gas/
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
2da5c037
AM
1@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
2@c 2001, 2003, 2004
f7e42eb4 3@c Free Software Foundation, Inc.
252b5132
RH
4@c This is part of the GAS manual.
5@c For copying conditions, see the file as.texinfo.
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
17@cindex i80306 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
26* i386-Syntax:: AT&T Syntax versus Intel Syntax
27* i386-Mnemonics:: Instruction Naming
28* i386-Regs:: Register Naming
29* i386-Prefixes:: Instruction Prefixes
30* i386-Memory:: Memory References
fddf5b5b 31* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
32* i386-Float:: Floating Point
33* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
34* i386-16bit:: Writing 16-bit Code
e413e4e9 35* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
36* i386-Bugs:: AT&T Syntax bugs
37* i386-Notes:: Notes
38@end menu
39
40@node i386-Options
41@section Options
42
55b62671
AJ
43@cindex options for i386
44@cindex options for x86-64
45@cindex i386 options
46@cindex x86-64 options
47
48The i386 version of @code{@value{AS}} has a few machine
49dependent options:
50
51@table @code
52@cindex @samp{--32} option, i386
53@cindex @samp{--32} option, x86-64
54@cindex @samp{--64} option, i386
55@cindex @samp{--64} option, x86-64
56@item --32 | --64
57Select the word size, either 32 bits or 64 bits. Selecting 32-bit
58implies Intel i386 architecture, while 64-bit implies AMD x86-64
59architecture.
60
61These options are only available with the ELF object file format, and
62require that the necessary BFD support has been included (on a 32-bit
63platform you have to add --enable-64-bit-bfd to configure enable 64-bit
64usage and use x86-64 as target platform).
12b55ccc
L
65
66@item -n
67By default, x86 GAS replaces multiple nop instructions used for
68alignment within code sections with multi-byte nop instructions such
69as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
70
71@cindex @samp{--divide} option, i386
72@item --divide
73On SVR4-derived platforms, the character @samp{/} is treated as a comment
74character, which means that it cannot be used in expressions. The
75@samp{--divide} option turns @samp{/} into a normal character. This does
76not disable @samp{/} at the beginning of a line starting a comment, or
77affect using @samp{#} for starting a comment.
78
9103f4f4
L
79@cindex @samp{-march=} option, i386
80@cindex @samp{-march=} option, x86-64
6305a203
L
81@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
82This option specifies the target processor. The assembler will
83issue an error message if an attempt is made to assemble an instruction
84which will not execute on the target processor. The following
85processor names are recognized:
9103f4f4
L
86@code{i8086},
87@code{i186},
88@code{i286},
89@code{i386},
90@code{i486},
91@code{i586},
92@code{i686},
93@code{pentium},
94@code{pentiumpro},
95@code{pentiumii},
96@code{pentiumiii},
97@code{pentium4},
98@code{prescott},
99@code{nocona},
ef05d495
L
100@code{core},
101@code{core2},
9103f4f4
L
102@code{k6},
103@code{k6_2},
104@code{athlon},
9103f4f4
L
105@code{opteron},
106@code{k8},
1ceab344 107@code{amdfam10},
9103f4f4
L
108@code{generic32} and
109@code{generic64}.
110
6305a203
L
111In addition to the basic instruction set, the assembler can be told to
112accept various extension mnemonics. For example,
113@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
114@var{vmx}. The following extensions are currently supported:
115@code{mmx},
116@code{sse},
117@code{sse2},
118@code{sse3},
119@code{ssse3},
120@code{sse4.1},
121@code{sse4.2},
122@code{sse4},
c0f3af97 123@code{avx},
6305a203
L
124@code{vmx},
125@code{smx},
f03fe4c1 126@code{xsave},
c0f3af97 127@code{aes},
594ab6a3 128@code{pclmul},
c0f3af97 129@code{fma},
f1f8f695
L
130@code{movbe},
131@code{ept},
6305a203
L
132@code{3dnow},
133@code{3dnowa},
134@code{sse4a},
135@code{sse5},
136@code{svme},
137@code{abm} and
138@code{padlock}.
139
140When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
141@code{.arch} directive will take precedent.
142
143@cindex @samp{-mtune=} option, i386
144@cindex @samp{-mtune=} option, x86-64
145@item -mtune=@var{CPU}
146This option specifies a processor to optimize for. When used in
147conjunction with the @option{-march} option, only instructions
148of the processor specified by the @option{-march} option will be
149generated.
150
6305a203
L
151Valid @var{CPU} values are identical to the processor list of
152@option{-march=@var{CPU}}.
9103f4f4 153
c0f3af97
L
154@cindex @samp{-msse2avx} option, i386
155@cindex @samp{-msse2avx} option, x86-64
156@item -msse2avx
157This option specifies that the assembler should encode SSE instructions
158with VEX prefix.
159
daf50ae7
L
160@cindex @samp{-msse-check=} option, i386
161@cindex @samp{-msse-check=} option, x86-64
162@item -msse-check=@var{none}
163@item -msse-check=@var{warning}
164@item -msse-check=@var{error}
165These options control if the assembler should check SSE intructions.
166@option{-msse-check=@var{none}} will make the assembler not to check SSE
167instructions, which is the default. @option{-msse-check=@var{warning}}
168will make the assembler issue a warning for any SSE intruction.
169@option{-msse-check=@var{error}} will make the assembler issue an error
170for any SSE intruction.
171
1efbbeb4
L
172@cindex @samp{-mmnemonic=} option, i386
173@cindex @samp{-mmnemonic=} option, x86-64
174@item -mmnemonic=@var{att}
175@item -mmnemonic=@var{intel}
176This option specifies instruction mnemonic for matching instructions.
177The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
178take precedent.
179
180@cindex @samp{-msyntax=} option, i386
181@cindex @samp{-msyntax=} option, x86-64
182@item -msyntax=@var{att}
183@item -msyntax=@var{intel}
184This option specifies instruction syntax when processing instructions.
185The @code{.att_syntax} and @code{.intel_syntax} directives will
186take precedent.
187
188@cindex @samp{-mnaked-reg} option, i386
189@cindex @samp{-mnaked-reg} option, x86-64
190@item -mnaked-reg
191This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 192The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 193
55b62671 194@end table
e413e4e9 195
252b5132
RH
196@node i386-Syntax
197@section AT&T Syntax versus Intel Syntax
198
e413e4e9
AM
199@cindex i386 intel_syntax pseudo op
200@cindex intel_syntax pseudo op, i386
201@cindex i386 att_syntax pseudo op
202@cindex att_syntax pseudo op, i386
252b5132
RH
203@cindex i386 syntax compatibility
204@cindex syntax compatibility, i386
55b62671
AJ
205@cindex x86-64 intel_syntax pseudo op
206@cindex intel_syntax pseudo op, x86-64
207@cindex x86-64 att_syntax pseudo op
208@cindex att_syntax pseudo op, x86-64
209@cindex x86-64 syntax compatibility
210@cindex syntax compatibility, x86-64
e413e4e9
AM
211
212@code{@value{AS}} now supports assembly using Intel assembler syntax.
213@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
214back to the usual AT&T mode for compatibility with the output of
215@code{@value{GCC}}. Either of these directives may have an optional
216argument, @code{prefix}, or @code{noprefix} specifying whether registers
217require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
218different from Intel syntax. We mention these differences because
219almost all 80386 documents use Intel syntax. Notable differences
220between the two syntaxes are:
221
222@cindex immediate operands, i386
223@cindex i386 immediate operands
224@cindex register operands, i386
225@cindex i386 register operands
226@cindex jump/call operands, i386
227@cindex i386 jump/call operands
228@cindex operand delimiters, i386
55b62671
AJ
229
230@cindex immediate operands, x86-64
231@cindex x86-64 immediate operands
232@cindex register operands, x86-64
233@cindex x86-64 register operands
234@cindex jump/call operands, x86-64
235@cindex x86-64 jump/call operands
236@cindex operand delimiters, x86-64
252b5132
RH
237@itemize @bullet
238@item
239AT&T immediate operands are preceded by @samp{$}; Intel immediate
240operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
241AT&T register operands are preceded by @samp{%}; Intel register operands
242are undelimited. AT&T absolute (as opposed to PC relative) jump/call
243operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
244
245@cindex i386 source, destination operands
246@cindex source, destination operands; i386
55b62671
AJ
247@cindex x86-64 source, destination operands
248@cindex source, destination operands; x86-64
252b5132
RH
249@item
250AT&T and Intel syntax use the opposite order for source and destination
251operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
252@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
253previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
254instructions with 2 immediate operands, such as the @samp{enter}
255instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
256
257@cindex mnemonic suffixes, i386
258@cindex sizes operands, i386
259@cindex i386 size suffixes
55b62671
AJ
260@cindex mnemonic suffixes, x86-64
261@cindex sizes operands, x86-64
262@cindex x86-64 size suffixes
252b5132
RH
263@item
264In AT&T syntax the size of memory operands is determined from the last
265character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
266@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
267(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
268this by prefixing memory operands (@emph{not} the instruction mnemonics) with
269@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
270Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
271syntax.
252b5132
RH
272
273@cindex return instructions, i386
274@cindex i386 jump, call, return
55b62671
AJ
275@cindex return instructions, x86-64
276@cindex x86-64 jump, call, return
252b5132
RH
277@item
278Immediate form long jumps and calls are
279@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
280Intel syntax is
281@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
282instruction
283is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
284@samp{ret far @var{stack-adjust}}.
285
286@cindex sections, i386
287@cindex i386 sections
55b62671
AJ
288@cindex sections, x86-64
289@cindex x86-64 sections
252b5132
RH
290@item
291The AT&T assembler does not provide support for multiple section
292programs. Unix style systems expect all programs to be single sections.
293@end itemize
294
295@node i386-Mnemonics
296@section Instruction Naming
297
298@cindex i386 instruction naming
299@cindex instruction naming, i386
55b62671
AJ
300@cindex x86-64 instruction naming
301@cindex instruction naming, x86-64
302
252b5132 303Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
304specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
305and @samp{q} specify byte, word, long and quadruple word operands. If
306no suffix is specified by an instruction then @code{@value{AS}} tries to
307fill in the missing suffix based on the destination register operand
308(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
309to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
310@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
311assembler which assumes that a missing mnemonic suffix implies long
312operand size. (This incompatibility does not affect compiler output
313since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
314
315Almost all instructions have the same names in AT&T and Intel format.
316There are a few exceptions. The sign extend and zero extend
317instructions need two sizes to specify them. They need a size to
318sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
319is accomplished by using two instruction mnemonic suffixes in AT&T
320syntax. Base names for sign extend and zero extend are
321@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
322and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
323are tacked on to this base name, the @emph{from} suffix before the
324@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
325``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
326thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
327@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
328@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
329quadruple word).
252b5132
RH
330
331@cindex conversion instructions, i386
332@cindex i386 conversion instructions
55b62671
AJ
333@cindex conversion instructions, x86-64
334@cindex x86-64 conversion instructions
252b5132
RH
335The Intel-syntax conversion instructions
336
337@itemize @bullet
338@item
339@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
340
341@item
342@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
343
344@item
345@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
346
347@item
348@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
349
350@item
351@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
352(x86-64 only),
353
354@item
d5f0cf92 355@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 356@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
357@end itemize
358
359@noindent
55b62671
AJ
360are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
361@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
362instructions.
252b5132
RH
363
364@cindex jump instructions, i386
365@cindex call instructions, i386
55b62671
AJ
366@cindex jump instructions, x86-64
367@cindex call instructions, x86-64
252b5132
RH
368Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
369AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
370convention.
371
1efbbeb4
L
372@section AT&T Mnemonic versus Intel Mnemonic
373
374@cindex i386 mnemonic compatibility
375@cindex mnemonic compatibility, i386
376
377@code{@value{AS}} supports assembly using Intel mnemonic.
378@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
379@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
380syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
381Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
382@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
383@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
384assembler with different mnemonics from those in Intel IA32 specification.
385@code{@value{GCC}} generates those instructions with AT&T mnemonic.
386
252b5132
RH
387@node i386-Regs
388@section Register Naming
389
390@cindex i386 registers
391@cindex registers, i386
55b62671
AJ
392@cindex x86-64 registers
393@cindex registers, x86-64
252b5132
RH
394Register operands are always prefixed with @samp{%}. The 80386 registers
395consist of
396
397@itemize @bullet
398@item
399the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
400@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
401frame pointer), and @samp{%esp} (the stack pointer).
402
403@item
404the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
405@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
406
407@item
408the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
409@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
410are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
411@samp{%cx}, and @samp{%dx})
412
413@item
414the 6 section registers @samp{%cs} (code section), @samp{%ds}
415(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
416and @samp{%gs}.
417
418@item
419the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
420@samp{%cr3}.
421
422@item
423the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
424@samp{%db3}, @samp{%db6}, and @samp{%db7}.
425
426@item
427the 2 test registers @samp{%tr6} and @samp{%tr7}.
428
429@item
430the 8 floating point register stack @samp{%st} or equivalently
431@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
432@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
433These registers are overloaded by 8 MMX registers @samp{%mm0},
434@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
435@samp{%mm6} and @samp{%mm7}.
436
437@item
438the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
439@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
440@end itemize
441
442The AMD x86-64 architecture extends the register set by:
443
444@itemize @bullet
445@item
446enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
447accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
448@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
449pointer)
450
451@item
452the 8 extended registers @samp{%r8}--@samp{%r15}.
453
454@item
455the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
456
457@item
458the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
459
460@item
461the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
462
463@item
464the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
465
466@item
467the 8 debug registers: @samp{%db8}--@samp{%db15}.
468
469@item
470the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
471@end itemize
472
473@node i386-Prefixes
474@section Instruction Prefixes
475
476@cindex i386 instruction prefixes
477@cindex instruction prefixes, i386
478@cindex prefixes, i386
479Instruction prefixes are used to modify the following instruction. They
480are used to repeat string instructions, to provide section overrides, to
481perform bus lock operations, and to change operand and address sizes.
482(Most instructions that normally operate on 32-bit operands will use
48316-bit operands if the instruction has an ``operand size'' prefix.)
484Instruction prefixes are best written on the same line as the instruction
485they act upon. For example, the @samp{scas} (scan string) instruction is
486repeated with:
487
488@smallexample
489 repne scas %es:(%edi),%al
490@end smallexample
491
492You may also place prefixes on the lines immediately preceding the
493instruction, but this circumvents checks that @code{@value{AS}} does
494with prefixes, and will not work with all prefixes.
495
496Here is a list of instruction prefixes:
497
498@cindex section override prefixes, i386
499@itemize @bullet
500@item
501Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
502@samp{fs}, @samp{gs}. These are automatically added by specifying
503using the @var{section}:@var{memory-operand} form for memory references.
504
505@cindex size prefixes, i386
506@item
507Operand/Address size prefixes @samp{data16} and @samp{addr16}
508change 32-bit operands/addresses into 16-bit operands/addresses,
509while @samp{data32} and @samp{addr32} change 16-bit ones (in a
510@code{.code16} section) into 32-bit operands/addresses. These prefixes
511@emph{must} appear on the same line of code as the instruction they
512modify. For example, in a 16-bit @code{.code16} section, you might
513write:
514
515@smallexample
516 addr32 jmpl *(%ebx)
517@end smallexample
518
519@cindex bus lock prefixes, i386
520@cindex inhibiting interrupts, i386
521@item
522The bus lock prefix @samp{lock} inhibits interrupts during execution of
523the instruction it precedes. (This is only valid with certain
524instructions; see a 80386 manual for details).
525
526@cindex coprocessor wait, i386
527@item
528The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
529complete the current instruction. This should never be needed for the
53080386/80387 combination.
531
532@cindex repeat prefixes, i386
533@item
534The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
535to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
536times if the current address size is 16-bits).
55b62671
AJ
537@cindex REX prefixes, i386
538@item
539The @samp{rex} family of prefixes is used by x86-64 to encode
540extensions to i386 instruction set. The @samp{rex} prefix has four
541bits --- an operand size overwrite (@code{64}) used to change operand size
542from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
543register set.
544
545You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
546instruction emits @samp{rex} prefix with all the bits set. By omitting
547the @code{64}, @code{x}, @code{y} or @code{z} you may write other
548prefixes as well. Normally, there is no need to write the prefixes
549explicitly, since gas will automatically generate them based on the
550instruction operands.
252b5132
RH
551@end itemize
552
553@node i386-Memory
554@section Memory References
555
556@cindex i386 memory references
557@cindex memory references, i386
55b62671
AJ
558@cindex x86-64 memory references
559@cindex memory references, x86-64
252b5132
RH
560An Intel syntax indirect memory reference of the form
561
562@smallexample
563@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
564@end smallexample
565
566@noindent
567is translated into the AT&T syntax
568
569@smallexample
570@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
571@end smallexample
572
573@noindent
574where @var{base} and @var{index} are the optional 32-bit base and
575index registers, @var{disp} is the optional displacement, and
576@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
577to calculate the address of the operand. If no @var{scale} is
578specified, @var{scale} is taken to be 1. @var{section} specifies the
579optional section register for the memory operand, and may override the
580default section register (see a 80386 manual for section register
581defaults). Note that section overrides in AT&T syntax @emph{must}
582be preceded by a @samp{%}. If you specify a section override which
583coincides with the default section register, @code{@value{AS}} does @emph{not}
584output any section register override prefixes to assemble the given
585instruction. Thus, section overrides can be specified to emphasize which
586section register is used for a given memory operand.
587
588Here are some examples of Intel and AT&T style memory references:
589
590@table @asis
591@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
592@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
593missing, and the default section is used (@samp{%ss} for addressing with
594@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
595
596@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
597@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
598@samp{foo}. All other fields are missing. The section register here
599defaults to @samp{%ds}.
600
601@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
602This uses the value pointed to by @samp{foo} as a memory operand.
603Note that @var{base} and @var{index} are both missing, but there is only
604@emph{one} @samp{,}. This is a syntactic exception.
605
606@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
607This selects the contents of the variable @samp{foo} with section
608register @var{section} being @samp{%gs}.
609@end table
610
611Absolute (as opposed to PC relative) call and jump operands must be
612prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
613always chooses PC relative addressing for jump/call labels.
614
615Any instruction that has a memory operand, but no register operand,
55b62671
AJ
616@emph{must} specify its size (byte, word, long, or quadruple) with an
617instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
618respectively).
619
620The x86-64 architecture adds an RIP (instruction pointer relative)
621addressing. This addressing mode is specified by using @samp{rip} as a
622base register. Only constant offsets are valid. For example:
623
624@table @asis
625@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
626Points to the address 1234 bytes past the end of the current
627instruction.
628
629@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
630Points to the @code{symbol} in RIP relative way, this is shorter than
631the default absolute addressing.
632@end table
633
634Other addressing modes remain unchanged in x86-64 architecture, except
635registers used are 64-bit instead of 32-bit.
252b5132 636
fddf5b5b 637@node i386-Jumps
252b5132
RH
638@section Handling of Jump Instructions
639
640@cindex jump optimization, i386
641@cindex i386 jump optimization
55b62671
AJ
642@cindex jump optimization, x86-64
643@cindex x86-64 jump optimization
252b5132
RH
644Jump instructions are always optimized to use the smallest possible
645displacements. This is accomplished by using byte (8-bit) displacement
646jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 647is insufficient a long displacement is used. We do not support
252b5132
RH
648word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
649instruction with the @samp{data16} instruction prefix), since the 80386
650insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 651is added. (See also @pxref{i386-Arch})
252b5132
RH
652
653Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
654@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
655displacements, so that if you use these instructions (@code{@value{GCC}} does
656not use them) you may get an error message (and incorrect code). The AT&T
65780386 assembler tries to get around this problem by expanding @samp{jcxz foo}
658to
659
660@smallexample
661 jcxz cx_zero
662 jmp cx_nonzero
663cx_zero: jmp foo
664cx_nonzero:
665@end smallexample
666
667@node i386-Float
668@section Floating Point
669
670@cindex i386 floating point
671@cindex floating point, i386
55b62671
AJ
672@cindex x86-64 floating point
673@cindex floating point, x86-64
252b5132
RH
674All 80387 floating point types except packed BCD are supported.
675(BCD support may be added without much difficulty). These data
676types are 16-, 32-, and 64- bit integers, and single (32-bit),
677double (64-bit), and extended (80-bit) precision floating point.
678Each supported type has an instruction mnemonic suffix and a constructor
679associated with it. Instruction mnemonic suffixes specify the operand's
680data type. Constructors build these data types into memory.
681
682@cindex @code{float} directive, i386
683@cindex @code{single} directive, i386
684@cindex @code{double} directive, i386
685@cindex @code{tfloat} directive, i386
55b62671
AJ
686@cindex @code{float} directive, x86-64
687@cindex @code{single} directive, x86-64
688@cindex @code{double} directive, x86-64
689@cindex @code{tfloat} directive, x86-64
252b5132
RH
690@itemize @bullet
691@item
692Floating point constructors are @samp{.float} or @samp{.single},
693@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
694These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
695and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
696only supports this format via the @samp{fldt} (load 80-bit real to stack
697top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
698
699@cindex @code{word} directive, i386
700@cindex @code{long} directive, i386
701@cindex @code{int} directive, i386
702@cindex @code{quad} directive, i386
55b62671
AJ
703@cindex @code{word} directive, x86-64
704@cindex @code{long} directive, x86-64
705@cindex @code{int} directive, x86-64
706@cindex @code{quad} directive, x86-64
252b5132
RH
707@item
708Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
709@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
710corresponding instruction mnemonic suffixes are @samp{s} (single),
711@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
712the 64-bit @samp{q} format is only present in the @samp{fildq} (load
713quad integer to stack top) and @samp{fistpq} (store quad integer and pop
714stack) instructions.
715@end itemize
716
717Register to register operations should not use instruction mnemonic suffixes.
718@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
719wrote @samp{fst %st, %st(1)}, since all register to register operations
720use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
721which converts @samp{%st} from 80-bit to 64-bit floating point format,
722then stores the result in the 4 byte location @samp{mem})
723
724@node i386-SIMD
725@section Intel's MMX and AMD's 3DNow! SIMD Operations
726
727@cindex MMX, i386
728@cindex 3DNow!, i386
729@cindex SIMD, i386
55b62671
AJ
730@cindex MMX, x86-64
731@cindex 3DNow!, x86-64
732@cindex SIMD, x86-64
252b5132
RH
733
734@code{@value{AS}} supports Intel's MMX instruction set (SIMD
735instructions for integer data), available on Intel's Pentium MMX
736processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 737Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
738instruction set (SIMD instructions for 32-bit floating point data)
739available on AMD's K6-2 processor and possibly others in the future.
740
741Currently, @code{@value{AS}} does not support Intel's floating point
742SIMD, Katmai (KNI).
743
744The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
745@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
74616-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
747floating point values. The MMX registers cannot be used at the same time
748as the floating point stack.
749
750See Intel and AMD documentation, keeping in mind that the operand order in
751instructions is reversed from the Intel syntax.
752
753@node i386-16bit
754@section Writing 16-bit Code
755
756@cindex i386 16-bit code
757@cindex 16-bit code, i386
758@cindex real-mode code, i386
eecb386c 759@cindex @code{code16gcc} directive, i386
252b5132
RH
760@cindex @code{code16} directive, i386
761@cindex @code{code32} directive, i386
55b62671
AJ
762@cindex @code{code64} directive, i386
763@cindex @code{code64} directive, x86-64
764While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
765or 64-bit x86-64 code depending on the default configuration,
252b5132 766it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
767mode code segments. To do this, put a @samp{.code16} or
768@samp{.code16gcc} directive before the assembly language instructions to
769be run in 16-bit mode. You can switch @code{@value{AS}} back to writing
770normal 32-bit code with the @samp{.code32} directive.
771
772@samp{.code16gcc} provides experimental support for generating 16-bit
773code from gcc, and differs from @samp{.code16} in that @samp{call},
774@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
775@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
776default to 32-bit size. This is so that the stack pointer is
777manipulated in the same way over function calls, allowing access to
778function parameters at the same stack offsets as in 32-bit mode.
779@samp{.code16gcc} also automatically adds address size prefixes where
780necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
781
782The code which @code{@value{AS}} generates in 16-bit mode will not
783necessarily run on a 16-bit pre-80386 processor. To write code that
784runs on such a processor, you must refrain from using @emph{any} 32-bit
785constructs which require @code{@value{AS}} to output address or operand
786size prefixes.
787
788Note that writing 16-bit code instructions by explicitly specifying a
789prefix or an instruction mnemonic suffix within a 32-bit code section
790generates different machine instructions than those generated for a
79116-bit code segment. In a 32-bit code section, the following code
792generates the machine opcode bytes @samp{66 6a 04}, which pushes the
793value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
794
795@smallexample
796 pushw $4
797@end smallexample
798
799The same code in a 16-bit code section would generate the machine
b45619c0 800opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
801is correct since the processor default operand size is assumed to be 16
802bits in a 16-bit code section.
803
804@node i386-Bugs
805@section AT&T Syntax bugs
806
807The UnixWare assembler, and probably other AT&T derived ix86 Unix
808assemblers, generate floating point instructions with reversed source
809and destination registers in certain cases. Unfortunately, gcc and
810possibly many other programs use this reversed syntax, so we're stuck
811with it.
812
813For example
814
815@smallexample
816 fsub %st,%st(3)
817@end smallexample
818@noindent
819results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
820than the expected @samp{%st(3) - %st}. This happens with all the
821non-commutative arithmetic floating point operations with two register
822operands where the source register is @samp{%st} and the destination
823register is @samp{%st(i)}.
824
e413e4e9
AM
825@node i386-Arch
826@section Specifying CPU Architecture
827
828@cindex arch directive, i386
829@cindex i386 arch directive
55b62671
AJ
830@cindex arch directive, x86-64
831@cindex x86-64 arch directive
e413e4e9
AM
832
833@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 834(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
835directive enables a warning when gas detects an instruction that is not
836supported on the CPU specified. The choices for @var{cpu_type} are:
837
838@multitable @columnfractions .20 .20 .20 .20
839@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
840@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 841@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 842@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1ceab344 843@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
7918206c 844@item @samp{amdfam10}
1ceab344 845@item @samp{generic32} @tab @samp{generic64}
9103f4f4 846@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 847@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c0f3af97 848@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.xsave}
f1f8f695
L
849@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.movbe}
850@item @samp{.ept}
1ceab344
L
851@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
852@item @samp{.svme} @tab @samp{.abm}
853@item @samp{.padlock}
e413e4e9
AM
854@end multitable
855
fddf5b5b
AM
856Apart from the warning, there are only two other effects on
857@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
858@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
859will automatically use a two byte opcode sequence. The larger three
860byte opcode sequence is used on the 486 (and when no architecture is
861specified) because it executes faster on the 486. Note that you can
862explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
863Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
864@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
865conditional jumps will be promoted when necessary to a two instruction
866sequence consisting of a conditional jump of the opposite sense around
867an unconditional jump to the target.
868
5c6af06e
JB
869Following the CPU architecture (but not a sub-architecture, which are those
870starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
871control automatic promotion of conditional jumps. @samp{jumps} is the
872default, and enables jump promotion; All external jumps will be of the long
873variety, and file-local jumps will be promoted as necessary.
874(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
875byte offset jumps, and warns about file-local conditional jumps that
876@code{@value{AS}} promotes.
fddf5b5b
AM
877Unconditional jumps are treated as for @samp{jumps}.
878
879For example
880
881@smallexample
882 .arch i8086,nojumps
883@end smallexample
e413e4e9 884
252b5132
RH
885@node i386-Notes
886@section Notes
887
888@cindex i386 @code{mul}, @code{imul} instructions
889@cindex @code{mul} instruction, i386
890@cindex @code{imul} instruction, i386
55b62671
AJ
891@cindex @code{mul} instruction, x86-64
892@cindex @code{imul} instruction, x86-64
252b5132 893There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 894instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
895multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
896for @samp{imul}) can be output only in the one operand form. Thus,
897@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
898the expanding multiply would clobber the @samp{%edx} register, and this
899would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
90064-bit product in @samp{%edx:%eax}.
901
902We have added a two operand form of @samp{imul} when the first operand
903is an immediate mode expression and the second operand is a register.
904This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
905example, can be done with @samp{imul $69, %eax} rather than @samp{imul
906$69, %eax, %eax}.
907
This page took 0.452994 seconds and 4 git commands to generate.