798The AVX512 extensions added the following registers:
799
800@itemize @bullet
801
802@item
803the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
804available in 32-bit mode). The bottom 128 bits are overlaid with the
805@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
806overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
807
808@item
809the 8 mask registers @samp{%k0}--@samp{%k7}.
810
252b5132
RH
811@end itemize
812
813@node i386-Prefixes
814@section Instruction Prefixes
815
816@cindex i386 instruction prefixes
817@cindex instruction prefixes, i386
818@cindex prefixes, i386
819Instruction prefixes are used to modify the following instruction. They
820are used to repeat string instructions, to provide section overrides, to
821perform bus lock operations, and to change operand and address sizes.
822(Most instructions that normally operate on 32-bit operands will use
82316-bit operands if the instruction has an ``operand size'' prefix.)
824Instruction prefixes are best written on the same line as the instruction
825they act upon. For example, the @samp{scas} (scan string) instruction is
826repeated with:
827
828@smallexample
829 repne scas %es:(%edi),%al
830@end smallexample
831
832You may also place prefixes on the lines immediately preceding the
833instruction, but this circumvents checks that @code{@value{AS}} does
834with prefixes, and will not work with all prefixes.
835
836Here is a list of instruction prefixes:
837
838@cindex section override prefixes, i386
839@itemize @bullet
840@item
841Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
842@samp{fs}, @samp{gs}. These are automatically added by specifying
843using the @var{section}:@var{memory-operand} form for memory references.
844
845@cindex size prefixes, i386
846@item
847Operand/Address size prefixes @samp{data16} and @samp{addr16}
848change 32-bit operands/addresses into 16-bit operands/addresses,
849while @samp{data32} and @samp{addr32} change 16-bit ones (in a
850@code{.code16} section) into 32-bit operands/addresses. These prefixes
851@emph{must} appear on the same line of code as the instruction they
852modify. For example, in a 16-bit @code{.code16} section, you might
853write:
854
855@smallexample
856 addr32 jmpl *(%ebx)
857@end smallexample
858
859@cindex bus lock prefixes, i386
860@cindex inhibiting interrupts, i386
861@item
862The bus lock prefix @samp{lock} inhibits interrupts during execution of
863the instruction it precedes. (This is only valid with certain
864instructions; see a 80386 manual for details).
865
866@cindex coprocessor wait, i386
867@item
868The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
869complete the current instruction. This should never be needed for the
87080386/80387 combination.
871
872@cindex repeat prefixes, i386
873@item
874The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
875to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
876times if the current address size is 16-bits).
55b62671
AJ
877@cindex REX prefixes, i386
878@item
879The @samp{rex} family of prefixes is used by x86-64 to encode
880extensions to i386 instruction set. The @samp{rex} prefix has four
881bits --- an operand size overwrite (@code{64}) used to change operand size
882from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
883register set.
884
885You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
886instruction emits @samp{rex} prefix with all the bits set. By omitting
887the @code{64}, @code{x}, @code{y} or @code{z} you may write other
888prefixes as well. Normally, there is no need to write the prefixes
889explicitly, since gas will automatically generate them based on the
890instruction operands.
252b5132
RH
891@end itemize
892
893@node i386-Memory
894@section Memory References
895
896@cindex i386 memory references
897@cindex memory references, i386
55b62671
AJ
898@cindex x86-64 memory references
899@cindex memory references, x86-64
252b5132
RH
900An Intel syntax indirect memory reference of the form
901
902@smallexample
903@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
904@end smallexample
905
906@noindent
907is translated into the AT&T syntax
908
909@smallexample
910@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
911@end smallexample
912
913@noindent
914where @var{base} and @var{index} are the optional 32-bit base and
915index registers, @var{disp} is the optional displacement, and
916@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
917to calculate the address of the operand. If no @var{scale} is
918specified, @var{scale} is taken to be 1. @var{section} specifies the
919optional section register for the memory operand, and may override the
920default section register (see a 80386 manual for section register
921defaults). Note that section overrides in AT&T syntax @emph{must}
922be preceded by a @samp{%}. If you specify a section override which
923coincides with the default section register, @code{@value{AS}} does @emph{not}
924output any section register override prefixes to assemble the given
925instruction. Thus, section overrides can be specified to emphasize which
926section register is used for a given memory operand.
927
928Here are some examples of Intel and AT&T style memory references:
929
930@table @asis
931@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
932@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
933missing, and the default section is used (@samp{%ss} for addressing with
934@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
935
936@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
937@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
938@samp{foo}. All other fields are missing. The section register here
939defaults to @samp{%ds}.
940
941@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
942This uses the value pointed to by @samp{foo} as a memory operand.
943Note that @var{base} and @var{index} are both missing, but there is only
944@emph{one} @samp{,}. This is a syntactic exception.
945
946@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
947This selects the contents of the variable @samp{foo} with section
948register @var{section} being @samp{%gs}.
949@end table
950
951Absolute (as opposed to PC relative) call and jump operands must be
952prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
953always chooses PC relative addressing for jump/call labels.
954
955Any instruction that has a memory operand, but no register operand,
55b62671
AJ
956@emph{must} specify its size (byte, word, long, or quadruple) with an
957instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
958respectively).
959
960The x86-64 architecture adds an RIP (instruction pointer relative)
961addressing. This addressing mode is specified by using @samp{rip} as a
962base register. Only constant offsets are valid. For example:
963
964@table @asis
965@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
966Points to the address 1234 bytes past the end of the current
967instruction.
968
969@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
970Points to the @code{symbol} in RIP relative way, this is shorter than
971the default absolute addressing.
972@end table
973
974Other addressing modes remain unchanged in x86-64 architecture, except
975registers used are 64-bit instead of 32-bit.
252b5132 976
fddf5b5b 977@node i386-Jumps
252b5132
RH
978@section Handling of Jump Instructions
979
980@cindex jump optimization, i386
981@cindex i386 jump optimization
55b62671
AJ
982@cindex jump optimization, x86-64
983@cindex x86-64 jump optimization
252b5132
RH
984Jump instructions are always optimized to use the smallest possible
985displacements. This is accomplished by using byte (8-bit) displacement
986jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 987is insufficient a long displacement is used. We do not support
252b5132
RH
988word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
989instruction with the @samp{data16} instruction prefix), since the 80386
990insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 991is added. (See also @pxref{i386-Arch})
252b5132
RH
992
993Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
994@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
995displacements, so that if you use these instructions (@code{@value{GCC}} does
996not use them) you may get an error message (and incorrect code). The AT&T
99780386 assembler tries to get around this problem by expanding @samp{jcxz foo}
998to
999
1000@smallexample
1001 jcxz cx_zero
1002 jmp cx_nonzero
1003cx_zero: jmp foo
1004cx_nonzero:
1005@end smallexample
1006
1007@node i386-Float
1008@section Floating Point
1009
1010@cindex i386 floating point
1011@cindex floating point, i386
55b62671
AJ
1012@cindex x86-64 floating point
1013@cindex floating point, x86-64
252b5132
RH
1014All 80387 floating point types except packed BCD are supported.
1015(BCD support may be added without much difficulty). These data
1016types are 16-, 32-, and 64- bit integers, and single (32-bit),
1017double (64-bit), and extended (80-bit) precision floating point.
1018Each supported type has an instruction mnemonic suffix and a constructor
1019associated with it. Instruction mnemonic suffixes specify the operand's
1020data type. Constructors build these data types into memory.
1021
1022@cindex @code{float} directive, i386
1023@cindex @code{single} directive, i386
1024@cindex @code{double} directive, i386
1025@cindex @code{tfloat} directive, i386
55b62671
AJ
1026@cindex @code{float} directive, x86-64
1027@cindex @code{single} directive, x86-64
1028@cindex @code{double} directive, x86-64
1029@cindex @code{tfloat} directive, x86-64
252b5132
RH
1030@itemize @bullet
1031@item
1032Floating point constructors are @samp{.float} or @samp{.single},
1033@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1034These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1035and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1036only supports this format via the @samp{fldt} (load 80-bit real to stack
1037top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1038
1039@cindex @code{word} directive, i386
1040@cindex @code{long} directive, i386
1041@cindex @code{int} directive, i386
1042@cindex @code{quad} directive, i386
55b62671
AJ
1043@cindex @code{word} directive, x86-64
1044@cindex @code{long} directive, x86-64
1045@cindex @code{int} directive, x86-64
1046@cindex @code{quad} directive, x86-64
252b5132
RH
1047@item
1048Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1049@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1050corresponding instruction mnemonic suffixes are @samp{s} (single),
1051@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1052the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1053quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1054stack) instructions.
1055@end itemize
1056
1057Register to register operations should not use instruction mnemonic suffixes.
1058@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1059wrote @samp{fst %st, %st(1)}, since all register to register operations
1060use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1061which converts @samp{%st} from 80-bit to 64-bit floating point format,
1062then stores the result in the 4 byte location @samp{mem})
1063
1064@node i386-SIMD
1065@section Intel's MMX and AMD's 3DNow! SIMD Operations
1066
1067@cindex MMX, i386
1068@cindex 3DNow!, i386
1069@cindex SIMD, i386
55b62671
AJ
1070@cindex MMX, x86-64
1071@cindex 3DNow!, x86-64
1072@cindex SIMD, x86-64
252b5132
RH
1073
1074@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1075instructions for integer data), available on Intel's Pentium MMX
1076processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1077Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1078instruction set (SIMD instructions for 32-bit floating point data)
1079available on AMD's K6-2 processor and possibly others in the future.
1080
1081Currently, @code{@value{AS}} does not support Intel's floating point
1082SIMD, Katmai (KNI).
1083
1084The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1085@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
108616-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1087floating point values. The MMX registers cannot be used at the same time
1088as the floating point stack.
1089
1090See Intel and AMD documentation, keeping in mind that the operand order in
1091instructions is reversed from the Intel syntax.
1092
f88c9eb0
SP
1093@node i386-LWP
1094@section AMD's Lightweight Profiling Instructions
1095
1096@cindex LWP, i386
1097@cindex LWP, x86-64
1098
1099@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1100instruction set, available on AMD's Family 15h (Orochi) processors.
1101
1102LWP enables applications to collect and manage performance data, and
1103react to performance events. The collection of performance data
1104requires no context switches. LWP runs in the context of a thread and
1105so several counters can be used independently across multiple threads.
1106LWP can be used in both 64-bit and legacy 32-bit modes.
1107
1108For detailed information on the LWP instruction set, see the
1109@cite{AMD Lightweight Profiling Specification} available at
1110@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1111
87973e9f
QN
1112@node i386-BMI
1113@section Bit Manipulation Instructions
1114
1115@cindex BMI, i386
1116@cindex BMI, x86-64
1117
1118@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1119
1120BMI instructions provide several instructions implementing individual
1121bit manipulation operations such as isolation, masking, setting, or
34bca508 1122resetting.
87973e9f
QN
1123
1124@c Need to add a specification citation here when available.
1125
2a2a0f38
QN
1126@node i386-TBM
1127@section AMD's Trailing Bit Manipulation Instructions
1128
1129@cindex TBM, i386
1130@cindex TBM, x86-64
1131
1132@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1133instruction set, available on AMD's BDVER2 processors (Trinity and
1134Viperfish).
1135
1136TBM instructions provide instructions implementing individual bit
1137manipulation operations such as isolating, masking, setting, resetting,
1138complementing, and operations on trailing zeros and ones.
1139
1140@c Need to add a specification citation here when available.
87973e9f 1141
252b5132
RH
1142@node i386-16bit
1143@section Writing 16-bit Code
1144
1145@cindex i386 16-bit code
1146@cindex 16-bit code, i386
1147@cindex real-mode code, i386
eecb386c 1148@cindex @code{code16gcc} directive, i386
252b5132
RH
1149@cindex @code{code16} directive, i386
1150@cindex @code{code32} directive, i386
55b62671
AJ
1151@cindex @code{code64} directive, i386
1152@cindex @code{code64} directive, x86-64
1153While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1154or 64-bit x86-64 code depending on the default configuration,
252b5132 1155it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1156mode code segments. To do this, put a @samp{.code16} or
1157@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1158be run in 16-bit mode. You can switch @code{@value{AS}} to writing
115932-bit code with the @samp{.code32} directive or 64-bit code with the
1160@samp{.code64} directive.
eecb386c
AM
1161
1162@samp{.code16gcc} provides experimental support for generating 16-bit
1163code from gcc, and differs from @samp{.code16} in that @samp{call},
1164@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1165@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1166default to 32-bit size. This is so that the stack pointer is
1167manipulated in the same way over function calls, allowing access to
1168function parameters at the same stack offsets as in 32-bit mode.
1169@samp{.code16gcc} also automatically adds address size prefixes where
1170necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1171
1172The code which @code{@value{AS}} generates in 16-bit mode will not
1173necessarily run on a 16-bit pre-80386 processor. To write code that
1174runs on such a processor, you must refrain from using @emph{any} 32-bit
1175constructs which require @code{@value{AS}} to output address or operand
1176size prefixes.
1177
1178Note that writing 16-bit code instructions by explicitly specifying a
1179prefix or an instruction mnemonic suffix within a 32-bit code section
1180generates different machine instructions than those generated for a
118116-bit code segment. In a 32-bit code section, the following code
1182generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1183value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1184
1185@smallexample
1186 pushw $4
1187@end smallexample
1188
1189The same code in a 16-bit code section would generate the machine
b45619c0 1190opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1191is correct since the processor default operand size is assumed to be 16
1192bits in a 16-bit code section.
1193
e413e4e9
AM
1194@node i386-Arch
1195@section Specifying CPU Architecture
1196
1197@cindex arch directive, i386
1198@cindex i386 arch directive
55b62671
AJ
1199@cindex arch directive, x86-64
1200@cindex x86-64 arch directive
e413e4e9
AM
1201
1202@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1203(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1204directive enables a warning when gas detects an instruction that is not
1205supported on the CPU specified. The choices for @var{cpu_type} are:
1206
1207@multitable @columnfractions .20 .20 .20 .20
1208@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1209@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1210@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1211@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
81486035 1212@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1543849b 1213@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1214@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
029f3522 1215@item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1ceab344 1216@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1217@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1218@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1219@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1220@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1221@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1222@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1223@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1224@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1225@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1226@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1227@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1228@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1229@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
8cfcb765 1230@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
ee6872be 1231@item @samp{.avx512_bitalg}
53467f57 1232@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.cet}
1ceab344 1233@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1234@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1235@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
48521003 1236@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.gfni}
ff1982d5 1237@item @samp{.vaes} @tab @samp{.vpclmulqdq}
e413e4e9
AM
1238@end multitable
1239
fddf5b5b
AM
1240Apart from the warning, there are only two other effects on
1241@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1242@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1243will automatically use a two byte opcode sequence. The larger three
1244byte opcode sequence is used on the 486 (and when no architecture is
1245specified) because it executes faster on the 486. Note that you can
1246explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1247Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1248@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1249conditional jumps will be promoted when necessary to a two instruction
1250sequence consisting of a conditional jump of the opposite sense around
1251an unconditional jump to the target.
1252
5c6af06e
JB
1253Following the CPU architecture (but not a sub-architecture, which are those
1254starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1255control automatic promotion of conditional jumps. @samp{jumps} is the
1256default, and enables jump promotion; All external jumps will be of the long
1257variety, and file-local jumps will be promoted as necessary.
1258(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1259byte offset jumps, and warns about file-local conditional jumps that
1260@code{@value{AS}} promotes.
fddf5b5b
AM
1261Unconditional jumps are treated as for @samp{jumps}.
1262
1263For example
1264
1265@smallexample
1266 .arch i8086,nojumps
1267@end smallexample
e413e4e9 1268
5c9352f3
AM
1269@node i386-Bugs
1270@section AT&T Syntax bugs
1271
1272The UnixWare assembler, and probably other AT&T derived ix86 Unix
1273assemblers, generate floating point instructions with reversed source
1274and destination registers in certain cases. Unfortunately, gcc and
1275possibly many other programs use this reversed syntax, so we're stuck
1276with it.
1277
1278For example
1279
1280@smallexample
1281 fsub %st,%st(3)
1282@end smallexample
1283@noindent
1284results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1285than the expected @samp{%st(3) - %st}. This happens with all the
1286non-commutative arithmetic floating point operations with two register
1287operands where the source register is @samp{%st} and the destination
1288register is @samp{%st(i)}.
1289
252b5132
RH
1290@node i386-Notes
1291@section Notes
1292
1293@cindex i386 @code{mul}, @code{imul} instructions
1294@cindex @code{mul} instruction, i386
1295@cindex @code{imul} instruction, i386
55b62671
AJ
1296@cindex @code{mul} instruction, x86-64
1297@cindex @code{imul} instruction, x86-64
252b5132 1298There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1299instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1300multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1301for @samp{imul}) can be output only in the one operand form. Thus,
1302@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1303the expanding multiply would clobber the @samp{%edx} register, and this
1304would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
130564-bit product in @samp{%edx:%eax}.
1306
1307We have added a two operand form of @samp{imul} when the first operand
1308is an immediate mode expression and the second operand is a register.
1309This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1310example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1311$69, %eax, %eax}.
1312
This page took 0.916086 seconds and 4 git commands to generate.