2007-03-29 Denis Pilat <denis.pilat@st.com>
[deliverable/binutils-gdb.git] / gas / itbl-ops.c
CommitLineData
252b5132 1/* itbl-ops.c
ebd1c875 2 Copyright 1997, 1999, 2000, 2001, 2002, 2003, 2005, 2006
2da5c037 3 Free Software Foundation, Inc.
252b5132
RH
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
19 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
20 02110-1301, USA. */
252b5132
RH
21
22/*======================================================================*/
23/*
24 * Herein lies the support for dynamic specification of processor
25 * instructions and registers. Mnemonics, values, and formats for each
26 * instruction and register are specified in an ascii file consisting of
27 * table entries. The grammar for the table is defined in the document
28 * "Processor instruction table specification".
29 *
30 * Instructions use the gnu assembler syntax, with the addition of
31 * allowing mnemonics for register.
32 * Eg. "func $2,reg3,0x100,symbol ; comment"
33 * func - opcode name
34 * $n - register n
35 * reg3 - mnemonic for processor's register defined in table
36 * 0xddd..d - immediate value
37 * symbol - address of label or external symbol
38 *
39 * First, itbl_parse reads in the table of register and instruction
40 * names and formats, and builds a list of entries for each
41 * processor/type combination. lex and yacc are used to parse
42 * the entries in the table and call functions defined here to
43 * add each entry to our list.
44 *
45 * Then, when assembling or disassembling, these functions are called to
46 * 1) get information on a processor's registers and
47 * 2) assemble/disassemble an instruction.
48 * To assemble(disassemble) an instruction, the function
49 * itbl_assemble(itbl_disassemble) is called to search the list of
50 * instruction entries, and if a match is found, uses the format
51 * described in the instruction entry structure to complete the action.
52 *
53 * Eg. Suppose we have a Mips coprocessor "cop3" with data register "d2"
54 * and we want to define function "pig" which takes two operands.
55 *
56 * Given the table entries:
57 * "p3 insn pig 0x1:24-21 dreg:20-16 immed:15-0"
58 * "p3 dreg d2 0x2"
59 * and that the instruction encoding for coprocessor pz has encoding:
60 * #define MIPS_ENCODE_COP_NUM(z) ((0x21|(z<<1))<<25)
61 * #define ITBL_ENCODE_PNUM(pnum) MIPS_ENCODE_COP_NUM(pnum)
62 *
63 * a structure to describe the instruction might look something like:
64 * struct itbl_entry = {
65 * e_processor processor = e_p3
66 * e_type type = e_insn
67 * char *name = "pig"
68 * uint value = 0x1
69 * uint flags = 0
70 * struct itbl_range range = 24-21
71 * struct itbl_field *field = {
72 * e_type type = e_dreg
73 * struct itbl_range range = 20-16
74 * struct itbl_field *next = {
75 * e_type type = e_immed
76 * struct itbl_range range = 15-0
77 * struct itbl_field *next = 0
78 * };
79 * };
80 * struct itbl_entry *next = 0
81 * };
82 *
83 * And the assembler instructions:
84 * "pig d2,0x100"
85 * "pig $2,0x100"
86 *
87 * would both assemble to the hex value:
88 * "0x4e220100"
89 *
90 */
91
ebd1c875 92#include "as.h"
252b5132 93#include "itbl-ops.h"
3d82a647 94#include <itbl-parse.h>
252b5132
RH
95
96/* #define DEBUG */
97
98#ifdef DEBUG
99#include <assert.h>
100#define ASSERT(x) assert(x)
101#define DBG(x) printf x
102#else
103#define ASSERT(x)
104#define DBG(x)
105#endif
106
107#ifndef min
108#define min(a,b) (a<b?a:b)
109#endif
110
111int itbl_have_entries = 0;
112
113/*======================================================================*/
114/* structures for keeping itbl format entries */
115
ef99799a
KH
116struct itbl_range {
117 int sbit; /* mask starting bit position */
118 int ebit; /* mask ending bit position */
119};
120
121struct itbl_field {
122 e_type type; /* dreg/creg/greg/immed/symb */
123 struct itbl_range range; /* field's bitfield range within instruction */
124 unsigned long flags; /* field flags */
125 struct itbl_field *next; /* next field in list */
126};
252b5132 127
252b5132
RH
128/* These structures define the instructions and registers for a processor.
129 * If the type is an instruction, the structure defines the format of an
130 * instruction where the fields are the list of operands.
131 * The flags field below uses the same values as those defined in the
c488923f 132 * gnu assembler and are machine specific. */
ef99799a
KH
133struct itbl_entry {
134 e_processor processor; /* processor number */
135 e_type type; /* dreg/creg/greg/insn */
136 char *name; /* mnemionic name for insn/register */
137 unsigned long value; /* opcode/instruction mask/register number */
138 unsigned long flags; /* effects of the instruction */
139 struct itbl_range range; /* bit range within instruction for value */
140 struct itbl_field *fields; /* list of operand definitions (if any) */
141 struct itbl_entry *next; /* next entry */
142};
252b5132 143
252b5132
RH
144/* local data and structures */
145
146static int itbl_num_opcodes = 0;
147/* Array of entries for each processor and entry type */
ef99799a 148static struct itbl_entry *entries[e_nprocs][e_ntypes] = {
252b5132
RH
149 {0, 0, 0, 0, 0, 0},
150 {0, 0, 0, 0, 0, 0},
151 {0, 0, 0, 0, 0, 0},
152 {0, 0, 0, 0, 0, 0}
153};
154
155/* local prototypes */
b1f1fa96
KH
156static unsigned long build_opcode (struct itbl_entry *e);
157static e_type get_type (int yytype);
158static e_processor get_processor (int yyproc);
159static struct itbl_entry **get_entries (e_processor processor,
160 e_type type);
161static struct itbl_entry *find_entry_byname (e_processor processor,
162 e_type type, char *name);
163static struct itbl_entry *find_entry_byval (e_processor processor,
164 e_type type, unsigned long val, struct itbl_range *r);
165static struct itbl_entry *alloc_entry (e_processor processor,
166 e_type type, char *name, unsigned long value);
167static unsigned long apply_range (unsigned long value, struct itbl_range r);
168static unsigned long extract_range (unsigned long value, struct itbl_range r);
169static struct itbl_field *alloc_field (e_type type, int sbit,
170 int ebit, unsigned long flags);
252b5132 171
252b5132
RH
172/*======================================================================*/
173/* Interfaces to the parser */
174
252b5132
RH
175/* Open the table and use lex and yacc to parse the entries.
176 * Return 1 for failure; 0 for success. */
177
c488923f 178int
252b5132
RH
179itbl_parse (char *insntbl)
180{
181 extern FILE *yyin;
182 extern int yyparse (void);
f740e790
NC
183
184 yyin = fopen (insntbl, FOPEN_RT);
252b5132
RH
185 if (yyin == 0)
186 {
187 printf ("Can't open processor instruction specification file \"%s\"\n",
188 insntbl);
189 return 1;
190 }
f740e790
NC
191
192 while (yyparse ())
193 ;
194
252b5132
RH
195 fclose (yyin);
196 itbl_have_entries = 1;
197 return 0;
198}
199
200/* Add a register entry */
201
202struct itbl_entry *
203itbl_add_reg (int yyprocessor, int yytype, char *regname,
204 int regnum)
205{
252b5132
RH
206 return alloc_entry (get_processor (yyprocessor), get_type (yytype), regname,
207 (unsigned long) regnum);
208}
209
210/* Add an instruction entry */
211
212struct itbl_entry *
213itbl_add_insn (int yyprocessor, char *name, unsigned long value,
214 int sbit, int ebit, unsigned long flags)
215{
216 struct itbl_entry *e;
217 e = alloc_entry (get_processor (yyprocessor), e_insn, name, value);
218 if (e)
219 {
220 e->range.sbit = sbit;
221 e->range.ebit = ebit;
222 e->flags = flags;
223 itbl_num_opcodes++;
224 }
225 return e;
226}
227
228/* Add an operand to an instruction entry */
229
230struct itbl_field *
231itbl_add_operand (struct itbl_entry *e, int yytype, int sbit,
232 int ebit, unsigned long flags)
233{
234 struct itbl_field *f, **last_f;
235 if (!e)
236 return 0;
c488923f 237 /* Add to end of fields' list. */
252b5132
RH
238 f = alloc_field (get_type (yytype), sbit, ebit, flags);
239 if (f)
240 {
241 last_f = &e->fields;
242 while (*last_f)
243 last_f = &(*last_f)->next;
244 *last_f = f;
245 f->next = 0;
246 }
247 return f;
248}
249
252b5132
RH
250/*======================================================================*/
251/* Interfaces for assembler and disassembler */
252
253#ifndef STAND_ALONE
252b5132
RH
254static void append_insns_as_macros (void);
255
ef99799a
KH
256/* Initialize for gas. */
257
c488923f 258void
252b5132
RH
259itbl_init (void)
260{
261 struct itbl_entry *e, **es;
262 e_processor procn;
263 e_type type;
264
265 if (!itbl_have_entries)
ef99799a 266 return;
252b5132
RH
267
268 /* Since register names don't have a prefix, put them in the symbol table so
269 they can't be used as symbols. This simplifies argument parsing as
c488923f 270 we can let gas parse registers for us. */
252b5132
RH
271 /* Use symbol_create instead of symbol_new so we don't try to
272 output registers into the object file's symbol table. */
273
274 for (type = e_regtype0; type < e_nregtypes; type++)
275 for (procn = e_p0; procn < e_nprocs; procn++)
276 {
277 es = get_entries (procn, type);
278 for (e = *es; e; e = e->next)
279 {
280 symbol_table_insert (symbol_create (e->name, reg_section,
ef99799a 281 e->value, &zero_address_frag));
252b5132
RH
282 }
283 }
284 append_insns_as_macros ();
285}
286
c488923f
KH
287/* Append insns to opcodes table and increase number of opcodes
288 * Structure of opcodes table:
252b5132
RH
289 * struct itbl_opcode
290 * {
291 * const char *name;
c488923f
KH
292 * const char *args; - string describing the arguments.
293 * unsigned long match; - opcode, or ISA level if pinfo=INSN_MACRO
294 * unsigned long mask; - opcode mask, or macro id if pinfo=INSN_MACRO
295 * unsigned long pinfo; - insn flags, or INSN_MACRO
252b5132
RH
296 * };
297 * examples:
298 * {"li", "t,i", 0x34000000, 0xffe00000, WR_t },
299 * {"li", "t,I", 0, (int) M_LI, INSN_MACRO },
300 */
301
302static char *form_args (struct itbl_entry *e);
c488923f 303static void
252b5132
RH
304append_insns_as_macros (void)
305{
306 struct ITBL_OPCODE_STRUCT *new_opcodes, *o;
307 struct itbl_entry *e, **es;
308 int n, id, size, new_size, new_num_opcodes;
309
310 if (!itbl_have_entries)
ef99799a 311 return;
252b5132
RH
312
313 if (!itbl_num_opcodes) /* no new instructions to add! */
314 {
315 return;
316 }
317 DBG (("previous num_opcodes=%d\n", ITBL_NUM_OPCODES));
318
319 new_num_opcodes = ITBL_NUM_OPCODES + itbl_num_opcodes;
320 ASSERT (new_num_opcodes >= itbl_num_opcodes);
321
322 size = sizeof (struct ITBL_OPCODE_STRUCT) * ITBL_NUM_OPCODES;
323 ASSERT (size >= 0);
324 DBG (("I get=%d\n", size / sizeof (ITBL_OPCODES[0])));
325
326 new_size = sizeof (struct ITBL_OPCODE_STRUCT) * new_num_opcodes;
327 ASSERT (new_size > size);
328
329 /* FIXME since ITBL_OPCODES culd be a static table,
c488923f 330 we can't realloc or delete the old memory. */
252b5132
RH
331 new_opcodes = (struct ITBL_OPCODE_STRUCT *) malloc (new_size);
332 if (!new_opcodes)
333 {
334 printf (_("Unable to allocate memory for new instructions\n"));
335 return;
336 }
47eebc20 337 if (size) /* copy preexisting opcodes table */
252b5132
RH
338 memcpy (new_opcodes, ITBL_OPCODES, size);
339
340 /* FIXME! some NUMOPCODES are calculated expressions.
c488923f 341 These need to be changed before itbls can be supported. */
252b5132
RH
342
343 id = ITBL_NUM_MACROS; /* begin the next macro id after the last */
344 o = &new_opcodes[ITBL_NUM_OPCODES]; /* append macro to opcodes list */
345 for (n = e_p0; n < e_nprocs; n++)
346 {
347 es = get_entries (n, e_insn);
348 for (e = *es; e; e = e->next)
349 {
350 /* name, args, mask, match, pinfo
351 * {"li", "t,i", 0x34000000, 0xffe00000, WR_t },
352 * {"li", "t,I", 0, (int) M_LI, INSN_MACRO },
353 * Construct args from itbl_fields.
354 */
355 o->name = e->name;
356 o->args = strdup (form_args (e));
357 o->mask = apply_range (e->value, e->range);
47eebc20 358 /* FIXME how to catch during assembly? */
252b5132
RH
359 /* mask to identify this insn */
360 o->match = apply_range (e->value, e->range);
361 o->pinfo = 0;
362
363#ifdef USE_MACROS
47eebc20 364 o->mask = id++; /* FIXME how to catch during assembly? */
252b5132
RH
365 o->match = 0; /* for macros, the insn_isa number */
366 o->pinfo = INSN_MACRO;
367#endif
368
369 /* Don't add instructions which caused an error */
370 if (o->args)
371 o++;
372 else
373 new_num_opcodes--;
374 }
375 }
376 ITBL_OPCODES = new_opcodes;
377 ITBL_NUM_OPCODES = new_num_opcodes;
378
379 /* FIXME
380 At this point, we can free the entries, as they should have
381 been added to the assembler's tables.
382 Don't free name though, since name is being used by the new
383 opcodes table.
384
c488923f 385 Eventually, we should also free the new opcodes table itself
252b5132
RH
386 on exit.
387 */
388}
389
390static char *
391form_args (struct itbl_entry *e)
392{
393 static char s[31];
394 char c = 0, *p = s;
395 struct itbl_field *f;
396
397 ASSERT (e);
398 for (f = e->fields; f; f = f->next)
399 {
400 switch (f->type)
401 {
402 case e_dreg:
403 c = 'd';
404 break;
405 case e_creg:
406 c = 't';
407 break;
408 case e_greg:
409 c = 's';
410 break;
411 case e_immed:
412 c = 'i';
413 break;
414 case e_addr:
415 c = 'a';
416 break;
417 default:
418 c = 0; /* ignore; unknown field type */
419 }
420 if (c)
421 {
422 if (p != s)
423 *p++ = ',';
424 *p++ = c;
425 }
426 }
427 *p = 0;
428 return s;
429}
430#endif /* !STAND_ALONE */
431
252b5132
RH
432/* Get processor's register name from val */
433
d7ba4a77
ILT
434int
435itbl_get_reg_val (char *name, unsigned long *pval)
252b5132
RH
436{
437 e_type t;
438 e_processor p;
d7ba4a77 439
252b5132 440 for (p = e_p0; p < e_nprocs; p++)
d7ba4a77
ILT
441 {
442 for (t = e_regtype0; t < e_nregtypes; t++)
443 {
444 if (itbl_get_val (p, t, name, pval))
445 return 1;
446 }
447 }
252b5132
RH
448 return 0;
449}
450
451char *
452itbl_get_name (e_processor processor, e_type type, unsigned long val)
453{
454 struct itbl_entry *r;
455 /* type depends on instruction passed */
456 r = find_entry_byval (processor, type, val, 0);
457 if (r)
458 return r->name;
459 else
460 return 0; /* error; invalid operand */
461}
462
463/* Get processor's register value from name */
464
d7ba4a77
ILT
465int
466itbl_get_val (e_processor processor, e_type type, char *name,
467 unsigned long *pval)
252b5132
RH
468{
469 struct itbl_entry *r;
470 /* type depends on instruction passed */
471 r = find_entry_byname (processor, type, name);
d7ba4a77
ILT
472 if (r == NULL)
473 return 0;
474 *pval = r->value;
475 return 1;
252b5132
RH
476}
477
252b5132
RH
478/* Assemble instruction "name" with operands "s".
479 * name - name of instruction
480 * s - operands
481 * returns - long word for assembled instruction */
482
c488923f 483unsigned long
252b5132
RH
484itbl_assemble (char *name, char *s)
485{
486 unsigned long opcode;
3438adb3 487 struct itbl_entry *e = NULL;
252b5132
RH
488 struct itbl_field *f;
489 char *n;
490 int processor;
491
492 if (!name || !*name)
3b37fd66 493 return 0; /* error! must have an opcode name/expr */
252b5132
RH
494
495 /* find entry in list of instructions for all processors */
496 for (processor = 0; processor < e_nprocs; processor++)
497 {
498 e = find_entry_byname (processor, e_insn, name);
499 if (e)
500 break;
501 }
502 if (!e)
ef5c4bfc 503 return 0; /* opcode not in table; invalid instruction */
252b5132
RH
504 opcode = build_opcode (e);
505
506 /* parse opcode's args (if any) */
c488923f 507 for (f = e->fields; f; f = f->next) /* for each arg, ... */
252b5132
RH
508 {
509 struct itbl_entry *r;
510 unsigned long value;
511 if (!s || !*s)
512 return 0; /* error - not enough operands */
513 n = itbl_get_field (&s);
514 /* n should be in form $n or 0xhhh (are symbol names valid?? */
515 switch (f->type)
516 {
517 case e_dreg:
518 case e_creg:
519 case e_greg:
520 /* Accept either a string name
521 * or '$' followed by the register number */
522 if (*n == '$')
523 {
524 n++;
525 value = strtol (n, 0, 10);
526 /* FIXME! could have "0l"... then what?? */
527 if (value == 0 && *n != '0')
528 return 0; /* error; invalid operand */
529 }
530 else
531 {
532 r = find_entry_byname (e->processor, f->type, n);
533 if (r)
534 value = r->value;
535 else
536 return 0; /* error; invalid operand */
537 }
538 break;
539 case e_addr:
540 /* use assembler's symbol table to find symbol */
541 /* FIXME!! Do we need this?
542 if so, what about relocs??
543 my_getExpression (&imm_expr, s);
544 return 0; /-* error; invalid operand *-/
545 break;
546 */
547 /* If not a symbol, fall thru to IMMED */
548 case e_immed:
c488923f 549 if (*n == '0' && *(n + 1) == 'x') /* hex begins 0x... */
252b5132
RH
550 {
551 n += 2;
552 value = strtol (n, 0, 16);
553 /* FIXME! could have "0xl"... then what?? */
554 }
555 else
556 {
557 value = strtol (n, 0, 10);
558 /* FIXME! could have "0l"... then what?? */
559 if (value == 0 && *n != '0')
560 return 0; /* error; invalid operand */
561 }
562 break;
563 default:
564 return 0; /* error; invalid field spec */
565 }
566 opcode |= apply_range (value, f->range);
567 }
568 if (s && *s)
569 return 0; /* error - too many operands */
570 return opcode; /* done! */
571}
572
573/* Disassemble instruction "insn".
574 * insn - instruction
575 * s - buffer to hold disassembled instruction
576 * returns - 1 if succeeded; 0 if failed
577 */
578
c488923f 579int
252b5132
RH
580itbl_disassemble (char *s, unsigned long insn)
581{
582 e_processor processor;
583 struct itbl_entry *e;
584 struct itbl_field *f;
585
586 if (!ITBL_IS_INSN (insn))
ef99799a 587 return 0; /* error */
252b5132
RH
588 processor = get_processor (ITBL_DECODE_PNUM (insn));
589
590 /* find entry in list */
591 e = find_entry_byval (processor, e_insn, insn, 0);
592 if (!e)
ef5c4bfc 593 return 0; /* opcode not in table; invalid instruction */
252b5132
RH
594 strcpy (s, e->name);
595
ef99799a 596 /* Parse insn's args (if any). */
c488923f 597 for (f = e->fields; f; f = f->next) /* for each arg, ... */
252b5132
RH
598 {
599 struct itbl_entry *r;
600 unsigned long value;
601
47eebc20 602 if (f == e->fields) /* First operand is preceded by tab. */
252b5132 603 strcat (s, "\t");
ef99799a 604 else /* ','s separate following operands. */
252b5132
RH
605 strcat (s, ",");
606 value = extract_range (insn, f->range);
607 /* n should be in form $n or 0xhhh (are symbol names valid?? */
608 switch (f->type)
609 {
610 case e_dreg:
611 case e_creg:
612 case e_greg:
613 /* Accept either a string name
ef99799a 614 or '$' followed by the register number. */
252b5132
RH
615 r = find_entry_byval (e->processor, f->type, value, &f->range);
616 if (r)
617 strcat (s, r->name);
618 else
41e60a82 619 sprintf (s, "%s$%lu", s, value);
252b5132
RH
620 break;
621 case e_addr:
ef99799a
KH
622 /* Use assembler's symbol table to find symbol. */
623 /* FIXME!! Do we need this? If so, what about relocs?? */
624 /* If not a symbol, fall through to IMMED. */
252b5132 625 case e_immed:
41e60a82 626 sprintf (s, "%s0x%lx", s, value);
252b5132
RH
627 break;
628 default:
629 return 0; /* error; invalid field spec */
630 }
631 }
ef99799a 632 return 1; /* Done! */
252b5132
RH
633}
634
635/*======================================================================*/
636/*
637 * Local functions for manipulating private structures containing
638 * the names and format for the new instructions and registers
639 * for each processor.
640 */
641
642/* Calculate instruction's opcode and function values from entry */
643
c488923f 644static unsigned long
252b5132
RH
645build_opcode (struct itbl_entry *e)
646{
647 unsigned long opcode;
648
649 opcode = apply_range (e->value, e->range);
650 opcode |= ITBL_ENCODE_PNUM (e->processor);
651 return opcode;
652}
653
654/* Calculate absolute value given the relative value and bit position range
655 * within the instruction.
656 * The range is inclusive where 0 is least significant bit.
657 * A range of { 24, 20 } will have a mask of
658 * bit 3 2 1
659 * pos: 1098 7654 3210 9876 5432 1098 7654 3210
660 * bin: 0000 0001 1111 0000 0000 0000 0000 0000
661 * hex: 0 1 f 0 0 0 0 0
662 * mask: 0x01f00000.
663 */
664
c488923f 665static unsigned long
252b5132
RH
666apply_range (unsigned long rval, struct itbl_range r)
667{
668 unsigned long mask;
669 unsigned long aval;
670 int len = MAX_BITPOS - r.sbit;
671
672 ASSERT (r.sbit >= r.ebit);
673 ASSERT (MAX_BITPOS >= r.sbit);
674 ASSERT (r.ebit >= 0);
675
676 /* create mask by truncating 1s by shifting */
677 mask = 0xffffffff << len;
678 mask = mask >> len;
679 mask = mask >> r.ebit;
680 mask = mask << r.ebit;
681
682 aval = (rval << r.ebit) & mask;
683 return aval;
684}
685
686/* Calculate relative value given the absolute value and bit position range
687 * within the instruction. */
688
c488923f 689static unsigned long
252b5132
RH
690extract_range (unsigned long aval, struct itbl_range r)
691{
692 unsigned long mask;
693 unsigned long rval;
694 int len = MAX_BITPOS - r.sbit;
695
696 /* create mask by truncating 1s by shifting */
697 mask = 0xffffffff << len;
698 mask = mask >> len;
699 mask = mask >> r.ebit;
700 mask = mask << r.ebit;
701
702 rval = (aval & mask) >> r.ebit;
703 return rval;
704}
705
706/* Extract processor's assembly instruction field name from s;
707 * forms are "n args" "n,args" or "n" */
708/* Return next argument from string pointer "s" and advance s.
d7ba4a77 709 * delimiters are " ,()" */
252b5132
RH
710
711char *
712itbl_get_field (char **S)
713{
714 static char n[128];
41e60a82 715 char *s;
252b5132
RH
716 int len;
717
718 s = *S;
719 if (!s || !*s)
720 return 0;
d7ba4a77
ILT
721 /* FIXME: This is a weird set of delimiters. */
722 len = strcspn (s, " \t,()");
252b5132
RH
723 ASSERT (128 > len + 1);
724 strncpy (n, s, len);
725 n[len] = 0;
726 if (s[len] == '\0')
727 s = 0; /* no more args */
728 else
729 s += len + 1; /* advance to next arg */
730
731 *S = s;
732 return n;
733}
734
735/* Search entries for a given processor and type
736 * to find one matching the name "n".
737 * Return a pointer to the entry */
738
739static struct itbl_entry *
740find_entry_byname (e_processor processor,
741 e_type type, char *n)
742{
743 struct itbl_entry *e, **es;
744
745 es = get_entries (processor, type);
c488923f 746 for (e = *es; e; e = e->next) /* for each entry, ... */
252b5132
RH
747 {
748 if (!strcmp (e->name, n))
749 return e;
750 }
751 return 0;
752}
753
754/* Search entries for a given processor and type
755 * to find one matching the value "val" for the range "r".
756 * Return a pointer to the entry.
757 * This function is used for disassembling fields of an instruction.
758 */
759
760static struct itbl_entry *
761find_entry_byval (e_processor processor, e_type type,
762 unsigned long val, struct itbl_range *r)
763{
764 struct itbl_entry *e, **es;
765 unsigned long eval;
766
767 es = get_entries (processor, type);
c488923f 768 for (e = *es; e; e = e->next) /* for each entry, ... */
252b5132
RH
769 {
770 if (processor != e->processor)
771 continue;
772 /* For insns, we might not know the range of the opcode,
773 * so a range of 0 will allow this routine to match against
774 * the range of the entry to be compared with.
775 * This could cause ambiguities.
776 * For operands, we get an extracted value and a range.
777 */
c488923f 778 /* if range is 0, mask val against the range of the compared entry. */
252b5132
RH
779 if (r == 0) /* if no range passed, must be whole 32-bits
780 * so create 32-bit value from entry's range */
781 {
782 eval = apply_range (e->value, e->range);
783 val &= apply_range (0xffffffff, e->range);
784 }
41e60a82
ILT
785 else if ((r->sbit == e->range.sbit && r->ebit == e->range.ebit)
786 || (e->range.sbit == 0 && e->range.ebit == 0))
252b5132
RH
787 {
788 eval = apply_range (e->value, *r);
789 val = apply_range (val, *r);
790 }
791 else
792 continue;
793 if (val == eval)
794 return e;
795 }
796 return 0;
797}
798
c488923f 799/* Return a pointer to the list of entries for a given processor and type. */
252b5132
RH
800
801static struct itbl_entry **
802get_entries (e_processor processor, e_type type)
803{
804 return &entries[processor][type];
805}
806
c488923f 807/* Return an integral value for the processor passed from yyparse. */
252b5132 808
c488923f 809static e_processor
252b5132
RH
810get_processor (int yyproc)
811{
812 /* translate from yacc's processor to enum */
813 if (yyproc >= e_p0 && yyproc < e_nprocs)
814 return (e_processor) yyproc;
815 return e_invproc; /* error; invalid processor */
816}
817
c488923f 818/* Return an integral value for the entry type passed from yyparse. */
252b5132 819
c488923f 820static e_type
252b5132
RH
821get_type (int yytype)
822{
823 switch (yytype)
824 {
825 /* translate from yacc's type to enum */
826 case INSN:
827 return e_insn;
828 case DREG:
829 return e_dreg;
830 case CREG:
831 return e_creg;
832 case GREG:
833 return e_greg;
834 case ADDR:
835 return e_addr;
836 case IMMED:
837 return e_immed;
838 default:
839 return e_invtype; /* error; invalid type */
840 }
841}
842
252b5132
RH
843/* Allocate and initialize an entry */
844
845static struct itbl_entry *
846alloc_entry (e_processor processor, e_type type,
847 char *name, unsigned long value)
848{
849 struct itbl_entry *e, **es;
850 if (!name)
851 return 0;
852 e = (struct itbl_entry *) malloc (sizeof (struct itbl_entry));
853 if (e)
854 {
855 memset (e, 0, sizeof (struct itbl_entry));
856 e->name = (char *) malloc (sizeof (strlen (name)) + 1);
857 if (e->name)
858 strcpy (e->name, name);
859 e->processor = processor;
860 e->type = type;
861 e->value = value;
862 es = get_entries (e->processor, e->type);
863 e->next = *es;
864 *es = e;
865 }
866 return e;
867}
868
869/* Allocate and initialize an entry's field */
870
871static struct itbl_field *
872alloc_field (e_type type, int sbit, int ebit,
873 unsigned long flags)
874{
875 struct itbl_field *f;
876 f = (struct itbl_field *) malloc (sizeof (struct itbl_field));
877 if (f)
878 {
879 memset (f, 0, sizeof (struct itbl_field));
880 f->type = type;
881 f->range.sbit = sbit;
882 f->range.ebit = ebit;
883 f->flags = flags;
884 }
885 return f;
886}
This page took 0.422632 seconds and 4 git commands to generate.