* spu-tdep.c (spu_get_longjmp_target): New function.
[deliverable/binutils-gdb.git] / gas / itbl-ops.c
CommitLineData
252b5132 1/* itbl-ops.c
4ef2cf8b
NC
2 Copyright 1997, 1999, 2000, 2001, 2002, 2003, 2005, 2006, 2007,
3 2009 Free Software Foundation, Inc.
252b5132
RH
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
ec2655a6 9 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
19 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
20 02110-1301, USA. */
252b5132
RH
21
22/*======================================================================*/
23/*
24 * Herein lies the support for dynamic specification of processor
25 * instructions and registers. Mnemonics, values, and formats for each
26 * instruction and register are specified in an ascii file consisting of
27 * table entries. The grammar for the table is defined in the document
28 * "Processor instruction table specification".
29 *
30 * Instructions use the gnu assembler syntax, with the addition of
31 * allowing mnemonics for register.
32 * Eg. "func $2,reg3,0x100,symbol ; comment"
33 * func - opcode name
34 * $n - register n
35 * reg3 - mnemonic for processor's register defined in table
36 * 0xddd..d - immediate value
37 * symbol - address of label or external symbol
38 *
39 * First, itbl_parse reads in the table of register and instruction
40 * names and formats, and builds a list of entries for each
41 * processor/type combination. lex and yacc are used to parse
42 * the entries in the table and call functions defined here to
43 * add each entry to our list.
44 *
45 * Then, when assembling or disassembling, these functions are called to
46 * 1) get information on a processor's registers and
47 * 2) assemble/disassemble an instruction.
48 * To assemble(disassemble) an instruction, the function
49 * itbl_assemble(itbl_disassemble) is called to search the list of
50 * instruction entries, and if a match is found, uses the format
51 * described in the instruction entry structure to complete the action.
52 *
53 * Eg. Suppose we have a Mips coprocessor "cop3" with data register "d2"
54 * and we want to define function "pig" which takes two operands.
55 *
56 * Given the table entries:
57 * "p3 insn pig 0x1:24-21 dreg:20-16 immed:15-0"
58 * "p3 dreg d2 0x2"
59 * and that the instruction encoding for coprocessor pz has encoding:
60 * #define MIPS_ENCODE_COP_NUM(z) ((0x21|(z<<1))<<25)
61 * #define ITBL_ENCODE_PNUM(pnum) MIPS_ENCODE_COP_NUM(pnum)
62 *
63 * a structure to describe the instruction might look something like:
64 * struct itbl_entry = {
65 * e_processor processor = e_p3
66 * e_type type = e_insn
67 * char *name = "pig"
68 * uint value = 0x1
69 * uint flags = 0
70 * struct itbl_range range = 24-21
71 * struct itbl_field *field = {
72 * e_type type = e_dreg
73 * struct itbl_range range = 20-16
74 * struct itbl_field *next = {
75 * e_type type = e_immed
76 * struct itbl_range range = 15-0
77 * struct itbl_field *next = 0
78 * };
79 * };
80 * struct itbl_entry *next = 0
81 * };
82 *
83 * And the assembler instructions:
84 * "pig d2,0x100"
85 * "pig $2,0x100"
86 *
87 * would both assemble to the hex value:
88 * "0x4e220100"
89 *
90 */
91
ebd1c875 92#include "as.h"
252b5132 93#include "itbl-ops.h"
3d82a647 94#include <itbl-parse.h>
252b5132
RH
95
96/* #define DEBUG */
97
98#ifdef DEBUG
99#include <assert.h>
100#define ASSERT(x) assert(x)
101#define DBG(x) printf x
102#else
103#define ASSERT(x)
104#define DBG(x)
105#endif
106
107#ifndef min
108#define min(a,b) (a<b?a:b)
109#endif
110
111int itbl_have_entries = 0;
112
113/*======================================================================*/
114/* structures for keeping itbl format entries */
115
ef99799a
KH
116struct itbl_range {
117 int sbit; /* mask starting bit position */
118 int ebit; /* mask ending bit position */
119};
120
121struct itbl_field {
122 e_type type; /* dreg/creg/greg/immed/symb */
123 struct itbl_range range; /* field's bitfield range within instruction */
124 unsigned long flags; /* field flags */
125 struct itbl_field *next; /* next field in list */
126};
252b5132 127
252b5132
RH
128/* These structures define the instructions and registers for a processor.
129 * If the type is an instruction, the structure defines the format of an
130 * instruction where the fields are the list of operands.
131 * The flags field below uses the same values as those defined in the
c488923f 132 * gnu assembler and are machine specific. */
ef99799a
KH
133struct itbl_entry {
134 e_processor processor; /* processor number */
135 e_type type; /* dreg/creg/greg/insn */
136 char *name; /* mnemionic name for insn/register */
137 unsigned long value; /* opcode/instruction mask/register number */
138 unsigned long flags; /* effects of the instruction */
139 struct itbl_range range; /* bit range within instruction for value */
140 struct itbl_field *fields; /* list of operand definitions (if any) */
141 struct itbl_entry *next; /* next entry */
142};
252b5132 143
252b5132
RH
144/* local data and structures */
145
146static int itbl_num_opcodes = 0;
147/* Array of entries for each processor and entry type */
e5551801 148static struct itbl_entry *entries[e_nprocs][e_ntypes];
252b5132
RH
149
150/* local prototypes */
b1f1fa96
KH
151static unsigned long build_opcode (struct itbl_entry *e);
152static e_type get_type (int yytype);
153static e_processor get_processor (int yyproc);
154static struct itbl_entry **get_entries (e_processor processor,
155 e_type type);
156static struct itbl_entry *find_entry_byname (e_processor processor,
157 e_type type, char *name);
158static struct itbl_entry *find_entry_byval (e_processor processor,
159 e_type type, unsigned long val, struct itbl_range *r);
160static struct itbl_entry *alloc_entry (e_processor processor,
161 e_type type, char *name, unsigned long value);
162static unsigned long apply_range (unsigned long value, struct itbl_range r);
163static unsigned long extract_range (unsigned long value, struct itbl_range r);
164static struct itbl_field *alloc_field (e_type type, int sbit,
165 int ebit, unsigned long flags);
252b5132 166
252b5132
RH
167/*======================================================================*/
168/* Interfaces to the parser */
169
252b5132
RH
170/* Open the table and use lex and yacc to parse the entries.
171 * Return 1 for failure; 0 for success. */
172
c488923f 173int
252b5132
RH
174itbl_parse (char *insntbl)
175{
176 extern FILE *yyin;
177 extern int yyparse (void);
f740e790
NC
178
179 yyin = fopen (insntbl, FOPEN_RT);
252b5132
RH
180 if (yyin == 0)
181 {
182 printf ("Can't open processor instruction specification file \"%s\"\n",
183 insntbl);
184 return 1;
185 }
f740e790
NC
186
187 while (yyparse ())
188 ;
189
252b5132
RH
190 fclose (yyin);
191 itbl_have_entries = 1;
192 return 0;
193}
194
195/* Add a register entry */
196
197struct itbl_entry *
198itbl_add_reg (int yyprocessor, int yytype, char *regname,
199 int regnum)
200{
252b5132
RH
201 return alloc_entry (get_processor (yyprocessor), get_type (yytype), regname,
202 (unsigned long) regnum);
203}
204
205/* Add an instruction entry */
206
207struct itbl_entry *
208itbl_add_insn (int yyprocessor, char *name, unsigned long value,
209 int sbit, int ebit, unsigned long flags)
210{
211 struct itbl_entry *e;
212 e = alloc_entry (get_processor (yyprocessor), e_insn, name, value);
213 if (e)
214 {
215 e->range.sbit = sbit;
216 e->range.ebit = ebit;
217 e->flags = flags;
218 itbl_num_opcodes++;
219 }
220 return e;
221}
222
223/* Add an operand to an instruction entry */
224
225struct itbl_field *
226itbl_add_operand (struct itbl_entry *e, int yytype, int sbit,
227 int ebit, unsigned long flags)
228{
229 struct itbl_field *f, **last_f;
230 if (!e)
231 return 0;
c488923f 232 /* Add to end of fields' list. */
252b5132
RH
233 f = alloc_field (get_type (yytype), sbit, ebit, flags);
234 if (f)
235 {
236 last_f = &e->fields;
237 while (*last_f)
238 last_f = &(*last_f)->next;
239 *last_f = f;
240 f->next = 0;
241 }
242 return f;
243}
244
252b5132
RH
245/*======================================================================*/
246/* Interfaces for assembler and disassembler */
247
248#ifndef STAND_ALONE
252b5132
RH
249static void append_insns_as_macros (void);
250
ef99799a
KH
251/* Initialize for gas. */
252
c488923f 253void
252b5132
RH
254itbl_init (void)
255{
256 struct itbl_entry *e, **es;
257 e_processor procn;
258 e_type type;
259
260 if (!itbl_have_entries)
ef99799a 261 return;
252b5132
RH
262
263 /* Since register names don't have a prefix, put them in the symbol table so
264 they can't be used as symbols. This simplifies argument parsing as
c488923f 265 we can let gas parse registers for us. */
252b5132
RH
266 /* Use symbol_create instead of symbol_new so we don't try to
267 output registers into the object file's symbol table. */
268
269 for (type = e_regtype0; type < e_nregtypes; type++)
270 for (procn = e_p0; procn < e_nprocs; procn++)
271 {
272 es = get_entries (procn, type);
273 for (e = *es; e; e = e->next)
274 {
275 symbol_table_insert (symbol_create (e->name, reg_section,
ef99799a 276 e->value, &zero_address_frag));
252b5132
RH
277 }
278 }
279 append_insns_as_macros ();
280}
281
c488923f
KH
282/* Append insns to opcodes table and increase number of opcodes
283 * Structure of opcodes table:
252b5132
RH
284 * struct itbl_opcode
285 * {
286 * const char *name;
c488923f
KH
287 * const char *args; - string describing the arguments.
288 * unsigned long match; - opcode, or ISA level if pinfo=INSN_MACRO
289 * unsigned long mask; - opcode mask, or macro id if pinfo=INSN_MACRO
290 * unsigned long pinfo; - insn flags, or INSN_MACRO
252b5132
RH
291 * };
292 * examples:
293 * {"li", "t,i", 0x34000000, 0xffe00000, WR_t },
294 * {"li", "t,I", 0, (int) M_LI, INSN_MACRO },
295 */
296
297static char *form_args (struct itbl_entry *e);
c488923f 298static void
252b5132
RH
299append_insns_as_macros (void)
300{
301 struct ITBL_OPCODE_STRUCT *new_opcodes, *o;
302 struct itbl_entry *e, **es;
303 int n, id, size, new_size, new_num_opcodes;
304
305 if (!itbl_have_entries)
ef99799a 306 return;
252b5132
RH
307
308 if (!itbl_num_opcodes) /* no new instructions to add! */
309 {
310 return;
311 }
312 DBG (("previous num_opcodes=%d\n", ITBL_NUM_OPCODES));
313
314 new_num_opcodes = ITBL_NUM_OPCODES + itbl_num_opcodes;
315 ASSERT (new_num_opcodes >= itbl_num_opcodes);
316
317 size = sizeof (struct ITBL_OPCODE_STRUCT) * ITBL_NUM_OPCODES;
318 ASSERT (size >= 0);
319 DBG (("I get=%d\n", size / sizeof (ITBL_OPCODES[0])));
320
321 new_size = sizeof (struct ITBL_OPCODE_STRUCT) * new_num_opcodes;
322 ASSERT (new_size > size);
323
324 /* FIXME since ITBL_OPCODES culd be a static table,
c488923f 325 we can't realloc or delete the old memory. */
252b5132
RH
326 new_opcodes = (struct ITBL_OPCODE_STRUCT *) malloc (new_size);
327 if (!new_opcodes)
328 {
329 printf (_("Unable to allocate memory for new instructions\n"));
330 return;
331 }
47eebc20 332 if (size) /* copy preexisting opcodes table */
252b5132
RH
333 memcpy (new_opcodes, ITBL_OPCODES, size);
334
335 /* FIXME! some NUMOPCODES are calculated expressions.
c488923f 336 These need to be changed before itbls can be supported. */
252b5132
RH
337
338 id = ITBL_NUM_MACROS; /* begin the next macro id after the last */
339 o = &new_opcodes[ITBL_NUM_OPCODES]; /* append macro to opcodes list */
340 for (n = e_p0; n < e_nprocs; n++)
341 {
342 es = get_entries (n, e_insn);
343 for (e = *es; e; e = e->next)
344 {
345 /* name, args, mask, match, pinfo
346 * {"li", "t,i", 0x34000000, 0xffe00000, WR_t },
347 * {"li", "t,I", 0, (int) M_LI, INSN_MACRO },
348 * Construct args from itbl_fields.
349 */
350 o->name = e->name;
351 o->args = strdup (form_args (e));
352 o->mask = apply_range (e->value, e->range);
47eebc20 353 /* FIXME how to catch during assembly? */
252b5132
RH
354 /* mask to identify this insn */
355 o->match = apply_range (e->value, e->range);
356 o->pinfo = 0;
357
358#ifdef USE_MACROS
47eebc20 359 o->mask = id++; /* FIXME how to catch during assembly? */
252b5132
RH
360 o->match = 0; /* for macros, the insn_isa number */
361 o->pinfo = INSN_MACRO;
362#endif
363
364 /* Don't add instructions which caused an error */
365 if (o->args)
366 o++;
367 else
368 new_num_opcodes--;
369 }
370 }
371 ITBL_OPCODES = new_opcodes;
372 ITBL_NUM_OPCODES = new_num_opcodes;
373
374 /* FIXME
375 At this point, we can free the entries, as they should have
376 been added to the assembler's tables.
377 Don't free name though, since name is being used by the new
378 opcodes table.
379
c488923f 380 Eventually, we should also free the new opcodes table itself
252b5132
RH
381 on exit.
382 */
383}
384
385static char *
386form_args (struct itbl_entry *e)
387{
388 static char s[31];
389 char c = 0, *p = s;
390 struct itbl_field *f;
391
392 ASSERT (e);
393 for (f = e->fields; f; f = f->next)
394 {
395 switch (f->type)
396 {
397 case e_dreg:
398 c = 'd';
399 break;
400 case e_creg:
401 c = 't';
402 break;
403 case e_greg:
404 c = 's';
405 break;
406 case e_immed:
407 c = 'i';
408 break;
409 case e_addr:
410 c = 'a';
411 break;
412 default:
413 c = 0; /* ignore; unknown field type */
414 }
415 if (c)
416 {
417 if (p != s)
418 *p++ = ',';
419 *p++ = c;
420 }
421 }
422 *p = 0;
423 return s;
424}
425#endif /* !STAND_ALONE */
426
252b5132
RH
427/* Get processor's register name from val */
428
d7ba4a77
ILT
429int
430itbl_get_reg_val (char *name, unsigned long *pval)
252b5132
RH
431{
432 e_type t;
433 e_processor p;
d7ba4a77 434
252b5132 435 for (p = e_p0; p < e_nprocs; p++)
d7ba4a77
ILT
436 {
437 for (t = e_regtype0; t < e_nregtypes; t++)
438 {
439 if (itbl_get_val (p, t, name, pval))
440 return 1;
441 }
442 }
252b5132
RH
443 return 0;
444}
445
446char *
447itbl_get_name (e_processor processor, e_type type, unsigned long val)
448{
449 struct itbl_entry *r;
450 /* type depends on instruction passed */
451 r = find_entry_byval (processor, type, val, 0);
452 if (r)
453 return r->name;
454 else
455 return 0; /* error; invalid operand */
456}
457
458/* Get processor's register value from name */
459
d7ba4a77
ILT
460int
461itbl_get_val (e_processor processor, e_type type, char *name,
462 unsigned long *pval)
252b5132
RH
463{
464 struct itbl_entry *r;
465 /* type depends on instruction passed */
466 r = find_entry_byname (processor, type, name);
d7ba4a77
ILT
467 if (r == NULL)
468 return 0;
469 *pval = r->value;
470 return 1;
252b5132
RH
471}
472
252b5132
RH
473/* Assemble instruction "name" with operands "s".
474 * name - name of instruction
475 * s - operands
476 * returns - long word for assembled instruction */
477
c488923f 478unsigned long
252b5132
RH
479itbl_assemble (char *name, char *s)
480{
481 unsigned long opcode;
3438adb3 482 struct itbl_entry *e = NULL;
252b5132
RH
483 struct itbl_field *f;
484 char *n;
485 int processor;
486
487 if (!name || !*name)
3b37fd66 488 return 0; /* error! must have an opcode name/expr */
252b5132
RH
489
490 /* find entry in list of instructions for all processors */
491 for (processor = 0; processor < e_nprocs; processor++)
492 {
493 e = find_entry_byname (processor, e_insn, name);
494 if (e)
495 break;
496 }
497 if (!e)
ef5c4bfc 498 return 0; /* opcode not in table; invalid instruction */
252b5132
RH
499 opcode = build_opcode (e);
500
501 /* parse opcode's args (if any) */
c488923f 502 for (f = e->fields; f; f = f->next) /* for each arg, ... */
252b5132
RH
503 {
504 struct itbl_entry *r;
505 unsigned long value;
506 if (!s || !*s)
507 return 0; /* error - not enough operands */
508 n = itbl_get_field (&s);
509 /* n should be in form $n or 0xhhh (are symbol names valid?? */
510 switch (f->type)
511 {
512 case e_dreg:
513 case e_creg:
514 case e_greg:
515 /* Accept either a string name
516 * or '$' followed by the register number */
517 if (*n == '$')
518 {
519 n++;
520 value = strtol (n, 0, 10);
521 /* FIXME! could have "0l"... then what?? */
522 if (value == 0 && *n != '0')
523 return 0; /* error; invalid operand */
524 }
525 else
526 {
527 r = find_entry_byname (e->processor, f->type, n);
528 if (r)
529 value = r->value;
530 else
531 return 0; /* error; invalid operand */
532 }
533 break;
534 case e_addr:
535 /* use assembler's symbol table to find symbol */
536 /* FIXME!! Do we need this?
537 if so, what about relocs??
538 my_getExpression (&imm_expr, s);
539 return 0; /-* error; invalid operand *-/
540 break;
541 */
542 /* If not a symbol, fall thru to IMMED */
543 case e_immed:
c488923f 544 if (*n == '0' && *(n + 1) == 'x') /* hex begins 0x... */
252b5132
RH
545 {
546 n += 2;
547 value = strtol (n, 0, 16);
548 /* FIXME! could have "0xl"... then what?? */
549 }
550 else
551 {
552 value = strtol (n, 0, 10);
553 /* FIXME! could have "0l"... then what?? */
554 if (value == 0 && *n != '0')
555 return 0; /* error; invalid operand */
556 }
557 break;
558 default:
559 return 0; /* error; invalid field spec */
560 }
561 opcode |= apply_range (value, f->range);
562 }
563 if (s && *s)
564 return 0; /* error - too many operands */
565 return opcode; /* done! */
566}
567
568/* Disassemble instruction "insn".
569 * insn - instruction
570 * s - buffer to hold disassembled instruction
571 * returns - 1 if succeeded; 0 if failed
572 */
573
c488923f 574int
252b5132
RH
575itbl_disassemble (char *s, unsigned long insn)
576{
577 e_processor processor;
578 struct itbl_entry *e;
579 struct itbl_field *f;
580
581 if (!ITBL_IS_INSN (insn))
ef99799a 582 return 0; /* error */
252b5132
RH
583 processor = get_processor (ITBL_DECODE_PNUM (insn));
584
585 /* find entry in list */
586 e = find_entry_byval (processor, e_insn, insn, 0);
587 if (!e)
ef5c4bfc 588 return 0; /* opcode not in table; invalid instruction */
252b5132
RH
589 strcpy (s, e->name);
590
ef99799a 591 /* Parse insn's args (if any). */
c488923f 592 for (f = e->fields; f; f = f->next) /* for each arg, ... */
252b5132
RH
593 {
594 struct itbl_entry *r;
595 unsigned long value;
4ef2cf8b 596 char s_value[20];
252b5132 597
47eebc20 598 if (f == e->fields) /* First operand is preceded by tab. */
252b5132 599 strcat (s, "\t");
ef99799a 600 else /* ','s separate following operands. */
252b5132
RH
601 strcat (s, ",");
602 value = extract_range (insn, f->range);
603 /* n should be in form $n or 0xhhh (are symbol names valid?? */
604 switch (f->type)
605 {
606 case e_dreg:
607 case e_creg:
608 case e_greg:
609 /* Accept either a string name
ef99799a 610 or '$' followed by the register number. */
252b5132
RH
611 r = find_entry_byval (e->processor, f->type, value, &f->range);
612 if (r)
613 strcat (s, r->name);
614 else
4ef2cf8b
NC
615 {
616 sprintf (s_value, "$%lu", value);
617 strcat (s, s_value);
618 }
252b5132
RH
619 break;
620 case e_addr:
ef99799a
KH
621 /* Use assembler's symbol table to find symbol. */
622 /* FIXME!! Do we need this? If so, what about relocs?? */
623 /* If not a symbol, fall through to IMMED. */
252b5132 624 case e_immed:
4ef2cf8b
NC
625 sprintf (s_value, "0x%lx", value);
626 strcat (s, s_value);
252b5132
RH
627 break;
628 default:
629 return 0; /* error; invalid field spec */
630 }
631 }
ef99799a 632 return 1; /* Done! */
252b5132
RH
633}
634
635/*======================================================================*/
636/*
637 * Local functions for manipulating private structures containing
638 * the names and format for the new instructions and registers
639 * for each processor.
640 */
641
642/* Calculate instruction's opcode and function values from entry */
643
c488923f 644static unsigned long
252b5132
RH
645build_opcode (struct itbl_entry *e)
646{
647 unsigned long opcode;
648
649 opcode = apply_range (e->value, e->range);
650 opcode |= ITBL_ENCODE_PNUM (e->processor);
651 return opcode;
652}
653
654/* Calculate absolute value given the relative value and bit position range
655 * within the instruction.
656 * The range is inclusive where 0 is least significant bit.
657 * A range of { 24, 20 } will have a mask of
658 * bit 3 2 1
659 * pos: 1098 7654 3210 9876 5432 1098 7654 3210
660 * bin: 0000 0001 1111 0000 0000 0000 0000 0000
661 * hex: 0 1 f 0 0 0 0 0
662 * mask: 0x01f00000.
663 */
664
c488923f 665static unsigned long
252b5132
RH
666apply_range (unsigned long rval, struct itbl_range r)
667{
668 unsigned long mask;
669 unsigned long aval;
670 int len = MAX_BITPOS - r.sbit;
671
672 ASSERT (r.sbit >= r.ebit);
673 ASSERT (MAX_BITPOS >= r.sbit);
674 ASSERT (r.ebit >= 0);
675
676 /* create mask by truncating 1s by shifting */
677 mask = 0xffffffff << len;
678 mask = mask >> len;
679 mask = mask >> r.ebit;
680 mask = mask << r.ebit;
681
682 aval = (rval << r.ebit) & mask;
683 return aval;
684}
685
686/* Calculate relative value given the absolute value and bit position range
687 * within the instruction. */
688
c488923f 689static unsigned long
252b5132
RH
690extract_range (unsigned long aval, struct itbl_range r)
691{
692 unsigned long mask;
693 unsigned long rval;
694 int len = MAX_BITPOS - r.sbit;
695
696 /* create mask by truncating 1s by shifting */
697 mask = 0xffffffff << len;
698 mask = mask >> len;
699 mask = mask >> r.ebit;
700 mask = mask << r.ebit;
701
702 rval = (aval & mask) >> r.ebit;
703 return rval;
704}
705
706/* Extract processor's assembly instruction field name from s;
707 * forms are "n args" "n,args" or "n" */
708/* Return next argument from string pointer "s" and advance s.
d7ba4a77 709 * delimiters are " ,()" */
252b5132
RH
710
711char *
712itbl_get_field (char **S)
713{
714 static char n[128];
41e60a82 715 char *s;
252b5132
RH
716 int len;
717
718 s = *S;
719 if (!s || !*s)
720 return 0;
d7ba4a77
ILT
721 /* FIXME: This is a weird set of delimiters. */
722 len = strcspn (s, " \t,()");
252b5132
RH
723 ASSERT (128 > len + 1);
724 strncpy (n, s, len);
725 n[len] = 0;
726 if (s[len] == '\0')
727 s = 0; /* no more args */
728 else
729 s += len + 1; /* advance to next arg */
730
731 *S = s;
732 return n;
733}
734
735/* Search entries for a given processor and type
736 * to find one matching the name "n".
737 * Return a pointer to the entry */
738
739static struct itbl_entry *
740find_entry_byname (e_processor processor,
741 e_type type, char *n)
742{
743 struct itbl_entry *e, **es;
744
745 es = get_entries (processor, type);
c488923f 746 for (e = *es; e; e = e->next) /* for each entry, ... */
252b5132
RH
747 {
748 if (!strcmp (e->name, n))
749 return e;
750 }
751 return 0;
752}
753
754/* Search entries for a given processor and type
755 * to find one matching the value "val" for the range "r".
756 * Return a pointer to the entry.
757 * This function is used for disassembling fields of an instruction.
758 */
759
760static struct itbl_entry *
761find_entry_byval (e_processor processor, e_type type,
762 unsigned long val, struct itbl_range *r)
763{
764 struct itbl_entry *e, **es;
765 unsigned long eval;
766
767 es = get_entries (processor, type);
c488923f 768 for (e = *es; e; e = e->next) /* for each entry, ... */
252b5132
RH
769 {
770 if (processor != e->processor)
771 continue;
772 /* For insns, we might not know the range of the opcode,
773 * so a range of 0 will allow this routine to match against
774 * the range of the entry to be compared with.
775 * This could cause ambiguities.
776 * For operands, we get an extracted value and a range.
777 */
c488923f 778 /* if range is 0, mask val against the range of the compared entry. */
252b5132
RH
779 if (r == 0) /* if no range passed, must be whole 32-bits
780 * so create 32-bit value from entry's range */
781 {
782 eval = apply_range (e->value, e->range);
783 val &= apply_range (0xffffffff, e->range);
784 }
41e60a82
ILT
785 else if ((r->sbit == e->range.sbit && r->ebit == e->range.ebit)
786 || (e->range.sbit == 0 && e->range.ebit == 0))
252b5132
RH
787 {
788 eval = apply_range (e->value, *r);
789 val = apply_range (val, *r);
790 }
791 else
792 continue;
793 if (val == eval)
794 return e;
795 }
796 return 0;
797}
798
c488923f 799/* Return a pointer to the list of entries for a given processor and type. */
252b5132
RH
800
801static struct itbl_entry **
802get_entries (e_processor processor, e_type type)
803{
804 return &entries[processor][type];
805}
806
c488923f 807/* Return an integral value for the processor passed from yyparse. */
252b5132 808
c488923f 809static e_processor
252b5132
RH
810get_processor (int yyproc)
811{
812 /* translate from yacc's processor to enum */
813 if (yyproc >= e_p0 && yyproc < e_nprocs)
814 return (e_processor) yyproc;
815 return e_invproc; /* error; invalid processor */
816}
817
c488923f 818/* Return an integral value for the entry type passed from yyparse. */
252b5132 819
c488923f 820static e_type
252b5132
RH
821get_type (int yytype)
822{
823 switch (yytype)
824 {
825 /* translate from yacc's type to enum */
826 case INSN:
827 return e_insn;
828 case DREG:
829 return e_dreg;
830 case CREG:
831 return e_creg;
832 case GREG:
833 return e_greg;
834 case ADDR:
835 return e_addr;
836 case IMMED:
837 return e_immed;
838 default:
839 return e_invtype; /* error; invalid type */
840 }
841}
842
252b5132
RH
843/* Allocate and initialize an entry */
844
845static struct itbl_entry *
846alloc_entry (e_processor processor, e_type type,
847 char *name, unsigned long value)
848{
849 struct itbl_entry *e, **es;
850 if (!name)
851 return 0;
852 e = (struct itbl_entry *) malloc (sizeof (struct itbl_entry));
853 if (e)
854 {
855 memset (e, 0, sizeof (struct itbl_entry));
856 e->name = (char *) malloc (sizeof (strlen (name)) + 1);
857 if (e->name)
858 strcpy (e->name, name);
859 e->processor = processor;
860 e->type = type;
861 e->value = value;
862 es = get_entries (e->processor, e->type);
863 e->next = *es;
864 *es = e;
865 }
866 return e;
867}
868
869/* Allocate and initialize an entry's field */
870
871static struct itbl_field *
872alloc_field (e_type type, int sbit, int ebit,
873 unsigned long flags)
874{
875 struct itbl_field *f;
876 f = (struct itbl_field *) malloc (sizeof (struct itbl_field));
877 if (f)
878 {
879 memset (f, 0, sizeof (struct itbl_field));
880 f->type = type;
881 f->range.sbit = sbit;
882 f->range.ebit = ebit;
883 f->flags = flags;
884 }
885 return f;
886}
This page took 0.503653 seconds and 4 git commands to generate.