PR gdb/15161
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
2da5c037 1@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
7c31ae13 2@c 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2011
f7e42eb4 3@c Free Software Foundation, Inc.
252b5132
RH
4@c This is part of the GAS manual.
5@c For copying conditions, see the file as.texinfo.
731caf76
L
6@c man end
7
252b5132
RH
8@ifset GENERIC
9@page
10@node i386-Dependent
11@chapter 80386 Dependent Features
12@end ifset
13@ifclear GENERIC
14@node Machine Dependencies
15@chapter 80386 Dependent Features
16@end ifclear
17
18@cindex i386 support
b6169b20 19@cindex i80386 support
55b62671
AJ
20@cindex x86-64 support
21
22The i386 version @code{@value{AS}} supports both the original Intel 386
23architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
24extending the Intel architecture to 64-bits.
25
252b5132
RH
26@menu
27* i386-Options:: Options
a6c24e68 28* i386-Directives:: X86 specific directives
7c31ae13 29* i386-Syntax:: Syntactical considerations
252b5132
RH
30* i386-Mnemonics:: Instruction Naming
31* i386-Regs:: Register Naming
32* i386-Prefixes:: Instruction Prefixes
33* i386-Memory:: Memory References
fddf5b5b 34* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
35* i386-Float:: Floating Point
36* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 37* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 38* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 39* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 40* i386-16bit:: Writing 16-bit Code
e413e4e9 41* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
42* i386-Bugs:: AT&T Syntax bugs
43* i386-Notes:: Notes
44@end menu
45
46@node i386-Options
47@section Options
48
55b62671
AJ
49@cindex options for i386
50@cindex options for x86-64
51@cindex i386 options
34bca508 52@cindex x86-64 options
55b62671
AJ
53
54The i386 version of @code{@value{AS}} has a few machine
55dependent options:
56
731caf76
L
57@c man begin OPTIONS
58@table @gcctabopt
55b62671
AJ
59@cindex @samp{--32} option, i386
60@cindex @samp{--32} option, x86-64
570561f7
L
61@cindex @samp{--x32} option, i386
62@cindex @samp{--x32} option, x86-64
55b62671
AJ
63@cindex @samp{--64} option, i386
64@cindex @samp{--64} option, x86-64
570561f7 65@item --32 | --x32 | --64
35cc6a0b 66Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 67implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
68imply AMD x86-64 architecture with 32-bit or 64-bit word-size
69respectively.
55b62671
AJ
70
71These options are only available with the ELF object file format, and
72require that the necessary BFD support has been included (on a 32-bit
73platform you have to add --enable-64-bit-bfd to configure enable 64-bit
74usage and use x86-64 as target platform).
12b55ccc
L
75
76@item -n
77By default, x86 GAS replaces multiple nop instructions used for
78alignment within code sections with multi-byte nop instructions such
79as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
80
81@cindex @samp{--divide} option, i386
82@item --divide
83On SVR4-derived platforms, the character @samp{/} is treated as a comment
84character, which means that it cannot be used in expressions. The
85@samp{--divide} option turns @samp{/} into a normal character. This does
86not disable @samp{/} at the beginning of a line starting a comment, or
87affect using @samp{#} for starting a comment.
88
9103f4f4
L
89@cindex @samp{-march=} option, i386
90@cindex @samp{-march=} option, x86-64
6305a203
L
91@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92This option specifies the target processor. The assembler will
93issue an error message if an attempt is made to assemble an instruction
94which will not execute on the target processor. The following
34bca508 95processor names are recognized:
9103f4f4
L
96@code{i8086},
97@code{i186},
98@code{i286},
99@code{i386},
100@code{i486},
101@code{i586},
102@code{i686},
103@code{pentium},
104@code{pentiumpro},
105@code{pentiumii},
106@code{pentiumiii},
107@code{pentium4},
108@code{prescott},
109@code{nocona},
ef05d495
L
110@code{core},
111@code{core2},
bd5295b2 112@code{corei7},
8a9036a4 113@code{l1om},
7a9068fe 114@code{k1om},
9103f4f4
L
115@code{k6},
116@code{k6_2},
117@code{athlon},
9103f4f4
L
118@code{opteron},
119@code{k8},
1ceab344 120@code{amdfam10},
68339fdf 121@code{bdver1},
af2f724e 122@code{bdver2},
5e5c50d3 123@code{bdver3},
7b458c12
L
124@code{btver1},
125@code{btver2},
9103f4f4
L
126@code{generic32} and
127@code{generic64}.
128
34bca508 129In addition to the basic instruction set, the assembler can be told to
6305a203
L
130accept various extension mnemonics. For example,
131@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
132@var{vmx}. The following extensions are currently supported:
309d3373
JB
133@code{8087},
134@code{287},
135@code{387},
136@code{no87},
6305a203 137@code{mmx},
309d3373 138@code{nommx},
6305a203
L
139@code{sse},
140@code{sse2},
141@code{sse3},
142@code{ssse3},
143@code{sse4.1},
144@code{sse4.2},
145@code{sse4},
309d3373 146@code{nosse},
c0f3af97 147@code{avx},
6c30d220 148@code{avx2},
e2e1fcde
L
149@code{adx},
150@code{rdseed},
151@code{prfchw},
309d3373 152@code{noavx},
6305a203 153@code{vmx},
8729a6f6 154@code{vmfunc},
6305a203 155@code{smx},
f03fe4c1 156@code{xsave},
c7b8aa3a 157@code{xsaveopt},
c0f3af97 158@code{aes},
594ab6a3 159@code{pclmul},
c7b8aa3a
L
160@code{fsgsbase},
161@code{rdrnd},
162@code{f16c},
6c30d220 163@code{bmi2},
c0f3af97 164@code{fma},
f1f8f695
L
165@code{movbe},
166@code{ept},
6c30d220 167@code{lzcnt},
42164a71
L
168@code{hle},
169@code{rtm},
6c30d220 170@code{invpcid},
bd5295b2 171@code{clflush},
f88c9eb0 172@code{lwp},
5dd85c99
SP
173@code{fma4},
174@code{xop},
60aa667e 175@code{cx16},
bd5295b2 176@code{syscall},
1b7f3fb0 177@code{rdtscp},
6305a203
L
178@code{3dnow},
179@code{3dnowa},
180@code{sse4a},
181@code{sse5},
182@code{svme},
183@code{abm} and
184@code{padlock}.
309d3373
JB
185Note that rather than extending a basic instruction set, the extension
186mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
187
188When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
189@code{.arch} directive will take precedent.
190
191@cindex @samp{-mtune=} option, i386
192@cindex @samp{-mtune=} option, x86-64
193@item -mtune=@var{CPU}
194This option specifies a processor to optimize for. When used in
195conjunction with the @option{-march} option, only instructions
196of the processor specified by the @option{-march} option will be
197generated.
198
6305a203
L
199Valid @var{CPU} values are identical to the processor list of
200@option{-march=@var{CPU}}.
9103f4f4 201
c0f3af97
L
202@cindex @samp{-msse2avx} option, i386
203@cindex @samp{-msse2avx} option, x86-64
204@item -msse2avx
205This option specifies that the assembler should encode SSE instructions
206with VEX prefix.
207
daf50ae7
L
208@cindex @samp{-msse-check=} option, i386
209@cindex @samp{-msse-check=} option, x86-64
210@item -msse-check=@var{none}
1f9bb1ca
AS
211@itemx -msse-check=@var{warning}
212@itemx -msse-check=@var{error}
daf50ae7
L
213These options control if the assembler should check SSE intructions.
214@option{-msse-check=@var{none}} will make the assembler not to check SSE
215instructions, which is the default. @option{-msse-check=@var{warning}}
216will make the assembler issue a warning for any SSE intruction.
217@option{-msse-check=@var{error}} will make the assembler issue an error
218for any SSE intruction.
219
539f890d
L
220@cindex @samp{-mavxscalar=} option, i386
221@cindex @samp{-mavxscalar=} option, x86-64
222@item -mavxscalar=@var{128}
1f9bb1ca 223@itemx -mavxscalar=@var{256}
2aab8acd 224These options control how the assembler should encode scalar AVX
539f890d
L
225instructions. @option{-mavxscalar=@var{128}} will encode scalar
226AVX instructions with 128bit vector length, which is the default.
227@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
228with 256bit vector length.
229
1efbbeb4
L
230@cindex @samp{-mmnemonic=} option, i386
231@cindex @samp{-mmnemonic=} option, x86-64
232@item -mmnemonic=@var{att}
1f9bb1ca 233@itemx -mmnemonic=@var{intel}
34bca508 234This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
235The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
236take precedent.
237
238@cindex @samp{-msyntax=} option, i386
239@cindex @samp{-msyntax=} option, x86-64
240@item -msyntax=@var{att}
1f9bb1ca 241@itemx -msyntax=@var{intel}
34bca508 242This option specifies instruction syntax when processing instructions.
1efbbeb4
L
243The @code{.att_syntax} and @code{.intel_syntax} directives will
244take precedent.
245
246@cindex @samp{-mnaked-reg} option, i386
247@cindex @samp{-mnaked-reg} option, x86-64
248@item -mnaked-reg
249This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 250The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 251
55b62671 252@end table
731caf76 253@c man end
e413e4e9 254
a6c24e68
NC
255@node i386-Directives
256@section x86 specific Directives
257
258@cindex machine directives, x86
259@cindex x86 machine directives
260@table @code
261
262@cindex @code{lcomm} directive, COFF
263@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
264Reserve @var{length} (an absolute expression) bytes for a local common
265denoted by @var{symbol}. The section and value of @var{symbol} are
266those of the new local common. The addresses are allocated in the bss
704209c0
NC
267section, so that at run-time the bytes start off zeroed. Since
268@var{symbol} is not declared global, it is normally not visible to
269@code{@value{LD}}. The optional third parameter, @var{alignment},
270specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
271
272This directive is only available for COFF based x86 targets.
273
274@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
275@c .largecomm
276
277@end table
278
252b5132 279@node i386-Syntax
7c31ae13
NC
280@section i386 Syntactical Considerations
281@menu
282* i386-Variations:: AT&T Syntax versus Intel Syntax
283* i386-Chars:: Special Characters
284@end menu
285
286@node i386-Variations
287@subsection AT&T Syntax versus Intel Syntax
252b5132 288
e413e4e9
AM
289@cindex i386 intel_syntax pseudo op
290@cindex intel_syntax pseudo op, i386
291@cindex i386 att_syntax pseudo op
292@cindex att_syntax pseudo op, i386
252b5132
RH
293@cindex i386 syntax compatibility
294@cindex syntax compatibility, i386
55b62671
AJ
295@cindex x86-64 intel_syntax pseudo op
296@cindex intel_syntax pseudo op, x86-64
297@cindex x86-64 att_syntax pseudo op
298@cindex att_syntax pseudo op, x86-64
299@cindex x86-64 syntax compatibility
300@cindex syntax compatibility, x86-64
e413e4e9
AM
301
302@code{@value{AS}} now supports assembly using Intel assembler syntax.
303@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
304back to the usual AT&T mode for compatibility with the output of
305@code{@value{GCC}}. Either of these directives may have an optional
306argument, @code{prefix}, or @code{noprefix} specifying whether registers
307require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
308different from Intel syntax. We mention these differences because
309almost all 80386 documents use Intel syntax. Notable differences
310between the two syntaxes are:
311
312@cindex immediate operands, i386
313@cindex i386 immediate operands
314@cindex register operands, i386
315@cindex i386 register operands
316@cindex jump/call operands, i386
317@cindex i386 jump/call operands
318@cindex operand delimiters, i386
55b62671
AJ
319
320@cindex immediate operands, x86-64
321@cindex x86-64 immediate operands
322@cindex register operands, x86-64
323@cindex x86-64 register operands
324@cindex jump/call operands, x86-64
325@cindex x86-64 jump/call operands
326@cindex operand delimiters, x86-64
252b5132
RH
327@itemize @bullet
328@item
329AT&T immediate operands are preceded by @samp{$}; Intel immediate
330operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
331AT&T register operands are preceded by @samp{%}; Intel register operands
332are undelimited. AT&T absolute (as opposed to PC relative) jump/call
333operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
334
335@cindex i386 source, destination operands
336@cindex source, destination operands; i386
55b62671
AJ
337@cindex x86-64 source, destination operands
338@cindex source, destination operands; x86-64
252b5132
RH
339@item
340AT&T and Intel syntax use the opposite order for source and destination
341operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
342@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
343previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
344instructions with 2 immediate operands, such as the @samp{enter}
345instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
346
347@cindex mnemonic suffixes, i386
348@cindex sizes operands, i386
349@cindex i386 size suffixes
55b62671
AJ
350@cindex mnemonic suffixes, x86-64
351@cindex sizes operands, x86-64
352@cindex x86-64 size suffixes
252b5132
RH
353@item
354In AT&T syntax the size of memory operands is determined from the last
355character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
356@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
357(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
358this by prefixing memory operands (@emph{not} the instruction mnemonics) with
359@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
360Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
361syntax.
252b5132 362
4b06377f
L
363In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
364instruction with the 64-bit displacement or immediate operand.
365
252b5132
RH
366@cindex return instructions, i386
367@cindex i386 jump, call, return
55b62671
AJ
368@cindex return instructions, x86-64
369@cindex x86-64 jump, call, return
252b5132
RH
370@item
371Immediate form long jumps and calls are
372@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
373Intel syntax is
374@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
375instruction
376is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
377@samp{ret far @var{stack-adjust}}.
378
379@cindex sections, i386
380@cindex i386 sections
55b62671
AJ
381@cindex sections, x86-64
382@cindex x86-64 sections
252b5132
RH
383@item
384The AT&T assembler does not provide support for multiple section
385programs. Unix style systems expect all programs to be single sections.
386@end itemize
387
7c31ae13
NC
388@node i386-Chars
389@subsection Special Characters
390
391@cindex line comment character, i386
392@cindex i386 line comment character
393The presence of a @samp{#} appearing anywhere on a line indicates the
394start of a comment that extends to the end of that line.
395
396If a @samp{#} appears as the first character of a line then the whole
397line is treated as a comment, but in this case the line can also be a
398logical line number directive (@pxref{Comments}) or a preprocessor
399control command (@pxref{Preprocessing}).
400
401If the @option{--divide} command line option has not been specified
402then the @samp{/} character appearing anywhere on a line also
403introduces a line comment.
404
405@cindex line separator, i386
406@cindex statement separator, i386
407@cindex i386 line separator
408The @samp{;} character can be used to separate statements on the same
409line.
410
252b5132
RH
411@node i386-Mnemonics
412@section Instruction Naming
413
414@cindex i386 instruction naming
415@cindex instruction naming, i386
55b62671
AJ
416@cindex x86-64 instruction naming
417@cindex instruction naming, x86-64
418
252b5132 419Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
420specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
421and @samp{q} specify byte, word, long and quadruple word operands. If
422no suffix is specified by an instruction then @code{@value{AS}} tries to
423fill in the missing suffix based on the destination register operand
424(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
425to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
426@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
427assembler which assumes that a missing mnemonic suffix implies long
428operand size. (This incompatibility does not affect compiler output
429since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
430
431Almost all instructions have the same names in AT&T and Intel format.
432There are a few exceptions. The sign extend and zero extend
433instructions need two sizes to specify them. They need a size to
434sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
435is accomplished by using two instruction mnemonic suffixes in AT&T
436syntax. Base names for sign extend and zero extend are
437@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
438and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
439are tacked on to this base name, the @emph{from} suffix before the
440@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
441``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
442thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
443@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
444@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
445quadruple word).
252b5132 446
b6169b20
L
447@cindex encoding options, i386
448@cindex encoding options, x86-64
449
450Different encoding options can be specified via optional mnemonic
451suffix. @samp{.s} suffix swaps 2 register operands in encoding when
a501d77e
L
452moving from one register to another. @samp{.d8} or @samp{.d32} suffix
453prefers 8bit or 32bit displacement in encoding.
b6169b20 454
252b5132
RH
455@cindex conversion instructions, i386
456@cindex i386 conversion instructions
55b62671
AJ
457@cindex conversion instructions, x86-64
458@cindex x86-64 conversion instructions
252b5132
RH
459The Intel-syntax conversion instructions
460
461@itemize @bullet
462@item
463@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
464
465@item
466@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
467
468@item
469@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
470
471@item
472@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
473
474@item
475@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
476(x86-64 only),
477
478@item
d5f0cf92 479@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 480@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
481@end itemize
482
483@noindent
55b62671
AJ
484are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
485@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
486instructions.
252b5132
RH
487
488@cindex jump instructions, i386
489@cindex call instructions, i386
55b62671
AJ
490@cindex jump instructions, x86-64
491@cindex call instructions, x86-64
252b5132
RH
492Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
493AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
494convention.
495
1efbbeb4
L
496@section AT&T Mnemonic versus Intel Mnemonic
497
498@cindex i386 mnemonic compatibility
499@cindex mnemonic compatibility, i386
500
501@code{@value{AS}} supports assembly using Intel mnemonic.
502@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
503@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
504syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
505Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
506@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
507@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
508assembler with different mnemonics from those in Intel IA32 specification.
509@code{@value{GCC}} generates those instructions with AT&T mnemonic.
510
252b5132
RH
511@node i386-Regs
512@section Register Naming
513
514@cindex i386 registers
515@cindex registers, i386
55b62671
AJ
516@cindex x86-64 registers
517@cindex registers, x86-64
252b5132
RH
518Register operands are always prefixed with @samp{%}. The 80386 registers
519consist of
520
521@itemize @bullet
522@item
523the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
524@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
525frame pointer), and @samp{%esp} (the stack pointer).
526
527@item
528the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
529@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
530
531@item
532the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
533@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
534are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
535@samp{%cx}, and @samp{%dx})
536
537@item
538the 6 section registers @samp{%cs} (code section), @samp{%ds}
539(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
540and @samp{%gs}.
541
542@item
543the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
544@samp{%cr3}.
545
546@item
547the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
548@samp{%db3}, @samp{%db6}, and @samp{%db7}.
549
550@item
551the 2 test registers @samp{%tr6} and @samp{%tr7}.
552
553@item
554the 8 floating point register stack @samp{%st} or equivalently
555@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
556@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
557These registers are overloaded by 8 MMX registers @samp{%mm0},
558@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
559@samp{%mm6} and @samp{%mm7}.
560
561@item
562the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
563@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
564@end itemize
565
566The AMD x86-64 architecture extends the register set by:
567
568@itemize @bullet
569@item
570enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
571accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
572@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
573pointer)
574
575@item
576the 8 extended registers @samp{%r8}--@samp{%r15}.
577
578@item
579the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
580
581@item
582the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
583
584@item
585the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
586
587@item
588the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
589
590@item
591the 8 debug registers: @samp{%db8}--@samp{%db15}.
592
593@item
594the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
595@end itemize
596
597@node i386-Prefixes
598@section Instruction Prefixes
599
600@cindex i386 instruction prefixes
601@cindex instruction prefixes, i386
602@cindex prefixes, i386
603Instruction prefixes are used to modify the following instruction. They
604are used to repeat string instructions, to provide section overrides, to
605perform bus lock operations, and to change operand and address sizes.
606(Most instructions that normally operate on 32-bit operands will use
60716-bit operands if the instruction has an ``operand size'' prefix.)
608Instruction prefixes are best written on the same line as the instruction
609they act upon. For example, the @samp{scas} (scan string) instruction is
610repeated with:
611
612@smallexample
613 repne scas %es:(%edi),%al
614@end smallexample
615
616You may also place prefixes on the lines immediately preceding the
617instruction, but this circumvents checks that @code{@value{AS}} does
618with prefixes, and will not work with all prefixes.
619
620Here is a list of instruction prefixes:
621
622@cindex section override prefixes, i386
623@itemize @bullet
624@item
625Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
626@samp{fs}, @samp{gs}. These are automatically added by specifying
627using the @var{section}:@var{memory-operand} form for memory references.
628
629@cindex size prefixes, i386
630@item
631Operand/Address size prefixes @samp{data16} and @samp{addr16}
632change 32-bit operands/addresses into 16-bit operands/addresses,
633while @samp{data32} and @samp{addr32} change 16-bit ones (in a
634@code{.code16} section) into 32-bit operands/addresses. These prefixes
635@emph{must} appear on the same line of code as the instruction they
636modify. For example, in a 16-bit @code{.code16} section, you might
637write:
638
639@smallexample
640 addr32 jmpl *(%ebx)
641@end smallexample
642
643@cindex bus lock prefixes, i386
644@cindex inhibiting interrupts, i386
645@item
646The bus lock prefix @samp{lock} inhibits interrupts during execution of
647the instruction it precedes. (This is only valid with certain
648instructions; see a 80386 manual for details).
649
650@cindex coprocessor wait, i386
651@item
652The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
653complete the current instruction. This should never be needed for the
65480386/80387 combination.
655
656@cindex repeat prefixes, i386
657@item
658The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
659to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
660times if the current address size is 16-bits).
55b62671
AJ
661@cindex REX prefixes, i386
662@item
663The @samp{rex} family of prefixes is used by x86-64 to encode
664extensions to i386 instruction set. The @samp{rex} prefix has four
665bits --- an operand size overwrite (@code{64}) used to change operand size
666from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
667register set.
668
669You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
670instruction emits @samp{rex} prefix with all the bits set. By omitting
671the @code{64}, @code{x}, @code{y} or @code{z} you may write other
672prefixes as well. Normally, there is no need to write the prefixes
673explicitly, since gas will automatically generate them based on the
674instruction operands.
252b5132
RH
675@end itemize
676
677@node i386-Memory
678@section Memory References
679
680@cindex i386 memory references
681@cindex memory references, i386
55b62671
AJ
682@cindex x86-64 memory references
683@cindex memory references, x86-64
252b5132
RH
684An Intel syntax indirect memory reference of the form
685
686@smallexample
687@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
688@end smallexample
689
690@noindent
691is translated into the AT&T syntax
692
693@smallexample
694@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
695@end smallexample
696
697@noindent
698where @var{base} and @var{index} are the optional 32-bit base and
699index registers, @var{disp} is the optional displacement, and
700@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
701to calculate the address of the operand. If no @var{scale} is
702specified, @var{scale} is taken to be 1. @var{section} specifies the
703optional section register for the memory operand, and may override the
704default section register (see a 80386 manual for section register
705defaults). Note that section overrides in AT&T syntax @emph{must}
706be preceded by a @samp{%}. If you specify a section override which
707coincides with the default section register, @code{@value{AS}} does @emph{not}
708output any section register override prefixes to assemble the given
709instruction. Thus, section overrides can be specified to emphasize which
710section register is used for a given memory operand.
711
712Here are some examples of Intel and AT&T style memory references:
713
714@table @asis
715@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
716@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
717missing, and the default section is used (@samp{%ss} for addressing with
718@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
719
720@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
721@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
722@samp{foo}. All other fields are missing. The section register here
723defaults to @samp{%ds}.
724
725@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
726This uses the value pointed to by @samp{foo} as a memory operand.
727Note that @var{base} and @var{index} are both missing, but there is only
728@emph{one} @samp{,}. This is a syntactic exception.
729
730@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
731This selects the contents of the variable @samp{foo} with section
732register @var{section} being @samp{%gs}.
733@end table
734
735Absolute (as opposed to PC relative) call and jump operands must be
736prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
737always chooses PC relative addressing for jump/call labels.
738
739Any instruction that has a memory operand, but no register operand,
55b62671
AJ
740@emph{must} specify its size (byte, word, long, or quadruple) with an
741instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
742respectively).
743
744The x86-64 architecture adds an RIP (instruction pointer relative)
745addressing. This addressing mode is specified by using @samp{rip} as a
746base register. Only constant offsets are valid. For example:
747
748@table @asis
749@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
750Points to the address 1234 bytes past the end of the current
751instruction.
752
753@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
754Points to the @code{symbol} in RIP relative way, this is shorter than
755the default absolute addressing.
756@end table
757
758Other addressing modes remain unchanged in x86-64 architecture, except
759registers used are 64-bit instead of 32-bit.
252b5132 760
fddf5b5b 761@node i386-Jumps
252b5132
RH
762@section Handling of Jump Instructions
763
764@cindex jump optimization, i386
765@cindex i386 jump optimization
55b62671
AJ
766@cindex jump optimization, x86-64
767@cindex x86-64 jump optimization
252b5132
RH
768Jump instructions are always optimized to use the smallest possible
769displacements. This is accomplished by using byte (8-bit) displacement
770jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 771is insufficient a long displacement is used. We do not support
252b5132
RH
772word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
773instruction with the @samp{data16} instruction prefix), since the 80386
774insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 775is added. (See also @pxref{i386-Arch})
252b5132
RH
776
777Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
778@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
779displacements, so that if you use these instructions (@code{@value{GCC}} does
780not use them) you may get an error message (and incorrect code). The AT&T
78180386 assembler tries to get around this problem by expanding @samp{jcxz foo}
782to
783
784@smallexample
785 jcxz cx_zero
786 jmp cx_nonzero
787cx_zero: jmp foo
788cx_nonzero:
789@end smallexample
790
791@node i386-Float
792@section Floating Point
793
794@cindex i386 floating point
795@cindex floating point, i386
55b62671
AJ
796@cindex x86-64 floating point
797@cindex floating point, x86-64
252b5132
RH
798All 80387 floating point types except packed BCD are supported.
799(BCD support may be added without much difficulty). These data
800types are 16-, 32-, and 64- bit integers, and single (32-bit),
801double (64-bit), and extended (80-bit) precision floating point.
802Each supported type has an instruction mnemonic suffix and a constructor
803associated with it. Instruction mnemonic suffixes specify the operand's
804data type. Constructors build these data types into memory.
805
806@cindex @code{float} directive, i386
807@cindex @code{single} directive, i386
808@cindex @code{double} directive, i386
809@cindex @code{tfloat} directive, i386
55b62671
AJ
810@cindex @code{float} directive, x86-64
811@cindex @code{single} directive, x86-64
812@cindex @code{double} directive, x86-64
813@cindex @code{tfloat} directive, x86-64
252b5132
RH
814@itemize @bullet
815@item
816Floating point constructors are @samp{.float} or @samp{.single},
817@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
818These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
819and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
820only supports this format via the @samp{fldt} (load 80-bit real to stack
821top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
822
823@cindex @code{word} directive, i386
824@cindex @code{long} directive, i386
825@cindex @code{int} directive, i386
826@cindex @code{quad} directive, i386
55b62671
AJ
827@cindex @code{word} directive, x86-64
828@cindex @code{long} directive, x86-64
829@cindex @code{int} directive, x86-64
830@cindex @code{quad} directive, x86-64
252b5132
RH
831@item
832Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
833@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
834corresponding instruction mnemonic suffixes are @samp{s} (single),
835@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
836the 64-bit @samp{q} format is only present in the @samp{fildq} (load
837quad integer to stack top) and @samp{fistpq} (store quad integer and pop
838stack) instructions.
839@end itemize
840
841Register to register operations should not use instruction mnemonic suffixes.
842@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
843wrote @samp{fst %st, %st(1)}, since all register to register operations
844use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
845which converts @samp{%st} from 80-bit to 64-bit floating point format,
846then stores the result in the 4 byte location @samp{mem})
847
848@node i386-SIMD
849@section Intel's MMX and AMD's 3DNow! SIMD Operations
850
851@cindex MMX, i386
852@cindex 3DNow!, i386
853@cindex SIMD, i386
55b62671
AJ
854@cindex MMX, x86-64
855@cindex 3DNow!, x86-64
856@cindex SIMD, x86-64
252b5132
RH
857
858@code{@value{AS}} supports Intel's MMX instruction set (SIMD
859instructions for integer data), available on Intel's Pentium MMX
860processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 861Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
862instruction set (SIMD instructions for 32-bit floating point data)
863available on AMD's K6-2 processor and possibly others in the future.
864
865Currently, @code{@value{AS}} does not support Intel's floating point
866SIMD, Katmai (KNI).
867
868The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
869@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
87016-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
871floating point values. The MMX registers cannot be used at the same time
872as the floating point stack.
873
874See Intel and AMD documentation, keeping in mind that the operand order in
875instructions is reversed from the Intel syntax.
876
f88c9eb0
SP
877@node i386-LWP
878@section AMD's Lightweight Profiling Instructions
879
880@cindex LWP, i386
881@cindex LWP, x86-64
882
883@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
884instruction set, available on AMD's Family 15h (Orochi) processors.
885
886LWP enables applications to collect and manage performance data, and
887react to performance events. The collection of performance data
888requires no context switches. LWP runs in the context of a thread and
889so several counters can be used independently across multiple threads.
890LWP can be used in both 64-bit and legacy 32-bit modes.
891
892For detailed information on the LWP instruction set, see the
893@cite{AMD Lightweight Profiling Specification} available at
894@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
895
87973e9f
QN
896@node i386-BMI
897@section Bit Manipulation Instructions
898
899@cindex BMI, i386
900@cindex BMI, x86-64
901
902@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
903
904BMI instructions provide several instructions implementing individual
905bit manipulation operations such as isolation, masking, setting, or
34bca508 906resetting.
87973e9f
QN
907
908@c Need to add a specification citation here when available.
909
2a2a0f38
QN
910@node i386-TBM
911@section AMD's Trailing Bit Manipulation Instructions
912
913@cindex TBM, i386
914@cindex TBM, x86-64
915
916@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
917instruction set, available on AMD's BDVER2 processors (Trinity and
918Viperfish).
919
920TBM instructions provide instructions implementing individual bit
921manipulation operations such as isolating, masking, setting, resetting,
922complementing, and operations on trailing zeros and ones.
923
924@c Need to add a specification citation here when available.
87973e9f 925
252b5132
RH
926@node i386-16bit
927@section Writing 16-bit Code
928
929@cindex i386 16-bit code
930@cindex 16-bit code, i386
931@cindex real-mode code, i386
eecb386c 932@cindex @code{code16gcc} directive, i386
252b5132
RH
933@cindex @code{code16} directive, i386
934@cindex @code{code32} directive, i386
55b62671
AJ
935@cindex @code{code64} directive, i386
936@cindex @code{code64} directive, x86-64
937While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
938or 64-bit x86-64 code depending on the default configuration,
252b5132 939it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
940mode code segments. To do this, put a @samp{.code16} or
941@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
942be run in 16-bit mode. You can switch @code{@value{AS}} to writing
94332-bit code with the @samp{.code32} directive or 64-bit code with the
944@samp{.code64} directive.
eecb386c
AM
945
946@samp{.code16gcc} provides experimental support for generating 16-bit
947code from gcc, and differs from @samp{.code16} in that @samp{call},
948@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
949@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
950default to 32-bit size. This is so that the stack pointer is
951manipulated in the same way over function calls, allowing access to
952function parameters at the same stack offsets as in 32-bit mode.
953@samp{.code16gcc} also automatically adds address size prefixes where
954necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
955
956The code which @code{@value{AS}} generates in 16-bit mode will not
957necessarily run on a 16-bit pre-80386 processor. To write code that
958runs on such a processor, you must refrain from using @emph{any} 32-bit
959constructs which require @code{@value{AS}} to output address or operand
960size prefixes.
961
962Note that writing 16-bit code instructions by explicitly specifying a
963prefix or an instruction mnemonic suffix within a 32-bit code section
964generates different machine instructions than those generated for a
96516-bit code segment. In a 32-bit code section, the following code
966generates the machine opcode bytes @samp{66 6a 04}, which pushes the
967value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
968
969@smallexample
970 pushw $4
971@end smallexample
972
973The same code in a 16-bit code section would generate the machine
b45619c0 974opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
975is correct since the processor default operand size is assumed to be 16
976bits in a 16-bit code section.
977
978@node i386-Bugs
979@section AT&T Syntax bugs
980
981The UnixWare assembler, and probably other AT&T derived ix86 Unix
982assemblers, generate floating point instructions with reversed source
983and destination registers in certain cases. Unfortunately, gcc and
984possibly many other programs use this reversed syntax, so we're stuck
985with it.
986
987For example
988
989@smallexample
990 fsub %st,%st(3)
991@end smallexample
992@noindent
993results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
994than the expected @samp{%st(3) - %st}. This happens with all the
995non-commutative arithmetic floating point operations with two register
996operands where the source register is @samp{%st} and the destination
997register is @samp{%st(i)}.
998
e413e4e9
AM
999@node i386-Arch
1000@section Specifying CPU Architecture
1001
1002@cindex arch directive, i386
1003@cindex i386 arch directive
55b62671
AJ
1004@cindex arch directive, x86-64
1005@cindex x86-64 arch directive
e413e4e9
AM
1006
1007@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1008(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1009directive enables a warning when gas detects an instruction that is not
1010supported on the CPU specified. The choices for @var{cpu_type} are:
1011
1012@multitable @columnfractions .20 .20 .20 .20
1013@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1014@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1015@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1016@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
7a9068fe 1017@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om}
1543849b 1018@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1019@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
7b458c12 1020@item @samp{btver1} @tab @samp{btver2}
1ceab344 1021@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1022@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1023@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1024@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1025@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1026@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1027@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1028@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1029@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1ceab344 1030@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1031@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1032@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1ceab344 1033@item @samp{.padlock}
e413e4e9
AM
1034@end multitable
1035
fddf5b5b
AM
1036Apart from the warning, there are only two other effects on
1037@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1038@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1039will automatically use a two byte opcode sequence. The larger three
1040byte opcode sequence is used on the 486 (and when no architecture is
1041specified) because it executes faster on the 486. Note that you can
1042explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1043Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1044@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1045conditional jumps will be promoted when necessary to a two instruction
1046sequence consisting of a conditional jump of the opposite sense around
1047an unconditional jump to the target.
1048
5c6af06e
JB
1049Following the CPU architecture (but not a sub-architecture, which are those
1050starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1051control automatic promotion of conditional jumps. @samp{jumps} is the
1052default, and enables jump promotion; All external jumps will be of the long
1053variety, and file-local jumps will be promoted as necessary.
1054(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1055byte offset jumps, and warns about file-local conditional jumps that
1056@code{@value{AS}} promotes.
fddf5b5b
AM
1057Unconditional jumps are treated as for @samp{jumps}.
1058
1059For example
1060
1061@smallexample
1062 .arch i8086,nojumps
1063@end smallexample
e413e4e9 1064
252b5132
RH
1065@node i386-Notes
1066@section Notes
1067
1068@cindex i386 @code{mul}, @code{imul} instructions
1069@cindex @code{mul} instruction, i386
1070@cindex @code{imul} instruction, i386
55b62671
AJ
1071@cindex @code{mul} instruction, x86-64
1072@cindex @code{imul} instruction, x86-64
252b5132 1073There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1074instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1075multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1076for @samp{imul}) can be output only in the one operand form. Thus,
1077@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1078the expanding multiply would clobber the @samp{%edx} register, and this
1079would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
108064-bit product in @samp{%edx:%eax}.
1081
1082We have added a two operand form of @samp{imul} when the first operand
1083is an immediate mode expression and the second operand is a register.
1084This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1085example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1086$69, %eax, %eax}.
1087
This page took 0.934516 seconds and 4 git commands to generate.